
Interpretable Machine Learning for Malware

Detection and Adversarial Defense

Miles Qi Li, School of Computer Science

McGill University, Montreal

July, 2022

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Ph.D. of Computer Science

©Miles Qi Li, 2022

Abstract

As the Internet becomes ubiquitous and of paramount importance to people’s lives, cyber

attacks have also become a larger concern for not only individuals, but corporations and

governments as well. As a consequence, cybersecurity has caught considerable attention.

As machine learning has grown and large datasets have been amassed in recent years,

an increasing number of advanced machine learning-based methods have been applied

in the cybersecurity field. This proposed research focuses on proposing novel machine

learning solutions with high performance for two cybersecurity tasks: malware detection

and black-box adversarial defense. To help users of the prospective solutions gain in-

sights into the cases and validate the outputs, the interpretability of the machine learning

solutions is also evaluated in this research. All in all, this thesis makes new contribu-

tions in three directions: interpretable classification, malware detection, and black-box

adversarial defense.

In recent years increasingly complex deep neural networks have been proposed to

refresh the classification performance scoreboard in the field of applied machine learning.

However, it is difficult to understand exactly how they make predictions. In some cases,

interpretability is expected for multiple reasons, such as to gain trust in the classification

results and to gain knowledge from the explanations. For interpretable classification,

we propose an intrinsically interpretable feedforward neural network architecture that

achieves both solid classification performance and interpretability.

Malware has been the major means for cyber attacks and there is tremendous growth

in the volume of new malware broadcasting on the Internet. Thus, there is a pressing need

i

to create intelligent malware detection systems. Existing malware detection methods lack

the ability to analyze malware based on their complete assembly code, and state-of-the-art

methods also lack interpretability for classification results. To address these limitations,

we propose a novel state-of-the-art deep neural network architecture that can model the

full semantics of assembly code and that has the ability to analyze a sample from multiple

static feature scopes as well as the interpretability to explain the detection results.

Machine learning models can be compromised by adversarial attacks that intend to

cause them to mis-classify samples that contain often imperceptible but carefully selected

perturbations. This vulnerability could be exploited to induce catastrophic consequences.

Adversarial attacks can be conducted in either the while-box scenario, in which an ad-

versary has complete knowledge of the target machine learning model, or the black-box

scenario, in which an adversary has no knowledge of the target machine learning model.

The latter is more common in real-world situations because most classification service

providers do not reveal the details of their systems. Hence, our focus is on defense against

black-box adversarial attacks. Existing defense methods are static and cannot dynam-

ically evolve to adapt to adversarial attacks, which unnecessarily disadvantages them.

In this segment of our research, we propose a novel dynamic defense method that can

effectively utilize previous experience to identify black-box attacks.

ii

Abrégé

Alors qu’Internet devient omniprésent capitale dans la vie des gens, les cyberattaques

sont également devenues une préoccupation majeure non seulement pour les particuliers,

mais aussi pour les entreprises et les gouvernements. Avec le développement de l’apprent

-issage automatique et l’accumulation de grands ensembles de données ces dernières

années, un nombre croissant de méthodes avancées basées sur l’apprentissage automa-

tique ont été appliquées dans le domaine de la cybersécurité. Ce projet de recherche vise

à proposer de nouvelles solutions d’apprentissage automatique pour deux problèmes de

recherche en cybersécurité : la détection des logiciels malveillants et la défense adversar-

iale en boı̂te noire. Pour aider les utilisateurs des solutions envisagées à mieux compren-

dre les cas et à valider les résultats, l’interprétabilité des solutions d’apprentissage au-

tomatique est également évaluée dans cette recherche. Cette thèse apporte de nouvelles

contributions dans trois directions de l’apprentissage automatique pour la cybersécurité

: la classification interprétable, la détection de logiciels malveillants et la défense contra-

dictoire en boı̂te noire.

Ces dernières années, des réseaux neuronaux profonds de plus en plus complexes

ont été proposés pour rafraı̂chir le tableau des performances de classification dans le do-

maine de l’apprentissage automatique appliqué. Cependant, il est difficile de compren-

dre exactement comment ils font des prédictions. Dans certains cas, l’interprétabilité est

attendues pour de multiples raisons, telles que la confiance dans les résultats de classi-

fication et l’acquisition de connaissances à partir des les explications. Pour une classifi-

cation interprétable, nous proposons une architecture de réseau neuronal à anticipation

iii

intrinsèquement interprétable qui permet d’obtenir à la fois de bonnes performances de

classification et une bonne interprétabilité.

Les logiciels malveillants sont à l’origine de nombreuses cyberattaques. Il est donc

urgent de créer des systèmes intelligents de détection des logiciels malveillants. Les

méthodes de détection de logiciels malveillants existantes n’ont pas la capacité d’analyser

les logiciels malveillants sur la base de leur code d’assemblage complet, et les méthodes

de pointe manquent également d’interprétabilité pour les résultats de classification. Pour

remédier à ces limitations, nous proposons une nouvelle architecture de réseau neuronal

profond à la pointe de la technologie qui peut modéliser la sémantique complète du code

d’assemblage et qui a la capacité d’analyser un échantillon à partir de plusieurs portées

de caractéristiques statiques ainsi que l’interprétabilité pour expliquer les résultats de la

détection.

Les modèles d’apprentissage automatique peuvent être compromis par des attaques

adverses qui visent à les amener à mal classer des échantillons contenant des perturba-

tions souvent imperceptibles mais soigneusement sélectionnées. Cette vulnérabilité peut

être exploitée pour entraı̂ner des conséquences catastrophiques. Les attaques adverses

peuvent être menées soit dans le cadre du scénario ”while-box”, dans lequel un adver-

saire a une connaissance complète du modèle d’apprentissage automatique cible, soit

dans le cadre du scénario ”black-box”, dans lequel un adversaire n’a aucune connais-

sance du modèle d’apprentissage automatique cible. Ce dernier est plus courant dans les

situations réelles car la plupart des fournisseurs de services de classification ne révèlent

pas les détails de leurs systèmes. Par conséquent, nous nous concentrons sur la défense

contre les attaques adverses en boı̂te noire. Les méthodes de défense existantes sont sta-

tiques et ne peuvent pas évoluer dynamiquement pour s’adapter aux attaques adverses,

ce qui les désavantage inutilement. Dans ce segment de notre recherche, nous proposons

une nouvelle méthode de défense dynamique qui peut utiliser efficacement l’expérience

antérieure pour identifier les attaques de la boı̂te noire.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Benjamin C. M.

Fung, for accepting me to his research team and offering immense guidance and support

to my Ph.D. study. I am deeply appreciative of the patience, efforts, and generosity that

he has shown me since I came to Canada to begin my Ph.D. journey. I feel very lucky

to learn from his extensive knowledge of the research area and benefit from his kindness

towards his students. His support brings me serenity in this country.

I am also very grateful to my supervisory committee members, Dr. Xujie Si and Dr.

Danny Tarlow, for their constructive feedback to my Ph.D. study. I would also like to

thank the members of our DMaS lab, especially Steven Ding, Adel Abussita, Malik Al-

takrori, Ashita Diwan, Guillaume Breyton, and Alexander Blostein, for the insightful dis-

cussions on the research topics.

I would also like to express my thanks to my family. My parents, who are professors

of natural science, told me that I had the talent to be a scientist and encouraged me to

contribute to the advancement of science. They also told me that there was no need to be

afraid of failure, and I could freely try my best to pursue a career as a scientist because

they would always have my back, no matter what. Many thanks to my wife, who came to

Canada to begin her Ph.D. study at McGill with me, for surrounding me with happiness

and going through difficulties with me over the years. She has encouraged and inspired

me from many aspects. Special thanks to my grandparents, Jiuyue Liu and Jinghua Yang,

for their love since the beginning of my life.

v

I especially thank McGill University for accepting me as a member and for providing

the high-quality education and opportunities to conduct research jointly with exemplary

scholars.

This research is supported by Discovery Grants (RGPIN-2018-03872) from the Natural

Sciences and Engineering Research Council of Canada, Canada Research Chairs Program

(950-232791), and the Canadian National Defence Innovation for Defence Excellence and

Security (IDEaS W7714-217794/001/SV1). The Titan Xp used for the research was do-

nated by the NVIDIA Corporation.

vi

List of Publications

During my Ph.D. study, I have completed seven papers as the first author. In these works,

I am the one who proposed the ideas, implemented the methods, and conducted the

evaluations. Among them, two journal articles, three conference papers, and one book

chapter have been published/accepted. In addition, I am the second author of three other

papers. Among them, one is published in a journal. All the relevant papers are listed

below.

1. Interpretable Classification:

• Li, M. Q., Fung, B. C. M., & Abusitta, A. On the Effectiveness of Interpretable

Feedforward Neural Network. In Proceedings of the International Conference on

Joint Conference on Neural Networks (IJCNN), 8 pages, Padova, Italy: IEEE, July

2022.

• Abusitta, A., Li, M. Q., & Fung, B. C. M. Survey on Explainable AI: Techniques,

Challenges and Open Issues. (Under review)

2. Malware Detection:

• Li, M. Q., Fung, B. C. M., Charland, P., & Ding, S. H. H. I-MAD: Interpretable

Malware Detector Using Galaxy Transformer. Computers & Security (COSE),

108(102371):1-15, September 2021. Elsevier. (JCR impact factor: 4.438)

• Abusitta, A., Li, M. Q., & Fung, B. C. M. Malware Classification and Composi-

tion Analysis: A Survey of Recent Developments. Journal of Information Security

vii

and Applications (JISA), 59(102828):1-17, June 2021. Elsevier. (JCR impact factor:

3.872)

3. Black-box Adversarial Defense:

• Li, M. Q., Fung, B. C. M., & Charland, P. DyAdvDefender: An Instance-based

Online Machine Learning Model for Perturbation-trial-based Black-box Adver-

sarial Defense. Information Sciences (INS), 601:357-373, July 2022. Elsevier. (JCR

impact factor: 6.795)

The following research articles were also completed during my Ph.D. study, but their

contents are not included in the thesis.

1. Malware Classification:

• Li, M. Q., Fung, B. C. M., Charland, P., & Ding, S. H. H. A Novel and Dedi-

cated Machine Learning Model for Malware Classification. In Proceedings of the

16th International Conference on Software Technologies (ICSOFT), pages 617-628,

Virtual Conference: ScitePress, July 2021. (Full paper acceptance ratio: 15%)

• Li, M. Q., Fung, B. C. M. Software Technologies, chapter: A Novel Neural Network-

based Malware Severity Classification System, pages 218-232, series Commu-

nications in Computer and Information Science (CCIS), July 2022. Springer.

• Li, M. Q., Fung, B. C. M. Interpretable Malware Classification based on Func-

tional Analysis. In Proceedings of the 17th International Conference on Software

Technologies (ICSOFT), 8 pages, Lisbon, Portugal: July 2022.

2. Vulnerability Detection:

• Li, M. Q., Fung, B. C. M., & Diwan, A. A Novel Deep Multi-head Attentive

Vulnerable Line Detector. (Under review)

• Diwan, A., Li, M. Q., & Fung, B. C. M. VDGraph2Vec: Vulnerability Detection

in Assembly Code using Message Passing Neural Networks. (Under review)

viii

Contribution to Original Knowledge

The contents in this thesis contribute to the original knowledge base of three research

communities: interpretable machine learning, malware detection, and adversarial attack

and defense.

For interpretable classification, the proposed interpretable feedforward neural network

(IFFNN) architecture can serve as a novel solution for many classification scenarios that

require both high classification performance and explanations for the classification re-

sults. It also has two advantages over the most prevalent post-hoc explanation methods.

One is that the explanations are genuine and thus accurate. The second is that there is

very little extra computation required to obtain the explanations. Our comprehensive

evaluation on the classification performance and interpretability of the proposed solution

also shows the effectiveness of our proposed approach to the research community.

For malware detection the proposed overall solution, namely I-MAD, includes several

novelties and can serve as a new state-of-the-art malware detector for practical use. Its

Galaxy Transformer component stands as an early effective attempt to model the full se-

quences of assembly code for malware detection. It also includes our improved ways to

use traditional features for malware detection. Its interpretability allows malware ana-

lysts to examine the classification results and gain insights into the malware samples.

For black-box adversarial defense, we propose a novel state-of-the-art defense method,

namely DyAdvDefender, an instance-based online machine learning model. As compared

to previous defense methods, it is the first instance-based online machine learning model

for the task. Its advantage is the ability to update its state whenever it receives a new

ix

query sample. It outperforms previous defense methods against different adversarial at-

tack algorithms, and it can serve as a practical solution for black-box adversarial defense

to be applied in real-world applications.

x

Contribution of Authors

The novel solutions to the three research topics involved in the thesis were proposed by

the candidate after discussions with my supervisor Prof. Benjamin C. M. Fung. The can-

didate then implemented the proposed solutions, conducted the experiments, improved

the initial solutions, and formed the research papers that have been published/accepted

in a journal/conference proceedings under the supervision of Prof. Fung. The candidate

then wrote the corresponding chapters in the thesis based on the published/accepted

papers. Dr. Adel Abusitta, a postdoctoral fellow in our lab at McGill, provided vali-

dation and suggestions on improving the writing of the research paper for interpretable

classification. Mr. Philippe Charland, a defense scientist from Defence Research and De-

velopment Canada (DRDC), provided feedback to the candidate on the research projects

of malware detection and black-box adversarial defense, and he helped the candidate im-

prove the writing of the corresponding research papers. Dr. Steven H. H. Ding helped

the candidate on the acquisition of the datasets used in the malware detection work and

provided suggestions on the improvement of the writing of the research paper.

The literature reviews of the three research topics in the thesis are all written by the

candidate under the supervision of Prof. Benjamin Fung. The literature review on mal-

ware detection was written to fulfill the comprehensive exam required by the School of

Computer Science. Dr. Adel Abusitta then identified the values for the community and

improved it jointly with the candidate to form a survey paper published in a journal. Dr.

Adel Abusitta and the candidate also completed a survey paper on explainable AI. The

literature review on interpretable and explainable machine learning in the thesis is dis-

xi

tinct from this survey paper and drafted by the candidate himself. The literature review

on adversarial attack and defense has been written by the candidate himself as well.

xii

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

List of Publications . vii

Contribution to Original Knowledge . ix

Contribution of Authors . xi

List of Figures . xvii

List of Tables . xix

1 Introduction 1

1.1 Interpretable Classification . 2

1.2 Malware Detection . 3

1.3 Adversarial Attack and Defense . 5

1.4 Thesis Organization . 6

2 Literature Review 7

2.1 Interpretable and Explainable Machine Learning 7

2.1.1 Interpretable Machine Learning . 8

2.1.2 Explainable Machine Learning . 10

2.1.3 Interpretable Machine Learning vs. Explainable Machine Learning . 13

2.2 Malware Detection . 14

2.2.1 Malware Techniques . 15

xiii

2.2.2 Feature Extraction Methods . 17

2.2.3 Features . 19

2.2.4 Classification Models . 29

2.3 Adversarial Attack and Defense . 39

2.3.1 Definitions . 40

2.3.2 Taxonomy . 40

2.3.3 Adversarial Attack Methods . 42

2.3.4 Adversarial Defense Methods . 47

3 Interpretable Classification 50

3.1 Interpretable Feedforward Neural Network 51

3.1.1 Discussion . 54

3.2 Experiments . 55

3.2.1 Datasets . 55

3.2.2 Models . 57

3.2.3 Evaluation Metrics . 58

3.2.4 Experiment Setting . 59

3.2.5 Classification Results . 61

3.2.6 Interpretability Results . 61

4 Malware Detection 64

4.1 Problem Definition . 68

4.2 Methodology . 69

4.2.1 Galaxy Transformer . 70

4.2.2 Satellite-Planet Transformer to Understand Basic Blocks 73

4.2.3 Planet-Star Transformer to Understand Assembly Function 74

4.2.4 Star-Galaxy Transformer to Understand Full Logic of Executable . . 75

4.2.5 Other Features . 76

4.2.6 Interpretable Feed-Forward Neural Network 78

xiv

4.2.7 Model Training . 80

4.3 Experiments . 81

4.3.1 Datasets and Pre-training . 81

4.3.2 Models for Comparison . 83

4.3.3 Experiment Settings . 86

4.3.4 Results . 86

4.3.5 Interpretability . 89

4.3.6 Efficiency Study . 92

5 Defense Against Black-box Adversarial Attacks 94

5.1 Proposed Defense Method . 95

5.1.1 Preliminaries . 96

5.1.2 Overall Defense Mechanism . 97

5.1.3 Determination of Same Origin . 98

5.1.4 Optimizations . 101

5.1.5 Interpretability . 104

5.2 Discussion . 105

5.3 Experiments . 106

5.3.1 Datasets . 106

5.3.2 Evaluation Metrics . 107

5.3.3 Two-Round Evaluation . 108

5.3.4 Adversarial Attack and Defense Methods 109

5.3.5 Classification Models to Defend . 111

5.3.6 Hyperparameters . 112

5.3.7 Results . 112

5.3.8 Efficiency Study . 115

5.3.9 Impacts of Number of LSH Functions 116

5.3.10 Impacts of Threshold θ0 . 117

5.3.11 Validity of Adversarial Samples . 119

xv

5.4 Limitations . 120

6 Conclusion and Future Work 121

6.1 Conclusion . 121

6.2 Future Work . 122

xvi

List of Figures

3.1 Examples of images and the explanations for the classifications on MNIST

with only 0 and 1. 62

4.1 The comparison of topology of the Transformer, Star/Star-Plus Transformer,

and Galaxy Transformer. 67

4.2 An overview of our I-MAD model. 69

4.3 The architecture of the IFFNN applied in I-MAD. 78

5.1 The relation between the average response time and the number of indexed

samples on MNIST and CIFAR-10. The average response time is shown on

both linear scale view and logarithmic scale view. 117

5.2 The relation between the classification accuracy, attack success rate, and

average response time with the number of LSH functions, with ZOO and

AutoZOOM as the attacks. 118

5.3 The relation between ASR/ACC and θ0 on MNIST and CIFAR-10. The em-

pirical distance threshold θ∗0 computed on the training sets is shown as ver-

tical lines. 119

5.4 Adversarial samples with per-pixel perturbation between 1.0E-3 and 1.0E-

2 and their original samples. 120

xvii

List of Tables

2.1 Summary of features and models used in malware analysis systems. 35

3.1 Statistics of the datasets used for evaluation. 55

3.2 Candidate values for hyper-parameters of decision tree. 58

3.3 Classification performance evaluation on MNIST and INBEN. 60

3.4 Evaluation of interpretability with Accuracy@N on INBEN. 61

4.1 Sample result of our malware detection and its explanation, which includes

the 5 factors that contribute most to the prediction and the most related

assembly functions. 65

4.2 PE header numerical fields we use. 77

4.3 Top 10 majority malware families of the dataset. 81

4.4 Top 10 packers used in the malware dataset. 83

4.5 Results of k-fold cross-validation experiment. It includes the p-values (pv)

of t-test for F1 and accuracy between I-MAD (ST+) and other models. 84

4.6 Results of time split experiment. It includes the p-values of t-test for F1 and

accuracy between I-MAD (ST+) and other models. 87

4.7 Most frequent main factors leading to the predictions of the malicious or

benign class. 90

4.8 The Spearman’s Rank Correlation Coefficient between the feature impor-

tance rank given by I-MAD, Gini importance, and information gain. 92

xviii

4.9 Efficiency of each model in terms of number of samples classified per sec-

ond. The time consumption for feature extraction is not included. 93

5.1 The architectures of the neural networks defended by DyAdvDefender for

malware detection. 111

5.2 The distance threshold θ∗0 computed on each dataset and each feature set. . 112

5.3 Experiment results on MNIST. 113

5.4 Experiment results on CIFAR-10. 114

5.5 Experimental results on malware detection. The attack method is ZOO. . . 115

xix

List of Abbreviations

IFFNN Interpretable Feedforward Neural Network

Malware Malicious Software

I-MAD Interpretable MAlware Detector

DyAdvDefender Dynamic Adversarial Defender

GA2Ms Generalized Additive Models with Pairwise Interactions

CNN Convolutional Neural Network

RETAIN REverse Time AttentIoN

RNN Recurrent Neural Network

NBC Naive Bayes Classifier

DT Decision Tree

FGSM Fast Gradient Sign Method

IGS Iterative Gradient Sign

PGD Projected Gradient Descent

FDM Forward Derivative Method

BN Bayesian Network

KNN K-nearest Neighbors

xx

SVM Support Vector Machine

PE Portable Executable

VM Virtual Machine

TF-IDF Term Frequency-Inverse Document Frequency

COFF Common Object File Format

DeepLIFT Deep Learning Important FeaTures

ZOO Zeroth Order Optimization

AutoZOOM Autoencoder-based Zeroth Order Optimization Method

NES Natural Evolution Strategies

SAP Stochastic Activation Pruning

CGAN Conditional Generative Adversarial Network

KD Kernel Density

CAM Class Activation Mapping

LIME Local Interpretable Model-agnostic Explanations

SHAP SHapley Additive exPlanations

ERM Empirical risk minimization

LSH Locality Sensitive Hashing

xxi

Chapter 1

Introduction

The growth and success of the Internet has brought enormous benefits and convenience

to modern life. People connect computers, smartphones, and tablets to the Internet for

various purposes such as communications, information, services, businesses, and more.

According to the statistics, the average person spends around 7 hours looking at a screen

per day [99]. The Internet has penetrated into every aspect of daily life, and this fact raises

security concerns. Due to the ubiquitous Internet, malicious hackers have the opportu-

nities to cause destructive losses to individuals, businesses, and governments as well. In

fact, cyber attacks are undeniably happening on a daily basis 1.

On the other hand, the booming success of the Internet also allows data scientists

to gather large volumes of data for analyses. This yields the opportunity for the devel-

opment of state-of-the-art machine learning techniques to create novel defense systems

against cyber attacks [53, 96]. The objective of this thesis is to propose novel machine

learning solutions to two major cybersecurity tasks: malware detection and black-box

adversarial defense. As a classification task, existing state-of-the-art malware detection

solutions do not have the interpretability to explain the classification results. It is widely

believed that there is a trade-off between performance and interpretability of machine

learning models [119, 128]. In the applied machine learning community, interpretabil-

1https://www.fireeye.com/cyber-map/threat-map.html

1

https://www.fireeye.com/cyber-map/threat-map.html

ity is often compromised for better performance. However, from our collaboration with

malware analysts, we see that analysts expect the explanations of classification results to

validate the results and gain insights into the target samples. Therefore, we value the

interpretability of the solutions in this thesis. To overcome the challenge of keeping both

excellent performance and interpretability we propose a novel neural network architec-

ture for interpretable classification to be the foundation for the classification task, and it

is thus applied to our solution for malware detection.

Below, we introduce the three tasks: interpretable classification, malware detection,

and black-box adversarial defense and our solutions to them.

1.1 Interpretable Classification

Deep learning classification models are achieving state-of-the-art performance in an in-

creasing number of tasks [21, 56, 75]. They usually work as black-boxes; when a large

number of training samples are fed to them, they learn patterns that correlate with differ-

ent classes. The patterns are then used to classify unseen samples. However, most deep

neural networks only implicitly learn and use the patterns, and they do not explicitly

explain the reasons why a sample belongs to a class.

Having said that, there are interpretable machine learning classification models, such

as linear regression, softmax regression, and decision trees [84]. These models can ex-

plain their classification results in a clear and simple way. However, their expressive

abilities are very limited, so they cannot model complex relations between a feature and

the outcome or the various interactions between different features. For example, linear

regression and softmax regression can be seen as neural networks with no hidden lay-

ers. They can tell to what extent each feature contributes to a classification result. The

interpretability comes from the fact that the relation between a feature and the class of a

sample is computed independently without any interactions. Even though this simplic-

ity allows the models to explain their classification results, they yield inferior results as

2

compared to multi-layer neural networks. In this day, classification performance has a

higher priority than interpretability in most cases. Hence, these simple models are often

less useful than complex and non-interpretable models [98].

In an attempt to solve the dilemma of choosing between high classification perfor-

mance or interpretability, some post-hoc explanation techniques have been proposed to

explain the classification results of complex machine learning models, but these meth-

ods have several limitations. Some of them have high computational complexity, and

their derived explanations are not always accurate [44, 120, 133]. Some of them can only

explain certain kinds of models [16, 149].

To avoid the aforementioned methods, we propose a novel intrinsically interpretable

feedforward neural network architecture to provide genuine explanations for the classi-

fication results without harming the classification performance and with little overhead

to acquire the explanations. We conducted comprehensive experiments to illustrate that

the explanations are accurate and that the neural network architecture required for the

interpretability does not harm the classification performance.

1.2 Malware Detection

Malicious software (malware) is any software that is designed to cause damages to a com-

puter system or its users. Specifically, malware can block an Internet connection, corrupt

an operating system, steal a user’s private information, and encrypt a user’s important

documents for ransom. In the last 20 years, malware has been a growing threat to com-

puter users, and in 2017 the number of new malware increased by 22.9% over 2016 to

8,400,058 [2]. Recognizing malware samples downloaded by legitimate users in a timely

manner is of crucial importance for users’ protection. To manually analyze malware sam-

ples is not efficient enough to prevent such a large number of new malware samples from

releasing their payloads and causing damages. There is thus a pressing need to create

artificial intelligence-based methods to recognize malware.

3

Signature-based malware detection methods have been widely used in antivirus prod-

ucts. They can recognize known malware, but they are limited in recognizing significant

variants of existing malware and new malware [46, 146]. Therefore, machine learning-

based methods have been proposed.

There are two major challenges these methods face. The first is to model the full se-

mantics behind the assembly code of malware. This is because the whole assembly code

of executables is very long, and an executable of 1 MB could contain hundreds of thou-

sands of assembly instructions. The second challenge is to provide interpretable results

while keeping excellent classification performance. This is because in most cases there is

a trade-off between the classification performance of a machine learning model and its

interpretability [10, 119, 128]. Interpretability is one of the dominant features for classifi-

cation models in some domains, such as healthcare and cybersecurity. In malware detec-

tion, the interpretability can help malware analysts examine the classification results and

create a knowledge base of malware samples.

We propose the following novel solutions to overcome these challenges and provide

better performance:

• a novel neural network architecture called the Galaxy Transformer network that uses

the innate hierarchical structure of the assembly code of a sample to compute its

vector representation;

• improved ways to use traditional features for malware detection;

• application of our proposed interpretable feedforward neural network to provide

explanations on the importance of each feature to a detection result.

Experiment results show that our overall model, I-MAD, significantly outperforms ex-

isting state-of-the-art static malware detection models and presents meaningful explana-

tions.

4

1.3 Adversarial Attack and Defense

Machine learning models, especially deep neural networks, have achieved state-of-the-

art performance in many fields in the cyber world, e.g., image classification, malware

detection, and natural language processing [22, 88, 145]. As a consequence, state-of-the-

art machine learning models have gradually been integrated into online services. As this

transformation brings convenience to people’s lives, it also comes with a concern. Re-

searchers have found that machine learning models can be compromised by adversarial

attacks [61, 82, 109, 152] that intend to cause the machine learning models to misclassify

samples that contain often imperceptible, but carefully selected perturbations. This vul-

nerability can be exploited to induce catastrophic effect: an autonomous vehicle that fails

to recognize a stop sign may cause a traffic accident; failure to recognize a malware pro-

gram may cause an enormous loss to a computer user. Evidence proves that adversarial

attacks have come to real-world scenarios [82, 134]. As a result, adversarial attack and

defense are topics extensively studied [142].

A machine learning classification model is a function f(x) that maps an input sample

x to an output y, an n-dimensional vector, where n is the number of classes. Each element

of y corresponds to the probability that x belongs to a certain class. The objective of an

adversary is to add a minimal perturbation δ to a natural sample x, so that f(x + δ)

presents a false result. Adversarial samples with large perturbations are relatively easy to

detect; however, adversarial attacks present a challenge because the perturbation added

to a natural sample is usually very small, yet very effective [28, 142].

A common issue with existing defense methods is that they are static; therefore, they

cannot update their states to counter adversaries. This leads to an unnecessary disadvan-

tage for the defenders because adversaries can update their attack strategies according

to the information acquired from their pry attempts. Based on this intuition, we propose

DyAdvDefender, the first instance-based online machine learning model for the defense

against black-box adversarial attacks. DyAdvDefender can recognize a perturbed sam-

5

ple that originates from the same sample as a previously queried sample so as to prevent

the adversaries from prying gradient information. Extensive experimental results sug-

gest that DyAdvDefender outperforms existing static methods in terms of defense effec-

tiveness while keeping the original classification accuracy with only limited extra time

consumption.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 presents a literature review on the research topics relevant to this thesis.

Chapter 3 presents the proposed interpretable feedforward neural network (IFFNN)

architecture for interpretable classification. Part of the contents in this chapter has been

accepted to the 2022 International Joint Conference on Neural Networks (IJCNN 2022) as

a full paper.

Chapter 4 presents the details of our Interpretable MAlware Detector (I-MAD) and demon-

strates how it addresses the challenges for malware detection. Part of the contents in this

chapter has been published in Computers & Security, an Elsevier journal.

Chapter 5 presents DyAdvDefender, our instance-based online machine learning model

to defend against black-box adversarial attacks, and demonstrates how it is optimized for

efficiency and effectiveness. Part of the contents in this chapter has been published in

Information Sciences, an Elsevier journal.

Chapter 6 concludes the proposed solutions for the research topics in this thesis and

discusses the potential improvements that could be made as future work.

6

Chapter 2

Literature Review

In this chapter, we present a literature review on each of the three research topics con-

cerning this thesis. Section 2.1 reviews existing interpretable and explainable machine

learning techniques. Section 2.2 reviews the features and machine learning models that

have been proposed for malware detection and classification. Section 2.3 reviews the ex-

isting adversarial attack and defense methods in different scenarios.

2.1 Interpretable and Explainable Machine Learning

In the literature of applied machine learning, most works are aimed at state-of-the-art

performance. The gradually deeper and more sophisticated deep neural networks have

dominated the machine learning community for 10 years [21, 56, 75, 151]. They usually

work as black-boxes, with the ability to learn patterns that correlate with different classes

from a large number of training samples, and use them to classify unseen samples. How-

ever, most deep neural networks only implicitly learn and use the patterns, and cannot

explain the rationale behind a prediction.

There are situations in which explanations for the predictions of machine learning

models are required. For example, in healthcare the predictions of machine learning mod-

els concern critical decisions for patients, and thus they need to be justified by a doctor.

7

For malware detection, explanations of the detection results can help malware analysts

examine the detection results and gain insights into malware samples.

Explanations of machine learning models can be categorized as local and global [98].

Local explanations provide information on how an individual prediction is made, while

global explanations describe how a machine learning model makes predictions in general.

For the aforementioned purposes, we focus on local explanations in this thesis.

Many researchers believe that there is a clear trade-off between performance and in-

terpretability of machine learning models [90, 128], while some others do not agree [122].

As a matter of fact, linear or piece-wise linear models are intrinsically interpretable, and

the models that achieve state-of-the-art results are not intrinsically interpretable. To un-

derstand the rationale behind the predictions of the complex black-box models, post-hoc

explanation techniques can be used. They form the field of explainable machine learning,

and the intrinsically interpretable models form the field of interpretable machine learn-

ing.

In the remainder of this section we review the literature on the techniques to ac-

quire local explanations for machine learning models. Following the terminology used

by Rudin [122], we refer to the machine learning models that can provide genuine ex-

planations by themselves as ”interpretable machine learning”, and refer to the post-hoc

techniques to explain other machine learning models as ”explainable machine learning”.

2.1.1 Interpretable Machine Learning

Linear regression, logistic regression, and softmax regression are linear models for re-

gression, binary classification, and multi-class classification, respectively. They are com-

pletely interpretable because the product of the weight of a feature and the value of the

feature directly shows the contribution of the feature to the prediction. However, the

critical problems with these linear models are that they assume 1) the relation between

a feature and the prediction is linear, and 2) the features are independent of each other

towards determining the prediction. These assumptions are not true in most real-world

8

applications. Thus, the expressive ability of the linear models limits their performance in

real-world applications.

Generalized additive models with pairwise interactions (GA2Ms) can address the lim-

itations of linear models to some extent [25]. GA2Ms map each feature xi to a potentially

higher order space with a function fi(xi), and thus establish non-linear relations between

the features and the prediction. To allow feature interactions, the features are paired to

form new features fij(xi, xj) to be used the same way as the original features. Caruana et

al. [25] use these ideas together with other techniques to achieve state-of-the-art perfor-

mance on hospital 30-day readmission prediction. That being said, the limitation of their

method is that the interaction between more than two features is not modelled. If the in-

teractions of any feature combination are similarly included, the complexity would make

it unacceptable. In this sense, feedforward neural networks have the advantage because

they can model any kind of interaction between the features [40].

Another type of interpretable model with better expressive ability than linear models

is decision trees [92]. Decision trees split the values of features into different intervals, and

based on the intervals in which the features of a sample locate, the class of the sample is

determined. The way a decision tree makes a prediction can be expressed as a set of

”if-then” rules that are easily understandable to human experts. The decision boundary

of a decision tree is thus composed of straight lines. This kind of boundary allows the

model to form a better approximation to real-world data distribution than linear models.

However, the practice of splitting continuous variables into intervals causes the loss of

information, and thus inevitably reduces the modelling accuracy.

Zhou et al. [150] propose a way to make convolutional neural networks (CNNs) inter-

pretable. It requires the top layers of a CNN to have a constrained form: the feature

maps of the penultimate layer should be followed by a global average pooling, and the

output is fed to a fully-connected layer that produces the logits for classification. The

weighted summation of the feature maps for each class is called the class activation map

9

(CAM). The CAM is upsampled to the shape of the input image to show how discrimina-

tive/important each region of the input image is for the prediction.

For the interpretable classification of sequential data, Choi et al. [34] propose the

REverse Time AttentIoN (RETAIN) model that is composed of two attention-based recur-

rent neural networks (RNNs) to form a softmax regression with ”dynamically” computed

weights. One attention-based RNN is used to compute the importance/contribution of

each item in the sequence to the classification result, and the other attention-based RNN is

used to compute the importance/contribution of each variable in an item of the sequence

to the item. Then, they are combined to dynamically form the weights of the variables

in the items to be used in a softmax regression for the final classification result. The pro-

posed method delicately achieves the objective of a non-linear mapping from the features

to the prediction and has the interpretability to explain the prediction. The problem with

this work is that the explanations are not evaluated, and thus their quality is unclear.

This work also motives us to propose our novel solution for the interpretable classifica-

tion of vectorial data and to conduct a comprehensive evaluation on the validity of its

interpretability.

2.1.2 Explainable Machine Learning

In the literature of explainable machine learning, post-hoc explanation methods are cat-

egorized as model-agnostic and model-specific methods depending on whether the ex-

planation method can be applied to any machine learning model for a task or only to a

specific family of machine learning models.

Model-Agnostic Explanation Methods

Model-agnostic explanation methods treat the target machine learning model as a black-

box, i.e., they do not require the knowledge of the model to explain, and only need to

have the output of the model given any valid input to estimate how the target model

10

makes a prediction. The common disadvantages of this type of explanation method are

as follows:

• The fidelity of the explanations is not guaranteed.

• Most of them need to run the target model many times to acquire an explanation.

Below are some representative model-agnostic explanation methods.

Ribeiro et al. [120] propose a model-agnostic explanation method called Local Inter-

pretable Model-agnostic Explanations (LIME). To explain the prediction of a sample, they

try to randomly generate samples around the neighborhood of the target sample in the

feature space. They first use the target model to label these samples, and they then train

an intrinsically interpretable model with these samples and the labels given by the target

model. The intrinsically interpretable model is considered to be a local surrogate of the

target model. The explanation given by the surrogate model is used to explain the tar-

get model. The obvious drawback is the high time complexity of the method, especially

when the feature space is huge.

To observe how the value of a feature marginally affects the prediction for a sample,

Goldstein et al. [60] propose to plot a curve of the prediction against the feature while

keeping other feature values static. By applying the method on all features one by one,

they can establish an idea of how each feature influences the prediction. This method

is straightforward; however, it ignores the potential correlation between the feature to

observe and other features. The conclusion from the plot can be very misleading when

there is strong correlation between the features.

Lundberg and Lee [94] propose SHAP (SHapley Additive exPlanations) values to ex-

plain the contribution of each feature to the prediction of a sample. Shapley value is a con-

cept in cooperative game theory. It is the average marginal contribution of a feature value

across all possible coalitions. SHAP values are the Shapley values of a conditional expec-

tation of the target model. In other words, SHAP values are the marginal contribution

of a feature value to the prediction of a target sample when other features have the exact

11

values in the target sample. The authors propose two model-agnostic and four model-

specific methods to estimate SHAP values. SHAP values have three desirable properties

to serve as contributions of features. However, this method has very high computational

complexity, and thus it is not entirely practical.

Model-Specific Explanation Methods

The application scopes of different model-specific explanation methods can be quite dif-

ferent. For example, some methods are proposed to explain CNNs [128, 131, 149], while

some others can explain all neural networks (i.e., differentiable models) [130, 133]. Even

though they are all considered to be model-specific, we believe that the latter should be

categorized as model-semi-specific or model-semi-agnostic. Sometimes it can be difficult

to determine if an explanation method is model-specific or if the target model is intrinsi-

cally interpretable because in both cases the explanation technique can only be applied to

explain a specific model. Intuitively, intrinsically interpretable models are somehow con-

strained in their forms, and the explanations given to an intrinsically interpretable model

are genuine. That is why CAM and RETAIN, which we introduced above, are categorized

as intrinsic interpretability.

Sundararajan et al. [133] propose integrated gradients as a method to explain any type

of neural networks. They aggregate the gradients along the input space that fall on the

straight line between a baseline sample (i.e., a sample of which the prediction given by the

target model is neutral) and the target sample to serve as the contribution of the features

to the prediction. They prove that integrated gradients is the axiomatic explanation of the

prediction made by neural networks.

Shrikumar et al. [130] propose another method to explain any neural network, called

DeepLIFT (Deep Learning Important FeaTures). It can assign a contribution value for each

neuron or input feature for the prediction. This is achieved by comparing the activation

of each neuron of a target sample with the activation of a neutral reference sample, and it

12

then calculates a contribution score according to the difference. The contribution values

can be backpropagated with chain rule until the input features.

Deconvnet [149] and guided backpropagation [131] are proposed to explain convo-

lutional neural networks. For each kind of layer in a convolutional neural network, an

inverse operation is proposed to compute the contribution of a neuron in the lower layer

for the activation of neurons in the higher layer. The inverse computation goes down-

wards until the input feature map to show the contribution of the input features.

Selvaraju et al. [128] propose Grad-CAM (Gradient-weighted Class Activation Mapping),

a generalization of CAM [150], to explain the prediction of general CNNs by showing the

important regions of an image for the prediction. They perform global average pooling

on the gradient of a target class with respect to a convolutional feature map to serve as the

importance weight of the feature map for the target class. Then, the weighted summation

of the feature maps at the same layer are used to indicate the important regions to the

target class. As compared to CAM, Grad-CAM can be applied to general CNNs without

the constraints of form for CAM.

To make support vector machines (SVM) interpretable, Chen and Wang [33] identify

that a classifier based on fuzzy rules implicitly defines a Mercer kernel that is translation

invariant as long as the classifier’s membership functions satisfy an assumption. Thus,

they can build an interpretable SVM based on the learned fuzzy rules. The resulting

model has the expressive ability of a non-linear SVM and can provide explanations with

the fuzzy rules.

2.1.3 Interpretable Machine Learning vs. Explainable Machine Learn-

ing

Both interpretable machine learning and explainable machine learning have advantages

and disadvantages as compared with each other. Model-agnostic post-hoc explanation

methods can be applied to explain any machine learning model, thus giving flexibility to

13

the choice of the machine learning model for prediction. However, the fidelity of the ex-

planations that they provide may not be accurate [122], and they usually require running

the target model many times to acquire an explanation, which is quite time-consuming.

Model-specific explanation methods may also have these issues to a lesser degree. Intrin-

sically interpretable models provide genuine, and thus accurate explanations; however,

they are constrained in their form to keep their interpretability, and hence some of them

have lower prediction performance.

2.2 Malware Detection

Most antivirus engines detect or classify malware by checking whether the files to be

analyzed contain malware signatures. Those signatures are created by human antivirus

experts (known as malware analysts) through carefully examining the collected malware

samples. The signatures of malware can be filename, text strings, regular expressions of

byte sequence, etc [35,127]. Obviously, signature-based methods can only detect malware

originates from known malware which does not change significantly. However, malware

can hide its malicious behavior through obfuscation, packing, polymorphism, metamor-

phism, etc., so that the malware variants look entirely different from their original ver-

sions. Therefore, signature-based methods have two shortcomings. First, they have high

precision but low recall rate. Second, the process of creating signatures is labor-intensive.

Considering there is a large number of new malware samples appear every day, there is

a pressing need to develop new intelligent malware analysis methods.

To alleviate the burden of manual signature crafting, researchers propose different

automatic signature generation methods [27,30,147]. The content of the signatures can be

windows system call combinations [147], control flow graphs [27], and functions [30].

Researchers also propose to use machine learning models to detect and classify mal-

ware [7,41,42,69,72,77,78,101,106,125–127]. Generally speaking, machine learning mod-

els have more flexibility than signature-based method since a signature-based method

14

usually examine whether any signature in the database exist in an unknown sample to

determine whether it is positive while machine learning models can examine multiple

feature sources (e.g., printable strings, assembly code, windows system calls, etc.) and

they synthesize the effects of all features for the classification. As deep learning models

gradually outperform other machine learning models in most fields in the last 10 years,

effective deep learning models for malware analysis have been explored [41, 69, 77, 126].

The scope of the literature review consists of publications on malware detection and

classification techniques. Malware detection refers to the binary classification task to de-

termine whether an unknown executable is malware while malware classification refers

the multiclass classification task to classify an executable to one of the pre-defined classes

which may include specific malware classes (e.g., families), a generic malware class, and

a benign software (benignware) class. The techniques for both tasks are interchangeable

since the effective features for one of them are also effective for the other and the models

for both of them are classification models, so we do not distinguish them too much in

this literature review. We include publications that contribute on new feature extraction

methods, new feature sets (signatures are included when we use the term ‘features’ in the

paper), and new models for malware detection and classification.

The literature review is organized as follows. In Section 2.2.1, we review some com-

mon techniques used in malware, and with that knowledge we can better analyze each

component of a malware analysis system. In Section 2.2.2, we compare the static and

dynamic feature extraction methods. In Section 2.2.3, we review the features used in

malware analysis systems and their representations. In Section 2.2.4, we review the clas-

sification models used for malware analysis.

2.2.1 Malware Techniques

In this section, we introduce the common techniques used by malware authors to evade

the detection.

15

Obfuscation

The term ‘obfuscation’ in this literature review refers to the techniques used to create

a variant of the original code without affecting its functionality and it does not include

other techniques, such as packing, polymorphism, and metamorphism. The purpose of

obfuscation is usually to hide the real logic of the original code or to evade signature-

based detector or function clone detector [29, 52]. A few commonly used obfuscation

techniques are as follows:

1. Dead-Code Insertion [35]: insert useless instructions (e.g., nop) or insert some in-

structions that only affect unused variables.

2. Code Transposition [35]: change the order of the independent instructions.

3. Register Reassignment [35]: exchange the usage of registers for the storage of data/address

in a specific live range.

4. Instruction Substitution [35]: replace an instruction with equivalent instructions.

5. Control Flow Flattening [83]: 1) break up the body of the function to basic blocks

2) put all basic blocks which were originally at different nesting levels, next to each

other 3) encapsulate all basic blocks in a selective structure (a switch statement in

the C++) 4) encapsulate the selection in a loop

6. Bogus Control Flow [1]: for a basic block, add a new basic block which contains an

opaque predicate and then makes a conditional jump to the original basic block.

Packing

Packing is a technique to compress or encrypt an executable and put an uncompressing or

decryption engine in it so that those packed files will be uncompressed/decrypted during

runtime. It means a static analyzer cannot see the real program since a static analyzer does

not run the executable. Packing is used not only for malware but also for the protection

16

of benignware schemes [8, 27]. According to the statistics of Anderson et al. [8], 47.56%

malware is packed and 19.59% benignware is packed.

Polymorphism

Polymorphism is also a technique based on encryption and decryption. A polymorphic

malware contains two parts: the polymorphism engine and the real program which per-

forms the malicious functions. The former mutates the encryption algorithms and keys

when it replicates and the code of the latter per se is fixed but it is encrypted by the for-

mer in different ways in each generation, so the same polymorphic malware programs of

different generations appear completely different [89].

Metamorphism

A metamorphic malware re-programs itself when it replicates, so in each generation, the

whole program body is modified using code obfuscation techniques while the function-

ality is kept [89]. Metamorphic malware is considered to be more difficult to write than

polymorphic malware and polymorphic malware is easier to be detected since the main

program of polymorphic malware keeps the same after it is dynamically decrypted.

2.2.2 Feature Extraction Methods

Features of executables can be extracted statically or dynamically. In this section, we

compare the advantages and disadvantages of those two feature extraction methods.

Static Extraction Methods

A static feature extraction method extracts features from the content of an executable

without running it. Features can be extracted utilizing the file format, e.g., Portable Exe-

cutable (PE), Common Object File Format (COFF) so that code, data, information from meta-

data including DLLs, DLL functions, etc., can be extracted accordingly [8,72,101,126,127].

17

IDA Pro1 is a commonly used disassembler to extract assembly code, data, or print-

able strings [8, 72, 101]. The static features can also be extracted in a file-format agnos-

tic manner. Features extracted this way can be byte sequences, file size, byte entropy,

etc [78,106,126,127]. The advantage of static feature extraction method is that it can cover

the complete content of a file. However, the problem is static extraction methods are prone

to packing and polymorphism since most features statically extracted from a packed or

polymorphic malware sample are from encrypted contents rather than the original pro-

gram body [18].

Dynamic Extraction Methods

A dynamic feature extraction runs an executable usually in an insulated environment

which can be a virtual machine or an emulator and then extract features from the memory

image of the executable, the executed instructions, the high-level behaviors, and/or the

changes of system state. Since malware equipped with packing or polymorphism has

to exhibit the real malicious program to achieve their goals, dynamic feature extraction

is more resistant to those malware techniques compared with static feature extraction

method [18].

A virtual machine (VM) provides a subset of real hardware resources of a computer

in an insulated environment, so VMs have the limitation that they do not support cross-

platform analysis since the guest and host CPUs must be the same [27]. Anderson et al. [7,

8] use Xen2 and Royal et al. [121], Dai et al. [42], and Islam et al. [72] use VMWare3 to create

and run their VMs to perform dynamic analysis. Kolosnjaji et al. [77] extract system call

sequences using Cuckoo sandbox4 which is an open source automated malware analysis

system. Other researchers who work for a commercial anti-virus engine use the VMs as

part of their anti-virus engines to dynamically extract features [41, 69].

1https://www.hex-rays.com/products/ida/
2https://www.xenproject.org/
3https://www.vmware.com/
4https://cuckoosandbox.org/

18

An emulator uses software to perform functions of hardware. There are two cate-

gories of emulators: full-system emulator and application level emulator. A full-system

emulator is a piece of software that emulates every component of a computer, including

its processor, memory, graphics card, hard disk, etc., with the purpose of running an un-

modified operating system. Qemu5 is a full-system emulator used by several malware

analysis systems [18, 57, 125]. Considering the time-consuming of full-system emulator,

Cesare and Xiang [27] propose to use application level emulation to unpack malware

more efficiently so that only the parts which are necessary to execute the file including

the instruction set, virtual memory, windows API, linking and loading, thread and pro-

cess management, and OS specific structures are implemented.

One shortcoming of dynamic feature extraction methods is that it does not reveal all

possible execution paths [18]. Malware may have detection routines to check whether it

is executed in a VM or an emulator. When malware finds out that it is executed in such

an environment, it may halt its execution so dynamic models will fail to recognize it as

malware. The methods to detect whether an executable is executed inside a VM can be

found from several papers [55,124]. According to Bayer et al. [18], it is harder for malware

to find it is executed in an emulator than in a VM. In addition, some malware behavior is

triggered only under certain conditions and this may fail to be captured in an insulated

environment.

Another problem of the dynamic methods is that they take much more time than static

feature extraction [18]. Specifically, analysis with emulators takes more time than with

VMs.

2.2.3 Features

In this section, we introduce the features used by malware analysis systems and how they

are extracted and represented.

5https://www.qemu.org/

19

Printable Strings

A printable string is a sequence of ASCII characters terminated with a null character.

Schultz et al. [127] find that malware has similar strings that distinguished it from benign-

ware and the latter also has common strings that distinguishes it from malware. Printable

strings are represented as binary features in which ‘1’ represents a string is present and ‘0’

represents it is absent in all work [41,69,72,127] except the work of Saxe and Berlin [126].

Schultz et al. [127] extract printable strings from the headers of PE files. The extraction

is executed straightforwardly since the header is in plain text format. Dahl et al. [41]

and Huang and Stokes [69] extract null-terminated objects from the memory image of a

malware process [41,69] as printable strings. The coverage of their methods is better than

extract printable strings just from the headers but there are some false positive results

extracted this way. Huang and Stokes [69] find that most null-terminated objects are

indeed unpacked strings, but a few are individual code fragments. Dahl et al. [41] find

that most null-terminated objects correspond to system strings used to create a file. Islam

et al. [72] use the strings utility in IDA Pro to extract printable strings from a whole file.

Different from other works, Saxe and Berlin [126] do not take printable strings as bi-

nary features but use their hash values and the logarithm of the string lengths to create a

histogram. The hash values are integers from 0 to 15. For the length axis, they start the

histogram bin bounds at length 8 and evenly space the bins between 8 and 200, except

that the last bin’s upper bound extends to infinity. They use the value of each bin of the

histogram as a feature. They take all byte sequences of length 6 or more that are in the

ASCII range as printable strings which is also different from other works. The rationale

behind this kind of feature representation is questionable since entirely different printable

strings are mapped to the same bin so the value of each bin is the count of a mixture of

irrelevant printable strings.

Essentially, the functionality of most malware does not rely on fixed printable strings.

When malware creators find that some strings are used by malware detectors, they can

20

change them or encrypt them. Therefore, printable string features alone are not sufficient

for malware detection.

Byte Sequences

Executables consist of byte sequences. A byte sequence may belong to the metadata, code

sections, data sections, etc. As has been stated, byte sequences are important signatures of

malware since malware may share some common sequences that are the same or follow

the same regular expression. Likewise, byte sequences are also informative to be features

for malware analysis systems [8, 78, 126, 127].

Schultz et al. [127] use bigram byte sequences in the form of binary features and they

claim byte sequences are the most informative because it represents the machine code in

an executable. Strictly speaking, the reason they give is not entirely correct since some

byte sequences come from metadata, data sections, etc. Even if a byte sequence is from

code section, many byte sequences do not align with a machine code instruction since the

instructions have variable lengths in some architectures. Moreover, their byte sequence

features have the problem of dimension explosion since there are too many different bi-

gram byte sequences and it is too large to fit them into memory when they publish their

work so they could only split the byte sequence set into several subsets and feed them to

multiple naive Bayes models.

To solve the dimension explosion problem, Kolter and Maloof [78] use information

gain to select the top 500 informative 4-gram byte sequences as features from 256 million

distinct 4-grams. They use them as binary features for all models they tried and also use

term frequency-inverse document frequency (TF-IDF) of those 4-gram byte sequences as an

additional feature representation for their KNN classifier.

Different from the above two works, Anderson et al. [8] do not use byte sequences

per se as features but fit byte sequences into a Markov chain so they get the transition

probabilities from one byte to another. The transition probability matrix is used as a kind

of feature.

21

Saxe and Berlin [126] slide a 1024 byte window over an input binary, with a step size

of 256 bytes. Then they compute the byte entropy of each 1024 byte window and the

occurrence of each byte to form a histogram and evenly separate each axis into 16 bins to

form a 256 length feature vector.

Nataraj et al. [106] make the whole byte sequence of a file into a picture in which each

byte represents the grey scale of a pixel. They find malware belonging to the same family

appear very similar in layout and texture. The width of the image used to transform

the 1D byte sequence into a 2D matrix (image) is determined by the size of the file. The

texture feature of the malware image is computed using the algorithm proposed by Oliva

and Torralba [107]. One fatal drawback of this method is that the image of a file is not

stable, e.g., if there is a manual offset in any section of the file or even one insertion or

deletion of one instruction, the texture can be entirely distorted.

Byte sequences are not reliable features either. Obfuscation techniques such as in-

struction substitution and register reassignment can change the opcodes and operands

respectively and thus the machine code is entirely changed. In all those works, the byte

sequences are statically extracted but the main program body encrypted with different

algorithms or keys through Packing and Polymorphism will completely change the byte

sequences of the main program body.

Assembly Code

Machine code and assembly code can be translated to each other through assembler and

disassembler. The advantage of assembly code over machine code is that assembly code

can be understood by a human expert; therefore, as a kind of feature, assembly code is

easier to be preprocessed (e.g., grouped, filtered, truncated etc.) to improve its quality.

Moskovitch et al. [101] state that the malicious engine may locate in different positions

in a variants of the same malware so operands of instructions are not stable across exe-

cutables. Therefore, they propose to drop operands and use only opcodes as features to

improve the robustness. From the perspective of feature engineering, it can also relieve

22

the curse of dimensionality. They extract assembly code by dissembling the executables

with IDA Pro. They use term frequency (TF) or TF-IDF of each opcode n-gram (n=1,2,...,6)

as the feature representations and use document frequency (DF), information gain ratio,

or Fisher score to select informative features. Their best result is achieved using TF values

of opcode bigram as features selected by Fisher score. The disadvantage of their method

is that it is still prone to dead code insertion, operation transpositions, instruction substi-

tution, packing, and polymorphism.

To counter packing and polymorphism, Dai et al. [42] run malware in a VM and record

the sequence of the executed byte code which will be disassembled. To counter dead code

insertion, operation transpositions, they use three kinds of two-opcode combinations: un-

ordered opcodes in a block, ordered but not necessarily consecutive opcodes in a block,

consecutive opcodes in a block. They use the association between the frequency of a fea-

ture in training dataset and a class as the criterion and apply a variant of Apriori [3] to

select top L features. Although unordered opcodes in a block and ordered but not neces-

sarily consecutive opcodes in a block improve the resistance to dead code insertion and

reorder of operations, those features are too flexible, so they also bring more false positive

cases.

Royal et al. [121] aim to unpack hidden code which is encrypted as data at compile-

time. They first store the static code of an executable and then execute the file in a VM

and check whether each instruction executed is within the stored static code area. If it is

not, it is a part of hidden code. They claim that the main malware engine should be in the

hidden code if both of them exist and experiment results also illustrate the hidden code

enhances the accuracy of ClamAV 6 and McAfee Antivirus 7.

Anderson et al. [7, 8] do not use the presence of each opcode as a feature but use the

transition probability from one opcode to another as a feature which is similar to the way

they use the byte sequence feature. In their first paper [7], they just extract assembly code

by recording the execution of a file to acquire assembly code. In their second paper [8],

6http://www.clamav.net/
7https://www.mcafee.com/en-us/index.html

23

they also use IDA Pro to disassemble an executable and the assembly code from the two

sources are treated as two independent features. In addition, they group instructions

into categories in several granularities according to the functions of the instructions to

combat the curse of dimensionality in their second paper [8]. Actually, it also reduces the

impact of instruction substitution. In their preliminary experiment, they find if they use

instructions with operands, the performance will be worse [8]. Their explanation is that

by ignoring operands, they remove sensitivity to register allocation and other compiler

artifacts.

Santos et al. [125] disassemble executables and use weighted term frequencies of op-

code n-grams as features. The weighted term frequency of an opcode n-gram is the prod-

uct of the information gain of all opcodes in the n-gram times the normalized TF of the

n-gram.

Opcode n-grams are indeed informative features. However, using assembly code in

this way causes high loss of information. One reason is that the operands are abandoned;

the other is that the order of them is missing since opcode n-grams are just tiny pieces of

assembly code. To make an analogy, if we break a sentence into phrases, by reordering the

phrases we can create a sentence that has entirely different meaning. Comparably, with a

set of opcode n-gram, entirely different programs can be formed. The way to effectively

utilize operands and to understand the entire sequence of assembly code has not been

proposed yet.

System Calls

System calls provide the services of an operating system to user programs via Application

Program Interface (API) which reside in some DLL files. From the services an executable

required from an operating system, what behaviors it may intend to do or what it would

be able to do can be inferred.

To understand an executable’s behavior, Schultz et al. [127] use the following three

features:

24

1. The list of DLLs used by an executable

2. The list of DLL function calls invoked by an executable

3. Number of different function calls invoked by an executable within each DLL

They extract those features from PE headers to understand how resources affect an exe-

cutable’s behavior and how heavily each DLL is used. The first two are used as binary

features and the third is a kind of real-valued feature.

Bayer et al. [18] and Santos et al. [125] execute an executable in an emulator to mon-

itor and record the system calls and the corresponding parameters. Then they use those

API functions to acquire behaviors of an executable during execution including I/O ac-

tivity, registry modification activity, process creation/termination activity, network con-

nection activity of an executable, self-protection behavior, system information stealing,

errors caused by the execution, and interactions with Windows Service Manager. The

behaviors are used as features for further analysis.

Fredrikson et al. [57] also use an emulator to monitor and record system calls. Then

they use the relations between system calls and their parameters to form a dependency

graph in which nodes are system calls and edges connect system calls sharing some pa-

rameters. They define a behavior to be a subgraph of it and behaviors that can be used to

distinguish malware from benignware will be mined and used to detect malware.

Anderson et al. [8] and Huang and Stokes [69] group the system calls into high-level

categories where each category represents functionally similar groups of system calls,

such as painting to the screen, writing to files, or cryptographic functions. Anderson et

al. [8] then feed the trace of groups of system calls to a Markov chain so that they use

transition probability of system calls to be a kind of feature. Huang and Stokes [69] use

the existences of those high-level API call events as binary features.

Islam et al. [72] and Dahl et al. [41] extract Windows API function calls and their pa-

rameters by running an executable in a VM. Islam et al. [72] treat Windows API functions

and parameters as separate entities and use the occurrence frequency of each entity as

25

their feature. Dahl et al. [41] use the combination of a single system API call and one

input parameter and API tri-grams which consist of three consecutive API function calls

as binary features. They also perform feature selection using mutual information.

Learning from Schultz et al. [127], Saxe and Berlin [126] use PE headers to extract the

DLL functions an executable invoked. For each invoked DLL function call, they combine

the function’s name and its DLL file’s name and calculate the hash code of the combina-

tion to form a histogram. They use the bins’ values of the histogram as features. However,

this setting is not reasonable since the DLL function calls which have the same hash value

are probably functionally and literally irrelevant.

Kolosnjaji et al. [77] use the dynamic malware analysis system Cuckoo sandbox to

extract the sequence of the system calls invoked by an executable. They use one-hot

representations of them and feed the full sequence of system calls without omitting the

order to a sequential deep learning model.

The same as assembly code, system call sequences can also be obfuscated. For in-

stance, malware authors can make an executable invoke some irrelevant system call calls

and submerge the system calls they use to fulfill their purpose in them. So this kind of

feature is not reliable either.

Control Flow Graphs

A control flow graph is a directed graph to represent the relations of basic blocks. A ba-

sic block is a sequence of instructions in the middle of which there is no jump or branch

instructions and a directed edge represents jumps in the control flow [8]. Cesare and Xi-

ang [27] state that similarities between malware variants are reflected by variants sharing

similar high-level structured control flows. Anderson et al. [8] also find it very difficult

for a polymorphic virus to create a semantically similar version of itself while modifying

its control flow graph enough to avoid detection. Therefore, they use control flow graphs

as features.

26

Cesare and Xiang [27] find that compressed and encrypted data have relatively high

entropy, so they first use entropy of byte sequence to detect whether an executable is

packed. If it is, they use an application level emulator to execute the executable. If any

newly written memory is executed, then they determine that the packed code begins to be

revealed. They use entropy of byte sequence of the executable’s memory image to detect

the completion of hidden code extraction. After it is completed, the memory image of the

binary is disassembled using speculative disassembly [81]. Finally, they use the process

of structuring to recover high-level structured control flows from control flow graphs of

procedures and represent them using strings of character tokens. The strings representing

control flow graphs are all saved as signatures.

Anderson et al. [8] extract control flow graphs from static assembly code acquired by

IDA Pro as features. Specifically, they use the occurrence frequencies of k-graphlets (a

subgraph of k nodes) of control flow graphs as features.

To counter the detection using control flow graphs, malware authors can use control

flow flattening and bogus control flow obfuscation techniques to change the control flow

without affecting the functionality so this would reduce the effectiveness of control flow

graph features.

Function

Islam et al. [72] and Chen et al. [30] use function level features for malware analysis.

Islam et al. [72] find function lengths contain statistically significant information to

distinguish malware families. So after they get the assembly code of each executable with

IDA Pro, they calculate the length of them measured by the number of bytes and use

the occurrence frequencies of function lengths as features. However, function length is

obviously the least robust feature against obfuscation. Function length can be arbitrarily

increased by inserting dead code or decreased by splitting them into multiple functions.

Two functions which are semantically similar to each other are considered to be a

‘clone’ of each other. Chen et al. [30] assume files belonging to the same malware family

27

share some functions which are connected using clone relation. So, they cluster functions

to groups in which any two functions can be connected directly or indirectly using the

clone relation and pick one function from each group as an exemplar to be a signature.

They use NiCad [39] to detect whether two functions are clone to each other. Although

their system works on Android APK files, the methodology can be directly applied to

classifying executable malware. However, to use one exemplar function to represent a

group of functions is problematic. As the same function evolves over generations, the

newest version may appear quite different from the original version. If the oldest version

is picked as the exemplar, the clone detector tend to fail to identify some unknown new

generation of it.

Miscellaneous File Information

Some of the miscellaneous file properties can help to distinguish malware from benign-

ware since the average or majority values of them are significantly different between

the two groups [8]. Anderson et al. [8] use file size, entropy, packed or not, number of

static/dynamic instructions, and number of vertices and edges in control flow graph as

features. Saxe and Berlin [126] use the values of all numerical fields of PE files extracted

with “pefile” Python parsing library8 as features. Those features may be helpful but ap-

parently not informative enough.

Summary

According to the presented analysis, either the effectiveness of the mentioned usages of all

the features can be diminished somehow or they are not informative enough. Therefore,

in some papers multiple features are used simultaneously [8, 41, 69, 72, 125–127]. The

intuition is that any single feature source can be obfuscated to evade the detection but

it is extremely difficult to obfuscate all features simultaneously without hindering the

functionality [8, 72].

8https://github.com/erocarrera/pefile

28

2.2.4 Classification Models

In this section, we introduce the classification models which take the features as input and

predict an executable’s class. The models are categorized as traditional machine learning

models, deep learning models, association mining, graph mining and concept analysis,

approximate dictionary search, and function clone detection.

Traditional Machine Learning Models

The most popular traditional machine learning models for malware analysis include Naive

Bayes classifier (NBC), decision tree (DT), K-nearest neighbors (KNN), and support vector ma-

chine (SVM). Some papers use multiple traditional machine learning models and their

main contributions are on the feature extraction technique, choice of features, and feature

representations [42, 72, 78, 101, 125, 127]. We first briefly introduce the machine learning

models below.

Naive Bayes Classifier. A Naive Bayes Classifier [123] uses Bayes’ theorem to calculate

the conditional probability of a sample belonging to a class given the input features. It

can be formally described in the following equation:

P (Ci|x) =
P (x|Ci)

P (x)
P (Ci) (2.1)

where x is a sample with its features and Ci is a class. It is based on the naive Bayes

conditional independence assumption that all the features are independent to each other

given the class it belongs to:

P ((x1, x2, ..., xn)|Ci) = P (x1|Ci)P (x2|Ci)...P (xn|Ci) (2.2)

where xi is a feature of x. Although the assumption do not hold in many occasions,

the prediction results are good. Its advantage is that the prediction result is explainable

because the degree of contribution of each attribute can be measured and visualized.

29

Decision Tree. A DT classifier [114] uses a tree structure to represent the classification

process. Internal nodes of a DT are tests on the values of features and edges correspond

to a choice on the values of a variable. Leaf nodes represent the final class of samples fall

into it. The tree structure is constructed based on the informativeness of each feature such

as information gain ratio and Gini index conditioned on the current choices. A DT is also

an interpretable classifier since a DT can be translated to a set of if-else-then rules.

K-Nearest Neighbor. KNN [6] is an instance-based classifier. It predicts the class label

of an unknown sample to be the (weighted) majority vote of the classes of its K nearest

neighbors in the training set.

Support Vector Machine. An SVM [19] is a binary classifier that determine a hyperplane

to separate samples from two classes with the largest margin. An essential characteristic

of an SVM is that it can utilize kernel trick to map samples from the original feature space

to a high-dimensional (even infinite) feature space to perform non-linear classification.

Bayesian Network. A Bayesian network (BN) [74] is a probabilistic graphical model which

is also based on Bayes’ theorem. In the graphs, variables are represented as vertices and

the dependencies as directed edges. The graph is used for the inference of value of any

variable (the class of a sample in our case) in it based on the information of other variables

(features).

RIPPER. RIPPER [38] is a rule-based classifier which builds a set of rules to classify

samples while minimizing the error of the number of misclassified training samples.

Schultz et al. [127] apply three models on their three feature sets respectively. They

apply RIPPER on DLL an executable used, DLL function calls, and number of different

function calls invoked within each DLL separately; apply NBC on string features; sepa-

rate byte sequence features into multiple groups and apply one NBC on each group and

the prediction is votes of all those NBCs. The reason why they separate byte sequence

30

features is that the set of byte sequences is too large and the memory cannot hold all byte

sequence features to train one model. Both NBC and multiple NBC achieve 97% accuracy

on a dataset of 4,266 samples which is better than RIPPER.

Kolter and Maloof [78] apply KNN where K = 5, NBC, DT, boosted NBC, and boosted

DT on their top 500 byte sequence n-grams. The boosting algorithm they use is Ad-

aboost.M1 [58]. The best area under the Receiver Operating Characteristic curve (au-

ROC) is achieved by boosted DT: 0.9958 on a dataset of 1,037 samples, 0.9958 on a dataset

of 3,622 samples.

Moskovitch et al. [101] apply DT, NB, boosted DT, boosted BNB, and artificial neu-

ral networks (ANN) on TF or TF-IDF of opcode n-grams. The boosting algorithm they

use is also Adaboost.M1 [58]. They fail to give the specific structure of their ANN. The

boosted DT achieves the best accuracy: 94.43% on a dataset of 26,093 samples. They also

find among the models they have tried, only ANN is prone to the imbalance of malware

percentage of the dataset.

Dai et al. [42] apply DT and SVM on their feature sets respectively: unordered op-

codes in a block, ordered but not necessarily consecutive opcodes in a block, consecutive

opcodes in a block. The best result is achieved by SVM with ordered but not necessarily

consecutive opcodes in a block which is 91.9% on a dataset of 635 samples.

Nataraj et al. [106] apply KNN where K = 3 with Euclidean distance to classify exe-

cutables into their corresponding families based on texture features of their created mal-

ware image. They achieve 99.93% accuracy on a dataset of 1,713 malware files from 8

families and 97.18% on a dataset of 9,458 malware files from 25 families.

Anderson et al. [7] apply the kernel trick to an SVM model to classify executables.

Their feature is a matrix in which each entry is the transition probability from one opcode

to another. They use a linear combination of two kernels for the feature. One is a Gaussian

kernel on the entries of the matrix which is aimed to search for local similarities between

31

two transition probability matrices x and x′:

KG(x, x
′) = σ2e−

1
2λ2

∑
i,j(xij−x′

ij)
2

(2.3)

where xij and x′
ij are transition probabilities from opcode i to opcode j in the code of two

executables. The other kernel is a Gaussian kernel on top-k eigenvectors of the Laplacian

matrix [36] created from the transition probability matrices:

KS(x, x
′) = σ2e−

1
2λ2

∑
k(ϕk(L(x))−ϕk(L(x

′)))2 (2.4)

where ϕk(L(x)) and ϕk(L(x
′)) are the k-th eigenvectors of Laplacian matrices. Since the

eigenvectors encode global properties, this kernel searches for similarity of global struc-

ture. With the combined kernel:

K(x, x′) = µKG(x, x
′) + (1− µ)KS(x, x

′) (2.5)

where 0 ≤ µ ≤ 1, the SVM achieves the best accuracy: 96.41% on a dataset of 2,230

samples.

Comparing with their earlier work [7], Anderson et al. use more features in their later

work [8]. They apply Gaussian kernel to features based on Markov chain (i.e., transition

probabilities) and miscellaneous file information. The features based on Markov chain

include byte sequences, static opcode sequences, dynamic opcode sequences, and system

call traces. They apply a graphlet kernel to control flow graph feature. Let fG be a vector

representing the occurrence frequency of each k-graphlet in G. The graphlet kernel is as

follows:

DG =
fG

number of all graphlets of size k in G
(2.6)

Kg(G,G′) = DT
GDG′ (2.7)

32

They combine all the kernels with a weight to each of them and iteratively learn the

weight and parameters of each kernel until convergence. They achieve the best accuracy

with all features and kernels which is 98.07% on a dataset of 1,556 samples.

Islam et al. [72] apply SVM, DT, KNN, and random forest (RF) which is an ensem-

ble method based on DT on all three features: function length, printable strings, and

names and parameters of windows API function calls. The RF achieves the best accuracy:

97.055% on a dataset of 2,939 samples.

Santos et al. [125] apply DT, RF, KNN, BN, SVM on their statically extracted weighted

term frequencies of opcode n-grams and dynamically extracted behavior features. SVM

with normalized polynomial kernel achieves the best accuracy: 96.60% on a dataset of

2,000 samples. With only statically extracted opcode n-gram features, the model achieves

comparable accuracy: 95.90%. With only dynamically extracted behavior features, the

model achieves 77.26% accuracy. It means that their static features are more effective than

the dynamic features.

Deep Learning Models

Dahl et al. [41] apply a deep learning model on their 179,000 binary features. The first

layer is a random projection layer which maps the input features to a much lower dimen-

sional space (4000 dimensions). The difference between the random projection layer and

a standard fully connected layer is that the weight of the projection matrix is not updated

during training. The entries of it are sampled by following an independent and identically

distribution over {-1,0,1}. On top of that, they apply one to three fully connected layers

with sigmoid activation functions and a 136-way softmax layer as output. The 136 classes

include 134 important malware families, a generic malware class, and the benignware

class. They also try using a Gaussian-Bernoulli restricted Boltzmann machine (RBM) to

pre-train the hidden layers. The best result is achieved by the model with 1 hidden layer

without pre-training which is 9.53% test error rate for multiclass classification and 0.49%

33

test error rate for binary classification on a dataset of 2.6 million samples. They also find

the random projection performs better than Principal Component Analysis (PCA).

Saxe and Berlin [126] propose a deep feed-forward neural network consisting of three

fully connected layers, where the dimensions of the two hidden layers are 1024 followed

by a dense layer to get the output. They apply dropout to the input and the two hidden

layers to prevent overfitting. The activation functions of the two hidden layers are para-

metric rectified linear units (PReLU) to yield an improved convergence rate without loss

of performance and the activation function of the output layer is sigmoid. They also use

Bayesian Calibration to calculate the unbiased probability that an executable is malware.

They achieve a detection rate of 95.2% and a false positive rate of 0.1% on a dataset of

431,926 samples.

Huang and Stokes [69] propose a neural network for multi-task training. One task

is malware detection to predict whether an unknown executable is malicious or benign

and the other is a 100-class classification task. The 100 classes include 98 important mal-

ware families, a generic malware class, and the benignware class. Learning from Dahl et

al. [41], Huang and Stokes [69] also use a random projection layer to reduce the dimen-

sion to 4,000 from 50,000 and they normalize each of the 4,000 dimension to be zero mean

and unit variance. Then they use multiple hidden fully connected layers with dropout

and RELU activation. On top of them there are two single layers for each of the two clas-

sification tasks. The final loss function is a weighted summation of each of the individual

loss functions. Experiment results show that multi-task learning only improves the per-

formance of malware detection and harm the performance of malware classification in

most experiment settings. Specifically, the setting to achieve the best result for malware

detection: 0.3577% test error is using two hidden layers in the multi-task learning frame-

work. The setting to achieve the best result for malware classification: 2.935% test error is

to use one hidden layer in either single task or multi-task learning situation.

Kolosnjaji et al. [77] propose a combination of a convolutional neural network (CNN)

and a Long Short-Term Memory (LSTM) network [68] to predict the family of an exe-

34

Table 2.1: Summary of features and models used in malware analysis systems.

Paper Year Features Models

Schultz et al. [127] 2001

(s) DLLs/DLL functions RIPPER

(s) Printable strings NBC

(s) Byte sequence multiple NBC

Kolter and Maloof [78] 2004 (s) byte sequence n-gram KNN, NBC, boosted NBC,

DT, boosted DT

Bayer et al. [18] 2006 (d) system calls→6 groups of behaviors N/A

Royal et al. [121] 2006 (d) assembly code ClamAV and McAfee

Moskovitch et al. [101] 2008 (s) opcode n-gram DT, NB, boosted DT, boosted

BNB, ANN

Dai et al. [42] 2009 (d) unordered opcodes in a block, ordered

but not necessarily consecutive opcodes in

a block, consecutive opcodes in a block

DT, SVM

Fredrikson et al. [57] 2010 (d) system calls and parameters Graph Mining and Concept

Analysis

Ye et al. [147] 2010 Windows API calls HAC

Cesare and Xiang [27] 2010 (d) control flow graph BK Trees

Nataraj et al. [106] 2011 (s) texture of byte sequence image KNN

Anderson et al. [7] 2011 (d) transition probability of opcode SVM

Anderson et al. [8] 2012

(s) transition probability of bytecode

SVM

(s)(d) transition probability of opcode

(s) k-graphlet control flow graph

(d) system call

(s) misc.

Dahl et al. [41] 2013

(d) string random projection

(d) system call tri-grams + feed-forward

(d) system call+parameters neural network

Islam et al. [72] 2013

(s) Function length

SVM, DT, KNN,RF(s) string

(d) API function/parameters

Santos et al. [125] 2013
(s) opcode n-gram

DT, RF, KNN, BN, SVM
(d) system calls→7 groups of behaviors

Chen et al. [30] 2015 (s) function function clone detection

Saxe and Berlin [126] 2015

(s) string feed-forward

(s) byte sequence neural network

(s) DLL functions with Bayesian Calibration

(s) misc.

Kolosnjaji et al. [77] 2016 (d) system call sequence (ordered) CNN+LSTM

Huang and Stokes [69] 2016

(d) string random projection

(d) Windows API calls + multiple hidden layers

+2 separate output layers

(s) represents that the corresponding kind of feature is statically extracted.

(d) represents the corresponding kind of feature is dynamically extracted.

35

cutable using the dynamically extracted system call sequence. They first use two con-

volution layers to capture the correlation between consecutive API calls and then apply

max-pooling to reduce the dimensionality. The output sequence is fed to an LSTM layer

to model the sequential dependencies of API calls. Then a mean-pooling layer is used to

extract features of the highest importance from the LSTM’s output and reduce the com-

plexity for further data processing. They also use dropout to prevent overfitting and

a softmax layer to output the probability of each class. Their proposed deep learning

model significantly outperforms feed-forward neural networks, CNN, SVM, and Hidden

Markov Model and achieves 85.6% on precision and 89.4% on recall on a dataset of 4753

samples. The advantage of their model is that it can fully utilize the order of system calls

which may also be a drawback if the system call sequence is obfuscated. One problem

of their model is they use mean-pooling rather than max-pooling to extract features of

highest importance produced by the LSTM is not quite reasonable.

Associative Classifier

An associative classifier relies on association rules that can be used to distinguish samples

between two classes to perform classification. It is a special case of association rule mining

where only the class of a sample can be the consequent (a.k.a. right-hand-side) of a rule.

Ye et al. [147] propose to use hierarchical associative classifiers (HAC) to classify executa-

bles in a gray list based on Windows API calls. Normally, a gray list has an imbalanced

class distribution issue: most samples are benignware. To handle this issue, they use one

associative classifier to achieve high recall and the other to achieve high precision. There

are three techniques regarding creation of an associative classifier: 1) use FP-Growth al-

gorithm to find candidate association rules (i.e., discriminative combinations of Windows

API calls) 2) prune the candidate rules based on χ2, data coverage, pessimistic error esti-

mation, and significance w.r.t to its ancestors 3) reorder rules: first rank the rules whose

confidence values are 100 by confidence support size of antecedent (CSA) and then re-

order the remaining rules by χ2 measure. Using those three techniques, they create a

36

two-level associative classifier to detect malware from a gray list labeled by a signature-

based anti-virus engine. The first-level associative classifier is aimed for a higher recall

of malware. It only keeps the rules related to benignware with 100% confidence and the

rules related to malware with confidence greater than a pre-defined threshold; then it

uses the rule pruning technique to reduce the generated rules and build the classifier; fi-

nally “Best First Rule” method is used to predict samples from the gray list. The samples

labeled to be malware by the first associative classifier are fed to the second level asso-

ciative classifier which is aimed at optimizing the precision. It works with the following

steps: 1) select those samples whose prediction rules of malware have 100% confidence

values, marking them as “confident” malware; 2) ranking the remaining files labeled to

be malware in a descending order based on their prediction rules’ χ2 values; 3) select the

first k files from the remaining ranking list and marking them as “candidate” malware; 4)

mark the remaining (unselected) files as “deep gray” files. Experiment results show the

proposed HAC is effective even for an extremely imbalanced dataset. In addition, HAC

is also an interpretable classifier which can be easily translated to simple if-then rules.

Graph Mining and Concept Analysis

Fredrikson et al. [57] extract behaviors (dependency graphs of system calls and their

parameters) that can distinguish malware from benignware using structural leap min-

ing [144]. Then they use the behaviors to form discriminative specifications. A specifi-

cation is a collection of behaviors and a characteristic function that defines one or more

subsets of the collection. A program matches a specification if it matches all of the be-

haviors in at least one characteristic subset. A specification is entirely discriminative if

it matches malicious programs but does not match benign programs. They use formal

concept analysis [138] to create candidate discriminative subsets of behaviors and use

Simulated Annealing algorithm [20] to choose from all the created candidate subsets of

behaviors to form an approximate optimal specification which has true positive larger

than a threshold and lowest false positive among all specifications which have larger true

37

positive rate than the threshold. During the test period, if a program matches a speci-

fication, it will be classified to be malware. The created specification achieves 86% true

positive rate and 0 false positive rate on a dataset of 961 samples.

Approximate Dictionary Search

Cesare and Xiang [27] detect variants of malware in a database using the ratio of proce-

dures an unknown executable share with malware in the database. They first convert the

control flow graphs of each procedure in an unknown executable to character strings in

the same way they create signatures and each procedure is assigned a weight using the

length of the string: weightx = len(sx)∑
i len(si)

, where sx is the length of the string x. Then they

use BK Trees [12] to retrieve the strings in the signature database which have less Lev-

enshtein distance with strings representing procedures of the target file than a threshold.

The similarity ratio of two strings is calculated as wed = 1 − ed(x,y)
max(len(x),len(y))

. Similarity

ratios of procedures from the unknown executable and a malware sample in the database

are accumulated proportional to the weights of one of the procedures. As there are two

weights (one is the weight of a procedure of the unknown executable, the other is the

weight of a procedure of a malware sample in the database), the similarity between the

unknown executable and a malware sample in the database is the product of two asym-

metric similarities: a similarity that identifies how much of the unknown executable is

approximately found in the malware in the database, and a similarity to show how much

of the malware in the database is approximately found in the unknown executable. If

the similarity of the unknown executable to any malware in the database equals or ex-

ceeds a threshold of 0.6, then it is deemed to be a variant. Experiment results show that

this method can successfully identify variants of malware. However, since they use a

symmetric similarity calculated as the product of two asymmetric similarities, it can not

handle asymmetric situations. For instance, if a very large unknown executable contains

the whole program of a malware sample in the database but that malicious program only

38

take up 1% of the whole content of the unknown executable, the similarity calculated in

their way would still be small and the model will fail to recognize that it is malware.

Function Clone Detection

Chen et al. [30] uses NiCad [39] to detect whether an APK file contains any function that

is a clone of an exemplar function which represents a signature of a malware family. If a

match is found, the file is predicted to be an instance of that malware family. They achieve

96.88% accuracy on a dataset of 1170 APK files from 19 malware families.

Summary

Although almost all malware classification models mentioned in this section achieve

more than 85% on accuracy, auROC, true positive rate, etc., the experiment results of

different malware classification models are not comparable with each other since the

datasets they use are different. In several papers, multiple traditional machine learn-

ing models are used [42, 72, 78, 101, 125, 127], but there is no model outperforms others in

all of those papers. What we observe is that either (boosted) DT or SVM achieves the best

results in those papers. We summarize the features and classification models of malware

analysis systems in Table 2.1.

2.3 Adversarial Attack and Defense

In this section, we present a literature review on adversarial attack and defense tech-

niques.

In 2013, Szegedy et al. [134] showed that a hardly perceptible perturbation on an im-

age, which is found by maximizing a neural-network-classifier’s prediction error, can

lead to its mis-classification. This property could be utilized by an adversary to cause

severe security issues. For example, an autonomous vehicle that fails to recognize a stop

sign may cause a traffic accident; failure to recognize a malware program may cause a

39

huge loss to a computer user. Consequently, adversarial attack and defense techniques

are being extensively studied [31, 87, 142].

2.3.1 Definitions

We formally define adversarial attack and defense in this subsection.

Adversarial Attack

A machine learning model is a function f(x) that maps an input sample x to an output

y, which is a vector of n dimensions, where n is the number of classes. Each dimension

of y corresponds to the probability that x corresponds to a certain class. The objective

of adversarial attacks is to add a minimal perturbation ϵ to a natural sample x so that

f(x + ϵ) presents a false result, i.e., the class with the largest probability is not the real

one. x′ = x+ ϵ is called an adversarial sample.

Adversarial Defense

An adversarial defense mechanism is to achieve two objectives by modifying f(x) to be

f ′(x). The first objective is to minimize the changes made by a perturbation ϵ: min{|f ′(x+

ϵ) − f ′(x)}|. The second is to minimize the changes to the prediction of natural (unper-

turbed) samples: min{|f ′(x)− f(x)|}.

2.3.2 Taxonomy

In this subsection, we categorize adversarial attack and defense from different perspec-

tives.

Attack Phase

Adversarial attacks can be classified as poisoning attacks and evasion attacks, based on the

phase in which an attack is performed. A poisoning attack is performed in the training

40

phase of the objective classifier [140]. The attacker injects some fake samples into the

training set of a classifier, causing the classifier to consistently mis-classify samples with

certain characteristics that are similar to the injected fake samples. An evasion attack

is performed after a classifier is trained; a legitimate sample is perturbed to cause the

classifier to mis-classify it. This kind of attack is more practical for attackers to perform

and has been extensively studied. Therefore, it is also our focus.

Adversarial Objectives

Based on the objectives, attacks can be categorized as targeted attacks or untargeted attacks.

A targeted attack is aimed at leading a classification system to classify an adversarial

sample to an objective class. An untargeted attack is aimed at leading a classification sys-

tem to classify an adversarial sample to any incorrect class. In both cases, the adversarial

sample should be crafted from a correctly classified natural sample.

Attack and Defense Settings

Adversarial attack and defense can be conducted in white-box, black-box, and gray-box

scenarios, depending on how much an adversary knows the target model to attack.

White-box Setting. In the early stage of research in adversarial attack and defense, an

adversarial attack setting is one in which an adversary has full knowledge of the target

model f(x), including its architecture and parameters, to craft adversarial samples. This

is called the white-box setting.

Black-box Setting. In a black-box setting, an adversary has no knowledge of the target

model, but can request its output y = f(x) for any valid input x. In a black-box setting,

there are two special situations, namely the label only setting and the partial-information

setting. In a label only setting, the output y is the predicted class without probability. In

41

a partial-information setting, the attacker only has access to the probabilities of a sample

belonging to the top-k classes [70].

Gray-box Setting. In addition to the white-box and black-box settings that most studies

focus on, there is also a gray-box (a.k.a., semi-white, semi-black) setting. An adversary

has partial knowledge of the system to be attacked. There are multiple situations in which

researchers are interested:

1. The adversary knows the architecture of the model to be attacked, but does not have

access to its parameters and training set.

2. The adversary knows the details of the model to be attacked, without knowing the

existence of a defense mechanism.

2.3.3 Adversarial Attack Methods

Below, we introduce adversarial attack methods in both white-box and black-box settings.

White-box Setting

We categorize white-box attacks as explicit perturbation and implicit perturbation methods.

Explicit perturbation methods directly compute the perturbation to be added to a natural

sample. Implicit perturbation methods use a neural network to compute an adversarial

sample, which is equivalent to implicitly adding a perturbation onto the natural sample.

Below are the typical explicit perturbation methods.

In 2014, Goodfellow et al. [61] proposed the fast gradient sign method (FGSM) to craft

adversarial samples. They perturb each sample only once toward the gradient sign direc-

tion according to the following equation:

η = ϵsign(∇xJ(θ,x, y)) (2.8)

42

where J(θ,x, y) is the objective function to train the targeted neural network to correctly

classify x. It is the most efficient direction to change the prediction. This is the most

primitive and straightforward method to craft adversarial samples; however, this one-

step-perturbation may not be enough to craft an adversarial sample.

As an extension to FGSM, in 2016, Kurakin et al. [82] proposed an iterative gradient sign

(IGS) to craft adversarial samples through multiple perturbation steps. In each step, IGS

perturbs the pixels toward the gradient sign direction and clips the perturbed sample to

stay within the l∞-ball neighbourhood of the original sample:

xadv
n+1 = Clip{xadv

n + αsign(∇xJ(θ,x, y))} (2.9)

Similarly, Madry et al. [95] also extended FGSM to a multiple step procedure to form a

method known as projected gradient descent (PGD). The difference between PGD and IGS is

that IGS begins by perturbing a natural sample and PGD, by perturbing a random point

in the l∞-ball around the natural sample.

The aforementioned two methods perturb all dimensions of a sample simultaneously.

Differently, Papernot et al. [109] proposed the forward derivative method (FDM). It evaluates

the sensitivity of the output to each input dimension using the Jacobian matrix of the

model. Then, it constructs an adversarial saliency map based on the Jacobian matrix

indicating which input feature should be perturbed in each iteration of perturbation, until

it reaches an adversarial sample.

Moosavi-Dezfooli et al. [100] proposed Deepfool, which attacks a system by pushing a

sample toward the orthogonal vector of the target classification boundary:

r∗(x0) := argmin||r||2 (2.10)

subject to sign (f(x0 + r)) ̸= sign(f(x0)) (2.11)

Such a perturbation is the optimally efficient perturbation in terms of L2 norm.

43

Carlini and Wagner [23] also took the adversarial attack as an optimization problem.

The objective function includes the distance between the adversarial sample and its orig-

inal sample, as well as the difference between the probabilities of the target class and the

real class:

minimize c|̇|x− x′||22 + lossF,l(x
′) (2.12)

Thus, in its objective function, both the purpose to mislead a classifier and to minimize

the perturbation are considered.

Athalye et al. [11] proposed a white-box attack method called Backward Pass Differen-

tiable Approximation. This method breaks adversarial defenses based on gradient masking.

They summarize that the gradient obfuscation is achieved by using non-differentiable op-

erations, employing randomized transformations to the input, and/or using optimization

loops. To cancel out the gradient obfuscation, during the backpropagation phase, they

approximate non-differentiable operations with differentiable operations, apply Expec-

tation over Transformation, and reverse the optimization loop with reparameterization.

They find that they can thus totally evade six out of seven gradient masking-based de-

fense methods by combining these techniques. Below are implicit perturbation methods.

Baluja and Fischer [15] proposed to use a neural network called Adversarial Transfor-

mation Networks (ATNs) that takes a natural sample as its input and transforms it into an

adversarial sample. It is trained with an objective function of two terms:

L =
∑
xi

[βLx(g(xi), xi) + Ly(f(g(xi)), f(xi))] (2.13)

where g(x) is the ATN, f(x) is the target network to mislead,
∑

xi
βLx(g(xi), xi) is to mini-

mize the scale of perturbation, Ly(f(g(xi)), f(xi)) is to mislead the target neural network,

and β is a weight to balance those two objectives.

44

Similarly, Yu et al. [148] proposed to use a conditional generative adversarial network

(CGAN) to craft adversarial samples. They train the CGAN network with two objectives:

L = LCGAN + αLfool (2.14)

where LCGAN is the standard CGAN reconstruction objective to generate a sample resem-

bling the original sample, and αLfool is the objective to fool the targeted neural network.

α is a weight to balance those two objectives.

Bai et al. [13] proposed a GAN-based network called Attack-Inspired GAN (AI-GAN) to

generate adversarial samples. Their discriminator has two objectives, namely to discrim-

inate between real and perturbed images, and to classify an image to its correct class. The

generator is aimed at generating a fake image to trick the target model and the discrimi-

nator.

Black-box Setting

In a black-box setting, attacks are conducted based on the information acquired by query-

ing the target classification system. The following are the two main types of black-box

attack methods.

The first type can be addressed as Substitute Model attacks. The concept of substitute

model attack was proposed by Papernot et al. [108]. They find that adversarial samples

have some transferability, i.e., a sample that compromises one model is likely to compro-

mise another. Hence, they propose to obtain the outputs corresponding to a set of syn-

thetic samples from the target model and use them to train a substitute model. They craft

adversarial samples by attacking the substitute model in the white-box setting and expect

that those samples can mislead the target model. Recent works [32, 70, 95, 104, 105] have

shown that the transferability of adversarial examples crafted from a substitute model is

limited and can be defended effectively.

45

The other type of attack can be addressed as Perturbation Trial attacks. Since the output

of the target model can be acquired by the adversaries, they can try perturbing certain in-

put dimensions by increasing and decreasing the values and check whether either of them

would lead the prediction toward their objective direction, e.g., the probability of the tar-

get class increases, or the probability of the real class decreases. Essentially, instead of

using an analytical solution to acquire the gradient in the white-box setting, this solution

in a black-box setting uses numerical differentiation to achieve the same purpose. This

technique is also widely used in gradient checking for validating the implementation of

back propagation for training neural networks [139]. The adversary repeats that proce-

dure multiple times and accumulates effective perturbations, until an adversarial sample

is found or a maximum number of trials has been performed.

In 2017, Chen et al. [32] proposed the Zeroth Order Optimization (ZOO) black-box attack

method, which is a coordinate-wise gradient estimation:

gi :=
∂f(x)

∂xi

≈
f(x+ hei)− f(x− hei)

2h
(2.15)

It perturbs one variable each time and accumulates the perturbations until a successful

adversarial sample is found or a preset number of iterations has been tried.

In 2019, Chen et al. [135] extended ZOO to Autoencoder-based Zeroth Order Optimiza-

tion Method (AutoZOOM). It uses an autoencoder to map a natural sample to a compact

representation and perturbs on that representation. Instead of a coordinate-wise gradient

estimation, they perform a random full gradient estimation:

g := b ·
f(x+ βu)− f(x)

β
· u (2.16)

46

They use an averaged random gradient estimation as follows to control the error in the

gradient estimation:

ĝ =
1

q

∑
j=1

gj (2.17)

In 2018, Ilyas et al. [70] proposed to use Natural Evolution Strategies (NES) to estimate

the gradient for black-box attacks. It is a derivative-free optimization method. To handle

a partial information setting, they begin with perturbing a natural sample that belongs to

the target class, rather than perturbing the target sample. To handle a label-only setting,

they propose to use the scores for perturbed samples that are computed based on the

ranking of different class labels, to serve as a proxy for class probability.

2.3.4 Adversarial Defense Methods

Adversarial defense methods can be generally categorized as proactive defense or reactive

defense methods [97].

Proactive Defense

With proactive defense methods, the machine learning models per se are fortified to be ro-

bust against adversarial attacks, and there is no independent defense component outside

of the machine learning model.

Szegedy et al. [134] and Goodfellow et al. [61] suggested an effective defense method

known as adversarial training. They find that training a neural network with a dataset in-

cluding adversarial samples will make the model resistant to adversarial examples. Some

later studies find that adversarial training could be effective against certain types of ad-

versarial attacks, but is limited against other types [111].

Guo et al. [64] proposed to transform input images to counter adversarial attacks in

a model-agnostic manner. The transformations include image cropping and rescaling,

47

bit-depth reduction, JPEG compression, total variance minimization, and image quilting.

They find that after those transformations, the effects of perturbations are canceled out.

Cisse et al. [37] proposed Parseval networks to defend against adversarial attacks. It is

a layer-wise regularization method for reducing a network’s sensitivity to small pertur-

bations. They achieve the purpose by controlling the global Lipschitz constant of each

hidden layer. They find that with a small global Lipschitz constant (e.g., less than 1), the

robustness against adversarial perturbations is improved.

Xie et al. [141] claimed that adversarial perturbations impose noise on the features

that are learned by neural networks, so that they mis-classify those samples. Therefore,

they propose a denoising block that is applied at intermediate layers of convolutional net-

works. The denoising block includes a denoising operation, a 1 × 1 convolutional layer,

and a residual connection layer. The denoising operation could be four different forms,

namely non-local means, bilateral filter, mean filter, and median filter. They combine their

denoising block with adversarial training to work together against adversarial attacks.

Dhillon et al. [48] proposed a defense mechanism called Stochastic Activation Pruning

(SAP). It incorporates randomness to the network by stochastically pruning a subset of

the activations in each layer, preferentially retaining activations with larger magnitudes.

Meanwhile, the surviving activations are normalized. It is a post hoc defense mechanism

that can be applied after a neural network is trained.

Papernot et al. [110] proposed a defensive mechanism called defensive distillation. Dis-

tillation [67] was originally proposed for the purpose of transferring the knowledge of

one or more complex neural networks to a simpler neural network and making the latter

achieve similar or better classification performance. Papernot et al. [110] found that since

the knowledge extracted during distillation reduces the amplitude of network gradients

exploited by adversaries to craft adversarial samples, the neural networks trained with

defensive distillation are less sensitive to adversarial samples.

48

Reactive Defense

Reactive methods defend a classification system by recognizing adversarial samples. Fein-

man et al. [54] observed that adversarial samples lie off the manifold of natural samples.

Based on this observation, they propose to differentiate adversarial samples from natural

samples with two methods. One is to use their difference on a kernel density (KD) esti-

mation on the feature space of the last layer of the target neural network. The other is to

use Bayesian uncertainty estimates that can identify adversarial samples since they lie in

low-confidence regions of the input space to neural networks trained with dropout.

Grosse et al. [62] added a new class for adversarial samples to existing classes and

trained a machine learning model to classify the K + 1 classes where K is the number

of natural classes. Thus, the adversarial samples are added to the training set as the

additional class, and the model is trained to identify them.

Lu et al. [93] proposed to quantize the output of RELU activations at some set of

thresholds to generate a discrete code and apply the RBF-SVM model on the discrete

code as its features to identify adversarial attacks.

Following a different logic, Xu et al. [143] applied deep neural networks on two kinds

of features: squeezed and unsqueezed features. They find that the predictions with these

two kinds of features are quite different on adversarial samples, which is not the case

for natural samples. Therefore, they propose to check the difference between predictions

with squeezed and unsqueezed features of a sample to determine if it is an adversarial

sample. Those methods could defend against substitute model attacks in their experi-

ments, but their performance on defending perturbation trial attacks is limited [11].

49

Chapter 3

Interpretable Classification

In recent years, high classification performance has been achieved by increasing clas-

sification models’ complexities in the applied machine learning community. State-of-

the-art deep learning models have many layers, and it is hard to explain their predic-

tions [21,73,118]. Reversely, simple models such as logistic/softmax regression and deci-

sion trees have excellent interpretability. There is a commonly known trade-off between

classification performance and interpretability [91]. That being said, there have been ef-

forts to propose interpretable complex models and post-hoc methods to explain complex

models [43,122]. They come in different forms and at different costs, partly because there

is no fixed mathematical definition of the term interpretability, which can be categorized

as either local or global. If an explanation is given for the result of an individual sample,

it is local; otherwise, it is global and aimed at interpreting the entire model behavior.

Our ultimate objective is to gain trust in the classification results and to gain insights

into the target samples, as opposed to gaining understanding of the classification model

itself. Hence, we aim at interpretability for local explanation. The overall objective of

this study is to propose a neural network architecture that has the following qualities for

classification:

• High classification performance. The classification performance in terms of accu-

racy is still the primary quality we expect from the model.

50

• Interpretability. The model is expected to provide accurate explanation for each

classification result.

• Efficiency of interpretability. This efficiency measures the extra computation that is

required to explain a classification result. Previous explanation methods may need

to run the model multiple times to explain one prediction. The most ideally efficient

scenario is an intrinsically interpretable model that only needs to run once to obtain

a classification result, with the explanation as a byproduct.

To achieve these objectives, we propose an intrinsically interpretable feedforward neural

network (IFFNN) architecture that can achieve classification performance similar to their

non-interpretable (i.e., normal) feedforward neural network counterparts and provide

accurate explanations with little extra overhead. The contributions of this work are sum-

marized as follows:

• We propose an intrinsically interpretable feedforward neural network architecture

that is compatible with any type of feedforward neural network that takes any ten-

sors of a fixed shape as its input for both binary and multi-class classification.

• We conduct comprehensive experiments to evaluate the classification performance

and interpretability of the IFFNNs. We compare the classification accuracy of IFFNNs

with their non-interpretable counterparts to show that they have similar classifica-

tion performance, and the IFFNNs have the advantage in terms of interpretability.

• We propose a synthetic interpretability benchmark dataset to evaluate the inter-

pretability of classification models. It can generate an unlimited number of samples

with the reasons why they belong to a specific class.

3.1 Interpretable Feedforward Neural Network

The explanation expected in this study is defined as follows:

51

Definition 3.1.1 (Explanation). Let a sample be a p-th-order tensor X ∈ Rm1×m2...×mp . The

samples belongs to one of c classes. An interpretable classification module should predict

its class y ∈ {1, 2, .., c} and give an explanation I ∈ Rc×m1×m2...×mp . Ij,i1,i2,...,ip represents

the importance/impact/contribution of feature Xi1,i2,...,ip in the context for classifying the

sample to class j.

As can be seen from the definition of explanation, it provides the importance value

of a feature not only for the predicted class, but also for other classes. In practice, the

explanation does not have to be organized as a tensor I . As long as an importance score

of each element in X for each class can be computed, it is equivalent to having I . The in-

terpretability mentioned in this study refers to the intrinsic ability of classification models

to provide the defined explanation.

Two simple models can achieve two of the aforementioned qualities except high clas-

sification performance. They are logistic regression and softmax regression, for binary

classification and multi-class classification respectively. Any tensor X ∈ Rm1×m2...×mp can

be flattened to a vector x = flatten(X) ∈ Rm, where m = m1×m2...×mp is the number of

features, by reorganizing the elements of a tensor to a 1d array to form a vector. Logistic

regression can be expressed as:

y = σ(wTx+ b) = σ(w1x1 + w2x2 + ...+ wmxm + b) (3.1)

where w = (w1, w2, ..., wm) ∈ Rm,x = (x1, x2, ..., xm) ∈ Rm, b ∈ R. Whether feature

xj makes the sample positive depends on the sign of wjxj . If wjxj > 0, xj makes it

positive, and vice versa. The degree of the impact of xj on y depends on |wjxj|: a large

|wjxj| implies a large impact of xj . If the model predicts a sample to be positive, the

most influential factor that leads to the result is maxjwjxj . If the model predicts a sample

to be negative, the most influential factor that leads to the result is minjwjxj . In other

words, the contribution of feature xi to the positive class is calculated as wixi, and the

contribution of feature xi to the negative class is −wixi.

52

For multi-class classification, let c be the number of classes. Softmax regression can be

expressed as follows:

y =softmax(Wx+ b) (3.2)

where W ∈ Rc×m,b ∈ Rc, softmax(z) = 1∑c
j=1 e

zj (e
z1 , ..., ezc). The output is a vector of

dimension c, and each element is the probability that the sample belongs to a class. There-

fore, Wi,jxj is the contribution of feature xj to class i.

Thus, these two models can explain the classification results efficiently since only one

forward running is required. The only thing that is missing is the classification perfor-

mance. These two models do not allow features to interact with each other, so the coeffi-

cient for each feature, i.e., wi and Wi,j , are static without considering the context.

To provide the same explanations that logistic regression and softmax regreesion can

provide and the expressive ability of non-linear models, we propose a novel interpretable

feedforward neural network (IFFNN) architecture. There are two versions of it, for binary

classification and multi-class classification respectively. They can be seen as logistic re-

gression and softmax regression with dynamically computed weights, rather than static

weights. Thus, they have the same interpretability as logistic regression and softmax

regression. They are described as follows.

For binary classification, the IFFNN can be expressed as follows:

v(X) = f(X) (3.3)

w(X) = W2v(X) + b2 (3.4)

x = flatten(X) (3.5)

y = σ(w(X)Tx+ b) (3.6)

where f represents an arbitrary feedforward neural network with any kinds of layers,

v(X) ∈ Rd, W2 ∈ Rm×d, b2 ∈ Rm. The contribution of feature Xi1,...,ip to the positive

53

class is w(X)ixi where i = (i1 − 1) × (m2m3...mp) + (i2 − 1) × (m3m4...mp) + ... + ip. The

contribution of feature Xi1,...,ip to the negative class is −w(X)ixi.

For multi-class classification, the IFFNN can be expressed as follows:

v(X) = f(X) (3.7)

W (X) = Reshape(W2v(X), (c×m)) +B2 (3.8)

x = flatten(X) (3.9)

y = softmax(W (X)x+ b) (3.10)

where v(X) ∈ Rd, W2 ∈ R(cm)×d, B2 ∈ Rc×m, x ∈ Rm, and b ∈ Rc. The contribution of

feature Xi1,...,ip to class j is W (X)j,ixi where (i1−1)×(m2m3...mp)+(i2−1)×(m3m4...mp)+

...+ ip.

It should be noted that assuming v(X), the output of f(X), to be a vector of a fixed

dimension does not cause the loss of generality. When f(X) is a higher order tensor

rather than a vector, its shape is still fixed, so it can always be converted to a vector by

applying a flatten operation.

As can be seen, the explanation of IFFNN is actually the byproduct of the classification

result. With only one forward running, the classification result and the explanations are

both acquired. Thus, the efficiency for the explanation is optimal.

3.1.1 Discussion

In some cases, in the input tensor, multiple elements correspond to the same object. When

the contribution of each object is expected, the contributions of these elements should

be added up. For instance, an RGB image can be represented as a third-order tensor

X ∈ R3×h×w. X1,i,j , X2,i,j , and X3,i,j are the red, green, and blue values of the same pixel.

The contribution of pixel (i, j) is the summation of the contributions of X1,i,j , X2,i,j , and

X3,i,j .

54

3.2 Experiments

In this section, we evaluate various versions of IFFNNs on different datasets. The objec-

tives are to answer the following questions:

• Is classification performance harmed when the feedforward neural networks are

organized in our interpretable way compared to normal feedforward neural net-

works?

• Do the explanations given by the IFFNNs make sense?

3.2.1 Datasets

We evaluate the models on two datasets: MNIST [86] and INBEN. They complement

each other in the evaluation procedure. MNIST is an image classification dataset that

allows us to evaluate IFFNNs with convolutional layers and to qualitatively evaluate the

interpretability of IFFNNs. However, it cannot be used to quantitatively evaluate their

interpretability, since there is no exact answer on how important each pixel is for the

classification results. With our created dataset INBEN, the gold standard explanations of

the samples are known, and thus allows us to achieve this purpose.

Table 3.1: Statistics of the datasets used for evaluation.

Dataset Training Valid Test X Shape
MNIST 10 classes 50,000 10,000 10,000 (28,28)
MNIST 2 classes 10,554 2,111 2,115 (28,28)
INBEN 10 classes 100,000 10,000 10,000 (1000,)
INBEN 2 classes 20,000 2,000 2,000 (1000,)

MNIST

MNIST is a handwritten digit dataset. It is a common benchmark for image classification

models. This dataset works well for our purposes because of its easily interpretable char-

55

acteristic. The IFFNNs applied on this dataset can point out which pixels are important

to classify a sample to a certain digit. It is easy for humans to determine whether these

pixels are good indicators for the predictions.

We create two scenarios with MNIST. Scenario 1 uses samples of all 10 classes. In this

scenario, we can evaluate the versions of IFFNNs for multi-class classification. Scenario 2

uses samples of only two classes (digits of ”0” and ”1”). In this scenario, we can evaluate

the versions of IFFNNs for both binary classification and multi-class classification.

INBEN

By visualizing the importance of each pixel of an image in MNIST, we can only qualita-

tively evaluate the interpretability of the IFFNNs. To quantitatively evaluate the inter-

pretability, we propose a synthetic INterpretablility BENchmark (INBEN) dataset. It can

be described as follows:

1. Each sample belongs to one of c classes.

2. Each sample is a vector of dimension m. Each entry corresponds to a fixed feature,

and the value of it could be 0 or 1. For example, if m = 5, a sample could be (1 0 1 1

0).

3. For each class, there is a set of randomly generated patterns, where if a sample

contains one of these patterns, it belongs to that class. For example, (1,3) is a pattern

for class 2. It means that a sample x belongs to class 2 if x1 = 1 and x3 = 1. (1 0 1 1

0) is an example that contains this pattern.

4. There is a class priority sequence (e.g., [3,2,4,1,5]). If a sample contains patterns of

multiple classes, it belongs to the class with the highest priority among them. For

example, if a sample contains the patterns of both class 2 and class 5, it belongs to

class 2.

56

5. There is a default class. If a sample contains no patterns, it belongs to the default

class.

We also create two scenarios with INBEN datasets. Scenario 1 contains samples of 10

classes, and Scenario 2 contains samples of 2 classes.

The statistics of the datasets are given in Table 3.1.

3.2.2 Models

We include four kinds of feedforward neural networks in our experiments to illustrate

the classification performance and interpretability of the IFFNN architecture. They are

fully connected neural networks (FC), convolutional neural networks (CNN) [85], fully

connected neural networks with highways (HW) [132], and residual neural networks

(ResNET) [66]. For each of the four kinds of neural networks, we have eight different

variants. We use FC as the example to describe the variants:

• FC-BC1 A feedforward neural network with fully connected layers for binary clas-

sification. The top fully connected layer maps the feature vector to a real number

followed by a sigmoid layer. This is only applicable to Scenario 2.

• FC-MC1 A feedforward neural network with fully connected layers for multi-class

classification. The top fully connected layer maps the feature vector to a vector of

dimension c followed by a softmax layer.

• FC-IFFNN-BC The interpretable version of FC-BC1 achieved by replacing the top

layer with Eq.3.4∼3.6. This is only applicable to Scenario 2.

• FC-IFFNN-MC The interpretable version of FC-MC1 achieved by replacing the top

layer with Eq.3.8∼ 3.10.

• FC-BC2 Similar to FC-BC1, with the total number of trainable parameters about the

same as FC-IFFNN-BC by increasing the dimensions of the layers but not increasing

the number of layers. This is only applicable to Scenario 2.

57

• FC-MC2 Similar to FC-MC1, with the total number of trainable parameters about

the same as FC-IFFNN-MC by increasing the dimensions of the layers but not in-

creasing the number of layers.

• FC-BC3 Similar to FC-BC1, with the total number of trainable parameters about

the same as FC-IFFNN-BC by increasing the number of layers, and adjusting the

dimension of each layer. This is only applicable to Scenario 2.

• FC-MC3 Similar to FC-MC1, with the total number of trainable parameters about

the same as FC-IFFNN-MC by increasing the number of layers, and adjusting the

dimension of each layer.

For the other three kinds of neural networks, there are the same eight variants. When

we apply FC and HW networks on the MNIST dataset, we flatten the input to a vector.

We don’t apply CNN and ResNET on INBEN because those two networks are mainly for

input of matrices or third-order tensors.

We also compare with other interpretable models, including logistic regression (LR),

softmax regression (SR), and decision trees (DT). We use grid search to tune the hyper-

parameters of decision trees, including its split criterion and maximum depth. The can-

didate values are given in Table 3.2.

Table 3.2: Candidate values for hyper-parameters of decision tree.

Hyperparameter Candidate Values
Split Criterion gini,entropy

Maximum Depth 10,25,50,100,200,300,400,500,1000

3.2.3 Evaluation Metrics

We describe the evaluation metrics for classification performance and interpretability in

this section.

58

For the classification performance, following the tradition, we use accuracy as the met-

ric, which is the number of correctly classified samples over the total number of samples.

We cannot use MNIST to quantitatively evaluate the interpretability of the models, but

we can use INBEN. With INBEN, we know the reason why a sample belongs to a class.

It is the pattern(s) that decides its class. The ideal explanations should give the features

included in the patterns the greatest contribution values. Therefore, we use the average of

accuracy@N as our evaluation metric for interpretability. We formally define it as follows:

Definition 3.2.1 (Accuracy@N). Let S1 be the set of features in the pattern(s) that deter-

mines a sample x belong to class c. Let N = |S1|. Let S2 be the set of top N important fea-

tures for classifying x to class c by an interpretable classification system. Let S3 = S1 ∩ S2

and n = |S3|. Then, Accuracy@N = n/N .

As can be seen, N is variant to different samples. Below is an example.

A sample x belongs to class 2 because it contains the two patterns of class 2: (113,251)

and (35,72,99,217,251). We thus have S1 = {35, 72, 99, 113, 217, 251} and N = 6. Let the

top six most important features for classifying it to class 2 determined by an interpretable

classification model be: 113,251,7,35,12,308. Then, we have S2 = {7, 12, 35, 113, 251, 308},

S3 = {35, 113, 251} and thus n = 3. Accuracy@N = 3
6
= 0.5.

We use the average of accuracy@N over all correctly classified test samples as the eval-

uation metric for interpretability. We do not include wrongly classified samples because

the Accuracy@N of explanations for wrong predictions do not mean anything.

3.2.4 Experiment Setting

We train and evaluate the models on a server with two Xeon E5-2697 CPUs, 384 GB of

memory, and four Nvidia Titan XP graphics cards. Only one graphics card is used for each

run. The operating system is Windows Server 2016. We use Python 3.7.9 and PyTorch

1.6.0 [112] to implement the models. We use the implementation of DT in scikit-learn

0.23.2 [113].

59

Table 3.3: Classification performance evaluation on MNIST and INBEN.

Model
10-class MNIST 2-class MNIST 10-class INBEN 2-class INBEN

Params Acc Params Acc Params Acc Params Acc

FC-MC1 898.5K 98.46 894.5K 99.93 1.0M 97.80 1.0M 98.23

FC-MC2 4.8M 98.54 1.7M 99.94 6.0M 98.83 2.0M 98.45

FC-MC3 4.8M 98.49 1.7M 99.92 6.0M 98.69 2.0M 98.37

FC-IFFNN-MC 4.8M 98.06 1.7M 99.91 6.0M 98.19 2.0M 99.06

HW-MC1 2.4M 98.13 2.4M 99.93 2.5M 97.99 2.5M 98.57

HW-MC2 6.3M 98.10 3.2M 99.92 7.5M 97.81 3.5M 98.69

HW-MC3 6.3M 97.67 3.2M 99.93 7.5M 97.41 3.5M 98.68

HW-IFFNN-MC 6.3M 97.96 3.2M 99.90 7.5M 97.58 3.5M 99.28

ResNET-MC1 226.2K 99.50 201.1K 99.92 NA NA NA NA

ResNET-MC2 24.7M 99.41 5.1M 99.99 NA NA NA NA

ResNET-MC3 24.7M 99.39 5.1M 99.93 NA NA NA NA

ResNET-IFFNN-MC 24.8M 98.92 5.1M 99.95 NA NA NA NA

CNN-MC1 1.2M 98.88 1.2M 99.89 NA NA NA NA

CNN-MC2 72.3M 98.95 14.5M 99.92 NA NA NA NA

CNN-MC3 72.3M 98.99 14.5M 99.93 NA NA NA NA

CNN-IFFNN-MC 72.3M 98.69 14.5M 99.96 NA NA NA NA

SR 7.8K 92.82 1.6K 99.95 10.0K 87.53 2.0K 97.67

DT NA 88.19 NA 99.66 NA 76.75 NA 98.93

FC-BC1 NA NA 894.0K 99.95 NA NA 1.0M 98.04

FC-BC2 NA NA 1.3M 99.92 NA NA 1.5M 98.47

FC-BC3 NA NA 1.3M 99.91 NA NA 1.5M 98.58

FC-IFFNN-BC NA NA 1.3M 99.94 NA NA 1.5M 98.67

HW-BC1 NA NA 2.4M 99.92 NA NA 2.5M 98.71

HW-BC2 NA NA 2.8M 99.91 NA NA 3.0M 98.55

HW-BC3 NA NA 2.8M 99.92 NA NA 3.0M 98.57

HW-IFFNN-BC NA NA 2.8M 99.94 NA NA 3.0M 99.34

ResNET-BC1 NA NA 197.9K 99.98 NA NA NA NA

ResNET-BC2 NA NA 2.7M 99.95 NA NA NA NA

ResNET-BC3 NA NA 2.7M 99.96 NA NA NA NA

ResNET-IFFNN-BC NA NA 2.7M 99.91 NA NA NA NA

CNN-BC1 NA NA 1.2M 99.93 NA NA NA NA

CNN-BC2 NA NA 7.2M 99.93 NA NA NA NA

CNN-BC3 NA NA 7.2M 99.91 NA NA NA NA

CNN-IFFNN-BC NA NA 7.2M 99.94 NA NA NA NA

LR NA NA 0.8K 99.95 NA NA 1.0K 97.66

We use Adam [76] with the initial learning rate 1e− 3 to train all the neural networks

including LR and SR. The batch size is 256 and maximum epoch is 200. The accuracy on

the test set at the epoch in which the accuracy on the validation set is the best is reported.

60

We repeat each group of experiments five times and report the average. We use ran-

dom seeds from 0 to 4 for model initialization.

3.2.5 Classification Results

The classification performance of all models is shown in Table 3.3. The IFFNN version

of different types of feedforward neural networks achieves slightly higher or lower ac-

curacy compared with the non-interpretable ones in most cases (i.e., the difference is at

most 1%). Between the same kind of neural networks with different amounts of trainable

parameters, the difference in accuracy is minor as well. On datasets with 10 classes of

samples, we can see a significant gap (> 5%) between SR, DT, and the neural networks.

This means that forming feedforward neural networks in the proposed interpretable way

does not harm the classification performance and is as effective as a normal multi-layer

feedforward neural network.

3.2.6 Interpretability Results

Table 3.4: Evaluation of interpretability with Accuracy@N on INBEN.

Model 10-class INBEN 2-class INBEN
SR 86.81 83.96

FC-IFFNN-MC 98.55 91.39
HW-IFFNN-MC 98.43 95.46

LR NA 83.90
FC-IFFNN-BC NA 90.58

HW-IFFNN-BC NA 95.50

Quantitative Analysis

The Accuracy@N of LR, SR, and the IFFNNs on INBEN are reported in Table 3.4. As

shown, the Accuracy@N of IFFNNs is always larger than 90%, which means when a sam-

ple is correctly classified, the IFFNNs can correctly point out the features in the patterns

61

that determine its class. This indicates that the explanations provided by them are accu-

rate.

We can also see that the explanations given by IFFNNs are even more accurate than

those given by LR and SR. The reason is that the INBEN dataset we created is non-linear,

thus these linear models cannot always capture the patterns that determine the class of

a sample. To be more specific, LR and SR can only model the relation between a feature

and a class independently, however, the patterns require the models to be able to model

the co-occurrences of different features. Multi-layer neural networks model interactions

of different features through the computations in the hidden layers. This also reflects

the fact that as multi-layer networks, the IFFNNs have the pattern recognition ability of

non-linear models.

Figure 3.1: Examples of images and the explanations for the classifications on MNIST

with only 0 and 1.

62

Qualitative Analysis

In addition to the quantitative evaluation, we also qualitatively evaluate the models on

MNIST to manually check whether the explanations make sense. We show the impor-

tance of a pixel to a class in a greyscale image that has the same shape as the original

image, and the greyscale of a pixel is the importance of the pixel in the same position.

The greyscale of the background in the original images is always 0, so their importance is

also 0. Therefore, the pixels that are lighter than the background provide a positive con-

tribution to the class and the darker pixels provide a negative contribution. We use the

scenario with only ”0” and ”1” for the evaluation because there are areas of the images

that only contain white pixels for only one of them and these pixels are good indicators

of the digits.

Figure 3.1 show some images from the test set and the importance images of them for

all classes. We can see that for the images of ”0”, the important pixels for the right class

(i.e., ”0”) determined by all IFFNNs focus on the pixels of the left and right parts of the

circle. This makes sense because ”1” is usually close to a vertical bar, so its white pixels

rarely appear in those areas of the images of ”1”. Therefore, it makes sense that white

pixels appearing in these areas contribute more to the class of ”0”. The important pixels

for images of ”1” are more concentrated in the center part of the stroke. This is also valid

because there are rarely white pixels in the center areas of images of ”0”.

63

Chapter 4

Malware Detection

Different from signature-based malware detection methods that can only recognize known

malware or some non-significant variants, machine learning-based malware detection

methods [14, 42, 101, 126, 146] can automatically learn common patterns of malware from

the feature space that have better generalization ability than manually crafted signatures.

However, there are two major challenges for machine learning-based malware detection

models.

Interpretability is one of the dominant features for classification models in some do-

mains, such as healthcare and cybersecurity. In cybersecurity, the explanations can help

malware analysts justify the classification results and create a knowledge base of malware

samples. Linear models such as logistic/softmax regression and Naive Bayes produce in-

terpretable results on vectorial data but usually yield inferior classification performance

than non-linear models such as multi-layer feed-forward neural networks [26]. However,

the hidden layers between the input and the logistic/softmax layer make multi-layer

feed-forward neural networks lose the interpretability of logistic/softmax regression to

directly attribute the impact of each feature. It’s a challenge to keep interpretability as

well as classification performance for feedforward neural networks.

As the payload of malware exists mainly in its assembly code, modelling the assembly

code could provide important information for malware detection. However, it is chal-

64

Table 4.1: Sample result of our malware detection and its explanation, which includes the

5 factors that contribute most to the prediction and the most related assembly functions.

File: 05c199.exe
Prediction: malicious

Confidence: 100%
Primary factors leading to the prediction of malicious

Feature description Feature value Impact
Assembly code N/A 14.56

Number of PE imports 8 5.12
Major operating system version 1 1.49
Frequency of the string ”Sleep” 1 0.82
Frequency of the string ”.data” 1 0.59

Most influential assembly functions
sub 401010
sub 4062AE

lenging to model the whole assembly code of executables because they are very long

sequences. An executable of 1 MB could have hundreds of thousands of instructions. Ex-

isting training approaches are not effective to train such long sequences, and the memory

consumption for training such long sequences cannot be handled with standard hard-

ware.

Deep learning models have achieved significant breakthroughs in understanding nat-

ural language when properly trained on large corpora [47, 115, 116]. Transformer [136]

based models achieve state-of-the-art results in natural language understanding and gen-

eration [21, 47, 51, 115, 116, 118]. However, their successful applications are mainly on

short text, i.e., sentence-level tasks such as paraphrase detection and sentiment analy-

sis [47, 115], or on short-document texts such as reading comprehension and automatic

summarization of news articles [51]. For example, the state-of-the-art sequence model

GPT-3 [21] can process sequences of a maximum length of 2,048 tokens. That makes the

transference of the success of existing methods to understanding assembly code a chal-

lenge. Apart from the fact that assembly code is too long, the differences between natural

65

language and assembly code in the structure composition and basic units stand as another

problem to solve.

Despite the fact that the assembly code of an executable is usually very long, it has an

innate hierarchical structure: instructions form basic blocks, basic blocks form assembly

functions, and assembly functions form the ensemble of assembly code (i.e., the full logic)

of an executable. The lengths of basic blocks, assembly functions, and the ensemble of the

assembly code of an executable in terms of their direct sub-units are usually within thou-

sands. Based on this characteristic, we propose the Galaxy Transformer network. It con-

tains three components, namely the Satellite-Planet Transformer, the Planet-Star Transformer,

and the Star-Galaxy Transformer. They are three customized Star-Plus Transformer networks

organized in a hierarchy in order to understand the semantic meaning of the assembly

code of an executable at different levels: basic block, assembly function, and executable.

The Star-Plus Transformer is our improved version of the Star Transformer [65], which was

proposed for natural language understanding as a variant of the Transformer [136]. The

time complexity and space complexity of the Transformer is O(n2), where n is the length

of the token. The Star Transformer replaces the fully connected structure of the Trans-

former with a star-shaped topology to reduce the complexities to O(n), and it achieves

better results on modestly sized datasets. A comparison of the topology between the

Transformer, the Star/Star-Plus Transformer, and the Galaxy Transformer is shown in

Figure 4.1. Our proposed universe-like topology of the Galaxy Transformer makes it pos-

sible to train very long sequences.

To provide explanations for the detection results, we apply our novel interpretable feed-

forward neural network (IFFNN) as the other key component of our full model, the Inter-

pretable MAlware Detector (I-MAD). It has the modelling power of a multi-layer neural

network and the interpretability of a logistic regression model. An example of the predic-

tion and its explanation is given in Table 4.1. It shows the detection result of a target file,

the confidence in the result, the primary contributing features that lead to the prediction,

and the most related assembly functions.

66

Figure 4.1: The comparison of topology of the Transformer, Star/Star-Plus Transformer,

and Galaxy Transformer.

The contributions of the work described in this chapter are summarized below:

1. We propose the Galaxy Transformer as an early attempt in the literature to model

the full sequences of assembly code for malware detection.

2. We propose two pre-training tasks to train the Satellite-Planet Transformer and

Planet-Star Transformer, which are both components of the Galaxy Transformer, to

understand the semantic meaning of assembly code at the basic block and assembly

function levels.

3. We improve the way to use printable string features from previous works with our

insights on malware.

4. We apply our novel IFFNN as the classification module of I-MAD to provide intrin-

sic explanations for detection results. The IFFNN module allows I-MAD to quantify

the impact of each feature for the detection results.

The rest of the chapter is organized as follows. Section 4.1 defines the research prob-

lem. Section 4.2 describes the details of our proposed method. Section 4.3 presents the

experiment results and analyses.

67

4.1 Problem Definition

In this section, we define some important concepts, followed by the definition of the re-

search problem.

An executable is a sequence of bytes:

exe = ⟨byte1, byte2, ...⟩ (4.1)

The feature set of an executable is extracted by a set of extractors:

fea(exe) = {ext1(exe), ext2(exe), ...} (4.2)

Except for assembly code, the other extracted features can be represented as a vector.

We represent the assembly code as a series of nested sets and sequences.

The assembly code of an executable is a set of assembly functions:

code(exe) = {f1, f2, ...} (4.3)

An assembly function is a set of basic blocks:

f = {b1, b2, ...} (4.4)

A basic block is a sequence of assembly instructions:

b = ⟨ins1, ins2, ...⟩ (4.5)

An assembly instruction is a sequence of one opcode and two operands:

ins = ⟨Opcode,Operand1, Operand2⟩ (4.6)

68

Figure 4.2: An overview of our I-MAD model.

For the uncommon instructions with three operands, the third is ignored. Empty operands

are substituted by the special token EMPTY. All opcodes and operands form a set, and

each of them is assigned an index number. Thus, one instruction can be abstracted as

a sequence of three integers, where each integer represents an index of an opcode or

operand.

Definition 4.1.1 (Malware Detection). Consider a collection of executables E and a col-

lection of labels L that show the executables in E are benign or malicious. Let exe be an

unknown executable that exe /∈ E. The malware detection problem is to build a classification

model M based on E and L such that M can be used to determine whether the executable

exe is benign or malicious.

4.2 Methodology

Our malware detection model I-MAD includes the Galaxy Transformer to learn a vector

to represent the semantic meaning of the assembly code of an executable and our IFFNN

that takes the vector representing the assembly code of a target executable and vectors

representing other features as its inputs to produce an interpretable detection result. Fig-

ure 4.2 depicts an overview of our malware detection model. In this section, we introduce

69

the Star Transformer and describe how we improve it to form the Star-Plus Transformer

to build the Galaxy Transformer. Then, we propose two methods to pre-train different

components of the Galaxy Transformer. Next, we introduce the other features we use and

how we apply the IFFNN to explain the detection results.

4.2.1 Galaxy Transformer

The Galaxy Transformer is proposed to learn vector representations for the semantic

meanings of assembly code at the basic block, assembly function, and executable levels.

The semantic meaning refers to the overall purpose (i.e., function) of assembly code.

Star Transformer

The Star Transformer [65] adopts the multi-head attention from the standard Transformer:

MultiAtt(q,H) = Concat(head1, ..., headh)W
O

where headi = Attention(qWQ
i , HWK

i , HW V
i)

Attention(qi, Ki, Vi) = softmax(
qiK

T
i√

dmodel

)Vi

where Ki = HWK
i ,Vi = HW V

i , WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv ,WO ∈

Rhdv×dmodel are learnable parameters, q ∈ Rdk is a query vector, and H ∈ Rn×dk is a matrix

that contains vector representations of n items to attend to. To compute the self-attention

of a sequence X = ⟨x1, x2, ..., xn⟩, in the Transformer, each xi is a query q, and it attends

to all items in the sequence, so H = X . Thus, its computational complexity is O(n2).

To reduce the computational complexity, the Star Transformer only considers connec-

tions between adjacent items and between a relay node and each item, as shown in Figure

4.1b. First, for each item xi, a vector ei is computed as the summation of its non-contextual

semantic embedding and its positional encoding in the same way as the Transformer

70

does:

ei = Emb(xi) = SE(xi) + PE(i)

E = [e1; ...; en]

Then, the embeddings are fed into a multi-layer neural network to compute the hid-

den state for each xi. ht
i represents the hidden state of xi at layer t. h0

i is initialized as ei.

The initial hidden state of the additional relay node is s0 =
1

n

∑
n ei. To compute ht

i, its

context matrix Ct
i is formed by the hidden states of itself ht−1

i and its adjacent nodes of

the previous layer ht−1
i−1;h

t−1
i , its embedding ei, and the hidden state of the relay node st−1:

Ct
i = [ht−1

i−1;h
t−1
i ;ht−1

i+1; ei; s
t−1]

So, we have Ct
i ∈ R6dmodel .

At each layer, we have

ht
i = LayerNorm(ReLU(MultiAtt(ht−1

i , Ct
i)))

H t = [ht
1; ...;h

t
n]

st = LayerNorm(ReLU(MultiAtt(st−1, H t)))

Thus, the relay node st serves as a global information collector. ht
i collects local infor-

mation from its adjacency nodes and global information from st−1. The computational

complexity to compute all ht
i is O(n), and to compute st it is also O(n). The overall com-

putational complexity is therefore O(n).

To put it all together, we represent a Star Transformer Layer as follows:

H t+1, st+1 = STLt(H t, st, E)

71

The full computation of the Star Transformer is as follows:

E = [Emb(x1); ...;Emb(xn)]

H0 = E, s0 =
1

n

∑
n

ei

HT , sT = STLT (STLT−1(...STL1(H0, s0, E), E), E)

Star-Plus Transformer

As previously shown, the Star Transformer can generate a contextual vector represen-

tation for each item in a sequence and a vector representation for the whole sequence

with O(n) computational complexity. We propose the following modifications for better

performance.

1. There is no obvious reason why ei should be in the context matrix Ct
i , so we remove

ei from Ct
i , resulting in Ct

i = [ht−1
i−1;h

t−1
i ;ht−1

i+1; s
t−1].

2. There was a pointwise feedforward neural network (FNN = max(0;xW1+ b1)W2+

b2) after the multi-head attention computation in the Transformer, but it is removed

in the Star Transformer without an explanation. We add it back to compose the

information collected by all attention heads and to generate higher-level features

for the next layer.

3. A max-pooling on HT across the top layer mixed with sT was used as the represen-

tation for the whole sequence in the Star Transformer. We use only sT to represent

the whole sequence, since it has collected global information of the sequence.

72

To put it together, we have a Star-Plus Transformer layer H t+1, st+1 = SPTLt(H t, st)

computed as follows:

ht
i
′ = LayerNorm(ReLU(MultiAtt(ht−1

i , Ct
i)))

ht
i = LayerNorm(ReLU(FFN(ht

i
′)))

H t = [ht
1; ...;h

t
n]

st′ = LayerNorm(ReLU(MultiAtt(st−1, H t)))

st = LayerNorm(ReLU(FFN(st′)))

4.2.2 Satellite-Planet Transformer to Understand Basic Blocks

As we have stated before, a basic block is a sequence of assembly instructions: b =

⟨ins1, ins2, ...⟩. The objective of the Satellite-Planet Transformer is to learn a vector rep-

resentation for b using its instructions. To build the Satellite-Planet Transformer with the

Star-Plus Transformer, we modify the input layer of the latter because each instruction is

not an atomic item, but a sequence of three items (i.e., an opcode and two operands). Since

both the embedding of an instruction insi and its positional encoding should have dmodel

dimensions, we make the embeddings of the opcode and operands dmodel/3 dimensions

and use the concatenation of them as the embedding of the instruction. It is then added

with the positional encoding to form ei. The concatenation of the vector representation of

the opcode and operands to form the vector of an instruction was also previously adopted

by Ding et al. [50]. For the output, we directly use sT , which is the representation of the

relay node at the top layer as the semantic meaning representation of the basic block. To

train the Satellite-Planet Transformer we propose the Masked Assembly Model task.

Definition 4.2.1 (Masked Assembly Model). Let (b, ins) be a basic block and assembly in-

struction pair. Consider a set of basic block and assembly instruction pairs B. For each

pair (b, ins) ∈ B, there is one mask instruction m in b that should originally be ins. Let t

be a target basic block that is not in any pair of B, and one of its instructions is replaced

73

by m. The Masked Assembly Model task is to build a classification model M based on B to

predict the original instruction t replaced by m.

This task is inspired by the Masked Language Model task proposed by Devlin et al. [47].

In that task, the authors mask random words from sentences and use the Transformer to

predict the masked words based on the contextual words in the sentences. Their method

is to feed the output vector of the Transformer corresponding to a masked word to an

output softmax over the vocabulary. The prediction requires both global context and lo-

cal context. The global context means the semantic meaning of the whole sentence except

the masked word. The local context means the position of the masked word and its sur-

rounding words that could indicate what ingredient the missing word should be. As the

output vector corresponding to the masked word is the only information source for the

output layer to make the prediction, it has to capture both global and local context. This

does not fit our objective, since the output vector should only contain the semantic mean-

ing of a basic block (i.e., global contextual information). Therefore, we separate the two

kinds of information in two vectors: sT containing the global contextual information and

the output vector of the masked instruction m = [MASK OPC,EMPTY,EMPTY] con-

taining the local contextual information. We concatenate these two vectors to form one

vector and feed it to three feed-forward neural networks with softmax over the whole set

of opcodes and operands to predict the opcode and two operands of the original masked

instruction. It should be noted that after this training step, we only need to keep the

Satellite-Planet Transformer, which generates sT , the semantic representation of the en-

tire basic block, because the three feed-forward neural networks to predict the original

masked instruction are not needed after the training for the Masked Assembly Model task.

4.2.3 Planet-Star Transformer to Understand Assembly Function

The Planet-Star Transformer is another customized Star-Plus Transformer built on top of

the Satellite-Planet Transformer to learn the vector representation of the semantic mean-

ing of an assembly function f from the set of vectors representing its basic block {b1, b2, ...}.

74

As the input is already vectors rather than integers, we abandon the input embedding

layer of the Star-Plus Transformer that maps integers to embeddings. We directly feed

the vectors representing the basic blocks in positional order to form a sequence to the

Planet-Star Transformer, which is a Star-Plus Transformer without an input layer. We use

sT as the vector representation of the assembly function. To train the Planet-Star Trans-

former, we propose the Assembly Function Clone Detection task.

Definition 4.2.2 (Assembly Function Clone Detection). Let (f1, f2) be an assembly function

pair. Let (f1, f2, l) be a labeled assembly function pair in which the label l indicates whether

the two assembly functions f1 and f2 are clones (i.e., semantically equivalent) of each

other. Consider a collection of labeled assembly function pairs F . Let p = (f1, f2) be a new

function pair that p is not any function pair in F . The assembly function clone detection task

is to build a classification model M based on F to determine whether the two functions

in p are clones of each other.

The intuition is that if the vector representations of assembly functions can be used to

determine whether two functions are clones of each other, then they contain the semantic

meaning of the assembly functions. We train the network to generate similar vectors in

cosine measure (i.e., cos(sTf1, s
T
f2)) for real assembly function clone pairs and dissimilar

vectors for non-clone pairs. The way we form the function pair dataset is described in

Section 4.3.

4.2.4 Star-Galaxy Transformer to Understand Full Logic of Executable

Next, we use the Star-Galaxy Transformer to learn one vector representing the full logic

of an executable based on the representations of all its assembly functions: {f1, f2, ...}.

Technically, this is similar to learning the representation of an assembly function from

the representations of its basic blocks, since both are intended to learn one vector repre-

sentation from a set of vectors. Therefore, the Star-Galaxy Transformer is a duplicate of

the Planet-Star Transformer. Their difference is that they work at different levels of the

75

hierarchy. The representation of the assembly code of an executable generated by the Star-

Galaxy Transformer is fed to the IFFNN for malware detection without other pre-training

tasks proposed for it.

With this, we have completely described how we build the Galaxy Transformer with

three customized Star-Plus Transformers in a hierarchy to compute the vector representa-

tion of the assembly code of an executable.

4.2.5 Other Features

When malware is packed, or is polymorphic or metamorphic, the assembly code of its

payload is encrypted and not statically accessible. Hence, using only assembly code

would fail to identify its malicious purpose. According to the experience of previous

works [8, 72], static analysis can still be effective, because the use of the stealthy mech-

anisms can be captured when analyzed from multiple static feature scopes. Next, we

describe the three kinds of features we use and how we improve the way to use them.

Printable Strings

According to the literature [41, 69, 72, 127], printable strings are important features, be-

cause they include, among others, runtime-linked libraries, functions, and registry keys

that are commonly used by malware, system paths, and sometimes the names of user-

defined functions. Hence, we extract printable strings from the whole byte sequence of

an executable. In our algorithm, a continuous subsequence is a printable string if it sat-

isfies three conditions: 1) all of its bytes are ASCII characters, 2) it is terminated with a

null symbol, and 3) its length is at least 5 bytes. We count the number of instances of each

printable string in the training set and put the strings that appear more than a certain

threshold, 1,000 in our case, in the frequent string set. Their frequencies in an executable

are used as features. This is not new compared to previous works. The improvement is

that we also use the number of printable strings that are not in the frequent string set,

i.e., uncommon strings, as a feature, and we use the total number of common printable

76

Table 4.2: PE header numerical fields we use.

Machine SizeOfOptionalHeader
Characteristics MajorLinkerVersion

MinorLinkerVersion SizeOfCode
SizeOfInitializedData SizeOfUninitializedData
AddressOfEntryPoint BaseOfCode

BaseOfData ImageBase
SectionAlignment FileAlignment

MajorOperatingSystemVersion MinorOperatingSystemVersion
MajorImageVersion MinorImageVersion

MajorSubsystemVersion MinorSubsystemVersion
SizeOfImage SizeOfHeaders
CheckSum Subsystem

DllCharacteristics SizeOfStackReserve
SizeOfStackCommit SizeOfHeapReserve
SizeOfHeapCommit LoaderFlags

NumberOfRvaAndSizes SectionsNb
SectionsMeanEntropy SectionsMinEntropy
SectionsMaxEntropy SectionsMeanRawsize
SectionsMinRawsize SectionsMaxRawsize

SectionsMeanVirtualsize SectionsMinVirtualsize
SectionMaxVirtualsize ImportsNbDLL

ImportsNb ImportsNbOrdinal
ExportNb ResourcesNb

ResourcesMeanEntropy ResourcesMinEntropy
ResourcesMaxEntropy ResourcesMeanSize

ResourcesMinSize ResourcesMaxSize
LoadConfigurationSize VersionInformationSize

strings in the executable as another feature. This is based on the intuition that encrypted

malware has more uncommon printable strings and benign software has more common

strings.

PE Imports

PE Imports are dynamically linked libraries and functions shown in the import address

table of PE headers. The imports of an executable often illustrate its behaviors, e.g., mod-

77

Figure 4.3: The architecture of the IFFNN applied in I-MAD.

ify the registry or hook a procedure [126, 127]. Therefore, we use the imports of dlls and

their functions as another group of features.

PE Header Numerical Features

There are many numerical fields in PE headers that contain information that could form

different patterns among malware and benignware [14, 126]. Hence, we also use these

values as features. The fields of PE headers we use are given in Table 4.2.

We concatenate the vector representing the full logic of an executable vcode, printable

string feature vector vstr, PE header numerical feature vector vnum, and PE import feature

vector vimp to form a vector representation of the executable from multiple scopes v =

[vcode, vstr, vnum, vimp].

4.2.6 Interpretable Feed-Forward Neural Network

To tell the contribution of each feature for the detection result, we apply our proposed

IFFNN as the classification module. Figure 4.3 illustrates its architecture.

78

Let x ∈ Rm be a feature vector representing a sample. We first feed it to l fully-

connected hidden layers:

vl(x) = FC l(...FC1(x)...) (4.7)

where FCi(vi−1(x)) = tanh(W i
1vi−1(x) + bi1) (4.8)

where W i
1 ∈ Rdi×di−1 , bi1 ∈ Rdi , and vl(x) ∈ Rdl . Then, we apply another normal fully-

connected layer of which the output vector has the same dimension as x:

w(x) = W2vl(x) + b2 (4.9)

where W2 ∈ Rm×dl , b2 ∈ Rm, and w(x) ∈ Rm. w(x) serves as a weight vector for each

feature in x. The final confidence that the input sample is positive (in malware detection,

positive means malicious) is calculated as follows:

y = IFFNN(x) = σ(w(x)Tx+ b) (4.10)

where σ(z) =
1

1 + e−z
(4.11)

where b ∈ R is a bias term. This is similar to a logistic regression (i.e., y = σ(wTx +

b), where w is a parameter vector), and the difference is that our weight vector w(x) is

dynamically computed based on x rather than static parameters.

We feed v, the feature vector from multiple scopes of an executable, to the IFFNN to get

the confidence y that it is malicious: y = IFFNN(v) = σ(w(v)Tv) = σ(w(v)1v1+w(v)2v2+

...+ w(v)mvm) and explain the result. If |w(v)jvj| is large and w(v)jvj > 0, feature vj has a

large impact on the prediction of malicious. If |w(v)jvj| is large and w(v)jvj < 0, feature vj

has a large impact on the prediction of benign. For printable string features, PE imports,

and PE header numerical features, each dimension of their vector representations corre-

sponds to a specific feature. The features can be the frequency of a certain string, whether

79

a certain DLL is imported, the value of a certain numerical field, etc. By checking its

w(v)jvj , we know whether it makes the executable more likely malicious or benign. For

the vector representing the full logic of an executable: vcode, each of its dimensions has

no specific meaning, but we can see the impact of the full logic of the executable by com-

puting the summation of the impact of each dimension of its vector:
∑

j∈vcode wcode,jvcode,j .

If it is positive, from the perspective of the assembly code, the executable is more likely

malicious, and vice versa.

As vcode is computed by our Star-Galaxy Transformer network, the attention weights

of the assembly functions to the relay node at the top layer indicate the importance of

each assembly function. We compute the summed attention weights of each assembly

function over all heads to the relay node to determine which assembly functions are the

main factors that influence the detection results.

4.2.7 Model Training

To train the Satellite-Planet Transformer, the objective function is the cross entropy loss of

the prediction on the masked opcode and operands against the real opcode and operands.

To train the Planet-Star Transformer and simultaneously fine-tune the Satellite-Planet

Transformer, the objective function is the mean squared error between the computed co-

sine similarity between two assembly functions and the gold standard (i.e., 1 for clone

function pairs, and -1 for non-clone function pairs). To train the full top-level network

including the IFFNN and the Star-Galaxy Transformer, the objective function is the cross

entropy loss of the prediction against the real label. To ensure that the Star-Galaxy Trans-

former gets sufficient training, we first train it without concatenating any other feature,

i.e., feed vcode instead of v to the IFFNN (y = IFFNN(vcode)), and train it for malware

detection. This is in fact the pre-training of the Star-Galaxy Transformer. Then, we con-

catenate vcode with other features to feed it to the IFFNN (y = IFFNN(v)), and train it

the same way for malware detection. The Satellite-Planet Transformer and Planet-Star

Transformer networks are not fine-tuned when we train the top-level network. For all the

80

training objectives, we use Adam [76] with the initial learning rate 1e − 4. We use early

stopping with the validation set to avoid overfitting [24].

4.3 Experiments

The objectives of our experiments are to 1) evaluate the performance of I-MAD for mal-

ware detection, 2) compare I-MAD to other state-of-the-art static malware detection solu-

tions, and 3) demonstrate the interpretability of I-MAD.

We train and evaluate the models on a server with two Xeon E5-2697 CPUs, 384 GB

of memory, and four Nvidia Titan XP graphics cards. We use PyTorch [112] to implement

our model. We use the ”pefile”1 library to extract numerical features from PE headers.

4.3.1 Datasets and Pre-training

Table 4.3: Top 10 majority malware families of the dataset.

Malware Family Number Percentage
Fareit 9,436 8.2%
Zbot 6,433 5.6%

Emotet 6,343 5.5%
Gandcrab 4,120 3.6%
Mepaow 4,055 3.5%

CobaltStrike 3,151 2.7%
Allaple 2,081 1.8%
Ursnif 1,552 1.3%
Autoit 1,017 1.0%

NaKocTb 794 0.7%
Total 38,982 33.9%

For the two pre-training tasks, we compile several open source projects that are com-

patible with GCC and/or LLVM. We choose these two compilers because they are the

1https://github.com/erocarrera/pefile

81

most appropriate options to provide different compilation options to generate semanti-

cally equal but literally different assembly functions. GCC compiler provides four differ-

ent optimization levels (i.e., O0, O1, O2, and O3) to compile projects. We compile busybox,

coreutils, libcurl, libgmp, libtomcrypt, libz, magick, openssl, puttygen, and sqlite3 with GCC at

all four optimization levels. Thus, for every assembly function in those projects we have

four semantically equivalent versions. O-LLVM2 is an obfuscator of the LLVM compiler

that provides control flow flattening, instruction substitution, and bogus control flow ob-

fuscation mechanisms. We use O-LLVM to compile libcrypto, libgmp, libMagickCore, and

libtomcrypt with five different settings: no obfuscation, each of the three obfuscation mech-

anisms, and all three mechanisms. Thus, we have five versions of their every function.

We use IDA Pro3, a commercial disassembler, to disassemble our compiled executables

and acquire the assembly functions.

We use basic blocks of lengths between 5 to 250 instructions to form our Masked Assem-

bly Model dataset; these blocks are within the typical length range of blocks that provide

enough context and are not too long to harm training efficiency. As a result, this dataset

contains 38,427,440 basic blocks. We use all of them for training and none for testing as the

purpose of the dataset is to train the Satellite-Planet Transformer to understand assembly

code, and the accuracy of this task is uninformative.

We use the semantically equivalent but literally different functions we compiled to

form real function clone pairs. We randomly pair the same number of functions to be

non-clone function pairs to create the dataset for the Assembly Function Clone Detection

task. We limit the maximum number of instructions per basic block to be 50 and the

maximum number of blocks per function to be 50 in this dataset, so that the memory of

our graphics cards can hold the data flowing in the bottom two-level networks. There

are 213,656 function pairs in the training set, 26,898 functions in the validation set, and

26,746 functions in the test set. Our bottom two-level networks get a classification accu-

racy of 91.5% on the test set. This means that the assembly function representations it

2https://github.com/obfuscator-llvm/obfuscator/wiki
3https://www.hex-rays.com/products/ida/

82

computes and the representations of basic blocks that are fed to it indeed capture the se-

mantic meanings of assembly code. We do not elaborate on the experiments for this task

since it is not the objective task, but rather a task to pre-train the Planet-Star Transformer

and fine-tune the Satellite-Planet Transformer.

For malware detection we collected a dataset containing 115,000 benign and 115,000

malicious executables. There is no redundancy in the dataset. Following the litera-

ture [78, 117, 127], the benign executables are the .exe and .dll files from the installation

paths of software programs. The malicious executables are collected from MalShare and

VirusShare. The top 10 major malware families of the dataset are presented in Table 4.3.

They are obtained with ClamAV 4. The top 10 known packers that are applied on the mal-

ware samples are shown in Table 4.4. The usage of packers is acquired with Yara Rules 5.

The way we split the dataset into training set, validation set, and test set is introduced in

Subsection 4.3.3.

Table 4.4: Top 10 packers used in the malware dataset.

Packer Number Percentage
UPX 7,776 6.7%

BobSoft Mini Delphi 5,262 4.5%
ASProtect 1,826 1.59%
ASPack 1,780 1.55%

PECompact 586 0.51%
Armadillo 369 0.32%

D1S1G 155 0.14%
WinrarSFX 124 0.11%
MoleBox 69 0.06%

WinZipSFX 38 0.03%
Total 17,985 15.6%

4.3.2 Models for Comparison

We compare our I-MAD model to several state-of-the-art static malware detection models.

4https://www.clamav.net/
5https://github.com/Yara-Rules/rules

83

Table 4.5: Results of k-fold cross-validation experiment. It includes the p-values (pv) of

t-test for F1 and accuracy between I-MAD (ST+) and other models.

Model P R F1 pv (F1) Acc pv (Acc)
Mosk2008OB 96.1 95.8 95.9 3.3e-13 95.9 1.6e-20
Bald2013Meta 96.5 95.9 96.2 1.1e-13 96.2 6.7e-20
Saxe2015Deep 95.2 96.1 95.7 4.0e-14 95.6 4.5e-21
Raff2017MalC 95.9 96.3 96.1 5.6e-15 96.1 4.0e-20
Krcal2018Conv 93.2 93.2 93.2 1.7e-15 93.2 1.0e-23
Mour2019CNN 72.6 71.5 72.0 2.3e-26 71.8 1.5e-30

SVM (same features) 96.1 96.4 96.2 3.7e-13 96.2 5.6e-20
I-MAD (no code) 96.5 96.6 96.5 9.8e-13 96.5 4.0e-19

I-MAD (ST) 97.0 97.9 97.3 5.0e-3 97.2 4.7e-6
I-MAD (ST+) 97.5 97.9 97.7 N/A 97.7 N/A

• Mosk2008OB Moskovitch et al. [101] propose to use TF or TF-IDF of opcode bi-

grams as features and use document frequency (DF), information gain ratio, or

Fisher score as the criteria for feature selection. They apply Artificial Neural Net-

works, Decision Trees, Naı̈ve Bayes, Boosted Decision Trees, and Boosted Naı̈ve

Bayes as their malware detection models.

• Bald2013Meta Baldangombo et al. [14] propose to extract multiple raw features

from PE headers and use information gain and calling frequencies for feature se-

lection and PCA for dimension reduction. They apply SVM, J48, and Naı̈ve Bayes

as their malware detection models.

• Saxe2015Deep Saxe et al. [126] propose a sophisticated deep learning model that

works on four different features: byte/entropy histogram features, PE import fea-

tures, string 2D histogram features, and PE metadata numerical features. We tried

to follow the exact features they extract when we implement it, but they do not pro-

vide the exact metadata numerical fields they use, so we just use the same numerical

fields of PE headers used in our model as part of their input.

• Raff2017MalC Raff et al. [117] treat an executable as a sequence of bytes and apply

a gated 1D convolutional neural network (CNN) to classify an executable. The net-

84

work includes an embedding layer, two convolutional layers with large filters and

strides, a global max-pooling layer, and two fully-connected layers. The output of

one convolutional layer serves as the gate of the other.

• Krcal2018Conv Following Raff et al. [117], Krcal et al. [79] treat an executable as a

sequence of bytes and apply a CNN for malware detection, but their CNN is deeper

and has smaller filters. There are four convolutional layers and four fully connected

layers. Instead of a global max-pooling layer, they use a global mean-pooling layer

after the convolutional layers.

• Mour2019CNN Mourtaji et al. [102] convert malware binaries to grayscale images

and apply a 2D CNN on malware images for malware classification.

For the papers in which the authors describe multiple ways to select features and/or

apply multiple machine learning models ([14, 101]), we try with all possible settings and

report the best results that their methods can achieve to compare with our model.

As the ablation study, we also compare our full model ”I-MAD (ST+)” with ”I-MAD

(no code)” and ”I-MAD (ST)”. ”I-MAD (no code)” is our model without using assembly

code. These comparisons can show the effectiveness of modeling assembly code with

Galaxy Transformer. ”I-MAD (ST)” is to build the Galaxy Transformer with the original

Star Transformer, rather than the Star-Plus Transformer, to show the effectiveness of our

modifications.

We also compare our model with an SVM model that uses the same features as I-MAD

except for assembly code, since it is not a vectorial feature. We consider linear, polyno-

mial, and RBF kernels and use grid search for tuning hyper-parameters. Comparing this

baseline with I-MAD (no code), we can separately show the effectiveness of the feature

set and our model.

85

4.3.3 Experiment Settings

We evaluate the models under two different experiment settings. The main evaluation

metric is accuracy (Acc), but we also evaluate the models with precision (P), recall (R),

and F1.

• K-Fold Cross-Validation We first evaluate our model and others with k-fold cross-

validation where k = 5. The original dataset is randomly split into 5 even subsets.

Each subset takes a turn to be chosen as the test set. Another subset takes a turn to

be chosen as the validation set. The other 3 subsets form the training set. Thus, we

have 5P2 = 20 different experiment groups. Each group contains 138,000 samples in

the training set, 46,000 in the validation set, and 46,000 in the test set. We acquire

the experiment results of the 20 groups and report the averages.

• Time Split Evaluation In addition to cross-validation evaluation, we also evalu-

ate the models in a more challenging and realistic scenario. In real life, a malware

detection system is expected to detect new malware with its knowledge of known

malware. To evaluate this ability of the models, we follow Saxe et al. [126] to per-

form a time split experiment. We use the executables compiled before 2015 to form

the training and validation set, and those compiled after 2017 to form the test set.

We exclude samples with a compilation time before 2000 or after 2020, either be-

cause the compilation dates are fake or the samples are outdated. There are 106,000

samples in the training set, 20,000 in the validation set, and 40,000 in the test set. We

run each model with different initialization and random seeds 5 times and report

the averages of the results.

4.3.4 Results

The results of the k-fold cross-validation and the time split experiments are shown in

Table 4.5 and Table 4.6, respectively.

86

Table 4.6: Results of time split experiment. It includes the p-values of t-test for F1 and

accuracy between I-MAD (ST+) and other models.

Model P R F1 pv (F1) Acc pv (Acc)
Mosk2008OB 88.6 88.6 88.6 1.2e-15 88.6 3.4e-22
Bald2013Meta 88.3 88.1 88.2 1.6e-17 88.2 1.2e-22
Saxe2015Deep 87.4 87.7 87.5 1.4e-17 87.5 2.6e-23
Raff2017MalC 88.5 89.0 88.7 1.2e-16 88.7 4.5e-22
Krcal2018Conv 84.2 83.2 83.7 3.1e-18 83.8 1.2e-27
Mour2019CNN 57.0 56.6 56.8 4.3e-31 56.9 7.1e-34

SVM (same features) 89.2 88.8 89.0 7.3e-15 89.0 6.1e-22
I-MAD (no code) 89.4 89.6 89.5 3.2e-15 89.5 6.7e-21

I-MAD (ST) 91.1 91.1 91.1 8.6e-11 91.1 2.6e-15
I-MAD (ST+) 91.4 91.6 91.5 N/A 91.5 N/A

The full version of I-MAD achieves statistically significantly better accuracy and F1

than the other models in all experiments, as the p-values in t-test are much smaller than

0.01. The improvements of our model on accuracy and F1 are larger in the time split

experiments than in the cross-validation experiment. Even though we make sure there is

no redundancy in the dataset, some pieces of malware could be extensively similar to each

other if they are from the same family and compiled with slightly different modifications.

Also, their compilation time is usually close to each other. In the time split experiment,

the executables in the test set are compiled at least 2 years later than any executable in

the training and validation sets. This is a more difficult setting that can be reflected in the

pervasively lower accuracy in the time split setting than in the cross-validation setting.

Thus, the significantly larger improvement of our detection model over other models in

the time split experiment indicates that it has better abilities to learn robust and consistent

patterns from old samples that can be generalized to classify new samples.

It is clear that with modelling assembly code with the Galaxy Transformer, I-MAD

achieves much better results than it does without modelling the assembly code. This

shows that modelling assembly code with our Galaxy Transformer helps in differentiating

malicious and benign executables. We can also see that the Galaxy Transformer built with

87

Star-Plus Transformer (I-MAD (ST+)) is more effective than the one built with the original

Star Transformer (I-MAD (ST)). This confirms that our modifications are useful.

SVM with the same features as I-MAD except for assembly code, achieves accuracy

similar to other best baseline models in the cross-validation experiment, and it achieves

better accuracy than other baseline methods in the time split experiment, while worse

than I-MAD (no code). This shows that the feature set we propose is effective, and our

IFFNN has advantages in classification performance on the same feature set.

That being said, other models, except Mour2019CNN, also achieve reasonably good

results in all experiments. However, none of the models consistently achieves the second-

best performance in both experiment settings. Even though Saxe2015Deep uses features

from multiple scopes, they do not show better results than Bald2013Meta and Mosk2008OB.

The lack of any mechanism to understand assembly code is an obvious reason, as mod-

elling assembly code in our model improves the performance. Our improved way of rep-

resenting printable string features, combined with our IFFNN, is the other reason. This is

validated in the next subsection.

Mour2019CNN performs much worse than other models, even though we tried alter-

native hyper-parameter values in addition to the values the authors provided. One reason

is that the way it represents an executable as an image is not sophisticated; even a small

offset change in an executable would result in totally different textures in its image. In

addition, we also observe overfitting, as its accuracy on the training set achieves 89.2%,

while on the test set it is 71.8%. Even though our model is also a deep learning model, it

does not suffer from the overfitting problem because we use two pre-training tasks to ad-

equately train the Satellite-Planet Transformer and Planet-Star Transformer with the rich

information embedded in assembly code. In contrast, Mour2019CNN can only be trained

with the labels of executables, which is insufficient.

88

4.3.5 Interpretability

Case Study

Table 4.1 shows how our model explains the detection result of a sample. The primary

factors that lead to the prediction of 05c199.exe to be malicious and the main assembly

functions related to the prediction are given. It can be seen that the assembly code of the

target executable is the primary reason. The two assembly functions that contribute the

most to the prediction set the program to sleep for a certain time and then download and

run an embedded executable from a remote address.

Qualitative Analysis

To better understand the impacts of the features we use, Table 4.7 shows the ten most

frequent main factors leading to the prediction of a sample to be malware or benign.

Main factors for both classes The assembly code of an executable is one of the most fre-

quent factors influencing the prediction of an executable to be malicious or benign. This

means that the vector representing the semantic meaning of assembly code computed by

our Galaxy Transformer is very effective for malware detection. We randomly examine

the assembly functions of some malware that acquire the largest attention by the relay

node at the top layer of the Star-Galaxy Transformer. Many of them concern malicious

behaviors, such as installing itself into some registry, hijacking some common legitimate

DLLs, and injecting itself into another process. We find that there are statistical differ-

ences between the two classes in the mean values of total number of strings, number of

uncommon strings, total number of PE imports, and maximum entropy of the sections.

To be more specific, on average there are less common strings, more uncommon strings,

less PE imports, and higher entropy among malware. The fact that these features could

be main factors for both classes also shows the superiority of our IFFNN over logistic re-

gression: as the number of uncommon strings and the number of PE imports always have

89

Table 4.7: Most frequent main factors leading to the predictions of the malicious or benign

class.

Main factors leading to the prediction of the malicious class
Assembly code

Total number of PE imports
Number of uncommon strings

The frequency of the string ”Password”
The import of KERNEL32.dll

Total number of strings
The import of WriteFile

The frequency of the string ”\x02\x02GetLastError”
Subsystem

Maximum entropy of sections
Main factors leading to the prediction of the benign class

Total number of strings
Number of uncommon strings
The import of LCMapStringW
Total number of PE imports

Assembly code
Maximum entropy of sections

The frequency of the string ”\r\x01\x01\x01\x05”
The frequency of the string ”\r\x01\x01\x05\x05”

The import of initterm
Mean entropy of sections

non-negative values, when each of them serves as a main factor leading to the prediction

of the malicious class, its weight is positive (i.e., w(v)jvj > 0&vj > 0 ⇒ w(v)j > 0), and

when it serves as a main factor leading to the prediction of the benign class, its weight

is negative (i.e., w(v)jvj < 0&vj > 0 ⇒ w(v)j < 0). This cannot be achieved by logistic

regression because when it is trained, the weight for each feature is determined and stays

static, irrelevant of the input samples. However, the weight of each feature in IFFNN is

dynamically computed based on the whole context, i.e., the vector representing all fea-

tures.

The explanation from the perspective of statistics is as follows. All supervised ma-

chine learning classification models work by identifying the correlation between a fea-

90

ture and a class. Logistic regression can only learn the independent correlation between

a feature and a class, without considering the correlation between features; therefore, it

is linear and the weight for each feature is static. IFFNN learns the correlation between a

feature and a class in a context considering the correlations between different features.

Main factors for malicious class The import of ”KERNEL32.dll” is a main factor for the

prediction of malicious class because malware relies heavily on a large number of core

APIs in it to manipulate memory and the file system. The ”WriteFile” function is also

a main factor because malware such as ransomware and worms uses it to write content

to the file system. The string of ”Password” is another main factor that more frequently

appears in malware created for credential theft purposes. Malware often uses mutex for

different reasons. For example, it can be used as a locking mechanism to serialize access

to a resource on the system or to avoid more than one instance of itself running. ”Get-

LastError” is used to determine whether a mutex already exists. This is the reason why

the frequency of string ”\x02\x02GetLastError” is a main factor leading to the prediction

of malware.

Main factors for benign class ”LCMapStringW” is often used by benign software to

convert all characters of strings to upper/lower case, which is a feature much less used

in malware. ”initterm” is used by core libraries to initialize a function pointer table and

does not need to be imported by software programs, and therefore it is an indicator of

some benign libraries. ”\r\x01\x01\x01\x05” and ”\r\x01\x01\x05\x05” are two strings

that appear 1.8 and 3.6 times respectively more frequently among benign executables than

malicious executables.

Quantitative Analysis

We also use a quantitative measure to analyze the explanation of I-MAD. We compute the

Gini importance (GI) and information gain (IG) of the features, and then rank them based

91

on those criteria. We then rank the features by the frequencies that they serve as the main

factors for the predictions. Features serving as main factors more frequently should be

relatively important features for malware detection. It should be noted that even though

the importance ranked this way is relevant to the rank by Gini importance or information

gain, they are not supposed to be equivalent. Even if the attribution mechanism of I-

MAD gives a perfect explanation, the feature importance rank based on that would still

be different from the rank by Gini importance or information gain.

Table 4.8 shows the Spearman’s Rank Correlation Coefficient between the rank given

by I-MAD, Gini importance, and information gain. It can be seen that the Spearman’s

Rank Correlation Coefficient between the rank given by I-MAD and those given by Gini

importance and information gain are 0.59 and 0.55, respectively. This shows a strong

correlation between them. The correlation coefficient between the rank by information

gain and by Gini importance is only 0.72, even though they are often used for the exact

same purpose: feature selection. The result means that the IFFNN in I-MAD frequently

uses features that have high information gain or Gini importance as its main classification

factors.

Table 4.8: The Spearman’s Rank Correlation Coefficient between the feature importance

rank given by I-MAD, Gini importance, and information gain.

IG GI I-MAD
IG 1.0 0.72 0.59
GI 0.72 1.0 0.55

4.3.6 Efficiency Study

The efficiency of I-MAD and all models for comparison measured by the number of sam-

ples classified per second is presented in Table 4.9.

Among all models, the efficiency of I-MAD is moderate. And I-MAD is the second

most efficient deep learning model. Saxe2015Deep is the most efficient because the dimen-

92

Table 4.9: Efficiency of each model in terms of number of samples classified per second.

The time consumption for feature extraction is not included.

Model n samples per second
Mosk2008OB 32,152
Bald2013Meta 127,988
Saxe2015Deep 142,711
Raff2017MalC 86
Krcal2018Conv 142
Mour2019CNN 391

SVM (same features) 58
I-MAD (no code) 28,197

I-MAD (ST) 15,355
I-MAD (ST+) 15,239

sion of its feature vector is only 1024, and the network is very small. Raff2017MalC and

Krcal2018Conv are slow because they rely on whole byte sequences, and they are very

computationally expensive. With our Titan Xp graphics cards their batch sizes could be

around 32 and 128 at most, respectively. The batch size for Mour2019CNN depends on

the number of bytes in the samples; in extreme cases we need to run the model on the

CPU because the graphics card memory cannot hold the computation for even one large

executable. For I-MAD (ST)/(ST+), the batch size could be at least 512 for most samples.

As the representation of assembly code is computed at three levels (i.e., basic block, func-

tion, and executable), the memory for the lower level computation is released and reused

after the representation is computed. For I-MAD (no code), the batch size could be 5,120.

It is worth the extra computational cost to model assembly code because the benefit of

it in classification performance is significant. SVM with the same features as I-MAD also

has very low efficiency because its computational complexity is linear with the dimension

of feature vector and the number of support vectors, which are large when the dataset is

complex. In our experiments, there are always more than 43,000 support vectors, and the

dimension of feature vectors is more than 2,700.

93

Chapter 5

Defense Against Black-box Adversarial

Attacks

Defense against adversarial attacks can be broadly categorized as proactive or reactive

methods [137]. The chosen method can either fortify the robustness of the machine learn-

ing model per se with embedded mechanics or special training procedures [37,48,63,110,

129, 137], or it can defend the target model by recognizing adversarial samples [54, 62, 93,

143]. Existing defense methods including both proactive and reactive methods are static

methods, which means that they cannot update their states while countering adversaries.

In the black-box scenario, a successful attack requires more than thousands of queries [70].

Conversely, each query could also be used by the system to counter the attacks. Existing

methods do not have the mechanics in place to utilize them, which leads to an unneces-

sary disadvantage of the defenders because adversaries can update their attack strategies

according to the information acquired from their pry attempts. A more effective defense

method that can dynamically update its state is yet to be proposed.

Online machine learning is a family of machine learning in which a model updates its

state whenever it receives a new query sample, as opposed to offline learning, in which

a model is trained on a fixed training set and then remains static. The advantage of on-

line machine learning is its adaptive capability that allows it to update its state according

94

to the new experience. In this study, we propose DyAdvDefender, an instance-based on-

line machine learning model to defend against black-box adversarial attacks. DyAdvDe-

fender can recognize a perturbed sample that originates from the same sample as a previ-

ously queried sample, and it can output the same classification result for all the perturbed

samples that have the same origin. Thus, the classification result is intact, and the adver-

saries cannot estimate the gradient or derivative, as the perturbations of inputs cause no

change of the output. To implement this approach we propose solutions to address two

main challenges: (i) how to determine whether two samples have the same origin and (ii)

how to keep the time consumption of the defense mechanism in a controllable range.

We summarize the contributions of this part of research as follows:

1. We propose the first defense method that is based on online machine learning and

instance-based learning to dynamically update its states according to received at-

tacks.

2. We propose a novel dedicated locality sensitive hashing (LSH)-based optimization

method for DyAdvDefender to index and retrieve samples with an exemplary ef-

ficiency sufficient for real-world applications.

3. We propose a new evaluation procedure to assess an online defense method because

all previous evaluation procedures are only suitable for static defense methods.

4. Extensive experiments on different types of datasets suggest that our defense method,

DyAdvDefender, significantly outperforms existing state-of-the-art defense meth-

ods in terms of defense effectiveness, while not compromising classification accu-

racy on natural samples.

5.1 Proposed Defense Method

In this section, we describe the proposed defense method: DyAdvDefender. As explained

earlier, substitute model attacks and perturbation trial attacks are different methodologies

95

in the black-box attack scenario, and the former is a lesser threat because of its limitations

and the effectiveness of existing defense mechanisms against it. We therefore focus on

defending against perturbation trial-based black-box attacks.

5.1.1 Preliminaries

There are slightly different settings for black-box attacks. We follow the setting [32,70,135]

in which the adversaries have no knowledge of the attacked system but have access to the

complete output, including the probability that a query sample belongs to each class.

To craft an adversarial sample with perturbation trial attacks, the adversaries perturb

a natural sample many times to form prying samples that are used to query the target

model. They accumulate the effective perturbations until a successful adversarial sam-

ple is found. This implies that during the attack, the target model receives several prying

samples that have the same origin, which is the natural sample. We give a formal defini-

tion of a sample’s origin as follows.

Definition 5.1.1 (Origin). Consider a natural sample x0, for any sample x = x0 + δ, that

is crafted by perturbing x0. x0 is called the origin of x.

Due to the nature of adversarial samples and their crafting, the perturbations of ad-

versarial samples to their original samples should be small (||δ|| ≪ ||x0||) for multiple

reasons [134]. For example, for images, perturbations that are smaller than 1.0E-2 per

pixel in L2 measure are small enough and also sufficient to craft adversarial samples [135].

The adversaries want them to be hardly perceptible for the purposes of stealthiness and

invariant semantics. From the perspective of calculus, the perturbation should be small

enough so that the first-order gradient could be approximated, and thus the accumula-

tion of the perturbations could stay effective and efficient. This property of small pertur-

bations can be used to determine whether two samples have the same origin.

96

5.1.2 Overall Defense Mechanism

We present the unoptimized DyAdvDefender in Algorithm 1. When the system receives

a query, it checks whether there is any indexed sample that has the same origin. If so, it

outputs the prediction of the indexed sample and indexes the query with the output. If

there is no indexed sample that has the same origin, it outputs the predicted result of the

query by the machine learning model to defend, and it indexes the input and output pair

as well.

Algorithm 1: Unoptimized DyAdvDefender.
Data: a query x, a set of indexed samples S, the machine learning model to

defend C
Result: Classification result y
for (x0,y0) ∈ S do

if Same Origin(x0,x) is True then
y = y0;
Index((x,y), S);
Return y;

end
end
y = C(x);
Index((x,y), S);
Return y;

We have two assertions about this system if the Same Origin sub-algorithm performs

perfectly:

1. It outputs the correct classification result if the defended model can correctly predict

the origin of the query sample.

2. It does not reveal any gradient information.

We have the first assertion because the outputs for all samples that have the same

origin are the result of the original sample or a sample that is randomly perturbed once;

it is unlikely that one random perturbation can mislead the classifier [32, 70, 135].

97

We have the second assertion because the output is not affected by the perturbation

on the input. Thus, the adversaries cannot estimate the gradient or the partial derivatives

with respect to input variables in the black-box setting.

DyAdvDefender is an online machine learning model because its state changes as

more queries are received. It is also an instance-based learning model because the predic-

tion depends on received queries. To the best of our knowledge, this is the first defense

method that is based on online machine learning or instance-based learning. Even though

the idea is simple, there are two challenges to address: 1) how to determine whether two

samples have the same origin, and 2) how to keep the classification procedure efficient

even when a large number of samples are indexed.

5.1.3 Determination of Same Origin

Based on the property that the perturbations in prying and adversarial samples are small,

we propose to recognize samples having the same origin based on their distance. Let us

imagine an ideal distance threshold θ0 that can be used to determine the distance between

two samples as follows.

Definition 5.1.2 (Ideal Distance Threshold θ0). Let D be a distance measure. Consider

two random samples x1 and x2. Let θ0 be a specific threshold defined on measure D such

that if the distance between any two samples on measure D is smaller than θ0, they have

the same origin. If the distance is no less than θ0, they have different origins. It can be

expressed as follows:

Same Origin(x1,x2) =

 True D(x1,x2) < θ0

False D(x1,x2) ≥ θ0

The θ0 is ideal. It is unknown whether it exists. However, we can obtain an empirical

approximation of θ0. Let us discuss the measure of distance first.

98

Measure of Distance

The best measure for computing the distance between two samples is determined by the

nature of the field of application. For samples that can be represented as a feature vector

of a fixed length, any Lp Minkowski distance could be a valid measure. If the vectors

are real-valued (e.g., the greyscale values of pixels of an image), the Euclidean distance

(L2): D(x1,x2) = ||x1 −x2||2 is the natural choice to measure the distance of two vectors.

If different features are at different scales, feature standardization should be applied on

the feature vectors before computing the distance so that the value of each dimension

ranges between -0.5 and 0.5. If the features represented by the vectors are integers (e.g.,

the frequencies of different printable strings in an executable) or binary (e.g., whether a

DLL function is imported in an executable), the Manhattan distance (L1) is the natural

choice.

In the fields where samples cannot be represented as a vector but rather as a sequence,

the way to measure the distance of two samples is not obvious and is another research

topic. We do not elaborate on this because it is not the focus of this chapter.

Threshold of Distance

We have defined θ0, the ideal distance boundary, to determine whether two samples have

the same origin. Any two samples that have a distance no less than θ0 have different

origins. Conversely, any two samples that have a distance less than θ0 have the same

origin. There is no theory to indicate whether such an ideal threshold exists or how to

find it. The whole concept is similar to training an artificial neural network: we suppose

the input and output have an intrinsic relation described as a function of a specific neu-

ral network architecture and unknown parameters. It is unknown whether the function

could resemble the underlying relation between the output and input, and it is unknown

how to find the precise parameters working for all samples. We can only fit the function

onto a finite set of samples (i.e., the training set) and expect it to generalize well to un-

seen samples that are drawn from the same distribution as the training set. This is called

99

empirical risk minimization (ERM) of the parameters. We also want to use a dataset to

empirically approximate θ0. Let us first identify two corollaries about θ0.

Corollary 1. θ0 is the minimum distance between any two samples that have different

origins.

Corollary 2. θ0 is the maximum distance between any two samples that have the same

origin.

θ0 is defined with respect to the complete set of samples in a field. The empirical

approximation of it is computed based on a finite set of samples that are randomly drawn

from the complete set. Corollary 2 narrates θ0 from the perspective of samples that have

the same origin. To empirically approximate θ0 based on this corollary requires a dataset

of adversarial samples. We do not have a set of adversarial samples that are drawn from

the complete set of adversarial samples. Thus, this corollary is not a good theoretical

support to approximate θ0. Corollary 1 is narrated from the perspective of samples that

have different origins, exactly what a training set provides us. Therefore, it can be used

to empirically approximate θ0.

In many applications, e.g., image classification, audio processing, etc., the samples in

the training sets are correctly labelled natural samples. Thus, we can get the empirical ap-

proximation of θ0 with a training set as follows. We compute the distance between every

two samples in the training set. Following Corollary1, we set θ∗0, an empirical approxima-

tion of θ0, to be the minimal distance between any two natural samples from any classes

in the training set.

In other cases, the training set contains samples that have the same origin. For in-

stance, a training set for malware detection probably contains malware samples from the

same family, and they are slightly different versions to compromise detectors. There are

also benign executables that have the same origin, e.g., a Dynamically Linked Library

(DLL) file that is patched for a vulnerability and its unpatched version have the same

origin. Therefore, we cannot compute the minimal distance between any two samples

100

in such a dataset to approximate θ0. However, as two samples that have the same ori-

gin should belong to the same class, we can get a distance threshold that is an inferior

approximation of θ0, but is as equally effective. We set θ∗0 to be the minimal distance

between two samples that (1) belong to different classes in the training set and (2) are

correctly classified by the machine learning model that we aim to defend. This is a less

good approximation of θ0, because it may recognize two samples that belong to the same

class, and have different origins, as having the same origin. It is equally effective due

to two reasons. First, it may recognize two samples in the same class that have different

origins as having the same origin, and it would not recognize two samples in different

classes as having the same origin, thus it would still give the correct prediction. Second,

the derivative information is still not revealed to adversaries. We only compare the dis-

tances between samples that are correctly predicted by the machine learning model to

defend because in these cases, the incorrectly predicted samples contain adversarial sam-

ples, abnormal samples, or mislabeled samples that could mislead the computation of

θ∗0.

5.1.4 Optimizations

We have described how DyAdvDefender handles the input and produces the output.

However, the vanilla defense procedure is not efficient enough, because it unnecessar-

ily compares a query sample with all previously queried samples. Below we describe

optimization methods to improve on this.

Locality Sensitive Hashing-based Origin Search

When there are a large number of indexed samples, computing the distance between a

query sample and all indexed samples is computationally expensive and less practical in

real-world application. Locality sensitive hashing (LSH) has been shown to be efficient in

finding sets of nearest neighbors in previous works [17,71]. Therefore, we propose a ded-

icated LSH-based algorithm that is different from previous works to efficiently retrieve

101

a subset of indexed samples that may contain the samples having the same origin as the

query sample.

The LSH function family we use can be described as follows: each hash function con-

tains a random vector r that has the same dimension as the feature vector of a sample.

The value of each entry of r is independently drawn from standard Gaussian distribution.

The hash value of a sample u is computed as follows:

hr(u) =

 1 u · r > 0

0 u · r ≤ 0

It has been proven [5,59] that for vector u and vector v, the probability that they have

the same hash value with hr is as follows:

Pr[hr(u) = hr(v)] = 1− θ(u,v)

π
(5.1)

Two vectors that have a small angle have a large probability to have the same hash

value and vice versa. The angle between a natural sample (x0) and its perturbed version

(x = x0 + δ, where ||δ|| ≪ ||x0||) is very small, and both tend to have the same hash

values.

We use k such LSH functions to compute a signature of k bits for each sample, so there

are 2k possible different signatures. To increase the chance that those k LSH functions

could evenly split different samples, we randomly generate LSH functions until we get k

of them, of which the hash values of 40%∼60% of training samples (i.e., natural samples)

are 1, and the remaining 40%∼60% are 0. We use a normal hash table to store and retrieve

the set of samples corresponding to each signature. Samples that have the same origin

tend to have the same signature. Given a query sample, we compute its signature and the

distance between the query sample and the indexed samples that have the same signature

to see if any of them has the same origin as the query sample. When there are n samples

indexed, the number of indexed samples a query sample is expected to compare with is

102

on average n/2k, in an ideal situation. This is exponentially more efficient in terms of k

than comparing each query sample with all n indexed samples. For example, to compare

each query with 1,024 indexed samples on average, which could be efficiently done by

most GPUs for data science nowadays, only 10 LSH functions are required when there

are 1 million indexed samples, and 20 LSH functions when there are 1 billion indexed

samples.

As a probabilistic algorithm, there is inevitably a small probability that two samples

with the same origin have different signatures. Therefore, we use m sets of k LSH func-

tions to compute m signatures. Each indexed sample has m signatures and is put in m

sets. We compute m signatures of a query sample and compare it with any sample in the

union of the m sample sets corresponding to the m signatures. Empirically, we set m = 2

since it is sufficient to allow two samples that have the same origin to be in one set [49].

Algorithm 2 describes the procedure to find the set of samples that potentially have the

same origin as a query sample.

Algorithm 2: The function to return a set of indexed samples that may have the
same origin as the query sample.

Data: a query x, m× k LSH functions H , m hash tables that map a signature to a
set of samples HT

Result: A set of indexed samples that potentially have the same origin as the
query sample S0

S0 = ∅;
i = 0;
while i < m do

sig = new List<Bit>();
j = 0;
while j < k do

hr = H(i, j);
sig.append(hr(x));

end
S0.union(HTi.get(sig));

end
Return S0;

103

Selective Indexing

Indexing every query sample gives DyAdvDefender the greatest opportunity to identify

a new query sample as a perturbed version of a previous query sample. However, it is

also very inefficient because an adversary may query with tens of thousands of prying

samples that have the same origin [70].

Another extreme practice is to only index a query sample if DyAdvDefender cannot

find an indexed sample that has the same origin. This setting yields the highest effi-

ciency but could impair the effectiveness. When adversaries realize that perturbation

does not work with our defense, they may gradually increase the scale of the perturba-

tion, in which case DyAdvDefender may be compromised.

To keep both effectiveness and efficiency, we index two kinds of query samples. One is

query samples with which no indexed samples have the same origin. The other is query

samples that have the same origin as some indexed samples, but the distance between

the query samples and the closest indexed samples are larger than θ∗0/10. By indexing

the sample where the perturbation is one order of magnitude smaller than θ∗0, we can

invalidate the incremental attacks that may exist in practice as we mentioned above.

Optimized Defense Mechanism

Algorithm 3 presents the optimized version of DyAdvDefender that encompasses the

LSH-based origin search and selective indexing.

5.1.5 Interpretability

As an instance-based defense method, DyAdvDefender has intrinsic interpretability. When

it determines that an input sample can be an adversarial sample, it can explain with this

template: ”The received sample x can be an adversarial sample because the distance be-

tween x and our previously indexed sample x0 is d, which is smaller than the minimal

distance θ between two natural samples. Therefore, to prevent the potential revealing of

104

Algorithm 3: Optimized DyAdvDefender.
Data: a query x, the machine learning model to defend C, a set of indexed

samples S, a distance threshold θ∗0
Result: Classification result y
S0 = Potential Same Origin(S,x);
min sam = None;
output = None;
min dist = ∞;
for (x0,y0) ∈ S0 do

if D(x0,x) < min dist then
min dist = D(x0,x);
min sam = x0;
output = y0;

end
end
if min dist < θ∗0 then

y = output;
if min dist ≥ θ∗0/10 then

Index((x,y), S);
end
Return y;

else
y = C(x);
Index((x,y), S);
Return y;

end

derivative information, the system will output the prediction for x0”. For validation pur-

poses, the two samples x and x0 can be presented to an inspector to check whether they

have the same origin.

5.2 Discussion

The computational complexity of DyAdvDefender depends on the features used and the

number of samples indexed. It is proportional to the sizes of the features because the

feature of a query sample is compared with those of the indexed samples. The compu-

tational complexity of DyAdvDefender also depends on the feature types (e.g., integer

and float) because their computational costs are different. As we stated above, the aver-

105

age number of indexed samples to compare with a query sample is 2−kn. If the indexed

samples are distributed on z computing units, the computation of distances between the

indexed samples and a query could be done by the z computing units simultaneously,

with each comparing the query sample with 2−kn/z different indexed samples. It means

that z computing units could give approximately z times speedup compared with a single

node. Thus, DyAdvDefender is linearly scalable.

5.3 Experiments

We conduct experiments to evaluate DyAdvDefender. Specifically, we try to answer the

following research questions:

• RQ1. How effective is DyAdvDefender in defending adversarial attacks compared

with previous state-of-the-art defenses?

• RQ2. Does DyAdvDefender affect the classification accuracy on natural samples?

• RQ3. How does the average response time grow with the number of indexed sam-

ples?

• RQ4. How does the number of LSH functions k affect the classification accuracy,

attack success rate, and average response time?

• RQ5. How does the threshold θ0 used in the algorithm of DyAdvDefender affect

the classification accuracy and attack success rate?

Our experiments are conducted on a server with one Intel(R) Core(TM) i9-9980XE

CPU, 128 GB memory, and an Nvidia GeForce RTX 2080 Ti Graphics Card.

5.3.1 Datasets

We conduct experiments on two different domains of datasets: image classification and

malware detection. They are representative fields with different characteristics in terms

106

of the constraints on perturbation. In image classification, the samples are images, and

the perturbation is performed on the values of pixels. The only constraint is that the

perturbed values stay in the legitimate range. In malware detection, the samples are

executables. There are different choices for the feature sets, and they cannot be perturbed

arbitrarily because the file format should be kept, and the logic should be intact.

The most commonly used image data sets for adversarial attack and defense research

are MNIST [86] and CIFAR-10 [80], and we follow this convention. Both datasets have

10 classes of samples, and the greyscale or RBG values are standardized to the range [-

0.5,0.5]. The two datasets have 10,000 samples in the test set. We reserve 500 samples

from the test sets for adversarial attacks and the remaining 9,500 samples for evaluating

the classification accuracy on the natural samples. The adversarial attacks are conducted

on the reserved samples that are correctly classified before the attacks [54,62,95,103,135].

We collected a malware detection dataset that consists of 5,280 benign executables and

5,280 malicious executables. It has 8,448 samples in the training set, 1,056 in the validation

set, and 1,056 in the test set. Following the literature [9, 45], the objective of the attack is

always to trick the target system into classifying malicious executables as benign. We

consider three different feature sets: PE header numerical fields, frequencies of printable

strings, and imports of DLL functions [14, 88]. PE header numerical field features are

standardized to the range [-0.5,0.5] because each is at a different scale. We reserve 200

malware samples from the test set for adversarial attacks. The adversarial attacks are

conducted on the reserved samples that are correctly classified if not attacked.

5.3.2 Evaluation Metrics

Two main evaluation metrics are the adversarial attack success rate (ASR) and the classifica-

tion accuracy (ACC) on natural samples. Following the literature, the attack success rate is

the percentage of samples that are correctly classified before the perturbations by an ad-

versarial algorithm but are misclassified after all the perturbations have been performed

by an attacker. This metric answers RQ1 and is our main focus because the primary ob-

107

jective of a defense mechanism is to reduce the attack success rate. The other metric is

the classification accuracy on natural samples. This metric answers RQ2. We compare

the accuracy of the system defended by DyAdvDefender and the undefended system to

see whether DyAdvDefender affects the classification accuracy. For other defense meth-

ods in our experiments that use different neural networks and may also be pretrained

differently, the classification accuracy comparison between those systems and the system

defended by DyAdvDefender is irrelevant to the scope of this study.

5.3.3 Two-Round Evaluation

In previous researches [54, 62, 95, 103], the evaluation was first performed as a ”one-time

attack and defense game”, then the attack success rate or the classification accuracy on

the adversarial samples was computed. This setting is sufficient for evaluating previous

defense methods because they are static and do not change their states as more query

samples arrive. To properly evaluate DyAdvDefender as an instance-based online ma-

chine learning model, we design a two-round evaluation procedure.

In the first round, we query the classification system on natural samples to evaluate its

classification accuracy. Then, we clear the indexed samples of DyAdvDefender and use

an adversarial algorithm to attack the system with the reserved samples for adversarial

attacks to evaluate the attack success rate. The classification accuracy of the defended

system is compared with the undefended one, and the difference represents whether the

accuracy is affected by our defense mechanism DyAdvDefender. The attack success rate

of the defended system is also compared with the undefended one, and the difference

represents the effectiveness of DyAdvDefender.

The objective of the second round is to observe (i) how adversarial samples affect

the defended system in terms of classification accuracy on natural samples and (ii) how

natural samples affect the defense effectiveness with adversarial attacks. Therefore, in

the second round, DyAdvDefender keeps the samples indexed during the adversarial

attacks in the first round, and then we query the system with natural samples to evaluate

108

its classification accuracy. This achieves objective (i). We then clear the indexed samples

and query the system with the natural samples again to let DyAdvDefender index them,

and then we use an adversarial algorithm to attack the system with the reserved samples

to evaluate the attack success rate. This achieves objective (ii).

It should be noted that when we evaluate the undefended system or other defense

methods, we also follow a two-round evaluation. The difference is that there is no step

for clearing the indexed samples for them, because they do not index anything and the

states of those systems do not change in the two rounds. Hence, the classification accuracy

and attack success rate in the two rounds should be approximately the same.

5.3.4 Adversarial Attack and Defense Methods

We use the following perturbation trial-based black-box adversarial attack methods to

demonstrate the effectiveness of DyAdvDefender: ZOO, ZOO AE, AutoMZOOM, and

BLZOOM with their default settings to attack a deep learning model for image classifica-

tion tasks [32, 135].

• ZOO is a coordinate-wise gradient estimation-based black-box attack method [32].

It perturbs one variable each time and accumulates the perturbations until a suc-

cessful adversarial sample is found or a preset number of iterations has been tried.

• ZOO AE is an improved version of ZOO [135]. It uses an autoencoder to learn

a compressed representation of a sample. The perturbation is performed on the

compressed representation.

• AutoZOOM is a more significantly improved version of ZOO [135]. In addition to

using an autoencoder, AutoZOOM adopts an adaptive random gradient estimation

strategy to improve the efficiency.

• BLZOOM is a variant of AutoZOOM [135]. It uses a bilinear resizing operation to

replace the autoencoder in AutoZOOM.

109

We set 1.0E-2 as the per-pixel perturbation bound on images to keep their original

semantics. We discuss the validity of this setting in Section 5.3.11.

The integrity of the PE format and the original functionalities need to be kept when

perturbing malware samples, and therefore there are constraints on the perturbations [9].

A perturbation on a compressed representation corresponds to the changes of multiple

features, so the constraints cannot be guaranteed. Therefore, we can only use ZOO to

attack a deep learning classifier for malware detection while following the constraints.

As the constraints have already guaranteed that the original functionalities are kept, we

do not set a perturbation bound for malware samples.

We compare DyAdvDefender with the following state-of-the-art defense methods [4,

62, 95, 103]:

• Grosse et al. [62] augment a classification model with an additional class for adver-

sarial samples and train the model to classify adversarial examples to that class. We

implement their approach and apply it in the experiments with all datasets.

• Akhtar et al. [4] learns a Perturbation Rectifying Network (PRN) to reconstruct an

image from a potentially perturbed one. Then, a perturbation detector is trained

on the Discrete Cosine Transform of the input-output difference of the PRN. If the

detector determines that an image is perturbed, the reconstructed image is fed to

the original classifier; otherwise, the original image is fed.

• Madry et al. [95] prove that projected gradient descent (PGD) is the strongest first

order white-box attack and propose an objective function to train a network to be

robust against PGD attacks so that it can also defend against other inferior attacks.

The authors provide the pre-trained robust models for the MNIST and CIFAR-10

datasets, which are different from the models defended by DyAdvDefender, so we

include the comparison on the reduction of the attack success rate with their meth-

ods on those two datasets.

110

• Musta et al. [103] propose a new objective function called Prototype Conformity

Loss (PCL) to train a neural network. It forces the features of samples in different

classes to have a large distance with each other, which makes the adversarial per-

turbations more difficult to fulfill their objectives. The authors provide the source

code only for the experiments with CIFAR-10 and use a different neural network;

therefore, we compare the reduction of the attack success rate with their defense

only on CIFAR-10.

5.3.5 Classification Models to Defend

Table 5.1: The architectures of the neural networks defended by DyAdvDefender for

malware detection.

Feature Header Strings Imports
Input 54 4,651 10,201

Layer 1 Relu(FC(32)) Relu(FC(64)) Relu(FC(128))

Layer 2 Relu(FC(16)) Relu(FC(32)) Relu(FC(64))

Layer 3 Softmax(FC(2)) Softmax(FC(2)) Softmax(FC(2))

For the undefended classification system, the classification system defended by DyAd-

vDefender, and the system defended by the method proposed by Grosse et al. [62], the

target models on the two image datasets are the two convolutional neural networks used

in [135]. We directly download their pretrained models for our experiments.

For the other defense methods that we compare with [95,103], the networks are given

in their papers and source code. We use the models that they provide to conduct the ex-

periments. Because they use different neural networks, the comparison with those mod-

els on classification accuracy on natural samples is not relevant to the performance of

defense mechanisms, and we make our comparison with them only on the reduction of

the attack success rate.

111

The undefended models for malware detection are feed-forward neural networks with

two hidden layers applied on the three feature sets respectively. They are trained with

cross entropy as the objective function and Adam as the optimization algorithm. The

details of the architectures are presented in Table 5.1.

5.3.6 Hyperparameters

The distance threshold θ∗0 values computed on the training sets are shown in Table 5.2.

Table 5.2: The distance threshold θ∗0 computed on each dataset and each feature set.

Dataset (Feature) Distance measure θ∗0
MNIST Euclidean 0.82

CIFAR-10 Euclidean 2.75
Malware Detection (header) Euclidean (Standardized) 0.28
Malware Detection (imports) Manhattan 2
Malware Detection (strings) Manhattan 8

We set the number of LSH functions k = 10 in our basic experiments, which is suffi-

cient for even larger datasets than the ones we used in the experiments. We also show

how the changes of k affect the performance in all respects in Section 5.3.8.

5.3.7 Results

As the adversarial algorithms have randomness, we run each experiment three times and

report the mean. The classification accuracy on natural samples and attack success rate in

the two rounds are presented in Table 5.3 for MNIST, Table 5.4 for CIFAR-10, and Table 5.5

for malware detection.

As shown, all defense methods could reduce the ASR of all black-box attack methods

to different degrees in the experiments. Overall, our defense method DyAdvDefender

significantly outperforms all other defense mechanisms in reducing the ASR, especially

for MNIST, where the ASR is reduced to almost 0%. Akhtar et al. [4] is the runner-up

112

Table 5.3: Experiment results on MNIST.

Attack Defense
Round 1 Round 2

ACC ASR ACC ASR

ZOO

No defense 99.4% 99.0% 99.4% 99.0%
DyAdvDefender 99.4% 0% 99.4% 0%

Akhtar et al. 99.4% 9.1% 99.4% 8.9 %
Grosse et al. 99.2% 77.6% 99.2% 77.3%
Madry et al. 98.4% 9.2% 98.4% 9.5%

ZOO AE

No defense 99.4% 99.2% 99.4% 99.2%
DyAdvDefender 99.4% 0% 99.4% 0%

Akhtar et al. 99.4% 0% 99.4% 0%
Grosse et al. 99.2% 81.3% 99.2% 81.7%
Madry et al. 98.4% 99.3% 98.4% 99.4%

BLZOOM

No defense 99.4% 99.2% 99.4% 99.4%
DyAdvDefender 99.4% 0% 99.4% 0.1%

Akhtar et al. 99.4% 1.6% 99.4% 1.7%
Grosse et al. 99.2% 51.6% 99.2% 51.3%
Madry et al. 98.4% 64.4% 98.4% 64.6%

AUTOZOOM

No defense 99.4% 99.6% 99.4% 99.4%
DyAdvDefender 99.4% 0.2% 99.4% 0%

Akhtar et al. 99.4% 2.2% 99.4% 2.2%
Grosse et al. 99.2% 68.1% 99.2% 68.3%
Madry et al. 98.4% 80.4% 98.4% 80.2%

defense method. It has the same effectiveness as DyAdvDefender in reducing the ASR to

defend against ZOO AE and BLZOOM on MNIST, and it is only inferior in some other

settings. However, it is much less effective in defending against three kinds of attacks

(i.e., ZOO, ZOO AE, AUTOZOOM) on CIFAR-10. The other defense methods have a

larger gap with DyAdvDefender in the defense effectiveness. The unique characteristic

of DyAdvDefender as an online machine learning and instanced-based model allows it

to dynamically adapt itself to the coming attacks, and thus it outperforms static methods.

This result provides an answer to RQ1.

113

Table 5.4: Experiment results on CIFAR-10.

Attack Defense Round 1 Round 2

ACC ASR ACC ASR

ZOO

No defense 77.9% 98.5% 77.9% 98.5%
DyAdvDefender 77.9% 0% 77.9% 0%

Akhtar et al. 77.9% 81.1% 77.9% 81.0%
Grosse et al. 72.8% 98.2% 72.8% 98.2%
Madry et al. 87.3% 71.4% 87.3% 71.5%
Musta et al. 89.0% 75.5% 89.0% 75.5%

ZOO AE

No defense 77.9% 98.8% 77.9% 98.8%
DyAdvDefender 77.9% 1.3% 77.9% 1.2%

Akhtar et al. 77.9% 79.6% 77.9% 79.9%
Grosse et al. 72.8% 97.9% 72.8% 98.0%
Madry et al. 87.3% 98.6% 87.3% 98.4%
Musta et al. 89.0% 52.3% 89.0% 52.5%

BLZOOM

No defense 77.9% 99.5% 77.9% 99.3%
DyAdvDefender 77.9% 2.7% 77.9% 2.9%

Akhtar et al. 77.9% 14.6% 77.9% 14.6 %
Grosse et al. 72.8% 95.2% 72.8% 94.8%
Madry et al. 87.3% 86.5% 87.3% 86.3%
Musta et al. 89.0% 45.1% 89.0% 45.5%

AUTOZOOM

No defense 77.9% 99.8% 77.9% 99.8%
DyAdvDefender 77.9% 14.2% 77.9% 14.2%

Akhtar et al. 77.9% 39.7% 77.9% 39.5%
Grosse et al. 72.8% 97.1% 72.8% 97.2%
Madry et al. 87.3% 94.6% 87.3% 94.6%
Musta et al. 89.0% 37.5% 89.0% 36.8%

On natural samples, the ACC of a classification system defended by DyAdvDefender

is the same as the undefended one. This suggests that DyAdvDefender does not affect the

classification accuracy on natural samples and provides an answer to RQ2. The defense

method proposed by Akhtar et al. [4] is applied to the same classification model, and we

can see that their method does not affect the ACC either. It should be noted that the ACC

for the other defense methods do not change in the two rounds because the classifica-

tion model to protect is a deterministic algorithm, and the ASR may change because the

adversarial algorithms are randomized.

114

Table 5.5: Experimental results on malware detection. The attack method is ZOO.

Feature Defense Round 1 Round 2

ACC ASR AC ASR

Header
No defense 96.8% 100% 96.8% 100%

DyAdvDefender 96.8% 73.5% 96.8% 73.5%
Grosse et al. 96.2% 99.0% 96.2% 99.0%

Imports
No defense 98.8% 100% 98.8% 100%

DyAdvDefender 98.8% 40.0% 98.8% 39.3%
Grosse et al. 98.5% 99.8% 98.5% 99.7%

Strings
No defense 98.5% 100% 98.5% 100%

DyAdvDefender 98.5% 6.0% 98.5% 5.3%
Grosse et al. 98.2% 71.2% 98.2% 70.8%

One observation is that the effectiveness of the defense methods depends on the dataset

and adversarial algorithm. CIFAR-10 is harder to defend than MNIST for all defenses.

Yet, there is no such consistency in adversarial algorithms. Compared with ZOO and

ZOO AE, AutoZOOM and BLZOOM are harder for DyAdvDefender to defend against

but easier for the defenses proposed by Grosse et al. [62] and Mustafa et al. [103]. Madry

et al. [95] defend against ZOO best and ZOO AE the worst. Akhtar et al. [4] defend

against all attacks well on MNIST and defend against AutoZOOM and BLZOOM well on

CIFAR-10.

On malware detection, the defense effectiveness of DyAdvDefender and the defense

proposed by Grosse et al. [62] varies from one feature set to another, e.g., they both defend

better with printable strings as the features. This confirms our previous statement that the

choice of the feature set could make a significant difference.

5.3.8 Efficiency Study

The overhead that DyAdvDefender brings to the classification system mainly comes from

the procedure to find the indexed samples that potentially have the same origin as a query

sample. Therefore, theoretically the average response time (ART) grows with the num-

115

ber of samples indexed in the system. That is why we use the LSH-based algorithm to

optimize the efficiency. We used all the samples of MNIST and CIFAR-10 to evaluate

DyAdvDefender with respect to its efficiency. Figure 5.1 depicts the relation between the

average response time and the number of indexed samples. As expected, from Figure 5.1

1.a) and 2.a), we can see that the average response time of DyAdvDefender without LSH

grows linearly with the number of indexed samples (i.e., ARTNoLSH(N) = k1N + b1). This

is because we need to compute the distance between all indexed samples and a query

sample. In comparison, the growth of the average response time of the optimized DyAd-

vDefender with LSH can be ignored. To see it more clearly, we show the growth of the

logarithm of the average response time for DyAdvDefender with and without LSH, to-

gether with the average response time of the classification system without defense in

Figure 5.1 1.b) and 2.b). We can see that the logarithm of the average response time of

DyAdvDefender with LSH stays at the same magnitude as the number of indexed sam-

ples grows. This means that the overhead brought by DyAdvDefender is well bounded

as the number of indexed samples grows. Even though the overhead is still greater than

the parametric defense methods as opposed to instance-based methods, the advantage of

our defense effectiveness is worth the bounded overload. Thus, it is ideally practical for

real-world applications, and as a result we have answered RQ3.

5.3.9 Impacts of Number of LSH Functions

In Figure 5.2, we present the impacts of the number of LSH functions k to the average

response time, classification accuracy, and attack success rate of the classification system

defended by DyAdvDefender. We use ZOO and AutoZOOM as the adversarial algo-

rithms on CIFAR-10 in these experiments, because they are the best and worst defended

adversarial algorithms by DyAdvDefender. We observe that within the range we test,

from 1 LSH function to 20 LSH functions, the average response time drops significantly

before it reaches 10 LSH functions. In contrast, the classification accuracy on natural sam-

ples is not affected at all. As the number of LSH functions increases, the attack success

116

Figure 5.1: The relation between the average response time and the number of indexed

samples on MNIST and CIFAR-10. The average response time is shown on both linear

scale view and logarithmic scale view.

rate is not affected with ZOO and grows very slowly with AutoZOOM. The defense ef-

fectiveness is still excellent even when the number of LSH functions is 20, which keeps

the average number of indexed samples to compare with a query sample at 1,024 when

1 billion samples are indexed. Therefore, depending on the number of indexed samples

in real-world scenarios, classification service providers can improve efficiency by increas-

ing the number of LSH functions without worrying about a significant drop of defense

effectiveness within a large range. This provides an answer to RQ4.

5.3.10 Impacts of Threshold θ0

Figure 5.3 depicts the impacts of the distance threshold θ0 that is set in DyAdvDefender

to ASR and ACC. We can see that there is a range of θ0 that keeps DyAdvDefender at its

optimal performance (i.e., without loss of ACC and at its lowest ASR). Such an optimal

117

Figure 5.2: The relation between the classification accuracy, attack success rate, and aver-

age response time with the number of LSH functions, with ZOO and AutoZOOM as the

attacks.

range exists because samples that have small distances are from the same classes, and

even if the defense mechanism determines them as from the same origin, the classification

result would not be affected. As can be seen, the empirical θ∗0 computed on the training

sets is always within the optimal range.

As θ0 decreases beyond the optimal range, the ASR increases, which means DyAd-

vDefender fails to defend against the attacks more frequently. This is because when θ0

is set to be smaller than the perturbation, DyAdvDefender would consider that the per-

turbed sample and the original sample have different origins, thus the attack bypasses the

defense mechanism. Yet, this does not affect the classification on original samples. As θ0

increases beyond the optimal range, we can see the ASR increases and the ACC decreases.

This is because as the θ0 gets larger, samples in different classes are considered having the

same origin by DyAdvDefender, so it outputs wrong classification results which nega-

tively impacts both ASR and ACC. This result answers RQ5.

118

Figure 5.3: The relation between ASR/ACC and θ0 on MNIST and CIFAR-10. The empir-

ical distance threshold θ∗0 computed on the training sets is shown as vertical lines.

5.3.11 Validity of Adversarial Samples

We ensure that the adversarial malware samples keep their original semantics by fol-

lowing the rules of perturbation. However, the adversarial samples of images cannot be

verified with rules. Therefore, we manually examine the adversarial samples crafted by

attacking the defended methods. We can still correctly recognize all their original classes,

even though for some of them the perturbations are clearly perceptible. Figure 5.4 shows

some examples of successful attacks with the per-pixel perturbation between 1.0E-3 and

1.0E-2. We can see that the adversarial samples of MNIST contain some noise points,

and those of CIFAR-10 seem to contain a ”melted” area, but they still keep their original

semantics. However, further perturbations may begin to change the semantics of the ad-

versarial samples. This result suggests that our setting of the perturbation threshold is

valid.

119

Figure 5.4: Adversarial samples with per-pixel perturbation between 1.0E-3 and 1.0E-2

and their original samples.

5.4 Limitations

The value of θ∗0 is computed based on a training set. As demonstrated in our experiments,

θ∗0 that is computed with our approach is within the range that corresponds to the best de-

fense performance. This is because the datasets for research use are usually large enough

and clean. They are the requirements for the proposed defense method to work at its best

performance. However, in real-world applications, a training set may not be perfectly

curated, e.g., adversarial samples and wrong labelled samples may exist, and the training

set may not be large enough. Then, the θ∗0 may go out of the most effective range. There-

fore, in real-world applications a manual examination of the samples with the minimal

distances and adjustment on θ∗0 may be needed so that DyAdvDefender can achieve its

optimal performance.

The proposed defense mechanism DyAdvDefender relies on the comparison of feature

vectors of a query sample and the indexed samples. A bad choice of the feature set may

cause the defense mechanism to fail. As an extreme example, with a bad choice of the

feature set, two samples from different classes could have the exact feature vectors. The

machine learning classification model would not even be able to differentiate them, and

the DyAdvDefender would fail too. If the machine learning model to defend is based on

multiple feature sets, it is better to deploy DyAdvDefender on each feature set separately,

rather than uniting all feature sets as one set, because the former could remove the effects

of the difference on the distance scale across different feature sets.

120

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we present novel solutions for interpretable classification, malware detec-

tion, and black-box adversarial defense.

For interpretable classification, we propose an intrinsically interpretable feedforward

neural network (IFFNN) architecture. It takes tensors of a fixed shape as its input and can

explain the contribution of each feature to a classification result. We also conduct com-

prehensive experiments to evaluate the classification performance and interpretability of

the IFFNNs. We reached the conclusion that the IFFNNs achieve similar classification

accuracy as their non-interpretable feedforward neural network counterparts and pro-

vide meaningful explanations with very little computational overhead. Therefore, the

generalized IFFNN architecture is an excellent choice for real-world applications when

explanations for classification results are expected for various reasons. The IFFNN also

serves as an example to show that a machine learning model can be interpretable without

sacrificing classification performance.

For malware detection, we present I-MAD, a novel neural network architecture that

is based on the analysis on multiple feature scopes, including assembly code, printable

strings, PE imports, and PE header numerical features. An advantage of I-MAD as com-

121

pared with previous methods is that it can model complete assembly code of a sample

with its Galaxy Transformer component. In addition to its excellent detection performance,

it can also provide explanations for its detection results, which can help malware analysts

examine the results and find consistent patterns in malware samples.

To counter black-box adversarial attacks, we propose a state-of-the-art online machine

learning and instance-based defense method, namely DyAdvDefender. As an online ma-

chine learning and instance-based defense method, it can update its states to adapt to

attacks it has received. Experimental results suggest that DyAdvDefender outperforms

previous state-of-the-art defense methods against perturbation trial-based black-box ad-

versarial attacks without harming the classification accuracy on natural samples. To op-

timize its efficiency, we propose an LSH-based solution for indexing and retrieving sam-

ples. Experiment results also illustrate that DyAdvDefender is efficient for practical use.

6.2 Future Work

For multi-class classification with the IFFNN architecture we propose, the penultimate

layer is required to have the output dimension of c×m, where c is the number of classes,

and m is the number of input features. It can be very large when there are many classes.

If the output of the previous layer has a much smaller dimension, the performance of the

neural network can be bad. As a new architecture of feedforward neural network, it is yet

to be explored how to optimize the hyper-parameters of IFFNNs to make them approach

their optimal performance. In addition, the proposed IFFNN can be easily generalized

for regression tasks. A comprehensive evaluation on the interpretability for regression is

yet to be performed.

For our malware detection method I-MAD, other pretraining methods could be pro-

posed to train the components of the Galaxy Transformer. It can also be explored to see

if the vector representation of assembly code learned with the Galaxy Transformer can be

122

applied for other tasks, such as vulnerability detection and function description genera-

tion.

In our proposed black-box adversarial defense method DyAdvDefender, the thresh-

old to determine whether two samples have the same origin is computed globally for

samples of all classes. In real-world scenarios, the minimal distance between two sam-

ples from different classes could be different. Further study on a variant of the proposed

DyAdvDefender with different thresholds for different classes can be a direction to ex-

plore. In addition to the optimizations we have described, there could be others to be

proposed when the system is deployed in real-world application scenarios. For example,

the indexing database of DyAdvDefender could be cleared once a day or whenever the

number of indexed samples reaches a certain value. That would barely impair the effec-

tiveness of DyAdvDefender because the adversary could only get information at the first

query after each database clearing, and a successful attack requires at least hundreds or

thousands of informative queries.

123

Bibliography

[1] Bogus control flow. https://github.com/obfuscator-llvm/obfuscator/

wiki/Bogus-Control-Flow. Accessed: 2018-08-17.

[2] Malware numbers 2017. https://www.gdatasoftware.com/blog/2018/

03/30610-malware-number-2017. Accessed: 2018-08-17.

[3] AGRAWAL, R., SRIKANT, R., ET AL. Fast algorithms for mining association rules.

In Proc. 20th int. conf. very large data bases, VLDB (1994), vol. 1215, pp. 487–499.

[4] AKHTAR, N., LIU, J., AND MIAN, A. Defense against universal adversarial pertur-

bations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (2018), pp. 3389–3398.

[5] ALEXANDR, A., AND PIOTR, I. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Communications of The ACM (2008).

[6] ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician 46, 3 (1992), 175–185.

[7] ANDERSON, B., QUIST, D., NEIL, J., STORLIE, C., AND LANE, T. Graph-based

malware detection using dynamic analysis. Journal in computer Virology 7, 4 (2011),

247–258.

[8] ANDERSON, B., STORLIE, C., AND LANE, T. Improving malware classification:

bridging the static/dynamic gap. In Proceedings of the 5th ACM workshop on Security

and artificial intelligence (2012), ACM, pp. 3–14.

124

https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow
https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017

[9] ANDERSON, H. S., KHARKAR, A., FILAR, B., AND ROTH, P. Evading machine

learning malware detection. black Hat (2017).

[10] ARRIETA, A. B., D ÍAZ-RODRÍGUEZ, N., DEL SER, J., BENNETOT, A., TABIK, S.,

BARBADO, A., GARCÍA, S., GIL-LÓPEZ, S., MOLINA, D., BENJAMINS, R., ET AL.

Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and

challenges toward responsible ai. Information Fusion 58 (2020), 82–115.

[11] ATHALYE, A., CARLINI, N., AND WAGNER, D. Obfuscated gradients give a false

sense of security: Circumventing defenses to adversarial examples. arXiv preprint

arXiv:1802.00420 (2018).

[12] BAEZA-YATES, R., AND NAVARRO, G. Fast approximate string matching in a dic-

tionary. In spire (1998), IEEE, p. 0014.

[13] BAI, T., ZHAO, J., ZHU, J., HAN, S., CHEN, J., AND LI, B. Ai-gan: Attack-inspired

generation of adversarial examples. arXiv preprint arXiv:2002.02196 (2020).

[14] BALDANGOMBO, U., JAMBALJAV, N., AND HORNG, S.-J. A static malware detec-

tion system using data mining methods. arXiv preprint arXiv:1308.2831 (2013).

[15] BALUJA, S., AND FISCHER, I. Adversarial transformation networks: Learning to

generate adversarial examples. arXiv preprint arXiv:1703.09387 (2017).

[16] BARAKAT, N., AND BRADLEY, A. P. Rule extraction from support vector machines:

a review. Neurocomputing 74, 1-3 (2010), 178–190.

[17] BAWA, M., CONDIE, T., AND GANESAN, P. Lsh forest: self-tuning indexes for

similarity search. In Proceedings of the 14th International Conference on World Wide

Web (2005), ACM, pp. 651–660.

[18] BAYER, U., MOSER, A., KRUEGEL, C., AND KIRDA, E. Dynamic analysis of mali-

cious code. Journal in Computer Virology 2, 1 (2006), 67–77.

125

[19] BOSER, B. E., GUYON, I. M., AND VAPNIK, V. N. A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational learning

theory (1992), ACM, pp. 144–152.

[20] BRÉMAUD, P. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, vol. 31.

Springer Science & Business Media, 2013.

[21] BROWN, T. B., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J., DHARIWAL, P.,

NEELAKANTAN, A., SHYAM, P., SASTRY, G., ASKELL, A., ET AL. Language models

are few-shot learners. arXiv preprint arXiv:2005.14165 (2020).

[22] BYERLY, A., KALGANOVA, T., AND DEAR, I. A branching and merging convolu-

tional network with homogeneous filter capsules. arXiv preprint arXiv:2001.09136

(2020).

[23] CARLINI, N., AND WAGNER, D. Towards evaluating the robustness of neural net-

works. In Proceedings of the IEEE Symposium on Security and Privacy (S&P) (2017),

IEEE, pp. 39–57.

[24] CARUANA, R., LAWRENCE, S., AND GILES, C. L. Overfitting in neural nets: Back-

propagation, conjugate gradient, and early stopping. In Advances in Neural Informa-

tion Processing Systems (2001), pp. 402–408.

[25] CARUANA, R., LOU, Y., GEHRKE, J., KOCH, P., STURM, M., AND ELHADAD, N.

Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day

readmission. In Proceedings of the 21th ACM SIGKDD international conference on

knowledge discovery and data mining (2015), pp. 1721–1730.

[26] CERNA, A. E. U., PATTICHIS, M., VANMAANEN, D. P., JING, L., PATEL, A. A.,

STOUGH, J. V., HAGGERTY, C. M., AND FORNWALT, B. K. Interpretable neural

networks for predicting mortality risk using multi-modal electronic health records.

arXiv preprint arXiv:1901.08125 (2019).

126

[27] CESARE, S., AND XIANG, Y. Classification of malware using structured control

flow. In Proceedings of the Eighth Australasian Symposium on Parallel and Distributed

Computing-Volume 107 (2010), Australian Computer Society, Inc., pp. 61–70.

[28] CHAKRABORTY, A., ALAM, M., DEY, V., CHATTOPADHYAY, A., AND MUKHOPAD-

HYAY, D. Adversarial attacks and defences: A survey. arXiv preprint

arXiv:1810.00069 (2018).

[29] CHARLAND, P., FUNG, B. C. M., AND FARHADI, M. R. Clone search for malicious

code correlation. In Proc. of the NATO RTO Symposium on Information Assurance and

Cyber Defense (IST-111) (Koblenz, Germany, September 2012), pp. 1.1–1.12.

[30] CHEN, J., ALALFI, M. H., DEAN, T. R., AND ZOU, Y. Detecting android malware

using clone detection. Journal of Computer Science and Technology 30, 5 (2015), 942–

956.

[31] CHEN, K., ZHU, H., YAN, L., AND WANG, J. A survey on adversarial examples in

deep learning. Journal on Big Data 2, 2 (2020), 71.

[32] CHEN, P.-Y., ZHANG, H., SHARMA, Y., YI, J., AND HSIEH, C.-J. Zoo: Zeroth or-

der optimization based black-box attacks to deep neural networks without training

substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence

and Security (2017), ACM, pp. 15–26.

[33] CHEN, Y., AND WANG, J. Z. Support vector learning for fuzzy rule-based classifi-

cation systems. IEEE Transactions on fuzzy systems 11, 6 (2003), 716–728.

[34] CHOI, E., BAHADORI, M. T., KULAS, J. A., SCHUETZ, A., STEWART, W. F., AND

SUN, J. Retain: An interpretable predictive model for healthcare using reverse time

attention mechanism. arXiv preprint arXiv:1608.05745 (2016).

127

[35] CHRISTODORESCU, M., AND JHA, S. Static analysis of executables to detect mali-

cious patterns. Tech. rep., WISCONSIN UNIV-MADISON DEPT OF COMPUTER

SCIENCES, 2006.

[36] CHUNG, F. R., AND GRAHAM, F. C. Spectral graph theory. No. 92. American Math-

ematical Soc., 1997.

[37] CISSE, M., BOJANOWSKI, P., GRAVE, E., DAUPHIN, Y., AND USUNIER, N. Parseval

networks: Improving robustness to adversarial examples. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70 (2017), JMLR. org, pp. 854–

863.

[38] COHEN, W. W. Learning trees and rules with set-valued features. In AAAI/IAAI,

Vol. 1 (1996), pp. 709–716.

[39] CORDY, J. R., AND ROY, C. K. The nicad clone detector. In Program Comprehension

(ICPC), 2011 IEEE 19th International Conference on (2011), IEEE, pp. 219–220.

[40] CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathe-

matics of control, signals and systems 2, 4 (1989), 303–314.

[41] DAHL, G. E., STOKES, J. W., DENG, L., AND YU, D. Large-scale malware classifica-

tion using random projections and neural networks. In Acoustics, Speech and Signal

Processing (ICASSP), 2013 IEEE International Conference on (2013), IEEE, pp. 3422–

3426.

[42] DAI, J., GUHA, R. K., AND LEE, J. Efficient virus detection using dynamic instruc-

tion sequences. JCP 4, 5 (2009), 405–414.

[43] DAS, A., AND RAD, P. Opportunities and challenges in explainable artificial intel-

ligence (xai): A survey. arXiv preprint arXiv:2006.11371 (2020).

128

[44] DATTA, A., SEN, S., AND ZICK, Y. Algorithmic transparency via quantitative input

influence: Theory and experiments with learning systems. In 2016 IEEE symposium

on security and privacy (SP) (2016), IEEE, pp. 598–617.

[45] DEMETRIO, L., BIGGIO, B., LAGORIO, G., ROLI, F., AND ARMANDO, A. Explain-

ing vulnerabilities of deep learning to adversarial malware binaries. arXiv preprint

arXiv:1901.03583 (2019).

[46] DEMONTIS, A., MELIS, M., BIGGIO, B., MAIORCA, D., ARP, D., RIECK, K.,

CORONA, I., GIACINTO, G., AND ROLI, F. Yes, machine learning can be more

secure! a case study on android malware detection. IEEE Transactions on Dependable

and Secure Computing (2017).

[47] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805 (2018).

[48] DHILLON, G. S., AZIZZADENESHELI, K., LIPTON, Z. C., BERNSTEIN, J., KOSSAIFI,

J., KHANNA, A., AND ANANDKUMAR, A. Stochastic activation pruning for robust

adversarial defense. arXiv preprint arXiv:1803.01442 (2018).

[49] DING, S. H. H., FUNG, B. C. M., AND CHARLAND, P. Kam1n0: Mapreduce-based

assembly clone search for reverse engineering. In Proceedings of the 22nd ACM

International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2016),

pp. 461–470.

[50] DING, S. H. H., FUNG, B. C. M., AND CHARLAND, P. Asm2Vec: Boosting static

representation robustness for binary clone search against code obfuscation and

compiler optimization. In Proceedings of the IEEE Symposium on Security and Privacy

(SP) (2019), IEEE, pp. 472–489.

[51] DONG, L., YANG, N., WANG, W., WEI, F., LIU, X., WANG, Y., GAO, J., ZHOU,

M., AND HON, H.-W. Unified language model pre-training for natural language

129

understanding and generation. In Advances in Neural Information Processing Systems

(2019), pp. 13063–13075.

[52] FARHADI, M. R., FUNG, B. C., FUNG, Y. B., CHARLAND, P., PREDA, S., AND DEB-

BABI, M. Scalable code clone search for malware analysis. Digital Investigation 15

(2015), 46–60.

[53] FARHADI, M. R., FUNG, B. C. M., CHARLAND, P., AND DEBBABI, M. BinClone:

Detecting code clones in malware. In Proc. of the 8th IEEE International Conference on

Software Security and Reliability (SERE) (San Francisco, CA, June 2014), IEEE Relia-

bility Society, pp. 78–87.

[54] FEINMAN, R., CURTIN, R. R., SHINTRE, S., AND GARDNER, A. B. Detecting ad-

versarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017).

[55] FORCE, U. A. Analysis of the intel pentium’s ability to support a secure virtual

machine monitor. In Proceedings of the... USENIX Security Symposium. USENIX As-

sociation (2000), p. 129.

[56] FORET, P., KLEINER, A., MOBAHI, H., AND NEYSHABUR, B. Sharpness-aware min-

imization for efficiently improving generalization. arXiv preprint arXiv:2010.01412

(2020).

[57] FREDRIKSON, M., JHA, S., CHRISTODORESCU, M., SAILER, R., AND YAN, X. Syn-

thesizing near-optimal malware specifications from suspicious behaviors. In Secu-

rity and Privacy (SP), 2010 IEEE Symposium on (2010), IEEE, pp. 45–60.

[58] FREUND, Y., SCHAPIRE, R. E., ET AL. Experiments with a new boosting algorithm.

In Icml (1996), vol. 96, Citeseer, pp. 148–156.

[59] GOEMANS, M. X., AND WILLIAMSON, D. P. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming.

Journal of the ACM (JACM) 42, 6 (1995), 1115–1145.

130

[60] GOLDSTEIN, A., KAPELNER, A., BLEICH, J., AND PITKIN, E. Peeking inside the

black box: Visualizing statistical learning with plots of individual conditional ex-

pectation. journal of Computational and Graphical Statistics 24, 1 (2015), 44–65.

[61] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[62] GROSSE, K., MANOHARAN, P., PAPERNOT, N., BACKES, M., AND MCDANIEL,

P. On the (statistical) detection of adversarial examples. arXiv preprint

arXiv:1702.06280 (2017).

[63] GU, S., AND RIGAZIO, L. Towards deep neural network architectures robust to

adversarial examples. arXiv preprint arXiv:1412.5068 (2014).

[64] GUO, C., RANA, M., CISSE, M., AND VAN DER MAATEN, L. Countering adversar-

ial images using input transformations. arXiv preprint arXiv:1711.00117 (2017).

[65] GUO, Q., QIU, X., LIU, P., SHAO, Y., XUE, X., AND ZHANG, Z. Star-transformer.

arXiv preprint arXiv:1902.09113 (2019).

[66] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition

(2016), pp. 770–778.

[67] HINTON, G., VINYALS, O., AND DEAN, J. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 (2015).

[68] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural compu-

tation 9, 8 (1997), 1735–1780.

[69] HUANG, W., AND STOKES, J. W. Mtnet: a multi-task neural network for dynamic

malware classification. In International Conference on Detection of Intrusions and Mal-

ware, and Vulnerability Assessment (2016), Springer, pp. 399–418.

131

[70] ILYAS, A., ENGSTROM, L., ATHALYE, A., AND LIN, J. Black-box adversarial attacks

with limited queries and information. arXiv preprint arXiv:1804.08598 (2018).

[71] INDYK, P., AND MOTWANI, R. Approximate nearest neighbors: towards removing

the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on

Theory of Computing (1998), ACM, pp. 604–613.

[72] ISLAM, R., TIAN, R., BATTEN, L. M., AND VERSTEEG, S. Classification of malware

based on integrated static and dynamic features. Journal of Network and Computer

Applications 36, 2 (2013), 646–656.

[73] JAEGLE, A., GIMENO, F., BROCK, A., ZISSERMAN, A., VINYALS, O., AND CAR-

REIRA, J. Perceiver: General perception with iterative attention. arXiv preprint

arXiv:2103.03206 (2021).

[74] JENSEN, F. V. An introduction to Bayesian networks, vol. 210. UCL press London,

1996.

[75] JIANG, H., HE, P., CHEN, W., LIU, X., GAO, J., AND ZHAO, T. Smart: Robust and

efficient fine-tuning for pre-trained natural language models through principled

regularized optimization. arXiv preprint arXiv:1911.03437 (2019).

[76] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

[77] KOLOSNJAJI, B., ZARRAS, A., WEBSTER, G., AND ECKERT, C. Deep learning for

classification of malware system call sequences. In Australasian Joint Conference on

Artificial Intelligence (2016), Springer, pp. 137–149.

[78] KOLTER, J. Z., AND MALOOF, M. A. Learning to detect malicious executables in the

wild. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining (2004), ACM, pp. 470–478.

132

[79] KRČÁL, M., ŠVEC, O., BÁLEK, M., AND JAŠEK, O. Deep convolutional malware

classifiers can learn from raw executables and labels only. In ICLR Workshop (2018).

[80] KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of features from

tiny images.

[81] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERTSON, W., AND VIGNA, G. Polymor-

phic worm detection using structural information of executables. In International

Workshop on Recent Advances in Intrusion Detection (2005), Springer, pp. 207–226.

[82] KURAKIN, A., GOODFELLOW, I., AND BENGIO, S. Adversarial examples in the

physical world. arXiv preprint arXiv:1607.02533 (2016).

[83] LÁSZLÓ, T., AND KISS, Á. Obfuscating c++ programs via control flow flattening.

Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio

Computatorica 30 (2009), 3–19.

[84] LAURENT, H., AND RIVEST, R. L. Constructing optimal binary decision trees is

np-complete. Information processing letters 5, 1 (1976), 15–17.

[85] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[86] LECUN, Y., JACKEL, L., BOTTOU, L., BRUNOT, A., CORTES, C., DENKER, J.,

DRUCKER, H., GUYON, I., MULLER, U., SACKINGER, E., ET AL. Comparison of

learning algorithms for handwritten digit recognition. In International conference on

artificial neural networks (1995), vol. 60, Perth, Australia, pp. 53–60.

[87] LI, J., LIU, Y., CHEN, T., XIAO, Z., LI, Z., AND WANG, J. Adversarial attacks and

defenses on cyber–physical systems: A survey. IEEE Internet of Things Journal 7, 6

(2020), 5103–5115.

133

[88] LI, M. Q., FUNG, B. C. M., CHARLAND, P., AND DING, S. H. H. I-MAD: Inter-

pretable malware detector using galaxy transformer. Computers & Security (2021),

102371.

[89] LI, X., LOH, P. K., AND TAN, F. Mechanisms of polymorphic and metamorphic

viruses. In Intelligence and Security Informatics Conference (EISIC), 2011 European

(2011), IEEE, pp. 149–154.

[90] LINARDATOS, P., PAPASTEFANOPOULOS, V., AND KOTSIANTIS, S. Explainable ai:

A review of machine learning interpretability methods. Entropy 23, 1 (2020), 18.

[91] LINARDATOS, P., PAPASTEFANOPOULOS, V., AND KOTSIANTIS, S. Explainable ai:

A review of machine learning interpretability methods. Entropy 23, 1 (2021), 18.

[92] LOH, W.-Y. Fifty years of classification and regression trees. International Statistical

Review 82, 3 (2014), 329–348.

[93] LU, J., ISSARANON, T., AND FORSYTH, D. Safetynet: Detecting and rejecting ad-

versarial examples robustly. In Proceedings of the IEEE International Conference on

Computer Vision (2017), pp. 446–454.

[94] LUNDBERG, S. M., AND LEE, S.-I. A unified approach to interpreting model pre-

dictions. Advances in neural information processing systems 30 (2017).

[95] MADRY, A., MAKELOV, A., SCHMIDT, L., TSIPRAS, D., AND VLADU, A. To-

wards deep learning models resistant to adversarial attacks. arXiv preprint

arXiv:1706.06083v4 (2019).

[96] MAHDAVIFAR, S., AND GHORBANI, A. A. Application of deep learning to cyber-

security: A survey. Neurocomputing 347 (2019), 149–176.

[97] MILLER, D. J., XIANG, Z., AND KESIDIS, G. Adversarial learning targeting deep

neural network classification: A comprehensive review of defenses against attacks.

Proceedings of the IEEE 108, 3 (2020), 402–433.

134

[98] MOLNAR, C. Interpretable machine learning. Lulu.com, 2020.

[99] MOODY, R. Screen Time Statistics: Average Screen Time in US vs. the

rest of the world. https://www.comparitech.com/tv-streaming/

screen-time-statistics/#:˜:text=The%20average%20American%

20spends%20over,at%20a%20screen%20every%20day., 2022. [Online;

accessed 7-May-202].

[100] MOOSAVI-DEZFOOLI, S.-M., FAWZI, A., AND FROSSARD, P. Deepfool: a simple

and accurate method to fool deep neural networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2574–2582.

[101] MOSKOVITCH, R., FEHER, C., TZACHAR, N., BERGER, E., GITELMAN, M., DOLEV,

S., AND ELOVICI, Y. Unknown malcode detection using opcode representation. In

Intelligence and Security Informatics. Springer, 2008, pp. 204–215.

[102] MOURTAJI, Y., BOUHORMA, M., AND ALGHAZZAWI, D. Intelligent framework

for malware detection with convolutional neural network. In Proceedings of the 2nd

International Conference on Networking, Information Systems & Security (2019), ACM,

p. 7.

[103] MUSTAFA, A., KHAN, S., HAYAT, M., GOECKE, R., SHEN, J., AND SHAO, L. Ad-

versarial defense by restricting the hidden space of deep neural networks. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp. 3385–

3394.

[104] MUSTAFA, A., KHAN, S. H., HAYAT, M., GOECKE, R., SHEN, J., AND SHAO, L.

Deeply supervised discriminative learning for adversarial defense. IEEE transac-

tions on pattern analysis and machine intelligence 43, 9 (2020), 3154–3166.

[105] NARODYTSKA, N., AND KASIVISWANATHAN, S. P. Simple black-box adversarial

perturbations for deep networks. arXiv preprint arXiv:1612.06299 (2016).

135

https://www.comparitech.com/tv-streaming/screen-time-statistics/#:~:text=The%20average%20American%20spends%20over,at%20a%20screen%20every%20day.
https://www.comparitech.com/tv-streaming/screen-time-statistics/#:~:text=The%20average%20American%20spends%20over,at%20a%20screen%20every%20day.
https://www.comparitech.com/tv-streaming/screen-time-statistics/#:~:text=The%20average%20American%20spends%20over,at%20a%20screen%20every%20day.

[106] NATARAJ, L., KARTHIKEYAN, S., JACOB, G., AND MANJUNATH, B. Malware im-

ages: visualization and automatic classification. In Proceedings of the 8th international

symposium on visualization for cyber security (2011), ACM, p. 4.

[107] OLIVA, A., AND TORRALBA, A. Modeling the shape of the scene: A holistic repre-

sentation of the spatial envelope. International journal of computer vision 42, 3 (2001),

145–175.

[108] PAPERNOT, N., MCDANIEL, P., GOODFELLOW, I., JHA, S., CELIK, Z. B., AND

SWAMI, A. Practical black-box attacks against machine learning. In Proceedings of

the 2017 ACM Asia Conference on Computer and Communications Security (ASIA CCS)

(2017), pp. 506–519.

[109] PAPERNOT, N., MCDANIEL, P., JHA, S., FREDRIKSON, M., CELIK, Z. B., AND

SWAMI, A. The limitations of deep learning in adversarial settings. In Security

and Privacy (EuroS&P), 2016 IEEE European Symposium on (2016), IEEE, pp. 372–387.

[110] PAPERNOT, N., MCDANIEL, P., WU, X., JHA, S., AND SWAMI, A. Distillation as a

defense to adversarial perturbations against deep neural networks. In Proceedings

of the 2016 IEEE Symposium on Security and Privacy (S&P) (2016), IEEE, pp. 582–597.

[111] PARK, S., AND SO, J. On the effectiveness of adversarial training in defending

against adversarial example attacks for image classification. Applied Sciences 10, 22

(2020), 8079.

[112] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z., LIN,

Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic differentiation in

pytorch. In NIPS Workshop (2017).

[113] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION, B.,

GRISEL, O., BLONDEL, M., PRETTENHOFER, P., WEISS, R., DUBOURG, V., VAN-

DERPLAS, J., PASSOS, A., COURNAPEAU, D., BRUCHER, M., PERROT, M., AND

136

DUCHESNAY, E. Scikit-learn: Machine learning in Python. Journal of Machine Learn-

ing Research 12 (2011), 2825–2830.

[114] QUINLAN, J. R. Induction of decision trees. Machine learning 1, 1 (1986), 81–106.

[115] RADFORD, A., NARASIMHAN, K., SALIMANS, T., AND SUTSKEVER, I. Improving

language understanding with unsupervised learning. Tech. rep., Technical report,

OpenAI, 2018.

[116] RADFORD, A., WU, J., CHILD, R., LUAN, D., AMODEI, D., AND SUTSKEVER, I.

Language models are unsupervised multitask learners. OpenAI Blog 1 (2019), 8.

[117] RAFF, E., BARKER, J., SYLVESTER, J., BRANDON, R., CATANZARO, B., AND

NICHOLAS, C. Malware detection by eating a whole exe. arXiv preprint

arXiv:1710.09435 (2017).

[118] RAFFEL, C., SHAZEER, N., ROBERTS, A., LEE, K., NARANG, S., MATENA, M.,

ZHOU, Y., LI, W., AND LIU, P. J. Exploring the limits of transfer learning with a

unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019).

[119] RAI, A. Explainable ai: From black box to glass box. Journal of the Academy of

Marketing Science 48, 1 (2020), 137–141.

[120] RIBEIRO, M. T., SINGH, S., AND GUESTRIN, C. ” why should i trust you?” ex-

plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining (2016), pp. 1135–1144.

[121] ROYAL, P., HALPIN, M., DAGON, D., EDMONDS, R., AND LEE, W. Polyunpack:

Automating the hidden-code extraction of unpack-executing malware. In Computer

Security Applications Conference, 2006. ACSAC’06. 22nd Annual (2006), IEEE, pp. 289–

300.

137

[122] RUDIN, C. Stop explaining black box machine learning models for high stakes de-

cisions and use interpretable models instead. Nature Machine Intelligence 1, 5 (2019),

206–215.

[123] RUSSELL, S. J., AND NORVIG, P. Artificial intelligence: a modern approach. Malaysia;

Pearson Education Limited,, 2016.

[124] RUTKOWSKA, J. Redpill: Detect vmm using (almost) one cpu instruction.

http://invisiblethings. org/papers/redpill. html (2004).

[125] SANTOS, I., DEVESA, J., BREZO, F., NIEVES, J., AND BRINGAS, P. G. Opem: A

static-dynamic approach for machine-learning-based malware detection. In Interna-

tional Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions (2013), Springer,

pp. 271–280.

[126] SAXE, J., AND BERLIN, K. Deep neural network based malware detection using two

dimensional binary program features. In Malicious and Unwanted Software (MAL-

WARE), 2015 10th International Conference on (2015), IEEE, pp. 11–20.

[127] SCHULTZ, M. G., ESKIN, E., ZADOK, F., AND STOLFO, S. J. Data mining methods

for detection of new malicious executables. In Security and Privacy, 2001. S&P 2001.

Proceedings. 2001 IEEE Symposium on (2001), IEEE, pp. 38–49.

[128] SELVARAJU, R. R., COGSWELL, M., DAS, A., VEDANTAM, R., PARIKH, D., AND

BATRA, D. Grad-cam: Visual explanations from deep networks via gradient-based

localization. In Proceedings of the IEEE international conference on computer vision

(2017), pp. 618–626.

[129] SHAHAM, U., YAMADA, Y., AND NEGAHBAN, S. Understanding adversarial train-

ing: Increasing local stability of supervised models through robust optimization.

Neurocomputing 307 (2018), 195–204.

138

[130] SHRIKUMAR, A., GREENSIDE, P., AND KUNDAJE, A. Learning important features

through propagating activation differences. In International conference on machine

learning (2017), PMLR, pp. 3145–3153.

[131] SPRINGENBERG, J. T., DOSOVITSKIY, A., BROX, T., AND RIEDMILLER, M. Striving

for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 (2014).

[132] SRIVASTAVA, R. K., GREFF, K., AND SCHMIDHUBER, J. Highway networks. arXiv

preprint arXiv:1505.00387 (2015).

[133] SUNDARARAJAN, M., TALY, A., AND YAN, Q. Axiomatic attribution for deep net-

works. In International conference on machine learning (2017), PMLR, pp. 3319–3328.

[134] SZEGEDY, C., ZAREMBA, W., SUTSKEVER, I., BRUNA, J., ERHAN, D., GOODFEL-

LOW, I., AND FERGUS, R. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199 (2013).

[135] TU, C.-C., TING, P., CHEN, P.-Y., LIU, S., ZHANG, H., YI, J., HSIEH, C.-J., AND

CHENG, S.-M. Autozoom: Autoencoder-based zeroth order optimization method

for attacking black-box neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence (2019), vol. 33, pp. 742–749.

[136] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ,

A. N., KAISER, Ł., AND POLOSUKHIN, I. Attention is all you need. In Advances in

Neural Information Processing Systems (2017), pp. 5998–6008.

[137] WANG, D., LI, C., WEN, S., NEPAL, S., AND XIANG, Y. Defending against adver-

sarial attack towards deep neural networks via collaborative multi-task training.

arXiv preprint arXiv:1803.05123 (2018).

[138] WILLE, R. Restructuring lattice theory: an approach based on hierarchies of con-

cepts. In Ordered sets. Springer, 1982, pp. 445–470.

139

[139] WOLFE, P. Checking the calculation of gradients. ACM Transactions on Mathematical

Software (TOMS) 8, 4 (1982), 337–343.

[140] XIAO, H., BIGGIO, B., NELSON, B., XIAO, H., ECKERT, C., AND ROLI, F. Support

vector machines under adversarial label contamination. Neurocomputing 160 (2015),

53–62.

[141] XIE, C., WU, Y., MAATEN, L. V. D., YUILLE, A. L., AND HE, K. Feature denois-

ing for improving adversarial robustness. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2019), pp. 501–509.

[142] XU, H., MA, Y., LIU, H., DEB, D., LIU, H., TANG, J., AND JAIN, A. Adver-

sarial attacks and defenses in images, graphs and text: A review. arXiv preprint

arXiv:1909.08072 (2019).

[143] XU, W., EVANS, D., AND QI, Y. Feature squeezing: Detecting adversarial examples

in deep neural networks. arXiv preprint arXiv:1704.01155 (2017).

[144] YAN, X., CHENG, H., HAN, J., AND YU, P. S. Mining significant graph patterns

by leap search. In Proceedings of the 2008 ACM SIGMOD international conference on

Management of data (2008), ACM, pp. 433–444.

[145] YANG, Z., DAI, Z., YANG, Y., CARBONELL, J., SALAKHUTDINOV, R. R., AND LE,

Q. V. Xlnet: Generalized autoregressive pretraining for language understanding. In

Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2019),

pp. 5754–5764.

[146] YE, Y., LI, T., ADJEROH, D., AND IYENGAR, S. S. A survey on malware detection

using data mining techniques. ACM Computing Surveys (CSUR) 50, 3 (2017), 41.

[147] YE, Y., LI, T., HUANG, K., JIANG, Q., AND CHEN, Y. Hierarchical associative clas-

sifier (hac) for malware detection from the large and imbalanced gray list. Journal

of Intelligent Information Systems 35, 1 (2010), 1–20.

140

[148] YU, P., SONG, K., AND LU, J. Generating adversarial examples with conditional

generative adversarial net. In 2018 24th International Conference on Pattern Recogni-

tion (ICPR) (2018), IEEE, pp. 676–681.

[149] ZEILER, M. D., AND FERGUS, R. Visualizing and understanding convolutional

networks. In European conference on computer vision (2014), Springer, pp. 818–833.

[150] ZHOU, B., KHOSLA, A., LAPEDRIZA, A., OLIVA, A., AND TORRALBA, A. Learning

deep features for discriminative localization. In Proceedings of the IEEE conference on

computer vision and pattern recognition (2016), pp. 2921–2929.

[151] ZHOU, H., ZHANG, S., PENG, J., ZHANG, S., LI, J., XIONG, H., AND ZHANG, W.

Informer: Beyond efficient transformer for long sequence time-series forecasting.

In Proceedings of AAAI (2021).

[152] ZÜGNER, D., BORCHERT, O., AKBARNEJAD, A., AND GUENNEMANN, S. Adver-

sarial attacks on graph neural networks: Perturbations and their patterns. ACM

Transactions on Knowledge Discovery from Data (TKDD) 14, 5 (2020), 1–31.

141

	Abstract
	Abrégé
	Acknowledgements
	List of Publications
	Contribution to Original Knowledge
	Contribution of Authors
	List of Figures
	List of Tables
	Introduction
	Interpretable Classification
	Malware Detection
	Adversarial Attack and Defense
	Thesis Organization

	Literature Review
	Interpretable and Explainable Machine Learning
	Interpretable Machine Learning
	Explainable Machine Learning
	Interpretable Machine Learning vs. Explainable Machine Learning

	Malware Detection
	Malware Techniques
	Feature Extraction Methods
	Features
	Classification Models

	Adversarial Attack and Defense
	Definitions
	Taxonomy
	Adversarial Attack Methods
	Adversarial Defense Methods

	Interpretable Classification
	Interpretable Feedforward Neural Network
	Discussion

	Experiments
	Datasets
	Models
	Evaluation Metrics
	Experiment Setting
	Classification Results
	Interpretability Results

	Malware Detection
	Problem Definition
	Methodology
	Galaxy Transformer
	Satellite-Planet Transformer to Understand Basic Blocks
	Planet-Star Transformer to Understand Assembly Function
	Star-Galaxy Transformer to Understand Full Logic of Executable
	Other Features
	Interpretable Feed-Forward Neural Network
	Model Training

	Experiments
	Datasets and Pre-training
	Models for Comparison
	Experiment Settings
	Results
	Interpretability
	Efficiency Study

	Defense Against Black-box Adversarial Attacks
	Proposed Defense Method
	Preliminaries
	Overall Defense Mechanism
	Determination of Same Origin
	Optimizations
	Interpretability

	Discussion
	Experiments
	Datasets
	Evaluation Metrics
	Two-Round Evaluation
	Adversarial Attack and Defense Methods
	Classification Models to Defend
	Hyperparameters
	Results
	Efficiency Study
	Impacts of Number of LSH Functions
	Impacts of Threshold 0
	Validity of Adversarial Samples

	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

