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PhTJCPEirS PTE.3EE3 IE PEE EHSOHY CF ALGEBRAIC Ph-TITE CUPYE3. 

IPPEODUCPIOH 

Pith the advent of the nineteenth century,a new era dawned 

in the progress of analytic geometry. The appearance of poiiceletTs, 

"Traite des proprietes project ives des figures", in 1822, really 

initiated modern geometry. M6bius,.five years later, in his 

"Barycentrische Caleul", introduced homogeneous co-ordinates, which 

greatly facilitated the discussion of descriptive geometrical 

properties. The outstanding contributor to analytic plane geometry 

in this significant period, however, was Johann Pliicker (1801-68), 

and we may regard him as the true founder of the modern theory of 

algebraic curves. He it was who formulated analytically the 

principle of Duality, and investigated the geometrical results. 

Pliicker's "Analytiseh-G-eometrische Sntwickelungen" was published 

in T 28131, and Steiner - who was really a synthetic geometer - con­

tributed much in 1832 . ''in the ten years which embrace the publication 

of the immortal works of Poncelet, Pliicker, and Steiner, geometry 

has made more real progress than in the two thousand years which 

had elapsed since the time of Apollonius. The ideas which had slowly 

been taking shape since the time of Descartes suddenly crystallized 

and almost overwhelmed geometry with an abundance of new ideas and 

principles." In Pliicker' s TtIheorie des Algebraischen Eurvenn (1855) 

* J.Pierpont, Bulletin Azaer. Math. 3oc. vol.II. no.3. 
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there appeared the analytic relations between the singularities 

of a curve which are known as Pliicker1 s Equations. Ludwig Otto 

Eesse subsequently gave a complete theory regarding the inflexions 

on a curve, and other contributions to the Theory of Higher plane 

Curves were made by Chasles, G-ergonne, Cay ley, Halphen, and 

Zeuthen. Although German mathematicianstin particular, advanced 

the subject in the nineteenth century, in recent years, it has 

especially attracted the attention of Italian geometers. 

In the following pages I have endeavoured to give a com­

prehensive account of Pliicker' s lumbers and Equations in the 

Theory of Algebraic Plane Curves. We shall see that these re­

lations enable us to determine the number and species of the simple 

singularities of a curve. They therefore assume a role of 

fundamental importance in the classification of plane curves. 

More over,I have confined the scope of this thesis to 

curves possessing ordinary singularities, k-ple linear branch 

points with distinct tangents, and ordinary superlinear branch 

points; that is to say, to simple and ordinary singularities. 

This limitation enables me to avoid the extensive and difficult 

considerations involved in the Theory of Functions and Cremona 

transformations, which are essential to a complete analysis of 

higher or compound singularities, nevertheless, Pliicker1 s 

Equations, properly understood, are applicable to a curve with 
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any singularities whatsoever, for these latter may be re­

garded as a combination of ordinary simple singularities. 

In example 47, however, a higher singularity on a unicursal 

curve is analysed in detail. The zero deficiency in this 

case, renders the resolution of this singularity possible, 

without recourse to the Theory of Functions.* 

I lay no claim to originality in results obtained, 

for I have merely attempted .to assemble existing knowledge 

of the subject into a consistent whole. The examples - some 

of which are logical deductions from independent memoirs on 

the subject - have been selected chiefly from Hilton's Plane 

Algebraic Curves, and the solutions probably present certain 

phases of novelty. Although Section IY deals especially 

with Pliicker's relations, I have thought the preceding 

material necessary to an adequate explanation of them. 

A course of lectures on The Modern Theory of Algebraic 

Plane Curves (Dr. C.T. Sullivan) has been most helpful in the 

preparation of this thesis; but in addition I have consulted 

extensively various works enumerated in the Bibliography. 

It may be added that I have tentatively assumed a 

knowledge of homogeneous co-ordinates, the concepts of calculus 

employed in analytical geometry, and numerous other comparatively 

simple results not generally included in elementary courses. 

*Cf. Cayley: Quarterly Journal of Mathematics vol.YII (1866) 

G.A. 31iss: Transactions of American Math.3oc.vol.XXIY(1922) 
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SECTION I. 

SINGULARITIES Oil A PLANE ALGEBRAIC CURYE 

The curve obtained by equating to zero any non-

homogeneous polynomial of degree n in x and y (or the 

corresponding homogeneous polynomial in x,y,z) is called 

a PLANE ALGEBRAIC CURYE of degree n. In this thesis we 

are concerned solely with such curves, and consequently 

we shall simply use the word 'curve' to denote 'an algebraic 

plane curve'. It is customary to call a curve of degree 

n an n-ic; although for n=l,2, .. ,7 we generally retain 

the familiar terminology line, conic, . . . . ,septic. 

Let us eliminate z between an equation of degree 

n,f(x,y,z)=0, and the equation of a line Tix+Py+i>zZO* 

We obtain f (x,y,-A^-i^—)=0, which is a homogeneous equation 

of degree n in x and y; it therefore represents n straight 

lines joining (0,0,1) to the intersections of ̂ xyry+^z =0 with 

f(x,y,z)*0. Thus, A STRAIGHT LINE MEETS AN n-IC II n POINTS, 

REAL OR IMAGINARY. 

If an n-ic breaks up into one or more rational 

factors of lower dimensions, the curve is IMPROPER or 

LEGE&1RATE; if on the other hand, the n-ic is irreducible, 

the curve is PROPER or NON-DEGENERATE. Thus, a quintic may 

consist of a cubic and two straight lines. The sum of the 

degrees of the faetasmust, of course^be equal to n.(in the 

illustration: 3+1+1 =5). 
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THE INTERSECTIONS OF TWO CUR YES. 

Before proceeding to the general case, let us 

investigate the intersections of two specific curves, a 

quintie and a cubic. 

(1). U5 = R0z *axz + &£z +a3Z
8
+£i4Z4ii5=0 ) 

„ )where &rbr are 
(2). U3 E b0z •b1z

2+b2z ^bg-O )homogeneous 

polynomials of degree r in x and y. 

Multiplying (1) by i,z,za, and (2) by l,z,z2,z ,z4, we obtain 

eight linear equations in l,z,z , ,z . By Sylvester's 

method we can eliminate z, finding as the eliminant: 

&o 

0 

Q 

0 

0 

0 

0 

°o 

&i 

4 0 

0 

0 

0 

0 

bo 

*1 

&a a^ &4 a.5 0 0 
1 

*1 6-2 &3 *4. &5 ° \ 
1 

a0 a.]_ &g ag &4 &5; 

0 0 b0 bi bg 03' 

0 b0 bx bE b2 0 

b0 bi b2 bs 0 0 ; 

bi b2 bs 0 0 0 
1 

bg b3 0 0 0 0 ; 

This eliminant is obviously homogeneous in x and y, and 

therefore represents lines joining (0,0,1) to the inter­

sections of U5 and Ug# A typical term of this determinant 

3 5 
is + a0 b2 , which is of degree 15. Consequently a quintic 

and a cubic intersect in fifteen points. 
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If now ao=a1=a2=borb1-0, let as multiply (1) by l,arv4(2Uŷ  

2 , 
We then obtain the three equations: &gz -fr̂ z+fî O ) 

bgz+b^rO )eliminating z: 

b2Z2+bgz=0) 

a2 ^4 ̂"5 

0 b2 bg'-o 

b 2 b 5 o ; 

This determinant is evidently of the ninth degree in x and y 

and therefore represents the. nine straight lines joining (0,0,1) 

to those intersections of the aurve which do not coincide with 

(.6,0,1). We saw that a cubic and quintic intersect in fifteen 

points, and in order to conserve this convention, we say that 

six of the intersections coincide with (0,0,1). Again, in the 

above equations, &«* an<i bo may have a common linear factor. 

The determinant, after the removal of this factor, (which is a 

common factor of the terms in the first column), will be re­

duced to eight; so that we consider seven intersections of the 

two carves coincident with (0,0,1). If Rg and bg have a 

common quadratic factor, the degree of the determinant is re­

duced to seven, and eight intersections coincide with (0,0,1). 

The preceding illustration renders a discussion of 

the general case much simpler. 

let carves be: (i) Un=a0z +aiz + +&n=0) 

N H-l )where ̂ r b r are 
(ii)UH=b0z

iN+biz • + V 0 ) 

homogeneous polynomials of degree r in x and y. To eliminate z 

we multiply (i) by l,z, ,z , and (ii) by l,z,. ,zn ; 
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2 n+N^l 
thereby obtaining n*N linear equations in l,z,z , ,z 

Their eliminant is homogeneous in x and y and consequently 

represents lines joining (0,0,1) to the intersections of the 

two carves. A typical term of the determinant is ±a0^b^fthat 

is to say, it is of degree nN. Thus, TV/O CURVES OF DEGREE n 

AND N RESPECTIYSLY, INTERSECT IN nN POINTS. Since imaginary. 

roots occar in pairs, the number of real intersections is nN«2I, 

where I is zero or a positive integer. 

Sappose ^o=a1r. . . . =&k:-i-b0*b1=- - • • -bK_i«0 

the equations (i) and (ii) become 

(i)1. a^^a^ia*""1* ••an=0)Maltiply (i)
1 by lfzt..: , z M " ! 

(ii)1. V ^ b ^ z * " 1 * - ••bjjsOj and (ii)1 by l,z,. . .z 1 1"^ 1 

77e thereby obtain n+N~( k:+K) linear equations. A typical term of 

TX-IL 
the resultant eliminant is +. a. HD n-ic which is of degree nJT-kX. 

» 

This equation represents lines joining (0,0,1) to those inter­

sections of Un and U^ not coincident with (0,0,1). In order to 

assign anconditional validity to the statement that two carves 

of degrees n and N intersect in nN points, we say that tK inter­

sections coincide with (0,0,1). 

If a^ and b-̂  have r linear factors, in common, we may regard 

the determinant as an (nl-tcK-r)-ic, and consequently, k:£+r inter­

sections are coincident with (0,0,1). 

A later section will amplify the preceding paragraphs. 

We now digress to consider singularities. 
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SINGULAR POINTS ON CURYES 

The general eqaation of an n-ic in Cartesian co-ordinates 

is\&+(b0x+b1y) + (c0x
2+2c1i:y+C2y

2') + •(pox
n+p;]x

n~1y* • - • +pny
n)r0 

or, more simply, u +a-\+]io+• - -+ur-0, where u is homogeneous 
o n r 

of degree r in x and y. If the origin lies on the curve, 

evidently a=aQ=0, and the equation of the curve becomes: 

ai+a2+ ' * " * an = 0* ^he equation of any line through the origin 

is y=mx, which evidently meets the curve at the origin, since 

it passes through (0,0); this line, however, meets the curve in 

two coincident points at the origin, if bo + b-,m»0, and coefficient 

of x2=0. Thus, XLlSbox*biy«0 is the equation of the TANGENT AT 

THE ORIGIN. 77e assume in our discussion that u0-0 

INFLEXION AT THE ORIGIN 

u-ĵ O; equation of form U]_+U]_V]_+Ug+ +un-0. The origin is 

an inflexion. ti-,=Q meets the curve in three points coincident 

with the origin and is called an inflexional or stationary tangent, 

or a tangent or 3-point contact, e.g. In cubical parabola x"=a y; 

origin is an inflexion and u^iy=0 is the inflexional tangent. 
Y / 

/ 

^-*^ x 

We notice that the curve crosses tangent at (6,0) and that 

no curve where n <^ 3 can possess this singularity. 

TODULATXQN AT THE QBIGIN. 

u-^0; equation of form: Uj+u^y-^+uiVg*^* • • - ' +u-n=0« The origin 

is an undulation. ti-]=0 meets the curve in four points coincident 

with the origin, e.g. a"(y+x) -£a2x(y+x)+x =0. 



We notice that the curve does not cross the tangent, and that 

the curve must be of at least the fourth degree to possess 

this singularity. 

TANGENT OE r-POINT CONTACT. 

• •u-.v̂  0+u + 
1 r-2 r 

-+un=0. Ujj* 0; equation of form: u-i+u-qvq'*'llqv2 + 

u-.rO meets the curve in r points coindident with the origin, 

and is called a tangent of r-point contact. 

DOUBLE POINTS - ACNODBS,CRUNODES,CUSPS 

uc^ 6; equation of form: u9+u^+- • • *u =0. The origin is a 

double point on the curve. Every line through the origin meets 

the curve in two coincident points there, except the two 

straight lines given by the quadratic u^-0 which meet the curve 

in three coincident points at the origin. These two lines 

are the tangents (to the two branches) at the origin. Since 

a double point is one where the curve cuts itself once, curves 

possessing such points are frequently called autotomic (self-

cutting) . 

If up=0 gives tangents real and distinct - (o,0) is a crunode 

II tt " H 

IT It 

" imaginary " "an acnode 
TT coincident - M " a cusp. 

Three familiar curves illustrate these three k:inds of double 

points. 

1. Eolium of Descartes: x +y r3axy. 

http://u-.rO
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2. 

3. 

11̂ =8 gives x=o,y=o, for the two tangents. Since they are 

real and distinct, the origin is a crunode. (fig.l below). 

Conchoid of Nicomedes: (£2+yZAy-a)*=ky2. e2= <£=)£- ,-a>t 

Ug«o gives x=+iey for the two tangents. Since they are 

imaginary, the origin is an acnode. Although the co-ordinates 

(o,o) satisfy the equation of the curve, the point is isolated 

from all the other points as the diagram show>s (beiow) . Eor 

this reason acnodes are frequently termed isolated points^and 

some writers call them conjugate points.(fig.2 below) 

Cissoid of Diodes: y2(2a~x)=x£ 

Up=o gives yro.i.e. y*o, y=o, for the two tangents. Since they 

coincide, the origin is a cusp. (fig.2 below) 

x 

An example of the three types of double points is also 

furnished by the limacon: (x +y2)2-2bx(x +y )-(a2-b2)x2+a2y2. 

Tangents are real and unequal, imaginary, or coincident, 

according as b^><^=a. If b^>a, origin is a crunode,and curve 

has form C. in diagram below. 

If b<a, 

" " C£ " " below. 

If b- a, 

TT " C„ n ff below. 

If o an acnode 

TT a cusp 

f—x 
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Although the cusp presents itself as a species of 

double point, it is really a distinct singularity, as 

subsequent work: will demonstrate. To differentiate it from 

the acnode and cru-ode we call these two latter, NODES; the 

term double point then includes the two types of singularities, 

nodes and cusps. 

ELBCNQDE, BIEIECIT0D3, etc. 

u1=o; CLgsVqWlL #0 

(i). equation of form: v1w1+v1v2+u4+u5+ •u-n:=o; o r i S i n i s 

a flecnode. 

The tangent corresponding to the common linear factor 

vt, has 3-point contact with one braneh?and thus is an 

inflexional tangent to this branch. 

e.g. a"(x42y)(y~2x)-a{y~2x)x2+y4.0. (fig.i below) 

(ii). equation of form: V-JW-^V-JW-JV^ * + u-n
=0; o r i S i n i s a 

biflecnode. 

Both tangents are inflexional. 

e.g. (x^^f- & 2U 2-y 2); (fig.ii below) 

(iii). Similarly, if v-Jor v ^ ) is a factor <bf UgAg, ,11^, 

the corresponding tangent (or tangents) has r-point 

contact with its branch (or the two branches). 
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TRIPIS POINT. 

+unrO; origin is al = a?- 0' a 3 ^ o ; e(la-a"bion o f form; 15+0-4+ 

a triple point. Three branches of the curve pass through 

the origin. Every line through (0,0) meets the curve in 

three coincident points, except the lines obtained by equating 

Ur—0, which meet the curve in four coincident points there. 

These lines are the tangents at the origin. 

2 4 4 
e.g. axy^= x +y*. 

The roots of the equation u3=o admit of four possibilities, 

for they may be (1) all real and unequal, (2) all real and 

two equal, (3) all real and all equal. (4) one real and two 

complex. Consequently, there are four kinds of triple points. 

k-PXS POINT 

u1=Uo=-' --a, n=o; CL^O; origin is a k-ple point. 

k distinct branches of the curve pass through the origin, 

and III =0 gives the k tangents to these branches there. 

The greater the value of k, the larger the number of 

possibilities of the k roots of u^ =o. Thus, as k in­

creases, the various species of k-ple points become more 

nd more numerous and complex. tx 
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So far the Cartesian system of co-ordinates has been assumed; 

let us now repeat our investigations where homogeneous co­

ordinates form the basic system. The general equation of an 

n-ic is: a z^a-^z11"1* • • - - «-an=o, where ur is homogeneous of 

degree r in x and y. If (0,0,1) is on this n-ic, u0=0, 

and equation becomes: 

n—1 n-2 
a., z +u0z + • * • •+ u =0. Consider the intersections of 
1 2 n 

y=mx with this latter curve, and the resultant equation 
contains x^ as a factor; hence u^so touches the curve, 

that is, it,is tangent to the curve at ( 0,0,1) ;( which is C 

on our triangle of reference} 

INFLEXION. 
n-1 n-2 n_£ 
u *o; \ij?o; equation of form: u. z û̂ v-̂ z +u^z +•• • •+un'=0; 

(o,o,l) is an inflexion. 

a =o evidently meets curve in three coincident points at (o,o,l) 

and is therefore the inflexional tangent. 

TANGENT OE r-PQINT CONTACT. 
~ « n-1 n-2 n-r-1 
a so; u-,^o; equation of form: u-̂ z + a

1
v i z **"*'"+alvr-2 z 

+a zn~r+• • •+u =0. u_-o has r-point contact at (o,o,l). 
r n 1-

k-PLB POINT. 
n-k n-k-1 
u =u-, - * • • =u, T=O, Uir^o; eouation of form: Ui_z + u, _ z + ••. 
0 1" k-i i r K k+1 

*u -; {o,o,l) is a k-ple point on the curve. The tangents at 
n~ 

(o,o,l) are given by 0.^=0. Suppose v^ is one of these tangents 
then it lias 2-point contact on its branch. If it is a factor 

of 11, v....,a, , then the order of contact of tangent is (r+2) 

(Doable and triple points are incorporated here, for the sake 

of brevity)-
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I have purposely avoided any precise definition of 

tangency. Certainly it is insuffic ient to say that a tangent 

is a line which intersects the curve in tŵ o coincident 

points, for as we have seen in the case of a double point 

the tangent meets the carve in three coincident points. The 

only satisfactory definition seems to be that "the tangent 

is the line of closest possible contact with^the curve at 

that point." (Basset). 

Since we can always transfer (0,0) or (o,o,l) to any 

definite point in the plane, our investigations naturally 

apply to points other than (0,0) or(o,o,l). However, a 

curve may possess singularities at infinity, and they can 

be determined in various ways (Explanations are found in 

Hilton pp.29-31, and Ganguli, vol.1, pp.71-72). 

The following examples afford practical illustrations of 

the theory. 

Ex.1. Discuss the nature of singularities at (0,0),(-1,0), 
4(1,0) on: 

y2*x3(x2-l)2(x-2)-o 

(i) for (o,8) 

aQra.so; a2=y gives coincident tangent s,.:( 0, 0) 

is a cusp on the curve. 

(ii) transfer origin to the point (-l,o); equation 

2 2 
assumes form: (y +12x )+&£+* ••*-o, the tangents are 

y~_+ 2T3" ix, that is, imaginary. Thus (-l,o) is an 

acnode on the curve. 



12 

P 2 
(iii) Transfer origin to (l,o); equation becomes y -4x +0.* + =o; 

tangents are y±2x=o;and are real and distinct. Thus 

(l,o) is a crunode on the curve. 

Ex.2. An n-ic has the sides CA,CB of the triangle of reference 

as tangents of r-point contact, A and B being the points 

of contact. Show that its equation is of the form: 

xyan_£=z
r a.n_r» where u^ is homogeneous of degree K in x,y,z, 

r 
The equation must contain z as factor when 

-o, and when y=o; and is therefore of form: 

xyan_2 s z
ran_r# 

Ex.3. A line joins two real inflexions on a cubic, show that it 

passes through a third real inflexion. 

Let as take the two real inflexions at A and B, and the 

inflexional tangents as CA and CB. Then by example 2; n=3, 

r^S. The equation of the cubic is: xyu^= z\ AB, i.e. z=o, 

intersects the cubic at A, B, and I, which is given by u1=ax + 

+by;=o 

Thus I* (-b,a,o) is a real inflexion and ti,so is the 

inflexional tangent. 

Ex.4. The sides of the triangle of reference have n-point contact 

with an n-ie. Show that the equation of the n-ic can be 

put in form: 

xyzu^ „+(ax*by)n+(by+cz)n+(cz+ax)n- anxn4bnyI1+cGzn;the * sign 
n—c — ° 

throughout if n is odd^ and either sign if n is even. 
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n odd; for side x=o, equation becomes: (by+cz) *o which 

shows that x:o has n-point contact with curve at point 

(o,c,-b). Similarly for y»o, z=o. 

n even; reasoning is the same, and we may evidently 

take either sign. 

An n-ic has three tangents having n-point cnntact.(i) if 

n is odd the points are collinear (ii) if n is even, 

either the points are eoHinear, or the three lines 

joining each to the intersections of the tangents at the 

other two are concurrent. 

(i). Take the tangents as the sides of the triangle of 

reference. Then, by example 4, equation has form: 

xy z un_ * + (ax • by)
 n+ (by+c z) n4c z •• ax) n«anxG+ b nyn+c nz B. . 

The points of contact are:- (o,-c,b); (~b,a,o) .[-£,0,0). 

Points are collinear if A « o - c b 
- c 6 a 
- b a o 

=o; which is so. 

(ii). Using +sign in (ax+by)n wre find, as in (i)7that 

points are collinear. 

If, however, we use form: xyzun.„2 + ( ax-by)
 n+( by+cz)n 

+ (cz+ax)n*anxI1+bnyn+cnzn, the points of contact are:-

(o,-c,b), (-e,o,a); (b.a.o) 

A = 
e-e b 
-C O £•• 

t a o 

= -2abc ^ 0 ; hence points not collienear, 
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Equations of the three tangents are: ax-by =0...(1) 
ez+ax =0.. .(2) 
by+cz =0...(3) 

Equation of line joining (o,-c,b) to intersection of (2)and(5)is 

* 7 z 
c-c b 
b-a-ab 

e \ 
i.e. ax-by=o. Similarly the other two lines are by+ez=o and 

a-b 
o b 
a o 

0 
c 
c 

=0, which 
is so. 

ez+axro, These three lines are concurrent if-. 

Ex.6. An n-ic has r-point contact with each of x=o and y-o at two 

distinct points.show that its equation has form: 

xyu _ su
r tug- . 
n-2 2 n-*:*r 

x=o,yro are bi tangents with r-point contact. .Then x=o,ur 

2 
is a factor of the equation and similarly for y=o. Thus 

equation is: xyu p a u r o 
n-2 tLg XL^^X 

Ex.7 In general n(n-l) -k(k+l) tangents to an n-ic can be drawn 

from the k-ple point (o,o,l). (Y7e exclude the tangents 

through C to the branches). 

.s j* n-k n-k-1 

equation assumes form; uz + u z +....u=o. 
ft k+1 u-

CP P becomes tangent when 

P-jQ^sPgQr,, i.e. when equation has 

equal roots in z. 

To'find condition that f (x,y,z)=ukz
n-_£... ,U^ZQ has equal 

roots in z, we must find the z - eliminant of f=o and f =0 
The resulting equation will be homogeneous in x and y 

and therefore represents tangents drrom (o,o,l) to the n-ic. 
The degree of the eliminant is the degree of the typical term: 
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n-k 
f - u^z • +u | __ n-k-1 n«-k 

, _ jTypical term is Ku uk ,i.e. 
ff z (n-k)u *-k-J-+ .. • • • a n _ 1

 n 

)of degree n(n-k-l)*k(n-k). 
Thus there are n(n-l)-k tangents, including the & tangents 
to the branches at (o , o , l ) ; therefore, apart from these:n(n-l)-

k -k»n(n-l)-k(k*l) tangents to the n-ic from ( o , o , l ) . 

CONDITIONS FOB MULTIPLE POINTS 

1 ° . f(x,y)=o is the equation of a n n-ic in Cartesian form. 

let (X,Y) be a point on the n-ic; if we transfer the origin to 

(X,Y) equation become©:f(X+x, Y+y) =o. 
'S Theorem: ~ 

By Taylor,, f(X+x, Y+y) r f(X.Y.)+(xj>. + y^-)f+ +J_(x^y3 ) f=o 
ax ^Y ux ax ^Y' 

Since X,Y on the curve, f(X,Y)-o; if it is a double point, 

u r o ; i.e. |i = ^ ro. 

Then, the three conditions for (X,Y) to be a double #oint are: 

The tangents at (X,Y) are given by:ug as2^f +2xyffi +yg2>T =o 
Y 

They are real and distinct, imaginary, or coincident, according 

as gt-m&)><— VaGT£ 
Thus: for a crunode at (X.Y) ; (a5^y) y i&? ny* 

for an aenode at (X.Y.). </ 

for a cusp at (X.Y.) = 

2° Vie now repeat the process for homogeneous co-ordinates. 

Xet (X,Y,2) be a point on the curve, then a point on the line 

joining this to any other point (x,y,z) is given by, (7\Y-*-/*>*, 

AY+^y, ?v^y-* )» where 7\-hjuu = 1 . This point is on 

the curve if f(^X+^>cj ?\Y-yw-y f /\T5-*/«-> z) = o . 
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^Taylor:^V'W^^"'f,|0iy'a,+5!>(^,*"*y+ ^ ("^'^ =° 

For a double point we must have: |^=^=||=0-

The vanishing of these three quantities, in virtue of Euler's 

relation X^-+ Y^£ • Z ̂f =nf, implies that f(X,Y,Z) -o. Thus we 
"dX 'hi ^T5-

still have but three independent conditions for a double point. 

The tangents at the double point are given by the homogeneous 

expression-, (*&+>&+*^ * l £ + y W ^ f *+ z ^ , % + 2 ~ l k + ̂ 'M* = ° ti} 

Equation (i) will represent two straight lines if D=o (#see footnote) 

Here D S 

In this multiply the columns by X,Y,Z in turn, 

and then use 

f f f 
x n J"iz Ai3 

f f f 
•*•*« ^IZ X23 

f f f 
-'"SI ^ZZ -*-33 

Euler1s formula: 

V - n 
XY2 

f f f 
±\ x12 13 

f f f 

Since f 1 = f% - f3 - o, evidently D=o 

a 
h 
g 

h 
b 
f 

g 
f 
c 

#. In f(x,y,z) -ax^by2+ez2+2fyz+2gzx*2hxy=o,:D 

f=o represents two straight lines, if D=o. If lines are coincident 

A=B-C=F=&=H=o; 3>&o; where A= ̂ -bc-f2, etc., F=|-J5r =gh-af ,etc .; 

BC-J^-aD, etc., aH-AF= j^etc. 

If F=G*H=o,D~o, then at least two of A,B,C must Danish, say B and 

C. B=ca-g2; C=ab-h2 whence a2bc=g2h^sa2f2-, i.e.,A=o. Thus the 

four conditions P»G=H3&D=o suffice to make f =o represent two 

coincident lines. In the above exercise t\=^>^c<^ = !§^ etc# 

C^Huir's Theory of Determinants. 
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If the two lines are coincident, we have, in addition to D=o, 

A-B-C-F-G-fi-0 

* s fi*-fi3~V f23
=0 

ttow, f ^ U f n + y f ^ ^ f 1 3 ) - f n (xf21*yf22+zf23)r ( n - D f ^ -

(n-l)fgfl;L , by Suler. 

i.e. 0 = (n-l)f1f12-(n-l)f2f11 (for L.H .S. = 6 identically) 

1,e# 51 = —^-r ̂ *L- by symmetry I Multiply numerators and 

denominators by X,Y,Z and add; 

fi ^ f» fa ZXfi _ nf = o . it therefore fallows that 

fl =f2 =fS =0 

Hence, for a cusp, we have four conditions as in Cartesian co­

ordinates. 

A summary of our results then is: 

conditions that (X,Y,Z) is a node of f=o are fj_ =f -f^ro 

" " " " " cusp " "are fa flx f 2*— 

f12flS -f22f
sl"

fE2fEl rf23f12~f51f32 * 

Although our considerations have been confined to double 

points, we may in a precisely analogous manner demonstrate 

that for a k-ple point on the curve, all partial derivations 

up to and including the order (k-1) vanish. 

8. Find the double points on x4-2a3r-2a2y2-2a2x2+a4
=o 

at a double point (X.Y.); f(X.Y) z 2l = M^ = o-
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^.=4X3-4a2X= o; X=0;±a 
f (a.o)-f fa.oWf (o -a) o; hence the 

ii=-6aY -6a*Y=o; Y=o,-a., 
double points are (a,o),(-a,o),(o,-a) 

For all three .points- £-£- =o . ££..iS ve 

Hence tax^Y ^> -^XF'JY* whence the three points are crunodes. 

Ex.9. Find double points on: y(x+3f= 4(4x-3y) (2x-3y-6) 

^=64X-78Y-2YX-96 ] X=-3; Y= -4; f(-3,-4) = o,hence is a 

3Y 
jf = -X2-^8X-4-72Y-63j double point. 

|.64.2Y^2; |i=72; JU78+2X=72
2=||L|Lz 

whence (-3,-4) is a cusp on this cubic. 

Sx.10. For what value of k has x \ y + z3= k(x+y-«-2) a double point? 

At a double point:^ = |^=^=o.(this implies £=o) 

^=3X -3k(X+-Yn-zf= o I (X,Y,Z) = (1,1,1); since x̂ y=,z, 

^Y --.'"--i-•-..-,"- ~ , Jx= k(3x)", i.e. k=i-J£=3Y-3k(X+Y+Z)*= o L ^ 3 , «,„ ,3 

j|=3Z -3k(3>Y+Z)*= o 
i>2 

Putting k = i , equation is z+y 3
+ z

3 — JL (XH- y+ zf= o. The 

tangents at (X,Y,Z) are represented by: 

i^--#^ff* = ^ SIY=S"^&=^Z=O
 meets f1) where 

5x2-4xy+5y=o; i.e. x=^±i^,that is, two imaginary lines. 

fhus (i) represents two imaginary tangents at (1,1,1) 

and consequently (1,1,1) is an acnode on this curve. 
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3x.ll. If S1=o,Sg-o, »s
r
=0 h a ^ a k-ple point at P, and 

G^ =o,C2=o, ,Cr=p are any other curves, 

fsC^Sj+CgSg*- • • -+CrSr so has a k-r̂ le point at P-

Clearly fat p=o-, ̂ LrCil^ -^S^r^Co, a£„. +$?_££*+ 
** ^* ^x dx >̂X 

+CrjSr + SraCr = 0 

Leibnitz expaasion 

Similarly for _££_ , . . . .,( "̂  )f. Thus f=o, has a 
?>y V ~6 y / 

k-ple point at P. 

Ex.12. If u=o,v=o are straight lines and p=o, r=o are (n-2)-ics, 

then pu +2quv+rv2=o is an n-ic with a node at P, the 

intersection of u=o and v= o 

f=0» 2£-u2a£ -»-2up̂  +2uv 3Q + -> =o. evidently vanishes 
*x 3x ax 3x 

at P. Similarly Bf-o, at P 

Consequently P is a node on the curve. 

The most general equation of degree n in Cartesian co­

ordinates is:-

a+fb^+b^J+fc^^c^y+egy 2)* *(P0
xn,f •Pny

n)^0... .(1) 

Evidently there are 1+2+2+- • ••(n*l)= i(n+l)(n*2) terms in this 
2 

equation. For the corresponding homogeneous equation we merely 

multiply each term by the appropriate power of z, wMch 

naturally does not affect the number of terms. The number, of 

independent constants in (1) is equal to one less than the 

number of terms it contains, since the generality of (1) remains 

unaltered when each term is divided by a and new constants are 

http://3x.ll
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substituted for the ratios of the original coefficients 

to a. Hence the general equation of an n-ic contains |-n(n+3) 

independent constants, (̂ -(n+1) (n+2)-l=J-n(n*3)), and therefore 

the curve can be made to satisfy the same number of independent 

conditions. If these latter are that the curve is to pass 

through J-n(n+3) assigned points, we have J-n(n+2) linear re­

lations between the coefficients. These J-n(n+3) conditions 

determine the coefficients uniquely, so that: ONE AND ONLY ONE 

n-IC CAN BE K>UN3) PASSII7G THROUGH J-nfn+2) GIVEN POINTS. Thus, 

for the determination of a conic, we require five points, for 

a cubic nine, for a quartic fourteen, etc. It is necessary to 

amplify the preceding remarks by the phrase, "in general", in 

order to exclude the possibility of inconsistent or dependent 

conditions. For example,suppose in the determination of a 

conic, four of the five points are collinear, then infinitely 

many conies (consisting of two straight lines) pass through 

the five points. 

It is quite legitimate for the arbitrary points to de-

termineuniquely a degenerate curve, for we did not reject this 

possibility in our considerations, e.g. Nine points determine 

a cubic, but if three of these are collinear, the cubic consists 

of this line and a conic through the remaining six points. The 

curve determined will be non-degenerate or proper, if no group 

of the l-nfn+3) given points lies on a curve of anorder lower 

than n. 
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To be given that a point is a node on a curve is equivalent 

to three linear relations between the coefficients viz: 

f(X,Y)=o; 3f~o; £f -0 . If the given point is a cusp, we also 
di ?>y 

h a v e
 \JL£J = L2££j f J L U J t h a t is to say» a cusp at a given 

point is equivalent to four linear relations between the co­

efficients. For a k-ple point, 1*2+3+ •••• +k=J-k(k+l) terms of 

the general equation are absent, and the information that the 

curve has a k-ple point at a given point is therefore equivalent 

to J-k(k+l) linear relations between the coefficients. 

A node on the n-ic, not at a given point, imposes but one 

condition upon the coefficients, obtained by eliminating x and 

y from: f(x,y)»o, _2±_ = o; ^f-r0. 
-ax -by 

A cusp on the curve, not at a given point, is equivalent to two 
relations found by eliminating x and y from the last three 

equations and ( *a*f f z 2z-£ _^£ . 

Similarly a k-ple point not at a given point imposes J-k(k*l)-2 

relations. 

I7e easily infer that in general, A FINITE NUMBER OF n-ICS 

CAN BE FOUND HAYING Ŝ  NODES AND k CUSPS AND SATISFYING r 

OTHER CONDITIONS, where r B J-n(n+3)-S ~2>C . 

It is important to realize that these results claim no 

universality, and we must consequently exercise due caution 

in applying them. 
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Ex.13. To be given a k-ple point and the tangents at that k-ple 

point, is equivalent to |-k(k+3) linear relations between 

the coefficients,/ The given k-ple point rv J-k(k+l) re­

lations, and since each tangent at the point imposes 

one relation between the coefficients, the k tangents 

impose k. 

/.number of relations =|-k( k+l)+k=|-k( k+3) 

Ex.14 S+aiSi+agSg* •a.S -o is the equation of an n-ic with 

s given nodes and preassigned tangents at these points, 

where S=o,S^rO,..,.,Sr=o are n-ics each possessing the 

s given nodes. Find r. 

r given nodes rv 3s relations 

Nodal tangents (two at each node)ru 2s relations 

.-.r=i-n(n+3)-(3s+2s)=i-n(n+3)-5s. 

Ex.15. To be given an inflexion is equivalent to tŵ o conditions(^) 

Let equation of curve be: (b0x+b^y) •( c0x
2+2c-,xy*c2y ) +u^+ • * • 

• • - + U =o 

n 
b0x*biy=o is the inflexional tangent, and when boX+b^yro, 

p 2 
then c0x

<='+2c1xy+C2y =o. Substitute fur m=»Z »- b0 in fco-0, 

2 2 X *T 
and we have:b1 60 «-2b0b-,c-, •Cpb =o 

i.e. f2^o^lcocl°2^r°» f2(^o1:)leoclc2)=0* rfbat iS, we have 

two relations between the coefficients. 

t#) See Ganguli, vol.I;p.60.Ex.2. If a point is to be an 
inflexion on a curve 
that amounts to three 
conditions. 
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Ex. 16. Show that to be given three collinear inflexions on a 

cubic is equivalent to five (not six) conditions. For 

instance, show that a singly infinite family of cubics 

can be drawn with three given collinear inflexions and 

a given node. 

We proved in example 3 that a straight line passing 

through two real inflexions passes through a third; hence 

the conditions imposed by three collinear inflexions 

number but five. 

Let a cubic have a node at(0,0,1) and inflexions 

at (1,0,0) ,(^,1,0),(l,m,0) . Then r-J-3( 3+3) -3-5-1; 

that is, one parameter is at our disposal. Form of 

cubic is: f^=xy(y-mx)+^z (mxy-m2x -y2)aO 

Evidently (0,0,1) is a node on f^zO, and we must now show 

that (1,0,0), (0,1,0), (l,m,0) are inflexions. 

Equation of tangent at (1,0,0) is 3 zyt/̂ mz =o 

!"% *y It• * *% ! V ^ a**2-4"* *2-4mxy 

= (y+Amz)(2y-4mx) 

=UL1V1» w h e n ce ( o,o,l) is an inflexion. 

Similarly for (o,l,o) and (l,m,o). Thus it is possible 

to draw a one parameter (or singly infinite) family of 

cubics with three given collinear inflexions and a given 

node. 
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DOUBLE POINTS ON AN n-IC 

There is a limit to the number of double points an 

algebraic curve can possess. For example , a quartic cannot 

have more than three double points; for if it has four we 

can describe a conic through these four double points and 

any fifth point; the conic would therefore intersect the 

quartic in nine points, which is absurd - since a conic and 

a quartic intersect in only eight points (n-2, N=4,p.4) 

Vfe shall now prove the general theorem that: AN n-IC 

CANNOT HAVE MORS THAN fr(n-l)(n-2) DOUBLE POINTS. 

If the curve has |-(n-l) (n-2)+1 double points, it is 

possible to describe an (n-2)-ic through these double points 

and also through (n-3) other points, since J-(n-l) (n-2)+l+n-3-

JHn-2)(n*l) ft=tff(N+3);N=n-2)} 

At each double point there are two intersections of the 

(n-2)-ic and the n-ic. Consequently the n-ic and the (n-2)-ic 

intersect in 2( t(n-l) (n-2)+l)+n-3»n(n«2) +1 points; but this 

is impossible, since they cannot intersect in more than n(n-2) 

points. 

We have thus assigned a definite limit to the number of 

dauble points i>n an n-ic and in so doing, we assume that the 

curve is non-degenerate. 
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SECTION II 

TANGENTIAL EQUATIONS; POIAR RECIPROCATION; SUP^LIITEAR BRANCHES. 

Johann Pliicker in his Theorie der Algebraischen Znrven 

wrote: "If a point move continuously along a straight line 

while the straight line rotates continuously about the point, 

one and the same curve is enveloped by the line and described 

by the point." Thus every curve(#note) has two equations, 

one in point cp-ordinates and the other in line co-ordinates, 

depending upon whether we have considered the curve as traced 

by a moving point or as enveloped by a moving line. Hence 

whenever we demonstrate any descriptive theorem whatsoever by 

point co-ordinates, we simultaneously demonstrate the cor­

relative theorem for line or tangential co-ordinates, and 

vice-versa. The importance of this dual aspect of a curve will 

become quite apparent in the sequel. 

From previous acquaintance with point and line co-ordinates, 

(herein assumed) we know that Ax*y&y+ T>> ZSO represents the 

equation of a line ( A , JUL,,P ) in point co-ordinates, or the 

equations of a point (x,y,z) in line co-ordinates. That is to 

say^x+^y* v> z = o represents a pencil of lines on point 

P(x,y,z) or a pencil of points on lineu 7\,LLJ \>) . 

(#) The point and the line are exceptions to this dual 

principle. The point, which has the line as envelope, cannot 

be regarded as a locus, wMle the line, which is a locus of 

points, cannot be regarded as an envelope. Consequently a 

point has only a line equation, and a line has only a point 

equation. 
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TANGENTIAL EQUATIONS. 

If the line 'Ax +Ay+ ^ z:o is tangent to a curve 

f(x,y,z)=o,a relation (p( Tu^J^o exists between A)ya;P . 

This equation c^f^.^y)=of satisfied by A , / ^ , Is called 

the tangential or line equation of f(x,y,z)=ov. 

If the point equation is given in Cartesian co­

ordinates, the corresponding line equation expresses the 

relation existing between A and JUL when Ax+yu-y+lso touches 

the curve. 

The number of line elements (m) common to/\x'+M-yr + ̂  z^o 

and <{> (?yL,>>) = o is called the CLASS OF THE CURVE, Jast ..as the 

number of point elements (n) common to Ax+/^y+v> z9o^is calle d -fcVie 

DEGREE or BRDER OF THE CURVE. In section I we proved that 

the number of point elements common to two curves (i.e.their 

intersections) of degree n and N is nN. We can show by an 

exactly similar procedure that the number of line elements 

(i.e. tangents) common to two curves of class m and M res­

pectively is mM. 

If we are given the equation f(x,y,z)=o, of degree n, 

we know that any straight line in the plane meets the curve 

in n points, real or imaginary; whereas, given an equation 

(b( 7\, LL^ )=o, of class m, we know that through any point in 

the plane m tangents, real or imaginary, can be drawn to the 

curve. This notion of the order and class of a curve is due 

to Gergonne. 
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Obviously, the degree of a curve is not necessarily 

equal to its class. Subsequent examples will substantiate 

this remark. 

TO FIND TANGENTIAL EQUATION FROM POINT EQUATION. 

(a) First Method: 

Ax+y6ty+ v> z = o intersects f(x,y,z)=o, where f (x,y,- A x+/i> ylrp. 

This equation is homogeneous in x and y and hence is the product 

of:(a-jX+b-jy)(£2x+b£y) -(&nx*bny)=o. Each of these factors 

represents a pencil of points on range CP^-i « n
f wilere ^± 

is the intersection of the curve and the line. The line will be 

tangent if two ranges coincide. Hence the tangential equation 

is the condition that the above equation has two equal roots. 

This is given by (j}( r?\JjLL^)sOf the discriminant of f(x,y,- Tvx-f/̂.y ) =0 

(b) Second Ilethod; 

Xet Ax+Ay*^z = o touch the curve at (a*, R % ). 

Equation tangent there is: x 7*f ̂  y "af , z ̂ f -6. 

Comparing the two equations which define the same line, we have: 

£ = % , Jtf ; also by Baler: J|fi-^+V|f .T,i(^V) 
A /- v> ' 

Upon elimination of d,^,Vwe obtain, as in (a), (p (A,>LL,V))=0 

Ex.18 .A conic is of degree 2 and class 2. 

Conic has eqnation:f(x,y,z)=ax2+by2+cz2+2fyz+2gzx+2hxy=o 

Using method (b); tangent at (ol,/3 V ) is:x^f +y ^f +z af =0 

This is to be the same as Ax*yO,y* v* z = o 
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7>f 

i .e 

7& 

. AR = 

yU-R = 

tfR = 

0 = 

s 

ao( 

hd 

gd 

M 

+h/3 

+b/3 

•f̂ 3 

r/3 

s 

+gY 

•f tf 

+ĉ T 

• >>tf 

a E(say) 

Eliminate R , d & ^ and; 

a 

h 

g 

A 

h 

b 

f 

/* 

g ^ 

f A 
c \> 

J 0 

- o 

i.e. A^*B/a
x+C)>2+2F/avJ+2G^A+2HA/^»0, the tangential equation, 

which is of class 2. 

Ex,19.Find tangential equation of:3(x+y)=x2 

Ax+/^y+l=0 intersects curve where:3(x~- AK+1| _X2 

f^x^-Sf/Lx-Ax-ll'O (i) 

"df = 3/tx2- 3>a*3A =0 (ii) 
•dx 7 7 

:ultiply (1) by 5 

(ii)by x 

<* / 
3LLX°-9/^X+9AX*9=0 (i) 

z ^ / } substraet 
)/JLX*-SJULX+2?\X = 0 (ii) 
y* jL 

6x( A -JUL)- -9 

.*. xs -3 ; substitute this in (i) and: 
2(A-^a) 

3 9/L-4(A -/£) =o required tangential equation 

Ex.20.Find tangential equation of: x3 + y3» a3z 3 

f(x,y,̂  * y y ) , o ; s?(xV y) = al( **vy)' k3 

i.e. ^s(|>5 .1) - a3 CM,*M-f (i) , £,= _£ 
y 
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Z 2 

Differentiate with respect to £, ; -4-L = - ^ 4 ^ ^ 

Cube and simplify; fc= JJL y>^ , substitute in (i)-. 

Cube and: i>V*3-^T = X^^-^ 

ivhence v( A +^a, ) - an A tangential equation. 

N.B. If we cube f =o, we have a2z2-x2~y2 = 3x~^ y ^ -(a3 z3) 

Cubing again, (a£zE - x£-y2)- = 27a
Ex2yEz2 i.e.n=6 

TO DERIVE POINT EQUATION FROM THE TANGENTIAL 

(a) First Method: 

Pencil of lines Ax+/U.y+ ^ z=o has in common with curve line 

elements for v.hich &>\A,/JL~ Ax+ M*y) r0 represents points on AB 

HY>~ * **M ) = V2 an= o....(i)A^ — £ 

If twro points coincide, P is on the curve, and then 

required equation is f(x,y,z)=o, which is the discriminant of 

(i). 

(b).Second Method: 

Let(x,y,z) be a point on the curve, and I 'X t JUL t ? ) be tangent 

Then equation of point of contact is: ^|^r+/L|4r-h ^f^r"0 

Hence x: y: z = ^A - a<b \ _£&_ . also b7 Euler: 

< ^^^ ^'^ ~ " * i7*>A'^- ' * Eliminating A',//, 

between these three equations we obtain f(x,y,z) =o. 
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Ex.21. Find point equation of:(-A) p 1 = A ^ f P ^ 

p+q-P+l P<11 ; . U h >i, ̂F"1 
(̂ (Ajl,- ?V̂  ̂ y U is: (-1)P V+%<lV=(-o/(Axry)(p+l) 

p,MfAV. (-.fe.yUrir • -(i), ^ 

Differentiate w#r# tofe, : H)Cp+q)*p q % = x^(%x+y; (p+cp • • • -ui|-

Divide (i) by (ii) : JL, £a±X- . %> - - *^SL 

1 P P+o 
Substitute for ̂  in(i); z y =x , required point equa-

—-> tion 
Here n= m - p+q. 

POLAR RECIPROCATION 

The general principles of polar reciprocation were first 

enunciated by M* Poncelet. 

Consider a base-conic C and a curve S. As a point P describes 

S its polar with respect to C will have an envelope 3* , which is 

called the POLAR RECIPROCAL OF S. If P and Q are neighbouring points 

on S, their polars will evidently meet in R, the pole of P Q. 

In the limit, Q—>P, QP becomes tangent to S at P, and R becomes the 

point of contact of tangents to S1 corresponding to P. Hence if any 

tangent to S corresponds to a point on S', the point of contact of 

that tangent to S will, correspond to the tangent through the point 

on Sf . Thus the relation between S, S1, Is reciprocal; that is to 

sfcy, the curve S may be generated from S1 in precisely the same manner 

as S' is generated from s. 
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If L is any line and P its pole, L intersects S in points 

that are poles of tangents to S1, through the pole of L. 

Hence as many tangents to S1 can be drawn through a point as 

there are points on S lying on a straight line. This is 

equivalent to saying that the class of S1 is equal to the degree 

of S, or reciprocally. 

DEGREE OF CURVE = CLASS OF ITS POLAR RECIPROCAL 

Let us select for the base-conic, the imaginary circle 

x2+y2+z -o, and let the tangential equation of the curve be 

<f>( ̂ ,yU?V> )=o 

The polar (#) of (x^y^z 1) is: xxf +yy* +ZZ* «o; this will be 

an element (line element) of curve <J>(7\yÛ  ) = o, if c^x' ,y' , z* ) = o 

Hence the equation of the polar reciprocal of cf>(/\/yâ  )-o is 

(j>(x,y,z)=o. Thus, fHE POLAR RECIPROCAL OF f(x,y,z)-o IS 

(b(x,y,z)=o, where (j) ( TK.JJL,? ) = o is the line equation of f(x,y,z)-o 

Similarly, for the Cartesian equation f(x,y)=o, the polar 

reciprocal will be <f)(x,y)=o , (where <f)(A,i>)*o is condition that 

Ax*y+^-o touches the curve), if the base-conic is the parabola 

x2+2y=o. 

Ex.22. Find polar reciprocal of <p (A, JU,i> )sd with respect to 
2 2 2 

base conic: ax +by +cz +2fyz+2gzx+2hxyao 

Polar offx'.y^z1) is: x(axf *hy! *gz ! )*y(hx! +by! +f z» ) • 

z(gxf *fyf•czt) = o 

Hence polar reciprocal is: Q)(ax+hy+gz,hx+by+fzfgy:+fy+oz)zo 

(#) We assume a laiowledge of polar properties with respect to conies: 
3.g. §£0.. pola: " " '"' ", ~" x *--'-— 
(j> = o is conic. 

We assume a oiowj.ea.ge oi poiar properties wiun respect T; 
e.g. e^a. polar of (x'.y1 ,zf) I B E X ' S »y' 2 +z! a )̂> =o; 

3X- dy tz 

http://oiowj.ea.ge
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"D V+Q 

Ex.23. Show that polar reciprocal of x^y^ra with respect 
to a circle whose centre is at the origin is another 

curve of same Icind 

Conicis x2+y2=r2; polar of (x» ,y! ) is:xx» +yyx ar
2 ) 

Whence 
same as /\x+yay*l=o) 

*=~—l ;/*.= - r 
T2 / —2 

Tangential equation of curve from Ex.21 is: 

(-1)P apP<j* » /^> a Cv+V 
p d P 4 P+Cl XP

+(1 
f 4 - x y a (P+£> i .e -

r 2(P*4) 

i.e. xV = ( r2 pp^ q H 

P+Q. 

i.e. xpyq =lc $a curve of same icind. 

Ex.24 Find polar reciprocal of x3 • y3-a3 

,2. „2 .2*2 2 From Ex.19, (z=l), tangential equation is:A +M- =& /\ yU 

Selecting x2+2yr0 as base-conic, polar reciprocal is: 

x *y£=a
2x2y2, or 1 + 1__ = JL . where c

2= 1 
x* y* Q% ~2 

SINGULARITIES OH A CURYE AND ITS RBCIPB0CA1 

We found for the two polar reciprocal curves S and S1 that 

the line and point properties of one are exactly the same as the 

point and line properties of the other. We shall now investigate 

this correspondence for singularities. 
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A. NODS ON A CURYE CORRESPONDS TO A BITANGENT ON THE RECIPROCAL 

CURYE, and vice-versa. 

Two branches of a curve, with a distinct tangent to each, 

pass through a node. Hence to a node and its tangent corresponds 

a tangent with two distinct points of contact, (i.e. a bitangent), 

in the reciprocal curve. Assuming the base-conic to be real, then 

to a crunode corresponds a real bitangent with real points of 

contact, while to an acnode or isolated point corresponds a real 

bitangent with imaginary points of contact. 

TO A CUSP C Alii: CUSPIDAL TANGENT i CORRESPOND IN THE RECIPORCAL 

CURYE AN INFLEXIONAL TANGENT c AND ITS INFLEXION HI . 

For the cusp has the property that every line 

through C meets the curve in two points, except i, 

which meets it at three points in C. Of the tan­

gents from any point P on i, one coincides with i, 

excepting that P be at C, when three coincide with i. 

Hence from any point on c two tangents can be drawn to the 

reciprocal curve coinciding with c itself, unless the point be at 

I, when three tangents coincide with c. Also any line through I 

meets the reciprocal curve at one point in I, except c, which 

meets it thrice at I. Consequently I is an inflexion and e the 

inflexional tangent. 

Similarly, to a triple, quadruple,.. . .,lc-ple point with 

distinct tangents corresponds a tangent with three, four,. . . . ,k: 

distinct points of contact (we call these latter 3-fold,4-fold,, k-fo^ 

tapgents). To a triple point with coincident tangents corresponds 
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the tangent at a point of undulation, and so for quadruple, , 

k-ple points with coincident* tangents. 

We note in passing, that the polar reciprocal of a 

flecnode is evidently a double tangent which has a contact of 

the first order at one point of the reciprocal curve and touches 

it at a cusp at the other; while to a biflecnode corresponds 

a pair of cusps with a common cuspidal tangent. 

Consider a curve C of degree n and class m, and possessing 

S" nodes, >C cusps, T bitangents, i inflections. The six 

quantities n,m, SK t%t are called the PLUCKSR
1 S NUMBERS OF THE 

CURYE. 

In virtue of the foregoing considerations we see that by 

interchanging n and m,^and f, K and L , we have the Pliicker1 s 

numbers of the reciprocal curve - which we denote symbolically 

R(C). A schematic arrangement places the correspondence in 

evidence: 

degree 

class 

nodes 

cusps 

bitangents 

inflexions 

In section I we found that the number of conditions necessary 

to determine an n-ic is J-n(n+3), and that £* nodes and X cusps 

on a curve impose ST" +2 K. conditions. Thus, if we ere given 

C R(C) 

n m 

m n 

£ r 

X £ 



that a curve, having S" nodes and X cusps, satisfies r other 

conditions, we know that jhi(n+3) = S* *2>C +r (i). Obviously, 

the polar reciporcal of degree m, possessing 7r nodes and o 

e^ps ..., is also subjected to r conditions, i.e. |-m(m43)-

r+2 6 • r (ii). From (i) and (ii) eliminating r: 

§-n(n+3)-r~2>T=§-m(m+3)-f -2 £ ) PLUCICER1 S EQUATION. 

SUPERLINEAR B RAIT CHE S* 

lie conclude this section with a few remarks concerning 

Superlinear Branches. Since an adequate discussion of the 

principles involved properly belongs to the subject of 

Algebraic Functions, we tacitly assume certain results without 

proof. 

Suppose f(x,y)sO is the equation of a curve passing 

through 0 (o,o), then y on any branch through 0 is expressible 

in form: 

y= ax + b ̂  x -^c^x -+- , where cu -1-, a,b,c,. . • . are 

constants, and °( , ft , Y, are positive integers in 

ascending order of magnitude. 

The tangent at 0 is y=ax. The entire portion of the 

aurve near 0, obtained by giving to A each of the ô  roots of 

unity is called a SUPERLINEAR BRANCH OF ORDER d . Each VT= A 

gives a PARTIAL SUPERLINEAR BRANCH, while if o(»lf the branch 
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is LINEAR. It follows that if 0 is an ordinary point 

on f=o, only one linear,branch (the curve itself) passes 

through 0, while at a k-ple point with distinct tangents 

there are k linear branches. If, however, at a k-ple point, 

two or more tangents coincide, we have superlinear branches 

(obviously, a cusp is the simplest case here). 

If we select axes so that y rois tangent, the curve 
fr K-n K Tr-i z 

y = ax -t-bxyn-cx y-+ , has an ordinary ffi) superlinear 

branch of order k at (o,o); the expansion of y near 0 is: 

k+i 2 E*
2- */ 

yzArtx"*"*. B6)x K +. ; £ =1/1 (i) 

APPLICATION TO THE INTERSECTIONS OF CURVES AT SINGULAR POINTS. 

VTe proved in section I that an n-ic and an N-ic intersect 

in Nnpoints. f(x,y)s aoy + aiy
n^ +a= (y-u,-)( y-u) (y-^n) = c 

F(x,y)sboy -4-bty -+- +b=(y-v^Cy-vg) (y-%)=o 

In these equations ar,br are polynomials of r-th degree 

in x, while uc and V; are functions of x given by (i) for x 

sufficiently small. (7/e assume that the y-axis is not tangent 

to either curve, and that it meets the curve in finite points 

only; also, that no other intersection of f and F takes place 

on xso, except at the origin) Corresponding to a point not at 

the origin on the y-axis, ut or v^ will contain a constant term. 

Eliminating y in the two equations, we have an eliminant 

(x)ro of "degree nN. (|)(x) = (u1 — v_).. (^-^.••••.(un-v1) (un-vN) = 

TT"(uL-Vj) = o 
i*j ; _ _ 

^(so-called because there are no special relations "between the 
coefficients. 

• 
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We require the number of intersections at 0, which is 

the number of zero roots of (p(x)=o. This number ( € ) is the 

exponent of the lowest powers of x in (JK*),i.e. it is the 

product of the lowest powers of x in each (u^v^), through 

0. To illustrate, we consider six important cases. 

Case 1. f(x,y)=o has a double point at the origin. 

F(x,y)=o has 0 an ordinary point, but does not 

touch f=o at 0. 

Two linear branches pass through 0 on f, and one on F» 

u - ax •+- bx -+. • 

u2= ax-h bx + •••...«• » 

v1=s Ax-h Bx%-........ 

TTfUi-Vj )= |(a-*A)x+- •||(a-A)x+- -j=ex' 

e = % 

Case 2. f(x,y)= o has a cusp at the origin, 

F(x,y) = o has 0 as an ordinary point, but touches 

f(x,y) o at 0. 

ua= ax%-bx 4- • ' 

3 a 

u„= —ax -+- DX — •(..•••<* 

V 

Vj_ = Ax4- Bx+ ........ . (y=o is tangent) 

TTfUi-Vj )=si ax^-t-. -Ax-]j-axa -Ax* j=ex4-

e = s 
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Case 3 

f(x,y)_6 
have nodes at 0 with common tangents. 

F(x,y)=o 

u± = ax -h bx\-

u^= a*x -f-b'xV 

v2 = ax -h Bx%-

v2 = a * x + B
T x \ • 

(A=a, A,=a'since tangents common.) 

TT^i - Vj)5{(b-B)x^-]((a-a»)x+-){(a»-a)x+----}{(b
I-B)xV ••J=C2x6-h 

/. £ 56 

Case 4 f(x,y)=o has a cusp at 0 

F(x,y)=o has a triple point at 0, and two tangents 

coincide with the cuspidal tangents. ( Evidently both 

curves have superlinear branches) 

u1= 4-ax -+- bx+• 
3. 2 

u^= -ax % +bx---

vx z a
Tx + b !xV--} 

v2= +-Ax
2-hBx4--- •) 

v^- -Ax^+Bx- ) 

T H ^ - vj ) = j-aTx4- ••• j{xa(a-A)---J{a^(a+A) ]{-aTx+}{x *(*A-a).--} 

|xa (A-a)+....! _ ex 4- •-- -• 

= 6 
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C a s e 5 f (x,y)=o has k linear branches through Olno two of the 
rk plus K 

F(x,y)=o " E " " n "Jtangents coincide 

u^ atx + b LxV 

" T -v-2 vpa^x+nj x«+. 

TTft^- Vj )-[x(a1-a'1 )+• •]•••• kz factors * ex +.. .. 

e = kK 

Case 6. f(x,y)=o has k linear branches through 0 

F(x,yJ = o " " " " « ». and thQ 

tangents are common. 

u;= a-x-hbjxn-

vj = aj x ~f B; x V . 

TTfu^- VJ) -{x^fbj-Bj )...]"Jc factors .[x(a1- a x )...? 
zk kCk-i) k(k.+i) 

k(k-l) factors = x x z x -+. 

/. £ = k(k+l) 

Ex. 2s/, Two curves have linear branches touching the same 

tangent at 0, one having p-point contact and the 

other q-point contact with the tangent, where p> q 

How many intersections at 0 ? 

Taking y »o as tangent : 

p p+i 
u s ax + bx + 

q _ <i+v 

P . 1 7 * 

vx - AX + Bx + 

7J(uL -Vj )s jax-H. ... -AX - • • • ] - ex-f- :-€sq; i.e. 

curves meet q times at 0. 
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SECTION III 

POLAR CURVES. 

We saw that the tangents which can be drawn to a curve 

from an arbitrary point are m in number, where m is the class 

of the curve. T7e naturally seek to find the relation which 

exists between m and n. Waring was the first to prppose a 

2 
solution, and fixed n as the maximum number of tangents which 

could be drawn from a point to the n-ic. poncelet, however, 

produced substantial evidence to invalidate this contention, 

and from his own investigations he formulated the theorem: 

"The number of tangents which can be drawn from a point to a 

curve of order n is in general,and at most ,n(n-1).Tl He 

intimated that this limit was subject to reduction when the curve 

possessed double points, but the satisfactory explanation of 

such cases was given by his contemporary, Pliicker. poncelet's 

method of solution inbolves a knowledge of polar Curves. 

POLAR CURVES. 

Let 0 be a fixed point, and fsO an n-ic; also let OP be 

any line meeting curve in Q. . The locus of P such that 
v ° 1 = 1,2, n 

y 0QC_ Q is called the FIRST POLAR CURVE OF 0. 

with respect to f = 0. Similarly, if V'OQi0-^,0 then 
/.PQtPQj 
locus of P is the 3ECQETD POLAR CURV^ of 0 w. r. to is= 0, and, 

in general, k-th polar curve of 0 is locus of P such that : 
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0QipQL»-.«>-0QiH-.o 
1 M, f„ c> i • • » . • .JTi^L. 2 

Let 0(X,Y,Z) be any given point, p(x,y,z) a second 

point, and f(x,y,z) 0 the equation of the n-ic. The co­

ordinates of a point Q which divides OP in ratio Ayx (7iyi = l)are: 

Ax+yaX^y-^-X /\zy^^r . If Q lies on curve : 

f (^xyJC,^y+/u-Y,/\zyL^)=o. Expanding by Taylors Theorem : 

(1) ̂ fky,.)+r>(X^Y^^^)£+.. .. ^ ( X ^ + Z # - o 

or 

If Q lies on the k-th polar of 0, the sum of the 

products of the roots taken k a£ a time of the equation in-A-

must be zero. Hence the equation of k-th polar curve of 0 is: 

(1) (z£ +Y^+*&jf=o or (2) K V y ^ V ^ f = ° -

THE k-TE POLAR OP AIT n-IC 13 AIT (n-k)- IC. Hence the first, 

second, , n-2, n-l;polars of an n-ie are of degrees 

n-1, n-2, , 2,1,respectively. 

Ex.26 The r-th polar curve of 0 is the s-th polar curve of 

0 with respect to the (r-s)-th polar curve. 

0(o,o,l), r-th polar curve is: |Jr=
0 &) 

(r-s)-th polar curve is: ̂ -ig = r=o 

s-th polar curve of 0 w.r. t o F = o is: 

Clearly (i) an£ 'li) are identical. 
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Ex.27. The k-th polar curve of P with respect to an n-ic 

having an (n-l)-ple point at 0 is an (n-k)-ic having 

an (n-k-i)-{J-e point at 0/ f = zufl_ -+ un = o . 

k-th polar of P(X,Y,2) is: (X2_ + Y2L H_2l.)f = o. 
* J 

i.e. z(X&+y£ )^Vl-1+ka(X^+Y^Vi
+ - = °* 

In this (n-k)-ic, highest po?/er of z is unity, hence 0(o,o,l) 

is an (n-k-l)-ple point at 0. 

Ex.28. On an n-ic there are Sn(n-S) points whose polar conies 

are parabolas. 

Polar conic of P(X,Y) w.r. to f fx ,y) = o is: 

For a parabola, ug must be a perfect square, i.e. 

{2$£=tL2&k. ...locus of P is: 

This intersects the n-ic in 2.n(n-2) points. 

Let us now suppose that point 0(X,Y.Z) is an 

r-ple point on the curve f-o, and, for simplicity, take 

(X,Y.Z)== (o,o,l) 
n-f n-r-i 

f=uT* +uT+1* + + un = °-

k-th polar of 0 is: 

2^ (n-r-k)! T (n-r-k-l)!™ * ' ' 

*- te+^
k(X^V"^+ ^f^^uO.o 
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Perm of this last equation sho?fS that: AHY POLAR CURVE OF 

AH r-PLE POIHT 0 OH A GIVE! CURVP HAS AIT r-PLE POIHT AT 0 

•71TH SAME TAHGilTTS.U^O 

Suppose that the tangent ut=o at 0 has r-point 

contact with curve; 15^3+11^^+ 4-ia^v^z-+u z + .. *-+-nn= 

k-th polar of 0 is ; ^f , nJn-DJ ^u-ln-W £*?. . .=0;n-r> 
T 5 * ~ (n-k-l)! 1 ^n-k^)! ' 

FOR AIY POLAR CURVE OF 0, SAME TAHGEHT Uj= O HAS r-POIHT 

COUTACT AT 0. 

INTERSECTION OF AIT n-IC A1TL FIRST POLAR 

Let us select C(ofo,l) as an intersection, 0 as (l,o,o) 

and any point B (o,l,o). 

f=az + (b0x+ bLy)z + (ex+2c1xy-f e2y)z +..... .-j-un= o 

First polar of 0 (= A) is: af ^*b„ z "-f2(cftx-f ^ylz^V..... ,-t-vn i=o 
3x ~ 

(1) If C on f = o and ^f __ then a= b = o 
" ^ " * 

Tangent tof=o at C is y=o, which passes through 0(=A). 

Hence, in general, intersections of a curve and first polar of 

a point are the points of contact of tangents drawn from a point 

to the curve. 

/. m = n(n-l) 

(ii) If C is a node on f= o, then a^b^b^o 

C is an ordinary point on the first polar, with the 

tangent at C to the polar not coincident with either nodal 

tangent. In this instauLce, from p.37 uase (i), the number 

of intersections of f = o and ||-= o is two. 
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/.m = ia(n-l)-2 

f111) If C is a cusp on f=o, with x = o the cuspidal 

tangent, a^pO^o^o 

ai n2c xz+........ a Q* On the first polar,C is an ordinary 
2x 
point with the tangent coinciding with cuspidal tangent. 

Consequently, from p. 37 case (ii) , the number of intersections 

of f = o and ^ f __ ft at C is three. 
ox 

.-. m = n(n-l)-5 

Since, then, we have a dimhution of two for a node on the 

curve and a diminution of three for a cusp, in the number of 

intersections of the curve and first polar, for S nodes and X 

cusps we have a reduction of 2S+3 X in the class of the curve. 

Hence, for an n-ic possessing Anodes, and >C cusps 

m=n(n-l)-2S" -S)c} PLUCKER'S EQUATION. 

We can obtain the equation uniting n,m,'cJ, £, in a precisely 

analagous manner by means of line co-ordinates, but we employ 

the principles of polar reciprocation. 

If the n-ic has T bitangents, I inflexions, the polar re­

ciprocal curve of degree m and class n, hasfnodes and I cusps. 

.-. n=m(m-l) - 2T - 3 l] PLUCXER'S EQUATION. 

An n-ie has not, in general, any double points, for if it had, 

the point equation would be specialized, since certain functions 

of the coefficients would vanish (see page 15). It is for 
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this reason that m = n(n-l) II GENERAL. 

Reciprocally, a curve of assigned class, has not in general 

any double lines (bitangents or inflexional tangents), for the 

existence of such would cause certain functions of the co­

efficients in the line equation to vanish. 

P 4 P+CL 
Ex. .29. Show that tangents to: y z=x , drawn from (1,̂ ,̂ 3) 

touch the same at points lying on the hyperbola; 

(p-t-q) ya = (o(j,a-*-^<jy)x 

First polar of ( l,ot,/3) is: (p+q)x = y z (oLpz-H0 qy) . 

r P"1 (t1 

This meets curve where-. (pH-q) yz= (olpz+/3qy)x . [y s = 

Ex.So* A k-ple point with distinct tangents is equivalent to 

-J-k(k-l) nodes. 

Take (o,o,l) as k-ple point. 

First polar curve of (o,l,0) ia 3f _ 0 

3f -=v, /"+Vv?T" -L -H-v^^cThis (n-1) -ic has 

a(k-l)-ple point at 0 (o,o,l) with tangents v^._1= o. 

These tangents are distinct from those given by Uj=o, since, 

by assumption, u^ contains no repeated factor. Hence, from 

p.39ease (v) , there are k(k-l) intersections at 0. Since 

at a node the number of intersections is 2, we may regard 

a k-ple point CO -|-k(k-l) nodes. 
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Ex.31 A sextic cannot have a 3-pie point, 1 node, and six 

cusps./3-ple point ru J3 (3-1)= 3 nodes. £=3-1-1=4 

By Pliicker, m=n(n-l)- ZS -ZK. 

i.e. m=6 (6-1) -2.4-3.6= 4 

The reciprocal of a 3-ple point is a tritangent, 

which intersects curve in 6 points; this is impossible 

since the reciprocal curve is a quartic, for a line 

meets the quartic in but 4 points, (class of curve= 

m= degree of R(C).) 

EE SSI AIT. 

•7e shall now discuss a curve which is covariantly'jf 

related to the original n-ic. This derived curve, the Hessian, 

is defined as THE LOCUS OF POIITTS v7E03S POLAR COITICS DEGENERATE 

I1TT0 TWO STRAIGHT LUTES, and, it is so-called, because it 

was first studied by the German mathematician, Hesse. 

* C.A. Scott p.269. The general algebraic idea of a co-

variant is formulated in the definition: 

Ajry function of the coefficients and variables that 

is unchanged by linear transformations, save as to a power 

of the modulus of transformation is called a Covariant. 
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The polar conic of P (X,Y,&) w. r. to f(x,y,z)=0 is: 

(x%+y%-i-z^)f = 0 . If this degenerates into two straight 

lines its discriminant must vanish, i.e. 2?? ^XciY *aX2>£ 

£L £L ££-

j^L J^f. ^Z£_ 
*xa* ^ Y ^ ^^z 

= o 

Therefore, locus of P is: 

H= "bx-by 

1H 

3x^y 

2&L 
Bx"3z "̂ yBz 

2iiL 

= 0 

Since each of the elements in the above determinant 

is of degree (n-2) in x,y,^, the equation is of degree 3(n-2), 

i.e 

HES3IAIT OF AIT n-IC 13 A 3(n-2)- IC 

We may express the above equation in form: 

fnCn-.)^-^ (i> 

To effect this result we multiply the columns by x,y,z in 

turn, and add the first two columns to the third, and then 

perform a similar operation upon the rows. The use of Euler's 

relations then enables us to obtain (i), which is frequently 

abbreviated in the form: 

z2H~ (n-l)K-fn(n-l) 3K* ay2 (***y)r 
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Ex. 32. Find the Hessian of: y z =x 

^ M-l a, / p+q-2, 
^=(p^q) x ; |_£=(P^q)(p^q-l)x 

f^=-p 2 y ; ^..p(p-l; z y ; ^!£ = o. 

Substituting these values in (i): 
z o f 2 2^2 *! p-H>-* , p ^ Zp+^-2 

z H s (p+q-1) j -p(p+q ) (p-f-q -l)y zx +(p+q)pq>^. * *v 

-Hp+-q)(p+<l -D ) -P(p-l)(p+q)(p+q. -l)x y * f(x. -Y^ 

i.e. z H=-pq (p+q ) (p+q -1) x y z ^o 
jH-^-2 ^Cp-l) *(C£-l) 

i.e. H = x y 3 

ITOERSSCTI0U3 OF CURVE AHD HE SSI AIT 

The intersections of f=o and H = o are the same as those 

of f=o and K=o , excepting that f — o and K—o also meet 

twice at each intersection of f-o and z^o. T,?e select 

the point 0(o,o,l) on f = o ?nd the tangent there y— o(T,Te 

notice that 0 is not on z=. o:). 

f =b1y z ~+(eox + 2e1xy+ e^y) z +. .+un=o 

Polar conic of 0 is : c£j£. = c x%- 2c1xy-»- e.y-i- (n-Ub-yzcr o 

If this conic degenerates into two straight lines, then 

either c=o and the coefficient of z is a factor of the 
© 

coefficient of zn~, i.e. 0 is an inflexion, or b^o, and 0 

is a multiple point. This proves that: TEE HE SSI AIT HEETS CURYE 

(ELY AT THE ITTFIKXIOUS ATID LIULTIPLE ?ODTTS. 



(i) If D1?to, eo=0, 

r 2 z> 2 1 3n"5* 3n-fe 

- £ = {(SI), C, - 6t>* 4x)y - S D ^ X }zH-VaZ + 

Hence f=o and K= o ( and consequently curve£H=o) 

meet only once at 0. 

i.e. CURVE AND HESSIAH AIEET OHCS AT EACH IITFLESIOIT. 

(ii) If "b^o, co^0 , f=o has a double point at 0. 

Suppose 0 is a node. 

2 = 0^- cocg ( cx-h2c1xy-»-e^y)z +v3z + 

Hence K has a node at 0 with same nodal tangents as 

f = o . Hence, fromp.38case (iii), K=o (and H=o) 

and curve have six intersections at 0. i.e. 

CURVE A1TD HES3IA1T HAVE SIX IHTEHSECTIOHS AT A If ODE. 

(iii) Suppose 0 is a cusp with y=o the cuspidal tangent. 

fs yz^fd^-fSdj^xy-f-Sd^xy + dgyJz^.. . +un=o 

K= -24(d0x-f-d1y)y z -+v^ z +. 

Hence 0 is a triple point on K— o (and on H = o ) , with two 

tangents coincident with the cuspidal tangent. From p.36 

case (iV) , H=o and f=o meet eight times at 0. 

i.e. CURVE .HID HES3IA1T HAVE EIGHT III TER SECT I Oil 3 AT A CUSP. 

The curve (an n-ic) and its Hessian (a 3(n-3)-ic) intersect 

in 3n (n-2) points. If, then, an n-ie possesses £* nodes, 

7C cusps, and I inflexions, from (i), (ii) , (iii), we have-. 

3n (n-2)= i + 6S>8>C, er : 
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6 = 3n (n-2) - 6fr - 8 ft:} PLUC^EE*3 EQUATION. 

Since R(C), of degree :r, hasfnodes, L cusps, and K inflexions: 

K=Zm (m-8)- 6T -6i ^LUCKEE'3 EQUATIOH. 

Ex.33 A k-ple point 0 of a curve is in general a (3k-4)-ple 

point of the Hessian, and the tangents to the curve 

at 0, are tangents to the Hessian at 0. 

Let y= o be one of the tangents to curve at 0(o,o,l), 

then fsyu^z + nk+z +...«... +un=o 

|^ = YvK-2^ •+ ; H^yvh-3* + J 

Retaining only highest power of z in £, since each 

term contains either .§£ or iS. , y is a factor of the 

coefficient of this power of z. i.e. Ks y^^2 + U3k 3+.,.,(i) 
3TL-4-(3k-^ 

i.e. K s V^^z -f ....... . (ii) 

Erom (ii) we see that 0 (o,o,l) is a (3k-4)-ple point on K = of 

and consequently, on H=o 

From (i) we see that y=o is a tangent to the Hessian, and we 

can show in a similar way that tne remaining (k-1) tangents 

to f=o at 0 are also tangents to H=; o at 0. 

Ex. 34 (i) The locus of the points whose polar conic with 

respect to a given n-ic touches a given line is 

a 2(n-2)-ic. 

(ii) This 2(n-2)-ic separates the plane into two portions 

in one of which the n-ic has no real inflexion or crunode. 
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while in the other there is no acnode. 

(iii) If the given line is tangent at an inflexion 0, the 

2(n-2)-ic has a node at 0 with the given line as one 

tangent there. 

(i) Polar conic of P (Z,Y,Z) is: 

(x^+y^ + ^)f -o ; if this touches z-= o: 

x2^+2xy^Y+y^ is a Perfect square; 

.-.Locus of P is : /^W^f \ / tff- f a 2(n-2)-ic 

(ii) 2&X±-. 211 - (3&-Y = 

If P ̂  o, the degenerate conic of a point on H is imaginary. 

hence the point is not a real inflexion or crunode. 

If P<o, the degenerate conic is real, hence the «point 

is not an acnode. 

(iii) If z=o is tangent at 0 (l,o,o), an inflexion, n-ic is*. 

, n-i n-2) Jf1'3 

z(x +u1x ;+-u3x+.. .. .= o 
"2.TI-6 *.n-l 

F== zvtx-»-v3x + = 0 

It follows that (l,o, o) is a double point on P=o with the 

inflexional tangent to n-ic (z=o) tangent to one branch. 

Ex,35. If a curve has r-point contact with its tangent at 0, 

the Hessian has (r-2)- point contact with the same 

tangent at 0; and the curve and Hessian meet (r-2) 

times at 0. 
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Take y=o as tangent at 0. 

f s y (a-»-u^-uz+• •. . . «-HUT_a) •+- <j) = o; degree of lowest term in cf) is r 

Forming Hessian: (z = l, in (i) p.4-7) 

y P(x,y)4-^ = o; degree of lowest term in ifr arising from 

11|j ^£^ , is (r-2), i.e. y=~ o has (r-2)-point contact with 

Hessian. By ex^^p.^the curve and the Hessian meet (r-2) 

times at 0 (r-2=rq< p = r) . 
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SECTION IV 

PLUCKER'S NUMBERS 

(?) 
m 

As we have previously intimated, Pliickerfs Numbers 
are the six quantities n,m,S~,K:,T̂ , hy which we denote the 

degree (order), class, nodes, cusps, bitangents, and in­

flexions of an algebraic plane curve. Replacing these 

by m,n,Tr, 67̂ h;, in order, we hav6 the Plucker's numbers of 

the reciprocal curve. W6 have also independently es­

tablished three equations expressing relations between 

these numbers, viz: 

in (n-J-3) -^ - 2K=im(!iH-3) - T _ 2 * (p 35) 

m = n(n-l) - 2F- 3>C (p 44) 

6=3n(n-2) - 6K - SK (p 50) 

By polar reciprocation, we also deduced: 

n= mfm-1) - 2T -$L (p 44) 

)T=3m(m-2) - 6T -8L (p 50) 

Various other relations between the six numbers may be 

found, and we include the most useful of these in the 

list given bdow. Of these nine equations only three are 

independent, since given any three, we may deduce the 

remaining six. Equations (5) - (9) were not included in 

Pliicker1 s original formulae. These latter consisted of the 
_ - || * • - ' ' • !••••• • n n . ••!••' Hi' 

(^). Some writers call these the "characteristics" of 

the curve, but this terra is frequently reserved for the two 

quantities (p,D, where, for a system of curves: 
p = number of curves which pass through a 

given paint. 
1 = n - n tt touch a given line. 
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first four equations, together with two rather cumbersome 

relations expressing 2S" and ETin terms of m,r,i and 

n,S\K?respectively (See Ex.36). 

PLUCKER'S EQUATIONS. 

(1) m=n(n-l) -2^-3h: 

(2) n = m(m-l) -2T -3 i 

(3) i = 3n(n-2) -6^~8h: 

(4) )t=3m(m-2) -6r-8£ 

(5) in(n+3) -^~2K= im(m+3) -T-2c 

(6) i(n-l)(n-2)-^-K=i(m-l)(m-2)-Tr-t (=D). 

(7) £-fc" = 3(m-n) 

(8) 2(r-S-) = (m+n-9)(m-n) 

(9). . . . . . n2- 2^-3^=m2-2T-3i 

Assuming (1), (3), (5),[or any three of the above eouationsJ 

we may deduce the others by simple Algebra.e.g.: 

TO OBTAIN (7) : Eliminated between (1) and (3) 

TO OBTAIN (8): Multiply (5) by 2, and arrange in form: 

2(T-S)= m(m*-3) — n(n+3 )-4(c-fc); in this 

substitute value for (i-K) from (7) 

TO 0BTAIN(2): Add (1) and (8) and to the result add 

3(£-fc)= 9m-9n,from (7). 

TO OBTAIN (9): Substraot (2) from (1). 

TO OBTAIN (6): Substract (5) from (9), 

TO OBTAIN (4): In (7) substitute for n from (2) 
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Clearly Pltteker's Numbers are unaltered by projection. 

Curves having the same Pliicker's Numbers belong to the same 

TYPE or class, and as a consequence, these numbers assume 

a very important role in the classification of plane curves — 

as a subsequent paragraph will show. 

DEFICIENCY. 

It is. customary to denote equation (6) by the symbol D, 

which is called the deficiency of the curve. Since 

-|-(n-l) (n-2 ) is the maximum number of double points an n-ic 

can possess (p.24), D is the number by which the actual 

number of double points falls short of this upper limit. 

Prom the form of (6) we easily infer that a curve and its 

polar reciprocal have the same deficiency. 

If the co-ordinates of any point on an n-ic can be 

expressed rationally .in terms of a single parameter, the 

(T) 
n-ic is UNICURSAL . It can be shown that THE DEFICIENCY 
OP A UNICURSAL CURVE IS ZERO, and conversely, IP D=o, THE 

n-ic IS UNICURSAL. 

For a conic: n= m= 2; S^hr=T=£=o. Prom elementary 

analytic geometry we know that the co-ordinates of any 

point (x,y) on the conic are expressible in terms of a 

parameter iii Scott p.134) 

If a cubic has zero deficiency, it has one double 

point (a,b). The line y-b =t (x-a),for any t, intersects 

the cubic in two points at (a,b), and henc6 the third 

intersection will be a rational function of t. 

fT) — ~ 
//# so-called because such a curve consists of a single 

circuit; it is unipartite. 
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TJhegeneral theorem, stated above, was proved as early 

as 1865 by Clebsch, and since that date, numerous other 

proofs have appeared. We assume this theorem without proof 

in Ex.47. 

CLASSIFICATION OP CUBICS AND QUARTICS. 

The classification of cubic and quartic curves has 

been attempted, with considerable difficulty, by many 

eminent mathematicians, notably amongst them, Newton, 

Mobias, 7/iener, Zeuthen, and Pliicker. Although we are 

particularly interested in that classification which 

utilizes Pliicker1 s formulae, we comment upon a second one, 

for purposes of comparison. 

A classification of cubics in relation to the line 

at infinity (•£) gives rise to 14 genera, containing in 

all 78 species of cubics. 

Basing a classification upon deficiency, however, 

cubics may be divided into 2 main groups, according as 

Dis 1 or 0. These two groups include 3 types of cubics. 

All cubics which do not possess a double point belong to the 

first group (D=l), Trih ile the second group (D=0) includes 

nodal and cuspidal cubics. Prom pliicker1 s Equations we 

readily deduce the following table: 

TYPE 

I 

1 

m 

n 

3 

3 

3 

m 

6 

4-

3 

£ 

0 

1 

0 

K 

0 

0 

1 

T 

0 

0 

0 

i 

9 

3 

1 

D 
1 

0 

0 



57 

Illustrations of types II and III are the curves discussed 

in Ex. 16, p. 23, and Ex, 19, p.28. 

Quartics classified in relation to the* belong 

to 9 genera, which Pliicker subdivided into 152 species 

(or more). 

Where deficineey is the basic criterion, however, 

quartics may be confined to 4 main groups, according as 

D is 3, 2, 1, or 0. 2hese 4 groups include the 10 types 

listed in tie chart below. (As for n=3, we deduce this 

aeheme in virtue of Pliicker1 s relations). 
Type 

I 
II 
III 
IV 
Y 
71 
711 
Till 
12 
X 

n 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

m 
12 
10 
9 
8 
7 
6 
6 
5 
4 
3 

fr 

0 
1 
0 
2 
1 
0 
3 
2 
1 
0 

IT 
0 
0 
1 
0 
1 
2 
0 
1 
2 
3 

TT 
28 
16 
10 
8 
4 
1 
4 
2 
1 
1 

L 
24 
18 
16 
12 
10 
8 
6 
4 
2 
0 

D 
3 
2 
2 
1 
1 
1 
0 
0 
0 
0 

Ex.36. Prove that: T-S+£(n-2n-2fr-3lO (n-9-2S-̂ :.K) 

From (8): T= ^+iHni-na-9m+9n) 

In this substitute from (1) for m: 

$T.B. This relation is a simplified expression for 

pliickerTs original equation. 

Ex.37 Find curves for which S^T 

If S^T, from (8) we have: (i) n=mf or (ii) n-i-m= 9 
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n=m, then I = K from (7). The curve and its reciprocal 

are of same class. 

) n + m = 9, 

(a) n^2, for, if it were,m = 2 (Ex.18 p. 27), 

and n+ m = 4^9. 

(b) n=3, m=6. From previous chart for cubics, 

the cubic is of type I. 

S=K=T=o . 1 = 9 , D = l 

(c) n-4, m=5. From chart for quartics, curve belongs to 

type Till. 

^ = 2 ir-i,T= *, t= 4-, ̂ =° 

(d) n=5, m=4. Reciprocal curve where n'=4, mT=5 has 

numbers £=%-, fc'=i.y=a,i'=^ t D =o, and;\quintic has: 

(e) n=6, m=3. Reciprocal curve is a cubic of type I, 

and/.the sextic has Plucker's numbers: ^=T=o, ft= 9/s°- ®~ 

38. If n^>m, then Kyi and <^yJ = ^t as n + m X = ,<. 9 

~yromfr)i-/t>3 (m-n) = —"e, since n>m 

/. I < fc 

jrom (8) 2(T-^) = (m-n) (m+n -9) 

- (-ve quantity )(m+n -9) 

If m+n ^ 9 , a CT-S) IS +ve , i.e. S^-

IT „ = 9 , 2fr-S) = o , i-cS^f 
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Ex. 39 Show that:(i) m= 2(n-l)H- 2D — K 

(ii) t = 3(n-2) + 6D -2IT 

(iii) ^i(n-l)(n-2)-D-fc 

(i) From (1): m=n(n-l) -(2S*+ 2K) - K 

From (6): 2S+2K>(n-l) (n-2)-2D 

i.e. m«n(n-l)-(n-l)In-2)+2D-IC 

m = 2 (n-1) +2D-K" 

(ii) From (7): 6 = 3(m-n)+fC 

Substitute for m from (i): 

L~Z f2n-2 -f- 2D- fc-nj-hk 

.-. £= 3(n-2)+6D-2H: 

(iii) Follows at once from (6). ^.1 (m-1) (m-2) -D-tfrom (6) a 
. 2 

N.B. From the above expressions we easily express PluckerTs 

numbers in terms of 2(D-1), viz: 

m+h:-2n 

n -+ L —2m 

n(n-3)-2(S + K:) 

m(m-3)-2(T+0 fc 

= 2(D-1). .. .(IV) 

Ex.40. If D=o, and n > 4 , not all the double points are cusps. 

When D= 0,S%=0, from (6): /f_l(n-l) (n-2) 
"2 

from (3):6=3n(n-2)-4(n-l) (n-2) 

i.e. U-n+6n -8; for n^> 4 the R.H.S. is negative 

and obviously I ^t.0-
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41 If D=0, m^2(n-l); while m^l(n+2) if n is even, and 
2 

m>l (n+3) if n is odd. 
' 2 

From first two equations in Ex.39(17), if D o; 

m= 2(n-l)-fc,i.e. , m^2(n-l) 

roMIT 

m__l (n+2+t). J From equation (3) we see that if n is 
2 

even the curve has an even number of inflexions, while 

if n is odd the number of inflexions is odd. For n 

even then, m^l(n+2). J From equation (3) we see that 
2 

if n is even the curve has an even number of inflexions, 

while if n is odd the number of inflexions is odd. 

For n even then, nr>l (n+2). For n odd, since t at 
2 

least one, m^l (n+3). 
2 

42 If D=l, then i+/r=n+m. 

Equ. (6) for D= 1, gives: 

2S+2K=n*-5n 

By (1)^ 2fr-r- 3 K = n*- n - m 

.*. K - 2n — m.4a) 

From (7) l- K = 3m — 3n 

* 

.*. 6= 2m — n .... (b) 

Adding (a) and (b) : i+fom+n. 
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43. If the deficiency of a curve is even, the number 

of double points is even if degree of curve is 

4p-f-2 or 4p-|-l, and is odd if degree is 4p or 

4p-l . (p=*+veinteger) 

S=S+fr=l (n-l)(n-2)-%EN 
2 

S isr.even if 1 (n-1) (n-2) is even, and odd if 
2 

1 (n-1)(n-2) is odd. 

For n = 4p+2 For n= 4-p+i 

î n-iYn-̂ W %V (4p-i) = even-

l(n-l)(n-2)=2p(4p + l)= even. J ** * } * 
2 

For n= 4p 

l(n-l)(n-2)= (4p-lf(2p-l)= odd. 
2 

For n = 4p-l 

1 (n-1) (n-2)=(2p-l) (4p-3)rrodd 
2 

44 (i) If D=o,c=n; thenm^n+1 

(ii) If D=o,i=m; then m=n+E 

(i) From (7):h:=4n— 3m 

From Ex.39 (i) K"=2 (n-l}-m 

(ii) h>3n— 2m 
. .-. m = n-f 2 

t=:2(n-l) - m 

m = n+ 1 
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Ex.45. Find Pliickerfs Numbers for the Hessian of the 

general n-ic. The n-ic has in general, no double 

points, and the Hessian then has no double points 

(we assume this almost self-evident result). Let 

the numbers be n, m| S", k,~?,'L 

n'=3(n-2) .. . - Cp-47) 

m'=3(n-2) (3n-7) (m'= n'(n'-l) since ^'= fc'=°) 

T'_ 27 (n-1) (n-2) (n-3) (3n-8) from (8) 
" 2 

(.'= 9 (n-2) (3n-8) ..... from (7) 

MULTIPLE ?QUITS '7ITH DISTINCT TANGAITTS 

In the preceding discussion we have not considered 

singularities other than double points (and double lines). 

We now show that: PLUCKER'S EQUATIONS HOLD FORMALLY 

IF WE REGARD A k-PLE POINT WITH DISTINCT TANGENTS, EQUIVALENT 

TO Ik (k-1) NODES; (AND RECIPROCALLY, A k-PLE TA!:GENT WITH 
2 

DISTIITCT P0INT3 OF CONTACT EQUIVALENT TO 1 k /k-1\ BITAUGENTS) . 
2 

Since only three of Pliicker/s Equations are in­

dependent, it is only necessary to show that this equivalence 

satisfies equations (1) and (3) [(2) and (4) then follow by 

reciprocation). We must therefore prove-. 
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(i) that a curve and first polar meet k(k-l) times at 0 

(the k-ple point). 

(ii) that a curve and Hessian meet 3k(k-l) times at 0. 

We proved (i) in Ex.3D p.45. 

The intersections of curve and Hessian at 0 depend only 

on (o,e>o) 

Consequently apart from k-ple point we may assume that 

the curve hasS;nodes, K cusps,T bitangents, C inflexions. 

From the reciprocal curve: rr-i=3(n-m) . . . (7) 

From (l) and (2) : m=nfn-l) -2^-3*1 -k(k-l) 

Eliminating m in these equations: 

L=-3n(n-2)-6S^2-8h:-3k(k-l). Hence, the Hessian intersects 

the curve in Sk(k-l) points at k-ple point 0. 

If in Ex.3D p.45 we take PsO(o,o,l), the first polar 

has a k-ple point at 0 with same tangents as the n-ic. The 

total number of intersections at 0 will be k(k+l) ; so that 

2k of the tangents from a k-ple point must be considered 

eolncidentuwith the tangents at that fcoint. 

Ex.46. If the only singularities of an n-ic are linear branch 

points with distinct tangents, £ = i(m_2n+2) 
2 

By above theorem,ft>o, and result follows at once from 

Ex.39 (i)p.5"9 
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MULTIPLE POINTS WITH SUPERLINEAR BRANCHES. 

At a k-ple point, however, two or more of the k 

tangents may be coincident, and superlinear branches arise. 

'?e now prove that: PLUCKER'S EQUATIONS STILL HOLD IF A 

k-PLE POINT 0 WITH L ORDINARY SUPERLINEAR BRANCHES, IS 

CONSIDERED EQUIVALENT TO lfc(k-3)+I» BODES AED (k-L) CUSPS. 

We require to show that(i) the n-ie and first 

polar intersect in 2^Mk-'3)+L]^-L) points at 0 and (ii) the 

n-ic and Hessian meet 6f^(]E_3)4.i)l.-8(k-L) times at 0. 

(i) (a) A curve has a k-ple point 0 with L superlinear 

branches of orders r , r , . . . . rT , having distinct 
1 2 -" 

tai gents fk=Ir-); and a second curve has a (k-1)-pie 

point at 0 such th&t the tangent to the branch of order 

r, of the first curve is a tangent to a branch of order 
t 

r. -1 of the second. How many of their intersections 

coincide at 0 ? 

For first curve (u) : y = Aa^x V ] 
*. f common tangent y =0 
" second TT (7): y = a^js -+• ». r.,-. . . . 

For a partial «j-th superlinear branch of 7, €j^r. fr+1) 

hence for total intersections over total superlinear branch 

of 7: 
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€=2€j = (r-l)(i4-l)= r2-l 

Order of 0 on 7 is k-1; order of 0 for superlinear branches 

other than the one just considered is (k-l)-(r-l) = k-r 

Number of intersections of superlinear branches making 

up this order with the superlinear branches considered is: 

r (k-r). 

Hence total € =^(rf-l)+-rl(k-ri)U k^r-L^k-L 
i=i 

(b) At an ordinary superlinear branch of order k: 

k k+i 
y =ax -+. +un=o^f(x,y) 

k-i k 

y=Ax-j- + u„ =o/u 2>* (first polar) 
*ay 

i.e. A superlinear branch on first polar curve is of order 

one lower than on the n-ic , and the tangent is the same. 

Clearly, the curve and the first polar are U and 7 of (a) ,and 

intersect in k-L points. k-L=2jlk (k-3)-f- Lf + k-L, which 

proves (i). 

ForGi): 

(c) If a curve has (k-L) cusps, (some may have coincident 

tangents), the reciprocal curve has (k-L) inflexions (some 

may coincide). Hence, by Ex.35 p.51 the Hessian intersects 

the reciprocal curve in (k-L) points corresponding to these 

cusps on the original curve. 

Suppose that apart from 0 there are S\ nodes, K2 cusps, 

T2bitangents, and ^inflexions on the curve. For reciprocal 
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curve, we have : 

n= m(m-l) -2fa -3^. (2) 

m=m(n-l)-2S;-3lrz-(k-L) (1) & (i) 

h;=3m(mr-2)- 6T% - 8 ^-(k-L).. . (3)&(c) 

Eliminating m andT^: 

*2=3n(n-2)- 6S,-8^-6 j|k(k_3)+LJ -8(k.1); whieh prove6 (ii) 

Hence, the point singularity of the superlinear branch 

points is equivalent to ~%=k(k-3) + L nodes and (k-L) cusps. 

By reciprocation, PliickerTs Equations hold if a k-fold 

tangent having L points of contact, and consequently k+L 

intersections with the curve, is counted as equivalent to 

•ik- (k-3)+L bitangents, and (k-L) inflexions. 

HIGHER SINGULARITIES. 

Given any singularity at 0, how many nodes, cusps, 

bitangents, and inflexions, must be considered as coinciding 

with 0, in order that PluckerTs Equations may hold? 

Let the numbers be £, ,Kl7 Tlf L1, and suppose that the first 

polar and Hessian respectively, intersect the given n-ic 

ino( and /3 points coinciding with 0. Then: 

(i) ... 2Sv1H-3hri=o(; 6^8^+4=^ 
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The reciprocal of 0 is a line united with the re­

ciprocal of bitangents and inflexional tangents at 0. 

Let the first polar and Hessian,respectively, (of R(C)) 

intersect the reciprocal curve in f> and <r points on this 

line which is the reciprocal of 0. Then: 

(ii) ... 2^+31^; 6T+8*!+Ki = <T. 

Adding (i) and (ii): 3(dtf) =ft + c~ f which the numbers 

must satisfy. 

To prove this consistent, let-S^, fcz, T2, L2 be the 

number of nodes, etc., not coincident with 0. Te have 

dL=n(n^l)-m-2^-3ir2 ~] 

^=3n(n-2)-6Si-8rt-.ia / le3(d+f)=^. 

ft = m(m-l) -n-2ra -3 iz j 

cr*3m(m-2)- 6rz-8i2-K2J 

Although (i) and (ii) are consistent, thoy are not 

independent, but admit of infinitely many solutions. To 

make the solution definite, we must define deficiency 

at higher singularities. Such a definition is beyond the 

scope of this thesis, but we consider a specific illustration 

in Ex. 47 below. 

"Ye notice that (a) k-ple points with distinct tangents 

and (b) ordinary superlinear branch points* are special 
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cases of this generalized treatment. 

e.g. (al^^lM.lf^o.Vo.^o. 

(b) ^^kCk^+Ljfc^k-L.Tr^o.t^o^o. <r«k-L] 

^k^-L. /3.k(3k^i)-2L . />=o.. <r=k-L. 

47. Discuss the singularity (o,o,l) on-, y z =x. 

P q P+CL 

Prom Ex. 21,p.30; R(C) is: yz = dx , i.e. curve and 

reciprocal have the same singularities. B and C 

are reciprocal singularitiesf 

('/polar at B is tangent at C) 

p-1 q 

Eirst polar curve of B(o,l,o) is: y z^o; hence 

at (o,o,l):d = (p-1)(p+q) 
p+*H itp-fi atj-0 

From Ex.32 p.48, Hessian is: x y z =0; hence at (o,o,l) 

|9-2(p-l) (p+q)+p(p+q-2)- 3p( p+q) -4p-2q 

Since singularities at B and C are reciprocal, inter­

changing p and q:/Mq-l) (q+p) ; tn=3q(p+q)-4q-2p* 

3(dU/)=/3+<r 

cro *TH-3t,*f . tr. + Bi.+t.-cr j 

These are satisfied by: 

^ -i p(p+q)-2p-l q,5p 

KT. = P-E -i? 

T. ~ 

L. -

j4(P+q)-2q-lp+gF 

a-: 

E is any symmetric function 
of p and q and we findS", etc. 
only by method of trial. 
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Although the singularity is analysed, it is not definite, 

for E may be AHY symmetric function of p and q. 

Evidently the curve is unicursal, for x:y.z=t: t: 1 

Assuming that DzzO (p-£6-), we can calculate f. 

D = l(n-l) (n-2)-S^-ltl (p.+-q-l) (p+q-2)-ydouble points=0 
2 2 *-* 

llodes and cusps at B and C| = l ( p + a . 1 ) (p+a_a) (a) 

i 

Also from above,j^^.Bl(p+q_i) (p+q-2) +F-1 (b) 

From (a) and (b): J=1. 

The singularity at the superlinear branch point (not an 

ordinary superlinear branch point since coefficients 

specialized), is now resolved in such a way that Pliickerfs 

Equations hold formally. 

Theoretically, the process of analysing singularities 

is possible provided we know the deficiency. It can also 

be shown that if the co-ordinates of any point on an n-ic 

can be expressed ratimally in terms of elliptic functions, 

the curve has unit deficiency. All such considerations, 

however, are without the scope of this thesis. 
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