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PLUCKER'S WUMBERS IN THE THECRY OF ALGEBRAIC PLANE CURVES.

INTRODUCTION

With the advent of the nineteenth century,a new era dawned
in the progress of analytic geometry. The appearance of Poncelet's,

"Traite des proprietes projectives des fi

g

ures”, in 1822, really
inifiated modern geometry., Mdbius,.five years later, in his
"Barycentrisceche Calcul", introduced homogeneous co-ordinates, which
gregtly facilitated the discussion of descriptive geometrical
properties. The outstan&ing contributor to analytic plane geometry
in this significant period, however, was Johann Plicker (1801-68),
and we may regard him as the true founder of the malern theory of
algebraic curves. He it was who formulated analytically the
Prineiple of Duality, and investigated the geometrical results.
Plucker's "Analytisch-Geometrische Entwickelungen" was published

in '28L31, and Steiner - who was really a synthetic geometer - con-
tributed much in 1832. 'In the ten years which embrace the publication
of the immortal works of Poncelet, Plucker, and Steiner, geometry

has made more resal progress than in the two thousand years which

had elapsed since the time of Apollonius. The ideas which had slowly
been taking shape since the time of Descartes suddenly crystallized
and almost overwhelmed geometry with an abundance of new ideas and

s - * LA - s - .
principles. In Plucker's "™Pheorie des Algebraischen Xurven™(1835)

* J.Pierpont, Bulletin Amer. liath. Scc. Vol.XI.noe3.
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there appeared the analytic relations between the singularities

0Z a curve which are known as Plucker's Zquations. ILudwig Otto
Hesse subsequently gave a complete theory regarding the inflexions
on a curve, and other contributions to the Thecry of Higher Plane
Curves were made by Chasles, Gergonne, Cayley, Halphen, and
Zeuthen. although German mathematicians in particular, advanced
the subject in the nineteenth century,in recent years, it has
especially attracted the attention of Italian geometers.

In the following pages I have endeavoured to give a com=-
prehensive account of Plicker's HNumbers and Equations in the
Theory of Algebraic Plane Curves. We shall see that these re-
lations ensble us to determine the number and species of the si.nple
singularities of a curve. They therefore assume a role of
fundamental importance in the classification of plane curves.

Moreover,I have confined the scope of this thesis to
curves possessing ordinary singularities, k-ple linear branch
points with distinet tangents, and ordinary superlinear branch
points; that is to say, to simple and ordinary singularities.
This limitation enables me to avoid the extensive and difficult
considerations involved in the Theory of Functions and Cremona
transformations, which are essential to a complete analysis of
higher or compound singularities. Mevertheless, Plucker's

Eqﬁations, properly understood, are applicable to a curve with
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any singularities whatsoever, {or these l:at’er may be re-
garded as a combination of ordinary simple singularities,

In example 47, however, a higher singularit;y on a unicurssal
curve is analysed in detail. The zero deficiency in tuis
case, renders the resolution of this singularity possible,
without recourse to the Theory of Tunctions.*

I lay no claim to originality in results obtained,
for I have merely attempted .to assemble existing knowledge
of the subject into a2 consistent whole. The examples - some
o which are logical deductions from independent memoirs on
the subject - have been selected chiefly from Hilton's Dlane
Algebraic Curves, and the solutions probably present certain
phases of novelty. .lthough Section IV deals especially
with Plucker's relations, I have thought the preceding
material necessary to an sdequate explanstion of them.

A course of lectures on Ths [fodern Theory of .lgebraic
Plane Curves (Dr. C.T. Sullivan) has been most helpful in the
preparation o this thesis; but in addition I have consulted
extensively various works emumerated in the 2ibliography.

It mgy be added that I have tentatively assumed a
knmowledge of homogeneous co-ordinates, the concepts of ecalculus
employed in analytical geometry, and numereus other comparatively

simple results not generally included in elementary courses.

*of. Cayley: Quarterly Journal of }Mathematics vol.VII (1866)

G.4. Bliss: Trasnsactions oI .merican lath.30c.vol.XXIV(1922)



SECTION I.

SINGULARITIES ON A PLANE ALGEBRAIC CURVE

The curve obtained by equating to zero any non-
homogeneous polynomial of degree n in x and y (or the
corresponding homogeneous polynomial in x,y,z) is called
a PLANE ALGEBRAIC CURVE of degree n., In this thesiz we
are concerned solely with such curves, and consequently
we shall simply use the word 'curve' to denote 'an algebraic
plaﬁe curve', It is customafy to call a curve of degree
n an n-ic; although for n=1,8, .. ,7 We generally retain
the familiar terminology line, conic, .... ,septic.

Let us eliminate z between an equation of degree
n,f(x,y,2)=0, and the equation of a line Ax iy +z20,

We obtain f(x,y,e29£¥5L~):O, which is a homogeneous equation
of degree n in x and y; it therefore represents n straight
lines joining (0,0,1) to the intersections of AX+uyevz =0 with
f(x,y,2)=0, Thus, A STRAIGHT LINE MEETS AN n-IC IN n POINTS,
REAL OR IMAGINARY.

If an n-ic breaks up into one oxr more rational
factors of lower dimensions, the curve is IIP?ROPER or
DEGENERATE; if on the other hand, the n-ic is irreducible,
the curve is PROPER or NON-DEGENERATE. Thus, & quintic may
consist of a cubic and two straight lines. The sum of the

degrees of the factorsmust, of course be equal to n.(in the
illustration:; 3+1+1 =5).



THE INTERSECTIONS OF TWO CURVES.

Before proceeding to the general case, let us
investigate the intersections of two specific curves, a
quintic and a cubiec,

(1) TUg = ﬁ0z5+ﬁlz4+a3z3+azza+a4z+a5=0 )
=z )where &,b,. are
(2). Uz = boz°+blzz+b2z +bz=0 )homogeneous

polynomials of degree r in x and y.

. 3
mltiplying (1) by 1,z,2%, and (2) by 1,2,2°,2°,2% we obtain

eight linear equations in 1,z,zz, ...... ,z7. By Sylvester's

method we can eliminate z, finding as the eliminant:
o &1 B &3 84 65 0 0O
O &, 83 8p ax &4 85 0 )
O 0 &,8&q ap a3 84 &5)

0 C 0 0 by b1bgbz) _,

0 0 0 by by bg bg O

0 0 bybybsbz0 O

\
4

6 bgby; b2z 0 0 O

bg by g3 06 0O 0O O
This eliminant is obviously homogeneous in x and y, and

therefore represents lines joining (0,0,1) to the inter-

sections of Uz and Uz, A typical term of this determinant

3
is+ g, b55, which is of degree 15. Consequently a quintiec

and a cubic intersect in fifteen points.



If now £,=81=823by=b =0, let us multiply (1) by 1,and @byiz,
2
We then obtain the three equations: 8Bgzz #8,4z+£5=0 )
)
bpz+bz=0 )eliminating z:

)
bsz+bzz=0)

8 8y &5

0 bg bz =0

bo bz O |
This determinant is evidently of the ninth degree in X and y
and t herefore represents the nine straight lines joining (0,0,1)
to those intersections of the aurve which do not coincide with
(6,0,1). We saw that a cubic and gquintic intersect in fifteen
points, and in order to conserve fhis convention, we say that
six of the intersections coincide with (0,0,1). Again, in the
above equations, &2 end b, may have a common linear factor.

The detefminant, after the removal of this factor, (which is &
common factor of the terms in the first column), will be re-
duced tﬁ eight; so that we consider seven intersections of the
two curves coincident with (0,0,1). If 8z and by have 2

common gquadratic factor, the degree of the determinant is re-

duced to seven, and eight intersections coincide with (0,0,1).

The preceding illustretion renders & discussion of

the general case muach simpler.

Let cuorves be: (1) Uniaozn+alzn;1 cceeeetBy=0)
. . -. N N-1 Jwhere &.b,. are
(11)UpSboz +b1z + ... ... 4by=0)
homogeneous polynomiasls of degree r in x and y. To eliminate z
N-1 n-1

we multiply (1) by 1,z,..... ,z —, and (1i) by 1,z,. ...,z2°7";



o n+N=1
thereby obtaining n+N lineear e:uations in 1,z,z°, ...... y Z .

Their eliminent is homogeneous in x and y and consequently
represents lines joining (0,0,1) to the intersections of the
two carves. A typical term of the determinent is ;aONb§,that
is to say, it is of degree nN. Thus, TVO CURVES OF DEGREE n
£ND N RESPECTIVELY, INTERSECT IN nN POINTS. Since imaginary.
roots occur in pairs, the number of real intersections is nN-2I,
where I is zero or a positive integer.

Suppose ao=31=-~--=ak-1:bo=b1=-""bK-l'O
fhe ecuations (i) and (ii) become

(i)l. akzk+akgizk‘l+ -+an=O}Mu1tiply (i)1 by ZL,z,...‘,zl\T"K'1

X -1 n-k-1
+* - z

L2 Ao end (11)T by 1,z,. .,

(ii)lo b ‘+bN:O

we thereby obtain n+N-(k+X) linear equations. A typical term of
the resultant eliminent is + akN“Kanek which is of degree nN-kX.
This equation represents lines joining i0,0,l) to those inter-
sections of Un and UN not co;ncident with (0,0,1). In order to
assign unconditional validity to the statement that two curves

of degrees n and N intersect in nN points, we say that kXK inter-
sections coincide with (0,0,1).

If ap and bK;have r lineer factors, in common, we may regard
the determinant as an (nN-kK-r)-ic, and conseguently, kK+r inter-
sections are coincident with (0,0,1).

4 leter section will amplify the preceding paregraphs.

e now digress to consider singularities.



SINGULAR POINTS OF CUXVES

The general eguation of an n-ic in Cartesien co-ordinates
is:a+(box+bly)+(coX2+2c1xy+02y2)+" - . -+(poxn+p1xn‘1y+-- .+pnyn)=0
or, more simply, uo+u1+u2+-A -+an:O, where u. is homogeneous
of degree r in x and y. If the origin lies on the curve,
evidently a5u0=0, and the eguation of the curve becomes:
upuo+ - - - +u,=0. The equation of any line through the origin
is y=mx, which evidently meets the curve &t the origin, since
it passes through (0,0); this line, hovever, meets the curve in
two coincident points at the origin, if b,,bym=0, &nd coefficient

of xz

=0, Thus,'ulgbox+b1y=0 is the ecuation of the TANGENT AT
THE OxIGIX. ‘e assume in our diccussion that uy=0

INFLEXION AT THE ORIGIN

u1¢0; equation of form uj+uqvitug+ +u,=0. The origin is

an inflexion. u1=O meets the curve in three points corincident
with the origin and is celled an inflexional or stationary tangent,
or & tangent or Z-point contact. e.g. In cubicel parabols xzzagy;

origin is an inflexion and uy&y=0 is the inflexional tangent.
Y

‘e notice that the curve crosses tangent et (6,0) and that
no curve where n< 3 can possess this singularity.

UDULAT ION T TES DXIGIN.

uq#0; equation of form: uwj+uyVy+tujVotuy+ - -- - +up=0. The origin

is an andulation. u1=0 meets the curve in four points coincident

2 4

with the origin, e.g. az(y+x) -2e°x(y+x)+x7=0,
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We notice thaet the curve does not cross the tangent, snd that

the curve must be of at least the fourth degree to possess
this singularity.

TANGENT OF r-pDINT CONTACT.

uy# O0; equation of form: Uy+u vV +u Vot - - -+0, 7V, o+ +- - -+u,=0.
a1:0 meets the curve in r points coinéident with the origin,
and is called e tengent of r-point contact.

DQUBLE POI.'TS - ACNODES,CRUNODES,CUSES

u2¢ 0; ejuation of form: Ug+g* - - -+un:O. The origin is &
double point on the curve. Every line through the origin meets
the curve in two coincident points there, except the tvo
straight lines given by the quadratic uyzO which meet the curve
in three coincident points at the origin. These two lines
ere the tangents (%o the two branches) at the origin. Since
& donble point is one where the curve cuts itself once, curves
possessing such points are frequently celled autotomic (self-
cutting).
If u2=0 gives tangents resl and distinet - (0,0) is a crunode
" moon b inaginary - " " an acnode
" won " coincident - " a cusP.
Three femiliar curves illustrate these three kinds of double
points.

3
1. Folium of Descartes: X5+y =2axy.


http://u-.rO

u2=6 gives x=0,y=0, for the two tangents. Since they are
real and distinct, the origin is a crunode. (fig.l below).
Conchoid of Nicomedes: &2+33*y—a) by c.,agqg.,a>b

Wowo gives x=+icy for the tvo tangents. Since they are
imaginary, the origin is en acnode. Although the co-ordinates
(0,0) satisfy the equation of the curve, the point is isolated
from all the other points a&s the diagrem shows (below). For
this reason acnodes are frequently termed isolated points and
some writers call them conjugate points.(fig.2 below)

Cissoid of Diocles: yo(Z2a-x)=x°

u-=0 gives ygo,i.e. y=o, y=o, for the two tangents. Sinece they

y I

coinci%e, the origin is a c%;p. (fig.2 below) :

I

|

\\\\\‘ T !
X X 5T X

— — !

|

|

fig-2 ie.B. |

figt g fig |

|

&n example of the three types of double points is &lso
furnished by the limacon: (x2+y2)2~2bx(x2+y2):(az-bz)x2+azy2
Tangents are real and unequal, imeginary, or coincident,
according es b> < za. If b>a, origin is & crunode,and curve

has form C1 in diagram below.

If bLa, " " an acnode " "
n n 02 i1 134 belOW.
If b: a, 13 " a cusp " t
N
" " Gy " " Dbelow.




Although the cusp presents itself as & species of
double point, it is really & distinct singulerity, as
subsesnent vwork will demonstrate. To differentiate it from
the acnode and cru.ode we call these two latter, NODES; the
term double point then includes the two types of singularities,
nodes &nd cusps.

FLECHODE, BIFLECIOLE, etc.

uy=0; bg=viwy #0

(1). ecustion of form: VW +ViVptlgtlg+: - - +Up=0; origin is
e flecnode.
The tengent corresponding to the common linear factor
Vi» has 3-point contact with one branch7and thus is an
inflexional tangent to this branch.
.2 82(x+2y)(y-2x)~a(y~23)x2+y4-0. (fig.i below)

{ii). ecuetion of form: vlwl+v1wlvi 4+ -c4u,=0; origin is a
biflecnode.

Both tengents ere inflexional.

2 5
€.8- (xé;yz)z az(xz~y2); (fig.ii below)

Y
e SX
figi. figo.
(iii). sinxilerly, if vl(or vlwl) is a factor of ujlgz,.--.. L

the corresponding tengent (or tangents) has r-point

contact with its branch (or the two breanches).



TRIPLE POINT.

ul=a2:o§ u5¢o; equation of form; Ugtay¥eeesse +0..~0; origin is

a triple point. Three branches of the curve pass through

the origin. Every line through (o,0) meets the carve in

three coincident points, except the lines obtained by equating

u-.=0, which meet the curve in four coincident points there.

=
<

These lines are the tangents at the origin.
5 4, 4 y

8.8, XY~z X 4y .
N

The roots of the egquetion ug=0o admit of four possibilities,

for they mey be (1) all real and unequel, (2) all real and
two egual, (Z) 2ll resl &nd all equsl. (4) one real and two

complex. Consecuently, there are four kinds of triple points.

k-PLE POINT

Uq=p="- ~=uk_l=o; u,# 0; origin is & k-ple point.

k¥ distinet brenches of the cﬁrve pass through the origin,
and Up=0 gives the k tangents to these branches there.
The grester the value of k, the larger the number of
possibilities of the k roots of a, =0. Thus, &s k in-
creases, the various species of k-ple points become more

snd more numerous and complex.
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So fer the Cartesien system of co-ordinates has been assumed;
let us now repeat our investigetions vhere homogeneous co-

ordinetes form the basic system. The general eguation of an

n n-1

n~ic is: uoz +0q 2 +-:--%0,=0, Where u, 1s homogeneous of

r

degree r in X and y. If (0,0,1) is on this n-iec, uy=0,

and ecuation becomes:

-1 -
alzn +uzzn 2+’ ~~'+un=o. Consider the intersections of
y=nx with this latter curve, and the resultant eguation
2

conteins x* &s & factor; hence uy=o0 touches the curve,
thet is,it.is tengent to the curve at (o0,0,1) which is C
on our triangle of reference)

INFLEXION.

n=1 n-2 -
’ n

L, =0; u3¥9; equetion of form: u *0,Vq2 +U,; Z 4.+« 4n_=0;

1
(0,0,1) is an inflexion.

u1=o evidently meets curve in three coincident points at (o,0,1)
and is therefore the inflexional tangent.

TLNGENT OF r-POINT CONTACT.

. . . n-1 n=-2 A n-r=1
u0=o, u1¢éo, equation of form: uq2 +u1vlz + +u1vr_2z
n-r

*a .z 4t -t =0. u, =0 has r-point contact at {(o0,0,1).
n

k-PLE £OINT.

. - n—'k - k:-l
n =uy=---=0, 90, u, #0; ecusgtion of form: upz +u,_ .2 +

k+l
tu =3 (0,0,1) is & k-ple point on the curve. The tangents &t
(0,0,1) are given by u,=0. Suppose Vv, is one of these tangents.
then itnas 2-point contact on its branch. If it is a fattor
0f Uy ,q+---->,, » then the order of cntect of tangent is (r+2)

(Double andé triple points are incorporasted here, for the sake

of brevity).
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I have purposely avoided any precise definition of
tangency. Certainly itis insufficient to say that a tangent
is & line which intersects the curve in two coincident
points, for &s we have seen in the case of a double point
the tangent meets the carve in three coincident points. The
only satisfactory definition seems to be that "the tangent
is the line of closest possible contact with,the curve et
thet point." (Basset).

Since we can slways transfer (o0,0) or (o0,0,1) to any
definite point in the plehe, our investigations naturally
epply to points other than (o0,0) or(o,0,1l). However, a
curve mey possess singularities &t infinity, snd they can
be determined in various vays (Explenations are found in
Hilton pp.29-31, and Ganguli, vol.XI. pp.71-72).

The following examples afford practicel illustrations of
the theory.

Bx.l. Discuss the nature of singulerities at (o0,0),(~-1,0),
&(1’0) on;

yEex3(2°-1)%(x-2) =0
(i) for (o0,0)

Uy=lq=0; dzzyz gives coincident tangents,.:{0,0)
is & cusp on the curve.
(ii) trensfer origin to the point (-1,0); equation
assumes form: (y2+12x2)+u3+----=o, the tangents are
y=+ 2V3& ix, thet is 6 imeginary. Thus (-1,0) is an

ecnode on the curve.



(1i1)

Ex.2.

Ex.3.

EX.4.

12

. s s 2 ,. 8
Transfer origin to (1,0); eguation becomes y~-4x +u,+- - "=0;

tangents are y+2x=o0 and are resl and distinct. Thus
(1,0) is @& crunode on the curve.

An n-ic has the sides C4,CB of the triangle of reference
as tengents of r-point contact, A and B being the points
of contact. Show that its equetion is of the form:

r , .
Xydy.g=2" U, .., Where a is homogeneous of degree ¥ in x,y,2z,

A e »

T
- The equation must conntein z as factor when
C
<<:::fi§i;{ =0, and when y=o0; and is therefore of form:

B T
Xyup-2 = 270, ..

A line joins two rezl inflextons on & cubic, show that it
passes through & third real inflexion.
Let us teke the two real inflexions at A and B, end the
inflexional tengents &s CA and CB. Then by example 2; n=3,
é

r=2. The equation of the cubic is: xyuj=- 2z AB, i.e. z=o,

intersects the cubic at 4, B, and I, which is given by u,Zax®

1

+by.:0

Thas I= (-b,2,0) is a resl inflexion and u,=0 is the
inflexional tangent.

The sides of the triangle 6f reference have n-point contact
with an n-iec. Show thet the equation of the n-ic can be

put in form:

xyzun~5+(a;:by)n+(by+cz)n+(cz+ax)nu alxN4plylscizl . the + sign

throughout if n is odd, and either sign if n is even.



(i) n 0dd; for side x=o0, equation becomes: (by+cz)n=o which
shows theat xXzo hes n-point contect with carve at point
(o,¢,~b). Similarly for y=o, z=o.

(1i) n even; reasoning is the same, a2nd we may evidently

take either sign.

Ex.5. An n-ic has three tengents naving n-point cantact.(i) if
n is 24d the points ere collinear (ii) if n is even,
either the points are collinesar, or the three lines
Joining each to the intersections of the tangents at the
other two &re concurrent.
(i). Take the tangents as the sides of the triamgle of
reference. Then, by example 4, ecuatbn has form:
Xyzun_5+(ax+by)n*(by+cz)nﬁbz*ax)n=anxn+bnyn+cnzn.
The points of contect are:- (o,-c,b); (~b,a,o);(ac3;a).

|

Points are collinear if A& | o

=0; which is so.

PO
opo

(o aN el |

(ii). Using +sign in (ex+by)"™ we find, as in (1) that
points are collinear.
If, however, we use form: xyzun_3+(ax-by)n+(by+cz)n
+(cz+ax) PaaxB+byRe ez the points of contact are:-
(o,-¢,b), (-c,0,a); (b.a.o)

6-c b

-C 0 &

bao

H=

= -cabe £ 0; hence points not collienear,
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Equations of the three tangents are; ax-by =0...(1)
cz+ax =0...(&)
by+cz =0...(3)_

Equation of line joining (o,=-c,b) to intersection of (2)and(3)is

B‘ON

T 2
-C b = 0
-a=-ab

¢
i.e. ax-by=o0, Similarly the other two lines are by+cz=0 and

CZ+8X=0, These three lines are concurrent ififa-b o
0b ¢|=0,which
a oc is so.

BEXx.6., An n-ic has r-point contact with each of x=0 and y=0 at two
distinct points,show that its equation has form:
T
X=0,y=0 are bitangents with r-point contact. ~hen x=o,u’
is a factor of the equation and similarly for y=o. Thus

equation is: Xyu, o = uarun -

Ex.7 In general n(n-1l)-k(k+l) tangents to an n-ic can be drawn
from the k-ple point (o0,0,1). (e exclude the tangents

through C to the branches).

equation assumes form: znﬁyu z2 n-k-1
2 ¥ g% o
CP.P_ becomes tangent when

12

P1Q1=P2Q¢, i.e. When equation has

equal roots in 2z.

io find eondition that f(x,y,2 )_u1z .f ..... u,=o has equal

roots in z, we must find the z - elimivant of f=0 and f =0
The resultlnr equation will be homogeneous in x and y
and therefore reprcsents tangents £rom (o0,0,1) to the n-ic.

The degree ol the eliminant is the degree of the typical term:
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n-k
= ugz +---otny n-k-1l n-k
Typicel term is Ku uk ,i.e.
N=kwl n
- (n-RQu,_ ° L IR 5}
k‘

of degree n(n-k-1)+k(n-k).
Thus there sre n(n-l)=k tangents, including the kK tangents
to the branches at (o0,0,1); therefore, apsrt from these:n(n-1)-

k“-ken(n-1)-k(k+l) tancents to the n-ic from (9,0,1).

CONDITIONS FOR MULTIPLE POINTS

1°. f(x,y)=0 is the equetion of an n-ic in Cartesian form.
Let (X,Y) be & point on the n-ic; if we transfer the origin to
(X,Y) equation becomes:f(X+x, Y+y)=o
‘¢ Theovem: n
By Teylor, f(X+x, Y+y) = f(X.Y.)+(xQ + yo )f+....+_1 (x3 +y 3 } f=o
y Tey ( y) = (XY ) (=g + y2 ) (372 )
Since X,Y on the curve, f(X,Y)=o; if it is a double point,

uy=o0; i.e. of = 3f -o.

X oY ~
Then, the three conditions for (X,Y) to be & double Point =re:
_ ok _
£(x,5)= 2b =24 -
The tangents at (X,Y) are given by:us 'ng)é +2Xy ¥ +y23‘£ =
X3 Y2

They are real and distinct, imaginary, or coincident, according

o ¥ (3L _
as (%c"%f) ~@) ) > < or-o
Thus: for & crunode at (X.Y) : (aXaY) axz {;ié}z l

for an senode at (X.Y.). . L

for & cusp at (X.Y.) . wo =

2% wWe now repeat the process for homogeneous co-ordinates.
Tet (X,Y,Z) be & point on the curve, then 2 point on the line
joining this to sny other point (x,y,z) is given by,(7\>{+/a,x’

AY+wy AL ), where 7\—74, =1 . This point is on
the curve if f(7\X+/ux,7\Y—7~y,7\z'+/w2)=o.
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g fheo‘rem :

Al o + + PR e L x + a‘+’1a—'n -
By Teylor, E( sV yuy AZyme)s NFOWE) ¢ X 5oy i (et -
For & double point we must have: %=5¥[=1§—%=0~
The vanishing of these three quantities, in virtue of Buler's

fom X + YU ¢ 2 = =0,
relation XBX o F A Za% nf, implies thet f(X,Y,Z) =o. Thus we
still have but three independent conditions for a double point.

The tangents at the double point are given by the homogeneous

expression; (x 2. +22.N= 3 y? 3L 23 L2y f 5 > :
P ’(%*'AY B%Yf‘ et oy y*a‘fa%+2%>;ga)c+ 2x),a}(a\’.'—o """" @

Equation (1) will represent two straight lines if D=o (#see footnote)
Here D 2|f, £, £,
b fzz f23 In this multiply the columns by X,Y,Z in turn,

f, f,, f,;/and then use

Baler's formula:

D= n f f £

XYz
f, £,, f,,| Since f;= f, = £ = o, evidently D=o
f3 f32 f3.3

#. In f(x,y,2) -axé+by2+ez2+2fyz+2gzx+2hxy=o,D- ah
h b

g
f
g fec

f-0 represents two straight lines, if D=o0. If lines are coincident
A=B=C=F=G=H=0; Df0; Where A= %2—=bc-f2,etc., F=%—%% =gh-af,etc.;
BC-‘F2=aD, etc., GH-AF:ECD,etc.

{f F=GeH=0,D=0, then at least two of 4,B,C must ¥anish, say B and
C. B=ce-gZ; C=ab-h® whence az’bc=g2h2‘=a2f2; i.e.,A=0. Thus the
four conditions F=G=H=D=0 suffice to meke f =o represent two

coincident lines. In the 2bove exercise fq= sﬁx,@h; ]C“z:a%?%( etc.

Cf:Muir's Theory of Determinants.
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If the two lines are coincident, we have, in eddition to D=o,

A=B=C=F=G=H=0
2

Asfop £33 £, =0; F=f, f,~f. f=

BEf,, f,, =-f3 =0; G = £, f,,—f,, f.=0
2

C=£f, - fzz £, =0; H=1f,. f —fs; ct;z-

Now, fq,(xfj +yfy, +2fy5) — f14 (xf21+yf22+zf25): (n=l)fqfq5—
(n—l)fz'fll , by Buler.
i.e. 0 =z (m-1)f1fy9-(n-1)f,f, (for L.H .S. = 6 identically)

i.e. %L_-'- f2 = —i;'-’:-—--»-.-by symmetry} Multiply numerators end
1 frz2\ fi3

denominetors by X,Y,Z =nd add;

f, . £o - f =E:Xf1 - nf = O‘;it therefore follows that
Ty T2 s XXt @df

fl =f2 =f5 =0

Hence, for & cusp, we heve four conditions as in Cartesian co-
ordinates.
A sumzary of our results then is:
conditions that (X,Y,Z) ic a node of f=o are f; :fngzzo
n " " " " casp " "are f= fll f25"

£ 2 0% SR JU JURS: SEL SIS NS S

1¢ 15 - "‘1 Zu 21 =

&#1lthough our considerations have been confined to druble
points, we mey in a precisely analogous ma&nner demonstrate
that for a k-ple point on the curve, &ll partisl derivations
up to and including the order (z-1) vanish.

4

#ind the double points on x -Zayv-ﬂ" 2-2a2x2+a4-_—o

at & double point (X.Y.): f(X.Y) = 24 =23f _
ouble P ( ) ) e 25
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284X 48X = 03 T=0; +a.

E f(a,o0)=ffta,o)=Ff(0,-a) 0; hence the
3%{f=--6a')(2 -6a°Y=0; Y=0,-a.

double points are (a,o),(-2,0),(0,=-a)
Por all three .poi 0 _o M. __ve
1 three points: ey =0 axz%—
Hence 2% \* 22£ whence the three points are crunodes
' WY AX2IY=2 c 1 P A .

Ex.9. Pind double points on: y(x+3)= 4(4x-3y) (2x-3y-6)

é?)%64-3{-'783(-233{}{-96 } ==8; Y==4; f(-3,-4)= o,hence is a

= -X  -78X-+72Y-63) double point.

¥ o4 0v_mo. 4 _no. 9% _ _no% ¥4 Pf
=64-27-72; 2.-72; -8t2x=12= 2L 20,

whence (-3-4) is a cusp on this cubic.

Ex.10. Por what value of k has x% y?q- zz=k(X+y+z)3 a double point?
it a double point:2f-2f-_o(this implies f-o)
A 5x Bk (XrT+Z) = o (X,Y,2)=(1,1,1); since x=y=z,
U BYeBR(T+Y+7) %= 0 > Zx= k(2x). i.e. k=L.
Y - - s 9
of

2.3z “ZE(TeY+2)%= o

» - . :3 3
Putting k=4 , equation is x vz - &(x+ y+ 2] =0, The

tangents at (X,Y,Z) are represented by:

232 29%f | 222 L ayzdf_ 4 22Xl
N A A e A

2
FZ X B

v2f __o.
IS ©

= T T o . ‘a_zi — b,.—— ____i_{.__:— = 3 -~
2% -2, - 2 s 2L = \(Efaz 2==2.2=0 meets (i) where
5x” -4xy+5y=0; i.e. X= 2228 that is, two imaginary lines.
? Ta) b g

Thus (1) represents two imaginary tangents at (1,1,1)

and consequently (1,1,1) is an acnode on this curve.
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BEx.1ll. If 81:0,82;0,.....,Sr=0 haw & k=-ple point &t P, and
€, =0,0p=0,.....,C =p &re any other curves,
£=C,5,+CoS8p+-- - -+C..8; =0 has & k-vle point at P
Clearly fy; p=o; %§:CL§%g+Sl%E{+Ca%§%L S, 0¥t

DX
"Or 43 *en3 <

( a f(—f - C ED}kS_l +.....48 ( P }Cc-l'bc ) k-1 ... +§ (_3_)%2-...
ox -1 1o ;_1525 1 2£'bx) 82 2{3x) *
*Cr ) )sr+----+sr(a ) Cr=0

x \Bx

leibnitz expamasion
. i
Sinilarly for 3f ,....,("a )iLThus f=o, has &
dy 3y
k-ple point at P.
Ex.l2. If u=0,v=0 are straight lines eand p=zo, r=o are (n-2)-ics,

then pu“+2quv+rve=o0 is an n-ic with = node &t P, the

intersection of u=o0 &nd v= o
f=°"E£:u2gg *2uPpp *2uv 3q *-..=o0, evidently vanishes
X X X o

at ©. Similsrly sf_o, et P
)

Conseguently P is 2 node on the cuarve.

The most general equation of degree n in Cartesien co-
ordinates is:-
a+(box+bly)+(cox2+2c1xy+cgy2)*‘ - "*(poxn+ 0 ~+pnyn)=o cee o (1)
Evidently there are 1+2+43+4. . «+(nel)= %(n+1)(n+2) terms in this
equation. For the correspomding homogeneous equation we merely
multiply each term by the appropriate power of z, which
naturally does not affect the number of terms. The numbetr of
indepencdent constants in (1) is equal t5 one less than the

number of terms it contains, since the generality of (1) remains

unaltered when each term is divided by 2 and new constents are


http://3x.ll

20

substituted for the ratios of the original coefficisents

to a. Hence the general equation of an n-ic contains zn(n+3)
independent constents, (%(n+l)(n+2)-1=%n(n+5», and therefore
the curve can be made to satisfy the seme number of independent
conditions. If these latter are that the curve is to pass
through $n(n+2) assigned points, we have in(n+3) linear re-
letions between the coefficients. These in(n+3) conditions
determine the coefficients uniquely, so thet: ONE ANT ONLY ONE
n-IC CAN BE FOUND PASSING THROUGH sn(n+Z) GIVEN POINTS. Thus,
for the determination of & conic, we require five points, for
& cubic nine, for & cuartic fdourteen, etc. It is necessary to
amplify the preceding remarks by the phrase, "in general", in
order to exclude the possibility of inconsistent or dependent
conditions. For example,suppose in the determination of a
conic, four of the fi ve points are cailinear, then infinitely
meny conics (consisting of two straight lines) pass through
the five points.

It is quite legitimate for the arbitrary points to de-
termineuniquely & degenerate curve, for we did not reject this
possibility in our considerations. e.g. Nine points determine
a cubic, but if three of these are collinear, the cubic consists
of this line and & conic through the remaining six points. The
curve determined will be non-degenerate or proper, if no group

of the n(n+Z) given points lies on & curve of anorder lover

thean n.
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To be given that & point is = node on & curve is equivalent
to three linecr relations between the coefficients viz:
f(X,Y)=0;€§£:05 ﬁ%ﬁ_ =0 . If the given point is & cusp, we also

2p Vo v .
heve (i&é%) - £%§§T)(;§$%), that is to say, & cusp at a given
point is equivalent to four linear relations between the co-
efficients. For & k-ple point, 1+42+3+---.+k=3ik(k+l) terms of
the gencral equation are absent, and the information that the
curve has a k-ple point at a given point is therefore equivalent
to 3k(k+l) lineer relatioms between the coefficients.

AL node on the n-ic, not at & given point, imposes but one
condition upon the coefficients, obtained by eliminating x and
y from: f(x,y)=0, %g;=o; %g;:o.

& cusp on the curve, not at a given point, is equivalent to two

relations fourd by eliminating x and y from the last three

equations and ( * )2 2 -

00X dy - d3xr Vyr
Similarly & k-ple point not at & given point imposes Lk(k+l)=2
relations.

e easily infer thst in general, A FINITE NUMBER OF n-ICS
CAN BE FOUND HAVING § NODES AND T CUSPS AND SATISKFYING r
OTHER CONDITIONS, where r = in(n+3)-3 -2 K.

It is important to realize that these results clsim no

universality, and we must consequently exercise due cauntion

in applying them.
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Bx.l8. To be given a k-ple point and the tangents &t thet k-ple
point, is equivelent to $k(k+3) linear relstions between
the coefficients,//The given k-ple point v 3k(k+l) re-
lations, and since each tengent at the point imposes
one relation between the coefficients, the k tangents
impose k.

s.number of relations =3k(k+l)+k=3k(k+3)

Ex.1l4  S+g1Sy+a So+--- +a 5.-0 is the equation of an n-ic with
s given nodes and preassigned tangents at these points,
where $=0,57=0,....,5r=0 a&re n-ics each possessing the
s given nodes. Find r.

r given nodes v 3s relations
Nodal tangents (two at assch node)mw 2s relations}
nWT=2n(n+2)~(3s+2s)=in(n+Z)-56s.

Ex.15. To be given an inflexion is equivelent to two conditions(#
Let equation of curve be:(box+b1y)+(cox2+2c1xy+c2y2)+u2+-'-

L +,=0

b X+bjy=0 is the inflexlonel tangent, and when byx+bqy=o,

2

then c,z242c1Xy+csy =0. Substitute fpr m=y =- bo in By=o,
X

1
end we have:b120O “2bob1°1 +czb§ =0
i.e. fy(bgybyc,yeqep)=0; folbybic eicp)=0. That is, we havs

tw relaetions between the coefficients.

§#) See Ganguli, vol.I;p.60.Bx.2. If & point iz to be an
inflexion on a2 curve
that amounts to three
conditions.



BEx.16.

Show that to be given tlree collinear inflexions on &
cubic is equivalent to five (not gix) conditions. For
instance, show thaet & singly infinite family of cubics
can be drawn with three given collinesr inflexions &nd
2 given node.

We proved in example & that a streaight line pessing
through two real inflexions passes through & third; hence
the conditions imposed by three collinear inflexions
number but five.

Iet a2 cubic have a node at(0,0,1) and inflexions
et (1,0,0),(6,1,0),(1,m,0). Tren r=53(2+43)-3-bal;
that is, one parameter is &t our disposgsl. Form of
cubic is: fy=xy(y-mx x)+Az (mxy-m®x z-yz) 0
Evidently (0,0,1) is & node on f,=0, and we must now show
that (1,0,0), (0,1,0), (1,m,0) are inflexions.

Ecuation of tangent at (1,0,0) is ul -y+Amz =o
x of + df
[( X IV = = + z{?%), o ;(X,Y,Z)= (o,o,l)]

x 2. 2 2
3 Yy " + 28 g £ 2y « ZAmz-4zx7\m2-4mxy
=(y+ mz)(2y~4mx)
=u,Vq; whence (0,0,1) is an inflexion.
Sinilerly for (o0,1,0) end (1l,m,0). Thus it is possible
to drew a one perameter (or singly infinite) family of
cubics with three given collinear inflexions end & given

node.
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DOUBLE POINTS ON AN n~IC

There is & limit to the number of double points an
algebreic curve cen possess. For example, a guartic cennot
have more than three doable points; for if it has four we
cen describe & conic through these four doutble points and
any fifth point; the conic would therefore intersect the
gquertic in nine points, which is absurd - since a coric and
& gquéertic intersect in only eight points (n=2, N=4,pAQ

Ve shall now prove the general theorem that: AN n-IC
CANNOT HAVE MORE THAN #(n-1l)(n-2) DOUBLE POINTS.

If the curve has i(n-1)(n-2)+1 double points, it is
possible to describe an (n-2)-ic through these double points
end elso through (n-3) other points, since 3 (n-1l){n-2)+l+n-3=
Hn-2) (n+1) [=2N(N+3);N=n-2)]

Lt each double point there are two intersections of the
(n-2)-ic and the n-ic. Consequently the n-ic and the (n-2)-ic
intersect in 2( 3(n-l)(n-2)+l)+n-3=n(n-2)+1 points; but this

is impossible, since they cannot interdect in more than n(n-2)
points.

We have thus ascsigned a definite limit to the number of
double points bn an n~ic: and in so doing, we assume that the

cuarve is non-degenersate.
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SECTION II

TANGENTIAT RECUATIONS; P0I:iR RECIPROCATION; SUPTRLINEAR BRANCHES.

Johann Plucker in his Theorie der Algebreischen Kurven
wrote: "If & point move continuously along a straight line
while the straight line rotates continuously e2bout the point,
one and the same curve is enveloped by the line snd described
by the poin%." Thus every curve(#note) has two equations,
one in point cp-ordinates end the other in line co-ordinates,
depending upon whether we have consicered the curve as treced
by & moving voint or as enveloped by a moving line. Hence
whehever ws demonstrate any descriptive theorem whatsoever by
point co-ordinates, we simultaneously demonstrete the cor-
reletive theorem for line or tangentiel co-ordinates, &nd
vice-versa. The importance of this dual aspect of a curve will
become quite apparent in the sequelg

From previous acquaintance with pdint and line co-ordinates,
(herein assumed) we <now that Ax+ Ay+ Y z=0 represents the
equation of a line ( }‘C/L'p ) in point co-ordinates, or the
equetions of & point (x,y,z) in line co-ordinstes. That is to
say,\x+ uy+V z=0 represents & pencil of lines on point

P(x,y,z) or e pencil of points on 1ineL(7\/u,ﬂ).

(#) The point and the line are exceptions to this dusl
principle. The point, which has the line as envelope, cannot
be regerded as & locus, while the line, vhich is a locus of
points, cannot be regarded as an ehwwlope. Consequently a

point has only a line ejuation, and & line has only a point

equation.
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TANGENTILAL EQUAT IONS.

If the line Ax +My+ Y z=0 is tengent to & curve
f(x,y,z)=0,8 relation(b(%¢a9)=o exists between %)%LV.
This equetion (A w.”)=0, setisfied by A,u /), is called
the tengential or line eguatiosn of f(x,y,z)=o.

If the point ecuation is given in Cartesian co-
ordinates, the corresponding line ecuation expresses the
relation existing between )\and/u,when 7\x+/»y+lao touches
the curve.

The number of line elements (m) common toﬂKx'f/uy'+9 z'_-0
and 4>(2¢M9)=o is celled the CIASS OF TH:T CURVE, Jjust as the

‘ , , &and £ (xy.2)=0,
number of point elements (n) common toZKXf/Ly+V zgo,1s called the
DEGREE or BRDER OXF THZ CURVE. In section I we proved that
the number of point elements common to two curves (i.e.their
intersections) of degree n and N is nN. We cén show by an
exactly similar procedure that the number of line elements
(i.e. tengents) common to two curves of class m and M res-
pectively is mM.

If we are given the ecuation f(x,y.z)=0, of degree n,
we know that any straight line in the plane meets the curve
in n points, regl or imaginary; whereas, given &n equation
¢ﬂ'7¥/ug))=o, of cless m, we know that through any voint in
the plane m tengents, rezl or imaginery, can be drawn to the

curve. This notion of the order end class of 2 curve is duae

to Gergonne.
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Obviously, the degree of a2 curve is not necessarily
equal to its class. Subseguent examples vill substantisate
this remsark.

7O FIND TANGENT Ial. ECUAT ION FROM POINT ECUATION.

(a) PFirst Method:

Ax+ uy+¥ z-0 intersects £(x,y,z)=0, where f(x,y,-%x;_»_u y)-_-o,
This eguation is homogeneous in x &nd y and hence is the product
of:(alx-rb»ly)(azxmzy) --------- {a x+bpy)=0. Each of these factors

represents & pencil of points on range CP1=1 o where Pi

-,n!
is the intersection of the curve and the line. The line will be
tangent if two ranges coincide. Hence the tangential equstion

is the condition that the above equation has two equal roots.

This is given byd)(%yyﬁv)=o, the discriminant of f(x,y,- 2>@*gz)=0

(b) Second :lethod:;

Let 7\x+/u.y*9 zz0 touch the curve at (4, 4¥).

Hquation tangent there is: X'a + 3y 2f +_z.§$ =0.
;Q% =

Comparing the two ecuetions which define the same line, we have:
of

2d - %% = 2% ; also by Eunler: d%+ﬁ%+¥%=nf{d,ﬁﬂ
AM v

Upon elimination of d,ﬂ,Xwe obtein, as in (2), Cp (%w,w)w

[y

Ex.18.A conic is of degree 2 and class Z.
Conic hes eqqation:f(x,y,z)Eax2+byz+cz2+2fyz+2gzx+2hxy:o

Using method (b); tengent at (d,4 Y ) is:xof +y 3f +z23f -0
od 2B 2%

This is to be the seme asfﬁxf/by+l7z=o
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i.e. AR = ad +hﬁ +gY a h g A
R = hd +bpB +fY h b f
2 F Eliminete R,d 4 end: Fl =
VR = gd +If3 +c¥ g f ¢
0 = Ad +/bbF>+)>X A p ) o

i.e. A?\2+B/<L2+C>>2+2F/m +2G97\+ZH7\/L=0, the tangential equation,
vhich is of class 2.

Ex.19.Find tangentiasl eguation of:3(x+y)=x°

7\x+/i~y4-;=0 intersects curve Where:S{x-—%X‘*l? =X5

/Uv

fE/xxz-Z(/ux-% x-1)=0..... (i) %Liultiply (1) by 3.
2f = Buxc 28N =0......(11) (11)by x .
oX
5/u.x5-9/ux+97\x+9=0 ----- (i),

7 ; | substract
Zux®-Bux+Z3Ax = 0.....(1ii)
4 Vd

6x( 7\-/41,)= -9
JoX= =3 ; substitute this in (i) and:
2]?\-/LL§

9/LL -4 (A --/U.)S;o......reqaired tangentiel ejucetion.,

2

2

Bx.20.Find tengential equation of: x + ygz £
2 28 2 2 2

f(ny,"’ M):’O; 93(X3+ :}) = a3( 7\X+/u.y)3

i.e. Q§(§% +1) - ad (%%-b/u.f ..... (1)

yv
1
<l
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Differentiate with respect to & ; 5 (;\%%/17‘3
3
Cube and simplify; % g substitute in (1):
2 & — 2
)3 (317\3_02703 _ /u_:s (a A _9)

2 2 n\ % 212 2D
Cube end: v (a*A°—) 7\) =/U«2(a A —-9)

"hence 7)( A +/U- = a"l/'a??\‘z ..... tangential squation.

o o o S 2 2 2 %

N.B. If ve cube f =0, we have &2°z-x%-y° = 2x3 3y 3 (a3 z°)
Cubing &sge&in, (azzg - Xg---y‘?')5 = 27a2x2y2z2 ...... i.e.n=6

TC DERIVE 2OINT ECULTION IFROM THE TANGENTI-I.

(a) First Method:

Pencil of lines 7\X+/wy+9 Z=0 hes in common with curve line

elements for vhich 43(7\/L;- 2\%&17[ =9 represents points on AB.

(j}(?\yu; A X"‘/Akjé z = 0yl e Bp o....(1)A

If two points coincide, P is on the curve, and then
required equetion is f(x,y,z)=o0, which is the discriminant of
(i).
(b).Second iiethod:
Let (x,y,z) be & point on the curve, =nd ( ?\‘ /u_' P') be tangent.

Then equation of point of contact is: 7\,37\, +/¢’a/u +P—Q—

Hence X: y: 2z = 2¢ . _02b °'. 24 . 2lso by Euler:
LA™ ov'’

(7\,37\. +/LL’B/U. %')43 =nd (7\',/&',1)')- .. Eliminating 7\',/LL',))',

between these three equations we obtain f(x,y,z)
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. ptq pq_ P4 P
Ex.21. Find point equeation of:(=-A) pd =yu,v<@+q)

+4pqq 94 qg P
(b(?\,/u- AX ;/Al}zo is: (—1)p+q7\P PP‘15=(—l)/ur(7\x-yJ-)’) (p+9)

“+ P+ ‘1 P+q .
CFt qPqung(—l)q(éx-f—y) S SRR (VB 5:/23[

+q-1 q-1 P4 e
Differentiate w,r, tof& : (-I)P(P»rq)%PPqu%P i :xq(%x+y) (p+q) - (ii)-

Divide (1) by (11): & - &xsy _ _ YP+9)
ide (1) by (11): g2g=28h g 2o
. q P p+ag )
Sabstitute f°r4E> in(1i); z y =X , required point eqgua-

tion

Here n=m = p*q

POLAR RECTPROCAT ION

The general principles of polar reciprocation were first
enunciated by M. Poncelet.

Consider & base-conic C and & curve S. As a point P describes
S its polar with respect to C will have an énvelope 3", which is
celled the rOLAR RECIPROCLL OF S. If P and Q are neighbouring points
on S, their polars will evidently meet in R, the pole of P Q.
In the limit, Q—P, &P becomes tengent to S at P, and R becomes the
point of contact of tangents to S' corresponding to P. Hence if any
tangent to S corresponds to a point on S', the point of contact of
that tangent to S will correspond tg the tangent through the point
on S'. Thus the relastion between S, S',1is réeiprocal; that is to

sgy, the curve S5 may be generated from S' in precisely the same manner

gs S' is generated from g,



IT L is ahy line and P its pole, I intersects S in points
thet ere poles of tangents to S', through the pole of L.
Hence as many tengents to S' can be drawn through & point es
there are points on S lying on & straight line. This is
equivelent to saying that the class of S' is equal to the degree
of S, or reciprocally.

DEGREE OF CURVE = CILASS OF ITS POLAR RECIPROCLL.

Iet us select for the base-conic, the imaginary circle

x2+y2+zz-o, and let the tangential equation of the curve be

¢H %C/¢?9)=o
The poler (#) of (x¥,y',z') is: xxX'+yy'+zz2'=0; this will be
an element (line element) of curve(@(ﬂyu,Q);o, if ¢Xx',y',z')=o
Hence the eguetion of the polar reciprocal of(b(%yudv);o is
¢(x,y,z)=0. Thus, THE POLAR RECIPROCAL OF f(x,y,z)=0 IS
¢(x,y,z)=o, where 4)(%vu,ﬂ)=o is the line ecuation of f(x,y,z)=0
Similerly, for the Cartesian equation f(x,y)=0, the polar
reciprocsl will be <b(x,y)=o ,(where<p(%,9)=o is condition that
Ax+y+Y -0 touches the curve), if the base-conic is the parabola

o

Ex.22. Find polar reciprocal of 4)(%,/u,9)=e with respect to
base conic: axz+by2+cz‘+2fyz+2gzx+2hxygo
Polar of(x',y',z') is: x(ax'+hy'+gz')+y(hx'+by'+fz')+

z(gx' +£y' +cz' ) =0

Hence poler reciprocal is:(b(ax+hy+gz,hx+by+fz,gx+fg+cz):o

(#) We assume & knowledge of polar properties with respect to conics:
e.g. gqu. polar of (x',y',z') is:(x'2_+y's +z' ) )b =0;

¢=o is conic. ox % 02
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Ex.23. Show that polar reciprocal of xpyqzap qwith respect
to 2 cirecle whose centre is &t the origin is another
curve of same kind

Comicls X2+y2=r2; polar of (x',y') 1szxx’+yy'=r2
whence
same as 7\x+/u.y+1:o

A :"'__E' ¢ ] = _ <t
re '/L —%2
Tengential ecuestion of curve from Ex.21 is:

q p+q P+q
(-1)F*¢ PP iq - Mutat )
p+q

i.e. PPq‘l: xpgq aP

c2(p*q)

+q
(p+q)

P _1\pPtq
i.e. xyd = {rz pPte 4P*
\ e

b*q
i.e. xpyq =k ; & curve of same kind.

)
©

2 2
Ex.24 Find polar reciprocal of x° + y°=g9

Prom Ex.19, (z=1), tengential equation is:%?ﬁ/xz=32?\%/xz

2

Selecting x“+2y=-o0 as base-conic, polar reciprocal is:

XZ*Y2=82X2Y2, or 1 + 1 __1 . where cfs 1
X?* y? c? gl

SINGULARITIES ON A CURVE AND ITS RECIPROCAL

We found for the two polar reciprocal curves S and S' that
the line and point proverties of dne .are exactly the same as the
point and line properties of the other. We shall now investigate

this correspondence for singulerities.



&L NODE ON A CURVE CORRESPONDS TO L BITANGENT ON THE RECIPROCAL
CURVE, and vice-verse.

Two branches of & curve, with a distinct tengent to each,
pass through & node. Hence to & node end its tangent corresvonds
e tangent with two distinct points of contact, (i.e. & bitangent),
in the reciprocal curve. Assuming the bese-conic to be real, then
to & crunode corresponds & real bitangent with real points of
contect, while to &n acnode or isolated point corresponds a rezl
bitangent with imaginary points of contact.
TO A CUSP C AIIZ CUZPIDAYL TANGENT i CORRESPOND IN THE RECIPORCAL
CURVE AN INFLEXIONAL TANGENT c¢ AND ITS INFLEXIONJX.

For the cusp has the property that evsry line

through C meets the curve in two points, except i,
which meets it &t three points in C. Of the tan- CF
gents from any point P on i, one coincides with i,

excepting that P be at C, when three coincide with 1.

Hence from eny point on ¢ two tangents cen be drawn to the
reciprocal curve coinciding with c¢ itself, unlesc the point be at
I, when three tangents coincide with c¢. Also any line through I
meets the reciprocal curve at one point in I, except ¢, which
meets it thrice at I. Consequently I is an inflexion and ¢ the
inflexional tangent.

Sinilarly, to & triple, cuadruple,....,k-=ple point with
distinct tangents corresponds & tangent with three, four,.. ..,k
distinct points of contact (we call these latter Z-fo0ld,4-fold,. -k--fod

tengents). To a triple point with coincident tengents corresponds
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the tangent a2t 2 point of undulation, end so for cuedruple,.....,
k-ple points with coincident tangents.

We note in passing, that the polar reciprocal of a
flecnode is evidently a double tangent which has 2 contact of
the first order at one point of the reciprocal curve and touches
it et & cusp at the other; while to & biflecnode corresponds
a peir of cusps with a common cuspidal tangent.

Consider a curve C of degree n and class m, and possessing

$ nodes, W cusps, T bitangents, ( inflections. The six
quantities n,m,8N,T.iare called the PLUCKER'S NUMBERS OF THE
CURVE.

In virtue of the foregoing considerations we see thaet by
interchenging n end m,S and 7T, Wand ( , we have the Plicker's
numbers of the reciprocal curve - which we denote symbolically
R(C). A schematic arrangement places the correspondence in

evidence:

c R(C)
degree n m
cless m n
nodes Y T
cusps 8 :
bitangents T &
inflexions ¢ K

In section I we found thet the number of conditions necessary
to determine an n-ic is in(n+2), and that § nodes and X cusps

on & curve impose & +2 ) conditions. Thus, if we =2re given
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that a curve, having § nodes and ¥ cusps, setisfies r other
conditions, we know that 3n(n+3)=§ +2¥+r....(1). Obviously,
the polar reciporcal of degree n, possessing T nodes and ¢
eusps -, 1s also subjected to r conditions, i.e. Zm(m+3)=
T+2( + r....(ii). From (1) and (ii) eliminating r:

n(n+3)~8 -2 =3m(m+3)= T -2 ( ) PLUCKER'S ®-U/TION.

SUPERLIVEAR BRAICHES.

e conclude this section with a few remarks conéérning
Superlinear 2ranches. 3ince an adequate discussion of the
principles involved properly belongs to the subject of
Algebraic Functions, we tacitly assume certain results without
proof,

Suppose f(x,y)=0 is the equation of a curve passing

through O (0,0), then y on any branch through O is expressible

in form;:
ﬁf Y o
y= ax+bWx "+ eWx™..........., Wwhere & =1, a,b,c,....are
constants, and o , ﬁ,‘X} ..... . are positive integers in

ascending order of magnitude.

The tangent at O is y=ax. The entire portion ol the
curve near O, obtained by giving tod each oF the o roots of
unity is called a SUPERLINEAR BRAUCH OF ORDER . Eachi%f;éd

gives a TARTIAL 3SUPERLINEAR BRANCH, while if o(=1, the branch
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is LINEAR. It follows that if O is an ordinary point
on f=0, only one linear . brasnch (the curve itself) passes
through O, while at a k-ple point with distinct tangents
there are k linear branches., If, however, at a k-ple point,
two or more tangents coincide, we have superlinear branches
(obviously, a cusp is the simplest case here).

IT we select axses so that y =pis tangent, the curve

k K+1 %« T 2

y = aX +bXy+eXx y+ - .. . ..., has an ordinary (/) superlinear

branch of order k at (o0,0); the expansion of y near O is:

3

o K+2 k
3mwa%ﬁ.&ExK4M””“.”~;&):Vl...”(U

APPLICATICN TO THE ITTERSECTICIS OF CURVES AT SIVGULAR T OINTS.

e proved in section I that an n-ic and an I'-ic intersect

in Nnpoints. f(x,y)= aqu*%ygj“"“+a§(y‘“1)(Y‘QQ~-~--~-4y-1gJ:o
N N-1 3
F(ny)EbO y +b1y “+ .. .‘+bl&- (y"vl)(y-VZ).-... e . :\/*_VN)=O

In these equations ar,br are polynomials of r-th degree
in x, while u; and vj are functions of x given by (i) for x
sufficiently small. (77e assume that the y-axis is not tangent
to either curve, and that it meets the curve in finite points
only; also, that no other intersection of f and T takes place
on x=zo0, except at the origin) Corresponding to 2 point not at
the origin on the y-axis, u; or v; will contain a constant term.
nliminating y ig the two equations, we heve ar eliminant
¢(X)=0 of ‘degree nN. ¢(x)§(u1-vl)“.n..(ul-vNyﬂuﬁﬁfvg““.ﬁﬁ;yNy=
T (U -vj=o0

i#]

#f(so-called because there are no special relatlo%%egﬁfgig%tg?e
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We require the number of intersections at O, which is
the number of zero roots of ch(x):o. This number (€ ) is the
exponent of the lowest powersof x in ¢(x),i.e. it is the
product of the lowest powers of X in each (u;-v;), through
O. To illustrate, we consider six impOrtant cases.

Case 1, f(x,y)=0 has a double point at the origin.
F(X,y)zo has O an ordinary point, but does not
touch f=0 at O,

Two linear branches pass through O on £, and one on w.

Case &. f(x,y) =0 has a cusp at the origin.
F(x,y) =0 has O as asn ordinary point, but touches
f(x,y) o at O.
3 2
u1=aX+bx+....!.,...}
112=-8.X32+.bx2-—-s.....,-
vV, = AR BX A eevennnnn (y=0 is tangent)

TT (g =7; )E{ax%+.. -sz...} {-ax% -Ax” }: CXok- .

L €E=.
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Case 3
f(x,y)=0
have nodes at O with common tangents.
F(x,y)=
U,z ax+bx%h... .. %
U, = a'x +b'x%..
v, = ax+ BxX'+
(Aza, A'=asince tangents common.)
v, = a'X + B X%
(g - v, )5{(‘0-]3);:1-.] {(a-a ) X+ }{(a -a)x }{(b'-B }-02x6+--.-
S E =6
Case 4 f(x,y)=0 has a cusp at O

F(x,y)=o0 has a triple point at O, and two tangents
coincide with the cuspidal tangents. ( Evidently both
curves have superlinear branches>

%: 2
u, = +ax + bx+-. }

2 2
u, = -axX? +bxX=-.-
v,z a'x+Db'x%..

2 2
V, = +AX*+ BX +-- -

M S i s Vgt

VS: _Ax%+B’xE.....
M, - v;)= {-a X+ }{x a=A)=-- {xz(aa-A -a X+}{X% (24-8 ).

3
{x% (A-a).;....,} - ox +

e=06
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k plus K

Case 5 f(x,y)=0 has k linear branches through O}no two of the
tangents coinecide

F(X,y):o " K " " n n

—g | 2
j,-aJ;x-+h] X"+
kK
TTYuL- jj)-{x(al al )+ }~---kK factors = ex 4..
e =kK

Case 6. f(x,y)=0 has k linear branches through O

F(x,ylzo ™ " 7 " N ". and the
tangents are common.

- b 2
0= a;X+b;x+-

- .. L2

M, - %) -{Xz(bl-BJ )f}uk factors .{X(al- a, ) “].-

2k k(k-)  k(k+)
k(k-1l) Pactors = x x - X -+

. € = k(k+1)

Ex., 25/, Two curves have linear branches touching the same
tangent at O, one having p-point contact and the
other g-point contact with the tangent, where p>q
How many intersections at O 9

Taking y =0 as tangent :

_ P +1
u = ax +bx +-....
+1
v, = axhme
q q .
‘”‘(uL _vj ): {axg.. ... =AX _...}- CX 4 .---- ..‘..€=q; ieg.

curves meet q times at O,
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SECTION III

POLAR CURVES.

‘e saw that the tangents which can be drawn to a curve
from an arbitrary point are m in number, where m is the class
of the curve. e naturally seek to find the relation which
exists between m and n. Waring was the first to prppose a
solution, and fixed n2 as the maximum number of tangents which
could be drawn from & point to the n-ic., Foncelet, however,
produced substantial evidence to invalidate this contention,
and from his own investtgations he formulated the theorem:
"The number of tangents which can be érawn from a point to a
curve of order n is in general,and at most n(n-l)." He
intimated that this limit was subjeet to reduction when the curve
possessed double points, but the satisfactory explanation of
such cases was given by his contemporary, Pliucker. TFPoncelet’s
method o solution inbolves a knowledge of Tolar Curves.

POLAR CURVES.

Let O be a fixed point, and f=0 an n-ic; also let OP be

any line meeting curve in QL124“¢f he locus of P such that

0Q; _ -0 is called the FIRST POLAR CURXVE 0OF O.
PQ

with respect to £=0., Similarly, if Z__.:.__J 0, then o

PQiPQ
locus of P is the SZCOND POLAR CURV: 0f O w. r. to f= 0, and,

in general, k-th polar curve of O is locus of P such that :
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OQLOQ’.HO L I A ] OQ‘LK:_O
PQ§2dds o o oo o PLiy

Iet 0(X,Y,7) be any given point, ?(x,y,2z) & second
point, and f(x,y,z) O ths equation of the n-ic. The ceo-

ordinates of a point J which divides OP in ratio 7\/@ (7\7“1)8.1'9;

7\><+/4LX,7\>’+/“Y,7\2+/*%- If Q lies on curve :

f(?xxya_X,?\vaY,?\z-?uZ):o. Expanding by Taylors Theorem:

(1) N Ebye) e N (X a2 Z0)Er - - +ﬁ1(x%+\f%+zaa§f:o
or

(11) PRI, 40 Algevierslfte - +A (v vedgi=o

If Q lies on the k-th polar of O, the sum of the
products o the roots taken k at a time of the equation injé;
must be zero. Hence the equation of k-th polar curve of O is:

k n-k
(1) (X%+Y.§—§+%%)f: o or (2) (X§X+y§?+z§%)f =0.
THE k-TH POLAR OF AN n-IC I3 .U (n-k)- IC. Hence the first,
gsecond, eo:00 - ., n-2, n-1 polars of an n-ic are of degrees
n-l’ n-g, s e e 005 0y 2,1)I’espectivelyo
Ex.,26 The r-th polar curve of O is the s-th polar curve of

0 with respect to the (r-s)-th polar curve.

0(o,0,1}, r=th polar curve is: B{" =0-.....(1)

(r-s)-th polar curve is: e F_

Qzr-S

s-th polar curve of O w.r., to F= O is:

SF _ 2% (’"‘SF)-O T S RN i)

= ST S

’_8 D=

Clearly , (i) and (1i) are identical.
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Ex,27. The k-th polar curve of P with respect to an n-ic
havirz an (n-1)-ple point at O is an (n-k)-ic having
an (n—k—l)_ple peint at O/ f'= zu, +Up=0.
k-th pol‘ar of P(X,Y,Z) is: (X%(+Y§§ —f—Z%)%:O
i.e. z(X%+Y% )]%'n_l+ kZ (X2, +Y,%’)k{;_l+ ........ .=o
In this (n-k)-ic, highest power of z is unity, hence 0(o0,0,1)

is an (n=k-1l)-ple point at O.

Ex.28, On an n-ic there are 2n(n-2) points whose polar conics

are parabolas.
Polar conic of P(X,Y) w.r. to f(xX ,y)=01is:
(x4 exy_+y 2>

KR .4 XY“

For a parabola, uy must be a perfect square, i.e.

’69“{) 3f 2 . 1locus of P is:

) £ +U,+U =0,

2X2Y) TaXE oY??

_ o f % ... 2(n-2)-1ie.
(E5) =855 e

This intersects the n-ic in 2.n(n-2) points.

Let us now suppose that point 0(X,Y.Z) is an
r-ple point on the curve £ =0, and, for simplicity, take

(X,Y.Z2)= (0,0,1)

. N-Tr n-r-1

......... =0.
f=u,z +u,,* + +Up

k-th polar of O is:

k n-r-k n-r-k-1
a l — ( 1-Y U % (n-r-l)! = csee 1 e:i=0,.N=T k
dz (n—r-k} = (Il---r-k—l)!U\r + o2

kK | ka k
© {(X%+Y%)+k(X%+Y§§) %%.;_..... ._Z(b%_é) }(Zun_l+uh)=o_



Ferm of this last equation shows that: ANY POLIR CURVE OF
AN r-PLE POINT O ON A GIVEN CURVZ HiS <1 r-PLE POINT AT O
JITH SAME TANGIITS, U,=0
Suppose that the tangent u,=o0 at O has r-point
n-1 n-2 nra ner

4 . = . ‘—'-o.
contact with curve: f=uw,2+0,v 2 doeece s+ RV ZHW E ope e Uy

k- -K-2
k-th polar of O is ; % _u(n-1)) ¥ (n-2)! 277", .=0;n-
ST i et IR e SRR

FOR AMY POLAR CURVE OF O, SAME TANGE'T U;=0 HAS r-POINT
COTITACT AT O.

INTERSECTION OF All n-IC AND FIRST POLAR

Let us select C(o40,41) as an intersection, 0 as (1,0,0)

and any point B (o0,1,0}.

n n-1 2, N-2
f=az + (b, x+ ’oly)z +(q,xz+2elxy+czy)z +eesseetUy=0

First polar of O (= 4) is: of _b, znj-f%(cox-;- %y)zn—}-... oty =0
X
(1) I£f C on f=0 and 9f _, then a=Db =0
0% ’ '

Tangent to f=o0 at C is y=o0, which passes through O=4).
Hence, in general, intersections of a curve and first polar of
a point are the points of contact of tangents drawn from a point
to the curve.

s, m=n(n-1)

(ii) If C is a node on f=o, then a=Db=b ;=0
C is an ordinary point on the first polar, with the
tanzent at C to the polar not coincident with either nodal

tangent. In this instance, from p.37 wase (i), the number

o intersections of f=o0 and %{—= O is two,.
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L= (n-’l) -2

(iii) If C is a cusp on £=0, with x=0 the cuspidal

tangent, a=bsb =e,=c,=0

-2
T —Zcoxéﬁq.......==0' On the first polar,C is an ordinary

X
point with the tangent coineciding with cuspidal tangent.

Consequently, from p. 37 case (ii), the number of intersections

of £=0 and 8f_4 at C is three.
°

M

. M=n (11-1) -3

Since, then, we have a dimbhution of two for a node on the
curve and a diminution of three for a cusp, in the number of
intersections of the curve and first polar, for § nodes and X
cusps we have a reduction of 25+3N in the class of the curve.
Hence, for an n-ic possessing ¥ nodes, and XC cusps

m=n(n-1)-28 -3%} PLUCKER'S EQUATION.
We can obtain the equation uniting n,m,w,i, in a precisely
analagous manner by means of line co-ordinates, but we employ
the principles of polar reciprocation.

If the n-ic has T bitangents, & inflexions, the polar re-
ciprocal curve of degree m and class n, hasTnodes and ( cusps.

~ n=m(m-1) - 2T - 31} PLUCKER'S EQUATION.

An n-ic has not, in general, any double points, for if it had,
the point equation would be specialized, since certain functions

of the coefficients would vanish (see page 15). It is for
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this reason that m=n{n-1) IN GENERAL.

Reciprocally, a curve of assigned class,

any double lines (bitangents or inflexional tangents), for the

existence of such would cause certain Tunctions of the co-

efficients in the line equation to vanish.

Ex. 29,

Ex.30.

P 94 p+q
Show that tangents to: y z2=x , drawn from (1,d,p)
touch the same at points lying on the hyperbola:

(p+4q) y8 = (dpz+pqy)X

prq-t Plqa
First polar of (1 ,d,B8) is: (p+q)X =y z (dpz+48 qy)
This meets curve where: (p+4q)yz= (o{pz+[5qy)x. [y i q-
A k-ple point with distinct tangents is equivalent to
+k(k-1) nodes.
Talre (0,0,1) as k-ple point.
f= UK%n—-k+ ukﬂ;—k_j_' o Uy=0
First polar curve of (o0,1,0) is %:o
__Qf_=vk_1%n"}f,_vhzn'k‘_}_ ceseseseetVy =0This (n-1l)-ic has

Y
a(k-1)-ple point at O (o,0,1) with tangents v, = o.

These tangents are distinct from those given by U,=0, sSince,

by assumption, Uy contains no repeated factor. Hence, from

p.9case (v), there are k(k-1) intersections at 0. Since

a2t a node the number of intersections is 2, we may regard

a k-ple point W 5k(k-1) nodes.

has not in general

P"“l ]
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Ix.81 A sextic cannot have a 3-ple point, 1 node, and six
cusps.g-ple point @ 23(3-1)= 3 nodes. §=3+1=4

By Pliicker, m=n(n-1)- 2§ =3IC.

i.e. m=6(6-1) =-2,4-3.6=4

The reciprocal of‘a 3-ple point is a tritangent,

which intersects curve in 6 points; this is impossible

since the reciprocal curve is a quartic, for a line

meets the quartic in but 4 points. (class of curve=

m= degree of R(C)J
EESSIAT.

e shall now discuss a curve which is covariantly¥
related to the original n-ic. This derived curve, the Hessian,
is defined as THE LOCUS OF TOIUTS THOSEZ POLAR CONICS DEGENERATE
INTO 770 STRAIGH? LINES, and, it is so-called, because it

was first studied by the German mathematician, Hesse.

* 0,4, Scott p.269. The general algebraic ideas of a co-
variant is formulated in the definitioéns

Any function of the coefficients and variables that
is unchanged by linear transdformations, save as to a power

of the modulus of transformation is called a Covariant.
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The polar conic of P (X,Y,Z) w. r. to f{x,y,z)=0 1is:

2.
(X,E%(+y%+z,5%)f=o . If this degenerates into two straight

. : - . . >f 2 2%
lines its discriminant must vanish, i.e.| 3¢ 551 IKOZ
N S S L -
WY Y? 2v:Z |=0
5 Tl T
3 X% AIYaZE 2 %2

h] o . 2
Therefore, locus of P is: ¥ 3 ¥
Ix* dxdy Xz

o 2| o
H w3y  dyr oyB|=
*f > 2*f
2x92 2ydz ¥=*

Il

Since esch o7 the elements in the above determinant
is of degree (n-2) in x,y,%, the equation is of degree 3(n=2}),
i.e.

HESS3IAYT OF AX n-IC IS A 3(n-2)- IC
7e may express the above equation in form:
z°H= (n-l)z {2%-5--%%%‘(%)2% —@‘32%;%}

+n(n)g,gia_y£-gf;)]f”

7o effect this result we multiply the columns by Xx,y,z in
turn, and add the Zirst two colwmis to the third, and then
nerform & similar operation upon the rows. The use of Tuler's
relations then enables us to obtain (i), which is frequently

abbreviated in the Iorm:

g ¢ (3% Y
z‘ZHE(n-l)zKﬂ-n(n-l){%fi'%? (%?a'y\)}f'
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4
Ex. 32. Pind the Hessian of: yP zqzxP 1

-1 p+q-2
Aoiprq) ;. Lh=lpra) (prg-)

X
a{._ q Pl f q p-2
L =-p 2y ;3 LL=p(p-1l) 2y ; 3£ _ .

Substituting these values in (i):

2 2 2p-2 2¢4-ptgo- 2 PAzq 2—P+2‘i -2
z H = (p+q —1) { -p(p+a ) (p+tq -1l)y z x. ?—(Pi—Q)P(p—l)y 2 X ]

p+q2 p-2 pt9 PB4
+(p+q) (p+q -1) { -p(p-1) (p+q) (p+q -1)x vy %q}(x —Y%)

P+q-2 2p-2 2
i.e. zZHE-pq (p+q ) (p+q -1)°x 7 =z io

Prq-2 2(p-) 2(q-1)
i «E, H =X y ]

INBERSECTIONS OF CURVE AlD HIS3TAN

The intersections of f=o0 and H=o0 are the same as those
of f=0 and K=0 , excepting that f=0 and K=0 also meet
twice at each intersection of f=o0 and z=o0, We select
the point 0(o0,0,1) on £f=o0 =nd the tangent there y—= o(¥e
notice that O is not on z=o0).

f=b,y 2 +(c x+ 20 (XY + czy)znf.......+u =0
Polar conic of O is: "a‘if;% c x+2clxy+ czy+ (n-1)b,yz=o0
If this conic degenerates into two straight lines, then
either ¢=o0 and the coefficiznt of z  is a factor of the
coefficient of zn"c“’, i.e. 0 is an inflexion, or b,=0, and O

is a multiple point. This proves that: THE HDS3IAYT IINETS CURVE

ONLY AT THE IVFLEXZIONS 47D [UTTIPLE ZOINTS.
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(i) If by#0, c=0,

3n-5 In-b

= {(&blcf- 6b % d,)y -6b5d, % }z TV, B aeecsoncs
Hence f=0 and X=o ( and consequently curveg{H=0)
meet only once at O.
i.e. CURVE AND HESSIAT T OTCE AT ZACH ITXIRIIQON,
(ii) If b,=0, c,#0 , £=0 has a double point at O.
Suprose O is a node,.
XK= 6(07;- c,G) | c°x2+2clxy+ bzf) zsn:o{—ov:,)zmi'. v eene
Hence X has a node at O with same nodal tangents as
f=o0 . Hence, from p.38case (iii), K=0 (and H=0)
and curve have six intersections at 0. 1i.e.
CURVE AlD HES3IAN HAVE SIX INTZRSLCTIONS AT 4 NODE.
(iii) Suppose O is a cusp with y=o0 the cuspidal tangent.

f= fznf(dox"’# 56.15:237 +3dzxy2+ daf) znf cecetees 0, =0

n- -8
K= -24(d,x +d1y)yzzz +7v4 z " feossoenasnes
Hence O is a triple point on K=o0 (and on H=0), with two
tangents coincident with the cuspidal tangent. From p.3%

case (iV) , H=o0 and f=o0 meet eight times at O,

i.e. CURVE AVD HESSIAN HAVE EIGHT INTZRSECTIONS AT 4 CUSP.

The curve (an n-ic) and its Hessian (a 3(n-2)-ic) intersect
in 3n (n-2) points. If, then, an n-ic possesses & nodes,
Y cusps, and ¢{ inflexions, from (i}, (ii), (iii), we have:

3n (n-2)=L+ 68+8MN, or:
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(=3n (n-2) - 6§ - 8X}PIVCTR'S BLUATION.
Since R(C), of degree =, hasTnodes, [ cusps, and ) inflexions:
M=3n (m-8)- 6T -8&( PTHCYIR'3 BUATION.
Ex.3% A k-ple point O of a curve is in general a (3k-4)-ple
point oI the Hessian, and the tangents to the curve
at O, are tangents to the Fessian at O.

Let y=o0 be one of the tangents to curve at O(o0,0,1),
n-K n-K-1

then fE yuk-lz +uk+]_z + e 66 ¢ 8 8 5 ¢+ 8 g & +11n=
= [oof 28 2% _ PEYOE _ affs"f
= {2%}?'% %3y (Bx)’ayz (57 Ch
n-k . , n-X%
%i— =3 yVK_z'Z, —+ v ea . ; %—fi = YV _3% +eeiole H

Retaining only highest power of z in X, since each

term contains either %%f or %;% , v is a factor of the
X

o . 31.;__3 k 3n-3K-1
coefficient o this power of z. i.e. K= IUagy 52 + U3qu<+----(i)

3n-4-(3k-4)

ieee K= Vo Z 4 oeveee.s (ii)
from (ii) we see that O (o0,0,1) is a (3k-4)-ple point on K=o,
and consequently on H=o
From (i) we see that y=o is a tangent to the Hessian, and we
can show in a similar way that the remaining (k-1) tangents
to f=0 at O are also tangents to H= o0 at O.
Ex. 34 (i) Tre locus of the points whose polar conic with

respect to a given n-ic touches a given 1line is

a 2(n-2)=ic.

(ii) This 2(n-2)-ic separates the plane into two vortions

in one of which the n-ic has no real inflexion or crunode,
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while in the other there is no acnode.

(1ii)

(1)

(iii)

Ex.35,

IT the given line is tangent at an inflexion O, the
2(n-8)-ic has a node at O with the given line as one
tangent there,

Polar conic of P (X,Y,Z%) is:

(x%+ya%+%§2)zf =0 3 if this touches z=o0:

23 2t *f i ;
x 2 2+2xme+yr & is a perfect square;

-.Locus of P is ceeesese a E(n=2)-ic
Bx" ox oy

F=35 S;J; - (Bxay\)

IfF > o, the degenerate conic of a point on E is imaginary,
hence the point is not a real inflexion or crunode.

If PLo, the degenerate conic is real, hence the.point

is not an acnode.

If z=0 is tangent at 0 (1,0,0), an inflexion, n-ic is:

n-3

z (X" % ulxn—z)w.zx Feeeee=0
2n-o6 2n-~"1
P= 2V;X +V,X 4 ¢0.00e=0
It follows that (1,0,0) is a double point on F=0 with the
inflexional tangent to n-ic (z=0) tangent to one branch.
If a curve has r-point contact with its tangent at O,
tke Hessian has (r-2)- point contact with the same

tangent at O; and the curve and Hessian meet (r-2)

times at O.
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Take y=0 as tangent at O.

f=y (arupu+eee. v ru, ) +p=0; degree of lowest term in cf) is r.
Foraing Hessien: (z=1, in (i) p.47)

¥ Pixy)+ ,\//:o; degree of lowest term in Y arising from

(BEYZL . is (r-2).1.e. y=o has (r-2)-point cwntact with

Hessian. By ex25p3sthe curve and the Hessian meet (r-2)

times at O (r-2=q¢ p=r).
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SECTION IV

PLUCKER'S NUMBERS

(T
As we have previously intimated, Pliicker's Numbersw)
are the six quantities n,m,§,KT(, by which we denote the
degree (order), class, nodes, cusps, bitangents, and in-
flexions of an salgebraic plane curve. Replacing thess
by m,n,7,i, 8k, in order, we have the Plucker's numbers of
the reciprocal cuarve. We have also independently es-
tablished three eauations expressing relations between
these numbers, viz:
in (n+3) =% - 2K=3m(m3) = T-2( (p 35)
m=n(n-1) - 28— 31 (p 44)
{=3n(n-2) - 6% - 80  (p 50)
Ry polar reciprocaticn, we &2lsc deduced:
n=m{m-1) - 2T -3¢ (p 44)
K=3m(m-2) - 6T -8( (p 50)
Various other relations between the six numbers may be
found, and we include the most useful of these in the
list given below. OF these nine equations only three are
independent, since given eny three, we may deduce the
remaining six. Equations (5) - (9) were not included in

Plicker's originel formalse. These latter consisted of the

(%) . some writers call these the "characteristics” of
the curve, but this term is frequently reserved for the two

quantities (p,l), where, for a system of curves:

p =number of curves which pass through a
given paint.

1= " K " " touch & given line.
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first four equations, together with two rather cumbersome

relations expressing 25 and 27T in terms of m, T ,( and

n,5, X, respectively (See Ex.36).

PLUCKER'S EQUATIONS.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)
Assaming (

*

1),

we may deduce

TO ORTAIN (7):

TO OBTAIN (8):

mO0 OBTAIN(2):

PO OBTAIN (9):

T0 OBTAIN (6):

T0 OBTAIN (4):

. m=n(n-1) -28-3H

. n=m(m-1) -2T -3¢

. L=3n(n=-2) — 68 =8k

. M=3m(m=-2) -6T =8¢

. #n(n+3) -8 =20 =3in(m+3) =T =2¢

. 1(n-1)(n-2) =8 ~1=%(m-1)(m-2)-T -{ (=D).

[=K=3(m=n)
. 2(t-¢%) = (mn-9 }(m-n)
2

. n°- 25 =3K=m?2T -3l

(3), (5),[or any three of the sbove eouations]
the others by simple Algebrea.e.g.:
Eliminate & between (1) and (3)
Multiply (5) by 2, and arrange in form:
2(r-8)==m(m+3)-—n(n+3)-4(£-K); in this
substitute value for (i-K) from (7)

Add (1) 2nd (8) end to the result add
B(iL=-k)=9m-9n from (7).

Substract (2) from (1)

Substreet (5) from (9).

In (7) substitute for n from (2)
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Clearly Plucker's Numbers asre unaltered by projection.
Curves having the same Pliicker's Numbers belong to the same
TYPE or class, and as & consequence, these numbers assuame
8 very important role in the classification of plame curves -

as a subsequent paragraph will show,

DEFICIENCY.

It is.customarxy to denote equation (6) by the symbol D,
which is called the deficiency of the curve. Since
#(n-1)(n-2) is the maximam number of double points an n-ic
can possess (p.24), D is the number by which the gctaal
number of double points falls short of this upper limit.
Prom the form of (6) we easily infer that a curve and its
polar reciprocal have the same deficiency.

If the co-ordinates of any point on an n-ic can be
expressed rationally .in terms of & single parameter, the
n-ic is UNICURSAL(TE It can be shown that THE DEFICLEUNCY
OF A UNICURSAL CURVE IS ZERO, &nd conversely, IF D=0, THE
n-ic IS UNICURSAL.

For a conic: n=m= 2; §=="Tr=(=0. From elementary
analytic geometry we know that the co-ordinates of any
point (x,y) on the conic are expressible in terms of s
paramete?/u(Scott P.134)

If a cubic has zero deficiency, it has one doubls
point (a,b). The lins y-b=1t (x-2),for any t, intersects
the cubic in two points at (a,b), and hence the third

intersection will be & rational function of t.

(7).

so-called becauze such a curve consists of a single
circuit; it is unipsartite.
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The general thecsrem, steted ebove, was proved as early
as 1865 by Clebsch, and since that date, numerous other
proofs have appeared. We assume this theorem without prosf

in Ex.47.

CLASSIFICAT:.ON OF CUBICS AND QUARTICS.

The classification of cubic and quartic curves has
been attempted, with considerable difficulty, by many
eminent mathematicians, notably amongst them, liewton,
Liobius, Viener, Zeuthen, and Plicker. Although we are
particularly interested in that clessifiesation which
utilizes Plucker's formulae, we comment upon & second one,
for purposes of comparison.,

A clessification of cubics in relation ts the line
et infinity (£) gives rise to 14 genera, containing in
eall 78 species of cubies.

Basing a classification upon deficiency, however,
cubics may be divided inte 2 main groups, according ss
Dis 1 or O. These two groups include 3 types of cubiecs.
All cubics which do not possess & double point belong to the
first group (D=1), while the second group (D=0) includss
nodal and cuspidal cubics. From Pllicker's Equations we

readily deduce the follswing teble:

TvyPE n | m ) t | T t D
I 3 /6|0 ]0]0|9]|1
I 3141|0030
m (3|30 (10|10




57

Illustrations of types IT and III are the curves discussed
in Ex. 16, p. 23, and Ex, 19, p.28.

Quartics classified in relation to theé% belong
to 9 genera, which Pliucker subdivided into 152 species
(or more).,

Where deficinecy is the basic criterion, however,
quartics may be confined to 4 main groups, according as
D is 3, 2, 1, or 0. ™hese 4 groups include the 10 t yres
iisted in tle chart below. (4s for n=3, we deduce this

seheme in virtue of Plucker's relations).

¥ Type | n m & It T i D
I 4 12 0 0 28 a4 3

II 4 10 1 O 16 18 2
ITI 4 9 0 1 10 16 2
IV 4 8 2 o) 8 12 1
via 7 1 1 4 10 1
Vi 4 6 0 2 1 8 1
VII 4 6 3 0 4 6 0
VIII 4 5 2 1 a 4 0]
IX 4 4 1 2 1 & 0
X 4 S 0 S 1 0 0

Ex.36. Prove that: T=8+3(n=2n-25-3) (n=9-25-3K)
From (8): T= S++(m:n-9m+9n)

In this substitute from (1) for m:
2
T=5+1 {n"’-2n3—n2 (45 + 6h-9)+ 2n (2§ +3h-9)+ 128H+4 8 49+ 188+ 21 ’f}
= P2

’F:84—%{nlzn_zs—sm}ﬁﬁ—9-2?‘5w}
N.B. This relation is a simplified expression for
Plucker's original equation.
Exe 37 Pind curves for which §=7T

I£S-T from (8) we have: (i) n=m, or (ii) n+m=9
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(1) n=m, then i=% from (7). The curve and its reciproecal
are of same class.
(ii) n+m=9,
(a) n#2, for, if it were,m=2 (Ex.18 p.27),
and n+m=4%9,
(b) n=3, m=6,. From previous chart for cubics,
the cubic is of type I.
S=h=T=0; {=9; D=1
(¢} n=4, m=5., From chart for zuartics, curve belongs to
tipe VIII.
S =2 I(-1,T=2,1i=4%, D-o.
(d) n=5, m=4. Reciprocal curve where n'=4, m'=5 has
numbers 8’:25 kK'-1,752,i~4, D=o, and:,quintic has:
S-2, f-4,T=2,i=1,D=o.
(e) n=6, m=3. Reciprocal curve is a cubic of type I,
and.’.the sextic has Plucker's numbers: §=T=o, K=9,i=0, D=l
Ex.38., If n>m, then K)L and ©>,=,£Tvas n+m > =,<L9

Fromfii- k=3 (m-n) = "%, since nym

i<k

Prom (8) 2(T-%) = (m-n)(m+n -9)

= (=" quantity ) (m+n -9)
If | men < 9 , 2(T-8)is 4¥¢  ie §<4T.
" n =9 , 2(T-%)=o0 , e §=T

" " ? 9 ) Z(T—S‘) 1s e , ie ¥ >T



Ex. 39

(ii)

(iii)

Show trat:(i) m=8(n-1)+28D—=FkK
(ii) (=3(n-2)+6D -2
(iii) &= %(n-1) (n=-2)~D=r

From (1): m=n(n-1)-(28+2) -k

From (6): 28+2H=(n-1)(n-2)-2D

i.6¢ m=n(n-1)-(n-1)n-2)+2D= I

m=2(n=-1) +2D-KC
From (7): (=3(m-n)+IC
Substitute for m from (i):

{=3{2n-2+ 2D- -0} + K

. [=3(n-2)+6D=-21C

Pollows at once TLrom (6)1};; (m=1) (m=-2)

2
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~-D-Lfrom (6) alsﬂ

N.B. From the above expressions we easily express Plicker's

numbers in terms of €(D=-1), viz:

m+1t=2n

n+ [ —2n
- Z(D-l)- . e .(IV')
n(n-3)-2(s=+

m(m=-3) -2 (T+ i)

Ex.40. If D=0, and n>>»4, not all the double points are cusps.

Then D=0,80, from (6):_.1(n-1) (n=-R)

2

from (3):(=8n(n-2)-4(n-1) (n-2)

i.8. L= -n+6n -8; for n> 4 the R.H.S. is negative

and obviously i-#to.
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Ex.41 If D=0, m< 2(n-1); while m>1(m+l) if n is even, and

oo

mg% (1+3) if n is odd.

From first twc equations in Ex.39(IV), if D o;

’

m= &(n-1)=- i.e., m£<2(n-1)

m. 1 (n+2+£).]-%‘?gm equation (3) we see that if n is

a
even the curve rhas an even number of irnflexions, while
i1f n is odd the number of inflexions is odd. Tor n
even then, m}l(n+2); _f From equation (3) we see that
2
if n is even the curve has an even number of inflexions,

while if n is odd the number of in’lexions is odd.

For n even then, m>;

>1 (n+2&). TFor n odd, since ( at

2
least one, m}l (n+3) .
Ex.42 If D=1, theni+h=n+ m.
Equ. (6) for D=1, gives:
28% 2i=n*~5n

By (1) 28+ 3K = n®-n -m

= 2n — m.fa)

Prom (7) (- = 3m =~ 3n

o l=2m =10 vee.(D)

Adding (a) and (b): (+K=m+n .
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Ex. 43, If the deficiency of a curve is even, the nymber
of double points is even if degree of curve is
4p4+2 or 4p+1, and is odd if degree is 4p or
4p-1. (p=+'einteger)

SE&R:_% (n-1) (n=-8) =D, .,

S is;.even if 1 (n-1)(n-8} is even, and odd if

2
1 (n-1) (n=-8) is odd.
2
For n= 4p+2 For n= 4p+1
. Xn-2)= 2p&p-1)= even.
1(n-1) (n-2) = 2p(4p +1) = even. gn-idn-z)= PP
2
For n= 4p
1(n-1) (n-8)= (4p-1](2p-1) = odd.
3 ;
For n=4p-1

1l (n-1) (n-28)=(8p-1) (4p-3)=o0dd
2

Ex.44 (1) If D=o,i=n; then m=n+1
(ii) If D=o0,i=m; then m=n+2
(i) From (7)hK=4n — 3m
} m=n+1
From Ex.39 (ij=2(n-1)}-m
(ii) K=5n-—2m
] S M= n‘l'a

K=2(n-1) —m
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Ex.45, Pind Plucker's Numbers for the Hessian of the
general n-ic., The n-ic has in general, no double
points, and the Hessian then has no double points
(we assume this almost self-evident result). Let

1 ] LN | v o
the numbers be n, m. &I, T,¢

n'=3(n-2) .. .. (p.47)
m'=3(n-2) (3n-"7) (n= n'(n-1) since sli'=o)
8'_—_ ’CI:O

' 27(n-1) (n-2) (n-3) (3n-8) ...... from (8)
-2

('= 9(n-2) (30-8) +.... from (7)

MULTIPLE 20INTS TITH DISTINCT TAIGITTS

In the preceding discussion we have not considered
singularities other than double points (and double lines).

We now show that: PLUCKER'S EQUATIONS HOLD FORMALLY
IF WE REGARD A k-PLE POINT WITH DISTINCT TANGENTS, EQUIVALENT
70 1k (k-1) NODES; (AND RZCIPROCALLY, 4 k-PLE TAUGENT WITH
DIS§IHCT POINT3 OF CONTACT EQUIVALINT TO 1 3 (k.1) BITAVGENTS) »

Since only three of Pliicker.!s Eqiations are in-

dependent, it is only necessary to show that this equivalence

setisfies equations (1) and (3) [(2) end (4) then follow by

reciprocation). We must therefore prove:
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(i) that a curve and first polar meet k(k-1) times at O
(the k-ple pointj.
(1i) that a curve and Tessian meet 3k(k-1) times at O.
e proved (i) in Lx.30 p.45.
The intersections of curve and Hessian at O depend only
on (0,€>0)
Consequently arart from k-ple point we may assune that
the curve has§, nodes, I cusps,T bitangents, { inflexions.
“rom the reseiprocal curve:i-i=3(n-m) « . . (7)
From (1) and (8) : m=n{n-1)-2§,-3K -k(k-1)
Eliminating m in these equations:
{= 3n(n-2)-68, -8 -3k (k-1)., Hence, the Fessian intersects
the curve in 3k(k-1) points at k-ple point O,
1f in ©5x.30 p.45 we take P=0(o0,0,1), the first polar
has a k-ple point at O with same tangents as the n-ic. The
total number of intersections at 0 will be k(k+1l); so that
2k of the tangents from a k-ple point must be considered
coincident .with the tangents at that point.
Ex.46. TIf the only singularities of an n-ic are linear branch

points with distinct tangents, D==l4m-2n+2}
5 ,

By @bove theorem,f(=0, and result follows at once from

Ex.39 (i)p.59
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MULTIPLE POINTS WITH SUPLRLINZAR BRANCHES.

At a k-ple point, however, two or more of the k

tangents may be coincident, and superlinear branches arise.

7 now ppove that: PIUCKER'3 EQUATTONS STILL HOLD IF 1

¥-PLE TOINT O “ITH L ORDIUARY SUPERLINEAR BRANCEES, IS

CONSZIDERED ZQUIVALENT TO %k(k_5}+I‘EODES Al1D (k-=TL) CUSP3.
We require to show that(i) the n-ic and Zirst

polar intersect in Zﬁgﬂk-3¥ghﬁplbpoints at 0 and (ii) the

n-ic and Hessian meet e{%k(k_3)+m}_8(k-1.) times at O,

(i} (a) A curve has a k-ple point O with I superlinear

branches of orders rl, T ., o« - having distinct

o .I'L,

tangents (k=2.r); and 2 second curve has a (k-1)-ple
point at O such thst the tangent to the branch of order

rt of the first curve is a tangent to a branch of order

ry -1 of the second. How many of their intersections

coincide at O ¢

1‘:{_:1.
Aa)-rx = eI R IR

X
-1

alt)r_lx + ®ereresoe

Tor first curve (U): y

coumon tangent y =0

" gecond " (V): ¥

for a partial j-th superlinear branch of V,¢j.r, (r+l
r
hence for total intersections over total sucverlinear branch

of V:

9
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2 1

€ =Yej=(r-1) (r+l)=r
Order of O on V is k-1; order of O for superlinear branches
other than the one just considered is (k-1)-(r-l) = k-r
Il'umber o intersections of superlinear branches making
up this order with the superlinear branches considered is:
r(ke-r),
L

Hence total € ,—.2{(1‘?-1)-&—1'41:-1'{)}-.— kY r~-L=k-L

i=1

(b) 4t an ordinary superlinear branch of order k:

kE _k+ .
y:ax +......-...+un=0(l)I(X,Y)

yE:AX%+........4.un;fu3n)%§ (first polar)
i.e. 4 superlinear branch on Tirst polar curve is of order
one lower than on the n-ic , and the tangent is the same.
Clearly, the curve and tie first polar are U and V of (a),and
intersect in ¥-I points. 15.1.:2{_1_1{ (k=3) + L}+k-:n, whi ch

2
proves (i).

Fma?é) If a curve has (k-L) cusps, (so.e may have coincident
tangents), the reciprocal curve has (k-IL) inflexions (some
may coincide). Hence, by £x.35 p.51 the Fessian intersects
the reciprocal curve in (k-L) points corresponding to these
cusps on the original curve.

Suppose that apart from O there are$, nodes, T, cusps,

T,bitangehts, and ézinflexions on the curve. For reciprosal
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curve, we have:
n=m(m-1)-83T, «B8l........(2)
m=n(n-1)-28, -3~ (K=L). s.... . (1) & (i)

IC,= Bm (mr-2) — 6T, — 81, =(k-T)...(3)&(c)

Zliminating m andT,:
l,=3n(n-2) - 6%-8”2-5%1:(1{-3)@,] -8 (k~-1): which provee (ii)
Hence, the point sinsularity of the superlinear branch
points is equivalent to "Lk(k-3)+ L nodes and (k-L) cusps.
By reciproc:ztion, Plucker's Equations hold if a k-fold
tangent having L points of contact, and consequently k+1L.

intersections with the curve, is counted as equivalent to

2k (k-3)+L bitangents, and (k-L) inflexions.

HIGHZR SINGULARITIES.

Given any singularity at O, how many nodes, cusps,
bitangents, and inflexions, must be considered as coinciding
with O, in order that Pliicker's Equations may hold ? .

Let the numbers bef,k,, T, {,, and suppose that the first
polar and Hessian respsctively, intersect the given n-ic
ind andﬁ points coinciding with O. Then:
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The reciprocal of O is a line united with the re-
ciprocal of bitangents and inflexional tangents at O.
Let the first polar and Hessian, respectively, (of R(C))
intersect the reciprocal curve in pand 9 points on this
line which is the reciprocal of O, Then:

(ii) [ 3K ] 2T1+ 5L1=/); 6'?1'9'8(.1"“*(.1: U'

Adding (i) and (ii): 3(dtP)=A+9o | which the numbers
must satisfy.
To prove this consistent, let§,,IT,, Tp,(, be the
number of nodes, etc., not goincident with 0., Te have
d=n(n=-1)-m-2%, =31,
p=3n(n-2) 68, -8M-L, TLe. 3(o(+/0)=/8+0~‘
f’:m(m-l)-n-zT;-SLz

T=3m(m=2)~ 6T,=-8(,-1,

Although (i) and (ii) are consistent, they are not
indevendent, but admit of infinitely many solutions. To
make the solution definite, we must define deficiency
at higher singularities. Such a definition is beyond the
scope of this thesis, but we consider a specific illustration
in Ex. 47 below.
77e notice that (&) k-ple points with distinct tangerts

end (b) ordinary superlinear branch points, are special
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cases of this generalized treatment.

e.g. (8) Q:Jz_k(k—l)., h‘lzo;frfo; {,=o0.

(b) Qzék(k"3)+[‘5 hf1=k—L3"t‘1—_—o; LIZ'O;[/":OB T=k—L]
o{—.— kz__L; ﬂ.—: k(Sk—-l)——zL . f= 0., T = k..L

P g p+q
Ex.47. Discuss the singularity (o,0,1) on: y 2z =X,

] Pq , p+q
Prom Ex.21,p.30; R(C) is:; yz=dx , i.e. curve and
reciprocal hsve the same singularities. B and C
‘are reciprocal singularitiesf
*?:polar at B is tangent at ()

| p-L

First polar curve of B(o,1l,0) is: ¥y z =0; hence
at (0,0,1):d = (p-1) (p+q)

] PHa-2 20p-) 2§-0
From Bx.52 p.48, Hessian is: x y z =0; hence at (o0,0,1):

B=4&(p-1) (p+q)+ p(p+q-2)= 3p( p+q) -4p-2q

Since singularities at B and C are reciprocal, inter-

changlng P and q: ﬁ-— (q_+p) G-:gq(P'*'q)-4q-2p
3(dep)= i+ T
i 28 +3 =< L,g'+e}\"+£,=[3 _l

(i) 2."(:’|+-3L'= /9 é’t’,+8‘:’l+'c|=0— I

2

These are satisfied by:

=2 p(p+a)-8p-1 q . 3p T is any symmetric function
1=3 = 4+= L
2 2 of p and q and we find§ ete.
only by method of trial.

}'C' = Pp-F
1l g4 ) =2q-1
T, = 3 a(p+q)-<q- p 5F
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Although the singularity is analysed, it is not definite,

for ® may be ANY symmetric function of p and q.

p P4
Evidently the curve is unicursal, for x:y:z=t: t: 1

ssuming that D=0 (p.-5£6+), we can calcul:=te F.

D::%(n-l)(n-z)-g*—ﬁgé (p+a-1) (p+q-2)=)doudble points=0

K a d C= &
Nodes and cusps ab B an CsﬁhﬁT&%=%(p+q*l)(p+q_h) e e e (8)

'

Also from above

’E+K‘+T:+il= (p+q-1) (p+q=2) +F=1 +cocececs -(b)

b e

From (a) and (Db): P=1.

The singularity at the superlinear branch point (not an
ordinary superlinear branch point since coefficients
specialized), is now resolved in such a way that Plucker's
Equations hold formally.

Theoretically, the process of analysing singularities
is possible provided we know the deficiency. It can also
be shown that if the co-ordinates of any point on an n-ic
can be expressed ratimally in terms of elliptic fuﬁctions,
the curve has unit deficieney. 41l such considerations,

however, are without the scope of this thesis.
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