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Abstract 

Ambient air pollution, including fine particulate matter (PM2.5) and oxidant gases (ozone, 

nitrogen dioxide), contribute to disease outcomes such as cardiovascular and respiratory diseases 

and cancer through the mechanism of oxidative stress. The source of air pollution influences its 

composition, which in turn affects its toxicity. Recently, there has been an interest in 

understanding how specific constituents in particulate air pollution (including metals, sulfur) and 

oxidative properties, which differ depending on the source, are related to health outcomes. The 

overarching goal of this thesis is to fill several knowledge gaps on adverse health outcomes 

associated with specific sources, constituents and oxidative properties of air pollution in Canada.  

In Objective 1, we performed a repeated-measures panel study with 71 children to 

examine associations between short-term and sub-chronic PM2.5 or oxidant gases and two 

measures of cardiovascular health (retinal blood vessel diameter and blood pressure). The study 

took place in a region of Vancouver Island that is impacted by residential biomass burning. 

Multivariable linear mixed-effect models were used to estimate associations between outdoor air 

pollution (PM2.5 or oxidant gases) and cardiovascular outcomes, and interactions between PM2.5 

and oxidant gases were also considered. We observed inverse associations between oxidant gases 

and retinal arteriolar diameter; for example, each 10 ppb increase in 7-day mean oxidant gases 

were associated with a 2.63 μm (95% confidence interval: -4.63, -0.63) decrease in retinal 

arteriolar diameter. Moreover, oxidant gases modified the associations between PM2.5 and 

arteriolar diameter, with weak inverse associations observed between PM2.5 and arteriolar 

diameter only when oxidant gases were elevated.  

In Objective 2, we examined whether associations between short-term PM2.5 or oxidant 

gases and respiratory hospitalizations were modified by metals or sulfur content in PM2.5 or 
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particle oxidative potential in a case-crossover study of 10,500 Canadian children. Multivariable 

conditional logistic regression models were used to estimate associations between air pollutants 

and respiratory hospitalizations, above and below median values for particle metals, sulfur and 

oxidative potential. Lag-1 PM2.5 mass was not associated with respiratory hospitalizations in 

analyses ignoring particle constituents and oxidative potential, but when models were examined 

above and below median metals, sulfur, and oxidative potential, positive associations were 

observed above the median. For example, the odds ratio and 95% confidence interval per 10 

μg/m3 increase in PM2.5 were 1.084 (1.007–1.167) when copper was above the median and 0.970 

(0.929–1.014) when copper was below the median. Similar trends were observed for oxidant 

gases.  

In Objective 3, we investigated associations between wildfire exposure based on area 

burned within a 20 and 50 km radius of residential location and the incidence of lung and brain 

cancer, non-Hodgkin lymphoma, leukemia, and multiple myeloma among approximately 2 

million participants in the 1996 Canadian Census Health and Environment Cohort. Using 

multivariable Cox proportional hazards models, we observed positive associations between 

wildfires and lung and brain cancer. For example, cohort members exposed to a wildfire within 

50 km of residential locations in the past 10 years had a 4.9% (95% confidence interval: 2.8%-

7.1%) relatively higher incidence of lung cancer than unexposed populations, and a 10% 

relatively higher incidence (95% confidence interval: 2.6%-17.9%) of brain tumours. Wildfires 

were not associated with haematologic cancers.  

Overall, these findings demonstrate adverse health effects of exposure to different 

sources of air pollution, including residential biomass burning and wildfires, as well as specific 

constituents (metals, sulfur) and oxidative properties of air pollution in the Canadian population. 



6 
 

Abrégé 

La pollution de l'air ambiant (extérieur), y compris les particules fines (PM2.5) et les gaz 

oxydants (ozone, dioxyde d'azote), contribue au développement de nombreuses maladies telles 

que les maladies cardiovasculaires et respiratoires et le cancer par le mécanisme du stress 

oxydatif. La source de pollution de l'air influence sa composition, qui à son tour affecte sa 

toxicité. Récemment, il y a eu un intérêt croissant pour comprendre comment les constituants 

spécifiques de la pollution atmosphérique particulaire (y compris les métaux, le soufre) et les 

propriétés oxydatives, qui peuvent différer selon la source, sont liés aux résultats pour la santé. 

L'objectif principal de cette thèse est de combler plusieurs lacunes dans les connaissances sur les 

effets néfastes sur la santé associés à des sources, des constituants et des propriétés oxydatives 

spécifiques de la pollution atmosphérique dans la population canadienne. 

Dans l'objectif 1, nous avons réalisé une étude par panel à mesures répétées auprès de 71 

enfants (mesurés 6 fois chacun) pour examiner les associations entre les PM2.5 ou les gaz 

oxydants à court terme et subchroniques et deux mesures de la santé cardiovasculaire (diamètre 

des vaisseaux sanguins rétiniens et pression artérielle). L'étude s'est déroulée dans une région de 

l'île de Vancouver touchée par la combustion résidentielle de biomasse. Des modèles linéaires 

multivariables à effets mixtes ont été utilisés pour estimer les associations entre les expositions 

moyennes le jour même, sur 3 jours, sur 7 jours et sur 21 jours et le diamètre des vaisseaux 

sanguins rétiniens et la pression artérielle, et les interactions entre les PM2.5 et les gaz oxydants 

ont également été prises en compte. Nous avons observé des associations inverses entre les gaz 

oxydants et le diamètre artériolaire rétinien; par exemple, chaque augmentation de 10 ppb des 

gaz oxydants moyens sur 7 jours était associée à une diminution de 2.63 μm (IC à 95%: -4.63 -

0.63) du diamètre artériolaire rétinien. De plus, les gaz oxydants ont également modifié les 
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associations entre les PM2.5 et le diamètre artériolaire, avec de faibles associations inverses 

observées entre les PM2.5 et le diamètre artériolaire uniquement lorsque les gaz oxydants étaient 

élevés. 

Dans l'objectif 2, nous avons examiné si les associations entre les PM2.5 à court terme ou 

les gaz oxydants et les hospitalisations respiratoires étaient modifiés par la teneur en métal ou en 

soufre des PM2.5 ou le potentiel oxydatif des particules dans une étude de croisement de cas 

constitué d’environ 10 500 enfants canadiens. Des moniteurs au sol ont été utilisés pour mesurer 

la concentration massique quotidienne de PM2.5 et les concentrations de gaz oxydant, et des 

estimations mensuelles de la teneur en métal et en soufre dans les PM2.5 ainsi que trois mesures 

du potentiel oxydatif des particules ont également été mesurées. Des modèles de régression 

logistique conditionnelle multivariés ont été utilisés pour estimer les associations entre les 

polluants atmosphériques et les hospitalisations respiratoires, au-dessus et en dessous des valeurs 

médianes pour les métaux particulaires, le soufre et le potentiel oxydatif. Les concentrations 

massiques de PM2.5 Lag-1 n'étaient pas associées aux hospitalisations respiratoires dans les 

analyses ignorant les constituants des particules et le potentiel oxydatif, mais lorsque les modèles 

étaient examinés au-dessus et en dessous de la médiane des métaux, du soufre et du potentiel 

oxydatif, des associations positives ont été observées au-dessus de la médiane. Par exemple, le 

rapport de cotes et l'intervalle de confiance à 95% par augmentation de 10 μg/m3 des PM2.5 

étaient de 1.084 (1.007-1.167) lorsque le cuivre était supérieur à la médiane et de 0.970 (0.929-

1.014) lorsque le cuivre était inférieur à la médiane. Des tendances similaires ont été observées 

pour les gaz oxydants. 

Dans l'objectif 3, nous avons étudié les associations entre l'exposition aux feux de forêt 

en fonction de la superficie brûlée dans un rayon de 20 et 50 km du lieu de résidence et 
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l'incidence du cancer du poumon et du cerveau, du lymphome non hodgkinien, de la leucémie et 

du myélome multiple chez environ 2 millions de participants de la cohorte santé et 

environnement du recensement canadien de 1996. En utilisant des modèles multivariables de 

risques proportionnels de Cox, nous avons observé des associations positives entre les incendies 

de forêt et le cancer du poumon et du cerveau. Par exemple, les membres de la cohorte exposés à 

un incendie de forêt à moins de 50 km d'emplacements résidentiels au cours des 10 dernières 

années avaient une incidence relativement plus élevée de cancer du poumon de 4.9% (IC à 95%: 

2.8%-7.1%) et une incidence relativement plus élevée de 10% (IC à 95% : 2.6%-17.9%) de 

tumeurs cérébrales que les populations non exposées. Les incendies de forêt n'étaient pas 

associés aux cancers hématologiques dans cette étude. 

Dans l'ensemble, les résultats présentés dans cette thèse démontrent les effets néfastes sur 

la santé de l'exposition à différentes sources de pollution atmosphérique, y compris la 

combustion de biomasse résidentielle et les incendies de forêt, ainsi que des constituants 

spécifiques (métaux, soufre) et des propriétés oxydantes de la pollution atmosphérique dans la 

population canadienne. 
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CHAPTER 1: Introduction 

 

Ambient (outdoor) air pollution is a leading contributor to disability-adjusted life years lost 

and mortality, exceeded only by several behavioural and metabolic risk factors1. Air pollution is a 

dynamic mixture of both gaseous and particulate pollutants that vary in space and time, and 

exposure is universal, affecting people of all ages and ethnicities throughout the globe. Due to the 

ubiquitous nature of ambient air pollution and its widespread health consequences, air quality is 

an important public health concern.  

Perhaps the most well-studied outdoor air pollutant is fine particulate matter, composed 

of particles with a mass median aerodynamic diameter less than 2.5 μm (PM2.5). PM2.5 is a causal 

agent for the development of cardiovascular disease2, lung cancer3, and acute respiratory 

events4,5, and is associated with a wide range of other health endpoints including neurological 

disorders6 and adverse birth outcomes7. Although the exact biological mechanism by which 

PM2.5 contributes to adverse health is not fully understood, oxidative stress is a probable 

mechanism8. Globally, concentrations of ambient PM2.5 are increasing, and this is largely driven 

by industrialization in low-and-middle-income countries, whereas in high-income countries, 

concerted regulatory measures have led to a reduction in ambient PM2.5 in the past 30 years9. 

Although Canada has some of the cleanest air in the world10,11, health impacts of air pollution are 

still observed. For example, country-wide analyses have observed positive associations between 

PM2.5 and non-accidental12–14, cardiovascular13,14 and respiratory mortality14.  

PM2.5 is traditionally measured as a mass concentration (i.e., the total mass of particles 

less than 2.5 μm within a cubic meter, μg/m3). As such, PM2.5 is not a single chemical entity but 

is comprised of a mixture of relatively harmless (sand, sea salt, etc.) and more harmful (e.g., 

metals, polycyclic aromatic hydrocarbons, etc.) substances. This mass-based approach to 
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measure PM2.5 does not account for differences in particle composition or toxicity and instead 

treats all particles as equally toxic. Unsurprisingly, heterogeneity in health impacts of PM2.5 have 

been observed, in part due to variations in the source of pollution and/or its composition15–19. It is 

increasingly recognized that there is a need to move beyond only measuring and studying the 

health impacts of PM2.5 mass concentration and instead focus on specific sources, constituents or 

chemical properties of PM2.5
20,21. Having a better understanding of what specifically about PM2.5 

contributes to adverse health can help inform more efficient public policy.  

In addition to PM2.5, individuals are simultaneously exposed to outdoor gaseous air 

pollutants such as ozone (O3) and nitrogen dioxide (NO2), which also contribute to adverse 

health outcomes through the mechanism of oxidative stress8. Given that PM2.5 and oxidant gases 

share the same biological mechanism, it is biologically plausible that interactions between these 

air pollutants exist. For example, several studies have observed stronger health effects of PM2.5 

when individuals are also exposed to high concentrations of oxidant gases22,23. Therefore, it may 

be relevant to consider interactions between PM2.5 and oxidant gases when evaluating their health 

impacts.  

 

1.1 Research objectives 

 

The overarching goal of this thesis is to fill several gaps in knowledge on adverse health 

outcomes associated with specific sources, constituents, or oxidative properties of air pollution in 

the Canadian population by leveraging both new and existing databases. Among children, we focus 

on acute cardiovascular and respiratory health outcomes, while in adults we focus on a chronic 

health outcome (cancer). The specific aims are as follows:  
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Objective 1) To estimate associations between ambient PM2.5 (primarily from residential 

biomass burning) or oxidant gases and retinal blood vessel diameter and blood pressure 

(measures of cardiovascular health) in school-aged children living in rural British Columbia. 

 

To address Objective 1, we performed a repeated-measures panel study at two elementary schools 

in the Comox Valley region of Vancouver Island between 2018-2020. We recruited 71 students 

and outcomes were measured for a median of 6 times per child, for a total of 344 retinal blood 

vessel measurements and 432 blood pressure measurements. We evaluated associations between 

air pollution (PM2.5, oxidant gases) and markers of cardiovascular health (retinal blood vessel 

diameter, blood pressure) using multivariable linear mixed-effect models, and considered whether 

the associations between PM2.5 and retinal arteriolar diameter were modified by concentrations of 

oxidant gases (and visa versa). This objective is addressed in Chapter 3: Manuscript 1. 

 

Objective 2) To evaluate whether associations between short-term ambient PM2.5 or oxidant 

gases and respiratory hospitalizations among Canadian children were modified by metals or 

sulfur content in PM2.5 or particle oxidative potential.  

 

To address Objective 2, we performed a case-crossover study across 34 Canadian cities from 2016-

2017. Monthly mean estimates of particle oxidative potential, metals (copper, nickel, manganese, 

iron, zinc) and sulfur were measured in each city each month. Hospitalization data were obtained 

from administrative data sources. Associations were evaluated above and below median oxidative 

potential, metals and sulfur content using multivariable conditional logistic regression models. 

This objective is addressed in Chapter 4: Manuscript 2.  
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Objective 3) To estimate associations between long-term residential proximity to wildfires 

and the incidence of lung cancer, brain cancer, multiple myeloma, non-Hodgkin's lymphoma 

and leukemia in a national, population-based cohort study.   

 

To address Objective 3, I used data from the 1996 Canadian Census Health and Environment 

Cohort; a nationally representative population-based cohort in which participants are followed for 

20 years for mortality and cancer outcomes (N=2 million people). This database was linked to 

wildfire exposures (obtained from Natural Resources Canada) based on the area of forest burned 

within a given radius of residential postal codes, from 1986-2015. Multivariable Cox proportional 

hazards models were used to evaluate associations between wildfire exposures and cancer 

outcomes, adjusted for a wide range of individual and neighbourhood-level covariates. This 

objective is addressed in Chapter 5: Manuscript 3.  
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CHAPTER 2: Literature review 

 

2.1 Major types of ambient air pollution 

This section of the literature review will provide a brief overview of three major types of 

ambient air pollution: PM2.5, NO2, and O3. 

2.1.1 Fine particulate matter (PM2.5)  

PM2.5 includes all solid and liquid particles found in the air with a mass median 

aerodynamic diameter less than 2.5 μm. It is comprised of a wide range of chemical species 

including elemental carbon, organic compounds (e.g., polycyclic aromatic hydrocarbons, organic 

carbon), metals, and different ions (e.g., sulfate, nitrate, ammonium, chloride)24–26. Sources of 

PM2.5 are diverse and comprise both natural and anthropogenic direct emissions (including 

wildfires, windblown dust, transportation, industry, residential biomass burning), and secondary 

emissions formed in the atmosphere by chemical reactions involving 

primary gaseous emissions (such as sulfur 

dioxide, volatile organic compounds, ammonia, 

and nitrogen oxides). Concentrations of annual 

PM2.5 in Canada are low and have decreased 

slightly over the past 30 years, from 

approximately 10 μg/m3 in 1990 to 7 μg/m3 in 

201911. As shown in Figure 1, Canada has some 

of the lowest concentrations of ambient PM2.5 in the world. That being said, health-based air 

quality guidelines by the World Health Organization are set at 5 μg/m3 for PM2.5
27, and much of 

Canada exceeds this threshold28.  

Figure 1: Average annual population-weighted PM2.5 concentrations 

in 2019 https://www.stateofglobalair.org/data/#/air/map 
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The five leading sources of annual ambient PM2.5 in Canada are wildfires (accounting for 

17% of population-weighted average annual emissions), transportation (including mobile sources 

and dust resuspension, 15.9%), residential combustion (for heating, 15.1%), industry (e.g., 

petroleum, chemical, mineral, pulp and paper, aluminum, 14.2%) and agriculture (livestock and 

agriculture soils, 10.4%)29. However, the contribution of different sectors varies both temporally 

and spatially. In the winter months, residential combustion is the leading contributor to ambient 

PM2.5 because many homes rely on wood burning as a heating source, followed by 

transportation29. In the summer, wildfires, biogenic secondary organic aerosols and industry are 

the leading sources of ambient PM2.5
29. On a regional scale, there are also differences in the 

relative contribution of different sectors to PM2.5. In central Canada, residential combustion 

followed by transportation are the leading contributors to outdoor PM2.5, while in western 

Canada, wildfires and agriculture are the major sources of PM2.5. In Atlantic Canada, wildfires 

and secondary organic aerosols are the leading sources of PM2.5, and in northern Canada, more 

than half of the PM2.5 arises from wildfire emissions because there are minimal anthropogenic 

sources in this region29. 

2.1.2 Nitrogen dioxide (NO2) 

Nitric oxide (NO) and nitrogen dioxide (NO2) are two nitrogen oxides (NOX) primarily 

generated from combustion processes, including heating, power generation, engine exhaust, and 

wildfires30,31. Combustion processes typically emit 90-95% of NOX as NO and only 5-10% as 

NO2, but in ambient air NO is quickly oxidized by available oxidants, including oxygen, ozone 

and volatile organic compounds (VOCs) to form NO2
32. In urban areas, vehicular exhaust is the 

main source of NO2 such that NO2 is often used as a marker of traffic-related air pollution33. 

Concentrations of NO2 in urban areas typically follow daily, weekly and seasonal road traffic 
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patterns, where peak concentrations are often observed during rush hour, while concentrations at 

night and on weekends are typically much lower25. NO2 in Canada has decreased over time 

largely due to regulations related to vehicle emissions; average concentrations decreased by 

almost 50% over the period of 1988-2013, from approximately 20 ppb in 1988 to 11 ppb in 

201334. With reductions in NO2 emissions from anthropogenic sources, wildfires are becoming a 

relatively more important source of ambient NO2
30.  

2.1.3 Ozone (O3) 

Ground-level O3 is a secondary pollutant that is not directly emitted but instead formed in 

the atmosphere through complex, non-linear photochemical reactions between NOX and VOCs in 

the presence of sunlight. O3 is generally less spatially variable than PM2.5 and NO2. Regulatory 

actions to reduce ground-level O3 typically target precursors to ozone formation (NOX and 

VOCs), but due to the complex processes by which O3 is formed, reductions in O3 precursors do 

not necessarily translate into reduced ambient O3
35. As such, O3 is challenging to regulate and 

ambient concentrations in Canada have remained relatively stable since the 1990s at 

approximately 37 ppb36. Moreover, because temperature is a strong driver of O3 formation, O3 is 

also expected to increase into the future with climate change37, and may become increasingly 

difficult to regulate 

 

2.2 Oxidative stress  

This section of the literature review will provide a brief discussion of oxidative stress, an 

important mechanism by which PM2.5 and oxidant gases contribute to adverse health outcomes. I 

will also discuss metals in PM2.5 in the context of oxidative stress, as well as different approaches 

to measure the oxidative properties of particulate matter.  
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2.2.1 Oxidative stress 

  Oxidative stress is involved in many disease pathologies, including cardiovascular38 and 

respiratory39 diseases, and cancer40,41, and is well recognized as a main mechanism underlying 

the toxic effects of air pollution8. Oxidative stress occurs when there is an excess of reactive 

oxygen species (a subset of free radicals which contain oxygen) in cells compared to antioxidant 

defenses8. Reactive oxygen species react indiscriminately with different molecules, including 

lipids, proteins, and nucleic acids, by "stealing" electrons (known as "oxidation")8. This can 

potentially lead to cellular damage and an influx of inflammatory cells to the injured site, which 

can lead to a second wave of oxidative stress because inflammatory cells generate reactive 

oxygen species themselves8,42. On the other hand, the body contains antioxidants which 

preferentially react with reactive oxygen species to form less toxic secondary products. The 

respiratory tract lining fluid, a thin layer of fluid comprised of many different substances that line 

the respiratory tract epithelial cells, contains high concentrations of the antioxidants glutathione, 

uric acid and ascorbic acid, and acts as a first line of defense against the toxic effects of inhaled 

pollutants8,43. Oxidant gases and PM2.5 both cause oxidative stress8.  

2.2.2 Oxidative stress and oxidant gases 

Both O3 and NO2 are oxidant gases8, although O3 is a stronger oxidizing agent than NO2 

(the redox potential of O3 is 2.075 volts compared to 1.07 volts for NO2)
44,45. Upon inhalation, 

O3 and NO2 preferentially react with antioxidants in the respiratory tract lining fluid, but when 

concentrations O3 or NO2 are high or when antioxidant defences are compromised, these gases 

can react with lipids and proteins8. When O3 and NO2 react with substrates in the respiratory tract 

lining fluid, they are consumed and are therefore unlikely to interact directly with the pulmonary 

epithelium8. However, reactions between oxidant gases and lipids or proteins lead to the 
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generation of harmful secondary oxidation products, which transmit toxic signals to the 

underlying pulmonary epithelium and initiate numerous cellular responses that can lead to an 

influx of inflammatory cells to the lungs46.  

2.2.3 Oxidative stress and PM2.5  

As with oxidant gases, inhaled PM2.5 reacts with antioxidants present in the respiratory 

tract lining fluid but can quickly deplete these defenses. Unlike O3 and NO2, where the 

generation of oxidative stress is mainly attributed to the concentration of gases, the ability of 

PM2.5 to generate reactive oxygen species is driven by both the concentration of PM2.5 as well as 

its composition8,42. This is because O3 and NO2 are single chemical entities, while PM2.5 is 

comprised of a wide range of different particles that vary in their toxicity. For example, redox-

active transition metals such as iron (Fe) and copper (Cu) can act as catalysts in the formation of 

reactive oxygen species including superoxide, hydrogen peroxide and hydroxyl radicals, all of 

which cause oxidative stress42. Moreover, organic components of particulate matter, including 

quinones and polycyclic aromatic hydrocarbons, also contribute to oxidative stress42. Quinones 

are highly-redox active molecules that can directly reduce oxygen and generate reactive oxygen 

species, while polycyclic aromatic hydrocarbons indirectly contribute to the formation of 

reactive oxygen species by first biotransforming into redox-active quinones42. Less harmful 

constituents found in particulate matter include sand and sea salt, among others.  

2.2.3.1 Metals in PM2.5  

 Transition metals play an important role in the toxicity of ambient PM2.5 through their 

ability to participate in redox reactions. Metals originate from a variety of different sources 

including engine, break and tire wear, tail-pipe emissions, coal-fired power plants, residual oil 

combustion processes, and metal refineries, among others47–49. Certain sources of PM2.5 are 
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elevated in specific metals; for example, tail pipe emissions from gasoline-fueled vehicles are 

characterized by elevation in calcium (Ca), Cu and nickel (Ni), oil combustion emissions (from 

power plants, industrial boilers, maritime/shipping industry) are elevated in Ni and vanadium 

(V), and coal combustion emissions are elevated in crustal materials (sodium (Na), Fe, Ca, 

magnesium (Mg), etc.) and trace metals (Cu, Ni, lead (Pb), zinc (Zn), arsenic (As), etc.)49. 

Several metals in particulate matter, including Cu, Fe, manganese (Mn), Ni and Zn have been 

frequently associated with several measures of particle oxidative potential47.  

The solubility of transition metals is an import determinant of metal toxicity because 

soluble metals are more mobile and bioavailable than non-soluble metal components47,48,50. Acid 

processing of aerosols by inorganic ions such as sulfate help increase the solubility of 

metals47,49,50. Therefore, particulate matter that contains high concentrations of both metals and 

sulfur particles may be particularly harmful to health48.  

The health effects of metals in particulate matter have been examined in several 

systematic reviews and meta-analyses. A 2017 review by Achilleos and colleagues51 examined 

associations between short-term exposure to PM2.5 constituents, including metals (Na, Mg, 

potassium (K), Ca, V, Mn, Fe, Ni, Cu, Zn) and mortality in time-series and case-crossover 

studies. Overall, the authors found some evidence for associations between certain metals, 

including Ca, Cu, Fe, K, Mn, Mg, V and Zn, with all-cause, cardiovascular, and/or respiratory 

mortality, but there was a high degree of heterogeneity between studies. Another systematic 

review and meta-analysis from 2019 by Yang and colleauges52 looked at associations between 

both short-term and long-term exposures to PM2.5 constituents, including metals, and mortality 

and morbidity. In this meta-analyses, they detected positive associations between all-cause 

mortality and short/long-term exposures to K, as well as long-term exposure to Zn. For 



26 
 

cardiovascular mortality, the authors observed positive associations with short-term K, long-term 

Fe, and both short and long-term Zn, with some evidence for Ni, V, and Na52. 

There are no existing systematic reviews/meta-analyses that summarize the health effects 

of metals in particulate matter among children specifically, but metals in particulate matter have 

previously been associated with negative respiratory health outcomes in numerous studies. For 

example, short-term ambient exposure to several metals including Ni, V, and Fe have been 

positively associated with airway inflammation53,54, while two time-series studies observed 

associations between various trace metals (e.g., Zn, Cu and Fe) and respiratory 

hospitalizations55,56. In a recent case-crossover study that performed source apportionment of 

PM2.5, metals were more strongly associated with respiratory hospitalizations than other 

sources57.  

2.2.3.2 Measures of particulate oxidative potential 

To move beyond only measuring PM2.5 mass concentration, many studies have aimed to 

quantify the oxidative properties of particulate matter. There are several different existing 

approaches to measure particle oxidative potential, including a-cellular assays, in-vitro and ex-

vivo methods (based off cell cultures), and in-vivo methods26. In Objective 2 of this thesis, we 

use three a-cellular assays to measure particle oxidative potential: the ascorbic acid (AA), 

glutathione (GSH), and dithiothreitol (DTT) assays26.  

 A-cellular tests measure the consumption of a molecule (generally an antioxidant) after 

exposure to a known concentration of particulate matter. AA and GSH are antioxidants that are 

found in high concentrations in the respiratory tract lining fluid. With these assays, 

physiologically relevant concentrations of AA and GSH are incubated with PM2.5 in a simulated 

respiratory tract lining fluid and the extent to which AA and GSH are depleted over time reflects 
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particle oxidative potential, expressed as OPAA and OPGSH47. The DTT assay differs slightly 

because DTT is not an antioxidant but is used as a surrogate of cellular reductants, such as 

nicotinamide adenine dinucleotide /nicotinamide adenine dinucleotide phosphate47. The DTT 

assay involves incubating DTT with PM2.5 and measuring the consumption of DTT over time; 

when DTT is in excess, the consumption rate of DTT is proportional to the generation of reactive 

oxygen species, and is thus used as a measure of particle oxidative potential (OPDTT)26,47,58. 

Often, several acellular assays are used simultaneously in epidemiological analyses because each 

assay is sensitive to different properties of particulate matter26. For example, OPGSH and OPAA 

are sensitive to metals including Cu and Fe, while OPDTT is sensitive to metals as well as organic 

carbon species and products of combustion47.  

Measures of particle oxidative potential have been incorporated into several studies 

investigating the respiratory health impacts of PM2.5 (in addition to other health outcomes which 

are not discussed here because they are not directly relevant to the subject matter of this thesis). 

In a time-series study in Atlanta, United States, 3-day mean OPDTT was associated with 

emergency department visits for respiratory diseases59, while evidence from another time-series 

study in London, England, did not find consistent associations between short-term OPAA or 

OPGSH and respiratory mortality60. Moreover, two studies in children have observed more 

consistent associations between measures of particle oxidative potential and respiratory 

outcomes than with particle mass. For example, in a study of almost 4000 children in the 

Netherlands, long-term OPDTT was more strongly associated with asthma and rhinitis than 

particle mass61, while in another study among asthmatic Canadian children, associations between 

airway inflammation and short-term OPGSH (but not particle mass) were observed62. To our 

knowledge, one other study investigated whether associations between short-term PM2.5 mass 
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concentrations and respiratory health outcomes were modified by measures of oxidative 

potential, and found stronger associations between short-term PM2.5 mass and respiratory 

hospitalizations when OPGSH but not OPAA was elevated63. However, this study was limited 

because only long-term estimates of oxidative potential were available, when oxidative potential 

may also vary on a temporal scale64.  

2.2.4 Interactions between air pollutants 

Given that oxidative stress is likely responsible for the adverse health effects of both 

particulate and gaseous air pollutants8, it is relevant to consider interactions or effect 

modification by co-pollutants in epidemiological analyses. For example, the health impacts of 

PM2.5 mass concentration may be stronger when individuals are simultaneously exposed to 

higher concentrations of oxidant gases, or similarly the health effects of oxidant gases may be 

greater when individuals are exposed to PM2.5 comprised of more toxic constituents (e.g., 

metals). Although many studies generate multi-pollutant models, whereby co-pollutants are 

conceptualized as confounders, markedly fewer studies consider interactions or effect 

modification by co-pollutants. In a human-controlled exposure study, heart rate variability and 

diastolic blood pressure were adversely impacted by simultaneous exposure to PM2.5 and O3, but 

not by each pollutant alone65. Moreover, three epidemiological studies performed in Canada 

observed stronger associations between long-term14,23 and short-term22 PM2.5 and non-accidental 

all-cause14,22,23, cardiovascular14,22,23 and respiratory23 mortality when oxidant gas concentrations 

were higher, while a study in 29 European cities observed stronger associations between short-

term PM10 and non-accidental mortality when long-term NO2 concentrations were elevated66. In 

addition, a large time-series study in Hong Kong (where air pollution concentrations are much 
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higher than most places in North America and Europe) observed synergistic interaction between 

short-term ambient PM10 and NO2 on hospitalizations for cardiovascular disease67.  

 

2.3 Sources of pollution: residential biomass burning and wildfires 

Objectives 1 and 3 of this dissertation focus on the health impacts of residential biomass 

burning and wildfires, two important sources of ambient air pollution in Canada. This section of 

the literature review will discuss what is known about the various health impacts of these two 

pollution sources.  

2.3.1 Residential biomass burning 

 Residential biomass burning is a significant source of ambient PM2.5 in Canada29, and it is 

also well-known that combustion processes are an important source of NO2 and O3. Historically, 

burning wood was the main source of heating in Canada and fireplaces or woodstoves are still 

used as a primary or secondary heating source in many households, particularly in rural 

communities, because it is a cost-efficient and a reliable source of heat. Some regulatory efforts 

have been made to limit air pollution attributed to residential biomass burning; for example, the 

province of British Columbia offers an exchange program to swap out old woodstoves for 

cleaner options, including heat pumps, gas or pellet stoves, and newer more energy-efficient 

woodstoves, and the city of Montreal enforced a ban on some types of woodstoves in 2018. 

However, the use of residential woodstoves is a contentious issue and most governing bodies 

have been reluctant to regulate residential wood burning, largely because so many people are 

reliant on this energy source and regulations are challenging to enforce.  
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2.3.1.1 Health effects of exposure to ambient residential biomass burning  

It is relevant to consider the health effects of residential biomass because PM2.5 from 

biomass burning is enriched in organic compounds which may be particularly toxic; for example, 

OPDTT is especially sensitive to biomass burning sources68. Many studies have investigated the 

health impacts of indoor air pollution from biomass fuel, particularly in low-and-middle-income 

countries where this cooking practice is most common69–73, while most studies of outdoor air 

pollution influenced by biomass burning focus on wildfire exposures or perform source 

apportionment of PM2.5 without distinguishing between the source of biomass burning74. It is 

important to differentiate between the type of biomass burning (e.g., residential wood burning vs. 

wildfires) opposed to grouping all sources of biomass burning together because the nature of 

these exposures differ; for example, wildfires cause periodic episodes of highly polluted air, 

while residential biomass burning typically leads to more moderate elevations in air pollution for 

a longer period of time.  

To our knowledge, only two studies have specifically investigated how ambient air 

impacted by residential biomass burning affects health74. In a case-crossover study in British 

Columbia, Canada, associations between short-term PM2.5 and myocardial infarction in older 

Canadians during the winter season (when residential biomass burning is common) were stronger 

when more of the ambient PM2.5 was from biomass-burning sources (as determined through 

measuring levoglucosan, a marker of biomass burning)75. In a second study performed in a 

region of Phoenix, Arizona where both indoor and outdoor fireplaces are used as a heat source 

during the winter months, PM2.5 >35 μg/ m3 during the winter heating season was associated 

with an approximately 20% increased risk in asthma-related hospitalizations among adults 

compared to when PM2.5 was ≤35 μg/ m3, while no associations were observed among children76.  
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2.3.2 Wildfires 

Although wildfires have important ecological purposes77, they are increasingly 

recognized as a population health problem; for example, the potential threat of wildfires to 

human health with the changing climate was discussed in several prominent medical journals78–80 

in 2020, and in a comprehensive report commissioned by the United Nations in 202181. In 

Canada, the total area burned and the number of large fires (≥200 hectares) have significantly 

increased since the late 1950s, and the fire season has also extended by approximately two 

weeks82. Robust  predictions on a global scale anticipate wildfires to become more frequent, 

severe and longer in duration in the future, largely because of climate change83–86. Moreover, 

urban sprawl has led to an expansion of the wildland-urban interface (an area where human 

infrastructure and wildland vegetation meet), which increases human exposure to wildfires87,88.  

2.3.2.1 Health effects of wildfires 

There have been several reviews on the various health impacts of wildfires89–98, including 

four reviews that have summarized the various health outcomes associated with wildfires in the 

general population89–93, as well as specific reviews on child health outcomes94, birth outcomes98, 

occupational exposures95, and respiratory health outcomes96,97. Of the review papers that have 

focused on numerous health outcomes in the general population, the 2016 review by Reid and 

colleagues89 is the most comprehensive. In this review, the authors found consistent evidence for 

associations between wildfire smoke and acute respiratory health outcomes, including 

medication prescriptions, physician visits, emergency department visits, and hospitalizations89. 

Growing evidence also suggests an increased risk of all-cause mortality, while evidence for acute 

cardiovascular morbidity was inconclusive, with many studies noting no associations between 

wildfires and physician visits, emergency department visits and hospitalizations for 
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cardiovascular events89. Moreover, growing evidence also suggests associations between wildfire 

exposure and adverse birth outcomes, including low birth weight89,98 and pre-term birth98. More 

recently, a global time-series study across 749 cities in 43 countries found that short-term 

exposure to wildfire-derived PM2.5 was associated with small risk increases (approximately 2%) 

in all-cause, cardiovascular and respiratory mortality99.  

In contrast to what is known about the short-term health effects of wildfires, virtually 

nothing is known about the long-term health effects of wildfire exposure78,89,92,94, but whether 

wildfires impact long-term health is relevant for several reasons. First, in North America (and 

many regions of the world), wildfires tend to occur in similar regions each year so nearby 

communities may be exposed to wildfire-derived pollutants on a seasonal basis, year after year. 

Moreover, the wildfire season is getting longer, so air quality may be impacted for months at a 

time in some regions. In addition, although some pollutants emitted from wildfires return to 

normal levels shortly after the fire has stopped burning (e.g., particulate matter), other chemicals 

may persist in the environment for long periods of time; for example, wildfires emit heavy 

metals and polycyclic aromatic hydrocarbons which are resistant to environmental 

degradation100,101. As such, exposure to harmful environmental pollutants may continue beyond 

the period of active burning. 

2.3.2.2 Wildfires and cancer 

Associations between wildfires and cancer have not been assessed previously, but several 

pollutants emitted from wildfires are established carcinogens. Objective 3 of this thesis 

investigated associations between wildfires and lung cancer, brain cancer and three hematologic 

cancers (leukemia, non-Hodgkin lymphoma, multiple myeloma). We selected these specific 
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cancer outcomes based on evidence linking known wildfire pollutants to these types of cancers, 

which is discussed in the next paragraph.  

PM2.5, a major component of wildfire smoke, is a group 1 carcinogen (carcinogenic to 

humans) and causes lung cancer102. Epidemiological research has demonstrated that biomass 

burning sources of particulate matter may have a greater impact on respiratory health than 

particulate matter emitted from other sources103, while toxicological studies have also shown that 

particulate matter from wildfires is more toxic to lungs than particulate matter collected from 

normal ambient air104,105. Wildfires also emit many ultrafine particles (less than 0.1 μm) which 

are able to pass the blood-brain barrier106 and have recently been associated with increased risk 

of brain tumours in a large Canadian study107. Wildfires are also a significant source of human 

exposure to benzene108, and benzene is classified as a group 1 carcinogen (carcinogenic to 

humans) because it causes acute myeloid leukemia109, a common type of leukemia in adults. 

Positive associations have also been observed between benzene and non-Hodgkin lymphoma,  

multiple myeloma, lung cancer and brain cancer109,110. Although most evidence pertaining to the 

ability of benzene to cause cancer in humans is from occupational cohorts109, some evidence also 

supports the carcinogenicity of long-term, low-dose exposure to ambient benzene110–112. In 

addition, there is sufficient evidence in humans that 2,3,7,8-tetrachlorodibenzo-para-dioxin 

(TCDD; a dioxin released from wildfires, among other sources) is carcinogenic and generally 

positive associations have been found between TCDD and lung cancer and non-Hodgkin 

lymphoma113. There is also strong evidence that 1-3 butadiene and formaldehyde, both group 1 

carcinogens resulting from incomplete combustion, cause tumors of the hematopoietic and 

lymphoid tissues114,115. Heavy metals, including arsenic, lead, cadmium, mercury and aluminum, 

are able to pass the blood-brain barrier116 and have been implicated in the development of brain 
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cancer, although evidence is limited117. Several heavy metals are also established causes of lung 

cancer118.  

When selecting cancer outcomes for Objective 3, we also considered the literature 

surrounding cancer risk in firefighters. Evidence from a large meta-analysis provides some 

evidence of an association between firefighting and brain cancer, non-Hodgkin lymphoma, 

multiple myeloma, and leukemia119. Regarding cancer risk among wildland firefighters in 

particular, the literature is scarce but limited evidence supports an association with lung 

cancer120. However, firefighters are very different than the general population (i.e., much 

healthier), and different pathways beyond environmental pollutants/chemical exposures are 

likely involved in explaining the elevated cancer risk among firefighters (e.g., working patterns 

including shift work, psychological stress, etc.), so we did not rely too heavily on this literature 

when selecting the outcomes for Objective 3.  

 

2.4 Air pollution and child cardiorespiratory health 

Children are particularly vulnerable to the adverse impacts of air pollution owing to 

several physiological and behavioural factors, including their underdeveloped lungs and immune 

system, tendency for mouth-breathing (thus reduced nasal filtration), and higher baseline 

breathing rate (leading to more pollutant intake) compared to adults121. This section of the 

literature review will focus on the cardiorespiratory health effects of air pollution in children 

because Objectives 1 and 2 of this thesis focus on child cardiovascular and respiratory health.  
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2.4.1 Cardiovascular outcomes 

Given that cardiovascular disease is a chronic condition that manifests in adulthood, 

studies in children focus on preclinical markers of cardiovascular health, including blood 

pressure, measures of endothelial function, and microvascular health.  

Associations between short and long-term ambient air pollution (including particulate 

matter and NO2) and blood pressure in children and adolescents were evaluated in two recent 

systematic reviews/meta-analyses published in 2021122,123. The reviews included 14123 and 15122 

studies and meta-analyses were only performed for a few air pollutants because data were too 

sparse for other air pollutants. For short-term exposures, both studies performed a meta-analysis 

for associations between PM10 and blood pressure, and observed very small increases in systolic 

and diastolic blood pressure (less than 1 mm Hg) per 10 μg/m3 increase in PM10
122,123. Regarding 

long-term exposures, a 10 μg/m3 increase in PM2.5 was associated with a 1.8 mm Hg increase in 

systolic blood pressure (where the 95% CIs excluded the null) in both meta-analyses, while 

associations between PM2.5 and diastolic blood pressure were slightly smaller (β and 95% CI: 

1.06 (0.32-1.80)122; 0.931 (0.157, 1.705)123). Both studies also observed small positive 

associations between long-term NO2 and systolic and diastolic blood pressure (less than 1 mm 

Hg in blood pressure per 10 ppb increase in NO2)
122,123.  

 Regarding measures of endothelial function, one recent study among approximately 1000 

11-12 year old children living in Australia observed positive associations between lifetime 

average PM2.5 and carotid intima-media thickness (cIMT, a marker of atherosclerosis), while no 

associations were observed with other measures of carotid wall structure or function (diameter, 

distensibility, elasticity), or between NO2 and carotid outcomes124. On the other hand, in another 

study of approximately 700 5-year old children in the Netherlands, long-term exposure to several 
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air pollutants (PM2.5, PM10, NO2, and NOx) were associated with carotid distensibility, while no 

associations with other markers of carotid artery wall structure or function (cIMT, elasticity) 

were observed125. Moreover, traffic-related air pollution (based on residential proximity) has also 

been associated with carotid arterial markers in two studies in  Ecuador126 and Italy127, and short-

term exposures to O3, PM10 and NO2 have been associated with markers of serum 

thrombomodulin and tissue factor (two other markers of endothelial dysfunction) in a cross-

sectional study of approximately 120 children in Iran128.  

Two studies in children investigated the impact of air pollution on the microcirculation 

based on retinal blood vessel (arterioles and venules) diameter. The microcirculation represents a 

large component of the circulatory system and microvascular dysfunction is an important 

predictor of cardiovascular disease events129. Measuring the structure of the retinal 

microvasculature through fundus photography is a simple, non-invasive method to evaluate 

microvascular health130, as the retinal microcirculation is anatomically and physiologically 

similar to the cerebrovascular131 and coronary132 microcirculation. Of the various parameters that 

can be estimated with fundus photography, the most common and easily estimated parameters 

are the diameters of retinal blood vessels. In one study of school-aged children living in an urban 

centre in Belgium, short-term PM2.5 was associated with narrower retinal arteriolar diameter and 

wider venular diameter133, while in another study of children ages 4-6 years (also living in 

Belgium), short-term PM2.5 was associated with both narrower and wider retinal arterial 

diameter, depending on the exposure lag, while NO2 was not associated with retinal blood vessel 

diameter134. 
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2.4.2 Respiratory outcomes 

Many studies have investigated associations between both short and long-term exposures 

to ambient air pollution and various respiratory health outcomes in children. A 2017 systematic 

review and meta-analysis observed positive associations between exposure to traffic-related air 

pollution (including black carbon. NO2, PM2.5 and coarse particulate matter) and asthma 

incidence135, while a narrative review reported strong evidence supporting associations between 

long-term traffic-related air pollution and reduced lung function in children136. Another narrative 

review performed in 2021 noted that most evidence supports associations between exposures to 

short-term and long-term ambient particulate matter, long-term O3, and short-term NO2 and 

reduced lung function, while evidence for short-term O3 and long-term NO2 was mixed137. 

Moreover, a 2017 systematic review and meta-analysis of case-crossover studies investigating 

associations between short-term ambient PM2.5 and NO2 and asthma exacerbations in children 

observed small (approximately 2-4%) risk increases for each 10-unit increase in PM2.5 and 

NO2
138. In addition, respiratory infections are also likely impacted by short-term ambient 

pollution exposure. A systematic review and meta-analysis found that a 10-unit increase in 

PM2.5, O3 and NO2 were associated with a 1-2% increased risk of pneumonia hospitalizations or 

emergency room visits in children139. 

 

2.5 Summary of knowledge gaps  

 Outdoor air pollution has a negative impact on many health outcomes including 

cardiovascular and respiratory diseases and cancer. This thesis aims to fill some specific 

knowledge gaps related to the health impacts of different sources of ambient air pollution 
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(residential biomass burning and forest fires) and constituents (metals, sulfur) or oxidative 

properties of PM2.5 in Canada.  

 Objective 1 evaluates associations between ambient air pollution and acute 

cardiovascular markers in children living in a region impacted by residential biomass burning. 

Despite many Canadian households relying on this fuel source (in rural locations particularly), 

few epidemiological studies have examined the health impacts of exposure to ambient air 

impacted by residential biomass burning, which is relevant information to inform efficient 

regulatory measures. In addition, much evidence supports associations between ambient air 

pollution and adverse cardiovascular health in adults, but a limited body of evidence exists in 

children. Given that cardiovascular disease is a chronic condition that develops over time, it is 

relevant to examine associations between outdoor air pollution and cardiovascular health 

outcomes in children.   

 Objective 2 evaluates whether associations between short-term PM2.5 or oxidant gases 

and respiratory hospitalizations in children are modified by the metal or sulfur content in PM2.5 

or particle oxidative potential. This aim is motivated by the observations that the health effects 

per unit mass of PM2.5 or ppb of oxidant gases is not consistent across studies140,141. Here we 

investigate whether differences in the composition of PM2.5 is a possible source of this 

heterogeneity.  

 Objective 3 examines associations between long-term wildfire exposure and the 

incidence of several cancers in Canadian adults. Whether wildfires impair health in the long-term 

has been recognized as an important knowledge gap78,89,92,93,95 and there is essentially nothing 

known about whether wildfires contribute to cancer risk specifically. By leveraging rich data on 

historical wildfire events that are unique to Canada and linking these data to a large population-
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based cohort, this objective intends to provide the first evidence on the relationship between 

wildfire exposures and cancer risk.  
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CHAPTER 3: Manuscript 1 

3.1 Preface 

This chapter contains the first of three manuscripts in this dissertation. In this chapter, I 

investigated the acute cardiovascular effects of ambient air pollution (PM2.5 and Ox [the 

combined redox-weighted average oxidant capacity of NO2 and O3]) among children living in a 

region impacted by residential biomass burning. Specifically, we examined the impacts of PM2.5 

and Ox on retinal blood vessel diameter and blood pressure in a repeated-measures panel study of 

children living in the Comox Valley region of British Columbia. In addition to considering 

whether PM2.5 or Ox individually impact retinal blood vessel diameter or blood pressure, we also 

considered whether health effects of PM2.5 were modified by co-exposures to Ox, and visa versa. 

This manuscript was peer-reviewed and published in Scientific Reports.  

Citation: Korsiak J, Perepeluk K, Peterson NP, Kulka R, Weichenthal S. Air pollution and 

retinal vessel diameter and blood pressure in school‑aged children in a region impacted by 

residential biomass burning. Scientific Reports 2021;11: 12790. Doi: 10.1038/s41598-021-

92269-x. 
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3.2 Air pollution and retinal vessel diameter and blood pressure in school-aged children in 

a region impacted by residential biomass burning 

 

Abstract 

Background: Little is known about the early-life cardiovascular health impacts of fine 

particulate air pollution (PM2.5) and oxidant gases.  

Methods: A repeated-measures panel study was used to evaluate associations between outdoor 

PM2.5 and the combined oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) 

and retinal vessel diameter and blood pressure in children living in a region impacted by 

residential biomass burning. A median of 6 retinal vessel and blood pressure measurements were 

collected from 64 children (ages 4-12 years), for a total of 344 retinal measurements and 432 

blood pressure measurements. Linear mixed-effect models were used to estimate associations 

between PM2.5 or Ox (same-day, 3-day, 7-day, and 21-day means) and retinal vessel diameter and 

blood pressure. Interactions between PM2.5 and Ox were also examined.   

Results: Ox was inversely associated with retinal arteriolar diameter; the strongest association 

was observed for 7-day mean exposures, where each 10 ppb increase in Ox was associated with a 

2.63 μm (95% CI: -4.63, -0.63) decrease in arteriolar diameter. Moreover, Ox modified 

associations between PM2.5 and arteriolar diameter, with weak inverse associations observed 

between PM2.5 and arteriolar diameter only at higher concentrations of Ox.  

Conclusions: Our results suggest that outdoor air pollution impacts the retinal microvasculature 

of children and interactions between PM2.5 and Ox may play an important role in determining the 

magnitude and direction of these associations.   
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Introduction 

Outdoor air pollution is associated with adverse cardiovascular outcomes2,142. Although 

cardiovascular disease (CVD) manifests in adulthood, preclinical changes that contribute to and 

accelerate the development of CVD begin in childhood143. Therefore, identifying early-life 

modifiable exposures that adversely affect cardiovascular health may provide important 

information to help prevent CVD in later life.  

 Most research on associations between ambient air pollution and cardiovascular 

outcomes has focused on particulate matter exposure and consistent evidence from 

epidemiological and animal studies support a causal relationship2. Oxidant gases, such as ozone 

(O3) and nitrogen dioxide (NO2), have also been associated with adverse cardiovascular 

outcomes, although results have been less consistent144,145. Individuals are exposed to both 

particulate matter and oxidant gases simultaneously, and some evidence suggests these pollutants 

interact to affect health outcomes. For example, stronger associations between long-term23 and 

short-term22 fine particulate matter air pollution (PM2.5) and mortality were found when the 

combined oxidant capacity of NO2 and O3 (using a redox-weighted average, Ox) was higher, 

highlighting the importance of considering Ox when evaluating PM2.5 health effects.  

The microcirculation represents a large component of the circulatory system and 

microvascular dysfunction is an important predictor of CVD events129. Measuring the structure 

of the retinal microvasculature through fundus photography can serve as a simple, non-invasive 

method to evaluate microvascular health130, as the retinal microcirculation is anatomically and 

physiologically similar to the cerebrovascular131 and coronary132 microcirculation. Of the various 

parameters that can be estimated with fundus photography, the most common and easily 

estimated parameters are the diameters of retinal blood vessels. The relationship between air 
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pollution and retinal blood vessel diameter has been examined several times in adults in cross-

sectional146 and repeated-measures studies147–149, and twice in children in repeated-measures 

studies133,134. In one study of school-aged children living in an urban centre in Belgium, short-

term PM2.5 (measured on the same day as the retinal image and the day before) was associated 

with narrower retinal arteriolar diameter and wider venular diameter133. In another study of 

children ages 4-6 years (also living in Belgium), PM2.5 measured during the same day as the 

retinal image, the day before the retinal image, and the week before the retinal image was 

associated with both narrower and wider retinal arterial diameter, depending on the exposure lag, 

while NO2 was not associated with retinal vessel diameter134. Due to the limited number of 

studies that have explored these associations in children and inconsistent results, these 

relationships necessitate further exploration.  

Another preclinical cardiovascular outcome that may be adversely affected by outdoor air 

pollution is blood pressure,144,145,150 but associations between short-term air pollution and blood 

pressure have not been extensively studied in children. In a recent meta-analysis of four studies 

that looked at associations between short-term air pollution (defined as <30 days) and blood 

pressure in children, each 10 μg/m3 increase in particulate matter <10 μm (PM10) was associated 

with a very small (<1 mm Hg) increase in systolic blood pressure, while no clear associations 

were observed between PM10 or PM2.5 and diastolic blood pressure123. An understanding of the 

relationship between air pollution and blood pressure in children is important because childhood 

blood pressure tracks into adulthood151 and elevated blood pressure is an important risk factor for 

the development of cardiovascular disease.  

 To our knowledge, no studies have explored how the combined oxidant capacity of NO2 

and O3 (Ox) affects retinal blood vessel diameter or blood pressure, or whether associations 
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between PM2.5 and these health outcomes are modified by Ox. In addition, no studies have 

focused specifically on the impact of residential biomass burning-related PM2.5 to changes in the 

retinal microvasculature or blood pressure. This is an important consideration because residential 

biomass burning is a major source of PM2.5 in rural Canada29,152 due to the prevalence of wood 

burning to heat homes, and biomass-burning sources of PM2.5 may be harmful to cardiovascular 

health152. 

To address gaps in our current understanding of air pollution impacts on cardiovascular 

health of children, we conducted a panel study to examine associations between outdoor PM2.5 

and Ox on changes to retinal vessel diameter and blood pressure in children living in a region of 

Canada known to be impacted by residential biomass burning. We also considered whether the 

impact of PM2.5 on retinal blood vessel diameter or blood pressure was modified by outdoor 

concentrations of Ox.  

 

Materials and methods  

Study design and population 

We conducted a repeated-measures panel study at two elementary schools in the 

neighbouring communities of Courtenay and Cumberland on the east coast of central Vancouver 

Island, in the province of British Columbia, Canada. The distance between the two schools is 

approximately 8 km. This is a rural area of Canada, with a population size of approximately 

26,000 in Courtenay and 4,000 in Cumberland in 2016 (the most recent census year). The study 

took place from September 2018 to June 2019 in Courtenay, and from September 2019-March 

2020 in Cumberland (the study was terminated three months early in Cumberland because of 

school closures due to the COVID-19 pandemic). The study took place over sequential school 
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years (instead of at both schools in the same school year) because study equipment and research 

staff were limited. This area has elevated outdoor PM2.5 concentrations during the cold season 

(approximately November-April) because many households rely on wood burning as their 

primary heating source152. During the warmer season, outdoor PM2.5 concentrations are typically 

very low (i.e. <5 μg/m3)152.  

Children at each school were eligible to participate if they were 4-12 years of age at 

enrollment, lived in a non-smoking home, and resided in the community surrounding either 

school. Recruitment occurred during September of each school year, and health outcome 

measurements began in October. Exams were scheduled at intervals of approximately one month 

and were staggered throughout each month (as opposed to measuring everyone on the same day) 

in order to increase exposure variation and minimize the impact on regular school activities. 

Exams took place on Thursday and Friday mornings at the school site in Courtenay, and 

throughout the week in the morning and early afternoon in Cumberland. Oral assent was 

obtained from children and written informed consent was obtained from their parent/guardian. At 

baseline, parents/guardians of each participant completed a questionnaire to collect basic 

sociodemographic and household information. The study was approved by McGill University 

Research Ethics Board and the Health Canada Research Ethics Board and all methods were 

performed in accordance with the relevant guidelines and regulations.  

Air pollutants and meteorological data  

In the first year of the study, daily mean outdoor PM2.5 concentrations in Courtenay were 

measured using a BAM (Beta-Attenuation Monitor) 1020 instrument located at the provincial air 

monitoring station situated on the playground of the school. In case there were any problems or 

gaps in data collection with the government-run monitor, we also set up a Partisol 2025i 
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sequential air sampler at the same location, which collected daily integrated PM2.5 samples that 

were subsequently sent for gravimetric analysis. However, for this year of the study, we ended 

up only using PM2.5 measurements from the BAM instrument in our analyses because there were 

fewer missing data. In the second year of the study in Cumberland, the school was not located at 

a provincial monitoring station so PM2.5 was only measured using a Partisol 2025i sequential air 

sampler that we set up on the roof of the school. Although the PM2.5 values used in analysis were 

from different instruments each year of the study, we observed a strong correlation in duplicate 

measurements in Courtenay (r=0.94) and both instruments are considered acceptable methods to 

monitor PM2.5 by the United States Environmental Protection Agency153.  

For both years of the study, ozone and nitrogen dioxide were measured at the provincial 

air monitoring site in Courtenay with an API T400 UV Absorption O3 analyzer and an API T200 

chemiluminescence NO/NO2/NOx analyzer, respectively; due to equipment limitations, we were 

unable to set up our own monitors for O3 and NO2 in Cumberland so relied on measurements 

from Courtenay as approximations. The combined weighted oxidant capacity (Ox) of NO2 and O3 

was calculated as a weighted average of NO2 and O3, with weights equivalent to the respective 

redox potentials using the formula Ox=[(1.07×NO2) + (2.075 ×O3)]/3.145), as previously 

described44,154. Indoor air pollution was not measured in this study. Meteorological data, 

including mean daily temperature, wind speed, precipitation, and humidity were available from a 

provincial monitoring station located approximately 8 km from the school in Courtenay and 15 

km from the school in Cumberland. 

In the second year of the study (in Cumberland), there were some days with missing 

PM2.5 data due to a delay in setting up the PM2.5 monitor at the start of the study and occasional 

technical issues throughout the study. A model to predict missing PM2.5 was developed, and 
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predicted values were used to impute missing PM2.5. The prediction model regressed log-

transformed PM2.5 on several predictors including same-day PM2.5, NO2, temperature, wind 

speed, and precipitation measured at a nearby provincial monitoring station. Global search 

regression using the gsreg command in Stata was used to select the final prediction model, 

considering all possible combinations of interactions and square terms of predictor variables. The 

best fitting model had a R2 of 0.72. There was a total of 58 days in which PM2.5 was imputed 

(approximately 12% of PM2.5 values in the time series).   

Clinical exams 

Clinical exams were conducted by two trained research assistants (one research assistant 

at each site) and involved imaging the retinal microvasculature and measuring blood pressure, 

height, and weight. All exams took place in a designated, quiet room in each school.   

 The fundus of the left and right eye of participants was photographed with a Canon CR2-

AF 45° 20.2-megapixel digital nonmydriatic retinal camera in a darkened room. Images were 

analyzed by one grader (J.K.) using the semi-automatic MONA-REVA software (version 3.0.0, 

VITO Health, Mol, Belgium). For each participant, images from either the left or right eye were 

analyzed; the choice of whether to analyze the left or right eye of each participant depended on 

which eye had the most high quality images (where image quality was judged by how sharp the 

image was, whether the optic disc was centered, and whether the arterioles and venules were 

distinguishable from one another). Epidemiological studies have demonstrated a high correlation 

in retinal vessel diameters between the left and right eye155,156. When analyzing the images, the 

diameter of the optic disc was first determined, then the width of the retinal arterioles and 

venules were measured within an area equal to 0.5-1 times the disc diameter from the optic disc 

margin (Figure S1 in the Supplemental Material). Diameters of the 6 largest arterioles and 
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venules were used in the revised Parr Hubbard formula157 to estimate Central Retinal Arteriolar 

Equivalent (CRAE) and Central Retinal Venular Equivalent (CRVE), summary measures 

reflecting average arteriolar and venular diameter. For each participant, the same 6 arterioles and 

venules were used to calculate CRAE and CRVE in repeated measurements. 

 Following fundus photography, blood pressure was measured with the SunTech CT40 

vital signs device. While sitting upright in a chair with their non-dominant arm resting on a table, 

an appropriately sized arm cuff was selected based on the circumference of the child’s upper 

arm, and blood pressure was measured twice with one minute between each reading. If systolic 

or diastolic blood pressure from the two successive readings were >10 mm Hg apart, a third 

reading was done. The average of the two closest readings was calculated and used for analysis.  

 With shoes and bulky clothing removed, height was measured to the nearest 0.1 cm with 

the Seca 213 Stadiometer, and weight was measured to the nearest 0.1 kg using the Seca 874 

Digital Scale. Measurements were taken in duplicate, and an average was calculated. Body mass 

index-for-age z-scores were then calculated based on the World Health Organization child 

growth standards158.  

Statistical analyses 

Associations between outdoor air pollution and retinal blood vessel diameter  

Linear mixed-effect models with a random subject intercept (with a first order 

autoregressive correlation structure) were used to evaluate associations between PM2.5 (as a 

continuous variable, in units of μg/m3) or Ox (a continuous variable, in units of ppb) and within-

person changes in CRAE or CRVE (continuous variables, in units of μm). We assessed 

associations between CRAE or CRVE with four different exposure lags: PM2.5 or Ox on the day of 

the retinal image, 3-day mean (mean of PM2.5 or Ox on the day of the retinal image and two 
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preceding days), 7-day mean, and 21-day mean. These time periods were selected to examine both 

acute and sub-chronic exposures. For each exposure-outcome relationship, we ran crude models, 

and models adjusted for an a priori list of potential confounders or predictors of retinal blood 

vessel diameter, including 7-day mean temperature (degrees Celsius) and humidity (%) (which 

may be correlated with seasonal differences in air pollution concentrations), body mass index-for-

age z-score at the time of the retinal image, sex, age (years), highest level of maternal education 

(high school or less/ community or technical college/ university), and time of day of outcome 

assessment (≤11:00 AM or >11:00 AM). We also explored whether associations between PM2.5 

and retinal vessel diameter were modified by concentrations of Ox by running models with an 

interaction term between PM2.5 and Ox (as continuous variables using the same exposure lag for 

both air pollutants), while adjusting for the same set of covariates identified above. A p-value less 

than 0.05 for the interaction term was interpreted as evidence of effect modification (on the 

additive scale). We explored whether including a fixed effect for school was necessary to account 

for potential clustering within schools, but it did not improve model fit based on the minimum 

Akaike Information Criterion (AIC) so was not included in the final models. We also explored 

potential non-linear relationships between continuous covariates and CRAE or CRVE using spline 

terms, but as splines did not improve model fit (based on the minimum AIC), final models included 

linear terms for all continuous covariates. Residual plots were generated to verify model 

assumptions. All estimates are expressed as a change in retinal arteriolar or venular diameter per 

5 μg/m3 increase PM2.5 or 10 ppb increase in Ox, which reflect the approximate interquartile ranges 

of PM2.5 and Ox.  

 

 



50 
 

Associations between outdoor air pollution and blood pressure 

 Linear mixed-effect models with a random subject intercept (and a first order 

autoregressive correlation structure) were used to evaluate associations between short-term and 

sub-chronic PM2.5 or Ox (the same exposure lags described above) and systolic and diastolic 

blood pressure. Similar to analyses for retinal vessel diameter, crude models, adjusted models 

(including the same set of covariates identified above), and models with an interaction term 

between PM2.5 and Ox were examined.   

Sensitivity analyses  

Several sensitivity analyses were conducted. First, analyses were repeated excluding 

retinal images or blood pressure measurements in which the relevant PM2.5 exposure lags 

included imputed PM2.5 values. Second, instead of evaluating associations between Ox and 

retinal blood vessel diameter and blood pressure, we looked at associations with each gas (O3 or 

NO2) individually. Third, we additionally adjusted our models for season 

(fall/winter/spring/summer).  

All data cleaning and manipulation were conducted using Stata v.15 (StataCorp, College 

Station, TX), and all modelling was conducted using R (R-project.org).  

 

Results 

Study population  

A description of the study population is presented in Table 1. A total of 71 children 

(median age of 8 years) enrolled in the study and high-quality retinal images were available for 

64 of these children. Most participants (N=54, 76%) enrolled during the second year (2019-

2020) of the study. The sample was predominantly Caucasian (N=64, 90%), there were a similar 
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number of boys and girls, and most mothers of participants had some post-secondary education. 

The majority of participants lived in households that used electricity (N=46, 65%) or natural gas 

(N=21, 30%) as their primary heating source, while few households used wood burning as their 

primary heating source (N=3, 4%). The use of woodstoves or wood fireplaces as a secondary 

source of heating was uncommon in this sample (N= 6, 8%), and 17 participants (24%) lived in 

households that used an air filter. The average (± standard deviation) body mass index-for age z-

score was 0.7 ± 1.3, indicating body mass index of children was slightly higher than the age and 

sex-specific reference population. Mean (± standard deviation) systolic and diastolic blood 

pressure at baseline were 106 ± 7 and 63 ± 5 mm Hg, respectively, while mean (± standard 

deviation) CRAE and CRVE at baseline were 181.51 ± 11.88 and 260.34 ± 15.70 μm.  

There was a total of 344 high quality retinal images and 432 blood pressure 

measurements. The median number of retinal images and blood pressure measurements per child 

was 6 but some children had as few as three measurements. The maximum number of retinal 

images was 6 per child, and for blood pressure the maximum number of measurements was 10 

per child. Median time between retinal images and blood pressure measurements was 28 days 

(range: 20-63 days).  
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Table 1 Description of the study population 

Socio-demographic characteristics   

Total enrolled participants, N 71 

Participants with retinal images availablea, N 64 

Date on study, n (%)  

     September 2018-June 2019  17 (24) 

     September 2019-March 2020  54 (76) 

Age (years) at baseline, median (range) 8 (4-12) 

Girls, n (%) 33 (46) 

Caucasian, n (%) 64 (90) 

Highest level of maternal education complete, n (%)  

     Graduated high school or less 11 (15) 

     Some or graduated community/technical college  15 (21) 

     Some or graduated university 45 (63) 

Household characteristics  

Main heating source in home, n (%)  

     Wood 3 (4) 

     Natural gas 21 (30) 

     Electricity 46 (65) 

     Oil 1 (1) 

Use of a woodstove or wood fireplace in home as a secondary heating 

sourceb, n (%) 

6 (8) 

Use of air filter in home, n (%) 17 (24) 

Cardiovascular measures  

Central retinal arteriolar equivalent (μm), mean ± SD 181.51 ± 11.88 

Central retinal venular equivalent (μm), mean ± SD 260.34 ± 15.70 

Systolic blood pressure (mm Hg), mean ± SD 106 ± 7 

Diastolic blood pressure (mm Hg), mean ± SD 63 ± 5 

Body mass index-for-age z-scorec, mean ± SD 0.7 ± 1.3 
a High-quality images were unavailable for some participants due to blinking, inability to sit still, 

and general discomfort with getting their eyes photographed  
b Excludes participants in which a woodstove/wood fireplace is the main source of heating 
c Body mass index-for-age-and-sex z-score calculated based on World Health Organization 

growth charts 
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Exposure characteristics 

Distributions of daily mean outdoor PM2.5 and Ox concentrations throughout the study are 

shown in Figure 1 and additional exposure characteristics are provided in Table S1 of the 

Supplementary Material. Overall, mean daily PM2.5 ranged from <1 μg/m3 to 32 μg/m3 over the 

entire study period, and was slightly higher and more variable in the first year of the study (mean 

± standard deviation: 9 ± 7 μg/m3) than in the second year of the study (mean ± standard 

deviation: 6 ± 4 μg/m3). Average PM2.5 on the day of the retinal image was the same as the 3-day 

mean, 7-day mean, and 21-day mean concentrations (7 μg/m3), although the standard deviation 

was slightly larger on the day of the retinal image (standard deviation: 6 μg/m3) compared to the 

3-day and 7-day means (standard deviation of 4 μg/m3 for both lags), and the 21-day mean 

(standard deviation: 3 μg/m3). Ox ranged from 3 ppb to 27 ppb over the entire study period, and 

was slightly higher and more variable during the first year of the study (mean ± standard 

deviation: 14 ± 6 ppb) compared to the second year of the study (mean ± standard deviation: 13 

± 5 ppb). Mean Ox for all exposure lags was 13 ppb, and the standard deviation was slightly 

larger on the day of the retinal image (6 ppb) compared to the 3-day, 7-day, and 21-day means (5 

ppb). There was a moderate inverse correlation between PM2.5 and Ox based on Pearson's 

correlation coefficient (r=-0.43).  
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Figure 1 Distribution of daily mean ambient PM2.5 (μg/m3) and Ox (parts per billion) over the 

study duration 
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Associations between outdoor PM2.5 or Ox and retinal blood vessel diameter 

Associations between PM2.5 or Ox from single-pollutant models and retinal arteriolar and 

venular diameter are presented in Figure 2 and Tables S2 and S3 of the Supplementary Material. 

In adjusted models, PM2.5 was associated with a small increase in CRAE but 95% confidence 

intervals included the null. The strength of this association was largest for the 21-day exposure 

lag: a 5 μg/m3 increase in 21-day mean PM2.5 was associated with a 1.42 μm increase in CRAE 

(95 % CI: -0.47, 3.32). On the other hand, Ox was consistently associated with a reduction in 

CRAE and the strongest association was for the 7-day exposure lag: a 10 ppb increase in Ox was 

associated with a 2.63 μm decrease in CRAE (95% CI: -4.63, -0.63).  

In general, positive association were observed between PM2.5 and venular diameter and 

inverse associations were observed between Ox and venular diameter but the strength of these 

associations was small and 95% confidence intervals included the null in all adjusted models. 

There were no notable differences in associations between PM2.5 and CRAE or CRVE when 

analyses excluded retinal images with imputed PM2.5 (Table S4 of the Supplementary Material). 

In sensitivity analyses, estimated associations between O3 and retinal blood vessel diameter were 

similar to that of Ox (Table S5 of the Supplementary Material), while NO2 was positively 

associated with retinal arteriolar and venular diameter, but estimates were imprecise and all 

confidence intervals included the null (Table S6 of the Supplementary Material). When models 

were additionally adjusted for season, conclusions remain the same (Table S7 and S8 of the 

Supplementary Material).  

 Models including an interaction term between PM2.5 and Ox suggested that Ox modified 

associations between outdoor PM2.5 and retinal arteriolar diameter (p-values from interaction 

terms for same-day, 3-day mean, 7-day mean and 21-day mean exposures: 0.10, 0.04, 0.02, and 



56 
 

0.03, respectively). To visualize the associations between PM2.5 and CRAE modified by Ox, we 

plotted predicted values of CRAE across a range of PM2.5 concentrations (2-16 μg/m3) stratified 

by Ox concentrations 1 standard deviation above or below the mean (Figure 3). This figure 

suggests that when Ox is low there is a weak positive association between PM2.5 and CRAE, 

while when Ox concentrations are higher there is a weak inverse association between PM2.5 and 

CRAE. These trends were more pronounced in the 3-day, 7-day, and 21-day lags compared to 

same-day exposure. Similar figures were generated to visualize how concentrations of PM2.5 

modified the associations between Ox and CRAE and suggest that a negative association between 

Ox and CRAE is only present when concentrations of PM2.5 were high (i.e., 1 standard deviation 

above the mean) (Figure S2 of the Supplementary Material). There was no evidence of 

interaction between PM2.5 and Ox for CRVE (p-values from interaction terms for same-day, 3-

day mean, 7-day mean, and 21-day mean exposures: 0.52, 0.63, 0.14, and 0.83, respectively).  
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Figure 2 Estimated change (95% confidence interval) in (A) central retinal arteriolar diameter 

(CRAE, μm); (B) central retinal venular diameter (CRVE, μm); (C) systolic blood pressure 

(SBP, mm Hg) and; (D) diastolic blood pressure (DBP, mm Hg) per 5 μg/m3 increase in PM2.5 or 

10 ppb increase in Ox. Models adjusted for 7-day mean temperature and humidity, body mass 

index-for-age z-score on the day of the retinal image, sex, age (years), maternal education (high 

school or less vs. community/technical college vs. university), and time of day of outcome 

assessment (≤11:00 AM vs. >11:00 AM).  
a PM2.5 or Ox on the same day as the outcome assessment   
b Mean PM2.5 or Ox on the day of the outcome assessment and two preceding days  
c Mean PM2.5 or Ox on the day of the outcome assessment and 6 preceding days 
d Mean PM2.5 or Ox on the day of the outcome assessment and 20 preceding days 
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Figure 3 Predicted values and 95% confidence intervals for central retinal arteriolar equivalent 

(CRAE) at different concentrations of PM2.5, stratified by Ox (1 standard deviation below and 

above mean Ox). Plots correspond to (A): Same-day exposure lag; (B): 3-day mean exposure lag; 

(C): 7-day mean exposure lag; (D): 21-day mean exposure lag. 
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Associations between outdoor PM2.5 or Ox and blood pressure 

Associations between outdoor PM2.5 or Ox concentrations and blood pressure are 

presented in Figure 2 and Tables S2 and S3 of the Supplementary Material. In adjusted models, 

each 5 μg/m3 increase in 3-day mean PM2.5 was associated with a 0.95 mm Hg reduction in 

systolic blood pressure (95% CI: -1.86, -0.05), 7-day mean PM2.5 was associated with a 1.11 mm 

Hg reduction in systolic blood pressure (95% CI: -2.12, -0.09), and 21-day mean PM2.5 was 

associated with a 1.70 mm Hg reduction in systolic blood pressure (95% CI: -2.98, -0.41), but 

these associations were slightly attenuated and 95% confidence intervals included the null in 

sensitivity analyses excluding exams where PM2.5 was imputed (Table S4 of the Supplementary 

Material). Conversely, positive associations were observed between Ox and systolic blood 

pressure, with the largest association detected for the 21-day exposure lag (estimated change per 

10 ppb increase in 21-day mean Ox from an adjusted model: 1.59 [95% CI: -0.06, 3.25]), but 

confidence intervals included the null for all exposure lags. There were no clear associations 

between PM2.5 or Ox and diastolic blood pressure. In sensitivity analyses, associations between 

O3 and blood pressure were similar to those found for Ox and no clear relationship was observed 

between NO2 and blood pressure (Tables S5 and S6 of the Supplementary Material). When 

models were additionally adjusted for season, conclusions are similar except the confidence 

intervals for associations between 3-day and 7-day mean PM2.5 now include the null (Table S7 

and S8 of the Supplementary Material).  

 There was evidence that 7-day mean Ox modified the associations between 7-day mean 

PM2.5 and systolic blood pressure (p-value from interaction term: 0.04), but there was no 

evidence of a significant interaction for the same-day, 3-day mean, or 21-day mean exposures (p-

values from interaction terms for same-day, 3-day mean, and 21-day mean exposures: 0.63, 0.26, 
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0.55). Figure S3 in the Supplementary Material suggests that an inverse relationship between 7-

day mean PM2.5 and systolic blood pressure is present when 7-day mean Ox concentrations are 

above average (i.e., 1 standard deviation above the mean), while there is no association when Ox 

concentrations are lower (i.e., 1 standard deviation below mean). Ox did not modify associations 

between PM2.5 or diastolic blood pressure for any exposure lags (p-value for interaction term for 

same-day, 3-day mean, 7-day mean, and 21-day mean exposures: 0.57, 0.46, 0.51 and 0.61).  

 

Discussion 

Our findings suggest that outdoor air pollution in a region impacted by residential 

biomass burning has a measurable impact of the microvasculature of school-age children. 

Specifically, Ox was consistently associated with retinal arteriolar narrowing in single-pollutant 

models. Our findings also suggest that an important interaction may exist between outdoor 

concentrations of oxidant gases and PM2.5, as PM2.5 was only associated with arteriolar 

narrowing when Ox concentrations were elevated. We also found inverse associations between 

PM2.5 and systolic blood pressure and evidence of effect modification by Ox for the 7-day 

exposure lag, while in single-pollutant models there were trends towards positive associations 

between Ox and systolic blood pressure. No clear associations between PM2.5 or Ox and retinal 

venular diameter or diastolic blood pressure were observed.  

Although this study did not conduct any source apportionment of PM2.5, it is known that 

residential biomass burning affects air quality in this region of Canada. For example, Hong et 

al.159 developed an algorithm that was applied to 23 communities in British Columbia, Canada, 

to identify smoky vs. non-smoky days, and classified 30% of days in Courtenay between 2014-

2016 as smoky, making it the second smokiest community of the 23 studied. Moreover, 



61 
 

Weichenthal et al.152 identified biomass burning as a major contributor to ambient PM2.5 in 

Courtenay by measuring daily levoglucosan (a tracer of biomass burning) levels from January 

2014-March 2015. Furthermore, traffic-related air pollution is very minimal in this region 

because it is a rural location on an island with a small population size, and there are no major 

industries in the area that would affect air quality.   

The biological mechanisms underlying air pollution impacts on the microcirculation and 

blood pressure are thought to be related to oxidative stress, inflammation, and disturbances to the 

autonomic nervous system2,160. Inhaled particles can stimulate the generation of reactive oxygen 

species causing both pulmonary and systemic oxidative stress and inflammation which 

contributes to endothelial dysfunction and vasoconstiction2. Arteriolar narrowing may contribute 

to elevated blood pressure because arterioles are the main regulators of peripheral blood flow and 

are essential in the maintenance of blood pressure161. In addition, air pollution exposure may lead 

to an imbalance of the autonomic nervous system which favours sympathetic pathways, and can 

contribute to endothelial dysfunction, vasoconstriction, and elevated blood pressure2.  

In general, existing evidence from observational studies related to the associations 

between outdoor air pollution and blood pressure in children is inconsistent. For example, Yang 

et al.162 found that short-term exposure to PM2.5 was associated with very small increases in both 

systolic and diastolic blood pressure (<1 mm Hg increase in systolic and diastolic blood pressure 

per 10 μg/m3 PM2.5) in a large study of approximately 190,000 children in China, but a smaller 

study in the Netherlands found no clear associations between short-term PM10, NO2 or O3 and 

systolic or diastolic blood pressure163. In another study in Belgium, consistent positive 

associations were detected between ultrafine particles and systolic blood pressure in children, but 

trends of an inverse association was observed for PM2.5
164

. Inverse associations between systolic 
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blood pressure and short-term particulate matter165,166 and ozone167 have also been observed in 

adult populations. We are not sure why we observed inverse associations between air pollution 

and systolic blood pressure because our existing knowledge of physiological responses to air 

pollution generally would support positive associations2; however, these inconsistent findings 

highlight uncertainty in our current understanding of air pollution impacts on cardiovascular 

health. In this study, although we found limited evidence of effect modification by Ox for the 

associations between PM2.5 and blood pressure, it still is possible that complex interactions 

between air pollutants exist and contribute to the heterogeneity of results observed between 

studies.    

Regarding the retinal microvasculature, previous evidence in adults146,147 and children133 

have observed arteriolar narrowing in response to PM2.5 exposure. For example, Provost et al. 

found that same-day residential outdoor PM2.5 was associated with a 0.62 μm decrease in retinal 

arteriolar diameter (95% CI: -1.12, -0.12) per 10 μg/m3 increase in PM2.5 in school-aged children 

in Belgium133. However, a second study by Luyten et al. found that the direction of associations 

between PM2.5 and retinal arteriolar diameter in children was sensitive to the exposure lag that 

was selected134. Results for retinal venular diameter have been less conclusive but tend to 

suggest positive associations with air pollution133,134. To our knowledge, no studies to date have 

examined associations between Ox or O3 and retinal blood vessel diameter but Luyten et al.134 

investigated the impact of NO2 and did not find any clear associations. 

The most interesting finding in our study is the interaction observed between PM2.5 and 

Ox in models for retinal arteriolar diameter. Specifically, the direction of the association between 

PM2.5 and arteriolar diameter was modified by concentrations of Ox, with weak positive 

associations observed at lower concentrations of Ox and inverse associations observed at higher 
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concentrations of Ox. Similarly, the inverse association between Ox and retinal arteriolar 

diameter was only observed when concentrations of PM2.5 were high. This modifying role of Ox 

in PM2.5 health effects has been observed previously for other outcomes. For example, 

Weichenthal et al.23 found stronger associations between PM2.5 and all-cause, cardiovascular, and 

respiratory mortality when concentrations of Ox were higher, while Lavigne et al.22 observed 

similar results with short-term PM2.5 and all-cause and cardiovascular mortality. Together, this 

evidence highlights the importance of considering Ox when evaluating the health impacts of 

PM2.5 and also suggests possible co-benefits of regulatory interventions aimed at reducing 

outdoor air pollution (i.e. reducing Ox may also reduce the health impacts of PM2.5 even if PM2.5 

mass concentrations remain unchanged).  

Existing evidence suggests several possible mechanisms underlying the observed 

interaction between PM2.5 and Ox.  First, elevated ozone depletes antioxidants in the epithelial 

lining fluid of the respiratory tract168, and this may lower our defenses against reactive oxygen 

species produced in response to PM2.5 exposure, contributing to greater oxidative stress. In 

addition, ozone has been shown to increase the permeability of the lung epithelial barrier46,169,170, 

which may contribute to greater absorption of particles into the systemic circulation and greater 

health impacts of PM2.5. Lastly, oxidant gases can increase the toxicity of PM2.5 through 

photochemical aging processes; for example, exposure to ozone has been shown to increase the 

oxidative potential of particles from both engine exhaust171,172 and biomass burning173.  

There are several strengths of this study, including the repeated measures design that 

eliminates potential confounding by variables that do not change within individuals over a short 

time period, exposure information for multiple air pollutants, and the study setting that allowed 

us to evaluate air pollution primarily from residential biomass burning. However, this study also 
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had limitations. Foremost, this study is subject to non-differential, Berkson-type exposure 

measurement error because true personal PM2.5 or Ox exposures may differ from outdoor 

concentrations. The result of Berkson measurement error is a reduction in precision without any 

systematic bias174. Another limitation is we are evaluating short-term changes in retinal blood 

vessel diameter but how this may impact future health is not clear. We (and others175) 

hypothesize that repeated short-term damage to microvascular structure can lead to chronic 

microvascular changes in later life, but there are no longitudinal studies demonstrating this. In 

addition, there is likely some classical measurement error in estimating arteriolar and venular 

diameter, but this is almost certainly non-differential with respect to outdoor air pollution 

concentrations. 

 

Conclusion 

In summary, these results suggest that short-term and sub-chronic exposures to air 

pollution impact the retinal microvasculature and blood pressure of children, and highlight the 

importance of considering potential interactions between air pollutants when evaluating 

cardiovascular health impacts. Given the small number of studies that have investigated the 

impact of outdoor air pollution on the retinal microvasculature or blood pressure in children, 

additional work is needed to confirm these findings.  
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3.3 Supplementary material  

 

Table S1 PM2.5 and Ox exposure characteristics  

 Mean ± standard 

deviation 

Median 

(range)  

PM2.5 (μg/m3)   

Over the entire study duration (September 2018-March 2020) 8 ± 6 6 (<1- 32) 

Year 1: September 2018-June 2019 9 ± 7 8 (<1- 32) 

Year 2: September 2019-March 2020 6 ± 4 5 (<1- 26) 

Same-daya 7 ± 6 6 (<1- 31) 

3-day meanb 7 ± 4 6 (1- 26) 

7-day meanc 7 ± 4 6 (2- 21) 

21-day meand 7 ± 3 5 (3- 17) 

Ox (parts per billion)   

Over the entire study duration (September 2018-March 2020) 13 ± 6 13 (3- 27) 

Year 1: September 2018-June 2019 14 ± 6 15 (3- 27) 

Year 2: September 2019-March 2020 13 ± 5 12 (3- 27) 

Same-daya 13 ± 6 13 (3- 27) 

3-day meanb 13 ± 5 14 (4- 23) 

7-day meanc 13 ± 5 13 (4- 22) 

21-day meand 13 ± 5 13 (6- 21) 
a PM2.5 or Ox on the day of the outcome assessment  
b Mean PM2.5 or Ox on the day of the outcome assessment and two preceding days 
b Mean PM2.5 or Ox on the day of the outcome assessment and 6 preceding days 
d Mean PM2.5 or Ox on the day of the outcome assessment and 20 preceding days  
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Table S2 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 5 μg/m3 increase in PM2.5  

 Crude Adjusteda  

Retinal Blood Vessel Diameter 

Central retinal arteriolar diameter  

Same-day PM2.5
b -0.09 (-0.94, 0.76) 0.04 (-0.86, 0.93) 

3-day mean PM2.5
c 0.20 (-1.03, 1.42) 0.41 (-0.97, 1.78) 

7-day mean PM2.5
d 0.64 (-0.64, 1.93) 0.95 (-0.48, 2.39) 

21-day mean PM2.5
e 0.94 (-0.63, 2.52) 1.42 (-0.47, 3.32) 

Central retinal venular diameter  

Same-day PM2.5
b 0.49 (-0.49, 1.48) 0.34 (-0.69, 1.36) 

3-day mean PM2.5
c 0.97 (-0.46, 2.41) 1.16 (-0.41, 2.73) 

7-day mean PM2.5
d 0.27 (-1.25, 1.79) 0.22 (-1.43, 1.88) 

21-day mean PM2.5
e 0.78 (-1.06, 2.63) 0.52 (-1.65, 2.71) 

Blood Pressure  

Systolic blood pressure   

Same-day PM2.5
b -0.14 (-0.73, 0.45) -0.10 (-0.75, 0.54) 

3-day mean PM2.5
c -0.67 (-1.44, 0.10) -0.95 (-1.86, -0.05) 

7-day mean PM2.5
d -0.76 (-1.61, 0.09) -1.11 (-2.12, -0.09) 

21-day mean PM2.5
e -0.90 (-1.90, 0.10) -1.70 (-2.98, -0.41) 

Diastolic blood pressure   

Same-day PM2.5
b -0.07 (-0.56, 0.41) -0.16 (-0.68, 0.36) 

3-day mean PM2.5
c -0.23 (-0.87, 0.42) -0.44 (-1.20, 0.30) 

7-day mean PM2.5
d -0.07 (-0.80, 0.65) -0.27 (-1.13, 0.59) 

21-day mean PM2.5
e 0.05 (-0.80, 0.89) -0.24 (-1.33, 0.84) 

N=344 measurements for retinal vessel diameter analyses, N=432 measurements for blood 

pressure analyses. 5 μg/m3 is the approximate interquartile range of PM2.5 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM).  
b PM2.5 on the day of the outcome assessment  
c Mean PM2.5 on the day of the outcome assessment and two preceding days  
d Mean PM2.5 on the day of the outcome assessment and 6 preceding days  
e Mean PM2.5 on the day of the outcome assessment and 20 preceding days 
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Table S3 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 10 ppb increase in Ox 

 Crude Adjusteda 

Retinal Blood Vessel Diameter 

Central retinal arteriolar diameter  

Same-day Ox
b -1.10 (-2.48, 0.28) -1.78 (-3.27, -0.28) 

3-day mean Ox
c -0.97 (-2.66, 0.72) -1.99 (-3.92, -0.05) 

7-day mean Ox
d -1.59 (-3.41, 0.22) -2.63 (-4.63, -0.63) 

21-day mean Ox
e -1.88 (-3.93, 0.17) -2.56 (-4.71, -0.41) 

Central retinal venular diameter  

Same-day Ox
b -0.44 (-2.05, 1.16) -0.38 (-2.10, 1.34) 

3-day mean Ox
c -0.83 (-2.80, 1.13) -0.83 (-3.04, 1.38) 

7-day mean Ox
d -0.47 (-2.60, 1.66) -0.63 (-2.94, 1.67) 

21-day mean Ox
e -0.64 (-3.08, 1.79) -0.74 (-3.21, 1.74) 

Blood Pressure  

Systolic blood pressure   

Same-day Ox
b 0.74 (-0.28, 1.77) 0.39 (-0.78, 1.58) 

3-day mean Ox
c 1.31 (0.10, 2.51) 1.13 (-0.37, 2.64) 

7-day mean Ox
d 1.51 (0.24, 2.78) 1.23 (-0.33, 2.79) 

21-day mean Ox
e 1.81 (0.39, 3.22) 1.59 (-0.06, 3.25) 

Diastolic blood pressure   

Same-day Ox
b -0.26 (-1.10, 0.59) -0.23 (-1.19, 0.72) 

3-day mean Ox
c -0.16 (-1.16, 0.85) -0.06 (-1.28, 1.16) 

7-day mean Ox
d 0.06 (-1.03, 1.14) 0.16 (-1.13, 1.45) 

21-day mean Ox
e 0.28 (-0.95, 1.52) 0.45 (-0.95, 1.85) 

N=344 measurements for retinal vessel diameter analyses, N=432 measurements for blood 

pressure analyses. 10 ppb is the approximate interquartile range of Ox 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM).  
b Ox on the day of the outcome assessment 
c Mean Ox on the day of the outcome assessment and two preceding days  
d Mean Ox on the day of the outcome assessment and 6 preceding days  
e Mean Ox on the day of the outcome assessment and 20 preceding days 
 

 

 

 

 

 



68 
 

Table S4 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 5 μg/m3 increase in PM2.5, excluding days in which 

PM2.5 was imputed  

 N Crude Adjusteda  

Retinal Blood Vessel Diameter 

Central retinal arteriolar equivalent  

Same-day PM2.5
b 276 -0.17 (-1.08, 0.74) 0.03 (-0.93, 0.99) 

3-day mean PM2.5
c 268 0.02 (-1.26, 1.30) 0.45 (0.98, 1.89) 

7-day mean PM2.5
d 254 0.46 (-0.94, 1.85) 0.97 (-0.62, 2.56) 

21-day mean PM2.5
e 231 0.71 (-0.86, 2.29) 1.81 (-0.14, 3.76) 

Central retinal venular equivalent  

Same-day PM2.5
b 276 0.31 (-0.72, 1.35) 0.13 (-0.92, 1.19) 

3-day mean PM2.5
c 268 0.82 (-0.73, 2.36) 0.88 (-0.81, 2.57) 

7-day mean PM2.5
d 254 0.82 (-1.01, 2.65) 1.00 (-1.06, 3.05) 

21-day mean PM2.5
e 231 0.64 (-1.43, 2.72) 1.09 (-1.50, 3.67) 

Blood Pressure 

Systolic blood pressure   

Same-day PM2.5
b 357 -0.17 (-0.79, 0.45) -0.13 (-0.81, 0.54) 

3-day mean PM2.5
c 349 -0.55 (-1.37, 0.26) -0.73 (-1.69, 0.24) 

7-day mean PM2.5
d 334 -0.71 (-1.63, 0.21) -1.03 (-2.18, 0.11) 

21-day mean PM2.5
e 313 -0.82 (-1.90, 0.26) -1.43 (-2.87, 0.00) 

Diastolic blood pressure   

Same-day PM2.5
b 357 -0.11 (-0.60, 0.38) -0.22 (-0.75, 0.30) 

3-day mean PM2.5
c 349 -0.21 (-0.86, 0.44) -0.46 (-1.22, 0.31) 

7-day mean PM2.5
d 334 -0.12 (-0.86, 0.61) -0.45 (-1.36, 0.46) 

21-day mean PM2.5
e 313 0.06 (-0.80, 0.92) -0.23 (-1.39, 0.92) 

5 μg/m3 is the approximate interquartile range of PM2.5 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM).  
b PM2.5 on the day of the outcome assessment 
c Mean PM2.5 on the day of the outcome assessment and two preceding days  
d Mean PM2.5 on the day of the outcome assessment and 6 preceding days  
e Mean PM2.5 on the day of the outcome assessment and 20 preceding days 
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Table S5 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 15 ppb increase in O3  

 Crude Adjusteda 

Retinal Blood Vessel Diameter 

Central retinal arteriolar diameter  

Same-day O3
b -1.02 (-2.31, 0.27) -1.61 (-3.01, -0.21) 

3-day mean O3
c -0.94 (-2.54, 0.66) -1.89 (-3.74, -0.05) 

7-day mean O3
d -1.61 (-3.33, 0.12) -2.57 (-4.48, -0.66) 

21-day mean O3
e -1.83 (-3.80, 0.14) -2.45 (-4.53, -0.38) 

Central retinal venular diameter  

Same-day O3
b -0.54 (-2.04, 0.96) -0.45 (-2.05, 1.16) 

3-day mean O3
c -0.92 (-2.78, 0.94) -0.87 (-2.98, 1.24) 

7-day mean O3
d -0.60 (-2.63, 1.43) -0.65 (-2.85, 1.55) 

21-day mean O3
e -0.76 (-3.10, 1.57) -0.74 (-3.12, 1.64) 

Blood Pressure 

Systolic blood pressure   

Same-day O3
b 0.65 (-0.32, 1.61) 0.35 (-0.76, 1.46) 

3-day mean O3
c 1.22 (0.07, 2.36) 1.13 (-0.31, 2.58) 

7-day mean O3
d 1.40 (0.18, 2.61) 1.19 (-0.32, 2.70) 

21-day mean O3
e 1.71 (0.34, 3.07) 1.59 (-0.02, 3.19) 

Diastolic blood pressure   

Same-day O3
b -0.25 (-1.05, 0.54) -0.24 (-1.13, 0.66) 

3-day mean O3
c -0.16 (-1.11, 0.79) -0.06 (-1.23, 1.11) 

7-day mean O3
d 0.03 (-1.00, 1.07) 0.15 (-1.10, 1.39) 

21-day mean O3
e 0.24 (-0.94, 1.43) 0.42 (-0.94, 1.79) 

N=344 measurements for retinal vessel diameter analyses, N=432 measurements for blood 

pressure analyses. 15 ppb is the approximate interquartile range of O3 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM).  
b O3 on the day of the outcome assessment  
c Mean O3 on the day of the outcome assessment and two preceding days  
d Mean O3 on the day of the outcome assessment and 6 preceding days  
e Mean O3 on the day of the outcome assessment and 20 preceding days 
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Table S6 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 2 ppb increase in NO2  

 Crude Adjusteda 

Retinal Blood Vessel Diameter 

Central retinal arteriolar diameter  

Same-day NO2
b 0.34 (-0.56, 1.25) 0.37 (-0.71, 1.44) 

3-day mean NO2
c 0.53 (-0.63, 1.70) 0.94 (-0.88, 2.77)  

7-day mean NO2
d 1.17 (-0.11, 2.45) 2.80 (0.58, 5.02) 

21-day mean NO2
e 0.77 (-0.81, 2.34) 1.40 (-1.31, 4.11) 

Central retinal venular diameter  

Same-day NO2
b 1.08 (0.04, 2.13) 0.99 (-0.22, 2.21) 

3-day mean NO2
c 1.29 (-0.06, 2.64) 1.48 (-0.60, 3.56) 

7-day mean NO2
d 1.33 (-0.16, 2.83) 1.37 (-1.19, 3.93) 

21-day mean NO2
e 1.47 (-0.36, 3.30) 1.23 (-1.87, 4.33) 

Blood Pressure 

Systolic blood pressure   

Same-day NO2
b 0.08 (-0.56, 0.73) 0.04 (-0.76, 0.84) 

3-day mean NO2
c -0.21 (-1.03, 0.61) -0.97 (-2.29, 0.34) 

7-day mean NO2
d 0.06 (-0.89, 1.02) -0.46 (-2.15, 1.22) 

21-day mean NO2
e -0.12 (-1.26, 1.02) -1.36 (-3.33, 0.60) 

Diastolic blood pressure   

Same-day NO2
b 0.18 (-0.35, 0.70) 0.20 (-0.44, 0.85) 

3-day mean NO2
c 0.14 (-0.54, 0.83) 0.07 (-1.00, 1.13) 

7-day mean NO2
d 0.15 (-0.65, 0.94) 0.05 (-1.33, 1.43) 

21-day mean NO2
e 0.20 (-0.75, 1.15) 0.07 (-1.52, 1.66) 

N=344 measurements for retinal vessel diameter analyses, N=432 measurements for blood 

pressure analyses. 2 ppb is the approximate interquartile range of NO2 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM).  
b NO2 on the day of the outcome assessment  
c Mean NO2 on the day of the outcome assessment and two preceding days  
d Mean NO2 on the day of the outcome assessment and 6 preceding days  
e Mean NO2 on the day of the outcome assessment and 20 preceding days 
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Table S7 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 5 μg/m3 increase in PM2.5, in models additionally 

adjusted for season 

 Adjusteda 

Retinal Blood Vessel Diameter 

Central retinal arteriolar diameter 

Same-day PM2.5
b 0.05 (-0.92, 1.01) 

3-day mean PM2.5
c 0.56 (-1.13, 2.26) 

7-day mean PM2.5
d 1.33 (-0.40, 3.06) 

21-day mean PM2.5
e 1.95 (-0.26, 4.15) 

Central retinal venular diameter 

Same-day PM2.5
b 0.35 (-0.74, 1.44) 

3-day mean PM2.5
c 1.53 (-0.40, 3.46) 

7-day mean PM2.5
d 0.12 (-1.87, 2.11) 

21-day mean PM2.5
e 0.41 (-2.13, 2.94) 

Blood Pressure 

Systolic blood pressure  

Same-day PM2.5
b 0.04 (-0.64, 0.72) 

3-day mean PM2.5
c -0.84 (-1.86, 0.19) 

7-day mean PM2.5
d -0.95 (-2.11, 0.16) 

21-day mean PM2.5
e -1.62 (-3.03, -0.20) 

Diastolic blood pressure  

Same-day PM2.5
b -0.14 (-0.69, 0.41) 

3-day mean PM2.5
c -0.45 (-1.30, 0.39) 

7-day mean PM2.5
d -0.22 (-1.17, 0.72) 

21-day mean PM2.5
e -0.23 (-1.40, 0.94) 

N=344 measurements for retinal vessel diameter analyses, N=432 measurements for blood 

pressure analyses. 5 μg/m3 is the approximate interquartile range of PM2.5 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM), and season (September-November/December-February/March-May/June).  
b PM2.5 on the day of the outcome assessment  
c Mean PM2.5 on the day of the outcome assessment and two preceding days  
d Mean PM2.5 on the day of the outcome assessment and 6 preceding days  
e Mean PM2.5 on the day of the outcome assessment and 20 preceding days 
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Table S8 Estimated change and 95% confidence interval in retinal blood vessel diameter (μm) 

and blood pressure (mm Hg) associated with 10 ppb increase in Ox, in models additionally 

adjusted for season 

 Adjusteda 

Retinal Blood Vessel Diameter 

Central retinal arteriolar diameter 

Same-day Ox
b -2.05 (-3.71, -0.38) 

3-day mean Ox
c -2.38 (-4.56, -0.20) 

7-day mean Ox
d -3.58 (-5.94, -1.22) 

21-day mean Ox
e -4.87 (-7.78, -1.96) 

Central retinal venular diameter 

Same-day Ox
b -0.15 (-2.06, 1.76) 

3-day mean Ox
c -0.53 (-3.02, 1.96) 

7-day mean Ox
d -0.33 (-3.04, 2.39) 

21-day mean Ox
e -0.83 (-4.19, 2.53) 

Blood Pressure 

Systolic blood pressure  

Same-day Ox
b 0.12 (-1.20, 1.44) 

3-day mean Ox
c 0.90 (-0.80, 2.60) 

7-day mean Ox
d 0.95 (-0.92, 2.81) 

21-day mean Ox
e 1.59 (-0.73, 3.91) 

Diastolic blood pressure  

Same-day Ox
b -0.41 (-1.47, 0.65) 

3-day mean Ox
c -0.22 (-1.58, 1.14) 

7-day mean Ox
d 0.03 (-1.48, 1.53) 

21-day mean Ox
e 0.49 (-1.40, 2.37) 

N=344 measurements for retinal vessel diameter analyses, N=432 measurements for blood 

pressure analyses. 10 ppb is the approximate interquartile range of Ox 
a Adjusted for 7-day mean temperature and humidity, body mass index-for-age z-score on the 

day of the retinal image, sex, age (years), maternal education (high school or less vs. 

community/technical college vs. university), and time of day of outcome assessment (≤11:00 

AM vs. >11:00 AM), and season (September-November/December-February/March-May/June).  
b Ox on the day of the outcome assessment  
c Mean Ox on the day of the outcome assessment and two preceding days  
d Mean Ox on the day of the outcome assessment and 6 preceding days  
e Mean Ox on the day of the outcome assessment and 20 preceding days 
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 Figure S1 Central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent 

(CRVE) calculated within an area equal to 0.5-1 times the disc diameter from the optic disc 

margin. Arterioles are identified in red and venules in blue.  
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Figure S2 Predicted values and 95% CIs for central retinal arteriolar equivalent (CRAE) at 

different concentrations of Ox (7-18 ppb), stratified by PM2.5 (1 standard deviation below and 

above mean PM2.5 concentrations). Plots correspond to (A): Same-day exposure lag; (B): 3-day 

mean exposure lag; (C): 7-day mean exposure lag; (D): 21-day mean exposure lag.  
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Figure S3 Predicted values and 95% CIs for systolic blood pressure at different concentrations 

of 7-day mean PM2.5, stratified by 7-day mean Ox (1 standard deviation below and above 7-day 

mean Ox concentrations).  
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CHAPTER 4: Manuscript 2  

4.1 Preface 

While Manuscript 1 concentrates on a specific source of ambient air pollution (residential 

biomass burning) and child cardiovascular health in Canada, the second manuscript of this thesis 

focuses on acute respiratory effects of ambient air pollution among Canadian children. Here we 

investigate whether associations between short-term PM2.5 or Ox and acute respiratory outcomes 

are modified by specific constituents in PM2.5 (metals and sulfur) or particle oxidative potential. 

We address this question using a large case-crossover study of approximately 10,500 children 

from 34 cities in Canada, where daily estimates of ambient PM2.5 mass and Ox concentrations 

were available, as well as city-specific monthly estimates of PM2.5 constituents and oxidative 

potential metrics.  

This manuscript was peer-reviewed and published in the American Journal of 

Respiratory and Critical Care Medicine.  

 

Citation: Korsiak J, Lavigne E, You H, Pollitt K, Kulka R, Hatzopoulou M, Evans G, Burnett 

RT, Weichenthal S. Air Pollution and Pediatric Respiratory Hospitalizations: Effect Modification 

by Particle Constituents and Oxidative Potential. American Journal of Respiratory and Critical 

Care Medicine 2022; in press.  

 

 

 

 

 

 

 

 

 

 



77 
 

4.2 Air pollution and pediatric respiratory hospitalizations: effect modification by particle 

constituents and oxidative potential  

 

Abstract 

Rationale: Outdoor particulate and gaseous air pollutants impair respiratory health in children 

and these associations may be influenced by particle composition. 

Objectives: To examine whether associations between short-term variations in fine particulate 

air pollution, oxidant gases, and respiratory hospitalizations in children are modified by particle 

constituents (metals, sulfur) or oxidative potential.  

Methods: We conducted a case-crossover study of 10,500 children (0-17 years of age) across 

Canada. Daily fine particle mass concentrations and oxidant gases (nitrogen dioxide, ozone) were 

collected from ground monitors. Monthly estimates of fine particle constituents (metals, sulfur) 

and oxidative potential were also measured. Conditional logistic regression models were used to 

estimate associations between air pollutants and respiratory hospitalizations, above and below 

median values for particle constituents and oxidative potential.  

Measurements and Main Results: Lag-1 fine particulate matter mass concentrations were not 

associated with respiratory hospitalizations (odds ratio and 95% confidence interval per 10 μg/m3 

increase in fine particulate matter: 1.004 [0.955, 1.056]) in analyses ignoring particle constituents 

and oxidative potential. However, when models were examined above/below median metals, 

sulfur, and oxidative potential, positive associations were observed above the median. For 

example, the odds ratio and 95% confidence interval per 10 μg/m3 increase in fine particulate 

matter was 1.084 [1.007, 1.167] when copper was above the median, and 0.970 [0.929, 1.014] 

when copper was below the median. Similar trends were observed for oxidant gases. 
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Conclusions: Stronger associations were observed between outdoor fine particles, oxidant gases, 

and respiratory hospitalizations in children when metals, sulfur and particle oxidative potential 

were elevated.  
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Introduction 

Exposure to ambient (outdoor) air pollution has a detrimental impact on respiratory 

health worldwide9, and children are particularly vulnerable to the adverse impacts of air 

pollution121. Notably, exposure to ambient air pollution has been demonstrated to increase the 

risk of childhood asthma135,176,177 and respiratory infections139,178,179. Gaseous and particulate 

pollutants, including ozone (O3), nitrogen dioxide (NO2), and fine particulate matter (PM2.5), can 

impair respiratory health through the shared mechanism of inducing oxidative stress8.  

Although considerable evidence supports an impact of O3, NO2 and PM2.5 on respiratory 

health, heterogeneity in health impacts have been observed140,141. When considering PM2.5 

exposure, spatial and temporal differences in PM2.5 composition may explain variability in health 

effects140. Traditional mass-based measures of PM2.5 treat all particles as equally toxic and do not 

account for differences in particle composition and toxicity, which is a limitation given that 

PM2.5 is a mixture of harmful and relatively harmless constituents that vary in space and time. 

Measuring properties of PM2.5 beyond mass concentration may help identify what specific 

sources/components of PM2.5 are most harmful to health and can help inform more efficient 

regulatory measures.  

Transition metals present in PM2.5 are known to cause oxidative stress180, so it is 

plausible that PM2.5 mass concentration may be more strongly associated with adverse health 

outcomes when the metal content in PM2.5 is higher. Similarly, sulfate, another common 

constituent found in PM2.5, may influence the toxicity of particles because it facilitates the 

dissolution of metals, and metal solubility is an important determinant of particle oxidative 

potential50. Additionally, metrics of particle oxidative potential, which can be measured through 

several a-cellular assays including the ascorbic acid (OPAA), glutathione (OPGSH) and 



80 
 

dithiothreitol (OPDTT) assay, may also be useful to incorporate into epidemiological air pollution 

studies. Recently, studies of adverse birth outcomes181 and acute cardiovascular15 and 

respiratory63 events found the health impacts of PM2.5 were stronger when OPGSH was 

higher15,63,181.  

Regarding oxidant gases, co-exposure to other pollutants has been hypothesized as a 

possible source of heterogeneity in observed health impacts141, but to our knowledge no studies 

have explored whether PM2.5 constituents or particle oxidative potential modify the acute health 

effects of oxidant gases. It is plausible that the health impacts of oxidant gases may be greater 

when individuals are simultaneously exposed to particles that are more likely to cause oxidative 

stress, such as when the metal or sulfate content is high or when measures of particle oxidative 

potential are greater.  

In this case-crossover study across 34 cities in Canada, we investigate whether 

associations between short-term outdoor PM2.5 mass concentrations or oxidant gases and acute 

respiratory outcomes in children are modified by PM2.5 metal and sulfur content (as a proxy for 

sulfate) or oxidative potential.   

 

Methods 

Study design and population  

This is a time-stratified case-crossover study design182,183 across 34 Canadian cities 

(listed in the Supplementary Material). This data source has been used for a different study 

investigating associations between PM2.5 and acute cardiovascular events in adults15 and there is 

no overlap with the results reported in this manuscript. Cases include children 0-17 years of age 

hospitalized from June 2016-December 2017 with a discharge diagnosis of any respiratory 



81 
 

disease identified using the International Classification of Disease-10th revision codes (ICD J00-

J99), and who lived within 5 km of a daily air pollutant monitoring site. The study was restricted 

to this time period because monthly estimates of PM2.5 constituents and metals (described below) 

were only measured during this time. For all provinces and territories except Quebec, cases were 

identified using the Discharge Abstract Database (DAD) maintained by the Canadian Institute 

for Health Information, while hospitalization information for Quebec were obtained from the 

Quebec Ministry of Health and Social Services through MED-ÉCHO. Patient sex, age and 6-

digit residential postal code at the time of hospital admissions were also obtained through these 

data sources.  

With the time-stratified case-crossover design, referent periods are selected on the same 

day of the week as the emergency department visit during that month and year182 (see the 

Supplementary Material for additional details of this study design). Ethics approval for this study 

was obtained through a data sharing agreement between Health Canada and the Canadian 

Institute for Health Information.  

Daily air pollution and meteorological data  

 The primary exposures were daily mean outdoor PM2.5 mass concentration (μg/m3), and 

the redox-weighted oxidant capacity of outdoor NO2 and O3 (Ox, ppb). Ox was calculated as a 

weighted average of NO2 and O3, with weights equivalent to the respective redox potentials 

using the formula Ox=[(1.07×NO2) + (2.075 ×O3)]/3.145)44,154. Concentrations of daily air 

pollutants were obtained from fixed-site monitoring stations operated by the National Air 

Pollution Surveillance network maintained by Environment Canada. Daily mean temperature 

data (°C) were obtained from the closest weather stations operated by Environment and Climate 

Change Canada.  
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Monthly estimates of PM2.5 metals and sulfur content, and particle oxidative potential 

Integrated two-week PM2.5 samples were collected at each study location each month 

between June 2016-December 2017. Gravimetric analyses were first performed, then the PM2.5 

filters were analysed for monthly estimates of sulfur (S) and transition metal content and 

oxidative potential. We a prior included copper (Cu), iron (Fe), nickel (Ni), manganese (Mn) and 

zinc (Zn) in our analyses because previous evidence suggests these metals are most strongly 

associated with particle oxidative potential47,50. Monthly estimates of sulfur and transition metals 

were expressed as mass proportions of PM2.5 (i.e., Mass proportion= 

(
𝑚𝑒𝑡𝑎𝑙 𝑜𝑟 𝑠𝑢𝑙𝑓𝑢𝑟 𝑚𝑎𝑠𝑠

2−𝑤𝑒𝑒𝑘 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑃𝑀2.5𝑚𝑎𝑠𝑠
) 𝑥 100). Three metrics of particle oxidative potential were 

measured: ascorbate (OPAA), glutathione (OPGSH), and dithiothreitol (OPDTT) oxidative potential. 

All oxidative potential values are expressed in the units of pmol/min/μg. Therefore, each 

monitoring site each month was assigned an estimate of PM2.5 metals and sulfur content and 

particle oxidative potential. Additional details on these methods are provided in the 

Supplementary Material. 

Statistical analyses 

 Conditional logistic regression was used to estimate associations between lag-1 PM2.5 or 

Ox and hospitalizations for respiratory diseases, where lag-1 refers to air pollution measured the 

day before a hospitalization. Models were adjusted for lag-1 temperature, and adjusted for each 

co-exposure (e.g., estimates for lag-1 Ox were adjusted for lag-1 PM2.5 and visa versa). Our 

primary analysis considers lag-1 exposures because model fit (based on the minimum Akaike 

information criterion [AIC]) was better than other exposure lags, including lag-0 (same-day) and 

three-day mean (mean of lags 0-2) exposures (AICs presented in Table S1 of the Supplementary 
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Material). However, other exposure lags were considered in sensitivity analyses. A cluster 

variance estimator was used to account for within-city clustering.  

 To evaluate whether the associations between lag-1 PM2.5 or Ox and respiratory 

hospitalizations were modified by monthly estimates of particle oxidative potential, metal or 

sulfur content, analyses were performed above and below the median level of metals, sulfur and 

particle oxidative potential. Said another way, we 1) calculated the median value of sulfur and 

metal content and particle oxidative potential from the monthly estimates available from each 

monitoring site, 2) labelled each month-site combination as above or below the median sulfur, 

metal or oxidative potential value, and 3) evaluated associations between lag-1 PM2.5 or Ox and 

respiratory hospitalizations separately, by those who were above the median 

metal/sulfur/oxidative potential value vs. those who were below the median 

metal/sulfur/oxidative potential value. To formally test effect modification, we included an 

interaction term between lag-1 PM2.5 or Ox and an indicator variable reflecting above/below the 

median metal/sulfur content or oxidative potential, and a p-value of <0.05 for the interaction 

term was used as evidence of effect modification (on the multiplicative scale). As additional 

sensitivity analyses, we explored whether findings were similar in the warm (May-September) 

and cold (October-April) seasons because seasonal trends in short-term air pollution health 

impacts are commonly observed184–187 and particle toxicity/metal concentrations might vary by 

seasons188, and performed the analyses separately by sex. All odds ratios (ORs) reflect a 10-unit 

increase in PM2.5 or Ox. Additional details of the statistical analyses are included in the 

Supplementary Material. 
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Results 

In total, 10,534 children were hospitalized for respiratory diseases. The median age was 5 

years (interquartile range: 3-10 years), and there were more boys than girls (6,029 boys and 

4,505 girls). Descriptive statistics for daily mean air pollutants (PM2.5, NO2, O3, Ox), monthly 

estimates of PM2.5 constituents (Cu, Fe, Ni, Mn, Zn, S) and particle oxidative potential (OPGSH, 

OPAA, OPDTT) over the entire study duration are shown in Table 1. As expected in Canada, 

concentrations of daily air pollutants were low (mean ± standard deviation PM2.5 (μg/m3): 7.33 ± 

6.38; NO2 (ppb): 9.13 ± 6.33; O3 (ppb): 22.76 ± 8.37; Ox (ppb): 18.12 ± 4.90).  Descriptive 

statistics separated by the warm (May-September) and cold (October-April) seasons are shown in 

Table S2. There were several differences in PM2.5 constituents and oxidative potential metrics 

between the warm and cold seasons; for example, Fe was considerably higher in the warm 

season than the cold season (median [IQR] Fe in the warm seasons: 105.2 [73.1- 164.1] ng/m3: 

cold season: 67.9 [33.0- 111.2] ng/m3). Distributions of mass proportions for Cu, Fe, Ni, Mn, Zn 

and S in monthly PM2.5 are shown in Table S3, and the relationship between daily temperature 

and hospital admissions is shown in Figure S1.  
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Table 1: Descriptive statistics of daily and monthly air pollution data (July 2016-December 

2017) 
 Percentiles 

 5th  25th  50th  75th  95th  

Daily air pollutants and temperature data 

PM2.5 (μg/m3) 1.9 3.9 6.1 9.0 16.6 

O3 (ppb) 8.9 17 22.5 28.7 36.3 

NO2 (ppb) 2.0 4.6 7.6 11.7 21.9 

Ox (ppb) 10.3 14.8 18 21.5 26.2 

Temperature (°C) -16.6 -2.4 5.3 14.3 21.3 

Monthly average data 

PM2.5 (μg/m3) 3.4 5.2 6.8 9 14.1 

OPGSH (pmol/min/μg) 1.1  2.1 3.1 4.3 7.6 

OPAA (pmol/min/μg) 1.5 2.2 2.8 3.5 4.7 

OPDTT (pmol/min/μg) 1.8 5.9 10.1 16.6 26.2 

Cu (ng/m3)  0.5  1 1.9 4.4 9.4 

Fe (ng/m3) 20.3 43.0 85.5 129.2 202.3 

Ni (ng/m3) 0.1 0.1 0.2 0.4 2.3 

Mn (ng/m3) 0.6 1.3 2.8 4.2 7.5 

Zn (ng/m3)  2.2 4.3 7.2 15.5 46.6 

S (ng/m3) 97.6 160.2 242.4 312.8 487.8 

Note: PM2.5, fine particulate matter; O3, ozone; NO2, nitrogen dioxide; Ox, weighted oxidant 

capacity of NO2 and O3; OPGSH, glutathione oxidative potential; OPAA,  ascorbate oxidative 

potential; OPDTT, dithiothreitol oxidative potential; Cu, copper; Fe, iron; Ni, nickel; Mn, 

manganese; Zn, zinc; S, sulfur 
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 Figure 1 shows the correlation between monthly estimates of PM2.5 mass, constituents and 

oxidative potential over the entire study duration. Constituents were positively correlated with 

one another: Spearman correlation coefficients ranged from 0.30 (between S and Fe) to 0.86 

(between Mn and Fe). Relatively weak (positive and negative) correlations were observed 

between metals and particle oxidative potential, with the strongest correlation observed between 

Cu and OPGSH (r=0.33). Correlations in the warm and cold season separately are shown in 

Figures S2 and S3 of the Supplementary Material. Correlations are generally similar in the warm 

and cold seasons, except for OPDTT: in the warm season, weak positive correlations were 

observed between OPDTT and constituents (r ranging from 0.21 to 0.33), while in the cold season, 

weak negative correlations were observed (r ranging from -0.20 to -0.09).  
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Figure 1 Spearman correlation coefficients between monthly mean PM2.5 mass concentration 

(PM, μg/m3), constituents (Cu, Fe, Ni, Mn, Zn, S, ng/m3) and oxidative potential (OPGSH, OPAA, 

OPDTT, pmol/min/μg) in Canada from 2016-2017 
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 Associations between lag-1 PM2.5 and respiratory hospitalizations are shown in Figure 2 

and Table S4. Overall, lag-1 PM2.5 was not associated with respiratory hospitalizations (OR and 

95% confidence interval per 10 μg/m3 increase in PM2.5: 1.004 [0.955, 1.056]). However, when 

analyses were performed above and below median metals, S and oxidative potential, positive 

associations were observed and the 95% CIs excluded the null when Cu, Ni, Zn, and OPGSH were 

above the median, while no clear associations were observed below the median. For example, the 

OR and 95% CI when Cu was above the median was 1.084 [1.007, 1.167], and 0.970 [0.929, 

1.014] when Cu was below the median. When an interaction term between lag-1 PM2.5 and an 

indicator variable for PM2.5 constituents and oxidative potential metrics (above/below the 

median) were included in the models, p-values for the interaction terms were <0.05 for all metals 

and OPGSH, indicating that metals and OPGSH modified the associations between lag-1 PM2.5 and 

respiratory hospitalizations (Table S4). No significant effect modification by S, OPAA or OPDTT 

was observed (interaction p-values between lag-1 PM2.5 and S: 0.331; OPAA: 0.435; and OPDTT: 

0.995). 
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Figure 2 Odds ratios (95% confidence intervals) for associations between lag-1 PM2.5 (per 10 

μg/m3) and respiratory hospitalizations in children, overall and across strata (above/below the 

median) of monthly particle constituents (Cu, Fe, Ni, Mn, Zn, S) and oxidative potential (OPGSH, 

OPAA, OPDTT) 
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 Associations between lag-1 Ox and respiratory hospitalizations are shown in Figure 3 and 

Table S5. Overall, lag-1 Ox was positively associated with respiratory hospitalizations (OR and 

95% CI per 10 ppb increase in Ox: 1.088 [1.005, 1.177]). When analyses were stratified 

above/below median constituents and oxidative potential, associations were stronger and the 

confidence intervals excluded the null when Cu, Fe, Ni, Zn, S and OPGSH were above the 

median, while weaker associations were observed below the median. For example, the OR and 

95% CI when Cu was above the median was 1.125 [1.028, 1.232], and 1.055 [0.962, 1.157] 

when Cu was below the median. For OPAA and OPDTT, associations were stronger and the 95% 

CIs excluded the null when OPAA and OPDTT were below the median, while no associations were 

observed above the median. When an interaction term between lag-1 Ox and an indicator variable 

for PM2.5 constituents and oxidative potential metrics (above or below the median) were included 

in the models, significant effect modification was observed for OPAA only (p-value for 

interaction term between lag-1 Ox and OPAA: 0.015).  
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Figure 3 Odds ratios (95% confidence intervals) for associations between lag-1 Ox (per 10 ppb) 

and respiratory hospitalizations in children, overall and across strata (above/below the median) 

of monthly particle constituents (Cu, Fe, Ni, Mn, Zn, S) and oxidative potential (OPGSH, OPAA, 

OPDTT) 
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 In the analyses performed in the warm and cold season separately, there were no overall 

associations between lag-1 PM2.5 and respiratory hospitalizations (OR and 95% CI per 10 μg/m3 

increase in lag-1 PM2.5 in the warm season: 1.003 [0.936, 1.075]; cold season: 1.039 [0.961, 

1.123], Figure 4 and Table S6). However, effect modification by metals, S and oxidative 

potential was more pronounced in the warm season compared to the cold season. In the warm 

season, stronger associations were observed between lag-1 PM2.5 and respiratory hospitalizations 

when all metals, S and OPGSH were above the median compared to below the median (p-value for 

the interaction term between lag-1 PM2.5 and metals, S and OPGSH were <0.05). In the cold 

season, the strength of associations between lag-1 PM2.5 and respiratory hospitalizations were 

still stronger when all metals and OPGSH were above the median compared to below the median, 

but the confidence intervals around the estimated association included the null and no significant 

effect modification was observed. Moreover, S was not an important modifier in the cold season 

(OR and 95% CI when S is above the median: 1.032 [0.931, 1.146]; S below the median: 1.047 

[0.949, 1.155]). 

The OR and 95% CI per 10 ppb increase in Ox was 1.196 [1.075, 1.331] in the warm 

season and 1.112 [1.026, 1.206] in the cold season (Figure 4, Table S7). Due to the non-

collapsibility of the odds ratio (i.e., when the overall OR does not equal a weighted average of 

subgroup ORs189,190), the estimated OR in both the warm and cold season are greater than the OR 

in all seasons combined. When the analyses were stratified by metals, S and oxidative potential 

in the warm season, stronger associations were observed when Ni and Zn were above the median 

compared to below the median (OR and 95% CI when Ni was above the median: 1.210 [1.078, 

1.359]; Ni below the median: 1.152 [0.974, 1.363]; Zn above the median: 1.274 [1.091, 1.488], 

Zn below the median: 1.108 [0.972, 1.264]; p-value for interaction terms <0.05). In the cold 
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season, no significant effect modification by PM2.5 constituents or oxidative potential were 

observed.   
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Figure 4 Odds ratios (95% confidence intervals) for associations between lag-1 A) PM2.5 (per 10 

μg/m3), or B) Ox (per 10 ppb) and respiratory hospitalizations in children in the warm (May-

September) and cold (October-April) seasons, overall and across strata (above/below the median) 

of monthly particle constituents (Cu, Fe, Ni, Mn, Zn, S) and oxidative potential (OPGSH, OPAA, 

OPDTT) 
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 Sex-stratified analyses are presented in Tables S8 and S9. Effect modification by metals, 

S and oxidative potential for the associations between PM2.5 and respiratory hospitalizations was 

more common among girls than boys (p-value <0.05 for the interaction term between lag-1 PM2.5 

and above/below median Cu, Fe, Ni, Mn and Zn among girls; <0.05 for Ni and OPGSH among 

boys). No significant effect modification was observed for the associations between Ox and 

respiratory hospitalizations among boys or girls (Table S9). 

 Associations between lag-0 and 3-day mean exposures and respiratory hospitalizations 

are shown in Tables S10-S13 of the Supplementary Material. Generally, associations are slightly 

weaker and effect modification was less frequent, but overall, a similar pattern of stronger 

associations when PM2.5 constituents or oxidative potential was above the median emerges 

(particularly for 3-day mean exposures, Tables S11 and S13).  

 

Discussion 

Although Canada has some of the cleanest air in the world10,11, health impacts of air 

pollution are still observed12,13. Increasing evidence suggests that the health effects of PM2.5 vary 

depending on the source and chemical composition of particles and traditional mass-based 

measures are unable to account for these potential differences in particle toxicity20. In this case-

crossover study, we examined associations between short-term (lag-1) outdoor PM2.5 mass 

concentrations and oxidant gas concentrations and respiratory hospitalizations in children across 

strata of monthly average PM2.5 constituents and oxidative potential in a setting with remarkably 

low air pollution concentrations. Without accounting for spatial and temporal differences in 

particle oxidative potential, metals or sulfur, lag-1 PM2.5 was not associated with respiratory 

hospitalizations. However, when the analyses were stratified by monthly estimates of particle 

oxidative potential, metals, and sulfur, lag-1 PM2.5 was positively associated with respiratory 
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hospitalizations only when monthly average PM2.5 metals/sulfur and oxidative potential were 

elevated. Similarly, stronger associations were also observed between lag-1 Ox and respiratory 

hospitalizations when monthly average PM2.5 metals/sulfur and oxidative potential were higher, 

and effect modification was generally more pronounced in the warm months compared to the 

cold months.  

A pertinent question from the results of this study is whether similar trends would emerge 

in highly polluted settings, or if effect modification by PM2.5 constituents and oxidative potential 

is more important in low exposure settings. The answer to this question remains elusive because 

to our knowledge, no existing studies have investigated whether associations between ambient 

air pollution and adverse health outcomes are modified by PM2.5 constituents/oxidative potential 

in highly polluted regions of the world, and this is an important gap in knowledge.  

Our study supports previous evidence that found stronger associations between short-

term PM2.5 and respiratory hospitalizations when OPGSH was higher63. However, an important 

strength of our current study compared to the previous study is that oxidative potential was 

measured prospectively on a monthly basis to account for temporal differences in oxidative 

potential64, while previously only long-term estimates were available. Regardless, the findings 

from both studies support the idea that OPGSH is an important modifier of PM2.5 health effects and 

this finding has also been observed in studies of preterm birth181 and acute cardiovascular 

events15,154. In addition to considering whether particle oxidative potential modifies PM2.5 health 

effects, several studies have evaluated the direct associations between measures of particles 

oxidative potential and respiratory health outcomes. For example, two time-series study found 

that short-term OPDTT was associated with emergency department visits for respiratory 

diseases59,68, while another time-series study did not observe consistent associations between 
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OPAA or OPGSH and respiratory mortality60. In children specifically, long-term OPDTT has been 

associated with an increased risk of asthma and rhinitis, and decreased lung function61, and short-

term OPGSH (but not OPAA) has been associated with airway inflammation62.  

Assays to measure oxidative potential are sensitive to different components of PM2.5; for 

example, OPAA and OPGSH are sensitive to metal components, while OPDTT is sensitive to metals 

as well as organic species from biomass burning47. Evidence of modification was more apparent 

by OPGSH than OPAA and OPDTT in this study, and previous evidence suggests that OPGSH and 

OPDTT are most related with health outcomes47. However, there is currently no consensus as to 

which a-cellular test is the best, but instead it is recommended to use various assays to 

potentially provide complimentary information about particle toxicity47,191.  

Transition metals in PM2.5 originate from a variety of different sources including coal and 

oil combustion, industrial emissions, traffic sources, and road dust resuspension48. Short-term 

exposure to metals in ambient particulate matter have previously been associated with respiratory 

health outcomes in children, including positive associations between Ni, Fe, barium, and 

vanadium and airway inflammation53,54, and Zn, Cu, Fe and respiratory hospitalizations55,56. To 

our knowledge, no studies have specifically looked at whether metals modify the respiratory 

health impacts of PM2.5 in children, but effect modification by metals for acute cardiovascular 

events in men has been observed15.  

We also observed stronger associations between PM2.5 and respiratory hospitalizations 

when sulfur (used as a proxy for sulfate) was higher, although the 95% CI included the null. 

Sulfate itself is not particularly toxic, but sulfate increases aerosol acidity and facilitates metal 

dissolution, and soluble metals are more bioavailable than insoluble metals and more likely to 

cause to oxidative stress48,50,192,193. Therefore, when the sulfur content in PM2.5 is higher, the 
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toxicity of PM2.5 may be greater. Recently, we found stronger associations between PM2.5 mass 

and cardiovascular hospitalizations in men when both sulfur and metals were elevated15. 

Although sample size constraints did not allow us to investigate whether the combined impact of 

sulfur and metals modified the associations between PM2.5 and respiratory hospitalizations, it is 

possible that the slightly stronger association we observed when sulfur was elevated may be 

attributed to a higher fraction of soluble metals present in the PM2.5.  

There was some evidence of effect modification by metals, sulfur and oxidative potential 

for the associations between Ox and respiratory hospitalizations. Over the entire study duration, 

the strength of association between Ox and respiratory outcomes was stronger when metals, 

sulfur and OPGSH were higher, but effect modification was only statistically significant in the 

warm season. To our knowledge, no other studies have investigated whether particle oxidative 

potential or PM2.5 constituents modify associations between Ox and any health outcomes, but 

several studies of all-cause, cardiovascular and respiratory mortality have observed interactions 

between PM2.5 mass concentration and oxidant gases22,23. Both gaseous and particulate air 

pollution contribute to the generation of reactive oxygen species and oxidative stress, so it is 

biologically plausible that the health impacts of Ox may be greater in regions/times when the 

composition of PM2.5 has a greater capacity to cause oxidative stress.  

Regarding more pronounced effect modification by particle constituents and oxidative 

potential in the warm season compared to the cold season, seasonal/temporal trends in short-term 

air pollution health impacts have been observed in many other studies184–187, likely due to 

differences in particle composition between seasons. In this study, we observed differences in 

PM2.5 constituents and oxidative potential between the warm and cold season. In addition, people 

also spend more time outside in the warm months so ambient air pollution exposure is a better 
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proxy for personal exposure than during the winter months, and statistical power to detect 

significant effect modification is improved when exposure measurement error is minimized. 

An important implication of our findings suggesting the health impacts of Ox are greater 

when certain PM2.5 constituents or oxidative potential are higher is that regulatory measures that 

target PM2.5 constituents/oxidative potential may have considerable co-benefits in also reducing 

Ox health impacts, even if Ox remains unchanged. Ozone (a component of Ox) is challenging to 

regulate because unlike other air pollutants, ozone is not directly emitted but is formed when 

volatile organic compounds and nitrous oxides released from a wide range of sources (e.g., 

automobiles, oil and gas production, biomass burning, power plants, disinfectants, paints/paint 

strippers, aerosol sprays etc.) react with sunlight in the atmosphere. Moreover, because 

temperature is a strong driver of ozone formation, ozone is also expected to increase into the 

future with climate change37 and may become increasingly difficult to regulate. Therefore, 

policies that target PM2.5 constituents/oxidative potential may be efficient in reducing the health 

impacts of both PM2.5 and Ox. However, as no other studies have investigated effect modification 

by PM2.5 constituents or oxidative potential for the associations between Ox and respiratory 

hospitalizations, replication in other studies is needed to support these findings.  

This study had a number of important strengths including prospective measures of 

monthly PM2.5 constituents and oxidative potential metrics across Canada and the time-stratified 

case crossover design that prevents confounding by covariates that are time-invariant (e.g., sex) 

as well as some time-dependent covariates (day of week, season, year)182. However, several 

limitations should be mentioned. First, because metals were correlated and most followed the 

similar pattern of elevated risk at higher metal content, we are unable to identify which specific 

metals may be most harmful to health. In addition, we only looked at hospitalization admissions 



100 
 

(not emergency room visits) so only captured the more severe cases of respiratory conditions. 

Furthermore, Berkson-type exposure measurement error is present because true personal PM2.5 or 

Ox exposures may differ from ambient concentrations, which would reduce the precision of the 

estimates174. In addition, monthly mean oxidative potential metrics and PM2.5 constituents were 

based on two-week integrated samples, but it is possible that measurement error may be present 

if the two-week sample was not representative of the entire month. This could potentially lead to 

individuals being misclassified in respect to their assignment of above or below median monthly 

PM2.5 constituents/oxidative potential, which would diminish the magnitude of observed effect 

modification across strata174.  

In summary, our results suggest that the strength of associations between respiratory 

hospitalizations in children and short-term exposure to outdoor PM2.5 mass concentrations and Ox 

are influenced by the metal and sulfur content of PM2.5 and particle oxidative potential. These 

findings provide further support for efforts targeting specific sources of PM2.5 with high 

metal/sulfur content and oxidative potential as opposed to regulations targeting only PM2.5 mass. 

Additional work is needed, both in different populations and with different health outcomes, to 

evaluate whether similar trends emerge.  
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4.3 Supplementary material 

Supplementary Methods  

1. List of Canadian cities where the study took place 

Athabasca Valley, Brandon, Calgary, Courtenay, Duncan, Edmonton, Fort Mackay, Fort 

McMurray, Fredericton, Halifax, Hamilton, Kamloops, Kelowna, London, Montreal, Mt. Pearl, 

Nanaimo, Ottawa, Prince Albert, Prince George, Quebec, Quesnel, Red Deer, Regina, Saint 

John, Saskatoon, St. Albert, St. John's, Swift Current, Victoria, Whitehorse, Windsor, Winnipeg, 

and Yellowknife. 

 

2. Additional details on the time-stratified case-crossover study design 

This was a time-stratified case-crossover study. With the time-stratified case-crossover design, 

referent periods are selected on the same day of the week as the emergency department visit 

during that month and year182; for example, if an emergency department visit occurred on 

Monday June 13, 2016, then referent periods were all other Mondays in June 2016 (June 6, June 

20, June 27). This study design is advantageous in that factors that are time-invariant (e.g., 

sex/gender) or do not vary within subjects over short periods of time (e.g., age, body mass index) 

are controlled for by design182. Moreover, time-dependent covariates such as season, day of 

week, and year are also adjusted for by design because the referent times are matched to the 

index date with respect to these covariates (i.e., the referent periods are selected as the same day 

of the week, month and year as the index date)182. This is in contrast to time-series studies 

(another study design frequently used to evaluate short-term effects of environmental exposures), 

where time-dependent covariates are adjusted for by modelling, and is a major advantage of the 

case-crossover design over the time-series design.  
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3. Additional details on PM2.5  sample collection for monthly estimates of metals, sulfur, 

and oxidative potential 

Integrated two-week PM2.5 samples were collected on Teflon filters using cascade 

impactors operating at a flow rate of 5 liters per minute at each study location each month 

between June 2016-December 2017. All monitors were located at the provincial monitoring sites 

(the same location where daily PM2.5, NO2 and O3 were measured), except for the cities of 

Ottawa and Montreal, where the monitors were located at private residences located less than 3 

km away from the provincial monitoring sites. Gravimetric analyses were first performed, then 

the PM2.5 filters were analysed for monthly estimates of transition metal (copper, iron, nickel, 

manganese, zinc) and sulfur content using X-ray fluorescence (U.S. Environmental Protection 

Agency method IO-3.3), and particle oxidative potential.  

Three metrics of particle oxidative potential were measured: ascorbate (OPAA), 

glutathione (OPGSH), and dithiothreitol (OPDTT) oxidative potential. To measure particle 

oxidative potential, the 2-week PM2.5 samples were extracted into High Performance Liquid 

Chromatography (HPLC) grade methanol by vortexing at 1800 revolutions per minute for 20 

minutes and sonicating for 10 minutes. Decanted methanol was evaporated under a gentle flow 

of nitrogen. PM2.5 samples were resuspended in ultrapure water containing 5% HPLC methanol 

to a storage concentration of 200 μg PM/mL. Resuspended PM2.5 samples were analyzed in 

triplicate using the ascorbate (AA), glutathione (GSH) and dithiothreitol (DTT) assays. 

OPAA and OPGSH were assessed using the acellular respiratory tract lining fluid (RTLF) 

oxidative potential assay, as previously described62,194. Briefly, PM2.5 samples were incubated at 

a concentration of 75 μg/mL for 4 h at 37 °C with synthetic respiratory tract lining fluid (RTLF) 

containing 200 μM of each AA, GSH, and uric acid in an ultraviolet- visible plate reader 
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(Molecular Devices, Spectra Max 190) alongside positive controls (0.5 μM Cu(NO3)2, 0.02% 

H2O2) and blanks. AA depletion was calculated over the 4-h incubation period, and GSH 

depletion was measured using the glutathione-reductase enzyme recycling assay195. OPDTT was 

assessed using a similar method described previously196. Briefly, resuspended PM2.5 samples 

were incubated with 100 μM DTT in a 96-well plate alongside positive controls (0.5 μM 

Cu(NO3)2), blanks, and DTT standards (containing 0−100 μM DTT) for 35 min at 37°C, with 

constant shaking. After 5, 15, 25, and 35 minutes, the remaining DTT was measured by adding 

1.0 mM 5,5′-dithiobis(2- nitrobenzoic acid) to each well and measuring absorbance at 412 nm. 

Samples were initially analyzed at a concentration of 50 μg/mL but if DTT depletion exceeded 

25% after 35 min, the sample was re-analyzed at a lower concentration. 

An important limitation of using Teflon filters to measure monthly estimates of monthly 

estimates of PM2.5 constituents (metals and sulfur) is that volatile constituents (e.g., ammonium 

nitrate, organic material, etc.) are not retained well by Teflon filters. As such, PM2.5 mass 

concentration estimated from two-week integrated samples (used as an estimate of monthly 

PM2.5) will be systematically underestimated, and the mass proportion of PM2.5 constituents will 

be systematically overestimated (because mass proportion of metals/sulfur = 

(
𝑚𝑒𝑡𝑎𝑙 𝑜𝑟 𝑠𝑢𝑙𝑓𝑢𝑟 𝑚𝑎𝑠𝑠

2−𝑤𝑒𝑒𝑘 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑃𝑀2.5𝑚𝑎𝑠𝑠
) 𝑥 100)). However, because measurement error in estimating the 

mass proportion of metals/sulfur in monthly PM2.5 was systematic and estimates of mass 

proportions were only used to rank individuals with respect to above/below median mass 

proportions (to perform stratified analyses), no bias in the associations between lag-1 PM2.5 or Ox 

should result. 
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4. Additional details on statistical analyses 

Our primary analyses focused on lag-1 exposures because model fit (based on the 

minimum Akaike information criterion [AIC]) was best compared to models using same-day 

(lag-0) and 3-day mean exposures (see Table S1 for AICs). However, as sensitivity analyses, we 

also ran the models using lag-0 and 3-day mean exposures. 

 Natural cubic splines with 1 knot were examined for temperature, but model fit (based 

on the minimum AIC) did not meaningfully improve so a linear term for temperature was used in 

all models. In addition, we a priori chose to categorize metals, sulfur and oxidative potential at 

the median values to ensure an adequate sample size in each group. To formally test effect 

modification by patient sex (male vs. female), an interaction term was included in the model 

between lag-1 Ox or PM2.5 and an indicator variable for sex (1=male, 0=female), and a p-value 

<0.05 for the interaction term was interpreted as effect modification (on the multiplicative scale) 

by patient sex. The same approach was performed to evaluate effect modification by season 

(warm vs. cold).  
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Supplementary Tables 

Table S1 Model fit (using the Akaike information criterion [AIC]) comparing different exposure 

lagsa 

Exposure lag AIC 

Lag 0 (same-day exposures) 29364.94 

Lag 1  29358.97 

Lag 2 29364.04 

3-day mean (mean of lags 1-3) 29361.32 
a Covariates in the model include linear terms of PM2.5, Ox, and temperature. A lower AIC 

indicates better model fit.  
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Table S2 Descriptive statistics of daily and monthly air pollution data, by the warm (May-

September) and cold (October-April) seasons 

 Warm season 

May-September 

Cold season 

October-April 

Air pollutants and 

temperature data 

Median (Interquartile 

Range) 

Median (Interquartile 

Range) 

Daily data   

PM2.5 (μg/m3) 5.7 (3.7-8.7) 6.2 (4.1-9.1) 

O3 (ppb) 24 (19.3-29.8) 21.6 (15.7-27.9) 

NO2 (ppb) 5.3 (3.5-7.8) 9.2 (5.9-14.0) 

Ox (ppb) 17.8 (14.6-21.8) 18.1 (14.9-21.4) 

Temperature (°C) 16.6 (13.3-19.7) 0.2 (-6.7, 5.2) 

Monthly data   

PM2.5 (μg/m3) 6.8 (5.3-8.7) 6.9 (5.1-9.0) 

OPGSH (pmol/min/μg) 3.0 (1.9- 4.4) 3.1 (2.2-4.4) 

OPAA (pmol/min/μg) 2.7 (2.1-3.5) 2.8 (2.3-3.6) 

OPDTT (pmol/min/μg) 11.1 (6.7-18.0) 9.0 (5.6-15.4) 

Cu (ng/m3)  1.9 (1-5) 1.9 (1-4.3) 

Fe (ng/m3) 105.2 (73.1- 164.1) 67.9 (33.0- 111.2) 

Ni (ng/m3) 0.2 (0.1-0.5) 0.2 (0.1-0.4) 

Mn (ng/m3) 3.5 (2.1- 5.6) 2.4 (1.1-3.9) 

Zn (ng/m3) 5.7 (3.0- 15.6) 7.9 (4.9- 15.5) 

S (ng/m3) 219.9 (159.1-299.5) 252.2 (162.3- 317.1) 

OPGSH, glutathione oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol 

oxidative potential; Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur 
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Table S3 Descriptive statistics for mass proportions (%) of constituents in integrated two-week 

measurements of PM2.5 (Canada, 2016-2017) 

 Overall 

 

Warm season 

May-September 

Cold season 

October-April 

 

 

Median 

(Interquartile 

Range) 

Median 

(Interquartile Range) 

Median 

(Interquartile Range) 

Cu 0.03 (0.02-0.06) 0.03 (0.02-0.06) 0.029 (0.017-0.052) 

Fe 1.18 (0.69-1.80) 1.58 (1.11- 2.12) 1.055 (0.561-1.552) 

Ni 0.003 (0.002-0.006) 0.003 (0.002-0.007) 0.003 (0.002-0.005) 

Mn 0.04 (0.02-0.06) 0.048 (0.032- 0.065) 0.031 (0.018-0.054) 

Zn 0.11 (0.07-0.19) 0.077 (0.045-0.216) 0.123 (0.084-0.185) 

S 3.58 (2.67- 4.63) 3.49 (2.45-4.86) 3.65 (2.72-4.50) 

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur 
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Table S4 Association between lag-1 PM2.5 and hospitalizations for respiratory diseases in 

children (<18 years of age), overall and across strata (above or below the median) of mass 

proportions of sulfur and metals in monthly PM2.5, and particle oxidative potential 

  N events Odds ratio 

(95% confidence interval) 

Interaction 

p-valuea  

Overall   10,534 1.004 (0.955, 1.056) - 

Cu >50th percentile 5,242 1.084 (1.007, 1.167) 0.013 

 ≤50th percentile 5,292 0.970 (0.929, 1.014)  

Fe >50th percentile 5,285 1.091 (0.986, 1.206) 0.019 

 ≤50th percentile 5,249 0.968 (0.930, 1.007)  

Ni >50th percentile 5,321 1.089 (1.015, 1.167) 0.006 

 ≤50th percentile 5,213 0.969 (0.926, 1.013)  

Mn >50th percentile 5,276 1.067 (0.973, 1.169) 0.041 

 ≤50th percentile 5,258 0.972 (0.930, 1.015)  

Zn >50th percentile 5,330 1.074 (1.000, 1.153) 0.029 

 ≤50th percentile 5,204 0.979 (0.939, 1.021)  

S >50th percentile 5,303 1.050 (0.966, 1.142) 0.331 

 ≤50th percentile 5,231 0.989 (0.938-1.043)  

OPGSH >50th percentile 5,295 1.091 (1.033, 1.151) <0.001 

 ≤50th percentile 5,239 0.951 (0.902, 1.002)  

OPAA >50th percentile 5,282 0.983 (0.918, 1.053) 0.435 

 ≤50th percentile 5,252 1.040 (0.956, 1.131)  

OPDTT >50th percentile 5,228 1.003 (0.945, 1.066) 0.995 

 ≤50th percentile 5,306 1.008 (0.916, 1.110)  

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-1 PM2.5 and an indicator variable (above/below 

median) of monthly metals, sulfur or particle oxidative potential  

 

 

 

 

 

 

 

 

 

 

 



109 
 

Table S5 Association between lag-1 Ox and hospitalizations for respiratory diseases in children 

(<18 years of age), overall and across strata (above or below the median) of mass proportions of 

sulfur and metals in monthly PM2.5, and particle oxidative potential 

  N events Odds ratio 

(95% confidence interval) 

Interaction 

p-valuea 

Overall   10,534 1.088 (1.005, 1.177) - 

Cu >50th percentile 5,242 1.125 (1.028, 1.232) 0.279 

 ≤50th percentile 5,292 1.055 (0.962, 1.157)  

Fe >50th percentile 5,285 1.109 (1.012, 1.215) 0.148 

 ≤50th percentile 5,249 1.039 (0.942, 1.146)  

Ni >50th percentile 5,321 1.107 (1.005, 1.219) 0.515 

 ≤50th percentile 5,213 1.061 (0.963, 1.169)  

Mn >50th percentile 5,276 1.077 (0.980, 1.185) 0.838 

 ≤50th percentile 5,258 1.071 (0.954, 1.202)  

Zn >50th percentile 5,330 1.139 (1.033, 1.255) 0.269 

 ≤50th percentile 5,204 1.049 (0.945, 1.164)  

S >50th percentile 5,303 1.132 (1.023, 1.252) 0.388 

 ≤50th percentile 5,231 1.045 (0.936, 1.165)  

OPGSH >50th percentile 5,295 1.130 (1.039, 1.229) 0.362 

 ≤50th percentile 5,239 1.045 (0.933, 1.171)  

OPAA >50th percentile 5,282 1.037 (0.951, 1.130) 0.015 

 ≤50th percentile 5,252 1.144 (1.043, 1.255)  

OPDTT >50th percentile 5,228 1.065 (0.971, 1.170) 0.494 

 ≤50th percentile 5,306 1.112 (1.007, 1.227)  

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-1 Ox and an indicator variable (above/below 

median) of monthly metals, sulfur or particle oxidative potential  
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Table S6 Association between lag-1 PM2.5 and hospitalizations for respiratory diseases in 

children (<18 years of age), overall and across strata (above or below the median) of mass 

proportions of sulfur and metals in monthly PM2.5, and particle oxidative potential, stratified by 

the warm (May-September) and cold (October-April) seasons  
  Warm season  Cold season   

  N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 Interaction p-

value for 

seasonb 

Overall  3,610 1.003 (0.936, 1.075) -  6,924 1.039 (0.961, 1.123) -  0.329 

Cu >50th percentile  1,744 1.251 (1.099, 1.425) 0.003  3,498 1.080 (0.965, 1.209) 0.180  0.972 

 ≤50th percentile 1,866 0.979 (0.920, 1.042)   3,426 0.972 (0.895, 1.055)   0.828 

Fe >50th percentile  2,558 1.210 (1.037, 1.412) 0.004  2,727 1.121 (0.973, 1.293) 0.120  0.758 

 ≤50th percentile 1,052 0.956 (0.904, 1.011)   4,197 0.988 (0.920, 1.061)   0.513 

Ni >50th percentile  2,026 1.220 (1.057, 1.409) 0.001  3,295 1.072 (0.985, 1.168) 0.190  0.727 

 ≤50th percentile 1,584 0.973 (0.918, 1.032)   3,629 0.999 (0.903, 1.104)   0.782 

Mn >50th percentile  2,377 1.205 (1.014, 1.431) 0.007  2,899 1.069 (0.967, 1.181) 0.339  0.876 

 ≤50th percentile 1,233 0.956 (0.905, 1.011)   4,025 0.997 (0.907, 1.097)   0.467 

Zn >50th percentile  1,460 1.285 (1.089, 1.517) <0.001  3,870 1.046 (0.949, 1.152) 0.734  0.286 

 ≤50th percentile 2,150 0.986 (0.927, 1.049)   3,054 1.029 (0.935, 1.133)   0.643 

S >50th percentile  1,643 1.164 (0.998, 1.357) 0.034  3,660 1.032 (0.931, 1.146) 0.620  0.433 

 ≤50th percentile 1,967 0.984 (0.923, 1.049)   3,264 1.047 (0.949, 1.155)   0.248 

OPGSH >50th percentile  1,761 1.132 (1.043, 1.229) 0.002  3,534 1.081 (1.000, 1.168) 0.194  0.720 

 ≤50th percentile 1,849 0.952 (0.885, 1.023)   3,390 0.992 (0.885, 1.111)   0.555 

OPAA >50th percentile  1,654 0.966 (0.913, 1.022) 0.065  3,628 0.966 (0.913, 1.022) 0.721  0.134 

 ≤50th percentile 1,956 1.093 (0.985, 1.214)   3,296 1.033 (0.915, 1.167)   0.796 

OPDTT >50th percentile  2,008 1.009 (0.935, 1.090) 0.285  3,220 0.992 (0.903, 1.088) 0.433  0.893 

 ≤50th percentile 1,602 0.944 (0.799, 1.114)   3,704 1.085 (0.971, 1.213)   0.034 

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-1 PM2.5 and an indicator variable (above/below 

median) of monthly metals, sulfur or particle oxidative potential  
b p-value for the interaction term between lag-1 PM2.5 and an indicator variable for season 

(1=warm, 0=cold), within strata of monthly metals, sulfur, or particle oxidative potential 

(above/below median) 
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Table S7 Association between lag-1 Ox and hospitalizations for respiratory diseases in children 

(<18 years of age), overall and across strata (above or below the median) of mass proportions of 

sulfur and metals in monthly PM2.5, and particle oxidative potential, stratified by the warm (May-

September) and cold (October-April) seasons  
  Warm season  Cold season   

  N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 Interaction p-

value for 

seasonb 

Overall  3,610 1.196 (1.075, 1.331) -  6,924 1.112 (1.026, 1.206) -  0.796 

Cu >50th percentile  1,744 1.262 (1.104, 1.442) 0.086  3,498 1.130 (1.014, 1.259) 0.955  0.855 

 ≤50th percentile 1,866 1.082 (0.924, 1.268)   3,426 1.074 (0.965, 1.196)   0.640 

Fe >50th percentile  2,558 1.189 (1.055, 1.340) 0.402  2,727 1.173 (1.063, 1.296) 0.151  0.091 

 ≤50th percentile 1,052 1.149 (0.955, 1.381)   4,197 1.045 (0.939, 1.162)   0.707 

Ni >50th percentile  2,026 1.210 (1.078, 1.359) 0.020  3,295 1.090 (0.971, 1.224) 0.466  0.683 

 ≤50th percentile 1,584 1.152 (0.974, 1.363)   3,629 1.112 (1.008, 1.226)   0.219 

Mn >50th percentile  2,377 1.143 (1.003, 1.303) 0.939  2,899 1.139 (1.031, 1.258) 0.594  0.100 

 ≤50th percentile 1,233 1.251 (0.999, 1.567)   4,025 1.066 (0.962, 1.182)   0.400 

Zn >50th percentile  1,460 1.274 (1.091, 1.488) 0.002  3,870 1.102 (0.988, 1.229) 0.727  0.227 

 ≤50th percentile 2,150 1.108 (0.972, 1.264)   3,054 1.122 (1.021, 1.233)   0.222 

Sulfur >50th percentile  1,643 1.165 (0.957, 1.418) 0.837  3,660 1.141 (1.023, 1.273) 0.318  0.648 

 ≤50th percentile 1,967 1.202 (1.025, 1.409)   3,264 1.081 (0.957, 1.221)   0.972 

OPGSH >50th percentile  1,761 1.236 (1.096, 1.394) 0.111  3,534 1.127 (1.023, 1.240) 0.980  0.879 

 ≤50th percentile 1,849 1.150 (0.961, 1.376)   3,390 1.086 (0.970, 1.216)   0.593 

OPAA >50th percentile  1,654 1.085 (0.977, 1.204) 0.201  3,628 1.084 (0.977, 1.204) 0.391  0.648 

 ≤50th percentile 1,956 1.275 (1.080, 1.506)   3,296 1.152 (1.051, 1.262)   0.831 

OPDTT >50th percentile  2,008 1.175 (1.030, 1.341) 0.534  3,220 1.036 (0.907, 1.185) 0.178  0.559 

 ≤50th percentile 1,602 1.226 (1.053, 1.428)   3,704 1.180 (1.080, 1.290)   0.181    

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-1 Ox and an indicator variable (above/below 

median) of monthly metals, sulfur or particle oxidative potential  
b p-value for interaction term between lag-1 Ox and an indicator variable for season (1=warm, 

0=cold), within strata of monthly metals, sulfur, or particle oxidative potential (above/below 

median) 
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Table S8 Association between lag-1 PM2.5 and hospitalizations for respiratory diseases in 

children (<18 years of age), overall and across strata (above or below the median) of mass 

proportions of sulfur and metals in monthly PM2.5, and particle oxidative potential, stratified by 

sex 
  Girls  Boys   

  N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 Interaction 

p-value for 

sexb 

Overall  4,505 1.017 (0.968, 1.068) -  6,029 0.994 (0.935, 1.057) -  0.479 

Cu >50th percentile  2,177 1.102 (1.022, 1.188) 0.010  3,065 1.071 (0.975, 1.176) 0.056  0.680 

 ≤50th percentile 2,328 0.980 (0.932, 1.030)   2,964 0.963 (0.909, 1.020)   0.605 

Fe >50th percentile  2,217 1.126 (1.012, 1.254) 0.015  3,068 1.064 (0.941, 1.204) 0.147  0.455 

 ≤50th percentile 2,288 0.969 (0.916, 1.025)   2,961 0.966 (0.913, 1.022)   0.808 

Ni >50th percentile  2,200 1.104 (1.002, 1.217) 0.038  3,121  1.077 (0.978, 1.186) 0.027  0.931 

 ≤50th percentile 2,305 0.980 (0.933, 1.028)   2,908 0.960 (0.908, 1.014)   0.393 

Mn >50th percentile  2,227 1.106 (1.013, 1.208) 0.005  3,049 1.037 (0.928, 1.159) 0.255  0.297 

 ≤50th percentile 2,278 0.968 (0.919, 1.019)   2,980 0.973 (0.914, 1.036)   0.904 

Zn >50th percentile  2,261 1.109 (1.015, 1.212) 0.022  3,069 1.047 (0.958, 1.144) 0.250  0.299 

 ≤50th percentile 2,244 0.982 (0.935, 1.031)   2,960 0.977 (0.920, 1.037)   0.974 

S >50th percentile  2,258 1.019 (0.918, 1.131) 0.921  3,045 1.075 (0.978, 1.181) 0.128  0.307 

 ≤50th percentile 2,247 1.016 (0.968, 1.066)   2,984 0.970 (0.909, 1.034)   0.099 

OPGSH >50th percentile  2,242 1.072 (0.997, 1.152) 0.111  3,053  1.106 (1.039, 1.177) <0.001  0.464 

 ≤50th percentile 2,263 0.978 (0.920, 1.040)   2,976 0.930 (0.865, 1.000)   0.261 

OPAA >50th percentile  2,231 0.994 (0.933, 1.059) 0.427  3,051 0.976 (0.897, 1.062) 0.548  0.591 

 ≤50th percentile 2,274 1.051 (0.972, 1.137)   2,978 1.027 (0.917, 1.152)   0.810 

OPDTT >50th percentile  2,201 1.026 (0.973, 1.081) 0.552  3,027 0.987 (0.914, 1.066) 0.749  0.303 

 ≤50th percentile 2,304 0.995 (0.898, 1.104)   3,002 1.017 (0.901, 1.148)   0.681 

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-1 PM2.5 and an indicator variable (above/below 

median) of monthly metals, sulfur or particle oxidative potential  
b p-value for the interaction term between lag-1 PM2.5 and an indicator variable for sex (1=male, 

0=female), within strata of monthly metals, sulfur, or particle oxidative potential (above/below 

median) 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Table S9 Association between lag-1 Ox and hospitalizations for respiratory diseases in children 

(<18 years of age), overall and across strata (above or below the median) of mass proportions of 

sulfur and metals in monthly PM2.5, and particle oxidative potential, stratified by sex 
  Girls  Boys   

  N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 N Odds ratio 

(95% Confidence 

Interval) 

Interaction 

p-valuea 

 Interaction 

p-value for 

sexb 

Overall  4,505 1.070 (0.987, 1.159) -  6,029 1.101 (0.994, 1.221) -  0.450 

Cu >50th percentile  2,177 1.069 (0.970, 1.178) 0.931  3,065 1.169 (1.044, 1.309) 0.165  0.083 

 ≤50th percentile 2,328 1.070 (0.958, 1.196)   2,964 1.043 (0.910, 1.196)   0.848 

Fe >50th percentile  2,217 1.088 (0.952, 1.244) 0.391  3,068 1.125 (1.027, 1.232) 0.430  0.552 

 ≤50th percentile 2,288 1.008 (0.896, 1.132)   2,961 1.062 (0.906, 1.244)   0.652 

Ni >50th percentile  2,200 1.088 (0.960, 1.233) 0.678  3,121 1.120 (1.013, 1.239) 0.599  0.462 

 ≤50th percentile 2,305 1.043 (0.930, 1.169)   2,908 1.076 (0.931, 1.244)   0.670 

Mn >50th percentile  2,227 1.079 (0.967, 1.204) 0.495  3,049 1.077 (0.965, 1.201) 0.810  0.934 

 ≤50th percentile 2,278 1.022 (0.892, 1.172)   2,980 1.107 (0.942, 1.301)   0.424 

Zn >50th percentile  2,261 1.088 (0.986, 1.200) 0.837  3,069 1.178 (1.043, 1.331) 0.169  0.114 

 ≤50th percentile 2,244 1.063 (0.937, 1.205)   2,960 1.037 (0.903, 1.192)   0.895 

Sulfur >50th percentile  2,258 1.093 (0.973, 1.229) 0.658  3,045 1.162 (1.028, 1.313) 0.362  0.369 

 ≤50th percentile 2,247 1.045 (0.931, 1.171)   2,984 1.045 (0.906, 1.205)   0.786 

OPGSH >50th percentile  2,242 1.093 (0.954, 1.252) 0.775  3,053 1.159 (1.066, 1.258) 0.355  0.425 

 ≤50th percentile 2,263 1.045 (0.901, 1.212)   2,976 1.047 (0.890, 1.232)   0.816 

OPAA >50th percentile  2,231 1.011 (0.898, 1.138) 0.223    3,051 1.057 (0.961, 1.162) 0.163  0.446 

 ≤50th percentile 2,274 1.138 (1.012, 1.281)   2,978 1.146 (0.998, 1.316)   0.746 

OPDTT >50th percentile  2,201 1.057 (0.947, 1.180) 0.755  3,027 1.073 (0.956, 1.204) 0.521  0.742 

 ≤50th percentile 2,304 1.079 (0.982, 1.186)   3,002 1.138 (0.982, 1.318)   0.437 

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-1 Ox and monthly metals, sulfur or particle 

oxidative potential (above/below median) 
b p-value for the interaction term between lag-1 Ox and an indicator variable for sex (1=male, 

0=female), within strata of monthly metals, sulfur, or particle oxidative potential (above/below 

median) 
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Table S10 Association between lag-0 PM2.5 and hospitalizations for respiratory diseases in 

children (<18 years of age), overall and across strata (above/below the median) of mass 

proportions of monthly sulfur and metals in PM2.5, and particle oxidative potential 

  N events Odds ratio 

(95% confidence interval) 

Interaction 

p-valuea 

Overall   10,410 0.985 (0.951, 1.021) - 

Cu >50th percentile 5,191 1.038 (0.981, 1.100) 0.034 

 ≤50th percentile 5,219 0.963 (0.920, 1.008)  

Fe >50th percentile 5,221 1.041 (0.960, 1.129) 0.088 

 ≤50th percentile 5,189 0.965 (0.921, 1.010)  

Ni >50th percentile 5,253 1.066 (0.995, 1.141) 0.004 

 ≤50th percentile 5,157 0.957 (0.913, 1.002)  

Mn >50th percentile 5,209 1.016 (0.948, 1.088) 0.127 

 ≤50th percentile 5,201 0.970 (0.924, 1.018)  

Zn >50th percentile 5,274 1.014 (0.945, 1.087) 0.365 

 ≤50th percentile 5,136 0.975 (0.934, 1.017)  

S >50th percentile 5,234 1.030 (0.945, 1.121) 0.263 

 ≤50th percentile 5,176 0.975 (0.937-1.013)  

OPGSH >50th percentile 5,233 1.023 (0.960, 1.091) 0.174 

 ≤50th percentile 5,177 0.964 (0.922, 1.008)  

OPAA >50th percentile 5,224 0.978 (0.918, 1.042) 0.805 

 ≤50th percentile 5,186 1.000 (0.921, 1.085)  

OPDTT >50th percentile 5,168 0.981 (0.943, 1.021) 0.826 

 ≤50th percentile 5,242 0.994 (0.916, 1.078)  

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-0 PM2.5 and monthly metals, sulfur or particle 

oxidative potential (above/below median) 
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Table S11 Association between 3-day mean PM2.5 and hospitalizations for respiratory diseases 

in children (<18 years of age), overall and across strata (above/below the median) of monthly 

mass proportion of sulfur and metals in PM2.5, and particle oxidative potential 

  N events Odds ratio 

(95% confidence 

interval) 

Interaction p-

valuea 

Overall   10,300 0.981 (0.937, 1.027) - 

Cu >50th percentile 5,160 1.072 (0.979, 1.173) 0.014 

 ≤50th percentile 5,140 0.952 (0.920, 0.985)  

Fe >50th percentile 5,185 1.101 (0.970, 1.251) 0.011 

 ≤50th percentile 5,115 0.942 (0.910, 0.975)  

Ni >50th percentile 5,199 1.102 (1.015, 1.196) 0.001 

 ≤50th percentile 5,101 0.942 (0.909, 0.976)  

Mn >50th percentile 5,160 1.074 (0.970, 1.189) 0.013 

 ≤50th percentile 5,140 0.948 (0.910, 0.987)  

Zn >50th percentile 5,212 1.043 (0.933, 1.166) 0.189 

 ≤50th percentile 5,088 0.966 (0.934, 0.997)  

S >50th percentile 5,194 1.018 (0.904, 1.147) 0.588 

 ≤50th percentile 5,106 0.972 (0.931, 1.014)  

OPGSH >50th percentile 5,173 1.064 (0.978, 1.156) 0.023   

 ≤50th percentile 5,127 0.939 (0.895, 0.985)  

OPAA >50th percentile 5,160 0.974 (0.907, 1.045) 0.828 

 ≤50th percentile 5,140 0.994 (0.898, 1.101)  

OPDTT >50th percentile 5,113 0.977 (0.933, 1.023) 0.908 

 ≤50th percentile 5,187 0.986 (0.876, 1.109)  

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between 3-day mean PM2.5 and monthly metals, sulfur or 

particle oxidative potential (above/below median) 

 

 

 

 

 

 

 

 

 



116 
 

Table S12 Association between lag-0 Ox and hospitalizations for respiratory diseases in children 

(<18 years of age), overall and across strata (above/below the median) of mass proportions of 

monthly sulfur and metals in PM2.5, and particle oxidative potential 

  N events Odds ratio 

(95% confidence interval) 

Interaction 

p-valuea 

Overall   10,410 1.030 (0.961, 1.104) - 

Cu >50th percentile 5,191 1.050 (0.972, 1.134) 0.509 

 ≤50th percentile 5,219 1.013 (0.925, 1.109)  

Fe >50th percentile 5,221 1.037 (0.944, 1.140) 0.650 

 ≤50th percentile 5,189 1.011 (0.935, 1.093)  

Ni >50th percentile 5,253 1.002 (0.924, 1.086) 0.277 

 ≤50th percentile 5,157 1.051 (0.973, 1.136)  

Mn >50th percentile 5,209 0.986 (0.893, 1.090) 0.478 

 ≤50th percentile 5,201 1.052 (0.950, 1.167)  

Zn >50th percentile 5,274 1.047 (0.961, 1.139) 0.619 

 ≤50th percentile 5,136 1.019 (0.928, 1.119)  

S >50th percentile 5,234 0.987 (0.898, 1.085) 0.107   

 ≤50th percentile 5,176 1.073 (0.976, 1.178)  

OPGSH >50th percentile 5,233 1.053 (0.969, 1.145) 0.590 

 ≤50th percentile 5,177 1.005 (0.902, 1.120)  

OPAA >50th percentile 5,224 1.004 (0.922, 1.093) 0.438 

 ≤50th percentile 5,186 1.061 (0.962, 1.169)  

OPDTT >50th percentile 5,168 1.054 (0.954, 1.164) 0.465 

 ≤50th percentile 5,242 1.006 (0.903, 1.120)  

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between lag-0 Ox and monthly metals, sulfur or particle 

oxidative potential (above/below median) 
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Table S13 Association between 3-day mean Ox and hospitalizations for respiratory diseases in 

children (<18 years of age), overall and across strata (above/below the median) of monthly mass 

proportions of sulfur and metals in PM2.5, and particle oxidative potential 

  N events Odds ratio 

(95% confidence interval) 

Interaction 

p-valuea 

Overall   10,300 1.061 (0.999, 1.128) - 

Cu >50th percentile 5,160 1.091 (1.014, 1.174) 0.283 

 ≤50th percentile 5,140 1.037 (0.964, 1.115)  

Fe >50th percentile 5,185 1.072 (0.987, 1.163) 0.141 

 ≤50th percentile 5,115 1.025 (0.958, 1.096)  

Ni >50th percentile 5,199 1.066 (0.986, 1.152) 0.640 

 ≤50th percentile 5,101 1.047 (0.979, 1.120)  

Mn >50th percentile 5,160 1.016 (0.931, 1.108) 0.486 

 ≤50th percentile 5,140 1.076 (0.978, 1.184)  

Zn >50th percentile 5,212 1.091 (1.010, 1.178) 0.380 

 ≤50th percentile 5,088 1.040 (0.962, 1.125)  

S >50th percentile 5,194 1.085 (1.002, 1.176) 0.395 

 ≤50th percentile 5,106 1.036 (0.960, 1.118)  

OPGSH >50th percentile 5,173 1.099 (1.024, 1.179) 0.256 

 ≤50th percentile 5,127 1.022 (0.929, 1.124)  

OPAA >50th percentile 5,160 1.036 (0.965, 1.113) 0.280 

 ≤50th percentile 5,140 1.091 (1.003, 1.187)  

OPDTT >50th percentile 5,113 1.095 (1.004, 1.194) 0.374 

 ≤50th percentile 5,187 1.030 (0.937, 1.131)  

Cu, copper; Fe, iron; Ni, nickel; Mn, manganese; Zn, zinc; S, sulfur; OPGSH, glutathione 

oxidative potential; OPAA, ascorbate oxidative potential; OPDTT, dithiothreitol oxidative potential 
a p-value for the interaction term between 3-day mean Ox and monthly metals, sulfur or particle 

oxidative potential (above/below median) 
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Supplementary Figures 

 

 

Figure S1 Frequency of hospital admissions for respiratory diseases among children (<18 years 

of age) in the study, by daily temperature (degrees Celsius) 
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Figure S2 Spearman correlation coefficients between monthly mean PM2.5 mass concentration 

(PM, μg/m3), constituents (Cu, Fe, Ni, Mn, Zn, S, ng/m3) and oxidative potential (OPGSH, OPAA, 

OPDTT, pmol/min/μg) in Canada from 2016-2017, during the warm season (May-September)  
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Figure S3 Spearman correlation coefficients between monthly mean PM2.5 mass concentration 

(PM, μg/m3), constituents (Cu, Fe, Ni, Mn, Zn, S, ng/m3) and oxidative potential (OPGSH, OPAA, 

OPDTT, pmol/min/μg) in Canada from 2016-2017, during the cold season (October-April) 
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CHAPTER 5: Manuscript 3 

5.1 Preface 

 In Manuscript 3, we investigate the chronic health impacts of wildfires, another major 

source of pollution in Canada. Specifically, we assess whether wildfire exposure based on 

residential proximity is associated with several cancer outcomes in the 1996 Canadian Census 

Health and Environment Cohort. Although air pollution is a major component of wildfire 

exposure and the general unifying theme of this overall dissertation, we conceptualized the 

health risks of wildfires encompassing more than just air pollution; for example, wildfires are 

known to contaminate aquatic, terrestrial and indoor environments, which may pose important 

health risks to humans. Our surrogate measure of exposure based on residential proximity aimed 

to capture pollutant mixtures released by wildfires, given that we were interested in the mixture 

in its entirety and not just traditional air pollutants. This manuscript has been peer-reviewed and 

published in the Lancet Planetary Health.  

 

Citation: Korsiak J, Pinault L, Christidis T, Burnett RT, Abrahamowicz M, Weichenthal S. 

Long-term exposure to wildfires and cancer incidence in Canada: a population-based 

observational cohort study. Lancet Planetary Health 2022;6(5): E400-E409. 

https://doi.org/10.1016/S2542-5196(22)00067-5 
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5.2 Long-term exposure to wildfires and cancer incidence in Canada: A population-based 

cohort study 

 

Abstract 

Background: Wildfires emit many carcinogenic pollutants that contaminate air, water, terrestrial 

and indoor environments. However, little is currently known about the relationship between 

exposure to wildfires and cancer risk.  

Methods: We conducted a population-based cohort study of over two million Canadians 

followed for cancer incidence over 20 years (approximately 34 million person-years). Exposures 

to wildfires were assigned based on area burned within a 20 or 50 km radius of residential 

locations and updated for annual residential mobility. Multivariable Cox proportional hazards 

models were used to estimate associations between exposure to wildfires and specific cancers 

associated with carcinogenic compounds released by wildfires including lung and brain cancer, 

non-Hodgkin lymphoma, multiple myeloma, and leukemia, adjusted for many personal and 

neighbourhood-level covariates.   

Findings: Wildfire exposure was consistently associated with slightly increased incidence of 

lung cancer and brain tumors. For example, cohort members experiencing a wildfire within 50 

km of residential locations in the past ten years had a 4∙9% (adjusted HR= 1.049, 95% CI: 1.028-

1.071) relatively higher incidence of lung cancer than unexposed populations, and a 10% 

(adjusted HR= 1.100, 95% CI: 1.026-1.179) relatively higher incidence of brain tumours. Similar 

associations were observed for the 20 km buffer size. Wildfires were not associated with 

hematological cancers in this study, and concentration-response trends were not readily apparent 

when area burned was modelled as a continuous variable.  
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Interpretations: Long-term exposure to wildfires may increase the risk of lung cancer and brain 

tumors. Further work is needed to develop long-term estimates of wildfire exposures that capture 

the complex mixture of environmental pollutants released during these events.   
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Introduction 

With the changing climate, wildfires are predicted to become more prevalent, severe, and 

longer in duration in the future83–86 and are increasingly recognized as a population health 

problem78,79. Wildfires emit a complex mixture of harmful pollutants into the environment, 

including well-known impacts on outdoor air quality as well as contamination of water197–199, 

soil/terrestrial environments200–202, and indoor environments203,204. Importantly, many of the 

pollutants emitted by wildfires are known human carcinogens, including polycyclic aromatic 

hydrocarbons, benzene, formaldehyde, phenols, and heavy metals, thus suggesting that 

exposures to wildfires may increase cancer risk in humans. However, little is known about the 

long-term health impacts of wildfires78,89 including their potential impact on cancer risk. 

This is an important question for several reasons. In North America, wildfires typically 

occur in similar regions each year; consequently, people living in nearby communities may be 

exposed to carcinogenic wildfire pollutants on a chronic basis. Moreover, although some 

pollutants return to normal levels shortly after the fire has stopped burning (e.g., fine particulate 

air pollution, PM2.5), other chemicals may persist in the environment for long periods of time, 

including heavy metals100 and polycyclic aromatic hydrocarbons101. As such, exposure to 

harmful environmental pollutants may continue beyond the period of active burning through 

multiple routes of exposure.  

The aim of this study was to characterize the relationship between residential exposure to 

wildfires and the incidence of several cancer outcomes in a national, population-based cohort in 

Canada. We a priori selected specific cancer types including lung and brain cancer, non-

Hodgkin lymphoma, multiple myeloma, and leukemia, based on evidence linking known wildfire 

pollutants to these types of cancers. Our primary exposure variable is defined as area burned 
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within a given radius of residential locations. This surrogate measure of exposure aims to capture 

pollutant mixtures released by wildfires as we are interested in the mixture in its entirety and not 

just traditional air pollutants. To our knowledge, this is the first study in the world to investigate 

how long-term residential exposure to wildfires may impact cancer risk.   

 

Methods 

Cohort description 

This observational cohort study included a subset of participants in the 1996 Canadian 

Census Health and Environment Cohort (CanCHEC). The 1996 CanCHEC has been described in 

detail elsewhere205,206. Briefly, this is a population-based cohort that follows approximately 3.6 

million individuals for mortality and cancer outcomes from 1996-2015. Annual residential postal 

codes (from 1986-2015) were available through linkage to tax records and were assigned 

geographic coordinates based on the nearest block face, dissemination block, or centroid of a 

dissemination area207. Postal codes were used to assign wildfire exposures (as a time-varying 

exposure, described below) and to extract neighbourhood-level covariates.  

We excluded subjects from cities with populations >1.5 million people to improve 

computational efficiency and to limit potential residual confounding due to differences among 

people who live in urban versus rural locations. Consistent with other analyses of the CanCHEC 

databases12,208,209, we also excluded subjects who immigrated to Canada during the ten years 

before census day and subjects <25 and ≥90 years of age at baseline.   

Outcomes 

The outcomes of this study were the incidence of lung cancer, brain tumors, non-Hodgkin 

lymphoma, multiple myeloma, and leukemia. These outcomes were selected a priori based on 

existing evidence related to known carcinogens (and associated cancer types) emitted by 
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wildfires (additional details in the appendix, additional methods 1). Other cancer outcomes were 

not examined. The CanCHEC is linked to the Canadian Cancer Registry, which reports cancer 

incidence from January 1st 1992 to December 31st 2015, except for the province of Quebec where 

data are available to December 31st, 2010. Outcomes were identified using the International 

Classification of Diseases for Oncology (ICD-O) typography and morphology codes (codes are 

listed in the Supplementary Material, additional methods 2). Individuals with a cancer diagnosis 

from 1992-1995 were excluded.  

Wildfire exposure assessment  

Wildfire exposures from 1986-2015 were assigned using the National Burned Area 

Composite (NBAC)210,211. The NBAC is a Geographic Information Systems (GIS) database and 

system that generates composite maps of burned area polygons for all of Canada's forests on an 

annual basis, indicating where and when a fire has occurred, and an estimate of the total area 

burned. The NBAC was developed jointly by the Canadian Centre for Mapping and Earth 

Observation and the Canadian Forest Service of Natural Resource Canada and relies on three 

different sources to map area burned: the Canadian National Fire Database (CNFDB), the Multi-

Acquisition Fire Mapping System (MAFiMS), and the Hotspot and Normalized Difference 

Vegetation Index Differencing Synergy (HANDS) algorithm. Burned areas reported by all three 

sources are stored in the NBAC spatial data warehouse, and the NBAC then applies user-defined 

decision rules to select the best source of data for each fire to be used as the final NBAC product. 

Generally, the NBAC selects polygons generated through MAFiMS when available, followed by 

agency polygons, then HANDS polygons211. Additional details are provided in the 

Supplementary Material (additional methods 3).  
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Using these GIS surfaces, we calculated the total area of forest burned (in hectares) 

within a 20 km and 50 km radius of all residential six-character postal code representative 

locations, for each year between 1986-2015 (i.e., a time-varying exposure; see Figure S1). We 

estimated area burned within two different radii to evaluate the sensitivity of our results to the 

selection of buffer size.  

To capture long-term exposures to wildfires, we calculated three-year, five-year, and ten-

year moving averages of area burned with a one-year lag. For example, for the 20 km radius, the 

three-year, five-year, and ten-year moving averages were based off average hectares burned 

within 20 km of residential location from 1993-1995, 1991-1995, and 1986-1995, respectively. 

These calculations were done for each year of follow-up, and for each of the two radii.  

Statistical analyses 

Multivariable Cox proportional hazards models were used to estimate associations 

between exposure to wildfires (as defined below) and the incidence of lung cancer, brain cancer, 

non-Hodgkin lymphoma, multiple myeloma, and leukemia. We considered each outcome 

separately. Time-to-event was calculated as the duration between Census Day (time 0) and a 

diagnosis of a particular cancer. Subjects who had no relevant diagnosis during their follow-up 

were right-censored at death, loss to follow-up, or the administrative end of follow-up 

(December 31, 2010 for the province of Quebec, and December 31, 2015 for the rest of Canada). 

Cox models were stratified by baseline age (five-year groups), sex, and immigrant status, and 

adjusted for a range of personal covariates (marital status, income adequacy quintile, education, 

labour force status, occupation, Indigenous status, visible minority status, baseline age centered 

at the median of each 5-year strata) and neighbourhood-level covariates (population size, urban 
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form, regional airshed, and the Canadian Marginalization Index212 (details in the Supplementary 

Material, additional methods 4). 

As a first analysis, we dichotomized the individual values of the three, five and ten-year 

moving averages of area burned within a 20 or 50 km radius as ever/never exposed to wildfires 

within the past three, five or ten years. Next, we examined three levels of exposure: (i) never 

exposed to wildfires and two exposed groups (i.e., (ii) 'low exposure' and (iii) 'high exposure') 

separated at the median of the respective moving average of area burned within each buffer size. 

Adjusted hazard ratios (95% confidence intervals) were then estimated for each of the two 

exposed groups, relative to the unexposed category. Finally, we examined continuous exposures. 

To reduce bias that may result when modelling continuous exposures with many zeros (i.e., 

cohort members who were never exposed)213,214, we included in the model both a binary variable 

(reflecting ever/never exposure in the past three, five or ten years) and a continuous exposure 

(reflecting the three, five or ten-year moving averages of area burned). For exposed person-years, 

the continuous variable was centered at the median area burned, while for unexposed person-

years, the continuous variable was kept at a value of zero213. In this model, the coefficient for the 

binary term compares risk between those never exposed to wildfires and those with a median 

level of exposure while the estimate for the continuous term reflects the quantitative effect of 

increasing exposure among those exposed. In two alternative preliminary analyses, we modelled 

the continuous exposure term in this model as a linear term or with cubic B splines with 1 

interior knot. However, because model fit did not meaningfully improve with flexible modelling 

(based on the minimum Akaike information criterion), using the parsimony principle, final 

models included only a linear term for the continuous exposure.  For all models, the proportional 
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hazards assumption was checked through graphical diagnostics based on weighted Schoenfeld 

residuals. 

Sensitivity analyses 

Several sensitivity analyses were performed using models with three categories of 

wildfire exposure (unexposed, low exposure, high exposure). We evaluated effect modification 

by sex (on the multiplicative scale) by performing analyses stratified by sex and included an 

interaction term between sex and exposure categories (where p<0.05 was interpreted as evidence 

of effect modification); removed values of area burned ≥95th percentile; adjusted for ambient 

PM2.5 (as a three-year moving average with a one-year lag); and lagged the exposures by three 

years instead of one year (for example, the three-year moving average in 1996 was based on 

average area burned from 1991-1993). In addition, we repeated the lung cancer analyses using 

six categories of exposure (unexposed and exposed person-years grouped by quintiles) to further 

explore non-linear trends, and estimated associations between lung cancer and the cumulative 

frequency of fires in a moving 10-year window (with a 1-year lag), where the cumulative 

frequency of fires was modelled both as a continuous variable and a categorical variable (zero, 

one to three, four to six, and seven to ten fires). Lastly, data on smoking status, an important 

predictor of lung cancer, was not available in the CanCHEC database. We applied an indirect 

adjustment method to mathematically adjust the lung cancer HRs for unmeasured confounders215 

(details on the sensitivity analyses are provided in the Supplementary Material, additional 

methods 5 and 6).  

The CanCHEC dataset was created under the authority of the Statistics Act and approved 

by the Executive Management Board at Statistics Canada (reference: 045-2015). This study was 

also approved by the McGill Faculty of Medicine Research Ethics Board (reference: A02-M09-
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20B). All statistical analyses were performed using SAS 9.4 software (SAS Institute Inc., Cary 

NC) at the Statistics Canada Research Data Centre located at McGill University. 

Role of the funding source 

The funders were not involved in the study design, data collection, data analysis, data 

interpretation, writing, or decision to submit this manuscript 

 

Results  

Our analyses included over two million subjects followed for a median of 20 years, for a 

total of 34 million person-years (Table 1, Table S1). There were some differences in baseline 

covariates between those ever exposed to a wildfire within a 50 km radius of their residential 

location from 1986-2015 to those never exposed; for example, exposed populations were less 

likely to live in a census metropolitan area or census agglomeration and were more likely to live 

in western Canada than unexposed individuals (Table S2). A flow chart describing exclusions 

from the main cohort to those included in this analysis is shown in the appendix (Figure S2). 

Figure 1 shows the total area of forest burned in Canada from 1986-2015 and highlights the fact 

that wildfires tend to occur in similar areas each year. The person-year distribution of area 

burned within a 20 and 50 km radius of residential locations based on three-year, five-year and 

ten-year moving averages with a one-year lag is right-skewed, with most person-years 

unexposed to wildfires (Table S3). 
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Table 1 Cohort characteristics at baseline 

Persons, N 2,040,995 

Total person-yearsa, N 34,022,680  

Years of follow-up, median (interquartile range) 20 (15-20) 

Age (years), median (range) 45 (25-89) 

Female sex, n (%) 1,047,730 (51) 

Marital status, n (%)  

     Never married or common law 217,470 (11)  

     Common-law 179,370 (9)  

     Married 1,376,180 (67)  

     Separated 48,510 (2)  

     Divorced 100,420 (5)  

     Widowed 119,045 (6)  

Income adequacy quintile, n (%)  

     1 (lowest) 373,490 (18)  

     2 404,750  (20)  

     3 417,405  (20)  

     4 421,965 (21)  

     5 (highest) 423,385 (21)  

Highest level of education, n (%)  

     Less than high school graduation 714,060 (35)  

     High school graduate with or without trade certificate 728,495 (36)  

     Post-secondary non-university degree 356,670 (17)  

     University degree 241,765 (12) 

Labour force status, n (%)  

     Employed 1,252,175 (61)  

     Unemployed  116,160  (6)  

     Not in labour force 672,660 (33)  

Occupational class, n (%)  

     Management  131,225 (7)  

     Professional  210,155 (10)  

     Skilled, technical or supervisory 451,795  (22)  

     Semi-skilled 474,395 (23) 

     Unskilled 157,720 (8) 

     Not applicable 615,710 (30)  

Indigenous, n (%) 123,270 (6) 

Visible minority, n (%) 45,205 (2) 

Immigrant, n (%) 224,545 (11) 

All values have been randomly rounded to the nearest five to conform to institutional 

confidentiality requirements. Percentages based off total number of persons 
a Includes person-years with at least one non-missing three-year, five-year, or ten-year moving 

average exposure 
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Figure 1 Area of forest burned (in orange) in Canada from 1986-2015 
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There were approximately 43,000 incident lung cancer events, 3,700 brain cancer events, 

12,000 cases of non-Hodgkin lymphoma, 3,900 cases of multiple myeloma, and 7,700 cases of 

leukemia (Table S4). The adjusted hazard ratios and 95% confidence intervals for cancer 

outcomes comparing ever/never exposure to wildfires in the past three, five or ten-years is shown 

in Figure 2 and the appendix (Table S4). Small risk increases were consistently observed for 

associations between wildfires and lung cancer, with the strongest association observed between 

any exposure to wildfires in a 50 km radius of residential location in the past five years (HR and 

95% CI: 1.061 [1.038-1.083]). Positive associations were also observed between wildfires and 

brain tumor incidence, with the strongest association observed between any exposure to wildfires 

in a 50 km radius of residential location in the past ten years (HR and 95% CI: 1.100 [1.026-

1.179]).  
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Figure 2 The adjusted associations between any exposure to wildfires in the past three, five or ten years 

within a 20 km or 50 km radius of residential location in reference to the unexposed group and the incidence 

of (A) lung cancer; (B) brain cancer; (C) non-Hodgkin lymphoma; (D) multiple myeloma, and; (E) leukemia 
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The adjusted hazard ratios and 95% confidence intervals for cancer outcomes comparing 

categories of area burned ('low exposure' and 'high exposure') to the unexposed group are shown 

in Figure 3 and the appendix (Table S5). As with the dichotomous exposure models, positive 

associations were consistently observed between wildfire exposure and lung and brain cancer. 

For lung cancer, the strongest association was observed in the low exposure category of the five-

year moving average within the 50 km buffer (HR and 95% CI compared to unexposed: 1.074 

[1.047-1.101]). For brain cancer, the risk was elevated in both categories of exposure compared 

to the unexposed group when exposure was based on a ten-year moving average of area burned 

within a 50 km radius (low exposure: HR= 1.096 [1.012-1.187]; high exposure: HR=1.105 

[1.009-1.210]), and the strongest association was observed among the low exposure category of 

the ten-year moving average of area burned within a 20 km radius of residential location (HR 

and 95% CI: 1.144 [1.038-1.259]).  
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Figure 3 The adjusted associations between categories of area burned ('low exposure' and high 

exposure', separated at the median distribution of the three, five and ten-year moving average of 

area burned within a 20 km or 50 km radius) in reference to the unexposed group and the 

incidence of (A) lung cancer; (B) brain cancer; (C) non-Hodgkin lymphoma; (D) multiple 

myeloma, and; (E) leukemia  
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There was some evidence of effect modification (on the multiplicative scale) for lung 

cancer analyses. For example, when exposure was estimated in a 20 km radius, associations were 

generally stronger in the less exposed category of the three, five or ten-year moving average 

among women than men, while the opposite was found in the more exposed category (Table S6). 

When exposures were estimated in a 50 km radius, associations were typically stronger among 

men than women for both exposure categories (Table S6). Results were similar when exposures 

≥95th percentile were excluded (Table S7), after additional adjustment for ambient PM2.5 (Table 

S8), and when moving averages were lagged three years (instead of one year) (Table S9). When 

the lung cancer estimates were indirectly adjusted for missing covariates, most hazard ratios 

were attenuated slightly, and in some instances, the confidence intervals now included the null 

(Table S10). When the moving averages were categorized into six groups for lung cancer 

analyses (an unexposed category and quintiles of exposure, where quintile one reflects lowest 

exposure and quintile five reflects highest exposure), increased lung cancer risk was generally 

observed for quintiles one through three compared to the unexposed group, while the HRs and 

95% CIs included the null for the fourth and fifth quintile (Table S11). When we considered 

associations between lung cancer and the cumulative frequency of fires in a ten-year moving 

window, the adjusted hazard ratio and 95% CI for exposure to one to three fires, four to six fires, 

and seven to ten fires within a 20 km radius in reference to zero fires were 1.043 (1.017-1.069), 

1.071 (1.012-1.132) and 1.055 (0.963-1.156), respectively, while a more apparent dose-response 

trend was observed in the 50 km radius (HR and 95% CI for one to three fires: 1.055 [1.031-

1.079]; four to six fires: 1.067 [1.029-1.106]; seven to ten fires: 1.080 [1.031-1.131]) (Table 

S12).  
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When the models included both a dichotomous exposure term (reflecting whether the 

moving average was zero vs. greater than zero) and a continuous exposure variable (centered at 

the median among exposed person-years), the HR and 95% for the continuous exposure term 

included the null for all models (Table S13), indicating that among those with exposure greater 

than zero, there was no evidence of a clear association between area of forest burned and the risk 

of any cancers. On the other hand, the dichotomous exposure terms, which compares risk 

between those unexposed to wildfires vs. those exposed to the median area burned, were greater 

than one and excluded the null for both lung and brain cancer models. Together, this evidence 

suggests that exposure to wildfires may be associated with an increased lung cancer and brain 

tumour risk, but a clear concentration-response relationship was not apparent in terms of “area 

burned” within a given buffer distance surrounding residences. Wildfires were not associated 

with hematological cancers in this study (Figures 2 and 3, Tables S4-S9, S13).  

 

Discussion 

In the past half century, the total area of forest burned in Canada has increased82 and 

projections at a global scale indicate greater fire activity into the future with the changing 

climate84,85. We conducted the first ever cohort study of long-term residential exposure to 

wildfires and cancer incidence including more than two million adults followed for a median of 

20 years with the size and locations of wildfires identified across Canada back to 1986. In doing 

so, we noted several interesting results.  

First, compared to cohort members never exposed to wildfires, exposed populations 

displayed consistent elevations in the incidence of both lung cancer and brain tumors. Risks were 

similar between low/high-exposure groups (and sometimes larger in low-exposed groups) in the 
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categorical analyses. However, no clear associations were observed for the continuous term in 

models including both a dichotomous term (describing risk in median-exposed populations 

compared to never exposed groups) and a continuous variable (describing the change in risk with 

increased area burned among the exposed). We suspect that several factors may have contributed 

to this result. First, the area burned measure was likely impacted by exposure measurement error, 

and while the methods used to compile these data were likely adequate in identifying the 

presence/absence of fires and their location, estimates of total area burned may be less 

accurate/precise. Moreover, as environmental concentrations of pollutants emitted from wildfires 

depend on a range of different factors including vegetation type and fire characteristics216, and 

because other external factors such as wind patterns play an important role in determining where 

pollutants travel and deposit, a larger area burned may not directly translate into higher risk. In 

short, our surrogate measure of area burned within a given buffer is likely a reasonable indicator 

of whether exposure occurred but may not be ideally suited to accurately quantifying cumulative 

exposure gradients for environmental carcinogens over a continuous scale.  

Wildfires are traditionally associated with elevated smoke and air pollution 

concentrations and outdoor air pollution is carcinogenic to humans102, with some evidence 

suggesting elevated lung cancer risk attributed to biomass burning sources in particular217. 

However, there are several different ways in which people living near wildfires may be exposed 

to carcinogenic pollutants; for example, emerging evidence indicates that wildfires can 

contaminate soil and terrestrial environments, water, and indoor environments. Specifically, high 

concentrations of environmentally persistent free radicals have been found in charcoal samples 

that remained stable for at least five years after fire events201. Moreover, many heavy metals 

sequestered in soils and vegetation become more mobile and bioavailable following wildfires 
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due to increased soil erosion and ash dispersal202. Heavy metals can then be deposited in nearby 

bodies of water and contaminate watersheds197, and may also accumulate in fish living in the 

affected watersources218, which may be a potential health concern if consumed by humans. 

Similarly, wildfires are a significant source of polycyclic aromatic hydrocarbons to both 

terrestrial and aquatic ecosystems219. In addition, violations of exposure limits for nitrates, 

disinfection by-products, and arsenic in surface and groundwater have been observed in wildfire-

affected areas198. Widespread drinking water distribution network contamination was also 

discovered following several fires in California, where concentrations of benzene and other 

volatile organic compounds (at least partially from the melting of plastic water pipes) were found 

to be above exposure limits199.  

Moreover, there is also a concern that wildfire-derived pollutants may be retained in 

indoor environments for long periods of time, but few studies have examined this question. One 

study reported detectable levels of char in wipe samples collected from homes three to eight 

months after a major wildfire event in New Mexico204. In another study conducted in the wildfire 

season in Oregon, indoor concentrations of gas-phase PAHs were higher than outdoor 

concentrations203, suggesting that once these pollutants enter the home they may persist for long 

periods of time. On the other hand, two studies found limited retention of heavy metals and 

PAHs in house dust collected one to two years after a major wildfire event in Fort McMurray, 

Canada220,221. Further work is needed to measure persistent chemicals after wildfires to better 

understand the long-term impacts on human health. This information will be particularly helpful 

in determining why some cancers were associated with residential proximity to wildfires (i.e., 

lung and brain cancer) and some were not (i.e., hematological cancers).  
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This study had several important strengths including a detailed assessment of wildfire 

locations across Canada back to 1986, application of this exposure information in a large 

population-based cohort with exposures updated over time for residential mobility, and detailed 

adjustment for a number of personal and neighbourhood-level covariates. However, it is 

important to recognize several limitations. First, as noted above, exposure measurement error 

likely impacted our estimates of area burned within various buffers around residential locations. 

For example, there are likely spatial errors in the methods used to identify wildfire perimeters 

and area burned and six-character postal code centroids are imperfect measures of residential 

home addresses. Furthermore, the chemical composition of wildfire emissions is affected by 

numerous factors (e.g., climate, burn conditions, fuel type)216, and this likely also contributes to 

variability in the toxicity of emitted pollutants and subsequent health effects. One additional 

limitation in our approach to assign exposures to wildfires based on residential proximity is that 

we may not capture pollutants from wildfires that travel long distances. However, we expect that 

individuals living near wildfires that occur regularly in the same area are more consistently 

exposed to local wildfire pollutants than pollutants transported over long distances from remote 

fires. In addition, although we conceptualize the pathway from wildfire exposure to cancer risk 

primarily through exposure to environmental pollutants, other pathways may also play a role 

(e.g., wildfires are inherently stressful events and psychological stress may have a role in cancer 

etiology222) and this study is unable to disentangle these different mechanisms. Moreover, this 

study focused on a small number of specific cancer types, and we acknowledge that other types 

of cancer may be associated with wildfires. For example, arsenic is a known risk factor of 

bladder cancer223, while some evidence supports an association between air pollution breast 
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cancer224,225, and future studies may wish to explore other chronic health outcomes. Lastly, we 

cannot rule out residual confounding by covariates that were not measured in this study.   

In summary, this study provides the first epidemiological data that suggests long-term 

exposure to wildfires may be associated with an elevated risk of lung cancer and brain tumors. 

These findings are relevant on a global scale given the anticipated impacts of climate change on 

wildfire frequency and severity. However, in light of the study limitations, and because this is the 

first epidemiological study investigating associations between wildfires and cancer risk, we 

emphasize that a causal effect cannot be ascertained from this single study. Further work is 

needed to refine exposure metrics used in estimating the chronic health impacts of wildfires as 

well as replication in different geographic locations and populations.   
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5.3 Supplementary material 

Additional Methods  

1. Rationale for studying association between wildfire exposure and lung cancer, malignant 

brain tumors, non-Hodgkin lymphoma, multiple myeloma, and leukemia 

We explored the association between wildfire exposure and 5 cancer outcomes selected a 

priori, based on evidence that specific pollutants emitted from wildfires contribute to these types 

of cancers. For example, particulate matter less than 2.5 μm in diameter (PM2.5) is considered a 

causal agent for the development of lung cancer102. Epidemiological research has demonstrated 

that biomass burning sources of particulate matter may have a greater impact on respiratory 

health than particulate matter emitted from other sources103, while toxicological studies have also 

shown that PM from wildfires is more toxic to lungs than PM collected from normal ambient 

air104,105. Wildfires also emit many ultrafine particles (less than 0.1 μm) which are able to pass 

the blood-brain barrier106 and have recently been associated with increased risk of brain tumours 

in a large Canadian study107. Wildfires are also a significant source of human exposure to 

benzene108, and benzene is classified as a group 1 carcinogen (carcinogenic to humans) because 

it causes acute myeloid leukemia109, a common type of leukemia in adults. Positive associations 

have also been observed between benzene and non-Hodgkin lymphoma, leukemia, multiple 

myeloma, lung cancer and brain cancer109,110. Although most evidence pertaining to the ability of 

benzene to cause cancer in humans is from occupational cohorts109, some evidence also supports 

the carcinogenicity of long-term, low-dose exposure to ambient benzene110–112. In addition, there 

is sufficient evidence in humans that 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD; a dioxin 

released from wildfires, among other sources) is carcinogenic and generally positive associations 

have been found between TCDD and lung cancer and non-Hodgkin lymphoma113. There is also 
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strong evidence that 1-3 butadiene and formaldehyde, both group 1 carcinogens resulting from 

incomplete combustion, cause tumors of the hematopoietic and lymphoid tissues114,115. Heavy 

metals, including arsenic, lead, cadmium, mercury and aluminum, are able to pass the blood-

brain barrier116 and have been implicated in the development of brain cancer, although evidence 

is limited117. Several heavy metals are also established causes of lung cancer118.  

In addition, we also considered the literature surrounding cancer risk in firefighters, and 

evidence from a large meta-analysis provides some evidence of an association between 

firefighting and brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukemia119. 

Regarding cancer risk among wildland firefighters in particular, the literature is scarce but some 

evidence supports an association with lung cancer120. However, firefighters are very different 

than the general population (i.e., much healthier), and different pathways beyond environmental 

pollutants/chemical exposures are likely involved in explaining the elevated cancer risk among 

firefighters (e.g., working patterns/shift work, psychological stress, etc.), so we did not rely too 

heavily on this literature when selecting the outcomes for this study.  

Although we acknowledge that other types of cancers may also be associated with 

wildfire exposure, we based our decision to only study lung, brain and several blood cancers 

based off the strongest biological evidence suggesting that specific wildfire pollutants cause 

these types of cancers. Future studies may wish to consider other types of cancers. For example, 

arsenic is a known risk factor of bladder cancer223, while some evidence supports an association 

between air pollution breast cancer224,225.  
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2. ICD-O Codes (3rd revision) for Cancer Outcomes 

Cancer Outcome ICD-O codes 

Lung Cancer (typography codes used) C33-C34 

 

Malignant neoplasms of the brain (typography 

codes used) 

C71 

 

 

Non-Hodgkin Lymphoma (morphology codes 

used) 

9590–9597, 9670–9719, 9724–9729, 

9735, 9737, 9738;  

9811–9818, 9823, 9827, 9837 all sites 

except C42.0, .1, .4 

 

 

Multiple myeloma (morphology codes used) 

 

9731, 9732, 9734 

 

Leukemia (morphology codes used) 9733, 9742, 9800–9801, 9805–9809, 

9820, 9826, 9831–9836, 9840, 9860–

9861, 9863, 9865–9867, 9869–9876, 

9891, 9895–9898, 9910, 9911, 9920, 

9930–9931, 9940, 9945–9946, 9948, 

9963–9964;  

9811–9818, 9823, 9827, 9837 sites 

C42.0,.1,.4. only 

 



146 
 

3. Additional details on wildfire exposure assessment  

Wildfire exposures from 1986-2015 were assigned using the National Burned Area 

Composite (NBAC)210,211; a geographic information systems (GIS) database that relies on three 

different sources to map area burned: the Canadian National Fire Database (CNFDB), the Multi-

Acquisition Fire Mapping System (MAFiMS), and the Hotspot and Normalized Difference 

Vegetation Index Differencing Synergy (HANDS) algorithm.  

The CNFDB is maintained by the Canadian Wildland Fire Information System of Natural 

Resources Canada226, and includes information on fire perimeters (polygon data) and fire 

locations (point data) submitted by provincial, territorial and Parks Canada fire management 

agencies on a yearly basis. These agencies map fire activity through different sources including 

ground-based and airborne global positioning system (GPS) surveys and remote sensing, and 

variation in mapping methods (both within a single agency over time, and between agencies) can 

affect the quality of polygon delineation, resulting in uncertainty in burned area estimates211.  

When more precise delineation of burned area is required, maps from Landsat (satellite) 

imagery processed through the Multi-Acquisition Fire Mapping System (MAFiMS) can be used. 

Details of this process are described elsewhere211, but briefly, pre and post-burn Landstat images 

are downloaded and processed with MAFiMS to detect and map burned events, and are then 

extracted as vector polygons.  

The third source contributing to the NBAC is from the Hotspot and Normalized 

Difference Vegetation Index Differencing Synergy (HANDS) algorithm227, which Natural 

Resources Canada uses to generate national fire maps of fires ≥250 hectares on a yearly basis. 

Satellite data on hotspots detected during a period of interest, a pre-and-post-burn vegetation 
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index, and vegetation cover are used in the algorithm to map burned pixels, which can then be 

incorporated into the NBAC211. 

 Burned areas reported by all three sources are stored in the NBAC spatial data 

warehouse, and the NBAC then applies user-defined decision rules to select the best source of 

data for each fire to be used as the final NBAC product. Generally, the NBAC selects polygons 

generated through MAFiMS when available, followed by agency polygons, then HANDS 

polygons211. 
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4. Details on covariates 

The models were stratified by baseline age (5-year categories), sex and immigrant status, 

and adjusted for a wide range of personal and neighbourhood-level covariates. Personal 

covariates were recorded through self-report at baseline, while neighbourhood-level covariates 

were time-varying. Models were adjusted for the following personal baseline covariates: marital 

status (never married or common law/common-law/married/separated/divorced/widowed), 

income adequacy quintile (1=lowest, 5=highest), highest level of education (less than high 

school graduation/high school graduate with or without trade certificate/postsecondary non-

university degree/university degree), labour force status (employed/ unemployed/ not in labour 

force), occupation class (management/professional/skilled, technical and supervisory/semi-

skilled/unskilled/not applicable), Indigenous status (yes/no) and visible minority status (yes/no). 

Models were also adjusted for age centered at the median of each 5-year strata to account for 

possible residual confounding within 5-year aga strata. 

We also adjusted for several neighbourhood-level variables that were assigned to subjects 

using residential 6-digit postal codes and data from the closest census year (the census is 

collected every five years). Neighbourhood-level variables include population size (categorized 

as census metropolitan areas or census agglomerations (CMA/CA) 500,000-1,499,999/100,000-

499,999/30,000-99,999/10,000-29,999/ non-CMA/CA), urban form (active urban core/ transit-

reliant suburb/car-reliant suburb/exurban/non-CMA/CA)228, regional airshed (Western 

Canada/Prairies/West Central/East Central/South Atlantic/ Northern Canada)229 , and the 

Canadian Marginalization Index (CAN-Marg)212. CAN-Marg is an indicator of neighbourhood-

level socioeconomic status and consists of four domains of marginalization: material deprivation, 

residential instability, dependency, and ethnic concentration. These indicators are continuous 
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scores but all four domains are categorized into quintiles to account for non-linear relationships 

with mortality and other outcomes12.  

 Finally, annual estimates of outdoor PM2.5 concentrations were  assigned to residential 

postal codes at a spatial resolution of approximately 1 km x 1 km. Methods on how these 

estimates were derived are described in detail elsewhere230,231. PM2.5 exposures was assigned 

using a 3-year moving average with a 1-year lag (updated annually for residential mobility) for 

consistency with other CanCHEC studies12,232,233. We did not include PM2.5 in the primary 

analysis (it was only adjusted for in a sensitivity analysis) because PM2.5 is part of the broader 

contaminant mixture released by wildfires and thus is on the causal pathway between exposure to 

wildfires and cancer outcomes.  
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5. Rationale for sensitivity analyses   

 

The rationale for performing each sensitivity analysis is provided in the below table: 

 

 

Sensitivity analysis Rationale for performing this sensitivity analysis   

Models stratified by sex Biological factors that differ by sex (e.g., body size, hormones, etc.) may 

contribute to variability in wildfire health effects 

Deleted values of area burned ≥95th 

percentile 

These records may be attributed to measurement error or rare, extreme 

events 

Adjusted the models for ambient 

PM2.5 

We did not include PM2.5 in the primary analysis because PM2.5 is part of 

the broader contaminant mixture released by wildfires and thus is on the 

causal pathway between exposure to wildfires and cancer outcomes; 

however, adjusting for it may account for other sources of PM2.5 (e.g., 

traffic, industry).  

Exposures lagged 3 years (instead of 

1 year) 

To account for uncertainty in identifying the appropriate lag time between 

wildfire exposure and cancer risk 

Lung cancer analyses using 6 

categories of exposure 

To further explore non-linear trends 

Exposure modelled as cumulative 

number of fires in a moving 10-year 

window for lung cancer analyses 

To further explore how repeated wildfire events may contribute to lung 

cancer risk  

Indirect adjustment for smoking To evaluate the extent to which confounding by smoking status and body 

mass index (not measured in our study) may influence the lung cancer 

results  
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6. Indirect adjustment for missing confounders 

Smoking status is not available in the CanCHEC database and may be an important 

confounding factor for lung cancer analyses given the strength of association between smoking 

and lung cancer. Although adjusting for many socioeconomic and demographic covariates may 

help mitigate residual confounding by smoking, we also applied an indirect adjustment method 

to mathematically adjust the lung cancer HRs for unmeasured confounding variables (including 

both smoking and body mass index)215. This method has been described in detail215 and 

validated234 elsewhere and applied in several previous studies13,107,235,236. Briefly, this method 

entails estimating the multivariable associations between (i) the covariates included in our 

survival models and (ii) covariates we indirectly adjust for (never, former or current smoker; 

body mass index 25-29.9, 30-34.9, 35-39.9, or ≥40 kg/m2) using a representative auxiliary 

dataset. We obtained these associations through linking our wildfire exposures to the 2001, 2003, 

2005 and 2007 cycles of the Canadian Community Health Survey (CCHS), which has the same 

target population as the CanCHEC (the Canadian population) and collects information on 

smoking and body mass index, in addition to most other covariates we adjusted for in our 

study237. In addition to these multivariable associations, the sensitivity analysis also requires 

obtaining the associations between the missing covariates (smoking and body mass index) and 

lung cancer from the literature238,239.  
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Supplementary figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1 Total area burned (in the units of hectares) within a 20 km and 50 km radius of each residential 

location (based on a point estimate assigned to 6-digit postal codes) was calculated each year. Total area burned is 

therefore a time-varying exposure, assigned to each person-year and dependent on where the individual lived each 

year and where fires occurred.  

20 km  50 km  
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Base population 

N=3,227,890 persons 

N=55,288,895 person-years 

In the 1996 CanCHEC, 25-89 years at baseline, right censoring at death, cancer diagnosis, or end of 

follow-up (2010 for the province of Quebec and 2015 for all other provinces and territories)  

Exclusions based off additional eligibility criteriaa 

Prevalent cancer cases 

N=51,025 person-years excluded 

N=5,880 persons excluded 

Recent immigrants (within 10 years of cohort inception) 

N=3,342,700 person-years excluded 

N=178,160 persons excluded 

Living in a population size >1.5 million 

N=18,752,580 person-years excluded 

N=1,112,800 persons excluded 

 

  

Exclusions due to missing dataa 

Missing exposure data 

3-year moving average: N=1,365,850 person-years excluded 

5-year moving average: N=1,636,865 person-years excluded 

10-year moving average: N=1,077,320 person-years excluded 

Missing neighbourhood-level variables 

Regional airshed: N=1,202,615 person-years excluded 

Community size: N=1,235,535 person-years excluded 

CAN-Marg indicators: N=1,386,150 person-years excluded 

 

N=35,642,960 person-years 

N=2,066,105 persons 

Final analytic cohort 

Models using 3-year moving averages 

N=33,765,955 person-years 

N=2,037,880 persons 

Models using 5-year moving averages 

N=33,530,840 person-years 

N=2,031,545 persons 

Models using 10-year moving averages 

N=33,786,625 person-years 

N=2,033,055 persons 

 

Figure S2 Exclusion of persons and person-years 

Counts have been rounded to the nearest 5 to conform with institutional confidentiality requirements 
a Reasons for exclusions are not mutually exclusive.  
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Supplementary Tables 

 

Table S1 Neighbourhood-level variables at baseline  

Persons, N 2,040,995 

Census metropolitan area or census agglomeration (CMA/CA) population 

size, n (%) 

 

     500,000-1,499,999 452,795 (22)  

     100,000-499,999 477,325 (23)  

     30,000-99,999 258,745 (13) 

     10,000-29,999 106,600 (5)  

     Non-CMA/CA 745,530 (37)  

Urban form, n (%)  

     Urban core 115,435 (6)  

     Transit-reliant suburb 72,335 (3)  

     Car-reliant suburb 531,075 (26)  

     Exurban 101,755 (5)  

     Non-CMA/CA 1,220,395 

(60)  

CAN-Margd: Material deprivation, n (%)  

     1 (lowest) 643,285 (32)  

     2 637,640 (31)  

     3 449,165 (22)  

     4 223,905 (11)  

     5 (highest) 86,995 (4)  

CAN-Margd: Residential instability, n (%)  

     1 (lowest) 450,975 (22)  

     2 538,795 (26)  

     3 491,205 (24)  

     4 335,455 (17)  

     5 (highest) 224,565 (11)  

CAN-Margd: Dependency, n (%)  

     1 (lowest) 330,430 (16)  

     2 385,005 (19)  



155 
 

     3 401,005 (20)  

     4 467,030 (23)  

     5 (highest) 457,520 (22)  

CAN-Margd: Ethnic concentration, n (%)  

     1 (lowest) 326,105 (16)  

     2 295,735 (15)  

     3 315,600 (15)  

     4 469,305 (23)  

     5 (highest) 634,245 (31)  

Regional airshed, n (%)  

     Western Canada 189,430 (10) 

     Prairies 373,105 (18) 

     West Central 187,315 (9)  

     South Atlantic  289,435 (14)  

     East Central 961,190 (47)  

     Northern Canada 40,520 (2)  
a All values have been randomly rounded to the nearest five to conform to institutional confidentiality requirements  
b Includes person-years with at least one non-missing three-year, five-year, or ten-year moving average exposure 
c Percentages based off total number of persons  
d The Canadian Marginalization Index, area-level indicators of marginalization 
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Table S2 Comparison of baseline characteristics between those ever exposed to a wildfire within a 50 km radius of their house at 

anytime between 1986-2015, and those never exposed to a wildfire within a 50 km radius of their house between 1986-2015 
 Unexposed Exposed p-valueb 

Persons, N 651,440 1,389,550  

Years of follow-up, median (interquartile range) 20 (15-20) 20 (15-20)  

Personal characteristics     

Baseline age (years), median (range) 45 (37-63) 44 (35-56) <0.0001 

Female sex, n (%) 336,710 (52) 711,020 (51) <0.0001 

Marital status, n (%)    

     Never married or common law 66,600 (10)  150,870 (11) <0.0001 

     Common-law 43,925 (7) 135,445 (10)  

     Married 444,520 (68)  931,660 (67)  

     Separated 15,260 (2)  33,245 (2)  

     Divorced 32,405 (5)  68,015 (5)  

     Widowed 48,730 (7)  70,315 (5)  

Income adequacy quintile, n (%)    

     1 (lowest) 120,820 (19)  252,670 (18) <0.0001 

     2 135,610 (21)  269,145 (19)  

     3 134,020 (21)  283,385 (20)  

     4 131,850 (20)  290,115 (21)  

     5 (highest) 129,145 (20)  294,240 (21)  

Highest level of education, n (%)    

     Less than high school graduation 242,155 (37)  471,905 (34) <0.0001 

     High school graduate with or without trade certificate 225,145 (35)  503,350 (36)  

     Post-secondary non-university degree 110,570 (17) 246,105 (18)  

     University degree 73,570 (11) 168,190 (12)  

Labour force status, n (%)    

     Employed 376,855 (58)  875,320 (63) <0.0001 

     Unemployed  29,835 (5)  86,325 (6)  

     Not in labour force 244,755 (38)  427,905 (31)  

Occupational class, n (%)    

     Management  38,445 (6)  92,780 (7) <0.0001 

     Professional  62,610 (10)  147,545 (11)  

     Skilled, technical or supervisory 132,445 (20) 319,350 (23)  

     Semi-skilled 143,945 (22) 330,450 (24)  

     Unskilled 47,200 (7) 110,515 (8)  
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     Not applicable 38,445 (6)  92,780 (7)  

Indigenous, n (%) 21,265 (3) 102,005 (7) <0.0001 

Visible minority, n (%) 13,850 (2) 31,355 (2) <0.0001 

Immigrant, n (%) 91,990 (14) 132,555 (10) <0.0001 

Neighbourhood-level covariates    

Census metropolitan area or census agglomeration (CMA/CA) 

population size, n (%) 

   

     500,000-1,499,999 137,990 (21)  314,805 (23) <0.0001 

     100,000-499,999 221,535 (34)  255,790 (18)  

     30,000-99,999 79,730 (12) 179,010 (13)  

     10,000-29,999 3,735 (6)  69,225 (5)  

     Non-CMA/CA 174,810 (27)  570,720 (41)  

Urban form, n (%)    

     Urban core 47,960 (7)  67,470 (5) <0.0001 

     Transit-reliant suburb 27,620 (4)  44,715 (3)  

     Car-reliant suburb 207,525 (32)  323,550 (23)  

     Exurban 28,775 (4)  72,980 (5)  

     Non-CMA/CA 3,395,585 (52)  880,835 (63)  

CAN-Margc: Material deprivation, n (%)    

     1 (lowest) 210,275 (32) 67,470 (5) <0.0001 

     2 196,740 (30)  44,715 (3)  

     3 157,475 (24) 323,550 (23)  

     4 60,450 (9)  72,980 (5)  

     5 (highest) 26,505 (4)  880,835 (63)  

CAN-Margc: Residential instability, n (%)    

     1 (lowest) 141,555 (22) 309,420 (22) <0.0001 

     2 153,555 (24) 385,240 (28)  

     3 145,690 (22) 345,510 (25)  

     4 133,135 (20) 202,320 (15)  

     5 (highest) 77,505 (12)  147,060 (11)  

CAN-Margc: Dependency, n (%)    

     1 (lowest) 105,015 (16) 225,415 (16) <0.0001 

     2 138,640 (21) 246,365 (18)  

     3 139,425 (21)  261,580 (19)  

     4 150,975 (23)  316,055 (23)  

     5 (highest) 117,385 (18)  340,135 (24)  
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CAN-Margc: Ethnic concentration, n (%)    

     1 (lowest) 69905 (11) 256,200 (18) <0.0001 

     2 83,685 (13) 212,055 (15)  

     3 97,990 (15) 217,610 (16)  

     4 174,560 (27) 294,745 (21)  

     5 (highest) 225,300 (35) 408,945 (29)  

Regional airshed, n (%)    

     Western Canada 12,105 (2) 177,320 (13) <0.0001 

     Prairies 123,355 (19) 249,745 (18)  

     West Central 17,820 (3) 169,495 (12)  

     South Atlantic  58,285 (9) 231,155 (17)  

     East Central 429,470 (66) 531,720 (38)  

     Northern Canada 10,405 (2) 30,115 (2)  
a All values have been randomly rounded to the nearest five to conform to institutional confidentiality requirements  
b P-values from chi-squared tests or Wilcoxon rank sum tests 
c The Canadian Marginalization Index, area-level indicators of marginalization 
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Table S3 Descriptive statistics of the 3, 5 and 10-year moving averages of area burned within a 20 km or 50 km radius of residential 

location 

a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 
b Descriptive statistics calculated for all person-years in the study, including unexposed person-years. Units are hectares. 
c Descriptive statistics calculated only among exposed person-years (i.e., when moving averages of area burned are greater than 0). 

Units are hectares. 
 

 

 

 

 

 

 

 
 

 

 

  

Categories of exposuresa 

 Continuous exposure 

(including unexposed 

person-years)b 

Continuous exposure 

(excluding unexposed 

person-years)c 

 
Total person-

yearsa 

Unexposed person-years, N 

(%) 

'Low exposure' (<50th 

percentile) person-years, N 

(%) 

'High exposure' (≥50th 

percentile) person-years, N 

(%) 

 
Median (5th, 95th percentile) 

area burned (hectares) 

Median (5th, 95th percentile) 

area burned (hectares) 

Exposure based off 3-year moving averages with a 1-year lag 

Area burned in 20 km radius  
33,765,955 

29,108,150 (86%) 2,340,545 (7%) 2,317,260 (7%)  0 (0, 59) 24 (0.3, 3585) 
Area burned in 50 km radius 23,443,200 (70%) 5,183,110 (15%) 5,139,650 (15%)  0 (0, 979) 56 (2, 6857) 

Exposure based off 5-year moving averages with a 1-year lag 

Area burned in 20 km radius 
33,530,840 

27,460,925 (82%) 3,041,570 (9%) 3,028,345 (9%)  0 (0, 122) 20 (0.3, 2971) 
Area burned in 50 km radius 20,821,510 (62%) 6,412,080 (19%) 6,297,250 (19%)  0 (0, 1237) 50 (2, 5470) 

Exposure based off 10-year moving averages with a 1-year lag 

Area burned in 20 km radius 
33,786,625 

25,370,740 (75%) 4,241,805 (13%) 4,174,080 (12%)  0 (0, 244) 16 (0.2, 2566) 

Area burned in 50 km radius 17,198,210 (51%) 8,365,485 (25%) 8,222,930 (24%)  0 (0, 1716) 49 (2, 4297) 



160 
 

Table S4 Associations between any exposure to wildfires in the past 3, 5 or 10-years (with a 1-year lag) within a 20 km or 50 km 

radius of residential location in reference to the unexposed group and the incidence of lung and brain cancer, non-Hodgkin lymphoma, 

multiple myeloma, and leukemia, among participants in the 1996 Canadian Census Health and Environment Cohort 
  Exposure based off area burned 

in a 20 km radius of residential 

location 

Exposure based off area 

burned in a 50 km radius of 

residential location 

 Events/ 

person-yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

Lung Cancer    

Exposure in the past 3 years (with a 1-year lag) 43,205/ 

33,765,955 1.036 (1.007-1.067) 1.040 (1.017-1.064) 

Exposure in the past 5 years (with a 1-year lag) 42,785/ 

33,530,840 1.061 (1.034-1.089) 1.061 (1.038-1.083) 

Exposure in the past 10 years (with a 1-year lag) 43,070/ 

33,786,625 
1.039 (1.015-1.064) 1.049 (1.028-1.071) 

Brain Cancer    

Exposure in the past 3 years (with a 1-year lag) 3,770/ 

33,765,955 1.064 (0.964-1.173) 1.095 (1.016-1.181) 

Exposure in the past 5 years (with a 1-year lag) 3,740/ 

33,530,840 1.076 (0.985-1.176) 1.096 (1.020-1.177) 

Exposure in the past 10 years (with a 1-year lag) 3,755/ 

33,786,625 
1.091 (1.008-1.181) 1.100 (1.026-1.179) 

Non-Hodgkin Lymphoma    

Exposure in the past 3 years (with a 1-year lag) 12,140/ 

33,765,955 1.002 (0.949-1.059) 0.992 (0.951-1.035) 

Exposure in the past 5 years (with a 1-year lag) 12,065/ 

33,530,840 1.028 (0.979-1.081) 1.010 (0.970-1.051) 

Exposure in the past 10 years (with a 1-year lag) 12,115/ 

33,786,625 
1.009 (0.965-1.055) 1.002 (0.964-1.042) 

Multiple Myeloma     
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Exposure in the past 3 years (with a 1-year lag) 3,925/ 

33,765,955 1.027 (0.932-1.132) 0.985 (0.913-1.062) 

Exposure in the past 5 years (with a 1-year lag) 3,890/ 

33,530,840 1.014 (0.927-1.108) 1.004 (0.935-1.078) 

Exposure in the past 10 years (with a 1-year lag) 3,895/ 

33,786,625 
0.998 (0.921-1.081) 1.019 (0.952-1.092) 

Leukemia     

Exposure in the past 3 years (with a 1-year lag) 7,760/ 

33,765,955 

 

1.057 (0.987-1.132) 1.031 (0.979-1.087) 

Exposure in the past 5 years (with a 1-year lag) 7,700/ 

33,530,840 

 

1.026 (0.964-1.093) 1.003 (0.954-1.055) 

Exposure in the past 10 years (with a 1-year lag) 7,730/ 

33,786,625 
1.023 (0.967-1.082) 1.002 (0.955-1.052) 

a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 

Cox proportional hazards models are stratified by baseline age (5-year categories), immigrant status (yes/no) and sex, and adjusted for 

the following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, and age (centered at the median within each 5-year category) 
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Table S5 Associations between area of forest burned within a 20 km and 50 km radius of residential locations, comparing categories 

of the 3, 5 and 10-year moving averages with a 1-year lag separated at the median area burned (i.e., 'low exposure' and 'high 

exposure') in reference to the unexposed group, and the incidence of lung and brain cancer, non-Hodgkin lymphoma, multiple 

myeloma, and leukemia, among participants in the 1996 Canadian Census Health and Environment Cohort 
 

 
Exposure based off area burned in a 

20 km radius of residential location 

Exposure based off area burned in a 

50 km radius of residential location 

 Events/  

person-

yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

Lung Cancer    

3-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 43,205/ 

33,765,955 

1.049 (1.011-1.088) 1.058 (1.030-1.086) 

   ≥50th percentile vs. unexposed 1.022 (0.982-1.063) 1.017 (0.986-1.048) 

5-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 42,785/ 

33,530,840 

1.068 (1.034-1.104) 1.074 (1.047-1.101) 

   ≥50th percentile vs. unexposed 1.052 (1.016-1.090) 1.042 (1.012-1.072) 

10-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 43,070/ 

33,786,625 

1.035 (1.005-1.065) 1.056 (1.031-1.081) 

   ≥50th percentile vs. unexposed 1.045 (1.013-1.078) 1.038 (1.011-1.067) 

Brain Cancer    

3-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 3,770/ 

33,765,955 

1.072 (0.945-1.216) 1.093 (0.999-1.197) 

   ≥50th percentile vs. unexposed 1.054 (0.922-1.206) 1.098 (0.992-1.215) 

5-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 3,740/ 

33,530,840 

1.126 (1.008 -1.257) 1.120 (1.031-1.217) 

   ≥50th percentile vs. unexposed 1.019 (0.902-1.150) 1.060 (0.962-1.168) 

10-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 3,755/ 

33,786,625 

1.144 (1.038-1.259) 1.096 (1.012-1.187) 

   ≥50th percentile vs. unexposed 1.029 (0.924-1.145) 1.105 (1.009-1.210) 

Non-Hodgkin Lymphoma    

3-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 12,140/ 

33,765,955 

0.974 (0.907-1.046) 0.990 (0.940-1.042) 

   ≥50th percentile vs. unexposed 1.036 (0.961-1.115) 0.996 (0.940-1.054) 

5-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 12,065/ 

33,530,840 

1.000 (0.938-1.065) 1.005 (0.958-1.054) 

   ≥50th percentile vs. unexposed 1.063 (0.995-1.135) 1.017 (0.964-1.074) 
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10-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 12,115/ 

33,786,625 

0.999 (0.945-1.056) 1.002 (0.958-1.048) 

   ≥50th percentile vs. unexposed 1.022 (0.963-1.084) 1.002 (0.952-1.054) 

Multiple Myeloma     

3-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 3,925/ 

33,765,955 

1.083 (0.959-1.223) 1.016 (0.928-1.111) 

   ≥50th percentile vs. unexposed 0.962 (0.839-1.104) 0.944 (0.851-1.047) 

5-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 3,890/ 

33,530,840 

1.058 (0.948-1.181) 1.017 (0.936-1.105) 

   ≥50th percentile vs. unexposed 0.961 (0.850-1.087) 0.984 (0.893-1.085) 

10-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 3,895/ 

33,786,625 

1.054 (0.957-1.161) 1.035 (0.957-1.119) 

   ≥50th percentile vs. unexposed 0.930 (0.834-1.037) 0.994 (0.907-1.090) 

Leukemia    

3-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 7,760/ 

33,765,955 

1.068 (0.979-1.165) 0.985 (0.923-1.051) 

   ≥50th percentile vs. unexposed 1.045 (0.950-1.148) 1.091 (1.018-1.168) 

5-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 7,700/ 

33,530,840 

1.043 (0.964-1.129) 0.973 (0.916-1.034) 

   ≥50th percentile vs. unexposed 1.007 (0.924-1.096) 1.044 (0.977-1.115) 

10-year moving average (with a 1-year lag) 

   <50th percentile vs. unexposed 7,730/ 

33,786,625 

1.026 (0.956-1.100) 0.995 (0.940-1.053) 

   ≥50th percentile vs. unexposed 1.020 (0.947-1.099) 1.012 (0.950-1.077) 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 

Cox proportional hazards models are stratified by baseline age (5-year categories), immigrant status (yes/no) and sex, and adjusted for 

the following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, and age (centered at the median within each 5-year category) 
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Table S6 Associations between area of forest burned within a 20 km and 50 km radius of residential locations, comparing categories 

of the 3, 5 and 10-year moving averages with a 1-year lag separated at the median area burned (i.e., 'low exposure' and 'high 

exposure') in reference to the unexposed group, and the incidence of lung and brain cancer, non-Hodgkin lymphoma, multiple 

myeloma, and leukemia, among participants in the 1996 Canadian Census Health and Environment Cohort, among men and women 

separately  
 Women  Men   

 Events/ 

person-yearsa 
Hazard ratio 

(95% confidence interval) 
 Events/ 

person-yearsa 
Hazard ratio 

(95% confidence interval) 
 p-valueb  

Exposure based off area burned in a 20 km radius of residential location 

Lung cancer        

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 18,955/ 

17,552,495 

1.070 (1.014-1.130)  24,255/  

16,213,460 

1.030 (0.980-1.084)  <0.001 

   ≥50th percentile vs. unexposed 0.998 (0.940-1.061)  1.042 (0.988-1.098)  0.005 

5-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 18,705/ 

17,406,010 

1.063 (1.012-1.116)  24,080/ 

 16,124,830 

1.071 (1.025-1.120)  0.004 

   ≥50th percentile vs. unexposed 1.009 (0.956-1.066)  1.089 (1.039-1.141)  0.021 

10-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 18,775/ 

17,511,185 

1.039 (0.995-1.085)  24,290/ 

16,275,435 

1.032 (0.992-1.073)  0.004 

   ≥50th percentile vs. unexposed 1.002 (0.955-1.051)  1.081 (1.038-1.126)  0.020 

Brain cancer        

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,615/ 17,552,495 1.161 (0.962-1.401)  2,155/ 
16,213,460 

1.008 (0.851-1.195)  0.195 
   ≥50th percentile vs. unexposed 1.125 (0.919-1.378)  1.005 (0.840-1.202)  0.278 

5-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 1,595/ 

17,406,010 

1.204 (1.019-1.422)  2,145/ 

16,124,830 

1.071 (0.924-1.241)  0.256 

   ≥50th percentile vs. unexposed 1.074 (0.892-1.293)  0.980 (0.835-1.152)  0.353 

10-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 1,595/ 

17,511,185 

1.113 (0.957-1.293)  2,160/ 
16,275,435 

1.166 (1.028-1.322)  0.631 

   ≥50th percentile vs. unexposed 1.048 (0.888-1.236)  1.016 (0.882-1.169)  0.646 

Non-Hodgkin Lymphoma        

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 5,520/ 
17,552,495 

1.056 (0.953-1.169)  6,625/ 
16,213,460 

0.905 (0.819-0.999)  0.003 
   ≥50th percentile vs. unexposed 1.017 (0.909-1.138)  1.051 (0.952-1.160)  0.861 

5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 
5,465/ 17,406,010 

1.085 (0.991-1.189)  6,600/ 
16,124,830 

0.928 (0.850-1.013)  0.001 
   ≥50th percentile vs. unexposed 1.061 (0.960-1.172)  1.065 (0.975-1.163)  0.560 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 5,465/ 
17,511,185 

1.005 (0.925-1.091)  6,650/ 
16,275,435 

0.993 (0.921-1.070)  0.318 

   ≥50th percentile vs. unexposed 1.040 (0.952-1.136)  1.008 (0.931-1.091)  0.181 

Multiple Myeloma         

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,705/ 17,552,495 1.081 (0.897-1.302)  2,220/  
16,213,460 

1.087 (0.925-1.277)  0.883 
   ≥50th percentile vs. unexposed 1.053 (0.859-1.291)  0.899 (0.747-1.082)  0.173 

5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,680/ 
17,406,010 

1.013 (0.853-1.202)  2,210/ 
16,124,830 

1.095 (0.948-1.264)  0.631 
   ≥50th percentile vs. unexposed 1.076 (0.898-1.289)  0.881 (0.746-1.041)  0.048 

10-year moving average with a 1-year lag 
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   <50th percentile vs. unexposed 1,675/ 
17,511,185 

0.990 (0.851-1.151)  2,220/ 
16,275,435 

1.105 (0.974-1.254)  0.349 

   ≥50th percentile vs. unexposed 0.923 (0.780-1.092)  0.938 (0.813-1.082)  0.924 

Leukemia         

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 
3,030/ 17,552,495 

0.960 (0.829-1.111)  4,730/  
16,213,460 

1.135 (1.019-1.265)  0.085 
   ≥50th percentile vs. unexposed 1.030 (0.882-1.204)  1.054 (0.936-1.186)  0.737 

5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 2,980/ 
17,406,010 

0.965 (0.847-1.100)  4,720/ 
16,124,830 

1.091 (0.989-1.205)  0.171 
   ≥50th percentile vs. unexposed 0.987 (0.857-1.137)  1.019 (0.915-1.134)  0.659 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 2,990/ 

17,511,185 

1.024 (0.914-1.147)  4,740/ 

16,275,435 

1.026 (0.938-1.122)  0.986 

   ≥50th percentile vs. unexposed 1.011 (0.894-1.143)  1.025 (0.933-1.126)  0.804 

Exposure based off area burned in a 50 km radius of residential location 

Lung cancer        

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 18,955/ 
17,552,495 

1.026 (0.985-1.069)  24,255/  
16,213,460 

1.081 (1.043-1.120)  0.261 
   ≥50th percentile vs. unexposed 1.008 (0.963-1.055)  1.024 (0.983-1.067)  <0.001 

5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 18,705/ 
17,406,010 

1.049 (1.010-1.090)  24,080/ 
 16,124,830 

1.092 (1.056-1.128)  0.612 
   ≥50th percentile vs. unexposed 1.028 (0.985-1.074)  1.052 (1.012-1.094)  <0.001 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 18,775/ 
17,511,185 

1.070 (1.033-1.109)  24,290/ 
16,275,435 

1.045 (1.012-1.078)  0.001 

   ≥50th percentile vs. unexposed 1.027 (0.985-1.070)  1.046 (1.009-1.085)  <0.001 

Brain cancer        

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,615/ 17,552,495 1.036 (0.899-1.193)  2,155/ 
16,213,460 

1.135 (1.009-1.277)  0.438 
   ≥50th percentile vs. unexposed 1.143 (0.981-1.333)  1.064 (0.930-1.219)  0.230 

5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,595/ 
17,406,010 

1.089 (0.957-1.239)  2,145/ 
16,124,830 

1.141 (1.024-1.273)  0.594 
   ≥50th percentile vs. unexposed 1.111 (0.959-1.288)  1.023 (0.899-1.164)  0.196 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,595/ 

17,511,185 

1.113 (0.957-1.293)  2,160/ 

16,275,435 

1.137 (1.025-1.262)  0.230 

   ≥50th percentile vs. unexposed 1.048 (0.888-1.236)  1.047 (0.928-1.181)  0.144 

Non-Hodgkin Lymphoma        

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 5,520/ 

17,552,495 

0.972 (0.901-1.050)  6,625/ 

16,213,460 

1.003 (0.936-1.075)  0.887 

   ≥50th percentile vs. unexposed 0.991 (0.910-1.078)  1.000 (0.926-1.081)  0.294 
5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 5,465/ 17,406,010 0.991 (0.923-1.064)  6,600/ 

16,124,830 

1.015 (0.952-1.082)  0.999 

   ≥50th percentile vs. unexposed 1.026 (0.948-1.112)  1.010 (0.939-1.086)  0.107 
10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 5,465/ 

17,511,185 

0.966 (0.903-1.033)  6,650/ 

16,275,435 

1.032 (0.971-1.095)  0.406 

   ≥50th percentile vs. unexposed 0.993 (0.920-1.071)  1.010 (0.943-1.082)  0.229 

Multiple Myeloma         

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,705/ 17,552,495 1.063 (0.929-1.217)  2,220/  

16,213,460 

0.982 (0.870-1.107)  0.242 

   ≥50th percentile vs. unexposed 0.963 (0.823-1.127)  0.930 (0.810-1.068)  0.435 
5-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 1,680/ 

17,406,010 

1.060 (0.936-1.201)  2,210/ 

16,124,830 

0.985 (0.881-1.101)  0.214 

   ≥50th percentile vs. unexposed 0.961 (0.827-1.116)  1.003 (0.882-1.140)  0.869 
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10-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 1,675/ 

17,511,185 

1.045 (0.929-1.177)  2,220/ 

16,275,435 

1.027 (0.926-1.140)  0.616 

   ≥50th percentile vs. unexposed 0.967 (0.840-1.113)  1.016 (0.901-1.146)  0.923 

Leukemia         

3-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 3,030/ 17,552,495 1.012 (0.912-1.123)  4,730/  

16,213,460 

0.967 (0.890-1.052)  0.476 

   ≥50th percentile vs. unexposed 1.083 (0.969-1.210)  1.095 (1.003-1.195)  0.711 

5-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 2,980/ 

17,406,010 

0.978 (0.887-1.078)  4,720/ 

16,124,830 

0.969 (0.898-1.047)  0.974 

   ≥50th percentile vs. unexposed 1.024 (0.920-1.139)  1.056 (0.971-1.148)  0.841 

10-year moving average with a 1-year lag 
   <50th percentile vs. unexposed 2,990/ 

17,511,185 

1.020 (0.931-1.117)  4,740/ 

16,275,435 

0.979 (0.911-1.053)  0.595 

   ≥50th percentile vs. unexposed 0.997 (0.901-1.103)  1.021 (0.942-1.105)  0.674 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 
b p-value is from the interaction term between wildfire exposure categories and sex (p<0.05 interpreted as evidence of effect 

modification on the multiplicative scale), while HR (95% CI) from analyses stratified by sex  

Cox proportional hazards models are stratified by baseline age (5-year categories) and immigrant status, and adjusted for the following 

covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, dependency, 

deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous status, 

occupation and age (centered at the median within each 5-year category) 
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Table S7 Associations between area of forest burned within a 20 km and 50 km radius of residential locations, comparing categories 

of the 3, 5 and 10-year moving averages with a 1-year lag separated at the median area burned (i.e., 'low exposure' and 'high 

exposure') in reference to the unexposed group, and the incidence of lung and brain cancer, non-Hodgkin lymphoma, multiple 

myeloma, and leukemia, among participants in the 1996 Canadian Census Health and Environment Cohort, excluding exposures ≥95th 

percentile  
 Exposure based off area burned in a 20 km 

radius of residential location 

 Exposure based off area burned in a 50 km 

radius of residential location 

 Events/ 

person-yearsa 

Hazard ratio 

(95% confidence interval) 

 Events/ 

person- yearsa 

Hazard ratio 

(95% confidence interval) 

Lung Cancer      

3-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 42,740/ 

33,357,925 

1.050 (1.010-1.091)  41,970/ 

32,682,985 

1.052 (1.023-1.082) 

   ≥50th percentile vs. unexposed 1.024 (0.984-1.067)  1.028 (0.997-1.060) 

5-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 42,075/ 

32,900,270 

1.062 (1.026-1.099)  40,900/ 

31,939,455 

1.076 (1.049-1.105) 

   ≥50th percentile vs. unexposed 1.073 (1.035-1.112)  1.041 (1.011-1.071) 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 43,055/ 

33,774,730 

1.032 (1.002-1.063)  42,950/ 

33,651,990 

1.057 (1.032-1.082) 

   ≥50th percentile vs. unexposed 1.050 (1.018-1.083)  1.045 (1.017-1.073) 

Brain Cancer      

3-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 3,730/ 

33,357,925 

1.062 (0.931-1.212)  3,680/ 

32,682,985 

1.111 (1.012-1.221) 

   ≥50th percentile vs. unexposed 1.070 (0.935-1.226)  1.090 (0.985-1.207) 

5-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 3,680/ 

32,900,270 

1.069 (0.950-1.203)  3,600/ 

31,939,455 

1.120 (1.026-1.222) 

   ≥50th percentile vs. unexposed 1.097 (0.972-1.237)  1.078 (0.980-1.186) 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 3,750/ 

33,774,730 

1.141 (1.034-1.260)  3,745/ 

33,651,990 

1.116 (1.030-1.209) 

   ≥50th percentile vs. unexposed 1.049 (0.944-1.166)  1.071 (0.978-1.171) 

Non-Hodgkin Lymphoma       

3-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 12,015/ 

33,357,925 

1.013 (0.941-1.090)  11,800/ 

32,682,985 

0.991 (0.939-1.045) 

   ≥50th percentile vs. unexposed 1.025 (0.949-1.106)  0.991 (0.935-1.050) 

5-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 11,845/ 

32,900,270 

1.013 (0.948-1.082)  11,535/ 

31,939,455 

1.000 (0.951-1.051) 

   ≥50th percentile vs. unexposed 1.033 (0.965-1.107)  1.010 (0.957-1.066) 
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10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 12,105/ 

33,774,730 

1.009 (0.954-1.068)  12,085/ 

33,651,990 

1.001 (0.957-1.047) 

   ≥50th percentile vs. unexposed 1.012 (0.954-1.074)  1.009 (0.960-1.061) 

Multiple Myeloma      

3-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 3,875/ 

33,357,925 

1.110 (0.979-1.259)  3,805/ 

32,682,985 

1.030 (0.938-1.130) 

   ≥50th percentile vs. unexposed 0.916 (0.794-1.057)  0.911 (0.819-1.013) 

5-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 3,820/ 

32,900,270 

1.071 (0.955-1.201)  3,715/ 

31,939,455 

1.029 (0.943-1.123) 

   ≥50th percentile vs. unexposed 0.938 (0.826-1.065)  0.956 (0.867-1.055) 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 3,895/ 

33,774,730 

1.052 (0.953-1.161)  3,885/ 

33,651,990 

1.049 (0.970-1.135) 

   ≥50th percentile vs. unexposed 0.941 (0.845-1.048)  0.976 (0.892-1.069) 

Leukemia       

3-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 7,675/ 

33,357,925 

1.067 (0.974-1.168)  7,540/ 

32,682,985 

0.981 (0.916-1.050) 

   ≥50th percentile vs. unexposed 1.050 (0.954-1.157)  1.095 (1.021-1.173) 

5-year moving average with a 1-year lag     

   <50th percentile vs. unexposed 7,570/ 

32,900,270 

1.048 (0.965-1.138)  7,360/ 

31,939,455 

0.968 (0.908-1.032) 

   ≥50th percentile vs. unexposed 1.003 (0.919-1.095)  1.034 (0.968-1.105) 

10-year moving average with a 1-year lag 

   <50th percentile vs. unexposed 7,730/ 

33,774,730 

1.036 (0.965-1.113)  7,720/ 

33,651,990 

0.989 (0.934-1.047) 

   ≥50th percentile vs. unexposed 1.015 (0.942-1.094)  1.021 (0.960-1.086) 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements. Events and person-years differ 

between exposures estimated in the 20 km and 50 km radius due to differential exclusion of extreme values (≥95th percentile) between 

the two radiuses  

Cox proportional hazards models are stratified by sex, baseline age (5-year categories) and immigrant status, and adjusted for the 

following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation and age (centered at the median within each 5-year category) 
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Table S8 Associations between area of forest burned within a 20 km and 50 km radius of residential locations, comparing categories 

of the 3, 5 and 10-year moving averages with a 1-year lag separated at the median area burned (i.e., 'low exposure' and 'high 

exposure') in reference to the unexposed group, and the incidence of lung and brain cancer, non-Hodgkin lymphoma, multiple 

myeloma, and leukemia, among participants in the 1996 Canadian Census Health and Environment Cohort, additionally adjusted for 

ambient PM2.5 (using a 3-year moving average with a 1-year lag) 
  Exposure based off area burned in 

a 20 km radius of residential 

location 

Exposure based off area burned in 

a 50 km radius of residential 

location 

 Events/ 

person-yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

Lung Cancer    

3-year moving average with a 1-year lag  

   <50th percentile vs. unexposed 43,140/ 

33,748,135 

1.051 (1.013-1.090) 1.060 (1.032-1.089) 

   ≥50th percentile vs. unexposed 1.024 (0.984-1.065) 1.020 (0.989-1.052) 

5-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 42,745/ 

33,518,540 

1.070 (1.035-1.106) 1.075 (1.048-1.102) 

   ≥50th percentile vs. unexposed 1.053 (1.017-1.092) 1.043 (1.013-1.074) 

10-year moving average with a 1-year lag  

   <50th percentile vs. unexposed 42,905/ 

33,745,920 

1.038(1.009-1.069) 1.060 (1.035-1.085) 

   ≥50th percentile vs. unexposed 1.049 (1.017-1.082) 1.043 (1.015-1.071) 

Brain Cancer    

3-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 3,765/ 

33,748,135 

1.074 (0.947-1.219) 1.097 (1.002-1.201) 

   ≥50th percentile vs. unexposed 1.054 (0.922-1.206) 1.103 (0.996-1.220) 

5-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 3,735/ 

33,518,540 

1.128 (1.010-1.260) 1.123 (1.033-1.220) 

   ≥50th percentile vs. unexposed 1.019 (0.902-1.151) 1.064 (0.965-1.173) 

10-year moving average with a 1-year lag  

   <50th percentile vs. unexposed 3,745/ 

33,745,920 

1.147 (1.042-1.264) 1.101 (1.016-1.192) 

   ≥50th percentile vs. unexposed 1.027 (0.922-1.143) 1.108 (1.011-1.214) 

Non-Hodgkin Lymphoma     

3-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 12,135/ 

33,748,135 

0.974 (0.907-1.045) 0.989 (0.940-1.041) 

   ≥50th percentile vs. unexposed 1.036 (0.962-1.116) 0.996 (0.940-1.054) 

5-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 12,060/ 0.999 (0.938-1.065) 1.004 (0.958-1.053) 
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   ≥50th percentile vs. unexposed 33,518,540 1.063 (0.995-1.136) 1.017 (0.963-1.073) 

10-year moving average with a 1-year lag  

   <50th percentile vs. unexposed 12,100/ 

33,745,920 

0.999 (0.945-1.056) 1.002 (0.958-1.047) 

   ≥50th percentile vs. unexposed 1.022 (0.963-1.084) 1.002 (0.952-1.055) 

Multiple Myeloma    

3-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 3,920/ 

33,748,135 

1.086 (0.961-1.227) 1.021 (0.933-1.118) 

   ≥50th percentile vs. unexposed 0.959 (0.836-1.101) 0.948 (0.855-1.052) 

5-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 3,890/ 

33,518,540 

1.060 (0.950-1.184) 1.023 (0.941-1.112) 

   ≥50th percentile vs. unexposed 0.958 (0.847-1.083) 0.988 (0.896-1.089) 

10-year moving average with a 1-year lag  

   <50th percentile vs. unexposed 3,890/ 

33,745,920 

1.063 (0.965-1.171) 1.048 (0.969-1.134) 

   ≥50th percentile vs. unexposed 0.937 (0.840-1.045) 1.008 (0.919-1.105) 

Leukemia     

3-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 7,755/ 

33,748,135 

1.068 (0.979-1.166) 0.986 (0.924-1.052) 

   ≥50th percentile vs. unexposed 1.044 (0.950-1.147) 1.091 (1.018-1.169) 

5-year moving average with a 1-year lag    

   <50th percentile vs. unexposed 7,695/ 

33,518,540 

1.044 (0.965-1.130) 0.974 (0.917-1.035) 

   ≥50th percentile vs. unexposed 1.007 (0.924-1.096) 1.044 (0.978-1.115) 

10-year moving average with a 1-year lag  

   <50th percentile vs. unexposed 7,720/ 

33,745,920 

1.027 (0.957-1.102) 0.997 (0.942-1.055) 

   ≥50th percentile vs. unexposed 1.022 (0.949-1.101) 1.014 (0.952-1.080) 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 

Cox proportional hazards models are stratified by sex, baseline age (5-year categories) and immigrant status (yes/no), and adjusted for 

the following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, age (centered at the median within each 5-year category), and ambient PM2.5 (3-year moving average with a 1-year 

lag) 
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Table S9 Associations between area of forest burned within a 20 km and 50 km radius of residential locations, comparing categories 

of the 3, 5 and 10-year moving averages with a 3-year lag separated at the median area burned (i.e., 'low exposure' and 'high 

exposure') in reference to the unexposed group, and the incidence of lung and brain cancer, non-Hodgkin lymphoma, multiple 

myeloma, and leukemia, among participants in the 1996 Canadian Census Health and Environment Cohort 
  Exposure based off area burned in 

a 20 km radius of residential 

location 

Exposure based off area burned in 

a 50 km radius of residential 

location 

 Events/ 

person-yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

Lung Cancer    

3-year moving average with a 3-year lag   

   <50th percentile vs. unexposed 42,975/ 

33,688,250 

1.079 (1.038-1.121) 1.082 (1.052-1.111) 

   ≥50th percentile vs. unexposed 1.062 (1.020-1.107) 1.037 (1.005-1.070) 

5-year moving average with a 3-year lag   

   <50th percentile vs. unexposed 42,425/ 

33,396,245 

1.070 (1.034-1.107) 1.071 (1.044-1.098) 

   ≥50th percentile vs. unexposed 1.068 (1.029-1.107) 1.060 (1.030-1.091) 

10-year moving average with a 3-year lag   

   <50th percentile vs. unexposed 42,595/ 

33,518,220 

1.042 (1.011-1.073) 1.067 (1.042-1.093) 

   ≥50th percentile vs. unexposed 1.052 (1.018-1.087) 1.045 (1.017-1.074) 

Brain Cancer    

3-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 3,750/ 

33,688,250 

1.144 (1.005-1.301) 1.097 (1.001-1.202) 

   ≥50th percentile vs. unexposed 0.976 (0.845-1.128) 0.968 (0.869-1.077) 

5-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 3,705/ 

33,396,245 

1.126 (1.005-1.262) 1.080 (0.992-1.175) 

   ≥50th percentile vs. unexposed 1.016 (0.895-1.153) 0.993 (0.898-1.097) 

10-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 3,715/ 

33,518,220 

1.139 (1.032-1.256) 1.102 (1.016-1.195) 

   ≥50th percentile vs. unexposed 1.047 (0.936-1.171) 1.075 (0.980-1.178) 

Non-Hodgkin Lymphoma     

3-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 12,110/ 

33,688,250 

1.077 (1.002 -1.158) 1.001 (0.950-1.055) 

   ≥50th percentile vs. unexposed 1.032 (0.955-1.116) 1.024 (0.966-1.085) 

5-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 11,990/ 

33,396,245 

1.037 (0.973-1.107) 1.023 (0.975-1.074) 

   ≥50th percentile vs. unexposed 1.037 (0.968-1.112) 1.022 (0.967-1.079) 



172 
 

10-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 12,000/ 

33,518,220 

0.992 (0.937-1.050) 0.992 (0.948-1.039) 

   ≥50th percentile vs. unexposed 1.021 (0.959-1.086) 1.014 (0.963-1.067) 

Multiple Myeloma    

3-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 3,895/ 

33,688,250 

1.077 (0.948-1.224) 1.018 (0.929-1.116) 

   ≥50th percentile vs. unexposed 0.886 (0.765-1.027) 0.969 (0.872-1.077) 

5-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 3,860/ 

33,396,245 

1.049 (0.936-1.175) 1.036 (0.953-1.127) 

   ≥50th percentile vs. unexposed 0.890 (0.781-1.014) 0.983 (0.890-1.085) 

10-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 3,860/ 

33,518,220 

1.006 (0.911-1.112) 1.010 (0.932-1.094) 

   ≥50th percentile vs. unexposed 0.923 (0.823-1.035) 0.991 (0.904-1.086) 

Leukemia     

3-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 7,720/ 

33,688,250 

1.047 (0.955-1.149) 0.957 (0.895-1.023) 

   ≥50th percentile vs. unexposed 1.038 (0.940-1.145) 1.074 (1.001-1.152) 

5-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 7,660/ 

33,396,245 

1.026 (0.945-1.114) 0.988 (0.930-1.051) 

   ≥50th percentile vs. unexposed 1.006 (0.920-1.099) 1.006 (0.940-1.076) 

10-year moving average with a 3-year lag    

   <50th percentile vs. unexposed 7,655/ 

33,518,220 

1.024 (0.953-1.110) 1.005 (0.949-1.065) 

   ≥50th percentile vs. unexposed 1.025 (0.948-1.109) 1.016 (0.953-1.082) 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 

Cox proportional hazards models are stratified by sex, baseline age (5-year categories) and immigrant status (yes/no), and adjusted for 

the following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, and age (centered at the median within each 5-year category) 
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Table S10 Associations between area of forest burned within a 20 km and 50 km radius of residential locations and the incidence of 

lung cancer among participants in the 1996 Canadian Census Health and Environment Cohort, indirectly adjusted for smoking status 

(never, former, current) and body mass index (25-29.9, 30-34.9, 35-39.9, or ≥40 kg/m2) 
 Exposure based off area burned in 

a 20 km radius of residential 

location 

Exposure based off area burned in a 50 

km radius of residential location 

 Indirectly adjusted hazard ratio 

and 95% confidence interval 

Indirectly adjusted hazard ratio and 

95% confidence interval 

Dichotomous exposures   

Any exposure within the past 3 years (with a 1-year lag) 1.033 (0.999, 1.068) 1.037 (1.010, 1.063) 

Any exposure within the past 5 years (with a 1-year lag) 1.057 (1.026, 1.089) 1.051 (1.026, 1.077) 

Any exposure within the past 10 years (with a 1-year lag) 1.027 (0.999, 1.055) 1.039 (1.014, 1.064) 

Categorical Exposures   

3-year moving average with a 1-year lag   

   <50th percentile vs. unexposed 1.047 (1.003-1.093) 1.049 (1.017-1.082) 

   ≥50th percentile vs. unexposed 1.015 (0.971-1.062) 1.016 (0.982-1.052) 

5-year moving average with a 1-year lag   

   <50th percentile vs. unexposed 1.071 (1.031-1.113) 1.056 (1.026-1.087) 

   ≥50th percentile vs. unexposed 1.040 (0.998-1.083) 1.039 (1.006-1.074) 

10-year moving average with a 1-year lag   

   <50th percentile vs. unexposed 1.028 (0.993-1.063) 1.043 (1.015-1.073) 

   ≥50th percentile vs. unexposed 1.027 (0.991-1.065) 1.030 (0.999-1.063) 

Indirect adjustment method: Shin HH, Cakmak S, Brion O, Villeneuve P, Turner MC, Goldberg MS, Jerrett M, Chen H, Crouse D, 

Peters P, Pope CA 3rd, Burnett RT. Indirect adjustment for multiple missing variables applicable to environmental epidemiology. 

Environ Res. 2014 Oct;134:482-7. doi: 10.1016/j.envres.2014.05.016. 
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Table S11 Associations between area of forest burned within a 20 km and 50 km radius of residential locations, comparing categories 

of the 3, 5 and 10-year moving averages with a 1-year lag separated at quintiles in reference to the unexposed group, and the incidence 

of lung cancer among participants in the 1996 Canadian Census Health and Environment Cohort 
  Exposure based off area burned in a 

20 km radius of residential location 

Exposure based off area burned in a 

50 km radius of residential location 

 Events/ 

person-yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

3-year moving average with a 1-year lagb  

     Q1 vs unexposed 

43,205/ 

33,765,955 

1.065 (1.007-1.125) 1.044 (1.003-1.086) 

     Q2 vs unexposed 1.076 (1.018-1.138) 1.056 (1.016-1.098) 

     Q3 vs unexposed 1.001 (0.945-1.059) 1.085 (1.043-1.129) 

     Q4 vs unexposed 1.032 (0.973-1.095) 1.001 (0.959-1.045) 

     Q5 vs unexposed 1.000 (0.940-1.065) 0.988 (0.943-1.036) 

5-year moving average 1-year lagb  

     Q1 vs unexposed 

42,785/ 

33,530,840 

1.054 (1.003-1.107) 1.075 (1.036-1.114) 

     Q2 vs unexposed 1.073 (1.022-1.127) 1.061 (1.025-1.099) 

     Q3 vs unexposed 1.080 (1.027-1.136) 1.091 (1.052-1.131) 

     Q4 vs unexposed 1.051 (0.999-1.106) 1.021 (0.981-1.063) 

     Q5 vs unexposed 1.042 (0.986-1.101) 1.037 (0.994-1.083) 

10-year moving average 1-year lagb  

     Q1 vs unexposed 

43,070/ 

33,786,625 

1.019 (0.976-1.064) 1.052 (1.018-1.086) 

     Q2 vs unexposed 1.022 (0.979-1.066) 1.066 (1.032-1.101) 

     Q3 vs unexposed 1.087 (1.041-1.135) 1.053 (1.018-1.090) 

     Q4 vs unexposed 1.041 (0.995-1.089) 1.033 (0.997-1.071) 

     Q5 vs unexposed 1.026 (0.978-1.076) 1.023 (0.983-1.065) 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 
b Q1=lowest area burned, Q5=highest area burned  

Cox proportional hazards models are stratified by baseline age (5-year categories), sex and immigrant status, and adjusted for the 

following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, and age (centered at the median within each 5-year category) 
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Table S12 Associations between cumulative number of fires in a 10-year moving window (with a 1-year lag) and lung cancer 

incidence  

  Exposure based off area burned 

in a 20 km radius of residential 

location 

Exposure based off area burned 

in a 50 km radius of residential 

location 

 Events/ 

person-

yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

Number of fires modelled as a 

categorical variable 

   

   1-3 fires vs. 0 fires 
41,295/ 

32,625,225 

1.043 (1.017-1.069) 1.055 (1.031-1.079) 

   4-6 fires vs. 0 fires 1.071 (1.012-1.132) 1.067 (1.029-1.106) 

   7-10 fires vs. 0 fires 1.055 (0.963-1.156) 1.080 (1.031-1.131) 

Number of fires modelled as a 

continuous variable   

41,295/ 

32,625,225 
1.013 (1.005-1.021) 1.011 (1.006,1.016) 

a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements.  

Cox proportional hazards models are stratified by baseline age (5-year categories), sex and immigrant status, and adjusted for the 

following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 

dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, and age (centered at the median within each 5-year category) 

 

 
 

 

 

 

 

 



176 
 

Table S13 Association between area of forest burned within a 20 km and 50 km of residential locations and the incidence of lung and 

brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukemia, among participants in the 1996 Canadian Census Health and 

Environment Cohort (models include a dichotomous exposure variable reflecting ever/never exposure, and a continuous exposure 

variable reflecting hectares burned) 

  Exposure based off area burned in a 

20 km radius of residential location 

Exposure based off area burned 

in a 50 km radius of residential 

location 

 Events/ 

person-yearsa 

Hazard ratio 

(95% confidence interval) 

Hazard ratio 

(95% confidence interval) 

Lung Cancer   

3-year moving average with 1-year lag  

     Continuousb 43,205/ 

33,765,955 

1.001 (0.997-1.005) 1.001 (0.997-1.004) 

     Dichotomousc  1.036 (1.006-1.066) 1.040 (1.017-1.064) 

5-year moving average with 1-year lag  

     Continuousb 42,785/ 

33,530,840 

0.998 (0.992-1.005) 0.999 (0.994-1.003) 

     Dichotomousc  1.062 (1.034-1.090) 1.061 (1.039-1.084) 

10-year moving average with 1-year lag  

     Continuousb 43,070/ 

33,786,625 

0.996 (0.988-1.004) 0.997 (0.992-1.003) 

     Dichotomousc  1.040 (1.016-1.065) 1.050 (1.028-1.072) 

Brain Cancer    

3-year moving average with 1-year lag  

     Continuousb 3,770/ 

33,765,955 

0.962 (0.903-1.024) 0.977 (0.950-1.005) 

     Dichotomousc  1.075 (0.974-1.187) 1.104 (1.024-1.191) 

5-year moving average with 1-year lag  

     Continuousb 3,740/ 

33,530,840 

0.944 (0.873-1.020) 0.976 (0.946-1.006) 

     Dichotomousc  1.089 (0.996-1.191) 1.103 (1.027-1.185) 

10-year moving average with 1-year lag  

     Continuousb 3,755/ 

33,786,625 

0.971 (0.925-1.019) 0.979 (0.952-1.007) 

     Dichotomousc  1.097 (1.013-1.188) 1.105 (1.031-1.185) 

Non-Hodgkin Lymphoma  

3-year moving average with 1-year lag  

     Continuousb 12,140/ 

33,765,955 

1.001 (0.993-1.009) 1.002 (0.995-1.008) 

     Dichotomousc  1.002 (0.948-1.058) 0.991(0.950-1.035) 
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5-year moving average with 1-year lag  

     Continuousb 12,065/ 

33,530,840 

1.001 (0.989-1.013) 1.002 (0.994-1.011) 

     Dichotomousc  1.028 (0.978-1.080) 1.009 (0.969-1.050) 

10-year moving average with 1-year lag  

     Continuousb 12,115/ 

33,786,625 

1.006 (0.991-1.020) 1.007 (0.997-1.017) 

     Dichotomousc  1.008 (0.963-1.054) 1.000 (0.962-1.040) 

Multiple Myeloma     

3-year moving average with 1-year lag  

     Continuousb 3,925/ 

33,765,955 

1.001 (0.986-1.015) 1.001 (0.989-1.012) 

     Dichotomousc  1.027 (0.932-1.132) 0.985 (0.913-1.062) 

5-year moving average with 1-year lag  

     Continuousb 3,890/ 

33,530,840 

0.993 (0.966-1.021) 0.994 (0.976-1.013) 

     Dichotomousc  1.016 (0.929-1.110) 1.005 (0.936-1.080) 

10-year moving average with 1-year lag  

     Continuousb 3,895/ 

33,786,625 

0.981 (0.944-1.019) 0.981 (0.957-1.006) 

     Dichotomousc  1.002 (0.925-1.086) 1.024 (0.956-1.097) 

Leukemia      

3-year moving average with 1-year lag  

     Continuousb 7,760/ 

33,765,955 

0.977 (0.945-1.010) 0.991 (0.977-1.005) 

     Dichotomousc  1.065 (0.994-1.141) 1.036 (0.982-1.092) 

5-year moving average with 1-year lag  

     Continuousb 7,700/ 

33,530,840 

0.975 (0.941-1.010) 0.984 (0.966-1.002) 

     Dichotomousc  1.033 (0.970-1.100) 1.008 (0.959-1.060) 

10-year moving average with 1-year lag  

     Continuousb 7,730/ 

33,786,625 

0.976 (0.946-1.007) 0.988 (0.971-1.005) 

     Dichotomousc  1.028 (0.972-1.088) 1.005 (0.957-1.056) 
a Counts are rounded to the nearest 5 to conform with institutional confidentiality requirements 
b HRs and 95% CIs are scaled per 2000-hectare increase in area burned. For exposed person-years (i.e., when area burned was greater 

than 0), area burned was centered at the median.  
c The dichotomous exposure variable was coded as 1 if area burned was greater than zero, and 0 if unexposed. The HR therefore 

compares risk between those with a median level of exposure relative to the unexposed group  

Cox proportional hazards models are stratified by baseline age (5-year categories), sex and immigrant status, and adjusted for the 

following covariates: regional airshed, community size, urban status, CAN-Marg indicators (quintiles of ethnic concentration, 
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dependency, deprivation, instability), highest level of education, employment status, marital status, visible minority status, Indigenous 

status, occupation, and age (centered at the median within each 5-year category) 
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CHAPTER 6: Discussion 

6.1 Summary of findings 

The goal of this thesis was to move beyond evaluating the health impacts of PM2.5 mass 

concentration and instead focus on different sources, constituents, and oxidative properties of air 

pollution in Canada.  

In Chapter 3 (Manuscript 1), I investigated associations between short-term and sub-

chronic ambient PM2.5, oxidant gases and markers of cardiovascular health in school-aged 

children living in a setting where residential biomass burning is prevalent during the cold 

months. This repeated-measures panel study included original data collection from 71 students 

recruited from two elementary schools in Courtenay and Cumberland, British Columbia, from 

2018-2020. Outcomes were measured a median of 6 times per student throughout the school 

year. Multivariable linear mixed-effect models were used to evaluate associations between 

exposure to outdoor PM2.5 or oxidant gases and retinal blood vessel diameter and blood pressure, 

and interactions between PM2.5 and oxidant gases were also considered. The results of this study 

show that oxidant gases are inversely associated with retinal arteriolar diameter, which is 

consistent with other studies that observed negative associations between outdoor air pollution 

and retinal arteriolar diameter. Moreover, oxidant gases modified associations between PM2.5 

and retinal arteriolar diameter, with weak positive associations observed when concentrations of 

oxidant gases were low and weak negative associations when concentrations of oxidant gases 

were elevated.  

In Chapter 4 (Manuscript 2), I explored whether associations between short-term ambient 

PM2.5 mass concentration or oxidant gases and respiratory hospitalizations in children were 

modified by monthly estimates of PM2.5 constituents (metals and sulfur) or particle oxidative 
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potential. This was a case-crossover study that included approximately 10,500 children 

hospitalized for respiratory diseases from 2016-2017 across 34 Canadian cities. Stronger 

associations between PM2.5 mass, oxidant gases and respiratory hospitalizations were observed 

when particle oxidative potential and metals/sulfur in PM2.5 were elevated, which is consistent 

with other studies that observed effect modification by particle oxidative potential15,22,63,181 and 

PM2.5 constituents15.  

In Chapter 5 (Manuscript 3), I investigated associations between wildfires and the 

incidence of lung and brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukemia 

among approximately 2 million participants in the 1996 Canadian Census Health and 

Environment Cohort. Exposures were estimated based on area burned within a 20 and 50 km 

radius of residential locations, and 3-year, 5-year, and 10-year moving averages of area burned 

(with a 1-year lag) were calculated to capture longer-term exposures. We modelled exposures as 

a dichotomous term (ever vs. never exposed), categorical terms (never exposed, area burned 

<50th percentile, area burned≥ 50th percentile), and a continuous term. Multivariable Cox 

proportional hazards models were used to estimate associations between wildfire exposures and 

cancer incidence. We observed positive associations between wildfires and lung and brain cancer 

when exposures were modelled as dichotomous and categorical variables. No associations were 

observed with hematologic cancers, or when area burned was modelled as a continuous term (for 

all cancer outcomes).  

 

6.2 Strengths and limitations 

Overall, this dissertation makes important contributions to the field of air pollution 

epidemiology by moving beyond studying the health effects of PM2.5 mass concentration and 
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instead focusing on specific sources, oxidative properties, and constituents of particulate air 

pollution. Substantively, Objective 1 fills important gaps in knowledge related to the 

cardiovascular health impacts of air pollution in children and more broadly the health impacts of 

exposures to ambient residential biomass burning. Regarding Objective 2, although many studies 

have investigated the acute respiratory health effects of air pollution in children, to our 

knowledge no studies have explored whether associations are modified by constituents or 

oxidative properties of PM2.5, which is relevant information to help inform more efficient 

regulatory measures. Objective 3 is the first study in the world to examine associations between 

wildfire exposure and cancer incidence, the results of which are important on a global scale 

given that wildfires are increasing in frequency and severity throughout the world.  

In addition to the substantive strengths of this thesis, a methodological strength is that 

there is generally good confounding control in all studies, either through the study design or 

measurement and adjustment of confounding variables. More specifically, personal-level 

covariates are adjusted for by design in Objectives 1 and 2 because both study designs (repeated-

measures panel study and case-crossover study) rely on within-individual comparisons. Intrinsic 

to the time-stratified case-crossover study, some time-varying covariates (including day of week, 

season, and year) are also adjusted for by design, while in both studies, additional time-varying 

covariates (meteorological variables) are adjusted for through modelling.  

Regarding Objective 3, confounding control was performed through modelling and the 

CanCHEC database collects rich information on individual and neighbourhood-level covariates 

compared to many other large administrative datasets. However, it should be recognized that 

some important personal-level predictors of chronic disease were not measured, including body 

mass index and smoking status. In our sensitivity analysis that indirectly adjusted the hazard 
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ratios for smoking and body mass index, we observed some attenuation of effect estimates, 

although results were generally consistent. Although these individual-level covariates are 

undoubtedly strong predictors of cancer and other long-term health outcomes, it is plausible they 

are not strongly related to wildfires or air pollution exposures and therefore do not end up being 

important confounding variables. Alternatively, it is also possible that through adjusting for 

many other individual and neighbourhood-level covariates that are strong determinants of 

smoking status and body mass index (socioeconomic variables, age, sex, etc.), we've mitigated 

much of the confounding by these variables. Results from analyses investigating associations 

between air pollution exposures and mortality in the Canadian Community Health Survey-

Mortality cohort, in which many individual-level predictors of chronic disease (smoking, diet, 

exercise, body mass index, etc.) are measured, found that additional adjustment for these risk 

factors did not meaningfully impact the air pollution exposure effect estimates14, providing some 

empirical evidence that these covariates do no end up being essential variables to control for. 

That being said, theoretically it has been demonstrated that not adjusting for important risk 

factors of the outcome (irrespective of whether the variables are related to the exposure, i.e., 

whether they are true confounding variables) can still lead to biased effect estimates in time-to-

event analyses240, so ideally these variables would have been measured and directly adjusted for 

in our CanCHEC analysis.  

 Another important strength of this dissertation is the availability of detailed exposure 

information. For Objective 1 and 2, multiple air pollutants are measured on a continuous scale 

over several years, and Objective 2 also includes prospectively measured PM2.5 components and 

oxidative potential. Objective 3 uses approximately 30 years of wildfire data maintained by 

Natural Resources Canada, who record the location of wildfires and total area burned throughout 
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the country each year. The availability of this unique database from as far back as the mid-1980's 

enabled us to evaluate the long-term health impacts of living near wildfires.  

This thesis also has some limitations. In all objectives, exposure measurement error is a 

concern. In Objectives 1 and 2, Berkson-type exposure measurement error likely occurred 

because true personal PM2.5 or Ox differ from outdoor concentrations measured at a central 

location. This type of measurement error was likely non-differential in respect to the outcomes 

studied, and results in a reduction in precision without any systematic bias174. For Objective 3, 

exposure measurement error likely impacted the estimates of area burned within various buffers 

around residential locations several ways. For example, there are likely spatial errors in the 

methods used to identify wildfire perimeters and area burned, which is a type of classical 

measurement error that would result in bias towards the null174. In addition, 6-digit residential 

postal codes are imperfect estimates of residential home addresses and assigning the same 

wildfire exposure to all individuals who share the same postal code results in Berkson-type 

exposure measurement error (leading to a loss in precision)174. This may be particularly true in 

rural locations compared to more urban areas; for example, for community sizes between 

10,000-1.49 million, the median distance between a 6-digit postal code centroid and a full home 

address is less than 330 m, while in communities with a population size smaller than 10, 000, the 

median distance is approximately 560 m241. In addition, another limitation in our approach to 

assign exposure in Objective 3 is that the chemical composition of wildfire emissions is affected 

by numerous factors (including fuel type, burning conditions, climate, etc.) and this probably 

contributes to heterogeneity in the toxicity of emitted pollutants and subsequent health effects. 

As well, one obvious final limitation of assigning exposures to wildfires based on residential 

proximity is that we are not capturing pollutants from wildfires that travel long distances in wind. 
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Regardless, we would anticipate that individuals living near wildfires that occur regularly in the 

same area would be more consistently exposed to local wildfire pollutants than individuals 

exposed to pollutants transported over long distances from remote fires.  

Another consideration for all studies is the potential for selection bias. For Objective 1, 

the study relied on volunteers, and it is possible that volunteers may come from more educated 

families and be healthier than those who did not volunteer to participate in the study. It is also 

possible that the general health of children may affect their individual response to changes in air 

pollution; for example, it’s conceivable that healthy children may be physiologically more 

resilient towards environmental stressors and thus their retinal arterioles may not restrict as much 

with increases in air pollution compared to less healthy children, which would lead to a different 

association observed in the sample compared to the target population. Regarding Objective 2, 

selection bias is largely eliminated through the case-crossover design. Unlike in case control 

studies, where selection bias can occur when controls do not represent the exposure distribution 

of the source population from which the cases arose, case-crossover studies do not encounter this 

issue because the control periods reflect the cases' exposures themselves183,242. Regardless, 

selection bias can still occur in case-crossover studies if the exposure (in our study, ambient 

PM2.5 or Ox) influences an individual's willingness to participate in the study or their survival242. 

Given the study uses administrative data and does not rely on volunteers, ambient air pollution 

exposure would not influence an individuals' participation, and similarly, survival is not 

influenced by ambient air pollution among children in Canada (i.e., children are not dying from 

ambient air pollution in Canada). Selection bias in a case-crossover study can also result if the 

control time windows are selected dependent on the exposure, such that the exposure distribution 

in the control periods are not representative of the exposure distribution in the person-time giving 
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rise to the cases242. In our study, the selection of control windows were matched on the day, 

month and year of the case day and were not influenced by the exposures, so again the possibility 

of selection bias seems unlikely. Regarding Objective 3, opportunities for selection bias relate to 

who is included in the study and who is lost to follow-up. To first address who is included in the 

study, the CanCHEC is a subset of the Canadian longform census and is meant to represent the 

Canadian population; however, people who live in institutions (nursing homes, penitentiaries, 

and group homes) at the time of census collection are excluded. It is plausible that those included 

in the study (the non-institutionalized) differ in their cancer risk compared to those who are 

institutionalized, and if there are also differences in wildfire exposures (perhaps attributed to 

spatial differences in where institutions are located), then selection bias is a possibility. Loss to 

follow-up in this study only occurs if individuals stop filing their tax returns and residential 

locations are therefore unknown. Certain groups (e.g., unhoused, unemployed) may be less likely 

to file tax returns, and these people may have different cancer risks than those who file their tax 

returns and are not lost to follow-up. Similarly, if there are spatial differences in where these 

people live that relate to wildfire exposures, selection bias could result.  

 

6.3 Public health significance  

Ambient (outdoor) air pollution is a leading contributor to disability-adjusted life years 

and mortality worldwide1, and even though Canada has some of the cleanest air in the world10,11, 

adverse health impacts of air pollution are still observed12–14. Objectives 1 and 2 of this thesis 

investigate the short-term/sub-chronic cardiovascular and respiratory health impacts of ambient 

PM2.5 and Ox exposure in Canadian children, and suggest negative impacts of ambient air 

pollution on retinal arteriolar diameter and respiratory hospitalizations. Importantly, both studies 
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observe effect modification by co-exposures or constituents and oxidative properties of 

particulate matter: Objective 1 found the direction of association between PM2.5 and arteriolar 

diameter depended on concentrations of Ox (and visa versa) and Objective 2 observed stronger 

associations between PM2.5 mass and Ox when the metal and sulfur content of PM2.5 and 

oxidative potential were elevated. These findings contribute to the growing body of evidence that 

suggest the strength of associations between PM2.5 mass concentrations and health outcomes 

depend on the source/composition of PM2.5
15–19

 or co-exposure to other pollutants14,22,23,181, 

which may help explain the observed heterogeneity in the health impacts of PM2.5. Together, 

these results highlight the need to consider effect modification by co-exposures in 

epidemiological air pollution studies, which can be easily incorporated into studies taking place 

in Canada because data on oxidant gases are readily available through continuous monitoring by 

the National Air Pollution Surveillance Program. Furthermore, the results also highlight the 

potential benefits of incorporating information related to sources of PM2.5 and PM2.5 constituents, 

which is becoming increasingly feasible as national estimates of source-specific PM2.5 mass 

concentrations and PM2.5 constituents are available through source apportionment methods and 

hybrid satellite-land use regression modelling243. PM2.5 composition data will enable researchers 

to better understand what specifically about PM2.5 causes adverse health outcomes, which can 

help inform more efficient regulatory measures (for example, we can target specific sources of 

PM2.5 that are elevated in harmful constituents). Moreover, although to our knowledge no other 

studies have investigated how PM2.5 constituents/oxidative properties modify the health effects of 

oxidative gases, the results suggest that regulatory measures targeted at specific PM2.5 

constituents may have considerable co-benefits in reducing the health effects of oxidant gases, 

which is important because ozone (an oxidant gas) is notoriously challenging to regulate.  
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 Additionally, the findings from Objective 3 which suggest that wildfire exposures are 

positively associated with lung and brain cancer is of global importance. A comprehensive report 

published by the United Nations Environment Programme in 2022 outlines the widespread threat 

wildfires pose to human health, the environment, and the economy, and the role of human 

activity in exacerbating these events81. Although our study by no means establishes a causal 

effect of wildfires on lung and brain cancer (this study is the first of its kind with various 

limitations; much more work is needed), the results are concerning to populations that are 

repeatedly exposed to wildfire events, such as those living in Western Canada or the United 

States. This study, in addition to the existing body of evidence on the harmful short-term health 

effects of wildfires, can inform policy related to reducing the health risks posed by wildfires. For 

example, forest management practices including prescribed burns (which act to manage the 

available fuel before a fire breaks out) is one such hazard mitigation action that can reduce the 

intensity, severity and size of a wildfire. Similarly, given that climate change strongly influences 

the behaviour of wildfires, countries should meet their commitments to the Paris Agreement to 

reduce global warming. Policies related to maintaining indoor air quality (e.g., building codes, 

HVAC systems, etc.) may also help alleviate the health risks associated with wildfires because 

individuals generally spend most their time inside.   

 

6.4 Future research 

There are several opportunities for future research related to the subject matters covered 

in this thesis. Regarding Objective 1, an important gap in knowledge is whether the impacts of 

air pollution on short-term changes in the microvasculature in children, as measured by retinal 

arteriolar diameter, lead to more chronic changes over time. If the microvasculature of children is 
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resilient and can easily bounce back from acute injury caused by air pollution exposure, then the 

impacts of air pollution in childhood on the microvasculature might not be a major concern. 

Conversely, if these short-term changes eventually lead to more chronic injury, then regulatory 

measures aimed at improving air quality should be a priority to protect children's cardiovascular 

health. Existing evidence with other cardiovascular health markers indicate that early life 

exposures to air pollution can alter an individual's health trajectory and increase their risk of poor 

cardiovascular health in later life244, so we suspect a similar effect on the microvasculature may 

exist. A study design that evaluates the associations between childhood air pollution exposure 

and the structure of the microvasculature in adulthood could provide important information 

related to whether air pollution in childhood has long-term impacts on microvascular health.  

In addition, despite residential biomass burning being an important source of air pollution in 

Canada, limited research has investigated associations between this source of air pollution 

specifically and adverse health outcomes, which is relevant to directly inform policy changes.  

 Regarding Objective 2, it would be of interest to evaluate whether PM2.5 constituents or 

oxidative potential modify associations with longer-term health outcomes in children, such as the 

incidence of asthma or childhood cancers. In fact, long-term estimates of particulate matter 

constituents and oxidative potential are available in Canada and we may link this data to the 

appropriate health outcomes datasets to pursue this avenue of research in the future. 

As for Objective 3, much more work is needed to better understand the potential long-

term health effects of wildfires. Specifically, exploring different health outcomes, including all-

cause/cause-specific mortality as well as alternative cancer types, is of interest, in addition to the 

impacts on vulnerable populations such as those with pre-existing health conditions, pregnant 

women, children, and the elderly. Moreover, area burned is a crude estimate of wildfire exposure 
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and other exposure assessment methods may offer complementary insights into the long-term 

health effects of wildfires. For example, the recently developed Canadian Optimized Statistical 

Smoke Exposure Model (Canossem)245 estimates daily biomass burning-specific PM2.5 across the 

country from 2010-2019 and can be linked to existing cohort studies or other administrative 

datasets. An important strength of this approach to exposure assessment compared to area burned 

is that wildfire-derived smoke that travels long distances in the wind is accounted for, although 

this dataset is currently limited in its utility for evaluating long-term wildfire exposures because 

only 10 years of smoke exposure are available. Lastly, from a toxicological standpoint, there is 

also a need to further study what pollutants are emitted during wildfire events and what 

pollutants persist in the environment after a wildfire. This would require sampling active smoke 

plumes, nearby bodies of water, soil and indoor environments affected by wildfires. 

 

6.5 Conclusion 

In conclusion, this dissertation observed harmful effects of short-term and sub-chronic 

exposures to residential biomass burning on the cardiovascular health of children (Objective 1), 

the important modifying role of metals, sulfur and particle oxidative potential in associations 

between short-term PM2.5, oxidant gases and respiratory hospitalizations (Objective 2), and 

positive associations between long-term wildfire exposures and lung and brain cancer (Objective 

3). Through focusing on specific sources, constituents, or oxidative properties of air pollution, as 

well as through considering interactions between co-pollutants, this dissertation aimed to provide 

a more refined understanding of the health effects of ambient air pollution in Canada and such 

information may be useful to help inform future policymaking.  
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