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INTRODUCTION 

Sponsored by the American Society of Mechanical Ei:lgineers 

a Code for the Design of Transmission Sha.fting was issued by the 

.A:merican Standards Association in 1929. In this Code all commonly 

used theories are discussed and rational procedure for the design 

of the shafts under ail conditions of loading is developed with 

recommandations as to the values of allowable stresses and factors 

to be used in the design formula. !part from this code, formulae 

for design of transmission shaftings have been esta.blished by the 

classification societies like Lloyd's Register of shipping and 

Westinghouse Co. Ltd. 

By making use of one or the other of these formulae 

given b.1 the above mentioned authorities a shaft can be designed 

for satisfactory operation when the operating speeds are kept away 

from the critical speeds of the transmission system. However, 

experience has revealed that failures of transmission systems designed 

for sa.f'e running in a normal sta.te of operation have been caused by 

excessive vibrations because the system was running at or nearly at 

a dangerous cri ti cal speed. If the transmission shaft system is 

one which couples an electrical set to an intemal combustion engine, 

critical or disturbing amplitude occurring near the operating speed 

may cause the light to fiicker to a prohibitive degree; excessively 

large vibration torques occurring at the generator a:nna.tures may 

cause loosening of core laminations and other forms of a:nnature 

failure. A design of a transmission shaft system wi thout vibration 

analysis is, therefore, hardly considered complete nowadays. !he 
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classification societies set definite rules to have the transmission 

s,ystems vibrationally analyzed. Lloyd's Register of shipping 

judged, in 1945, that shipbuilders should submit critical speed 

calcula tions for both main and auxiliary heavy oil installations 

in order to obtain Lloyd Machinery certificate. This requirement 

was introduced into the society• s rules in January 1944. 

Since this work may deal to a great extent with the 

vibration preblas of the designed transmission system it may be 

proper to give a short history of both torsiona.l and lateral 

vibration in this introduction. 

TORSIONAL VIBRATION 

Interesting notes on the history of torsional vibration 

problems in land, marine, and aero installations are given by Ker 

Wilson(2)* in the introduction to the third edition of his book, 

"Practical Solution of Torsional Vibration Problems•. The following 

is a. short account on the history of the problems mainly in marine 

and land installations, to which the thesis is closely related. 

ProblEIIls of vibration have been know and widely 

discussed since the last decade of the last centu:t7. Early work 

on torsional vibration, however, were mostly concemed with funda.-

mental or one-node mode of vibration. In those days, the eystems, 

in which the problem of torsional vibration arose, comprised mostly 

of heavy reciprocating steam angine masses on the one end and heavy 

driven machine on the other. The eystem was then reasonably reduced 

* Numbers refer to the references given in the Bibliography at the 
end of this thesis. 
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to approximately equivalent two-ma.ss arrangement. Methode for 

calcula ting the cri ti cal speeds of' systems conta.ining severa! masses 

were published by Ohree, Sankey and Millington in 1905 and Holzer 

in 1907. Not much progress in analytical and experimental work 

on the subj eot was, however, accomplished 1mtil the beginning of' 

the f'irst world war. 

In the years f'ollowing this 1914-1918 war, rapid 

development of' internal combustion engines came into the scene; and 

during this period it was brought to the notice of' the investigators 

that f'ailure of' transmission systems occurred not only at the 

transmission shaf'ting as was the case in the earlier years, but 

also at the crankshaf't, revealing the requirement of' analysis for 

higher modes of' vibration. Considerable progress was made in the 

subj ect during the se years and f'irst text books were published by 

Holzer and wydler in 1921 and 1922 respectively; and a paper b,y 

Lewis came out in 1925. The f'irst text books in English were 

published by Tuplin, Ker Wilson, and Den Hartog ail in 1954. In 

the U.S.A. a large volume of' contribution to the subject was made 

b,y F.P. Porter. 

Harmonie analysis of the engine torque ourve of single 

cylinder eleotric igni tian engine was made and published by Muir 

and Terry in 1950. The most complete anal:yses were made by F.P. 

Porter in a paper entitled WHarmonic coefficients of Engine Torque 

Curves", published in Transactions of' the American Society of 

Mechanical Engineers in 1945.(20) 

Analysis on stif'fness of' crankshaf'ts in torsion as 

well as bending was published by Timoshenko, in 1922 and 1925, in 
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Transactions of the A.S.M.E. An empirical formula for crankshaft 

stiffness in torsion was introduced by Carter in 1928; and this 

was followed qy an alternative formula b,y Ker Wilson published in 

the 2nd Edition of his text book in 1940(1). 

At the present time, there is a considerable amount 

of literature on torsional vibration problems. Various methods, 

analytical as well as graphical, have been published by various 

investigators, alongside with tremendous improvement in the techniques 

of measurements of vibration. However, al though such a large volume 

of literature is available, and some problems are comparatively 

straightforward requiring little more than determination of the 

fundamental natural frequency of the system to make sure that there 

are no significant resonant conditions in the operating speed ranges, 

there are still cases where both analytical and experimental investi­

gations are required. 

LATERAL VIBRATION 

In the sam.e way as Holzer, Lewis, Porter etc. are 

noted in the field of torsional vibration there are some well lmown 

contributors, whose names come up frequently in the lateral vibration 

field, nam.ely: Rayleigh, Dunkerley, Stodola, Myklestad, Prohl etc. 

Th~ problems of lateral vibration have been known 

since almost the same time as were torsional vibration problems, 

viz, the later years of the 19th centu.ry. A paper in this field 

on stability of a shaft between bearings was presented by Greenhill 

to I.M.E. in 1883. Dunkerley gave both theory and experimental 
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re sul ts in his paper published in Phil. Transactions in 1S94. Chree 

published his paper in Phil-Magazine in 1904. There have been 

numerous subsequent wri ters in the la ter years, but they mostly 

followed Dunkerle,r and Chree. 

The first problem of the whirling and vibration of 

an overhung shaft carrying a symmetrical load of appreciable inertia 

was investigated and published by Lees in Phil. Magazine in 1925. 

Stodola' s "iteration" method of obtaining natural 

frequencies in lateral vibration chiefly for use in determining the 

whirling speeds of a turbine rotor, is given in his book, which was 

translated into English in 1927(10}. He gave the method both in 

analytical and graphical for.ms. 

The usual method for determining the lateral vibration 

frequencies or cri ti cal whirling speeds of shafts is the method of 

Stodola. Recently, in 19.44 and 1945 respectively, Myk:lutad and 

Prohl published another method of arriving at the result. This 

new method is referred to by some authors as an extension of the 

Holzer Tabulation Method. A notable feature of this method is the 

accuracy with which frequencies for all modes of vibration can be 

estilnated. This method wa.s used by Rankin in his paper entitled 

"Calculation of the mrutispan critical speed of flexible shafts 

by means of punched card machine11, published in Transactions of 

the .American Society of Mechanical Engineers, in 1946. 
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PREFACE 

The present trend in designing a power transmission 

shaft between a diesel engine and an electrical genera. tor is to 

keep the length of the shaft as short as possible. By so coupling 

the generator as rigidly as possible to the engine, arrangements 

are possible to raise the harmful critica.l speeds of the engine­

generator system well above the operating speeds. Eut there may, 

however, be cases where the generator and engine cannot be operated 

close to each other or in the same room. In auch cases it may be 

possible to keep the generator and engine in separate halls with 

a wall in between and to transmit power by using a long floating 

shaft through the wall. 

This thesis is on theoretical design investigation of 

a long power transmission shaft between a medium aize diesel engine 

and an alternator. It is assuned that the engine and genera.tor 

need be located on opposite aides of a wall in different rooms; 

and to cope with some possibility that misalignment may occur, a 

fioating shaft is used through the wall to drive the generator. 

The distance between the engine and generator is tak:en as 20 reet; 

and possibility of operation of the system in parallel with other 

sets of the same nature is presumed. 

The engine used in this investigation is 1120 BHP 1 

500 rpm, 7 - cylinder in line, vertical, two-stroke diesel engine 

manufactured by the British Polar Engines Lilnited of Glasgow, U.K. 

The drawings of some component parts of the engine used are given 

in Appendix V at the end of this thesis. Additional data on the 

engine are gi ven in Appendix I. 
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The genera tor used in this investigation is G.E., 

1045 KVA, 300 rpn generator, Model No. API-24. A considerable amoœt 

of difficulties was experienced in obtaining data for the generator 

due to the company• s strict observance of trade secrecy. However, 

most of the data wbich are useful for this investigation were 

obtained. But l.Dlfortœately, no drawings on the generator could 

be included and assunptions have had to be made as to some data 

which could not be obtained from the company. 

The the sis is prepared in sections, each of which 

deals with a particular aspect. A section itself is divided into 

two parts, the first part dealing wi th the theoretical background 

and second part giving numerical applications of the theory to the 

system being investigated. 

Procedures for designing the sha.ft and the fiywheel 

necessary for the system are given in the first three sections. 

Investigation on the operating characteristics of the system is 

then made in the later sections. Torsional vibration characteristics 

and stresses occurring in the system are analyzed from sections IV 

to IX; the degree of light fiicker is determined in section X; an 

estimation of the cri ti cal whirling speed of the system is made 

in section XI. Conclusion to the investigations is draw in section 

XII, which shows that the system possesses satisfactor,y operating 

properties when checked up against the standards laid dow by 

various authorities. 

As it is d.ifficult to cover the torstional vibration 

investi gations in a single section, a span over six sections has 

been allowed. It may seem tha. t some sections in the earller part 
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of this group are put irrelevantl.y to eaoh ether. However, each 

of the earlier sections of the group needs be introduced to determine 

particular data of the systan that is useful in the later sections. 

Final summation to get the complete picture of the torsional vibration 

cri ti cal speeds and stresses occurring in the system is made in 

sections VIII and IX. 

Determination of harmonie coefficients of angine 

torque curve, which seems to be suitable to describe in the later 

part to avoid abrupt change of topic is also given in section II, 

as the value of 7th harmonie coefficient is required in design of 

~heel in section III. 
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I. SHAFT DESIGN 

1-1-o THIDRY 

1.1.1 Shafts are generally circular in cross-section and 

made of ductile materials, and the maximum shear theory is generally 

taken as design criteria. However, same designers prefer to design 

b.Y the maximum-shear theory as well as by maximum-normal-stress 

theory, and use the larger aize of the two resulta. 

The maximum shear and normal stresses in a shaft of 

outside diameter d
0 

in. and inside diameter "-!' carrying a torsional 

load of T lb.-in., a bending load of M lb.-in. and an axial load 

of F lb. simultaneously, can be expressed as fo11ows: 

SSma.x ::. 

Stma.x :. 

16 x 
ft d 5 

0 

16 

1 )(M + F do ( 1 + ~) \2 

(1 - K4) · 8 ) 

[ 

F d (1 + K2) 
M + o 

8 

+~ 

••••• 

where K :. ratio of inside to outside diameter of the shatt. 

1-1-2 A.S.M.E. Code for Design of Transmission Sb.afting 

(1-1) 

Equations (1-1} and (1-2) are true when the shaft is 

subj ected to steady torsional and bending 1oads, and when the axial 

load does not produce column action. In practice, however, the 

nature of the loads which the shaft carries is hardly subject to 
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the above conditions. A rotating shaft is subjected to completely 

reversed stresses; and at the same ti.me, the loads i t carries may 

be subject to variation in intensity or to shocks; the axial load 

may produce column action. 

The American Society of Mechanical Engineers issued 

a code for designs of transmitting shafting in 1929. The code is 

ba.sed upon the condition that the shaft is made of ductile material 

and it uses the maxjmum-shear theory as criterion. 

The A.S.M.E. Code equation for a hallow shaft subjected 

to torsion, bending and axial load can be obtained from equation (1-1), 

when shock-and-fatigue factors and a factor are introduced, as 

follows: 

16 Jif. a F do (1 +J:2) r 2 
tt Sa l~ M + 8 + (Kt T) 

••••••••••• (1-5) 

where Sa :. maximum permissible shear stress, psi. 

Km :. combined shock and fatigue factor to be applied to 

the computed bending moment. 

Kt. :. combined shock and fatigue factor to be app1ied to 

the computed torsiona1 moment. 

The recommended values of S8 , ~ and lCt are gi ven 

in the above Code and in most of design reference 

books. 

a :. ratio of maximum to average intensity of stress, 

re sul ting from axial loading only. 

l 
for L;k < 115 (1-4) :. 

1 - 0.0044 (Ljk) ••• 

~ L 2 
for L/k > 115 (1-5) :. (k) ... 

tt nE 



- 5-

L ::. 1ength between supporting bearings, in. 

k ::. radius of gyration of transverse cross-section of 

the shaft, in. 

s
7 

::. yie1d stress in compression, psi. 

E ::. modulus of e1asticity, psi. 

n ::. constant for type of co1umn end support 

::. 1 for hinged ends 

::. 1.6 for both ends pinned, guided and partially 

strained (as in bearings). 

::. 2.25 for fixed ends. 

1-1-5 Practical Design Procedure 

Equation (1-5) is for the general case and can rewUly 

be used to design when the opera tional conditions and 1oading values 

are know. In practice, however, espec~ally when a shaft is designed 

for a comp1ete1y new system, the exact magnitude of bending moment 

is se1dom know. It is, therefore, custon1a.ry in practice to design 

the shaft by considering i t to be 1oaded wi th the torsiona1 moment 

alone, with introduction of some design factor. 

Equation (1-5) with torsional moment alone becomes: 

1 
• • • • • • • • • (1-6) 

If because of 1a·c.k of accurate data., the shaft is 

designed by this silnp1ifled method, the torque transmi tting the 

required horse power is mu1. tiplied by a factor K1 called "the load 

factor•. The 1oad factor, K1 , is the ratio of the maximum torque 

to the average or normal torque and i t depends . on the type of the 
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pr:iJ:nemo:rer and the driven machine. The values relevant to the 

system we are treating are mentioned below(l3) a 

DriTer 

Electric Motor 

Gas and Oi1 
Engine 

Dri ven Machine ~ 
Turbine blower, metal working machinery 1.25 

Centrifugal pump, wood working machinery 1.50 

tine shatt, Ship propel1er, double acting 1.75 
pump 

Triplex single-acting pump, eleva tor, 1. 75 
crane 

Compressor, air or ammonia 1.75 

Rolling mill, rubber mill 2.50 

Values for electric-motor drive x 1.3 to 1.6, 

the factor depending on the coefficient of 

steadiness or flywheel. 

The value T can be expressed wi th Horse Power as: 

T : 396,000 (H.P.) 
2ttN 

vhere H.P. = horse power 

N = revolution per minute. 

•••••••••••• (1-7) 

Substituting value of T from equation (1-7), and 

putting K1 into equation (1-6), we get: 

d 
0 

1 
•••• (1- 8) 



- 5-

1-1-4 Maximum Linear Deflection 

For transmission shafting, it is considered good 

practice to limit the linear deflection to a maximum of 0.01 inches 

per foot of length. Taking the weight of ba.re shafting in pounds 

as W :. 2.6 d2 L' and the vertical pull of belt as 40 lbs. per in. 

of width, as is usual practice, which gives a load of W:. 1.3 d2 L' 

we get the following equations<11>; 

L' :. :o/ 873 d2 for ba.re shafting •••••• (1-9) 

L' :. ~ 175 d2 for shafting carr,ying pulleys 
etc. . ..... (1-10) 

where L' :. maximum distance between bearings, ft. 

d :. diameter of shafting, in. 

The limita ti ons in linear deflection of machinery 

shafting necessarily have to be more exacting. The limitations 

depend upon the service for which the shaft is intended. The 

defleotion of any machine shaft supported on plain bearings is 

limited to a maximum of 0.0015 L, where L is the distance from the 

load point to the centre of bearing, in inches. The deflection 

of shafts carr,ying gears are limi ted to a maximum of 0.005/f inches 

at the gear, where f is the width of the gear face in inches. For 

very smooth-rmming gears, the deflection has to be much smaller 

tb.an this value. 

1-1-5 Maximum Angu1ar Deflection 

The angular deflection in transmission shafts is 

usually limited to a maximœ of 1 degree in 20 diameters. 

The angular deflection of machinery shaftings is usually 

limited to 6 min. per ft. for ordinary service; to 4-1/2 min. per ft • 
• 
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for variable loads and 5 min. per ft. for suddenly reversed loads 

and long feed shafts. The angul.ar movement of machine-tool spindles 

is limited to a maximum of 1/64 in. at the circumferenoe of the face 

plate. Milling cutters are designed to have an angular twist of 

less than 1 deg. s.t the edge of the cutter. 

The torsional deflection of circular shafting is given 

as: 

9 : 585.61 L T 

(d
0
4- di4) G 

• • • • • • • (1-11) 

ldlere L :. length of shaft, in. 

T :. torque, lb-in. 

do :. outside diameter of shaft, in. 

di :. inside diameter of shaft, in. 

G ::. modulus of rigidi ty of shaft material 

9 :. angular deflection, degree 

1-2-0 APPLICATION 

1-2-1 Shaft Design 

From the above theory, we choose the following 

factors 

ss = 6000 psi. 

Kt = 1.5 

K1 :. 1.5 x 1.45 :. 2.175 2.2. 

K = 0.5 

Now, because the design is to be done completel.:y 

anew, the value of bending moment is not lmow. The size of shaft 

may be designed approximately by using equation (1-8). Engine data 
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are given in Appendix I. Hence, 

d = 
0 

5,168,000 Kt K1 (H.P.) 1 
x 

.ra • Ss N v 1 - K4 

::. 5 /5,168,000 x 1.5 x 2.2 x 1120 x 0.02 
\1 .a x 6000 x 500 

= 8.75 x 1.02 ::. 8.95 say 9 in. 

This value of shaft dia.meter is only 0.25" less than 

the size of the cran.kshaft pins and j ournale. To simplify the 

design of flanges, adapter shaft between the angine and coupling, 

and the couplings, the aize of the shaft may be stepped up by this 

a.moœt to 9.25 inches, wi thout causing much difference in the cost. 

Doing this we get 

d0 :. 9.25 in. 

di :. 4.625 in. 

1-2-2 Linear Deflection 

Since the shaft will be almost bare in the largest 

epan, the allowable distance between the bearings may be estimated 

by using equation (1-9). Here we get: 

Two bearings will be enough for a total distance of 

20 ft. between the engine and the generator. 
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1-2-3 Angular Def1ection in a Length of 20 do 

9 :. 

Using equations (1-11) and (1-7), we get 

585.61 L T 

(flo 4- di4) G 

585.61 x 20 x 9.25 x 596,000 x 1120 

(9.254 - 4 x 6254) x 12 x 106 x 2 x # x 500 

:. 0.25 degrees. 

1-2-4 Coup1ings for the Transmission System 

A dra:~d1:;1.g of the Ajax, rubber--bronze bushed fiex:ib1e 

coupling is given in drawing No. (1) in Appendix V. The dimensions 

are the approx1Jnate values of the coupling manufactured by the Ajax 

Flexible Coupling Co. Inc. of Westfie1d, N.Y. 
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II HARMONIC COEFFICIENTS OF 

ENGINE TORQUE 

II-1-1 Total Output Toraue 

For designing the flywheel for an engine-generator: 

system by the method shown in section III, and for calculation of 

the steady-state torsional vibration amplitudes of the designed 

engine-generator system, we need the values of resultant harmonie 

coefficients of the engine torque curve occUITing at each crank of 

the angine. In this section we shall try to deal with determination 

of these resultant harmonie coefficients. 

Torque output at one crank of an angine rtmning at 

a uniform rotation can be represented as 

Torque output ::. (Torque due to the gas pressure) + (Inertia torque 

correction for reciprocating weigbt) + (Dead weight 

correction for reciprocating part) + (Dead weight 

correction for unbalanced rotating part) + {connecting 

rod couple correction). 

Using dimension of engine torque in lb. per sq.in. 

of piston area, so that the torque output per cylinder can be 

obtained by mul tiplying the determined hannonic coefficient by the 

piston area and crank throw, we can express above expression as 

follows< 25>: 

Torque ::. Torgue due to gas pressure + W F + 
AR AR c a 

w w. Ru 
+ r:c !], Cos 'f + uAR Sin (a + au + ~ ) 

· · • • • · • (II-1) 
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where positive torque tends to move the crank in the direction or 

positive rotation. 

A 

R 

g 

Wrec 

p 

w c 

N 

h1 

ha 

k 

:: piston area, eq.in. 

:. crank radius, in. 

:. acceleration due to gravit,y:: 586.088 in. per sec. 2 

:. reciprocatlng weight, lb. 

112 

Wrec R N2 :: 0. 0000284054 Wrec R r :: 
900 g 

:: centrifugal force of reciprocating weight, if it 

were at crank radius. 

w 
:. 1!, :. 0. 0000284054 ....!:!5. R N2 

A A • • • • • (II-2) 

:: centrif'ugal force per square in. of piston area of 

reciprocating weight if it were rotating at crank 

radius, psi. 

:: rpm. 

:: distance of centre of maas of connecting red from 

centre of crank pin, in. 

:. distance of centre of maas of connecting rod from 

centre of wriet pin1 in. 

= radius of gyration of connecting red about its 

centre of mass, in. 

Wd = weight of connecting red, lb. 

a :: crank angle from firing dead-centre position or 

from po si tien of piston furthest from crankshaft, 

rad. 

= inclination of cylinder centre line with vertical 

in direction of rotation, rad. 
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wu ::. weight of mbalanced rota.ting parts at crank, lb. 

Ru ::. radius from shaft pin to centre of maas of Wu, in. 

elu ::. angle from crank arm to Ru in direction of rotation 

K ::. crank-to-connecting-rod ratio 

Fa ::. _ 1. _à. (Sin a + K Sin 2 a 2 
•••• (II~5} ) 

2 da 2Vl - Ka Sin a 

Fa can be expressed in a series for.m by expanding equation (II-5} 

and collee ting like terms. Each tenn of expansion of Fa can be 

expressed in product form wi tb coefficient in terms of K and variable 

parts as function of a. The coefficient parts are called "harmonie 

coefficients" of Fa• These harmonie coefficients of Fa are denoted 

by Ha• 

F ::. Sin a + K Sin 2 a 
b 2,/1 - K2 Sin2 a 

Hb ::. harmonie coefficients of Fb 

H ::. 
c 

Sin 2 a 

harmonie coefficients of F
0

• 

•••••• (II-4) 

• • • • • • (II-5) 

Values of Ha,1 Hb and H
0 

for different 1 /K values 

are given in references (1-a) and (25). If, however, their values 

be desired and above references are not available, they can be 

calculated by using expressions given in tables (1} to (5)*. 

* Numbers refer to the tables given in Appendix II. 
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II-1-2 Gas Pressure Toraue 

In equation (II-1) the terms on the right-hand side 

other than the gas pressure torque can be calculated by using 

expressions described above. 

If an indicator card of the engine under consideration 

is obtained, the harmonie coefficients due to gas pressure can be 

determined by using anal.ytical methode or by sending the curve 

through a harmonie analyzer. F.P. Porter, in his paper published 

in 1943(25), gave harmonie coefficients of engine gas torque curve 

for eight widely different t,ypes of engine. For most practical 

purposes the data given for one of eigbt prototype engines of his 

paper are alwa.ys sufficiently close to those of the engine being 

considered. 

We shall use the values given in above paper for our 

purpose also. 

II-1-5 Note on Summation of Harmonie Components 

If "f" is a periodic curve of period 2 N radians it 

can be represented in a Fourier series, like that in equation (II-1), 

as followe: 

. . . . . . . . . + Tn Sin (n a + !6n) ••••• (II-6) 

In this expansion T' s are the amplitudes of the Sine 

wa.ves and called "resultant harmonie coefficients•; ~' s are the 

phase angles. 
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If engine torque value is expressed in above form, 

since the period is 2 tt, a may be taken as the angle of rotation 

of crank for two-stroke-cycle engine and 2 a the angle of rotation 

for four-stroke-cycle angine. 

Now, since we have 

Sin (n a + ~n) ::. Sin na Cos ~n + Cos na Sin~ n 

we may wri te equation (II-6) in the following form 

· f :. a 1 Sin a + a2 Sin 2 a + a
5 

Sin 5 a + • • • • + b
0 

+ 

+ ~ Cos a + ba Cos 2 a + b
5 

Cos 5 a + •••• (II-7) 

where a• s are called coefficients of Sine ha.nnonics. 

b' s ( excepting b ) are called coefficients of eosine harmonies 
0 

b
0 

gives the average height of the torque curve. 

The relations between Tn' an, bn are given b.r 

•••••••••••••••• (II-8) 

If two or more of harmonie series are in phase and 

of the same period as those on the right-hand-eide of equation (II-~) 

and they are required· to be summed up, the resultant harmonie 

coefficient may be obtained by adding algebraioally all the a' s 

and b' s of like harmonie terms and combining the resulting coefficeints 

by means of equation (II-8). 
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II-2-0 APPLICATION 

II-2-1 Procedure 

To get the resultant harmonie coefficients of torque 
AR 

value per cylinder of angine output curve, we shall use equation 

(II-1). The values on the right hand side of equation (II-1) 

can be fowd by using various equations included in the previous 

theory portion. Getting these values, Torque/AR may, if desired, 

be expressed in a series form like that shown in equation (II-6). 

However, we are interested only in the resultant harmonie coefficients, 

which may be useful in the sections to follow. Therefore, since 

we can save considerable work by concentrating on Tn values, we 

shall try to get wha t we need only. 

In the following calculations, the coefficients of 

sine and eosine harmonies for different harmonie orders of the 

terms on the right hand sida of equation (II-1) are fowd in tabular 

forms. The resultant harmonie coefficients are then calcul.ated 

by summing these values by equation (II-8). 

II-2-2 Correction for Inertia Torque of Reciprocating Weight 

Using equation (II-2), we get, 

Data for the right band side are given in Appendix I, 

so tb.at 

W0 : 0.0000284 x~ x 11.2 x 5002 : 145.5 psi. 
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The calculated values of harmonie coefficients . 

are given in table (4). In this table H values are obtained a 

for 1/K = 4. 74 from reference (25). The values show that the 

inertia torque has no eosine ha:nnonics. 

II-2-5 Dead Weight Correction for Reciprocating Part 

This correction is given by the 5rd te:nn on the right 

hand side of equation (5-1). 

Since our angine is of the vertical-inline type we 

have ~ = O. Hence, 

Dead weight correction for reciprocating part = Wreo Fb 
A 

From 'Which we see tha t: 

Harmonie 

part 

coefficients of dead weight 
w = rAec B.. ...... ~ 

correction for reciprocating 

Therefore, with values given in Appendix I, 

Harmonie coefficients of dead weight correction for reciprocating 

part •••••• 

Calculated values of coefficients are given in table (5) in 'Which 

Hb values are obtained for ljK = 4. 7 4 from reference (25). These 

values show that, the correction torque has no eosine term. 

II-2-4 Dead Weight Correction for Unbalanced Rotating Part 

To get this correction, the unbalanced rotating weight 

has to be determined. A crank element is illustrated in figure 

(II-1). The lmbalanced weight is first divided into various portions 

of regular shapes, 'Which in the figure (II-1) are marked, I, II, 

III, IV. We shall try to calcula te these unbalanced weights step 

by' step as follows: 
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( i) Weight of pin 

w ::. !!. [ 9-25'
2 

x ..122..- 242 
• ...112. J x 0.285 ::. 141.5 lb. 

p 4 25.4 (25.4) 2 25.4 

(ii} Weight of portion I. 

Now, in figure (II-1) we see that 

o a = 410 - (150-42) = 410 - 88 = 522 mm. 

a b = J5222 - 117.152 = 500 mm. 

c a = 500 - 162 = 158 mm. 

Weight of I without oil hole = 158 x 254· 5 x 150 x 0.285 = 72.61 lb. 
(25.4) 5 

Weight of I with oU hole = [256.5 - 1!. (~}2 
x ..M2...] x 0.285 

4 254 25.4 

= (256.5 - 5.589) x 0.285 = 71.57 lb. 

Total weight W1 = 72.61 + 71.57 = 144.18 lb. 

Centre of gravi ty of w1 from axis of shaft = 162 + 158 = 251 mm. = 9.1•. 
2 

(iii} Weight of Portion II 

In figure (II-1), we have 

o d = 410 mm 

bd ::. )4102 - 117.152 ::. 595 mm. 

a d = 595 - 500 ::. 95 mm. 

Weight of portion II = 95 x 42 x 254.3 x 0.285 = 
(25.4) 5 

Bence for both sides, w11 = 51.62 lb. 

distance of centre of gravi ty of w11 from shaft axis 

15.81 lb. 

= 500 + ' ::. 546.5 mm ::. 15.46 in. 
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(iv) Weight of Portion III 

Tables to calculate area of segments of circle are 

given in the hand books. The values of M in the following calcu­

lations are obtained from such tables(l5). 

We have: 

Height of segment H :. L.J.O - 595 :. 17 mm. 

Ratio of height to circle dia., H :. ..IL :. 0.0208 
D 820 

Henoe the area coefficient M is obtained from table as: 

M :. 0.00598 

So that 

Area :. ~ M :. 820 x 820 x 0.00598 :. 4.148 in2 • 
25.4 x 25.4 

Weight of portion III:. 4.148 x~ x 0.285 :. 1.94J. lb. 

Weight for both sides :. VIII :. 5.882 lb. 

Distance of the centre of gravi ty from shaft axis 

Where C is the length of the base of the sector 

a is the area of sector 

:. (254.5)
5 

(25.4) 3 x 12 x 4.15 
= 15.77 iD. 

(v) Weigbt of portion IV 

To get the weigbt of this portion, the following 

approximate method is used. 

The portion IV is represented in (C), (D) and (E) of 

figure (II-1) as a1 d1 e f a2 • It is assumed that the curved face 
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d1 e d2 is replaced by a rectangular section d1 g1 g2 d2 of the 

same area as illustrated in (D) of the figure and sector ~ f a2 

is replaced by a1 h1 h2 a2 in the same mannar. We have from above: 

Area of d1 e da : 4.148 ina sq .in. 

No"W, height of segment a1 f &a 

H1 : o a - a b : 522 - 500 : 22 mm. 

Hence 

M : 0.008394 

So that 

: 0.008594 x (644) 2 x 25.4 

(25.4)2 x 254.5 
= 0.585 in. 

The re sul ting figure of portion IV is illustra ted 

in (F) of figure (II-1). 

From above resulta, we get 

: 5.525 in. 

We denote h5 g1 b.t. as portion IV' and a1 b5 h1 a 2 

as portion IV•. 
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u i ht f IV' 3.525 88 234.5 ne g o =- 2 X '2'5':'4 X 25.4 x 0.285 :. 15.94 lb. 

and therefore~ weight of both sides w1v • =- 31.88 lb. 

Distance of c •. G. from shaft axis = a b +a2 h1 + ~ • h5 g1 = 1.76• 

Again we get, weigbt of IV" 

= 88 8 254.3 
25.4 x 0.5 5 x 25.4 x 0.285 = 5.29 lb. 

Wt. for both sides WIV• = 10.58 lb. 

Distance of C.G. from the shaft axis = a b + 0.585 = 12.104" 
2 

Getting the weights and distances of centres of 

gravi ty from the shaft axis we can get the total value of Wu Ru for 

use in the expression :tor mbalanced rotating weight. Calculated 

resulta are given in table (6). 

Now, from equation (II-1), 

Unbalanced rota ting weight correction = Wu Ru Sin (a + <lu+ Y') 
AR 

For the type of engine being considered, 'f' = O • 

.And since the tmbal.anced weight is on the crank-pin side we get 

Ou = o. So~ we get: 

Unbalanced rotating weight correction ::. Wu Ru Sin a 
AR 

= 6962.82 Sin = 
141 x 11.2 a 4.409 Sin a 
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II-2-5 Connecting Rod Couple Correction 

This is given by the last term in equation (II-1). 

For connecting rods of common engines h1 ha value does not differ 

much from ka that the value of (h1 ha -ka) is usually very sm.all. 

The values of coefficients H at the same time is usually very sma1l c 

for the crank-to-connecting-rod ratio of coBDilonly used engine. The 

effect of connecting rod couple is, therefore, neglected wi.thout 

appreciable error. 

II-2-6 Gas Pressure Toroue 

The harmonie coefficients of gas pressure torque for 

the type closely equivalent to the engine being considered are 

obtained from reference (25). The angine is of 160 BHP per cylinder 

wi.th approximate compression ratio of 1:14. Bence, with assumption 

of a mechanical efficiency of about 85% the group wi th mean harmonie 

coefficient of 25.298 for J - type angine is chosen. 

II-2-7 Corrected Harmonie Coefficients 

The values of correction coefficient values calculated 

in above sections show that, only first six harmonie coefficients 

need be' corrected. Further, since ali the correction values compose 

of sine coefficients only, we need to add all sine coefficients 

algebraically and the resulting sine coefficients compotm.ded to the 

corresponding eosine coefficients of gas torque curve by mesns of 

equation (II-8) to get the resultant harmonie coefficients. 

Algebraic summation of sine coefficients of the first 

sine orders are given in table (7). Table (8) gives the corrected 

resultant harmonie coefficients. 
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III DETERMINATION OF FLYWHEEL EFFECT 

III-l.-0 THEORY 

III-1-1 For successful operation of alternators, flywheel 

affect necessary for the system is calcula ted wi th due regard to 

the standards laid down for this purpose. 

The design requirements for successful operation of 

al tema tors become more exa.cting when a number of genera ting sets 

are run in parallel. Usually, the flywheel of engine-generator 

system for parallel operation is designed to fulfil three aspects 

as follows: 

i) The coefficient of cyclic irregularity of the system is kept 

below certain limit so that the light flickering characteristics 

of the system confirm to the recoganized standard. 

ii) If the alternator pole deviates to a great extent from its 

position mder perfectly uniform rotation, the losses caused 

b,y the synchronizing current will become excessive so that 

the machine falls out of step. To avoid this kind of failure 

the angular deviation is kept low. 

(iii) The system is so designed that the natural frequency of 

oscillation of electro-mechanical system does not coincide 

wi th any harmonie of angine impulse frequency. 

III-1-2 Flrwheel Effect for Reguired Çyclic Irregularity 

The cyclic irregularity is defined as the ratio of 

the maximum variation in angular velocity, at the point tmder 

consideration, during one angine cycle to the mean velocity, when 

engine is running at any load up to and including rated load and 
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speed. This can be expressed as 

Cc ::. Maximum Speed - Minimum Speed 
Mean Speed 

...... (III-1} 

For a direot-ooupled engine and generator, the cyclic 

irregularity refers to the angular velooity at the generator rotor. 

For systems wi th engin es of more than two oylinders, the British 

Standards Institution (24} has laid down the following standards: 

Engi.ne Impulses per sec. Çyolio irregularity not worse than 

Less tban 20 ..... 
10 to 20 ..... 
Above 20 ..... 

1/50 

(Engine impulses per sec.}/1500 

1/75 

Number of engine impulses per second for a 2-s.c., 

S.A. engine is gi ven by: 

p (III-2} ::. ................... 
where p ::. nlmlber of angine impulses per seo. 

m ::. number of oylinders 

N ::. revolution, rpm. 

The flywheel effect, making due allowance for dynamic 

magnification due to eleotrioal resonance should be sufficient to 

limi t the C to the value determined for the angine type. c 

Denoting ::. flywheel effect to limit the C
0 

to the desired 

value, with allowanoe for dynamio magnification 

due to electrical resonance, ton-ft. 2 

WKa2 ::. flywheel effect to give a natural frequenoy 

equal to the lowest harmonie of engine impulses, 

.2 ton-ft. 
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WKb2 ::. flywheel effect to limi t the Cc to the desired 

value, neglecting dynamic magnifier due to 

electrical resonance, ton-ft. 2 

It can be shown that 

••••••••• {III-5). 

Ker Wilson< 2) gives WKa2 for average alternators 

coupled to 2-s.c., S.A. engine as 

ton-ft. 2 /KVA ••• (III-4) 

= 
1375000 x f x Ea 
~ x (PF) x 1.34 

ton-ft. 2/BBP •• (III-5) 

where Ea = efficieney of alternator 

PF = power factor 

f ::. electrical frequency, cycles per second 

N ::. revolution, rpm. 

The approximate value of 'WKb2 is given as: 

•••••••• {III-6) 

where U ::. a factor, which is constant for a particular type 

of engine. 

::. Tn x m 
11.65 n 

•••••••• (III-7) 

th Tn = maximum value of n order ha.nnonic component 

of angine torque per cylinder, pound per square 

inch of piston area. 
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m = number of cylinders 

n = angine impulses per revolution 

D = cylinder diameter, in. 

L = stroke, in. 

III-1-5 Fl1Wbeel Effect Necessary to Limit Angular Deviation 

The maximum angular deviation of + 2-1/2 eleatrical 

degree bas been adopted as a standard by British Standard Institution ( 24) • 

The relationship between the cyclic irregularity and 

angular deviation is given by: 

= 2 • 9 • n ••••••••••• (III-8) 

where 9 = maximum angular deviation, rad. (mechanical) 

n = number of oscillationsin one revolution (Assuming 

that only the principal unbalanced harmonie order 

is important, the value of n is the number of working 

cylinders in the case of 2 s.e., S.A. engine). 

If 9 is expressed in electrical degree, equation 

(III-9) becomes: 

9 • n 
28.6 p 

•••••••• (III-9) 

9 = maximum angular deviation, electrical deg. 

p = number of pole pairs = No. of 12oles 
2 

= 29....! (III-10) N 
............. 
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If the British Standard is ta.ken, 9 value in (III-10) 

must not be greater than ± 2-1/2 electrical deg. Putting this 

value, equation (III-10) becomes: 

__!!_ 
12 p 

very nearly •••••••• (III-11) 

From (III-11) and (III-12), we get, 

or 

N n 
720 f 

Nm 
720 f 

•••••••• (III-12) 

since for 2-s.c., S.A. engine 
n::.m ..... (III-15) 

III-1-4 Flywheel Effect Necessary to Avoid Electrical Resonance 

When the al ternators are run in parallel, if a machine 

takes a momentary lead it is subjected to a retarding force due to 

increasing load thereby imposed upon it; at the same time an acceler-

a ting force acta on the lagging machine. ~ile this effect is to 

re store synchronism, i t cannot prevent them from passing beyond the 

synchronized position, and hence hunting resulte. At certain 

speeds, depending on the charaoteristics of the mains and prime 

movers, resonance occurs causing the ampli tude of oscillation to 

build up greater and greater until finally one or other of the 

machi.nesfalls out of step. 

It is possible for electrical resonance to occur 

when the frequency of any one of the hamonic impulses ·of angine 

torque coincides wi th the na tural frequency of any one mode of 

oscillation of alternator. For satisfactory parallel operation, 

it is, therefore, necessary that the electro-mechanical system be 
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tuned so that the natural frequanoy of the ganerator does not 

coinoide wi th any harmonie of engine impulse frequency. 

The natural frequenoy of an al ternator on a relatively 

large network1 or of two similar alternators running in parallel1 

is given by-(2): 

::. 
••••••••••• (III-14) 

where Fa ::. na tural frequency of alterna tor 1 oscilla ti ons per min. 

KV~ ::. short circuit capacity of alternator 

N ::. rpm. 

f ::. electrical frequency1 cyl./ sec. 

It is customaey that the resonance is avoided by 

tuning the electro-mechanioal system so tba t i te na tural frequancy, 

given by equation (III-14) is lower than the lowest harmonie impulse 

of angine torque curve, with sufficient margin between the two. 

For a 2 s.e., S.A., single-cylinder angine the lowest 

harmonie impulse frequency is the same as the rpm of the engine. 

The same value applies to multi-cylinder angines, since the lowest 

ha:nnonic impulse frequency is tha t due to one cylinder, and 1 t is 

also the lowest impulse frequency in cases when there is unevan 

firing in the cylinders of a multi-cylinder engine. 

Equation (III-14) reveals tha.t the tuning of the 

system can be done ei ther by choosing sui table flywheel effect or 

by changing the short-circuit capacity of alternator. The former 

method is usually preferred. 

The short-circuit capacity is smallest at no-load and 

greatest at full-load excitation. Thus for a constant flywheel 
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effect, the value of Fa is smallest at no load and greatest at 

full-load. The short-circuit capacit,y at full-load should, there-

fore, be used to have assurance that satisfactory operation is 

obtained over the whole range of operation. 

If a 30% mar gin is allowed between the na tural 

fre0 uena,y of alternator and the lowest impulse frequency, we get 

:. 

where Fi =- lowest impulse frequency, oscillation/min. 

: N for 2-s.c., S.A. engine. 

Hence, 

N = 1.5 F •••••••••• (III-15) a 

Putting the value of Fa from (III-15) into equation 

(III-16): 

••••••• (III-16) 

:. 2,330,000 x f x Ea 
ton-ft. 2 /BHP 

If (PF) (1.54) 
••• (III-17) 

III-1-5 Procedure to Use Design Theoey 

The follo'Wing gives the appropriate steps to follow 

in the course of applying the design theory. 

Step (1) Using equations (III-4) and (III-5) the value of W Ia2 can 

be deter.mined. Using equation (III-2) the value of p for 

the engine can be calculated. Wi th this value of p, 

enter the table given on page (21) to get the appropriate 

value of Cc. With this value of C0 and Tn value given 
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2 
in table (8) 1 W ~ can be obta.ined by using equation 

(III-6). Summing up the values of W K 2 and W K 2 by 
a b 

equation (III-3) the value of W K2 necessary to limit 

the Cc' determined above, can be obta.ined. 

Step (2) The maximum value of Cc allowable for the angul.ar deviation 

of± 2-1/2 elect. degree can be determined by using equation 

(III-12) or (III-13). If the value of C determined here 
c 

is higher than the value which was used in step (1) 1 then 

W K2 determined in step (1) will fulfil both the require­

ments described in sections (III-1-1) and (III-1-2). If 

the value of C of this step is lower than that used in 
c 

step (1) 1 then the fl.ywheel effect obtained in step (1) 

will fulfi1 the requirement of section (III-1-1) but not 

that of section (III-1-2). To get appropriate value of 

W K2 to ful.fil both reqùirements the lower value of C 
c 

obtained in here should be used in equation (III-6) 1 and 

W (2 recalculated by repeating step (1). 

Step (3) The flYwheel effect necessary to avoid e1ectric resonance 

can be determined by using equations (III-16) and (III-17). 

Step (4) We have obtained two values of W K2 through above steps. 

To get the flywheel effect sufficient to cope with all 

2 the three requirements, the higher of the two "W K values 

must be used in our flywhee1 design. 

III~-0 APPLICATION 

The following shows the calcula tion a teps wh en above 

theory is applied to our engine-generator system. Data of engine 

and genera tor are gi ven in Appendix I. 
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III-2-1 Determination of Flywheel Effect to Avoid Flicker 

Using Equation (III-5) 

WK 2 
a 

= 1575000 x f x Ea x BHP 

If . (PF) 1. 54 

= 1575000 x 50 x 0.95 x 1120 2 ::. 8.41 ton-ft. 
(500)4 x o.s x 1.054 

The value of ~ = 11.565 from table {8). Hence, 

from equation (III-8) 

u = 11.565 x 7 = 0.976 
11.65 x 7 

Using equation (III-2}, 

p = m N = -w 7 x 500 
60 

::. 55> 20. 

So that app~opriate value of C
0 

::. 1/75. 

with engine data from Appendix I. 

Thus, from equation (III-6}, 

W"o2 = 
2 = 0.976 x (15.4) x 22.4 x 75 = 

5002 

Hence, from equation (III-5) we have 

W K2 ::. 8.41 + 5.27 ::. 11.68 ton-ft2 • 

2 5.27 ton-ft • 

III-2-2 Coefficient of Cyclic Irregu1arity to Limit Angu1ar Derivation 

::. 

Using equation (III-15}, 

N m = nor 500 x 7 
720 x 50 

So, the flywheel effect deter.mined in III-2-1 above 

is sufficient to ful.fil both requirements. 



- 51 -

III-2-5 F1ywheel Effect to Avoid Electrical Resonance 

Using equation (III-17) 

w Ka = 2,550,000 x f x Ea 
x4 (P.F.) (1.54) 

= 2,550,000 x 50 x 0.95 = 
(500)4 x 0.2 x 1.54 

5 14. 5 ton-ft. 

III-2-4 Extra Flywheel for the System 

Compari.ng the values of W K2 obtained i.n above 

calculations we see that the maximum flywheel effect necessary for 

parallel operation with similar generating sets is 14.5 ton-ft. 2 

is: 

Now, the flywheel effect of the generator rotor alone 

= 57•000 = 16.5 ton-ft. 2 
2,240 

This shows that no separate flywheel is necessary in 

the system, unl.ess otherwise required for correoting some msatis-

factory vibration behaviour of the system. 
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IV EQUIVALENT LENGTHS 

IV-1-0 THEORY 

IV-l-1 To make the calculations of torsional vibration 

possible, the complicated engine system has to be reduced to a 

system with fiywheels situated on a shaft of uniform diameter. 

In this section we shall deal with the procedure 

for finding the equivalent lengths and torsional stiffness of the 

shaft sections of the system. 

The shaft of uniform diameter to whioh the actual 

shafts are reduced is called. the "equivalent shaft". Its diameter 

may be chosen arbitrarily; but its length between each two masses 

must be such that it is torsionally equivalent to the actua.l shaft 

between corresponding masses of the actual engine system. A 

torsionally equivalent shaft is one which twists through exactly 

the same angle as the actual shaft when equa.l and opposite torques 

of given amotm.t are applied to the two ends. 

IV-1-2 Torsional Stiffness 

Torsional stiffness of a circular shaft is gi ven b;y: 

c 

c 

where 

=- « d4 G 
52L 

for solid shaft 

=- !f (do4 - di4) G 
for hallow shaft 

52 L 

c =- torsional stiffness, lb.-in/rad. 

d = diameter of solid shaft, in. 

di =- inside diameter of hallow shaft, 

•••••••• (IV-1) 

• • • • (IV-2) 

in. 

do = outside diameter of hallow shaft, in. 
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G :. modulus of rigidity of shaft material, psi. 

L ~ length of shaft section, in. 

IV-1-5 Overall Stiffness of Shafts in Series 

1 

Le 

The overall stiffness is given as: 

1 • • • • • • On ••• (IV-5) 

where e1 , e2 , e5 •••• en are stiffnesses of individual shafts 

2. e :. overall stiffness of the shaft built up with "n" 

shafts of stiffnesses e1 , e2 •••• en in series. 

Il-1-4 Equivalent Lengths of Shaft Sections 

(a) Uniform circular shaft. 

Equivalent length is given as: 

L • de4 • Ge 
:. , when actual shaft is solid ••• (IV-4) 

d4 . G 

4 = L • de • Ge , when actua.l shaft is hêl.low • • (IV-5) 
(d

0
4- d14) G 

where Le = 1ength of' equivalent solid shaft, in. 

L ::. 1ength of actua1 shaft, in. 

de ·- diameter of equivalent shaft, i.n. 

d, ai, d
0

, G are as described above. 

Ge :. modulus of rigidity of material of equivalent shaft. 

(b) Stepped Shaft 

Wh en a shaft of smaller dia.meter is j oined to a shaft 

of larger dia.meter, the effective length of smaller shaft is greater 

than its actual length due to local deformation at the j'lmcture. 
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Actual shaft sections 

( a ) 

ci,lci, t·OO 1· '25 I·SO 

Lvd J 1 

0 O•OS_,. O·OSS 

T c:~:::_--::--==-:-
TJ- ---- -- - --+---+-

-. i--~-=---==== =-----==-
1 

1 1 1 1----------- -L2 ----- ·------j ~~ 

( b) 

( c ) 

Representative sec ti ons for 

calculation of equivalent length 

2·00 3•00 lnfy 

0·/00 0•/0'f 0·1 '25 

Figure (IV-1) 
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To malte allowance for this effect a smal.l lengtb Lj; called 

"penetration length at the juncture", is added to the length of 

smaller shaft and the same amount is sub~tracted from the length 

of larger portion. Doing this the shaft may be represented b;y 

a sbaft of the dimensions shown on the rigbt band side sketch in 

figure (IV-l-a), for calculation of equivalent lengtb. From this 

we get 

::. 

[
(L1 + Lj) 

d4 
1 

• • • • • • (IV-6) 

The recommended values of Lj are given in the table 

of the figure. 

( c) Forged Coupling 

The thickness of the fiange of couplings currently 

used is about one-quarter the sbaft diameter. For auch type of 

coupling, if the penetration lengtb is taken as 0.125 du the shaft 

for calculation of equivalent lengtb may be like that shown on the 

right band aide sketch in figure (IV-l-b). From this we get: 

= 

( d) Keyed Coupling 

de 4 
Ge 

G 
••••••• (IV-7) 

It is recommended to take the shaft to be unstrained 

by the coupling hub for a distance of one-third the length of the 

coupling, and to assume for the remaining lengtb that the torque 

i s carried by the boss and flan ge only. Taking the bol t circle 

diameter as the effective diameter of the fiange we may represent 

the coupling by the shaft sections as that shown in sketch on the 

right band side in figure (IV-1-5). Ve get the following formula 
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O. J 

1 

~r-- ~ ~ ~ ~-+----+ 

Figure (IV-2) 
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for equivalent length. 

L :. e 
[

(11 + 1/3 L:a) (2/5 L2 - 1/2 L3) 1/2 L3 J 4 
4 + 4 4 + 4 de Ge 

d1 G8 {d2 - d1 ) ~ {d54 - d1 ) ~ 

:. modlàus of' rigidi ty of' shaf't ma terial 

~ :. mofulus of' rigi di ty of' coupling ma teri al 

(e) Tapered Shaf't 

••••••••• (IV-8) 

Equation for equivalent length of' a solid tapered 

shaf't is given as 

...........•.... (IV-9) 

where d1 = diameter at small end, in. 

d2 = diameter at large end, in. 

L = axial length, in. 

IV-1-5 Feui valent Length of Crankshaf't 

An element of' crankshaf't is illustrated in figure 

(IV-2).With assumption that 

(a) def'lection of the elEIIlent is mainly due to the twist of the 

journals, twist of' the crankpin, and bending of the webs, 

{b) no local deformation exista at the jmctions of' the webs and 

pin or j ournals, 

( c) the lever arm of' the couple acting on cra.nkwebs is equa.l to 

the crank throw, 

(d) the bearing clearance is suf'f'icient and the displacements of' 

the journals are possible (no bearing contraint), 
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the equation of equivalent length of the crank element is given by 

where 

hold. 

• • • ••••••• (IV-10) 

ce = torsional rigidity of equivalent sha.ft 

= 5tl2 de4 Ge for circular shaft (IV-11) 

c1 = torsional rigi di ty of the journal 

= G Ip1 = ..!.... ('\n 4 - d . 4) G •••• (VI-12) 
52 0 m1 

ca ::. torsional rigidi ty of the crankpin 

G IPa ..L. (d 
4 4 (IV-15) ::. = - dei ) G 52 co 

B ::. nexural rigidi ty of the web agains~ bending in the 

plane p-p perpendicular to the plane of the drawing 

of figure (IV-2) 

= ....!... h t
5 

E 
12 

Ip = polar moment of inertia of the section, in.4 

E = modulus of elasticity, psi. 

In practice the above assumptions do not strictly 

(a) There are local deformations at the junctures. 

(b) The effective lever arm of the couple is not exactly equal to 

the crank throw, due partly to attachment of the pins and 

partly to the bearing constraint. 

( c) The equivalent length may be different from that obtained by 

using equation (IV-10) due to stiffening effect of the bearing 

constra.int. Based on some mathematical assumptions and working 

on element of dimensions a ::. 2b for three cases, viz. no constraint, 
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partial constraint, and complete constraint, Timoshenko( 22-a) 

analytically showed that reductions in equivalent length of crank 

element under complete and partial constraints compared to that 

of no constraint case are about 17% and 13%. 

(d) The degree of stiffening effect on the equivalent length per 

crank element depends not only on the degree of bearing constraint 

as mentioned in (c) above but also on the relative location on the 

crankshaft of the element under consideration. Analyzing a three-

throw crank shaft of dimensions a = 2b for partial constraint case, 

Timoshenko( 22-b) also showed that reduction from no-constraint 

equivalent length of the first and third elements is about 5% on1y 

where as the reduction for the second crank is about 7 .8%. 

No exact mathematical treatment, however, is possible. 

The following empirical formulae of modified forms of equa. tion (IV-10) 1 

are used currently to estimate crankshaft equivalent length. 'Wherever 

possible it is recammended that there should be a comparison of 

calculation and experiment of a number of previous crankshafts 

of similar characteristics. The empirical for.mulae are< 2>: 

B.C. Carter's Formula 

w. Ker Wilson's for.mula 

••• (IV-11) 

••••••••• (IV-12) 
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The above formulae are given for hollow pin and journal. 

If they are solld, internal dia.meters dei and dm_ may be made zero. 

Wilson( 2) recommends obtaining equivalent length from 

both equations ·(IV-11) and (IV-12) and taking the average value 

of the two resulta if the difference between them is not large. 

If the difference is large, value from equation (IV-11) is recommended 

if the webs are thin and narrow, and there is no over1apping of 

crankpin and j ouma1s. If, on the other hand, the crankwebs are 

thick and wide, and if there is over1apping of crankpin and j ourna1s 

the result from (IV-12) is recommended. 

Timoshenko 1 s( 7) modification of equation (IV-10) is 

different from above two. The formulae for equivalent 1engths 

for cases with no bearing constraint and witb complete conetraint 

are given as: 

with no bearing constraint 

• • • • • • • • (IV-15) 

with complete constraint 

= 4 [ ( b + 0.9 h) Le de 4 4 
d - d mo · mi 

+ (d:: ~-:~~ (1- ~)+t~'}l-~J 
• • • • • • • • (IV-14) 

in which, 
2 5 5 2 

r (a + h) + ~ + a + _.!:._ + !,:_ (..L + .!,_) 
k = 4 c5 2 c2 24 B1 5 B G 2 A ! 1 ----------------------------------------ar r2 -+-2 c2 2 B · 
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where k ::. effective lever ar.m, of the couple 

c5 ::. torsional rigidity of the web in respect to twist 

arotmd p-p ::. t 5 h5 G 
5.6 (t-2 + h2 ) 

B1 ::. the flexural rigidi ty of j oumal 

= ir (dmo 4- dm 4) 

A ::. area of the cross section of the web taken on 0-0 = h t 

A1 ::. area of the cross-section of the web taken on p-p = t r 

Equations (IV-15) and (IV-14) give 'equivalent lengths 

for two extreme cases. The equivalent length in practice lies 

somewhere -between the two values. 

In equations (IV-11) through (IV-14), the three terme 

on the right hand side give respectively the equivalent lengths of 

one journal, one crankpin, and two webs. Knowing this, equipnent 

lengths of more complicated designs of crankshaft can be obtained 

by breaking them illiio simple portions to which the terms just 

mentioned can individually be applied. Full accotmts on auch 

cases may be seen in reference (2). 

IV-2-0 APPLICATION 

We have determined the tentative aize of shaft in 

section II. It has also been shown in section III tha t no extra 

flywheel effect is necessary other than that contributed by the 

generator rotor maas. 

Knowing these properties the required transmission 

shaft system is planned out and illustrated in figure (IV-5). 

The next step is to determine the equivalent lengths 

and torsional stiffnesses of the shaft sections preparatory to 
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torsional vibration analysis in section (VI). To determine these 

properties we shall assume the diameter of equivalent shaft equal 

to 9.25 in. and its material is steel. 

IV-2-1 Equivalent Length Between Çylinder Masses 

The portion of crankshaft between two cylinder masses 

comprises two crankwebs, a length equal to that of crankpin, and a 

journal, total equivalent length of which will be equal to the 

equivalent length per crank element as discussed in the theory 

part. 

The equivalent length of an element of crankshaft 

may be determined by using the formul.ae given. However, in our 

case the torsional stiffnesses between the cylinder masses, between 

the scavenge pump and No. 1 cyl. and between the damper and the 

scavenge pump are given by the engine manufacturing company and it 

is not necessary to find these values. The present task is to 

find the equivalent lengths of these sections and to find the 

equivalent length as weil as stiffness of the shaft between the No. 

7 cylinder maas and the genera tor rotor. 

To get the equivalent length between cylinder masses, 

we use equation (IV-12). The stiffness is given as 316 x 106 

lb.-in./rad. so that 

x (9.25) 4 x 12 x 106 

32 x 516 x 106 :. 27.294 in. 
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IV-2-2 Equivalent Length Between No. 1 Çylinder and Scavenge Pump 
Masses 

lb.in./rad. 

6 
The stiffness of this section is given as 139 x 10 

Hence, 

ft • 
4 

de • Ge 

32 c 
ft x 732 x 12 x 106 

32 x 139 x 106 :. 62.05 in. 

IV-2-3 Equivalent Length Between Scavenge Pump and Damper Masses 

6 · The stiffness of this section is given as 90 x 10 

lb.-in./rad. Hence, 

6 
ft x 7321 x 12 x 10 

32 x 90 x 106 :. 95.83 in. 

IV-2-4 lf,qu:ivalent Length and Stiff'ness of the Shaft Between No. 7 
Cl linder Mass and Genera tor 

This shaft is subdivided into small sections for our 

calculation as illustrated in figure (IV-3). 

Section (a) Section between point A of No. 8 main and end of crank 

shaft flan ge. 

Here we use equation (IV-7). The dimensions are obtained from 

drawing No. (6). We get: 

Section (b) Section between the end of crankshaft and first coupling. 

From figure (IV-3) we see that the equivalent length 

of the portion b1 is the SBlD.e as that already calculated above for 

subsection (a), i.e. 

8.1433 in. 
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For section ba we use equation (IV-8) wi th d:ilnensions given in 

drawing Nos. (6) and (1). This gives: 

L~ :. 6.695 + 2.75 + 5.75 x 7521 + 1.75 x 7521 
·ua 56884 169679 

= 6.695 + 2.75 + 0.744 + 0.076 : 10.265 in. 

Hence equivalent length of section (b), 

L~ :. L~ +L' :. 8.145 + 10.265 :. 18.408 in. 

Section ( c) EQuivalent length of the main shaft 

This section is marked as "c" in figure (IV-5). 

Equivalent lengths of the two couplings, i.e. equivalent 

lengths of sections c1 and c5, can be expressed, when we put 

L1 =- 0 and introduce d10 and du for outside and inside diameter 

of the shaft in equation (IV-8) 1 as: 

= [ 1/3 La (2/5 La -1/3L# 1/2 L5 J 4 

Le (dlo4- d14) Ga+ (dz4- dlo4) ~ + (ds4- dlo4) ~de • Ge 

The values of second and third terms can be obtained 

directly from calculations done for section (b). Renee, 

Equivalent length of section C:;u from equation (IV-1) 1 is: 

199.5 x 7521 :. 212 . 814 in. 
6865 

Hence total equivalent length of section ( c) is given by: 

Le +Le +Le =- 2 x 3 •. 754 + 212.814 = 220.322 in. 
cl ca c5 
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Section (d) The section between the generator mass and its coupling 

Attempts were made to get accurate dimensions of the 

generator rotor. But i t was not successful due to the Company' s 

strict observance of trade accuracy. It is, therefore, assumed 

he re tha t the total length of shaft between the rotor maas and 

coupling end is 24 in. and the shaft is of 9.25 in. diameter. In 

actua.l case, however, the shaft may be stepped to carry the bearings. 

Torsional stiffness of the shaft may then be obtained by using the 

equations described before. For our engine system, the assumption 

should not differ very much from actual value. Furthermore, the 

generator shaft contributing to the stiffness calculation occupies 

only a sma.ll fraction of the total length of the transmission shaft 

between the No. 7 cylinder and the generator mas~es so that the 

overall torsional stiffness calculated on this assumption should not 

differ appreciably from the value wi th actual rotor shaft. 

To use equation (IV-8) we have L1 = 15.75 in. 

All the other values are the same as those calculated for section 

(b). Hence, 

Led = 15.75 + 2.75 + 0.744 + 0.076 = 19.32 in. 

Section (e) The section between No. 7 cylinder maas and point A 

on No. 8 journal. 

This is equal to one half the equivalent length of 

one crank element. Hence, we get from V-2-2: 

Le = 1/2 Le = 1/2 x 27.294 = 15.647. e 1 
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SUmming up above values or equivalent 1ength, we 

get the equivalent 1ength between No. 7 oy1inder and the generator 

masses as: 

: 8.1455 + 18.408 + 220.522 + 19.52 + 15.648 : 279.841 in. 

IV-2-5 Torsional Stirtness or 8hafting Between No. 7 9Y1inder 
and Generator Masses 

This is obte.ined by using equation (IV-1) with 

equivalent 1ength just calculated as 

c 
4 : tt • de • Ge 

52 Le 

tt x 7521 x 12 x 106 

52 x 279.841 
6 : 50.8 x 10 1b.in./rad. 
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V EQUIVALENT MOMENTS OF INERTIA 

V-1-0 THEORY 

V-1-1 The equivalent moments of inertia. of va.rious masses 

for our system have been supplied by the angine a.nd a.ltemator 

ma.nufacturers a.nd we ca.n even exc1ude this section. However, since 

the treatment may not be complete without litera.ture on the method 

of determination of mass moments of inertia, the theory of deter.mi-

nation of these values are included below. 

V-1-2 Equivalent Mass Moment of Inertia of the Dalnper 

The damper used on the angine being investigated is 

a viscous Lanchester damper. The equations for auch a. damper are 

reproduced below< 3>. 
The equivalent mass moment of inertia due to vibration 

of the inertia ring, experienced by the housing cari be show a.s 

where 

J :. 
e 

Je = 

Jd = 

\(lE' :. 

f = 

J 2 
1 +( ~ w) 

•••••.•••••. {V-1) 

equivalent mass moment of inertia due to the inertia 

ring, fe1t by the housing 

ma.ss moment of inertia of the ring 

phase velocit,y of vibration 

viscous damping torque per unit ve1ocity. 

It can be shown that the work dissipated through the 

damper is maximum when f :. Jd w. This value of f is called the 

optimum damping. With this optimum damping condition, we get from 

equation (V-1) tha.t 

* Since Cù does not exist on the typewriter, w will be used to denote 
the phase velocity. 
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::. ••••••••••••••• (V-2) 

Hence, the total equivalent moment of inertia of the 

damper wi th optimum damping is gi ven by': 

Jtota.l • • • • • • • • (V-5) 

where Jh :. maas moment of inertia of the housing. 

V-1-2 Maas Moment of Inertia per Çylinder 

The total maas moment of inertia per cylinder oan be 

obtained by summing up the following components. 

1) Inertia of one crankpin 

11) Inertia of one jouma.l 

iii) Inertia of two cra.nkwebs (and rotating weights if any 

are used) 

iv) Inertia of one rotating part of connecting rod 

v) Inertia due to reciprocating part. 

To get the representative maas moment of inertia, the 

above may be determined. Determination of the first two components 

follow simply the fœd.amen tal formul.ae of mechanics. The third 

component can be obtained by graphical or analytical methods(2). The 

analytical method may be used for our purpose. 

iii) Analytical method of determining inertia of crankweb 

a) If the cra.nkweb is not bevelled the moment of inertia 

can be found wi tho ut di ffi cul. ty by dividing the web into regul.ar 

portions to which the fundamental fo:rmulae can be applied. 

b) If the web is bevelled the procedure is to find 

the inertia of œbevelled web as described above and to make 

correction for bevelling. 
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Inertia of the bevelled portion can be found by using 

the formul.ae for hallow cone sections wi th cylindrical bore as 

follows: 

Joo :=. w (002 
(V-4) ............... 

g 

where J :=. inertie. of the cone section, lb-in-sec. 2 

w = weight of the cone section, lb. 

= ft p L (r + 2 r ) (r1 - ra) (V-5) 3 1 2 
.. 

K
00 

=- radius of gyration about the cone axis, in. 

• • (V-6) 

r1 = outside radius at the large end, in. 

ra = radius at the small end= radius of the bore, in. 

L = axial length, in. 

p :=. specifie weight of material, lb/in. 3 

(iv) Moment of inertie. of rotating part of connecting-rod 

Weight 

'l'he usua.l practice, in finding moment of inertie., is 

to replace the connecting rod by two concentrated masses Wrot' and 

Wr~c , one at the crankpin and the other at the wristpin, by using 

the follo'W'ing equations: 

' ' wrot + wrec = wcon • • • • • • • • • • • • • • • • • (V-15) 

w' . h1 ::. w' h 
rot rec· 2 •••••••••• (V-14) 

where W
000 

= total weight of connecting rod 
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h1 = distance of C .G. of connecting rod to the centre of 

crankpin 

h2 : distance of C.G. of connecting rod to the centre of 

wristpin. 

This method disregards the difference between the 

moment of inertia of the replacing system and tha t of the original 

connecting rod. But this difference in moments of inertia is 

usually small and the resul t obtained by the above method is sufficiently 

correct to an acceptable degree of approximation. 

Having the value of W~ot the problem of finding its 

maas moment of inertia gives no difficulty. 

(v) Moment of inertia of reciprocating part 

The total reciprocating part per cylinder consista of 

a) weight of one piston, complete with its component parts; 

b) weight of one wristpin; 

c) weight of cross-head, if any is used; 

' d) a reciprocating weight of connecting rod, Wrec as deter.mined above. 

Now, disregarding the obliquity of the connecting rod, 

the approximate value of moment of inertia about the crankshaft axis 

due to the reciprocating part can be shown as: 

J = Wrec x r 2 (1 - Cos 2 a) • • • • • • • • (V-15) 

where Wrec : total reciprocating weight, lb. 

r :z. crank radius 1 in. 

a : angle of rotation of crank from the t.d.c. position. 

J : equivalent maas moment of inertia about crankshaft 

axis due to the reciprocating weight, lb-in-sec2• 
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This bas an average value of 

Jav :. ••••••••• (V-16) 

Equation (V-16) shows that average mass moment of 

inertia of reciprocating weight about the crankshaft axis can be 

obtained by putting a concentrated weight equa.l to one-ha.lf the total 

reciprocating weight at the crank radius. 

In co:mmon practice in determining the total maas moment 

of inertia per cy11nder the average value of the inertia of reci-

pro ca ting part is taken. 

V-2-o APPLICATION 

V-2-1 The equivalent moments of inertia of various masses 

needed in the system for torsional vibration analysis are given b,y 

the manufacturera and, in fact, it is not necessary to do ca1culations 

for these values. However, calculations for the inertia of the 

damper and one cy1inder maas may be given for illustrative purposes. 

V-2-2 Moment of Inertia of the Damper 

The moments of inertia of the hub and fiywhee1 are 

given on the drawing No. (2). 

Renee using equation (V-3) with an assumption for 

optimœ damping: 

:. 529.5 + 5~5 ::. 617 lb-in-sec. 2 

This is the value gi ven by the engine manufacturer 

also. 
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V-2-5 Moment of Inertia of the Engine Masses 

All the d:illlensions in the following calculations are 

obtained from drawing No. (6) 

(i) Inertia of one Journal 

This is given by: 

J 

where d = diameter of journal, in. 

L = length of journal, in. 

Hence, 

Jj = Il x (9.25)4 x 10.25 x 0.285 
32 x 586 

(ii) Moment of inertia of a crankpin 

This is given by: 

= 

a 
where W :. w&ight of pin ::. 11 d L lb. 

p 4 

5.4 lb.in.sec. 3 

~ = radius of gyration about pin axis = : 2 

r = crank throw, in. 

Hence, 

10.7 

r2 = (11.22)
2 

= 126. 
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__ ft x d2 xL> x L x (1:~ + r2) 
~ L : 

4xg 

ft (9.25) 2 0.285 x 7.49 x 156.7 

4 x 586 

= 50.5 lb.in.sec~ 

{iii) Moment of inertia of crankweb 

A crankweb from drawing No. (6) is reproduced in figure 

(V-1) for clarity and convenience of reference. The crankweb may 

be divided into sections marked (1), (2), (3) and (4) for application 

of ana.lytical formulae. 

Inertia of section (1) 

This is a circular sector, radius of gyration of which 

about the axis o-o is given by 

r 2 
1 

2' disregarding the bevel for the time being. 

Bence, 

2 16.1~2 150.5 in.2 1:1 :. :. 
2 

Ve have: 

Sin~ t 
= 2 2 x 

a : 25.53° 
2 

a = 46.660 

r1 
: 2 

The mass of the sector is given by 

m1 : ft • e . rl 2 • h 
g 

12.78 
x 16.15 

: 0.596 
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2 : ~ x 0.285 x 16.15 x 5.12 x 46.66 
586 x 560 

Hence, 

Inertia of sections (2} and (5) 

For this calculation, section (5) is imagined to be 

rotated to take the position as show on the extreme right diagram 

in figure (V-1) and the fono.ula for a triangular lamina is applied 

to this figure. 

We ge-t, radius of gyration about 0 - 0 as: 

K; : (2 L)
2 

+ 12 (!)
2 

24 

2 2 
: 4 :x: (14.85) + 5 x (12.878) : 57•2 in.a 

24 

Mass of this lamina is: 

Hence 

: px2'Lxf xh 

2 g 
: 

0.285 x 14.85 x 12.78 x 5.12 

2 :x: 586 

: 0.555 lb.sec~ in~ 

J 2 + 5 : 0.355 x 57.2 - 20.'4 lb.in.sec.
2 

Inertia of section (4) 

This is a simple rectangul.ar lamina. We do the 

calculations as follows:-

m : 0.283 x 6.58 x 5.12 x 12.1a 7 a in-1 = 0.50 lb.sec. • 
386 
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a = 4 x 6.58 + 12.78 
12 

= 27.2 in~ 

Hence, 

0.507 x 27.2 8.35 lb.in.sec.a 

!nertia of bevel 

The bevel is a part of complete ballow oone section 

only. To get the weight of the bevel, the weight in equation (V-5) 

must be multiplied by the . ratio of the angle subtended by the 

bevel at the centre o, to the complete circle. In determining the 

angle subtended by the sector, the radius to the locus of the C.G. 

of the bevel must be used. This is gi ven by: 

r5 = r1 
L1 = 10.5 - 1.15 = 15 in. --3 

Bence, 

Sin! = 12.78 = 0.425 2 2 x 15 

~ 25.15° = 2 

~ :. 50.5° 

Bence, from equation (V-5) 1 the mass of the bevel 

mb = wb :. 
• p ha 

(r1 + 2 r 2 ) (r1 - ra) 
~0 - X-g 5 g 560 

__ • x 0.285 x 5.46 (16.15 + 2 x 2.69)(3.46)x 50.5 :. 0• 5~4 lb a 
i.1 .sec1 5 x 586 x 560 in~-

From equation (V-6) 1 we get 

lC =...2...[16.155 + 2x 16.15
2 

x 12.69 + 5 x 16.15 x 12.6~ + 4x 12 .69
5 

00 
10 16.15 + 2 x 12.69 
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= 194.4 in. 2 

Bence 

::. 

Moment of inertia of the web is obtained by summing the above resulta 

as: 

Inertia of a crankweb::. 52.2+20.4+8.35-10.4::. 70.55 lb.in.2sec.a 

(iv) Moment of inertia of rotating weight of connecting rod 

get: 

' Using the value of Wrot given on drawing No. (3) we 

' = Wrot • r2 ::. 
g 

269 x 126 ::. 
386 

2 97.8 lb.in.sec. 

(v) Moment of inertia of reciprocating weight 

Total reciprooating weight has been oalculated and 

used in section II. This value was obtained as 705 lb. 

Jrec 

Henoe, using equation (V-16), we get 

705 
2 x 386 x 126 ::. 115.2 1b.in.sec.2 

Moment of inertia per cy1inder is obtained by summing 

the items (i) to (v) oa1culated above as:-

Moment of inertia per cylinder ::. 5.4+ 50.5 + (2 x 70. 55)+ 87 .8+ 115.2 

::. 400 lb.in.sec.a 

This is exactly the value supplied by the engine 

manufacturer. 
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VI NATURAL FREQUENCIES 

U-1-0 THEORI 

VI-1-1 The problem of finding out the natural frequencies of 

torsional vibration of a system with many degrees of freedom is not 

at all new. A number of methods have been established for the last 

fifty years. The most prao ti cal methods may be grouped in four, 

viz. 

a. Holzer•s Tabulation Method 

b. F.M. Lewis' Distributed Mass Method 

c. F.P. Porter• s Equivalent Inertia Method 

d. Graphical Methods. 

These methode are described in detail in the literature 

on torsional vibration and i t may be superficial to reproduce a.ll 

of them in this section. 

However, for our purpose, two methode may be used: 

one to get detailed re sul ts for further analysis and the other to 

serve as a check on the correctoess of the natural frequencies 

obtained by the first method. We shall use the methode mentioned 

in (a) and {b} above for our purpose. However, since method (a) 

is very well establiehed the procedure of working out a Holzer Table 

will not be treated in detail. 

To work out a Holzer Table, the na tural frequency 

value of the system is estimated by transforming the given multirotor 

system into an equivalent two- or three-rotor systems. The two-rotor 

system gives approximate value of the lowest natural frequency, the 

three-rotor system gives one-node and two-node frequencies. 

Two-rotor and three-rotor systems are illustra ted in 

figure (VI-l) • Their natural frequena,y equatiQns are given below:-



-&::1-

Natural frequene.y of two-rotor system: 

• • • • • • • • • • • • • (VI-l) 

Natural frequency equation for three-rotor system: 

w: 2-· n-

± 

VI-1-2 F.M. Lewis' Distributed Mass Method 

............ {VI-2) 

In this method, the inertia and stiffness of engine 

crank are uniformly distributed along the entire length of the 

engine. Then this portion is treated as a shaft of unifom stiffness 

and moment of inertia. 

So that Lewis' method can be used, the analysis of 

torsional vibration of uniform shaft is given below:-

Torsional vibration of uniform shaft 

A uniform shaft is show in figure (VI-2) 

Let IP : polar moment of inertia of shaft section 

G = modulus of rigidi ty 

c ::. torsional rigidity ::. G Ip 

j :. mass moment of inertia of shaft per unit length 

L ::. length of shaft 

Jo :. total mass moment of inertia of the whole shaft 

::. J L • • • (VI-3) 
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c c c 

( a ) ( b) 

F1gure (VI- 1) 

L 

J..L._; -x------'1""--.:...) ()'-----_Jo_J c_o -~:)) 

F i gu re (V 1 - 2 ) 
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C0 : overall stiftness of the shaft. 

: c/L •• •..... (VI-4) 

w : angular veloci ty of vibration 

9 : deflection, which is function of x and time ntn. 

ax : amplitude of vibration at a distance x. 

Equa.ting the net torque acting on an element of length of dx and its 

inertia torque, the eqœtion of motion can be obtained as: 

: c • • • • • (VI-5) 

Solving equation (VI-5), the amplitude of vibration at a distance x 

can be o btained as: 

: 

where K1 and K2 are constants. This can be wri tten as: 

ax : A Cos {xVJ cw2 + a) ••••. {VI-6) 

where A : an amplitude constant. 

a : phase-angle of eosine wave. 

Using equations (VI-5) and (VI-4) in equation (VI-6) we get: 

(x fo a x : A Cos L • w Co + a) • • • • • • • • (VI-7) 

In equation (VI-7), wJfi. is called "frequency 
Co 

coefficient" and we may denote this by 

• • • • • • • • {VI-8) 
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Using equation (VI-6) in (VI-7), we get 

ax :. A Cos (~ • f + a) •....... (VI-9) 

The maximum value of torque at any section along the shaft is 

givenby: 

Mtx :. c • 

which wi th value of ax, c and ~ from equations (VI-9), (VI-4)and 

(VI-8), becomes 

= A w JJ0 C0 Sin (~ ~ + a) •••• (VI-10) 

VI-2-0 APPLICATION 

VI-2-1 We have obtained the dimensions of equivalent shaft 

of various shaft sections in Section (IV) and equivalent masses in 

Section (V). The loading diagram. wi th the se values, ready for 

torsional vibration analysis, is Ulustrated in figure (VI-3). 

At this stage we are in a position to find the natural frequencies 

of the system. 

The calculations of natural f requencies of the system 

are made by using Holzer tabulation method and the resulta are 

checked by Lewis• method. 

VI-2-2 Natural Freguencies by Holzer Method 

To work out the Holzer tables, the approximate values 

of natural frequen~ have to be obtained. To get these estimati ons 

the system is reduced to a three-mass system as shown in figure 

(VI-l-b). In this we lump ali the engine masses to the centre 
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cylinder maas, i.e. to No. 4 cylinder maas. The scavenge-pump 

mass is ll.ID.ped to the damper maas. The stiff'nesses of the shaft 

sectdons between the masses are obtained by using equation (IV-5) 

of Section (IV) as follows:-

1 -[ 5 1 J 1 c1 - 516 + ro:8 10
6 

1 = 
25.85 x 106 

which gives 

6 
c1 = 25.85 x 10 lb.in./rad.; 

and also 

~2 = [ 

6 
which gi ves C2 = 'fh x 10 • 

J 1~6 
Getting all these values, we apply equation (VI-2) •. 

The following gives a few steps of calculationsz 

a) 
El. = 

25.82 
1729 1!5800 = J1 

c2 56 x 106 
48195 - ::. ::. 

J5 747 

C1 + c2 = 59.85 x 106 

J2 2800 

Sum of above three 

1/2 sum 

(SlDil) 2 

= 21590 

= 71512 

9 = 5.087 x 10 • 
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Again, 

4 C1 Ca {J + J + J ) = 4x 25.85x 36x1o
12

x 17547 
6 

9 
J 1 J 2 J'Il 1 a 3 =2.02xl0 

v 13800 x 2800 x 747 

Value of the d.iscrem.inant term = ± !ho.25 x 108 = ± 27585 
2 

: 8072 

Using these estimations we set up Ho1zer tables, . 

with the kno-wn values of the system which have been obtained in 

Sections {IV) and {V). The Holzer tables for one-node vibration 

are given as tables {9-a), {9-b), and {9) in Appendix II. Tables 

{9-a) and {9-b) give the first two approximations and table {9) 

gives the third and final try for the frequency of this mode of 

vibration. Getting the closest approximation of na.tural frequency, 

the stress column, column K, of table {9) is filled in. The description 

given a.t the top of this column expla.ins the meaning ful.J.y. 

Holzer tables for two-node vibrations are given as 

tables {10-a), {10-b), (10-c), and {10) in Appendix II. 

VI-2-5 Application of Lewis' Method 

In this method the stiffnesses and moments of inertia 

of the engine cra.nk shaft are distributed unifonni ty along the 

entire length of the angine. The system mder investigation with 

engine dis tributed mass is illustrated in figure (VI-4). Using the 

notations in this figure the values of J 0 , C0 , Ca' Cb are obtained 

as follows: 
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Total distributed engine inertia = J
0 

= n Je= 7 x 400 = 2800 lb.in.sec. 2 

Stiffness of entire length of engine is obtained by 

using equation (IV-3) as: 

= 7 :. 1 

45-14 x 106 ' 

'Whence, 

:. 
6 

45.14 x 10 1b.in./rad. 

Again, from the sa.me equs.tion, 

..!... - ..!... c2 2 c 

1 1 :. 
139 x 106 - 2 x 516 x 106 

1 
178.19 x 106 ' 

which gives 

6 
178.19 x 10 1b.in./rad. 

Simi1ar1y, 

1 - = 
~ 

:. 1 __ ..;;;1;..... _ __, 

30.8 x 106 - 2 x 316 x 106 
1 

= 
32.38 x 106 

whence, 

6 
52.38 x 10 1b.in./rad. 
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From above J 
0 

and C
0 

values, we have 

Vco J 

~ 

"~ 

0 
:. 

:. 

l2soo x 45.14 x 106 

1 2800 
45·14 x 106 

:. 7.875 x 10-3 

All these values are gi ven in figure (VI-4) • The following is 

application of Lewis' Method to show that the natural frequencies 

obtained for our s,ystem b.Y Holzer tabulation method are correct. 

a. One-node vibration 

Let w2 :. 8550 and damper deflection :. 1 rad. 

Th en inertia torque of the damper, 

This also is the torque transmi tted through the shaft 1-2, hence 

it is also M~_2 • Therefore, deflection between stations (1) and 

(2), 

:. 0.0585 rad. 

aa = a 1 - a 1 _ 2 = 1 - 0.0585 = 0.9415 rad. 

Hence, 

Mt
2 

=- J 2 • -w2 • a 2 :. 150 x 8550 x 0.9415 ::. 1.044 x 106 lb.-in. 

:. (1.044 + 5.265) x 106 :. 6.507 x 106 lb.-in. 
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Therefore, 

6.507 x 106 
::. 

478.19 x 106 
:. 0.0354 rad. 

Hence, using equation (VI-9), we get 

And a1so from equation (VI-10), 

••••••••••••• (i) 

6 
Sin a = 6.507x 10 •• (ii) 

Dividing equation (ii) by (i) and using the values of J
0 

and C
0 

obtained above, 

tan a = 
6.307 x 106 

0.9061 x 92.36 x 3.555 x 105 
::. 0.2119 

a = 11.96 deg. 

Now, the frequencr,y coefficient, by equation (VI-8) is: 

w 

Hence, 

& Jto = 9.36 x 0.007875 = 0.7275 rad. 

= J+1.67 deg. 

~ + a = 11.96 + 41.67 = 55.65 deg. 

From (i), 

A = 0.9061 = 0.9061 
Cos a 0.9782 

0.9265 
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Bence, using equation (VI-9), defiection at Station (4) is: 

a
4 

= A Cos (~ +a) = 0.9263 Cos 55.63 = 0.5493 rad. 

Again from equation (VI-9), 

and 

Hence 

(Mt3-4) = A • w /J0 C0 Sin (~ + a) = Mt 
4 ~5 

= 0.9265x92.56x3.555x0.8052:x:105 = 24.489 x 106 1b.-1n. 

24.489 x 106 

= 32.38 x 106 
= 0.7565 rad. 

a .
5 

= a
4 

-a
4

_
5 

= 0.5493-0.7565 = -0.207 rad. 

= -15800 x 8550 x 0.207 6 : -24.568 x 10 lb.-in. 

= 6 6 (24.489 - 24.568) 10 = 0.121 x 10 sma11. 

This shows that the assumed frequency is a natura1 frequency of 

the system. 

( b) Two-node vibra ti on 

Let va = 78000, and def1ection at the damper = 
1 ra.d. Then, 

M~ = 617 x 78000 x 1 = 48.126 x 106 = Mt_ • 
-J.-2 
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~-2 ::. ::. = 0.5547 rad. 

:. 8.a ::. ~ - ~-2 ::. 1- 0.5347 = 0.4655 rad. 

Hence, 

150 x 78000 x 0.4655 ::. 4.7181x 106 1b.-in. 

Mt2-5 ::. (M~-2)2 + Mta = 

(48.126 + 4.7181) x 106 6 = = 52.8441 x 10 1b.-in. 

a2-5 = Mt2-5 
= 52.8441 x 106 

0.2966 rad. 
Ca 178.19 x 106 

= 

= aa - a2-5 = 0.4655 - 0.2966 ::. 0.1687 rad. 

Hence, from equation (VI-9), 

• • • • • • • • • (iii) 

.And a1so from equation (VI-10), 

6 = 52.8441 x 10 •• (iv) 

Dividing equation {iv) by (iii) and using the values 

52.8441 x 106 
tan a - = 5.1557 

- 279.4 x 5.555 x 10.1687 x 105 

a = 72.59 deg. 
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From equation (VI-8), 

= = 
279.4 x 0.007875 x 180 

= 126.07 deg. 

p + a = 126.07 + 72.39 = 198.46 deg. 

From (iii), 

A = 0.1687 
Cos a 

0.1687 

0.3025 
= 0.5577 

Bence, 

and 

a4 = 0.5577 Cos (198.46) = -0.5577 x 0.9486 = -0.529 rad. 

= A • w jJ
0

.C
0 

Sin (p + a) 

= -0.5577 x 279.4 x 5.555 x 0.5166 x 105 =-17.538 x 106 

1b.-in. 

Therefore, 

= 
-17.558 x 106 

32.38 x 106 
= -0.5416 rad. 

Mt = J 5 • w2. a 5 = 13800 x 78000 x 0.0126 = 15.563 x 106 1b.-in. 
5 

Mt = -17.558 + 13.;65 = -5.975 x 106 small. 
remainder 

VI-2-4 Cri tica1 Speeds of the Engine SYstem 

Baving natural frequencies of the system above, the 

critical speeds are obtained as fol1ows:-
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(a} For one-node vibration 

For this mode of vibration we have, from table (9}, 

w = 92.36 rad./sec. 

Hence, natural frequency of vibration, F, is given b,y: 

F = (:JJ w = (:JJ x 92.56 
2tt 2tt 

::. 882.3 vpm. 

(b} For two-node vibration 

The value of w is given in table (10), and 

F = ~ = (:JJ x 278.92 
2tt 2 1t 

2664 vpm. 

The cri ti cal speeds ean be obtained from frequency 

values by the following relation:-

F 
n 

where Ne = eritieal speed, rpm. 

n = harmonie order numbers. 

The critical speeds obtained b,y using above calculated 

frequencies for one-node and two-node vibrations in this relation 

are given in Table (11). 
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VII PHASE DIAGRAMS 

VII-1-0 THEORY 

VII-1-1 Work done ÈY one Cylinder per Cycle of Vibration 

The work done by the n th harmonie torque of a 

cylinder per cycle of vibration per unit deflection at the damper 

mass is gi ven by:-

::. ••••••• (VII-1) 

where Tn ::. n th harmoni c of angine torque curve, 1 b. per sq. in. 

of cylinder area. 

A ::. cylinder area, sq.in. 

R ::. crank radius, in. 

ae ::. torsional vibration amplitude at the cylinder when 

deflection at the damper is unity. 

~ ::. phase angle between the torque and the ampli tude 

vectors. 

To get the work input per cylinder for the actual 

vibration cycle the value of We in above equation may be multiplied 

by the vibration amplitude at the damper. But we do not need it at 

this moment. The work may be obtained as given in equation (VII-1) 

and mul tiplied by the actual damper deflection only after the 

summation bas been done for all cylinders, in later sections .• 

Now, in an engine system, the torque vectors at 

various cylinders have the same magnitude but their phase angles are 

different. The vibration amplitudes, however, vary in magnitude 

but they are in phase. The work done by the cylinders, therefore, 

have to be added vectorially to get representative total work input. 
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In doing this i t is customary to consider the torque vectors in 

phase and the amplitude vectors out of phase, as the value of 

work input given in equation (VII-1) is not changed if the direction 

of the torque and displacement vectors are interchanged. This 

manipulation renders the summation very convenient since the equal 

engine tOrque magnitude can be taken out as a cOllDilon factor from 

summa.tion . terms. 

The present section deals wi th the procedures of 

determining vector sum of engine ampli tude a leading to vector 

sommation of the work at ali cylinder given by equation (VII-1), in 

later sections. 

VII-1-2 Phase Diagrams 

SUmmation of displacement vectors is achieved by 

drawing phase diagrams. This is beat explailied by considering a 

case of our angine system. 

Assume that 56o0 in a phase diagram represente one 

vibration. Now with a two-stroke-oycle single acting angine, 

where working cycle occupies one revolution, there are no half order 

harmonies. 

For an engine of m cylinders firing at equal intervals, 

the firing interval is 56o0 degrees of crankshaft rotation for 
m 

2-stroke angine. 

Now at the critical speed of order 1, while the 

crankshaft makes a full revolution, each vector in the phase d.iagram 

al so executes one cycle of vibration, so that the phase diagram 

rotates at the sam.e speed as the crankshaft. Hence when the crank­

shaft rotates 56o degrees between two consecutive firings the vectors 
m 
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in the phase diagram also turn 560 degrees. The phase diagram 
m 

for order 1 is, therefore, an exact reproduction of crank sequence 

diagram. 

For vibration of order 2, where 2 vibrations occur 

during one engine revolution, the phase diagr.rum turne at twice the 

speed of the crankshaft. So, while the angine turne 560 degrees 
m 

between consecutive firings, the phase diagram turne 560 x 2 degrees 
m 

between the corresponding disp1acement vectors. So in this case 

the angle between the two successive vectors is twice the firing in-

tervals of the crankshaft. 

In general, for vibration of order n, the phase 

diagram rotates at n times the speed of the crankshaft. Thus 1° 

of crankshaft rotation is equivalent to n degree of vector rotation. 

For our angine type, the angle between consecutive vectcrs in phase 

diagrams, corresponding to ~ degrees of crankshaft rotation between 
m 

two consecutive engine firings, is given b,y 560 n , where n = 1, 
m 

2, 5, •••• 

SUmming the above explanations, we can adopt the 

following procedure for getting the phase diagram for our engine. 

Assume that No. 1 crank is at zero angle (vertical 

position) and that the angles of all other cranks are measured from 

No. 1 crank. Then, 

(a) Since phase diagram for order 1, as exp1ained above, is exact 

reproduction of crank sequence diagram it is easily obtained. 

(b) The phase diagra.ms of higher orders are then obtained from 

diagram of order 1 by going aromd 1 t according to firing 
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sequence and increasing the angle between successive vectors by 

factors equal ~ the order num.bers. 

(c) The vectors in the phase diagram are all in phase for major 

orders, when ~:. 1, and vectors can be added algebraically. 
m 

VII-2-0 APPLICATION 

VII-2-1 Phase Diagram of the Engine tmder Investigation 

By applying the theory described above phase diagrams 

are drawn for the engine wder consideration. These diagrams are 

shown in figure (VI-l). The engine crank sequence ( same as firing 

order because engine is two-stroke eJJgiile) is 1-6-5-4-5-2-7. The 

phase diagram of orders 1, S, 15, etc. is the exact replica of the 

crank sequence diagram. The diagram for the next higher orders, 

viz. orders 2, 9, 16, etc. is obtained by increasing the angle 

between successive cylinders to trlce that in the first diagram. The 

angles between the cylinders in the third diagram are made three 

times that in the first diagram and so on wtil the diagram for 

major orders is reached. 

VII-2-5 Vector Summation of Engine Amplitudes 

Amplitudes of vibration of engine eylinder masses 

have been obtained in Holzer tables (9) and (10) of part (V) for 

one-and two-node vibrations respectively. These amplitudes are 

summarized in tables (12) and (15). 

Vector summation of these amplitudes may be done 

by drarlng vector diagrams rl th ampli tude of each cylinder draw 

in the di rection of its ow cylinder, or they may also be added 

analytically. 
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The analytical method is used here. For using this 

method we see that angles between number 1 and 6 cranks in the 

crank sequence diagram at the top of figure (VII-1) is 51.43°. 

Angle between number 5 crank and the horizontal is 12.86o, and 

angle between num.ber 4 crank and the vertical is 25.215°. We 

have 

Cos 51.43° ~ 0.6255 

Cos 12.86o ~ 0.9750 

Cos 25.215°= 0.9047 

Sin 51.45° = 0.7818 

Sin 12.86o :: 0.2220 

Sin 25.215"~ 0.4260 

Hence, the following relations can be written for the phase diagrams 

sho"Wll in the figure. 

(i) Harmonie Orders: 1 1 8 1 15 1 etc. 

L:. :[{a1 + (a6 +a7) x 0.6255- (a5+ a2) x 0.222- (a4 + a5) 0.904} 
2 

{ 
2 ]1/2 + (a6 -a7) x O. 7818+ (a5 - a2) x0.975+ (a4 - a 5)x 0.426} 

••••••• (VII-1) 

(ii) Harmonie Orders: 2, 9, 161 etc. 

· Similar equations can be written for other harmonie 

orders conveniently from the phase diagrams of figure (VII-1). 

CALCULATIONS 

Calcula ti ons for vector sm of angine amplitudes 

for harmonie orders 1, 8, 15, etc. of one-node mode of vibration 

is given below for illustrative purposes. Detailed calculation 
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steps for others may not be included here. 

For harmonie orders 1, 8, 15, etc. we use equation 

(VII-1). The values of angine amplitudes in one-node vibration 

are given in table (12), which was prepa.red for these calculations. 

we have 

a1 ::. 0.9014 

(a6~)x 0.6255 = 0.7995 

(a5+a2)x 0.222::. 1.7092x0.222 ::. 0.579 

(a
4
+a

5
)x Ol1J47= 1.5268x 0.9047 ::. 1.5Sl 

Again, 

Hence, 

SUm ::.. 1.701 Sum. 

Total vertical component 

(a6 - a7) x 0.7818 ::. 0.0685 x 0.7818 ::. 0.0554 

(a
4 

- a 5) x 0.426 ::. 0.0558 x 0.426 ::. 0.0229 

SUm = 0.0765 

Total horizontal component ::. 0.04 

L-;: ::. )o.059)
2 

+ (0.04) 
2 

= o.o715 

::.. 1. 7€:IJ 

1.701 

= 0.059 

Values of L ~ :for other orders and mode of 

vibration were found in the same mannar using the corresponding 

equations. The values o:f ra; 80 determined are gi ven in 

table (14). It may be sean that l:&; values :for 1, 8, 15, etc. 

orders are the same as those for orders 6, 15, 20, etc. Equality 

o:f L ;: values :for other orders can also be seen in table (14). 
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VIII VIBRATION STRESSES AT NON-RESONANT SPEEDS 

VIII-1-0 THEORY 

VIII-1-1 In studying the resonance diagrams of forced 

vibration problems with damping, in which the ratio of dynamic to 

static amplitudes (some time ter.med as dy.namic magnifier) is plotted 

against the ratio of the system1 s natural frequene,y to the forcing 

frequency, seme interesting aspects can be noted. The resonance 

diagram itself may not be illustrated here. On such diagram we 

can see the following interesting points: 

(a) Damping has very little effect on the dynamic magnifier except 

close to resonance. 

(b) The phase angle between the force and displacement changes from 

0 degree wh en the frequency ratio is zero, to 90 degrees wh en 

the latter is 1, and to 180° when the frequency ratio is infinite. 

( c) The maximum values of dynamic magnifier for the curves with various 

damping ratios do not occur at the resonant frequency but at 

somewhat lower frequencies. 

(d) There are three different frequencies to be distinguished, viz. 

free mdamped frequency, damped naturaJ. frequency, and frequency 

of maximum amplitude. These are grouped very closed together 

for small damping values. 

Based on above study we could get the following 

approximations for practical use:-

(i) Since, from (a) above, damping has little effect 

except close to resonance, the difficulty in calculating the dynamic 

magnifier at the flanks of the resonance curve for damped vibration 
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may be avoided by getting the curve on an assumption that the 

system is unda.mped. The curve for the region close to the resonance 

may be approximated by drawing a smooth curve when the dynamic 

magnifier at the resonance speed is obtained. 

(ii) In practical problems of systems which undergo forced 

damped vibrations, the damping ratio is usua.ll.y small so that, by 

( d) above, the damped frequency and forc~g frequency for maximum 

amplitude may with little error be assumed to be identical with the 

free unda.mped frequency. Under this assumption, the value of dynamic 

magnifier is slightl.y different from the value at the resonance with 

forcing frequency. But this difference is very small and may be 

neglected. 

Using the approximate procedures outlined in (i) and 

(ii) above the resonance curves under the action of various harmonie 

components of disturbing forces for our angine system may be obtained. 

The stresses at non-resonance speeds with the assumption that the 

system is undamped will be obtained in this section, the dynamic 

magnifiersand stresses at resonant speeds will be obtained in section 

(IX). By combining the two, the complete pic ture of the maximum 

stresses in the system will be obtained by drawing smooth curves 

as outlined in (i) above. 

VIII-1-2 Vibration Stresses at Non-Resonant Speeds of Undamped 
System 

Neglecting damping in the s,ystem, the maximum vibration 

stress in the angine system is given as: 

S80 x M •••••••••• (VIII-1). 
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where ss :. vibration stress, neglecting damping, psi. 

Sso :. equilibrium stress, psi. 

:. Ssh x 90 ................ (VIII-2) 

SB}} :. stress for unit deflection at the damper, from 

Holzer tables, psi. 

9 :. equilibrium ampli tude as defined below 
0 

M :. dynamic magnifier for undamped vibration 

1 
••••••••••• (VIII-3) 

N : revolution per minute of the angine 

N
0 

: critical speed of the system, rpm. 

VIII-1-5 Eguilibrium Amplitude 

The equilibrium ampli tude of a mul timass system 

usually refera to the No. 1 mass (Damper in our case). It is 

defined as the amplitude at maas No. 1, when the angine is rolling 

very slowly, tending to a stop, without any magnification due to 

resonance wi th an external pulsa ting couple. The equilibrium 

amplitude of any mode of vibration is obtained by equating the 

work done by the external couples in deflecting the shaft from i ts 

mean position to one extrema of its angular displacement corresponding 

to the equilibrium. amplitude a t maas No. 1, to the maximum potential 

energy of vibration. This is given as(l-a) 

Tn • A • R ~a; 
wca L J a2 

radians •••••••• (VIII-4) 
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where, Tn :. maximum value of n th order harmonie component of 

angine torque curve for one cylinder, lb. per sq. 

in. of cylinder area. 

A :. area of cylinder, sq.in. 

R :. crank radius, in. 

r;: :. vector sum of engine amplitudes, obtained on 

assumption of tmit amplitude at the damper. 

L J a 2 :. effective moment of inertia of system referred 

to the damper, i.e. the ari tbmetic sum of the 

products of the moments of inertia of the respective 

masses and squares of the amplitude at each mass, 

assum.ing unit amplitude at the damper. 

w :. natural frequency of the system. 
c 

VIII-1-4 leuilibrium Stresses 

The stresses in the shaft system corresponding to 

the equilibrium amplitude at maas No. 1 are referred to as the 

equilibrium stresses. 

Equilibrium stresses at various sections may be 

obtained by multiplying the stress values in columns K of tables 

(9) and (10) by equilibriun amplitudes. But, since the maximum 

stresses only are important, the calculations are usually made 

for this maximum value by using the highest stress values in 

columns K of tables (9) and (10). 

Doing this, equation (VIII-2) may be written as 

(SBb) 
max. 

(VIII-5) .......... 



- 86 -

If, however, the stresses at the section other than 

the section of maximum stress is needed it can easily be obtained 

by mul tiplying the maximum stresses calcula ted by the above procedure 

by the ratio of stresses in column X of table (9) or (10) at the 

required section to the corresponding maximum value used in the 

above calculations. 

VIII-2-0 APPLICATION 

VIII-2-1 Eguilibrium Ampli tuie at the Damper and Eguilibrium 
Stresses 

Since the stresses in columns K of tables (9) and 

(10) are given for one degree deflection at the damper, the eqUili-

brium ampli tude should be expressed in degrees. Equation (VIII-4) 

may, therefore, be written as: 

9 
0 

::. 180 -· Tn • A • R L i:; 
wc2.LJa2 

deg. 

The values of the factors are given as follows: 

Tn values are given in table (8). 

L ;: are given in table (15). 

A ::. 4 (15.4)
2 

::. 141. sq.in. 

R ::. ll.2 in. 

w 2::. 8550 for one-node vibration, from table (9). c 

::. 77800 for two-node vibration, from table (10). 

L J a2 are caloulated by using the inertia values of the masses 

and amplitudes at various points, when deflection at the 

damper is one radian, f r om tables (9) and (10). These 

values are given in tables (15) and (16) for one-node and 

two-node vibration, respectively. 
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Using these values in above equation, we get 

For one-node vibration 

= 141 x 11.2 x 180 
8530 x « x 2991.9 Tn 

= 0.00354 'In [;: ••••••••••••••••• (VIII-6) 

For two-node vibration 

= 141 x 11.2 x 180 ~ -
77800 x« x 1087.5 Tn ~ae 

= 0.001068 Tn L -;e •••••••••••• (VIII-7) 

The values or equilibrium amplitudes at the damper 

calculated by using equations (VIII-6) and (VIII-7), and equilibrium 

stresses by using equation (VIII-5) are given in tables (17) and 

(18). 

VIII-2-2 Torsional Vibration Stresses at Non-Resonant Speeds 

The stresses at non-resonant speeds are given by 

equation (VIII-1). The values of M are given by equation (VIII-3); 

and the equilibrium stresses, s60, are given in table (17) and (18). 

The values of stresses at non-resonant speeds calculated by using 

above relations are given in tables (19) and (20), respectively, 

for one-node and two-node vibrations. In tables (19} and (20), 

only the stresses for harmonie orders that give rise to important 

stress magnitudes are included; stresses for all other orders, 

which are negligibly small, have been disregarded. 
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IX VIBRATION STRESSES AT RESONANT SPEEDS 

IX-1-0 THEORY 

IX-1-1 Energr Dissipation in the Damper 

Let Jd :. maas moment of inertia of the damper inertia ring. 

f :. vis cous damping torque per unit veloci ty 

~ :. amplitude of oscillation of housing 

w :. angular frequency of oscillation 

Then, the work dissipated in the damper, per cycle 

of oscillation can be proved as(5): 

:. 

may obtain a curve on which 

2t 
J'd" 

•••••••• (IX-1) 

is plotted against 

2t 
1 we 

Jd w 
1+(-Jf )2 

dw 

bas a maximum value 

when _t_ :. 1. 
Jd w 

The value of t at this point is called the 

optimum damping and the work as the optimum work. Hence, 

........... (IX-2) 

••••••••• (IX-5) 

IX-1-2 Energy Dissipation in the Engine 

As can be seen from above, it is fairly easy to 

find energy dissipati on in the damper. Energy dissipation through 

other components like pumps, propellers, etc. also follow the 

viscous characteristics. 
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But energy dissipation other than these forma is 

due to a number of causes like elastic hysteresis in the ma.terial 

of the shafting and the ma. teri al of the run.ning gears, movemen ta 

of bearings, vibration of engine frame, viscous friction in the 

engine, eto., which are elusive and complicated to dete~ine, 

and different from installation to installation. The problem of 

evaluating engine damping effect, therefore, is exceedingly 

difficult. 

OWing to the se di ffi cul ti es, i t is customa.ry in 

practice, to use empirioal for.mulae derived from analysis of 

torsiograph measurements on different types of engine for determi­

nation of overall engine damping. The formulae in current use 

are based on two types of assumption, viz., 

i). that the overall engine damping is mainly viscous in character, 

i.e. overall damping losa is proportional tQ the square of the 

vibra tory ampli tude. 

ii) that the overall engine da.mping is mainly hysteresis in 

character, i.e. overall damping loss is proportional to the 

cube of the vibratory amplitude. 

The resulting stress values calculated from equation 

derived on the first assumption have been found reasonably close 

to the actual values at the strong and fairly strong criticals; 

but it is learnt that, at the wea.k criticals, the resulta given 

by the formula based on this assumption are found to be low. 

At the same time, the values given by the formula 

based on the second assumption are, in some cases, fotmd to be 

too high. 
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In the absence of accurate method, however, we 

shall use the formula derived b,y the first assumption, for 

estimation of engine damping. 

Based on the first assumption, work dissipated per 

cycle in the engine damping can be shown as: (1-b) 

::. 2: a 2 e .••...•...••. (IX-4) 

"Wbere W ::. work dissipated at engine damping points per tmit 
e 

deflection at the damper maas, per cycle of oscilla-

tion. 

fe ::. viscous damping torque per unit vibrational velocit,y. 

2: ae 2 ::. a ri thmetical sum of squares of amplitudes on the 

normal elastic curve at the engine cylinder, for 

unit deflection at the damper. 

The relation in (IX-4) is true if fe is the same 

at each damping points, i.e. at each cylinder maas. If fe is 

not the same throughout, then 2:: fe ae 2 should be used. 

A large number of tests on different engines ranging 

from large slow-speed marine oil engines to small high-speed aero-

and automobile engines are known to have been made, giving the 

rotation: 

f e 
::. V • JeO.S ft.-lb./rad. ......... (IX-5) 

where Je ::. maas moment of inertia of crank masses per cylinder, 

lb.-in.-sec.a 

V ::. a coefficient. 
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The value of V at strong and fairly strong 

criticals, from these experimenta, was found to vary from 12 to 

40. These are extreme values, the value in most normal installa-

tions being from 12 to 25. Ker Wilson(l-b) recommends taking 

the average value of 21. PUtting this value of fe, equation 

(IX-4) becomes 

21 tt J 0 •8 w La 2 
·~ e •••••••••• (IX-6) 

IX-1-5 Work Done gy the Exciting Torgues 

It can be shown that energy input per cycle of 

vibration by the nth order harmonie component of exciting torque 

per unit deflection at the damper is:(l-b),(5) 

• • • • • • (IX-7) 

The components in this equation have been described 

bef ore. 

IX-1-4 PYnamic Magnifier at Resonant Speeds 

Since the work input per cycle of vibration at 

resonant speed must be equal to the work dissipated through 

damping, we haTe from equations (IX-~), (IX-6), and (IX-7) for 

deflection at the d.amper of ~ radians: 
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whence, 

Tn • A • R • [ ë; 
••••••• (IX-8) 

The equilibrium ampli tude, 9
0

, has been fomd in 

section {VIII) and given as: 

Tn • A • R • [;: 

w2 • L J a2 
•••••• (VIII-4) 

Bence, dividing (IX-S) by (VIII-4), we get the 

dynamic magnifier at resonance as: 

w • LJ a2 

[a a 
e 

• • • • • (IX-9) 

~: The above derivation was made with the assumption that the 

damper has "optimum damping" f = Jd w. If the damping constant, 

f, has the values other than the optimum, the work dissipated in 

the damper will be lower, and we can write 

where 

M :. c . 

x 

w • [ J a2 

•••••• (IX-10) 

••••••••• (IX-11) 
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IX-2-0 lPPLICATION 

IX-2-1 pynamic Magoifier at Resonant Speeds for One-Node 
Vibration 

We have seen that the equilibrium stresses for one-

node vibration are much higher than those for two-node vibration. 

The damper, therefore, will have to be ttm.ed to have optimum 

damping for one-node vibration. If the damper is so ttm.ed, then 

the dynamic magnifier is given by equation (IX-9). We have the 

following values for one-node vibration. 

[ J • a2 = 2991.9 from table (15) 

w = 92.36 from table ( 9) 

-
Jd t:..7t:. 

2 
= ~ = 287.5, drawing No. ( 2 ) 

and from table (15), 

Lae2 = o.so5 + o.1so8 + o.6848+0.6o78+o.s252+0.4544+0.5455 

Bence, from equation (IX-9), 

= 92.56 x 2991.9 = 
29.56 x 287.5 + 21 x 120.7 x 4.1495 

7.514 
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IX-2-2 PYnamic Magnifier at Resonant Speeds for Two-Node 
Vibration 

For this mode of vibration, we have 

L J • a 2 ::. 1087.5, from table (16) 

w : 278.92, from table (10) 

L a2 : 1.0966, from table (16). e 

We have tuned the damper to its optimum dam.ping 

value for one-node vibration. This value is 

f =- Jd w1 : 575 x 92.56 lb.-in./rad./sec. 

Therefore, from equation (IX-11), 

x : 
2 x 575 x 92.56 

575 x 278.92 
2 

1 + (575 x 92.56 ) 
575 x 278.92 

Bence, from equation (IX-10), 

0.6 

::. 
278.92 x 1087.5 

0.6 x 287.5 x 278.92 + 21 x 120.7 x 1.0966::. 5.96 
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IX-2-5 Maximum Resonant Stresses 

The maximum stresses at resonant speeds are calcu­

lated by mul tiplying the equilibrium stresses obtained in section 

(VIII) by the dynamio magnifiera calculated above. The values 

obtained by this procedure are given in tables (21) and (22). 

IX-2-4 Stress Diagrams 

Having obta.ûled the values of vibration stresses 

at non-resonant and resonant speeds, the stress diagrams for the 

system can be drawn. The stress diagrams for one- and two-nod~ 

vibrations are given in Appendix III. These diagrams were drawn 

through the steps summarized below. 

Diagram. (A. III-la) This diagram. was obtained by plotting the stress 

values given in tables (19) and (21). Continuous 

curves were obtained by plotting the values in 

table (19). The peak stresses at resonant 

speeds were o btained from ta ble ( 20) • The 

approximate representative stress curves were 

then obtained by drawing smooth curves through 

these peak-stress points. The ourves are 

shown dotted in the figure. 

Diagram (A. III-1 b) The mean transmission stress in the system can 

be obtained by the followi.ng steps. 

Mean transmission torque is gi ven as, 

Tx = Tm • A • R. No. of cylinders. 

where ~ = mean value of engine torque, 

= 25.298 pei. for our engine, from table (8). 
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A : area of cylinder, psi. 

R : crank radius, in • 

. . ~ : 25.298 x 141 x 11.21 x 7 :. 286000 lb.-in. 

s 
Bmean 

Bence, mean transmission stress is: 

= 1859 psi. 

Diagram. (A. III-1) This was drawn by using the values obta.ined 

in diagram (A. III-lb) to show the complete 

picture of resultant stresses occurring in the 

system under one-node vibration. 

Diagrams (A. III-2a) to (A. III-2) The se diagrams gi ve the stresses 

in the system under two-node vibration. These 

diagrams were drawn through the steps similar 

to those described for one-node stress diagrams 

above, by using the values given in tables 

(20) and (22). 

IX-2-5 Notes on the Stress Diagrams 

a. It may be noted that the mean transmission stress 

was ta.ken as constant at all speeds in drawing the above diagrams. 

It is, therefore, apparent that the mean stress values in the 

diagrams at lower speeds, when the system is not transmi tting 

its full power, are higher than the actual walues. The exact 

values of mean stress can be calculated by using torque-speed 

curve of the alternator. Here, however, since the purpose of 

analysis is to see wh ether the system can wi th stand the maximum 
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stresses, slight exaggeration on stresses at lower speeds can 

be allowed. No attempts will, therefore, be made to get the 

exact values, and the above diagrams will be used for further 

investi ga ti ons. 

b. The stress diagrams gi ve stresses occurring in 

the solid equivalent shaft of 9.25" dia. For one-node vibration 

the maximum value of stress in coltmlll K of table (9), occurs 

in hallow shaft. Hence to get actual maximum operating stresses, 

the values obtained from diagrams (A. III-la) through (A. III-1) 

must be multip1ied by a factor:-

d 
5 

d e o 7525 : 1.07 

7325 - 458 
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X AMPLITUDE OF FORCED TORSIONAL VIBRATION AND 
CYCLIC IMEGULARITY AT THE GENERATOR, LIGHT 

FLICKERING CHARACTERISTICS 

X-1-0 THEORY 

X-1-1 A number of methode to deten:n.ine the forced vibration 

ampli tude at a maas of a mul timass system have been published in 

the technical literature. For our purpose we shall use two methode 

as followe:-

(a) Holzer Tabulation Method 

(b) F. P. Porter's Method 

X-1-2 Holzer Tabulation Method 

This method follows the same procedures as those 

in finding out the natural frequenci~s of the system. Here, 

however, the amplitude at the No. 1 maas is assumed at some arbi-

trary value and the table worked out as before; when the torque 

column is reached, the total torque acting on the maas being con-

sidered is taken into accomt. Hence, in forced vibration, total 

torque comprises the inertia torque by virtue of vibration and 

the forcing torque acting on the ma.ss. 'When the final ma.ss in 

the system is reached the torque value in the torque-summa.tion 

column is equated to the extemal torque at that point to determine 

the value of amplitude at No. 1 maas, assumed previously. 

For a system with input torque acting at one point 

only and a multimass system with forcing torques acting at varioua 

points but all in phase, the procedure is fairly simple. In 

the fon:n.er case, no problem of torque summation arises. In the 
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latter case, the forcing torques are taken into account by simply 

adding algebraically total torque values at the respective masses. 

The method needs a great vol mne of work if used 

for a multimass system with forcing torques acting at various 

points and all out of phase. In this case amplitude at a required 

point may be obtained when the forcing torque at a mass is consider­

èd at a time, disregarding all other torque components at the other 

cylinders. Separate tabulation may be done for each torque component 

and the ampli tude at the maas being considered may be obta.ined by 

vector summa tion of the amplitudes o bta.ined in all tables. 

Fortunately, however, in most of multi-cylinder 

engine systems, the major orders of vibra ti on predomina te so tha t 

approximation of cyclic irregularity can quite sufficiently be done 

by deter.mining the forced vibration amplitude under auch harmonie 

orders only. 

X-1-5 F.P. Porter' s Method 

Strictly speaking, this method is an extension of 

Holzer tabulation for free vibration. 

Cons id er a mul timass system. Nmnber the masses 

starting from a particular end, calling the mass at this end as 

maas No. 1. The maas at the other end is numbered L, to denote 

the last mass in the system. A Holzer table for free vibration, 

like tho se in Section (VI), is worked out starting wi th an 

assumption of unit deflection at the first mass. Tabulation is 

repeated starting with assumption of unit deflection at the last 

maas, working eut backward to the first maas. Since the system 
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is the same, with the only difference being the direction of 

working, and since they are both for free vibration, the remainder 

torque values at the last lines in the torque surmnation columns 

in the two tables must be the same. .Ainplitud.es at a particular 

mass in the two tables may be different, since unit deflection is 

assumed at the first maas in the first table, and at the last 

maas iD the second table, respectively. Using the values in 

these tables and extemal forcing torque magnitudes, forced 

vibration ampli tude at a particular maas may be found by the 

formulae given below. Detail derivation of these formulae are 

not given here. It may be seen in F. P. Porter• s paper, published 

in 1955(6). 

Now, in above mul timass system, let 

i =. denote forcing torque input points 

Mi =. forcing torque acting at the point i 

=. amplitude at the nth point obtained in the Holzer 

table, which is worked through starting from the 

first mass. 

~" ::: ampli tude at the n th point obtained in the Holzer 

table, which is worked through starting from the 

last maas. 

Then, forced vibration amplitude at the rth maas is given as: -k " Mi ai 

" r-1 r ar 
~ J w2 

1 L Jn w2 ~ a' an + n n:1 r 

• • • • • • • • (X-1) 
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r 

L 
n=1 

••••••••• (X-2) 

Now, at the first and last masses, we have 

0 

L 0 

n = 1 

and L+1 

fu = 0 

so that we get, from (X-1) and (X-2), respectively, 

• • • • • • • • (X-5) 

~ ' Mi_ ai n=i 
eL = L w2 ' L: Jn an 

• • • • • • • • • • (X-4) 

n =1 

Notes: In the above fonn\Ù.ae, 

l L 
' n 

L Jn w2 an = L Jn w2 an 
L n =1 

are the residual torque at the last lines in the torque-smmnation 

columns of Holzer tables. Equality has been explained previously. 
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Porter's for.mulae given above have the advantage 

over the Holzer Tabulation Method described in X-1-1, in that 

summation of the out-of-phase torque components at various points 

can be done analytically wi thout going through a large number of 

tables. 

X-2-0 APPLICATION 

X-2-1 From the earlier Sections, we have seen that the 

7th order harmonie, which also is strongest amongst the majors, 

predominates in our engine-gerator set. Hence, here, it should 

be sufficient to examine the coefficient of cyclic irregulari ty 

at the service speed under the 7th order harmonie angine torque 

component. 

For illustrative purposes, we shall determine the 

value of coefficient of cyclic irregularity by using both methode 

described in the theory portion. 

Now, from table (8), Tn for the 7th order harmonie 

= 11.368. 

= 11.568 x 141 x 11.2 = 17,950 lb.-in. 

At the service speed of 300 rpn, the frequency 

of vibration of 7th order harmonie is: 

F = 7 x 500 = 2100 vpm. 

Hence, the angular frequency is: 

w :. 2 tt F 
(:fJ 

:. 
2 ft x 2100 

(:fJ 
220 rad./sec. 
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X-2-2 Holzer Forced-Vibration Tabulation Method 

With above w2 and ~ a Holzer table is worked 

out. This is shown as table (25). The columns of this table 

are almost exactly the same as those used for natural frequeney 

calculations. The difference here is that the torque columns 

are made to include both the vibration and engine torques. The 

7th order harmonie being a major, the angine torques at all cylinders 

are in phase; and so in working out this table, each engine torque 

component ~ is simply added at its own point in the torque 

column. 

The table is first entered with an assumption that 

the forced vibration amplitude at the damper is x radians and 

worked out step by step, until the value of the remainder torque 

is obtained at the generator mass. Since at this point there is 

no external torque acting, we equate the torque value to zero 

which gives the value of x. Here, 

as: 

Mtremainder = - 9544Sl48 x - 2156659.95 

x ::. 

Equa ting this to zero, we get the value of x 

2156659.95 

954481480 
- 0.002258556. 

If we substitute this value of x in column D of 

the table, the forced vibration amplitudes at the various masses 

may be obtained. However, what we are looking for here is the 
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amplitude of vibration at the generator, which is given as: 

9generator : - 1.4761 x - 0.0055069. 

Substi tu ting the value of x, we get; 

9generator : 1.4761 x 0.002238556 - 0.0033069 

: - 0.000002507 radians. 

Note: In working table (25) above, correctness to a large number 

of digits was maintained throughout the table. Ordinarily, it 

should be qui te sufficient to get correctness to a few digits only 

to get nearest value of vibration amplitude at the generator, 

preparatory to determination of the coefficient of cyclic irre-

gularity. Here, however, because attempt is made not only to get 

the value but also to show the confonni ty of the re sul ts obtained 

by the two methode for the amplitude at the generator, which ie 

excessively small in this case, correctnees to a large number 

of digits is required to be maintained. 

X-2-5 F. P. Porter 1 s Method 

To get the forced vibration amplitude at the 

generator, we use equation (X-4), which is: -
9generator 

fu 
L 
L Jn w2 a~ 
n= 1 

The values needed for this equation are the free vibration 

amplitudes at various masses and the value of rema.inder torque in 

the torque-summation column, when a Holzer table for the required 

frequency is worked out starting from the damper, wi th assumption 
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that damper deflection is 1 rad. 

Here, it is not required to prepare a new table. 

The required values are given in table (25) when x is made 

equal to 1 rad. and the second parts in the amplitude and torque 

columns are dropped out. B,y doing this the fo1lowing a; values 

are o btained. 

Mass Damper Scav. Pump Cyl. 1 Cyl. 2 Cyl. 5 

t 
1 0.6682 0.4251 0.2894 0.1579 ai 

Mass Cyl. 4 Cyl. 5 Cyl. 6 Cyl. 7 Genera tor 

t -0.022 -0.1806 -0.5281 -0.4555 -1.472 ai 

From above, 

-L ae = 0.4251+ 0.2894+ 0.1579-0.022-0.186-0.5281- 0.4555 

::. 0.1558 

Hence, 

-+ 

~ Mi a~ = 17950 x 0.1558, 

since 7th harmonie is a major order and the torques are acting 

in phase. 

Now, as stated in the theory portion, the 

denomina tor on the right hand side of the above equation, 

~ Ji w2 a~ is the residua.1 torque in the 1ast column of 
1 

the Holzer table for free vibration. This value is obtained from 

the last line in co1umn G of table {25) when x = 1 and the second 
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forcing torque term is dropped, viz., 

L 

L 
1 

Bence, from the above equation, 

9generator = - 17950 x 0.1558 = - 0.00000255 
95448148 

which agrees very well with the value obtained in X-2-2. 

X-2-4 Coefficient of Çyclic Irregularity at the Generator 

This is given by equation (III- 8) as: 

2 • 9 • n. 

Hence, coefficient of oyclic irregularity at the 

service speed due to the 7th order harmonie engine torque is: 

2 x 0.00000257 x 7 = 0.000056. 

This shows that the coefficient of speed fluctuation 

at the service speed is very much lees than 1/75 as epecified 

by the British Standards Institution<24). 
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XI CRITICAL WIBLING SPEEDS 

XI-1-0 THEORY 

XI-1-1 As has been mentioned before,there are a number of 

different methode of arri ving at the cri ti cal speeds in whir1ing 

of a transmission system. They are: 

(1) Ray1eigh1 s method 

(2) Dunkerley's method 

(5) Stodo1a's method 

and (4) Extension of Ho1zer's tabulation method due to Myke1stad 

and Prohl. 

Stodo1a's method is given both in graphical and 

numerical for.ms. This method in graphica1 form is used for 

estimation of the 1owest critical speed in whir1ing of our 

transmission system. 

XI-1-2 Stodo1a's Method in Graphica1 For.m 

In app1ying the Stodola Method to a particular 

system, a start is made by assuming a reasonab1e defiection curve 

and a frequency of vibration. The steps reconunended in app1ying 

the method are summarized be1ow: 

Step 1. Assume a def1ection curve for the g,ystem that is 

reasonab1e both as regards the shape and the ecale of denection. 

Generally, the static def1ection curve is taken as a good assumption. 

Step 2 Assume a frequency of vibration. Genera11y, 

w2 = 586 is assumed so that!! = 1 and the inertia loads 
g 

wl wa 
- T1 w2, - y2 w2, etc. are given simply by the products g g 

W-1 Yü W 2 y2 , etc., wh en wr s are the weights and y' s are the 

defieotions at the masses. 
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Step 5. Assume that the system is loaded wi th the inertia 

loads W1 y1 , W2 y2 , etc. of step 2 and find the corresponding 

new deflection curve. Let the deflections measured from the new 

1 1 
deflection curve are denoted by y 1 , y 2 , etc. Then, since 

1 1 the inertia loads which cause the defie etions y 
1

, y 
2 

, etc. 

must be equal to the inertia loads of step 2, it follows that 

w' = Waas. n 
1 

::. etc. 

This can only be true if the ratio of the two deflection values 

is constant at ail points, i.e. if the derived curve and the assmned 

curve are geometrically similar. 

If the ratio is constant and equal to Y /y', then 

the natural eyclic frequency Fn in vpm. is given as: 

6o w' 
2 tl 

6o • .f5S6 ff. -- ./[ 
' 

187.5 -, 2 tl y y (XI-1) 

Step 4· If the r .atio is not constant throughout the system, 

the derived curve of step 5 may be used as the next assumption and 

the above steps repeated. However, the process converges so 

rapidly when applied for finding the lowest frequency that the 

result obtained from the first assumption is generally sufficiently 

close. 

XI-~-5 Beam Deflection For.mulae 

A simply-supported beam with overhan; on one end, 

a simply-supported beam 'Wi th overhangs on both ends, and a cantilever 

beam are illustrated in figure (XI-1). Some for.mulae for deflections 

of these systems, that "Will be useful for our analysis are given 
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below, without derivation details. 

a) Simpq-supported beam with overhang on one end 

This is show in figure (XI-l-a). Defiection at 

the end C due to a concentrated load X at that point is: 

• • • • • • • (II-2) 

where Eiz ::. flexural rigidity of the beam. 

b) Simp].y-supported beam w1 th overhangs on both ends 

This is illustrated in figure (XI-l-b). The 

deflections at the ends D and G due to the concentrated loads X 

and y acting as show in the figure are: 

::. ~2 (a2 + L2) X 
+ 

a22 La! y 

5 E Iz 6 E Iz 
• • • • (XI-5) 

a22 (a2 + L2) y 2 a2 L2 X 
+ 

5 E Iz 6 E Iz 
•••• (XI-4) 

c) Cantilever 

This is show in figure (XI-l-e). The denection 

at the end due to a concentrated load acting at that point is: 

::. • • • • • • • • (n-5) 

XI-2-0 APPLICATION 

XI-2-1 To estimate the lowest critical whirling speed of 

our transmission system Stodola' s graphical method is used, with 

the following assumptions: 

a) Since the engine crankshaft portion has very short spans 

comparative to the other sections in the system, it is assumed 
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to be rigid,ly fixed for the purpose of determining shaft 

denections. 

b) Since the Ajax couplings are of rubber-bronze bushed type, 

they are assumed to behave like ball-joints 1n lateral deflection 

of the shafting. 

c) In the absence of exact dimensions, the generator rotor is 

assumed to be of 9-1/4 in. solid shaft. The length of th~ overhang 

portion is taken as 15 inch es. 

With these assumptions, the transmission s.ystem is 

portrayed in figure (n-2). The two bearings on the main shaf't 

are placed 144 1n. a part wi th a 36 in. overhang on each end in 

this figure. The values of shaft spans, flexural rigidities, 

weight per unit run, and weights of couplings are given. 

XI-2-2 Def'lection Curves for Lowest Critical Speed Calculations 

By making use or the values gi ven in figure (XI-2) 

the def'lection curves for the lowest critical speed estimation 

were drawn. 

The curves so drawn are gi ven in Appendix IV. 

Each of the diagrams gi ves the deflection curves for a section 

of' shaft. The shaft sections 1n these diagrBllls are noted wi th 

the SBllle letters as those in figure (XI-2), namely ABC for the 

genera tor rotor, DEPG for the main shaft and HI for the cranksbaft 

overhang. The f'ollowing is the summary of procedures followed 

to get these curves. 

i) Static loading diagrams 

Ea.ch shaf't is divided into small sections, at the 

centre of eaob of' whioh is assumed to act i ts weight. The load 
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acting at each section is given in the diagrams. It may be 

noted here that for the lowest critical whirling speed, the loads 

of alternate span act in opposite directions. The directions 

of the loads also are illustrated in the diagrams. 

ii) Coupled static deflection curves 

The curves were obtained by using the static loading 

values and going through the steps similar to those described for 

the dynamic deflection curves below. The detailed drawings for 

obtaining these curves have been omitted. 

iii) Inertia loadings 

If a frequency, w, of 586 is assumed, the centrifugal 

force acting at each point is given by Vy, where 'W is the weight 

and y is the assumed deflection at that point. The static 

deflection curve described in (ii) above is taken as the assumed 

deflection curve so tha t the inertia loads can be o btained as the 

product of the section weight given in the static loading diagram 

and the corresponding coupled static deflection. 

Note: It should be noted that, to save space, the curves for 

both wcoupled and coupled systems are gi ven on the same sheet. 

The continuous lines and curves give the values for wcoupled 

system and dotted lines and curves give the values for coupled 

system, respectively. 

iv) l)ynamic bending moment diagrams (wcoupled} 

These were obtained by using the dynamic loading 

values for wcoupled system and going through t.l-J.e steps of graphical 

statics. The corresponding load vector diagrams are given on 

the right of the B.M. diagrams. The diagrams are show with 
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Bow's notation and no detailed explanations are necessary here. 

The lower B.M. diagrams are simply the upper ones actuated for 

integration to get slope diagrams. 

v) Dynamic slope and deflection diagrams {uncoupled) 

Having obtained the B.M. diagra.ms, drawing the 

slope and deflection curves should give no difficulty; detailed 

steps are given in the reference books.(4),(8),(10),21). 

vi) Coupled inertia loadings 

Since we have assumed ball-joints at the couplings, 

deflections at the points C and H must, when coupled, be respectively 

equal to the deflections at the points D and G. The deflections 

at these points in the diagrams so far obtained are not equal. 

There must, therefore, be forces X and Y acting at C, D and G, H 

as shown in figure (XI-2), when the shaft sections are coupled. 

The values of X and Y could be obtained as follows:-

(a) Deflection at C 

Deflection due to X, from equation (XI-2), 

Yc x 
152 x 87 x 

- 3x lOS x lOS 
= -0.0000006 x 

So that, wi th the uncoupled def1ection value from Diagram (A. IV-1): 

Total deflection at C = -0.00000051- 0.0000006 X •••• (1) 

(b) Deflection at D 

Deflection due to X and Y, from equation (XI-5), 

i s : 
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a2
2 (a2 + L2 ) X a2

2 L2 Y = + 
5 E Iz 6 E Iz 

562 x 180 562 x 144 
:. x+ y 

5 x 101.5 x 108 6 x 101.5 x 108 

:. 0.00000768 X+ 0.00000507 Y. 

Using the value of uncoupled deflection from Diagram (A. IV-2): 

Total deflection at D :. 0.00000768 X + 0.00000507 Y - 0.0000466 
• • • • • • • • • • (2) 

(c) Deflection at G 

Through the steps similar to those in (b), we get: 

Total deflection at G :. 0.00000507 X + 0.00000768 Y - 0.0000448 
• • • • • • • • • ( 3) 

(d) Deflection at H 

Deflection due toY, from equation (XI-4), is: 

555 
- - _5_x_l_0_8_x_1_o~8 y :. - 0.0000011 y 

Hence, with the uncoupled deflection from Diagra.m (A. IV-3): 

Total deflection at H = - 0.0000011 Y - 0.00000197 (4) 

Equating (1) to ' (2), (5) to (4) and solving the 

resulting equations, we get: 

x :. 5.68 lb. and y : 5.59 lb. 
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vii) Coupled dynamic deflection curve 

With the values of X and Y obta.ined above, dynamic 

loading diagrams were corrected accordingly. The steps described 

in previous paragraphs were then repeated until the coup1ed 

dynamic defiection curves were obtained. 

XI-2-5 Lowest Critical Whir11ng Speed 

The ratios of the def1ections on the assumed curve 

to the dynamic denections, at the points of maximum deflection, 

are obtained below from the above diagrams. The ratios at maximum 

deflection points on1y are considered here. 

Y _ 51x1o-4 
At point of max. def1ection of span AB, y' -

8 
x 

10
_6 = 588. 

" " Il " " " 

n 
" Il " 

n " 

" n " n " n 

which gives an average value of 

" 

" 

n 

y 

y' 

y 21 x 1o-4 BE,-, = 
7 x 10-6 = 568 

y 

y 52 x 1o-4 
571 EF, y' :. 

14 x 10-6 = 

FI, y :. 25.5 x 1o-4 
:. 592 

' 6 x 10-6 y 

= 384. 

If this average value is ta.ken, the approximate 

value of lowest critical speed of whirling is from equation (XI-1): 

N = 187.5 fi;. :. 187.5 /584 :. 5675 rpm. 
c J7 
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XII CONCLUSION 

Some of official limitations laid down for a 

power transmission system were mentioned in the introduction at 

the beginning of this thesis. The following discusses in detail, 

the compatibility of the results obta.ined in the foregoing analysis 

for our transmission system wi th these standards. 

1. Maximum Allowable Vibration Stresses 

The Lloyd's Register of shipping mentions in its 

rule(25) that within speed limita of Na/1.075 and 1.075 N8 , N8 

being the full load rpm., the vibration stresses in the crankshaft 

and transmission shafting should not exceed the values given by 

± (4400 - 70 d) ............... (XII-1) 

t 

where Ss0 = maximum value of vibration stress for continuous 

operation within the speed range specified above, 

psi. 

d = shaft dia.meter, inches. 

(In the case of crankshafta, d is the diameter of 

crankpin or journal whichever is smaller). 

The sam.e rule gives maximum allowable value of 

vibration stresses, in psi., due to transient critical speeds 

which have to be passed through in starting and stopping by:-

. . . . . . . . . . . . . . . (ni-2) 
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Applying tb.ese equations to our system, where 

d = 9.25 in., we get the following allowable stress values:-

' S80 = ± (4400 - 70 x 9.25) : ± 5752.5 psi. 

for the speed range of 289 rpm to 522 rpm. 

s~t : ± 5752.5 x 5.75 : ± 14011 psi. 

The maximum stresses occurring in the system are 

given by figures (A. III-lb} and (A. III-2b} for one- and two-node 

vibration, respectively, in Appendix III. Since these occur at 

different points and the stresses in the two-node vibration are 

small1 it is customary not to add the two, except in some extrema 

cases. Now, from figure (A. III-lb), maximum stress occurring 

in the hallow transmission shaft, wi thin the speed range found 

above is: 

Ss : + 1500 x 1.07 : ± 1591 psi. 
c 

Again from figure (A. III-lb) 1 maximum vibration 

stress at transient critical speed of 126 rpm is: 

S8 : ± 4950 x 1.07 : ± 5297 psi. 
t 

Both of these values are below the limitations. 

Note: In our case, the stresses in the hallow shaft at the point 

considered above of the system will be even smaller, if the stresses 

due to two-node cri ti cals are taken into account. The total 

maximum stress occurring at the nodal point in the crankshaft between 

the ~linders 1 and 2, which has the second highest stresses, is 

muoh lower than the above values. 
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2. Light Flickering Level 

The maximum values of cyc1ic irregulari ty Cc for 

allowab1e light fiickering level, set dow by the British Standards 

Institution(24), have been discussed in Section III and oalculated 

for our engine as equal to 1/75 in (III-2-2). 

The approximate value of cyclic irregularit.y Cc, 

actually occurring in our system was found to be equa.l to 0.000056, 

which is very much less than the above maximum limitation. 

5. Maximum Vibration Torgue at the Generator Armature 

The Lloyd • s Regis ter of shipping recommends 

reducing the vibration torques applied at the generator annature 

to the lowest value and sets the following limitations for ordinary 

anna tures:-

(a) Not more than twice f'u1l. load engine torque over the speed 

range ± 7-1/2 per cent on each side of the full load 

revolutions. 

(b) Not more than six times full load engine torque in passing 

through transi en t cri ti cals. 

Full load engine torque in our case is, from 

Section (IX-2-4) 1 286000 lb.-in. 

Now, if we take the maximum stress obtained in 

(1) above : ~ 1591 psi., which is the same a s ± 1500 psi. 

in a solid Shaft of diameter de, 

Maximum vibration torque at the armature 

: ± 1500 xL x 9.255 : + 202,000 lb.-in. 
16 



- 119 -

'Which is only about 70 per cent. of engine full-load torque. 

Again, at the transient critical speed of 126 rpm., 

we have: 

Maximum torque at the arma ture 

: 4950 x h x 9.255 
= 769000 lb.-in. 

which is about 2. 7 times the full load engine torque. 

4. 'Wb.irling Speed of Engine-Generator System 

It is customary to design so that the operating 

speed of the system is removed at least 20 per cent from any 

critical speed. The lowest critical speed of whirling of the 

system under consideration has been found in Section (XI) approxi­

mately. The value was found to be relatively far away up from 

the operating speed of the system so that there may not be any 

trouble due to whirling. 

It is thus concluded that the system possess 

satisfactory operating properties in respect to the limitations 

laid dow.n by the authorities. 
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APPENDIX I 

ENGINE AND GENERATOR DATA 

1. The following is a list of data on the engine supplied by the manufac-

turer, in addition to the drawings given in Appendix V. 

ENGINE 

B.H.P. per cylinder. . . . . . . . . . . . . . . 
Compression ratio. . . . . . . . . . (Approximately) 

Stroke • • • • • • . . . . . . . . 
r.p.m ••••••••••••••••• . . . 
Diameter of piston • • . . . . . . . . . . . . . 
Area of cylinder bore •• . . . . . . . . . . . . 
Weight of piston complete. . . . . . . 
Total weight of a connecting rad complete 

(including bottom end bolts) ••••• . . . . . 
Length of a connecting rod 

(center to center of bearing:s) . . . . . . . . . 
Distance of C.G. of connecting rod from center of 

crank pin. • • • • . • • • • • .. • . • • . • • . 

SCAVENGE PUMP 

(a) Top piston and center rod, etc. 

Stroke • • . . . . . . . . . . . . . . . 
Total reciprocating weight . . . . . . . . . 

160 

1:14 

22.4 in. 

300 

13.4 in. 

2 
140.6 in. 

536 lb. 

438 lb. 

135 cm. 

52.1 cm. 

24 cm. 

442 lb. 

Total rotating weight. Scavenge .. shaft rot~ part.s +92 lb. 

Net area of top piston • . . . . . . . . . . . . 
Length of the connecting rads (1 center and 

2 side) between centers of the bearings • . . 
918 . 2 

~n. 

82 cm. 



(b) Lower piston and side rads, etc. 

Total reciprocating weight. • • • • • • • • • • • 40 lb. 

Total rotating weight • Scavenge shaft rot.parts .+170 lb. 

2. The following is a list of data on the generator. 

GENERA TOR 

Model • . . . . . . . . . . . . . . . . . . . . . AP;r -24 

r.p.m. . . . . . . . . . . . . . . . . . . . . . . . 300 

Power Factor. . . . . . . . . . . . . . . . . . . . . 0.8 

K. w. . . . . . . . . . . . . . . . . . . . . . . . 
K.V.A. . . . . . . . . . . . . . . . . . . . . . . 
Moment of inertia of the rotor •• . . . . . . . . . 
Weight of stator. 

Weight of rotor • 

. . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . 
Span between the centers of bearings. . . . . . . . 

• 836 

1045 

13800 lb.in.sec~ 

4750 lb. 

3900 lb. 

72 in. 
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APPENDIX II 

TABLES OF RESULTS 

·- ·- - -----· 

Table ( 1 ) 
----

Harmonie 1 Expression for Ha 
Or der 

1 Sin a + K/4 + K3 /16 + 15K5/512 

2 Sin 2a - 1/2 - ~/32 - y{l /32 

3 Sin 3a - 3K/4 - 9K3 /32 - 81K5/512 

4 Sin 4a - K
2
/4 - K4js - K

6
jl6 

5 Sin 5a + 5K3 /32 + 75K5 /512 

6 Sin 6a + 3K4/32 + 3K
6 
/32 

Table · ( 2 ) 

Harmonie Expression for ~ 
Or der 

1 Sin a 1.0 

2 Sin 2a + K/2 + K3 /B + 15K5 /256 

4 Sin 4a + K3 /16 + 3K5 /64 

6 Sin 6a + K5 /85.3 

Ta1>le ( 3 ) 

Harmonie 
Expression for He Or der 

2 Sin 2a - x.2;2 + K
6 
/32 + 

4 Sin 4a + K4/4 + K6js + 

6 Sin 6a - 3K
6 
/32-



ii 

Table ( 4 ) Inertia Torque Correction 

Harmonie H a =WH Harmonie H a = W H 
Or der a n ca Order a n c a 

psi psi 

1 Sin a 0.053348 7.6554 4 Sin 4a -0.0113842 -1.6336 

2 Sin 2a k>.5<XXX>648 -71.7509 5 Sin 5a 0.0015318 0.2198 

3 Sin 3a k>. 160955 -23.0970 6 Sin 6a 0.0001945 0.0279 

Table ( 5 ) De ad Weight Correction for Reciprocating Part 

Harmonie Hb 
a= W Hb Harmonie Hb 

a = W Hb n r n r 
Order A Order A 

psi psi 

1 Sin a 1 5 4 Sin 4a 0.00)6073 -0.00'30365 

2 Sin 2a 0.106696 0.5335 6 Sin 6a O.OOC0052 0 ..cx:ro25 9 5 

Table ( 6 ) 

Moment of Unbalanced Rotating Weight 

Mass Weight Moment Arm Moment 
lb. in. lb.-in. 

Connec ting 269 11.2 3012.80 rod. rot. mass 

Crank pin 141.5 11.2 1584.80 

WI 144.18 9.1 1312.04 

WII 31.62 13.64 431.29 

WIII 3.882 15.77 61.22 

wiv 31.88 13.57 432.61 

wÏv 10.58 12.104 128.06 

Total 632.642 6962.82 
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Table ( 7 ) 
-= 

Corrected an Values of First Six Harmonies 

Ba ok Correction Sin a Sin 2a Sin 3a Sin 4a Sin 5a Sin 6a 
Reference 

Table (4) 
Inertia Torque 

of reciprocatinB 7.6554 -71.7509 -23.0970 -1.6336 0.,2198 0.,0279 
weight 

Table (5) 
Dead \rleight 

correction for 5.,0000 0.5335 - -0.0030 - 0.,00003 
reciprocating 

part 

Dead Weight 
correction for 

Pàge 19 unbalanced 4.4091 - - - - -
rotating part 

Resultant 17.0645 -71.2174 -23.0970 -1.6366 0.2198 0.,02793 correction 

Gas pressure 
61.9930 66.8010 47.0300 2Z•2400 13.8040 9 .. 5660 a 

n 

Corrected 
values of 79.0575 -4.4164 23.9330 20.6034 14.0238 9.59393 

a n 
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Table ( 8 ) 

Resultant Harmonie Coefficients of 

Engine Torque 

Harmonia. Sine Coefficient eosine Coefficient 
T = /a2 b2 Or der b + 

a.n n n n n n 

0 - 25.298 25.298 

1 79.0575 29.315 84.319 

2 - 4.4164 0.882 4.505 

3 23.9330 - 4.911 24.310 

4 20.6034 - 6.667 21.655 

5 14 .. 0238 - 8.850 16.585 .. 

6 9 .. 5939 - 6.566 11.626 

7 9.5660 - 6.141 11.368 

8 5.0450 - 5.594 7.533 

9 2.8880 - 3.685 4.682 

10 1.7770 - 3.503 3.928 

11 0.2450 - 2. 703 2.714 

12 0.0850 - 1. 715 1.717 

13 - 0.1800 - 1.700 1.710 

14' - 0.5290 - 1.120 1.283 

15 - 0.2670 - 0.765 0.810 

16 - 0.2700 - 0.768 0.814 

17 - 0.1800 - 0.560 0.588 

18 . - 0.248 0.248 



Table ( 9 - a ) 

One-Node Vibration 

First Try, w = 90 rad./sec.J 2 2/ 2 W' = 8100 rad. sec. 

A B c D E F G H I J K 

Equiv't Equiv't Moment Torque De flee- Torque in Total Shaft Change Stress for 
Mass of per unit tion in in 1 deg. dia. length inertia deflection plane ma.ss torque stiffness deflection defln. at 

of mass Damper 

de L J J.w2jlo6 a J.w2.ajlo6 r J. ·w2aj10F. c Col.H/Col.I co1 .H/ll·25cr e 
in. in. ~;..tn;;sec~ lb-;in. /rad. radians lb-;in. lb;-in. lb;-in .. /rad radians psi. 

Damper 9.25 95.9 617 4.9977 1.0000 4.9977 4.9977 90 x 106 0.0555 < 

Sc.Pump 9.~5 62.1 130 1.0530 0.9445 0.9946 5.9923 139 x 106 0.0431 

Cyl.No.l 9.25 27.3 400 3.2400 0.9014 2.9205 8.9128 316 x 106 0.0282 

Il "2 9.25 27.3 400 3.2400 0.8732 2.8292 11.7420 316 x 106 0.0372 

" " 3 9.25 27.3 400 3.2400 0.8360 2.7086 14.4506 316 x 106 0.0457 

" "4 9.25 27.3 400 3.2400 o. 7903 2.5606 17.0112 316 x 106 0.0538 

" "5 9.25 27.3 400 3.2400 o. 7365 2.3863 19.3975 316 x 106 0.0614 

" "6 9.25 27.3 400 3.2400 0.6751 2.1873 21.5848 316 x 106 0.0683 

n "7 9.25 280.17 400 3.2400 0.6068 1.9660 23.5508 30•8x 10 6 0.7646 

Geœrator - - 13800 lll. 7800 -0.1578 -17.6389 5.9119 ~ - - ' 
1 



A B c 

Equiv't Equiv't 
Hass- dia. length 

de L e 
in. in. 

Damper 9.25 95.9 

Sc.Pump 9.25 62.1 

Cyl.No.l 9.25 27.3 

Il Il 2 9.25 27.3 

tl 
" 3 9.25 27.3 

Il " 4 9.25 27.3 

Il n 5 9.25 27.3 

" tl 6 9.25 27.3 

" Il 7 9.25 280.17 

Oenera.tor ~ -

Table ( 9 - b ) 

One-Node Vibration 
/: 2 2/ 2 Second Try, .w = 94.3 rad. sec.; w = 8900 rad. sec. 

D E F G H I 

Moment Torque IDa:fl.ect:ion Torque in Total Shaft 
of per unit in plane plane of 

inertia deflection of mass mass torque stiffness 

J J·w 2 j1o6 a J.w2.ajlo6 r J· w~a/lo6 c 
2 

lrb;in.-sec. J.b;in./rad. radians lb-;in. lb; in. lb-;; in. /rad. 

617 5o4913 1.0000 5.4913 5.4913 90 x 106 

130 1.1570 0.9390 1.0864 6.5777 139 x 106 

400 3.5600 0.8917 3.1744 9.7521 316 x 106 

400 3.5600 0.8608 3.0644 12.8165 316 x 106 

400 3.5600 0.8202 2.9199 15.7364 316 x 106 

400 3.5600 0.7704 2.7426 18.4790 316 x 106 

400 3.5600 0.7119 2.5344 21.0134 316 x 106 

400 3.5600 0.6454 2.2976 23.3110 316 x 106 

400 3.5600 0.5716 2.0349 25.3459 30•8 x 10 6 

13800 122.8200 ~0.2507 r-30. 7910 -5.4451 ~ 

J 

Change 
in 

deflection 

Col .H/Col. I 

radians 

0.0610 

0.0473 

0.0309 

0.0406 

0.0498 

0.0585 

0.0665 

0.0738 

0.8223 

-

K 

Stress for 
1 deg.Œfln. 
at Da.mper 

Col.H;n25d3 

psi. 

-

1 

1 

' 1 

1 

1 

< 
1-'· 



A B c 

Equiv' t Equiv't 
Mass: 

·dia. length 

de L e 
in. in. 

Damper 9.25 95.9 

Sc.Pump 9.25 62.1 

Cy1.No.l 9.25 27.3 

" " 2 9.25 27.3 

Il 
Il 3 9.25 27 .. 3 

" " 4 9.25 27.3 

tl " 5 9.25 27.3 

" " 6 9.25 27.3 

" " 7 9.25 280.17 

Oenerator - -

Table ( 9 ) 

One-Node Vibration 
. / 2 2/ 2 Third and Final Try, w = 92.36 rad. sec.; w = 8530 rad. sec. 

D E F G H I 

Moment Torque l:eflfction Torque in Total Shaft 
of per unit in plane plane of 

inertia deflection of mass ma.ss torque stiffness 

J J.w2jlo6 a J.w2.a/10b 1: J• w~a le1= c 
2 

b;:in:sec lb;im/rad. radians 1b;in. 1b";in. 1b;in./zad. 

617 5.2630 1.0000 5.2630 5.2630 90 x 106 

130 1.1089 0.9415 1.0440 6.3070 139 x 106 

400 3.4120 0.8961 3.0575 9.3645 316 x 10° 

400 3.4120 0.,8665 2.9565 12.3210 316 x 106 

400 3.4120 0.8275 2.8234 15.1444 316 x 106 

400 3.4120 0.7796 2.6600 17.8044 316 x 106 

400 3.4120 0 .. 7233 2.4679 20.2723 316 x 106 

400 3.4120 0.6591 2.2489 22.5212 316 x 106 

400 3.4120 0.5878 2.0056 24.5268 3)•8 x 106 

13800 117 0 7140 :.-0.2085 -24.5434 -0 .. 0166 -

J 

Change 
in 

deflection 

ColJVColoi 

radians 

0 .. 0585 

0.0454 

0.0296 

0.0390 

0.0479 -
0.0563 

0.0642 

0.0713 

0.7963 

-

K 

Stress for 
1 deg.defln.. 
at Damper 

CoïJf.L1 ° 25 d-' • 

psi. 

591.1 

708.3 

1051.7 

1383.8 

1700.9 

2000.0 

2276.8 

2529.3 

2754.6 

-

< 
1-'-
1-'-



Mie ( 10- a ) 

Two-Node Vibration 
. 2 2 2 

First Try, w = 252 rad./sec.; w = 63500 rad./sec. 

A B c D E F G H I J K 

Equiv' t Equiv' t Moment Torque De flect:ia: Torque in Total Shaft Change Stress for 
Mass of per unit in pla.œ plane of in 1 deg.defln. 

dia. length inertia deflection of mass ma.ss torque stiffness deflection lat Damper 

d L J J,w2• ajlOE a J. w2. a/106 l: J· w2.ajJD6 c ~oLH/Co1.I lco1.H/I-125-d3 e e 
in. in. Jb~:in;sec~ 1b:in./rad. radians 1b-;-in. 1b;;-in. 1b;in./rad radians psi 

Damper 9.25 95.9 617 39.1795 1.0000 39;.1795 39.1795 90 x 106 o. 4353 < .... 
..... .... 

Sc.Pump 9.25 62.1 130 8.2550 0.5647 4.6616 43.8411 139 x 106 
0.3154 

CyLNo.J 9.25 27.3 400 25.4000 0.2493 6.3322 50.1733 316 x 106 0.1588 

" " 2 316 x 106 0.1661 9.25 27.3 400 25.4000 0.0905 2.2987 52.4720 
i 

" tl 3 9.25 27.3 400 25.4000 -0.0756 1- 1.9202 50.5518 316 x 106 0.1500 
1 

Il " 4 9.25 27.3 400 25.4000 j..o.2356 1- 5.9842 44.5676 316 x 106 0.1410 1 
Il tl 5 9.25 27.3 400 25.4000 1-0.3766 316 x 106 1 

~ 9.5656 35.0020 0.1108 

lt lt 6 9.25 27.3 400 25.4000 ~.4874 F12.3800 23.6220 316 x 106 0.0716 
. 

" tl 7 9.25 280.17 400 25.4000 ~.5590 ~14.1986 8.4234 30.8 x 10 6 
0.2735 

GErera ter - - 13800 876.3000 Q0.8325 ~729~5198 721.0964 - - -



A B c 

Equiv1 t ~quiv1 t 
Mass 

dia. length 

de L e 
in. in. 

Damper 9.25 95.9 

Sc.Pump 9.25 62.1 

Cyl.No.l 9.25 27.3 

" " 2 9.25 27.3 

" n 3 9.25 27.3 

" tl 4 9.25 27.3 

tl 
" 5 9.25 27.3 

" tl 6 9.25 27.3 

Il Il 7 9.25 280.17 

Genera tor - -

Table ( 10 - b ) 

Two-Node Vibration 
..,2 2 2 Second Try, w = 270 rad./sec.; = 72900 rad./sec. 

D E F G H I 

Moment Torque ~flectmn Torque in Total Shaft 
of per unit in plane plane · of 

inertia deflection of mass mass torque stiffness 

J J· w2jlo6 a J. w2. a/106 t .r.w 2. a/J.oE c 
lb~~ 1b-;in. /rad. radians lb-;in .. lb"; in .. 1b;in .. /rad 

617 44.9793 1.0000 44.9793 44.9793 90 x 106· 

130 9.4770 0.5002 4.7404 49.7197 139 x 106 

400 29.1600 0.1425 4.1553 53.8750 316 x 106 

400 29.1600 -0.0280 - 0.8165 53.0585 316 x 106 

400 29.1600 -0.1959 - 5.7124 47.3461 316 x 106 

400 29.1600 -0.3458 -10.0835 37.2626 316 x 106 

400 29.1600 -0.4637 -13.5215 23.7411 316 x 106 

400 29.1600 -0.5388 -15.7114 8.0297 316 x 106 

400 29 .. 1600 -0.5642 -16.4521 - 8.4224 ~0.8 x 10 6 

13800 1006.0200 -0.2907 -292.4500 -300.8724 -

.J 

Change 
in 

defle.::tion 

Col.R/Col. I 

radîans 

0.4-998 

0.3577 

0.1705 

0.1679 

0.1499 

O.ll79 

0.07Sl 

0.0254 

-0 .. 2735 

-

i 
: 
' ! 

! 

K 

Stress for 
1 deg .. defln. 
at Damper 

CoL.JVh25d3 

psi 

-

.... 
H 



Table ( 10 - c ) 

Two-Node Vibration 
2 2 2 

1 

Third Try, w =278.8 rad./sec.; w = 77720 rad./sec. 

A B c D E 
1 

F G H I J K 
1 

1 

1 Equiv't Equiv' t Moment Torque ~flecticn Torque in Total Shaft Change Stress for 
Mass of per unit in plane plane of in 1 deg.defln. 

dia. length inertia deflection of mass mass torque stiffness deflection at Damper 

Le J· w2 /106 ? 6 2 /L 6 Col.H/Col. I Col J1/ll2 5d 3 d J 2 a J.w-. a/10 l:J·W·a 0 . c e 
in. in. lb-;in;S3C. 1b-;in.frad. radians 1b";in. 1b:ïn. 1b-;-in./rad. radians psi 

Damper 9.25 95.9 617 47.9532 1.0000 47.9532 47.9532 90 x 106 0.5328 >: 

1 Sc.Pump 9.25 95.9 130 10.1036 0.4672 4.7204 52.6736 139 x 106 0.3790 
1 

Cyl.No,l 9.25 27.3 400 31.0880 0.0882 2.7420 55.4156 316 x 106 0.1754 

" n 2 9.25 27.3 400 31.0880 -0.0872 - 2.7109 52.7047 316 x 106 0.1668 

" " 3 9.25 27.3 400 31.0880 -0.2540 - 7.8964 44.8083 316 x 106 0.1418 

" Il 4 9.25 27.3 400 31.0880 -0.3958 -12.3046 32.5037 316 x 106 0.1029 

Il tl 5 9.25 27.3 400 31.0880 -0.4987 -15.5036 17.0001 316 x 106 0.0538 

" Il 6 9.25 27.3 400 31.0880 -0.5525 -17.1761 - 0.1760 316 x 106 -0.0006 

" " 7 9.25 280.17 400 31.0880 -0.5519 ~17.1575 - 17.3335 30.8 x 106 -0.5628 
' 

Genera ter 13800 1072.5360 -0.0109 -11.6906 - 29.0241 ' - - - - - 1 



A B c 

Equiv' t Equiv 1 t 
Mass 

dia. length 

d L e e 
in. in. 

Damper 9.25 95.9 

Sc.Pump 9.25 62.1 

Cyl.No.l 9.25 27.3 

Il Il 2 9.25 27.3 

" " 3 9.25 27.3 

" " 4 9.25 27.3 

Il " 5 9.25 27.3 

Il " 6 9.25 27.3 

" Il 7 9.25 280.17 

Genera tor - -

Table ( 10 ) 

Two-Node Vibration 
2 2 2 

Fourth and Final Try, w = 278.92 rad./sec.; ~ = 77800 rad./sec. 

D E F G H I 

Moment Torque IDeflecticr Torque in Total Shaft 
of per unit in plane plane of 

inertia deflection of mass mass torque stiffness 

J J. w2 /106 a J.,l. a/106 
l: J • w2 .. a,llcf c 

~n;sec~ lb;ïn./rad. radians lb.-in. lb.-in. lb;in. /rad. 

617 48.0026 1.0000 48.0026 48.0026 90 x 106 

130 10.1140 0.4666 4.7192 52.7218 139 x 106 

400 31.1200 0.0873 2.7168 55.4386 316 x 106 

400 31.1200 -0.0881 - 2.7417 52.6969 316 x 106 

400 31.1200 -0.2549 - 7.9325 44.7644 316 x 106 

400 31.1200 -0.3966 -12.3422 32.4222 316 x 106 

400 31.1200 -0.4992 -15.5351 16.8871 316 x 106 

400 31.1200 -0.5526 -17.1969 - 0.3098 316 x 106 

400 31.1200 -0.5516 -17.1658 -17.4756 30.8 x 10 6 

13800 1073.6400 0.0158 16.9640 0.5116 ~ 

J 

Change 
in 

deflection 

CoLH/Col.I 
radians 

0.5334 

0.3793 

0.1754 

0.1668 

0.1417 

0.1026 

0.0534 

-0.0010 

-0.5674 

-

K 

Stress for 
1 deg. de fln. 
at Damper 

Col.H/ll:25d3 
psi 

5391.1 

5921.1 

6226.3 

5918.3 

5027.4 

3641.3 

1896.6 

- 34.8 

-196?.7 

-

! 

i 

~ .... 



Harmonie 
Orders 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

One-Node 

xii 

Table ( 11 ) 

Critical Speeds N = F/n c 

Critica1 Speeds Harmonie 
N c Orders 

882 1 

441 2 

294 3 

221 4 

176 5 

147 6 

126 7 

110 8 

98 9 

88 10 

80 11 

74 12 

68 13 

63 14 

59 15 

55 16 

52 17 

49 18 

46 19 

44 20 

42 21 

Two-Node 

Critical Speeds 
N 
c 

2664 

1332 

888 

666 

533 

444 

381 

333 

296 

266: 

242 

222 

205 

190 

178 

167 

157 

148 

140 

133 

127 



xiii 

Table ( 12 ) 
Engine Amplitudes for One-Node Vibration 

··-= 

a1 = 0.9014 a 2 =0.8732 a4 = o. 7903 a6 = 0.6751 

a3 = 0.8360 a5 = o. 7365 a7 = 0.6068 

a·2+a
3 

= 1. 7092 a4~ = 1.5268 a6+9; = 1.2819 

a2-a
3 

= Oo0372 a 4-a5 = 0.0538 a6-a7 = 0.0683 

a3-a2 = -0.0372 a5-a4 = -0.0538 a7-a6 = -Oo0683 

Table ( 13 ) 
Engine Amplitudes for Two-Node Vibration 

a1 = 0.0873 a2 = -0.0881 a 4 = -O.o3966 a6 = 0.5526 

a3 = - Oo2549 a5 = -Oo4992 a7 = -0.5526 

a 2+a
3 

= -Oo3430 a:4~ = -0.8958 a6+9; = -1ol042 

a2-~ = Ool66a a4~ a5= 0.1026 a6-a7 = -0.0010 

a
3
-a2 = ~O.l66a a

5
-a4 = -0.1026 a7-a6 = 0.0010 

Table ( 14 ) Summary of E~ Values 

One-Node Two-Node 

Harmonie Orders t~ ae Harmonie Orders t~ 

1, a, 15, etc. and 0.0713 1, a, 15, etc. and 
0.3094 6, 13, 20, etc. 6, 13, 20, etc. 

2, 9, 16, etc. and 
0.0475 2, 9, 16, etc. and o.Oa48 5, 12, 19, etc. 5, 12, 19, etc. 

3, 10, 17, etc. and 0.4aoa 3, 10, 17, etc. and 1.0950 4, 11, la, etc. 4, 11, la, etc. 

7, 14, 21, etc. 5.4193 7, 14, 21, etc. 2.4303 



xiv 

Table ( 15 ) l: 
2 J a for One-Node Vibration 

... 

Mass J 2 Jo a 2 a a 

Table 9 Table 9 · 2 
LbëinsoSec .. 

Damper 617 1 .. 0000 1.0000 617 

Sc. Pump 130 0 .. 9415 0 .. 8864 115 .. 2 

Cyl. No. 1 400 0 .. 8961 0 .. 8030 321 .. 2 
If If 2 400 0 .. 8665 0 .. 7508 300 .. 3 
tl " 3 400 0,.8275 0.,6848 273 .. 9 

" Il 4 400 0 .. 7796 0.6078 243 .. 1 

" Il 5 400 o .. 7233 0.,5232 209 .. 3 

" Il 6 400 0 .. 6591 0 .. 4344 173.4 
Il u 7 400 0.5878 0.3455 138 .. 2 

Genera tor 13800 ~0 .. 2085 0 .. 0435 600 .. 3 

l: J 0 
2 

2991 .. 9 a = 

Table ( 16 ) 2 
t J a for Two-Node Vibration 

Ma.ss J 2 J 0 
2 

a a a 

2 
Table 10 Table 10 lib,InsoSec .. 

Damper 617 1o0000 1 0 0000 617 

Sc. Pump 130 0 .. 4666 0.,2178 28 .. 3 

Cyl. No. 1 400 0.,0873 0 .. 0076 3 .. 1 

" " 2 400 0.,0881 O .. CX)78 3.1 

" " 3 400 0 .. 2549 0.0650 26.,0 
tl tl 4 400 0 .. 3966 0 .. 1573 62 .. 9 

" " 5 400 0 .. 4992 0 .. 2492 99 .. 7 
tl " 6 400 0 .. 5526 0 .. 3054 122 .. 2 
tl " 7 400 0 .. 5516 0 .. 3043 121 .. 7 

Genera tor 13800 0 .. 0158 0 .. 00025 3 .. 5 

E J o 2 
1087 .. 5 a = 



xv 

Equilibrium Stresses 

Jt===========-=======-·=-- ~--·==-:=c==·-·-=--=--=--co:c.=--======"~~c-~c:::·_--_--:-:::-:-: 

One-Node Vibration 

Har- Critical Reslt.Harc., Vector Sum Reslt.Harc 
mo nic Speed Component of engine Component 
Order N per cycle Amplitudes all cycles c T n R.,P.,M., l:T T o l:a n e n e 

F/n 
Table (11) Table (8) Table (14) 

1 882 84o319 Oo0713 6.012 

2 441 4o505 0.0475 0.214 

3 294 24.310 0.,4808 11.693 

4 221 21.,655 0.,4808 10.,416 

5 176 16.583 0.0475 0.788 

6 147 11.626 0.0713 0.,829 

7 126 11.368 5.4193 61.603 

8 110 7.533 0.,0713 0.517 

9 98 4.,682 0.,0475 0.,222 

10 88 3.928 0.4808 1.889 

11 80 2.714 0.,4808 1.305 

12 74 1. 717 0.0475 0.082 

13 68 1.710 0.,0713 0.,122 

14 63 1.238 5.4193 6.,709 

Equilibrium 
Amplitude 

e 
0 

Degrees 

Equation 

VIII - 6 

0.02130 

0.00076 

0.04139 

0.,03687 

0.00279 

0.,00294 

0.21808 

0.00183 

0.,00079 

0.00687 

0.00462 

0.,00029 

0.,00043 

0.02375 

Equilibrium 
Stress 
(Max.) 

s 
so ' psi. 

Highes t Valœ 
from Col. K 
of Table 9 

x e 
0 

58.67 

2.09 

114.03 

101.56 

76.,85 

7.70 

600.72 

5.04 

2.,15 

18.92 

12.,73 

0.,80 

1.19 

65.22 



xvi 

Table ( 18 ) 

Equilibrium Stresses 

Two-Node Vibration 

Har- Critioal ~eslt.Harn:c Veotor Sum ' Reslt.Harllio. Equilibrium Equilibrium 
mo nic Speed Component of Engine Compone nt Amplitude Stress 
Or der Ne per cycle Amplitudes all cycles e (Max.) 

0 n R-.P •. M. T ta:- T 0 I:~ Degrees s n 
so ' psi. n e 

F/n Equation Highes t \9:lu3 
from Col. K 

Table (11) Table (8) Table (14) of Table 10 
VIII - 7 x e 

0 

1 2664 84.319 0.309 26.055 0.0278 173.09 

2 1332 4.505 0.085 Oo383 0.0004 2.49 

3 888 24.310 1.095 26.620 0.0284 176.83 

4 666 21.655 1.095 23.712 0.0253 157.53 

5- 533 16.585 0.085 1.410 0.0015 9.34 

6 444 11.626 0.309 3.592 o.0038 . ·23.66 .. 

7 381' 11.368 2.430 27.624 0.0295 183.68 

8 333 7.533 0.309 2.328 0.0025 15.52 

9 296 4.682 0.085 0.398 0.0004 2.49 

10 266 3.928 1.095 4.301 0.0046 28.64 

11 242 2.714 1.095 2.972 0.0032 19.92 

12 222 1.717 0.085 0.146 0.0002 1.25 

13 205 1.710 0.309 0.528 0.0006 3.74 

14 190 1.238 2.430 3.008 0.0032 19.92 



xvii 

Table ( 19 ) 

Undamped torsional vibration stresses at non-resonant speeds 
One-Node Vibration 

R.P.M. N Dynamie !Vibration R.P.M. N Dynamic Vibration 
N magnifiez stress N magnifier stress 

N e M ~. =MS N c M s =MS s so s so 

Harmonie Order n = 1 Harmonie Order n = 4 
Ne .,. 882 Ne = 221 

SB 0.1 1.01 59.26 66 0.3 1.10 111.72 

176 0.2 1o04 61.02 88 0.4 1.19 120.86 

265 0.3 1.10 64.54 111 0.5 1.34 136.09 

353 0.4 1.19 69.82 133 0.6 1.56 158.43 

529 0.6 1.56 91.53 155 0.7 1.96 199.06 

706 0.8 2.78 163.10 177 0.8 2.78 282.34 

199 0.9 5.26 534.21 

Harmonie Order n = 3 
Ne = 294 243 1.1 4.76 483.43 

29 0.1 1.01 115.17 265 1.2 2.27 230.54 

59 0.2 1.04 118.59 288 1.3 1.45 147.26 

88 0.3 1.10 125.43 310 1.4 1.04 105.62 

118 0.4 1.19 135.70 332 1.5 o.so 81.25 

147 0.5 1.34 153.80 354 1.6 0.64 65.00 

176 0.6 1.56 177.89 376 1.7 0.53 53.83 

206 0.7 1.96 223.50 398 1.8 0.45 45.70 

235 0.8 2.78 317.00 420 1.9 0.38 38.59 

265 0.9 5.26 599.80 440 2.0 0.34 34.53 

324 1.1 4.76 542.78 

353 1.2 2.27 258.85 Continued 

382 1.3 1.45 165.34 

412 1.4 1.04 118.59 



R.P.M. 

N 

88 

106 

123 

141 

158 

194 

211 

229 

246 

264 

282 

299 

317 

103 

118 

132 

162 

177 

xviii 

Table ( 19 ) contd. 

Undamped torsional vibration stresses at non-resonant speeds 
One~Node Vibration 

N 
N 

e 

Dynamic Vibration 
magnifier Stress 

M S =MS s so 

Harmonie Order n = 5 
N0 = 176 

0.8 

1.2 

1.3 

1.6 

1.7 

1.8 

2.27 

1.45 

0.80 

0.64 

0.53 

0.45 

102.98 

213.64 

404.23 

365.,81 

174.45 

79.92 

49.18 

34.58 

Harmonie Order n = 6 

0.7 

0.8 

0.9 

1.2 

N = 147 e 

1.96 

2.78 

5.26 

4.76 

2.27 

15.09 

21.41 

35.55 

17.48 

N 

50 

63 

76 

88 

101 

113 

139 

151 

164 

176 

189 

202 

214 

227 

240 

252 

315 

378 

504 

N 
i 

c 

Dynamic Vibration 
pagnifier Stress 

M S =MS 
s so 

Harmonie Order n = 7 
N0 = 126 

0.5 

0.7 

0.8 

0.9 

1.1 

1.5 

1.6 

1.8 

1.9 

2.0 

2.5 

3.0 

4.0 

5.26 

4.76 

2.27 

0.80 

0.64 

0.53 

0.45 

0.38 

0.34 

0.19 

0.13 

0.07 

Continued 

804.97 

937.12 

1173.41 

1670.00 

3159.79 

2859.43 

1363.63 

871.,04 

624.75 

480.58 

384.40 

318.38 

270.32 

204.25 

ll4o14 

78o09 

42.05 



N 

44 

53 

62 

70 

79 

97 

106 

114 

123 

132 

48 

56 

64 

72 

88 

96 

104 

112 

xix 

Table ( 19 ) eontd. 

Undamped torsiona1 vibration stresses at non-resonant speeds 
One-Node Vibration 

N 
N e 

Dynamie Vibration 
magnifier stress 

M Ss =MSso 

Harmonie Order n = 10 
Ne= 88 

0.5 

0.6 

0.7 

0.8 

0.9 

1.1 

1.2 

1.3 

lo4 

1.5 

Harmonie Or der 

0.6 

0.7 

0.8 

0.9 

1.1 

1.34 

1.56 

1.,96 

5.26 

4.76 

2.27 

1.45 

1..04 

0.80 

n = 11 
N = 80 e 

1.,56 

1.96 

2.78 

5.26 

4.76 

29.51 

37.08 

52.60 

99 .. 52 

90.01 

42.95 

27.43 

19.68 

15 .. 14 

19.86 

24.95 

35.39 

66.96 

60.60 

28.90 

18.46 

13.24 

N 

38 

44 

50 

57 

69 

76 

82 

88 

95 

101 

107 

113 

120 

N 
N e 

Dynamic Vibration 
magnifiel stress 

M S
5 

:z MS 
50 

Harmonie Order n :z 14 
Ne = 63 

0.5 

0.6 

0.7 

0.8 

0.9 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

1.34 

1.56 

1.96 

2.78 

5.26 

4.76 

2.27 

1.45 

1.04 
'· 

0.80 

0.64 

0.53 

0.45 

0.38 

87.39 

101.74 

127.83 

343.06 

310.45 

148.05 

94.57 

67.83 

52.18 

41.74 

34.57 

29 .. 35 

24.78 



xx 
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Table ( 20 ) contd. 

Undamped torsional vibration stresses at non-resonant speeds 
Two~Node Vibration 

R.P.M. 
N 
N e 

Dynamie Vibration 
~gnifier stress N Dynamie Vibration 

magnifier stress 
N 

114 

152 

191 

229 

267 

305 

343 

419 

457 

100 

133 

167' 

200 

266 

300 

366 

400 

433 

M S =MS s so 

Harmonie Order n = 7 
Ne = 381 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.1 

1.2 

1..10 

1.19 

1.34 

1.56 

1.96 

2.78 

5.26 

4.76 

2.27 

Harmonie Order n = 8 
N0 = 333 

1.10 

1.19 

0.6 1.56 

0.8 2.78 

0.9 5.26 

1.1 4.76 

1.2 2.27 

1.45 

202.05 

218.58 

246.13 

286.54 

360.01 

510.00 

966.16 

874.32 

416.95 

17.13 

18.53 

24.29 

43.29 

81.90 

74.11 

35.34 

N 

133 

160 

186 

213 

239 

293 

319 

346 

372 

399 

-N e M Ss =MS 

Harmonie Order n = 10 
Ne = 266 

0.7 

0.8 

0.9 

1.1 

1.2 

1.3 

1.4 

1.5 

1.34 

1.56 

1.96 

2.78 

5.26 

4.76 

2.27 

1.45 

0.80 

Continued 

38.38 

44.68 

56.13 

79.62 

150.65 

136.33 

41.53 

29.79 

22.91 

so 



xxii 

~==============~~===============,~ 

*=============T=a=b=1=e=(~2=0~) =e=o=n=td=·=============r! 

R.P .M. 

N 

121 

145 

170 

194 

218 

266 

290 

315 

339 

363 

387 

411 

Undamped torsiona1 vibration stresses at non-resonant speeds 1 

Two-Node Vibration 

N 
N e 

Dynamie Vibratior 
~gnifier stress 

M ss =MSSO 

Harmonie Order n = 11 
Ne = 242 

0.5 

0.6 

0.7 

0.8 

0.9 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.34 

1.56 

1.96 

2.78 

4.76 

2.27 

1.45 

1.04 

0.80 

0.64 

0.53 

31.08 

39o04 

55.38 

104.78 

94.82 

45.22 

28.88 

20.72 

15.94 

12.75 

10.56 

R.P.M. 

N 

95 

114 

133 

152 

171 

209 

228 

247 

266 

285 

304 

323 

1! 
N e 

Dynamie Vibration 
~gnifier stress 

M ls~'~ = MS so 

Harmonie Order n = 14 
Ne = 190 

0.5 1.34 

0.6 1.56 31.08 

0.7 1.96 39.04 

0.8 2.78 55.38 

0.9 5.26 104.78 

1.1 4.76 94.82 

1.2 2.27 45.22 

1.3 1.45 28.88 

1.4 1.04 20.72 

1.5 0.80 15.94 

1.6 0.64 12.75 

1.7 0.53 10.56 



xxiii 

Table ( 21 ) 

Torsional vibration stresses at resonant speeds 

One-Node Vibration 

Harmonie Critical Equilibrium Dynamio Maximum 

vibration 

order speed stress magnifier stress 

N s s = M s 
c so 

M s c so n max c 

Table (11) Table (19) psi 

1 882 58.67 7.514 440.85 

2 441 2.09 7.514 15.70 

3 294 114.03 7.514 856.82 

4 221 101.56 7.514 763.12 

5 176 76.85 7.514 577.45 

6 147 7.70 7.514 57.86 

7 126 600.72 7.514 4513.81 

8 110 5.04 7.514 37.87 

9 98 2.18 7.514 16.38 

10 88 18.92 7.514 142.17 

11 80 12.73 7.514 95.65 

12 74 0.80 7.514 6.01 

13 68 1.19 7.514 8.94 

14 63 65.22 7.514 490.06 



xxiv 

Table ( 22 ) 

Torsional vibration stresses at resonant speeds 

Two-Node Vibration 

Harmonie Critical Equilibrium Dynamic Maximum 
vibration 

order speeds stress magnifier stress 

N s s = M s 
c so 

M 
s c so n c 

Table (11) Table (20) psi 

1 2664 173.09 5.96 1031.60 

2 1332 2.49 5.96 14.84 

3 888 176.83 5.96 1053.90 

4 666 157.53 5.96 938.88 

5 533 9.34 5.96 55.67 

6 444 23.66 5.96 141.01 

7 381 183.68 5.96 1094.73 

8 333 15.52 5.96 92.50 

9 296 2.49 5.96 14.f,34 

10 266 28.64 5.96 170.69 

11 242 19.92 5.96 118.72 

12 222 1.25 5.96 7.45 

13 205 3.74 5.96 22.29 

14 190 19.92 5.96 118.72 



Table ( 23 ) 

Forced Vibration Amplitudes Due to 7th: Harmonie Engine 

Torque at 300 RPM 

A B c D E F G H I 

Moment Accn. Torque Deflection Torque in vlane of mass Total Shaft Change 

of per unit in Acceleration Engine of 

Mass Inertia amplitude plane of mass torque harmn'c torque ~tiffness deflection torque 

J J. w~ 9 J.w2• 9 M I:(J.w-2.9 + ~) c 9 
n 

~; . 2 lb;in~/rad. radians lb;in. lb;in. lb-; in. h;in./rad. radians ;m;sec. 

Damper 6 
617 '2.q 852800 x 2q862800~ - 29862800X.. qooo~:IO 0·33/B:C. >: 

~ 
Sc.Pump ô 

130 G 29 2ooo 0'6682~ 420I'J'20:)C, - 3 406452<Y-e 13q x 10 0 ·245/X. 

Cyl.N:l.l 400 , q 36 0000 0•4'23/ :le 81q/216X. 
6 

179°0 42 25573<S:x:+l1 qso 31 c; •10 O• IS3"].X+o·oOOOS68 

" n 2 
400 1 q3 60000 o-2 B 94 :X.-o-oooo568 6602?84-X-1 09CJ•6!! r7qso 47 S585'20X+34B001, ~l6x106 O·IS 1 t5X+O"OOO/I 

ft fl3 
400 , q 360000 o·137qœ.-o-ooot <S6B '2 56'j744X-322..Cj·2S '7950 6"0529 2~49521•/ 316 .. 10

6 
0•/5 GfCf:J!t-O•OOOI5G7 

tl "4 400 - 425f/20X.- 6263 '7 qs-o SOI0234/t~1'2D8-I 
G 

0-/5 86X.+O•OOOICJ3'J /Cf3GOOOO -0'0220X-0.000323S ,31 ()x 10 

n Il 5 400 - 34., 64J6:X.-10012'i<J lfG G0~2B~J/t5·1 
6 

o·Jlf7S :x+o-ooo21sa '9 360000 -O·I So6:x-o-oooSI?'l t 7 ct 5o 3/6KI0 

n Il 6 400 19.36 0000 -~32.81 X-0·0007360 - 6352.2/<S::C-14'24&~ 1 1ttSO 40253712X+7'lf346· 
6 

316><10 D- 1 2 74 X+Oo0002.305 

" " 7 400 - 881 84SO.X-18711•44 3143523'2..X+72.061('j 
6 

1·02.06X+0·002.3Lfo~ Jq360000 - c>455S.:X:.- O·O OOlf 665 17q5o 3 CY'&c/0 

Generator 13 800 5 67Cf20000 -1•47610:.-C>-00330G9 
- 9B5ql 6712.oc - -CJS44BI4800C -

'2. 208'744• 65 - 2/3665q•q5 



. . . . ~ . . ~ : :. : ~ : ~ ; r : : . 
. . .. ' . . q:: :: . ... . . ...... ·--. . .. .... : 1 : • 1 . . 

. ·- . . . . ~~ -: ·-+-, _ -+~· -· -~---- ·~· .+--+--+--+~-t---+-: :.~: :t-:-_. :-+: ~:: ~- . t-.;. - l!i. ~-- ·~1)( ~~-H l . : . :~ ~: __ _ 
: : : : _:~: · - • :: :t: · - · · ::: ~ : : -: :::: 1o•~u1Nirr r~ ~ lit -l-b) ' · · . . . . . . . . . . . . . . ~ ~ . . ... 

• • • • ·t ·• . . -~ .. ~ . . ... . . . . ~ . . .. . . . . 
i 

. 1 . ~ .. 

- -· f-.-..--
: : _ . . : . ..'~ ~ ~ : ! - • . .. · · - --.. .. : : : : ~ ':-: J : : .:\ : : : · ;. : l : !:: : : : : : = : - · .. : - · = : : : :: = : : : : : : : : : : - : - .. · · · · : : : : : : : : : . . : : : : =: : : : : : : = : · : ::: T · . : 
.... .... · 1 · . . ~.;.-:- ~F1 - · : : : : : : ::. 1. . . . .. :_:

1

!::_-_: . _ t.-:-:1 - + --+--+r-_-_-+.-. -1. 1-.. -.:+---::·-_: ..... :_...,.._:+: -r-: ~- : +--:-::-+: -::-: :+'-:-: ·4: -. -__ +-----+-_-__ +-_- _-_+ ---:-: :+.-. . -1. -+--+---+.--.-.. 1-. . ~ .. +-.. -.. +--.-. . +---+--__ -+. -: -:;~+-:-: +: - -- 1-- -
. . . . . . . 1~ .!- .;..;;.;. : . . . . : :: t : : : : : : : • : . : : !·: . . : : :: : ::: ~::: - . . . . : : :; : i ; . . . . . . ' . . . . . . . . . . . : ::: ' . . . . . . . . . . . . : . 1 ;.;..\ . : ! ~= :: . :: :; . . . . . . . . - .. 
:::· :::; ~~~~"" :· 1 1 1 1 i· . . . . .. -.. . \ . i i ·i ···; ... ~~-~-;; :· ... ::: : :-; ;::: :: : :: • ;: :: :::• := :: · : · ~ :::: :::: .w: :::: ::~: :::: ... .. . . .. 
:~:: :::; ;: :: ·-:- ; ~_.;.~~----~-~- t -· ·· -~.:.t~ ...: :+.;....:_.x-~- .... . , -~ -- : .~ : : · i · ---t--- - ---t-----t-:-~.....:...:...j..,...:...;...;..j. ... . +--+-----1--- +--+--+-_-__ ., .. .. . ,,. .. .. . . ... . . . i ... , . . ' .. . j '' ' .. ... .. ... t · !--· .. 1 .. j.. ;: :: ::·: .. .. ... , . î : · • : : ; : : :·: :·· -- . .. :. : j . '. · : : : , :: -- :: :: li'r : :: :: :: :·: : : : : : : ::: : : :: : : : :::: .. .. 
·: ;: :.L! ! .:.;,:.:,;._;.,;;.,;. :: : : .. . ... :·: - i. 1 .. :: · : :! .. . . ... . , . . . . i . · ..... .. .. : : : : : ; : ;: · ·.. ... .. . !:.:·: : ~ · : : :·.: :: · . .. . : : : tffi : :1: : ~ ::·: : ::: : :: : : :: . :: : : :::. 

1 
1 ! 1 . . . . . 1 \ 1 + 1 • • • • • • • • • • • • • •• • ~ • • J • • • • • .. • • • • 1 • 

i,-:_;: ;;; : =::: :: :: :: :.. : ·t; l . ... + :: · . . . . -.. . .1 ::!: -·. ::: : i ... .. :: ·: . .. ·· .. · _:!_. :, ~ : :: ; ::> ::-.;_:: ~; :: :! ::: : ::. ::: ::: :::: :.: ~· ·= . . .. :: :~: : :::; :::: :: :: :: ::. .. . ... . 1-· n . . , . . •• • . . . ., • .. • . • . . , . . •.•• . , ... . t · · • . .. . . . . . . . . . . . .. , . · - ·· ·. · . .;. ____ ._,_·· :· . . --·.· 
·::: ::: :: :: ·-i---- -- --- ----+, -:-:---:-· t --:---:---~ ~ - .· . . · : . ,:::.1 .1 : . : · . · : :::•, :~ : :--=--=-- · · · ···· ··· ·::: .. ::. :::: .. .. . . .. - ... . .... ... IS! .. ,..,...---

:::. :: në.;;" :· . . 1 . ·. : .. - ~ · : .. · :· .. t·:ll i'.: · : . ·.: · :: : · , :-!- : ... : ., ....... .. . ... ... . !:~ ~ ~~:I ~1~ ~ :; : :~i ~I ~~: ; : : ~: ~~ ; : ... ::: : :::: ::;: :: : · :;: 1" : ~ : : : :: ~: =::; : :: ~ ::;: ... . .. .. ::: .. :: ... . 

•••• •~ S·JL lJ ----+---!-: -t----r .... -••- ••·• ; · · 4, .. -•••• •-•• ·~- \~Be----H--H- ·• ••-• . ,; ~- i - , r·r ! ·' • : ..• ; ~:; · •- •• ·• •- ~ : ~-. ••. > ~.~~- ~~ L . ':J . -•••• . ... • .. •••· : 
~ ~~ ! ; :,; TI~ T:: : ~ : : : : . ~~- .. : i~J - :~ -:~ T . ~-t-- : .. .. . . . : . ::) ::. : : ~l : :: :: ~ : ::-: : :-: ~:: : (i.~< l:_: .• ' . .. .. .. . . .; : l ~ -~- :: ; >: :::: ~ ·:: : ~: : .. . <! ~ ~ ~ ~ ~ !t~ ~ ~ ~~- ~ ~ ~ ~:: : >: ~~F ~~~ ~ ~: ~ : t :: :: : . 0: ~ : :: :: ~: ~ :: ~ >! : ~ :: : :~. ':---~·--- -~ e-~ 
:::: ::cn :: :: :: . ::· .. . .. .. .,. ,1 : . :~ \: ..... , (/. . . . .. . .. .... . .. .. .. ~\: : . : /,;;::' · .. :i .. +•• 1 .. . e. "tl .. .. . '1" --~· •·•t. ' •. ' ... . .. . :J.t!'t :/ ... ... .. . ... .... ... . . . ... . 1 • ! .. .. 
:::: ::QJ 4:a. ,ô-\i--1 . . : : ... ; . 1 · · - t !l ) :: :: i) r : : : : :.: ::: · .. : : · ::: · : . \\ :(:::i :) · · 1 : : :: : :.· . .q..l: J' · · · :. : ::;. : --: : .. . : :: :.:.+.;. · · : ·;: ( :::t 1 ~ · : :· \ · .: .. · : .. · · · · · · : • 

1 
+---+-+~ 

: 1 

~~ !:: ::·:. !: ~--:-:~ :: : !i:.· . . : .,. >J f . . - l 1 :11-- . .. .. ::::: ::: :::: :: :: ;:: : : :: : :::: . . 1 :::: : ::: :::: :::: .. ... ... :::: :: :: :: ;: =:: : ::) :::: .. . .... .. ... . . 

Ji.~ l~ 
1
. :_·_._:_ :_· ._: :_· _•_:_· :_· :_ ;_ ._: :_· :_· : __ : =_ : :_ ·. :_ -. · =.· ·.· ' ·. · · - -_ ~ ~--- i1-:.. -:--_ • :_1· -· :_· · :_ :_ ...:.t __ -.-1- ~-:-ri --- - ·1~" -· . , .. .. 1 

.. • .. • • .. • • .. : __ ::t 1 - ~ . : ; h-L : · ~; : = . ; : ; _- : ~ : +_ ........ . -+--+-----J--. .. -.. -~+----+-+----+---+-----J--.---+--+-' --+--+-: . + ;.n~+ ~-; 81 

· . .. = ; : :.~...:. · · .. .. 

· j :::: : : :: : : : .. : ; :: :. : . .. . .. . 1 :_:_·,: : :_:_:, =_. -_::_=_:_ .. :.· _: :_. ,:_: __ :,_: _:_ :~:. :, .. : :_:_· :.- !;! : __ : .. .. , .. ,, . .. ·n ..... ... .. . . t.. . .. ... .. .. . .. . .. . . . .. ..... , .... .... .... .... .... .. .. .. .: .. :: :: : :: :.r : :: : :::: ·_:, : .: : L: :: : : .... .. : : : . : : : . .. . . ... : : : : : : :.: :: :: : : · : : . .. .... : : . ... .. 

HUGHES OWEN S 314F 20x20 

1 ... -+-- --
1 

: ! : j . .. :+ ~ . 
··1 
··1 
·t 

T 
--+:-­

. . . : ~ : : . 



. l , · i . ! :.r: : I 1 / i · i \ j ; i ! : . ~ - - · . t !> · 1 : 1 i : ! ; ~~~ 1 ·: : 1 ::: :_J_: j .. l l . 
1. 

- ~ ~±~ . . :~--r~: : ~ --~-. : - ~i+ -.. -. ·--- :-:-:f: -tf :~--:-:- --- -,---- ~ -. :-: . . -: .. -·--:·· .. ---:-t - - ·T··-- r:-t-:--c--- ! . , -- : ~ r---· : - - : . .. :J.. ..:.:.:..;1_.:......:.:. ~-4.:.:.:.: ---F.:..: - .:..:r:-:..:. :: .: :- .. .....: . t : · :: : : ·l,. -. :_.~ __ : :· ·-.!·~_ ~ :: 
ILL~ Jll . 1 l . : 1 : . : . i ::: . : l : : • . ..• i . ! : 1 \ : i ' : i· . ' '1:: T . .. :. i . . : . . i . : :: . . i : 1 :. · [ (IJ : . : :: i : : 1 

>: : : ' 1 . 

·.· j:· . ; .. d.:·: :: :--· ;--:: · .. , .. :: :::: :J: ·· · : :::\ ·• :·.! ···kY! ·~ 1 ; ; 1 : 1 . ·:J. · .. :·.. : : --t! ·.t i . z ! . .. 1 · . ·_: :, _: _:_ .. : · ·. ;,-: ·_·_: ·.· ·.1: ·. 
t ·· ; . · : :: :: . : i'. ·. ···: :- · ·- ~ . . . '! · . ! • : : : . 1 1. : . .. : . · ! ±-:: : : 1 ~ ; • • •• : · · ·: i : -~:.~.:....- .. ·::: :-:- : 1:-: -- .. ·· ;-·· · ·--r .... -- · ' · .. .. .. , : :- : : · ; ~ · : -- · : . .. - · · · · ·.. · ; ..... -- --; ··- .... -r --- · ·--t-·~ - ·-·t-:--- - -- :-- -- ; --~-- T-- -- ~-~ ~--;--- · ·- · -- .. ,, .. ...:.... :.... ... !·-.: ,!:;+:-:- f- .. . : · · + :....::. ,_:: .. r-:-:- -~-- +· :-

: ; -,.: :: . . l . • _ ,_ . ' l '. . : . : . .. : . : ' ' . i : ; . ; : j :. : . 1 1 1 : t ' 1 :s ~.. . . . . . : : ,. 1 
• i 

: :1: 
· · ! · -- ~_:_ __ _:_r~ ~~- -~ ~-:..:.-_ ~ -:--:-

· : · 1 1 

1 ! 
.. : t : : .. .. : .:.i: .: c.:..:..;_ ...:...: 

::-+-!: ; : ~ :-~t~ --: . _· •. ;,: -_- :-_· :_-_ :+--,! --_- :-_T,~ _ ~ -- ~-~- . i.' ... : .. ) 1:_ .. _-_ -_ r-_ ;_--_t_• _• :_-_· :- -_: ~-: -_- i,/-~_: ~-- :.--.·:_•L_--_: ;_: _• ~~~ • ·---:- f-- .....:.....· ~ i:_ :.. ____ -----:i·--- ___ :_r ----i---- - -- L------~---~-}: .. :-·+ ---+:~~~4-- ~--~---- ~--~ --t- ': : • •: T : • ... . • •.G..:, •. • . ~ -~-t--- --+- -- .. --i--
. ' · · · : 1 :J· . - ~ -r---...:. . ::: : . ::! ::: · :...;..~ · . 1 , • 

·· · · , ···· . . . . ~ · . -~ ~· . . .. . 1· 1 

! .s +1 ' : i . ~ . •· • : ! _ . : : . T • i . ~ - : i %-! --- : .; -.J ~vr : .. .. : . : . l :-:-~ :! : : :: ~ . . : i ! 
-- ·t 0' ·- -- - .. ~t-- - . - .. - • -- - . - - [" - . .. i· • : '7 '""'\, r·-7f":--- -----~ - -f-- - '-·--r-:--·-f----+~-- ---- • .... - . .. r·-- . --~ ~-- .. ·- . . ---... -- ---:r--- ~: : :~ . -.. --- .. : -. :_ ~~~--- :. :-: -. :_:_·. il ... :·. ~- -: .. r· ~.· -. . . . : ·. :: !il.:_ -. -. ·_:. ·. :.~. r: :_ :: . . : · .. : .:L ii: . · .. · .. ;~,: . -.- ·. --: ~: ti -~. :-: ~-- ~-·~ ... . ... :-f : : . .. .. ' . -.... . 10 .. l j i . . : : •• : . • 1: v Î: : . :: .. : s~:: : :r • i : i 1

• )...- ,.., i ! i i .!.. . . - ~ -
••.. •. ; :• . . :·J··· ·:J: :_ · 1" ! . i : • •• : "-~!: 1 . i : r· r: ; . . : 1 '.T · ! ~pol ·: . <l ! ...... :. Î 1 L ;.;,.:.~;..;. !' !' 4'· : ~ : ! . . .. +· .. .. .... ... ... .:.:_:+..:.:-- .. . --J 5:v :j ... .. , ... . . . . J<li'.~ ' · ·· .. , . , . . . biO . . . 1.. ..... . ·· ' ·:..~ . , . . .. -1 · ··· .. ,.. , ~..;)~' , ~lJUh . . ~-~ ' 

f---- -- - -- . . -·-- ·- ·--+-- - - -- - -- -+~--f-- . . __ 1 ___ ·-+---~ ---· ..... . .... .... .. - ---- - ----- -- -- --'-·--- - ---~- ---r---- --- - , -- --...,--- ·· - - . - '----+--,....-- +-----r 'J.. · · · •·---- +---
: . : i' . : ., : • . . 1, . . : : . • ,. : : : : > i' . . 'r • : . : .. i! . . . : : : i: ... :K. : : 1 . . ·~,: . . . i: > . i . :1 . t . • . • :l . ,;..:. ! :... ·= ,-. :.: 1_: .... d i " _:,' -'- it - . i't • • l' .. ·,, .. . ' : i 
. . . ... . . . ... • . . . . .. · -- .: [ '\ , · · · · · ·· · · ' · ·· · ·· ~nu1 1rt~ Slbr.. r' n m · · i 

. 1 . . : •J : . : ... J· .. : :t. ·: :: :.,:... ·; :: :: .. ·· : :· :.:. :: .: ·:. \ .: :· . . ·.: v :. ·. ,,. _ .. ,. : j : .. : .·.! ::: . · .. :: . . . : . : .. : : · !: · :: . . • ; . . 1 .. . : . :!, . : . · : . :1 ·· . r· : ' ' 11:: 1• • 

:· : · ! :: . . j : : ' .. : . : : : · : ! : . 1: . :: . : .. : . . . . :-- . ! . : : ' · · · ~· - ' : : . · . . : ' . . : t .: . . :· .. : ! :· .. . . . : i. .. i . : . :· . · . . · . . . · . : · : . . :. , ... . . 1: : 
r: :~T-· : ~:r --:-: --- ~---: · ·:::::-:: ::: :~ --:-: ·:~-~ --~ - ~1~~ ~-:-::-- ~:-:-r::::t~ ~:-:-:r~ : 7:~t:~~ :-:-t--- ----- ::· i : -- :· ... ! -- -- -T·- :-~ -~ : --- : · -:-r: -~ --:·t- -- --- +-·-: - :-:H~~:- :-:·: t:::: :::·r---- : ·-:-:t.i :~- ::·:~::·::-~'~!::: : ··-:-f::-··:·: ·:- :·-:-T-:-· , ----: ·. -- :-:-··r---

: 1 .;. 11 n bb -- ; · : : • · • : · · : · .. • • • . · • · : : . : i: · : : T : : : ·l · • · · . : · · , , . , l ' . · · 1 · • 1 • -- 1 · : . 1 · · : -- · : : : · : · ! · · ! . 

H UG HE S O W EN S < t 4 F 70 x20 



. . . 
~c---- -- -- ~ - . --
: . ! 

. , 
' 

HUG HE.S OWE. N S 314 F ?0<20 

1 •. . • 
1 
1 



L ____ . 

l . : .... -r-~; -l--
t-------+=r:...s-=..P~O'-t---4~ _ ----+ __ 

1·- · ·· f __ _ L ; - 1 
' 1 t---+-: __ ! . ----+----r---.. 

.... j 000 : --- ... . 1 . ! 
~-~=-.,~. ~----r----+--~-t 

' 
' . r-· -- -- · --- --- -r·. --- i 

t--' _:_·-+-_._.i._' -+ : 1 . 

. . --·-- ··--T-- ·· . 1 . l 1 l .l. . · ! · . . · · ·!·· · : ·.J·· : . ,:,._,.;.,.;:~ : :j . · . . l . : . i . . . . + ·---------+-------·-+- _ -t---+ : 1 -
1

- ·-· ! . · - f-- -+c --+-- - - -T t "~- j- ~ • ~ic:~:i~illf!i{- -+ ~ 
• i 1 • • · · ·· · · ··• • f- l · 1 r · _ -,' - t -r, r <h-·++-H ---1--"--- 7 .~ H~ -----

-- -_ -_·_·-~:., ---._j. l il-.... ----- ~_Tf:----_- -_. -_ · ·_:_:,i!-: .. ·; ···:·---j-· f--.---~t---·--i· >-.. - . ......... 1-. -t. - - L ,. '- ~- . -- j + T 1 =---- L~ --b -. : L cc..; fC--4:f • • • • : 1 --- - h-- L 
: · 1 · j · . ; · · · ~ · : ..;.-r 1 · · ! · T . : ! :: Y:: i ' : · · · · · : . •J· . 

:-_·:_~.:. .. : . ~~+ .• ... - :;·:-- · - -~ - . ·--- -- .. ~-~- ~ - -. -~ .. · . :_ .··· __ ,__ ·- ---:;-:- -f-----r- - ---~- - - - f - -- ·+ . . -.:_~-- ~ -- ·· .. _.:·_ :_ :. •: •:. 
l . ! . l : ; :-:- r--;- . . . . : ! : : . ! : : : l: . : : 1 : : t : : . : .. : : : . . : -! . . . ' : : : : : : ; : : : : : : ! : : : : J . . : : : : : 

. 1 : • 1 1 _±_· T . : :l :: <1 :• :.:.1:: :: J:: ! :: : l : : 1 · .. :·: : :< _: · -1. 1 · . 

-- ... .... . .. - .. - . - -. . . . . . . . 1 . . -1·-·. - .. ... , . . . --. . . 1 .. .... - i - . -.. . -·---- ----- r --- - - - ---+----- f-- - --- -:-~:- ·-·- --- . - --1----r f--------- -- -- ·----- -.-- ----

- ~SQQr------+----+-----+---+----+----- -L-~---l'-·--+ --j __________ ; · --~ -+- ___ _ i · : · i ·: T: · ,::::::: :. : .:: :: :. : :t :::::: : : ! •: i :. : 

·l' -- ·. . ... . .. . . .. :. . :_· . i . :,.:· .. · _: . . .. · 1 . 1 l ;_.: M'· ..... -·-- -~: ~ :L .... J, -~ : ..• _.J. •·. ·:_~ l._ .. _:_ --. :.· :: ,, :_ .: : _ ~- ·.~: -j· i--~: -· +:-: .... i'::.: ::_· ·.· . _: __ 1 Il _ : r----kl :: : llJ:i.J . . . ! L 

i t---t--- - 1------ 1 • ~--- :-- - 1 -r-. -----L, -"-~, ,~ . - . . ' i : . . : 1 • • • . • : J' • • • . -,--:' T T 
! 12QQÇ_:-••·-l-_ -·-+ 

1 +----·-; -- -~-~~ - F-i -~~~-; t~~i]i __ i~~ih--~~r~~~-. . ~ --··- i •. _t T bf~-:~l~ T !-, ::r;.~ rH :~~ 
---- ------: r· _ - - --i----~ - --.. ,·. , ---~, ·t--· - ~ -q----t--------[ ------ t --- -- -- - -~-- __i___f------h ' . --f--· . : . . t : . : . . ·: ·· :::j : , . . 

. : __ :-· .. -... . 
1 
. . : __ . _ : ·~:.· . . '.' . r: ,- .. : _ . -.· . :,· . . • . • :_ . ~,· 1~ : ,,' .. _1 _ .. F·--_ _ __ __ ____ ... -~.· -:--__ __ , __ ~- :...:_r, __ .. b_.:.. _J_:_ (!? 1 : 1 :: - · • . : __ . ~-.:._ ~_J_; -~ ~: _. •-, : __ : ___ J_ ·~~- ~ - -.· 

. -~lsQo ----- --t- ---- --r - ---- -- r----- ---+,----- ·--t~ --- ; _____ ~-- ------~1: ---t·. --- -t-----; --T·-- ·-- -- :· ---+--~ --- --),---- -,. . ; • :· -· • •. : -. ! =r . <! .. .. - j FT . ,. 
U) 1 1 . . j . :i .. , .. · i· : 1 :: l<t i ·i : :;. :; i : i .. : ·j'. : 

. 0. 1 .... 1 . ~~ . ~ 1 • ,. - . ! : . : .. 1 • 1 : : •• 1 .. -: .. ~ -- .. . __ ; .... --- •- .. . ...... ;,;_ . .:_~r:-:_ __: ___ 1 ~.:_-f--;_:_ T .. ~~+-:_; __ __;___.........:..:...-:-;+- ---+ . .:.. _.:__.:_; .. . : ,; ____ __:_ 
1 

: ' ! . : 1 1 ; i 1 i 1 . 1 : : . : : : ! j ,M-J t • ! : : 1 . . : • J . . ! : . 
r- · ·j r--- ------t---. - --------,, -- ----- · ·r.·----- ·-·· t,---·-- · · f.-- ---q j----- - -- - :~--- - .. -· --:-- · - -- -- ---- --- .: - ----- - -~.----- -i-- · -1 .. ·, . , · 1 ~ 

tl) ' 1 1 . . . 1 •• o: i : . i 1 . . . i : : j 

~ l,ooo. i 1 
1 

1 
' • , •• • •• '· : -f: i · t' · ---; · · • : -- -:--!,- : · ·-:r-: -~:r- --- -~.t.- · - ~:-;-- ~ .:. : --:-: (:~ ·::.;t~ - ---- · -- _;__T _.:_ 

~. ~ • ..i .. J. _ _ l ___ ····-- --~-- ~-- - --- ·-- --- . ! . ...:_ ___ · . ' . . . • . 1 . . •.. l . ' 1 . • 1 . 

1 --~,,... ; --- - • - - ----- - - ' - - --. - , . , . --- 'i' ---- t· " 1" . --~ 1 

"' 

. . ! ; . ___ : ______ :J .. .:. 
: i 

1 
1 

• • · · . .. . ;· · • --~ : 
· • 1 

. - ! . .. , ' ~ .. ... J--· 
r-~~ __ 5_9Q --- ·-+--~- . --f--------t-------T _:_+ --t ---~-- --__ l,_ _ __ ___ j_ - ~-- -- - ·-- __ j ___ _ ---~- -- i . J . 

1 . j : ~ j ! !· ! . tl . ! ; : . i i 1 .• . . ···· · · · · ·· 1 j -- - i --j- - T - q::-~r---.- -.. :..f ----+ ---

r-------}-- -- ~- :· r ---- 1 - - -- ------r------ +- ---- ;-~-- --+---· -r ----- ----------1 -+- -- -- --+-~~+---+-- --- -· 1 . .. , . ; • . . . . i 1 
. ......... ~ : 

. - -1-- .. o.. - l, . - - . - - - 1 . - . 1, . t . l ! ! . . ~,~ - . . . t -: - . . ---. .. -1-~- --~~ h ~~ --~ , -: ~ : ~t:·: --~ -- - -·--c:· ~1---- --- : - -- -~- --~-- ~ 
- _ __ 1 -- --:-- · i ! : 1 : . . i . ' . ! ; . 1 . 0 

t---t--~-t----4 . --T . 100 . . 1 • • t . . • • 1 • i . . . T : 3'~0 : 

r--~----+--+---- 1 
-- __ 

1
1_ ____ - ~-~--~+ : 

1 

IMo,.,irh . . tr:es~es !due ka -~ ' y 1 ~;.,~lOt\.~ •. . • . t---r- -r' ,-L f'- :-- ; ' -
t 1 . ; i i 1 . 1 • : ~ ; . • : • . : .•• 1··· :. ! J i ! . 

l' -j· · · -- · · J -1 -- · 1 · 1 • : --
- -; ~~ .:.~ r·:-- -( -- -- · 

t---t---t- ·-~-- -! --- ------- ___ ;__-f __ ...... . - + ·-··-t---
. . : j '- . . l' . i .. 1 ·. . i. . ,1; . • . 1 . .. :. . j' l' 1 ; i J __;_ ,, ' : 1 i ! . i . • j .. j . . . l'. i . j: . ' 

t 1 1 :· ; : ,. : . 1 -

1
i : , . ---4 ' -- :---- --- :-- - · ·- -- :·---- · : 1:·-- · -:r··----T- - - ~·-r-:::·:~T:-··· · ·· · L;--- · ·--, --- ,. : 

-- - ~-+-- -- -- ~ ----.:. -+------+--------r·---: ___ +------+--.: .. ' . --.--r-·:·--T . T --- --: -- --- - . . . ~-~-:_ .. 1 , , ! . , 1 , • ! ~ 

·· ··· 1 ·· · • ··· · 1 : i 1 1 ··· · · ·· · · · ··· · • · · · · · ·1 • l 1 . i ··· -- ·· ···· ·· . 1: r + r·- r +-- -- -r F ·- .- · ! r 





1 
1 F 1 1 1 1 

1 1 1 l 
l 1 

1. 1 
• 

12 

1 1 l 

1 1 

~t 
1 

1 ~4 8~ 
.-:1 (!) 

i 1 

§t ~t 

Lengths 

1 ! 

of Shaft 

alb be ' e d g h 1 hi j k ki lm mn op 1 r s slt t1u 

i" ~.Il) 
::<OC") 1 .,3 L--Jr~ L--1\l ~ 

Stati e Loadings, lbs. 

• --- ' ::C") 1 
l'~--- '([) ({) 1 J. 
N N -~ o -..- i' 

0 0 0 r--~ b 1 

::({) 1 ' 0 0 0 
'~ 8 ~/ ~ 1 ~ ~ ~ ~ ~ ~["---... 0 ~ 1 1 i 
...... ~~ 

i '..- 0 ~1 
i ' ,.,..... C") 1 0 ~ -

~(\J l'"'"-' ..;t' 0 _.!--v-- 1 
~r- ! ~ ~ 

~ 1 1{) 0 g ' J~ 1 

0 19 0 ~v-;1 1 

·, l 1 ~~~ 1 . 1 

1 

~~~: ~~~ ~(\J [::co 
. 1 ---"----- 8 ..;t' 1 -.:t 

1 
1 K._j_ 9 i g 
1 1-._J__ •. 

1 ;---,_ 

1 
11 Il 

Coupled Statie Defleetion Curve, Seale: 1 = o•oos 8: 
• 1 

C\lt 
1 1 

C\1 1 

~t :tt 1 

ab be 
1 

1 

~l 
fg 

1 

1 

~t 
gh 

1 

1 1 

; ~~ ~~ 
i hli : i lj 
i lnertia 

1 1 

'(j) 

~~ 
1 

~~ 
jlk kil 

Loadings, lbs. 

lm 

! 
1 1 

1ft ~ • 
m.n no op 

1 

1 

1 ~t 
rs 

1 
1 

001 
.-1 
• 1 
N, 

T 

~r----J__ 1 1 j' . 

',~ -- 1 .......... ~ TTTI ri· ttHttH-++H~-· t~ 4-Wj_'Llll~ 1 

..t.-o,.. ; ' ~ ............. c 1 1 1 1 ~r---;, --/" 
' ~ 1 i 1 1 /--:--;, 

j 1 a, , , , ~'-.......... 1 , , 1 1 / /" 

1'', __ ~~~ 1 

1 
1 

1 

1 1 qv/ ,/,,~, 

~ -- - __ 1 __ --~-~.-- -,.,~--~~--_:!v __ vl--- ,-/ ,",( 1 ~~·~-- -- -- --- .-- -- -- r . ,~ v --

~ ............... j 1 1 1 1 Y. v ' 1 

1 r--- --tL---,---1-'-'-k- 1 _!! ~ ! 1 

! 1 • 1 j 1 k l_ -1 Il-Il -+------1 

1 h ~~- ' ...... .__~~~ml Ln ' 1 1 

Yv:-:--, 1 • ~ 
f / - 1 1 1 1 1 ~~ 1 

1 /y 1 1 '1 , 1 1 ~p 
~ 1 .--- -- m 'è.l....Lq? 

- 1----1------1---.-----+1 1 -

1 es.- j , .' _ ~-- ___ ~------ 1 1 1 1 __ 1 ~ n __ 

e ~----- , /' h_- --- -- 1 --~ -- --- n' ~---.~ 1 

.... i _....--'y 1 ~ /'-- 1 1 1 1 1 1 ~--- '' 1 1 
1 

1 1 -----1 ~ ~t- 1 

,.;-c__ --1 1 • i - ~ 1 --~--

Il 

1 

Bending Moment Diagrams, Seale' 1 = 

1 
----~---

]'-- p 

120 lb.- in. 

..... - _,-
~- -· -- r , q2 

........ , 
-, t -- s 

k 

b 

Il 

APPENDIX -IV 

Diagram (A. IV- 2) 

DEFLECTIONS OF MAIN TRANSMISSION SHAFT 

For Uneoupled System 

--------------For Coupled System 

/ 
/ 

/ , 
u1 ~------~2~------~ 

lnertia Load Polar Diagram 
(Uneoupled & Coupled) 

Bending Moment Polar 

Uneoupled 

Diagrams 

Cou pied 

-1-----11---r----+--+ -

!1 ~ 
---+---+-' -+-+-~--

1- --~~~-
j 1 

J r--~-- -

,t 
1 1 
1 1 

---+-----11----+--+ - : 1 

l 1 

1 

1 

~~~~~ 1 ji 
~'--' 1 1 1 ~ ----........... m ' , .. - ... 

1 • ', ~ . t q.z. / 
i : r() ', ~~ 1 p' i ~ --· 
1 ' n • -~~ o - ___ ,_ 

1 ,i 1 ......._ --

1 1 0 ---- ----. 

1 t' 
s - -----

Slope C urves 
i P-~q ,__ 

,lctq~:t--t;:-r -+--ks-!-_.t_j 

Dynamie Defleetion Curves 

Scale, ,· = o•oo0042i' for eontinuous eurve 
1 = o•ooo0095~ for dotted eurve 

-------

Il 

3 

~ 
t SI ope Polar Diagra ms 

Uneoupled C oupled 

: 

.· 

: 

. 

' 



.. 
<0 
0 
0 
0 
0 
0 • 

. 
1.{) 
('() 
N 
0 
0 • 

' 1.{)1 
1 

8) 
0 
0 
0 
0 
0 • 

cd 

N . 
(j) 

N --0 0 
0 0 
• • 

de 

1 ,. 
~ ..-
0 
0 • 

Lengths of 

1 1 1 

l t-.. 
1.{) 

Static 
1 

1 

Shaft Sections, 

1 
1 1 

Loadin gs,l bs . 

1 

, , , 
1 = 5 

r 1 

,. 1 

f'.. 
0 
0 
0 
0 • 

1 • 

C urve, Scale : 1" = •oo2" 

1 N 1 31 

Bending Moment Diagrams 

Scale, 

1" = 30 lb.-in. for continuous curve 1 

f'=60 lb.-in. for dotted curve 

, , 
" ' ' .... 

1 . jJ . ..-
d__.....---

1.,......- 1 

' 1 ' ' ' 

S 1 ope C urves 

1 

Dynam·lc Deflection Curves 

~ 
0 

1 ..-• 
i j 

j ........ / 

-t -

Il • 

Sc ale. 1 = •ooo000625 for continuous c urve 
f = •ooooo 1 7" fer dotted curve 

1 

, .. 

a 

1 

~ 

,, 
3 

lnertia Load Polar Dia grams 

U ncoupled 

Bending - - -· 
Uncoupled 

. , 
3 

APPENDIX-IV 

Dia gram (A. IV -3) 

DEFLECTIONS OF CRANKSHAFT OVERHANG 

-------For Uncoupled System 

-------------For Coupled System 

" 3 

1 

a11---------------~ o1 

Cou pied 

D iagrams 
Couple d 

.. 
3 

SI ope Polar Diagrams 

U ncoupled ·c oupled 



N -:..::-- :: -..- ',..=:--
~ 0 

""' N N ..-

:: 
""' -..-()) 

·- · 

AJAX COU PLI NG 

APPENDIX -V 
Drawing No. 1 
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Approximate dimensions z Courtesy Alexander Fleck Ltd. 

Approx. Weight = 1200 lb. 

Number of stu ds = 16 
Il 

S ize of studs = 1 1J2 
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THE DAMPER = 61 7 lb.- in. set. 
Courtesy British Polar Engines Ltd. 
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