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ABSTRACT

Integer least squares (ILS) estimation problems arise from many applications.

In this thesis, we investigate the effects of the celebrated LLL reduction and some

well-known column permutation strategies on the success probability of the Babai

estimators, the widely used suboptimal solutions in practical applications, for both

ordinary ILS (OILS) and box-constrained ILS (BILS) estimation problems, and solve

a shortest vector problem (SVP) arising in compute-and-forward protocol design. For

the OILS estimation problems, we rigorously prove that the success probability POB

of the ordinary Babai estimators can always be improved (not strictly) after the

LLL algorithm or its permutation-only version LLL-P is applied and give examples

to show that both the V-BLAST and SQRD may decrease POB. For the BILS

estimation problems, on the one hand, we show that under a condition LLL-P always

increases the success probability P BB of the box-constrained Babai estimators and

argue why both V-BLAST and SQRD often increase P BB under the same condition;

and on the other hand, we show that under an opposite condition LLL-P always

decreases P BB and argue why both V-BLAST and SQRD often decrease P BB under

the same condition. This surprising result shows that the corresponding conditions

should be checked before applying these column permutation strategies. We also

solve a conjecture related to P BB. An efficient algorithm which is of polynomial time

indicated by the simulation is proposed for solving the SVP arising in compute-and-

forward protocol design. Simulations show that our algorithm is not only much more
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efficient than the existing ones that give the optimal solution, but also faster than

some of the suboptimal methods.
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ABRÉGÉ

Les problèmes d’estimation des moindres carrés entiers (MCI) surgissent de

plusieurs applications. Dans cette thèse, nous étudions les effets de la célèbre réduction

de réseau LLL et quelques stratégies bien connues de permutation de colonnes sur

la probabilité de succès des estimateurs de Babai, les solutions sous-optimales large-

ment utilisées dans des applications pratiques, pour des problèmes d’estimation de

MCI ordinaires (MCIO) et des MCI contraints par des bôıtes (MCICB), ainsi qu’un

problème du vecteur le plus court (PVC) qui survient dans la conception de proto-

cole calcul-et-transfert. En ce qui concerne les problèmes d’estimation MCIO, nous

prouvons rigoureusement que la probabilité de succès POB des estimateurs de Babai

ordinaires peut toujours être améliorée (non strictement) après que l’algorithme LLL,

ou sa version de permutation seule LLL-P, est appliqué et donnons des exemples pour

montrer que les V-BLAST et SQRD peuvent diminuer POB. Quant aux problèmes

d’estimation MCICB, nous montrons d’une part que, sous une contrainte, LLL-P

augmente toujours la probabilité de succès P BB des estimateurs de Babai contraints

par des bôıtes et affirmons pourquoi V-BLAST et SQRD souvent augmentent P BB

sous la même condition; d’autre part, nous montrons que sous une contrainte op-

posée, LLL-P diminue toujours P BB et affirmons pourquoi V-BLAST et SQRD sou-

vent diminuent P BB sous la même contrainte. Ce résultat surprenant démontre que

les contraintes correspondantes doivent être vérifiées avant d’appliquer V-BLAST et

SQRD. Nous résolvons également une conjecture reliée à P BB. Étant donné que le

PVC survient dans la conception de protocole calcul-et-transfert, nous proposons
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un algorithme polynomial pour le résoudre. Des simulations démontrent que notre

algorithme est non seulement plus efficace que ceux qui existent présentement pour

produire la solution optimale, mais il est aussi plus rapide que quelques méthodes

qui produisent des solutions sous-optimales.
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CHAPTER 1
Introduction

In this chapter, first we introduce the integer least squares problems, their ap-

plications and some numerical methods to solve them. Then, we briefly introduce

the background of three different problems which will be investigated in this thesis.

Finally, we summarize the contributions of this thesis and present the notation which

will be used in this thesis.

1.1 Integer least squares estimation

Suppose that we have the following linear model:

y = Ax̂+ v,v ∼ N (0, σ2I), (1.1)

where y ∈ Rm is an observation vector, A ∈ Rm×n is a model matrix with full column

rank, x̂ ∈ Zn is an unknown integer parameter vector and v ∈ Rm is a noise vector

following the Gaussian distribution N (0, σ2I).

A common method to estimate x̂ from (1.1) is to solve the following ordinary

integer least squares (OILS) problem:

min
x∈Zn

∥ y −Ax ∥22, (1.2)

whose solution xOL, to be referred to as the OILS estimator, is the maximum likeli-

hood estimator of x̂.
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In some applications, the integer parameter vector x̂ in (1.1) may be subject

to some constraints, such as the box constraints, i.e., we have the following box-

constrained linear model:

y = Ax̂+ v, v ∼ N (0, σ2I), (1.3a)

x̂ ∈ B ≡ {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}. (1.3b)

Then instead of solving the OILS (1.2), one solves the following box-constrained

integer least squares (BILS) problem:

min
x∈B

∥ y −Ax ∥22, (1.4)

whose solution xBL, to be referred to as the BILS estimator, is the maximum likeli-

hood estimator of x̂ ∈ B.

The OILS problem (1.2) is also referred to as the closest vector problem (CVP)

in information theory (see, e.g., [36, 62]) as it is equivalent to find a point in the

lattice {Ax : x ∈ Zn} which is closest to y. If y = 0, then (1.2), where x ̸= 0,

degenerates to the shortest vector problem (SVP).

ILS problems (OILS and BILS) arise from many applications, such as, combina-

torial optimization (see, e.g., [23]), GPS (see, e.g., [82, 37]), cryptography (see, e.g.,

[61, 35, 36]), communications (see, e.g., [65, 2, 21]), number theory (see, e.g., [28, 33]),

lattice design (see, e.g., [1]), Monte Carlo second moment estimation (see, e.g., [19]),

noncryptographic random number generation [46, pp. 89–113] and transportation

science (see, e.g., [48]), etc.
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Van Emde Boas [86] showed that the general CVP is an NP-hard problem and

Micciancio [59] gave a simpler proof. Despite the similarities between CVP and SVP,

the analysis for the complexity of SVP has progressed much slower, and whether the

SVP is also NP-hard is still an open problem. The first breakthrough result is due

to Ajtai [3] who proved that solving the problem exactly is NP-hard for randomized

reductions. Later, Micciancio [60] showed that the SVP is hard to approximate

within any factor less than
√
2 under reverse unfaithful random reductions. For

more details, see e.g., [45].

1.2 Numerical methods

In communications, the commonly used approach to solving the OILS problem

(1.2) or the BILS problem (1.4) is called sphere decoding, which usually has two

stages: reduction and search. The most widely used reduction strategy for the OILS

problem (1.2) is the LLL reduction, invented by Arjen Lenstra, Hendrik Lenstra and

László Lovász in 1982 [51], which consists of size reductions and column permuta-

tions. But it is difficult to use it to solve the BILS problem (1.4) because in general

after size reductions which are involved in the LLL reduction, the box constraint

would become too complicated to handle in the search process, although very re-

cently it was shown in [97] that some size reductions could be performed on some

columns of A. However, one can use its permutation strategy, which was referred

to as LLL-P in [90] (in [18] we referred to it as LLL-permute). Two well-known

reduction strategies for the BILS problem (1.4) are V-BLAST [25, 21] and SQRD

[95, 16]. The LLL-P, SQRD and V-BLAST strategies use only the information of A

to do the column permutations. Some column reordering strategies which use not
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only the information of A, but also the information of y and the box constraint have

also been proposed, see, e.g., [80], [16] and [15].

The commonly used search strategy for solving an OILS problem (1.2) or a BILS

problem (1.4) is the Schnorr-Euchner search strategy [74], a variation of the Fincke-

Pohst search strategy [24], or its variants, see, e.g., [2, 21, 16], which enumerate

the lattice points in a hypersphere (this is the reason why the discrete enumeration

algorithms following the Fincke-Pohst search strategy or its variants are referred to as

the sphere decoding algorithms in communications), or equivalently, integer points in

a hyper-ellipsoid. Probably the earliest search strategy is Kannan’s approach [43, 44],

which enumerates the lattice points in a parallelotope. The complexity analysis of

Kannan’s approach can be found in [35]. In general, Fincke-Pohst search strategy

is more often used in practice and Kannan’s approach serves more as a theoretical

tool since Kannan’s approach has better theoretical results on the complexity and

simulations in [68] showed that, in general, Fincke-Pohst search strategy is usually

faster.

There are some other approaches to solving (1.2), such as, the Monte Carlo

probabilistic algorithms, see, e.g., [4, 5, 12, 36], which find lattice vectors that are no

more than 1+ ϵ times further away from the target than the optimal solution, for an

arbitrary ϵ > 0. Their best known upper bounds on the time and space complexities

are higher than that of the Voronoi cell based approach [79, 62], which is based on

computing the Voronoi cell of the lattice and can solve (1.2) in time O(22n+O(n)) and

space O(2n+O(n)). For more details, see the survey paper [36] and references therein.

Very recently, a real relaxation based branch and bound approach has been proposed
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in [7], which may be more efficient than the sphere decoding approach for some types

of problem data. We will only focus on the Schnorr-Euchner search strategy and its

variants since the Schnorr-Euchner search is usually the fastest one.

1.3 Babai estimators

The OILS problem (1.2) is NP-hard [86, 59] and solving (1.4) may become time-

prohibitive when σ is large, the dimension of A is large, or A is ill conditioned [41].

Therefore, for some real-time applications, an approximate solution, which can be

produced quickly, is computed instead. For the OILS problem, the Babai integer

point xOB, to be referred to as the ordinary Babai estimator, which can be obtained

by the Babai nearest plane algorithm [9], is an often used approximate solution.

Taking the box constraint into account, one can easily modify the Babai nearest

plane algorithm to get an approximate solution xBB to the BILS problem (1.4),

which will be referred to as the box-constrained Babai estimator. The Babai points

xOB and xBB are also the first integer points found by the Schnorr-Euchner algorithm

for the OILS problem (1.2) ([2]) and BILS problem (1.4) ([21, 16]), respectively. In

communications, algorithms for finding the Babai estimators are often referred to as

successive interference cancelation detectors.

There are many other suboptimal algorithms for the BILS problems. Probability

or statistic based pruning strategies have been used in, e.g., [30, 78, 94, 20], to reduce

the complexity of search. A so-called sphere-projection algorithm which is able to

achieve near-maximal likelihood performance and significantly increase the diversity

gains has been proposed in [8]. K-best decoding algorithm which only keeps the

K-best candidates at each level of the sublattice in the breadth-first search step
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has been proposed in [32] to approach near-maximum-likelihood performance for

MIMO detection. There are some variants of K-best algorithms too, see, e.g., [34].

Some algorithms based on semidefinite programme techniques have been proposed,

see, e.g., [57, 88]. The fixed-complexity sphere decoder (FCD) which performs a

fixed number of operations during the detection process was developed in [11]. The

error probability of FCD has been analyzed in [40] and many variants of FCD have

also been proposed, see, e.g., [50]. In this thesis, we will only focus on the Babai

estimators as their cost are lowest among these algorithms and they are commonly

used in practice.

1.4 Success probabilities of Babai estimators

In order to verify whether an estimator is good enough for a practical use, one

finds the probability of the estimator being equal to the true integer parameter vector,

which is referred to as success probability [37]. The probability of wrong estimation

is referred to as error probability, see, e.g., [21, 40].

Let POB and POL respectively denote the success probabilities of the ordinary

Babai estimator xOB and the OILS estimator xOL of x̂ in (1.1). Similarly, the success

probabilities of the box-constrained Babai estimator xBB and the BILS estimator xBL

of x̂ in (1.3) are respectively denoted by P BB and P BL.

The success probability POB of the ordinary Babai estimator xOB is very useful

due to a few reasons. If one just uses xOB as an estimator of the true parameter

vector x̂ in (1.1) as often done in communications, certainly one is interested in

its success probability. Even if one computes the optimal solution xOL of the OILS

problem (1.2), POB is still useful, as computing the success probability POL of the
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OILS estimator xOL is time-consuming and one often uses POB, a lower bound on

POL [84], to approximate POL. Furthermore, if POB is close to 1, one does not need

to spend extra computational time to find xOL.

It is well-known that after the LLL reduction, POB usually increases, but there

has been no rigorous theoretical justification and it is not known whether the LLL

reduction can decrease POB. We will solve this interesting and important problem in

Chapter 3.

Similarly, for the BILS problem (1.4), it is also very important to compute P BB

if xBB is used to estimate the integer parameter vector x̂ in (1.3). Although the

formula for POB was given in [83]. There has been no formula for computing P BB in

the literature and whether the LLL-P, V-BLAST and SQRD can always improve P BB

is still not clear from the literature. We will study this interesting and important

problem in Chapter 4.

In [58], the authors made a conjecture, based on which a stopping criterion for

the search process was proposed to reduce the computational cost of solving the

BILS problem (1.4). The conjecture is related to the success probability POB of the

ordinary Babai estimator xOB. We will solve the conjecture in Chapter 4.

1.5 An SVP in compute-and-forward protocol design

In relay networks, compute-and-forward (CF) [67] is a promising relaying strat-

egy that can offer higher achievable rates than traditional ones (e.g., amplify-and-

forward, decode-and-forward), especially at the moderate signal-to-noise ratio (SNR)

regime. The main difficulty in the computer-and-forward scheme is to find the op-

timal coefficient vector that maximizes the computation rate, which is to solve the
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following optimization problem [67, 89, 73, 101, 72, 102] to get the optimal coefficient

vector a⋆:

a⋆ = arg min
a∈Zn\{0}

aTGa, where G = I − P

1 + P ∥ h ∥22
hhT , (1.5)

where P is the transmission power and h ∈ Rn is the channel vector.

Various methods have been proposed to solve (1.5). But the complexity of the

existing optimal methods are high and the existing suboptimal algorithms may fail

to offer satisfactory performance. We will propose an efficient algorithm to solve

(1.5) in Chapter 5.

1.6 Organization and contributions

The rest part of this thesis is organized as follows. In Chapter 2, we introduce

various reduction algorithms to transform the OILS problem (1.2) and the BILS

problem (1.4) to simpler problems, which can then be solved by search algorithms.

In Chapter 3, we investigate the effects of some typical reductions on the success

probability POB of the ordinary Babai estimator xOB for the ordinary linear model

(1.1). In particular, we rigorously prove that the LLL reduction can always improve

POB. We first show that POB as a lower bound on the success probability POL of the

OILS estimator xOL is sharper than the lower bound given in [37]. Then, we show

that any column permutation and any size reduction on the super diagonal entries

of the R-factor R of the QR factorization of A in (1.1) that is immediately followed

by a column permutation in the LLL reduction algorithm [51] increase (not strictly)

POB and all other size reductions have no effect on POB. We also investigate how

the parameter δ in the LLL reduction affects POB. After that, we give examples
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to show that unlike the LLL and LLL-P, the permutation strategies SQRD and V-

BLAST may decrease POB. Finally, we give some upper bounds on POB after the

LLL reduction algorithm is applied by using the entries of the R-factor R of the QR

factorization of A in (1.1). These contributions were published in [18], which also

includes other results that are not covered by this thesis.

In Chapter 4, we investigate the effects of some column permutation strategies on

the success probability P BB of the box-constrained Babai estimator xBB for the box-

constrained linear model (1.3) and solve a conjecture proposed in [58]. In particular,

we show that under some conditions, all of the LLL-P, V-BLAST and SQRD may

decrease P BB. This surprising result indicates that we need to check whether the

corresponding conditions hold before applying them. First, we derive a formula for

the success probability P BB. Then, we investigate the effects of the LLL-P, SQRD

and V-BLAST on P BB. On the one hand, we show that the LLL-P always increases

P BB and argue why both V-BLAST and SQRD often increase P BB under a condition;

and on the other hand, we show that the LLL-P always decreases P BB and argue

why both V-BLAST and SQRD often decrease P BB under an opposite condition.

After this, we derive a column permutation invariant bound on P BB, which is an

upper bound and a lower bound under the two opposite conditions, respectively. We

also present some numerical results to illustrate our findings. Finally, we consider

a conjecture concerning the success probability of the ordinary Babai integer point

proposed in [58]. We first construct an example to show that the conjecture does

not always hold, and then propose some conditions to guarantee it holds. These

contributions were contained in [90].
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In Chapter 5, we propose an efficient algorithm for finding the optimal coefficient

vector that maximizes the computation rate at a relay in the computer-and-forward

scheme, i.e., solving (1.5). First, we derive an algorithm with only O(n) flops to

compute the Cholesky factorization ofG in (1.5) (we do not form the whole Cholesky

factor explicitly), to transform (1.5) to a standard SVP. Then, we propose some

conditions that can be checked by O(n) flops, under which the optimal coefficient

vector a⋆ can be obtained immediately without using any search algorithm. After

that, by taking into account some resultant useful properties of a⋆, we modify the

Schnorr-Euchner search algorithm to solve the SVP. Simulation results show that the

average cost of our new algorithm is O(n1.5) flops for i.i.d. Gaussian channel entries,

and our algorithm is not only much more efficient than the existing ones that give

the optimal solution, but also faster than some of the suboptimal methods. These

contributions were contained in [92].

Finally, we summarize theconclusions and discuss the directions for future re-

search in Chapter 6.

1.7 Notation

Let Rn and Zn be the spaces of n−dimensional column real and integer vectors,

respectively. Let Rm×n and Zm×n respectively be the spaces of m×n real and integer

matrices. Boldface lowercase letters denote column vectors and boldface uppercase

letters denote matrices, e.g., x ∈ Rn and A ∈ Rm×n. For x ∈ Rn, we use ⌊x⌉ to

denote its nearest integer vector, i.e., each entry of x is rounded to its nearest integer

(if there is a tie, the one with smaller magnitude is chosen). Let xT , AT respectively

denote the transpose of x and A. For a vector x, let xi be the element with index i

10



and xi:j be the vector composed of elements with indices from i to j. For a matrix

A, let aij be the element at row i and column j, Ai:j,k:ℓ be the submatrix containing

elements with row indices from i to j and column indices from k to ℓ, and Ai:j,k be

the vector containing elements with row indices from i to j and column index k. Let

0n and 0m×n respectively denote the n−dimensional zero column vector and m× n

zero matrix, and let en
k and 1n denote the k-th column of an n×n identity matrix I

and an n−dimensional vector with all of it entries being 1, respectively (sometimes

the superscripts are omitted if the dimensions are obvious).

11



CHAPTER 2
Reductions of Integer Least Squares Problems

In this chapter, we first introduce the QR, QRZ and QRP reductions, each of

which reduces a full column rank matrix to an upper triangular matrix. All of these

reductions can be used to transform the OILS problem (1.2) to a new OILS problem.

The QR and QRP reductions can also be used to transform the BILS problem (1.4)

to a new BILS problem. The transformed OILS problem and BILS problem can then

be solved by a search process, typically by sphere decoding methods in applications.

Both the QRZ and QRP reductions are frameworks. The QRZ reduction is

actually the lattice reduction and the most often used one is the LLL reduction [51].

The QRP reduction involves column reordering strategies and two well-known QRP

reductions are V-BLAST [25] and SQRD [95].

We also introduce the Babai estimators, the suboptimal solutions to the OILS

and BILS problems, which are often used in practice.

The contents of this chapter will be used later.

2.1 QR reduction and Babai estimators

Assume that A in the linear model (1.1) or in the box constrained linear model

(1.3) has the QR factorization

A = [Q1,Q2]

R
0

 , (2.1)
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where [Q1
n

, Q2
m−n

] ∈ Rm×m is orthogonal and R ∈ Rn×n is upper triangular. There

are several methods to get (2.1), for more details, see, e.g., [29]. Without loss of

generality, we assume that the diagonal entries of R are positive throughout the

thesis.

Define

ỹ = QT
1 y, ṽ = QT

1 v. (2.2)

Then from (1.1), we have

ỹ = Rx̂+ ṽ, ṽ ∼ N (0, σ2I). (2.3)

And the OILS problem (1.2) is reduced to

min
x∈Zn

∥ỹ −Rx∥22. (2.4)

Similarly, (1.3) and (1.4) can be respectively reduced to:

ỹ = Rx̂+ ṽ, ṽ ∼ N (0, σ2I), (2.5a)

x̂ ∈ B ≡ {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}, (2.5b)

and

min
x∈B

∥ỹ −Rx∥22. (2.6)

One can then apply a discrete search algorithm such as the Schnorr-Euchner

search algorithm [74] and its extension [14, 21, 16] to solve (2.4) and (2.6), respec-

tively.
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In some applications, the Babai estimators, which are suboptimal solutions and

can be computed quickly, are usually computed instead of solving (2.4) or (2.6). The

Babai estimator xOB of OILS (2.4) found by the Babai nearest plane algorithm [9] is

defined as follows:

cOB

i = (ỹi −
n∑

j=i+1

rijx
OB

j )/rii, xOB

i = ⌊cOB

i ⌉ (2.7)

for i = n, n− 1, . . . , 1, where
∑n

n+1 = 0.

Similarly, by taking the box into consideration, the box-constrained Babai esti-

mator xBB of BILS (2.6) is defined as follows:

cBB

i = (ỹi −
n∑

j=i+1

rijx
BB

j )/rii, xBB

i =


li, if ⌊cBB

i ⌉ ≤ li

⌊cBB
i ⌉, if li < ⌊cBB

i ⌉ < ui

ui, if ⌊cBB
i ⌉ ≥ ui

(2.8)

for i = n, n− 1, . . . , 1, where
∑n

n+1 = 0.

For search efficiency and improving the success probability of the Babai estima-

tors, one typically adopts some lattice reduction for the OILS (2.4) and some column

reordering strategies for the BILS (2.6) to obtain better R′s. See the following sec-

tions for more details.

2.2 QRZ reduction

For any full column rank matrixA ∈ Rm×n, the lattice generated byA is defined

by:

L(A) = {Az|z ∈ Zn}. (2.9)
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The columns of A form a basis of L(A). For any n ≥ 2, L(A) has infinity many

bases and any of two are connected by a unimodular matrix, which is defined as

follows:

Definition 2.2.1 A matrix Z ∈ Zn×n is said to be unimodular if its determinant is

1 or −1.

For any given lattice basis matrix A ∈ Rm×n, AZ is also a basis matrix of

L(A) if and only if Z ∈ Zn×n is unimodular [2]. The process of selecting a good

basis for a given lattice, given some criterion, is called lattice reduction and in many

applications, it is advantageous if the basis vectors are short and nearly orthogonal

to each other [2].

For more than a century, lattice reductions have been investigated by many

people and several types of reduction have been proposed, which includes the HKZ

reduction [47, 39], the Minowski reduction [64], the LLL reduction [51] and Seysen’s

reduction [77], etc. Lattice reduction plays an important role in many research areas,

for more details, see the survey paper [96] and references therein.

Often a lattice reduction can be described as a QRZ reduction:

QTAZ =

R
0

 , (2.10)

where R satisfies the conditions of the corresponding reductions.

We introduce two commonly used QRZ reductions: the LLL reduction [51] and

the HKZ reduction [47, 39] in the following two subsections.
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2.2.1 LLL reduction

After the QR factorization (2.1) of A, the LLL reduction [51] reduces the matrix

R in (2.1) to R̄:

Q̄
T
RZ = R̄, (2.11)

where Q̄ ∈ Rn×n is an orthogonal matrix, Z ∈ Zn×n is a unimodular matrix and

R̄ ∈ Rn×n is an upper triangular matrix satisfies the following conditions:

|r̄ik| ≤
1

2
r̄ii, i = 1, 2, . . . , k − 1, (2.12)

δr̄2k−1,k−1 ≤ r̄2k−1,k + r̄2kk, k = 2, 3, . . . , n, (2.13)

where δ is a constant satisfying 1/4 < δ ≤ 1. The matrix R̄ is said to be δ-LLL

reduced or simply LLL reduced. Equations (2.12) and (2.13) are respectively referred

to as the size-reduced condition and Lovász condition.

Notice that combining (2.1) and (2.11), the LLL reduction result in the following

QRZ factorization (see (2.10)) of A:

Q̃
T
AZ =

R̄
0

 , Q̃ ≡ Q

Q̄ 0

0 Im−n

 .

The matrix language can be used to describe the original LLL algorithm [51].

Two types of basic unimodular matrices, i.e., the integer Gauss transformations

(IGT) and the permutation matrices, are implicitly used to update R so that it

satisfies both (2.12) and (2.13).
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To meet the first condition in (2.12), we can apply an IGT, which has the

following form:

Zik = I − ζeie
T
k .

Applying Zik (i < k) to R from the right gives

R̄ = RZik = R− ζReie
T
k .

Thus R̄ is the same as R, except that r̄jk = rjk − ζrji for j = 1, . . . , i. By setting

ζ = ⌊rik/rii⌉, we ensure |r̄ik| ≤ r̄ii/2. This process is called size reduction.

To meet the second condition in (2.13), permutations are needed in the reduction

process. Suppose that δ r2k−1,k−1 > r2k−1,k + r2k,k for some k. Then we interchange

columns k − 1 and k of R. After the permutation the upper triangular structure of

R is no longer maintained. But we can bring R back to an upper triangular matrix

by using the Gram-Schmidt orthogonalization technique (see [51]) or by a Givens

rotation:

R̄ = GT
k−1,kRP k−1,k, (2.14)

where Gk−1,k is an orthonormal matrix and P k−1,k is a permutation matrix, and

r̄2k−1,k−1 = r2k−1,k + r2k,k, r̄2k−1,k + r̄2k,k = r2k−1,k−1, r̄k−1,k−1r̄kk = rk−1,k−1rkk. (2.15)

Note that the above operations guarantee δ r̄2k−1,k−1 < r̄2k−1,k + r̄2k,k since δ ≤ 1.

The LLL reduction algorithm is described in Algorithm 2.2.1, where the final

reduced upper triangular matrix is still denoted by R.

It is well known that the cost of the LLL algorithm is a polynomial of the dimen-

sion n for any lattice with integer basis [51], [6]. Although the average complexity
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Algorithm 2.2.1 LLL reduction

1: compute the QR factorization: A = Q

[
R
0

]
;

2: set Z = In, k = 2;
3: while k ≤ n do
4: apply IGT Zk−1,k to reduce rk−1,k:

R = RZk−1,k;
5: update Z: Z = ZZk−1,k;
6: if δ r2k−1,k−1 > r2k−1,k + r2kk then
7: permute and triangularize R:

R=GT
k−1,kRP k−1,k;

8: update Z: Z = ZP k−1,k;
9: k = k − 1, when k > 2;
10: else
11: for i = k − 2, . . . , 1 do
12: apply IGT Zik to reduce rik: R = RZik;
13: update Z: Z = ZZik;
14: end for
15: k = k + 1;
16: end if
17: end while

of the LLL algorithm is polynomial if the basis vectors are independently uniformly

distributed inside the unit ball of Rn [22] or the entries of A independently follow

the normal distribution N (0, 1) [53, 42, 55], it was proved in [42] that in the MIMO

context, the worst-case complexity is not even finite.

The LLL reduction is a powerful preprocessing tool that reduces the cost of

searching the OILS estimator for (2.4) [37, 2]. And it has many variants, see, e.g.,

[75, 76]. To reduce the cost of the arithmetic operations, the so-called effective LLL

and partial LLL have respectively been proposed in [53] and [98]. To reduce the cost

of the bit operations, a LLL with quadratic complexity and quasi-linear complexity

have been proposed in [69] and [70], respectively. For reducing the complex lattices,
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a complex LLL algorithm which reduces the computational cost roughly by half

compared to the traditional LLL has been proposed in [27].

2.2.2 HKZ reduction

A lattice basis matrix A is called HKZ reduced if its QR factor R in (2.10)

satisfies (2.12), and for each 1 ≤ i ≤ n, rii is the 2-norm of a shortest vector in

L(Ri:n,i:n). An efficient HKZ reduction algorithm can be found in [100] and the

properties of the HKZ reduced basis can be found in [49].

HKZ reduction is more powerful than the LLL reduction in the sentence that

of the columns the resulting matrix R are shorter and closer to orthogonal, but it

has high complexity since n − 1 SVP’s need to be solved. Therefore, it is usually

used to solve a sequence of OILS problems (1.2) where A keeps the same for these

problems. In this thesis, we only focus on the LLL reduction since we only consider

its applications in solving the OILS problems with different A and y.

2.2.3 Reduced OILS

Let

ȳ = Q̄
T
ỹ, v̄ = Q̄

T
ṽ, z = Z−1x, ẑ = Z−1x̂. (2.16)

Then by (2.11), the linear model (2.3) and the OILS problem (2.4) can be respectively

transformed to

ȳ = R̄ẑ + v̄, v̄ ∼ N (0, σ2I), (2.17)

and

min
z∈Zn

∥ȳ − R̄z∥22. (2.18)
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The solution zOL of (2.18) is the OILS estimator of ẑ. One can also define the

ordinary Babai point zOB for (2.18) (see (2.4)).

2.3 QRP reduction

It is difficult to use a QRZ reduction to reduce the BILS problem (1.4) because

in general after size reductions, the box constraint would become too complicated to

handle in the search process, although very recently it was showed in [97] that some

size reductions could be performed on some columns of A under some conditions.

Therefore, one uses a QRP reduction to reduce the BILS problem (1.4). The QRP

reduction has the following form:

QTAP =

R
0

 , (2.19)

where P is a permutation matrix and R satisfies the conditions of the corresponding

reductions.

We introduce three types of QRP reductions: LLL-P, V-BLAST and SQRD in

the following three subsections.

2.3.1 LLL-P

The LLL-P strategy [18] does the column permutations of the LLL reduction

algorithm. After the QR factorization (2.1) of A, it performs on R in (2.1), and

instead of (2.11), the following can be obtained:

Q̄
T
RP = R̄, (2.20)

where P is a permutation matrix and R̄ ∈ Rn×n is an upper triangular matrix

satisfying the Lovász condition (2.13).

20



Notice that combining (2.1) and (2.20), the LLL-P reduction result in the fol-

lowing QRP factorization (see (2.19)) of A:

Q̃
T
AP =

R̄
0

 , Q̃ ≡ Q

Q̄ 0

0 Im−n

 . (2.21)

Like the LLL reduction, permutation matrices and Givens rotations can be used

to update R so that R̄ satisfies (2.13), for more details, one can refer to [18]. The

LLL-P algorithm can be described by Algorithm 2.3.1, where the final reduced upper

triangular matrix is still denoted by R.

Algorithm 2.3.1 LLL-P

1: compute the QR factorization: A = Q

[
R
0

]
;

2: set P = In, k = 2;
3: while k ≤ n do
4: if δ r2k−1,k−1 > r2k−1,k + r2kk then

5: perform a column permutation: R=GT
k−1,kRP k−1,k;

6: update P : P = PP k−1,k;
7: k = k − 1, when k > 2;
8: else
9: k = k + 1;
10: end if
11: end while

2.3.2 V-BLAST

The so-called vertical Bell Labs layered space time (V-BLAST) optical detection

ordering [25] was proposed to do the column reordering for the BILS problem (1.4)

in [21].
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After the QR factorization (2.1) of A, the V-BLAST strategy is performed on

R in (2.1), and (2.20) can be obtained. Combining (2.1) and (2.20), the V-BLAST

strategy result in the QRP factorization of A in the form (2.21).

The V-BLAST strategy determines the columns of R̄ from the last to the first.

Suppose columns n, n−1, . . . , k+1 of R̄ have been determined, this strategy chooses

a column from k remaining columns of R as the k-th column such that |r̄kk| is

maximum over all of the k choices. For more details, including efficient algorithms,

see [25, 21, 38, 17, 54, 103] etc. For the performance analysis of V-BLAST, one may

refer to [56].

2.3.3 SQRD

The sorted QR decomposition strategy (SQRD), which was used to improve the

performance of the Babai point xBB for the BILS (2.6) in [95], was proposed to do

the column reordering for the BILS problem (1.4) in [16]. Although simulations in

[95] show that the bit error rate of the SQRD aided xBB is larger than that of the

aided V-BLAST xBB, SQRD costs less than V-BLAST.

The original SQRD can perform directly on A in (1.1) and it is computationally

more efficient than computing the QR factorization ofA in (2.1) and updatingR. For

the sake of description simplicity, we assume that the SQRD strategy is performed on

R in (2.1), then like using the V-BLAST strategy, (2.20) can be obtained. Combining

(2.1) and (2.20), the SQRD result in the QRP factorization of A in the form (2.21).

In contrast to the V-BLAST, the SQRD strategy determines the columns of the

permuted R̄ from the first to the last by using the modified Gram-Schmidt algorithm

or the Householder QR algorithm. In the k-th step of the algorithm, the k-th column
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of the permuted R̄ we seek is chosen from the remaining n − k + 1 columns of R

such that |r̄kk| is smallest. For more details and an efficient algorithm, see [95] and

[16].

2.3.4 Reduced BILS

With (2.20), let

ȳ = Q̄
T
ỹ, ẑ = P T x̂, v̄ = Q̄

T
ṽ,

z = P Tx, l̄ = P T l, ū = P Tu.

(2.22)

Then by (2.20), the linear model (2.5) is transformed to

ȳ = R̄ẑ + v̄, v̄ ∼ N (0, σ2I), (2.23a)

ẑ ∈ B̄ = {z ∈ Zn : l̄ ≤ z ≤ ū, l̄, ū ∈ Zn}, (2.23b)

and the BILS problem (2.6) is transformed to

min
z∈B̄

∥ȳ − R̄z∥22 (2.24)

whose solution zBL is the BILS estimator of ẑ. One can also define the box-

constrained Babai point zBB for (2.24) (see (2.8)).
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CHAPTER 3
Effects of the LLL and Some QRP Reductions on the Success

Probability of the Ordinary Babai Estimator

In this chapter, we investigate the effects of the LLL and some QRP reductions

on the success probability POB of the Babai point xOB (see (2.7)) for the linear

model (1.1). The success probability POB is very important for several reasons. If

xOB is used as an estimator of the integer parameter vector x̂ in (1.1), certainly it is

important to find its success probability POB, which can easily be computed. Even if

one intends to solve the OILS problem (1.2) to get the OILS estimator xOL, it is still

important to find POB since it is very difficult to compute the success probability POL

of xOL, and POB, which is a lower bound on POL, is often used as an approximation to

POL. In general, the higher the POB, the lower the computational cost of solving (1.2)

by the discrete search approach. In practice, if POB is high, say close to 1, then one

does not need to spend extra computational time to find xOL. It is well-known that

the LLL reduction can usually improve POB. But, there was no rigorous theoretical

proof and it was not known whether the LLL reduction can always improve POB.

In this chapter, we first prove that POB as a lower bound on POL is sharper

than the lower bound given in [37]; Then, we show rigorously that both the LLL

reduction given by Algorithm 2.2.1 and the LLL-P given by Algorithm 2.3.1 increase

(not strictly) POB and investigate how the parameter δ in the LLL reduction affect

the enhancement of POB. After that, we give examples to show that unlike the LLL
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and the LLL-P, the permutation strategies SQRD and V-BLAST may decrease POB.

Finally, we give some upper bounds on POB after the LLL reduction is used by using

the entries of R in (2.4). The main results of this chapter were published in [18].

3.1 POB and POL and their relationships

In this section, we first give formulas for POB and POL and then show that POB

as a lower bound on POL is sharper than the lower bound given in [37].

In the following, we give a formula to compute POB. This formula was original

given in [83], which considered a variant form of the OILS problem (2.4). But our

formula is more concise and our proof is easier to follow than that given in [83].

Theorem 3.1.1 Let P OB denote the success probability of the Babai estimator xOB

given in (2.7), then

P OB ≡ Pr(xOB = x̂) =
n∏

i=1

ϕσ(rii),

where

ϕσ(ζ) =

√
2

π

∫ ζ/(2σ)

0

exp(−t2

2
)dt. (3.1)

Proof. By the chain rule of conditional probabilities:

POB = Pr(xOB = x̂) = P
( n∩
i=1

(xOB

i = x̂i)
)
= Pr(xOB

n = x̂n)

×
n−1∏
i=1

Pr(xOB

i = x̂i|xOB

i+1 = x̂i+1, · · · , xOB

n = x̂n). (3.2)

By (2.3), ỹ ∼ N (Rx̂, σ2I) and

ỹn ∼ N (rnnx̂n, σ
2), ỹi ∼ N (riix̂i +

n∑
j=i+1

rijx̂j, σ
2), i = n− 1, . . . , 1.
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Thus, from (2.7) we have

cOB

n ∼ N (x̂n, σ
2/r2nn),

and if xOB
i+1 = x̂i+1, · · · , xOB

n = x̂n,

cOB

i ∼ N (x̂i, σ
2/r2ii).

Then it follows from (2.7) that

Pr(xOB

n = x̂n) = Pr(|cn − x̂n| ≤ 1/2) =
1√

2π σ
rnn

∫ 0.5

−0.5

exp(− t2

2( σ
rnn

)2
)dt

=
2√
2π

∫ rnn/(2σ)

0

exp(−t2

2
)dt = ϕσ(rnn).

Similarly, we can obtain

Pr(xOB
i = x̂i|xOB

i+1 = x̂i+1, · · · , xOB
n = x̂n) = ϕσ(rii).

Then from (3.2) we can conclude that the theorem holds. �

In the following, we give a formula, which was original given in [37] without

proof, for POL. For the sake of readability, we prove it.

Theorem 3.1.2 Let P OL denote the success probability of the OILS estimator xOL

for the OILS (2.4), then

P OL ≡ Pr(xOL = x̂) =
1

(2πσ2)n/2

∫
VOL

exp
(
− 1

2σ2
∥ξ∥22)dξ, (3.3)

where

VOL={ξ | 2xTRTξ≤∥Rx∥22 for ∀x ∈ Zn}. (3.4)
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Proof. Define sets E1, E2, E3 as follows:

E1 = {ṽ | ṽ ∼ N (0, σ2I), ỹ = Rx̂+ ṽ,xOL = x̂},

E2 = {ṽ | ṽ ∼ N (0, σ2I), ỹ = Rx̂+ ṽ, ∥ṽ∥22 ≤ ∥ỹ −Rx∥22 for ∀x ∈ Zn},

E3 = {ṽ | ṽ ∼ N (0, σ2I), ỹ = Rx̂+ ṽ, ∥ṽ∥22 = ∥ỹ −R(x+ x̂)∥22 for some x ∈ Zn,x ̸= 0}.

Then it is easily to show that

E2\E3 ⊆ E1 ⊆ E2.

Therefore, the following equalities hold:

Pr(ṽ ∈ E2)− Pr(ṽ ∈ E3) ≤ Pr(ṽ ∈ E1) ≤ Pr(ṽ ∈ E2). (3.5)

We firstly show Pr(ṽ ∈ E3) = 0. Let ṽ ∈ E3, so there exists x̄ ∈ Zn such that

x̄ ̸= 0 and ∥ṽ∥22 = ∥ỹ −R(x̄+ x̂)∥22. Then, by the following equality,

∥ṽ∥22 = ∥ỹ −R(x̄+ x̂)∥22 = ∥ṽ −Rx̄∥22 = ∥ṽ∥22 + ∥Rx̄∥22 − 2x̄TRT ṽ

we have 2x̄TRT ṽ = ∥Rx̄∥22. This indicates that ṽ lies on an (n − 1)−dimensional

plane, but ṽ is an n−dimensional random variable, so Pr(ṽ ∈ E3) = 0. Therefore,

by (3.5), we have

Pr(ṽ ∈ E1) = Pr(ṽ ∈ E2). (3.6)

Note that ∥ṽ∥22 ≤ ∥ỹ −Rx∥22 is equivalent to 2xTRT ṽ ≤ ∥Rx∥22. Then, using

the density function of ṽ, we obtain the formula for POL. �

From Theorems 3.1.1 and 3.1.2, POB and POL depend on R, so sometimes we

also write them as POB(R) and POL(R), respectively.
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By Theorem 3.1.2, POL depends on its Voronoi cell VOL (see (3.4)) and it is

difficult to compute it because the shape of VOL is complicated [37]. In [37], a lower

bound F (d2min/(4σ
2), n) is proposed to approximate it, where dmin is the length of

the shortest lattice vector, i.e., dmin = min0̸=x∈Zn ∥Rx∥2, and F (x, n) denotes the

cumulative distribution function of the chi-square distribution with degree n. How-

ever, no polynomial-time algorithm has been found to compute dmin. To overcome

this problem, [37] proposed a more practical lower bound F (r2min/(4σ
2), n), where

rmin ≡ mini rii. It is well-known that POB is also a lower bound on POL, for more

details, see [84]. The following result shows that POB is a sharper lower bound than

F (r2min/(4σ
2), n).

Theorem 3.1.3 F
(

r2min

4σ2 , n
)
≤ P OB.

Proof. Let u ∼ N (0, In). Thus u1, u2, . . . , un are i.i.d. and
∑n

i=1 u
2
i follows the

chi-squared distribution with degree n. Let events E = {
∑n

i=1 u
2
i ≤ r2min/(4σ

2)} and

Ei = {u2
i ≤ r2ii/(4σ

2)} for i = 1, 2, . . . , n. Since rmin ≤ rii, E ⊆
∩n

i=1 Ei. Thus,

F
(r2min

4σ2
, n

)
= Pr(E) ≤ Pr(

n∩
i=1

Ei) =
n∏

i=1

Pr(Ei)

=
n∏

i=1

1√
2π

∫ rii/(2σ)

−rii/(2σ)

exp
(
− t2

2

)
dt =

n∏
i=1

ϕσ(rii) = POB. �

In the following, we give an example to show that F (r2min/(4σ
2), n) can be much

smaller than POB.

Example 3.1.1 Let R =

0.001 0

0 10

 and σ = 0.5. By simple calculations, we

obtain F (r2min/(4σ
2), n)/P OB = 1/1596.
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Although this is a contrived example, where the signal-to-noise ratio is small, it

shows that P OB can be much sharper than F (r2min/(4σ
2), n) as a lower bound on P OL.

3.2 Effects of the reductions on POB

By (2.7), we can define the Babai estimator zOB for ẑ in (2.17) and use it to

estimate ẑ in (2.17), or equivalently, we use ZzOB to estimate x̂ in (2.4).

In this section, first, we will rigorously prove that column permutations and size

reductions on the superdiagonal entries of R that immediately follows a permutation

in the process of the LLL reduction given by Algorithm 2.2.1 enhance (not strictly)

the success probability POB of the Babai point xOB, as a result, the LLL-P can

improve POB; Then, we will give simulations to show that unlike LLL and LLL-P,

both V-BLAST and SQRD may decrease POB; After this, we will discuss how the

parameter δ affects the enhancement of POB. At last, we will give some upper bounds

on POB, after the LLL reduction, by using the entries of R in (2.1).

3.2.1 Effects of the LLL reduction and the LLL-P on POB

In the subsection we look at how the success probability POB of the Babai point

xOB changes after LLL reduction or LL-P is performed to R.

The following result shows that if the Lovász condition (2.13) is not satisfied,

after a column permutation and triangularization, POB increases.

Lemma 3.2.1 Suppose that δ r2k−1,k−1 > r2k−1,k + r2kk for some k for the R matrix

in the OILS problem (2.4). After the permutation of columns k − 1 and k and

triangularization, R becomes R̄, i.e., R̄ = GT
k−1,kRP k−1,k (see (2.14)). With ȳ =

GT
k−1,kỹ and z = P−1

k−1,kx, (2.4) can be transformed to (2.18). Denote ẑ ≡ P−1
k−1,kx̂.

Then the Babai point zOB has a success probability greater than or equal to the Babai
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point xOB, i.e.,

Pr(xOB = x̂) ≤ Pr(zOB = ẑ), (3.7)

where the equality holds if and only if rk−1,k = 0.

Proof. By Theorem 3.1.1, what we need to show is the following inequality:

n∏
i=1

ϕσ(rii) ≤
n∏

i=1

ϕσ(r̄ii). (3.8)

Since r̄ii = rii for i ̸= k − 1, k, we only need to show

ϕσ(rk−1,k−1)ϕσ(rkk) ≤ ϕσ(r̄k−1,k−1)ϕσ(r̄kk),

which is equivalent to∫ rk−1,k−1
2σ

0

exp(−t2

2
)dt

∫ rkk
2σ

0

exp(−t2

2
)dt ≤

∫ r̄k−1,k−1
2σ

0

exp(−t2

2
)dt

∫ r̄kk
2σ

0

exp(−t2

2
)dt.

(3.9)

By the last equality in (2.15), we can let

a =
rk−1,k−1

2σ

rkk
2σ

=
r̄k−1,k−1

2σ

r̄kk
2σ

, (3.10)

f(ζ) = ln

∫ ζ

0

exp(−t2

2
)dt+ ln

∫ a/ζ

0

exp(−t2

2
)dt. (3.11)

Note that f(ζ) = f(a/ζ) = f(max{ζ, a/ζ}). Then (3.9) is equivalent to

f
(max{rk−1,k−1, rkk}

2σ

)
≤ f

(max{r̄k−1,k−1, r̄kk}
2σ

)
. (3.12)

Obviously, if rk−1,k = 0, then the equality in (3.12) holds since in this case

max{rk−1,k−1, rkk}
2σ

=
max{r̄k−1,k−1, r̄kk}

2σ
.
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So we only need to show if rk−1,k ̸= 0, then the strict inequality in (3.12) holds. In

the following, we assume rk−1,k ̸= 0.

From δr2k−1,k−1 > r2k−1,k + r2kk and (2.15) we can conclude that

rkk, r̄k−1,k−1, r̄kk < rk−1,k−1.

Then, with (3.10) it follows that

max{rk−1,k−1, rkk}
2σ

=
rk−1,k−1

2σ
>

max{r̄k−1,k−1, r̄kk}
2σ

≥
√
a.

Thus, to show the strict inequality in (3.12) holds, it suffices to show that when

ζ >
√
a, f(ζ) is a strict monotonically decreasing function or equivalently f ′(ζ) < 0.

From (3.11),

f ′(ζ) =
exp(−1

2
ζ2)∫ ζ

0
exp(− t2

2
)dt

−
a
ζ2
exp(− (a/ζ)2

2
)∫ a/ζ

0
exp(− t2

2
)dt

=
1

ζ

(
g(ζ)− g

(a
ζ

))
,

where g(ζ) =
ζ exp(− 1

2
ζ2)∫ ζ

0 exp(− t2

2
)dt
. Note that ζ >

√
a, ζ > a/ζ. Thus, in order to show

f ′(ζ) < 0 for ζ >
√
a, we need only to show that g(ζ) is a strict monotonically

decreasing function or equivalently g′(ζ) < 0 when ζ > 0.

Simple calculations give

g′(ζ) =
exp(−1

2
ζ2)

(
∫ ζ

0
exp(− t2

2
)dt)2

×
[
(1− ζ2)

∫ ζ

0

exp(−t2

2
)dt− ζ exp(−1

2
ζ2)

]
.

If 1 − ζ2 ≤ 0 and ζ > 0, then obviously g′(ζ) < 0. If 1 − ζ2 > 0 and ζ > 0, since

exp(− t2

2
) ≤ 1,

(1− ζ2)

∫ ζ

0

exp(−t2

2
)dt ≤ ζ(1− ζ2) < ζ exp(−1

2
ζ2),
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where the second inequality can easily be verified. Thus again g′(ζ) < 0 when ζ > 0,

completing the proof. �

Now we make some remarks. The above proof shows that f(ζ) for ζ ≥
√
a

reaches its maximum when ζ =
√
a. Thus if r̄k−1,k−1 = r̄kk, or equivalently,

r2k−1,k + r2kk = rk−1,k−1rkk,

POB will increase most. For a more general result, see Lemma 3.3.2 and the remark

after it.

In Lemma 3.2.1 there is no requirement that rk−1,k should be size-reduced. The

question we would like to ask here is do size reductions in the LLL reduction algorithm

affect POB? From Theorem 3.1.1 we observe that POB only depends on the diagonal

entries of R. Thus size reductions alone will not change POB. However, if a size

reduction can bring changes to the diagonal entries of R after a permutation, then

it will likely affect POB. Therefore, all the size reductions on the off-diagonal entries

above the superdiagonal have no effect on POB. But the size reductions on the

superdiagonal entries may affect POB. There are a few different situations, which we

will discuss below.

Suppose that the Lovász condition (2.13) holds for a specific k. If (2.13) does

not hold any more after the size reduction on rk−1,k, then columns k− 1 and k of R

are permuted by the LLL reduction algorithm and according to Lemma 3.2.1 POB

strictly increases or keeps unchanged if and only if the size reduction makes rk−1,k

zero (this occurs if rk−1,k is a multiple of rk−1,k−1 before the reduction). If (2.13) still

holds after the size reduction on rk−1,k, then this size reduction does not affect POB.
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Suppose that the Lovász condition (2.13) does not hold for a specific k. Then

by Lemma 3.2.1 POB increases after a permutation and triangularization. If the size

reduction on rk−1,k is performed before the permutation, we show in the next lemma

that POB increases further.

Lemma 3.2.2 Suppose that in the OILS problem (2.4) R satisfies δ r2k−1,k−1 >

r2k−1,k + r2kk and |rk−1,k| > rk−1,k−1/2 for some k. Let R̄, ȳ, z and ẑ be defined

as in Lemma 3.2.1. Suppose a size reduction on rk−1,k is performed first and then

after the permutation of columns k − 1 and k and triangularization, R becomes R̂,

i.e., R̂ = Ĝ
T

k−1,kRZk−1,kP k−1,k. Let ŷ = Ĝ
T

k−1,kỹ and w = P−1
k−1,kZ

−1
k−1,kx, then

(2.4) is transformed to minw∈Zn ∥ŷ − R̂w∥2. Denote ŵ = P−1
k−1,kZ

−1
k−1,kx̂. Then the

Babai point wOB corresponding to the new transformed ILS problem has a success

probability greater than or equal to the Babai point zOB, i.e.,

Pr(zOB = ẑ) ≤ Pr(wOB = ŵ), (3.13)

where the equality holds if and only if

|rk−1,k−1rk−1,k| = r2k−1,k + r2kk. (3.14)

Proof. Obviously (3.13) is equivalent to

ϕσ(r̄k−1,k−1)ϕσ(r̄kk) ≤ ϕσ(r̂k−1,k−1)ϕσ(r̂kk),

which, by the proof of Lemma 3.2.1, is also equivalent to

f
(max{r̄k−1,k−1, r̄kk}

2σ

)
≤ f

(max{r̂k−1,k−1, r̂kk}
2σ

)
,
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where f is defined in (3.11). Since f(ζ) has been showed to be strict monotonically

decreasing when ζ >
√
a, what we need to show is that

max{r̄k−1,k−1, r̄kk} ≥ max{r̂k−1,k−1, r̂kk}, (3.15)

where the equality holds if and only if (3.14) holds.

Since |rk−1,k| > rk−1,k−1/2,

r̄k−1,k−1 =
√
r2k−1,k + r2kk >

√
r2k−1,k−1/4 + r2kk,

r̄kk =
rk−1,k−1rkk√
r2k−1,k + r2kk

<
rk−1,k−1rkk√

r2k−1,k−1/4 + r2kk

.

But
√
r2k−1,k−1/4 + r2kk ≥

rk−1,k−1rkk√
r2k−1,k−1/4+r2kk

, thus

max{r̄k−1,k−1, r̄kk} = r̄k−1,k−1.

Suppose that after the size reduction, rk−1,k becomes r̃k−1,k. Note that

r̂k−1,k−1=
√

r̃2k−1,k + r2kk<
√

r2k−1,k + r2kk= r̄k−1,k−1.

Thus, it follows from (3.15) what we need to prove is that r̂kk ≤ r̄k−1,k−1 or equiva-

lently

r̂kk ≤
√

r2k−1,k + r2kk, (3.16)

and the equality holds if and only if (3.14) holds.

By the conditions given in the lemma,

|rk−1,k| < rk−1,k−1 < 2|rk−1,k|.
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Thus

r̃k−1,k = rk−1,k − ⌊rk−1,k/rk−1,k−1⌉rk−1,k−1 = rk−1,k − sign(rk−1,k)rk−1,k−1.

Now we consider two cases rk−1,k > 0 and rk−1,k < 0 separately. If rk−1,k > 0, then

r̂kk =
rk−1,k−1rkk
r̂k−1,k−1

=
rk−1,k−1rkk√
r̃2k−1,k + r2kk

=
rk−1,k−1rkk√

(rk−1,k − rk−1,k−1)2 + r2kk
.

Thus, to show (3.16) it suffices to show that

rk−1,k−1rkk√
(rk−1,k − rk−1,k−1)2 + r2kk

≤
√
r2k−1,k + r2kk.

Simple algebraic manipulations shows that the above inequality is equivalent to

(rk−1,k−1rk−1,k − r2k−1,k − r2kk)
2 ≥ 0,

which certainly holds. And obviously, the equality in (3.16) holds if and only if

rk−1,k−1rk−1,k = r2k−1,k + r2kk.

If rk−1,k < 0, we can similarly prove that (3.16) holds and the equality holds if and

only if

−rk−1,k−1rk−1,k = r2k−1,k + r2kk,

completing the proof. �

Here we make a remark about the equality (3.14). From the proof of Lemma

3.2.2, we see that if (3.14) holds, then the equality in (3.16) holds, thus r̂kk = r̄k−1,k−1.

But the absolute value of the determinant of the submatrix Rk−1:k,k−1:k is unchanged
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by the size reduction, we must have r̂k−1,k−1 = r̄kk. Thus if (3.14) holds, the effect of

the size reduction on rk−1,k is to make r̄k−1,k−1 and r̄kk permuted; therefore the success

probability POB is not changed by the size reduction. Here we give an example.

Example 3.2.1 Let R =

5 4

0 2

. Then it is easy to verify that R̄ =

2√5 2
√
5

0
√
5


and R̂ =

√5 −
√
5

0 2
√
5

. From the diagonal entries of R̄ and R̂ we can conclude that

the success probabilities of the two Babai points corresponding to R̄ and R̂ are equal.

From Lemmas 3.2.1 and 3.2.2 we immediately obtain the following results.

Theorem 3.2.1 Suppose that the OILS problem (2.4) is transformed to the OILS

problem (2.18), where R̄ is obtained by the LLL reduction given by Algorithm 2.2.1.

Then

Pr(xOB = x̂) ≤ Pr(zOB = ẑ),

where the equality holds if and only if no column permutation occurs during the LLL

reduction process or whenever two consecutive columns, say k−1 and k, are permuted,

rk−1,k is a multiple of rk−1,k−1 (before the size reduction on rk−1,k is performed). Any

size reductions on the superdiagonal entries of R which are immediately followed

by a column permutation during the LLL reduction process will enhance the success

probability of the Babai point. All other size reductions have no effect on the success

probability of the Babai point.

Now we make some remarks. Note that the LLL reduction is not unique. Two

different LLL reduction algorithms may produce different R’s. In Algorithm 2.2.1,
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when the Lovász condition for two consecutive columns is not satisfied, then a col-

umn permutation takes places to ensure the Lovász condition to be satisfied. If an

algorithm which computes the LLL reduction does not do permutations as Algorithm

2.2.1 does, e.g., the algorithm permutes two columns which are not consecutive or

permutes two consecutive columns but the corresponding Lovász condition is not sat-

isfied after the permutation, then we cannot guarantee this specific LLL reduction

will increase POB.

It is showed in [81] that the LLL-aided zero-forcing can achieve the maximum

receive diversity in MIMO systems. Here, we show the effects of LLL reduction from

another point of view.

It is interesting to note that [53] showed that all the size reductions on the

off-diagonal entries above the superdiagonal of R have no effect on the residual of

the Babai point. Here we see that those size reductions are not useful from another

perspective.

From Lemmas 3.2.1 we can also obtain the following results.

Theorem 3.2.2 Suppose that the OILS problem (2.4) is transformed to the OILS

problem (2.18), where R̄ is obtained by the LLL-P which is given by Algorithm 2.3.1.

Then

Pr(xOB = x̂) ≤ Pr(zOB = ẑ),

where the equality holds if and only if no column permutation occurs during the

process of the LLL-P or whenever two consecutive columns, say k − 1 and k, are

permuted, rk−1,k = 0.
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3.2.2 Effects of the V-BLAST and SQRD on POB

Theorem 3.2.1 and 3.2.2 respectively show that the LLL reduction and the LLL-

P can always improve (not strictly) POB. In this subsection, we will show that both

V-BLAST and SQRD may decrease POB.

In the following, we give simple numerical test results to see how SQRD, V-

BLAST, LLL-P with δ = 1 and LLL with δ = 1 affect POB.

We performed our Matlab simulations for the following two cases:

• Case 1: A = randn(n, n), where randn(n, n) is a Matlab built-in function to

generate a random n× n matrix, whose entries follow the normal distribution

N (0, 1).

• Case 2: A = UDV T , U ,V are random orthogonal matrices obtained by the

QR factorization of random matrices generated by randn(n, n) and D is a n×n

diagonal matrix with dii = 103(n/2−i)/(n−1).

In the tests for each case for a fixed n we gave 200 runs to generate 200 different

A’s. For n = 20, Figures 3–1 and 3–2 display the average success probabilities of

the Babai points corresponding to various reduction or permutation strategies over

200 runs versus σ = 0.05 : 0.05 : 0.4, for Cases 1 and 2, respectively. In both figures,

“QR” means the QR factorization is used, giving Pr(xOB = x̂).

From Figures 3–1 and 3–2, we can see that on average the LLL reduction im-

proves POB much more significantly than the other three, V-BLAST performs better

than LLL-P and SQRD, and LLL-P and SQRD have similar performance. Note that

LLL-P is the permutation strategy of the LLL reduction and the size reductions

on the super diagonal entries can further increase POB under some conditions (see
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Figure 3–1: Average POB over 200 runs versus σ for Case 1, n = 20
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Figure 3–2: Average POB over 200 runs versus σ for Case 2, n = 20
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Lemma 3.2.2) and may bring more permutations, so it is easy to understand that

the LLL reduction can usually bring higher improvement. We observed the same

phenomenon when we changed the dimensions of A.

Figures 3–1 and 3–2 indicate that on average SQRD and V-BLAST increase POB.

However, unlike LLL-P, both SQRD and V-BLAST may decrease POB sometimes.

Table 3–1 gives the number of runs out of 200 in which SQRD and V-BLAST decrease

POB for various σ and n. From the table we can see that for both Cases 1 and 2,

the chance that SQRD decreases POB is much larger than V-BLAST and when σ

increases, the chance that SQRD decreases POB tends to decrease. For Case 2,

when n increases, the chance that SQRD decreases POB tends to decrease, but this

phenomenon is not seen for Case 1.

Table 3–1: Number of runs out of 200 in which POB decreases

Case 1 Case 2

Methods
HHHHHHn

σ
0.1 0.2 0.3 0.1 0.2 0.3

10 9 10 6 13 8 5
SQRD 20 12 11 7 6 2 1

30 16 14 11 0 1 1
40 15 9 5 0 0 0
10 0 0 0 2 6 7

V-BLAST 20 0 0 0 0 0 0
30 0 0 0 0 0 0
40 0 0 0 0 0 0

From Table 3–1, one can easily find concrete examples to show that neither

SQRD nor V-BLAST can always improve POB.
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3.2.3 Effects of δ in the LLL reduction on the enhancement of POB

Suppose that R1 and R2 are obtained by applying Algorithm 2.2.1 to A with

δ = δ1 and δ = δ2, respectively and δ1 < δ2. A natural question is what is the relation

between POB(R1) and POB(R2)? We try to address this question in this subsection.

First we give a result for n = 2.

Theorem 3.2.3 Suppose that R1 and R2 are obtained by applying Algorithm 2.2.1

to A ∈ Rm×n with δ = δ1 and δ = δ2, respectively and δ1 < δ2. If n = 2, then

P OB(R1) ≤ P OB(R2). (3.17)

Proof. Note that only two columns are involved in the reduction process and

the value of δ only determines when the process should terminate. In the reduction

process, the upper triangular matrix R either first becomes δ1-LLL reduced and then

becomes δ2-LLL reduced after some more permutations or becomes δ1-LLL reduced

and δ2-LLL reduced at the same time. Therefore, by Lemma 3.2.1 the conclusion

holds. �

However, the inequality (3.17) in Theorem 3.2.3 may not hold when n ≥ 3. In

fact, for any given n ≥ 3, we can give an example to illustrate this.

Example 3.2.2 Let δ1 and δ2 satisfy 1/4 < δ1 < δ2 ≤ 1 and δ2 < δ21 + 1/4. Let η

and θ satisfy δ1 < η < δ2 and 0 < θ < 1
2

√
δ1(η − δ1). Let

R =


1 0 1/2

0
√
η θ

0 0 δ1

 . (3.18)

Note that R is size reduced already.
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Suppose that we apply Algorithm 2.2.1 with δ = δ1 to R, leading to R1. The

first two columns of R do not permute as the Lovász condition holds. However, the

Lovász condition does not hold for the last two columns and a permutation is needed.

Then by Lemma 3.2.1 we must have P OB(R1) > P OB(R).

Applying Algorithm 2.2.1 with δ = δ2 to R, we obtain

R2 =


√
η 0 θ

0 1 1/2

0 0 δ1

 ,

whose diagonal entries are the same as those of R with a different order. Then we

have P OB(R2) = P OB(R). Therefore, P OB(R1) > P OB(R2).

With R ∈ R3×3 given in (3.18), we define A as A =
[
R 0
0 In−3

]
∈ Rn×n, it is easy

to show that we still have P OB(R1) > P OB(R2), where R1 and R2 were obtained by

applying Algorithm 2.2.1 to A with δ = δ1 and δ = δ2, respectively.

Although the above example shows that larger δ may not guarantee to produce

higher POB when n ≥ 3, we can expect that the chance that POB(R1) ≤ POB(R2) is

much higher than the chance that POB(R1) > POB(R2). Here we give an explanation.

If R1 is not δ2-LLL reduced, applying Algorithm 2.2.1 with δ = δ2 to R1 produces

R̄1 with POB(R̄1) ≥ POB(R1). Although R̄1 may not be equal to R2, we can expect

that the difference between these two δ2-LLL reduced matrices is small. Thus it is

likely that POB(R2) ≈ POB(R̄1) ≥ POB(R1).

Here we give numerical results to show how δ affects POB (i.e., Pr(zOB = ẑ)).

We used the matrices defined in Cases 1 and 2 of Section 3.2.2. As before, in the
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tests for each case we gave 200 runs to generate 200 different A’s for a fixed n.

For n = 20, Figures 3–3 and 3–4 display the average Pr(zOB = ẑ) over 200 runs

versus δ = 0.3 : 0.1 : 1.0 for Cases 1 and 2, respectively. The three curves in both

figures correspond to σ = 0.1, 0.2, 0.3. For comparisons, we give the corresponding

Pr(xOB = x̂) in the following table.

Table 3–2: Success probability Pr(xOB = x̂)

σ = 0.1 σ = 0.2 σ = 0.3
Case 1 0.864 0.679 0.490
Case 2 1.92× 10−2 1.96× 10−4 5.54× 10−6
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Figure 3–3: Average POB over 200 runs after the LLL reduction for Case 1, n = 20

From Table 3–2, Figures 3–3 and 3–4, we can see that the LLL reduction has a

significant effect on improving POB. Figures 3–3 and 3–4 show that as δ increases, on

average POB increases too, in particular for large σ. But we want to point out that we

also noticed that sometimes a larger δ resulted in a smaller POB in the tests. Table
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Figure 3–4: Average POB over 200 runs after the LLL reduction for Case 2, n = 20

3–3 gives the exact number of runs out of those 200 runs in which POB decreases

when δ increases from t to t + 0.1 for t = 0.3 : 0.1 : 0.9. From Table 3–3 we can

see that most of the time POB does not decrease when δ increases. We would like to

point out that in our numerical tests we tried various dimension size n for the two

test cases and observed the same phenomena.

Table 3–3: Number of runs out of 200 in which POB decreases when δ increases

Case 1 Case 2
HHHHHHδ

σ
0.1 0.2 0.3 0.1 0.2 0.3

0.3—0.4 6 4 5 10 8 5
0.4—0.5 9 8 7 15 16 16
0.5—0.6 17 18 17 19 18 20
0.6—0.7 9 9 7 16 20 20
0.7—0.8 5 8 9 20 16 15
0.8—0.9 1 10 8 7 10 12
0.9—1.0 0 13 14 15 11 11
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3.3 Some upper bounds on POB after the LLL reduction

We have shown that the LLL reduction by Algorithm 2.2.1 can enhance the

success probability of the Babai point. A natural question is how much is the en-

hancement? We will answer this question in this section.

If the LLL reduction has been computed by Algorithm 2.2.1, then we can easily

obtain the ratio Pr(zOB = ẑ)/Pr(xOB = x̂) by using Theorem 3.1.1. If we only know

the R-factor of the QR factorization of A, usually it is impossible to know the ratio

exactly. However, we will derive some bounds on Pr(zOB = ẑ), which involve only

the R-factor of the QR factorization of A. From these bounds one can immediately

obtain bounds on the ratio.

Before giving an upper bound on Pr(zOB = ẑ), we give the following result, see,

e.g., [69, Thm 6].

Lemma 3.3.1 Let R be the R-factor of the QR factorization of A and let R(p) be

the upper triangular matrix after the p-th column permutation and triangularization

in the LLL reduction process by Algorithm 2.2.1, then for i = 1, 2, . . . , n

min{rii, ri+1,i+1, . . . , rnn} ≤ r
(p)
ii ≤ max{r11, r22, . . . , rii}. (3.19)

When the LLL reduction process finishes, the diagonal entries of the upper

triangular matrix certainly satisfy (3.19). Then using the second inequality in (3.19)

we obtain the following result from Theorem 3.1.1.

Theorem 3.3.1 Suppose that the OILS problem (2.4) is transformed to the OILS

problem (2.18) after the LLL reduction by Algorithm 2.2.1. The success probability
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of the Babai point for the OILS problem (2.18) satisfies:

Pr(zOB = ẑ) ≤ Πn
i=1ϕσ(γi), (3.20)

where γi = max{r11, r22, · · · , rii}.

In the following we give another upper bound on the success probability of the

Babai point, which is invariant to the unimodular transformation to R. The result

was essentially obtained in [85], but our proof is much simpler.

Lemma 3.3.2 Let R ∈ Rn×n be an upper triangular matrix with positive diagonal

entries, then
n∏

i=1

ϕσ(rii) ≤ ϕn
σ

(( n∏
i=1

rii

)1/n)
, (3.21)

where the equality holds if and only if all the diagonal entries of R are equal.

Proof. Let h(ξ) = ln(ϕσ(exp(ξ)) and vi = ln rii for i = 1, . . . , n. Define v =

1
n

∑n
i=1 vi =

1
n
ln(

∏n
i=1 rii). To prove (3.21), it suffices to show that

1

n

n∑
i=1

h(vi) ≤ h(v). (3.22)

It is easy to verify that

h′′(ξ) =
1

2σ
exp(ξ)g′

( 1

2σ
exp(ξ)

)
,

where g(·) was defined in the proof of Lemma 3.2.1. According to the proof of Lemma

3.2.1, g′(ζ) < 0 for ζ > 0. Thus h′′(ξ) < 0, i.e., h(ξ) is a strictly concave function.

Therefore, (3.22) must hold and the equality holds if and only if all vi are equal, or

equivalently all rii are equal. �
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Suppose that the OILS problem (2.4) is transformed to the OILS problem (2.18)

after the LLL reduction by Algorithm 2.2.1. Then det(R̄) = det(R) =
∏n

i=1 rii. Thus

by Lemma 3.3.2 we have

Pr(zOB = ẑ) =
n∏

i=1

ϕσ(r̄ii) ≤ ϕn
σ

(( n∏
i=1

rii

)1/n)
. (3.23)

The upper bound is reachable if and only if all the diagonal entries of R̄ are equal to

det1/n(R). If the gap between the largest diagonal entry and the smallest diagonal

entry of R̄ is large, the upper bound in (3.23) will not be tight. In the following, we

give an improved upper bound.

Theorem 3.3.2 Under the same assumption as in Theorem 3.3.1, if there exist

indices i1, i2, . . . , il such that

Mk ≤ mk+1, k = 1, . . . , l, (3.24)

where

Mk = max{rik−1+1,ik−1+1, rik−1+2,ik−1+2, . . . , rik,ik},

mk+1 = min{rik+1,ik+1, rik+2,ik+2, . . . , rik+1,ik+1
},

with i0 = 0 and il+1 = n, then

Pr(zOB = ẑ) ≤
l+1∏
k=1

ϕik−ik−1
σ (νk) ≤ ϕn

σ(ν), (3.25)

where

νk =

( ik∏
j=ik−1+1

rjj

)1/(ik−ik−1)

, ν =

( n∏
j=1

rjj

)1/n

.

47



Proof. Partition R as follows:

R = [R1,R2, · · · ,Rl+1],

where the diagonal entries ofR which are in blockRk ∈ Rn×(ik−ik−1) are rik−1+1,ik−1+1,

rik−1+2,ik−1+2, . . ., rik,ik for k = 1, . . . , l + 1. The condition (3.24) is to ensure that

in the LLL reduction process by Algorithm 2.2.1 there are no column permutations

between Rks. Now we prove this claim. Suppose that Algorithm 2.2.1 has just

finished the operations on R2 and is going to work on R3. At this moment, [R1,R2]

is LLL reduced. In the LLL reduction of [R1,R2], no column permutation between

the last column of R1 and and the first column of R2 occurred. In fact, by (3.19) in

Lemma 3.3.1 and the inequality M1 ≤ m2 from (3.24), after a permutation, say the

p-th permutation, in the LLL reduction of [R1,R2] by Algorithm 2.2.1,

r
(p)
i1,i1

≤ max{r11, . . . , ri1,i1} ≤ min{ri1+1,i1+1, · · · , ri2,i2} ≤ r
(p)
i1+1,r1+1.

Thus for any δ satisfying 1/4 < δ ≤ 1, the Lovász condition (2.13) is satisfied for

columns i1 and i1 + 1 and no permutation between these two columns would occur.

Now the algorithm goes to work on the first column of R3. Again we can similarly

show that no column permutation between the last column of R2 and and the first

column of R3 will occur, so the algorithm will not go back to R2. The algorithm

continues and whenever the current block is LLL reduced it goes to next block and

will not come back to the previous block. Then by applying the result given in (3.23)

for each block Rk we obtain the first inequality in (3.25). The second inequality in

(3.25) is obtained immediately by applying Lemma 3.3.2. �
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If indices ik for k = 1, . . . , l defined in Theorem 3.3.2 do not exist, we assume

l = 0, then the first inequality in (3.25) still holds as its right hand side is just ϕn
σ(ν).

We now show how to find these indices if they exist. It is easy to verify that

(3.24) is equivalent to

max{M1, . . . ,Mk} ≤ min{mk+1, . . . ,ml+1} (3.26)

for k = 1, . . . , l. Define two vectors u,v ∈ Rn−1 as follows:

u1 = r11, ui = max{r11, . . . , rii} = max{ui−1, rii},

for i = 2, . . . , n− 1.

vn−1 = rnn, vi = min{ri+1,i+1, . . . , rnn} = min{ri+1,i+1, vi+1},

Then (3.26) is equivalent to

uik ≤ vik , k = 1, . . . , l.

Thus we can compare the entries of u and v from the first to the last to obtain all

indices ik. It is easy to observe that the total cost is O(n).

Let β1, β2 and β3 denote the three upper bounds on Pr(zOB = ẑ) given in (3.20)

and (3.25), respectively, i.e.,

β1 = Πn
i=1ϕσ(γi), β2 =

l+1∏
k=1

ϕik−ik−1
σ (νk), β3 = ϕn

σ(ν).

In the following, we first give some special examples to compare β1, β2 and β3.
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Example 3.3.1 Let R =

1/η ×

0 η2

, where 0 < η < 1 and × is any real number.

Then

β1 = ϕ2
σ(1/η), β2 = β3 = ϕ2

σ(
√
η).

By the definition of ϕσ(ζ) given in (3.1), ϕσ(1/η) → 1 and ϕσ(
√
η) → 0 when η → 0.

Thus, when η is very small, β2 and β3 are much sharper than β1.

Example 3.3.2 Let

R =



η/3 × × ×

0 η × ×

0 0 1/η3 ×

0 0 0 η/2


, 0 < η < 1,

where × is any real number. Then

β1 = ϕσ(η/3)ϕσ(η)ϕ
2
σ(1/η

3),

β2 = ϕσ(η/3)ϕ
3
σ

(
3
√

1/(2η)
)
, β3 = ϕ4

σ(
4
√
1/6).

From the definition of ϕσ(ζ), we see that when η → 0,

β1 → 0, β2 → 0, β1/β2 → 0, β2/β3 → 0.

Therefore, when η is very small, β1 is much sharper than β2, which is also much

sharper than β3.

50



Now we use more general examples to compare the three upper bounds and also

compare them with Pr(zOB = ẑ). In additional to Cases 1 and 2 given in Section

3.2.2, we also tested the following case:

Case 3: A = QR, where Q is a random orthogonal matrix obtained by the QR

factorization of a random matrix generated by randn(n, n) and R is an n× n upper

triangular matrix with r2ii following the χ2 distribution with freedom degree i and

with rij (j > i) following the normal distribution N (0, 1).

Case 3 is motivated by Case 1. In Case 1, the entries of the R-factor of the QR

factorization of A have the same distributions as the entries of R in Case 3, except

that the freedom degree for r2ii is n− i+ 1, see [66, p99].

In the numerical experiments, for a given n and for each case, we gave 200 runs

to generate 200 different A’s.

All the six tables given below display the average values of Pr(xOB = x̂) (cor-

responding to QR), Pr(zOB = ẑ) (corresponding to LLL with δ = 1), β1, β2 and β3.

For each case, we give two tables. In the first table, n is fixed and σ varies, and in

the second table, n varies and σ is fixed. In Tables 3–5 and 3–9 σ was fixed to be

0.4, while in Table 3–7 σ was fixed to be 0.1. We used different values of σ for these

three tables so that Pr(zOB = ẑ) is neither close to 0 nor close to 1, otherwise the

bounds would not be much interesting.

For Case 1, from Tables 3–4 and 3–5 we observe that the upper bounds β2 and

β3 are sharper than the upper bound β1, especially when n is small, and the former

are good approximations to Pr(zOB = ẑ).
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For Case 2, from Table 3–6 we observe that the upper bound β1 is extremely

loose when σ is large, and β2 and β3 are much sharper for all those σ. From Table

3–7 we see that when n becomes larger, the upper bounds β2 and β3 become worse,

although they are still sharper than β1. Tables 3–6-3–7 show that β2 is equal to β3.

Actually it is indeed true.

For Case 3, from Tables 3–8 and 3–9 we observe that the success probability of

the Babai point improves after the LLL reduction, but not as much as Cases 1 and

2. We also observe that β2 is sharper than β1, both are much sharper than β3, and

β2 is a reasonable approximation to Pr(zOB = ẑ).

Based on the numerical experiments and Theorem 3.3.2 we suggest taking

min{β1, β2} as an upper bound on Pr(zOB = ẑ) in practice.

Although the upper bound min{β1, β2} is a good approximation to Pr(zOB = ẑ)

in the above numerical tests, we want to point out that this upper bound can be

very loose. Here is a contrived example: Suppose all the off-diagonal entries of R in

Example 3.3.2 are zero. Then

Pr(xOB = x̂)=Pr(zOB = ẑ)=ϕσ(η/3)ϕσ(η)ϕσ(1/η
3)ϕσ(η/2).

Thus, when η → 0, Pr(zOB = ẑ)/min{β1, β2} → 0.
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Table 3–4: Average POB and upper bounds over 200 runs for Case 1, n = 20

σ QR LLL β1 β2 β3

0.05 0.93242 1.00000 1.00000 1.00000 1.00000
0.10 0.84706 1.00000 1.00000 1.00000 1.00000
0.15 0.75362 0.99999 1.00000 1.00000 1.00000
0.20 0.66027 0.99966 1.00000 0.99984 0.99984
0.25 0.56905 0.99815 1.00000 0.99891 0.99891
0.30 0.48130 0.99289 1.00000 0.99645 0.99645
0.35 0.39864 0.97589 0.99999 0.98849 0.98849
0.40 0.32279 0.93432 0.99997 0.96319 0.96319

Table 3–5: Average POB and upper bounds over 200 runs for Case 1, σ = 0.4

n QR LLL β1 β2 β3

5 0.37181 0.52120 0.92083 0.55777 0.56437
10 0.33269 0.73310 0.99634 0.75146 0.75146
15 0.30324 0.87116 0.99967 0.89076 0.89076
20 0.32896 0.94211 0.99999 0.97004 0.97004
25 0.31439 0.95364 1.00000 0.98993 0.98993
30 0.32649 0.96961 1.00000 0.99752 0.99752
35 0.34107 0.97361 1.00000 0.99939 0.99939
40 0.32538 0.97579 1.00000 0.99980 0.99980

Table 3–6: Average POB and upper bounds over 200 runs for Case 2, n = 20

σ QR LLL β1 β2 β3

0.05 0.27379 1.00000 1.00000 1.00000 1.00000
0.10 0.01864 0.99490 1.00000 0.99939 0.99939
0.15 0.00161 0.82023 1.00000 0.89650 0.89650
0.20 0.00019 0.38963 1.00000 0.46930 0.46930
0.25 0.00003 0.10896 1.00000 0.13462 0.13462
0.30 0.00001 0.02248 1.00000 0.02738 0.02738
0.35 0.00000 0.00411 1.00000 0.00489 0.00489
0.40 0.00000 0.00074 1.00000 0.00086 0.00086
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Table 3–7: Average POB and upper bounds over 200 runs for Case 2, σ = 0.1

n QR LLL β1 β2 β3

5 0.06157 0.75079 0.99984 0.83688 0.83688
10 0.05522 0.98875 1.00000 0.99344 0.99344
15 0.03069 0.99670 1.00000 0.99860 0.99860
20 0.01865 0.99486 1.00000 0.99939 0.99939
25 0.01149 0.97374 1.00000 0.99963 0.99963
30 0.00562 0.88945 1.00000 0.99973 0.99973
35 0.00324 0.76654 1.00000 0.99978 0.99978
40 0.00175 0.68623 1.00000 0.99981 0.99981

Table 3–8: Average POB and upper bounds over 200 runs for Case 3, n = 20

σ QR LLL β1 β2 β3

0.05 0.91780 0.92401 0.92450 0.92471 1.00000
0.10 0.85132 0.86372 0.87017 0.86856 1.00000
0.15 0.77339 0.79087 0.80902 0.79945 1.00000
0.20 0.68615 0.70836 0.74366 0.72379 1.00000
0.25 0.59499 0.62040 0.67610 0.64530 0.99986
0.30 0.50466 0.53153 0.60831 0.56704 0.99837
0.35 0.41858 0.44528 0.54164 0.49161 0.99038
0.40 0.33919 0.36432 0.47679 0.42031 0.96432

Table 3–9: Average POB and upper bounds over 200 runs for Case 3, σ = 0.4

n QR LLL β1 β2 β3

5 0.35057 0.37086 0.47342 0.38878 0.53300
10 0.35801 0.38542 0.49866 0.42252 0.75949
15 0.32379 0.35068 0.47865 0.40583 0.90613
20 0.34612 0.37149 0.49066 0.44551 0.96841
25 0.35252 0.37865 0.48907 0.44248 0.99232
30 0.32538 0.35542 0.46208 0.43224 0.99708
35 0.33183 0.35421 0.46524 0.42288 0.99933
40 0.32196 0.34759 0.45264 0.41220 0.99975
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CHAPTER 4
Effects of Some QRP Reductions on the Success Probability of the

Box-Constrained Babai Estimator and Solving a Conjecture

In this chapter, we study the box-constrained linear model (1.3), which arise

from some applications, including wireless communications, for more details, see,

e.g., [65, 2, 21]. Throughout this chapter we assume that x̂ is random and uniformly

distributed over the box B. This assumption is often made for MIMO applications,

see, e.g., [41].

We showed in Chapter 3 that the success probability POB of the ordinary Babai

estimator increases after applying the LLL reduction or the LLL-P column permu-

tation strategy, but it may decrease after applying the SQRD or the V-BLAST

permutation strategies. Therefore, a natural question is to ask whether this can be

extended to the box-constrained case.

In this chapter, we will present a formula for the success probability P BB of the

box-constrained Babai estimator xBB (2.8) and a formula for the success probability

POB of the ordinary Babai estimator xOB (2.7) which is obtained via ignoring the

box constraints. Some properties of P BB and POB and the relationships between

them will also be given. Then we will investigate the effect of the LLL-P column

permutation strategy on P BB. We will show that P BB increases under a condition.

Surprisingly, we will also show that it decreases after LLL-P is applied under an

opposite condition. Roughly speaking the two opposite conditions are that the noise
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standard deviation σ in (1.3a) are relatively small and large, respectively. This is

different from the ordinary case, where POB always increases after the LLL-P strategy

is applied. Although our theoretical results for LLL-P cannot be extended to SQRD

and V-BLAST, our numerical tests indicate that under the two conditions, often (not

always) P BB increases and decreases, respectively, after applying SQRD or V-BLAST.

Explanations will be given for these phenomenons. These suggest that before we

apply LLL-P, SQRD or V-BLAST we should check the corresponding conditions.

Moreover, we will give a bound on P BB, which is column permutation invariant. It is

interesting that the bound is an upper bound under the small noise condition we just

mentioned and becomes a lower bound under the opposite condition. These results

were presented in [90].

In [58], the authors made a conjecture, based on which a stopping criterion for

the search process was proposed to reduce the computational cost of solving the

BILS problem (1.4). The conjecture is related to POB. We will first give a counter

example to show that the conjecture does not always hold and then show it holds

under some conditions. Based on some new theoretical results, we will also propose

a modified stopping criterion, which is more reliable, for solving the BILS problem

(1.4). These results were presented in [90].

4.1 Success probabilities of the Babai estimators

If we do not take the box-constraint into account, we can get the ordinary

Babai point xOB (see (2.7) ). In this section, we will respectively give formulas for
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the success probability P BB of xBB (see (2.8) ) and POB of xOB for the reduced box-

constrained liner model (2.5). Then, we will investigate the relationships between

P BB and POB and their properties.

Theorem 4.1.1 Suppose that in the linear model (1.3) x̂ is uniformly distributed

over the constraint box B and x̂ and v are independent. Suppose that the linear

model (1.3) is transformed to the linear model (2.5) through the QR factorization

(2.1). Then

P BB ≡ Pr(xBB = x̂) =
n∏

i=1

[ 1

ui − li + 1
+

ui − li
ui − li + 1

ϕσ(rii)
]
, (4.1)

P OB ≡ Pr(xOB = x̂) =
n∏

i=1

ϕσ(rii), (4.2)

where ϕσ(ζ) is defined as in (3.1).

Proof. Since the random vectors x̂ and v in (1.3) are independent, x̂ and ṽ in

(2.5) are also independent. From (2.5a),

ỹi = riix̂i +
n∑

j=i+1

rijx̂j + ṽi.

Then from (2.8), we obtain

cBB

i = x̂i +
n∑

j=i+1

rij
rii

(x̂j − xBB

j ) +
ṽi
rii

, i = n, n− 1, . . . , 1. (4.3)

Therefore, if xBB
i+1 = x̂i+1, · · · , xBB

n = x̂n and x̂i is fixed,

cBB

i ∼ N (x̂i, σ
2/r2ii). (4.4)
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To simplify notation, denote event

Ei = (xBB

i = x̂i, . . . , x
BB

n = x̂n), i = 1, . . . , n.

Then by the chain rule of conditional probabilities,

P BB = Pr(E1) =
n∏

i=1

Pr(xBB

i = x̂i|Ei+1), (4.5)

where En+1 is the sample space Ω, so Pr(xBB
n = x̂n|En+1) = Pr(xBB

n = x̂n).

In the following we will use this fact: if A, B and C are three events and A and

C are independent, then

Pr(A,B|C) = Pr(A) Pr(B|A,C). (4.6)

This can easily be verified.

Then, using (4.6), we obtain

Pr(xBB

i = x̂i |Ei+1) = Pr(x̂i = li, c
BB

i ≤ li + 1/2 |Ei+1) (4.7)

+ Pr(li < x̂i < ui, x̂i − 1/2 ≤ cBB

i < x̂i + 1/2 |Ei+1)

+ Pr(x̂i = ui, c
BB

i ≥ ui − 1/2 |Ei+1)

= Pr(x̂i = li) Pr(c
BB

i ≤ li + 1/2 | x̂i = li, Ei+1) (4.8)

+ Pr(li < x̂i < ui) Pr(x̂i − 1/2 ≤ cBB

i ≤ x̂i + 1/2 | li < x̂i < ui, Ei+1)

+ Pr(x̂i = ui) Pr(c
BB

i ≥ ui − 1/2 | x̂i = ui, Ei+1)

where in deriving the second equality we used the independency of relevant events,

which can be observed from (4.3) and (2.8).
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Since x̂ is uniformly distributed over the box B, for the first factors of the three

terms on the right-hand side of (4.8), we have

Pr(x̂i = li) =
1

ui − li + 1
, Pr(li < x̂i < ui) =

ui − li − 1

ui − li + 1
, Pr(x̂i = ui) =

1

ui − li + 1
.

By (4.4), for the second factors of these three terms, we have

Pr(cBB

i ≤ li + 1/2 | x̂i = li, Ei+1) =
1√

2π( σ
rii
)2

∫ li+
1
2

−∞
exp

(
− (t− li)

2

2( σ
rii
)2

)
dt

=
1√
2π

∫ rii
2σ

−∞
exp

(
− t2

2

)
dt =

1

2
[1 + ϕσ(rii)],

Pr(x̂i − 1/2 ≤ cBB

i ≤ x̂i + 1/2 | li < x̂i < ui, Ei+1) =
1√

2π( σ
rii

)2

∫ x̂i+
1
2

x̂i− 1
2

exp
(
− (t− x̂i)

2

2( σ
rii

)2

)
dt

= ϕσ(rii),

Pr(cBB

i ≥ ui − 1/2 | x̂i = ui, Ei+1) =
1√

2π( σ
rii
)2

∫ ∞

ui− 1
2

exp
(
− (t− ui)

2

2( σ
rii
)2

)
dt

=
1

2
[1 + ϕσ(rii)].

Combining the equalities above, from (4.8) we obtain

Pr(xBB

i = x̂i |Ei+1) =
1

2(ui − li + 1)
[1 + ϕσ(rii)] +

ui − li − 1

ui − li + 1
ϕσ(rii)

+
1

2(ui − li + 1)
[1 + ϕσ(rii)] =

1

ui − li + 1
+

ui − li
ui − li + 1

ϕσ(rii)

which, with (4.5), gives (4.1).

Now we consider the success probability of the ordinary Babai estimator xOB.

Everything in the first three paragraphs of this proof still holds if we replace each
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superscript BB by OB. But we need to make more significant changes to the last two

paragraphs. We change (4.7) and (4.8) as follows:

Pr(xOB

i = x̂i |Ei+1) = Pr(li ≤ x̂i ≤ ui, x̂i − 1/2 ≤ cOB

i ≤ x̂i + 1/2 |Ei+1)

= Pr(li ≤ x̂i ≤ ui) Pr(x̂i − 1/2 ≤ cOB

i ≤ x̂i + 1/2 | li ≤ x̂i ≤ ui, Ei+1).

Here

Pr(li ≤ x̂i ≤ ui) = 1,

Pr(x̂i − 1/2 ≤ cOB

i < x̂i + 1/2 | li ≤ x̂i ≤ ui, Ei+1) = ϕσ(rii).

Thus

Pr(xOB

i = x̂i |Ei+1) = ϕσ(rii).

Then (4.2) follows from (4.5) with each superscript BB replaced by OB. �

From the proof for (4.2), we observe that the formula holds no matter what

distribution of x̂ is over the box B. Furthermore, the formula is identical to the one

for the success probability of the ordinary Babai estimator xOB when x̂ in the linear

model (1.1) is deterministic and is not subject to any box constraint, see Theorem

3.1.1.

The following result shows the relation between P BB and POB.

Corollary 4.1.1 Under the same assumption as in Theorem 4.1.1,

P OB ≤ P BB, (4.9)

lim
∀i,ui−li→∞

P BB = P OB. (4.10)
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Proof. Note that ϕσ(rii) ≤ 1. Thus

ϕσ(rii) =
1

ui − li + 1
ϕσ(rii) +

ui − li
ui − li + 1

ϕσ(rii) ≤
1

ui − li + 1
+

ui − li
ui − li + 1

ϕσ(rii).

Then (4.9) follows from Theorem 4.1.1. Obviously the equality (4.10) holds. �

Corollary 4.1.2 Under the same assumption as in Theorem 4.1.1, P BB and P OB

increase when σ decreases and

lim
σ→0

P BB = lim
σ→0

P OB = 1.

Proof. For a given ζ, when σ decreases ϕσ(ζ) increases and limσ→0 ϕσ(ζ) = 1.

Then from (4.1) and (4.2), we immediately see that the corollary holds.

4.2 Effects of LLL-P, V-BLAST and SQRD on PBB

Similar to (2.8), for the reduced box-constrained linear model (2.23), we can

define its corresponding Babai point zBB and use it as an estimator of ẑ, which is

equal to P T x̂, or equivalently we use PzBB to estimate x̂.

In this section, we will investigate how the LLL-P, SQRD and V-BLAST col-

umn permutation strategies affect the success probability P BB of the box-constrained

Babai estimator xBB.

4.2.1 Effect of LLL-P on PBB

The LLL-P strategy involves a sequence of permutations of two consecutive

columns of R. To investigate how LLL-P affects P BB, we look at one column per-

mutation first. Suppose that δ r2k−1,k−1 > r2k−1,k + r2kk for some k for the R matrix

in the linear model (2.5). After the permutation of columns k − 1 and k, R be-

comes R̄ = GT
k−1,kRP k−1,k (see (2.14)). Then with the transformations given in
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(2.22), where Q̄ = Gk−1,k and P = P k−1,k, the linear model (2.5) is transformed

to the linear model (2.23). We will compare Pr(xBB = x̂) and Pr(zBB = ẑ) in this

subsection.

To prove our results, we need the following lemmas.

Lemma 4.2.1 Given α ≥ 0, define

f(ζ, α) = (1− ζ2)
(
α+

∫ ζ

0

exp
(
− t2

2

)
dt
)
− ζ exp

(
− ζ2

2

)
, ζ ≥ 0. (4.11)

Then, f(ζ, α) is a strictly decreasing function of ζ and has a unique zero r(α), i.e.,

f(r(α), α) = 0. (4.12)

When ζ > r(α), f(ζ, α) < 0 and when ζ < r(α) ̸= 0, f(ζ, α) > 0. Furthermore,

0 ≤ r(α) < 1, where the first inequality becomes an equality if and only if α = 0, and

r(α) is a strictly increasing function of α.

Proof. By a simple calculation, we obtain

∂f(ζ, α)

∂ζ
= −2ζ

(
α+

∫ ζ

0

exp(−t2

2
)dt

)
.

Thus, for any ζ ≥ 0 and α ≥ 0, ∂f(ζ, α)/∂ζ ≤ 0, where the equality holds if and

only ζ = 0. Therefore, f(ζ, α) is a strictly decreasing function of ζ.

Since f(0, α) = α ≥ 0 and f(1, α) < 0, there exists a unique r(α) such that (4.12)

holds and 0 ≤ r(α) < 1. Obviously r(0) = 0. Since f(ζ, α) is strictly decreasing with

respect to ζ, when ζ > r(α), f(ζ, α) < 0 and when ζ < r(α), f(ζ, α) > 0.
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From (4.12), we obtain that for α > 0,

r′(α) =
(1− (r(α))2)

2

2(r(α))2 exp (−(r(α))2/2)
> 0.

Thus, r(α) is a strictly increasing function of α. �

Given α, we can easily solve (4.12) by a numerical method, e.g., the Newton

method, to find r(α).

Lemma 4.2.2 Given α ≥ 0 and β > 0, define

g(ζ, α, β) = α
(∫ ζ

0

exp(−t2

2
)dt+

∫ β/ζ

0

exp(−t2

2
)dt

)
+

∫ ζ

0

exp(−t2

2
)dt

∫ β/ζ

0

exp(−t2

2
)dt, ζ > 0. (4.13)

Then, when

min{
√
β, β/r(α)} ≤ ζ < max{

√
β, β/r(α)}, (4.14)

where r(α) is defined in Lemma 4.2.1 and β/r(α) ≡ ∞ if α = 0, g(ζ, α, β) is a

strictly decreasing function of ζ.

Proof. From the definition of g, we obtain

∂g(ζ, α, β)

∂ζ
= α

(
exp(−1

2
ζ2)− β

ζ2
exp

(
− 1

2

β2

ζ2
))
+exp(−1

2
ζ2)

∫ β/ζ

0

exp(−t2

2
)dt

− β

ζ2
exp

(
− 1

2

β2

ζ2
) ∫ ζ

0

exp(−t2

2
)dt

=
1

ζ

[
ζ exp(−1

2
ζ2)

(
α+

∫ β/ζ

0

exp(−t2

2
)dt

)
− β

ζ
exp(−1

2

β2

ζ2
)
(
α+

∫ ζ

0

exp(−t2

2
)dt

)]
=

1

ζ

(
α+

∫ β/ζ

0

exp(−t2

2
)dt

)(
α+

∫ ζ

0

exp(−t2

2
)dt

)
[h(ζ, α)− h(β/ζ, α)] ,
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where

h(ζ, α) =
ζ exp(− ζ2

2
)

α+
∫ ζ

0
exp(− t2

2
)dt

.

It is easy to see that in order to show the result, we need only to show h(ζ, α) −

h(β/ζ, α) < 0 under the condition (4.14) with ζ ̸= β/ζ.

By some simple calculations and (4.11), we have

∂h(ζ, α)

∂ζ
=

exp(− ζ2

2
)(

α+
∫ ζ

0
exp(− t2

2
)dt

)2 × f(ζ, α). (4.15)

Now we assume that ζ satisfies (4.14) with ζ ̸= β/ζ. If
√
β < β/r(α), then ζ >

β/ζ > r(α) and by Lemma 4.2.1, ∂h(ζ, α)/∂ζ < 0, i.e., h(ζ, α) is a strictly deceasing

function of ζ, thus h(ζ, α) − h(β/ζ, α) < 0. If
√
β > β/r(α), then ζ < β/ζ < r(α)

and by Lemma 4.2.1, ∂h(ζ, α)/∂ζ > 0, i.e., h(ζ, α) is a strictly increasing function

of ζ, thus again h(ζ, α)− h(β/ζ, α) < 0. �

With the above lemmas, we can show how the success probability of the box-

constrained Babai estimator changes after two consecutive columns are swapped

when the LLL-P strategy is applied.

Theorem 4.2.1 Suppose that in the linear model (1.3) the box B is a cube with edge

length of d, x̂ is uniformly distributed over B, and x̂ and v are independent. Suppose

that the linear model (1.3) is transformed to the linear model (2.5) through the QR

factorization (2.1) and δ r2k−1,k−1 > r2k−1,k + r2kk. After the permutation of columns

k − 1 and k of R (see (2.20)), the linear model (2.5) is transformed to the linear

model (2.23).
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1. If rkk/2σ ≥ r(
√
2π/(2d)), where r(·) is defined in Lemma 4.2.1, then after

the permutation, the success probability of the box-constrained Babai estimator

increases, i.e.,

Pr(xBB = x̂) ≤ Pr(zBB = ẑ). (4.16)

2. If rk−1,k−1/2σ ≤ r(
√
2π/(2d)), then after the permutation, the success proba-

bility of the box-constrained Babai estimator decreases, i.e.,

Pr(xBB = x̂) ≥ Pr(zBB = ẑ). (4.17)

Furthermore, the equality in each of (4.16) and (4.17) holds if and only if rk−1,k = 0.

Proof. When rk−1,k = 0, by Theorem 4.1.1, we see the equalities in (4.16) and

(4.17) hold. In the following we assume rk−1,k ̸= 0 and show the strict inequalities

in (4.16) and (4.17) hold.

Define

β ≡ rk−1,k−1

2σ

rkk
2σ

=
r̄k−1,k−1

2σ

r̄kk
2σ

, (4.18)

where for the second equality, see (2.15). Using δ r2k−1,k−1 > r2k−1,k + r2kk and the

equalities in (2.15), we can easily verify that

√
β ≤ max

{ r̄k−1,k−1

2σ
,
r̄kk
2σ

}
< max

{rk−1,k−1

2σ
,
rkk
2σ

}
=

rk−1,k−1

2σ
=

β

rkk/(2σ)
, (4.19)

β

rk−1,k−1/(2σ)
=

rkk
2σ

= min
{rk−1,k−1

2σ
,
rkk
2σ

}
< min

{ r̄k−1,k−1

2σ
,
r̄kk
2σ

}
≤

√
β. (4.20)

Now we prove part 1. Note that after the permutation, rk−1,k−1 and rkk change,

but other diagonal entries of R do not change. Then by Theorem 4.1.1, we can easily
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observe that (4.16) is equivalent to

[ 1

d+ 1
+

d

d+ 1
ϕσ(rk−1,k−1)

][ 1

d+ 1
+

d

d+ 1
ϕσ(rkk)

]
≤
[ 1

d+ 1
+

d

d+ 1
ϕσ(r̄k−1,k−1)

][ 1

d+ 1
+

d

d+ 1
ϕσ(r̄kk)

]
. (4.21)

By the definition of ϕσ in (3.1) and the definition of g in (4.13), we can easily verify

that (4.21) is equivalent to

g
(
max

{rk−1,k−1

2σ
,
rkk
2σ

}
,

√
2π

2d
, β

)
≤ g

(
max

{ r̄k−1,k−1

2σ
,
r̄kk
2σ

}
,

√
2π

2d
, β

)
. (4.22)

If rkk/2σ ≥ r(
√
2π/(2d)), then the right-hand side of the last equality in (4.19)

satisfies

β

rkk/(2σ)
≤ β

r(
√
2π/(2d))

. (4.23)

Then by combining (4.19) and (4.23) and applying Lemma 4.2.2 we can conclude

that the strict inequality in (4.22) holds.

The proof for part 2 is similar. The inequality (4.17) is equivalent to

g
(
min

{rk−1,k−1

2σ
,
rkk
2σ

}
,

√
2π

2d
, β

)
≥ g

(
min

{ r̄k−1,k−1

2σ
,
r̄kk
2σ

}
,

√
2π

2d
, β

)
. (4.24)

If rk−1,k−1/2σ ≤ r(
√
2π/(2d)), then the left-hand side of the first equality in (4.20)

satisfies

β

r(
√
2π/(2d))

≤ β

rk−1,k−1/(2σ)
. (4.25)

Then by combining (4.20) and (4.25) and applying Lemma 4.2.2 we can conclude

that the strict inequality in (4.24) holds. �

We make a few remarks about Theorem 4.2.1.
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Remark 4.2.1 In the theorem, B is assumed to be a cube, not a more general box.

This restriction simplified the theoretical analysis. In practical applications, such as

in communications, indeed B is often a cube.

Remark 4.2.2 After the permutation, the larger one of rk−1,k−1 and rkk becomes

smaller (see (4.19)) and the smaller one becomes larger (see (4.20)), so the gap be-

tween rk−1,k−1 and rkk becomes smaller. This makes P BB increase under the condition

rkk/2σ ≥ r(
√
2π/(2d)) or decrease under the condition rk−1,k−1/2σ ≤ r(

√
2π/(2d)).

It is natural to ask for fixed rk−1,k−1 and rkk when will P BB increase most or decrease

most after the permutation under the the corresponding conditions? From the proof

we observe that P BB will become maximal when the first inequality in (4.19) becomes

an equality or minimal when the last inequality in (4.20) becomes an equality un-

der the corresponding conditions. Either of the two equalities holds if and only if

r̄k−1,k−1 = r̄kk, which is equivalent to r2k−1,k + r2kk = rk−1,k−1rkk by (2.15).

Remark 4.2.3 The case where rkk/2σ < r(
√
2π/(2d)) < rk−1,k−1/2σ is not covered

by the theorem. For this case, P BB may increase or decrease after the permutation,

for more details, see the simulations in Sec. 4.2.4.

Based on Theorem 4.2.1, we can establish the following general result for the

LLL-P strategy.

Theorem 4.2.2 Suppose that in the linear model (1.3) the box B is a cube with edge

length of d, x̂ is uniformly distributed over B, and x̂ and v are independent. Suppose

that the linear model (1.3) is first transformed to the linear model (2.5) through the

QR factorization (2.1) and then to the new linear model (2.23) through the QR

factorization (2.20) where the LLL-P strategy is used for column permutations.
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1. If the diagonal entries of R in (2.3) satisfies

min
i

rii/(2σ) ≥ r(
√
2π/(2d)), (4.26)

where r(·) is defined in Lemma 4.2.1, then

Pr(xBB = x̂) ≤ Pr(zBB = ẑ). (4.27)

2. If the diagonal entries of R in (2.3) satisfies

max
i

rii/(2σ) ≤ r(
√
2π/(2d)), (4.28)

then

Pr(xBB = x̂) ≥ Pr(zBB = ẑ). (4.29)

And the equalities in (4.27) and (4.29) hold if and only if no column permutation

occurs in the process or whenever two consecutive columns, say k − 1 and k, are

permuted, rk−1,k = 0.

Proof. It is easy to show that after each column permutation, the smaller one

of the two diagonal entries of R involved in the permutation either keeps unchanged

(the involved super-diagonal entry is 0 in this case) or strictly increases, while the

larger one either keeps unchanged or strictly decreases (see (4.19) and (4.20)). Thus,

after each column permutation, the minimum of the diagonal entries of R either

keeps unchanged or strictly increases and the maximum either keeps unchanged or

strictly decreases, so the diagonal entries of any upper triangular R̄ produced after

a column permutation satisfies mini rii ≤ r̄kk ≤ maxi rii for all k = 1, . . . , n. Then

the conclusions follows from Theorem 4.2.1. �
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We make some remarks about Theorem 4.2.2.

Remark 4.2.4 The quantity r(
√
2π/(2d)) is involved in the conditions. To get

some idea about how large it is, we compute it for a few different d = 2k − 1.

For k = 1, 2, 3, 4, 5, the corresponding values of r are 0.83992, 0.69666, 0.57157,

0.46475, 0.37525. They are decreasing with k as proved in Lemma 4.2.1. As d → ∞,

r(
√
2π/(2d)) → r(0) = 0. Thus, when d is large enough, the condition (4.26) will be

satisfied. By Corollary 4.1.1, taking the limit as d → ∞ on both sides of (4.27), we

obtain the following result given in Theorem 4.2.2:

Pr(xOB = x̂) ≤ Pr(zOB = ẑ),

i.e., LLL-P always increases the success probability of the ordinary Babai estimator.

Remark 4.2.5 The two conditions (4.26) and (4.28) also involve the noise standard

deviation σ. When σ is small, (4.26) is likely to hold, so applying LLL-P is likely

to increase P BB, and when σ is large, (4.28) is likely to hold, so applying LLL-P is

likely to decrease P BB. It is quite surprising that when σ is large enough applying

LLL-P will decrease P BB. Thus, before applying LLL-P, one needs to check the

conditions (4.26) and (4.28). If (4.26) holds, one has confidence to apply LLL-P.

If (4.28) holds, one should not apply it. If both do not hold, i.e., mini rii/(2σ) <

r(
√
2π/(2d)) < maxi rii/(2σ), applying LLL-P may increase or decrease P BB.

4.2.2 Effects of SQRD and V-BLAST on PBB

SQRD [95] and V-BLAST [25] have been used to find better box-constrained

Babai estimators in the literature. It has been demonstrated in Chapter 3 that

unlike LLL-P, both SQRD and V-BLAST may decrease the success probability POB
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of the ordinary Babai estimator when the parameter vector x̂ is deterministic and

not subject to any constraint.

We would like to know how SQRD and V-BLAST affect P BB. Unlike LLL-P,

both SQRD and V-BLAST usually involve two non-consecutive columns permuta-

tions, resulting in the changes of all diagonal entries between and including the two

columns. This makes it very difficult to analyze under which conditions P BB increases

or decreases. We will use numerical test results to show the effects of SQRD and

V-BLAST on P BB with explanations.

In Theorem 4.2.2 we showed that if the condition (4.26) holds, then applying

LLL-P will increase P BB, and if (4.28) holds, then applying LLL-P will decrease P BB.

The following example shows they are not true for SQRD and V-BLAST.

Example 4.2.1 Let d = 1 and consider two matrices:

R(1) =


3.5 3 0

0 1 −1.5

0 0 1

 , R(2) =


1 −1.5 1.5

0 0.8 −1

0 0 0.42

 .

Applying SQRD, V-BLAST and LLL-P to R(1) and R(2), we obtain

R(1)
S =


1.8028 −0.8321 0

0 3.0509 3.4417

0 0 0.6364

 , R(1)
V = R(1)

L =


3.1623 3.3204 −0.4743

0 1.1068 1.4230

0 0 1

 ,

R(2)
V =


1.7 −1.7941 −0.8824

0 0.4556 −0.1823

0 0 0.4338

 , R(2)
S = R(2)

L = R(2).
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If σ = 0.2, then it is easy to verify that for both R(1) and R(2), the condition

(4.26) holds. Simple calculations by using (4.1) give

P BB(R(1)) = 0.9876, P BB(R(2)) = 0.8286.

Then

P BB(R(1)
S ) = 0.9442, P BB(R(1)

V ) = P BB(R(1)
L ) = 0.9910,

P BB(R(2)
V ) = 0.7513, P BB(R(2)

S ) = P BB(R(2)
L ) = 0.8286.

Thus for R(1) SQRD decreases P BB, while V-BLAST and LLL-P increase P BB and

for R(2) V-BLAST decreases P BB, while SQRD and LLL-P keep P BB unchanged.

If σ = 2.2, then it is easy to verify that for both R(1) and R(2), the condition

(4.28) holds. Simple calculations by using (4.1) give

P BB(R(1)) = 0.2738, P BB(R(2)) = 0.1816.

Then

P BB(R(1)
S ) = 0.2777, P BB(R(1)

V ) = P BB(R(1)
L ) = 0.2700,

P BB(R(2)
V ) = 0.1898, P BB(R(2)

S ) = P BB(R(2)
L ) = 0.1816.

Thus for R(1) SQRD increases P BB, while V-BLAST and LLL-P decrease P BB and

for R(2) V-BLAST increases P BB, while SQRD and LLL-P keep P BB unchanged.

Although Example 4.2.1 indicates that, unlike LLL-P, under the condition (4.26),

both SQRD and V-BLAST may decrease P BB, but they often increase P BB. This is

the reason why SQRD and V-BLAST (especially the latter) have often been used
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to increase the accuracy of the Babai estimator in practice. Example 4.2.1 also in-

dicates that, unlike LLL-P, under the condition (4.28), both SQRD and V-BLAST

may increase P BB, but they often decrease P BB. This is the opposite of what we

commonly believe. Later we give numerical test results to show both phenomenons.

In the following we give some explanations.

It is easy to show that like LLL-P, V-BLAST increases mini rii after each per-

mutation and like LLL-P, SQRD decreases maxi rii after each permutation, see [25],

[54]. For the relation between V-BLAST and SQRD, see, e.g., [17] and [54]. Thus

if the condition (4.26) holds before applying V-BLAST, it will also hold after ap-

plying it; and if the condition (4.28) holds before applying SQRD, it will also hold

after applying it. Often applying V-BLAST decreases maxi rii and applying SQRD

increases mini rii (both may not be true sometimes, see Example 4.2.1). Thus often

the gaps between the large diagonal entries and the small ones of R decrease after

applying SQRD or V-BLAST. From the proof of Theorem 4.2.1 we see reducing the

gaps will likely increase P BB under the condition (4.26) and decrease P BB under the

condition (4.28). Thus it is likely both SQRD and V-BLAST will increase P BB under

(4.26) and decrease it under (4.28). We will give further explanations in the next

subsection.

4.2.3 A bound on PBB

In this subsection we give a bound on P BB, which is an upper bound under one

condition and becomes a lower bound under an opposite condition. This bound can

help us to understand what a column permutation strategy should try to achieve.
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Theorem 4.2.3 Suppose the assumptions in Theorem 4.1.1 hold. Let the box B in

(1.3b) be a cube with edge length of d and denote γ = (det(R))1/n.

1. If the condition (4.26) holds, then

Pr(xBB = x̂) ≤
[ 1

d+ 1
+

d

d+ 1
ϕσ(γ)

]n
. (4.30)

2. If the condition (4.28) holds, then

Pr(xBB = x̂) ≥
[ 1

d+ 1
+

d

d+ 1
ϕσ(γ)

]n
. (4.31)

The equality in either (4.30)or (4.31) holds if and only if rii = γ for i = 1, . . . , n.

Proof. We prove only part 1. Part 2 can be proved similarly. Note that

γn = Πn
i=1rii. Obviously, if rii = γ for i = 1, . . . , n, then by (4.1) the equality in

(4.30) holds. In the following we assume there exist j and k such that rjj ̸= rkk, we

only need to show that the strict inequality (4.30) holds.

Denote F (ζ) = ln(1 + dϕσ(exp(ζ))), ηi = ln(rii) for i = 1, 2, . . . , n and η =

1
n

∑n
i=1 ηi. It is easy to see that (4.30) is equivalent to

1

n

n∑
i=1

F (ηi) < F (η).

Since mini rii ≥ 2σr(
√
2π/(2d)) and rjj ̸= rkk, it suffices to show that F (ζ) is a strict

concave function on (ln(2σr(
√
2π/(2d))),+∞). Therefore, we only need to show that

F ′′(ζ) < 0 when ζ > ln(2σr(
√
2π/(2d))).

To simplify notation, denote ξ = exp(ζ)/(2σ). Simple calculations give

F ′(ζ) =
ξ exp

(
− 1

2
ξ2)

√
2π
2d

+
∫ ξ

0
exp

(
− 1

2
t2
)
dt
.
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Using (4.11), we obtain

F ′′(ζ) =
ξ exp

(
− 1

2
ξ2)

(
√
2π
2d

+
∫ ξ

0
exp

(
− 1

2
t2
)
dt)2

f
(
ξ,

√
2π

2d

)
.

When ζ > ln(2σr(
√
2π/(2d))), ξ > r(

√
2π/(2d)). Thus, by Lemma 4.2.1, f(ξ,

√
2π/(2d)) <

0. Then we can conclude that F ′′(ζ) < 0 when ζ > ln(2σr(
√
2π/(2d))), completing

the proof. �

Now we make some remarks about Theorem 4.2.3.

Remark 4.2.6 The quantity γ is invariant with respect to column permutations,

i.e., for R and R̄ in (2.20), we have the same γ no matter what the permutation

matrix P is. Thus the bounds in (4.30) and (4.31), which are actually the same

quantity, are invariant with respect to column permutations. Although the condition

(4.26) is variant with respect to column permutations, if it holds before applying LLL-

P or V-BLAST, it will hold afterwards, since the minimum of the diagonal entries of

R̄ will not be smaller than that of R after applying LLL-P or V-BLAST. Similarly,

the condition (4.28) is also variant with respect to column permutations. But if it

holds before applying LLL-P or SQRD, it will hold afterwards, since the maximum

of the diagonal entries of R̄ will not be larger than that of R after applying LLL-P

or SQRD.

Remark 4.2.7 The bounds (4.30) and (4.31) are reached if all the diagonal entries

of R are identical. This suggests that if the gaps between the larger entries and

small entries become smaller after permutations, it is likely that P BB increases under

the condition (4.26) or decreases under the condition (4.28). As we know, the gap
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between the largest one and the smallest one decreases after applying LLL-P. Nu-

merical tests indicate usually this is also true for both V-BLAST and SQRD. Thus

both V-BLAST and SQRD will likely bring P BB closer to the bound under the two

opposite conditions, respectively.

Remark 4.2.8 When d → ∞, by Lemma 4.2.1, r(
√
2π/(2d)) → 0, thus the condi-

tion in part 1 of Theorem 4.2.3 becomes maxi rii ≥ 0, which certainly holds always.

Taking the limit as d → ∞ on both sides of (4.30) and using Corollary 4.1.1, we

obtain

Pr(xOB = x̂) ≤ (ϕσ(γ))
n. (4.32)

The above result was obtained in [85] and a simple proof was provided by Lemma

3.3.2, for more details, see [18].

4.2.4 Numerical tests

We have shown in Theorem 4.2.2 that if (4.26) holds, then the LLL-P increases

P BB and (4.30) is an upper bound on P BB; and if (4.28) holds, then the LLL-P

decreases P BB and (4.31) is a lower bound on P BB. Example 4.2.1 shows that this

conclusion does not always hold for SQRD and V-BLAST. To further understand the

effects of the LLL-P, SQRD and V-BLAST on P BB and to see how close they bring

their corresponding P BB to the bounds given by (4.30) and (4.31), we performed

some numerical tests. For comparisons, we also performed tests for POB.

We performed Matlab tests for the following two cases.
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• Case 1: A =
√
2
2
randn(n, n), where randn(n, n) is a Matlab built-in function

to generate a random n × n matrix, whose entries follow the i.i.d normal dis-

tribution N (0, 1). So the elements of A follow the i.i.d normal distribution

N (0, 1/2).

• Case 2: A = UDV T , U ,V are random orthogonal matrices obtained by the

QR factorization of random matrices generated by randn(n, n) and D is a n×n

diagonal matrix with dii = 103(n/2−i)/(n−1). The condition number of A is 1000.

In the tests for each case, we first chose n = 4 and B = [0, 1]4 and took different

noise standard deviation σ to test different situations according to the conditions

(4.26) and (4.28) imposed in Theorems 4.2.2 and 4.2.3. The edge length d of B is

equal to 1. So in (4.26) and (4.28), r(
√
2π/2d) = r(

√
2π/2) = 0.83992. Details about

choosing σ will be given later.

We use P BB, P BB
L , P BB

S and P BB
V respectively denote the success probability of the

box-constrained Babai estimator corresponding to QR factorization (i.e., no permu-

tations are involved), LLL-P, SQRD and V-BLAST. Let µBB denote the right-hand

side of (4.30) or (4.31), so it is an upper bound if (4.26) holds and a lower bound

if (4.28) holds. Similarly, POB, POB
L , POB

S and POB
V respectively denote the success

probability of the ordinary Babai estimator corresponding to QR factorization, LLL-

P, SQRD and V-BLAST. We use µOB to denote the right-hand side of (4.32), which

is an upper bound on POB, POB
L , POB

S and POB
V . For each case, we performed 10 runs

(notice that for each run we have different A, x̂ and v due to randomness) and the

results are displayed in Table 4–1–Table 4–6.
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In Tables 4–1 and 4–2, σ = σ1 ≡ min(rii)/1.8. It is easy to verify that the

condition (4.26) holds. This means that in theory P BB ≤ P BB
L by Theorem 4.2.2

and P BB, P BB
L , P BB

V ≤ µBB by Theorem 4.2.3 and Remark 4.2.6. The numerical re-

sults given in Tables 4–1 and 4–2 are consistent with the theoretical results. The

numerical results also indicate that SQRD and V-BLAST (nonstrictly) increase P BB,

although there is one exceptional case for SQRD in Table 4–2. We observe that the

permutation strategies increase P BB more significantly for Case 2 than for Case 1.

The reason is that A is more ill-conditioned for Case 2, resulting in bigger gaps be-

tween the diagonal entries of R, which can usually be reduced more effectively by the

permutation strategies. We also observe that P BB
S ≤ µBB in both tables. Although

in theory the inequality may not hold as we cannot guarantee the condition (4.26)

holds after applying SQRD, usually SQRD can make mini rii larger. Thus if (4.26)

holds before applying SQRD, it is likely the condition still holds after applying it.

Thus it is likely P BB
S ≤ µBB holds.

Tables 4–3 and 4–4 are opposite to Tables 4–1 and 4–2. In both tables, σ = σ2 ≡

max(rii)/1.6, then the condition (4.28) holds. This means that in theory P BB ≥ P BB
L

by Theorem 4.2.2 and P BB, P BB
L , P BB

S ≥ µBB by Theorem 4.2.3 and Remark 4.2.6.

The numerical results given in the two tables are consistent with the theoretical

results. The results in the two tables also indicate that both SQRD and V-BLAST

(nonstrictly) decrease P BB, although Example 4.2.1 shows that neither is always true

under the condition (4.28). We also observe that P BB
V ≥ µBB in both tables. Although

in theory the inequality may not hold as we cannot guarantee the condition (4.28)

holds after applying V-BLAST, usually V-BLAST can make maxi rii smaller. Thus
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if (4.28) holds before applying V-BLAST, it is likely the condition still holds after

applying it. Thus it is likely P BB
V ≥ µBB holds.

In Tables 4–5 and 4–6, σ = σ3 ≡ (0.3max(rii) + 0.7min(rii))/1.68. It is easy to

verify that neither (4.26) (almost) nor (4.28) holds in theory. In theory we do not

have results cover this situation. The numerical results in the two tables indicate all

of the three permutation strategies can either increase or decrease P BB and µBB can

be larger or smaller than P BB, P BB
L , P BB

S and P BB
V . The reason we chose 0.3 and 0.7

rather than a more natural choice of 0.5 and 0.5 in defining σ here is that we may

not be able to observe both increasing and decreasing phenomenons due to limited

runs.

Now we make comments on the success probability of ordinary Babai points.

From Table 4–1–Table 4–6, we observe that LLL-P always (nonstrictly) increases

POB, and SQRD and V-BLAST almost always increases POB (there is one exceptional

case for SQRD in Table 4–2 and two exceptional cases for V-BLAST in Table 4–6).

Thus the ordinary case is different from the box-constrained case. We also observe

POB ≤ P BB for the same permutation strategies. Sometimes the difference between

the two is large (see Tables 4–4 and 4–6).

Each of Table 4–1—Table 4–6 displays the results for only 10 runs due to space

limitation. To make up for this shortcoming, we give Tables 4–7 and 4–8, which

display some statistics for 1000 runs on the data generated exactly the same way as

the data for the 10 runs. Specifically these two tables display the number of runs,

in which P BB (POB) increases, keeps unchanged and decreases after each of the three
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permutation strategies is applied for Case 1 and Case 2, respectively. In the two

tables, σ1, σ2 and σ3 are defined in the same as those used in Tables 4–1—4–6.

Table 4–1: Success probabilities of Babai points and bounds for Case 1, σ =
min(rii)/1.8

σ PBB PBB
L PBB

S PBB
V µBB POB POB

L POB
S POB

V µOB

0.0738 0.8159 1.0000 1.0000 1.0000 1.0000 0.6319 1.0000 1.0000 1.0000 1.0000
0.1537 0.7632 0.8423 0.8423 0.8423 0.9083 0.5503 0.6988 0.6988 0.6988 0.8231
0.1575 0.7938 0.9491 0.9491 0.9491 0.9698 0.5977 0.8998 0.8998 0.8998 0.9403
0.2170 0.7235 0.8577 0.8577 0.8577 0.8670 0.4893 0.7300 0.7300 0.7300 0.7477
0.1285 0.8133 0.8534 0.8534 0.8521 0.9882 0.6278 0.7070 0.7070 0.7049 0.9766
0.1676 0.6809 0.7529 0.7529 0.7529 0.8896 0.4255 0.5375 0.5375 0.5375 0.7885
0.3665 0.7039 0.7273 0.7273 0.7273 0.8004 0.4629 0.5093 0.5093 0.5093 0.6324
0.1968 0.6892 0.7320 0.7320 0.7385 0.8073 0.4420 0.5103 0.5103 0.5270 0.6439
0.3322 0.7087 0.7317 0.7317 0.7317 0.7665 0.4718 0.5156 0.5156 0.5156 0.5765
0.5221 0.4754 0.4754 0.4754 0.4754 0.4758 0.1899 0.1899 0.1899 0.1899 0.1910

Table 4–2: Success probabilities of Babai points and bounds for Case 2, σ =
min(rii)/1.8

σ PBB PBB
L PBB

S PBB
V µBB POB POB

L POB
S POB

V µOB

0.0101 0.8155 0.9452 0.9354 0.9452 1.0000 0.6312 0.8905 0.8708 0.8905 1.0000
0.0130 0.7983 0.9839 0.9839 0.9839 1.0000 0.6045 0.9679 0.9679 0.9679 1.0000
0.0173 0.8159 0.9793 0.9793 0.9793 1.0000 0.6319 0.9586 0.9586 0.9586 1.0000
0.0066 0.8159 0.9913 0.9913 0.9967 1.0000 0.6319 0.9826 0.9826 0.9933 1.0000
0.0177 0.8106 0.9998 0.9998 0.9998 1.0000 0.6236 0.9997 0.9997 0.9997 1.0000
0.0060 0.8159 0.9841 0.9841 0.9998 1.0000 0.6319 0.9681 0.9681 0.9996 1.0000
0.0168 0.7833 0.8098 0.7625 0.8159 1.0000 0.5813 0.6224 0.5250 0.6319 1.0000
0.0150 0.8159 0.9999 0.9999 0.9999 1.0000 0.6319 0.9998 0.9998 0.9998 1.0000
0.0231 0.8159 0.9999 0.9999 0.9999 1.0000 0.6319 0.9999 0.9999 0.9999 1.0000
0.0211 0.7912 0.9696 0.9696 0.9892 1.0000 0.5935 0.9393 0.9393 0.9784 1.0000

Table 4–3: Success probabilities of Babai points and bounds for Case 1, σ =
max(rii)/1.6

σ PBB PBB
L PBB

S PBB
V µBB POB POB

L POB
S POB

V µOB

1.1726 0.1557 0.1310 0.1310 0.1380 0.1121 0.0005 0.0006 0.0006 0.0006 0.0006
0.6432 0.2756 0.2756 0.2756 0.2756 0.2731 0.0387 0.0387 0.0387 0.0387 0.0395
0.5962 0.2915 0.2912 0.2912 0.2909 0.2900 0.0472 0.0473 0.0473 0.0475 0.0478
1.2435 0.1875 0.1632 0.1673 0.1632 0.1571 0.0040 0.0044 0.0044 0.0044 0.0045
0.8332 0.1873 0.1769 0.1769 0.1769 0.1750 0.0070 0.0074 0.0074 0.0074 0.0074
0.4875 0.2709 0.2709 0.2709 0.2709 0.2667 0.0356 0.0356 0.0356 0.0356 0.0366
0.9684 0.2769 0.2709 0.2709 0.2709 0.2688 0.0358 0.0369 0.0369 0.0369 0.0375
0.9971 0.1846 0.1665 0.1665 0.1665 0.1588 0.0043 0.0046 0.0046 0.0046 0.0047
1.2791 0.1501 0.1308 0.1308 0.1308 0.1294 0.0015 0.0016 0.0016 0.0016 0.0016
0.6327 0.2641 0.2564 0.2564 0.2564 0.2556 0.0301 0.0316 0.0316 0.0316 0.0318
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Table 4–4: Success probabilities of Babai points and bounds for Case 2, σ =
max(rii)/1.6

σ PBB PBB
L PBB

S PBB
V µBB POB POB

L POB
S POB

V µOB

3.9438 0.1064 0.0947 0.0987 0.0947 0.0709 0.0000 0.0000 0.0000 0.0000 0.0000
2.4510 0.1173 0.1173 0.1173 0.1173 0.0764 0.0000 0.0000 0.0000 0.0000 0.0000
0.5790 0.1788 0.1640 0.1640 0.1640 0.1363 0.0019 0.0019 0.0019 0.0019 0.0021
5.3809 0.1011 0.0701 0.0701 0.0701 0.0686 0.0000 0.0000 0.0000 0.0000 0.0000
2.2574 0.1140 0.1023 0.0954 0.0954 0.0777 0.0000 0.0000 0.0000 0.0000 0.0000
3.7623 0.1099 0.0801 0.0801 0.0757 0.0713 0.0000 0.0000 0.0000 0.0000 0.0000
3.9225 0.1063 0.0834 0.0834 0.0834 0.0709 0.0000 0.0000 0.0000 0.0000 0.0000
1.3198 0.1153 0.1153 0.1153 0.1153 0.0900 0.0001 0.0001 0.0001 0.0001 0.0001
1.2416 0.1394 0.1108 0.1108 0.1108 0.0920 0.0001 0.0001 0.0001 0.0001 0.0001
0.8411 0.1719 0.1532 0.1532 0.1532 0.1090 0.0004 0.0004 0.0004 0.0004 0.0005

Table 4–5: Success probabilities of Babai points and bounds for Case 1, σ =
(0.3max(rii) + 0.7min(rii))/1.68

σ PBB PBB
L PBB

S PBB
V µBB POB POB

L POB
S POB

V µOB

0.2848 0.4208 0.4336 0.4336 0.3184 0.2846 0.0154 0.0165 0.0165 0.0252 0.0451
0.6313 0.4720 0.4829 0.4829 0.4829 0.4863 0.1630 0.1932 0.1932 0.1932 0.2017
0.4328 0.4540 0.4599 0.4599 0.4599 0.4623 0.1517 0.1673 0.1673 0.1673 0.1776
0.6105 0.5054 0.5061 0.5061 0.5061 0.5092 0.2123 0.2161 0.2161 0.2161 0.2259
0.3306 0.4268 0.3807 0.3807 0.3805 0.3484 0.0321 0.0539 0.0539 0.0539 0.0829
0.2600 0.5055 0.5103 0.5103 0.5103 0.5252 0.1544 0.1868 0.1868 0.1868 0.2437
0.4743 0.4235 0.4283 0.4283 0.4283 0.4259 0.0631 0.1225 0.1225 0.1225 0.1437
0.5878 0.4104 0.4161 0.4161 0.4161 0.4170 0.1159 0.1304 0.1304 0.1304 0.1359
0.3977 0.4429 0.4431 0.4431 0.4431 0.4477 0.1477 0.1479 0.1479 0.1479 0.1636
0.6273 0.4684 0.4684 0.4684 0.4684 0.4696 0.1792 0.1792 0.1792 0.1792 0.1848

Table 4–6: Success probabilities of Babai points and bounds for Case 2, σ =
(0.3max(rii) + 0.7min(rii))/1.68

σ PBB PBB
L PBB

S PBB
V µBB POB POB

L POB
S POB

V µOB

1.0377 0.1608 0.1324 0.1324 0.1625 0.0987 0.0001 0.0002 0.0002 0.0002 0.0002
0.3648 0.2774 0.2774 0.2774 0.2405 0.1987 0.0034 0.0034 0.0034 0.0025 0.0126
0.7603 0.1681 0.1758 0.1758 0.1758 0.1150 0.0003 0.0005 0.0005 0.0005 0.0007
0.8769 0.1835 0.2062 0.1713 0.2062 0.1067 0.0002 0.0003 0.0004 0.0003 0.0004
0.4708 0.2794 0.2352 0.2352 0.2352 0.1590 0.0010 0.0030 0.0030 0.0030 0.0048
1.1983 0.1572 0.1319 0.1319 0.1319 0.0932 0.0001 0.0001 0.0001 0.0001 0.0001
1.0001 0.1758 0.1596 0.1596 0.1464 0.1003 0.0001 0.0002 0.0002 0.0001 0.0002
0.8523 0.1671 0.1733 0.1733 0.1715 0.1082 0.0002 0.0003 0.0003 0.0003 0.0005
0.2128 0.3478 0.3478 0.3728 0.3478 0.3539 0.0599 0.0599 0.0711 0.0599 0.0866
0.3956 0.2188 0.2117 0.2117 0.1973 0.1844 0.0047 0.0047 0.0047 0.0034 0.0093
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Table 4–7: Number of runs out of 1000 in which P BB and POB changes for Case 1
PBB POB

σ
`````````̀Result

Strategy
LLL-P SQRD V-BLAST LLL-P SQRD V-BLAST

Increase 933 928 951 933 922 953
σ1 No change 67 47 42 67 47 42

Decrease 0 25 7 0 31 5
Increase 0 25 6 942 947 950

σ2 No change 58 40 37 58 40 37
Decrease 942 935 957 0 13 13
Increase 781 797 740 942 945 952

σ3 No change 58 40 37 58 40 37
Decrease 161 163 223 0 15 11

Table 4–8: Number of runs out of 1000 in which P BB and POB changes for Case 2
PBB POB

σ
`````````̀Result

Strategy
LLL-P SQRD V-BLAST LLL-P SQRD V-BLAST

Increase 858 803 938 858 800 938
σ1 No change 142 76 56 142 76 56

Decrease 0 121 6 0 124 6
Increase 0 23 69 906 944 831

σ2 No change 94 46 48 94 46 48
Decrease 906 931 883 0 10 121
Increase 134 189 97 906 943 840

σ3 No change 94 46 48 94 46 48
Decrease 772 765 855 0 11 112

From Tables 4–7 and 4–8, we can see that often these permutation strategies

increase or decrease P BB for the same data. The numerical results given in all the

tables suggest that if the condition (4.26) holds, we should have confidence to use

any of these permutation strategies; and if the condition (4.28) holds we should not

use any of them.

Tables 4–7 and 4–8 do not show which permutation strategy can increase P BB

most. The information on this given in Tables 4–1 and 4–6 are limited. In the

following we give more test results to investigate this.

We still consider Cases 1 and 2, but we take B = [0, 15]n and choose different n

and σ from before. In Figures 4–1 and 4–2 for n = 20, we take σ = 0.1 : 0.1 : 0.8

and σ = 0.01 : 0.01 : 0.08 for Cases 1 and 2, respectively. For each σ, we give
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200 runs to generate 200 different A’s. These two figures display the average P BB

corresponding to QR, LLL-P, SQRD and V-BLAST over 200 runs for Cases 1 and

2, respectively. Figures 4–3 and 4–4 display the average P BB corresponding to the

various permutation strategies over 200 runs versus n = 5 : 5 : 40 with σ = 0.4 and

σ = 0.04 for Cases 1 and 2, respectively. The reason we choose different σ for the

two cases is to ensure P BB is neither close to 0 nor close to 1; otherwise, it is not

much interesting to investigate the effects of the column permutations on P BB.

From Figure 4–1—Figure 4–4, we can see that on average all of the three column

permutation strategies improve P BB. The effect of V-BLAST is much more signifi-

cantly than that of LLL-P and SQRD, which have more or less the same performance.

This phenomenon is similar to that for POB, as shown in [18].
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Figure 4–1: Average P BB over 200 runs versus σ for Case 1, n = 20
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Figure 4–2: Average P BB over 200 runs versus σ for Case 2, n = 20
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Figure 4–3: Average P BB over 200 runs versus n for Case 1, σ = 0.4
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Figure 4–4: Average P BB over 200 runs versus n for Case 2, σ = 0.04

4.3 Solving a conjecture

In [58], a conjecture was made on the ordinary Babai estimator, based on which

a stopping criterion was then proposed for the sphere decoding search process for

solving the BILS problem (1.4). In this section, first, we give an example to show that

this conjecture may not hold in general. Then, we show that the conjecture holds

under some conditions. And finally, we propose a new stopping criterion, which is

more reliable, for solving the BILS problem (1.4).

The problem considered in [58] is to estimate the integer parameter vector x̂ in

the box-constrained linear model (1.3). The method proposed in [58] first ignores

the box constraint (1.3b). Instead of using the column permutations in (2.20), it

performs the LLL reduction (2.11), then the linear model (2.3) can be transformed

to (2.17). For the reduced model (2.17), one can find its ordinary Babai estimator

zOB. Define x̄ = ZzOB. In [58], x̄ is used as an estimator of the true parameter
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vector x̂. If x̄ ̸= x̂, then a vector error (VE) is said to have occurred. Note that

x̄ may be outside the constraint box B in (1.3b). If x̄ ∈ B, then x̄ is called a valid

vector, otherwise, i.e., x̄ /∈ B, x̄ is called an invalid vector. The conjecture proposed

in [58] is: a VE is most likely to occur if x̄ is invalid; conversely, if x̄ is valid, there

is little chance that the vector is in error.

From the definition of VE, if x̄ is invalid, then VE must occur. So in the

following, we will only consider the second part of the conjecture, i.e., Pr(x̄ ̸= x̂|x̄ ∈

B) ≈ 0.

4.3.1 The conjecture does not always hold

In this subsection, we first show that Pr(x̄ ̸= x̂|x̄ ∈ B) can be very close to 1,

then give a specific example to show Pr(x̄ ̸= x̂|x̄ ∈ B) ≥ 0.9275, and finally perform

some Matlab simulations to illustrate this example.

Theorem 4.3.1 For any given ϵ > 0, any fixed dimension n ≥ 2, any box B and

any standard deviation σ of the noise vector v, there always exists a box-constrained

linear model in the form of (2.5), where x̂ is uniformly distributed over the box B,

such that

Pr(x̄ ̸= x̂|x̄ ∈ B) ≥ 1− 1

u1 − l1 + 1
− ϵ. (4.33)

Proof. Note that

Pr(x̄ ̸= x̂|x̄ ∈ B) = Pr(x̄ ∈ B)− Pr((x̄ = x̂) ∩ (x̄ ∈ B))
Pr(x̄ ∈ B)

= 1− Pr(x̄ = x̂)

Pr(x̄ ∈ B)
. (4.34)
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Thus, to prove the theorem, it suffices to show that there exists a box-constrained

linear model such that

Pr(x̄ = x̂) ≤
( 1

u1 − l1 + 1
+ ϵ

)
Pr(x̄ ∈ B). (4.35)

For any fixed σ, box B and ϵ > 0, there exists r11 ∈ R+ such that

ϕσ(r11) ≤
( 1

u1 − l1 + 1
+ ϵ

)
×
( 1

2(u1 − l1 + 1)

u1−l1∑
i=0

[ϕσ((2u1 − 2l1 − 2i+ 1)r11) + ϕσ((2i+ 1)r11)]
)
(4.36)

where ϕσ(·) is defined in (3.1). In fact, for any fixed σ, it is easy to verify by

L’Höpital’s rule that

lim
r11→0

ϕσ(r11)
1

2(u1−l1+1)

∑u1−l1
i=0 [ϕσ((2u1 − 2l1 − 2i+ 1)r11) + ϕσ((2i+ 1)r11)]

=
1

u1 − l1 + 1
.

Therefore, there exists r11 ∈ R+ such that (4.36) holds.

To construct the linear model, we need only to construct a matrix R ∈ Rm×n.

With r11 satisfying (4.36), take r22 such that r22 ≥ r11 and define

R =

r11 0.5r11e
T

0 r22In−1,n−1


where e = [1, . . . , 1]T ∈ Rn−1. For the resulting linear model, in the following we

show that (4.35) holds.
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Note that R is already LLL reduced, thus, x̄ = zOB = xOB and x̂ = ẑ. Then,

by (4.2), the left-hand side of (4.35) satisfies

Pr(x̄ = x̂) = ϕσ(r11)ϕ
n−1
σ (r22). (4.37)

Obviously,

Pr(x̄ ∈ B) = Pr(xOB ∈ B) ≥ Pr
(
xOB

1 ∈ [l1, u1]
∩

(∩n
i=2(x

OB

i = x̂i))
)

= Pr
(
xOB

1 ∈ [l1, u1]|(∩n
i=2(x

OB

i = x̂i))
)
· Pr

(
∩n

i=2 (x
OB

i = x̂i)
)

= Pr
(
xOB

1 ∈ [l1, u1]|(∩n
i=2(x

OB

i = x̂i))
)
ϕn−1
σ (r22) (4.38)

where the last equality follows from (4.2). Therefore, by (4.37) and (4.38), to show

(4.35) it suffices to show

ϕσ(r11) ≤
( 1

u1 − l1 + 1
+ ϵ

)
Pr(xOB

1 ∈ [l1, u1]|(∩n
i=2(x

OB

i = x̂i))).

Then, by (4.36), it suffices to show

Pr(xOB

1 ∈ [l1, u1]|(∩n
i=2(x

OB

i = x̂i)))

=
1

2(u1 − l1 + 1)
×

u1−l1∑
i=0

[ϕσ((2u1 − 2l1 − 2i+ 1)r11) + ϕσ((2i+ 1)r11)]. (4.39)

From the proof for Theorem 4.1.1, we see that if xOB
i = x̂i for i = n, n − 1, . . . , 2

and x̂1 is fixed, then cOB
1 ∼ N (x̂1, σ

2/r211). Since xOB
1 = ⌊cOB

1 ⌉ and x̂ is uniformly
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distributed over the box B,

Pr
(
xOB

1 ∈ [l1, u1]|(∩n
i=2(x

OB

i = x̂i))
)

=

u1−l1∑
i=0

Pr
(
x̂1 = l1 + i, xOB

1 ∈ [l1, u1]|(∩n
i=2(x

OB

i = x̂i))
)

=

u1−l1∑
i=0

Pr(x̂1 = l1 + i) Pr
(
xOB

1 ∈ [l1, u1]|(x̂1 = l1 + i) ∩ (∩n
i=2(x

OB

i = x̂i))
)

=
1

u1 − l1 + 1

u1−l1∑
i=0

Pr
(
cOB

1 ∈ [l1 − 1/2, u1 + 1/2]|(x̂1 = l1 + i) ∩ (∩n
i=2(x

OB

i = x̂i))
)

=
1

u1 − l1 + 1

u1−l1∑
i=0

1√
2πσ/r11

∫ u1+1/2

l1−1/2

exp

(
−(t− l1 − i)2

2σ2/r211

)
dt

=
1

u1 − l1 + 1

u1−l1∑
i=0

1√
2π

∫ (2u1−2l1−2i+1)r11/(2σ)

−(2i+1)r11/(2σ)

exp(−t2/2)dt

=
1

2(u1 − l1 + 1)

u1−l1∑
i=0

[ϕσ((2u1 − 2l1 − 2i+ 1)r11) + ϕσ((2i+ 1)r11)],

where the second equality follows from (4.6). Therefore, (4.39) holds, and this com-

pletes the proof. �

As u1− l1+1 is at least 2, Theorem 4.3.1 shows that Pr(x̄ ̸= x̂|x̄ ∈ B) can be at

least 1/2− ϵ and can be very close to 1. In the following, we give a specific example

to show that Pr(x̄ ̸= x̂|x̄ ∈ B) ≥ 0.9275 and give some simulation results.

Example 4.3.1 For any fixed n and σ, let ϵ = 0.01 and B = [0, 15]n, and define

R =

0.04σ 0.02σeT

0 10σIn−1,n−1

 . (4.40)

It is easy to verify that this matrix R satisfies the requirements given in the proof of

Theorem 4.3.1. Then by (4.33), we have Pr(x̄ ̸= x̂|x̄ ∈ B) ≥ 0.9275.
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We use MATLAB to do some simulations to illustrate the probability. In the

simulations, for any fixed n and σ, we generated an n×n matrix R by using (4.40).

After fixing R, we gave 10000 runs to generate 10000 ṽ’s and 10000 x̂’s according to

their distributions, producing 10000 ỹ’s according to (2.3). For each ỹ, we found the

Babai point xOB by using (2.7). For each pair of R and σ, we computed the theoretical

probability Pr(x̄ = x̂) denoted by Pth by using (4.37) (notice that Pth = P OB since

x̄ = xOB here) and the corresponding experimental probability Pex (i.e., the ratio of

the number of runs in which x̄ = x̂ to 10000). We also computed the experimental

probability Pb of x̄ ∈ B (i.e., the ratio of the number of runs in which x̄ ∈ B to

10000) and the experimental probability Pe corresponding to Pr(x̄ ̸= x̂|x̄ ∈ B) (i.e.,

Pe = 1− Pex/Pb).

Tables 4–9 and 4–10 respectively display those probabilities versus n = 5 : 5 : 40

with σ = 0.1 and versus σ = 0.1 : 0.1 : 0.8 with n = 20. From these two tables,

we can see that the values of Pe are larger than 0.9275 except the case that n = 40

in Table 4–9, in which Pe is smaller than 0.9275, but it is close to the latter. Thus

the test results are consistent with the theoretical result. We also observe that Pth is

very small and Pex is a good approximation to Pth. In Tables 4–9 the values of Pth

are actually different, but very close because ϕσ(r22) is very close to 1 (c.f. (4.37))

and in Tables 4–10 the values of Pth are exactly equal because in (4.37) ϕ(r11) and

ϕσ(r22) are independent of σ. This experiment confirms that even if x̄ is valid, there

may be a large chance that it is in error.

4.3.2 The conjecture holds under some conditions

In this subsection, we will show that the conjecture holds under some conditions.
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Table 4–9: Probabilities versus n = 5 : 5 : 40 with σ = 0.1

n Pth Pex Pb Pe

5 0.0160 0.0160 0.2484 0.9356
10 0.0160 0.0150 0.2485 0.9396
15 0.0160 0.0164 0.2469 0.9336
20 0.0160 0.0163 0.2499 0.9348
25 0.0160 0.0173 0.2564 0.9325
30 0.0160 0.0172 0.2500 0.9312
35 0.0160 0.0172 0.2473 0.9304
40 0.0160 0.0182 0.2434 0.9252

Table 4–10: Probabilities versus σ = 0.1 : 0.1 : 0.8 with n = 20

σ Pth Pex Pb Pe

0.1 0.0160 0.0159 0.2503 0.9365
0.2 0.0160 0.0168 0.2522 0.9334
0.3 0.0160 0.0156 0.2434 0.9359
0.4 0.0160 0.0156 0.2399 0.9350
0.5 0.0160 0.0175 0.2435 0.9281
0.6 0.0160 0.0173 0.2475 0.9301
0.7 0.0160 0.0157 0.2541 0.9382
0.8 0.0160 0.0162 0.2517 0.9356

Recall x̄ = ZzOB and x̂ = Zẑ, thus Pr(x̄ = x̂) = Pr(zOB = ẑ). Then, by

(4.34), we have

Pr(x̄ ̸= x̂|x̄ ∈ B) ≤ 1− Pr(zOB = ẑ). (4.41)

So, if Pr(zOB = ẑ) ≈ 1, then the conjecture holds. From Corollary 4.1.2 we see that

when σ is small enough, we have Pr(zOB = ẑ) ≈ 1. But the upper bound given

in (4.41) is not sharp because it was derived from (4.34) by using the inequality

Pr(x̄ ∈ B) ≤ 1. We will give a sharper upper bound on Pr(x̄ ̸= x̂|x̄ ∈ B) based on

a sharper upper bound on Pr(x̄ ∈ B).
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Since x̄ = ZzOB, x̄ ∈ B if and only if zOB ∈ E ≡ {Z−1s | ∀s ∈ B}. Thus

Pr(x̄ ∈ B) = Pr(zOB ∈ E). But the set E is a parallelotope and it is difficult to

analyze Pr(zOB ∈ E). Thus in the following we will give a box F to include E , then

we analyze Pr(zOB ∈ F). Let U = (uij) = Z−1 and define for i, j = 1, 2, . . . , n,

µij =


lj, if uij ≥ 0

uj, if uij < 0

, νij =


uj, if uij ≥ 0

lj, if uij < 0

.

Then define l̄ ∈ Zn and ū ∈ Zn as follows:

l̄i =
n∑

j=1

uijµij, ūi =
n∑

j=1

uijµij, i = 1, 2, . . . , n. (4.42)

It is easy to observe that

E ⊆ F ≡ {z ∈ Zn : l̄ ≤ z ≤ ū}. (4.43)

Actually it is easy to observe that F is the smallest box including E .

With the above preparation, we now give the following result.

Theorem 4.3.2 Suppose that the assumptions in Theorem 4.1.1 hold and the linear

model (2.5a) is transformed to the linear model (2.17) through the LLL reduction

(2.11). Then the estimator x̄ defined as x̄ = ZzOB satisfies

Pr(x̄ ̸= x̂|x̄ ∈ B) ≤ 1−
n∏

i=1

ϕσ(r̄ii)

ϕσ((ūi − l̄i + 1)r̄ii)
, (4.44)

where ϕσ is defined in (3.1) and l̄ and ū are defined in (4.42).
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Proof. Since Pr(x̄ ∈ B) = Pr(zOB ∈ E), it follows from (4.43) that

Pr(x̄ ∈ B) ≤ Pr(zOB ∈ F). (4.45)

In the following, we will show

Pr(zOB ∈ F) ≤
n∏

i=1

ϕσ((ūi − l̄i + 1)r̄ii). (4.46)

Then combining (4.45), (4.46) and the fact that Pr(x̄ = x̂) = Pr(zOB = ẑ) =∏n
i=1 ϕσ(r̄ii), we can conclude (4.44) holds from (4.34).

To show (4.46), instead of analyzing the probability of zOB on its left-hand side,

we will analyze an equivalent probability of v̄ as we know the distribution of v̄.

In our proof, we need to use the basic result: given v ∼ N (0, σ2) and η > 0, for

any ζ ∈ R,

Pr(v ∈ [ζ, ζ + η]) ≤ Pr(v ∈ [−η/2, η/2]) = ϕσ(η). (4.47)

By (3.1), the equality in (4.47) obviously holds. To prove the inequality, let

q(ζ) =

∫ ζ+η

ζ

exp
(
− t2

2σ2

)
dt.

Thus the inequality can be written as q(ζ) ≤ q(−η/2). We can easily show that

q′(−η/2) = 0, q′(ζ) > 0 if ζ < −η/2 and q′(ζ) < 0 if ζ > −η/2. Thus, the inequality

holds.

From (2.17) and (2.7), we observe that zOB is a function of v̄. To emphasize this,

we write it as zOB(v̄). When v̄ changes, zOB(v̄) may change too. In the following

analysis, we assume that ẑ is fixed and v̄ satisfies the model (2.23a).
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For later uses, for = n, n− 1, . . . , 1, define

Gi = {wi:n| ȳi:n = R̄i:n,i:nẑi:n +wi:n, z
OB

k (wi:n) ∈ [l̄k, ūk], k = i, i+ 1, . . . , n}. (4.48)

From (4.48), it is easy to verify that zOB(v̄) ∈ F if and only if v̄ ∈ G1. Therefore,

(4.46) is equivalent to

Pr(v̄1:n ∈ G1) ≤
n∏

i=1

ϕσ((ūi − l̄i + 1)r̄ii). (4.49)

We prove (4.49) by induction. First, we prove the base case:

Pr(v̄n ∈ Gn) ≤ σ((ūn − l̄n + 1)r̄nn).

By (2.7) and (2.17), we have

cOB

n =
ȳn
r̄nn

=
r̄nnẑn + v̄n

r̄nn
= ẑn +

v̄n
r̄nn

.

Since zOB
n (v̄n) = ⌊cOB

n ⌉, by (4.48),

Pr(v̄n ∈ Gn) = Pr
(
ẑn +

v̄n
r̄nn

∈ [l̄n − 1/2, ūn + 1/2]
)

= Pr(v̄n ∈ [(l̄n − ẑn − 1/2)r̄nn, (ūn − ẑn + 1/2)r̄nn])

≤ ϕσ((ūn − l̄n + 1)r̄nn)

where in deriving the inequality, we used (4.47).

Suppose for some i > 1, we have

Pr(v̄i:n ∈ Gi) ≤
n∏

k=i

ϕσ((ūk − l̄k + 1)r̄kk). (4.50)
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Now we want to prove

Pr(v̄i−1:n ∈ Gi−1) ≤
n∏

k=i−1

ϕσ((ūk − l̄k + 1)r̄kk). (4.51)

For our proof, we partition the set Gi into a sequence of disjoint subsets. To do

that, for i = n, n− 1, . . . , 1, we first define the discrete set

Hi =
{ n∑

j=i

ri−1,j

ri−1,i−1

(ẑj − zOB

j (wj:n))
∣∣wi:n ∈ Gi

}
.

Then, for any t ∈ Hi, we define

Gi,t =
{
wi:n|wi:n ∈ Gi such that

n∑
j=i

ri−1,j

ri−1,i−1

(ẑj − zOB

j (wj:n)) = t
}
.

It is easy to verify that ∪t∈Hi
Gi,t = Gi and Gi,t1 ∩Gi,t2 = ∅ for t1, t2 ∈ Hi and t1 ̸= t2.

Therefore,

Pr(v̄i:n ∈ Gi) =
∑
t∈Hi

Pr(v̄i:n ∈ Gi,t) (4.52)

and

Pr(v̄i−1:n ∈ Gi−1) = Pr(v̄i:n ∈ Gi, z
OB

i−1(v̄i−1:n) ∈ [l̄i−1, ūi−1])

=
∑
t∈Hi

Pr(v̄i:n ∈ Gi,t, z
OB

i−1(v̄i−1:n) ∈ [l̄i−1, ūi−1])

=
∑
t∈Hi

Pr(v̄i:n ∈ Gi,t) Pr
(
zOB

i−1(v̄i−1:n) ∈ [l̄i−1, ūi−1]|v̄i:n ∈ Gi,t

)
.

(4.53)
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Now we derive a bound on the second probability of each term on the right-hand

side of (4.53). By (2.7) and (2.17), we have

cOB

i−1 =
r̄i−1,i−1ẑi−1 +

∑n
j=i r̄i−1,j ẑj + v̄i−1 −

∑n
j=i r̄i−1,jz

OB
j (v̄j:n)

r̄i−1,i−1

= ẑi−1 + t′ +
v̄i−1

r̄i−1,i−1

where

t′ =
n∑

j=i

r̄i−1,j

r̄i−1,i−1

(ẑj − zOB

j (v̄j:n)).

If v̄i:n ∈ Gi,t for some t, then t′ = t ∈ Hi. Since zOB
i−1(v̄i−1:n) = ⌊cOB

i−1⌉,

Pr
(
zOB

i−1(v̄i−1:n) ∈ [l̄i−1, ūi−1]|v̄i:n ∈ Gi,t

)
= Pr

(
ẑi−1 + t+

v̄i−1

r̄i−1,i−1

∈ [l̄i−1 − 1/2, ūi−1 + 1/2]
)

= Pr
(
v̄i−1 ∈

[
(l̄i−1 − ẑi−1 − t− 1/2)r̄i−1,i−1, (ūi−1 − ẑi−1 − t+ 1/2)r̄i−1,i−1

])
≤ ϕσ((ūi−1 − l̄i−1 + 1)r̄i−1,i−1) (4.54)

where for the inequality we used (4.47). Thus, from (4.53) it follows that

Pr(v̄i−1:n ∈ Gi−1) ≤
∑
t∈Hi

Pr(v̄i:n ∈ Gi,t)ϕσ((ūi−1 − l̄i−1 + 1)r̄i−1,i−1)

= Pr(v̄i:n ∈ Gi)ϕσ((ūi−1 − l̄i−1 + 1)r̄i−1,i−1)

where the equality is due to (4.52). Then the inequality (4.51) follows by using

the induction hypothesis (4.50). Therefore, the inequality (4.49), or the equivalent

inequality (4.46), holds for any fixed ẑ.

Since (4.46) holds for any fixed ẑ, it is easy to argue that it holds no matter

what distribution of ẑ is over the box F , so the theorem is proved. �
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By Theorem 4.3.2, if
∏n

i=1
ϕσ(r̄ii)

ϕσ((ūi−l̄i+1)r̄ii)
≈ 1, then Pr(x̄ ̸= x̂|x̄ ∈ B) ≈ 0,

i.e., the conjecture holds. The condition will be satisfied when the noise standard

deviation σ is sufficiently small.

Here we make a comment on the upper bound in (4.44). The derivation of

(4.44) was based on the two inequalities (4.45) and (4.46). The inequality (4.45)

was established based on the fact that E ⊆ F in (4.43). If the absolute values of

the entries of the unimodular matrix Z−1 are big, then it is likely that F is much

bigger than E although F is the smallest box to contain E , making the inequality

(4.45) loose. Otherwise it will be tight; in particular, when Z = I, then E = F

and the inequality (4.45) becomes an equality. In establishing the inequality (4.46)

we used the inequality (4.47) (see (4.54)), which is simple but may not be tight if

ζ is not close to −η/2. Thus the inequality (4.46) may not be tight. Overall, the

upper bound in (4.44) may not be tight sometimes, but it is always tighter than

than the upper bound in (4.41). The following example shows that the former can

be significantly tighter than the latter and can be a sharp bound.

Example 4.3.2 We use exactly the same data generated in Example 4.3.1 to com-

pute the upper bounds in (4.41) and (4.44), which are denoted by µeb1 and µeb2,

respectively. The results for n = 5 : 5 : 40 with σ = 0.1 are given in Table 4–11. To

see how tight they are, the values of Pe given in Table 4–9 are displayed here again.

Recall Pe is the experimental probability corresponding to the theoretical probability

Pr(x̄ ̸= x̂|x̄ ∈ B) in (4.41) and (4.44).

From Table 4–11, we can see the upper bound µeb2 is obviously tighter than the

upper bound µeb1 and µeb2 is close to Pe. When n = 10, Pe > µeb2, this is because
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there are some deviations between the experimental values and the theoretical values.

The values of µeb1 are actually not exactly the same for different n, but they are very

close. This is also true for µeb2.

Table 4–11: Pe and bounds versus n = 5 : 5 : 40 with σ = 0.1

n Pe µeb1 µeb2

5 0.9356 0.9840 0.9364
10 0.9396 0.9840 0.9364
15 0.9336 0.9840 0.9364
20 0.9348 0.9840 0.9364
25 0.9325 0.9840 0.9364
30 0.9312 0.9840 0.9364
35 0.9304 0.9840 0.9364
40 0.9252 0.9840 0.9364

4.3.3 A modified stopping criterion

From Theorem 4.3.1 and Example 4.3.1, the stopping criterion developed in [58]

may be too optimistic. However, we can use Theorem 4.3.2 to develop a more reliable

stopping criterion, see Algorithm 4.3.1.

Algorithm 4.3.1 Modified Stopping Criterion

1: Use the LLL reduction to reduce (1.3a) to (2.17) and find the corresponding
Babai point zOB by using (2.7).

2: Define x̄ = ZzOB, if x̄ ∈ B (see (1.3b)) and
∏n

i=1
ϕσ(r̄ii)

ϕσ((ūi−l̄i+1)r̄ii)
is close to 1 (see

Theorem 4.3.2), then use x̄ to estimate x̂; otherwise, solve the BILS problem
(1.4) to get the maximal likelihood estimator xBL and use it to estimate x̂;

From Algorithm 4.3.1, if x̄ /∈ B, but part entries of x̄ are in the corresponding

constraint interval, then the BILS problem (1.4) should be solved to get xBL. There-

fore, from this point of view, there is still room to improve the stopping criterion.
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One method of dealing with this case is to use column permutation strategies in-

stead of the LLL algorithm to reduce (1.4), establish a theorem which is similar to

Theorem 4.3.2 to bound Pr(x̄ ̸= x̂|x̄ ∈ B) and use partial validation techniques to

do the estimation. We leave this part to the interesting readers.

From the definition of E (see the paragraph above (4.42)), if x̄ ∈ B, then zOB ∈ E ,

by (4.43), zOB ∈ F . Therefore, instead of finding the Babai point zOB by using (2.7),

we can find the box-constrained Babai point zBB with the constraint box F via (2.8)

and assume x̄ = ZzBB. Note that, in practice, this modification probably can not

bring much improvement of the effectiveness of the stopping criterion if the box B is

large, because in this case the box F may be very large.
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CHAPTER 5
An Efficient Algorithm for an SVP Problem in Computer-and-Forward

Protocol Design

In this chapter, we consider the problem of finding the optimal coefficient vector

that maximizes the computation rate at a relay in the computer-and-forward scheme.

Based on the idea of sphere decoding, we propose a very efficient method that gives

the optimal coefficient vector, i.e., solves (1.5). First, we derive an algorithm with

only O(n) flops, to compute the Cholesky factorization of G in (1.5) (we do not

form the whole Cholesky factor R explicitly), to transform (1.5) to a SVP. Then,

we propose some conditions that can be checked by O(n) flops, under which the

optimal coefficient vector a⋆ can be obtained immediately without using any search

algorithm. After that, by taking into account some resultant useful properties of

a⋆, we modify the Schnorr-Euchner search algorithm to solve the SVP. Simulation

results show that the average cost of our new algorithm is O(n1.5) flops for i.i.d.

Gaussian channel entries, and our algorithm is not only much more efficient than

the existing ones that give the optimal solution, but also faster than some of the

suboptimal methods. Part of the contributions of this chapter appear in [92] and

[93] is a more complete version which includes all of the main contributions.

5.1 Introduction of compute-and-forward

In relay networks, compute-and-forward (CF) [67] is a promising relaying strat-

egy that can offer higher rates than traditional ones (e.g., amplify-and-forward,
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decode-and-forward), especially in the moderate SNR regime. The crucial idea of

CF is the application of linear/lattice codes [99] and physical layer network coding

(PLNC) [52]. The received signal at a relay is the linear combination of a set of

transmitted signals, where the linear combination coefficients form the channel vec-

tor from the involved sources to that relay. By multiplying the channel vector by

an amplifying factor, the obtained new channel vector can be close to a coefficient

vector with all integer-valued entries. This means that after applying an appropriate

amplifying factor to the received signal at a relay, it will be approximately an integer

linear combination of the transmitted signals. Since the same linear code is used at

the sources, an integer linear combination of valid codewords is still a valid code-

word, which means the aforementioned integer linear combination of the transmitted

signals is possible to be successfully decoded as a linear combination of the messages

corresponding to the transmitted signals. Under certain conditions, with enough such

decoded linear combinations of the transmitted messages, the transmitted messages

can be recovered.

Obviously, the amplifying factors and the integer-valued coefficient vectors need

to be carefully designed. When Nazer and Gastpar [67] proposed the CF scheme, they

defined the computation rate and set it as the metric for designing the amplifying

factor and the integer-valued coefficient vector. Roughly speaking, computation rate

refers to the maximum transmission rate at the involved sources of a relay such

that the combined signals at the relay can be reliably decoded. It has been pointed

out that setting the amplifying factor at a relay as the minimum-mean-square-error

(MMSE) coefficient can maximize the computation rate at that relay. The difficulty
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lies in the design of the coefficient vectors. To optimize the performance of the whole

system, the coefficient vectors should be designed jointly. However, this requires each

relay to know the channel state information (CSI) at other relays. Also, it could be

far too complex. One suboptimal choice is to design the coefficient vector of each

relay with the criterion being maximizing the computation rate of that relay. This

is reasonable when only the local CSI at each relay is available. Unfortunately, the

problem is not trivial even for this case, as it turns out to be a classical shortest

vector problem (SVP) in a lattice. In this chapter, we will focus on this case, i.e.,

finding the optimal coefficient vector at a relay such that the computation rate at

that relay is maximized.

Various methods have been proposed for designing the coefficient vectors. The

Fincke-Phost method [24] was modified in [89] to solve a different but related prob-

lem, leading to the optimal coefficient vector and some other suboptimal vectors. A

branch-and-bound algorithm, which uses part of the properties of the optimal vector,

was used in [71]. But it appears that this algorithm is not efficient in this application.

There are methods that give suboptimal solutions. Three methods were proposed in

[73]: the one based on the complex LLL [27], the simple quantized search method and

the iterative MMSE-based quantization method. Although the average complexity

of the LLL algorithm [51] is polynomial if the entries of the basis vectors indepen-

dently follow the normal distribution N (0, 1) (see, e.g., [42], [55]), the cost of the first

method maybe too high since it was proved in [42] that in the MIMO context, the

worst-case complexity of the LLL algorithm is not even finite. The last two methods

are of low complexity, but they may fail to offer satisfactory performance especially
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when the dimension is large. Besides these, the quadratic programming relaxation

method in [101] and its improvement in [102], are of relatively low complexity. Al-

though their performance in terms of the computation rate are better than that of

the last two methods proposed in [73], the differences between their performance and

that of the optimal methods are still large when the dimension is large and the SNR

is high.

In this chapter, we will propose an efficient algorithm for finding the optimal

coefficient vector that maximizes the computation rate at a relay. First, we will derive

an efficient algorithm with only O(n) flops to transform the problem to a standard

SVP by fully using the structure of the matrix to compute its Cholesky factorization

(we do not form the whole Cholesky factor R explicitly). We will also propose some

conditions that can be checked with O(n) flops, under which the optimal coefficient

vector can be obtained immediately without using any search algorithm. Then, we

will propose a modified Schnorr-Euchner search algorithm to solve the SVP by taking

advantage of the properties of the optimal solution. Simulation results indicate that

the average cost of our new algorithm is O(n1.5) flops for i.i.d. Gaussian channel

entries.

We have noticed that very recently, an algorithm with the complexity of O(n2.5)

flops has been proposed in [72]. This algorithm finds the optimal solution by solving

an optimization problem with one variable over a bounded region. Our proposed

algorithm is totally different from this one and our simulations indicate that ours is

much faster.
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5.2 Problem statement

We consider the problem of finding the optimal coefficient vector that maximizes

the computation rate (defined in [67]) at a relay in the CF scheme. The application

scenario we focus on is the additive white Gaussian noise (AWGN) network, where

sources, relays and destinations are linked with linear channels with AWGN. For the

ease of explanation, we will focus on the real-valued channel model in the sequel.

Definition 5.2.1 (Channel Model) Each relay (indexed by i = 1, 2, . . . ,m) observes

a noisy linear combination of the transmitted signals through the channel,

yi =
n∑

j=1

hi(j)xj + zi,

where xj ∈ RN with the power constraint 1
N
∥xj∥22 ≤ P is the transmitted codeword

from source j (j = 1, 2, . . . , n), hi ∈ Rn is the channel vector to relay i (here hi(j)

denotes the j-th entry of hi), zi ∈ RN is the noise vector with entries being i.i.d.

Gaussian, i.e., zi ∼ N (0, I), and yi is the signal received at relay i.

For relay i with the channel vector hi, let ai be the chosen coefficient vector,

the computation rate is calculated according to the following theorem [67].

Theorem 5.2.1 The computation rate at relay i is uniquely maximized by choosing

the amplifying factor as the MMSE coefficient, which results in a computation rate

R (hi,ai) =
1

2
log+

 1

∥ai∥2 −
P(hT

i ai)
2

1+P∥hi∥22

 , (5.1)

where log function is with respect to base 2 and log+(x) , max (log(x), 0).

Also, we define the optimal coefficient vector as below.
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Definition 5.2.2 (The Optimal Coefficient Vector) The optimal coefficient vector

a⋆
i for a channel vector hi is the one that maximizes the computation rate,

a⋆
i = arg max

ai∈Zn\{0}
R (hi,ai) . (5.2)

The optimization problem (5.2) can be further formulated as the following

quadratic form [89]:

a⋆
i = arg min

ai∈Zn\{0}
aT
i Giai, (5.3a)

Gi = I − P

1 + P∥hi∥22
hih

T
i . (5.3b)

Hereafter, we will ignore the subscript “i”, e.g., hi will be directly written as h.

In the next section, we will propose an efficient method based on sphere decoding to

solve (5.3).

5.3 Proposed method

In this section, we will derive an efficient algorithm to solve (5.3).

Define the scaled channel vector t as

t =

√
P

1 + P∥h∥22
h, (5.4)

then, (5.3) is equivalent to the following problem:

a⋆ = arg min
a∈Zn\{0}

aTGa, (5.5a)

G , I − ttT . (5.5b)

Obviously, ∥t∥2 < 1 and G is symmetric positive definite. Throughout this chapter,

we assume h ̸= 0; otherwise, it is trivial.
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The problem in (5.5) can be solved via two steps:

• First, for a given t, computes G and finds its Cholesky factorization, i.e., finds

an upper triangular matrix R such that G = RTR. Then (5.5) is equivalent

to the following shortest vector problem (SVP):

a⋆ = arg min
a∈Zn\{0}

∥Ra∥2. (5.6)

• Second, use a search algorithm, such as the LLL-aided Schnorr-Euchner search

strategy [74], to solve (5.6). We will explain the details later.

It is easy to see that for a given t, computing G costs O(n2) flops. Besides, it is

well-known that computing the Cholesky factorization of a general n×n matrix costs

O(n3) flops. Moreover, the cost of the LLL-aided Schnorr-Euchner search strategy

[74] for solving (5.6) maybe too high. Fortunately, we find out that it is possible to

accelerate the two steps mentioned above as follows:

• First, take advantage of the special structure of G in (5.5b) to compute its

Cholesky factorization and transform (5.5) to (5.6), but do not form G, the

whole R and the SVP explicitly.

• Second, investigate the properties of a solution a∗ to (5.6) and take them into

account to modify the Schnorr-Euchner search strategy [74] to find a⋆.

If a⋆ is a solution of (5.6), then −a⋆ is also a solution. To reduce redundancy,

we apply the following restriction.

Restriction 5.3.1 Throughout this chapter, we restrict the solution a⋆ to (5.6) such

that tTa⋆ ≥ 0.
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5.3.1 Transformation of the problem

To transform (5.5) to the SVP (5.6), we need to find the Cholesky factorization of

G in (5.5b). Besides the regular method, one can use the algorithm proposed in [13],

which costs 2n2+O(n) flops, to get the Cholesky factor R. However, the cost can be

further reduced. Also, to analyze the complexity of our proposed search algorithm in

Section 5.4, we need to know the diagonal entries ofR. In this subsection, we will take

into account the special structure of G to achieve this goal with only O(n) flops (we

do not form the whole R explicitly. If the whole R is needed for other applications,

it costs n2/2 +O(n) flops). Based on the diagonal entries of R and by investigating

their properties, we will also propose some conditions that can be checked by O(n)

flops, under which the optimal solution a⋆ can be obtained immediately without

using any search algorithm.

Our proposed algorithm to find the Cholesky factor R of G in (5.5b) is based

on the following theorem:

Theorem 5.3.1 The Cholesky factor R of G in (5.5b) is given by:

rij =


√

1−
∑i

l=1 t
2
l

1−
∑i−1

l=1 t2l
, j = i

−titj√
1−

∑i−1
l=1 t2l

√
1−

∑i
l=1 t

2
l

, i < j ≤ n

, (5.7)

where 1 ≤ i ≤ n and denote
∑0

1 · = 0.

Proof. To prove the theorem, we show any element of G is equal to the correspond-

ing element of RTR in the same position, i.e., by (5b), we would like to show

k∑
i=1

r2ik = 1− t2k, 1 ≤ k ≤ n (5.8)
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and
k∑

i=1

rikrij = −tktj, 1 ≤ k < j ≤ n. (5.9)

By (5.7), we have

k∑
i=1

r2ik = r2kk +
k−1∑
i=1

r2ik

=
1−

∑k
l=1 t

2
l

1−
∑k−1

l=1 t2l
+

k−1∑
i=1

t2i t
2
k

(1−
∑i−1

l=1 t
2
l )(1−

∑i
l=1 t

2
l )

=
1−

∑k
l=1 t

2
l

1−
∑k−1

l=1 t2l
+

t2k
∑k−1

l=1 t2l

1−
∑k−1

l=1 t2l
= 1− t2k,

and

k∑
i=1

rikrij = rkkrkj +
k−1∑
i=1

rikrij

=
−tktj

1−
∑k−1

i=1 t
2
i

+

∑k−1
i=1 t

2
i tktj

(1−
∑i−1

l=1 t
2
l )(1−

∑i
l=1 t

2
l )

=
−tktj

1−
∑k−1

i=1 t
2
i

+
tktj

∑k−1
i=1 t

2
i

1−
∑k−1

i=1 t
2
i

= −tktj.

Thus, both (5.8) and (5.9) hold, completing the proof. �

We can use Theorem 5.3.1 to design an efficient algorithm to find R. To simplify

notation, we introduce an n−dimensional vector variable f . Let

f0 = 1, fi = 1−
i∑

l=1

t2l , 1 ≤ i ≤ n. (5.10)

Then by (5.7), we have

rii =
√
fi/fi−1, 1 ≤ i ≤ n,
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and

Ri,i+1:n = (−ti/
√
fifi−1)t

T
i+1:n, 1 ≤ i < n.

Note that Ri,i+1:n is a scaled tTi+1:n.

After getting R, we will modify the Schnorr-Euchner search algorithm to solve

(5.6). Later we will see that it is not necessary to form R explicitly (we will give

more details to explain this in the last subsection of this section), i.e, we do not need

to compute the multiplication of −ti/
√

fifi−1 and ti+1:n. Thus, the cost is O(n)

flops.

By (5.7), it is easy to see that the entries of R have the following properties:

Theorem 5.3.2 For 1 ≤ k ≤ n, the following inequalities hold:

√√√√1−
k∑

i=1

t2i ≤ rkk ≤
√

1− t2k, (5.11)

n∏
i=k

rii =

√
1− ∥t∥22√

1−
∑k−1

i=1 t
2
i

≥
√
1− ∥t∥22. (5.12)

Under Theorem 5.3.1, we have the following interesting result, which can be

used to describe the geometry of the search space later.

Theorem 5.3.3 For 1 ≤ i < j ≤ n, the eigenvalues of RT
i:j,i:jRi:j,i:j are fj/fi−1 (f

is defined in (5.10)) and 1 with algebraic multiplicity j − i.

Proof. We first prove

RT
i:n,i:nRi:n,i:n = In−i+1 −

ti:n√
fi−1

tTi:n√
fi−1

. (5.13)
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If i = 1, then by Theorem 5.3.1 and (5.10), (5.13) holds. So we only need to prove

it holds for i > 1.

By Theorem 5.3.1, we have

RT
i:n,i:nRi:n,i:n = In−i+1 − ti:nt

T
i:n −RT

1:i−1,i:nR1:i−1,i:n,

R1:i−1,i:n = (ti:n

[
−t1√
f0f1

−t2√
f1f2

. . . −ti−1√
fi−2fi−1

]
)T .

Thus, we have

RT
i:n,i:nRi:n,i:n = In−i+1 − (1 +

i−1∑
k=1

t2k
fkfk−1

)ti:nt
T
i:n.

By (5.10),

t2k
fkfk−1

=
1

fk
− 1

fk−1

.

Therefore,

RT
i:n,i:nRi:n,i:n = In−i+1 −

ti:n√
fi−1

tTi:n√
fi−1

,

i.e., (5.13) holds.

From (5.13), we can immediately get

RT
i:j,i:jRi:j,i:j = Ij−i+1 −

ti:j√
fi−1

tTi:j√
fi−1

.

Thus, the eigenvalues of RT
i:j,i:jRi:j,i:j are 1’s and

1−
∑j

k=i t
2
k

fi−1

=
fj
fi−1

.

�
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Generally speaking, after getting R, a search algorithm should be used to find

the solution a⋆ to (5.6). Theorem 5.3.1 gives the closed-form expression of R, so a

natural question is whether there exist some easily-checked conditions, under which

the optimal solution a⋆ can be obtained without using any search algorithm? In the

following, we will answer this question.

Theorem 5.3.4 The optimal solution a⋆ satisfies

∥Ra⋆∥2 ≥ min
1≤i≤n

√√√√1−
∑i

j=1 t
2
j

1−
∑i−1

j=1 t
2
j

≥
√

1− ∥t∥22. (5.14)

Furthermore, if we have

t2i ≤ t21(1−
i−1∑
l=1

t2l ), i = 2, 3 . . . , n, (5.15)

then e1 is a solution to (5.6).

Proof. The first inequality in (5.14) follows directly from (5.7) and

∥Ra⋆∥2 ≥ min
1≤i≤n

rii, (5.16)

which was given in [63, pp.99].

By the first inequality in (5.11),

min
1≤i≤n

rii ≥
√
1− ∥t∥22.

Therefore, the second inequality in (5.14) follows.

If (5.15) holds, then by some simple calculations, we have:

min
1≤i≤n

√√√√1−
∑i

j=1 t
2
j

1−
∑i−1

j=1 t
2
j

= r11,
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and the first inequality in (5.14) becomes an equality with a⋆ = e1. �

It is easy to see that (5.15) can be checked by O(n) flops.

5.3.2 Reordering the entries of t

After getting (5.6), a search algorithm, such as the Schnorr-Euchner search

strategy [74] can be used to solve it. For efficiency, lattice reduction for R in (5.6)

is usually used to strive for

r11 ≤ r22 ≤ . . . ≤ rnn (5.17)

to accelerate searching. Notice that (15) may not be achievable. For more details on

why (5.17) should be strived, readers are referred to, e.g., [2] and [18].

The LLL reduction [51] is a commonly used reduction method to strive for (5.17).

However, for this application, it has two main drawbacks. First, its complexity is

high. In fact, it was shown in [42] that in the MIMO context, the worst-case cost

is not even finite. For more details, see, e.g., [51], [22] and [55]. Also, from the

simulation results in Section 5.5, we will see that the cost of the LLL reduction is even

higher than that of our proposed algorithm. Second, it may destroy the structure of

R and some properties of the optimal solution a⋆ to the reduced problem (we will

explain this in the latter part of this subsection). In this subsection, we will propose

a method to strive for (5.17) without the above shortcomings.

From (5.7), to strive for (5.17), we permute the entries of t. To make r11 as small

as possible, we permute t such that |t1| is the largest. Suppose that tj, 1 ≤ j ≤ i

have been fixed, then from (5.7), rjj, 1 ≤ j ≤ i are fixed. To make rj+1,j+1 as small

as possible, we permute the entries of tj, i+1 ≤ j ≤ n such that |tj+1| is the largest.
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So after the permutations we have

|t1| ≥ |t2| ≥ . . . ≥ |tn|. (5.18)

Here we want to point out the above idea of reordering the entries of t is actually

the same as that of SQRD [95], a column reordering strategy for a general matrix in

the box-constrained integer least squares (BILS) problem [16], [90]. It is interesting

to note that if we use the idea of V-BLAST [25], another column reordering strategy

used in solving BILS problems [21], we will get the same ordering of t. In fact, by

(5.7),

r2nn =
1− ∥t∥22

1− ∥t∥22 + t2n
.

Thus, to make rnn as large as possible, we need to permute t such that |tn| is

the smallest. Suppose that tj, i + 1 ≤ j ≤ n have been fixed, then from (5.7),

rjj, i+ 1 ≤ j ≤ n are fixed. By (5.7),

r2ii =
1− ∥t∥22 +

∑n
j=i+1 t

2
j

1− ∥t∥22 +
∑n

j=i+1 t
2
j + t2i

.

Thus, to make rjj as large as possible, we permute the entries of tj, 1 ≤ j ≤ i such

that |ti| is the smallest. So after the permutations we also have (5.18).

To make the late search process faster, we also want to make ti ≥ 0 for 1 ≤ i ≤ n.

This can easily be done. In fact, when we determine the i-th entry of t in the

permutation process, we can use a sign permutation matrix so that the new i-th

entry is nonnegative. Thus, eventually we have

t1 ≥ t2 ≥ . . . ≥ tn ≥ 0. (5.19)
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The above process can be described mathematically as follows. For a given t,

we can find a signed permutation matrix Z ∈ Zn×n such that t̄ = Zt satisfying:

t̄1 ≥ t̄2 ≥ . . . ≥ t̄n ≥ 0.

This transformation is a sorting process and the cost is O(n log(n)), see [101] for

more details. Note that ZZT = I. Then, with ā = Za, the optimization problem

(5.5) can be transformed to

ā⋆ = min
ā∈Zn\{0}

āT Ḡā,

Ḡ , I − t̄t̄
T
.

Obviously a⋆ = ZT ā⋆.

Therefore, for a given t, we use the above method to transform it such that the

transformed t satisfies (5.19). For the sake of convenience, in our later analysis, we

assume the entries of t satisfy (5.19).

Except speeding up the search, ordering the entries of t like in (5.19) has another

important effect, i.e., by the results in [71] and [101], if (5.19) holds, we can find a

solution a⋆ to (5.6) such that

a⋆1 ≥ a⋆2 ≥ . . . ≥ a⋆n ≥ 0. (5.20)

The order of the elements of the solution a∗ in (5.20) is a key property of the

solution we restricted for (5.6). It has been used in [101] to find a suboptimal solution

to (5.6), but only the property that ai ≥ 0, 1 ≤ i ≤ n has been used in [71] to solve

(5.6). In this chapter, we will fully use it in designing the search algorithm. Note
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that, if the LLL reduction is used for reducing R in (5.6), then (5.20) may not hold,

which is the second drawback of using the LLL reduction in striving for (5.19). The

motivation for reordering the entries of t in [71] and [101] is to obtain the property

(5.20), which was (partially) used in their methods. Here we gave another motivation

from the search point of view.

Under (5.19) and Theorem 5.3.1, we have the following interesting results:

Theorem 5.3.5 If (5.19) holds, then for 1 ≤ i ≤ n− 1

rii ≤ ∥Ri:i+1,i+1∥2 ≤ ∥Ri:i+2,i+2∥2 ≤ . . . ≤ ∥Ri:n,n∥2 (5.21)

Proof. By (5.7), for 1 ≤ i < j ≤ n,

∥Ri:j,j∥2 =
j−1∑
k=i

r2kj + r2jj

=

j−1∑
k=i

t2kt
2
j

(1−
∑k−1

l=1 t2l )(1−
∑k

l=1 t
2
l )

+
(1−

∑j
l=1 t

2
l )

(1−
∑j−1

l=1 t
2
l )

=
t2j

(1−
∑j−1

l=1 t
2
l )

−
t2j

(1−
∑i−1

l=1 t
2
l )

+
(1−

∑j
l=1 t

2
l )

(1−
∑j−1

l=1 t
2
l )

=1−
t2j

(1−
∑i−1

l=1 t
2
l )
.

By the aforementioned equations, (5.7) and (5.19), it is easy to see that (5.21)

holds. �

5.3.3 Schnorr-Euchner search algorithm

We first introduce a depth-first tree search algorithm: the Schnorr-Euchner

search algorithm [74], [2], a variation of the Fincke-Pohst search strategy [24], to

solve a general SVP, which has the form of (5.6). Note that, the Schnorr-Euchner
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algorithm is generally more efficient than the Fincke-Phost, for their comparisons,

see, e.g., [2]. Then we modify it by using the properties ofR and the optimal solution

a⋆ to make the search process faster..

Let the optimal solution be within the following hyper-ellipsoid:

∥Ra∥22 < β2, (5.22)

where β is a constant. Define

dn = 0, dk = − 1

rkk

n∑
j=k+1

rkjaj, k = n− 1, . . . , 1. (5.23)

Then (5.22) can be written as:

n∑
i=1

r2ii(ai − di)
2 < β2

which is equivalent to

r2kk(ak − dk)
2 < β2 −

n∑
j=k+1

r2jj(ai − dj)
2 (5.24)

for k = n, n− 1, . . . , 1, where k is called the level index and
∑n

j=n+1 · = 0.

Based on (5.24), the Schnorr-Euchner search algorithm can be described as

follows. First we set the initial β = ∞, and for k = n, n − 1, . . . , 1, we compute

dk by (5.23) and set ak = ⌊dk⌉, leading to ak = 0, for which (5.24) holds. So we

obtain an integer vector a = 0. Since the optimal solution a⋆ is a nonzero vector,

we need to update a. Specifically, we set a1 as the next closest integer to d1. Note

that (5.24) with k = 1 holds for the updated a. Then, we store this updated a and

set β = ∥Ra∥2. After this, we try to find an integer vector within the new ellipsoid
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by updating the latest found a. Obviously, we cannot update only its first entry a1,

since we cannot find any new integer a1 that satisfies (5.24) with k = 1, which is now

an equality for the current a. Thus we move up to level 2 to try to update a2 by

choosing it being the next nearest integer to d2. If it satisfies (5.24) with k = 2, we

move down to level 1 to update a1 by computing d1 ((5.23)) and setting a1 = ⌊d1⌉

and then checking if (5.24) with k = 1 holds and so on; otherwise we move up to

level 3 to try to update a3, and so on. Finally, when we fail to find a new value for

an to satisfy (5.24) with k = n, the search process stops and the latest found integer

vector is the optimal solution a⋆ we seek. This is a depth-first tree search. For more

details, see, e.g., [2] and [16].

We summarize the search process in Algorithm 5.3.1, where

sgn(x) =


1, x ≥ 0

−1, x < 0

. (5.25)

Algorithm 5.3.1 Schnorr-Euchner search algorithm

Given a nonsingular upper triangular matrix R ∈ Rn×n, this algorithm finds a solu-
tion a⋆ to the SVP (5.6).

1. (Initialization) Set k = n, β = +∞.
2. Compute dk by using (5.23), set ak = ⌊dk⌉ and sk = sgn(dk − ak) (see (5.25)).
3. (Main Step) If the inequality in (5.24) does not hold, then go to Step 4. Else

if k > 1, set k = k − 1 and go to Step 2. Else (k = 1), go to Step 5.
4. (Outside ellipsoid) If k = n, terminate. Else, set k = k + 1 and go to Step 6.
5. (A valid point is found) If a is a nonzero vector, then save a⋆ = a, set β =

∥Ra∥2 and k = k + 1.
6. (Enumeration at level k) Set ak = ak+ sk, sk = −sk−sgn(sk) and go to Step 3.
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5.3.4 Modified Schnorr-Euchner search algorithm

In the following we make some comments to Algorithm 5.3.1 and make some

modifications. It is easy to see that, the first nonzero integer vector encountered by

Algorithm 2 is e1 and the corresponding search radius is

β = |r11| =
√
1− t21. (5.26)

Note that reordering the entries of t that makes (5.19) hold gives the smallest β

among any other orderings. This shows one of the benefits of the reordering leading

to (5.19). Also from (5.21), the reordering gives:

β = |r11| = min
1≤i≤n

∥R1:i,i∥2,

which implies e1 is better than any other ei for i = 2, . . . , n, as the former corresponds

to the smallest residual. In the modified algorithm, we just start with β given by

(5.26).

In Section 5.3.1, we mentioned that it is not necessary to form the entries of R

explicitly; in the following, we show how to compute rkk and dk for 1 ≤ k ≤ n, which

are needed in (5.24). By (5.7) and (5.10), we have

r2kk = fk/fk−1, 1 ≤ k ≤ n. (5.27)

In the modified algorithm, we will use a n−dimensional vector q to store r2kk, i.e.,

let qk = r2kk.
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By (5.7), (5.10) and (5.23),

dk =
tk
fk

n∑
j=k+1

tjaj.

Thus, for computational efficiency, we introduce an (n + 1)−dimensional vector p

whose last entry is 0 to store some computed quantities. Specifically, after ak, 1 ≤

k ≤ n is chosen in the search process, we assume

pk = pk+1 + tkak, 1 ≤ k ≤ n, (5.28)

which explains why pn+1 = 0. Therefore, we have

dk =
tkpk+1

fk
, 1 ≤ k ≤ n. (5.29)

Now we make the main modification to Algorithm 2 by using the property of

a⋆ in (5.20). Note that in the search process of finding an integer point a in the

hyper-ellipsoid, the entries of a are determined in the following order: an, an−1, . . . ,

a1. When we enumerate candidates for an at level n, we will only enumerate the

non-negative integers. When we enumerate candidates for ak at level k (note that

at this point, an, an−1, . . . , ak+1 have been chosen), we will only enumerate those

greater than or equal to ak+1. By doing these we can prune a lot of nodes from the

search tree to make the search process much faster.

For the users to implement the algorithm easily and for our later complexity

analysis, we provide the pseudo code of the modified algorithm in Algorithm 5.3.2.

Here we make a few comments to Algorithm 3. To unify the enumeration strate-

gies for level n and for any lower level, we set a to be an (n+1)−dimensional vector
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Algorithm 5.3.2 Finding the optimal coefficient vector based on sphere decoding
Given a n−dimensional vector t that satisfies ∥t∥ < 1 (see (5.4)) and (5.19), this algorithm solves
(5.5).

1: f = 0n, q = 0n; // qk = r2kk
2: f1 = 1− t21, qk = f1; // see (5.10) and (5.27)
3: for i=2:n do
4: fi = fi−1 − t2i ;// see (5.10)
5: qi = fi/fi−1;// see (5.27)
6: end for
7: d = 0n, p = 0(n+1)//see (5.23) and (5.28)
8: dist = 0n; // dist(k) =

∑n
i=k+1 r

2
ii(ai − di)

2 for k < n;

9: a = en+1
1 ; // intermediate solution

10: a⋆ = en1 ;
11: β2 = f1, γ = f1, k = 1, s = 1n, flag = 1n;
12: while k ≥ 1 do
13: newdist = dist(k) + γ;
14: if newdist < β2 then
15: if k ̸= 1 then
16: pk = pk+1 + tkak//see (5.28)
17: k = k − 1;
18: dist(k) = newdist;
19: dk = tkpk+1/fk; // see (5.29)
20: ak = ⌊dk⌉;
21: flagk = 0
22: if ak ≤ ak+1 then
23: ak = ak+1;
24: sk = 1;
25: flagk = 1
26: else
27: sk = sgn(dk − ak); // see (5.25)
28: end if
29: γ = qk((dk − ak))

2

30: else
31: β2 = newdist;
32: a⋆ = a1:n;
33: end if
34: else
35: if k = n then
36: return;
37: else
38: k = k + 1;
39: ak = ak + sk;
40: if ak = ak+1 then
41: flagk = 1;
42: sk = −sk − sgn(sk);
43: else if flagk = 1 then
44: sk = 1;
45: else
46: sk = −sk − sgn(sk);
47: end if
48: γ = qk((dk − ak))

2;
49: end if
50: end if
51: end while
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with an+1 ≡ 0, so that ak ≥ ak+1 holds for k = n. To avoid enumerating any integer

smaller than ak+1 at level k, we introduced a flag variable ”flag” in the algorithm to

indicate whether the enumeration has reached the lower bound ak+1 for 1 ≤ k ≤ n.

In the algorithm sk is the difference between the next integer candidate for ak and

the current value of ak and it is used to get the next integer candidate for ak.

5.4 Complexity analysis

In this section, we will analyze the complexity, in terms of flops, of the proposed

method, and compare it with two optimal methods proposed in [71] and [72], and two

suboptimal methods, which are the LLL reduction approach [73] and the quadratic

programming relaxation (QPR) approach [101] and its improvement in [102].

5.4.1 Complexity analysis for the modified Schnorr-Euchner search al-
gorithm

In this subsection, we try to analyze the cost of Algorithm 5.3.2. The approach

is to first count the number of nodes visited in the search tree and then to count

the number of arithmetic operations for each node. Unfortunately, we cannot give a

good bound on the number of nodes visited. Instead, we will give a conjecture about

it, which will be supported by numerical results.

It is difficult, if not impossible, to analyze the cost of Algorithm 5.3.2 because

the search radius β changes in the search process. Thus, we assume that the search

radius β keeps unchanged in our following analysis.

To illustrate our discussion, in Figure 5–1 we display the search tree correspond-

ing to Algorithm 5.3.2 with the assumption that β is a constant. Since there is not

a true tree root, the dashed line is used for the root node in Figure 5–1. We will
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analyze the cost of this search tree, which is an upper bound on the cost of Algorithm

5.3.2.

Figure 5–1: Search tree

To estimate the number of nodes at each level of the search tree, for k = n, n−

1, . . . , 1, we define sets:

Ek(β) = {ak:n ∈ Zn−k+1 : ak ≥ ak+1 ≥ . . . ≥ an ≥ 0, ∥Rk:n,k:nak:n∥2 < β}. (5.30)

Note that each non-leaf node at level k in the search tree corresponds to an ak:n ∈

Ek(β), and each leaf node labeled by × at level k corresponds to an ak:n /∈ Ek(β)

with ak+1:n ∈ Ek+1(β) (k < n).

Let |Ek(β)| denote the number of elements belong to Ek(β). Thus the number

of non-leaf nodes at level k in the search tree is |Ek(β)|. It is easy to argue that the

number of leaf nodes at level k in the search tree is exactly equal to |Ek+1(β)|. Thus
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the total number of nodes (including both the non-leaf and leaf nodes) at level k is

|Ek(β)|+ |Ek+1(β)|.

From Algorithm 5.3.2, any node at level k (k < n) comes from two possibilities.

One is that it is generated after its parent node at level k + 1 is generated. This

process corresponds lines 14-33 of Algorithm 5.3.2 and the cost is O(1) flops. The

number of such nodes is |Ek+1(β)|. The other is that it is generated after a leaf node

at level k − 1 is generated. This process corresponds lines 38-48 and the cost is also

O(1) flops. The number of such nodes is |Ek(β)|. Thus, the total cost for generating

all nodes at level k is

ck = (|Ek(β)|+ |Ek+1(β)|)O(1), (5.31)

where we denote |En+1(β)| = 0. Let C(n) denote the total cost of the search tree,

then, by (5.31), we obtain

C(n) =
n∑

k=1

ck = O(1)
n∑

k=1

|Ek(β)|. (5.32)

Obviously, |En(β)| ≤ ⌈β/rnn⌉. However, it is hard to rigorously compute or

estimate |Ek(β)| since the inequalities are involved in (5.30), so for k = 1, 2, . . . , n,

we define supersets:

Fk(β) = {ak:n ∈ Zn−k+1 : ∥Rk:n,k:nak:n∥ < β}, (5.33)

where β is the initial search radius used in Algorithm 3 (see (5.26)).
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Let |Fk(β)| denote the number of elements belong to Fk(β). Obviously, we have

|Ek(β)| ≤ |Fk(β)|. (5.34)

Then we would like to find |Fk(β)|. But it is difficult to give a good bound on it.

Naturally we would like to try to use a common approach used in the complexity

analysis of sphere decoding methods, which is approximating |Fk(β)| by the volume

of the hyper-ellipsoid ∥Rk:n,k:nak:n∥2 < β (see, e.g., [31, 10, 2]), i.e.,

|Fk(β)| ≈
βn−k+1∏n

i=k rii
Vn−k+1, (5.35)

where Vn−k+1 denotes the volume of an (n−k+1)−dimensional unit Euclidean ball,

i.e.,

Vn−k+1 =
π(n−k+1)/2

Γ((n− k + 1)/2 + 1)
(5.36)

with Γ being the Gamma function.

Unfortunately, the approximation (5.35) is not valid for this specific problem.

In fact, by (5.12) and (5.26), from (5.35) we have

|Fk(β)| ≈
(1−

∑k−1
i=1 t

2
i )

1/2(1− t21)
(n−k+1)/2√

1− ∥t∥22
Vn−k+1 ≤

1√
1− ∥t∥22

Vn−k+1. (5.37)

According to [26],

∞∑
k=1

Vk = eπ(1 +
2√
π

∫ √
π

0

e−t2dt) ≤ 2eπ.

123



Therefore, by (5.34)-(5.37), we have

n∑
k=1

|Ek(β)| ≤
n∑

k=1

|Fk(β)| /
2eπ√

1− ∥t∥22
. (5.38)

This indicates that if t is fixed, the number of nodes in the tree is approximately

a constant. But the number of nodes in the search true certainly depend on n. Thus

the approximation (5.37) is problematic. In fact, if we assume t = ∥t∥2e1, then by

(5.7), R is a diagonal matrix with

r11 =
√
1− ∥t∥22, rkk = 1, 2 ≤ k ≤ n.

Thus, by (5.30) and (5.26), |Ek(β)| = 1 for 2 ≤ k ≤ n since only the zero vector is

contained in the corresponding sets. And it is not hard to see that

β√
1− ∥t∥22

≤ |E1(β)| ≤
β√

1− ∥t∥22
+ 1.

Thus, for this special case,

n+
β√

1− ∥t∥22
− 1 ≤

n∑
k=1

|Ek(β)| ≤ n+
β√

1− ∥t∥22
. (5.39)

If we assume ∥t∥2 ≈ 0, then by (5.38),
∑n

k=1 |Ek(β)| ≈ 2eπ, contradicting with (5.39)

if n is very large. However, we think the following conjecture holds.

Conjecture 5.4.1
n∑

k=1

|Ek(β)| ≤
cn√

1− ∥t∥22
, (5.40)

where c is a constant.

In the following, we do some simulations to support that (5.40) holds for general

n and t. Note that t is defined by P and h in (5.4). Thus, we consider the case that
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Table 5–1: Average and largest ratios of
∑n

k=1 |Ek(β)| to n/
√

1− ∥t∥22 over 10000
realizations of h

HHHHHHn
P

P = 0dB P = 20dB P = 40dB

AR LR AR LR AR LR

2 0.4241 1.4747 0.3032 1.3399 0.3178 0.9292

4 0.5259 1.7803 0.4273 1.3123 0.4401 1.4314

8 0.4408 1.2875 0.4040 1.2632 0.4253 1.5001

16 0.3204 0.9109 0.1813 0.5917 0.1887 0.6826

32 0.2205 0.6348 0.0610 0.1770 0.0509 0.2033

64 0.1471 0.3783 0.0265 0.0602 0.0127 0.0394

102 0.1143 0.2937 0.0183 0.0338 0.0054 0.0154

103 0.0381 0.0567 0.0048 0.0063 0.0005 0.0006

104 0.0129 0.0151 0.0014 0.0016 0.0001 0.0002

105 0.0040 0.0043 0.0004 0.0004 0.0000 0.0000

the channel vector h ∼ N (0, I) (see Definition 5.2.1). For each n and each P , we

randomly generate 10000 realizations of h.

Table 5–1 displays the average and largest ratios of
∑n

k=1 |Ek(β)| to n/
√
1− ∥t∥22

over 10000 samples. ”AR” and ”LR” in Table 5–1 respectively denote average and

largest ratio. From the largest ratios in Table 5–1, we can see that (5.40) holds

with a small constant c = 2 for all the test cases. The average ratios in Table 5–1

show that averagely our algorithm searched far less number of nodes than what the

conjectured bound with c = 1 especially when n is large. Note that the number of

nodes searched by Algorithm 5.3.2 can not be larger than
∑n

k=1 |Ek(β)| because the

radius β reduces whenever a valid integer vector is found in the search process.

By (5.32), we get the following result.
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Theorem 5.4.1 If (5.40) holds, then we have

C(n) ≤ O(n)√
1− ∥t∥22

. (5.41)

In the following, we would like to investigate the expected value of C(n) when

the entries of h are independent and identically follow normal distribution N (0, 1).

It is easy to see that ∥h∥22 follows the chi-squared distribution χ2(n). Therefore,

E[∥h∥22] = n. Since
√
1 + Px is a concave function of x, by Jensen’s Inequality,

E
[√

1 + P∥h∥22
]
≤

√
1 + PE [∥h∥22] =

√
1 + nP . (5.42)

Therefore, by (5.4), (5.41) and (5.42), it is easy to see that the cost of Algorithm

5.3.2 is O(n1.5) flops if (5.40) holds.

5.4.2 Comparison of the complexity of the proposed method with other
methods

It is easy to see that, for any given h, computing t by (5.4) costs O(n) flops. And

for any fixed t, transform it such that (5.19) holds costs O(n log(n)) comparisons.

Since the total cost of Algorithm 5.3.2 is O(n1.5) flops if (5.40) holds. Simulation

results in the above subsection indicates (5.40) holds for the test cases, thus, the

total cost of the whole method is O(n1.5) flops for the test cases.

The complexity of the QPR in [101] and [102] is O(n3) and O(n1.5) flops, re-

spectively. The method based on LLL lattice reduction [73] uses the regular method,

costing O(n3), to obtain the Cholesky factor R. The optimal method proposed in

[71] needs to find the inverse of n matrices and solving n linear equations with the

dimensions from 1 to n, so its cost is higher than O(n3). The complexity of the

optimal method proposed in [72] is O(n2.5) flops. Therefore, it is expected that our
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optimal algorithm is faster than the LLL reduction based method, the QPR in [101]

and the two optimal methods proposed in [73] and [72], and faster than or has more

or less the same speed as the QPR in [102] if the conjecture (5.40) holds.

5.5 Numerical simulations

In this section, we present the numerical results to demonstrate the effective-

ness and efficiency of our new method. We consider the case that the entries of the

channel vector h ∈ Rn are i.i.d. Gaussian, i.e., h ∼ N (0, I). The dimension n of

h ranges from 2 to 16. For a given n, we randomly generate 10000 realizations of h

for each P from 0 dB to 20 dB with the step length 2 dB, and apply different meth-

ods to calculate the corresponding computation rates. To compare the effectiveness

of different methods, we compute the average computation rates; To compare the

efficiency, we record the running time.

The methods considered include our new method called the improved sphere

decoding (ISD) method, the branch-and-bound (BnB) algorithm [71], the optimal

method proposed in [72] (to be called SG named after the authors), the method

based on LLL lattice reduction algorithm [73] (to be called LLL), the quadratic

programming relaxation (QPR) approach [102] and the simple quantized search (QS)

method [73]. The quality-complexity tradeoff factor δ in the LLL method is set as

0.75. A larger δ (1/4 < δ ≤ 1) can give a higher rate, but the running time will

increase drastically as δ increases. The number of real-valued approximations, K, in

the QPR method is set according to the criterion proposed in [102], i.e., setting K to

be the smallest K0 such that the simulated average computation rate at 20dB using

the QPR method with K = K0 is greater than 99% of that with K = K0 +1. Exact
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values of K are listed in Table 5–2. The QS method implemented here consists of two

phases: 1) selecting an amplification factor α = α0 ∈ {1, 2, . . . , ⌊P 1/2}⌋; 2) refining

α by searching in [α0 − 1, α0 + 1] with a step size 0.1.

Table 5–2: Number of real-valued approximations in QPR method

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
K 2 3 4 5 5 5 6 6 6 7 7 7 6 7 6
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Figure 5–2: Average computation rates by different methods for n = 4

We first compare the average computation rates. Figures 5–2, 5–3, 5–4 show

the average computation rates over 10000 samples with the dimension n being 4, 8,

and 16, respectively. The ISD method, the SG method and the BnB method are

optimal. As expected, numerical results show that they always provide the highest

computation rate. The corresponding curves of these two methods in Figures 5–2, 5–

3, 5–4 exactly overlap with each other. The QS method is of low complexity; but as

shown in Figures 5–2, 5–3, 5–4, the corresponding rate is very low, especially when
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Figure 5–3: Average computation rates by different methods for n = 8
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Figure 5–4: Average computation rates by different methods for n = 16
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the dimension becomes large. The QPR method and the LLL based method provide

rates close to that of the optimal methods. However, as the dimension increases,

their performance degrade.

Now we compare the running time. We consider methods that offer optimal and

close-to-optimal rates: ISD, BnB, SG, LLL, and QPR in [102]. Figures 5–5, 5–6, 5–7

show the running time of simulating 10000 samples with P being 0 dB, 10 dB, and

20 dB, respectively. For the optimal methods, it is obvious that our new ISD method

is much more efficient than both the BnB method and SG method. It can also be

observed that the ISD method is also faster than the LLL based method. Although

the QPR method [102] is faster than our ISD method in Figure 5–7, it is a suboptimal

solution and its performance degrades for high dimension (see Figure 5–4).
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Figure 5–5: Running time for 10000 samples by different methods for P = 0 dB
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Figure 5–6: Running time for 10000 samples by different methods for P = 10 dB
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Figure 5–7: Running time for 10000 samples by different methods for P = 20 dB
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CHAPTER 6
Summary and Future Work

In this thesis, we have investigated the effects of the LLL reduction, and the LLL-

P, V-BLAST and SQRD column permutation strategies on the success probabilities

of the Babai estimators for the ILS (OILS and BILS) estimation problems, and

designed algorithms to solve a SVP arising in computer-and-forward protocol design.

In Chapter 2, we gave an extensive background introduction to the QRZ reduc-

tion, i.e., the lattice reduction, and the QRP reduction, i.e., the column reordering

strategies, to transfer the ILS problems to new ILS problems which can then be solved

by a search algorithm. We also introduced the Babai estimators, the commonly used

suboptimal solutions to the ILS problems in practice.

In Chapter 3, we investigated the effects of the LLL reduction and some column

permutation strategies on the success probability POB of the ordinary Babai estimator

xOB for the ordinary integer linear model (1.1). First, we showed that POB as a lower

bound on the success probability POL of the OILS estimator xOL is sharper than the

lower bound given in [37]. Second, we gave a rigorous proof to show that the LLL

reduction algorithm can always increase (not strictly) POB, and it keeps the POB

unchanged if and only if no column permutation occurs during the LLL reduction

process or whenever two consecutive columns, say k − 1 and k, are permuted, rk−1,k

is a multiple of rk−1,k−1 (before the size reduction on rk−1,k is performed). We

also showed that any size reductions on the super diagonal entries of R of the QR
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factorization of the channel matrix which are immediately followed by a column

permutation during the LLL reduction process will enhance POB and all other size

reductions have no effect on POB. Furthermore, we show that the LLL-P column

permutation strategy can also always increase (not strictly) POB, and it keeps POB

unchanged if and only if no column permutation occurs during the LLL-P process

or whenever two consecutive columns, say k − 1 and k, are permuted, rk−1,k = 0.

Third, we gave an example to show that larger δ, which is a parameter in the LLL

reduction, may not bring higher improvement of POB, and did some simulations

to show that larger δ usually bring higher improvement of POB. Fourth, we gave

examples to show that unlike LLL and LLL-P, the permutation strategies SQRD

and V-BLAST may decrease POB. But simulations showed that both of them usually

increase POB, and averagely the LLL reduction improves it much more significantly

than the other three, V-BLAST performs better than LLL-P and SQRD, and LLL-P

and SQRD have similar performances. Finally, we gave some upper bounds on POB

after applying the LLL reduction algorithm by using the entries of the R-factor R

of the QR factorization of the channel matrix.

We will investigate the following problems in the future. We will study the ef-

fects of the LLL reduction algorithm on POB if the model matrix is a random matrix

following some distributions, instead of being deterministic assumed in this thesis,

since in some communications applications, see, e.g. [42] and [55], the entries of

the model matrix independently follow the normal distribution N (0, 1). The HKZ

reduction usually returns a basis matrix whose columns are shorter than that of the
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LLL reduction. We will study if there is an algorithm for computing the HKZ re-

duction, which can always improve POB and guarantee to have higher improvement

than the LLL reduction algorithm. Since the running time of the LLL reduction

algorithm varies much from matrices to matrices even for matrices with fixed dimen-

sion, which may cause problems for the real-time communications system from the

implementation point of view. To address this issue, fixed complexity LLL reduction

algorithms have been proposed, see, e.g., [87]. We are designing some more effec-

tive fixed-complexity LLL reduction algorithms by using the theories developed in

Chapter 3 in [91].

In Chapter 4, we investigated the effects of some typical column permutation

strategies on the success probability P BB of the box-constrained Babai estimator xBB

for the box-constrained integer linear model and solved a conjecture proposed in [58].

First, we derived a formula for P BB. Then, on the one hand, we showed that LLL-

P always increases P BB and argued why both V-BLAST and SQRD often increase

P BB under a condition, which, roughly speaking, is the noise is relatively small; and

on the other hand, we showed that LLL-P always decreases P BB and argued why

both V-BLAST and SQRD often decrease P BB under an opposite condition, i.e., the

noise is relatively large. These surprising results indicate that we need to check the

corresponding conditions before applying these strategies. After this, we derived a

column permutation invariant bound on P BB, which is an upper bound and a lower

bound under the two opposite conditions, respectively. We also gave some numerical

results to illustrate the above results. Finally, we constructed an example to show
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that the conjecture proposed in [58] does not always hold, and then provided some

conditions to guarantee it hods.

In the future, we would like to consider the following problems. As shown in

Chapter 4, the LLL-P has better theory than V-BLAST and SQRD in terms of their

effects on P BB, but numerical experiments indicate that often V-BLAST is more

effective than LLL-P and SQRD. Therefore, we will try to combine their advantages

to develop a more effective column permutation strategy for the BILS problems.

Although it was shown in [84] that the success probability POB of the ordinary

Babai estimator xOB can not be larger than the success probability POL of the OILS

estimator xOL, it can be shown that this conclusion can not be extended to the BILS

problem if the true parameter vector x̂ is deterministic. Whether P BB ≤ P BL always

holds for uniform distributed x̂ will be studied in the future.

In Chapter 5, we proposed an efficient algorithm for finding the optimal co-

efficient vector that maximizes the computation rate at a relay in the computer-

and-forward scheme. First, we derived an O(n) algorithm to compute the Cholesky

factorization of the n × n matrix by fully using its structure to transfer the opti-

mization problem to a standard SVP (we did not form the whole Cholesky factor

explicitly). Then, we proposed some conditions, which can be checked by O(n) flops

and under which, the optimal coefficient vector can be obtained immediately with-

out using any search algorithm. After this, we proposed a modified Schnorr-Euchner

search algorithm to solve the SVP by taking into account some resultant useful prop-

erties of the optimal coefficient vector. Simulations showed that the average cost of

our new algorithm is O(n1.5) if the entries of the channel vector independently follow
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the normal distribution N (0, 1), and our proposed algorithm is not only much more

efficient than the existing ones that give the optimal solution, but also faster than

some of the suboptimal methods.

In the future, first, we will try to show in theory that indeed the complexity

of our algorithm is O(n1.5). Then, we intend to extend our algorithm to find the

integer network coding coefficients over a compute-and-forward multi-source multi-

relay system, i.e., solving the following optimization problem:

min
A∈Zn×n

max
1≤m≤n

aT
mGmam, Gm = I − P

1 + P∥hm∥
, (6.1)

subject to: A = [a1,a2, . . . ,an]
T , (6.2)

and: |A| ̸= 0, (6.3)

where P is the transmission power and hm ∈ Rn is the channel vector. For more

details, see, e.g., [89]. And we also intend to design efficient algorithms for finding

the coefficient matrix with full rank for the integer forcing linear receiver design, i.e.,

solving the following optimization problem:

min
A∈Zn×n

max
1≤m≤n

aT
mQam, Q = I −HT (HHT +

1

P
I)−1H , (6.4)

subject to: A = [a1,a2, . . . ,an]
T , (6.5)

and: |A| ̸= 0, (6.6)

where P is the transmission power and H is the channel matrix. For more details,

see, e.g., [73].
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closest lattice vector problems. In IWCC’11 Proceedings of the Third interna-
tional conference on Coding and cryptology, pages 159–190, 2011.

[37] A. Hassibi and S. Boyd. Integer parameter estimation in linear models with
applications to GPS. IEEE Transactions on Singal Processing, 46(11):2938–
2952, 1998.

[38] B. Hassibi. An efficient square-root algorithm for BLAST. In 2000 IEEE
International Conference on Acoustics, Speech, and Signal Processing, pages
737–740, 2004.

[39] C. Hermite. Oeuvres. Paris (Gauthier-Villars), 1917, 1905.

[40] J. Jaldén, L. G. Barbero, B. Ottersten, and J. S. Thompson. The error prob-
ability of the fixed-complexity sphere decoder. IEEE Transactions on Singal
Processing, 57(7):2711–2720, 2009.

[41] J. Jaldén and B. Ottersten. On the complexity of sphere decoding in digital
communications. IEEE Transactions on Signal Processing, 53(4):1474–1484,
2005.

[42] J. Jaldén, D. Seethaler, and G. Matz. Worst-and average-case complexity of lll
lattice reduction in MIMO wireless systems. In Proceedings of the 2008 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages
2685–2688, 2008.



141

[43] R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, pages 193–206, 1983.

[44] R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of operations research, 12(3):415–440, 1987.

[45] S. Khot. Hardness of approximating the shortest vector problem in lattices.
Journal of the ACM, 52(5):789–808, 2005.

[46] D. E. Knuth. The Art of Computer Programming. 2nd ed. Reading, MA:
Addison-Wesley, 1981, vol. 2, 1981.

[47] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische
Annalen, 6(3):366–389, 1873.

[48] J.-K. Kuusinen, J. Sorsa, and M.-L. Siikonen. The elevator trip origin-
destination matrix estimation problem. to appear in Transportation Science.

[49] J. C. Lagarias, H.W. Lenstra, and C. P. Schnorr. Korkin-zolotarev bases
and successive minima of a lattice and its reciprocal lattice. Combinatorica,
10(4):333–348, 1990.

[50] K-C. Lai, C-C. Huang, and J-J Jia. Variation of the fixed-complexity sphere
decoder. IEEE Communications Letters, 15(9):1001–1003, 2011.

[51] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with ratio-
nal coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[52] Soung Chang Liew, Shengli Zhang, and Lu Lu. Physical-layer network coding:
Tutorial, survey, and beyond. Physical Communication, 6:4–42, 2013.

[53] C. Ling and N. Howgrave-Graham. Effective LLL reduction for lattice decod-
ing. In IEEE International Symposium on Information Theory, 2007, pages
196–200.

[54] C. Ling, W. Mow, and L. Gan. Dual-lattice ordering and partial lattice re-
duction for SIC-based MIMO detection. IEEE Journal of Selected Topics in
Signal Processing, 3:975–985, 2009.



142

[55] C. Ling, W. Mow, and N. Howgrave-Graham. Reduced and fixed-complexity
variants of the LLL algorithm for communications. IEEE Transactions on
Communications, 61(3):1040–1050, 2013.

[56] S. Loyka and F. Gagnon. Performance analysis of the V-BLAST algorithm:
an analytical approach. IEEE Transactions on Wireless Communications,
3(4):1326–1337, 2004.

[57] W-K. Ma, T. N. Davidson, K. M. Wong, Z-Q. Luo, and P-C. Ching. Quasi-
maximum-likelihood multiuser detection using semi-definite relaxation with
application to synchronous CDMA. IEEE Transactions on Signal Processing,
50(4):912–922, 2002.

[58] Zheng Ma, Bahram Honary, Pingzhi Fan, and Erik G. Larsson. Stopping
criterion for complexity reduction of sphere decoding. IEEE Communications
Letters, 13(6):402–404, 2009.

[59] D. Micciancio. The hardness of the closest vector problem with preprocessing.
IEEE Transactions on Information Theory, 47(3):1212–1215, 2001.

[60] D. Micciancio. The shortest vector problem is NP-hard to approximate to
within some constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.

[61] D. Micciancio and O Regev. Lattice-Based Cryptography. Bernstein, D. J. and
Buchmann, J. (eds.), Berlin: Springer Verlagem, 2008.

[62] D. Micciancio and P Voulgaris. A deterministic single exponential time algo-
rithm for most lattice problems based on voronoi cell computations. SIAM
Journal on Computing, 42(3):1364–1391, 2013.

[63] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems:
a cryptographic perspective, volume 671 of The Kluwer International Series
in Engineering and Computer Science. Kluwer Academic Publishers, Boston,
Massachusetts, March 2002.

[64] H. Minkowski. Geometrie der zahlen (2 vol.). Teubner, Leipzig, 1910, 1896.

[65] W. H. Mow. Maximum likelihood sequence estimation from the lattice view-
point. IEEE Transactions on Information Theory, 40(5):1594–1600, 1994.

[66] Rubb I. Muirhead. Aspects of Multivariate Statistical Theory. New York:
Wiley, 1982.



143

[67] B. Nazer and M. Gastpar. Compute-and-forward: Harnessing interfer-
ence through structured codes. IEEE Transactions on Information Theory,
57(10):6463–6486, 2011.

[68] P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem
are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.
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