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INTRODUCTION

Sponsored by the American Society of Mechanical Engineers
a Code for the Design of Transmission Shafting was issued by the
American Standards Assoclation in 1929, 1In this Code all commonly
used theories are discussed and rational procedure for the design
of the shafts under all conditions of loading is developed with
recommendations as to the values of allowable stresses and factors
to be used in the design formula. Apart from this code, formulae
for design of {transmission shaftings have been established by the
classification societies like Lloyd!'s Register of shipping and
Westinghouse Co. Ltd.

By meking use of one or the other of these formulae
given by the above mentioned authorities a shaft can be designed
for satisfactory operation when the operating speeds are kept away
from the critical speeds of the iransmission system. However,
experience hag revealed that failures of transmission systems designed
for saefe running in a normal state of operation have been caused by
excessive vibrations because the system was running at or nearly at
a dangerous critical speed. If the transmission shaft system is
one vhich couples an electrical set to an internal combustion engine,
eriticel or disturbing smplitude occurring near the operating speed
may cause the light to flicker to a prohibitive degree; excessively
large vibration torgues occurring at the generator armatures may
cause loosening of core laminations and other forms of armature
failure., A design of a transmission shaft system without vibration

analysis is, therefore, hardly considered complete nowadays. The
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classification societies set definite rules to have the transmission
systems vibrationally enalyzed. Lloyd's Register of shipping
judged, in 1943, that shipbuilders should submit critical speed
calculations for both main and auxiliary heavy oil installations
in order to obtain Lloyd Machinery certificate. This requirement
wag introduced into the society's rules in January 1944.

Since this work may deal to a great extent with the
vibration preblems of the designed transmission system it may be
proper to give & short history of both torsional and lateral

vibration in this introduction.

TORSIONAL VIBRATT

Interesting notes on the history of torsional vibration
problems in lend, marine, and aero installations are givemn by Ker
wilson(?* in the introduction to the third edition of his book,
"Practical Solution of Torsional Vibration Problems®. The following
is a short account on the history of the problems mainly in marine
and land insgtallations, to which the thesis is closely related.

Problems of vibration have been known and widely
discussed since the last decade of the last century. EBarly work
on torsional vibration, however, were mostly concerned with funda-
mentel or one-node mode of vibration., In those days, the systems,
in which the problem of torsional vibration arose, comprised mostly
of heavy reciprocating steem engine masses on the one end and heavy

driven machine on the other. The system was then reasonably reduced

# Numbers refer to the references given in the Bibliography at the
end of this thesis.
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to approximately equivalent two-mass arrangement. Methods for
calculating the criticel speeds of systems containing several masses
were published by Chree, Sankey and Millington in 1905 and Holzer
in 1907. Not much progress in analytical and experimental work

on the subject was, however, accomplished umtil the beginning of
the first world war.

In the years following this 1914-1918 war, rapid
development of internal combustion engines came into the scene; and
during this period it was brought to the notice of the investigators
that failure of transmission systems occurred not only at the
trensmission shafting as was the case in the earlier years, but
also at the crankshaft, revealing the requirement of analysis for
higher modes of vibration. Considerable progress was made in the
subject during these years and first text books were published 'by
Holzer and Wydler in 1921 and 1922 respectively; and a paper by
Lewis came out in 1925. The first text books in Engligh were
published by Tuplin, Ker Wilson, and Den Hartog all in 1934. Im
the U.S.A. a large volume of contribution to the subject was made
by F.P. Porter.

Hammonic anslysis of the engine torque curve of single
cylinder electric ignition engine was made and published by Muir
and Terry in 1930. The most complete analyses were made by F.P.
Porter in a paper entitled "Harmonic coefficients of Engine Torque
Curves", published in Transactions of the American Society of
Mechanical Engineers in 1945-(20)

Mnalysis on stiffness of crankshafts in torsion as

well as bending was published by Timoshenko, in 1922 and 1923, in
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Trangactions of the A.S.M.E. An empirical fofmula for crankshaft
stiffness in torsion was introduced by Carter in 1928; and this
was followed by an alternative formula by Ker Wilson published in
the 2nd Edition of his text book in 1940(1),

At the present time, there is a considerable amount
of literature on torsional vibration problems. Various methods,
analytical as well as graphical, have been published by various
investigators, alongside with tremendous improvement in the techniques
of measurements of vibration. However, although such a large volume
of literature is available, and some problems are comparatively
straightforward requiring little more than determination of the
fundamental natural frequency of the system to make sure that there
are no significent resonant conditions in the operating speed ranges,
there are still cases where both analyticel and experimentael investi-

gations are required.

LATERAL VIBRATION
In the same way as Holzer, Lewis, Porter etc. are
noted in the field of torsional vibration there are some well known
contributors, whose names come up frequently in the lateral vibration
field, nsmely: Rayleigh, Dunkerley, Stodola, Myklestad, Prohl etec.
The problems of lateral vibration have been known
gince almost the same time as were torsional vibration problems,
viz, the later years of the 19th century. A paper in this field
on stability of a shaft between bearings was presented by Greenhill

to I.M.E. in 1883, Dunkerley gave both theory and experimental




results in his paper published in Phil. Trensactions in 1894. Chree
published his paper in Phil.Magazine in 1904. There have been
numerous subsequent writers in the later years, but they mostly
followed Dunkerley and Chree.

The first problem of the whirling and vibration of
an overhung shaft carrying a symmetrical load of appreciable inertia
was investigated and published by Lees in Phil. Msgazine in 1923.

Stodolats ®"iteration" method of obtaining natural
frequencies in lateral vibration chiefly for use in determining the
vhirling speeds of a turbine rotor, is given in his book, which was
translated into English in 1927(10), He gave the method both in
analytical and graphical forms.

The usual method for determining the lateral vibration
frequencies or critical whirling speeds of shafts is the method of
Stodola. Recently, in 1944 and 1945 respectively, MykEsstad and
Prohl published another method of arriving at the result. This
nev method is referred to by some authors as an extension of the
Holzer Tabulation Method. A notable feature of this method is the
accuracy with which frequencies for all modes of vibration can be
estimated. This method was used by Rankin in his paper entitled
"Calculation of the multispan critical speed of flexible shafts
by means of punched card machinell, published in Transactions of

the American Society of Mechanical Engineers, in 1946.




PREFACE

The present trend in designing a power transmission
shaft between a diesel engine and an electrical generator is to
keep the length of the shaft as short as possible. By so coupling
the generator as rigidly as possible to the engine, arrangements
are possible to raise the harmful critical speeds of the engine-
generator system well above the operating speeds. But there may,
hovever, be cases where the generator and engine cannot be operated
close to each other or in the same room. In such cases it may be
possible to keep the generator and engine in separate halls with
a wall in between and to transmit power by using a long floating
shaft through the wall.

This thesis is on theoretical design investigation of
a long pover transmission shaft between a medium size diesel engine
and an alternator. It is assumed that the engine and generator
need be located on opposite sides of a wall in different rooms;
and to cope with some possibility that misaligmment may occur, a
floating shaft is used through the wall to drive the generator.

The distance between the engine and generator is taken as 20 feet;
and possibility of operation of the system in parallel with other
sets of the same nature is presumed.

The engine used in this investigation is 1120 BHP,
300 rpmy, 7 - cylinder in line, vertical, two-stroke diesel engine
manufactured by the British Polar Engines Limited of Glasgow, U.K.
The drawings of some component parts of the engine used are given

in Appendix V at the end of this thesis. Additional data on the

engine are given in Appendix I.
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The generator used in this investigation is G.E.,

1045 KVA, 300 rpm generator, Model No. API-24. A considerable amownt
of difficulties was experienced in obtaining data for the generator
due to the compeny's strict observance of trade secrecy. However,
most of the data which are useful for this investigation were
obtained. But wmfortunately, no drawings on the generator could

be included and assumptions have had to be made as to some data
vhich could not be obtained from the company.

The thesis is prepared in sections, each of which
deals with a particular aspect. A section itself is divided into
two parts, the first part dealing with the theoretical background
and second part giving numeriéal applications of the theory to the
system being investigated.

Procedures for designing the shaft and the flywheel
necessary for the system are given in the first three sectione.
Investigation on the operating characteristics of the system is
then made in the later sections. Torsional vibration characteristics
and stresses occurring in the system are analyzed from sections IV
to IX; the degree of 1light flicker is determined in section X; an
estimation of the critical whirling speed of the system is made
in section XI. Conclusion to the investigations is drawn in section
XII, which shows that the system possesses satisfactory operating
properties when checked up against the standards laid down by
various authorities.

As it 1s difficult to cover the torstional vibration
investigations in a single section, & span over six sections has

been allowed. It may seem that some sections in the earlier part
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of this group are put irrelevantly to each other. However, each
of the earlier sections of the group needs be introduced to determine
particular data of the system that is useful in the later sections.
Final summation to get the complete picture of the torsional vibration
critical speeds and stresses occurring in the system is made in
sections VIII and IX.

Determination of harmonic coefficients of engine
torque curve, which seems to be suitable to describe in the later
part to avoid abrupt change of topic is also given in section II,
as the value of 7th harmonic coefficient is required in design of

flyvwheel in section III.
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1. SHAFT DESIGN

1-1-0 THEQORY

1.1.1 Shafis are generally circular in cross-section and
made of ductile materials, and the maximum shear theory is generally
teken as design criteria. However, some designers prefer to design
by the maximum-shear theory as well as by maximum-normal-stress
theory, and use the larger size of the two results.

The maximum shear and normal stresses in a shaft of

outside diameter d° in. and inside dismeter di’ carrying a torsional
loed of T 1b.-in., a bending load of M lb.-in. and an axial load

of F 1b. simultasneously, can be expressed as follows:

2
16 1 \/( F do (1+K3)> 2
—= = M+ + T
mex ~ Lg% (1 -y 8
sso e (1-1)

w0
i

16 1 Fd (1L+K®?)

5 X T M+
x40 (1~ Kk 8

Fd_ (1+k2)\?
+J(M+ °(8+ )> + T3 ... (1-2)

where K = ratio of inside to outside diameter of the shaft.,

1-1-2 A.S.M.E. Code for Design of Transmission Shafting
Equations (1-1) end (1-2) are true when the shaft is

subjected to steady torsional and bending loads, and when the axial
load does not produce column action. In practice, however, the

nature of the loads which the shaft carries is hardly subject to




the above conditions. A rotating shaft is subjected to completely
reversed stresses; and at the same time, the loads it carries may
be subject to variation in intensity or to shocks; the axial load
may produce column action.

The American Soclety of Mechanical Engineers issued
a code for designs of transmitting shafting in 1929. The code is
based upon the condition that the shaft is made of ductile material
and it uses the maximum-shear theory as criterion.

The A.S.M.E. Code equation for a hallow shaft subjected
to torsion, bending and axial load can be obtained from equation (1-1),
vhen shock-and-fatigue factors and o factor are introduced, as

follows:

16 o Fdy (1+EK2)

- 2
%zﬁl-K x 8 - [xmn+ P J+(Kt1-)

cesssssesss (1-3)

vhere Sg = maximum permissible shear stress, psi.
= combined shock and fatigue factor to be applied to
the computed bending moment.
K, = combined shock and fatigue factor to be applied to

the computed torsional moment.
The recommended values of Sg, K and K, are given
in the above Code and in most of design reference

books.

ratio of meximum to average intensgity of stress,

Q
H

resulting from axial loading only.

= 1T o.oofu TAy forLA U5 ... (1-4)

. 5 (_%)2 for Lfic >> 115 ... (1-5)

#nkE




L = length between supporting bearings, in.
k = radius of gyration of transverse cross-—section of

the shaft, in.

Sy = yield stress in compression, psi.
E = modulus of elasticity, psi.
n = constant for type of column end support

= 1 for hinged ends
= 1.6 for both ends pinned, guided and partially
strained (as in bearings).

= 2.25 for fixed ends.

1-1-3 Practical Design Procedure

Bquation (1-3) is for the genersl case and can readily
be used to design when the operational conditions and loading values
are known. In practice, however, especially when a shaft is designed
for a completely new system, the exact magnitude of bending moment
is seldom known. It is, therefore, customary in practice to design
the shaft by considering it to be loaded wi'bh the torsional moment
alone, with introduction of some design factor.

Equation (1-3) with torsional moment alone becomes:

& = = 1 \5/ *16 (K, T) cereeness (1-6)

l_Kzl- SS

If because of lack of accurate data, the shaft is
designed by this simplifled method, the torque transmitting the
required horse power is multiplied by a factor K, called "the load
factor". The load factor, K;, is the ratio of the maximm torque

to the average or normal torque and it depends on the type of the




primemever and the driven machine. The values relevant to the

system we are ireating are mentioned below(ls):

Driver Driven Machine K
Flectric Motor Turbine blower, metal working machinery 1.25

Centrifugel pump, wood working machinery 1.50

Line shaft, ship propeller, double acting 1.75

pump
Triplex single-acting pump, elevator, 1.75
crane
Compressor, alr or ammonia 1.75
Rolling mill, rubber mill 2.50
Gas and 0il Values for electric-motor drive x 1.3 to 1.6,
Engine
the factor depending on the coefficient of
steadiness of flyvheel.
The value T can be expressed with Horse Power as:
T = 56000 H.P. [N RN RN WY NN NN (1‘-7)

22N

where H.P. horse power

N revolution per minute.

Substituting velue of T from equation (1-7), and

putting K, into equation (1-6), we get:

4 = 1 \5/ 5,168,000 K K; (H.P.)

X2 N J l-
¥2 S, N G-9)




1-1-4 Meximum Linear Deflection

For transmission shafting, it is considered good
practice to limit the linear deflection to a meximum of 0.0l inches
per foot of length. Taking the weight of bare shafting in pounds
a8 W= 2.6d% L' and the vertical pull of belt as 40 1lbs. per in.
of width, as is usual practice, which gives a load of W= 1.3 d2 L!

(11)

we get the following equations H

Q/ 873 42 for bare shafting ceeeee (1-9)

L' = B/ 175 d®  for shafting carrying pulleys
evones (1"10)

L!

etc.

vhere L' = maximum distance between bearings, ft.
d = diameter of shafting, in.

The limitations in linear deflection of machinery
shafting necessarily have to be more exacting, The limitations
depend upon the service for which the shaft is intended. The
deflection of any machine shaft supported on plain bearings is
limited to a maximum of 0.0015 L, where L is the distance from the
load point to the centre of bearing, in inches. The deflection
of shafts carrying gears are limited to a maximum of 0.005/f inches
at the gear, where f is the width of the gear face in inches. For
very smooth-running gears, the deflection has to be much smaller

than this value.

1-1-5 Maximm Angular Deflection

The angular deflection in transmission shafts is
usually limited to a meximum of 1 degree in 20 diameters.

The angular deflection of machinery shaftings is usually

limited to 6 min. per ft. for ordinary service; to 4-1/2 min. per ft.
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for variable loads and 3 min. per ft. for suddenly reversed loads
and long feed shafts. The a.ngu.laf movenent of maschine-tcol spindles
is limited to a maximum of 1/64 in. at the circumference of the face
plate. Milling cutters are designed to have an angular twist of
less than 1 deg. et the edge of the cutter.

The torsional deflection of clircular shafting is given
ass

585.61 L T
(do% - d4,4) @

sescoess (1"11)

vhere L = length of shaft, in.
T = torque, lb-in.
do = outside diameter of shaft, in.
dy = 1inside diameter of shaft, in.
G = modulus of rigidity of shaft material
e = angular deflection, degree

1-2-0 APPLICATION

1-2-1 Shaft Design
From the above theory, we choose the following

factors
8g = 6000 pei.
K, = 1.5
Ky, = 1.5 x1.45 = 2175 2.2.
K = 0.5

Now, because the design is to be done completely
anew, the value of bending moment is not known. The size of shaft

may be designed approximately by using equation (1-8). Engine data




are given in Appendix I. Hence,

\/5,168,000 Ky K, (H.P.) 1
d = 3 x

2
R 3
x Ss N /1 —IKI*

\5/5,168,000 x1.5%2.2x1120
x2 x 6000 x 300

0.02

= 8,75 x1.02 = 8.93 say 9 in.

This velue of shaft diesmeter is only 0.25" less than
the size of the crankshaft pins and Jouwrnals. To simplify the
design of flanges, adapter shaft between the engine and coupling,
and the couplings, the size of the shaft may be stepped up by this
amount to 9.25 inches, without causing much difference in the cost.

Doing this we get

d, = 9.25 in.

d, = 4.625 in,

1-2-2 Linear Deflection
Since the shaft will be almost bare in the largest
span, the allowable distance between the bearings may be estimated

by using equation (1-9). Here we get:

L' = \5/875 (8,2 - 4;%) = \5/875 (9.25% - 4.625%) = 28.7 ft.

Two bearings will be enough for a total distance of

20 ft. between the engine and the generator.




1-2-3 Angular Deflection in a Length of 20 dp

Using equations (1-11) and (1-7), we get

583,61 L T
(% - 4% ¢

585.61 % 20 X 9.25 x 396,000 x 1120
(9.25% - 4 x 625%) x 12 x 106 x 2 x « x 300

0.25 degrees.

1-2-4 Couplings for the Transmission System

A drawing of the Ajax, rubber-bronze bushed flexible
coupling is given in drawing No. (1) in Appendix V. The dimensions
are the approximate values of the coupling menufactured by the Ajax

Flexible Coupling Co. Inec. of Westfield, N.Y.




1T HARMONIC COEFFICIENTS OF
ENGINE TORQUE

I1-1-0 THEORY

II-1-1 Total Output Torgue

For designing the flywheel for an engine-generator
system by the method shown in section III, and for calculation of
the steady-state torsional vibration amplitudes of the designed
engine-generator system, we need the values of resultant harmonic
coefficients of the engine torque curve occurring at each crank of
the engine, In this section we shall try to deal with determination
of these resultent harmonic coefficients.

Torgue output at one crank of an engine running at
a uniform rotation can be represented as
Torque output = (Torque due to the gas pressure) + (Inertia torque

correction for reciprocating weight) + (Dead weight
correction for reciprocating part) + (Dead weight
correction for unbalanced rotating part) + (connecting
rod couple correction).

Using dimension of engine torque in 1lb. per sq.in.
of piston area, so that the torque output per cylinder can be
obtained by multiplying the determined harmonic coefficient by the
piston area and crank throw, we can express above expression as

:t‘ollows(25 ) H

Torgue _ Torgue
_ﬁ_ = —K%—- due to gas pressure + W, F, +

W W,
+ rchbCos(f’ +_2I.§‘_1. Sin (a + a, +¥)
wd - &2y N2
+ 0.000028403/ iR (hyhp - k°) N2 F, ceveens (II-1)




- 10 =

where positive torque tends to move the crank in the direction of

peeitive rotation.

A

B

1]

n

piston area, sq.in.
crank radius, in,

acceleration due to gravity = 386.088 in. per sec.?
reciprocating weight, 1b.

#3
900 g

Wrec R N® = 0.0000284034 Wpeo R N°

centrifugal force of reciprocating weight, if it

were at crank radius,

W
%: 0.0000284054 -I-E-‘l R N2 ceses (II-2)

centrifugsl force per square in. of piston area of
reciprocating weight if it were rotating at crank
radius, psi.

rom.

distance of centre of mass of connecting rod from
centre of crank pin, in.

distance of centre of mass of connecting rod from
centre of wrist pin, in.

redius of gyration of connecting rod ebout its
centre of mass, in.

weight of connecting rod, 1b.

crank angle from firing dead-centre position or
from position of piston furthest from crankshaft,
rad.

inclination of cylinder cemtre line with vertical

in direction of rotation, rad.




= weight of wnbalanced rotating parts at crank, 1b.

radius from shaft pin to centre of mass of W,, in.

angle from crank arm to R, in direction of rotation

AP S S
1]

crank-to-connecting-rod ratio

2 2 :
-2 i (simo+ EERES eees (II-3)

2Vl - K? Sin a

m‘ﬂ
1

Fa can be expressed in a series form by expanding equation (II-3)
and collecting like terms. Each term of expansion of F, can be

expressed in product form with coefficient in terms of K and wariable
parts as function of a. The coefficient parts are called "harmonic

coefficients? of Fa' These harmonic coefficients of Fa are denoted

by Ha.
Fb = Sind"' Ksmza esssece (II—A)
‘ 2V1 - K2 Sin2 ¢
Hb = harmonic coefficients of Fb

¢ 2 (1~K2 Sin2 a)?

veesss (II-5)

H = harmonic coefficients of Fc.

Values of Hy, Hy and H, for different 1/K values
are given in references (1-&) and (23). 1If, however, their values

be desired and above references are not available, they can be

calculated by using expressions given in tebles (1) to (3)*.

# Numbers refer to the tebles given in Appendix IT.
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II-1-2 Ges Pressure Torgue

In equation (II-1) the terms on the right-hand side
other than the gas pressure t&rque can be calculated by using
expressions described above.

If an indicator card of.the engine under congideration
is obtained, the harmonic coefficients due to gas pressure can be
determined by using enalytical methods or by sending the curve
through & harmonic analyzer. F.P. Porter, in his paper published
in 1945(25), gave harmonic coefficients of engine gas torgue curve
for eight widely different types of engine. For most practical
purposes the data given for one of eight prototype engines of his
paper are alwaeys sufficiently close to those of the engine being
considered.

We shall use the values given in above paper for our

purpose also.

II-1-3 Note on Summstion of Harmonic Components

If nfn ig a periodic curve of period 2 x radians it
can be represented in a Fourier series, like that in equation (II-1),

as follows:

f = T°+‘rls:1_n(a+¢1)+T38h(26+¢3)+T581n(50+¢5)"'--
-. ....... + Tn Sin (n a + ¢n) L B N W ] (II-6)

In thls expension T's are the smplitudes of the Sine
waves and called "resultant harmonic coefficients®; @g's are the

phase angles.
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If engine torque value is expressed in above form,
since the period is 2 », a may be teken as the angle of rotation
of crank for two-stroke-cycle engine and 2 a the angle of rotation
for four-gtroke-cycle engine.

Now, since we heve
Sin (na+g) = Sinne Cos g + Cosna Sin ¢n
we may write equation (II-6) in the following form

f = 8, Sin a + &a; Sin 20 + &, Sin Ja + .... +by +

+ b Cos a + by Cos 2 a + by Cos 5 a + eeee (II-7)

vwhere a's are called coefficients of Sine harmonics.
b's (excepting bo) are called coefficients of Cosine harmonics
bo gives the average height of the torque curve.

The relations between T, &, bn are given by

T, =‘/an2+bnz ceeesesssscccces (II-8)

If two or more of harmonic series sre in phase and
of the same period as those on the right-hand-side of equation (II-1)
and they are required to be summed up, the resultent harmonic
coefficient may he obtained by adding algebraically all the. als
and b's of like harmonic terms and combining the resulting coefficeints

by mesns of equation (II-8).




II-2-0 APPLICATION
II-2-1 Procedure

To get the resultent harmonic coefficients of EQE%EQ
value per cylinder of engine output curve, we shall use equation
(II-1). The values on the right hand side of equation (II-1)
can be found by using various equations included in the previous
theory portion. Getting these values, Torque/AR may, if desired,
be expressed in a series form like that shown in equation (II-6).
However, we are interested only in the resultant hermonic coefficients,
which may be useful in the sections to follow. Therefore, since
we can save considerable work by concentrating on ‘1‘n values, we
shall try to get what we need only.

In the following calculations, the coefficients of
sine and cosine harmonics for different harmonic orders of the
terms on the right hand side of equation (II-1) are found in tabular
forms. The resultant harmonic coefficients are then calculated

by summing these values by equation (II-8).

II-2-2 Correction for Inertia Torque of Reciprocating Weight
 Using equation (II-2), we get,

W, = 0.0000284 x EIEE R N?
Data for the right hand side are given in Appendix I,
so that
W, = 0.0000284 x 31%12 x 11.2 x 3002 = 143.5 psi.
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The calculated values of harmonic coefficients.
are given in table (4). In this table H, velues are obtained
for l/K = 4.T4 from reference (23). The velues show that the

inertia torque has no cosine harmonics.

I1-2-3 Dead Weight Correction for Reciprocating Part

This correction is given by the 3rd term on the right
hand side of equation (3-1).
Since our engine 1s of the vertical-inline type we
bave Y4 = 0. Hence,
Dead weight correction for reciprocating part = Ei.ﬁ.‘i Fy
From which we see that:
Hermonic coefficients of dead weight correction for reciprocating

part cveone =E’.’.ﬂ‘. By

A
Therefore, with values given in Appendix I,

Harmonle coefficients of dead weight correction for reciprocating

- 70 _
part coecse -'ﬁﬂb = 5H‘b

Calculated values of coefficients are given in teble (5) in which

H, values are obtained for /K = 4.74 from reference (23). These

values show that, the correction torgue has no cosine term.

IT-2-4 Deed Welght Correction for Unbalanced Rotating Part

To get this correction, the wmbalanced rotating weight
has to be determined. A crank element is illustrated in figure
(II—i) « The wnbalanced weight is first divided into various portions
of regular shapes, which in the figure (II-1) are marked, I, II,

III, IV. We shall try to calculate these umbalanced weights step

by step as followss
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(1) Weight of pin

W= 2| 9.25%x 1% __ 242 110 ) -
P 4 [ 25.4 .(25'4)3 25.4 x 0.283 141.5 1b.

(ii) Weight of portion I.

Now, in figure (II-1) we see that

oa = 410 - (130-42) = 410 - 88 = 322 mm.
ab = /3222 - 117.152 = 300 mm.
ca = 300 - 162 = 138 mm.

158 x 234,83 x 130 ¢ 5,283 = 72.61 1b.
(25.4)3

2
-2 (24" 5 150
{256.5 4 (254) x 25.4J x 0.283

Weight of I without oil hole

Weight of I with oil hole
= (256.5 - 3.589) x 0.283 = 71.57 1b.
Total weight Wy = 72.61 + 71.57 = 144.18 1b.

Centre of gravity of Wy from axis of shaft = 162 + }.gé = 251 mm. = 9.1".

(111) Weight of Portion IT

In figure (II-1), we have

od = 410 mm
bd = /4102 - 117,152 = 395 m.
ad = 595-300 = 95 m.

Welght of portion ITI = 28X X 234.3 X 0.283

5 = 15.81 lbo
(25.4)

Hence for both sides, Wy = 31.62 1b.

distance of centre of gravity of VH from shaft exis

= 300 + 22§ = B46.5mm = 13.46 in.
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(iv) Veight of Portion III

Tables to calculate area of segments of circle are
given in the hand books. The values of M in the following calcu~-
lations are obtained from such tables(ls).

We have:

Height of segment H = 410 - 393 = 17 mm.

Ratio of height to circle dia., %: glé% = 0.0208

Hence the area coefficient M is obtained from teble as:

M = 0.00398
So that
Area = D® M = Eg—f%% X 0.00598 = 4.148 in2.
Welght of portion III = 4.148 x E‘A&Z x 0.283 = 1.941 1b.
Weight for both sides = Wryp = 3.882 1b.
Distance of the centre of gravity from shaft axis = 1gsa

Where C is the length of the base of the sector

a is the area of sector

(284.5)°
(25.4)° x 12 x 4.15

= 15.77 in.

(v) Weight of portion IV
To get the weight of this portion, the following

approximate method is used.
The portion IV is represented in (C), (D) and (E) of

figure (II-1) as &, 4, e £ az. It is assumed that the curved face
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d, edp is repiaced by a rectengular section d; g; g d; of the
same area as illustrated in (D) of the figure and sector a; f aj

is replaced by a; h; h, a5 in the same manner. We have from above:
Area of d; ed; = 4.148 in® sq.in,
So that dl g1 = AM—X_&A = 0.45 ‘j_n.

234.3

Now, height of segment &a; f a,

Hi = oa-ab = 322-300 = <22 m.
Hence
Hy 2
M = 0.008394
So that
2 2
8p b, = MDa - 0.008394 x (644)% x 25.4 = 0.585 in.
8 82 (25.4)2 x 234.3

The resulting figure of portion IV is illustrated
in (F) of figure (II-1).

From above results, we get

4.11 in.,

1]

8y 8 = 8 dy +d; 8

hy g
Ve denote h5 g1 by as portion IV' and &; hy h; 2;

as portion IV",
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v = B3.525 _ 88 _ 234.3 -
Weight of IV 5=~ x WA b 4 5.0, x 0.283 = 15.94 1b.
end therefore, weight of both sides Wyy: = 31.88 1b.

Distance of C.G. from shaft axis = a b+ ay hy +%-. « hg gy = 1.76"

Again ve get, weight of IV®

- _88 234,53 -
T5.7 X 0-585 x S22 x 0.285 = 5.29 1b,

Wt. for both sides VIV" = 10.58 1b.

Distance of C.G. from the shaft axis

ab +9--g-82 = 12.104"

Getting the weights and distances of centres of
gravity from the s_haft exis we can get the totsal value of WuRu for
use in the expression for wmbalanced rotating weight. Calculated
results are given in table (6).

Now, from equation (II-1),

W,
Unbalanced rotating weight correction = “A;:u Sin (a + a, + ¢)

For the type of engine being considered, ¢ = 0.
And since the unbalanced weight is on the crank-pin side we get

a, = 0. So, we gets

M Sin a
AR

Unbalanced rotating weight correction

= _692‘.2.’.8_2_8111(1 = 4.409 Sin a

141 x 11.2
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IT1-2-5 Connecting Rod Couple Correction

" This is given by the last term in equation (II-1).
For connecting rods of common engines hy h, value does not differ
much from k? that the value of (h, hy - k®) is usually very small.
The values of coefficients Hc at the same time is usually very small
for the crank-to~connecting-rod ratio of commonly used engine, The
effect of connecting rod couple is, therefore, negleéted without

appreciable error.

II-2-6 Gasg Pressure Torgue

The harmonic coefficients of gas pressure torqﬁe for
the type closely equivalent to the engine being considered are
obtained from reference (23). The engine is of 160 BHP per cylinder
with approximate compression ratio of 1:14. Hence, with assumption
of a mechanical efficiency of about 85% the group with mean harmonic

coefficient of 25.298 for J - type engine is chosen.

II-2-7 Corrected Harmonic Coefficients

The values of correction coefficient wvalues calculated
in above sections show that, only first six harmonic coefficients

need be corrected. Further, since all the correction values compose
of sine coefficients only, we need to add all sine coefficients
algebraically and the resulting sine coefficients compounded to the
correspondiﬁg cosine coefficients of gas torque curve by means of
equation (II-8) to get the resultant harmonic coefficients.
Mgebraic sumation of sine coefficients of the first.

gine orders are given in table (7). Table (8) gives the corrected

resultant hermonic coefficients.
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ITI DETERMINATION OF FLYWHEEL EFFECT

IT1I-1-0 THEORY

ITI-1-1 For successful operation of alternators, flywheel

effect necessary for the system is calculated with due regard to

the standards laid down for this purpose.

The design requirements for successful operation of
alternators become more exacting when & number of generating sets
are run in parallel. Usually, the flywheel of engine-generator
system for parallel operation is desigﬁed to fulfil three aspects
as follows:

i) The coefficient of cyclic irregularity of the system is kept
below certain limit so that the light flickering characteristics
of the system confirm to the recogenized standard.

ii) If the alternator pole deviates to a great extent from its
position wnder perfectly uniform rotation, the losses caused
by the synchronizing current will become excessive so that
the machine falls out of step. To avoid this kind of failure
the engular deviation is kept low.

(11i) The system is so designed that the natural frequency of
oscillation of electro-mechanical system dbes not coincide

with any harmonic of engine impulse freguency.

III-1-2 Flywheel Effect for Required Cyclic Irregularity

The cyclic irregularity is defined as the ratio of
the maximum variation in angular velocity, at the point under
consideration, during one engine cycle to the mean velocity, when

engine is running at any load up to and including rated load and
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speed. This can be expressed as

C. = Maximum Speed - Minimum Speed (III-1)
¢ Mean Speed

For a direct-coupled engine and generator, the cyclic
irregularity refers to the engular velocity at the gemerator rotor.
For systems with engines of more than two cylinders, the British

Standards Institution(ZA) has laid down the following standards:

Engine Impulses per sec. Cyclic irregularity not worse than
Less than 20 cesee 1/50
10 to 20 «ese« (Engine impulses per sec.)/1500
Above 20 ceves 1/75

Number of engine impulses per second for a 2-S.C.,

S.A. engine is given by:

p = Ezsﬂ ceerinessesencesaes (III-2)
vhere p = number of engine impulses per sec.
m = number of cylinders
N = revolution, rpm.

The flywheel effect, meking due allowance for dynamic
magnification due to electrical resonance should be sufficient to

1imit the C, to the value determined for the engine type.

Denoting  WK® flywheel effect to limit the C, to the desired

value, with allowance for dynamic magnifipation

due to electrical resonance, ton-ft.2

WK = flyvwheel effect to give a natural frequency
eéual to the lowest harmonic of engine impulses,
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WKb2 = flywheel effect to 1imit the C, to the desired

value, neglecting dynamic magnifier due to
electrical resonance, ton—f'b.2

It can be shown that

WKz = WKaz + WKba es0cscsss (III-S)Q

Ker Wilson(z) gives WKa2 for average alternators

coupled to 2-S.C., S.A. engine &as

WKaz = 157 OOO f ton—ft.a/KVA LN (III-A)

v

1375000 x f x E
3 a ton-ftoz/BHP L (III—5)

¥ x (PF) x 1.3

vhere E;, = efficiency of alternator
PF = power factor
f = -electrical frequency, cycles per second
N = revolution, rpm.

The approximate value of WKb2 is given as:

2
VEz? = UDPL

cenenses (I1I-6)

C. ¥
where U = a factor, which is constant for a particular type
of engine.
Tp X 1o
= n oo.o{oo. (III_7)
11.65n
th
Tn = maximum value of n~ order harmonic component

of engine torque per cylinder, pound per square

inch of piston area.




- 25 =

number of cylinders

m =
n = engine impulses per revolution
D = cylinder diameter, in.

L = stroke, in,

III-1-3 Flywheel Effect Necessary to Limit Angular Deviation

The maximum angular deviation of + 2-1/2 electrical
degree has been adopted as a standard by British Standard Institution(24).
The relationship between the cyclic irregularity and

angular deviation is given by:

Cc = 2 L4 9 « I ®00 800009000 (III-8)

vhere © maximum angular deviation, rad. (mechanical)

n = number of oscillationsin one revolution (Assuming
that only the principal unbalanced harmonic order
is important, the value of n is the number of working
cylinders in the case of 2 S.C., S.A. engine).
If © is expressed in electrical degree, equation

(II1-9) becomes:

€, = Ssisnp ceveeees (ITI-9)
e = maximum angular deviation, electrical deg.
P = mumber of pole pairs = No. of poles °§ oles

= 0f

N a0 0s000000000 (III_lO)
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If the British Standard is taken, © value in (III-10)
must not be greater than * 2-1/2 electrical deg. Putting this

value, equation (III-10) becomes:

= n
Co 2T ve#y nearly esseeees (III-11)

From (III-11) and (III-12), we get,

- Nn
Cc - 720 f XXX (III-J.Q)
or = _E_ﬁn_... in f 2= S
730 F since for 2-S.C., S.A. engine

n=mn L (III—15)

III-1-4 Flyvwheel Effect Necessary to Avoid Electrical Resonance

When the_alternators are run in parallel,if a machine
takes & momentary lead it is subjected to a retarding force due to
increasing load thereby'imposed upon it; at the same time an acceler-
ating force acts on the lagging machine. VWhile this effect is to
restore synchronism, it cannot prevent them from passing beyond the
synchronized position; and hence hinting results. At certain
speeds, depending on the characteristics of the mains and prime
movers, resonance oceurs causing the amplitude of oscillation to
build up greater and greater until finally one or other of the
machinesfalls out of step.

It is possible for electrical resonance to occur
vhen the frequency of any one of the harmonic impulses of engine
torque coincides with the naturel frequency of any one mode of
oscillation of alternator. For satisfactory parallel operation,

it is, therefore, necessary that the electro-mechanical system be
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tuned so that the natural frequency of the generator does not
coincide with any harmonic of engine impulse frequency.

The natural frequency of en alternator on a relatively
large network, or of two similar alternators running in parallel,

is given by(z):

_ 7 f.EVA
F, = & \/———-——k eeveeeeees (ITI-14)

N W K°
vhere Fa = natural frequency of alternator, oscillationsper min.
KVAk = short circult capacity of alternator
N = rpm.
f = electrical frequency, cyl./sec.

It is customary that the resonance isg avoided by
tuning the electro-mechanical system so that its natural frequency,
given by equation (III-14) is lower then the lowest harmonic impulse
of engine torque curve, with sufficient margin between the two.

For & 2 S.C., S.A., single-cylinder engine the lowest
harmonic impulse frequency is the same as the rpm of the engine.
The same value applies to multi-cylinder engines, since the lowest
harmonic impulse frequency is that due to one eylinder, and it is
also the lowest impulse frequency in cases when there ig uneven
firing in the cylinders of a multi-cylinder engine.

Equation (TII-14) reveals that the tuning of the

system can be done either by choosing suitable flywheel effect or
by changing the short-circuit capacity of alternator. The former

method is ususlly preferred.

The short~circuit capacity is smallest at no~load and

greatest at full-load exeitation. Thus for a constant flywheel




- 28 -

effect, the value of Fa is smallest at no load and greatest at
full-load. The short-circuit capascity at full-load should, there-
fore, be used to have assurance that satisfactory operation is
obtained over the whole range of operation.

If a 30% margin is allowed between the natural

frequency of alternator and the lovest impulse frequency, we get

lowest impulse frequency, oscillation/min.

5
@
H
[0
e
|

N fOI‘ 2‘S.c-’ S.AO engj.neo

Hence,
N = L3F BEETITETITIY (1II-15)
Putting the velue of F, from (III-15) into equation
(II1-16): '
WE2 = 3-'-5-59:%‘?&2 ton=ft.2/KVA  eeeee.. (III-16)
N

= 2,330,000 x f x Eg ton~ft.2/BHP ... (III-17)
¥ (PF) (1.34)

ITII-1-5 Procedure to Use Design Theory

The following gives the appropriate steps to follow
in the course of applying the design theory.
Step (1) Using equations (III-4) and (III-5) the value of W K 2 can
be determined. Using equation (III-2) the value of p for
the engine can be calculated. With this value of p,

enter the table given on page (21) to get the appropriate

value of Cc. With this value of C, and Tn value given
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in teble (8), W xbz can be obtained by using equation
(II1-6). Summing up the values of W K: and W sz by
equation (ITI-3) the value of W K° necessary to limit
the cc, determined above, can be obtained.

Step (2) The maximum value of Ceo aliowable for the angular deviation
of £ 2-1/2 elect. degree can be determined by using equation
(I11-12) or (III-13). If the value of C, determined here
is higher than the value which was used in step (1), then
W K2 determined in step (1) will fulfil both the require-
ments described in sections (III-1-1) and (ITI-1-2). If
the value of Cc of this step is lower than that used in
step (1), then the flywheel effect obtained in step (1)
will fulfil the requirement of section (III-1-1) but not
that of section (III-1-2). To get appropriate value of
W X® to fulfil both requirements the lower value of Cc
obtained in here should be used in equation (III-6), and
W K? recalculated by repeating step (1).

Step (3) The flywheel effect necessary to avoid electric resonance
can be determined by using equations (III-16) and (III-17).

Step (4) We have obtained two values of W K? through above steps.
To get the flywheel effect sufficient to cope with all
the three requirements, the higher of the two W K2 values

must be used in our flywheel design.

1I1-2-0 APPLICATION
The following shows the calculation steps when above

theory is applied to our engine-generator system. Data of engine

and generator are given in Appendix I.
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IT1I-2-1 Determination of Flywheel Effect to Avoid Flicker

Using Equation (III-5)

2 _ 1375000 x f x E, x BHP
Nl* . (PF) 1.34

1375000 x 50 x 0.95 x 1120
(300)4 x 0.8 x 1.034

8.41 ton-ft.2

The value of T, = 11.365 from table (8). Hence,

from equation (III-8)

~ 11.365 x 7 _
U= Bl = 0.976

Using equation (III-2),

= n N _ 7x30 _
p % Y - 35 > 20.

So that appropriate value of C_ = 1/75. Thus, from equation (III-6),

with engine data from Appendix I.

2 2
C, ¥ 300

Hence, from equation (III-3) we have

WK = 8.41 + 3.27 = 11.68 ton-ft?,

ITII-2-2 Coefficient of Cyclic Irregularity to Limit Angular Derivation
' Using equation (III-13),

c = N ®m _ 300x7 . _1_ > 1
[ 720 £ 720 x 50 17.14 75

So, the flywheel effect determined in III-2-1 above

is sufficient to fulfil both requirements.
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III-2-3 Flywheel Effect to Avoid Electrical Resonance

Using equation (III-17)

WK = 2,330,000 x f x Eﬁ
N4 (P.F.)(1.34)

2,350,000 x 50 x 0.95
2,330,000 x 50 x O = 14.3 ton—ft.5
(300)4 x 0.2 x 1.34

III-2~-4 Extra Flywheel for the System

Comparing the values of W K? obtained in above
calculations we see that the maximum flywheel effect necessary for
parallel operation with similar generating sets is 14.3 ton-£t.2

Now, the flywheel effect of the generator rotor alone

37,000
Dl = . -ft.2
2,240 16.5 ton-ft

This shows that no separate flywheel is necessary in
the system, wnless otherwise required for correcting some unsatis-

factory vibration behaviour of the system.
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IV _EQUIVALENT LENGTHS

IV-1-0 THEQRY

Iv-1-1 To make the celculations of torsional vibration

possible, the complicated engine system has to be reduced to a
system with flywheels situated on a shaft of wniform diameter.

In this section we shall deal with the procedure
for finding the equivalent lengths and torsional stiffness of the
shaft sections of the system.

The shaft of wiform diameter to which the actual
shafts are reduced is called. the "equivalent shaft". Its diameter
may be chosen arblitrarily; but its length between each two masses
must be such that it is torsionally equivalent to the actual shaft
between corresponding magses of the actual engine system. A
torsionally equivalent shaft is one which twists through exactly
the seme angle as the actual shaft when equal and opposite torques

of given amount are applied to the two ends.

IV=-1-2 Torsional Stiffness

Torsional stiffness of a circular shafi{ is given by:

4
- xd* G _
c =3 for solid shaft evsssses (IV=1)
doh - ag®
¢ = ¥{d*-d1D G hatlow shaft ceer (IV-2)
32 L
wvhere € = torsional stiffness, 1b.-in/rad.
d = diameter of solid shaft, in.

d; = inside dismeter of hallow shaft, in.

d, = outside dismeter of hallow shaft, in.
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G = modulus of rigidity of shaft material, psi.

t
1l

length of shaft section, in.

IV-1-5 Qverall Stiffness of Shafts in Series

The overall stiffness is given as:

1 - 1 1 1 1
—_— = + + + sese e " PP -
>0 C1 C2 35 Cn (17-3)

where C3, Cz, C; ... G, are stiffnesses of individual shafts
>C = overall stiffness of the shaft built up with ™"

shafts of stiffnesses C;, C; .«... C, in series.

IV-1-4 Eguivalent Lengths of Shaft Sections

(a) Uniform circular shaft.

Equivalent length is given as:

L.a’.a,

L = 7 , when actual shaft is solid ... (IV-4)

at . G
4

Lg = L . de’ . Ge , Wwhen actual shaft is hallow .. (IV-5)

(4,4 - d;4) 6
vhere Lo = length of equivaelent solid shaft, in.
L = 1length of actual shaft, in.

dy = diameter of equivalent shaft, in.
d, ai, do’ G are as described above.
Ge = modulus of rigidity of material of equivalent shaft.
(b) Stepped Shaft
When a shaft of smaller diameter is joined to a shaft
of larger dismeter, the effective length of smaller shaft is greater

than its actual length due to local deformation at the juncture.
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Actual shaft sections Representative sections for
calculation of equivalent length

3-00|Infy.
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Figure (IV-1)
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To make allowance for this effect a2 small length Lj; called
"penetration length at the juncture®, is added to the length of
smaller shaft and the same amowunt is subdtracted from the length
of larger portion. Doing this the shaft may be represented by

a shaft of the dimensions shown on the right hand side sketch in
figure (IV-l-a), for calculation of equivalent length. From this

we get

L, = [———L(L1+i) + (Lz'ij)] d G verres (IV-6)
dy da G

The reconmended values of Lj are given in the table
of the figure.
(¢) Forged Coupling

The thickmess of the flange of couplings currently

used is about one-quarter the sghaft diameter. For such type of
coupling, if the penetration length is taken as 0.125 4, the shaft
for calculation of equivalent length may be like that shown on the

right hand side sketch in figure (IV-l~-b). From this we get:

4
L, +1/2 L
L, = 1+l 121, So G . ... (zv-7)
1 2

(d) Keyed Coupling

It is recommended to take the shaft to be wnstrained
by the coupling hub for a distance of one-third the length of the
coupling, and to assume for the remaining length that the torque
is carried by the boss and flange only. Taking the bolt circle
diameter as the effective diameter of the flange we may represent

the coupling by the shaft sections as that shown in sketch on the

right hend side in figure (IV-1-3). We get the following formula




Figure (IV-2)
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for equivalent length.

(L, + 1/3 Lp) . (2/3 Ly -~ 1/2 1.5)+ 1/2 Lg 4 L G
d:l.4 Gy (do* - dy%) G, (dg4 - d14) o | ¢ °
cecsssses (IV-8)
where GS = modulus of rigidity of shaft material
G, = mofulus of rigidity of coupling material
(e) Tapered Shaft
Equstion for equivalent length of a solid tapered

shaft is given as

_ L. agh 1 1
Le = € 5 -— 5 seceenscssssccacos (Iv-g)
3 (dz-dl) d]_ 'd2

vhere d, = diameter at small end, in.
d, = diameter at large end, in.
L = axial length, in.

IV-1-5 Egquivalent Length of Crankshaft
An element of crankshaft is illustrated in figure

(IV-2). With agsumption that

(2) deflection of the element is mainly due to the twist of the
Journals, twist of the crankpin, and bending of the webs,

(b) no local deformation exists at the jumctions of the webs and
pin 6r journals,

(¢) the lever arm of the couple acting on crankwebs is equal to
the crank throw,

(d) the bearing clearance is sufficient and the displacements of

the journals are possible (no bearing contraint),
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the equation of equivalent length of the crank element is given by

- b a 2r
L - c EEEEEEXEX) -
e e{ e, e 7B ] (Iv-10)
vhere ¢, = torsional rigidity of equivalent shaft
= %£_a%q. for circular shaft ees (IV-11)

%2 e ‘e
¢, = torsional rigidity of the journal

= G Ipl = -g%- (dm04 - dmi4) G XEX) (VI-12) |

¢z = torsional rigidity of the crankpin

4

= = 4

B = flexural rigidity of the web against bending in the
plane p-p perpendicular to the plane of the drawing

of figure (IV-2)

I N A

‘12""E
Ip = polar monent of inertia of the section, in.4
E = modulus of elastiecity, psi.

In practice the above assumptions do not strictly
hold.

(a) There are local deformations at the junctures.

(b) The effective lever arm of the couple is not exactly equal to
the crank throw, due partly to attachment of the pins and
partly to the bearing constraint.

(¢) The equivalent length may be different from that obtained by
using equation (IV-10) due to stiffening effect of the bearing
constraint. Based on some mathematical assumptions and working

on element of dimensions a = 2b for three cases, viz. no constraint,
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partiel constraint, end complete constraint, Timoshenko(zz_a)

enalytically showed that reductions in equivalent length of crank
element under complete and partisl constraints compared to that
of no constraint case are about 17% and 13%.
(d) The degree of stiffening effect on the equivalent length per
crank element depends not only on the degree of hearing constraint
as mentioned in (c) above but also on the relative location on the
crankshaft of the element under consideration; Analyzing a three-
throw crank shaft of dimensions a = 2b for partial constreint cease,
Timoshenko(zz'b) also showed that reduction froﬁ no-constraint
equivalent length of the first and third elements is about 3% only
where as the reduction for the second crank is about 7.8%.

No exact mathematical treatment, however, is possible.
The following empirical formulae of modified forms of equation (IV-10),
are used currently to estimate crankshaft equivalent length. Wherever
possible it is recommended that there should be a comparison of
calculation and experiment of a number of previous crankshafts

of similar characteristics. The empirical formulae are(z):

B.C. Carter's Formula

b+ 0.8n 0.75 a 5
L + /ﬁ. > s e e (Iv-ll)

+
dmo4 - dmi4 dco‘" - dciA \h t2

W. Ker Wilson's formula

Le - del& b+ 0.4 dmz + f’__"'_&é_d_c_o_ + ra. 0.2—(8?0'!' dco)
dmo4 = Ay’ dco4 - dci4 h to

Ceessesses (IV-12)




The above formulse are given for hollow pin and journal.
If they are selid, internsal diameters d.yg and d ; may be made zero.
Wilson(z) recommends obtaining equivalent length from
both equations (IV-11) and (IV-12) and tsking the average value
of the two results if the difference between them is not large.
If the difference is large, value from equation (IV-11l) is recommended
if fhe webs are thin and narrow, and there is no overlapping of
crankpin and journals. If, on the other hand, tﬁe crankwebs are
thick and wide, and if there is overlapping of crankpin and journals
the result from (IV-12) is recommended.
Timoshenko!s(7) modification of equation (IV-10) is
’ different from above two. The formulae for equivalent lengths
for cases with no bearing constraint and with complete constraint
are given as:

with no bearing constraint

e e < 4 L 4 4 . 4 N\ T
dmOA - dm14 d004 - dc14 ht

ceseeees (IV-13)

with complete constraint

P+0.9h a+0.9h
L = 4 4 —————— + e ———————— (1 - _{‘_) +(0. 1‘>(1_
e "2A§‘
° a.* --dm:!.lp dco4‘ dc14 k ht 5

eassevece (IV-M)
in which,

r (a + g)? + 2 r® ad o 4 L2 (==& + =)
k = 405 232 24B1 5B G 2 A Al




vhere k = effective lever arm, of the couple
cg = torsional rigidity of the web in respect to twist
3.8
aromd p-p = L ! S

3.6 (t2 + h?)

B, = the flexural rigidity of journal
_ % 4 4
- 1;2'(dmo - dpy )

A = area of the cross section of the web taken on 0-0 = ht

A, = area of the cross-section of the web taken on p-p =t r

Equations (IV-13) and (IV-14) give equivalent lengths
for two extreme cases. The equivalent length in practice lies
somevhere ‘between the two values.

In equations (IV-11) through (IV-14), the three terms
on the right hand side give respectively the equivalent lengths of
one journal, one crenkpin, and two webs. Knowing this, equipment
lengths of more complicated designs of crankshaft cen be obtained
by breaking them into simple portions to which the terms just
mentioned can individually be applied. Full accounts on such

ceses may be seen in reference (2).

IV-2-0 APPLICATION

We have determined the tentative size of shaft in
section II. It has also been shown in section III that no extra
flywheel effect is necessary other than that contributed by the
generator rotor mass.

Knowing these properties the required transmission
shaft system is planned out and illustrated in figure (IV-3).

| The next step is to determine the equivalent lengths

end torsional stiffnesses of the shaft sections preparatory to




torsional vibration analysis in section (VI). To determine these
properties we shall assume the dismeter of equivalent shaft equal

t0 9.25 in. and its material is steel.

IV-2-1 Eguivalent Length Between Cylinder Masses

The portion of crankshaft between two cylinder masses
comprises two crankwebs, a length equal to that of crankpin, and s
journal, total equivalent length of which will be equal to the
equivalent length per crank element as discussed in the theory
part.

The equivalent length of an element of crankshaft
may.be determined by using the formulae given. However, in our
case the torsional stiffnesses between the cylinder masses, between
the scavenge pump and No. 1 c¢yl. and between the demper and the
scavenge pump are given by the engine manufacturing company and it
is not necessary to find these values. The present task is to
find the equivalent lengths of these sections and to find the
equivalent length as well as stiffness of the shaft between the No.
7 cylinder mass and the gemerator  rotor.

To get the equivalent length between cylinder' masses,
we use equation (IV-12). The stiffness is given as 316 x 106

4 4 6
L = X de G _ X (9.25) " x 12 x 10 = 27.294 in.

32 C 22 x 316 x 10°




IV-2-2 Equivalent Length Between No. 1 Cylinder and Scavenge Pump

Magses

The stiffness of this section is given as 139 x 106

lb.in./rad. Hence,
o x.d*.ge  xx752x12x10°
Le, = - = =— = 62.05 in,
52 C 32 x 159 x 10

IV-2-3 Equivalent Length Between Scavenge Pump and Deamper Masses

"The stiffness of this section is given as 90 x 106

lbc -in./rad. Hence,

4 ' 6
# . d . G # X 7321 x 12 x 10
S 32 .6 22 x 90 x 10

IV-2-4 Eguivalent Length and Stiffness of the Shaft Between No. 7
Cylinder Mass and Generator :

This shaft is subdivided into small sectlions for our

calculation as illustrated in figure (IV-3).

Section (a) Section between point A of No. & main and end of crank

shaft flange.

Here we use equation (IV-7). The dimensions are obtained from

drawing No. (6). We get:

Leg = (6.69 +1.181) +L:l.§_12£'_7__75’31 = 8.143% in.

Section (b) Section between the end of crankshaft and first coupling.

From figure (IV-3) we see that the equivalent length
of the portion b; is the same a&s that already calculated above for

subsection (&), i.e.

Lebl = 8.1433 ig.
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For section b, we use equation (IV-8) with dimensions given in

drawing Nos. (6) and (1). This gives:

6.695 + 2.75 + 5.75 X 7321 + 1.75 x 7321

L
bz 56884, 169679

6.695 + 2.75 + 0.744 + 0.076 = 10.265 in.

Hence equivalent length of section (b),

Le

b Leb1 Le.b2 43 5 4

Section (¢) Equivalent length of the main ghaft

This section is marked as "c" in figure (IV~3).
Equivalent lengths of the two couplings, i.e. equivalent
lengths of sections c; and Cgy can be expressed, when we put
Ly = 0 and introduce dy, and dj3 for outside and inside diameter
of the shaft in equation (IV-8), as:

1/3 L, . (2/3 La-1/3L,) N 1/2 Lg 4

Ly = d
(d10% - d14) Gg (d2% - 4y0%) Gy (dsl’ - d1%) Gy °

The values of second and third terms can be obtained

directly from calculetions done for section (b). Hence,

L = L - 75 X 7321 . . = . in.
eo, ®oy ——5——-———6865 + 0.744 + 0.076 = 3.754 in

Equivalent length of section Cy, from equation (IV-1), is:

4
L, = Lo, X dg x Qe . 199.5x 782 | 15 gy an,
C2 (d1°4 - dliA) Gs 6363

Hence totsl equivelent length of section (¢) is given by:

Loy = Leg

+L +L = 2 x 3.754 + 212.814 = 220.322 in.
ecz ec5
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Section (d) The section between the generator mass and its coupling

Attempts were made to get accurate dimensions of the
generator rotor. But it was not successful due to the Company's
strict observance of trade accuracy. It is, therefore, assumed
here that the total length of shaft between the rotor mass and
coupling end is 24 in. and the shaft is of 9.25 in. dismeter. 1In
actual case, hovever, the shaft may be stepped to carry the bearings.
Torsional stiffness of the shaft may then be obtained by using the
equations described before. For our engine system, the assumption
should not differ very much from actual value. Furthermore, the
generator shaft contributing to the stiffness calculation occupies
only & small fraction of the total length of the transmission shaft
between the No. 7 cylinder and the generator masses so that the
overall torsionsl stlffness caelculated on this assumption should not
differ appreciably from the value with actual rotor shaft.

To use equation (IV-8) we have L, = 15.75 in.

A1l the other values are the same as those calculated for section

(b). Hence,

Led = 15.75 + 2.75 + 0.744 + 0.076 = 19.32 in.

Section (e) The section between No. 7 cylinder mass and point A

on No. 8 journal.

This is equal to one half the equivalent length of

one crank element. Hence, we get from V-2-2:

Le, = /2L, = 1/2x27.294 = 15.647.




- 47 -

Swming up above values of equivelent length, we
get the equivalent length between No. 7 cylinder and the generator

masses ass

Le

" Le, +Lg, +Le, +Leg + Le,

8.1433 + 18.408 + 220.322 + 19.32 + 13.648 = 279.841 in.

IV-2-5 Torsional Stiffness of Shafting Between No. 7 Cylinder
and_Generator Masses

This is obteined by using equation (IV-1) with

equivalent length just calculated as

C - x . d94 . Ge
32 L,
% x 7521 x 12 x 10° 6
- = 50.8 X 10 lb.in./r&d.

32 x 279.841




V__FEQUIVALENT MOMENTS OF INERTTIA

V-1-0 THEORY

vV-1-1 The equivalent moments of inertias of various masses
for our system have been supplied by the engine and alternator
manufacturers and ve can even exclude this section. However, since
the treatment may not be complete without literature on the method
of determination of mass moments of inertia, the theory of determi-

nation of these values are included below.

V-1-2 Equivalent Mags Moment of Inertia of the Damper

The damper used on the engine being investigated is
a viscous Lanchester demper. The equations for such a demper are
reproduced below(s) .

The equivalent mass moment of inertia due to vibration

of the inertia ring, experienced by the housing can be shown as

J
Je = :—(Ed_"-—)-z— cesssceseses (V-1)
£
where J e ° equivalent mags moment of inertia dwe to the inertia
ring, felt by the housing
Jd = mass moment of inertia of the ring

w¥ = phagse velocity of vibration
f = +viscous demping torque per unit velocity.
It can be shown that the work dissipated through the
damper is meximum when f = Jq ¥. This value of f is called the
optimun damping. With this optimum damping condition, we get from

equation (V-1) that

¥ Since O does not exist on the typewriter, w will be used to denote
the phase velocity.
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J = J@Q esasessssessnes (V=2)

Hence, the total equivalent moment of inertia of the

damper with optimum demping is given by:
Jtot&l = Jh+Jd/2 sscesose (V—s)
where J, = mass moment of inertia of the housing.

V-1-2 Mass Moment of Inertia per Cylinder

The total mass moment of inertia per cylinder can be
obtained by summing up the following components.
i) Inertia of one crankpin
ii) Inertia of one journal
i1ii) Inertia of two crankwebs (snd rotating weights if any
are used)
iv) Inertia of one rotating part of connecting rod
v) Inertia due to reciprocating part.

To get the representative mass moment of inertia, the
above may be determined. Determination of the first two components
follow simply the fundamental formulae of mechanics. The third
component can be obtained by graphical or analytical methods(z). The

englytical method may be used for our purpose.

111) Anelytical method of determining inertia of crankweb

a) If the crankweb is not bevelled the moment of inertia
can be found without difficulty by dividing the web into regular
portions to which the fundamental formulae can be applied.

b) If the web is bevelled the procedure is to find

the inertia of wmbevelled web as described above and to meke

correction for bevelling.
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Inertia of the bevelled portion can be found by using

the formulae for hallow cone sections with cylindrical bore as

follows:
_ WK,
J.OO - o9 escssssssnevsse (v-'4)
g
vhere J = inertia of the cone section, lb-in-sec.?
W = weight of the cone section, 1b.
Koo = radius of gyration about the cone axis, in.
2
_ 3 r15+2r12r2+5r1r2 +l..r,35 (
- ET:Y e V—é
10 | T, +271, )
r;, = outside radius at the large end, in.
r, = radius at the small end = radius of the bore, in.
L = axial length, in.

specific weight of material, 1b/in.%

P

(iv) Moment of inertia of rotating part of connecting-rod
Welght

The usual practice, in finding moment of inertia, is
to replace the connecting rod by two concentrated messes wrot' and

v

r;c s one at the crankpin and the other at the wristpin, by using

the following equationg:

wrot + wrec - wcon ®0svss0RResOROLIES (V"‘ls)
1
wrot . hl = w;ec' ha eeevessess (V'].A)

vhere W,,, = total weight of connecting rod
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h, = distance of C.G. of connecting rod to the centre of
crankpin

h = distance of C.G. of comnecting rod to the centre of
wristpin.

This method disregards the difference between the
moment of inertia of the replacing system and that of the original
connecting rod. But this difference in moments of inertia is
usually small and the result obtained by the above method is sufficiently
correct to an acceptable degree of approximation.

Having the value of W;ot the problem of finding its
mass moment of inertia gives no difficulty.

(v) Moment of inertia of reciprocating part

The total reciprocating part per cylinder consists of
a) weight of one piston, complete with its component parts;
b) weight of one wristpin;
c) weight of cross-head, if any is used;

]
d) a reciprocating weight of connecting rod, W as determined above.

rec
Now, disregarding the obliquity of the connecting rod,
the approximate velue of moment of inertia about the crankshaft axis

due to the reciprocating part can be shown as:

= 2 - -
J - wrec X r (l 00820) es 00000 (V 15)

total reciprocating weight, 1b.

where erc

r = crank radius, in.

a = angle of rotation of crank from the t.d.c. position.
J = equivalent mass moment of inertia about crankshaft
2

axis due to the reciprocating weight, 1b-in-sec”.
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This has an average value of

= Yrec .2

J = -
av 2.g eeces o (v 16)

Equation (V-16) shows that average mass moment of
inertia of reciprocating weight about the crankshaft axis can be
obtained by putting a concentrated weight equal to one-half the total
reciprocating weight at the crank radius.

In common practice in determining the totsl mass moment
of inertia per cylinder the averége value of the inertia of reci-

procating part is teken.

V-2-0 APPLICATION

V-2-1 The equivalent moments of inertia of various masses
needed in the system for torsional vibration analysis are given by
the manufacturers and, in fact, it is not necessary to do calculations
for these values. Howéver, calculations for the inertia of the

damper and one cylinder mass mey be given for illustrative purposes.

V-2-2 Moment of Inertia of the Damper
The>moments of inertia of the hub and flywheel are

given on the drawing No. (2).

Hence using equation (V-3) with an assumption for

optimum daemping:

329.5 + 5%5- = 617 1b-in-sec.2

This is the value given by the engine manufacturer

also.




- 53 -

1
re—h,l—'~

Figure (V-1)
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V-2-3 Moment of Inertias of the Engine Masses

All the dimensions in the following calculations are
obtained from drawing No. (6)

(i) Inertia of one jourmel
This is given by:

2
g = x4 xLxBx-‘f,
4 g 8

vhere 4 = dismeter of journal, in.

L = 1length of journal, in.
Hence,

4
Jj - X X (9;5)x xsgg.zs x 0.283 _ 5.4 1b.in.sec.?

(11) Moment of inertia of a crankpin

This is given by:

J:_‘.’& 2r2
2 (52 47

; é1
where W_ = weight of pin = i‘.__z_._ 1b.
Kp = radius of gyration about pin axis = -%?-
r = crank throw, in.
Hence,
2 2
2 - 4 _ 9.3 =
K = = = 10.7
P 8 8
2 = (11.22)° = 126.
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Hence

5 = x x d2 xﬁ xL x (K; + r?) x (9.225)2 0.283 x 7.49 x 136.7

p Lxg 4 x 386

H]

50.5 1b.in.sec?

(1ii) Moment of inertia of crankweb

A crankweb from drawing No. (6) is reproduced in figure
(V-1) for clarity and convenience of reference. The crankweb may
be divided into sections marked (1), (2), (3) and (4) for application
of analytical formulse.

Inertia of section (1)

This is a circular sector, radius of gyration of which

about the axis 0-0 is given by

2
T
K12 = —%— s disregarding the bevel for the time being.
Hence,
2 2
K,~ = l%ll = 1%0.5 in.2
We have:
Sin @ _ b _ 12.78 _ 6
2 2 x ry - 2 x 16.15 0.59
g = 23,330
2
a = L6.66°

The mass of the sector is given by

“.F‘I.iz.hx ao

g 360

m =
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- % X 0.283 x 16.152 x_ 5.12 x 46.66
386 x 360

= 004

Hence,

J, = m K2 = 0.4x 130.5 = 52.2 1b.in.sec.?

Inertia of sections (2) and (3)
| For this calculation, section (3) is imagined to be
rotated to take the position as shown on the extreme right diagram
in figure (V-1) and the formula for a triangular lemina is applied
to this figure.
We get, radius of gyration about 0 - 0 as:
2 (1) +12 (-Z-)2
24

A
]
I

. 4 x (14.88)° + 3 x (12.878)°
24

57.2 in.?

Mass of this lamina is:

&
Px2Lx2 xh 0.283 x 14.83 x 12.78 x 5.12

m = -
2 g 2 x 386
= 0.355 1b.sec? inl
Hence
3 = 0.355 x 57.2 = 20.4 1b.i 2
2+3 - . X . - .4 on'sec'

Inertia of section (4)

This is a simple rectangular lamina. We do the

calculations as follows:-

n = p a h t = 00285 X 6.58 x6§-12 X 12078 = 0.307 lb'sec? in.-l
€ 38
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2 2 2 2
KOO = 4Lat+t = L x 6.38 + 12.78 = 27.2 in?
12 12
Hence,
J4 = 0.507 x 27.2 = 8.35 1lb.in.sec.?

Inertia of bevel

The bevel is & part of complete hallow cone section
only. To get the weight of the bevel, the weight in equation (V-5)
nust be multiplied by the @ ratio of the angle subtended by the
bevel at the centre 0, to the complete circle. 1In determining the
angle subtended by the sector, the radius to the locus of the C.G.

of the bevel must be used. This is given by:

L
T, = T -_5£ = 10.5 -1.15 = 15 in.
Hence,
B _ _12.78 _
Sins = 3% 15 0.425
B = (]
3 = 2515
B = 50.%°

Hence, from equation (V-5), the mass of the bevel

LY x P hy go
M = et = ——————— (pr, + 27T ry] =ra) X e
b = 2 £22 (o4 2m0) (- ma) x B

- #X0.285 x 5.46 (16,15 + 2 x 2.69)(8.46)x 50.5 _ ( 53, 1b.gec,?

3 x 386 x 360 in.—

From equation (V-6), we get

_3 16.15° + (2x 16.15° x 12.69) +(5x16.15x12.692)+ (4x 12.695)-]

% 10 16.15 + 2 x 12.69

K
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= 194.4 in.?
Hence
Iy = m Ko = 0.0554 x 194.4 = 10.4 1b.in.sec.?

Moment of inertia of the web is obtained by suming the above results
ass:

Inertia of a crankweb = 52,2 4+20.4+8.35~10.4 = 70.55 1b.in.2sec.?

(iv) Moment of inertia of rotating weight of connecting rod

Using the value of W;ot given on drawing No. (3) we

get:
W 26

(v) Moment of inertia of reciprocating weight

Totel reciprocating weight has been calculated and
used in section II. This value was obtained as 705 1b.

Hence, using equation (V-16), we get

W
5. = Yec 2 . _10 - 115, 2
rec 52 D5 x 126 = 115.2 lb.in.sec.

Moment of inertia per cylinder is obtained by summing

the items (1) to (v) calculated above as:-

5.4+ 50.5+ (2 x 70.55) + 87.8+ 115.2

Moment of inertia per cylinder

400 1b.in.sec.?

This is exactly the value supplied by the engine

manufacturer.
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VI_NATURAL, FREQUENCIES

VI-1-0 THEORY
VIi-1-1 The problem of finding out the natural frequencies of

torsional vibration of a system with many degrees of freedom is not
at all new. A number of methods have been established for the last
fifty years. The most practical methods may be grouped in four,
viz.

a. Holzer's Tabulation Method

b. F.M. Lewis' Distributed Mass Method

¢. F.P. Porter's Equivalent Inertia Method

d. Graphical Methods.

These methods are described in detail in the literature
on torsional vibration and it may be superficial to reproduce =11
of them in this section.

However, for our purpose, two methods may be used:
one to get detailed results for further analysis and the other to
serve as a check on the correctness of the natural frequencies
obtained by the first method. We shall use the methods mentioned
in (2) and (b) above for our purpose. However, since method (a)
is very well esteblighed the procedure of working out a Holzer Table
will not be treated in detail.

To work out a Holzer Table, the natural frequency

value of the system is estimated by transforming the given multirotor

system into an equivalent two- or three-rotor systems. The two-rotor
system gives approximate value of the lowest natural frequency, the

three-rotor system gives one-node and two-node frequencies.

Two-rotor and three-rotor systems are illustrated in

figure (VI-1). Their natural frequency equations are given below;—




Natural frequency of two-rotor system:

1 Jz

Netural frequency equation for three-rotor system:

W2 = _:L[Cl + 82, (Cy + Cz)} +
Gy (¢, + 02} 0y Ca
ﬁ/f 31 T2 3s (Fy + 72 + Ig)

eveneenes (VI-2)

Vi-1-2 F.M. Lewis! Distributed Mass Method

In this method, the inertia and stiffness of engine
crank are wmiformly distributed along the entire length of the
engine. Then this portion is treated as a shaft{ of wiform stiffness
and moment of inertia. |

So that Lewis! method can be used, the analysis of
torsional vibration of uniform shaft is glven below:-

Torsional vibration of uniform sheft

A uniform shaft is shown in figure (VI-2)

Let Ip = polar moment of inertia of shaft section
G = modulus of rigidity
e = torsional rigidity = G Ip
J = mass moment of inertia of shaft per unit length
L = length of shaft

J = total mass moment of inertia of the whole shaft

Ju eer (VI-3)
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(a)

(b)

Figure (VI-1)

Y

)

) ) Jo » Co v 3‘)

M,
dx

Mg

Figure (VI-2)




Co = overall stiffness of the shaft.

= ¢/L cevesans (VI=4)
W = eanguler velocity of vibration
e = deflection, which is function of x and time "{n,
ay = emplitude of vibration at a distance x.

Equating the net torque acting on an element of length of dx and its

inertia torque, the equation of motion can be obtained as:

2%e . -
j atz = c _a—x_zg XK (VI—5)

Solving equation (VI-5), the amplitude of vibration at a distance x

can be obtained as:

s, = K s x/i¥ + Kz Cos x 12

c
where K, and K, are constants. This can be writlten as:
l c
where A = an amplitude consteant.
¢ = phase-angle of cosine wave.

Using equations (VI-3) and (VI-4) in equation (VI-6) we get:

J
8y = A Cos E. w=24+a) cevsnses (VI-T)
A N

J
In equation (VI-7), W\/EQ- is called "frequency
o

coefficient" and we may denote this by

B v eveenne (VI-8)
o




Using equation (VI-6) in (VI-7), we get

ax = A Cos (B ‘ix..'. q) esseseas (VI-9)

The meximum value of torque at any section along the shaft is

given by:

which with value of a,, c¢ and B from equations (VI-9), (VI-4)and
(V1-8), becomes

Mtx = A "\/Jo C, Sin (B%+a) ceee (VI-10)

VI-2-0 APPLICATION
VIi-2-1 We have obtained the dimensions of equivalent shaft
of various shaft sections in Section (IV) and equivalent masses in
Section (V). The loading diagrem with these values, ready for
torsional vibration analysis, is illustrated in figure (VI-3).
At this stage we are in a position to find the natural frequencies
of the system.

The calculations of natural frequencies of the system
are made by using Holzer tsbulation method and the resultis are

checked by Lewis'! method.

VI-2-2 Naturel Freguencies by Holzer Method

To work out the Holzer tebles, the approximete values
of natural frequency have to be obtained. To get these estimations
the system is reduced to & three-mass system as shown in figure

(VI-1-b). 1In this we lump all the engine masses to the centre
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cylinder mass, i.e. to No. 4 cylinder mass. The scavenge-pump
mass is lumped to the damper mass. The stiffnesses of the shaft
sections between the masses are obtained by using equation (IV-3)

of Section (IV) as follows:-

_1_.' = 3 + —1 _—1-— = 1
Ca 316 7 30.8 | 196 25.85 x 100
vhich gives

6
23.85 x 10 1b.in./rad.;

Q
=
1l

i o=l 3 , .1, |2 | 2
Ca 316 139 90 06 T 36=x10

vhich gives C; = 36 x106.

Getting all these values, we apply equation (VI-2).

The following gives a few steps of calculationss

a)
C, _ 28.85
7, = 1m0 = 7¥9
6
Ca 36 x 10
— T ee—— 3
3'5 747 4819
G0 . 59.85x20°
Iz 2800 s
Sum of above three = 71312
1/2 sum = 35656

(Sum)® = 5.087 x 10°.
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Again,
C, Ca 12
4 T (Jg + 32 + JS) = 4x23.85x36x10" x 17347 - 2.062 x 107
1 3 13800 x 2800 x 747

Value of the discreminant term = i%JSO.ZS X 10E = X 27585

Hz

ny

85656 - 2758 8072

W

ng

35656 + 2758 63241.

Using these estimations we set up Holzer tables,
with the known values of the system which have been obtained in
Sections (IV) and (V). The Holzer tables for one-node vibration
are given as tables (9-a), (9-b), and (9) in Appendix II. Tables
(9-a) and (9-b) give the first two approximations and table (9)
gives the third and final try for the frequency of this mode of
vibration. Getting the closest approximation of natural frequency,
the stress column, column K, of table (9) is filled in. The description
given at the top of this colum explaing the meaning fully.

Holzer tables for two-node vibrations are given as

tables (10-8), (10-b), (10-c), and (10) in Appendix II.

VI-2-3 Application of Lewisg'! Method

In this method the stiffnesses and moments of inertia
of the engine crank shaft are distributed wmiformity along the
entire length of the engine. The system under investigation with
engine distributed mass is illustrated in figure (VI-4). Using the

notations in this figure the values of Jo» Cos Ca’ Cb are obtained

as follows:




- 68 -

Total distributed engine inertia = J = n J_ = 7 x 400 = 2800 1b.in.sec.?

Stiffness of entire length of engine is obtained by

using ecuation (IV-3) as:

A -n . _ 7 - 1
G, C 216 x 10° 45.14 x 10°
Whence,
6 ...
C, = 45.14x10° 1b.in./rad.
Agein, from the seme equation,
P O T
Cy Cz 2¢
- 1 _ 1 - 1 ’
139 x 100 2 x 316 x 106 178.19 x 106
vwhich gives
6
Ca = 178.19 x 10~ 1b.in./rad.
Similsrly,
T . 1 _ 1
Cy Gg 26
_ 1 _ 1 _ 2
30.8 x 106 2 x 316 x 106 32.38 x 100
vhence,
6
G, = 32.38 x10 1lb.in./rad.
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From above Jo and C, values, we have

[Co 3, = /2800 x 45.14 x 10° = 5.555 x 107
[Zo = —2800 = 7.875 x 107
% 45.14 x 10

All these values are given in figure (VI-4). The following is
application of Lewis' Method to show that the naturel frequencies

obtained for our systém by Holzer tabulation method are correct.

a. One-node vibration

Let w2 = 8530 and damper deflection = 1 rad.

Then inertia torque of the damper,

6

Mt lbo "j—n .

. Jy « W .,a, = 617 x8530x1 = 5,2630 x 10

This also is the torque transmitted through the shaft 1-2, hence

it is also Mt1—z' Therefore, deflection between stations (1) and

(2),
Mtya _ 5.265 x 106

= 0.0585 rad.
Cy 90 x 106

81-2 =

a, = 8,_8 . = 1-0.0585 = 0.9415 rad.

Jo . W .8y = 150 x 8530 x 0.9415 = 1.044 x 10° 1b.-in.

=
ct
n

Mops™ Moy 2)y + My, = (Mt5_4)5

6

= (1.044 + 5.265) x 108 = 6.207 x 10° 1b.-in.
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Therefore,
Mt, & 6.307 x 10°
f2.3 = = z = 0.0854 red.
Cq 478.19 x 10°
B, = 8, -8, ¢ = 0.9415 - 0.0354 = 0.9016 rad.

Hence, using equation (VI-9), we get
(a- ) = A cosa = 0.%61 600002 &0 0P (i)
And also from equation (VI-10),

6
(Mt5_4)5 = A.w fJy.C, Sima = 6.307x10 .. (1i)

Dividing equetion (ii) by (i) and using the values of J, end C,

obtained above,

6
6.307 x 10
tan ¢ = = 0.21]
0.9061 x 92.36 x 3.555 x 105 0 9

11.96 deg.

Q
1]

Now, the frequency coefficient, by equation (VI-8) is:

9.36 x 0.007875 = 0.727% rad.

w™
n
%
Sl
]

= 41.67 deg.
Hence,
B4+a = 11.96 + 41.67 = 535,65 deg.
From (i),
A = Qﬁgﬂ = 0.9061 = 0,9265

Cos a 0.9782
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Hence, using equation (VI-9), deflection at Station (4) is:

a4 = A Cos (B +a) = 0.9263 Cos 53.63 = 0.5493 rad.

Again from equation (VI-9),

(Mt5—4)4 = AW |/J° C, ©Sin (B+a) = Mt4_5

. M¢ 6
- 24,489 x 10
a = _4=0 _
- = = 0.7563 d.
4> Cy 32,38 x 100 265 ra
av5 = a,4 - a4_5 = 0.5493 - 0.7563 = -0.207 rad.
and
M = J. . W , 8, =
g 5 5
= =13800 x 8530 x 0.207 = <=24.368 x 106 1b.-in.
Hence
tremainder - M""4-5 * Mt5
_ 6 6
= (24489 - 24.368) 100 = 0.121 x 10° emall.

This shows that the assumed frequen.cy' is a natural frequency of
the system.
(b) Two-node vibration

Let w2 = 78000, and deflection at the desmper =

1 rad. Then,

My = 617 X 78000 x 1 = 48.126 x 106 =

Mt’l-z'

0.9263 x92.536 X 5.555x 0.8052x 10° = 24.489 x 10° 1b.-in.
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oMy 48.126 x 10° 0.5547 vad
-  m—— = = . raaqa.
"1-2 C, 90 x 106
.. aa = al - &1_3 = l- 00551}7 = 0.4655 rado
Hence,
My, = Jz. W . a, = 130 x 78000 x 0.4655 = 4.718lx 10® 1b.-1n.
M, s = (M) p)y +Mg,
= (48.126 + 4.7181) x 10° = 52.8441 x 10% 1b.-in.
My 6
- Yoz _ 52,8441 x 10
as.z = = = 0.2966 rad.
Cq 178.19 x 10°
;. as = aa - 32_5 = 004655 - 002966 = 001687 rado

Hence, from equation (VI-9),
(35_4)5 = A COS a = 001687 rado o0 s s 6000 (iii)

And also from equation (VI-10),
6
(Mt5_4)5 = A.WV .,/Jo e Gy 8in @ = 52.8441 x 10" .. (iv)

Dividing equation (iv) by (iii) end using the values

of C, and J,s ve get

52,8441 x 108
279.4 x %.555 x 10.1687 x 10°

tan o = 3.1557

a = 72.3%9 deg.
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From equation (VI-8),

T . .007875 x 180
B = w [o . 273:4x0.007870 x = 126.07 deg.
o ®

B+a = 126,07 + 72.39 = 198.46 deg.

From (iii),

A = 0.1687 - 0.1687
Cos a 0.8025

0.5577

Hence,

8, = 0.5577 Cos (198.46) = -0.5577 x 0.9486 = =0.529 rad.

and
(Mt5_4)4 Mtlrﬁ = A.W ‘/JO.CO 8in (B + a)
= _0.5577 x 279.4 x 3.555 x 0.5166 x 10° =-17.538 x 10°
lb._in.
Therefore,
My ~17.538 x 106 '
B )5 = —-é’i = 2 z— = -0.5416 rad.
b 52,28 x 10
M, = Jg.w.ag = 15800 x 78000 x 0.0126 = 15.565 x 10 1b.-1n.
5
- - —3 - 6
My o inder 17.538 + 15.563 3.975 x 10° smell.

VI-2-4 Critical Speeds of the Engine System
Having natural frequencies of the system above, the

critical speeds are obtained as follows:-
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(a) For one-node vibration

For this mode of vibration we have, from table (9),
w = 92,36 rad./sec.
Hence, natural frequency of vibration, F, is given by:

F = ¥ _ 60x92.36
2% 2 x

= 882.3 wvpm.

(b) For two-node vibration

The value of w is given in table (10), and

- Ow . 60x278.92 _
F 2# 2 n 2664 vpu.

The critical speeds can be obtained from fregquency

values by the following relation:-

- F
N, = y
vhere N, = critical speed, rpm.
n = harmonic order numbers.

The critical speeds obtained by using above calculated

frequencies for one-node and two-node vibrations in this relation

are given in Table (11).
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VII PHASE DIAGRAMS

VII-1-0 THRORY

VII-1-1 Work done by one Cylinder per Cycle of Vibration

The work done by the n*? harmonic torque of a
cylinder per cycle of vibration per unit deflection at the demper

mass 1s given by:-

W = x.T .A.R. 8, - Sin # ceveees (VII-1)
where T, = nth harmonic of engine torque curve, 1lb. per sq.in.
of cyiinder area.,
A = c¢ylinder area, sq.in.
R = crenk radius, in.
a, = torsional vibration amplitude at the cylinder when
deflection ét the damper is wmity.
# = phase angle between the torque and the amplitude

vectors.

To get the work input per cylinder for the actual
vibration cycle the value of W, in above equation may be multiplied
by the vibration amplitude at the damper. Bubt we do not need it at
thig moment. The work may be obtained as given in equation (VII-1)
and multiplied by the actual damper deflection only after the
sumation has been done for all cylinders, in later sections.

Now, in an engine system, the torque vectors at
various cylinders have the same magnitude but their phase angles are
different. The vibration amplitudes, however, vary in magnitude

but they are in phase. The work done by the cylinders, therefore,

have to be added vectorially to get representative total work input.
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In doing this it is customery to consider the torque vectors in
phase and the amplitude‘vectors out of phase, as the value of
work input given in equation (VII-1) is not changed if the direction
of the torgue and displacement vectors are interchanged. This
manipulation renders the$summation very convenient since the equal
engine torque magnitude can be taken out as a common factor from
summation. terms.

The present section deals with the procedures of
determining vector sum of engine emplitudes leading fo vector
sumation of the work at all cylinder given by equation (VII-1), in

later sections.

N

VII—1-2 Phase Diagrams

Summation of displacement vectors is &chieved by
drawing phase diagrams. This is Best explained by considering a
case of our engine system.

Assume that 360° in a phase diagram represents one
vibration. Now with a two-stroke-cycle single acting engine,
where working cycle occuples one revolution, there are no half order
harmonics.

For an engine of m cylinders firing at equal intervals,
the firing intervael is §%?3 degrees of crenkshaft rotation for
2-stroke engine.

Now at the critical speed of order 1, while the
crankshaft mekes & full revolution, each vector in the phase diagram
also executes one cycle of vibration, so that the phase diagram

rotates at the same speed as the crankshaft. Hence when the crank-

shaft rotates 360 degrees between two consecutive firings the vectors
m
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in the phase diagram slso turn 5%0. degrees. The phase diagram
for order 1 is, therefore, an exact reproduction of crank sequence
diagram.

For vibration of order 2, where 2 vibrations e¢ccur
during one engine revolution, the phase diagrem turns at twice the
speed of the crankshaft. So, while the engine turns .§.§.0. degrees
between consecutive firings, the phase diagram turns éé-‘%.% degrees
between the corresponding displacement vectors. So in this case
the angle between the two successive vectors is twice the firing in-
tervals of the crankshaft.

In general, for vibration of order n, the phase
disgram rotates at n times the speed of the crankshaft. Thus 1°
of crankshaft rotation is equivalent to n degree of vector rotation.
For our engine type, the angle between consecutive vectors in phase
diagrams, corresponding to %Q degrees of crankshaft rotation between
two consecutive engine firings, is given by .5.6%_‘.1. , Where n = 1,
2y By eees

Summing the ebeve explanations, we can adopt the
foilowing procedure for getting the phase diagram for our engine.

Assume that No. 1 crank is at zero angle (vertical
position) and that the angles of all other cranks are measured from
No. 1 crank. Then,

(a) Since phase diagram for order 1, as explained above, is exact
reproduction of crank sequence diagram it is easily obtained.
(b) The phase diagrams of higher orders are then obtained from

diagram of order 1 by going arownd it according to firing
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sequence and increasing the angle between successive vectors by
factors equal to the order numbers.
(¢) The vectors in the phase diagram are all in phase for major

orders, when % = 1, and vectors can be added algebraically.

VII-2-0 APPLICATION

——————

VII-2-1 Phase Disgram of the Engine under Investigation
By applying the theory described above phase diagrams

afe drawn for the engine under consideration. These diagrams are
shown in figure (VI-1). The engine crank sequence (seme as firing
order because engine is two-stroke engine) is 1-6-3-4-5=-2-7. The
phase diagram of orders 1, 8, 15, etc. is the exact replica of the
crank sequence diagrem. The diagram for the next higher orders,
viz. orders 2, 9, 16, etc. is obtained by increasing the angle

~ between successive cylindersto twice that in the first diagram. The
angles between the cylinders in the third diagram are made three
times that in the first diagram and so on until the diagram for

major orders is reached.

VII-2-3 Vector Summation of Engine Amplitudes

Anplitudes of vibration of engine cylinder masses
have been obtained in Holzer tables (9) and (10) of part (V) for
one-and two-node vibrations respectively. These amplitudes are
sumarized in tables (12) and (13).

Vector summation of these amplitudes may be done
by drawing vector diagrams with ampiitude of each cylinder drawn
in the direction of its own cylinder, or they may also be added

analytically.
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The analytical method is used here. For using this
method we see that angles between number 1 and 6 cranks in the
crank sequence diagram at the top of figure (VII-1l) is 51.43°.
Angle between number 3 crank and the horizontal is 12.86°, and
sngle between number 4 crank and the vertical ig 25.215°, We

have

Cos 51.43° = 0.6235 Sin 51.43° = 0.7818

Cos 12.86° = 0.9750 Sin 12.86° = 0.2220

Cos 25.215°= 0.9047 Sin 25.215°= 0.4260
Hence, the following relations cen be written for the phase diagrams

shown in the figure.
(1) Harmonic QOrders: 1, 8, 15, etec.

- 2
Z e =[{a1+ (a6+a7) x 0.6235 - (a5+ a3)x 0.222 - (a4+ a5) 0.904}

2 ~1/2
+ {(a6—a7) x 0.7818+ (as- a2) x0.975+ (a4- ag)x 0.426} ]

eeances (VII-].)
(11) Harmonic Orders: 2, 9, 16, ete.

- T . 2
Z a, =[{a1+ (a5+ a4)x 0.6235 - (aé-a.,) x 0.222 - (a, +a5)x 0.9047}»

| 5 -1/2
+{(a5- ;)% 0.7818+ (s +a7) x 0.975 + (a5~ a5) x0.426} _
' ceseses (VII-2)

Similer equations can be written for other harmonic

orders conveniently from the phase diagrams of figure (VII-1).

CALCULATIONS
Calculations for vector sum of engine amplitudes

for harmonic orders 1, 8, 15, etc. of one-node mode of vibration

is given below for illustrative purposes. Detailed calculation
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steps for others may not be included here.
For hermonic orders 1, 8, 15, etc. we use equation

(VII-1). The values of engine amplitudes in one-node vibration

are given in table (12), which was prepared for these calculations.

we have
8, = 0.9014 (a5+a2)x 0.222 = 1.7092x0.222 = 0.379
(a6+a7)x 0.6235 = 0.7993 (a4+a5)x 0.9047= 1.5268x 0.9047 = 1.381
Sum = 1.701 Sum = 1.760
1.701
Total vertical component = 0.059
Again,

0.0683 x 0.7818 = 0.0534

(a6 - a7) x 0.7818

(49.4 - a5) x 0.426 = 0.0538 x 0.426 = 0.0229

Sum = 0.0763

(as' - a2) x 0.975 - 0.0372 x 0.975 = - 0.0363
Total horizontal component = 0.04

Hence,

> a, = £0.059)% + (0.04)° = o0.07m3

—
Values of Zae for other orders and mode of

vibration were found in the same manner using the corresponding
equations. The wvalues of ZZ; so determined are given in
table (14). It may be seen that Z-E; values for 1, 8, 15, eto.
orders are the same as those for orders 6, 13, 20, ete. Equality

—rpe
of Z ag values for other orders can also be seen in table (14).
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III VIBRATION STRESSES AT NON-RESONANT SPEEDS

———

VIII-1-O0 THEORY

VIII-1-1 In studying the resonance diagrams of forced

vibration problems with damping, in which the ratio of dynamic to

static emplitudes (some time termed as dynamic magnifier) is plotted
against the ratio of the system's natural freguency to the forcing
frequency, some interesting aspects can be noted. The resonance
diagram itself may not be illustrated here. On such diagram we

can see the following interesting points:

(2) Damping has very little effect on the dynamic magnifier except
close to resonance.

(b) The phase angle between the force and displacement changes from
0 degree when the frequency ratio is zero, to 90 degrees when
the latter is 1, and to 180° when the frequency ratio is infinite.

(c) The maximum velues of dynamic magnifier for the curves with various
demping ratios do not occur at the resonant frequency but at
somevhat lower frequencies.

(d) There are three different frequencies to be distinguished, viz.
free undamped frequency, damped natural frequency, end frequency
of maximum amplitude. These are grouped very closed together
for small damping values.

Based on above study we could get the following
approximations for practical use:-

(1) Since, from (a) above, damping has little effect

except close to resonance, the difficulty in calculating the dynamic

magnifier at the flanks of the resonance curve for dasmped vibration
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may be avoided by getting the curve on an assumption that the
system is undamped. The curve for the region close to the resonance
may be approximated by drawing a smooth curve when the dynamie
magnifier at the resonance speed is obtained.
(i1) In practical problems of systems which undergo forced
damped vibrations, the damping ratio is usually small so that, by
(d) above, the damped frequency and forcing frequency for maximum
amplitude may with little error be assumed to be identical with the
free undeamped frequency. Under this assumption, the value of dynamic
magnifier is slightly different from the value at the resonance with
forcing frequency. But this difference is very small and may be
neglected.

Using the approximate procedures outlined in (i) and
(ii) above the resonance curves under the action of various harmonic
components of disturbing forces for our engine system may be obtained.
'i'he stresses at non-resonance speeds with the assumption that the
system is undamped will be obtained in this section, the dynamic
;nagnifiersand stresses at resonant speeds will be obtained in section
(IX). By combining the two, the complete picture of the maximum
stresses in the system will be obtained by drawing smooth curves

as outlined in (i) above.

VIII-1-2 Vibration Stresses at Non-Resonant Speeds of Undamped
System

Neglecting demping in the system, the maximum vibration

stress in the engine system is given as:

Ss = SBO X M sescrseren (VIII-l)o
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vhere SS = vibration stress, neglecting damping, psi.
Sg0 = equilibrium stress, psi.
- SSh X 90 s eevoesvesssr Ot (vIII-2)
SSh = stress for unit deflection at the damper, from

Holzer tables, psi.

90 = equilibrium amplitude as defined below
M = dynamic magnifier for undamped vibration
= 1 2 S0ss00cse (VIII—S)
1- (4
c
N = revolution per minute of the engine
N, = critical gpeed of the system, rpm.

VIII-1-3 Equilibrium Amplitude
The equilibrium amplitude of a multimess system

usually refers to the No. 1 mass (Damper in our case). It is
defined as the amplitude at mass No. 1, when the engine is rolling
very slovwly, tending to a stop, without any magnification due to
resonance with an external pulsating couple. The equilibrium
amplitude of eny mode of vibration is obtained by equating the

vork done by the external couples in deflecting the shaft from its
meen position to one extreme of its anguler displacement corresponding
to the equilibrium amplitude at mass No. 1, to the maximum potential

energy of vibration. This is given as(l"a)

—
T™h . AR a
90 = Z Z 2 I‘&diaDS asessses (VIII—L)

wbz > Ja?
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th Grder harmonic component of

vhere, Tn = maximum value of n
engine torgue curve for one cylinder, 1lb. per sg.
in. of cylinder ares.

A = area of cylinder, sg.in.
R = crank radius, in.
}E ;: = vector sum of engine amplitudes, obtained on

agsumption of unit emplitude at the damper.

M
oy
m

n
n

effective moment of inertia of system referred

to the damper, i.e. the arithmetic sum of the
products of the moments of inertia of the respective
masses and squares of the amplitude at each mass,
assuning unit smplitude at the damper.

W = natural frequency of the system.

VIII-1-4 Egquilibrium Stresses
The stresses in the shaft system corresponding to

the equilibrium amplitude at mass No. 1 are referred to as the
equilibrium stresses.

Equilibrium sﬁresses at various sections may be
obtained by multiplying the stress values in columns K of tables
(9) and (10) by equilibrium emplitudes. But, since the maximum
gtresses only are important, the calculations are usually mede
for this maximum value by using the highest stress values in
colums K of tables (9) and (10).

Doing this, equation (VIII-2) mey be written as

Sso = (Sap) & cevessenes  (VITI-5)
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If, however, the stresses at the section other than
the section of meximum stress is needed it can easily be obtained
by multiplying the maximum stresses calculated by the above procedure
by the ratio of stresses in column K of table (9) or (10) at the
required section to the corresponding maximum value used in the

above calculations.

VIII-2-0 APPLICATION

VIII-2-1 Eguilibrium Amplitude at the Damper and Equilibrium

Stresses
Since the stresses in columns K of tables (9) and
(10) are given for one degree deflection at the damper, the equili-
brium amplitude should be expressed in degrees. Equation (VIII-4)

may, therefore, be written as:

e = 180 Tn .A.R Z a.e
° * 2 dego
® wcz . ZZJ'a

The values of the factors are given as follows:

T, values are given in table (8).

—r

ae are given in table (13).

A = %(15.4)3 = 141. sq.in.
R = 11.2 in.
w:'= 8530 for one-node vibration, from table (9).

77800 for two-node vibration, from table (10).

Z:J a? are calculated by using the inertia values of the masses
and amplitudes at various points, when deflection at the
demper is one radian, from tables (9) and (10). These
values are given in tables (15) and (16) for one-node and

two-node vibration, respectively.
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Using these values in above equation, we get

For one-node vibration

- 141 x 11.2 x 180 -
®% * THHrwxOL o L&
= 0000554 Tn Z;.;- LI I IS S R I S 3 SN N W N (VIII"6)

For two-node vibration

e = 14l x11.2 x 180 g
o 77800 % ¥ % 1087.5 o1 2e,

——
00001068 Tn Z ae esees0s s (VIII-7)

The values of equilibrium amplitudes at the demper
calculated by using equations (VIII-6) and (VIII-7), and equilibrium
stresses by using equation (VIII-5) are given in tables (17) and
(18).

VIII-2-2 Torslional Vibration Stresses at Non-Resonant Speeds

The stresses at non-resonant speeds are given by
equation (VIII-1). The values of M are given by equation (VIII-3);
and the equilibrium stresses, Sg,, are given in table (17) and (18).
The values of stresses at non-resonant speeds calculated by using
above relations are given in tables (19) and (20), respectively,
for one-node and two-node vibrations. In tables (19) and (20),
only the stresses for harmonic orders that give rise to important
stress magnitudes are included; stresses for all other orders,

which are negligibly small, have been disregarded.
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IX VIBRATION STRESSES AT RESONANT SPEEDS

IX~1-0 THEQRY

IX-1-1 Energy Dissipation in the Damper

Let Jqg = mass moment of inertia of the damper inertia ring.
£ = viscous damping torgque per unit velocity
eh = amplitude of oscillation of housing
W = angular frequency of oscillation

Then, the work dissipated in the damper, per cycle

of oscillation can be proved as(s):

2f
o]
W, = X J.w @32
d d sssvssss (Ix—l)
T SR
T4
£ Vg f
If - is plotted against 7 , Ve
-2-deth op av
J——-.-
may obtain a curve on which d v has & meximum value
1+(_L
de
when L =1, The value of f at this point is called the

optimum demping and the work as the optimum work. Hence,

fopt. = Ja W el eer (1X-2)
(Wd)opt. = -g-o Jd . Wz . th sevevsveee (Ix-s)

IX-1-2 Energy Dissipation in the Engine

As can be seen from above, it is fairly easy to
find energy dissipation in the damper. Energy dissipation through
other components like pumps, propellers, etc. also follow the

viscous characteristics.




But energy dissipation other than these forms is
due to a number of causes like elastic hysteresis in the material
of the shafting and the material of the runing gears, movements
of bearings, vibration of engine frame, viscous friction in the
engine, etc., which are elusive and complicated to determine,
end different from installation to installation. The problem of
evaluating engine demping effect, therefore, is exceedingly
difficult.

Owing to these difficulties, it is customary in
practice, to use empirical formulae derived from analysis of
torsiograph measurements on different types of engine for determi-
nation of overall engine damping. The formulae in current use
are based on two types of asswmption, viz.,

i) that the overall engine damping is mainly viscous in character,
i.e. overall damping loss is proportional to the square of the
vibratory amplitude.

ii) that the overall engine damping is mainly hysteresis in
character, i.e. overall damping loss is proportional to the

cube of the vibratory amplitude.

The resulting stress values calculated from equation
derived on the first assumption have been found reasonably close
to the actual values at the strong and feirly strong criticals;
but it is learnt that, at the weak criticals, the results given
by the formula based on this assumption are found to be low.

At the seme time, the values given by the formula
based on the second assumption are, in some cases, found to be

too high.
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In the absence of accurate method, however, we
shall use the formula derived by the first assumption, for
estimation of engine demping.

Based on the first assumption, work dissipated per

cycle in the engine damping can be shown as:(l'b)
= 2 -
we “ * fe ® w. Zae 000 000 OO OeS (Ix 4)
where Wé = wvork dissipated at engine damping points per umnit
deflection at the damper mass, per cycle of oscille-
tion.
fe = viscous damping torque per unit vibrational velocity.

2 ag?

arithmetical sum of squares of amplitudes on the

normel elastic curve at the engine cylinder, for

unit deflection at the damper.

The relation in (IX-4) is true if £, is the same
at each damping points, i.e. at each cylinder mass. If f, 1is
not the same throughout, then Z fo ae2 should be used.

A large number of tests on different engines ranging
from large slow-speed marine oil engines to small high-speed aero-

and automobile engines are lmown to have been made, glving the

rotation:
I8
fe = V - Jeo f'b.—lb./l‘ad. essevss e (IX—5)
vwhere Je = mags moment of inertia of crank masses per cylinder,
lbo"ino—secca
V = a coefficient.
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The value of V at strong and fairly strong
criticals, from these experiments, was found to vary.from 12 to
40. These are extreme values, the value in most normal installa-
tions being from 12 to 25. Ker wilson(1-b) recommends taking
the average value of 21. Putting this value of fg, equation

(IX-4) becomes

W, = 2lx J_eo°8 v 2agz cereenenes (IZ-6)

IX-1-3 Work Done by the Exciting Torques

It can be shown that emnergy input per cycle of
vibration by the nth order harmonic component of exciting torgue

per wnit deflection at the damper 18:(1-b),(3)
W, = « T, A Rla cevens (IX-7)

The components in this equation have been described

before.

IX-1-4 Dynamic Magnifier at Resonant Speeds

Since the work input per cycle of vibration at
resonant speed must be equal to the work dissipated through
demping, we have from equations (IX-3), (IX-6), and (IX-7) for

deflection at the damper of Oh redians:

Wi = Wd + We

xTnARZB_-; 8, = %Jd.wz.eh2+21u.]'o'8

wzaez Qh

2
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vhence,

T. .A.R.JY a
e, = = L 2 veceses (IX-8)

J
d
5 W+2a708 v, Lagpf

The equilibrium amplitude, ©,, has been found in

section (VIII) and given as:

T, - A-R.J &
LA IP I

cosess (VIII-4)

Hence, dividing (IX-8) by (VIII-), we get the

dynaric magnifier at resonance as:

M. = o = W . ZJ a® (12-9)
c soe s e -
) J
o Lvrag08. Las?

Note: The above derivation was made with the assumption that the
damper has "optimum damping® f=J a v If the damping constant,
f, has the values other than the optimum, the work dissipated in
the damper will be lower, and we can write

v. ) Ja?

M =
C ) sees e IX_J-O
X B wra 300 La (15-10)

where
2f
Wd Ja W
X - S———————— = d (
eseanssee Ix-ll)
(Wy) opt. 1+ (=£)?

de
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IX-2-0 APPLICATION

IX-2-1 Dynamic Magnifier at Resonant Speeds for One-Node
Vibration

We have seen that the equilibrium stresses for one-
node vibration are much higher than those for two-node vibration.
The damper, therefore, will have to be tumed to have optimum
damping for one-node vibration. If the damper is so tuned, then
the dynemic magnifier is given by equation (IX-9). Ve have the

following values for one-node vibration.

> J.8% = 2991.9 from table (15)
W = 92,36 from table (9)
Jo = 400
- 515
= = <%3= = 287.5, drawing No. (2)

and from table (15),

2
2 aq

0.803 + 0.7508 + 0.6848 +0.6078+ 0.5232+ 0.4344+ 0.3455

4014950

Hence, from equation (IX-9),

W ZZ'J- a®

J

Me

92.36 x 2991.9
29.36 x 287.5 4+ 21 x 120.7 X 4.1495

= 7.514
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IX-2-2 Dynamic Magnifier at Resonant Speeds for Two-Node
Vibration

For this mode of vibration, we have

ZJ.&2

1087.5, from table (16)

E
1]

278.92, from table (10)

L o

1.0966, from table (16).

We have tuned the damper to its optimum damping

value for one-node vlibration. This value is
£ = Jgw = 575 %92.36 1lb.-in./red./sec.

Therefore, from equation (IX-11),

2 x 575 x 92.36
f = 575 x 278.92

575 x 92.36
L+ (G5 57892

0.6

o}

2
)

Hence, from equation (IX-10),

w.ZJ’az

[} Jd 0.8 2
1.2 e300 La,

278.92 x 1087.5 - ot
0.6 x 287.5 x 278.90 + 2L X 120.7 = 10066 ~ °°9
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IX~-2-3 Maximum Resonant Stresses

The meximum stresses at resonant speeds are calcu-
lated by multiplying the equilibrium stresses obtained in section
(VIII) by the dynamic magnifiers calculated above. The values

obtained by this procedure are given in tables (21) and (22).

IX-2-4 Stress Diegrams

Having obtained the wvalues of vibration stresses

at non-resonant and resonant speeds, the stress dlagrems for the

system can be drawn. The stress diagrams for one-~ and two-node

vibrations are given in Appendix III. These diagrams were drawn
through the steps summarized below.

Diagram (A. III-la) This diagram was obtained by plotting the stress
values given in tables (19) and (21). Continuous
curves were obtained by plotting the wvalues in
table (19). The peak stresses at resonant
speeds were obtained from table (20). The
approximate representative stress curves were
then obtained by drawing smooth curves through
these pesk-stress points. The curves are
shown dotted in the figure.

Diagrem (A. III-1b) The mean transmission stress in the system can
be obtained by the following steps.

Mean trangmission torque is given as:
T« = T, . 4.R. No. of cylinders.

vhere T, meen value of engine torgue,

25.298 psi. for our engine, from table (8).
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b
1]

area of cylinder, psi.

=1}
"

crank radius, in.
S, :M = 25.298 x 141 x 11.21 x 7 = 286000 1lb.-in.

Hence, mean transmission stress is:

8 - ——————— = p j .
Fi 4 de £ X 9.25

Diagram (A. III-1) This was drawn by using the values obtained
in diagram (A. III-1b) to show the complete
picture of resultant stresses occurring in the
system under one-node vibration.

Diagrams (A. III-2a) to (A. III-2) These diagrams give the stresses
in the system under two-node vibration. These
diagrams were drawn through the steps similar
to those described for one-node stress diagrams
above, by using the values given in tables
(20) end (22).

IX-2-5 Notes on the Stress Disgrams

a. It may be noted that the mean transmission stress
wes teken as constent at all gpeeds in drawing the sbove diagrams.
It is, therefore, apparent that the mean stress values in the
diagrams at lower speeds, when the system is not transmitting

its full power, are higher than the actual walues. The exact
values of mean stress can be calculated by using torgue-speed
curve of the alternator. Here, however, since the purpose of

analysis is to see vwhether the system can withstand the maximum
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stresses, slight exaggeration on stresses at lower speeds can
be allowed. No attempts will, therefore, be made to get the
exact values, and the above diagrems will be used for further
investigations.
b. The stress diagrams give stresses occurring in
the solid equivaslent shaft of 9.257 dia. TFor one-node vibration
the maximum value of stress in column K of table (9). , occurs
in hallow shaft. Hence to get actual maximum operating stresses,
the values obtained from diagrems (A. III-la) through (A. III-1)
nust be multiplied by a factor:-

% % = 1825 - 1,07

(a® - a4 7525 - 458
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X AMPLITUDE OF FORCED TORSIONAL VIBRATION AND
CYCLIC IRREGULARITY AT THE GENERATOR, LIGHT
FLICKERING CHARACTERISTICS

X-1-0 THEQRY
X-1-1 A number of methods to determine the forced vibration
amplitude at a mass of a multimess system have been published in
the technical literature. For our purpose we shall use two methods
as follows:-

(2) Holzer Tabulation Method

(b) F. P. Porter's Method

X~-1-2 Holzer Tabulation Method

This method follows the same procedures as those
in finding out the natural frequencies of the system. Here,
however, the amplitude at the No. 1 mass is assumed at some arbi-
trary value and the table worked out as before; when the torque
column is reached, the total torque acting on the mass being con-
sidered is taken into account. Hence, in forced vibration, total
torque comprises the inertia torque by virtue of vibration and
the forcing torque acting on the mass. When the final mass in
the system is reached the torque value in the torque-summation
column is equated to the external torgue at that point to determine
the value of amplitude at No. 1 mass, assumed previously.

For a system with input torque acting at one point
only and a multimass system with forcing torgues acting at various
points but all in phase, the procedure is falrly simple. 1In

the former case, no problem of torque summation arises. In the




latter case, the forcing torques are taken into account by simply
adding algebraically total toraque values at the respective masses.
The method needs a great volume of work if used
for a multimass system with forcing torques acting at various
points and all out of phase. 1In this case amplitude at a required
point may be obtained when the forecing torque at a mass is consider-
¢éd at a time, disregarding all other torque components at the other
cylinders.  Separate tabulation may be done for each torque component
and the amplitude at the mass being considered may be obtained by
vector sumation of the amplitudes obtained in all tables.
Fortunately, however, in most of multi-cylinder
engine systems, the major orders of vibration predominate so that
approximation of cyclic irregularity can quite sufficiently be done
by determining the forced vibration amplitude under such harmonic

orders only.

X-1-3 F.P. Porter!'s Method

Strictly speeking, this method is an extension of
Holzer tabulation for free vibration.

Consider a multimass system. Number the masses
starting from a particular end, calling the mass at this end as
mass No. 1. The mass at the other end is numbered L, to denote
the last mass in the system. A Holzer table for free vibration,
like those in Section (VI), is worked out starting with an
assumption of wnit deflection at the first mass. Tabulation is
repeated starting with assumption of wnit deflection at the last

mass, working eut backward to the first mass. Since the system
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is the same, with the only difference being the direction of
working, and since they are both for free vibration, the remainder
torque values at the last lines in the torque sumation columns

in the two tables must be the same. Amplitudes at a particular
mass in the two tables may be different, since unit deflection is
assumed at the first mass in the first table, and at the last
mass in the second table, respectively. Using the values in
these tables and extermel forcing torque magnitudes, forced
vibration amplitude at a particular mass may be found by the
formulae given below. Detail derivation of these formulae are
not given here. It may be seen in F. P. Porter's paper, published
in 1955(6).

Now, in above multimass system, let

i = denote forcing terque input points

foreing torque acting at the point i

=
1]

e,' = amplitude at the n® point obtained in the Holzer
table, which is worked through starting from the
first mass.

&, = amplitude at the ntt point obtained in the Holzer

table, which is worked through starting from the

last mass.

Then, forced vibration amplitude at the vt pags ig given as:

—

"
N My a
op (rgi) = - i
r =
r (TS ap I=1
- 2;;; Jy W* a, + %;;; Jn W &g

ceseeses (X-1)
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a
(r>i) = s
O (r21) = - — ' al T+1 )
Z anza'n +""N"'r anzan
n=1 r n=L

cerrecene (X=2)

[
l;-'
x"
um
n
o

and L+1 "
2 Jn W a,
n=

so that we get, from (X-1) and (X-2), respectively,

il
o

—ee

> My el
_ n=1 :
91 - - 1 XX (X‘s)
"
2 Jp W° a,
n=
]
& .
o _ n=4i Miey
. L T deessesens (X=4)
Z In Lo a,
n=1
Notes: 1In the above formulae,
1 n L t
E Jn 'Wz an - E Jn Wz an
L n=1

are the residusl torque at the last lines in the torque-sumation

colums of Holzer tables. Equality has been explained previously.
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Porter's formulee given above have the advantege
over the Holzer Tabulation Method described in X-1-1, in that
summation of the out-of-phase torque components at various points
can be done analytically without going through a large number of

tables.

X-2-0 APPLICATION
X~-2-1 From the earlier Sections, we have seen that the
7th order harmonic, which also is strongest amongst the majors,
predominates in our engine-gerator set. Hence, here, it should
be sufficient to exemine the coefficient of cyclic irregularity
at the service speed under the 7th order harmonic engine torque
component.

For illustrative purposes, we shasll determine the
value of coefficlent of cyclic irregularity by using both methods
described in the theory portion.

Now, from table (8), T, for the 7th order harmonic

= 11,368,
Mn = T,AR = 11.368 x 141 x 11.2 = 17,950 1lb.-in.

At the service speed of 300 rpm, the frequency

of vibration of 7th order harmonic is:

F = 7x30 = 2100 vpm.

Hence, the angular frequency is:

v o= -2_-’6£5£ = 2“202100 = 220 rad./sec.

w2 = 48,400 rad.2/sec.2
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X-2-2 Holzer Forced-Vibration Tabulation Method

With above w* and M, a Holzer table is worked
out. This is shown as table (23). The columns of this table
are almost exactly the same as those used for natural frequency
calculations. The difference here is that the torque columns
are made to include both the vibration and engine torgues. The
7th order harmonic being a major, the engine torques at all cylinders
are in phase; and so in working out this table, each engine torque
component M, is simply added at its own peint in the torque
column.

The teble is first entered with an assumption that
the forced vibration amplitude at the damper is x radians and
worked out step by step, until the value of the remainder torque
is obtained at the generator mass. Since at this point there is
no external torque acting, we equate the torque value to zero

which gives the value of x. Here,

Mtrem pinder - 95448148 x - 2136659.95

Equating this to zero, we get the value of x

x = --2136639:95 _ _ 4 002238556.
954481480

If we substitute this value of x in column D of
the table, the forced vibration emplitudes at the various masses

méy be obtained. However, what we are looking for here is the
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amplitude of vibration at the generator, which is given as:

Ogenerator = - 1-4761 X - 0.0033069.

Substituting the value of x, we get:

) 1.4761 x 0.002238556 - 0.0033069

generator

- 0.000002507 radiens.

Note: In working table (23) above, correctness to & large number
of digits was maintained throughout the table. Ordinarily, it
should be quite sufficient to get correctness to a few digits only
to get nearest value of vibration amplitude at the generator,
preparatory to determination of the coefficient of cyclic irre-
gularity. Here, however, because atlempt is made not.only to get
the value but also to show the conformity of the results obtained
by the two methods for the amplitude at the generator, which 1s
excessively small in this case, correctness to a2 large number

of digits is required to be maintained.

X-2-3 F. P. Porter!s Method

To get the forced vibration amplitude at the

generator, we use equation (X~4), which is:
e,

) L]
Mo

L

9generator

J. w g

i n
The values needed for this equation are the free vibration
amplitudes at various masses and the value of remsinder torque in

the torque-summation column, when a Holzer table for the required

frequency is worked out starting from the damper, with assumption
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that damper deflection is 1 rad.

Here, it is not required to prepare a new table.
The required vaiues are given in table (23) when =x is made
equal to 1 red. and the second parts in the amplitude and torque
columns are dropped out. By doing this the following a{ values

are obtained.

Mass Damper Scav. Pump Cyl. 1 Cyl. 2 Cyl. 3
ay' 1 0.6682 0.4251 | 0.2894 | 0.1379
Mass Cyl. 4 Cyl. 5 Cyl. 6 Cyl. 7 Generator
ay' -0.022 -0.1806 ~0.3281 | -0.4555 =1.472

2_a, = 0.4251+0.2894+0.1579 - 0.022- 0,186 ~ 0.3281~ 0.4555
= 0.1358
Hence,
D od .
2w ay = 17950 x 0.1358,

gince 7th harmonic is a major order and the torgques are acting
in phase.
Now, as stated in the theory portion, the
denominator on the right hand side of the above equation,
ZZE: Iy w2 ai is the residusl torque in the last column of
thélﬂolzer table for free vibration. This value 1is obtained from

the last line in column G of table (23) when x =1 and the second
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forcing torque term is dropped, viz.,

L
D Iy W oay = - 9548148
1

Hence, from the above equation,

- 17950 x 0.1358 _
0 S = = 0.00000255
generator 95448148

vhich agrees very well with the value obtained in X-2-2.

X-2-4 Coefficient of Cyeclic Irregularity at the Generator
This is given by equation (III-8) as:

C = 2.0 .n.

Hence, coefficient of cyclic irregularity at the

service speed due to the 7th order harmonic engine torque is:

C, = 2 x0.00000257 x 7 = 0.000036.

This shows that the coefficient of speed fluctuation

at the service speed is very much less than 1/75 ag specified

by the British Stendards Institution(?4),
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XI _CRITICAL WHIRLING SPEEDS

XI-1-0 _THEORY

XI-1-1 As has been mentioned before, there are a number of
different methods of arriving at the critical speeds in whirling
of a transmission system. They are:

(1) Rayleigh's method

(2) Dunkerley's method

(3) Stodola's method
and (4) Extension of Holzer's tabulation method due to Mykelstad

and Prohl.
Stodola's method is given both in graphical and

numerical forms. This method in grsphical form is used for
estimation of the lowest critieal speed in whirling of our

transmission system.

XI-1-2 S8Stodola's Method in Graphical Form

In applying the Stodole Method to a particular
system, a start is made by assuming a reasonable deflection curve
and a frequency of vibration. The steps recommended in applying
the method are summarized below:

Step 1. Assume a deflection curve for the system that is
reasonable both as regards the shape and the scale of deflection.
Generally, the static deflection curve is taken as a good assumption.
Step 2 Assume a frequency of vibration. Generelly,

w2 = 386 is assumed so that —wg- = 1 and the inertia loads

W W
gl ¥y ¥, gz ¥2 v°, etc. are given simply by the products

Wy Y15 VY2 ya, etc., when w's are the weights and y's are the

deflections at the masses.
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Step 3. Assume that the system is loaded with the inertis
loads W, y;, Wy ¥z, etc. of step 2 and find the corresponding
new deflection curve. Let the deflections measured from the new
deflection curve are denoted by y; N y; s etec. Then, since

1

the inertia loads which cause the deflections yi, T, ete.

mpust be equal to the inertia loads of step 2, it follows that

" / Ya ¥

1 T2
This can only be true if the ratio of the two deflection values
ig constant at all points, i.e. if the derived curve and the assumed
curve are geometrically similsr.
If the ratio is constant and equal to y/&', then
the natural cyclic frequency F, in vpm. is given as:

= 60w _ 60 .386
F, 2L - "'—"“‘»/; = 187.5 /g}? .. (X1-1)

2 %

Step 4. If the ratio is not constant throughout the system,
the derived curve of step 3 may be used as the next assumption and
the above steps repeated. However, the process converges so
rapidly vhen applied for finding the lowest frequency that the
result obtained from the first assumption is generally sufficiently

close.

XI-1-3 Beam Deflection Formulae

A simply-supported beam with overhan? on one end,
e simply-supported beam with overhangs on both ends, and a cantilever

beam are illustrated in figure (XI-1). Some formulae for deflections

of these systems, that will be useful for our analysis are given
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below, without derivation details.

a) Simply-supported beam with overhang on one end

This is shown in figure (XI-l-a). Deflection at

the end C due to a concentrated load X at that point is:

2
a 8 +L;) X
yc = 1 ( 1 1) et o000 0 (H—z)
3EI,

flexural rigidity of the beam.

where EIz

b) Simply-supported beam with overhangs on both ends
This is illustrated in figure (XI-1-b). The

deflections at the ends D and G due to the concentrated loads X

and y acting as shown in the figure are:

2 2
ap + L) X 82 L, L
—2 (82 2) + 2 La =
8EI, 6 E I,

i}

Ia

ceee (XI-3)

2 2
az” (ag + Lp) Y a,” Ly X
yg + 2 sse e (XI-A-)
3 E I, 6EI,

¢) Cantilever
This is shown in figure (XI-l-~c). The deflection
at the end due to & concentrated load acting at that point is:

3
« X
yh = —IL'—'— svcsaces (XI"s)

3EI,

XI-2-0 APPLICATION

XI-2-1 To estimate the lowest critical whirling speed of
our transmission system Stodola's graphical method is used, with
the following assumptions:

a) Since the engine crankshaft portion has very short spans

comparative to the other sections in the system, it is assumed
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to be rigidly fixed for the purpose of determining shaft
deflections.

b) Since the Ajax couplings are of rubber-bronze bushed type,
they are assumed to behave like ball-joints in lateral deflection
of the shafting.

c) In the absence of exact dimensions, the generator rotor is
assumed to be of 9-1/4 in. solid shaft. The length of the overhang
portion is teken as 15 inches.

With these assumptions, the transmission system is
portrayed in figure (XI-2). The two bearings on the main shaft
are placed 144 in. apart with a 36 in. overhang on each end in
this figure. The values of shaft spans, flexural rigidities,

vweight per it ru, and weights of couplings are given.

XI-2-2 Deflection Curves for Lowest Critical Speed Calculations
By making use of the values given in figure (XI-2)

the deflection curves for the lowest critical speed estimation
were drawn.

The curves so drawﬁ are given in Appendix IV.
Each of the diagrems gives the deflection curves for a section
of shaft. The shaft sections in these diagrams are noted with
the same letters as those in figure (XI-2), namely ABC for the
generator rotor, DEFG for the mein shaft and HI for the crankshaft
overhang. The following is the summary of procedures followed
to get these curves.

1) static loading diagrems

Each shaft is divided into small sections, at the

centre of each of which is assumed to act its weight. The load
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(a)

(b)
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Y
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(c)
Figure (Xi-1)
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acting at each section is given in the diagrems. It may be
noted here that for the lowest critical whirling speed, the loads
of alternate spen act in opposite directions. The directions
of the loads also are illustrated in the dlagrams.
i1) Coupled static deflection curves

The curves were obtained by using the static loading
values and going through the steps similar to those deseribed for
the dynamic deflection curves below. The detailed drawings for
obtaining these curves have been omitted.

iii) Inertis loadings

If a frequenby, w, of 386 is assumed, the centrifugal
force acting at each point is given by Wy, where W is the weight
and y is the assumed deflection at that point. The static
deflection curve described in (ii) sbove is taken as the assumed
deflection curve so that the inertia loads can be obtained as the
product of the section weight given in the static loading disgram
and the corresponding coupled static deflection.

Note: It should be noted that, to save space, the curves for
both wncoupled and coupled systems are given on the same sheet.
The continuous lines and curves give the values for umcoupled
system and dotted lines and curves give the values for coupled
system, respectively.

iv) Dynamic bending moment diagrams (uncoupled)

These were obtained by using the dynamic loading
values for uncoupled system and going through the steps of graphical
statiecs. The corresponding load vector diagrams are given on

the right of the B.M. diagrams. The diagrams are shown with
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Bow's notation and no detailed explanations are necessary here.
The lower B.M. diagrams are simply the upper ones actuated for

integration to get slope diagrams.

v) Dynamic slope and deflection diagrams (uncoupled)

Having obtained the B.M; diagrams, drawing the
slope and deflection curves should give no difficulty; detailed
steps are given in the reference_books.(4)’(8)’(lo)’2l)‘

vi) Coupled inertia loadings

Since we have assumed ball-joints at the couplings,
deflections at the points C and H must, wvhen coupled, be respectively
equal to the deflections at the points D and G. The deflections
at these points in the diagrams so far obtained are not equal.

There must, therefore, be forces X and Y acting at C, D and G, H
as shown in figure (XI-2), when the shaft sections are coupled.
The values of X and ¥ could be obtained as follows:-

(a) Deflection at C

Deflection due to X, from equation (XI-2),

v = - 8% (8, 1) T 152 x 87 X
. = -

= -0.0000006 X
x 5EI, 5x 108 x 10°

So that, with the uncoupled deflection value from Diagram (A. IV-1):
Total deflection at c = -0000000051 - 0.0000006 X ses (l)

(b) Deflection at D
Deflection due to X and ¥, from equation (XI-3),

is:
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= 8.22 (ag + Lz) X 8-22 La Y
ydx_y +
3EI, 6EI,
362 x 180 362 x 144

= X+

3 x 101.3 x 108 6 x 101.3 x 108

0.00000768 X + 0.00000307 Y.

Using the value of wncoupled deflection from Diagram (A. IV-2):

Total deflection at D = 0.00000768 X + 0.00000307 Y - 0.0000466
she s PO POEETS (2)

(¢) Deflection at G

Through the steps similar to those in (b), we get:

Total deflection at G = 0.00000307 X + 0.00000768 Y - 0.0000448
LR 2R LI IR AR O ] (5)

(d) Deflection at H

Deflection due to ¥, from equation (XI-4), is:

) L5y 530
Yo, = - = - =1 = - 0.0000011 Y
3E I, 3 x 108 x 10

Hence, with the uncoupled deflection from Diagram (A. IV-3):
Total deflection at H = - 0.0000011 Y - 0.00000197 ... (4)

Equating (1) to (2), (3) to (4) and solving the

resulting equations, we get:

X = 3.68 1b. and Y 3.59 1b.
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vii) Coupled dynamic deflection curve

With the values of X and Y obtained above, dynamic
loading diagrams were corrected accordingly. The steps described
in previous paragraphs were then repeated until the coupled

dynamic deflection curves were obtsined.

XI-2~-3 Lowest Critical Whirling Speed

The ratios of the deflections on the assumed curve
to the dynamic deflections, at the points of meximum deflection,
are obtained below from the above diagrams. The ratios at maximum

deflection points only are considered here.

At point of max. deflection of span AB, L = 51x 107 = 388.

Yy 8 x 10‘6

1 noonoon " n o PR, Z' = 27 x 10—4 = 368
y 7 x 1070
y 52 x 10™4

" " " " n " " EF, = = = 371
SR TR

" "m0 n n n FL, Y = 23.5 x 10_4 = 392

?

y 6 x 10"6

which gives an average value of z'- =  384.
J

If this average value is taken, the approximate

value of lowest critical speed of whirling is from equation (XI-1):

N, = 187.5 /%" = 187.5 /384 = 3675 rpm.
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XII CONCLUSION

Some of official limitations laid down for a
pover trensmission system were mentioned in the introduction at
the beginning of this thesis. The following discusses in detail,
the compatibillty of the results obtained in the foregoing analysis

for our transmission system with these staendards.

1. Maximum Allowable Vibration Stresses

The Lloyd!s Register of shipping mentions in its
rule(?5) that within speed 1imits of Ng/y.o75 and 1.075 Ng, Ng
being the full load rpm., the vibration stresses in the crankshaft

and transmission shafting should not exceed the values given by

1

Ss, = X (4400 - 70 d) crevevesesesees (XTI-1)
1
vhere Sg, = maximum value of vibration stress for continuous
operation within the speed range specified above,
psi.
d = ghaft diameter, inches.

(In the case of crankshafts, d is the diameter of

crankpin or journal whichever is smaller).

The same rule gives maximum allowable value of
vibration siresses, in psi., due to transient critical speeds

vhich have to be passsed through in starting and stopping by:-

Ss,t = 15075 S;c I EEEEXEREEER) (XII-Z)
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Applying these equations to our system, where

d = 9.25 in., we get the following allowable stress values:-
Sg = % (4400 - 70 x 9.25) = }* 3752.5 psi.

for the speed range of 289 rpm to 322 rmm.
Se, = %3752.5x 5.75 = %1407 psi.

The maximm stresses occurring in the sjstem are
given by figures (A. III-1b) and (A. III-2b) for one- and two-node
vibration, respectively, in Appendix III. Since these occur at
different points and the stresses in the two-node vibration are
small, it is customary not to add the two, except in some extreme
cases. Now, from figure (A. III-1b), maximum stress occurring
in the hallow transmission shaft, within the speed range found

above is:

Sg. = *1300 x1.07 = X 1391 psi.
c

Agein from figure (A. IIT-1b), maximum vibration

stress at transient critical speed of 126 rpm is:

S, = * /950 x 1.07 = * 5297 psi.

Both of these values are below the limitations.

Note: In our case, the stresses in the hallow shaft at the point

considered above of the system will be even smaller, if the stresses

due to two-node criticels are taken into accoumnt. The total

maximum stress occurring at the nodal point in the crankshaft between

the cylinders 1 and 2, which has the second highest stresses, is

nuch lower than the above wvalues.
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2., Light Flickering Level

The maximum values of cyelic irregularity Ce for
allowable light flickering level, set down by the British Standards
Institution(‘%), have been discussed in Section III and calculated
for our engine as equal to 1/75 in (III-2-2).

The approximate value of cyclic irregularity C,,
actuslly occurring in our system was found to be equal to 0.000036,

vhich ig very much less than the above maximum limitation.

3. Maximum Vibration Torque at the Generator Armature

The Lloyd!s Register of shipping recommends
reducing the vibration torques applied at the generator armature
to the lowest value and sets the following limitations for ordinary
armatures:-

(a2) Not more than twice full load engine torque over the speed
range * 7-1/2 per cent on each side of the full load
revolutions.

(b) Not more then six times full load engine torque in passing
through transient criticals.

Full load engine torque in our casse is, from
Section (IX-2-4), 286000 lb.~in.

Now, if we take the maximum stress obtained in
(1) above = ¥ 1391 psi., which is the same as * 1300 psi.
in a solid shaft of diameter d,,

Maximum vibration torque at the armature

= 1300 x £ x 9.25° = * 202,000 1b.-in.
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vhich is only about 70 per cent. of engine full-load torque.
Again, at the transient critical speed of 126 rpm.,

we have:
Maximum torgue at the armature
3
= ¥ = o". .
4950 x-ig x 9.25 769000 1lb.-in
vhich is about 2.7 times the full load engine torque.

Le Whirling Speed of Engine-Generator System

It is customary to design so that the operating
speed of the system is removed at least 20 per cent from any
critical speed. The lowest critical speed of whirling of the
system under consideration has been found in Section (XI) approxi-
mately. The value was found to be relatively far away up from
the operating speed of the system so that there may not be any
trouble due to whirling.

It is thus concluded that the system possess

satisfactory operating properties in respect to the limitations
leid down by the authorities.




40
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9.
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APPENDIX I

ENGINE AND GENERATOR DATA

1, The following is a list of data on

turer, in addition to the drawings

ENGINE
B.H.,P., per cylinder. . . .
Compression ratio. « « « &
Stroke ¢ ¢ ¢ ¢ o 4 ¢ 0 o
TeDelMe o o o o o o s o o o
Diameter of piston , . .
Area of cylinder bore. . .

Weight of piston complete.

Total weight of a connecting
(including bottom end DOLES) « « o o o o o o o o 438  1b,

Length of a connecting rod

the engine supplied by the manufac-

given in Appendix V,

b e e e e s e e s . 160

« « . (Approximately) 1:14
e % 6 ¢ s s e s o e o 22.4 in,
e e s s e e s e e e e 300

e o o ¢ o s o s e e & 13.4 in,
C e e e e e e ... 180.6 in°

003005000-0536 1b.

rod complete

(center to center of bearings) . + o ¢« o « o« » » 135 cm,

Distance of C.G, of connecting rod from center of
Crankpinoocoooooo

SCAVENGE PUMP

e @& 6 o e © & o & o o 5201 Che

(a) Top piston and center rod, etc.

StI‘Oke ® e ® 8 o & o & & & 06 ¢ & ° 8 e & o o & o 24 Cli.

Total reciprocating weight « « « « ¢« + &« &« « « « 442 1b,

Total rotating weight. Scavenge. shaft rot. parts +92 1b.

Net area of top piston « 4 o o ¢ ¢ ¢« ¢« ¢ o ¢ o « 918 in,

Length of the connecting rods (l center and
2 side) between centers of the bearings . . . 82. cm,




(b) Lower piston and side rods, etc.

Total reciprocating weight.

»

. 40 1b,

Total rotating weight . Scavenge shaft rot.parts ,+170 1b,

2. The following is a list of data on the generator.

GENERATOR
Model « o o « & o
TeDele o o o o o
Power Factor. . .
KeWe ¢ 6 0 o o o
KVA, o 00 ..
Moment of inertia
Weight of stator.

Weight of rotor .

of the rotor.

*

*

Span between the centers of bearings.

APL _24

. 300
. 0.8
. 8%6
1045
13800 1b.in.sec?
4750 1b,
3900 1lb.

72 in,




APPERDIX II

TABLES OF RESULTS

Table ( 1 )
Harmonic
Order Expression for Ha
1 Sin « + K/4 + B /16 + 15K° /512
2 Sin 2a | - 1/2 - K4/32 - K6/32
3 Sin 3a - 3K/4 - 9B /52 - 81E° /512
4 Sin 4a - K%/4 - %8 - x%/16
5 Sin 5a + 5K /32 + 75K5/512
6 Sin 6a + 31{4/32 + 3K6/32
Table ( 2 )
Harmonic Expression for Hb
Order
1 Sin a | 1,0
2 Sin 20 + /2 + B /8 + 15K° /256
4 Sin 4a + /16 + 3K° [64
6 Sin 6a + K0 /85,3
Table ( 3 )
Hag:g::c Expression for Hc
2 Sin 2a - B%/2 + K752 4
4 Sin 4a | + k4 +¥/8 +
6 Sin 6a - 3K6/32_




ii

Table ( 4 ) Inertia Torque Correction
Harmonic Ha' anz wcHa Harmonic H a=WH
Order Order & ca
psi psi
1 Sin o | 0,053348 7.6554 4 Sin 4a [|-0.0113842 |-1,63%6
2 Sin 2a 0,50000648 [-~T71,7509 5 Sin 5a | 0,0015318 | 0,2198
3 Sin 3a (=0, 160955 |-2%,0970 6 Sin 6a | 0,0001945 | 0,0279
Table ( 5 ) Dead Weight Correction for Reciprocating Part
Harmonic Hb an= erb Harmonic Hb 8 = w}Hb
Order A Order A
psi psi
1 Sin a |1l 5 4 Sin 4a 0,0006073 |=-0,00%30365
2 Sin 2a | 0,106696 | 0,5335 6 Sin 6a | 0.0000052 | 0,00002595
Table ( 6 )
 Moment of Unbalanced Rotating Weight
Weight Moment Arm Moment
Mass 1b, in, 1b.=in,
Connecting
. rod. rot. mass 269 11,2 3012,80
Crank pin 141.5 11,2 1584.80
wI 144,18 9.1 1312,04
wII 31,62 13.64 431,29
wIII 3,882 15.77 61,22
1
wIV 31,88 13,57 432.61
Wiv 10,58 12,104 128,06
Total 632,642 6962,82




iii

Table ( 7 )

Corrected an Values of First Six Harmoniecs

Back

Reference

Correction

Sin a Sin 2a

S8in 3a

Sin 4a

Sin 5a

Sin 6a

Table (4)

Inertia Torque
of reciprocating
weight

T+6554 |=71.7509

-23,0970

-1.6336

0.,2198

0,0279

Table (5)

Dead Weight
correction for
reciprocating
part

5.0000 | 0,5335

-0,0030

0,00003

Page 19

Dead Weight
correction for
unbalanced
rotating part

4,4091 | -

Resultant
correction

17,0645 =71.2174

‘23 00970

~1,6366

0,2198

0,0279%

(as pressure

a
n

61,9930 | 66.8010

47,0300

22,2400

13,8040

9.5660

Corrected
values of

-4
n

23,9330

20,6034

14,0238

9.59393




iv

Table ( 8 )

Resultant Harmonic Coefficients of

Engine Torque

Harmonic. Sine Coefficient Cosine Coefficient >
Order T =\/a  +
8 b n n

n n n
0 - 25,298 25.298
1 79,0575 29,315 84,319
2 - 404164 09882 4.505
3 23,9330 - 4,911 24,310
4 2006034 - 60667 210655
5 14,0238 - 8,850 16,585
6 9.5939 - 6,566 ' 11,626
7 9.5660 - 6,141 11,368
8 5.0450 - 5.594 7.533
9 2,8880 - 3.685 4,682
10 1.7770 - 3,503 3.928
11 O¢2450 - 20703 20714
12 0,0850 - 1.715 1,717
13 - 0,1800 - 1.700 1.710
14 - 0.5290 - 1.120 1,283
15 - 0.2670 - 0.765 0.810
16 - 0.2700 - 0.768 0.814
17 - 0.1800 - 0.560 0.588
18 . - 0,248 0,248




Table

(9-2a)

One-Node Vibration

First Try, ¥ = 90 rad./sec.; V¥ 2 - 8100 rad?/sec?
A B c D E F G H 1 J K
T il bl el Pl bt Rl IO B v b
inertia || deflection || plane deflection| defin. at
of mass Damper
dq L, J J-w2/106 a J-w2.a/106 | £ J-w2a/10 c Col.H/Col.I [Col.HAL25
in. in. lb;in:sec% 1bsin. /rad. || radians 1b3in, 1bsin. 1bsin, /rad) radians psi.
Damper 9.25 | 95.9 617 4.9977 1.0000 § 4.9977 4.9977 90 x 10° | 0.0555
Sc.Pump | 9.25 | 62.1 130 1,0530 0.9445 | 0.9946 5,9925 | 139 x 10° | 0.0431
Cyl.No.l| 9.25 | 27.3 400 32400 0.9014 | 2.9205 8.9128 | 316 x 10° | o0.0282
woon2fl 9,25 | 27.3 400 3, 2400 0.8732 | 2.8292 11.7420 | 316 x 10® | 0.0372
" "3 9.25 | 27.3 400 3.2400  [10.8360 | 2,7086 14,4506 || 316 x 10° | 0.0457
w o omgll 9.5 | 273 | 400 3.2400 || 0.7903 | 2.5606 17,0112 316 x 10° | 0.0538
nmows | 9,25 | 27,3 | 400 3.2400  [0.7365 | 2.3863 19,3975 316 x 10® | 0.0614
" mgll 9.25 | 27.3 400 3.2400 0.6751 | 2.1873 21,5848 316 x 10° | 0.0683
m w7l 9,25 }280,17 | 400 3, 2400 0.6068 | 1.9660 23,5508 |30-8x 10° | 0.7646
Gererator|| - - 13800  ||111,7800 -0.1578 [-17.6389 50,9119 - - -
—4




Table ( 9 - b )

One-Node Vibration
- Second Try, W = 94,3 rad./sec.; Wl =

8900 ra‘td?/sec;2

B c D E F G H I J K
Equiv% || Equiv™ | Moment Torque Deflection|| Torque in Total Shaft Change Stress for
Mass dia. length | . of . per unit | in plare| plane of . in 1 deg.defln,
inertia || deflection | of mass mass torque stiffness |deflection |at Damper
d, I, J , J-w2/108 8 J-w2.a/10° [z J-wa/l0®} ¢ Col . H/Col. Ij Col HA¥SA>
in. in, [Ibsinssec,lbsin/rad. [radians 1b3in, 1bsin. 1bsin,. /rad.| radians psi.
Damper | 9.25 | 95.9 617 | 5.4913  [1,0000 | 5.4913 5,4913 90 x 10° | 0.0610
Sc.Pump| 9.25 | 62.1 130 | 1.1570  0.9390 | 1.0864 6.5777 | 139 x 10° | 0.0473
Cyl.No.llf 9.25 | 27.3 400 3,5600 0.8917 | 3.1744 9.7521 316 x 10° | 0.0309
oot 2l 9,25 27,3 400 3.5600 0.8608 | 3,0644 12,8165 316 x 10° 0.0406
"oom3 9.25 27,3 400 3.5600 0.8202 2,9199 15,7364 316 x 10° 0.0498
woomgll 9.5 | 27.3 400 | 3.5600  [0.7704 | 2.7426 18.4790 | 316 x 10° | o0.0585
m nsgl 9,25 | 27,3 200 | 3.5600  Jo.7119 | 2.5344 21,0134 | 316 x 10° | 0.0665
"omel 9,25 | 27.3 400 345600 0.6454 | 2,2976 23,3110 316 x 10° | 0.0738
noowql 9.25 [280.17 | 400 | 3.5600  fo.5716 | 2.0349 | 25.3459 [30-8 x 10° | o0.8223
Whmemmor - - 13800 [122.8200 |0, 2507 30,7910 -5.4451 - - -

TA



_ _
Table ( 9 )
One-Node Vibration
Third and Final Try, W = 92.36 rad./sec.; w? = 8530 rad?/sec?
A B c D E F G H I J K
Equiv't | Equiv't || Moment Torque tionff Torque in Total Shaft Change Stress for
Mass of per unit in plane| plane of in 1l deg,defln.
"dia. length | inertia deflectiox_l of mass mass torque stiffness Heflection |at Damper
dg L J J-w2 /106 2 Jow2.2/100 [T J.w2a /208 c ColH/Col.I |Coli/ll > 25d3))
in, in. lbsjn:secz., lbrinsy/rad, | radians 1bsin. 1bTin, 1bsin./rad. radians psi.
Damper 9.25 95.9 617 502630 1,0000 5,2630 5,2630 90 x ;os 10,0585 591.1
Sc.Pump | 9.25 62.1 130 1,1089 0.9415 1.0440 6,3070 139 x 100 0.0454 708,.3
Cyl.No.lj 9.25 27.3 400 3.4120 0.8961 3,0575 9.3645 316 x 10° 0,0296 1051,7
non 2l 9,25 27.3 400 3.4120 0,8665 2.9565 12,3210 | 316 x 106 0,0390 1383,8
" "3l 9,25 27.3 400 3,4120 0.8275 | 2.8234 15.1444 |316 x 10° | 0.0479 1700.9
"om 4l 9.25 27.3 400 3.4120 0.7796 2,6600 17,8044 316 x 106 0.0563 2000,0
""s5H 9.25 27.3 400 3,4120 0.7233 2.4679 20,2723 316 x 10° 0.0642 2276.8 L
" "6l 9.25 27.3 400 3.,4120 0.6591 || 2.2489 22,5212 |316 x 10° | o0.073 2529,3
n nal g [oso.17 | 400 | 3.4120 [o.5878 | 2.0056 24,5268 |08 x 10° | 0.7963 27546
HGmerator - - 13800  J117.7140 .0,2085 §-24.5434 -0,0166 - - -

Tia



Table ( 10 - a )

Two-Node

Vibration

First Try, v = 252,rad./se¢.; wl o 63500 radg/%ec?

Ee:m-atcr

A B o D E F G H 1 J K
Equiv't || Equiv't | Moment Torque Defhwtﬂnf Torque in Total Shaft Change Stress fbr
Mass of per unit in plare| plane of in 1 deg.defln,
dia, length | inertiafldeflection of mass mass torque stiffness deflection [lat Damper
d, L, J Jowea/10d e J. w2 a/106 (| T J-w2a /106 c Col.H/Col.I [ColHAY254d3
in. in.  [Brinsec® 1bsin, /rad. || radians 1bsin. 1bsin. | 1bsin, /raddl radians psi
Damper 9.25 95.9 617 39,1795 1.0000 || 39,1795 39.1795 90 x 10° 0.4353
Sco.Pump || 9.25 62.1 130 8.2550 0,5647 | 4.6616 43,8411 139 x 10° 0.3154
Cyl.No.l 9.25 27.3 || 400 25.4000 || 0.2493 6.3322 50,1733 316 x 10° 0.1588
"2l 9,25 27.3 400 25,4000 | 0,0905 2.2987 52,4720 | 316 x 10° 0,1661
won o3k 9,25 27.3 400 25,4000 [<0.0756 |~ 1.9202 50,5518 || 316 x 10° 0.1500
"M 4l 9.25 27.3 400 25,4000 [0.2356 |- 5.9842 44.5676 316 x 10° 0,1410
mrs5l 9,25 27.3 400 25.4000 |-0.3766 |- 9.5656 35,0020 316 x 10° 0.1108
mon gl 9,25 27.3 400 25,4000 [-0.4874 [-12.3800 23,6220 || 316 x 10° 0,0716
mowoql 9,25 |[280,17 | 400 25.4000 |-0.5590 |l-14.1986 8.4234 |50.8 x 10° || 0.2735
- - 13800 [[876.3000 {0.8325 [-729.5198 L721,0964 - - -

TITA



Table ( 10 - b )

Two-Node Vibration
Second Try, W = 270 rad./sec.; W oo 72900 rad?/sec?

A B c D E I F G H I J K
4l
Equiv' t{[Equiv't [Moment Torque flection]| Torque in Total Shaft Change | Stress for
Mass of per unit |in planell plane' of in 1 deg.defin.
dia. length [inertia § deflection {|of mass mass torque stiffness deﬂec_tion at Damper
I ,
d, L, J , J- w2 /100 a J. w2 a/106] ¥ J:«:?.a,/mJ c Col.H/Col. I}Cal.HAX2543
_ in. in. biinssecs 1bTin. /rad. || radians 1b3in. 1blin. 1blin. frad] radians psi
Damper 9.25 95.9 617 44.9793 1,0000 44,9793 44.9793 90 x 106‘ 0. 4998
Sc.Pump| 9.25 | 62.1 | 130 9.4770 | 0.5002]  4.7204 | 49.7197 [ 139 x 16° | o.3577
Cyl.No.lj 9.25 27.3 400 29.1600 0.1425 4,1553 53.8750 |f 316 x 10% | 0.1705
" w2 g.25 ' 27.3 400 29.1600 -0.0280f - 0.8165 53.0585 || 316 x 10° 0.1679
"or3l 9,25 27.3 400 29.1600 -0.1959| - 5.7124 47.3461 “ 316 x 10° 0.1439
!
wowall 925 || 27.3 || 400 29.1600 | -0.3458] -10.0835 | 37.2626 || 316 x 10® | 0.1179
" rs5l o9.25 27.3 400 29,1600 ~0.4637) -13.5215 23.7411 | 316 % 10° 0.0751ﬂ
" "el 9.25 Jt27.3 400 29.1600 || -0.5388( -15.7114 8.0297 [ 316 x 10° 0.0254
"7l o9.25 280.17 400 29.1600 -0.5642] -16.4521 - 8,4224 [30.8 x 106 -0.2735
Generatar - | - 13800 {1006, 0200 -0,2907|| -292.4500 | -300,8724 - - -

XT



Table ( 10 - ¢ )

Two-Node Vibration
Third Try, v =278.8 rad. /sec.; wl o 77720 rad?/sec?

A B C D E F G H 1 J K
Equiv't||Eguiv't ||Moment Torque Deflection forque in Total Shaft Change Stress for
Mass of per unit |in plane| plane of in 1 deg.defln,
dia. length |inertia || deflection of mass mass torque stiffness {deflection at Damper
dg L, J J-w2/106 a Jow a/106 z J-w2-a/106 _ ¢ Col.H/Col,I|Col HAL2547
in. in, Ibtinssee,|| 1bsin, /rad.|| radians 1lbTin. 1bTin, |1bTin./rad.| radians psi
Damper 9.25 95.9 617 47,9532 1.0000 47,9532 47,9532 90 x 106 0.5328
Sc.Pump| 9.25 | 95.9 130 10.1036 | 0.4672]  4.7204 | 52.6736 | 139 x 10° | 0.3790
Cyl.Nall| 9.25 27.3 400 31,0880 0.0882 2.7420 55.4156 | 316 x 10° 0.1754
"ol 9,25 27.3 400 31,0880 | -0.0872|| - 2.7109 52,7047 | 316 x 10° 0.1668
nowszl g5 | 27.3 400 31,0880 | -0.2540 - 7.8964 | 44.8083 | 316 x 10° | o.1418
"4l 9.25 27.3 400 31,0880 || -0.3958| =12,3046 32,5037 | 316 x 10° 0.1029
" "5 9.25 27.3 400 31.0880 || -0.4987| =-15.5036 17,0001 | 316 x 10° 0.0538
mo"ell 9.25 27.3 400 31,0880 | -0.5525| -17.1761 || - 0.1760 | 316 x 10® | -0.0006
monql 9,25 | 280,17 | 400 31,0880 | -0.5519| -17.1575 | - 17.3335 [30.8 x 10° | -0.5628
Generatar - - 13800 1072.5360 | -0.0109}f -11,6906 || - 29.0241 - - -




L Table ( 10 )
Two-Node Vibration
Fourth and Final Try, W = 278,92 rad.-/sec.; W\2 = 77800 rad?/sec?
A B C D E F G H I J K
Equiv't{ Equiv't{|Moment Torque Deflectiay] Torque in Total Shaft Change Stress for
Mass of per unit in plare| plane of" in 1deg.defln,
disa, length finertia [ deflection Jof mass mass torque stiffness jdeflection [[at Damper
d, L, J 3. w2 /10° a 3w a/10% 5.5 a AP c Col.H/Col. I Col.H/1125d
in. in. |[Ibdnssec?| 1bsin, /rad. radians | 1b.-in. 1b.-in. |l1bTin, /rad.| radians psi
Damper 9.25 || 95.9 617 48,0026 | 1.0000] 48.0026 48,0026 | 90 x 10%| o0.5334 5391.1
Sc.Pump || 9.25 || 62.1 130 10,1140 | 0.4666 4,7192 52,7218 | 139 % 10°| 0.3793 5921 ,1
Cyl.No.lfl 9.25 27.3 400 31.1200 | 0.0873 2,7168 55,4386 | 316 x 10°| 0.1754 6226.3
momol 9,25 | 27,3 400 31,1200 || -0.0881) - 2,7417 52.6969 | 316 x 106| 0.1668 5918.3
mousl o925 | 27.3 400 51,1200 | ~0.2549| - 7.9325 | 44.7644 | 316 % 10°| 0.1417 5027.4
"onyg 9.25 27.3 400 31,1200 || -0.3966| -12.3422 32,4222 316 x 10%] 0.1026 3641.3
monsll g5 || 273 400 31,1200 | -0.4992| -15.5351 | 16.8871 | 316 x 10°| 0.0534 1896.6
mongll 9.25 27.3 400 31,1200 |f -0.5526] -17.1969 | - 0.3098 | 316 x 10°] -0.0010 - 34.8
" "7 9.25 | 280.17 400 31,1200 || -0,5516 -17.1658 | -17.4756 | 30.8 x 10°| -0.5674 -1962,7
Genera tor - ~ 13800 | 1073.6400 | 0.0158] 16.9640 0.5116 - - -
| —

X
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Table ( 11 )

Critical Speeds Nc = F/n

One-Node Two-Node
Harmonic Critical Speeds Harmonic Critical Speeds
Orders Nc Orders Nc
1 882 1 2664
2 441 2 1332
3 294 3 888
4 221 4 666
5 176 5 533
6 147 6 444
7 126 T 381
8 110 8 333
9 98 9 296
10 88 10 266
11 80 11 242
12 T4 12 222
13 68 13 205
14 63 14 190
15 59 15 178
16 55. 16 167
17 52 17 157
18 49 18 148
19 46 19 140
20 44 20 133
21 42 21 127




xiii

Table ( 12 )
Engine Amplitudes for One-Node Vibration
a, = 0.9014 a5 =.0,8732 a, = 0.7903 ac = 0.6751
as = 0,8360 ag = 0.7365 a, = 0,6068
a:2+a3 = 1,7092 a4+a5 = 1,5268 a.6+a.7 = 1,2819
a2-a'3 = 0,0372 a_.4-a5 = 0,0538 a.6—a = 0,0683
-, - .O 2 - = wme - = o
a3 2, 0,037 a5 a4 0.0538 a7 a 0,0683
Table ( 13 )
able 3 Engine Amplitudes for Two-Node Vibration
8, = = 0,2549 ag = =0,4992 a, = =0,5526
ayta; = -0,3430 ey = -0,8958 | agta; = -1,1042
a2-a3 = 0,1668 a4= a5= 0,1026 ac-8, = -0,0010
=Y = =, = =, = = 00
a3 a, 0.1668 as-a4 0,1026 a7 a 0,0010
Table ( 14 ) Summary of‘ZEZ Values
One=Node Two-Node
Harmonic Orders Z'E; Harmonic Orders T 3;
1, 8, 15, etc., and l, 8y 154 etc. and
6y 134 20, etc. 0.0713 6, 13, 20, etc. 0.3094
2, 9, 164 etc, and 2y 9y 164 etc, and
5, 12, 19, etc. 0.0475 5, 12, 19, etc. 0.0848
3y 10y 174 etc. and 39 109 17, etc., and
4, 11, 18’ etc, 0.4808 49 11, 18’ etc. 100950
7, 14’ 21, etc. 594193 77 14g 21, etc. 204303



xiv

Table ( 15 ) L dJd a2 for One=Node Vibration
Mass J a a2 J°a2
Table 9 Table 9 Lb:Ins:Sec?
Damper 617 1,0000 1,0000 617
Se¢. Pump 130 0.9415 0.8864 115,2
Cyl, No, 1 400 0,8961 0,8030 321,2
" w2 400 0,8665 0,7508 300,73
" " o3 400 0,8275 0,6848 2739
" " o4 400 0,7796 0.,6078 243,1
" "5 400 0,7233 0,5232 209,3
" " 6 400 0,6591 0.4344 173.4
L 400 0.5878 0.3455 138.2
Generator 13800 =0,2085 0,0435 600,3
2
LJea 2991.9
Table ( 16 ) 5
L J a for Two=Node Vibration
Mass J a a2 Jd o a2
2
Table 10 Table 10 LbeInssSec,
Damper 617 1.0000 1,0000 617
Sc, Pump 130 0,4666 0,2178 28,3
Cyl, No. 1 400 0,0873 0,0076 301
" no2 400 0,0881 0,0078 3.l
" "3 400 0,2549 0.,0650 26,0
" L | 400 0,3966 0,1573 62,9
" " 5 400 0.4992 0,2492 99.7
" "6 400 0,5526 0.3054 122,2
" L4 400 0.5516 0,3043 121,7
Generator 13800 0,0158 0,00025 365
2
z Jd o a 108705




Table ( 17 ) i
m—— il
Equilibrium Stresses '
One-Node Vibration
Har- | Critical |Reslt.Harc. Vector Sum | Reslt.Harc{Equilibrium|Equilibrium
monic Speed Component of engine | Component | Amplitude Stress
Order Nc per cycle Amplitudes | all cycles Go (Maxo)
n T — o —
R.P.M, n z &, Tn z 8, Degrees Sso 9 psi.
F/n Equation [Highest Vahe
Table (11)| Table (8) | Table (14) | Trom S0t K
vizr - ¢ |°f Table 3
b 4 90
1 882 84,319 0,0713% 6,012 0,02130 58,67
2 441 4,505 0,0475 0,214 0,00076 2,09
3 294 24,310 0,4808 11,693 0.04139 114,03
4 221 21,655 0.4808 10,416 0,03687 101.56
5 176 16,583 0,0475 0,788 0,00279 76.85
6 147 11,626 0,0713 0,829 0,00294 T.T70
7 126 11,368 5.4193% 61,603 0,21808 600,72
8 110 T4533 0,0713 0.517 0.00183 5.04
9 98 4,682 0,0475 0,222 0,00079 2,15
10 88 30,928 0.4808 1.889 0,00687 18,92
11 80 2,714 0,4808 1,305 0.00462 12,73
12 74 1.717 0.0475 0,082 0.00029 0,80
13 68 1,710 0.0713 0,122 0,00043 1,19
14 63 1.238 5.4193 6,709 0.02375 65,22
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Table ( 18 )

Equilibrium Stresses

Two-Node Vibration

Har- | Critical [Reslt.Harmc{ Vector Sum Reslt,Harﬁa,Equilibrium Equilibrium
monic Speed Component | of Engine | Component | Amplitude Stress
Order Ne per cycle | Amplitudes | all cycles 8, (Max, )

n R;Po.Mo T 2 —t ° i
n 8¢ Tn z C Degrees SSo 5 psi.
F/h Equation |Highest Vale
from Col, K
Table (11) | Table (8) | Table (14) of Table 10
VIIT - 7
x 0
o
1 2664 84.319 0,309 26,055 0,0278 173,09
2 1332 4.505 0,085 0,383 0,0004 2,49
3 888 24,310 1,095 26,620 0.,0284 176,83
4 666 21,655 1,095 23,712 0.0253 157,53
5. 533 16,585 0,085 1,410 0,0015 9.34
6 444 11,626 0,309 3,592 0,0038 | 23,66
7 381 11,368 2,430 27.624 0.0295 183,68
8 333 Te533 0,309 2,328 0,0025 15,52
9 296 4,682 0,085 0,398 0,0004 2,49

10 266 3,928 1,095 4,301 0,0046 28,64

11 242 2,714 1,095 2,972 0,0032 19,92

12 222 1.717 0,085 0.146 0,0002 1,25

13 205 1.710 0,309 0.528 00,0006 3.74

14 190 1.238 2,430 3,008 0,0032 19,92
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Table ( 19 )
Undamped torsional vibration stresses at non-resonant speeds
One=Node Vibration
R.P.M, N Dyna@ic Vibration R.P.M, N Eyna?ic Vibration
Y magnifier] stress Y agnifier| stress
N c M SS = M Sso N c M SS =Msso
Harmonic Order n = 1 Harmonic Order n = 4
No = 882 Ne = 221
88 0.1 1,01 59.26 66 0,3 1.10 111,72
176 0.2 1,04 61,02 88 0.4 1,19 120,86
265 0.3 1,10 64.54 111 0.5 1.34 136,09
353 0.4 1.19 69,82 133 0.6 1.56 158,43
529 0.6 1.56 91,53 155 0.7 1,96 199,06
706 0.8 2,78 163,10 177 0.8 2,78 282,34
199 0,9 5.26 534,21
Harmonic Order n = 3
Ne = 294 243 1.1 4,76 483,43
29 0,1 1,01 115,17 265 1.2 2,27 230,54
59 0.2 1.04 118,59 288 1.3 1.45 147.26
88 0.3 1,10 125,43 310 1.4 1,04 105,62
118 0.4 1.19 135,70 332 1.5 0,80 81,25
147 0.5 1.34 153,80 354 1.6 0.64 65,00
176 0.6 1.56 177,89 376 1.7 0,53 53,83
206 0.7 1,96 223,50 398 1.8 0,45 45,70
235 0.8 2,78 317,00 420 1.9 0.38 38059
265 0.9 5026 599.80 440 2.0 0.34 34,53
324 1.1 4.76 542.78
353 1,2 2.27 258,85 Continued
382 1.3 1.45 165,34
412 1.4 1.04 118.59
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Table ( 19 )

contd,

Undamped torsional vibration stresses at non-resonant speeds
One-Node Vibration

R.P.M, N Dyngmic bibration R.P,M, N Dyga?ic Vibration
X magnifier| Stress X magnifier| Stress
N c M Ss ---MSSO N c M Ss = Msso
Harmonic Order n = 5 Harmonic Order n = 7
No = 176 N = 126
88 0.5 1.34 102,98 50 0.4 1.19 714.86
106 0.6 1,56 119.89 63 0.5 1.34 804.97
123 0,7 1.96 150,63 76 0.6 1,56 937,12
141 0.8 2,78 213,64 88 0,7 1.96 1173,41
158 0.9 5626 404,23 101 0,8 2,78 1670,00
113 0.9 5026 3159.79
194 1.1 4,76 365.81
211 1.2 2.27 174045 139 1.1 4,76 2859,43
229 1.3 1.45 111,43 151 1.2 2,27 1363,63
246 1.4 1,04 79,92 164 1.3 1.45 871.04
264 1.5 0.80 61.48 176 1.4 1,04 624,75
282 1.6 0.64 49,18 189 1.5 0,80 480,58
299 1.7 0.53 40,73 202 1,6 0,64 384,40
317 1.8 0.45 34,58 214 1.7 0,53 518,38
227 1.8 0.45 270,32
Harmonic Order n = 6
Nc = 147 240 1.9 0,38 228,27
252 2,0 0,34 204,25
103 0.7 1,96 15.09 315 265 0.19 114,14
118 0.8 2,78 21.41 378 3.0 0,13 78,09
132 0.9 5.26 40,50 504 4,0 0,07 42,05
162 1,1 4,76 35,55 Continued
177 1.2 2,27 17.48
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Table ( 19 ) contd,
Undamped torsional vibration stresses at non-resonant speeds
One~Node Vibration
R,P.M, N Dynamic | Vibratim R.P.M, N Dynamic [Vibration
Nc magnifier| stress Nc magnifieny stress
N M S5 =MSgo N M Sg =MS g,
Harmonic Order n = 10 Harmonic Order n = 14
N, = 88 Ne = 63
44 0.5 1.34 25035 32 0.5 1,34 87.39
53 0,6 1,56 29,51 38 0.6 1,56 101.74
62 0,7 1,96 37,08 44 0,7 1,96 127.83
70 0.8 2,78 52,60 50 0.8 2,78 181,31
79 0,9 5026 99,52 57 0.9 5026 343,06
97 1.1 4,76 90,01 69 1.1 4,76 310,45
106 1,2 2,27 42,95 76 1,2 2,27 148,05
114 1.3 1.45 27043 82 1.3 1,45 94.57
123 1.4 1,04 19,68 88 o4 1,04 67.83
132 1.5 0.80 15,14 95 1.5 0086 52,18
101 1.6 0,64 41,74
Harmonic Order Nn = ;é 107 1.7 0,53 34,57
o =
113 1.8 0,45 29,35
48 0.6 1,56 19,86 120 1,9 0,38 04,78
56 0.7 1,96 24,95 ==========J=========J
64 0.8 2,78 35.39
72 0.9 5026 66,96
88 1.1 4,76 60,60
96 1,2 2.27 28,90
104 1.3 1.45 18.46
112 1.4 1,04 13,24




Table ( 20 )
Undamped torsional vibration stresses at non-resonant speeds
Two=-Node Vibration
|- ———
R.P.M, N Dynamic | Vibration R.P.M, N Dynamic [Vibration
N magnifier| stress I magnifier| stress
N c M Ss= M8, N c M SS =MSSo
Harmonic Order n =1 Harmonic Order n =5
No = 2664 Ne = 5%3
0 0 1 170,39 107 0,2 1,04 9,71
267 0.1 1,01 174,82 160 0.3 1,10 10,27
533 0,2 1,04 | 180,01 213 0.4 1.19 11,12
= —— - — 267 005 1034 12052
Harmonic Order n = 3 320 0,6 1,56 14.57
Nc = 888
373 0.7 1.96 18.31
89 0,1 1,01 178,60 426 0,8 2,78 25,97
178 0,2 1,04 183,90 479 0.9 5.26 49,13
266 0.3 1.10 194,51
355 0.4 1.19 210,43 Harmonic Order n = 6
Nc = 444
444 0.5 1.34 236.95
89 0.2 1,04 24,61
Harmonic Order n = 4 133 0.3 1,10 26,03
Ne = 666
178 0.4 1.19 28,16
67 0,1 1,01 159,11 222 0.5 1,34 31,70
133 0.2 1.04 163,83 266 0.6 1,56 36,91
200 0,3 1.10 173,28 311 0,7 1,96 46,37
266 0.4 1.19 187,46 355 0.8 2,78 65,78
333 0.5 1.34 211,09 400 0.9 5.26 124,45
400 0.6 1.56 245,75
466 0.7 1,96 | 266.80 Continued
|
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Table ( 20 ) contd,
Undamped torsional vibration stresses at non-resonant speeds
Two=Node Vibration
R.P.M, N Dyngmic Vibration R,P. M, N Dyngmic Vibration
N magnifier | stress Y magnifier| stress
N c M Sy = M8 N c M Ss = MSSo
Harmonic Order n = 7 Harmonic Order n = 10
Ne = 381 Ne = 266
114 0,3 1.10 202,05 133 0.5 1.34 38,38
152 0.4 1.19 218,58 160 0,6 1.56 44,68
191 0.5 1,34 246,13 186 0,7 1,96 56,13
229 0.6 1.56 286,54 213 0,8 2,78 79,62
267 0,7 1.96 360,01 239 0,9 526 150,65
305 0.8 2,78 510,00
343 0.9 5.26 966,16 293 1.1 4.76 136,33
319 1.2 2,27 65,01
419 1.1 4,76 874,32 346 1.3 1,45 41,53
457 1.2 2,27 416,95 372 1.4 1.04 29,79
399 1.5 0.80 22,91
Harmonic Order n = 8 =
N, = 333
100 0.3 1,10 17,13
133 0.4 1.19 18,53
167 0.5 1.34 20,86
200 0.6 1,56 24,29
266 0,8 2,78 43,29 Continued
300 0.9 5.26 81,90
366 1.1 4,76 74,11
400 1,2 2,27 35.34
433 1.3 1.45 22,58




xxii

Table ( 20 )

contd,

Undamped torsional vibration stresses at non-resonant speeds
Two-Node Vibration

R.P.M, N Dynamic |Vibration R.P.M, N Dynamic {[Vibration
Y magnifier! stress N magnifier | stress
N c M SS =MSSo N c M Ss = MS ¢,
Harmonic Order n = 11 Harmonic Order n = 14
N = 242 Neo = 190
c
121 0.5 1.%54 26,69 95 0.5 1.34 26,69
145 0.6 1,56 31,08 114 0.6 1.56 31,08
170 0.7 1.96 39,04 133 0.7 1.96 39,04
194 0.8 2,78 55.38 152 0.8 2,78 55.38
218 0.9 5626 104,78 171 0.9 5626 104,78
266 1.1 4,76 94,82 209 11 4,76 94,82
290 1.2 2.27 45,22 228 1.2 2.27 45,22
315 1.3 1,45 28,88 247 1.3 1.45 28,88
339 1.4 1.04 20,72 266 1.4 1,04 20,72
363 1.5 0.80 15.94 285 1,5 0.80 15,94
387 1,6 0.64 12,75 304 1.6 0,64 12,75
411 1,7 0453 10.56 323 1.7 0,53 10.56
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Table ( 21 )

Torsional vibration stresses at resonant speeds

One-Node Vibration

Harmoniec Critical Equilibrium Dynamic Maximum
vibration
order speed stress magnifier stress
Ne so = Mc Sso
n Mc max
Table (11) Table (19) psi

1 882 58,67 T.514 440,85
2 441 2.09 T.514 15,70
3 294 114,03 T.514 856,82
4 221 101.56 T.514 763,12
5 176 7685 T.514 577,45
6 147 T7.70 T.514 57.86
7 126 600,72 T.514 4513,81
8 110 5.04 T7.514 37.87
9 98 2,18 T.514 16,38
10 88 18,92 T.514 142,17
11 80 12,73 T.514 95.65
12 74 0,80 T.514 6.01
13 68 1.19 T.514 8,94
14 63 65,22 T.514 490,06




xxiv

Table ( 22 )

Torsional vibration stresses at resonant speeds

Two-Node Vibration

Harmonic Critical Equilibrium Dynamic Maximum
vibration
order speeds stress magnifier stress
n Ne 8o N 5 = 1 S5
Table (11) Table (20) psi
1 2664 173,09 5.96 1031.60
2 1332 2.49 5.96 14,84
3 888 176.83 5.96 1053,.90
4 666 157.53 5.96 938,88
5 533 9.34 5.96 55.67
6 444 23.66 5.96 141.01
7 381 183,68 5.96 1094.73
8 333 15.52 5.96 92,50
9 296 2.49 5.96 14,84
10 266 28,64 5.96 170.69
11 242 19,92 5.96 118,72
12 222 1,25 5.96 T.45
13 205 3.74 5.96 22.29
14 190 19.92 5.96 118,72




Table ( 23 )

Forced Vibration Amplitudes Due to 7th: Harmonic Engine

Torque at 300 RPM

A B ﬂ C D E F G H I
Moment “Accn.Torque Deflection Torque in plane of mass Total Shaft Change
of per unit in Acceleration | Engine of
Mass Inertia |lamplitude plane of mass torque l:i:z;::;c torque stiffness|| deflection ‘
J J- we ) J.w. 9 M t(@w2.0 + M) ¢ )
Ibzinzsecs| 1bsin./rad. radians 1bsin, 1bzin, 1bsin, lbsin/rad) radians “
Damper 617 | 29862800 o 29862800% - 29862800 Q0 x :oG 0-3318
Se. Pump 130 629 2000 || 066827 420m20¢ - 8 4064520% 139 = IOG 0-2451¢
Cyl.No.1 400 || 19360000 | 042310¢ 8191216%¢ 17950 | 4225573620+11950 || 316 x S| o 1337 5¢+0:0000568
"one 400 19360000 || *28943C—0-0000568|| £602784¢-1099°65|| 17980 47858520 +3480041l B1G6x ;06 0-151 53¢+ 00001
- 400 || 198360000 || 01379%-00001668|| 2669744%-3229-25|| 179 S50 | s05282840H4g520l| 31 6x18 | 015 qq 92+0°00015G7
"4 400 || 19360000 |[~002202-0-0003235]|- 425920x-6263 || 17Q50 | SO102344%+G12084| 316 x & || o158 69000001987
""s 400 | 19360000 ||-0-1806x-0-0005172 (|- 349 wsx-:oonz'qgt 17350 | 46605928 +EgKS-1 || 3 6x S 014475 5c+0-0002188
"6 400 || 19360000 || -03261%-00007360]| - 63522162-14243‘74 17950 | 40253200+ 728467 31 6x8 || 0127400002305
*torT 400 13860000 ||~0-45557C-00009665(| - 88184800c-I8T44(l 17950 | 31435232c+T20847 3 o'ax:g 1-02062c+0-0023 404
Generator{ 13 800 |[ 667920000 ||-I°47612-0-0033069 B qs?;:g;i:e; - _qszzlf::t::;i:s—
—

AXX
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