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ABSTRACT 

 

This thesis uses multiscale computational modeling, scaling and analysis to characterize the steps 

of a multistage process used to produce a defect-free cholesteric collagen film and to characterize 

the resulting chiral biological plywood microstructure, found throughout Nature.  

The process makes use of a complex flow deposition of a liquid film of a dilute collagen solution 

on a substrate which is later converted to a chiral biological plywood by exposure to an airflow of 

filtered air.  During the flow deposition analysis and simulations, two crucial material properties 

are estimated: the rheological shape parameter  and the rotational diffusivity Dr; the former is 

then used to obtain the reactive parameter  of collagen which is of crucial importance in film 

flow-control.  These material properties are then used to describe the dynamic behavior of dilute 

collagen solutions by means of a spatially homogeneous Landau – de Gennes Q tensor model 

under the influence of the kinematics of a four roll mill apparatus which allows to explore a wide 

variety of flow types and intensities with unequal contributions of strain and vorticity rates relevant 

to film flow-processing. The kinematic conditions required to obtain the appropriate para-nematic 

phase in terms of orientation and order are also provided. The transformation of a dilute flow-

aligned non-equilibrium para-nematic phase into a cholesteric film is simulated by integrating the 

nematodynamics of collagen solutions with dehydration mass transfer as water leaves the film. 

The microstructure controlling dimensionless parameter in given in terms of the geometry of 

length L and the ratio of collagen rotational diffusivity to water mass diffusion. The integrated 

microstructure-mass transfer with moving boundaries is carefully simulated and the resulting 

microstructural modes are classified into three modes: monodomain-cellular, monodomain, and 
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polydomain.  The conditions that lead to the sought-after defect free monodomain plywood 

architectures are found and the synchronization mechanism that yield perfect uniform chirality is 

revealed. 

Finally, computational geometry is used to determine the architecture of collagen films as formed 

in the film dehydration process as well as others found in Nature, such as cornea-like tissues.  

Inverse problems of 3D reconstructions from 2D planar sectioning observations that usually lead 

to ill-defined processes are resolved by introducing intrinsic geometric features (arcs and 

herringbones) of these fibrous composites. By including the curvature of the arcs or the aperture 

angle for the herringbones, a unique value of the chiral pitch can be obtained which lead to a 

proposed characterization methodology which is used to predict the chiral pitch profile of the 

“aurigans scarab” beetle via in silico cross sections and the cell wall thickness of the “eremosphera 

viridis” algae species.  
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ABREGÉ 

 

Cette thèse utilise la modélisation numérique et l’analyse multi-échelle pour explorer les étapes 

d’un processus conçu pour la fabrication d’une pellicule sans défauts et la morphologie résultant 

des pellicules qui est omniprésent dans des matériaux naturelles ayant une organisation dénommée 

TPA (pour ses sigles en anglais), structure très répandu chez les matériaux naturelles.  

Le processus est composé d’un écoulement complexe où un substrat est enrobé par une pellicule 

d’une dissolution diluée à base de collagène et ensuite transformée en un plywood biologique ayant 

une microstructure nématique chirale en l’exposant à un écoulement d’air filtré. Premièrement, 

dans l’analyse et simulations concernant au découlement complexe deux propriétés physiques sont 

calculées: le paramètre rhéologique de forme  et la diffusivité rotationnelle Dr, dont le premier 

permet d’obtenir le paramètre réactif (), propriété fondamentale dans le contrôle d’écoulement 

des pellicules. Ensuite, les propriétés sont utilisées pour décrire le comportement dynamique et 

formation de la phase para-nématique utilisant un modèle du tenseur Q de Landau – de Gennes 

spatialement homogène imposant la cinématique de l’appareil à quatre rouleaux de Taylor. Cette 

cinématique permet explorer une vaste variété et intensités d’écoulements qui ont contributions 

inégales de déformations contre celles de tourbillons. Les conditions cinématiques auxquelles les 

dissolutions diluées de collagène doivent être soumises sont fournies en termes d’orientation et 

ordre. La transformation de la phase para-nématique instable en cholestérique est modélisée par 

en accouplant le modèle nématodynamique et une équation de transfert de masse du dissolvant 

sortant le système binaire. Le paramètre qui permet de contrôler la microstructure final est donné 

en fonction de la longueur caractéristique et le quotient de la diffusivité rotationnelle du mesogène 
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et la diffusivité translationnelle du dissolvant. Le modèle avec frontières mobiles est simulé 

soigneusement et fourni trois modes : mono-domaine-cellulaire, mono-domaine et multi-domaine. 

La synchronisation des processus simultanés présents fournis la microstructure recherchée.  

Finalement, la morphologie des matériaux obtenus et d’autres trouvés dans la nature, telle que les 

tissus ayant microstructure comme la cornée, est explorée par un modèle géométrique. Des 

problèmes inverses de reconstruction 3D à partir des sections 2D, qui sont normalement des 

problèmes mal-définis, sont résolus en introduisant des caractéristiques géométriques (motifs 

d’arches et de chevrons) qui sont observés dans ces types des matériaux. L’inclusion des variables 

géométriques fournis une description unique du pas cholésterique et est utilisée pour une 

méthodologie de caractérisation pour prédire le profil du pas cholésterique trouvé dans la cuticule 

de l’insecte « aurigans scarab » grace a des sections obliques in silico et la détermination de la 

paroi cellulaire de l’algue « eremosphera viridis ». 
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1 General Introduction 

 

1.1 Thesis Motivation 

 

Nature has always been a source of inspiration for science and technology development due to its 

capability in assembling complex material architectures using building blocks composed mostly 

of C, H, O, N, and S. This assembly process results in multi-functional materials with 

characteristics such as self-healing, adaptation to changes in the environment, and optimized 

properties.  The microstructure of these materials is usually responsible for those properties, and 

in particular the liquid crystalline state and organization is widely present throughout the plant and 

animal kingdoms  [1, 2].  The synthesis of materials in controlled laboratory conditions with the 

morphology present in their natural counterpart [3 – 8] (which is the ultimate goal for certain areas 

such as tissue engineering [4, 9 – 11] and biomimicry) has driven efforts in the development of 

bio-inspired materials using some of Nature's building blocks such as collagen, cellulose and 

chitin. Even when some processes have been reported [5, 12 – 14], the underlying principles are 

still not fully understood since the full processing-structure-property relationships are still under 

development. It is therefore of great importance the development of theoretical/simulation work 

to elucidate the principles behind the self-assembly of biomacromolecules through non-

equilibrium flow and mass transfer processes. A particular microstructure that forms the central 

theme of this work is the “biological helical plywood” widely found in most fibrous composites 

and is a molecular analogue of man-made plywoods. The theoretical and computational work 

presented in this thesis explores a multi-step flow-dehydration process whose ultimate goal is to 
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achieve a defect free liquid crystalline collagen film. This structure presenting the perfect 

microstructure of a chiral nematic phase (also known as cholesteric and/or helical plywood) can 

be detected and characterized when observing cross-sectional arc-patterns of these solid-like 

materials. The periodicity of these arcs along with other characteristics of the patterns can provide 

quantitative information about the plywoods and can be used as an additional characterization tool 

which is also presented in this work. 

 

1.2 Liquid Crystals 

 

Liquid crystals are viscoelastic anisotropic materials that show positional/orientation order through 

several length-scales [15 – 17]. These materials flow when submitted to relatively low stress, but 

also display the properties of an anisotropic crystal at rest [18]. One essential requirement to 

display liquid crystallinity is a large aspect ratio such as an elongated rod or a flat disc, and the 

interesting properties they display are known to be present in a well-defined range of temperature 

or concentration depending on the type of liquid crystallinity [15]. Materials that respond to 

changes in temperature are known as thermotropic liquid crystals. These are pure substances that 

show a cloudy state when cooling down from the liquid towards the solid state. This “cloudy-state” 

was firstly observed by Reinitzer who was intrigued by this anomalous behaviour observed when 

melting pure low molecular weight organic substances with molecules presenting large aspect 

ratios. On the other hand, materials that are affected by changes in concentration are denominated 

lyotropic liquid crystals where phase transitions are governed by excluded volume interactions 

[19]. In these materials a solvent is required and the crowding of high aspect ratio mesogens reduce 
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drastically the rotational motion, hence an oriented material is obtained. Chromonics are an 

additional classification of liquid crystals where both concentration and temperature induce 

ordering and phase transitions in the material [20].  

Liquid crystallinity can be observed in different types of molecules ranging from low molecular 

weight molecules [15, 17], to larger molecules such as surfactants, known as amphiphilic 

mesogens [21], up to high molecular weight polymers, that can display liquid crystallinity in both  

the main chain or ramifications of the polymeric structure [16, 18]. It was also recently recognized 

that even in natural materials [2] as long the corresponding building block has a large aspect ratio. 

These materials can organize into different types of mesophases such as the nematic, smectic and 

cholesteric phases [22, 23] where the latter is the most common arrangement present in nature due 

to the intrinsic chirality in structural materials such as collagen [24, 25], chitin [26, 27] and 

cellulose [28 – 30]. The characteristics of each phase are described as follows and depicted 

schematically in figure (1.1).  
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Figure 1.1 Schematic representation of the nematic (a) with orientational order only, smectic (b) with orientational 

and positional order present, and chiral nematic or cholesteric phase (c) with the characteristic helical axis and 

characteristic length-scale for a 2 rotation of the director po.  
 

The nematic phase is the simplest phase where only orientational order is found, i.e. the mesogens’ 

centers of mass undergo free motion but the rotational motion is restricted and in average remains 

constant. Thus, the molecules composing the phase are pointing in average to one preferred 

orientation which defines the director field n. The Smectic phase is the most ordered and viscous 

mesophase. Additionally to the orientation, positional order is also found in these materials. The 

material is ordered in a layered fashion and the molecules’ center of mass is allowed to move freely 

within its respective layer. Finally, the cholesteric phase is observed when chirality is present in 

the mesogen. This phase is also known as the chiral nematic whose characteristic is the presence 

of a twist in the preferred direction and has a characteristic length-scale associated to it which is 

called the pitch (po), defined as the distance required for the director to undergo a full 2 rotation. 

a 
b 

c 
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This phase can also be conceived as a collection of nematic planes showing a twist between 

adjacent planes and the achiral nematic phase can thus be though as a cholesteric with an infinite 

pitch po.  

 

1.3 Biological Liquid Crystals 

 

Liquid crystallinity is widely present in natural materials, evidence of it includes the manifestation 

of arced patterns through oblique incisions of certain solidified materials composed of structural 

compounds such as cellulose [28], chitin [2], collagen [3] and other molecules like DNA [31] 

which indicate the building blocks undergo rotations about a common axis. Moreover, the 

aforementioned compounds have been extracted and studied in vitro where liquid crystalline 

behavior is present in such solutions above a critical concentration [32]. In vivo [1] and in vitro 

[1,13,33] observations have also pointed out the presence of defects that have been observed in 

conventional liquid crystals denominated elsewhere as faults [1, 34 – 37].  

The characteristics of nature building blocks in addition to the large aspect ratio are the presence 

of charged functional groups or residues. The main chain conformation is affected when 

surrounded by a charged medium and can affect the effective geometry of the molecule [38]. For 

the particular case of collagen, it is usually considered to be a semi-flexible biopolymer with a 

persistence length ranging from 57 to 250 nm [33, 39] and effective diameters up to approximately 

4 nm [33].  

Biological liquid crystals are formed through a multi-scale hierarchical self-assembly process from 

the molecular level up to fiber formation. This self-assembly over several length-scales impart the 
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multi-functionality to BLCs. It is commonly observed for these materials to manifest adaptation 

to the surrounding medium such as stresses and humidity content [23], capability of self-healing 

[1] while at the same time displaying high mechanical resistance and interesting optical properties 

or even thermal regulation as hypothesized in beetles [40]. It is worth noting that the most widely 

observed mesophase in biological materials is the chiral nematic [2], however, other arrangements 

such as the nematic or even orthogonal can be observed where the latter layers composing the 

material show abrupt 90o changes in between layers. Interestingly, the same building block can 

exhibit different arrangements such as in vitro collagen where changes ionic content of the 

precursor solution lead to a cholesteric organization for pH of 2.5 and an orthogonal organization 

for pH of 3.5 [12].  

Biological liquid crystals have been classified intro three different analogous phases [41]: 

1. Solid Analogues: These are solid state materials displaying a frozen liquid crystalline 

organization. They were first identified and investigated by Bouligand [2] in samples of crab 

cuticle. Other examples include plant cell walls [28], exoskeletons of insects [34], cuticle of some 

crustaceans [2] and even bone osteons [3]. The optimized set of multi-functionality of the 

plywoods vary depending on the intended application and any additional reinforcing material and 

their particular arrangement of the building blocks. For instance, the mechanical requirements for 

cornea differ drastically from those in bones despite being made of the same mesogen: collagen. 

In the former case, the optical properties and shape preservation [1] are crucial providing its 

transparency whereas in the latter case tough composites are required in these cholesteric 

arrangements, made possible with mineral inclusion, specifically of hydroxyapatite as 

reinforcement [3].  
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2. In vitro: This type of analogue include solutions of extracted biomacromolecules which can be 

dilute or concentrated. The former have been reported to display liquid crystallinity under the 

influence of external fields or forces while presenting isotropic behavior at rest while [33] the latter 

display such behavior above a characteristic threshold [42, 43]. 

3. In vivo: In these analogues, the liquid crystalline behavior is displayed in natural conditions 

with the remarkable examples of spider silk and biological membranes [1, 44].  

 

1.4 Biological Plywoods: Morphology and Structure Relationships with Characteristic 

Patterns 

 

The path that Nature follows for the synthesis and fabrication of biological plywoods is complex 

and has not been fully understood. This is due to the multi-component nature of the plywood and 

simultaneous phenomena and synthesis of such components occurring in different places. It is also 

important to notice two steps have been reported for the control of fiber orientations which are 

denominated as primary and secondary fiber orientation control [1]. The former is the initial fiber 

orientation which is mainly controlled by two non-exclusive mechanisms:  

i) Self-assembly where intermolecular forces are the main driving force through an 

efficient entropy-driven process resulting from the fibrillary shape, effective geometry 

due to electrostatic interactions between residues and ionic content of the surrounding 

medium, chemical and geometric chirality which are generally manifested to higher 
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levels of the hierarchical architecture with the example of the frozen chiral nematic 

phases observed in plywoods where the pitch (po) can also be identified.  

ii) Directed assembly where other cellular mechanisms or the presence of other 

components affect the fiber orientation such as microtubules that have been linked to 

the orientation of cellulose microfibrils in plant cell walls. 

Once the fibers are laid down to a given orientation during the primary fiber orientation, additional 

physiological processes occur moving the fibers to a new position such as growth, contraction, 

body forces among others in the secondary fiber orientation [1, 45]. 

Characteristic patterns are associated to a specific arrangement of the building blocks can be 

observed in oblique cross sections of biological plywoods. For plywoods exhibiting chiral nematic 

organization the associated pattern correspond to nested arcs where the periodicity of the arcs are 

correlated to the pitch [1, 2, 28, 46]. Orthogonal plywoods, on the other hand, are associated with 

herringbone patterns and the periodicity of such patterns is similarly related to the pitch and the 

thickness of each layer composing the plywood [1]. The case of nematic plywood is not associated 

to any characteristic pattern. Figure 1.2 depicts schematically the three cases with its respective 

oblique sections where the characteristic patterns are visible. In vivo [28] and in silico [47] 

characteristic patterns are shown in figure 1.3.  
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Figure 1.2. Nematic (a-c), cholesteric (d-f), and orthogonal (g-j) plywood organizations with their respective cross 

sections where the arced patterns are projected for the cholesteric and herringbones are observed in the orthogonal 

plywoods.  
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Figure 1.3. Experimental observations (a-b) of biological plywoods where the arced patterns are visible with 

homogeneous (a) and bimodal (b) arcs (adapted from [28]) with in silico visualizations of constant po (c), double pitch 

(d) and graded pitch (e).  

 

Ideal plywoods correspond to an architecture where a linear relationship between the twist angle 

and the spatial coordinate is found where the constant slope of such relationship is a function of 

the cholesteric pitch and homogeneous arcs are projected. Deviations from such linear 

relationships are quite common in Nature [47]. These types of arrangements have been 

denominated as non-ideal helicoids or plywoods where some examples of non-idealities include 

graded plywoods as observed in the Aurigans Scarab [26] cuticle showing a complex non-

monotonic graded pitch with an increase of the pitch followed by a steep decrease with a later 
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quasi-constant pitch region which is followed by a less steep increase. Another example is 

encountered in the endocarps of fruits like plums, peaches, among others where a double-pitch 

system is identified and oblique sections project one large arc followed by two smaller arcs where 

180o rotation is encountered in the former and a full 360o in the latter [28] , which can be regarded 

as an ideal plywood in a piecewise manner. Ideal and non-ideal plywoods are schematically 

depicted in figure 1.4 in terms of the twist angle and the pitch profile. The former example leads 

to inhomogeneous arcs and the latter to intercalated arcs with different periodicity.  

 

Figure 1.4 Schematic representation of ideal plywoods (a & c) with a linear relationship between the twist angle and 

the spatial coordinate z leading to a constant pitch throughout z and non-ideal plywoods (b & d) where a nonlinear 

relationship between the twist angle and z lead to a graded pitch.  
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Deviations to orthogonal plywoods have been classified as quasi-orthogonal plywoods where 

angles of 45o can be encountered and also what might seem to be a linear combination of ideal 

TPA and orthogonal plywood have been reported where two lagged phase helices are interweaved 

and is manisfested as interleaved arced patterns [1]. Table 1 shows examples of natural biological 

plywoods along constitutive mesogen and the displayed arrangement.  

Table 1.1. Biological plywoods and their respective building block.  

Nematic Plywood TPA (Ideal and non-ideal) Orthogonal Plywood 

Intermediate layer in beetle 

cuticle (chitin) [40] 

Crab cutible [2] Eremosphera viridis cell wall 

(cellulose) [29] 

Nails (keratin) [45] Endocarp of plums prunus 

sativum (cellulose) [28] 

Paralvinella grasslei (annelid) 

cuticle (collagen) [48] 

Tendon fibrils (collagen) [49] Aerenchyma cell wall (cellulose) 

[28] 

Pagrus major scales (collagen) 

[25] 

 Stone cells in pears pyrus malus 

(cellulose) [28] 

Oryctes rhinoceros eggshell 

(chitin) [50] 

 Bone osteons (collagen) [23] Bird cornea (several species) 

(collagen) [1] 

 

In spite of being a 2D projection of the full 3D organization of a plywood, these patterns include 

information regarding the helical axis and the cholesteric pitch, however they have not been 

quantified or described completely given the fact the observed characteristics of the patterns is a 

matter of perspective, therefore two plywoods with different pitch might give rise to similar 

periodic structures as analyzed in goniometric studies where arcs even seem to disappear [51], 

phenomenon which was denominated as “trompe à l’oeil”. An additional variable is then required 

to differentiate the plywoods in such cases and remove the apparent degree of freedom and the full 

description can be used as a characterization technique that do not rely on optical properties [52], 

which could be a drawback for certain biological plywoods.  
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The scope of the work presented here is on solid and in vitro analogues, specifically the 

transformation of in vitro analogues to a biological plywood through a multi-stage process to be 

detailed in section 1.5 where defect-free collagen films presenting the frozen cholesteric structure 

are obtained from acidic dilute solutions. Moreover, the aim is also to fully describe the projected 

patterns for ideal, non-ideal and orthogonal plywoods, where the arced patterns can be observed 

in oblique incisions of the obtained collagenous films. This description is used to propose a 

characterization procedure for biological plywoods based on the relationships of the characteristics 

of the arced or herringbone patterns with the material properties such as the pitch.   

 

1.5 Film Formation Processes 

 

There is a great interest in the development of defect-free thin film materials for the 

aforementioned reasons and applications, however experimental evidence has shown this task is 

far from trivial. Some experimental efforts have indeed achieved the formation of such materials 

where the application of external fields are used, such fields are known for modifying the 

orientation of the building blocks and can be used to induce specific orientations depending on the 

magnitude and direction of such field [53, 54] and provide a control of the helical axis and the 

cholesteric pitch [14, 55]. For the particular case of collagen, several approaches have been used 

in the thin film formation process for controlling the helical axis such as electrochemical induced 

alignment [6, 56], magnetic field alignment [57, 58, 59], flow induced alignment [6, 13, 60, 61] 

and light irradiation [55].  
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Hydrodynamic forces are a relatively simple approach since an additional field is not required like 

a magnetic field for instance, making it a more attractive and practical for large-scale production. 

Typically, a collagen solution is deposited on a substrate where uneven contributions of shear and 

extensional components are encountered. Dilute [13] and concentrated [6] solutions have been 

used for the purpose. It is worth noting the resulting microstructure was reported to strongly depend 

on the rheological type of the precursor, i.e. whether the precursor presents a viscous-like or a gel 

behavior [10] which also impacts its ease of manipulation.  In terms of liquid crystalline rheology, 

a crucial aspect is to determine whether the material aligns with the direction of the flow or presents 

time dependent behavior such as wagging or tumbling. On the one hand, dilute collagen solutions 

are characterized for being isotropic at rest but show flow-birefringency. Rheo-SAXS experiments 

report a flow aligning behavior where the scalar order parameter is a function of the shear rate, the 

higher the shear rate, the sharper the scattering intensity distribution. Once the flow ceases, the 

isotropic state is recovered [33]. On the other hand, concentrated solutions exhibit banded textures, 

which are characteristic of a tumbling behavior, and irreversible out-of-plane orientations are 

observed after flow cessation. Figure 1.5 presents the aforementioned dynamic behavior through 

scattering intensities and the observed textures in capillary suction of concentrated solutions. 

Hence, experimental and theoretical predictions regarding its dynamic behavior place dilute 

solutions as better suited precursors [33, 41] for the formation of defect-free collagen films. 

However the cost to be paid is the incorporation of an additional process to remove the solvent in 

order to observe the phase transition i.e. cross the threshold depicted as the grey line shown in the 

partial phase diagram presented in figure 1.6. For building blocks like collagen where the chemical 

stability of the helix can be compromised through temperature variations [3, 23], such process 



15 

 

should be isothermal, i.e. the driving force must be based on changes in concentration of the 

solvent to be removed from the deposited film. 

 

Figure 1.5 Experimental SAXS profiles for concentrated solutions (a-c) with the SAXS patterns (a), the extracted 

scattering profile (b) and the observed texture through capillary suction (c) and for dilute solutions (d-e) with the 

SAXS patterns at rest and under shear (d) and the scattering profile whose peak is sharper with increasing shear rate 

(e). (Adapted from [33]) 

 

Figure 1.6 Partial phase diagram dividing the isotropic and the cholesteric regions given in terms of acetic acid and 

collagen concentration in mM for the former and mg/ml for the latter (adapted from [33]).  
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In the process reported by Kirkwood and Fuller [13], shown in figure 1.7, a dilute collagen I 

solution is deposited on a substrate by a modified blade coating technique, where the substrate and 

an injecting device move in opposite directions which creates an extensional contribution that 

strongly aligns the mesogens in the direction of the flow while the stresses developed inside the 

injecting device provides the shear contribution. After the flow deposition, the film is exposed to 

a filtered airflow in a laminar flow hood at constant temperature whose objective is to transport 

the solvent out the film.  As the solvent evaporates, the concentration of collagen increases and 

eventually a para-nematic-to-cholesteric phase transition can be observed, as the state of the 

mixture crosses the binodal line shown in Fig.1.6; the para-nematic phase is the flow-aligned dilute 

collagen solution obtained from the flow process. The sought after results shown in Fig. 1.7 (c) is 

a perfectly aligned homogeneous helix of direction h everywhere. 

 

Figure 1.7 Schematic representation of the process reported by Kirkwood and Fuller [13] where the flow deposition 

kinematics (a) present a combination of shear and extensional contributions followed by the drying of the deposited 

film (b) with an airflow of filtered air with a constant far-field velocity and the resulting film (c) showing a lying helix 

perpendicular to the flow deposition with constant pitch and homogeneous helical axis (Adapted from [13]).  
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The phase transition was reported to begin at the edges of the substrate where the contact line is 

assumed to be pinned and proceeds to the central region of the film. Some results indicate three 

different regions can be present in the collagen stripes, two cholesteric regions close to both edges 

of the substrate separated by the central region where the para-nematic phase relaxed to isotropic 

[13]. This clearly indicates the mass transfer process is responsible for the resulting formed 

mesophase but this effect has not been analyzed yet.  

Even when previous work [13] reports the formation of defect-free films successfully, several 

aspects regarding the kinematic conditions of the pre-aligned phase and the correlation between 

the phase transition driving forces and the resulting microstructure of the film have not been 

evaluated. The description and knowledge of these complex phenomena occurring in the formation 

of the collagen films is of great importance to provide insights and feedback to current strategies 

leading to an improvement in the development of these materials which forms part of the present 

work and will be detailed in sections 1.7 through 1.9.  

 

1.6 Theoretical Modeling Background  

 

The modeling and computational engineering used here is composed of a three stage sequence: (1) 

rheology and fluid mechanics based on Landau-deGennes, (2) film formation by phase ordering-

dehydration based on Landau-de Gennes and diffusion mass transfer, and (3) film microstructure 

characterization by computational geometry and visualization, summarized below. 
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1.6.1 Landau – de Gennes Mesoscopic Theory  

A complete description of liquid crystals in general is achieved through the use of the Landau – de 

Gennes Q tensor mesoscopic theory where the definition of Q is the second moment of an 

orientation distribution function (u) (ODF). This tensor has the properties of being symmetric 

and traceless and includes information regarding the preferred directions through the director 

orthonormal triad n, m & l and the degree of alignment with respect to n & m through the uniaxial 

and biaxial scalar order parameters S & P as expressed in eqn. (1.1 a-d). As any other order 

parameter, S & P vanish in the disordered state and the maximum value indicates a perfect 

alignment state. The ODF and uniaxial order parameter are schematically depicted in figure 1.8. 

Other theories have been used for describing liquid crystals mainly the Leslie – Ericksen [62, 63] 

but lacks to describe changes of S and describes the dynamics of n only [64 – 66].  

 

Figure 1.8 Schematic representation of the concept of the ODF where a collection of elongated objects each with a 

particular orientation ui which averaged leads to the director n and the Eulerian angles  and  in a coordinate 

system where the z direction points in the same direction as the director. 
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Liquid crystalline phases are known to be affected by external fields and forces. The focus in the 

present work is in flow processes where flow induced alignment (FIA) is observed. The coupling 

between the Q tensor and the applied field have been described through the Landau – de Gennes 

theory [15]. The phenomenological equation is derived from a linear relationship between the 

relevant fluxes and driving forces resulting in eqn. (1.2) which is derived in Chapter 2 and 

Appendix B [44, 67 – 69]: 

   ˆ ˆ6 , , , ; ;r

D
D

Dt
           

Q
Q H Q Q F Q A Q W Q Q W v A W                               (1.2) 

where v is the velocity, A and W are the rate of strain and vorticity tensors.  This nematodynamics 

model represents a balance between two terms: on the one hand, the so-called molecular field 

 ,H Q Q  which is the contribution driving the system to its equilibrium configuration and on the 

other hand the flow contribution  , ,F Q A  which provides the coupling between the 

macroscopic kinematics to the order and orientation of the material. The former is related to the 

Brownian motion, particularly to the process of maintaining or restoring the orientation 

distribution of the mesophase and the crucial physical property is the rotational diffusion constant 

Dr [70, 71]. Moreover, the molecular field is the functional derivative of the total free energy, 

given in Appendices B and D, with respect to Q where the free energy is given by the sum of two 

terms: 
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The homogeneous contribution is proportional to the nematic potential, a dimensionless mesogen 

concentration with respect to the critical value to observe a phase transition, and a Landau 

expansion of invariants of Q. For low mesogen concentration, the isotropic is the stable state and 

as the concentration increases the cholesteric becomes the stable thermodynamic state as depicted 

in figure 1.9. The inhomogeneous contribution contains information regarding elastic deformation 

that might arise and is a function of gradients of Q. For cholesterics [41, 72, 73], two elastic 

constants have been used to describe the system: L1 associated to the helical axis and the pitch, 

and L2 englobing other modes of deformation as schematically depicted in figure 1.10.  

 

Figure 1.9 Homogeneous free energy as a function of S for increasing mesogen concentration where the blue curve 

represents the isotropic as stable state and the black curve the cholesteric is the minimum energy configuration and 

intermediate values are metastable.  



21 

 

Figure 1.10 Schematic representation of the elastic deformation modes present in liquid crystals with splay (a), twist 

(b) and bend (c). (Adapted from [15]) 

 

The flow contribution F is a function of appropriate tensor products of Q and A, the symmetric 

part of the velocity gradient and is modulated by the rheological shape parameter  that ranges 

between 0 and 1 for rod-like mesogens. This parameter is a function of the aspect ratio and tends 

to 1 as the aspect ratio increases.  

The full description of a material depends on determining the crucial properties such as Dr and . 

The latter allows to obtain the reactive parameter curve defined as 
 24 2

6

S S

S




 
   which 

determines for which values the material presents flow aligning ( > 1) or tumbling behavior ( < 

1) under simple shear flow. Finally, appropriate kinematic conditions should be imposed according 

to the objective of the analysis. In the present case, a wide variety of kinematic conditions are to 

be explored to assess the microstructure change under such conditions. The four roll mill 

apparatus, which was invented by G.I. Taylor is known for being capable of producing different 

types of 2D flow and varying the intensities which is schematically depicted in figure 1.11. The 

sample is loaded in the central region and is surrounded by four rolls which can rotate 
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independently and produce a wide variety of flow types and intensities by varying the directions 

of rotation and the angular velocities. The expression for the velocity gradient is expressed in eqn. 

(1.4) where two parameters are introduced  and E where changes in the former lead to changes 

in the flow type and the latter impact the intensity of the flow. The kinematic parameter  ranges 

within [-1, 1] where the lower limit leads to pure rotational flow and the higher to pure planar 

extensional flow and the case of simple shear flow is  = 0.  

 

Figure 1.11 Schematic representation of the four roll mill kinematics (a) and some of the flow types that can be create 

by changing the value of the kinematic parameter (b-f).  
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When no external fields are applied to the material, the flow contribution F from eqn. (1.2) 

vanishes and the time derivative of Q is proportional to the molecular field only. In order to account 

for the mesogen increasing concentration during evaporation, we assume a binary system 

composed of the mesogen and the solvent where the relationship c + w = 1 is always valid. A 

transient mass transfer conservative equation is used in terms of an anisotropic mass flux coupling 

Q with gradients of the solvent concentration expressed in eqn. (1.5) [74]. The full model is derived 

in chapter 3 and Appendix D.  
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This information is introduced in the nematic potential U and is now a function of time and space. 

Therefore, the single minimum of the initial para-nematic is transformed into the double minima 

where the cholesteric is the stable state as shown in figure 1.9. To ensure mass conservation, as 

the solvent leaves the system the film experiences a volume reduction. The height decrease of the 

film is derived from the mesogens’ mass conservation and is proportional to the flux leaving the 

film and the respective cross section.  

1.6.2 Microstructure Geometric Description 

The arced patterns shown in Fig.1.2 are accessible only through oblique incisions to a cholesteric 

helix normal to the x – y plane.  Since the pitch and the incision angle are unknown the periodicity 

of the patterns is insufficient to determine the pitch. To find the missing equation, we use the 

information contained in the actual geometry of the patterns. To describe these patterns we take 

the projection of the director field to a hypothetic x – s plane that simulates the cross section which 
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allows us transform the director field n into the projected field u as depicted in figure 1.12. The 

components of the projected director field can be used in a streamline approach to obtain the 

trajectories of the arced patterns by means of the boundary value problem stated in eqn. 1.6. 

 

Figure 1.12. Schematic representation of a director field lying in the plane x – y where the helical axis is parallel to 

the z direction and the incision plane where the arced patterns are visible in the plane x – s.  
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The curvature of the periodic structures observed can be calculated by the conventional definition 

expressed in eqn.(1.7) and will be helpful to remove an apparent degree of freedom and provide a 

unique calculated value of the pitch with one pair of periodicity and curvature values.  
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Due to the geometric similarity of the herringbone patterns seen in cornea and algae, similar 

expressions are obtained for the periodicity of the herringbones and an expression for the aperture 

angle instead of the curvature is required. The dot product of the projection of two orthonormal 

vector provide a measure to determine the angle herringbone angle where the projection is 

parameterized by a unit normal vector k, expressed in eqn. 1.8: 

  ˆˆ ˆ ; ( , )p p p

i i x y f      δ I kk δ δ δ                                                                                        (1.8) 

In summary, the geometric modeling developed in this work provides a direct 3D microstructure 

reconstruction from 2D slices 

. 

1.7 Need and Opportunity for Computational Modelling   

 

The underlying principles in non-equilibrium self-assembly processes remain still obscure, 

presenting an opportunity for simulation work to explore the stages involved in the film formation 

process [13] in order to control and design optimal processing conditions. 

Specifically, the understanding on the response of the microstructure in a general type of 

kinematics would allow to predict which combination of flow type and intensity of deformation 

should be applied to a dilute collagen solution to obtain a properly pre-aligned and ordered 

structure that precedes solvent evaporation and helical axis formation.  

Through modelling and simulations it is also possible to explore the conditions for the helical axis 

formation through water removal without the need of expensive and complex experiments and 

narrowing the process variables. Moreover, the evaluation and correlation between the driving 
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forces and the resulting microstructure can also be obtained through numerical experiments. 

Visualization of the resulting material submitted to a set of process conditions can evaluate and 

determine whether the material possesses the required morphology or not.  

These visualization techniques where the arced patterns are visible can also be applied to materials 

encountered in Nature and provide additional tools for characterising and understanding the 

morphology of these materials. Given the fact that each arrangement has its particular pattern 

projected to an incision plane and that characteristics of these patterns are a function of the pitch 

and the helical axis, this can be used as a complementary characterization tool that allow to 

understand the material’s morphology and being capable of reconstruct the full 3D structure based 

on the cross sections.  

 

1.8 Thesis Objectives 

 

The main objective of this thesis is to model and simulate the stages involved in the formation of 

defect-free collagen I films through the non-equilibrium multi-step self-assembly process and 

explore the microstructure of the resulting material through geometric modelling and develop a 

characterization procedure based on the characteristic projected patterns to oblique incisions of the 

full 3D structure.  

The specific objectives are the following: 

1. Model and simulate the flow induced orientation of dilute solutions representing the initial 

stage of the film formation process using a general type of kinematics to understand the 

response of such solutions under several kinematic conditions.  
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1.1 Estimate crucial effective geometry dependent material properties consistent with 

experimental shear induced alignment.  

1.2 Explore the influence of diverse kinematic conditions to the microstructure and 

ordering of the system that allows understanding the full state of orientation of the 

precursors.  

1.3 Determine the kinematic conditions to which the dilute collagen solutions should be 

submitted in order to become appropriate precursors for later solvent evaporation.  

2. Model and simulate the transformation of the deposited para-nematic phase into the 

cholesteric phase through evaporation. 

2.1 Develop a self-assembly model coupled with mass transfer to take into account the 

solvent evaporation at constant temperature. 

2.2 Understand the formation of the helical axis from a para-nematic phase and the 

microstructure of the resulting plywood under diverse mass transfer resistances. 

2.3 Determine the parametric conditions that allow the formation of defect-free films from 

the dynamically aligned para-nematic phase.  

3. Model and understand the projected 2D patterns of the ideal and non-ideal twisted plywood 

architecture obtained from oblique slices.  

3.1 Relate the characteristic projected 2D patterns to each type of plywood. 

3.2  Explore through geometric modelling and 3D visualization tools the influence of the 

characteristics of the projected pattern characteristics. 

4. Develop a characterization procedure for the explored plywoods based on characteristic 

patterns.  
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4.1 Propose a robust characterization procedure that allow understand and reconstruct the 

full 3D structure.  

4.2 Test and validate the proposed characterization procedure with in vivo and in silico 

samples. 

4.3 Provide recommendations and best practices to be adopted in the use of the 

characterization methodology.  

 

1.9 Thesis Organization 

 

Chapters 2 and 3 focus on the flow deposition and drying stages respectively of the process 

reported by Kirkwood and Fuller [13]. Chapters 4 – 6 are focused on the geometric modeling and 

characterization procedure for biological plywoods. A more detailed organization of the thesis is 

given in the flowchart shown in figure 1.13.
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Figure 1.13. Thesis organization flowchart divided by chapter and the objectives are shown in the rectangles.
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The following is a brief summary of each of the chapters composing this thesis: 

Chapter 2. Theory and Simulation of Cholesteric Film Formation Flows of Dilute Collagen 

Solutions. 

This chapter provides the material property determination of dilute collagen solutions used in non-

equilibrium film formation processes such as the one reported by Kirkwood and Fuller [13] and 

the microstructure response of such solutions under a wide variety of kinematic conditions. The 

experimentally guided property determination allowed the estimation of effective shape dependent 

physical properties like the rotational diffusivity constant and rheological shape parameter. Such 

properties were used as inputs to a general nematodynamics model using the four roll mill 

kinematics, allowing to obtain the microstructure response of the dilute solutions under conditions 

that include as limit cases the well-known: 1) planar extensional flow, 2) simple shear flow, and 

3) pure rotational flow and also unequal contributions of the aforementioned limit cases, as 

expected in real polymer processing operations, depending on the value of a kinematic parameter. 

The kinematic conditions to which these precursors should be submitted in order to promote a 

homogeneous lying helix rather than a non-uniform helix are given in a phase-space expressed in 

terms of the alignment angle and the scalar order parameter. The resulting structure are used as 

initial condition in Chapter 3, where the para-nematic phase is converted into the chiral nematic 

with changes in the nematic potential as driving force.  

Chapter 3. Biological Plywood Formation from Dilute Para-nematic Liquid Crystalline 

Phases 

This chapter provides the modeling and simulations of the resulting dynamically aligned para-

nematic phase obtained through the kinematic conditions specified in Chapter 2 submitted to water 
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removal. A 2D Landau – de Gennes model is developed with a time dependent concentration 

profile used in the nematic potential to simulate the increase of the mesogen concentration. The 

model is coupled with a mass transfer equation for the solvent considering anisotropic diffusion 

and the volume reduction is derived from the mesogen mass conservation. The initial condition is 

the para-nematic state in all the simulations. The phase transition is induced from the edges and 

depending on the mass transfer resistance accounted by the dimensionless number , three regimes 

are observed: i) homogeneous helical axis, ii) polydomain helical axis, and iii) polygonal texture 

found in the central region of the film. The second and third indicate the helical axis formation 

time is not synchronized with the solvent diffusion, which is the crucial aspect and key point in 

the control of helix formation processes.   

Chapter 4. Structure Characterisation Method for Ideal and non-Ideal Twisted Plywoods.  

The resulting material from Chapter 3 is expected to have a helical axis present that when 

completely dried will lead to a biological plywood. Regardless of the origin of the plywood (man-

made or present in Nature) the chiral ordering manifests into arced patterns when an oblique 

incision is made in the material. These projections depend on the incision angle and the magnitude 

of the helical pitch. Characteristic measurements as the periodicity of the arcs and the maximum 

curvature are used to characterize the material when the pitch is unknown leading to a unique 

prediction of the pitch. In silico visualizations are used to explore the effect of the pitch and the 

incision angle on the observed arc and a characterisation methodology is proposed in samples 

where these characteristic patterns are visible.  
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Chapter 5. Chiral Graded Structure in Biological Plywoods and in the Beetle Cuticle. 

This chapter implements the proposed methodology from chapter 4 to the case of the beetle cuticle 

by means of in silico cross sections. These artificially created incisions were necessary due to the 

lack of experimental visualizations of the arced patterns which were created since the graded pitch 

profile was reported recently. Further analysis of the model furnished a phase plane of the observed 

patterns is given in terms of the periodicity and the reciprocal maximum curvature where constant 

pitch hyperbolas appear. Interestingly, the regions of the hyperbolas approaching the asymptotes 

correspond to the low angle incisions leading to ill-conditioning. Hence, incisions at higher angles 

are recommended to improve accuracy and being capable of characterizing a wider region of the 

graded pitch structure.  

Chapter 6. Geometric Reconstruction of Biological Orthogonal Plywoods 

Herringbone patterns are found from slices of orthogonal plywoods that presents abrupt changes 

in the orientation of approximately 90o in a layer-like fashion. Analogously to the arced patterns, 

the herringbones’ characteristic measurements as the periodicity and aperture angle are used in the 

characterization and geometric reconstruction of orthogonal plywoods where the methodology is 

capable of predicting the layer thickness. To validate the methodology, in silico orthogonal 

plywoods are created and validated with experimental results of a typical algae.   

Chapter 7. Conclusions and Original Contributions to Knowledge 

Finally, the key findings of the project are listed along with the original contributions to 

knowledge.  
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Chapter 2 

2 Theory and Simulation of Cholesteric Film Formation Flows of Dilute 

Collagen Solutions 

2.1 Preface 

This chapter focuses on the the dynamic behavior of dilute collagen solutions. A material property 

determination is performed the results are consistent with previous experimental data. The 

nematodynamics model based on the Landau – de Gennes theory is derived and solved by 

imposing the four roll mill kinematics. The relationships between the type of flow and intensity 

with the order and orientation are established for the dilute mesogens. This chapter is reproduced 

from a published paper titled: “Theory and Simulation of Cholesteric Film Formation Flows of 

Dilute Collagen Solutions” co-authored with Prof. Alejandro D. Rey; Langmuir, 2016, 32, 11799. 

The results are the basis for the simulations performed on Chapter 3.  

2.2 Summary 

Dilute isotropic collagen solutions are usually flow processed into mono-domain chiral 

nematic thin films for obtaining highly ordered materials by a multi-step process that starts 

with complex inhomogeneous flow kinematics. Here we present rigorous theory and 

simulation of the initial precursors during flow steps in cholesteric collagen film formation. 

We first extract the molecular shape parameter and rotational diffusivity from previously 

reported simple shear data of dilute collagen solutions, where the former leads the reactive 

parameter (tumbling function) which determines the net effect of vorticity and strain rate on 

the average orientation and where the latter establishes the intensity of strain required for 

flow-birefringence, both crucial quantities for controlled film formation flow. We find that 
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the tumbling function is similar to those of rod-like lyotropic liquid crystalline polymers and 

hence it is predicted that they would tumble in the ordered high concentration state leading 

to flow-induced texturing. The previously reported experimental data is well fitted with 

rotational diffusivities whose order of magnitude is consistent to those of other 

biomacromolecules. We then investigate the response of the tensor order parameter to 

complex flow kinematics, ranging from pure vorticity, through simple shear, to extensional 

flow, as may arise in typical flow casting and film flows. The chosen control variable to 

produce precursor cholesteric films is the director or average orientation, since the nematic 

order is set close to typical values found in concentrated cholesteric type I collagen solutions. 

Using the efficient four-roll mill kinematics, we summarize the para-nematic structure-flow 

process diagram in terms of the director orientation and flow type. Using analysis and 

computation we provide a parametric envelope that are necessary to eventually produce well-

aligned cholesteric films.  We conclude that extensional flow is an essential ingredient of 

well-ordered film precursors with required Deborah numbers of the order of the unity.  

2.3 Introduction 

Collagen is the most abundant structural protein present in the human body exhibiting a 

hierarchical organization from the molecular to the macroscopic level [1 – 4]. Certain sufficiently 

concentrated collagenous solutions are biological liquid crystalline polymers [5, 6] where partial 

orientational and positional order is present due to the large molecular aspect ratio (Lp/D); here Lp 

is the persistence length and D the effective diameter [7, 8]. It has been long recognized 

collagenous based materials undergo self-assembly in vivo [2-4, 6, 9-11] and in vitro [9, 12-16]. 

Due to the ubiquity of collagen in vertebrates, this structural protein possesses the key ingredients 
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for applications that include drug delivery systems [18], tissue engineering scaffolds [12, 18, 19], 

and wound-healing biomaterials [19, 20] among others. The ability of controlling the order and 

orientation using collagen as building block could be really advantageous in the production, design 

and development of microstructurally ordered materials, however this is far from a trivial task. 

Some complications arise due to the difficulty of manipulating collagen solutions specially in 

concentrated solutions, moreover some of the resulting material properties strongly depend on the 

rheological type of precursor, whether the material was produced using a precursor with a viscous 

fluid-like character solution than a gel [19]. Several strategies to achieve ordered collagen 

macrostructures have been used, including electrochemical induced alignment (EIA) [14, 21], 

electrospinning (ES) [22] , magnetic alignment [23-26], flow-induced alignment (FIA) [14, 27-

31], and light irradiation [32]. Coating flow-based processes are relatively simple processes where 

the combined effects of shear and extensional deformations and torques are capable of creating 

highly ordered phases. Additionally, these two processes do not require the application of external 

fields as an electric field in electrospinning or magnetic field induced alignment, making them 

more practical for larger-scale production and commercialization purposes. A remarkable example 

of coating-flow based process is the one reported by Kirkwood and Fuller [27-29] (to be detailed 

in section 2.3.1) whose first stage is a modified blade coating process of a dilute collagen solution, 

however the exact nature of all the operating principles remain unclear and not completely  

understood. Aspects such as reproducibility or precise control over the collagen orientation are 

crucial in these structured and organized materials.  For processes making use of flow fields to 

pre-align the precursor solutions, one needs to assess the impact of the kinematic variables on the 

organization of the casted material, since the ultimate goal is to obtain relatively large volumes of 

uniform defect-free twisted plywood with specified helix axis.  The twisted plywood is the 
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analogue of a cholesteric liquid crystals characterized by a helical axis vector h and a pitch po (or 

distance for 2 rotations) of the collagen triple helices about h. 

Film formation  using various transport phenomena can be classified as non-equilibrium self-

assembly processes, having the advantage over equilibrium self-assembly processes, described 

theoretically in [33], of producing the resulting materials in less time and having the possibility of 

a systematic control of the helix h spatial distribution. Particularly, for processes that use FIA to 

create chiral film precursors, which is the main focus of the present work, typically a substrate is 

coated with a thin collagen solution by means of a complex flow involving shear and extensional 

deformation. This allows a non-equilibrium aligned phase, usually denoted as the para-nematic 

(PN) phase, to be formed [11, 14, 27-29]; we note that the PN phase of collagen and other 

biopolymer solutions is achiral with the macromolecules partially aligned along a common 

direction or director n which is essentially constant within the initial film. To decrease the mobility 

of the deposited collagen molecules several techniques have been used such as cross-linking [34] 

or solvent evaporation [27, 35, 36]. In the latter, by proper dehydration rates, the transformation 

of the mobile para-nematic PN phase into a solid helical plywood (cholesteric) is effected.  
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Figure 2.1. Schematic of the shear-induced alignment (flow birefringence) of typical semi-flexible biopolymers and 

relevant material properties.   (a) Semi-flexible molecule with persistence length (Lp) and effective diameter (D) in 

dilute isotropic solution at rest (b) undergoing free Brownian rotational motion with rotational diffusivity Dr changing 

its orientation by , and (c) para-nematic phase with restricted rotational motion, due to flow with smaller changes 

in orientation given by ’, where the non-affine motion is quantified by the molecular shape parameter  (Lp/D); 

the PN phase has molecular order around an average orientation n represented by the green arrow. (d) Flow 

birefringence schematics adapted from [19] indicating the isotropic and anisotropic optical properties at rest and under 

shear, respectively.  The molecular order parameter S is zero under no shear but finite under shear. 

 

Previous experimental results indicate that dilute collagen solutions are well-suited precursors with 

isotropic behavior at rest but showing flow-birefringence, as schematically depicted in figure 2.1d, 

for the formation of defect-free collagen films through a multi-step formation processes [27, 28] 

that essentially consists of melting the chirality through dilution (a), flow-processing into well 

aligned para-nematic (PN) phase (b), with a final solvent evaporation to form solid plywoods. 

However, to have a systematic control of the helix, to improve strategies and design new processes 

that allow fabrication of biomimetic materials, the full state of orientation of the precursor 

solutions must be quantified in terms of the deformation variables involved during the initial flow 

processing. This currently lacking ability can be improved by accurate theory and simulation 
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informed and guided [37] by existing experimental results [27, 28, 36]. In particular, it was 

demonstrated in [36], that acidic collagen solutions display rheological properties similar to those 

of synthetic liquid crystalline polymers, including flow-birefringence in dilute solutions, and 

banded textures after cessation of shear in concentrated solutions, where the latter is an indication 

of tumbling under shear. 

The specific objectives of this chapter are to model and simulate the dynamic behavior of dilute 

collagen solutions, precursors of the aforementioned defect-free collagen films, and to assess the 

microstructure changes under different kinematic conditions relevant to experimental film 

formation flows. This will allow us predict under what conditions an ordering in the system 

resembling the one obtained from equilibrium self-assembly can obtained by means of flow-

induced orientation. In order to achieve this objective we (a) first perform an experimentally-

guided parameter determination and then (b) nematodynamic simulations, as follows: 

(a) We first carry out a parameter estimation of the molecular shape parameter  and the rotation 

diffusion constant Dr, for molecular collagen in solution. We use previously reported 

experimental values of the effective molecular geometry pair (Lp, D) [36, 38-40] and calculate 

 and Dr from well-established expressions for these dynamic properties [41 – 43]. These latter 

pair is used as input to our model to carry out our nematodynamic simulations where the 

specific objective is to seek consistent behavior between the theoretical predictions we provide 

here for the scalar order parameter as a function of the shear rate for simple shear flow and 

previously reported small angle X-ray scattering profiles from flow birefringence experiments 

[36]. Further analysis of our model allows us to predict the maximum achievable order under 

simple shear flow conditions which we will show is a function of the effective aspect ratio, and 

interestingly has a higher value compared to the achiral synthetic liquid crystalline polymers 
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where values of about S∞ ≈ 0.53 have been reported [44]. This upper limit has not been 

previously reported or estimated due to instrumental limitations in the applicable stresses [36], 

and possibly from high shear rate-associated phenomena such as the appearance of edge 

instabilities in cone and plate geometries or important viscous dissipation in capillary 

rheometry. To fully characterize the collagen solutions under analysis we provide the 

reactive/tumbling parameter function that depends on  and S and provides quantitative 

information on the collagen solution conditions that lead to alignment or tumbling under simple 

shear flow. 

(b) Once the material parameters  and Dr are determined, we then compute the microstructure 

evolution to simulate other kinematic conditions that resemble actual processing conditions by 

using the general flows included in the four roll mill process. The ultimate goal is to develop a 

master plot that indicates the complete state of orientation for diverse flow types and flow 

strengths. Additionally we provide an analysis of some limiting cases and finally based on 

experimental information [32, 36] and the process conditions reported by Kirkwood and Fuller 

[27, 28] we indicate what kinematic conditions are required for achieving order in film 

formation processes that use FIA of dilute collagen solutions as a first step.  

The scope of this chapter is to carry out the simulations that allow for the experimentally informed 

parameter estimation for dilute acidic collagen solutions and to use such information to explore 

with further simulations other kinematic conditions that can be encountered in real processing 

conditions, by using the rich four roll mill kinematics. This computational platform is specific to 

collagen acidic solutions rather than a generalized scheme for other bio-macromolecules since it 

is crucially dependent on specific material properties such as the effective molecular shape 

anisotropy, orientational diffusivity, and the specific response to shear. The subsequent 
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transformation of the PN state into a cholesteric liquid crystal through evaporation is not simulated 

here and is outside the scope of this chapter. 

The organization of this chapter is as follows: the required experimental background regarding 

alignment under simple shear flow and processes used to create collagen films are described in 

section 2.3.1.  Section 2.3.2 introduces the kinematics of the four roll mill and an analysis of the 

principal axis of deformation which will be used as a reference to analyze the flow aligning nature 

of the solutions. The model, scaling, methodology and simulation conditions are presented in 

sections 2.4.1 and 2.4.2, respectively. The results are presented and discussed in two parts: section 

2.5.1 presents the parameter estimation and section 2.5.2 provides the microstructure description 

for the applied kinematics and the kinematic conditions to create the thin film precursors is 

provided with the appropriate order and orientation. Finally, a summary of key findings and 

conclusions are given in section 2.6. Three appendices are associated to this chapter and can be 

found at the end of this thesis. Appendix A contains mathematical details on flow hydrodynamics 

such as the invariance of the eigenvectors of the strain tensor and helpful relations between the 

kinematic parameter  and the invariants of the strain and vorticity tensors, Appendix B contains 

a brief background of the theoretical description of flow processes of chiral systems and the 

mathematical details on the derivation of the model, finally Appendix C contains mathematical 

details on the uniaxial approach used to analyze the limit cases of the scalar order parameter and 

director angle for given kinematic parameter . The first part of this modeling and simulation work 

extends in significant ways previous work reported in [7, 8] where an essential quantity such as 

the rotational diffusion constant was not estimated and left the molecular geometry as a free 

parameter. Here we adopt a rigorous property determination procedure applied to dilute acidic 

collagen solutions using a simulation-experiments [36] loop whose convergence yields values for 
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all parameters whose value are exclusive of such precursor solutions. Part two of this work, 

dedicated to the structural response of model collagen solutions to four roll kinematics, scans the 

parametric processing space  to identify the degree of shear and extensional rates and the flow 

intensity required to produce a para-nematic state that is best suited for the formation of defect free 

cholesteric films reported in [27, 28]. 

2.3.1 Experimental Background of Collagen Solutions and Film Formation Process 

Microstructure changes in dilute and concentrated collagen acidic solutions under the influence of 

a controlled flow have been characterized [36]. Previous experimental work on the dynamic 

properties of collagen solutions in a cylindrical shear cell showed that concentrated solutions 

display a complex non-reversible and out of plane orientational behavior at low shear rates of ~8 

s-1, while dilute solutions exhibit a uniform flow alignment for shear rates up 600 s-1 [36]. These 

rheological experimental results provide a measure of how the scalar order parameter (defined in 

eqn. (2.2b)), depends on the shear rate through SAXS [36]. The birefringent behavior (Figure 2.1c) 

disappears in the dilute regime after flow cessation and the isotropic pre-shear state (Figure 2.1b) 

is recovered. However, this dynamic behavior not only depends on how the material is deformed 

but also is highly sensitive to the aspect ratio of the molecule. As depicted in figure 2.1, crucial 

material properties such as the rotational diffusivity Dr and the rheological shape parameter β 

depend on the persistence length (Lp) and the aspect ratio of the molecule (p = Lp/D).  The former 

has been reported elsewhere to vary from 57 nm up to 250 nm in both experimental and theoretical 

works [36, 38-40] (and references therein) and the effective diameter D of collagen has been 

reported from its actual molecular diameter estimated to be 1.36 nm up to about 4 nm [36, 39]. 

These effective molecular geometry variables depend on the electrostatic interactions of the chiral 
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rods and the surrounding medium [38]. For the particular case of the acidic collagen solutions used 

in these plywood formation processes the actual values of the geometry have not been reported. 

These observations suggest collagen solutions present a behavior similar to liquid crystalline 

polymers [5], that show flow alignment in the isotropic regime and also at 

concentrations/temperatures (depending on the nature of the material) close to the transition value 

and a complex shear rate dependency of the flow alignment/tumbling behavior for concentrated 

solutions [5, 44]. 

The uniform flow alignment behavior in the dilute region was used and patented by Kirkwood and 

Fuller [27, 28] to produce a defect-free collagen film through a multi-step process; as above-

mentioned the initial step is the coating of a substrate with the precursor solution through complex 

kinematics that involve shear and extensional deformations. The deposition of the collagen 

solution is carried out by injecting the precursor through a capillary to coat a substrate that 

undergoes translational motion in the opposite direction of the flow inside the capillary creating a 

PN phase on the substrate. Further steps involve the drying of such film at room temperature with 

an external flow field of filtered air, where the helical axis is obtained and reported to be 

perpendicular to the flow direction [27] as depicted in figure 2.2a where we show the difference 

between the para-nematic and cholesteric phases. Such alignment is more likely to occur as the 

ratio H/po decreases where H is the thickness of the film [32].  

The challenge and the need for precise knowledge of the microstructure response of the dilute 

collagen solutions precursors in different types of flow is the multiple time-scales associated to the 

process: the flow induced alignment, relaxation of the structure, helix formation and evaporation 

rate. These time-scales must be well synchronized to obtain the desired material, otherwise several 

scenarios might be observed. For instance, if the order is not uniform in the deposited fluid this 
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could lead to gradients in the helical axis as depicted in figure 2.2b, however if the order is uniform 

but the evaporation rate is too high one might expect to obtain a frozen FIA plywood which might 

resemble a nematic structure and finally, if the evaporation is too slow, the deposited film will 

relax to the isotropic state. 

Although no extensive studies relating the director angle of the PN phase with the amount of 

defects in the solid films are available, one would expect the more parallel the collagen molecules 

with respect to the deposition direction (i.e.  → 0o) the more homogeneously the helix will be 

reconstructed, which has been observed in helical axis control experiments by light irradiation 

where low angles (< 20o) lead to little to no defects [32]. On the other hand, for a sufficiently tilted 

orientation with poor alignment with the substrate, different formation directions associated with 

different time scales would not produce uniform homogeneous films. In addition to the average 

orientation, the molecular order S along the average orientation needs to be flow-controlled. Flows 

that yield low S, will require faster evaporation rates which may lead to instabilities. On the other 

hand, flows that yield S values close to final equilibrium values of a stable cholesteric phase at a 

particular concentration leave the transport processes (solvent evaporation) responsible only for 

creating the helix, and hence allowing for a more systematic control over the helix formation, as 

opposed to a scenario where the evaporation would be responsible for both creating order and the 

helical axis.  This criteria will be used below when evaluating different flow kinematics. 
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Figure 2.2. Schematic of para-nematic phases (the two top frames) with high (a) and low (b) scalar order parameter 

S. In the upper left frame the gray arrows indicates the deposition direction and leads upon evaporation, to a mono-

domain lying helix in the “z” direction represented by the black thin arrow having the same direction of the unit vector 

z.  The disordered state depicted in the upper right frame leads, upon evaporation, to poly-domain structures with 

space dependent S = S(x) and graded director n angles and multiple helical axes. The uniform sough-after film reported 

by Kirwkood and Fuller [27, 28] are schematically represented by the upper and lower (a) frames.    

 

An additional feature of flow configurations such as that in the work of Kirkwood and Fuller is 

the inhomogeneity of the flow presenting a combined effect of shear and extensional deformations 

and non-uniform gradients in the velocity field. This feature is present in both confined and free-

surface flows [45]. A widely known example of the former is the flow in a pipe whose cross-

section changes in the longitudinal direction, used to simulate important technological processes 

[5, 45, 46]. Examples of the latter include the drawing of a fluid from a reservoir [45] or with a 

capillary where inhomogeneous extension is encountered [14] where regions of recirculation (i.e. 

more vortex-like flows) can be found. Due to the complexity of these flows, even when 

mathematical treatments have been reported in the literature, many assumptions have to be 

considered and only weak non-homogeneities can be analyzed [46]. Besides, inhomogeneous flow 
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often cannot be assessed from combining the study of homogeneous flows in shear and extensional 

conditions independently. The approach adopted here is the use of a versatile flow such as the four 

roll mill (invented by G.I. Taylor [47]) where a wide variety of 2D flows can be created, including 

pure rotational, shear and extensional flow by changing a kinematic parameter in the velocity 

gradient tensor associated to the rotation of the rolls [47-49]. By imposing such kinematics the 

microstructure of the solution is expected to be drastically affected, creating a perfectly aligned 

phase under the upper limit of pure extensional flow, and a disordered in the lower limit of a 

rotational flow. Based on the relative contribution of strain over rotation, similar conditions to real 

processing conditions are expected to be present. The microstructure changes are also expected to 

change to variations of the flow strength, which is quantified by the pre-factor of the velocity 

gradient tensor to be explained in detail in Section 2.3.2. 

2.3.2 Kinematics of the Four Roll Mill 

The four roll mill is an instrument that was originally designed to study the deformation of droplets 

in 2D pure straining flows [47]. By changing the direction and/or angular velocities of the four 

rolls, either the magnitude of the vorticity or the straining rates can be selected at will. The 

geometry of the apparatus is depicted in figure 2.3a and some of the flows that can be created are 

also shown. This incompressible flow can be characterized by the following velocity gradient 

tensor vexpressed in eqn. (2.1), with symmetric A and antisymmetric W parts (following the 

convention of [46]): 
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   
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where E is an effective deformation rate and is associated with the strength of the flow meanwhile 

κ is associated with the type of flow. The limit cases of this kinematics include pure rotational flow 

with κ = −1 characterized for having rigid body rotations but no strain (deformation), simple shear 

with κ = 0 characterized for having equal contribution of rigid body rotations and strain, and pure 

planar elongational flow with κ = 1 characterized for having pure strain and no rotations. It is worth 

mentioning the strain rate tensor A is diagonal for the chosen (fixed Cartesian) reference system. 

This implies the principal axis of deformations which are obtained via the calculation of the 

eigenvectors of A coincide with the system of reference and do not change when the flow is 

changed by the kinematic parameter κ. In terms of the kinematics, there are two deformation axis: 

i) the “y” axis which is the direction where the fluid particles are compressed and ii) the “x”axis 

which is the direction where they are elongated at constant volume. What is important to note is 

that while the direction of the flow might change depending on the particular value of the κ, the 

axis of deformation do not change and are always collinear with (x, y). This indicates the 

principal axis of deformation are invariant and the flow aligning nature of mesogens in this 

generalized 2D flow is more convenient in terms of these invariant directions. The reader is 

referred to section Appendix A (where we additionally provide the definition of  in terms of 

vorticity and strain) for a mathematical proof of the indifference of the principal axis of 

deformations by considering a fixed coordinate system and a rotating one (see figure A1 in 

Appendix A).  

In a typical film processing method such as [14, 27, 28] with a fixed process coordinates (x, y), the 

flow kinematics is inhomogeneous, i.e. A(x, y), W(x, y), with the flow type changing through 

space:  (x, y). This allows the possibility of having vortex-rich, strain-rich and mixed type of 

regions. For example if there is a region of recirculation located at (xr, yr), then A(xr, yr) = 0, W(xr, 
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yr)  0 , with (xr, yr)=-1, while next to a solid surface located at (xs, ys), we expect A (xs,ys)  0, 

W(xs,ys)  0, and the flow type would resemble more the case of (xr, yr) = 0, finally, close to the 

free surface (xfs, yfs) the building blocks strongly align in the extension direction with A(xfs, yfs)   

0 and W(xfs,yfs) = 0 with the flow type (xfs,yfs)=1.  Hence, a real flow corresponds to a set of four 

roll mills where  changes in space, and by accounting the contributions of the strain over vorticity, 

as specified in Appendix A, in such processes, specific predictions on how flow affect the collagen 

orientation and order can be made. 

 

Figure 2.3. Four roll mill schematics (a) and five 2D flows (b-f) that can be created with the velocity vector field and 

streamlines for the indicated values of . Examples include pure rotational (b) simple shear (d), and planar elongation 

(f). The principal axis of deformation depicted in (g) for the particular case of simple shear flow where both sets of 

eigenvectors in fixed (x,y) and rotating (x’,y’) system of reference yields to the same principal axis of deformation of 

A.  
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2.4 Model and Methods 

2.4.1 Model and Scaling 

The ordering in collagen solutions is analogous to that of lyotropic liquid crystalline polymers 

where its dynamic behavior is explored at the mesoscopic level by means of the second moment 

of the orientation distribution function (u) or Q-tensor (symmetric and traceless second order 

tensor):    
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where {n, m and l } correspond to the orthonormal director triad and S and P represent the uniaxial 

and biaxial scalar order parameter respectively.  The order parameters S = 3/2n·Q·n; P = 

3/2(m·Q·m − l·Q·l) are a measure of the molecular alignment with respect to the uniaxial director 

n and biaxial axis m. The paradigm used in this work to analyze the microstructure response of 

chiral mesogens under the influence of flow and the derivations of the equations for the collagen 

system under analysis can be found in section Appendix B; the reader is referred to [42, 43, 50-

59] for liquid crystal rheology and nematodynamics. The dimensionless spatially homogeneous 

governing equation is:  
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where t* = 6Drt, and where starred variables denote dimensionless quantities, the Deborah number 

(De) is the ratio of molecular time scale 1/6Dr to flow time scale 1/  , R is the ratio of two square 

length-scales: the macroscopic chiral length-scale (i.e. the cholesteric pitch po) and the molecular 

length-scale
13 /Bck T L , and Er is the Ericksen number or ratio of macroscopic time scale 

po
2ckBT/2L1Dr to flow time scale 1/| |.  The molecular length scale is associated to short-scale 

order parameter variations such as in a defect core (O(nm)) whereas the external scale is usually 

referred to long-scale orientation changes such as the separation between the plates in a simple 

shear flow, and in such cases R is usually in the order of 105 − 106.  However, in the particular case 

of this work such external length-scale is associated to the pitch found in collagenous materials 

which is O(m) – O(10m), thus the energy ratio has an order of magnitude of 103 − 104 and 

should be retained for more accurate parameter estimations. The Ericksen number is the product 

of De·R and compares the viscous and elastic torques, and even though it does not appear explicitly 

in the current formulation it is implicit due to the relationship between De and R. 

In general terms, the dynamic behavior of the Q tensor under certain kinematics depends on 

thermodynamic conditions such as the concentration of the chiral rods given by the augmented 

nematic potential U [33] and also on parameters that depend on the hydrodynamic interactions in 
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the material as the rotational diffusivity Dr, that is a function of the rotational friction coefficient 

r, and the shape parameter  that is a function of the aspect ratio p = Lp/D. Hence, these crucial 

parameters are highly sensitive to the geometry of the mesogens and have a great impact on the 

evolution of the microstructure of the material. The theoretical description (considering a 

generalized ellipsoid as the effective shape of molecular collagen for the rotational friction factor) 

for Dr and  are approximated as follows [41-43]: 
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 For efficient flow processing of collagen we need to obtain a well-aligned para-nematic 

state via the FIO effect as represented in the left-hand side of figure B1 in Appendix B.  From 

equation (2.3a) we can make the following qualitative observations that lead to FIO: (i) we require 

a sufficiently large De which can be effected by flow intensity  in relation to rD ; (ii)  will have 

to be sufficiently large to translate the strain rate effect into molecular order and (iii) the flow 

kinematics defined by , which is included in A*, will have to be calibrated with   to effect order 

and orientation. The numerical simulations below, informed by experimental data [36], provide 

the required quantitative envelope of these three effects. 
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2.4.2 Methodology and Simulation Conditions 

The simulations were carried out as follows: we apply the four roll mill kinematics to eqn. (2.3-a) 

and solve the ordinary differential equations using second-order backward differentiation 

formulation (BDF). The relative error was set to 10-6 and convergence, accuracy and stability is 

established using standard methods and criteria.  Additionally, we assume only three non-zero 

independent components of Q: Qxx, Qyy and Qxy. Throughout the simulations we use the isotropic 

state as initial conditions (Qij = 0) and the simulations are allowed to reach steady-state. To 

accomplish the objectives, the methodology is carried out in two parts: 

a) Parameter Estimation and Model Validation: 

In this first section we fix the flow type to simple shear flow by imposing  = 0 and use reported 

values of the effective molecular geometry (Lp = 57, 110, 220 nm [36, 40] and D = 1.36, 3.96 nm 

[36, 38]) to obtain the theoretical estimates of the shape parameter  and the bare rotational 

diffusivity Dr. These values are used as inputs to eqn. (2.3-a) which is solved numerically by 

increasing the Ericksen Er number (or De from eqn.(2.3-d)) and the scalar order parameters (S, P) 

can be extracted using its definition provided in section 2.1 and plotted as a function of the shear 

rate (calculated according to the definition (2.3-b) of De using the theoretical value of Dr). The 

experimental scalar order parameter can be estimated from the SAXS profiles reported for 

increasing shear rates given by [36] according to the method provided in [60]. It will be shown 

that the crucial fitting parameter is Dr and essentially only one value will accurately reproduce the 

experimental flow induced alignment. Predictions of the scalar order parameter outside the 

experimental range are also obtained for infinite De, where the maximum achievable order is 

obtained in this flow configuration.  
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b) Microstructure Evolution 

Once the material characterization is complete i.e.  and Dr are known and reproduce the dynamic 

behavior in simple shear simulations, other types of flows are analyzed by scanning the parametric 

space with the kinematic parameter  and the Deborah number. The complete state of orientation 

is obtained by extracting the scalar order parameter S and the director angle  (using eqn. (2.2-b)) 

from the steady-state solutions. Under any given flow conditions, the stationary para-nematic PN 

phase is defined by the director angle  and the scalar order parameter S: 

( , ), ( , )e eD S S D       (2.5) 

The simulation conditions are summarized in Table 1.1. As is typical of LCPs [4, 59], to have 

significant effect on Q, the Ericksen number is significantly larger than one. 

Table 2.1. Simulation conditions for four roll mill kinematics (eqn. (2.1)), and Deborah Number 

(eqn. (2.3-b)). 

Parameter Values 

Deborah 

number 

De (Er/R) 

(0.1, 0.5, 1, 5, 10, 50, 100, 250, 500, 

750, 1x103, 2.5x103, 5x103, 7.5x103, 

1x104, 2.5x104, 5x104, 7.5x104, 1x105, 

2.5x105, 5x105, 7.5x105, 1x106, 2.5x106, 

5x106)/R 

Flow-

type 

κ 

-0.9, -0.8, -0.7, -0.6, -0.5,  

-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 1 

 

In order to obtain important limiting De conditions of S and  as a function of material properties 

such as  and the flow type () we apply the uniaxial approach to eqn. (2.3-a) (see Appendix C) 

and denote: 
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2.5 Results and Discussion  

2.5.1 Parameter estimation and validation 

(i) Molecular Parameters :  and Dr 

Figure 2.4a shows the parameter fitting of the model prediction for two selected molecular 

geometries reported [36, 39] for molecular collagen as examples (Lp1 = 160 nm and Lp2 = 220 nm 

and setting the effective diameter as D = 3.96 nm). Even when changes in the molecular geometry 

affect both material properties  and Dr, the most sensitive is the latter that leads to changes from 

about 350 s-1 up to 140 s-1 for the shown values respectively whereas  changes from 0.9987 to 

0.9993 for the shown values and is always close to the unity for the full geometric range. The 

effective geometric dimensions of the molecule are a strong function of the electrostatic 

interactions due to the ionic content in the surrounding medium [36, 38] and even when rotational 

diffusivities for dilute collagenous solutions have been reported around 1100 s-1 [39], values within 

the same order of magnitude as the theoretical estimates have been reported for similar mesogens 

[43]. Additionally, the theoretical prediction used here corresponds to that of the single-rod 

approximation as implemented originally in [41] as a closure argument for the mesoscopic 

description, and the variation of Dr is accounted by the denominator pre-factor shown in eqn. (2.5-

c), which has been found to describe successfully the ordering of liquid crystalline phases [41-43, 

58]. The molecular geometry that best describes the dynamic behavior of the acidic solutions 

corresponds to Lp = 220 nm and D = 3.96 nm and yields Dr = 140 s-1, as can be seen in figure 2.4a 

that reproduce and extend the experimental results from flow birefringence.  
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(ii) High Deborah Number Limit :  eS S D    

 Figure 2.4b shows S and  in terms of De, where the plateau values corresponding to the maximum 

order and preferred direction with respect to the x-axis are shown. The former is a function of the 

molecular shape and this plateau value contrasts to previous hypothesis that indicated S should 

monotonically increase to the unity [36]; however, perfect alignment under simple shear flow is 

not possible but it will be shown in section (.4.2) the perfect alignment can be achieved when  

increases. The plateau estimation can be obtained from eqn. (2.3-a) by applying a uniaxial 

approximation to obtain the equations in terms of the scalar order parameter and director angle 

which leads to the following important relationships: 
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Figure 2.4. (a) Scalar order parameter S as a function of shear rate  predictions from this work for two different 

persistent lengths  Lp as indicated in the legend compared with the experimental values extracted from the SAXS 

profiles from [36], (b) scalar order parameter S (left axis) and director angle  (right axis) predictions for large shear 

rate (high De) where the asymptotic values of S and can be observed,  and (c) the negligible biaxial scalar order 

parameter as a function of De , showing that the implemented uniaxial approximation is accurate.  

 

The director angle is measured between the direction of the rods and the x-axis, and a relationship 

between sin2 and  (the reactive parameter which is discussed in the following section) is 

obtained in this particular four roll mill geometry, contrasting to the conventional cos2 and in 

unidirectional simple shear. Low De implies small S which results in (De→0) = 0 from eqn. 

(2.7-a). On the other hand, when De→∞ eqn. 2.7-b implies cos2 = 0 which implies sin2 is either 

+1 or -1. The sign is determined by the reactive parameter whose large De limit is the unity, 

hence sin2 = -1 leading to ∞ = -45o.  Under this condition, the right-hand side of eqn. (2.7-a) 

leads to a quadratic eqn. for S that is a function of the shape parameter as established in eqn. (2.8). 
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For the particular case of the acidic solutions based on the predicted S plateau value corresponds 

to 0.83. 

2

3 3
1 1 4S

 
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  
                          (2.8) 

Figure 2.4c shows the biaxial order parameter as a function of De that experiences an initial 

maximum value (~ 0.05) for low De and decays towards zero for larger De, hence any biaxiality 

is negligible and the uniaxial approximation accurate. 

iii) Reactive Parameter Function: (S)  

The flow aligning nature under simple shear flow is given by the reactive parameter  [42] with 

the flow aligning angle or Leslie angle given by eqn. (2.9): 
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whose magnitude determines the shear flow aligning or tumbling behavior; we note that the 

symbol L refers  to the Leslie  angle under simple shear flow and that in this chapter we just use 

  for the steady director angle under any flow.  For the case of rod-like mesogens,  > 1 indicates 

shear flow aligning whereas  < 1 indicates a tumbling (non-aligning) regime. For systems whose 

scalar order parameter is close to the isotropic value,  is undetermined, as the order in the system 

increases,  decreases until it reaches the flow aligning limit. This characteristic value which 

makes  the unity is the large shear rate value S∞, i.e. S( = 1) = S∞, any solution with order in the 

system higher than such value will have tumbling behavior. The collagen  as a function of S is 

given in figure 2.5. The figure shows additionally a reference line for the unity and it can be seen 
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that when = 1, S = S∞= 0.83. From the Leslie angle relationship L = -45o, which indicates the 

collagen molecules are aligned in the direction of the shear flow as shown in figure 2.3-d in the 

large De limit. Therefore we see that when processing a dilute collagen solution with initially 

negligible order (S ≈ 0) will always flow-align in shear. On the other hand, processing under shear 

conditions an initially highly ordered solution such that S > S∞ leads to non-aligning behavior, 

involving defects and texturing [59]. For concentrated synthetic LCPs, typical values of U = 5 

yielding Seq= 0.76 [43] lead to tumbling under low shear. Our estimates predicting flow alignment 

in dilute solutions capable of achieving an order up to S = 0.83 indicate dilute solutions are better 

suited precursors to obtain uniformly ordered and aligned PN phases without complex shear rate 

dependent periodic behavior as observed in concentrated LCPs. The uniform alignment and order 

is then transferred to the final resulting material. This behavior would also be expected of other 

biomacromolecules where the effective aspect ratio of cellulose and chitin of about p ≈ 10 – 20 [7] 

leads to S∞ ≈ 0.81 – 0.82 (using eqns. 2.4a and 2.9a). Comparing these results with curves of certain 

synthetic LCPs where S∞ ≈ 0.53 is predicted [44] indicates biomacromolecules’  vs S curves are 

shifted to the right and allowing higher order than its synthetic counterparts. Finally we mention 

that our  curve is also consistent with the high concentration results of [36], where banded textures 

after cessation of flow are reported, since these bands are associated with shear flows under  < 1 

conditions.  
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Figure 2.5. Predicted reactive (tumbling) parameter of collagen acidic solutions   as a function of S, based on 

nematodynamics [7] and experimental data [36]. The important threshold for flow aligning behavior corresponding to 
 = 1 (S = S∞= 0.83) is represented by the red dot.  

 

2.5.2  Four roll mill predictions for para-nematic states 

Figure 2.6 shows representative results of S (a) and  (b) as a function of De, for  = -0.5, 0.5 and 

0.  Figure 2.6a shows a monotonic increase in the scalar order parameter S that approaches S∞() 

whose value increases with until a perfectly ordered phase S∞ = 1 is achieved for a characteristic 

.  

The behavior of shows an initial monotonic decrease starting from the origin until a high De 

limit is approached. The precise ∞() is characteristic of each flow type, where flows strong in 
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vorticity (i.e. < 0) reach their plateau value at lower De compared to flows with > 0. 

Additionally, ∞() in flows with < 0 is always -45o whereas for > 0  the value of ∞() increases 

with .  

 

Figure 2.6. (a) Simulated scalar order parameter  and (b) simulated director angle  as a function of Deborah De 

number,  for different flow types , with  = 0 as a reference to the previous section, one with higher straining 

contribution ( = 0.5) and another with higher vorticity contribution ( = -0.5), as indicated in the legend 

 

To better understand the effect of changing the flow type for other values of De we present in 

figure 2.7 the steady-state values of S (a) and  (b) as a function of  for three different De (0.1, 1 

and →∞).  For De → ∞, the scalar order parameter increases exponentially from negative values 

of , with an intercept at the predicted value in the simple shear flow calculations and reaches 1 

approximately at  = 0.1, which remains constant for higher values of . On the other hand,  

remains locked at -45o for < 0, i.e. the system starts to order at constant orientation as the flow 

changes from a pure rotational to simple shear. Once the system is perfectly aligned ( ≈ 0.1); as 

 increases the orientation increases monotonically until the director angle lies parallel to the x-

axis. Even when this limit exists theoretically, it might be unfeasible since it might require 

extremely large shear rates and other phenomena might appear in such scenarios, nonetheless, the 
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examination of this limit provides insights of what occurs at other feasible shear rates. In fact, 

similar behavior is observed for lower De, however the regions of constant orientation and order 

become narrower and at higher values of  the former and lower for S. This effect is due to the 

weakness of the flow in these cases (lower De) and indicates an intimate relationship between the 

alignment and ordering in the system when the flow time-scale has an order of magnitude 

comparable to the rotational diffusivity (modest values of De) for any type of flow. The behavior 

of the curves becomes smoother in the transition region as De decreases. 
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Figure 2.7. Simulated steady-state values of scalar order parameter (a) and director angle (c) as a function of  for De 

= 0.1, 1 and De → ∞.  
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Figure 2.8 shows the master plot of S as a function of  for different flow types ( and intensities 

De.  This plot can be divided into a vorticity dominated region (below the  = 0 curve) and a strain 

rate dominated region (above the  = 0 curve). Meanwhile the strength of the flow is given by the 

Deborah number that increases from right to left according to the color bar. The (M = Q + I/3) 

tensor ellipsoids for large De are also provided to visualize the state of orientation of the mesogens, 

following [62]. We identify regions where the director angle resembles the value observed in 

simple shear flow (close to -45o) however the ellipsoids are sphere-like due to the low S leading 

to almost horizontal lines close to the bottom of the master plot. As  increases the ellipsoids 

become more prolate at an angle of -45o, and finally for positive values of  the ellipsoids become 

more elongated with an orientation that decreases to 0o at the limit case of  = 1. The triangle in 

Figure 2.8 provides quantitative means to determine the conditions required to create materials 

with a desired degree of alignment and ordering for flows or well-established processes what is 

the degree of alignment in the system that is anticipated given the process conditions are known. 

In particular the (opt, Deopt) processing triangle is limited by (0.2, 1) for almost simple shear flow 

and (1, 0.6) for pure extensional flow, which will be further discussed in the subsequent 

paragraphs. 
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Figure 2.8. Master-plot of the simulated scalar order parameter S and director angle   for different types of flows ( 

curves) and flow strengths as shown in the color map for De, for dilute acidic solutions of collagen. The region 

surrounded by the white thick triangle on the top right indicates the optimal kinematic conditions required in the pre-

alignment stage of defect-free film formation process. The tensor ellipsoids integrate the description of para-nematic 

state (S, ). 
 

We carry out the uniaxial analysis as indicated in section 2.6.1 but with the generalized kinematic 

parameter . The generalized expressions are given in eqn. 2.10 (a-c). Only few but useful limiting 

cases of  that lead to close form expressions can be analyzed; which are summarized in table II 

in Appendix C further mathematical details. Equations 2.10 (a, b) reveal how (, De) affect (, 

S) and eqn. 2.10 (c) encapsulates the processing unit circle where all the variables affecting the 

order and orientation are considered given that sin22 + cos22 = 1 one can easily predict the PN 

state and depending on the kinematic conditions is the precise location around the circumference 

that includes the optimal (, De) pair (see figure B1 in Appendix B). 
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Table 2.2. Summary of S and  for the limit cases of pure rotational flow and pure elongational 

flow (eqns. 2.10). 
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From Table 2.2, it can be stated that rotational flow for any De is not capable of ordering the 

mesogens and flows rich in vortex contributions should be avoided or vortex-rich regions should 

be minimized for producing the collagen films of interest. For strain-rich flows the ordering 

depends on the intensity of the flow when this is low to moderate and depend on other material 

properties such as , Dr and R. When the flow intensity is high, the mesogens present a perfect 

ordering with S = 1. Other types of flow are capable of creating perfectly ordered PN phases as 

observed in figure 2.7a, however, the difference between the pure elongational flow ( = 1) and 

other flows with a certain degree of vortex contribution (0 <  < 1) is the direction of the alignment. 

For the limit case of  = 1, the mesogens are always aligned in the x-direction, regardless the value 

of De, which shows the strongly alignment effect of elongational flows.  
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Finally we use the above results to specify optimal (opt, Deopt) conditions required in the PN phase 

that would likely lead to defect-free films. As previously mentioned, the region of interest for 

processing the dilute collagen solutions is such where the flow-induced PN order resembles the 

one obtained at equilibrium when the rod concentration is increased after the solvent evaporation.  

The FIO should produce a PN ordered phase such that:  

  2, 1/ 4 3 / 4 1 8 / 3 32 /e eqS D S U UR         (2.11) 

where (De, ) are some effective averaged values, and Seq is the equilibrium order [33] of collagen 

in the final dried state. For example when U = 4, Seq(U=4) = 0.6596 which is slightly higher than 

the equilibrium value previously reported for in vitro collagenous materials of about 0.55 that 

corresponds to U ≈ 3.2 [36]. Both values of S define a reasonable range of order and both cases 

have been reported for collagenous materials to exhibit strong birefringence at rest with well-

defined pitch between 0.2 to 8 m [12, 36]. Besides, in terms of the master plot, both values can 

be achieved under realistic processing conditions (De~O(100)) which leads to deformation rates of 

approximately 840 s-1 that is in the same order of magnitude as the deformation rate inside the 

depositing device in the process reported by Kirkwood and Fuller [27-29] can be estimated as 

34 /Q R  ~720 s-1.  

The most common variable discussed in the literature is S, however the preferred director direction 

  plays an important role as it might affect the direction of the formation of the helix which has 

been reported to occur perpendicular to the flow deposition [27-29]. This might indicate collagen 

molecules should be oriented at a direction close to the direction of the extension, in terms of the 

kinematics of the four roll mill would correspond to the principal axis of deformation (i.e. the x - 
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axis). Pure simple shear flow is not capable of creating these ordered oriented precursor deposited 

films because the alignment angle is about -30o when S is within the previously specified range 

close to Seq. This is a quantitative justification for the inclusion of extensional contributions in 

processes such as in [14, 27] because of the highly aligning nature of extensional flows. Following 

the master plot (figure 2.8), for any flow strength the aligning angle is always zero under this limit. 

However, shear contributions cannot be removed when coating substrates due to the presence of 

the solid wall and the velocity gradients perpendicular to the substrate that have an order of 

magnitude of dvx/dy = vr/, where vr is the velocity of the substrate and  is the thickness of the 

deposited film, such gradient is magnified in thin deposited films. Based on the master plot we can 

indicate that processes with  = 0.2 and higher for De close to the unity are capable of aligning the 

mesogens to an angle close to -20o
 or closer to zero, which produced little to no defects in helix 

formations induced by light irradiation [32]. Based on the discussed values of order and 

orientation, the region delimited by the region enclosed by the white triangle on the top right of 

the master plot with (, De) vertices: (0.2, 1), (1, 0.6), (~1, 1) has realistic optimal kinematic 

conditions to which the precursors must be submitted for likely defect-free collagen film formation 

processes. The last vertex with an approximate sign (~) is an indication that in real flow situations, 

as above-mentioned, inhomogeneous kinematics are encountered and pure extensional flow might 

not be feasible.  

Finally, the non-homogeneities could lead to some regions having highly ordered oriented 

materials and others with little to no order as observed in [14]. In terms of process design, one 

should analyze the complex kinematics and identify regions where gradients in and values of  

close to -1 can be encountered, in order to eliminate such regions if possible or at least minimized 

to avoid recirculation and produce uniformly oriented PN precursors. 
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2.6 Conclusions 

This chapter presents simulation and scaling of key material properties of dilute isotropic collagen 

solutions, including the molecular shape parameter  and rotational diffusivity Dr, using an 

integrated theory-experiment loop. The theory is based on well-established nematodynamics that 

spans from isotropic dilute solutions to concentrated liquid crystalline solutions and the 

experimental data [36] provides the flow-birefringence as a function of shear rate.  The rotational 

diffusivity Dr of 140 s-1 has an order of magnitude consistent with reported values of other 

biomacromolecules [61]. The estimated molecular shape parameter  is used to formulate the 

tumbling parameter function (S), which is a key quantity in the rheology of liquid crystalline 

materials. This function is similar to others estimates for synthetic lyotropic liquid crystal 

polymers, and its key feature for collagen solutions  is that it is above one for 0 < S  < 0.83 and 

below one when 0.83 < S < 1; the former corresponds to dilute and the latter to concentrated 

solutions. The formulated(S) is consistent with experimental data [36] on collagen solutions as 

it predicts flow-birefringence in the dilute regime  and banded texture formation after cessation of 

flow in the concentrated regime, where the former is a signature of shear-induced orientation  (> 

1) and the latter of non-aligning or tumbling ( < 1) under simple shear. 

The nematodynamics model with properties of collagen solutions is explored in terms of flow 

intensity (Deborah number or ratio of deformation rate to rotational diffusivity) and flow 

kinematics , which is an index of the relative content of strain rate and vorticity rate.  The 

parameter space (, De) describes different film processing protocols used to create collagen-based 

cholesteric layers, which usually contain vorticity rich (= -1), simple shear (= 0) and 

extensional (= 1) regions.   Based on liquid crystal physics and observations from chiral film 



72 

 

formation, we find that the key control variables to convert the precursor para-nematic state into 

defect free cholesteric films is a sufficiently surface aligned director field and an order parameter 

S of the same magnitude as that in the stable cholesteric state.  These two constraints reduce the 

parametric processing space into narrow triangle with optimal (opt, Deopt) (Figure 2.8) limited by 

(=0.2, De=1) for essentially shear flows, and (=1, De=0.6) for extensional flows.  The estimated 

region (top right region of figure 2.8) of alignment and order in the deposited film precursors is 

such that when followed by evaporation they will create defect-free materials as the ones obtained 

in the work of [27]. These results provide quantitative design parameters for flow-processing 

collagens into films for tissue engineering and other emerging biomimetic applications.    
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Chapter 3 

3 Biological Plywood Film Formation from Para-nematic Liquid Crystalline 

Organization 

3.1 Preface 

The previous chapter provided the kinematic conditions to which the dilute collagen solutions 

should be submitted in order to have the appropriate order and orientation for solvent removal. 

This chapter analyzes the drying stage of the process and uses the initial order and alignment 

computed in Chapter 2. A fully coupled model taking into account the mesogen order, the solvent 

mass transfer and volume reduction is presented. The effect of the internal mass transfer on the 

resulting microstructure is evaluated. This chapter is reproduced from a manuscript currently in 

preparation titled: “Biological plywood film formation from para-nematic liquid crystalline 

organization” 

3.2 Summary 

In vitro non-equilibrium self-assembly processes of biomacromolecular solutions offer a 

systematic and reproducible way of generating material architectures found in Nature, such as 

biological plywoods.  Accelerated progress in biomimetic engineering of mesoscopic plywoods 

and other fibrous structures requires a fundamental understanding of processing and transport 

principles.  In this work we focus on collagen I based materials and structures to find processing 

conditions that lead to defect-free collagen films displaying the helicoidal plywood (cholesteric or 

chiral nematic) architecture. Here we report on experimentally-guided theory and simulations of 

the self-assembly of collagen molecules through water solvent evaporation of pre-aligned dilute 
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collagen solutions. We develop, implement and qualitatively validate an integrated liquid crystal 

self-assembly-water transport model that captures the spatio-temporal chiral structure formation 

in shrinking domains due to water loss. Three microstructural (texture) modes are identified 

depending on the particular value of the time-scale ratio defined by collagen rotational diffusion 

to water translational diffusion. The magnitude of the time scale ratio provides the conditions for 

the synchronization of the helical axis morphogenesis with the increase in the mesogen 

concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial 

cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. 

Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected 

films. The predictions of the integrated model are in qualitative agreement with experimental 

results and can potentially guide solution processing of other bio-related mesogenic solutions that 

seek to mimic the architecture of biological fibrous composites.  

3.3 Introduction 

Natural materials such as collagen, cellulose and chitin are well known for providing support and 

structure due to its capability to self-assemble into complex multi-scale hierarchical architectures 

[1-4] usually from  liquid crystalline precursor states [1, 2, 5, 6]. Three different analogues to 

conventional liquid crystals have been identified [7]: i) solid analogues known as biological 

plywoods (BP) with frozen liquid crystalline order as in plant cell walls [8, 9], insect exoskeletons 

[10, 11], crustacean cuticles [5], bones [12, 13, 14], fish scales [15], cornea [16]; ii) in vitro, where 

extracted biomacromolecules in solution can be considered lyotropic liquid crystals, and iii) in 

vivo biological liquid crystals such as spider silk and biological membranes. One of the most 

ubiquitous biomesophase is the chiral nematic N* (cholesteric) due to the intrinsic chirality of 

some of Nature’s building blocks as highlighted in [17], however other structural arrangements 
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are also observed such as nematic and orthogonal [2]. As with synthetic liquid crystals, one 

distinguishing feature of triple helix collagen and other natural building blocks is a large 

molecular/particle persistence length  to effective diameter aspect ratio : L/D>>1.  Frustration 

during biological self-assembly leads to characteristic topological defects with the same 

characteristics found in conventional liquid crystals, reinforcing the self-assembly hypothesis in 

the synthesis and formation of biological plywoods [1, 2].  This modeling and simulation chapter 

focuses on collagen film formation, but results can be generalized to other biological liquid crystals 

since the operating mechanisms are expected to be invariant.  

The arrangement of the building blocks obtained through the self-assembly process is responsible 

for multi-functionality [4, 18] and enhanced mechanical properties which has inspired scientists to 

develop materials through the bottom-up approach [19]. This has been a paradigm changer in 

materials science and engineering where certain very specific applications require a highly 

organized mesophases without defects such as security papers [20], sensors [21], contact guidance 

for cell growth in highly ordered tissue [22]. Therefore, a strategy to control the internal 

arrangement of the building blocks over several length-scales is required. Strategies involving non-

equilibrium self-assembly must take into consideration the rheology and flow-structuring abilities 

of the precursor state. Chiral nematic precursors are difficult to flow-process given the solid-like 

behaviour along the helix axis and propensity to uncoil under simple shear, as further discussed 

below. Hence melting the chirality through dilution, flow processing in the dilute state, and 

subsequent solvent evaporation has been shown by Kirkwood and Fuller [22, 23] to provide an 

efficient material processing pathway. Figure 3.1 shows a simplified schematic of key features of 

this optimal film formation process, where an initial unstable para-nematic phase is converted to a 

cholesteric phase by solvent removal.  Here S is the scalar nematic order parameter of a dilute 
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collagen solution which is positive (S > 0) due to previous flow-processing, as discussed in the 

previous chapter [24]. Since there is no chirality in the paranematic phase, the pitch (distance for 

a 2 rotation) is infinity and the chiral axis h is undefined. As the water solvent is removed at an 

appropriate rate, the order S is retained, but the macroscopic chirality is created, such that we find 

a well oriented cholesteric helix h with a uniform pitch po. To characterize and control the film 

formation process a full integration of the phase ordering process with the solvent mass transfer in 

a shrinking volume needs to be made. The key challenge and objective of this chapter is to find 

the process parametric envelop that leads to well-formed defect free uniform cholesteric collagen 

film, which can only be revealed when the complex interactions between chirality formation rate, 

dehydration rate, and nematic order relaxation rate in an evolving and shrinking volume are 

understood and quantified.  

Figure 3.1. Schematic of the process investigated in this chapter.   Conversion of a dilute para-nematic phase, 

characterized by a non-zero scalar order parameter S into a cholesteric N* phase, characterized by a non-zero scalar 

order parameter and a helical axis h (in this case it the “z” direction). The helical axis h and the pitch po or distance 

for the average orientation (director) to achieve a 2 rotation define the local chiral nematic state.  The initial para-

nematic phase is obtained by flow-processing (shear plus extensional flow) a dilute mesogen-containing solution that 

achieves a sufficiently large scale order parameter S.  The goal is to find processing-material conditions that lead to a 

uniform defect-free N* phase. 
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The specific objectives of this theory and simulation chapter are: (i) formulate, solve and validate 

an integrated phase ordering-dehydration model for collagen film formation that includes directed 

chiral self-assembly, anisotropic diffusion, moving boundaries due to solvent loss and full 

couplings between liquid crystal formation and solvent mass transfer; (ii) describe and quantify 

the various mass transfer resistances which might affect the resulting microstructure and (iii) 

determine the conditions that lead to a homogeneous helical axis and hence defect-free film. The 

model is spatially 2D, where film geometry is assumed to be rectangular whith a film thickness 

that decreases with time. Transport process in the surrounding air are not included and the 

dominant solvent flux directions are validated a posteriori. The initial para-nematic state is 

assumed to be known from our previous work [24] and passive substrate surfaces are assumed. 

Convection and surface effects such as Marangoni flow is neglected and isothermal conditions are 

assumed to prevail. This chapter only considers relatively early times of drying and effects such 

as gelification are out of the scope of this work. We show that with these restrictions, assumptions, 

and simplifications, our predictions are consistent with experiments [22, 23] and therefore the 

dominance of phase ordering-mass transfer coupling is established [22]. When needed we use  

previously reported [24] rheological properties, molecular aspect ratio, and rotational diffusivity 

of acidic collagen I solutions. 

This chapter is organized as follows: section 3.4.1 provides further information regarding current 

strategies for obtaining highly aligned materials and describes the experimental process of 

Kirkwood and Fuller [22] followed by the description of the drying process in section 3.4.2. 

Directed self-assembly is briefly described in section 3.4.3. The model and simulation conditions 

are given in section 3.5, which includes the model and scaling in section 3.5.1, the geometry and 

initial conditions in section 3.5.2 and the methodology and simulation conditions in 3.5.3. The 
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results and discussion are included in section 3.6 and finally, the main findings are summarized in 

the Conclusions section. Three appendices are associated with this chapter whose contents are 

detailed as follows: Appendix D provides the mathematical details of the derivation of the model. 

Appendix E discusses the free energy and its dependence on the collagen concentration.   Appendix 

F provides additional plots that support the discussion in section 3.6.   

3.4 Process Description and Theoretical Background 

3.4.1 Film Formation Processes 

Various collagen and cellulose solutions have been processed into highly organized materials, 

films, and fibers. For collagen-based materials the objective is to replicate the organization of 

matrices as observed in vivo for contact guidance [22], tissue engineering [25, 26], wound healing 

[27, 28] and others, whereas for cellulosic materials the optical properties of the resulting film are 

attractive for the design of sensors [9, 29]. This requires the application of an external field or 

appropriate forces to provide the mesogenic solutions with a given orientation. Hydrodynamic 

forces are a relatively simple and widely used approach for this purpose [30, 31, 32]  where dilute 

and concentrated solutions have been used for such purpose. Other approaches include 

electrochemical induced alignment [33], light irradiation [34], and electrospinning [35]. 

Theoretical studies have been recently developed for biological liquid crystals [7] and also active 

matter [36]. Dilute solutions display a homogeneous and effective flow-aligning behavior 

dependent on the deformation rate and flow type [24, 37]. On the other hand, concentrated 

solutions display inhomogeneous banded textures, indicating tumbling behavior [37]. More 

generally, cellulosic solutions display a wide variety of regimes [38, 39] with increasing shear rate 

reflected in the double negative minima exhibited in the first  normal stress difference N1 [39],  
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where some of the dynamics observed include helix uncoiling modes [40, 41], and the presence of 

permeation regime [42] which could impact the ease of manipulation [25]. Hence dilute solutions 

are generally better suited precursors for flow structuring, but unavoidably the use of dilute 

precursors creates a subsequent solvent evaporation challenge. For the particular case of collagen 

solutions [22] the water removal process should be isothermal and at an appropriate temperature 

window since the chemical stability of the triple helix can be compromised with temperature 

variations.  

3.4.2 Drying Process 

The film formation process reported in [22] makes use of an external airflow of dry air to evaporate 

the solvent of the initially deposited dilute para-nematic phase in a laminar flow hood. As drying 

takes place, a reduction in the volume of the film occurs where the contact area with the substrate 

remains constant and only a decrease in the vertical height is observed. A schematic representation 

of the drying process is given in figure 3.2.  The width in the “z” direction remains constant as the 

contact lines (blue crosses) on the lower  corners are pinned. 



83 

 

 

Figure 3.2. Schematic representation of the drying process used in [22] to produce defect-free collagen films with the 

para-nematic state and a representative cross section (a-b) and a well-aligned cholesteric helix after drying when the 

process is synchronized (c) and not properly synchronized (d). U is the characteristic downward air flow velocity, 

and 
2H OW is the horizontal mass rate of water leaving the collagen solution. Initially the collagen is well aligned and 

well-ordered due to previous flow processing, discussed in [24]. As explained below, the vertical airflow reduces 

vertical water evaporation.                                    

 

Experimental evidence [22] indicates the phase transition begins at the vertical edges of the film 

(contact line regions) and advances towards the center i.e. the diffusion of the solvent within the 

film is preferentially across the width of the film. This drying behavior has also been reported for 

water based latex films [43] and cellulosic droplets [29]. Lateral diffusion can be enhanced due to 

the presence of vertical downwards airflow from a laminar flow hood, as in Fig. 3.2a.  Theoretical 

studies analyzing the mass transfer in stagnation points such as the ones that could be encountered 
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in the configuration of [22] have demonstrated that the overall mass transfer process is hindered 

due to the presence of a downstream flow by enlarging the mass boundary layer [44]. This will 

allow us to assume the water mass flux is horizontal and leaves the system from the edges while 

the vertical mass transfer from the other boundaries can be considered as negligible.   

The dehydration rate is governed mainly by internal and external mass transfer resistances. The 

internal resistance results from the solvent diffusion within the film whose characteristic time-

scale is given by the ratio of L2/D, where L is the diffusion length scale (film width) and D is the 

diffusion constant.  The external resistance is due to the formation of a boundary layer adjacent to 

the collagen film.  The Sherwood number, discussed in 3.2, defines the relative importance of these 

two mass transfer resistances. It turns out that given the specifications of laminar flow hoods, 

physical properties of water based films and the drying process analyzed in this work, the internal 

resistance is the limiting step. Furthermore, if the water is not removed at an appropriate rate 

(which will be quantified in the following sections) disordered cholesteric domains are to be 

expected as shown experimentally when the process is carried out at lower temperatures [22]. 

Quantification of the mass transfer process and impact on the resulting microstructure are of great 

importance to better understand the film formation through non-equilibrium processes. We 

proceed to describe a modeling approach that has been used to describe phase transitions in 

biological fibrous composites and indicate the modifications of this model to properly describe the 

drying process.  

3.4.3 Theoretical Approaches: Directed Self-Assembly and Water Transport 

Theoretical approaches to describe the morphogenesis of the twisted plywood architecture were 

based on the diffusionless directed self-assembly mechanism which was first described by Neville 
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[2] and modelled later in [45, 46].  The key feature to produce a monodomain chiral nematic by 

1D directed self-assembly is the presence of an aligning supporting layer that promotes strong 

planar anchoring of the director. The directed self-assembly is described by a one-dimensional 

propagating front, whose wake is a perfect cholesteric domain and whose growth replaces the 

unstable isotropic state. The velocity of the front is constant, inversely proportional to the pitch, 

and proportional to the free energy decrease between the unstable isotropic phase and stable N* 

phase. The velocity of this front is proportional to the rotational diffusivity and hence very sensitive 

to the persistence length [45, 46]. On the other hand, the absence of a supporting aligning layers 

leads to a polydomain textures and the evolution from an unstable state to a polydomain chiral 

nematic phase follows a nucleation and growth mode [7].  Under more complex confinement such 

as drops and films with contact lines, directed self-assembly in various biological liquid crystals 

emerges from existing contact lines [7, 47, 48, 49]. In this case, the aligning torques at the contact 

line emerge from the anisotropic anchoring of liquid crystals [48, 49]. 

The diffusionless directed chiral self-assembly [46, 47] is an important contribution of the collagen 

film formation process studied here but since it assumes a constant driving force for phase ordering 

(decrease in free energy between unstable isotropic and stable chiral nematic phases) it cannot be 

applied to the drying process since it has a variable driving force because water is continuously 

removed from the material. Hence this model [45, 46] should be augmented with the appropriate 

mass transfer equation to account for a variable mesogen concentration as well as volume reduction 

of the film due to water solvent loss.  

Previous theoretical work regarding mass transfer processes in liquid crystalline materials include 

the non-Fickian diffusion of gas molecules in a cholesteric films [50] using a coupling of mass 
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transfer and director rotation. The diffusion of chiral molecules has also been recently explored 

where the Brownian motion is reported to be affected by collective molecular reorientations [51], 

effect that might be present in the formation of chiral nematic phases. In general terms evolution 

of liquid crystal ordering coupled to mass transfer as in our process  is known as Model C [52, 53, 

54]  and its distinguishing feature is the coupling between a conserved (mass concentration) and a 

non-conserved variable (liquid crystal tensor order parameter Q), where the former describes 

diffusion-driven phase transitions and the latter diffusionless transformations. Since the kinetics 

of the former decreases with time while that of the latter is constant, couplings between these two 

phenomena leads to pattern formation and interfacial instabilities, as described below.  

3.5 Models and Methodology 

3.5.1 Model and Scaling 

The model used in this work is based on the Landau – de Gennes (LdG) Q-tensor theory [55] and 

is fully coupled with a mass transfer equation for the solvent where an anisotropic constitutive 

equation is used [56]. The volume reduction is considered as well following the mesogen mass 

conservation [57]. The dimensionless set of equations and dimensionless variables are given in 

eqns. (3.1 – 3.3). Further details regarding the derivation of the equations can be found in Appendix 

D and additional information regarding the mathematical modeling of liquid crystalline materials 

is presented in [7, 46, 58, 59] and references therein.  The important quantities contained in the 

tensor order parameter Q are the scalar order parameter S (degree of alignment along the average 

orientation n) and the director or average orientation n.  The evolution of the symmetric traceless 

Q-tensor is given by: 
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where the starred variables indicate a dimensionless quantity with lc is the characteristic length-

scale depending on the coordinate z (l1) or y (l2) where N half-pitches are considered in the former 

and M in the latter and the ratio of both half-pitches define the parameter K. U is the variable 

nematic potential defined according to Doi [60] as U = 3c/c
 * where c

* is the characteristic 

phase transition volume fraction and varies according to the assumed binary relationship between 

the solvent and the mesogens (w+c=1). The particular value of the nematic potential U defines 

the shape of free energy profile f(U,S) and when U > 3 (U<8/3) the stable state is the ordered 

(isotropic) state. Intermediate U values lead to meta-stability and are described in Appendix E. 

The water mass transfer equation is: 
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where cw is the water concentration, jw the water solvent flux vector, Diso and Dani are the isotropic 

and anisotropic diffusion constants; which are assumed to be of the same order of magnitude and 

denoted hereafter simply as D; and are defined in terms of the parallel (D||) and perpendicular (D+) 
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components of the diffusion tensor diagonalized in the director coordinate frame [56].  The total 

water mass balance and film thickness h(t) evolution are: 
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where c is the collagen density, L is the length of the film in the z direction and h(t) is the 

decreasing film thickness (in the vertical direction). The y-averaged flux 0| ( )z zj t  depends only 

on time t.  The dimensionless numbers appearing in the model are discussed in section 3.2 

3.5.2 Geometry and Initial and Boundary Conditions 

The 2D self-assembly model considered in this work corresponds to the y – z plane representing a 

cross section of the initially deposited dilute collagen film where the prior flow deposition is the 

x-direction. We consider an initial rectangle where N (M) half pitches are allowed in the z direction 

(y direction) and the ratio taking into account the geometric anisotropy is defined as K = M/N, 

which is assumed to be less than 1. Figure 3.2-b shows the initial geometry, where the green dots 

denote that the average collagen orientation of the initial para-nematic phase is in the x-direction.  

The initial condition considered in all simulations for Q is the para-nematic phase whose degree 

of alignment is found in the optimal region reported in [24]:  / 3PN

x xS Q δ δ I , where we use 

throughout 0.68PNS  . We also set the initial mesogen concentration in the isotropic region with 

U(z, y, t = 0) = 2 and its respective value for the mass transfer equation cw(z, y, t = 0) = co. We 

use no anchoring boundary conditions requiring a zero torque to be imposed in all boundaries, 

representing passive surfaces.  In order to maintain the contact area constant and the film shrinking 
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in the y direction only, we assume the solvent leaves the film through the boundaries whose unit 

vector points to the “z” direction and a no flux condition is imposed in the rest of the boundaries 

for the mass transfer based on the description given by [43] and the theoretical analysis in [44].  

The external mass transfer can be written in terms of a convective mass transfer coefficient through 

a boundary layer approach where the rate of removal is given by a concentration difference 

between the interfacial value and that of the airflow dragging the water from the interface. The 

summarized dimensionless initial and boundary conditions are given in eqn. (3.4 a-e): 

 

 

*

*

* * * * * * * *

* * * * * * * *

( , , 0) / 3 ; ( , , 0) 1

( 0, , ) ( 1, , )

( , 0, ) ( , 1, ) 0

PN PN PN

w

z z w

y y

z y t S c z y t

f

j z y t j z y t Sh c

j z y t j z y t

    


 
 

      

   

Q n n I

ν 0
Q                                                      (3.4 a-e) 

where  is the unit normal vector. Three dimensionless quantities appear: R,  and Sh which are   

denominated the energy ratio, the time scale ratio (translational and rotational) and the Sherwood 

number respectively. 

The three dimensionless numbers in these coupled processes are: 
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The energy ratio R provides a measure to compare the internal length-scale = (L1/ckBT)1/2 with 

the external length-scale po and is usually a large quantity of the order of 104 [24].  is the ratio of 

collagen rotational time scale to the water translational time scale.  As per its definition (eqn.3.5b)  

when  is too low water removal is relative slow and when  is too large water removal is fast 

relative to chirality formation. Finally the Sherwood number compares the external and internal 

resistances.  Using   Sh = Sh(Re,Sc) for laminar flow over a flat where Re ~ O(104) and Sc ~ O(102) 

we use: 

1/2 1/30.664
kL

Re SS
D

ch                                                                                                              (3.6) 

3.5.3 Methodology and Simulation Conditions 

The set of equations, corresponding to eqns. (3.1a, 3.2e, 3.3b) constrained to ICs and BCs given 

by eqns. (3.4 a-e), was solved numerically using the finite element method as implemented in the 

commercial software COMSOL Multiphysics. The discretization was carried out using quadratic 

Lagrange polynomials and with a maximum of element size of 0.01 dimensionless units. Backward 

differentiation formulation was used for time integration. Relative error was set to 10-4 and 

convergence, accuracy and stability was established using standard methods and criteria. The final 

time for the simulations varied depending on the particular value of  which is varied in the range 

of 103 to 105
 dimensionless units of time to meet the objectives of this chapter while we use R ≈ 

9000 and Sh ≈ 2000.  
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3.6 Results and Discussion 

 

Not surprisingly, when the dimensionless number  increases across certain critical values we find 

drastic changes in the resulting film morphology.  Using theory and extensive simulations for the 

collagen-representative parametric values quoted above, three different modes are identified:     

6 5( )  :10 10i Monodomain Polygonal Mode      

* 5 4( )   : 6 10 10    ii Monodomain Transition Mode  

* 5( )  : 6 10   iii Polydomain Mode  

We note that, as usual for nonlinear complex systems, unless one performs arc-length continuation 

and bifurcation studies to directly and exactly compute the stability threshold * , the transition 

value 
* 5 46 10 10     is necessarily given as a range. The lower value

* 56 10    is found 

from a theoretical calculation (eqn.3.9) and the upper value 
* 410  is corroborated by 

simulations for the time window specified in our simulations and spatial resolution of the adopted 

finite element mesh.  Below we show an exact theoretical calculation for the monodomain stability 

threshold that gives 
* 56.2 10    for / 15oL p  , and generalizes the results for other chiral 

polymeric mesogen.  The specific characteristics of the polygonal and polydomain modes are, as 

expected  strongly evident as one moves farther away from the transition, 
* * and       , 

respectively.     

Figure 3.3 shows a summary of the resulting film structures in terms of the long-time Qxx(y,z) 

visualizations. A vertically periodic layered phase denotes a perfect helix along the z-axis.  Low 
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values of   * 56 10    , ranging between [10-6, 10-5], lead to three regions in the 

computational domain where two horizontal (along z) homogeneous helices are found close to the 

edges of the film and an internal region characterized by the presence of a polygonal domain 

texture with a characteristic width dependent on the particular value of .  This type of composite 

microstructure (monodomain-cellular mode) is essentially like the ubiquitous columnar-equiaxed 

microstructures found in metal casting whose interior lacks directionality due to slow rate of heat 

removal [61]. Notably, slow heat removal rate in metal casting and slow water removal rate in 

lyotropic chiral mesophes give analogous structures; a key difference is that in the former heat is 

evolved at the front and in the latter water resides in the interior. An intermediate value with an 

order of magnitude of 
* 410    lead to a horizontal homogeneous helical axis throughout the 

entire computational domain (monodomain mode). Finally, large values above 10-3   lead to a 

polydomain texture in the cross section.  

 

Figure 3.3. Final resulting microstructure in terms of Qxx as a function of (y,z)  for  = 6x10-6 (a), 1x10-5 (b), 2x10-5 

(c),4x10-5 (d), 1x10-4 (e), and 1x10-3 (f). The ideal perfect homogeneous helical axis is obtained for ~ O(10-4).  
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Figure 3.4 (a-c) shows the evolution of Qxx for the monodomain mode for  = 1x10-4. The phase 

transition to the cholesteric phase is observed from the edge of the cross section and propagates to 

the central region of the film. The evolution is that of a 1D propagating front and the result is a 

perfect defect free helix along the z-direction. The figure also shows the change in the height of 

the initial slightly anisotropic rectangle representing the cross section. A detailed plot of the height 

h as a function of time for varying  is found in Appendix F in figure F1. Figure 3.4 (d-e) shows 

the nematic potential U profile evolution (proportional to the mesogen concentration profile). The 

rapid increase in the mesogen concentration at the edge of the film is due to the mass transfer 

boundary conditions with a large Sherwood number. This creates a concentration gradient and the 

water diffuses from the central region to the edge at a given rate determined by the particular value 

of .  

 

Figure 3.4. Qxx surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (t* = 100, 300, 5000) and 

the nematic potential U (d-e) for the same times for  = 1x10-4 showing a homogeneous helical axis forming from the 

edge toward the central region of the cross section. For this value of the time scale ratio, no defects form. 
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Figure 3.5 shows  the scalar order parameter S, the nematic potential U and the x-component of 

the director field |nx| profiles as a function of z for a constant value of y for three increasing times; 

Appendix F show complementary surface plots of the scalar order parameter S and the out-of-

plane director component nx in figure F2. It can be observed the scalar order parameter S, due to 

its fast dynamics, relaxes to zero in regions where the concentration has not increased and the 

nematic potential U is less than the threshold for the ordered phase to be stable, i.e. U < 3. A sharp 

S-front moves from the contact line edges ( 1 2 z ) towards the center (z = 0). On the other hand, 

the alignment given by the previous flow deposition step and captured by the initial conditions 

xn δ  is more persistent due to the slower dynamics of the director compared to that of S, this is 

reflected in the central region for early times where the orientation is still out of the plane and |nx| 

= 1. Once the mesogen concentration is sufficiently large for a phase transition to be observed (U 

> 2.7) where both states, the ordered and disordered are stable, the scalar order parameter increases 

in such regions where it relaxed and the director begins to exhibit the twisted configuration. The 

generation of a homogeneous helical axis requires the synchronization of the phase ordering rate 

(dS/dt) and the drying rate (dcw/dt).  More specifically the propagating helix is moving at the same 

rate as the location where the metastable state (U≈2.7) is found: 

( ) 






S

w

S S z V t

D
V

L
                    (3.7a,b) 

To obtain a monodomain the speed of the 1D traveling waves for S and water removal  rate must 

be equal: S wV V .  This is summarized in figure 3.5 (a-c) and (d-f) that show the nematic potential 

U and the scalar order parameter S along with |nx|, respectively.  
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Figure 3.5. S and U (a-c) fronts moving towards the central region until a homogeneous value is reached throughout 

the entire domain and U and nx fronts (d-f). Time scale ratio  = 1x10-4 . The increasing times are given according to 

figure 3.4.  

According to [7], the velocity VS of the 1D phase ordering front for U≈3 is  
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Using eqns. (3.7, 3.8) we find a scaling estimate of the critical time scale ratio: 

*

2
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0.05

6
    o

S w

r

pD
V V

D L R L
                                 (3.9) 

which reveals the nature of the stability threshold.  Equation (3.9) is a key quantitative finding of 

this work as it specifically fixes the exact values of geometry (L), properties (D, Dr) and structure 

(po) for defect-free films. For / 15oL p  , we find 
* 56.2 10   which is in the order magnitude 

of the computed value. 
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We proceed to describe the system with different mass transfer internal resistances, to evaluate the 

effect of varying the driving force intensity and to determine how sensitive the system is to changes 

in with respect to * ; Appendix F show additional supporting characterizations in terms of Qxx 

and U  for *  and *   in figures F3 and F4 respectively. Similarly to the previously 

analyzed monodomain transition mode  *( )O  , in the monodomain-polygonal mode ( 

*   ) the rapid depletion at the edges produces a rapid increase in the mesogen concentration 

and a helical axis propagates to the center. The decrease in  from its critical value * causes a 

slower water diffusion and consequently a slower increase in the mesogen concentration. The 

scalar order parameter and out of plane director curves similar to the ones presented in figure 3.5 

are presented in figure 3.6 (a-c) and (d-f) respectively. A similar behavior is exhibited by S, 

however the director presents a twist configuration which indicates the presence of a pre-

cholesteric state, defined as a phase presenting a helical orientation (n) configuration but low and 

apparently random order (S<<1). The increase in the mesogen concentration is not synchronized 

with the scalar order parameter front, hence, the random pre-cholesteric becomes the 2D blue phase 

[7] (cellular cholesteric phase in two spatial dimensions) that begins to form when both variables 

are out of phase for approximately half period of the helical structure. Depending on , the cellular 

patterns may distort into polygons.  Three regions are clearly separated where two homogeneous 

helical axes can be found close to the edge and the stabilized defect lattice structure (cellular 

pattern) is found close to the center where the latter is characterized for having singular and non-

singular topological defects at the vertices and at the center of the polygons respectively; see [7]. 

An amplification to this zone is presented in Appendix F in figure F5.   
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Figure 3.6. S and U (a-c) fronts moving towards the central region until a homogeneous value is reached throughout 

the entire domain and U and nx fronts (d-f) for  = 1x10-5. Increasing times are given as t* = 1000, 3000, 8000.  

We proceed to analyze the increase in leading to the polydomain structure. In this case 

after the fast depletion, the diffusion of the solvent occurs fast causing a rapid increase in the 

mesogen concentration exceeding the phase transition threshold and S increases everywhere in the 

cross section non-monotonically, contrasting to the 1D front propagation observed in the previous 

cases, this causes helices to be formed at any part of the computational domain as observed in 

figure 3.7 (a-f). Another remarkable difference for this particular case of *   is given in terms 

of the mass flux. In the previous cases, the flux is unidirectional for early times, as time increases 

the anisotropy is manifested and regions with non-zero Jy appear and Jz becomes y-dependent, 

however they appear to be negligible in terms of the mass transfer because by the time they 

manifest, the mesogen is close to its final and homogeneous concentration. The figures 

corresponding to these two cases are also presented in Appendix F, in figures F6 and F7. Both 

components of the flux, Jy and Jz, as shown in figure 3.8 for  = 10-3 i.e. for the present case of
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*  . These anomalies are manifested earlier due to the early onset of the multi-domain helical 

structure.  

 

Figure 3.7. S and U (a-c) fronts moving towards the central region until a homogeneous value is reached throughout 

the entire domain and U and nx fronts (d-f) for  = 1x10-3.  Increasing times are t* = 50, 200, 5000. 

 

Figure 3.8. Mass flux components profiles in the polydomain mode ; z-component (a-c) and y-component (d-f), 

showing anomalies and bidirectional arising with increasing times (t* = 50, 200, 1000).  
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As mentioned above, the time scale ratio  is a function of solvent (D), and mesogen (Dr) 

properties ,  and film geometry (L).  To generate defect-free films the material-process geometry 

should aim at obtaining a ratio of *  ~ O(10-4) .  Using equation 3.9 we find: 

* 2

 

 

3
0.05

6
   o

critical curver

operating line

D
L p L

D R
                                                                                                           (3.10) 

The critical curve is a parabola whose curvature depends on *  and the operating line has a slope 

that depends on the pitch po. Thus the intersection of the critical curve and the operating line 

provides a unique critical material/process condition that yield a defect free film. Figure 3.9 shows 

a plot (red curve) of D/6Dr as a function of L for a fixed value of  (eqn. 3.10 middle) and   D/6Dr 

as a function of L for a fixed value of p(equation 3.10 right, blue dotted line). 

For given material properties (D/6Dr) with a pitch  po in the order of tenths of micrometer as is the 

case for in vitro acidic collagen I, the ratio (D/6Dr)  will have one single crossing with a processing 

curve for the critical . This is shown in figure 3.9 where eqn. 3.10 is plotted for po = 10 m .  

Operating with shorter lengths L generates a polydomain texture, and operating with too long L  

the monodomain – polygonal texture.   
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Figure 3.9. Processing curve in terms of the combination of the system properties D/6Dr and the characteristic length-

scale L of the system in m for a material with po = 10 m (blue line) and constant  = * (red line). The green dot 

indicates the intercepting region where a monodomain forms.  

 

The coupling of the solvent diffusion with the mesogen ordering can be interpreted as a positive 

feedback loop shown in figure 3.10, where changes in the concentration, associated with the 

solvent diffusivity, produce increases in the scalar order parameter. The figure is inspired by other 

liquid instabilities associated to heat transfer [55]. This increase induces a torque which is 

correlated with the mesogen rotational diffusivity constant, and the minimization of energy leads 

to the formation of a helix. Depending on the actual stage of the drying, the presence of the helical 

axis can generate changes in other spatial directions, affecting the ordering in the system and 
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finally impacting in the helical axis. The modulating time-scales are the mass diffusion (L2/D) and 

the reciprocal rotational diffusion constant (1/Dr) and it was shown that any values of both time-

scales lead to a chiral nematic phase, however only by modulating appropriately as the results 

show lead to a defect-free material.  

 

Figure 3.10. Positive feedback loop showing the coupling of the two phenomena explored in this chapter. The drying 

begins with changes in the concentration (cc) that induces ordering in the system followed by its respective torque 

and helix formation (h).  The figure is inspired by other orientation-heat transfer couplings in nematic liquid crystals, 

see fig. B.III.59 in [55] 

 

3.7 Conclusions 

We presented a rigorous and fully coupled model that captures the main features in the solvent 

removal process of defect-free collagen solutions where the initial para-nematic phase, which is 

obtained in a previous flow deposition process, is converted to a cholesteric phase. The model’s 

main features are the integration of chiral phase ordering and anisotropic mass transfer in a time 

evolving film geometry of varying thickness but constant substrate contact area due to contact line 
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pinning.  As the integrated model couples conserved (mass) and non-conserved (Q-tensor) 

variables it leads to instabilities since growth by phase ordering and mass diffusion must be 

synchronized.  Three different final microstructure modes were found depending on the mass 

transfer resistances accounted in the ratio of collagen rotational diffusion time to water 

translational diffusion time . We estimated the critical time scale ratio value that leads to a 

homogeneous helical axis and showed that the synchronization of the forming helix with the 

increase in the mesogen concentration is crucial, in qualitative agreement with experiments [22, 

23]. A direct analogy with the well-known and ubiquitous columnar-equiaxed metallurgical 

casting structures is identified [61], where slow heat transfer rate in metal casting corresponds to 

slow drying rates in collagen plywoods. Finally, we provide a process diagram for the formation 

of a homogeneous helical axis in terms of the combination of D/6Dr as a function of the 

characteristic length-scale L (see eqn. 3.10).  The simulated biomimetic process for the formation 

of helicoidal plywoods, consisting in flow-processing dilute mesogenic solutions (collagen, 

cellulosics), followed by controlled drying can lead to defect free samples when properly fine 

tuning diffusional properties (D, Dr) , geometry (L), and chirality (po). 
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Chapter 4 

4 Structure Characterisation Method for Ideal and non-Ideal Twisted 

Plywoods 

4.1 Preface 

In this chapter, a description of the twisted plywood architecture present in both: man-made 

plywoods (as the film obtained in the Chapter 3) and in natural plywoods is obtained by means of 

a geometric model and implemented visualization tools. 2D incisions of the 3D architecture 

produce periodic arced patterns. The curvature of the arcs is introduced and used to propose a 

characterization methodology that efficiently removes the inherent solution multiplicities. This 

chapter is reproduced from a published paper titled: “Structure Characterisation Method for Ideal 

and non-Ideal Twisted Plywoods” co-authored by Prof. Alejandro D. Rey; Soft Matter, 2014, 10, 

9446. 

4.2 Summary 

The twisted plywood architecture, known as the Bouligand structure, is a ubiquitous biological 

and synthetic fibrous composite structure, analogous to that of cholesteric liquid crystals. Twisted 

plywoods can show ideal or non-ideal structures and are formed via equilibrium or non-

equilibrium liquid crystal self-assembly processes. A key to the structure characterisation of 

plywood films is the specification of the local and global helix vector h(x) and pitch p(x) of the 

cholesteric order. Previous extensive work demonstrated that oblique cuts of the plywood give rise 

to arc-patterns that depend both on the unknown incision angle  and the unknown pitch p(x), thus 

making the precise 3D cholesteric reconstruction ambiguous. In this chapter we present an efficient 
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method based on geometric modelling and new visualization software that determines 

unambiguously the cholesteric pitch under spatially homogeneous and heterogeneous conditions. 

The method is applied to films that display two-pitch and spatially non-homogenous structures, as 

sometimes observed under equilibrium and non-equilibrium self-assembly. The method can be 

extended to other biological materials such as cornea-like, cylindrical, and various cuticle 

plywoods. 

4.3 Introduction 

Nature's ability of assembly of complex multiscale architectures with optimized structural and 

functional properties provides a source of inspiration for creating and designing new materials. [1–

6]. The ubiquitous material multiscale organization is obtained using different precursor building 

blocks such as collagen (vertebrates), chitin (molluscs and insects), and cellulose (plants). 

Common precursors' features in many biological materials are the fibrillar shape and rigidity, 

which turn out to be essential ingredients for mesophase stability and liquid crystal self-assembly. 

In addition to fibrillar rigidity, chemical, geometric and electrostatic chirality is a common source 

of macroscopic chirality as observed in many self-assembled biological materials [5]. Collagen 

extracted from living tissue can self-assemble into complex architectures in vitro without the 

intervention of any tissue-specific cells [4] establishing deep correspondence between biological 

materials and liquid crystals. 

Biological liquid crystals are generally classified into: (i) solid analogues (plant cell walls, bones, 

fish scales, cornea) (ii) in vitro biomacromolecular solutions (collagen, DNA), and (iii) in vivo 

(silk proteins, membranes) [5, 7]. The interaction between liquid crystal physics and biological 

mesophases is now generating a better understanding of biological self-assembly and biomimetic 
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principles. In this chapter we focus on the use of in vitro precursors for producing solid chiral 

liquid crystal analogues, also referred to as biological plywoods. Two types of biological plywoods 

can be distinguished according to the assembly process. Equilibrium self-assembled plywoods are 

formed by directed chiral front propagation, where the helix propagates from a supporting layer 

into the isotropic phase, leaving behind a defect-free cholesteric which can then be cross-linked 

[8, 9]. Non-equilibrium self-assembled plywoods on the other hand, require a sequence and 

synchronization of several transport processes to create the plywood. Some stages include fluid 

flow deposition and subsequent solvent evaporation to induce the liquid crystal phase transition to 

become a solid analogue [10, 11]. Numerous observations indicate that in both cases the resulting 

plywoods can display ideal or non-ideal architectures. In the former the helical configuration is 

spatially homogeneous with a constant pitch and fixed helix axis throughout the entire domain, 

while non-ideal plywoods display variable pitch and/or helix axis. The equilibrium plywood self-

assembly process has been extensively studied [8, 9, 12–14] and the non-equilibrium process 

remains unexplored from the theoretical point of view [15], given the complexity of cholesteric 

interfaces and nematodynamics [16]. One research driver for the non-equilibrium self-assembly 

process is the relatively shorter time required for the synthesis of plywoods for biomedical and 

biotechnological applications. The characterization methodology developed in this chapter can be 

used for equilibrium and non-equilibrium processes. The objective of the work presented in this 

chapter is to generalize the twisted plywood architecture models first formulated by Bouligand [6, 

21] and Giraud – Guille and co-workers [17–20, 28–31] and to develop a tool for the 3D 

reconstruction of ideal and non-ideal plywood architectures from typical experimental 2D cross-

sectional micrographs.  
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Figure 4.1. Schematic of the twisted plywood architecture, corresponding to a chiral nematic N* phase, 

rectangular coordinates (x,y,z).  The average molecular orientation or fibrillar units are denoted by the director 

n(z). The helix axis h=z is normal to the parallel planes, whose distance is half the pitch po. A 2D cross-

sectional cut of the 3D plywood results in arced patterns whose periodicity is L. 

 

The organization of this chapter is as follows. The twisted plywood architecture model is first 

briefly reviewed and then the previously presented method of 3D cholesteric reconstruction from 

2D arc-patterns is extended by introducing the intrinsic geometry and curvature of the arcs. 

Applications of the extended method that highlights the critical resolving power of curvature are 

presented. Finally, materials with pitch heterogeneities and multiple pitches as observed 

experimentally [22, 23] are analysed to demonstrate the practical utility of the method. Spatial 

variations of the helix axis h (see Fig. 4.1) are beyond the scope of this chapter and are left for 

future work. 
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4.3.1 Twisted plywood architecture and structure determination 

The plywood model for biological tissues was described by Bouligand [21]. One of the first 

observations was made in oblique sections of the organic matrix of crab cuticle in which arced 

structures were observed throughout the entire sample. These arcs were visible under the light 

microscope but better resolved by classic TEM [4] and it was later observed that it was not 

exclusive of chitin, but was also observed in plant cell walls and even in the collagenous matrix of 

hard bone tissue. This gave rise to the twisted plywood architecture model which idealizes the 

arrangement of the molecules or fibrillar units in a series of planes in which the fibrils are more or 

less parallel to one another and whose average orientation (director n) rotates in going from plane 

to plane, corresponding to the chiral nematic N* (cholesteric) phase. The cholesteric helix is 

defined by the pitch or distance for 2 rotations (po), the helix orientation axis h, and the sense of 

rotation (left/right), as shown in Fig. 4.1. The observed arced patterns, [5, 21] shown in the right 

panel of Fig. 4.1, are a 2D periodic structure of wave-length L, visible when the cutting angle ‘’ 

is between 0º and 90º and each arc corresponds to a 180º rotation in several nematic planes that 

make up the entire structure. However when 180º <  < 360º, the arcs reverse to their mirror image, 

which is why the manifestation of these arcs could be thought as the “fingerprint” of 

supramolecular chiral structure. Other patterns were identified in bone osteons [17] due to the 

specific arrangements of collagen fibrils such as the orthogonal plywood architecture and the 

cylindrical plywood architecture which can be twisted or orthogonal. The resulting arrangement 

of at least in vitro collagen is a highly pH-dependent process; [24, 25] pH ≈ 2.5 leads to the twisted 

plywood architecture but an increase to 3.5 results in the orthogonal plywood [24]. Later 

goniometric studies showed that these arcs changed their periodicity L and when observed at a 

particular angle these arcs seemed to disappear [22]. This apparent loss of periodicity is an optical 
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effect that was first observed experimentally [20], highlighting the crucial fact that the 2D 

periodicity “L” of the arced patterns is a function of the unknown pitch and unknown incision 

angle : L = L (, po), revealing the difficulty in reconstructing the 3D fibrillar chiral organisation 

from 2D observations. 

Structural anomalies can be present due to variations in the relative angle of the fibrils [22]. Some 

characteristic examples presented in Fig. 4.2 have been identified in nature [17, 22]: (a) ideal 

architecture (p = po = const) with a constant periodicity, (b) non-uniform pitch (po = po(z)) and (c) 

bimodal (two-pitch: p1 and p2) twisted plywood patterns; examples of (a) and (c) are shown in Fig. 

4.3. In the two latter examples L is not constant since L(z) = L(, p(z)) and Li = Li(,pi); {i = 1,2}, 

respectively. It is worth noting that in the case of the two-pitch plywood, the large arc represents 

only 180º rotation while with the smaller arcs a full rotation of the microfibrils is observed. In non-

equilibrium self-assembly processes such as the solution casting of collagen films [10, 11, 15], 

these non-idealities (i.e. p(z),pi; {i = 1,2}) will arise from non-homogenous flow-kinematics and/or 

from uneven solvent evaporation [10, 15] or even other process conditions such as pH [24, 25], 

however the mechanisms remain poorly understood. As revealed by Fig. 4.1 and 4.2 and the fact 

that the 2D periodicity contains complex information (for example, L(z) = L(,p(z)) and Li = 

Li(,pi); {i = 1,2}), the reconstruction of the 3D plywood organization from 2D micrographs is not 

a trivial task for either ideal or non-ideal plywoods, and as shown below it requires closer 

examination of the arcs themselves. 
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Figure 4.2. Schematic showing a constant periodicity in the microfibril mutual angles (a), non-homogeneous mutual 

angle leading to a variable periodicity in the arcs (b) and a bimodal pattern that results in a two-pitch plywood (c). 

Adapted from [22] 

 

Figure 4.3. Arced pattern for a bimodal (two-pitch ) plywood , and (b) arced pattern for ideal single pitch plywood 

[6]. Copyright permission (3434860436593) from Springer. 
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4.4 Geometric Model 

4.4.1 Ideal plywood model 

The geometric model used to describe the twisted plywood is similar to that reported by Bouligand 

[21, 26], in which a coordinate system is chosen such that the fibrils are parallel to a unit vector n 

that rotates about the perpendicular coordinate ‘z’ along the helix vector h, as shown in Fig. 4.4. 

This director field n that describes a cholesteric phase is parameterized by the twist angle (z): 

0

2 z
( , , ) (cos ,sin ,0);x y zn n n

p


    n

                                                                              (4.1 a,b) 

in eqn. (4.1) the pitch “po” is of the order of 10 m. As per eqn. (4.1b), for ideal plywoods there is 

a linear relationship between the spatial coordinate ‘z’ and the twist angle ‘’. Taking an oblique 

cut at an angle , shown in Fig. 4.4, defines the incision plane (x–s), where s is the in-plane spatial 

coordinate whose orientation depends on a. The projection of n(z) to the (s–x) plane is the planar 

vector field u(, s): 
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Figure 4.4. Helix-fixed rectangular coordinates (x,y,z) , chiral and periodic cholesteric structure, and incision plane 

(x-s) with an angle . The short lines segments normal to the z axis represent the helical rotation of the 

macromolecules or fibrils about the helix z-axis. 

The streamlines x = x(s) of u(,s) are the experimentally observed 2D arced patterns given by the 

solution of: 
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                                                                                                              (4.3) 

Using the boundary condition x(0) = xo, the space curve x(s,{,po}), given first by Bouligand, is: 

    0
0 0 0
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, , , ln sin 2 sin
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p s
x s x p x

p
  
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 
                                                          (4.4) 

where xo is a constant that defines the location of each arc in the x–s plane, and eqn. (4.4) describes 

the trajectories followed by the arced patterns structure and is a periodic function as anticipated; 

to obtain the 1D periodicity we equate the argument of the logarithmic term to zero and solve for 
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the variable s. From the first non-trivial solution to the resulting equation, a linear relationship 

between the periodicity of the structure L and the pitch po can be extracted: 

 

0

2sin

p
L




                                                                                                                                   (4.5) 

We emphasize that L depends on the pitch po and the incision angle . This relationship of L and 

po can be used for characterisation purposes restricted to knowing po or . To remove this degree 

of freedom or uncertainty, since neither the pitch nor the incision angle is known a priori, we use 

the curvature (s, , L) of the arced patterns: 
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                                                                       (4.6-a) 

It is worth noting that the maximum curvature depends only on the incision angle: 

max

1

cos



                                                                                                                           (4.6-b) 

Thus, the proposed extended Bouligand model [21, 26] for ideal plywoods is:  
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                                                                                           (4.7) 

The arced patterns given by eqn. (4.4) depend on three parameters: x = x(s,{xo, , po}). The two 

important limiting cases not resolved by the analytical model are:  = 0, /2. In the former case 

no arced patterns emerge because the cut is taken exactly in any of the x–y planes of the cholesteric 
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structure, and apparently what would be observed is one of the nematic planes of the whole 

structure, i.e. an infinite arc represents a straight line parallel to the orientation of the fibrils at any 

of these nematic planes. In the latter case no arced patterns can be identified, however the typical 

cholesteric representation is observed and the periodicity of the structure is L = po/2. To overcome 

these analytical restrictions and to obtain quick 2D patterns and hence 3D reconstructions for any 

cutting angle , we developed computational visualization software (see the Appendix G on 

implementation of the MayaVi visualization software). 

4.4.2 Non-ideal plywood model 

For non-uniform pitch (L(x) = L(, p(z))) or multiple pitch structures (Li = Li(, pi); {i = 1,2}), an 

extended methodology must be applied. Instead of considering a linear relationship between the 

‘z’ coordinate and the twist angle ‘’ (see eqn. (4.1b)), the following twist angles are introduced 

for the two-pitch and non-uniform plywoods, respectively: 

 

 

 

0 0
0

0 0

0
0

0

2 4
( )

2 2

32
...

2

p pz z
H z H z H z H z p

p p

pz
H z p H z

p

 
 




       
               

       

    
        

   

                                          (4.8) 

0 0 0

0 0

0 0

0

32 4
( )

2 2 4

3 78
4 ...

4 8

p p pz z
H z H z H z H z

p p

p pz
H z H z

p

 
 




         
                 

         

      
          

     

                                          (4.9) 

where H(z) is the Heaviside step function. In both expressions the slope is periodic with regular 

domain lengths of po/2 for the two-pitch plywood and irregular domains decreasing periodically 
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for the latter. By modifying eqn. (4.1) with eqn. (4.8) and (4.9) the following general equation is 

to be solved for each particular non-ideal case: 
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where f[H(z, )] corresponds to eqn. (4.8) and (4.9) in terms of ‘s’ and ‘’. The corresponding 

curvature  is: 
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For a given incision angle a the 2D periodicity L is not a constant throughout the entire structure 

because po = po(z); such expression is particular to each non-ideal plywood and can be periodic as 

in the case of the two-pitch plywood, and can be monotonous as in the case of the non-

homogeneous pitch plywood. To have a modelling closure for these plywoods, the spatial 

variations of the periodicity can be obtained experimentally. This leads to a generalized scheme 

for non-ideal plywoods in terms of space curve (x(s)), curvature () and 2D periodicity (L): 
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4.5 Results and discussion 

4.5.1 Ideal constant pitch plywoods 

Fig. 4.5 (a – b) shows two nematic planes corresponding to  = 0º and Fig. 4.5(c) shows the typical 

cholesteric structure corresponding to  = 90º, obtained using the computational visualization 

software. When  is close to zero, wide arcs start to appear, which narrow as the angle increases 

and approaches 90º. For a given a, the arcs widen as the pitch increases. This leads to the possibility 

of having two different 3D cholesteric structures with the same 2D periodic structure, which could 

lead to a wrong characterisation. This uncertainty is demonstrated in Fig. 4.6. Fig. 4.6 (a, c and d) 

show the effect on the periodicity L as  increases with a constant pitch and Fig. 4.6 (a – b) when 

the pitch increases at constant . Hence it is indeed possible to find: 

 1 2 0,1 1 0,2 2/ sin / sinL L p p                                                                                       (4.13) 

 

Figure 4.5. Computational visualisations of a twisted plywood architecture with no arc-patterns, for = 0o (a,b) and 

= 90o (c). For more details see Appendix G. 
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Figure 4.6. Arc patterns of ideal plywoods for increasing incision angle at constant pitch (a, c, and d) and arc patterns 

for increasing pitch at constant incision angle (b, c). 

 

Fig. 4.7 shows the 2D periodicity L as a function of the pitch po for several ’s, calculated from 

eqn. (4.5). Increasing po has a stronger effect at smaller ’s; a horizontal L-constant line proves 

eqn. (4.13). Another notable case arises when two different incision planes are taken from the same 

plywood; the first cut being at an angle  < 90º and the second at the supplementary angle  –  

This is shown in Fig. 4.8 where the arcs have the same periodicity L, however the direction of the 
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arcs are reversed. This orientation behaviour had already been observed experimentally where 

goniometric observations were carried out on fixed samples (constant incision angle) but when 

tilting the sample in the goniometric stage the arcs cancelled out at a particular angle and the 

inverse arcs were obtained by further increase in the tilting angle [22]. In Fig. 4.8 the incision angle 

is not constant and the image reversal is observed because of the cutting angle's complementarity. 

 

Figure 4.7. Arc periodicity L as a function of the pitch (po)  for several incision angles () for ideal plywoods. The 

increase of L with po increases with . 
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Figure 4.8. Arc patterns of a single ideal plywood obtained from (a)  = 10o and (b)  = 170o. The arcs are mirror 

images because the cutting angle complementarity. 

 

4.5.2 Non-ideal plywoods 

(a) Two-pitch plywood (eqn. (4.8–10 and 4.12)). Fig. 4.9 and 4.10 show the twist angle (z) profile 

and arced patterns s(x), for a two-pitch plywood. The twist angle (z) is constant in each domain 

of length po, but it oscillates from domain to domain. The smaller (larger) slope corresponds to 

wider (narrower) arcs. This result replicates Fig. 4.3(a). 
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Figure 4.9. Twist angle as a function of the spatial coordinate z for a bimodal (two-pitch) plywood. The slope 

oscillates from domain to domain. The domain length is constant. 

 

Figure 4.10. Arced patterns for the two-pitch plywood, corresponding to Fig.4.9. The results replicate those of 

Fig.4.3a. 
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(b) Non-homogeneous plywood (eqns. (4.9, 4.10 and 4.12)). Fig. 4.11 and 4.12 show the twist 

angle (z) profile and arced patterns s(x) for a non-homogeneous plywood. The twist angle has a 

constant slope in each domain but it increases from domain to domain. In addition, the domain 

length also decreases. The corresponding arced pattern periodicity L decreases with “s”.  

 

Figure 4.11. Twist angle as a function  of the spatial coordinate z for a representative non-uniform pitch. The slope 

increases from domain to domain. The domain length decreases with z. 



124 

 

 

Figure 4.12. Arced patterns s(x) corresponding to a twist angle given in figure 4.11. 

 

4.5.3 3D Structure reconstruction procedure 

In order to rebuild the true cholesteric 3D structure by simply using 2D images from experimental 

micrographs, the curvature (s, , L) of the arcs is introduced as per eqn. (4.6-a). The 3D 

reconstruction procedure consists of: 

(a) Fit of the experimental curvature k with the eqn. (4.6-a) and obtain ; 

(b) Measure the experimental 2D periodicity L; 

(c) Solve eqn. (4.5) to find the pitch po. 
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Next, we show a representative example to demonstrate the reconstruction capacity of the 

proposed new procedure (eqn. (4.4)–(4.7)) using two plywoods with pitches differing by an order 

of magnitude (po,1 = 10po,2) but showing the same 2D periodicity (L1 = L2). Fig. 4.13 shows one 

arc for po,1 = 1.0,  = 30º and another for po,2 = 0.1,  = 3º. The arcs are nearly indistinguishable, 

and correspond to drastically different plywoods, but are made to appear identical by the 

experimental sectioning. These two plywoods are properly identified when plotting the curvature 

(s) computed from eqn. (4.6) as it is shown in Fig. 4.14. The maximum curvature difference is 

about 15%. It is clear that if the curvature of the arcs is ignored, incorrect predictions can be 

extracted from the model. This proposed analytical-computational procedure shows significant 

advantages over the classical pitch determinations which rely on optical measurements that are 

sometimes restricted to certain pitch ranges [27]. The procedure is applicable to both: equilibrium 

and non-equilibrium self-assembly plywood formation processes. For plywoods presenting 

anomalies, as shown with eqn. (4.10)–(4.12), we proceed with the local determination of Li, as it 

varies as shown in Fig. (G.5) (see Appendix G); in these cases a is available through any of the 

visible arcs (eqn. (4.6a) and (b)) and the pitch can be calculated in a piecewise manner in each arc, 

similar to the ideal case and by appending all the calculated pitches it is possible to know its spatial 

variations; hence, the gradients of the pitch can be identified by constructing plot like Fig. 4.9 and 

4.11, leading to a fuller characterization of the morphology of the twisted plywood. 
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Figure 4.13. Comparison between two arcs with the same periodicity and a pitch difference of one order of magnitude. 

 

Figure 4.14. Curvature  as a function of spatial coordinate “s” for the two plywoods shown in Fig. 4.13, with different 

pitch po and with the same periodicity L.  The maximum curvature difference between the two cases is about 15%  

and easily differentiates the two plywoods 
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4.6 Conclusions 

The twisted plywood architecture model originally developed by Bouligand [21, 26] was revisited 

and extended to describe ideal and non-ideal structures arising from pitch gradients and multiple 

pitches. A characterisation tool based on analytical results (eqn (4.3)–(4.12) and computational 

visualization software (see Appendix G) is proposed to reconstruct the 3D cholesteric structure of 

various plywoods from 2D arc-patterns obtained from experimental oblique cuts, which is an 

alternative procedure to optical measurements of the pitch which may be restricted to certain values 

of po. A unique and novel feature of our extension is the introduction of curvature and the 

maximum value of  (eqn. (4.6a) and (b)) in the observed arcs to eliminate the seldom recognized 

degree of freedom that exists, since the arc's periodicity depends on both the incision angle and 

the pitch (eqn. (4.5)). 

This characterisation tool can be used in ideal and non-ideal plywoods (Fig. 4.6, 4.10 and 4.12) by 

taking into account commonly observed pitch variations in a systematic way (eqn. (4.8) and (4.9)). 

Since there is a wide variety in helical arrangements found experimentally (Fig. 4.3), these 

effective 3D reconstruction computation and visualization tools can be easily extended and applied 

to any experimental observation of such biological plywoods including the orthogonal cornea-like 

plywood, the cylindrical plywood configuration, and those found in various cuticles. 
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Chapter 5 

5 Chiral Graded Structures in Biological Plywoods and in the Beetle's 

Cuticle 

5.1 Preface 

Following the geometric model presented in the previous chapter devoted to 3D structure 

reconstruction from periodic patterns from 2D sections, further analysis is provided to reveal and 

overcome the inherent ill-conditioning for certain incision angles. The proposed methodology 

from the previous chapter is applied with the aid of in silico cross sections to predict the pitch 

profile. This chapter is reproduced from a published paper titled: “Chiral Graded Structures in 

Biological Plywoods and in the Beetle’s Cuticle” co-authored with Prof. Alejandro D. Rey, 

Colloids Interface Sci. Commun., 2014, 3, 18.  

5.2 Summary  

Biological chiral fibrous composites, known as biological plywoods, found throughout Nature 

including the exoskeletons of insects and plant cell walls have optimized structural and functional 

properties, such as the iridescent colors observed beetle cuticles. In many cases the micron-range 

chirality of the fibrous ordering is usually spatially graded, multi-periodic or layered as opposed 

to uniform. The challenge to discover structure-property relations in biological plywoods relies on 

the accuracy of determining the usually space-dependent chiral pitch of the plywoods.  Here we 

use a recently developed geometric model and computational visualization tool to determine the 

complex spatial gradients present in beetle cuticle which is a canonical example of graded 

biological plywoods, extensively studied using optical methods.  The proposed computational 
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structural characterization procedure offers a complementary tool to optical and other experimental 

measurements.  The new procedure has wide application in biological materials characterization 

and in biomimetic engineering of structural and functional materials. 

5.3 Introduction 

Biological materials are distinguished by hierarchical structures, multi-functionality and self-

assembly, which are attributes of liquid crystals and unsurprisingly mesophase organization is then 

found throughout nature with building blocks like collagen, and chitin [1-4].  Biological Plywoods 

(BPs) are recognized as solid liquid crystals analogues formed through an efficient entropy-driven 

self-assembly process [1, 4-6]. Bouligand was the first who successfully described these materials 

with the Twisted Plywood Architecture model (TPA) [7] in which fibrils are arranged as in a chiral 

nematic liquid crystal, presenting an average orientation of fibrils that change orthogonally to the 

fibril orientation; the micron-range distance required for a full (2) rotation is known as the pitch 

po, whose sign (+ or -) represents the handedness of the helical axis (h); see figure 5.1.  TPAs 

include: i) ideal plywoods with constant pitch ( 0p const  ) and helix axis, and ii) non-ideal TPAs 

with pitch gradients ( 0 ( )p z  ).  Non-idealities are due to specific cellular processes [7] and a 

response to external stimuli such as the pH dependence of the self-assembly process observed in 

collagen [8, 9] with structures that range from ideal TPA to orthogonal plywoods, with abrupt 

changes of 90o in the fibril orientation on adjacent planes [10].  Other ubiquitous non-idealities 

such as defects and gradients in both h and po arise during the plywood self-assembly in the 

presence of secondary phases [11] which result in poly-domain helicoids [12, 13].  

 



132 

 

 

 

 

 

 

 

 

Figure 5.1. (a-b) Schematics of the ideal biological plywoods. Oblique sections (b) give rise to the characteristic arced 

patterns. (c) Normal view schematic of the helical axis, defined by the helix orientation h and the pitch po. 

  

In this chapter we focus on non-idealities arising from spatial pitch variations ( 0 ( ) / 0dp z dz   ) in 

beetle cuticles (‘aurigans scarab’) [14], where the chiral arrangement results in color iridescence 

[15] and possible thermal regulation [16]; color iridescence due to surface wrinkling is discussed 

elsewhere [17, 18]. This cuticle can be classified as a graded plywood with pitch gradients in h 

direction.  For ideal BPs, oblique incisions lead to the ubiquitous arced patterns with identical arcs 

throughout the incision plane as a result of the homogeneity in both h and po observed by 

Bouligand in crab cuticles [7], whereas for non-ideal plywoods arcs with varying periodicity can 

be observed in the incision plane due to the pitch variation. The reconstruction of the 3D structure 

out of 2D observations is a classical inverse problem, and the well-known challenges are due to 

unavoidable ill-conditioning (small changes in input lead to large changes in output) and solution 

multiplicity in structure reconstruction. 

A method for characterising ideal plywoods that essentially overcomes these challenges has been 

reported recently [19] for ideal plywoods using geometric modelling and computational tools, 

which is extended here to a representative graded plywood of the ‘aurigans scarab’ cuticle. These 

h 

c 
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new tools do not rely on optics as the Cano-Grandjean defect disclination line method or the Bragg 

reflection, methods that are known to be limited by its range of applicability and/or its accuracy 

[20, 21], hence the geometric modelling and computational procedure can complement 

experimental techniques, leading to a more robust characterisation of the ubiquitous chiral 

structure. 

5.4 Objective and Methodology 

The objective of this chapter is to describe a methodology capable of reconstructing the 3D 

structure of a graded plywood (po(z)) of  ‘aurigans scarab’ as a canonical example of a complex 

biological plywood. In this chapter the experimentally determined non-monotonic spatial pitch 

variations in the beetle cuticle [14] is used to construct arbitrary in silico arced patterns, since no 

experimental arced patterns are accessible, and then each of these sections are used to perform 3D 

chiral reconstructions.  When slicing a plywood at an arbitrary incision angle (), we obtain a 2D 

layered arced patterns of period L, and each arc is characterized by a maximum curvature max. We 

introduce a novel geometry-chirality phase diagram and demonstrate that in this diagram a set of 

(L, max) values found experimentally leads to one and only one value of the pitch regardless the 

incision angle .  The key aspect of our method is that when the 2D patterns are space dependent 

(L(z), max(z)), the predicted chirality from our model are also space dependent, po(z).   Finally we 

prove that the accuracy of the 3D reconstruction methodology decreases with . 

5.5 Results and Discussion 

The analytical description of biological plywoods are obtained through the geometric modelling 

previously published [19] is summarized as follows: the trajectories of the arced patterns are a 
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function of  and po (implicitly a function of the periodicity of the arcs “L”), leading to a system 

with one degree of freedom with multiple solutions. To eliminate this degree of freedom, the 

curvature  of the arcs, which is a function of  and L, is introduced. By measuring the curvature 

of the experimentally observed arcs and fitting the analytical expression one can obtain the incision 

angle  and finally the pitch po with a straightforward calculation. The equations for the arced 

patterns and the curvature within each layer are [19]: 
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For graded plywoods as the beetle’s plywood, the maximum curvature on a given layer is: 
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Combining the maximum curvature max  and the 2D periodicity of the arcs L, lead to the following 

equation that represents the phase diagram in terms of L and max:  
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Eqn. (5.4) is a family of hyperbolas for different values of po, shown in Figure 5.2.  The negative 

values for curvature indicates a shift in the handedness of the helical axis.  Considering one of the 

hyperbolas for constant pitch, there are an infinite number of combinations of periodicity and 
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inverse of curvature leading to that precise value of pitch. However, there is one and only one 

value of the pitch that intercepts both axis of the phase plane for a particular value of  as 

established in eqns. (5.3, 5.4). The phase diagram (fig 5.2) shows several hyperbolas for different 

values of po, and the straight lines from equation (5.3) show that for a given  there is only one 

combination of curvature max and 2D periodicity L intercepting these lines.  The two limiting lines 

correspond to  = 0o and  = 90o, corresponding to cuts normal and parallel to the helix. We note 

that as the helix vector h is usually unknown a priori, finding  through eqn. (5.3) is a crucial step. 

Small  angles lead to ill-conditioning as the hyperbolas essentially asymptotes the lines. The 

practical implementation to determine po(z) using the phase diagram (2) is as follows: (1) perform 

the experimental sectioning of the BP, (2) determine (L, max) in a given  layer of the 2D arc 

patterns, (3) use (L, max)  to determine from the phase diagram (2)  po(z) and forthe given 

layer, (4) repeat procedure for all layers, and (5) finally obtain po(z) spatial profile. This procedure 

is schematically depicted in figure 5.3. The stars shown in such figure indicate only one 

interception of L, max per each  leading to only one value of po.   
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Figure 5.2. Chirality phase diagram in terms of L and arc's reciprocal maximum curvature  max for several values of 

pitch .   The hyperbolas are from eqn.(5.4) and the lines from (5.3).  Performing a section of a real plywoods yield L, 

max and the plot gives po, and . 

 

Figure 5.3.  Schematic of the characterization procedure to find  an arbitrary pitch profile po (z):  (1) perform the 

experimental sectioning of the BP ( is unknown), (2) determine (L, max) in a given  layer of the 2D arc patterns, 

(3) use (L, max)  to determine from the phase diagram (Fig.5.2)  po(z) and forthe given layer ( star symbols), (4) 

repeat procedure for all layers, and (5) finally obtain po(z) spatial profile (star symbols) .  The scarab photo is 

adapted from [14] 
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As mentioned, the arced patterns for the beetle cuticle were created using the 3D visualization tool 

Mayavi, by first introducing the cholesteric director field and then creating an incision plane with 

the VectorCutPlane module, and using the experimental information of  Libby et al [14] for 

aurigans scarab, showing the spatial variation of the pitch presented in Figure H.2-H.3 (see 

Appendix H); we emphasize that although we use the experimental pitch as an input to create the 

arcs only due to the lack of experimental 2D observations. In reality the procedure would start with 

the slicing of the biological sample giving the experimental arced patterns. It can be seen (Fig. 

H.1) that the non-monotonic pitch is initially close to 0.48 m with a quick increase up to 0.52 m, 

followed by a further decrease, then going into a region of essentially constant pitch 

(approximately 0.37 m),   and finally showing a smooth increase. Characteristic visualizations of 

sectioning (1 = 15o and 2 = 25o) this synthetic aurigans scarab plywood and resulting graded 

arc patterns are shown in Figure 5.4 (a – b for 1 and c – d for 2). Technical visualization details 

for plywoods are can be consulted in Appendix G and H, and for general information about Mayavi 

the reader is referred [22]. It is observed that initially small arcs appear followed by larger arcs, as 

expected with pitch variations, regardless the incision angle.  The key impact of the incision angle 

 is the resulting arc periodicity L and the total number of arcs observed, since at a smaller  the 

incision plane corresponds to a smaller region of the variation of the pitch in the perpendicular 

coordinate, and hence less information is observed if the size of the sample is kept constant. Three 

different incision angles were chosen (1 = 15o, 2 = 25o and 2 = 40o) to demonstrate the 

characterisation procedure is accurate regardless the incision angle as shown in figure (5.4) with a 

sample size constant of 15 m.  To do this, regions in both incision planes were chosen arbitrarily, 

these arcs were then isolated and the periodicity and maximum curvature were measured, finally 

the pitch predictions were obtained.  The results in Figure (5.5) show good agreement with the 
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experimental observations, with a low error (under 10%); we note that information regarding the 

experimental errors in [14] is not accessible. The accuracy in the determination of the curvature 

has to be high because the calculation of the incision angle is highly sensitive to changes of both 

L and max. Additionally, it is observed that the lowest angle incision plane (15o) is capable of 

reconstructing the pitch only up to about 4 m in the perpendicular direction while the incision at 

25o can predict the pitch variations up to about 8 m in such direction and that of 40o up to 12 m. 

Hence, the higher the angle the more information can be extracted from the incision plane.  It is 

also worth noting that in the pitch predictions shown in figure (5.5), the error is higher in the 15o 

predictions because of the ill-conditioning as stated concerning eqn. (5.2-b); the relationship 

between L and po is highly sensitive to small changes when  is small also observed in the phase 

diagram (fig. 5.2) with the hyperbolas converging to the asymptote for small .  From an 

experimental point of view, low angles should be avoided because of two reasons: i) the restriction 

of the sample size, if the sample is small, little information can be extracted from those 

observations, and ii) the error in the pitch tends to be larger in these cases because of the nature of 

the model, as noted previously. Hence, when taking a sample if one finds a low value of  it is 

advised to take another incision at a higher angle in order to improve accuracy and to extract more 

information out of this 2D observation.  
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Figure 4. Two in-silico arc patterns, created incision planes (a-b) 25o and (c-d) 15o for the plywood of “aurigans 

scarab”.  The arrowed frames show enlarged 2D arcs for clarity.  When po(z) , the 2D periodicity L varies.  Smaller 

specimen regions can be reconstructed in the case of the lower angle.  Larger scale images are provided in Appendix 

H for clarity. 
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Figure 5.  Chirality reconstruction of aurigans scarab from three different incision planes and comparison with 

experimental data extracted from [14]. Smaller angles cover shorter "z" distances for a given sample size.   

 

5.6 Conclusions 

 

In conclusion, we formulated a structural material characterization procedure for biological 

plywoods that exhibit non-trivial spatial gradients, using geometric modelling and computational 

visualization. Determining spatial periodicities and curvatures of 2D arc patterns in conjunction 

with a theoretically formulated plywood phase diagram yields the sought after cholesteric pitch.  

The sensitivity of the method to sample sectioning was established and larger sectioning angles 



141 

 

are preferred. We demonstrated the applicability of the 3D chiral reconstruction method for graded 

plywoods using experimental data for the “aurigans scarab”. The proposed computational method 

complements optical characterization tools that must overcome the difficult challenge of chirality 

reconstruction.  The new procedure has wide applications in biological materials characterization 

and in biomimetic engineering of structural and functional materials. 
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Chapter 6 

6 Geometric Reconstruction of Biological Orthogonal Plywoods 

6.1 Preface 

Based on the full description of the arced patterns discussed in the previous two chapters and on 

the similarity of the perspective of the herringbone patterns arising from oblique incision in 

orthogonal plywoods with the 2D arced patterns of helical plywoods, this chapter provides the 

tools to reconstruct the 3D structure of orthogonal plywoods from simple 2D incisions. The 

characteristic feature of these patterns, the herringbone aperture angle is described in detail. This 

chapter is reproduced from a published paper titled: “Geometric Reconstruction of Biological 

Orthogonal Plywoods” co-authored with Prof. Alejandro D. Rey, Soft Matter, 2016, 12, 1184. 

6.2 Summary 

In this chapter we focus on structure determination of biological orthogonal plywoods,   fiber-like 

composite analogues of liquid crystalline phases, where the fibrils of the building blocks show 

sharp 90o orientation jumps between fibers in adjacent domains. We present an original geometric 

and computational modelling that allows to determine the fibrillary orientation in biological 

plywoods from periodic herringbone patterns commonly observed in cross-sections. Although 

herringbone patterns were long reported, the specific and quantitative relations between 

herringbones and the orthogonal plywoods were absent or at best incomplete. Here we provide an 

efficient and new procedure to perform an inverse problem that connects two specific features of 

the herringbone patterns (aperture angle and wavelength) with the 3D morphology of the structure, 

whose accuracy and validity was ascertained through in-silico simulations and also with real 
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specimens (“Eremosphera viridis”). This contribution extends significantly the better known 

characterization methods of 2D cross sections, such as the arced patterns observed in biological 

helicoidal plywoods, and with the present proposed methodology it adds another characterization 

tool for a variety of biological fibrous composites that form cornea-like tissues. 

6.3 Introduction 

Ordered structures found throughout Nature show a variety of architectures consisting  of fibrillar  

building blocks such as   collagen in vertebrates, cellulose in plants and chitin in insects, and are 

formed through an efficient entropy-driven self-assembly process [1, 2, 3].  The relationship 

between the architecture of these fiber-based structures and the functionalities such as mechanical 

behaviour, optical properties is widely recognized [4, 5], yet poorly understood, and has become 

a source of inspiration in the last decades which has influenced the development of new materials 

[2, 6, 7, 8]. 

Biological liquid crystals are commonly observed in sufficiently stiff fibril-based materials and 

are classified into: (i) solid analogues, (ii) in-vitro biopolymer solutions, and (iii) in-vivo materials 

and secretions. This chapter focuses on solid analogues; the reader is referred to [1, 2, 9, 10] for 

more information regarding in vivo and in vitro liquid crystals. Solid analogues or biological 

plywoods (referred hereupon as plywoods) are materials that present a frozen-in orientated ordered 

structure from a previous self-assembly step involving liquid crystal organization [11, 12]. 

Common types of plywoods are nematic, helical and orthogonal and are described in detail in 

Figure 6.1   together with key geometric quantities and expected cross-sectional patterns.  In 

nematics, the fibrils show a single preferred orientation (a-c), and cross-sections give line (c) or 

dot (b) patterns. In helicoids, the fibrils rotate continuously in the normal direction (e-f) to parallel 
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planes on a periodic distance po known as the pitch and cross-sections display helical (e) or arced 

patterns (f). In orthogonal plywoods, the fibers  display a homogeneous domain structure with a 

sharp fiber rotation between domains (h-g-i) and cross-section are dot-line (h), line-line (i),  or 

herringbone (g) patterns.   The plywoods showing a helicoid (d) display the organization of 

cholesteric liquid crystals or chiral nematics N*, and its abundance in plants and insects is 

associated with mechanical property optimization that removes the disadvantages of anisotropy as 

well as diffraction functionalities, as in beetles [13, 14] and tulips [15, 16]. Given the functional 

versatility and widespread presence in plants and insects, helicoids have been intensely studied [1, 

8, 10, 17]. 

 

Figure 6.1. Schematic representation of a nematic plywood (a-c) as a series of planes with parallel alignment 

throughout the entire structure (a) with projections corresponding to dots (b) when the incision is orthogonal to the 

fibril alignment and a sequence of parallel lines (c) with any other incision angle; helicoidal plywoods (d-f) where the 

cholesteric arrangement of pitch po  is shown (d) and projections corresponding to periodic structures but no arced 

patterns with periodicity po/2 (e) and the arced patterns with oblique incisions of periodicity L and maximum curvature 

max (f); and the orthogonal plywood (g-j) showing several layers orthogonally arranged and projections without any 

distinguishable pattern when the incision is aligned with one of the fibril orientation (h-i) and the herringbone patterns 

of periodicity L and aperture angle , with a rotation of the oblique incisions. 
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The structure characterization of biological fibrous composites involves determining the fiber 

orientation and chiral pitch or domain scales and is a complex inverse problem usually approached 

using optical methods [18, 19] or by sectioning samples and then performing an analysis based on 

the resulting 2D cross-sectional patterns shown in Figure 6.1. As mentioned above, cross-sectional 

patterns of helicoids are usually periodic arced patterns of maximum curvature max while cross-

sections of orthogonal plywoods are herringbone patterns with an aperture angle . Figure 6.2 

shows a schematic of main geometric features of the arc patterns-helicoids and herringbone 

patterns-orthogonal plywoods. The reconstruction, indicated by the thick arrows, involves 

converting the geometric information of these 2D patterns into the full 3D structure. It is crucial 

to note the 2D patterns are sensitive to the slicing angle  and not all slicing angle produce these 

distinctive patterns, as further discussed in section 6.3.1. Hence a quantitative understanding of the 

relation between the pattern and the slicing angle α is crucial. Techniques for ideal and complex 

arced patterns have been presented [20, 21] and validated [14] but herringbone patterns remain 

largely unexplored. 
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Figure 6.2. Summary of the cross-sectioning characterization procedures, where the full 3D helical and orthogonal 

structures are reconstructed from 2D observations from the periodic arced patterns [26] and herringbone patterns (this 

work).  The periodic arc-patterns have a 2D periodicity L and maximum curvature max. The periodic herringbone 

patterns have periodicity L and aperture angle . In both case the slicing angle  is unknown. 

 

The objective of this chapter is to present and validate a methodology for structure characterization 

of orthogonal plywoods from geometric modelling of 2D herringbone patterns. The ill-

conditioning of inverse problems is adequately overcome in this approach by developing an error 

sensitivity analysis based on in-silico herringbones generated by a versatile 3D visualization 

method for arbitrary orientation vector fields. This chapter is organized as follows. Section 6.3.1 

presents a brief discussion of biological plywoods, fibrillar arrangements, and characteristic 2D 

patterns on cross-sections. Section 6.4.1 presents the geometric model that forms the basis of 

converting herringbone patterns into plywood structure. Section 6.5.1 provides the results of the 

in silico plywood pitch determination followed by section 6.5.2 that evaluates the accuracy of the 

method and Section 6.5.3 validates the process with the herringbone pattern of i) an algae specimen 

“Eremosphaera viridis” and ii) in silico created herringbone patterns. Appendix I provides the 
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algorithmic details used to calculate all the errors introduced from herringbone pattern 

measurements. The significance of the results are included in the final conclusions. 

6.3.1 Plywood Architectures in Nature 

In this section we provide a (i) short required background on liquid crystal solid analogues that 

expands on the key concepts mentioned in the introduction, (ii) define the crucially important 

sensitivity of arced and herringbone patterns to the slicing angle mentioned in conjunction with 

Figure 6.1, and (iii) present examples of the diversity of orthogonal plywoods in Nature.  

Nematic plywoods have been observed in some insect cuticles through the entire material [22] but 

also as an intermediate phase sandwiched between two different solid cholesteric-like phases, as 

in some beetles [23]. The role of this type of architectures in some insect cuticles is hypothesized 

to serve as the so-called “half wave plate” that changes the helicity of the incident light. When 

taking incisions of this type of plywood it can be observed (Figure 6.1 a-c) a family of parallel 

lines showing the preferred orientation which is homogeneous throughout the entire structure when 

the incision angle lies between 0 and /2, as the incision angle approaches the upper limit the 

length of the projections decrease and when the lower limit is reached dots are observed instead. 

Helicoidal plywoods were the first to be studied and explored by Bouligand [20] in crab cuticles 

made of chitin and is the most widely studied biological plywood and it can show ideal 

architectures but also non-ideal configurations such as the two-pitch plywood observed in 

endocarps of some fruits (made of cellulose) [24] and graded structures where the pitch varies 

longitudinally in the micron range scale as in the cuticle of some scarabs [19]. A characterization 

procedure based on the projections of the chiral nematic director to an incision plane has been 

reported [14, 21] which depends on the 2D periodicity of the arcs (L) and the maximum arc 
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curvature κmax which is found in the middle of the arcs. With these two experimentally measurable 

quantities (L, κmax) one is capable of reconstructing the entire 3D structure based on 2D 

observations, thus complementing other optical techniques [18] leading to a more robust 

characterization of these structures. Depending on the type of plywood (ideal or non-ideal) the 

observed arced pattern can have constant or variable periodicity. These patterns are indifferent to 

rotation of the incision plane because of the helical structure shown. 

Finally, orthogonal plywoods present abrupt changes in the orientation of 90º in strictly orthogonal 

architectures, but examples of angles in the range between 45o and 90o can also be found [22]. 

Other types of orthogonal arrangements have been reported such as the paired orthogonal system 

where a pair of adjacent layers are orthogonally oriented, but the subsequent set of pairs show a 

clockwise or anti-clockwise rotation [25] leading to nested arced-patterns. Orthogonal 

arrangements are known for providing with the necessary strength [26] and one of the 

functionalities of these plywoods is to preserve or control the shape of the material as in lazy tongs 

[22]. The arrangement of the fibrils is responsible for a balance in the load as occurs in laminated 

composites [27] and also of the mechanical failure behavior where the sliding of lamellae prior to 

the fracture of collagen fibers in mineralized and demineralized samples of fish scales occurs [28]. 

Reversible texture transitions from orthogonal to randomly oriented fibrils have been observed 

during the wound healing process in the skin of some amphibians [22]. The orthogonal plywood 

can be found in certain algae walls, in collagen based materials reinforced with mineral compounds 

in fish scales [22, 28] and in bone osteons composed of stacks of orthogonal layers of collagen 

fibers rolled in co-axial cylinders [8, 22, 29, 30]. Cornea is another example in which collagen 

fibrils are assembled in an orthogonal fashion in the corneal stroma (which composes 90% of the 

cornea thickness) and besides providing strength and shape control, the stroma is responsible for 
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nearly 2/3 of the optical power of the eye [26]. Even when the plywood morphology is known to 

impact the material properties (mechanical, optical, etc.) these relationships are not fully 

understood [5], but the knowledge of the morphology of the plywoods   is crucial to fully 

characterize these structures in order to make any progress along this line. The structure-property 

relations in orthogonal plywoods is an evolving area which evidently requires prior structure 

characterization. A list of natural cellulosic, collagen and chitin materials exhibiting orthogonal 

plywood organization are given in Table 6.1. It is noteworthy that as in the case of parallel and 

helical plywoods, a very specific underlying biochemistry does not seem to be necessary. Plywood 

transitions, such as helicoid ⇄ orthogonal have been reported [31] for acidic collagen I solutions, 

with higher pH promoting the former. This and other transitions form the basis of Neville’s generic 

classification of biological fibrous composites [22] and highlight the importance of orthogonal 

arrangements. 

Table 6.1 Examples of Biological Orthogonal Plywoods 

Cellulose Collagen Chitin 

Eremosphaera viridis cell wall 

(alga) [22, 32] 

Paralvinella grasslei cuticle 

(annelid)[35] 

Oryctes rhinoceros eggshell 

(beetle)[37] 
a Tilia platyphyllos (larged-

leaved linden)[33] 

Pagrus major scales (fish)[28] a Aeshna juncea cuticle 

(odonata)[38] 
a Picea abies (Norway 

spruce)[34] 

Outer lamellae human long bones 

[5, 30] 

a Hydrocyrius colombiae cuticle 

(hemiptera) [39] 

 Bird cornea (several species) [36] a Coleoptera cuticle [39] 
a Pseudo-orthogonal plywood observed 

As in the case of helicoids, a pitch can be defined in orthogonal systems, where the pitch will be 

built up of 4 domains in strictly orthogonal plywoods if all the domains are of the same thickness. 

Projections to an oblique plane (oriented by a normal unit vector relative to an orthogonal 

coordinate system) produce the well-known herringbone patterns with a suitable combination of 

polar () and azimuthal angle (), as shown in figure 6.1 [8, 17]. When one of the fibril orientation 
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lies in any of the coordinate axes (i.e. fixing θ = 0o or 90o) no distinguishable pattern is observed 

by varying the polar angle in the incision plane but layers with dots and parallel lines are observed 

whose length depend on the orientation of the plane. On the other hand, the herringbone patterns 

are observed when rotating the incision plane with the azimuthal angle which avoids any of the 

orthogonal orientation of the fibrils to coincide with the axes of the incision plane. Perfectly 

symmetrical herringbones are observed when the azimuthal angle takes the value of 45o  i.e. the 

two orthogonal sets of fibrils’ projection to the incision plane are of the same length because both 

axes of the incision plane will be shifted equally from any of the two sets of fibrils. As a 

consequence, any other value of θ will produce asymmetric patterns, creating the effect that any 

of the two sets of fibrils are longer than the other, however this is only a matter of perspective, the 

closer to the 45o value (i.e. the closer the ratio of both projected lengths to one) is preferred as will 

be shown in subsection 6.4.1. Even when the twist angle is fixed in these plywoods, the perspective 

created by projecting the fibrils of the plywood on the incision plane creates the perception that 

the angle between the fibrils is different from 90o, and generates the herringbone angle β (see figure 

6.1) whose value depends on the incision angle for symmetric herringbone patterns. 

6.4 Geometric Model   

The proposed methodology is based on first sectioning a 3D plywood sample at an unknown angle 

() to obtain a 2D periodic herringbone pattern, and then measuring the pattern observables, which 

are the 2D periodicity L and herringbone angle β. With (L, β) we next show how to find the domain 

size po. We assume symmetric herringbone patterns unless stated otherwise, since it is always 

possible to obtain it by proper sectioning and it simplifies the characterization procedure.  
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Using simple geometry, we find the triangle that connects the plywood characteristic length po 

and the projected herringbone pattern periodicity L as shown in figure 6.3 leading to the following 

expression: 

csc
2

op
L 

                                                               (6.1) 

 

 

Figure 6.3. Connection between the characteristic length-scale po of the orthogonal plywood and the projected 

periodicity L observed on a cross-section whose magnitude depends on the incision angle . The upper-left frame are 

the observed herringbone patterns and the right shows two domains in the actual plywood. 
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Figure 6.4. (a) Schematic representation of the incision plane and the angles defining the orientation of the normal 

vector k̂  in the laboratory (x,y,z) frame. (b) Side view defining the slicing angle  and the polar angle . 

 

Equation 6.1 is analogous to the one reported for helicoids [21] and as in that case it cannot be 

used alone to describe the orthogonal plywoods because the observed periodicity L depends on 

two unknown parameters  and po, hence additional information is required to eliminate the degree 

of freedom. The maximum curvature max in the arced patterns allowed [21] closure in their 

characterization procedure and the herringbone angle  is expected to be the analogue parameter 

to the maximum curvature. Based on that hypothesis, the correspondence between the herringbone 

angle  and the incision angle  is obtained as follows. We set a 3D orthogonal coordinate system 

with unit vectors 
^ ^ ^

,  , x y z    in which two axes lie parallel to the orientation of the two orthogonal 

set of parallel families of lines that represent the fibril orientation in the orthogonal plywood. The 

orientation of the incision plane is given by the normal vector 

^

k  pointing outwards from the plane 

and is a function of both the polar  and the azimuthal θ angles. Figure 6.4 shows schematically 
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the angles involved and how they are related to the incision plane. The projection to a given 

incision plane is given by extracting the tangential component of the unit vectors 

^ ^

, x y 
 by using 

the projection operator defined in eqn. (6.2): 

   

^ ^ ^

( )
p

i iI k k   
                                                                       (6.2) 

Where the superscript “p” stands for projected and I is the identity second order tensor with 

^ ^ ^ ^ ^ ^ ^

cos sin sin sin cosx y z x y zx y zk k k k             . By taking the dot product of the 

projected unit vector in the x direction with the one in the y direction (the direction of the layers 

in the plywood) one obtains: 

  

^ ^ ^ ^

| || | cos ( ) ( )
p p p p

x y x y x yx yk k k k           
                                        (6.3) 

In eqn. (6.3), the herringbone angle β appears automatically because it corresponds to the angle 

created by the projection of the unit vectors in the incision plane. Rearranging eqn. (6.3) in terms 

of the polar and azimuthal angles and by carrying out the norms of the projected vectors, solving 

for β leads to: 

    

2

2 2 2 2

sin sin cos
cos

1 cos sin 1 sin sin

  


   




                                            (6.4) 

Where the relationship  = π−α in eqn. (6.4) is already taken into account. Equation (6.4) gives an 

implicit relationship between α and β for a given value of θ.  This was done without assuming 

symmetry in the herringbone patterns and is a general expression for β in terms of α and θ, however 

α cannot be obtained directly from this expression. One way to overcome this difficulty is to 
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compare the projected lengths of the fibrils because as one approaches small (large) values for θ, 

the projected length of the fibrils aligned in the x(y) direction will decrease and the length aligned 

in the other direction other will increase. This is done by comparing the norm of both projected 

vectors as follows: 

   | 1|
p p p

i i i i ik k                                                               (6.5) 

The subscript “i” stands for x or y, in the case of ki indicates the “x” or “y” component of the 

normal unit vector. We define the projected length ratio  R ,   as follows: 

   
 

 

2 2

22

1 cos sin1
R ,

1 1 sin sin

x

y

k

k

 
 

 


 

 
                                       (6.6) 

Two special limit cases of this expression that do not lead to visible herringbone patterns are: i) θ 

= 0o and ii) θ = 90o. The ratio in the former case is restricted to the interval  0 0 , 1oR       

with the lower bound R=0 when the incision plane is normal to the fibrils oriented in the “x” 

direction and the projection of such fibrils are dots (α = 90o) and the higher bound R=1 when the 

incision plane is parallel to the fibrils, hence the projected length will be the same of the fibril (α 

= 0o). While in the latter case the ratio is within the interval  0 90 ,oR       with the lower 

bound when the incision plane is parallel to the fibril orientation, similarly to the higher bound of 

limit case i), and the higher bound when the projected length of the fibrils oriented in the “y” 

direction decrease to dots resulting in an indeterminate form of eqn. (6.6). 

 For the intermediate values of θ the ratio R has a finite value within  0 0 90 , 1oR        

and the upper bound is achieved with θ = 45o. In order to implement the procedure starting with a 
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real orthogonal plywood specimen, one perform a sequence of cuts, recording R, until an 

essentially symmetric herringbone pattern is observed, which corresponds to R=1 and θ = 45o.  

Equation (6.4) now gives: 

   

2

2

sin
cos

1 cos









                                                           (6.7) 

It is worth noting the herringbone angle β now depends only on α and is not associated with another 

length-scale from the sample or the incision plane. This is a consequence of the constant twist 

angle between the plywoods layers and is just a matter of perspective. In partial summary, the 

proposed methodology relies on eqns. (6.1) and (6.7) when R=1 and consists of the following 

steps: 

1) An oblique incision giving a symmetric herringbone patterns is obtained. 

2) Measure L and  from the herringbone pattern on the incision plane. 

3) Calculate the incision angle  from eqn. (6.7).  

4) Estimate the pitch po of the plywood using eqn. (6.1).  

5) If the pitch is composed of 4 identical layers the average thickness of each layer can be 

calculated by dividing po/4.   

Next we evaluate the accuracy and characterize the sensitivity of this structure reconstruction 

method using synthetic herringbones and then validate the method with a real biological plywood. 
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6.5 Results and Discussion 

6.5.1 Pitch Determination 

Firstly, to test the general validity of the procedure we used the Mayavi visualization software 40 

where we specified the director field of an orthogonal plywood, performed oblique sections at 

known incision angles () with fixed azimuthal angle of 45o and measured the 2D periodicity Lm 

as a function of the known angle . This was done for several values of po. Figure 6.5 shows the 

linear relationship between Lm and csc(α) extracted from the in silico created herringbone patterns 

which shows the slope to be essentially  po/2 as expressed in eqn. (6.1).  

 

Figure 6.5. Calculated herringbone pattern periodicity L as a function of csc(α) showing a linear relationship with 

slope po/2. 

 

Equation 6.1 shows that the pitch is undefined when α = 0 and L → ∞. Physically this means that 

the incision is made in one of the planes of the parallel oriented layers and no herringbone pattern 
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is expected which could be equivalent to an infinitely large herringbone pattern since there is no 

change in the orientation in this layer. This is supported by eqn. (6.7) that predicts β = 0. As the 

incision angle increases the periodicity L decreases until it reaches the value po/2 which occurs 

when α = π/2. In this limit case the periodic structure that could be anticipated is one with 

periodicity po/2, however β = π is predicted from eqn. (6.7) and no herringbone pattern is visible 

and one might incorrectly assume the sample has the structure of a frozen nematic phase. For 

experimental purposes incision angles close to these limiting values are not recommended since 

they could lead to wrong conclusions. 

It is worth noting that incisions made at the supplementary angle π− lead to the same periodicity 

and the herringbone patterns appear as their mirror image. This can be observed in figure 6.6 and 

has also been reported for helicoids [21, 24] and is consistent with goniometric studies. 

 

Figure 6.6. Herringbone patterns for a plywood with po = 8 μm showing the effect of the specular reflection when 

the incision angle is a fixed angle () and another incision is taken at the supplemen-tary incision angle (b). 

 

6.5.2 Error Sensitivity on Structure Determination 

In this section we provide guidelines on how to avoid procedures that yield poor predictions on 

the values of the length scale po when working with real orthogonal plywoods.   In order to analyze 
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the predictions and assess the errors of the methodology several incisions of the same plywood 

would be required, however this information is not easily available. Alternatively the samples 

showing the 2D periodic herringbone patterns can be created in silico with the 3D visualization 

tool Mayavi [40] where the director field of an orthogonal plywoods is completely specified along 

with po. Any incision plane can be quickly realized, thus allowing the total control of α.  This 

analysis is independent of  because R = 1. The algorithmic procedures and mathematical details 

are given in Appendix I and here we emphasize the significance of the results.  In this section we 

refer to two different sets of variables resulting from the Mayavi visualizations where the inputs 

for creating the synthetic herringbone patterns are the director fields with different pitch (4, 6 and 

10 m). On the one hand we have the known inputs for Mayavi po
M and M. These two variables 

allow the calculation of Lc
M with eqn. (6.1) and c

M with eqn. (6.7).  

On the other hand we have the variables than can be measured from the 2D synthetic herringbone 

patterns which will emulate a real experimental application of the methodology: Lm and m. using 

eqn. (6.7) we calculate the incision angle (c) and finally by using eqn. (6.1) the pitch can be 

computed (poc). The former set of variables will be taken as the predictions from the model as 

exact values and will be compared with the latter set that simulates the application of the procedure, 

allowing to calculate the following relative errors since the input is known (see Appendix I): 

( ) ( ) ( )
*100;   *100;   *100

o

M M M

c m c m o oc
L pM M M

c c o

abs abs L L abs p p

L p


 
  



  
                       (6.8) 

As shown below, 
op  is more sensitive to errors in L than errors in . The in silico herringbone 

patterns for the plywoods with po of  4 and 10 μm  are shown in figure 6.7 with two different 

incision angles  = 130.32o (a & c) and 98.05o (b & d), the third value of the methodology is not 
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shown for brevity but the predictions are given in tables 6.2 and 6.3. It can be seen that at least 

qualitatively the herringbone angle β for a given incision angle  does not change with changes in 

the pitch po comparing fig. 6.7 a & b with c & d respectively. This qualitative result is confirmed 

quantitatively with the measurements of β shown in table 6.2. By moving the incision angle with 

a constant pitch (fig. 6.7 a & b for po = 4 m and c & d for po = 10 m), it can be observed that an 

angle closer to 90o leads to smaller values of L, consistent with eqn. (6.1) and confirmed in the 

measurements shown in table 6.3. 

 

Figure 6.7. In silico created herringbone patterns for a plywood of po = 4 (a-b) and 10 (c-d) μm, showing the effect of 

the periodicity with the incision angle by changing the pitch (a & c with  = 130.32o) and (b & d with  = 98.05o). 

The herringbone angle obtained from different plywoods at the same incision angle is equal. 

 

Table 6.2 shows the comparison between two sets of data of the herringbone angles, c
M and m, 

such values did not change when the pitch was varied, demonstrating these values are pitch-

independent. The relative error  is small, having its maximum values when the incision angle is 
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close to 90o. Intermediate values of the incision angle (or its complement leading to the specular 

image) lead generally to smaller errors, hence to improve accuracy these angles are preferred, 

which furnished values of β between 40o and 80o. It is worth mentioning that a similar 

recommendation was given in the methodology for helicoids [14].  

Once β is assessed, the incision angle was calculated (c) and compared to the known angle M, 

which led to a negligible error (see Appendix I) meaning that the incision angle calculation is not 

significantly affected by errors in the measurement of the herringbone angle . Table 6.3 compares 

the two sets of data for L and po. The errors in the periodicity L are higher with respect to the ones 

obtained from the herringbone angle comparisons and is propagated to the pitch calculation leading 

to errors between 2 – 7% for po. These values can be attributed mostly to L because the negligible 

errors found for , and also it is worth noting that when the error in the herringbone angle  is 

closest to zero for the values shown in table 6.3 (i.e.  = 125o with  = 0.68%) the difference 

between L and po is the largest. As mentioned above, the pitch prediction in the methodology has 

two sources of errors: measurements of (i)  and (ii) L, with   the latter being the most sensitive 

parameter in the methodology (see Appendix I). This indicates L should be carefully measured 

with high precision instruments in order to have accurate predictions from this characterization 

procedure. 
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Figure 6.8. Herringbone patterns observed in a sample of the alga “Eremosphaera viridis”with β = 74.3º and L = 

0.1146 μm. Copyright permission (3686041171064) from Springer. 

 

 

 

 

 

Table 6.2 Herringbone pattern measurements 

 

αM βm βc
M εβ

b 

94.04 7.83 8.07 3.06% 

98.05 16.41 15.94 2.85% 

112.99 43.15 42.67 1.12% 

130.32 65.00 65.81 1.24% 

140.24 74.45 75.10 0.88% 

151.46 82.63 82.56 0.04% 

81.95 16.41 15.94 2.85% 

74.21 31.65 30.45 3.79% 

54.74 60.41 60.00 0.68% 
 

b Error calculated as: ( )
*100

M

c m

M

c

abs


 






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Table 6.3 Pitch predictions, periodicities (measured and calculated) and errors 

 po = 10 m 

Lm LcM L
c po c po

c 

98.05 4.89 5.05 3.20% 9.67 3.26% 

125.26 5.98 6.12 2.40% 9.72 2.81% 

81.95 4.82 5.05 4.46% 9.55 4.52% 

po = 6 m 

Lm LcM L
c po c po

c 

98.05 3.23 3.03 6.50% 6.39 6.44% 

125.26 3.42 3.67 6.96% 5.56 7.35% 

81.95 3.09 3.03 2.29% 6.13 2.22% 

po = 4 m 

Lm LcM L
c po c po

c 

98.05 2.08 2.02 2.81% 4.11 2.75% 

125.26 2.40 2.45 2.17% 3.89 2.58% 

81.95 2.08 2.02 2.81% 4.11 2.75% 
 

c Errors calculated as:   ( )
*100

M

c m
L M

c

abs L L

L





( )
*100

o

M

o oc
p M

o

abs p p

p





 

 

6.5.3 Biological Validation 

The methodology was initially tested on an electron micrograph from the cell wall of the alga 

“Eremosphaera viridis” by calculating po, the average layer thickness and the cell wall thickness 

which is compared to the one calculated directly from the full sample. Figure 6.8 shows the 

electron micrograph of the oblique section from the cell wall of “Eremosphaera viridis” and the 

measured values of the herringbone angle and the periodicity of such patterns which are 74.3º and 

0.1146 μm, respectively. The sample size is approximately 0.8125 μm and composed of 14 

orthogonally aligned layers. Using eqns. (6.1) and (6.5) leads to the values of α = 40.74o and po = 

0.1496μm leading to a layer thickness of 37.4 nm giving a cell wall thickness of 0.5236 μm. The 

cell wall thickness can also be obtained from the sample size leading to a value of 0.5303 μm 

which is comparable to the one obtained from the calculation of the proposed methodology (with 
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relative error of 1.26% calculated as: 
 exp

exp

calcabs W W

W



 ) thus showing very good agreement 

with an experimental micrograph. 

6.6 Conclusions 

Biological plywoods are an important class of fibrous composites found throughout Nature and 

arise due to the frozen liquid crystal-like organization. Orthogonal plywoods are an important class 

of these materials, and are found in collagen, cellulose and chitin-based structures. In this paper 

we develop, apply and validate a reconstruction method for the 3D structure of orthogonal 

plywoods based on the geometry of 2D herringone patterns obtained by simple sectioning. The 

reconstruction methodology showed good agreement with experimental observations taken from 

oblique incisions from the alga “Eremosphaera veridis” and in silico created patterns. It was found 

that in order to have accurate predictions of domain size, moderate herringbone angles should be 

considered in the sample to be analyzed. Additionally, incision angles close to 0o or 90o should be 

avoided because incorrect predictions can be obtained. Finally, the precision in the measurement 

of the 2D periodicity of the herringbone pattern is the most sensitive parameter. The domain 

structure of orthogonal plywoods, determined from simple sectioning and the four -step algorithm 

presented here, lies at the core of the structure-properties relations and its determination is crucial 

in further biological and biomimetic developments, such as in cornea-like tissues. 
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7 Conclusions and Original Contributions to Knowledge 

 

7.1 General Conclusions 

The objective of this thesis is to contribute to the evolving understanding of non-equilibrium self-

assembly processes used in the formation of defect-free collagen based films and the understanding 

of the morphology of  biological and biomimetic plywoods. The understanding and 

characterization of the underlying processes and resulting material architectures can provide 

insights to improve current strategies and motivate the development of novel pathways. This thesis 

explored and revealed the underlying physics of a multi-stage process used to produce defect-free 

cholesteric collagen based films and the morphology of biological plywoods. A dynamic model 

based on well-established soft matter theory was developed for the first processing stage to 

produce new knowledge regarding the ordering and alignment of dilute collagen solutions under a 

wide variety of kinematic conditions. For the second stage, a fully-coupled order and mass transfer 

model was developed where the key aspects and parametric envelops for obtaining a defect-free 

material were identified. Validations of simulations and mechanisms were systematically 

implemented.  By analyzing the morphology of the obtained architecture for this particular flow-

drying process as well as others widely found in Nature a comprehensive description of 

characteristic patterns found in cross sections of the materials was provided using novel 

computational geometry methods. Taking advantage of such description, a methodology for 

structural characterization purposes was proposed and tested and its accuracy was demonstrated 

with actual biological samples. The following subsections highlight the main conclusions of each 

chapter in this thesis.  
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7.1.1 Theory and Simulation of Cholesteric Film Formation Flows of Dilute Collagen 

Solutions. 

By using an integrated theory-experiment loop we presented simulations and scaling of key 

material properties of dilute isotropic collagen solutions, including the molecular shape parameter 

 and rotational diffusivity Dr. The obtained rotational diffusivity Dr has an order of magnitude 

consistent with reported values of other biomacromolecules and the estimated molecular shape 

parameter  was used to formulate the tumbling parameter function (S), which is a key quantity 

in the rheology of liquid crystalline materials. The key feature found for collagen solutions is that 

it is larger than one for 0 < S < 0.83 and less than one when 0.83 < S < 1; the former corresponds 

to dilute and the latter to concentrated solutions. The formulated(S) is consistent with 

experimental data on collagen solutions as it predicts flow-birefringence in the dilute regime  and 

banded texture formation after cessation of flow in the concentrated regime, where the former is a 

signature of shear-induced orientation  (> 1) and the latter of non-aligning or tumbling ( < 1) 

under simple shear. 

The nematodynamics model with the obtained properties was explored in terms of flow intensity 

(taken into account in the Deborah number) and flow kinematics , which is an index of the relative 

content of strain rate and vorticity rate. The key control variables found to convert the precursor 

para-nematic state into defect free cholesteric films are a surface alignment of the director field 

and an order parameter S corresponding to the value of a stable cholesteric state which were based 

on liquid crystal physics and observations from chiral film formation. This allowed us to enclose 

the optimal kinematic conditions (opt, Deopt) to which the dilute solutions should be submitted to 

be considered as appropriate precursors for the later evaporation stage in the process of defect-free 
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film formation process. In such enclosed region a key component in the flow type is a larger strain 

over vorticity contribution. These results provide quantitative design parameters for flow-

processing collagens into films for tissue engineering and other emerging biomimetic applications.     

7.1.2 Biological Plywood Formation from Dilute Para-nematic Liquid Crystalline Phases 

This chapter presented a rigorous and fully coupled model that captures the main features in the 

solvent removal process of defect-free collagen film formation process where the unstable para-

nematic phase, with characteristics obtained in the previous chapter in the flow deposition stage, 

is converted to the cholesteric phase at constant temperature. The main features of the model are: 

i) the coupling of the Q tensor field with the solvent mass transfer through the variable nematic 

potential in the equation for Q and the anisotropic mass flux in terms of concentration gradients 

and Q and ii) the decrease in volume derived from the mesogen mass conservation. Three different 

modes in the resulting microstructure were found depending on the mass transfer resistances taken 

into account in the dimensionless number . Homogeneous helical formation occurs when the 

increase in the mesogen concentration is in synchronization with the initially forming helix from 

the edges due to the fast initial solvent depletion. Such synchronization is the crucial aspect for 

obtaining a defect-free material. The two other modes are observed in the resulting microstructure 

when the two phenomena are out of synchronization. A transition from monodomain to polygonal 

configuration is observed to happen when the increase in the mesogen concentration is behind the 

formation of the helix, and the width of the polygonal region is also dependent on the particular 

value of . A polydomain structure is obtained when the mesogen concentration increase is ahead 

of the forming helix. The particular and narrow range of values of the dimensionless number  

that lead to a homogeneous helical axis was provided. Finally, a process diagram for the formation 
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of a homogeneous helical axis is provided in terms of the combination of D/6Dr as a function of 

the characteristic length-scale L and depending on the choice of solvent-mesogen properties of the 

pair a defect-free structure of length L can be formed.  

7.1.3 Structure Characterisation Method for Ideal and non-Ideal Twisted Plywoods. 

In this chapter the twisted plywood architecture model was revisited and extended to describe ideal 

and non-ideal structures arising from pitch gradients and multiple pitches. Based on the analytical 

description of the TPA (twisted plywood architecture) and with the aid of computational 

visualization software, a characterization tool is proposed which allows to reconstruct the 3D 

cholesteric structure of various plywoods from 2D arc-patterns obtained from experimental 

oblique incisions. This characterization procedure is an alternative characterization tool to optical 

measurements of the pitch which may be restricted to certain values of the cholesteric pitch po. 

The introduction and use of the curvature and its maximum value is the unique and novel feature 

of our extension. This characteristic variable of the observed arcs allows to remove the degree of 

freedom that exists given the fact that the periodicity of the arced patterns depends on both the 

incision angle and the pitch. 

This proposed characterization tool can be implemented in ideal and non-ideal plywoods by taking 

into account commonly observed pitch variations in a systematic way. Since there is a wide variety 

in helical arrangements found experimentally, these effective 3D reconstruction computation and 

visualization tools can be easily extended and applied to any experimental observation of such 

biological plywoods including the orthogonal cornea-like plywood, the cylindrical plywood 

configuration, and other more sophisticated arrangements as the ones found in various cuticles. 
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7.1.4 Chiral Graded Structure in Biological Plywoods and in the Beetle Cuticle. 

In this chapter, a structural material characterization procedure for biological plywoods that exhibit 

non-trivial spatial gradients was formulated by extending the previous geometric modeling and 

computational visualizations. In materials presenting a complex and sophisticated cholesteric pitch 

profile, this can be determined through the spatial periodicities and curvatures of 2D arc patterns 

in conjunction with a theoretically formulated plywood phase diagram given in terms of the 

periodicity of the arcs and the reciprocal curvature. Key aspects regarding the sensitivity of the 

method to sample sectioning were established and larger sectioning angles are preferred due to the 

ill-conditioning introduced when low incision angles are used. We demonstrated the applicability 

of the 3D chiral reconstruction method for graded plywoods using experimental pitch profile data 

for the “aurigans scarab” to create the in silico cross sections. The proposed characterization 

methodology complements optical characterization tools that must overcome the difficult 

challenge of chirality reconstruction. The new procedure has wide applications in biological 

materials characterization and in biomimetic engineering of structural and functional materials. 

7.1.5 Geometric Reconstruction of Biological Orthogonal Plywoods 

In this chapter, the important class of biological plywoods (arising due to frozen liquid crystalline 

organization) denominated the orthogonal plywoods, widely found throughout nature in collagen, 

cellulose and chitin-bases structures, were analyzed. Following the geometric model for ideal and 

non-ideal TPAs, a reconstruction method for the 3D structure of orthogonal plywoods based on 

the geometry of the 2D herringone patterns obtained by simple sectioning was developed, applied 

and validated. The reconstruction methodology showed good agreement with experimental 

observations taken from oblique incisions from the alga “Eremosphaera veridis” and in silico cross 
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sections with the visible herringbone patterns. It was found that in order to have accurate 

predictions of domain size, moderate herringbone angles should be considered in the sample to be 

analyzed. Additionally, incision angles close to 0o or 90o should be avoided because incorrect 

predictions can be obtained. Finally, it was shown the precision in the measurement of the 2D 

periodicity of the herringbone pattern is the most sensitive parameter. The domain structure of 

orthogonal plywoods, determined from simple sectioning and the four-step algorithm presented 

here, lies at the core of the structure-properties relations and its determination is crucial in further 

biological and biomimetic developments, such as in cornea-like tissues. 

7.2 Original Contributions to knowledge.  

The original contributions to knowledge resulting from this thesis are: 

1. Material properties and effective molecular shape determination for collagenous acidic solutions 

used in the fabrication of defect-free collagens.  

2. Robust methodology to determine the dynamic behavior and flow induced alignment character 

of dilute collagen solutions using a versatile 2D kinematics that allow to explore a wide variety of 

strain – vorticity contributions to the flow. 

3. Phase plane of scalar order parameter (S) and director angle () in terms of the kinematic 

parameter () and Deborah number (De), providing the complete state of orientation of the para-

nematic phase that precedes the collagen film drying process.  

4. Region of kinematic conditions to which the dilute collagen solutions must be submitted to have 

the appropriate orientation and order to be considered as appropriate precursors to defect-free 

collagen films.  
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5. Robust methodology of a 2D self-assembly process taking into account a variable mesogen 

concentration and film shrinkage. 

6. Determination of various modes existing in the drying of the films and the resulting 

microstructure in terms of the internal mass transfer resistance. 

7. Determination of the appropriate conditions for a homogeneous helical axis of cholesteric 

collagen in the drying of the initially para-nematic phase. 

8. Analytical description of the Bouligand structures (ideal and non-ideal) in terms of the 2D 

sectional periodicity (L) and the curvature of the arcs () observed upon oblique sectioning. 

9. Adaptation of the Mayavi visualization tool to produce in silico cross sections of the ideal, non-

ideal and orthogonal plywoods.  

10. Proposed methodology based on cross sections and the characteristic periodicity and curvature 

or herringbone aperture angle, depending on the particular case of the plywood, from the projected 

arced or herringbone patterns and validated through the in silico cross sections of the “aurigans 

scarab” cuticle and in vivo cross section of the “eremosphera viridis” algae species respectively.  
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Appendix A. Four Roll Mill Kinematic Analysis 

In the work described in chapter 2 it is convenient to use the fixed four roll mill coordinate system 

denoted by x and a rotating system whose orientation depends on  and is denoted by x’. This 

section contains the detailed derivation of the strain tensor A’ in the rotating system of reference 

and the calculation of the eigenvalues and eigenvectors in the x and x’ systems, and will provide 

a proof of the invariance of the principal axis of deformation direction that is employed in sections 

2.5.1 and 2.5.2 to indicate the flow aligning nature of the mesogens. In the second part we derive 

the relations between the flow type and the invariants of the kinematic tensors in the four roll mill 

geometry. 

A.1. Invariance of Eigenvectors.  

From eqn. (2.1) we take the strain tensor A in the fixed system of reference x and obtain the 

following eigensystem (i.e. eigenvalues  ; 1,2,3i i and eigenvectors  ; 1,2,3ξi i ): 

1 2 3

1 2 3

(1 ); (1 ); 0
2 2

(0,1,0); (1,0,0); (0,0,1)

E E
    

  

     

  1 2 3ξ ξ ξ

(A.1 a, b) 

where the i’s are arbitrary constants. It is worth remarking the eigenvectors are constant, which 

is a consequence of A being a diagonal tensor, i.e. it is already written in its principal directions 

and coincide with the orthonormal triad x, y, z of the four roll geometry (see Fig. 2.3-g).   For 

brevity we will drop the inessential third eigenvalue and concentrate in the non-zero ones. Let us 

introduce the rotation matrix Rz() that allows the system of reference (x, y) and the tensor A be 

rotated about the “z” axis whose rotation is given according to the flow type, i.e. the particular 

value of : 
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Rotations are given according to the standard procedure: 
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leading to the following rotated quantities: 
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The tensor A’ is no longer diagonal and hence its eigenvectors are changed, but the eigenvalues 

remain the same and the relevant eigenvectors of A’ are: 

' '

1 2 2' ( (1 ),1 ,0); ' (1 ,1 ,0)           1ξ ξ  (A.5) 
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Even though the eigenvectors change with the flow type, these vectors are referred with respect to 

the rotating system of reference and for any , they match with the fixed dyad (x, y) as will be 

shown in the following examples. 

a) Pure elongational flow: The kinematic parameter takes the value of the unity and from eqn. 

(A.4 a-b) the x’, y’ remain the original fixed coordinates (x, y) and the eigenvectors from 

eqn. (A.5) reduce to ’1 = ’1(0,1,0) and ’2 = ’2(1,0,0) which are the eigenvectors in the 

fixed system or reference. This case is depicted in figure A.1a. 

b) Simple shear flow: The kinematic parameter is zero and the x’, y’ system of reference is 

rotated counter-clockwise by 45o from eqn. A.2 b. For this case eqn. A.5 reduces to: ’1 = 

’1(1,-1,0) and ’2 = ’2(1,1,0), where the relationship *’1 = - ’1 was applied given that 

the constants are arbitrary. In the rotated system of reference, the coordinates of the two 

eigenvectors in the rotated system of reference coincide again with the eigenvectors in the 

fixed system of reference. This case is depicted in figure A.1b.  

 

Figure A.1. Schematic of the fixed and rotated system of reference along with the eigenvectors for both systems in 

pure elongational flow (a) and simple shear flow (b). The blue arrows represent the fixed coordinate system, orange 

arrows represent the rotating coordinate system, yellow lines the direction of the flow and the green arrows the 

eigenvectors in either system of reference.  
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For any intermediate or negative value of , the eigenvectors will coincide independently of the 

system of reference, which indicates the principal axis of deformation are indifferent objects.   

The importance of these results is that the flow aligning nature of mesogens in the generalized 2D 

flows whose direction change according to the kinematic parameter can be discussed with respect 

to these invariant directions (more specifically the fixed x direction) which is the direction of the 

extension according to figure 2.3g and as discussed in section 2.4.3. The invariance of the 

deformation axis explains why the ellipsoids’ orientation given in the master plot (figure 2.8) 

change for different flow types and highlights the orientation angle in this work is given between 

the particle orientation and this invariant quantity as emphasized in section 2.5.2 

A.2. Flow Type  and Kinematic Tensors’ Invariants (A, W).   

We now provide a definition of the kinematic parameter in terms of the invariants of the strain A 

and vorticity W tensors in the fixed x system of reference. Due to the form of A and W from eqn. 

2.1, the only non-zero invariant of these tensors is the second invariant [1]: 

( ) :II tr  R R R R R  (A.6) 

According to the definition, the second invariant of A and W are: 
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Solving for  in both expressions, allows us to define two special ratios, one which leads to the 

definition of  in terms of the invariants of both tensors and another that allows to measure the 

overall effect of strain and vorticity which will be used in Appendix B during the analysis of the 

uniaxial approach applied to the Q-tensor equations (eqn. 2.3 a in section 2.5.2): 
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(A.8 a – i) 

Equation (A.8f) reveals explicitly the nature of the flow type, shown in Fig 2.3 a-f.  Equations 

(A.8h, 12.c) indicate that the formation of the PN phase (Fig. 2-a) is influenced by effective strain 

to vorticity ratio    1 / 1    . 
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Appendix B. Theoretical Background of Chiral Mesogens’ Dynamic Behavior 

and Derivation of Nematodynamics Equations 

B.1. Dynamic Description of Chiral Mesogens under Flow 

Similar behavior between collagen solutions and lyotropic liquid crystalline polymers has already 

been mentioned in chapter 2.  It is worth noting that other biomacromolecules used to fabricate 

highly ordered and structured materials have also been reported to present liquid crystalline 

polymer-like behavior such as chitin and cellulose [2 – 6], nonetheless these materials are outside 

the scope of this work. Hence, one may expect from these materials to exhibit similar behavior as 

LCP; each with its associated dynamic properties such as  and Dr; with the peculiarity that the 

chiral terms introduce additional phenomena when these are relevant as will be described in this 

section. In general terms, flow processes in chiral anisotropic materials can be described through 

the paradigm depicted in figure B.1, adapted from the general nematodynamics scheme provided 

in [7, 8]. The velocity and microstructure  dynamics  are coupled in a two-fold closed loop: on the 

left side, shear and extensional deformation rates create average orientation  and molecular order 

in the system, known as flow-induced orientations and order (FIOO) or simply flow-induced 

alignment (FIA) and on the other the equally important but less explored orientation-induced flow 

OIF, which includes phenomena such as back-flow, hydrodynamic interactions present in defect-

defect annihilation or in helix uncoiling - recoiling for chiral mesogens. Depending on the 

concentration of the solution, the behavior in both FIA and OIF can be drastically different. In the 

former FIA (left side of Figure B.1), when the nematic potential is below the phase transition value 

(i.e. U < U*, where U is a dimensionless concentration) the stable isotropic state is transformed 

into a para-nematic phase as in flow birefringence experiments in [9] which is the main focus of 
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this work, whereas in the opposite scenario (i.e. U > U*) a stable chiral nematic state might undergo 

additional complex flow-induced phenomena associated to the helix dynamics such as uncoiling, 

rigid body rotations and/or tumbling behavior [10] depending on the shear rate as studied in [11] 

using a hybrid Rheo-NMR technique. In OIF (right side of Figure B.1), which is beyond the scope 

of this chapter, the high concentration regime might exhibit defect-defect hydrodynamics, back-

flow, helix recoiling, whilst the low concentration regime may exhibit weak isotropic back-flow 

in the relaxation of a dynamically aligned para-nematic phase [7, 8].  

Two different scales have been used to describe nematodynamics where the first corresponds to a 

macroscopic scale that takes into account a linear momentum balance coupled with the dynamics 

of the director n field [12 – 14]. At this level, the description of the material is restricted to the 

interaction between hydrodynamics and the orientation of the material and the scalar order 

parameter S dynamics are not considered but assumed to remain close to equilibrium value Seq. 

The characteristic that makes cholesterics different to their achiral counterpart is the presence of 

the cholesteric helix axis h and associated periodicity po, with unique phenomena occurring 

depending on the relative orientation of the helix h and the flow direction v [10].  

Some of these phenomena have been analyzed in the past at this director level such as the flow 

aligning nature in cholesterics under simple shear when the helix is initially in the vorticity 

direction [15]. The flow alignment can occur as a travelling wave phenomena when the no 

anchoring BC is used and as an elastic boundary layer contraction when the orientation is fixed 

[16], and in addition the tumbling behavior was characterized as a different type of travelling wave 

phenomenon [15]. When the helix is aligned in the direction of the flow, highly viscous permeation 

flows are likely to occur which have been described with a unified approach in [17] by including 

the divergence of the elastic stresses in the linear momentum equation in terms of the viscous 
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torques allowing a general permeation kinematic description as opposed to the classical flow in a 

capillary. This director level of description has elucidated some basic principles regarding 

cholesteric materials [10, 15 – 17]. Nonetheless, producing ordered and oriented collagen materials 

from isotropic precursors require the description of both orientation and ordering which can be 

achieved through a mesoscopic model that takes into account the dynamics of a quadrupolar tensor 

order parameter (Q) [12]. This mesoscopic level has been widely used for achiral mesogens [14, 

18] to capture complex phenomena such as defect nucleation, shear thinning behavior and sign-

changes in the first normal stress difference [19] and analysis under generalized linear flows [20] 

and has been applied to describe qualitatively biological processes involving chiral building blocks 

[7 – 8]; however flow processes of chiral systems have not been rigorously and extensively studied 

nor quantified compared to their achiral counterparts. The specific model used here, able to capture 

the processes discussed in conjunction with Figure B.1, is detailed in section B.2. 

 

Figure B1. Flow processes’ paradigm for chiral mesogens [7], consisting of a coupled loop between  flow induced 

orientation (FIO) on the left and orientation-induced flow (OIF) on the right. The flow kinematics ( v:velocity) is coupled 

to the structure velocity dQ/dt, where Q is the tensor order parameter. The effect of flow on structural changes, and 

conversely the effect of structure changes on velocity are strongly dependent on concentration U, where U* is the critical 

phase ordering value. At U>U*, FIO includes helix uncoiling (top left) and at U<U*, we find flow-birefringence. These 

effects depended on the molecular shape parameter  and rotational diffusivity 
rD  (eqn.(2.4c) shows the difference between

rD and 
rD ).  At U>U*, OIF includes flow created by helix re-coiling (top right) after turning off an external field H (in this 

chapter H is a flow field). At U<U*, OIF will be more weak and isotropic (lower right). 
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B.2. Mathematical Derivation of the Nematodynamics Equation 

 

The equations of nematodynamics are derived starting with the formulation entropy production 

function  which includes the conventional viscous effects and dissipation due to the rotations of 

Q with respect to the background fluid [19, 21, 22]: 

ˆ: :s

Bck T  t A H Q     (B.1) 

where H is the molecular field, ts the symmetric stress tensor with viscous and elastic parts, Q̂  

the Jaumann derivative of Q, c the number of molecules per unit volume, kB the Boltzmann 

constant and T the absolute temperature. The evolution of Q is found by expanding the fluxes 

 ˆ,s
t Q  in terms of forces  , Bck TA H and the result is:  
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(B.2 a-c) 

where the superscript [s] represents symmetric traceless tensor, rD is the Q-dependent rotational 

diffusivity,  the above-mentioned rheological shape parameter,  1

2

T
   A u u   and 

 1

2

T
  W u u  are the symmetric and antisymmetric parts of the velocity gradient tensor 
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respectively, U the nematic potential, L1 and L2 elastic constants associated to the chirality and 

other modes of deformation, respectively and po the cholesteric pitch.  Two essential components 

of this equation are the cholesteric free energy density  ,f Q Q   and the applied kinematics 

appearing in F. The former is taken from [23], where equilibrium self-assembly of chiral mesogens 

is explored. The free energy includes a Landau expansion in terms of even powers of the invariants 

of Q and the elastic energy that penalizes deviations from the cholesteric order (L1), and splay-

bend-twist distortions (L2). The flow contribution F considers the couplings between the 

symmetric A part of the velocity gradient and the Q tensor. 
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Appendix C. Uniaxial Approach Analysis 

We now provide the mathematical details of the uniaxial approach used to analyse eqn. 2.6a where 

the equations are written in terms of the scalar order parameter S and the director angle . At the 

end it also combines the parameter  (eqn. (A8.h)) that encapsulates the effect of strain over 

vorticity in terms of the invariants of A and W , and which is a function of .  

The uniaxial approach consists in assuming the biaxiality is negligible (see Figure 2.4 which 

supports this assumption where the biaxiality order parameter is plotted as a function of De) which 

reduces the Q-tensor to the following: 

( ) ( ) ( ( )) ( ( )) ; ( ( )) (cos ( ),sin ( ),0)
3

t S t t t t t t    
 

   
 

I
Q n n n  (C.1) 

When eqn. C.1 is introduced in eqns. 2.3a and after carrying out the appropriate tensor operations, 

two coupled scalar nonlinear ordinary differential equations equations can be extracted, one for 

the scalar order parameter and one for the director angle: 
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     

  
    
  
 

 (C.2 a, b) 

The steady-state solutions lead to the following relationships: 
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 (C.3 a, b, c) 

By assuming  = 0, eqns. (C.3 a – b) reduce to eqns. 2.9 a, b. Let us analyze the particular cases 

for pure vortex flow ( = -1) and pure elongational flow ( = 1), that shed light on the results 

shown in Figures 2.7 a-b and Table 2.2. 

a)  = -1 

In this case, to avoid the singularity, it is convenient to multiply eqn. C.3c by (1+)2:  

 

  

2
3 2 2

22 2 2

2 (3 144 / )4 64
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De S S S
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    
 

 (C.4) 

For the case of low De, the resulting equation is dominated by the cosine term yielding: 

 3 2 22 (3 144 / ) 0

cos 2 0

US US U R S



    


 (C.5) 

This indicates the steady-state value of S is given by the stable thermodynamic root of the free 

energy, which for the case analyzed of dilute collagen solutions is the isotropic value S = 0, 

meanwhile the angle remains at -45o (see Fig. 2.7b).  For the case of high De, the reactive parameter 

term dominates which yields the following relationship: 



187 

 

 2

6
0

4 2 1

S

S S


 
 (C.6) 

This indicates the isotropic state (S = 0)  is the steady-state solution for high De conditions under 

pure vortex flow which means the mesogens in dilute solutions  do not achieve any order when 

submitted to these flow conditions and would coincide with the horizontal line from figure 2.8.   

b)  = 1 

For the pure elongational flow, eqn. C.3a leads to the following condition valid for all De: 

sin2 0   (C.7) 

This demonstrates the strong aligning character of elongational flows, where the orientation of the 

mesogens is parallel to the x-direction of the four roll geometry (Fig.2.3g) for all flow strengths. 

To analyze the order in such direction, Eqn C.3c reduces to: 

    
2

3 2 2 2 22 (3 144 / ) 4 4 5 1 0US US U R S De S S S            (C.8) 

Low De shows S tends to its thermodynamic root (i.e. S = 0) (Fig 2.7a).  For moderate De the roots 

of full polynomial (C.6) must be evaluated and the resulting value of the scalar order parameter S 

depend on , De and R. Under high De, the second term on the left-hand side of eqn. (C.8) 

dominates and the only physically significant root of the resulting polynomial is S = 1 as can be 

seen in fig. 2.7a.     

Finally, we can combine eqn. A.8h from appendix A.1 with eqn. C.3c. This eases the analysis 

allowing to separate the components of flow induced alignment (FIO) into the material properties, 

flow induced order and the kinematic contribution: 
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The flow induced orientation FIO can be better explored in terms of the kinematic parameter as 

follows in terms of the director angle : 

(material property, flow-induced order, kinematic ratio)
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 (C.10) 

To summarize the results regarding the state of orientation, eqn. C.3c written in terms of  leads 

to the equation of a unit circle plotted in figure C.1: 
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Figure C.1. Unit circle defined by eqn. C.11a where flows with high vorticity contribution are concentrated in the 

lower part (green markers), flows with high strain are concentrated in the upper part (blue markers) and flows similar 

to simple shear in the intermediate region (red markers) and optimal processing conditions (cyan line) see section 

2.5.2 . 

Comparing Figure C.1 with Table 2.2 and Figures 2.7 a-b and 2.8 we see that all flow types and 

strengths can be summarized and represented around a unitary circumference with all the 

components affecting the complete state of orientation of the mesogens i.e. ,  , De, U and 

R. In particular high vorticity tends to minimize sin2 and maximize cos2, and high strain tends 

to maximize sin2 and minimize cos2. Shear flow can approximate these limits only by using the 

flow strength i.e. is close to the region of pure strain with low De, however this implies low order 

(S) and the region of pure vortex with high De, but in this case it implies high order with orientation 

of -45o, as shown in Fig. 7 a-b. It is worth mentioning the optimal processing conditions are also 

included in this circumference and is depicted in figure C.1 as the cyan line which is closer to the 

maximized region of sin2
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Appendix D 

This appendix presents mathematical details for the derivation of the integrated phase ordering-

mass transfer model based on the Landau-de Gennes Q-tensor theory and the anisotropic mass 

diffusion equation in time-dependent geometry. The mathematical description of liquid crystals 

used in this paper is at the mesoscopic scale and is written in terms of the second moment of an 

orientation distribution function (ODF) which is the definition of the Q tensor as expressed in eqn. 

(D.1 a-b): 

 

 

2/ 3 ( ) ; ; ( ) 0

3

Td tr

S P

   

 
    

 

Q uu I u u Q Q Q

I
Q nn mm ll

                                                                      (D.1 a-b) 

This symmetric and traceless tensor can be parameterized in terms of the director triad vectors n, 

m, l and two scalar order parameters (S,P) that result from a linear combination of the eigenvalues 

Q.  The unit vector n is known as the director or average orientation and S is known as the uniaxial 

scalar order parameter.  From equation (D.1a ) we find: : 2 / 3; 2 / 3  Q nn Q n nS S . Specific 

components of Q such as Qxx are found from: xx x x x xQ : ; 1  Q δ δ δ δ . Likewise nx is found from  

xn 3 : / 2 Q nδx S . 

The total free energy density f can be expressed as the sum of the homogeneous contribution which 

is a Landau expansion in terms of appropriate invariants of Q and proportional to the so-called 

nematic potential U. This nematic potential U is a dimensionless concentration with respect to the 

critical phase transition volume fraction. The second contribution to the free energy is known as 

the elastic free energy from modes of deformation, each associated to an elastic constant Li. For 
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chiral mesogens we consider two terms, one related to the twist deformation and intrinsic chirality 

associated to L1 and the second encompassing other common modes of deformation and are 

associated to L2. The total free energy F is given in eqn. (D.2 b): 
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                                       (D.2 a-b) 

where F is the total free energy and f the free energy density. The evolution drives the system to 

the minimum energy given the initial configuration and a given set of boundary constraints. Given 

the fact the Q tensor is not a conservative field, it follows the Langevin-type dynamics where the 

time derivative of Q is proportional to the so-called molecular field, which is the functional 

derivative of the total free energy with respect to variations in Q:  
[ ]

/ Q
s

F  , where [s] denotes 

symmetric and traceless.   The pre-factor corresponds to the mobility as expressed in eqn. (D.3 a): 
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                             (D.3 a-b)  

where Dr is the rotational diffusivity (with reciprocal time dimension i.e. [=] 1/time), c the number 

of molecules per unit volume, kB the Boltzmann constant, T the absolute temperature. The 

distinguishing feature of the model derived for this paper is the variable nematic potential U(x,t) 

which is a function of the solvent volume fraction w(x,t). Therefore the information resulting 

from changes in the mass transfer equation for the solvent w are introduced to the Q(x,t)  tensor 

dynamics through the nematic potential .  On the other hand, the mass transfer equation for the 

solvent is written in terms of the divergence of the mass flux. We consider here an anisotropic 
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constitutive equation with an isotropic Diso and anisotropic Dani diffusivity constants.  This 

anisotropic relationship include gradients in the solvent concentration and a bilinear function of Q 

and wc  as expressed in eqn. (D.4 a-b): 
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                                                                    (D.4 a-d) 

To derive the equation that takes into account the overall total volume reduction due to water loss 

from the system, we use the mesogen mass conservation within the film. 

( ) ( )

( ) ( )

0; 0

0

c c c
V t V t

c
c

V t S t

d d
c dV dV

dt dt

dV dS
t

 




 


  



 

  v k

                                                                                   (D.5 a-c) 

where cc is the mesogen mass concentration, v the velocity of the control volume and k the unit 

normal to the corresponding surface. The first term on eqn. (D.5 c) can be expressed in terms of 

the divergence of the flux of the solvent, which then can be transformed to an integral form by 

using Gauss’ integral transformation. Such integral is then evaluated at the relevant surfaces and 

by making use of the cross-section average definition 

( , )

( ) S
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A t
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

x

furnishes the equation 

for the film thickness h(t) (in the vertical direction):  
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                                                                                                                              (D.6) 
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The physical interpretation of eqn. (D.6) is given as follows: the rate of change of the film thickness 

is proportional to the flow of water leaving the film through the side boundaries of the geometry, 

however this flow depends on the order of magnitude of the average surface flux multiplied by its 

respective cross section which is being modified (it decreases) as the film shrinks vertically.  The 

integrated phase ordering/mass transfer model in an evolving geometry is given by equations D.3-

D.6 and is solved numerically using finite element methods as discussed in the paper. The number 

of differential equations are five partial differential equations for the Q-tensor, one partial 

differential equation for cw, and one ordinary differential equation for h, for a total of seven 

differential equations. 
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Appendix E.  

This appendix provides details regarding the particular values of the nematic potential U and its 

impact on the homogeneous free energy. When the homogeneous free energy is expressed in terms 

of the scalar order parameter S, the particular value of U provides with the shape to the function 

and hence indicate the stable thermodynamic state in terms of S.  For collagen solution po has a 

small effect on stability thresholds and is not discussed here; see [7].  The isotropic state is stable 

when U is low and the free energy has only one minimum. Increases in U change the shape of the 

free energy and a second minimum is obtained yet of higher energy than the isotropic state. The 

particular value where the second minimum appears is U** = 8/3. Further increases in U lead to a 

stable ordered state when the second minimum is a lower energy state and the range between 8/3 

and 2.7 corresponds to local metastable state and the upper bound is denoted as UIC and indicates 

both minima have the same energy, thus both states: the disordered and ordered are stable. Higher 

values indicate the ordered state is the stable state and the concentration denominated as U* is the 

metastable limit. These values are depicted in figure E1. 

 

Figure E1. Homogeneous free energy as a function of the scalar order parameter for varying nematic potential U. 
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 Appendix F.  

This appendix presents additional plots and surface plots to support the discussion in section 3.6. 

We first present a detailed figure where the height of the film is plotted as a function of time in 

figure F1 for varying  as indicated in the legend. 

 

Figure F1. Film height as a function of time as the film dries.  

The figure shows that the exponential decay of h(t) increases its rate as the time scale ratio  

increases.  The intermediate green curve corresponds to the synchronized phase ordering-water 

removal mode that yield a defect-free film. The lower (blue curve) and faster (red curve) decays 

lead to cellular patterns and polydomain patterns, respectively. 

 

Next we discuss the film patterns in the three regimes: monodomain, monodomain-cellular, and 

polydomain modes.  To elucidate the underlying mechanisms it is best to use different quantities 

related to the Q-tensor (phase ordering) and  choose the scalar order parameter S(y,z,t), and 

Qxx(y,z,t), =Q:xx.  For the water removal rate and thermodynamic transitions we use the mesogen 

dimensionless concentration U(y,z,t) and the two non-zero components of the mass flux vector 
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J(y,z,t). We wish to show evidence that when the time scale ratio is lower  <  or higher  > 

 than the critical value ~10-4), a perfectly aligned helix does not emerge, simply because 

the water withdrawal rate is either too slow (monodomain-cellular mode) or too fast (polydomain 

mode), in qualitative agreement with experiments. 

(i) Monodomain Transition Mode (10-4) 

Figure F2 shows the surface plots of S and |nx| for increasing times as indicated in figure 3.4 

and the curves shown in figure 3.5 are extracted from the presented surfaces at the halved 

height of the computational domain.  The upper figures F2 show a planar stable phase ordering 

front and a decrease in h. The bottom figures F2 show that the director remains aligned in the 

interior and that it is compatible with the helical front moving from the edges towards the 

interior. 

 

Figure F2. Scalar order parameter S (a-c) and out of plane component of the director nx (d-f) for increasing times as 

indicated in figure 3.5, showing a relaxation of S in regions where the stability threshold (U=3) has not been reached 

but the para-nematic director persists leading to a homogeneous helical axis. Mondomain mode for  = 10-4. 
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(ii) Monodomain-Cellular Mode (10-4) 

Figure F3 shows the surface plots of the microstructure in terms of Qxx and the change in the 

mesogen concentration U for increasing times as indicated in figure 3.6. These surface plots show 

the appearance of the cellular zone due to the presence of a presence of a pre-cholesteric state close 

to the central region as observed in figure 3.6.  

 

Figure F3. Qxx surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (t* = 1000, 3000, 8000) in 

the simulations and the nematic potential U (d-e) for the same times for  = 1x10-5 showing a homogeneous helical 

axis forming from the edge toward the central region of the cross section. 

 

(iii) Polydomain  Mode (10-4) 

Figure F4 are analogue surface plots to figure F3 for  = 10-3 and shows the inhomogeneity in the 

helix formation due to fast diffusion. The curves associated to the presented microstructure and 

mesogen concentration surfaces are presented in figure 3.7.  
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Figure F4. Qxx surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (t* = 50, 200, 5000  and 

the nematic potential U (d-e) for the same times for  = 1x10-3 , showing a homogeneous helical axis forming from 

the edge toward the central region of the cross section. 

 

Next we focus on the cellular patterns obtained in the central region of the film when water removal 

rates are slow (< *) .  These cellular patterns correspond to distorted 2D blue phases and are 

common in the absence of 1D directed self-assembly [7]. Figure F5 shows and amplification of 

the polygonal structure obtained for the mono-domain/cellular mode (< *)  in terms of Qxx 

(left) and S (right) where it is observed the latter vanishes at the vertices.  The hexagonal cellular 

patterns is clear in the S-plot , which also shows a few penta-hepta defects [7] due to its random 

origin.  The central region of each hexagon is characterized by the presence of non-singular  core 

2+ disclination   and by singular - defects at the N vertices.   The total topological defect charge 

C  inside each cell follows Zimmer’s rule [7]:  2 / 2 C N , which for N=6, yield C=2. 
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Figure F5. Amplification of the cellular region at the central region of the film for  = 10-5, in the monodomain-

cellular mode. 

 

Next we focus on the relation of the mass flux vector under synchrony ( mondomain mode) and 

under slow water removal rate( monodomain-cellular mode). Figures F6 and F7 present the flux 

vector components Jy and Jz for  = 10-4 and 10-5 respectively for increasing times. The former 

shows the homogeneity in the mass flux vector components for all times of the simulations and 

the latter shows homogeneity for early times but   inhomogeneity for later time.  The non-negligible 

mass flux Jy in the vertical direction is an indication of the loss of stability of the planar 1D phase 

ordering front triggered by slow water removal rate. 
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Figure F6. Jy and Jz components of the flux for  = 10-4 (monodomain transition mode; perfectly synchronized 

water rate removal) at t = 100 (a-b) and t = 5000 (c-d) showing the homogeneity in the “z” component at all times and 

very weak contributions arising from the microstructure in the “y” component for late times. 

 

Figure F7. Jy and Jz components of the flux for  = 10-5 <  (monodomain-cellular mode; slow water rate removal) 

at t = 1000 (a-b) and t = 8000 (c-d) showing the homogeneity in the “z” component at early times and contributions 

arising from the microstructure in the “y” component at later times. 
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Appendix G. Details on Figure 4.5 and MayaVi Visualization Tool 

The following is the supplementary information regarding figure 4.5 and the visualisation tool 

Mayavi which is a scientific data visualisation in Python available for Windows and MacOSX as 

part of the Enthought Python Distribution and packaged in other OS such as Ubuntu or Debian. It 

provides an easy and interactive visualisation for 3D plotting which is why it was used here. This 

tool was used to provide the visualisation of the limit cases discussed in the article of 0o and 90o, 

however any case can be visualised as will be shown here. The full documentation regarding 

Mayavi can be found in the following link: http://docs.enthought.com/mayavi/mayavi/  

The visualisation application has a Python command line (figure G.1) where the director field can 

be defined but as an alternative, one can create a Python script including this information, which 

can be run in the Mayavi application under the file menu. Figure G.1 shows the start-up screen 

when launching the software.  

 

Figure G.1. Start-up screen of the 3D visualisation application Mayavi 
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Once the director is in the Mayavi, the next step is to hide the vector field and create the incision 

plane which is achieved by adding a “VectorCutPlane” in the scene. By default this plane will have 

its origin in the middle of the domain and will have a normal vector which defines its orientation 

pointing at (i, j, k) = (1, 0, 0) and arrows will displayed in this plane. To create the visualisations 

showed in the paper, the vector field is hidden because we are only interested in the oblique cuts 

and the normal vector is adjusted depending on the oblique angle desired. Further options that can 

be adjusted are the type of glyph shown (e.g. arrow, dash, hooked arrow, etc.), number of points, 

type of arrangement (random or non-random), and scale factor. The default options are shown in 

figure G.2 where the incision plane is located in the middle of the domain and the orientation of 

the normal vector is the x positive direction.  

 

Figure G.2. Default visualisation of the ideal plywood architecture showing arrows with the plane oriented in the 

positive x direction in with origin in the centre of the computational domain. 
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Adjusting the type of glyph, number of elements, the orientation and origin of the incision plane 

the following figures (G.3 and G.4) can be created: 

 

 

 

 

 

 

 

Figure G.3. Oblique cut created in Mayavi with  = 2.86o and p0 = 1 isometric view (a) and incision plane view (b). 

 

 

 

 

 

 

Figure G.4. Oblique cut created in Mayavi with  = 28.6o and p0 = 1 isometric view (a) and incision plane view (b). 
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L vs s (Ideal Plywood)
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L vs s (Two-pitch plywood)
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Figure G.5. Periodicity L plotted as a function of the spatial coordinate s for two ideal plywoods (a) where no 

variations are observed and for a two-pitch plywood (b) where discrete variations can be identified allowing the system 

to be treated as ideal in a piecewise fashion. 
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Appendix H.  

The following is the supplementary information presenting the experimental fitting on the data 

published by Libby et al [24]. Figure H1 shows the polynomial fitting to the data presented by 

Libby et al regarding the spatial dependence of the pitch in the aurigans scarab.  
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Figure H1. Experimental fitting of the pitch spatial dependence, solid line indicates the experimental values from [24] 

and the red dash line indicates the fitting. 

 

Figures H2 and H3 present amplifications of the in silico cross sections used in the characterization 

methodology.
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Figure H2. Larger scale image of the incision plane corresponding to  = 25o.  
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Figure H3. Larger scale image of the incision plane corresponding to  = 15o
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Appendix I. 

This appendix contains information regarding the detailed flowchart in the error assessment 

procedure, comparison of the incision angles fixed (M) in the Mayavi visualizations and 

calculated from the measurements of the herringbone angle (m), a mathematical description of the 

sensitivity of the pitch in terms of the two sources of errors  and L, discussed in Section 6.5.  

The flowchart for the error assessment, described in Section 6.5, is shown in figure I1.  

 

Figure I.1. Flowchart detailing the error assessment procedure.  
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The left stream is known information (, po) or exactly calculated pattern parameters  M

cL ,βM

since the plywood was pre-specified and then visualized in the Majavi software. The right column 

is information measured   mL ,βm
 and calculated  ocp , c on the in-silico 2D patterns found from 

slicing a box the plywood also in the Mayavi environment. The last box indicates the error 

calculations. 

Table I.1 shows the negligible errors found for the incision angles found in all cases.  Hence this 

particular quantity will not affect the predictions of the domain size po. 

                                                                Table I.1. Incision Angle Errors ε (α) 

αM αcalc ε (α) 

94.04 93.92 0.13% 

98.05 98.29 0.25% 

112.99 113.29 0.27% 

125.26 125.60 0.27% 

140.24 139.44 0.57% 

151.46 151.52 0.04% 

81.95 81.71 0.29% 

74.21 73.53 0.91% 

54.74 54.40 0.61% 

 

A mathematical description of the pitch error sensitivity is as follows: the error in the calculation 

of the pitch is a function of errors emerging from  and L: 

( , )
o op p L                                                                                                                                      (I.1) 
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Given the results in Table I.1, the differential 
opd is: 

o o

o

p p

p L

LL

d d d

 

 
  

 

   
        

                                                                                                  (I.2) 

The partial derivatives are expanded as follows: 

,o o o op p p po o

o L o L

p p L

p p L 

   

    

     
 

       
                                                                                      (I.3) 

From the definition of the errors, given these are linear functions of their respective variable, the 

derivatives involving these terms will have order of magnitude of the unity: 

(1); (1); (1); (1)o op p

o o L

L
O O o o

p p

 

 

  
   

   
                                                                             (I.4) 

On the other hand the terms with the derivative of the pitch are the ones that determine the order 

of magnitude of the error. The former leads to a term involving the product of sin cos   while 

the latter cos  being smaller the former.  

   sin cos ; coso op p
f g

L
  



 
 

 
                                      (I.5) 

Since op





 

 

 
and o

L

p L

L 

 

 
can also be written as: op






and o

L

p






, which can be interpreted as the 

change of the pitch prediction with respect to errors in the measured variables, from the above 
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analysis and (I.5) ,  it can be inferred that the pitch predictions are more sensitive to errors in L 

than in :  

 o o

L

p p

 

 


 
                    (I.6) 

In conclusion, for high accuracy in po, the error in L should be minimized by careful measurements 

and high precision instruments.  
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