
INFORMATION TO USERS

TIùs manuscript has been reproduced from the microfilm master. UMI

films the text directly trom the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others May be

ftom any type ofcomputer printer.

The quality of this reproduction is dependent upon the quality of the

cOPY submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper a1ignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back ofthe book.

Photographs inc1uded in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photograpmc prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howelllnfonnation Company

300 North Zeeb Road, AnD AIbor :MI 48106-1346 USA
313n61-4700 800/521-0600

(
QUERIES ON MUTUALLV NESTED

OBJECTS, MOTIVATED BV GIS
APPLICATIONS

by

Walid Saliba

A thesis submitted to the Faculty of Graduate

(Studies and Research in partial fuifi1lment of

the requirements for the degree of

Master of Science

School of Computer Science

McGili University, Montreal

February 1997
(

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1 A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A ON4
Canada

Your file VoIre référence

Our file NoIre réfrJrence

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownersbip ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be prînted or otherwise
reproduced without the author's
pemnssion.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29776-4

Canada:

(

(

(

Abstract

Motivated by Geographical Information Systems (GIS) applications, we introduce

a new data model for mutually nested objects. Combining features from relational

as weIl as object-oriented database systems, our data model is efficient for queries

involving multiple access patterns. By maintaining symmetrical relationships

between entities, we allow nesting to be fonnulated dynamically at the query level

rather than the data model level, thus dissociating the data structure from the

access method. In addition, we do not favor one access pattern over another by

clustering data in one particular manner, giving therefore flexibility and

performance to our system.

In order to integrate nesting into the relational algebra, we propose an extension to

Relix, which is an academic database management system. We then show how

those modifications can he used in a wide variety of queries~ provide an algorithm

to translate nested queries into flat relational expressions, and finally show that

similar improvements can be applied to SQL allowing nested queries to be

expressed more naturally.

ii

(

(

(

Abstrait

Motivés par les systèmes d'infonnation à référence spatiale (SIRS), nous

présentons dans cette thèse un nouveau modèle de données pour les objets qui

s'incluent mutuellement. Ce modèle regroupe des idées qui proviennent des bases

de données relationnelles ainsi que des systèmes orientés-objet. Les relations entre

les entités du modèle sont toujours symétriques, ce qui fait que la hiérarchie de la

structure est déterminée par la requête et non pas par le modèle lui-même. Ainsi,

nous dissocions la méthode d'accès aux données de la structure physique du

modèle. En plus, il n'y a aucun regroupement des données selon une méthode

d'accès particulière, ce qui rend le modèle flexible et efficace pour les requêtes

qui accèdent à la base de données par diverses méthodes d'accès.

Nous intégrons notre modèle dans l'algèbre relationnelles en proposant une

extension à Relix, un système académique de gestion de bases de données

développé à l'université McGill. Nous montrons ensuite comment ces

modifications peuvent être utilisées pour exprimer un grand nombre de requêtes

hiérarchiques. Nous fournissons en plus un algorithme qui traduit les requêtes

hiérarchiques en expressions relationnelles simples. Ces mêmes changements sont

ensuite introduits à SQL, ce qui nous permet d'exprimer les requêtes

hiérarchiques de façon plus simple et naturelle que le SQL standard.

iii

(

(

(

Table of Contents

1. Introduction 1

1.1 Motivation 1

1.2 Literature Survey 2

1.3 Scope and Outline 6

2. A Data Structure for Complex Objects 8

2.1 The Proposed Structure 8

2.1.1 Object Identifiers 10

2.1.2 Link Relations 11

2.1.3 Building Mutually Nested Relations 12

2.2 Comparison to Other Representations 14

2.3 Modeling of Geographical Data 17

3. Relix 27

3.1 Introduction 27

3.2 Terminology 27

3.3 Relational Algebra 28

3.3.1 Assignment. 28

3.3.2 Selection 29

3.3.3 Projection 30

3.3.4 T-Expressions 31

3.3.5 aT-Expressions 32

3.3.6-Joins 34

3.3.7-joins 38

3.4 Scalar Expressions 38

iv

(

(

(

3.5 Empty Projections 41

3.6 Domain Algebra 42

3.6.1 Horizontal Operators 44

3.6.2 Vertical Operators 45

3.7 Closure 50

3.8 Order of Execution 51

4. User's Manual 53

4.1 Introduction 53

4.2 Changes Proposed to Relix 53

4.2.1 Selection ~ 54

4.2.2 Projection 55

4.2.3 Attribute Migration 58

4.3 Is That Ali? 61

5. Implementation 62

5.1 Introduction 62

5.2 Flat Queries 62

5.3 Nested Expressions in the Selection Clause 63

5.3.1 Horizontal Expression with no Predicates 63

5.3.2 Expression Showing the Symmetry in the Data Model 64

5.3.3 Horizontal Expression, a Single Predicate 65

5.3.4 A Reduction Expression 68

5.3.5 A QT-Predicate 70

5.3.6 A QT-Counter 71

5.3.7 Two "anded" Predicates 72

5.3.8 Two "ored" Predicates 74

5.3.9 The "nof Operator '" 75

v

(

(

(

5.3.10 Four Predicates with Parentheses 76

5.4 Nested Expressions in the Projection Clause 78

5.4.1 Horizontal Relational Expression 78

5.4.2 Vertical Relational Expression in the Projection Clause 80

5.4.3 Another Type of Horizontal Relational Expressions 83

5.5 Miscellaneous Queries 86

5.5.1 Abstraction From a Relation to an Attribute 86

5.5.2 Two Levels of Nesting 89

5.6 An Aigorithm for Parsing Nested Queries 91

6. Nested SQL Queries 95

6.1 Introduction 95

6.2 General Presentation of SQL 95

6.3 Changes Proposed to SQL for Handling Nested Queries 96

6.3.1 Selection: The WHERE Clause 97

6.3.2 Projection: The SELECT Clause 98

6.3.3 Functions in SQL 99

6.4 Examples of Nested Queries 100

6.4.1 SELECT Clause in the WHERE Condition 100

6.4.2 SELECT Clause in the Projection List.. 101

6.4.3 Group Functions in the WHERE Clause 103

6.5 Comparison Setween Nested and Standard SQl ._ 104

7. Conclusion and Future Work 10&

vi

(

(

(

List of Tables

Table 2-1 Sampie data for the CHILD relation 13

Table 2-2 Sampie data for the PARENT relation 13

Table 2-3 Link relation for the sampie data 14

Table 2-4 Sample data for the MUNICIPALITY relation 18

Table 2-5 Sample data for the SHOPPING_MALL relation 19

Table 2-6 Sample data for the RESTAURANT relation 19

Table 2-7 Sample data for the MOVIE_THEATRE relation 2D

Table 2-8 Sample data for the MOVIE relation 20

Table 2-9 Link between municipalities and shopping malis 24

Table 2-10 Link between municipalities and movie theaters 24

Table 2-11 Link between municipalities and restaurants 25

Table 2-12 Link between shopping malis and movie theaters 25

Table 2-13 Link between shopping malis and restaurants 25

Table 2-14 Link between movies and movie theaters 26

Table 3-1 Tuples of the SALES relation 35

Table 3-2 Sampie data for the PURCHASE relation 35

Table 3-3 Result of the IJOIN_SALES_PURCHASE query 35

Table 3-4 Result of the UJOIN_SALES_PURCHASE query 36

Table 3-5 Results of the DJOIN_PURCHASE_SALES query 36

Table 3-6 Sample data for the relation P 39

Table 3-7 Sample data for the relation Q 39

Table 3-8 Result of R ~ {P + Q) .40

Table 3-9 Result of R ~ {Q - P) 40

Table 3-10 Result of the empty projection BOOLEAN_SOO 41

vii

(

(

(

T~ble 3-11 Tuples of the relation GRADES .42

Table 3-12 The MARKS relation .43

Table 3-13 The CLASS_AVERAGE .44

Table 3-14 Tuples of the relation ALL_GRADES .47

Table 3-15 Tuples of the relation ALL_MARKS .48
1

Table 3-16 Tuples of the relation ALL_CLASS_AVERAGE .48

Table 3-17 The professor's earnings in the last five years 49

Table 3-18 Result ofTATAL_EARNINGS 49

Table 3-19 The CLASS_AVERAGE relation 50

Table 5-1 RS_COUNT with RS_ID 82

Table 5-2 RS_COUNTwith MUJD 82

Table 5-3 Initial link relation between RS_COUNT and Q 83

Table 5-4 Finallink relation between RS_COUNTand Q 83

Table 5-5 Correspondence table between the logical operators and the J.l-join 92

viii

(

(

(

List of Figures

Figure 2-1 Graph representation of mutually nested relations 13

Figure 2-2 Graph showing the links between objects ofthe data set 21

Figure 2-3 Geographical relationship between objets of the sample data 23

Figure 3-1 Analogy of ~-joins with set graphs 37

ix

(

(

Acknowledgment

1 would like to express my sincere gratitude to my supervisor, Professor Timothy

Merrett, for his guidance, his extraordinary patience, and his continuous

motivation and reassurance. He helped me reach beyond my personal limits and

for that 1 am very thankful.

Many thanks go also to my friends who contributed to this thesis. Isabella

Adomato, who helped me generously in the editing, and took time off her

vacation to assist me; Elie Saadé, for the fun time we had together while studying

for our degrees; Manon Breton, for her love, understanding and enormous support

throughout the course ofmy work.

Most of all, 1 am very grateful to my parents, who taught me the vîrtues of

knowledge and education. This thesis is my way of saying Thank You.

x

(

(

(

1. Introduction

1.1 Motivation

The motivation behind this thesis emerges from our interest in the field of

Geographical Information Systems (GIS). Working with GIS under a relational

database system, we felt that certain relationships were difficult ta model

efficiently and naturally. For example, if we think of rivers and municipalities as

complex abjects, they both mutually include each other; a river may run through

several municipalities, and each municipality can in turn contain several rivers.

This type of symmetrical relationship between entities bas not been thoroughly

investigated in the eontext of nested queries. Renee, we decided ta design a data

model suitable for this type of mutually nested objects and which would

accommodate the following additional requirements:

• many-to-many relationships between objects;

• an abject May be shared by an unlimited number of complex abjects;

• an objeet can at the same time he independent as well as embedded in

another object;

We have approached the construction of our data model from an information

retrieval perspective. Based on our experience in the field of GIS, we started

collecting typieal queries from various applications. After a while, we realized

that there was a common behavior among all GIS queries we investigated: The

access pattern in a given query was imposed dynamically by the query rather than

by the data model.

For example, wben we ask for restaurants in a given municipality, we first locate

the municipality and then search for corresponding restaurants. On the other hand,

1

(

i(

(

if we need to find municipalities that do not have a McDonald, we reverse the

order of the search, regardless of the data structure. 8ince clustering objects in a

single way can only favor the performance of one access pattern over others, we

decided to pursue a data model which allows dynamic object definition. That, we

believe, achieves better overall performance for applications with multiple access

patterns, such as GIS. Therefore, we decided that the structure of the data

representation should be orthogonal to the formulation of the query, and

symmetrical with respect to the related entities.

The objective of this thesis is to derive a data model for complex objects which

answers to the above stated requirements. Based on that model, we would like to

formulate nested queries using a proposed extension to an existing academic

database management system. We will not actually build neither the data model

nor the extensions to the database language, but will provide the reader with an

algorithm for a parser that would read the nested query and translate it into a

series of flat relational expressions. Finally, we will attempt to integrate our

model and the language extensions to a commercial database language, namely

SQL.

1.2 Literature Survey

Work on extending the relational data model started shortly after Codd [1] first

introduced the relational model in 1979. Researchers interested in that field at the

time agreed that the relational model and the relational algebra were not suitable

for engineering and CAD applications. Codd's first normal form was too

restrictive for the emerging applications of database systems. Although many of

them used engineering applications to justify the much needed extension, very

few ofthem actually used a CAD or an engineering application to build their case.

The scope of this thesis does not allow us to make a full survey of the literature on

nested relations and complex objects. However, we cao distinguish two major

2

(

(

(

approaches to overcoming the limitations of the relational model, namely the non­

first-normal-form model and the semantic model. In the remainder of this section,

we will review the major influence of each of those schools on our work.

The pioneer of the non-first-normal-form data models is Makinouchi [2]. He

proposed to generalize the relational model by relaxing the first normal form

proposed by Codd. He also proved that in this case that the second and third

normal forms still apply. In his model, however, relationships between objects

were hierarchical, and once a relation was nested, it became completely dependent

on the parent relation.

Following the footsteps of Makinouchi, Jaeschke and Schek [3] introduced the

concept of relational attributes in their NF2 data model, and added two

restructuring operators, namely NEST and UNNEST. The NEST operator forms

out of a set of attributes a relation and makes it embedded in the original relation.

The UNNEST operator extracts a nested relation one level up. Thomas and Fisher

[4] expanded the number of arguments to the NEST and UNNEST operators from

one attribute to an unlimited number. They also allowed nested relations of

arbitrary but fixed length.

For a certain period of time, NEST and UNNEST were the corner stone of the

non-first-normal-form approach. These operators, however, were not what we caU

well-behaved. For one thing, NEST is not the inverse ofUNNEST [8], so a NEST

followed by an UNNEST might lead to a different relation than the original one.

Second, The NEST operator is not associative [8], so the nested relations may

have alternative representations depending on the order of the nest operations [5].

In order to restrain the damage of the NEST and UNNEST operators, several

authors imposed restriction on the structure ofthe nested relations.

For Roth et al. [6, 7, 8], for example, tuples had to be functionally dependent on

the atomic attributes of the relation, and they named that structure the partitioned

normal form (PNF). They also defined a relational calculus, a relational algebra

3

(

(

.(

and restricted them to relations that are in PNF. That way, there was always a

sequence of NEST operations that will be an inverse for any sequence of valid

UNNEST operations.

Several authors were more concemed with expanding the NF2 model described in

[9,10], such as Pistor and Andersen [11] who allowed atomic attributes as well as

lists, multisets and tuples in an orthogonal fashion. Gthers invested in

implementing database management systems based on the non-first-normal-form,

such as VERSO [12] and DASDBS [13], or on expanding SQL like query

languages [Il, 7] to express nested queries according to their models.

The non-first-normal-fonn data model has contributed enormously to our work.

Most important, it showed us that the NEST and UNNEST operators were not the

best way to deal with nesting. Using these operators forces the data structure to

change according to the way a query is accessing the data, sometimes even

causing the loss of information in the database. Besides, their ill behavior imposes

too many constraints on the data model. Fortunately, not aU pathways created by

the non-first-normal-form approach were to be avoided. The nested relational

algebra that evolved in this paradigm, for example, is very valuable to our work.

The extensions to selection, projection, joins and other relational operators that we

find in [7, 8] were an inspiration to our own extension proposed to Relix.

The best known of the semantic data models is probably the Entity-Relationship

(ER) model introduce by Chen in 1976 [i4]. This paradigm includes other

models, however, such as the Functional Data Model (FDM) [15], the Semantic

Data Model (SDM) [16], RMIT [17] and IFO [18]. We find in the semantic

models the seeds of two important concepts used in the design of our data model,

namely the explicit representation of objects and the distinction between organic

and composed classes ofobjects.

The relational model uses tuples to represent entities. Each entity is defined by a

unique set of attributes in the relation called a key. Contrary to that philosophy,

4

(

semantic models are object-based, which means that objects are represented and

identified independently from their associated values. This allows many complex

objects to share the same sub-object, and also enables mutual referencing and

multiple relationships between objects. This characteristic is manifested in our

data model by the use of object identifiers.

Another area where the semantic models had an important but less direct effect on

our data mode} is the definition of complex objects at a conceptuallevel. The NF2

approaches created complex objects by physically clustering certain relations

within others. On the other hand, the semantic models made a clearer distinction

between base and non-base entities [19]. A base entity corresponds directly to a

basic object in the world, while a non-base entity is composed out of base and

non-base objects. We have taken this concept even further, allowing an entity to

be perceived as organic or composed depending on the type ofquery in which it is

involved.

As can be realised from the above discussion, our work has roots in the relarional

models as weil as the semantic models, which share many traits with the object­

oriented paradigme In fact, in recent years, many researchers have explored this

evolutionary path from Relational to Object-Oriented data management systems

[20, 21, 22, 23, 24, 25, 26, 27, 28]. For instance, Pirahesh and Lindsay [23]

introduced the SQL Extended Normal Form (SQL/XNF) approach, which builds

composite objects on top of a RDBMS using views. Those views consist of

component tables and the relationships between them.

More recently, Rys et al [29] worked on performance issues related to

implementing complex objects over a commercial RDBMS, namely Oracle.

Whereas the SQLJXNF approach relies on object sharing, Rys's approach uses

data duplication to improve retrieval time, at the expense of an increased cost for

update operations. However, by duplicating data on several relational servers,

5

(

(

(

they are able ta achieve intra-transaction parallelism, which reduces the net

response time for updates.

Both systems introduce Object-Oriented features into an existing RDBMS. Other

approaches consist ofeither introducing relational features into OODBMSs [30],

or making the two coexist and manage the same data[31]. The primary advantage

ofthose hybrid systems is that they combine object-orientation to the widespread

and optimised technology ofRDBMSs.

1.3 Scope and Outline

The remainder of the thesis is divided iota six chapters. In chapter two, we build

the case for our data model for complex objects, comparing it to other data

representations in the literature. We then use that architecture to model a small

hypothetical set of geographical entities.

Chapter three is a brief introduction to Relix, the database management system on

top of which we propose to build our data model and the nested relational algebra.

We will cover only those topics ofRelix that are relevant to our thesis.

In chapter four, we look at the Relix syntax in the context of mutually nested

objects. We explain at a conceptuallevel what are the required modifications to

Relix, when to use them, and what impact they have on the end result of the

queries. This chapter does not explain ta the user how those modifications are

handled at the implementation level. Chapter five is fully dedicated for that issue.

Chapter five is the core of our research. It was the starting point in developing our

theory and our model. This chapter is a collection of nested queries covering a

wide range of nested expressions. Each query is defined in terms of the English

statement of the query, the code for the nested expression in Relix, a translation of

the nested query into flat Relix expressions, and finally a discussion about the

6

(

(

theme of that query. At the end of chapter five, we present the roles followed by a

parser that translates nested queries into flat relational expressions.

Chapter six serves the readers who are more familiar with SQL than Relix. We

tried to draw the lessons of chapters four and five and apply them to SQL. On one

hand, we propose certain extensions to SQL that would enable us to deal with

nested queries. Then, we choose three simple but representative queries from

chapter five and express them in what we called nested SQL. Finally, we highlight

the advantages nested SQL has over standard SQL.

To conc1ude the thesis, we present a review of the major contributions our work

has offered in the field of complex object modeling. We admit, however, that our

work is far from complete, and in that respect suggest various topics that need to

be pursued·.

7

(

(

(

2. A Data Structure for Camp/ex Objects

By definition, a complex object is a set of linked objects (simple or complex)

which form a single logical entity [32]. In modeling complex objects, we believe

that a clear distinction should be made between entities (objects) and the

relationships (links) they have with each other. In that regard, our model is

compatible with the general semantic model, and in particular with the entity­

relationship (ER) model [14] representation. In addition, the relationship between

objects should be defined dynamically in the query and not by static model

constructs. We argue that this data model is better suited than the nested relational

model for applications where the database system is subject to multiple access

methods.

As a test field for our model, we picked geographical information as the subject of

our study, first because geographical entities are typically complex (nested) and

second because of the growing interest in the field of Geographical Information

Systems (GIS).

In the first section of this chapter" we will introduce the reader to our conceptual

data model for complex objects. In section 2.2, we will compare our model to

existing nested models, and finally provide a full example for the modeling of

geographical objects in section 2.3.

2.1 The Proposed Structure

One of the main objectives of this research is to accommodate complex objects

into the relational mode!. In particular, we look at complex objects that are

mutually nested. Such structures were adopted under the name of "mutually

recursive objects" by M. Scholl and H.-J. Schek in [20], although their seeds

appeared earlier in the literature as "symmetric n:m relationships" [33] and as

8

(

(

~~dynamically nested relations" in [34]. They are best explained with the following

example.

Given two relations

and

CHILD (CH NAME, CH AGE)- -

We could represent the PARENT relation as a complex object defined by the

following statement:

PARENT (PA_NAME, PA_AGE, (CHILD))

(CH_NAME, CH_AGE)

where CHILD is embedded in PARENT.

On the other hand, we can equally view CHILD as a complex object with

PARENT being the nested part, as shown in the following declaration

CHILD (CH_NAME, CH_AGE, (PARENT))

(PA_NAME, PA_AGE)

Thereafter, CHILD and PARENT relations are called mutually nested. Both of

them are independent, stand alone, flat relations, yet one or the other can he

transformed ioto a complex object ifwe describe it in terms of the other.

In the following sections, we explain how mutually nested relations may he

represented in a relational database system. For that purpose, we will introduce

two major building blocks of our data model, namely object identifiers and link

relations.

9

(

(

(

2.1. 1 Object Idenfifiers

In recent years, the object-oriented approach has gained great momentum,

bringing valuable concepts to programming languages and database systems. One

main feature of object-orientation is object identity. Earlier on, object identity

gave the edge to the semantic data models [15, 16, 14, 35] over value-based

extensions to the relational mode!.

The difference between value-based and object-based systems and a discussion on

object identity can be found in [19]. In simple terms, value-based systems identify

objects using one or more attribute values called a key. Object-based models, on

the other hand, use unique identifiers to represent entities independently from

their associated attributes and values. So two tuples can have identical attribute

values and still be considered different ifthey have different object identifiers.

übject identifiers (OIDs) can he implemented using surrogates, which are unique

values for each object. They are generated intemally by the system when an object

is created, and destroyed when the object is deleted from the database. They

remain invariant and transparent to the user during their life cycle, and cannot be

reused for other objects when deleted. In the case of our data modet. OIDs are

implemented by introducing a system defined attribute to the structure of the flat

relation. For example, the schemes of the PARENT and CHILD relations defined

above would be augmented as follows:

PARENT(PA ID,PA_NAME, PA_AGE)

and

CHILD (CH ID, CH_NAME, CH_AGE)

In order to avoid naming conflicts, the names of the unique identifiers could obey

a syntax not allowed for user defined attributes.

10

(

(

(

One advantage for integratiog object identity ioto database management systems

is that objects cao be referenced directly. In absence of OIOs, a portion of the

object's structure and values must be reproduced in each relation that references

il. This is the case for value-based models where relationships between objects

can be represented only through foreign keys. Moreover, if the schema of a

relation does not include a key, then references to each tuple will require

duplication of the structure and the content ofthat tuple.

The second advantage of object identity is that it nicely represents data sharing

and mutuai referencing, which are rather cumbersome to represent in a value­

based systems [36]. In that sense, OIOs provide natural support for network

related objects as opposed to hierarchical structures.

Object identity has also several advantages at the implementation level, in

particular its ability to optimize joins [37]. This features is very useful since joins

are expensive operations and they are performed repeatedly in the context of

nested queries.

2.1.2 Link Relations

The second modeling tool we use to represent mutually nested objects are binary

link relations. Those are simple binary relations where each tuple represents a link

between two objects ofthe same or different relations. übjects in the link relations

are represented by their object identity, reducing hence the size and the structure

ofthe link relations.

A typical link relation for the CHILD and PARENT relations would be as

follows:

PACH_LINK (PA ID, CH ID)

11

(

(

Again, the name of the link relation is system generated in such a format that it is

guaranteed not to raise any conflict with user defined tables in the database.

The main advantage of using link relations is symmetry between the linked

objects. Whether we initiate a query from one side of the relationship or the other,

the process is equivalent, and the search effort is the same. Hence, we do not favor

one access pattern over another. This is coherent with our objective to represent

graph related objects rather than hierarchical structures.

Second, link relations are simple to model and easy to implement. Although we

have not covered implementation in our research, structures similar to the link

relations named Join indices have been proposed and tested against other models

in the literature [37, 38]. The conclusion was that joins indices were best suited

for applications where no particular access pattern dominated the queries. Join

indices were proven also to be good join accelerators in the relational model.

Finally, link relations reflect many-to-many relationships and enable object

sharing. Along with object identifiers, they are the essential elements of our data

model. In the next section, we will show how they can be used on a small scale to

model actual data in the CHILD and PARENT relations. .

2.1.3 Building Mutually Nested Relations

The CHILD and PARENT relations described above may be represented as two

entities linked by the relationship "IS-PARENT-OFIIS-CHILD-OF", as shown in

Figure 2-1.

12

(
IS-CHILD-OF

IS-PARENT-OF

{

(

Figure 2-1 Graph representation of mutually nested relations

We will assume that CHILD is composed of the following data:

CH_ID CH_NAME CH_AGE

CH1 Sarni 12

CH2 Patrick 6

CH3 Kim 9

CH4 Sue 6

Table 2-1 Sample data for the CHILD relation

and that the following are parents

PA_ID PA_NAME PA_AGE

PA1 Karim 45

PA2 Peter 29

PA3 Kara 29

PA4 Dana 39

Table 2-2 Sample data for the PARENT relation

13

(

(

Note that the object identifiers in this case are implernented as two characters

followed by a sequentiai number. There is no mIe, however, for generating them

in the generai case, except that they shouid be globally unique.

We are aiso given the following parenthood relationships:

• Karim and Kara are Patrick's parents;

• Sue is Dana's daughter;

• Kim and Sami are Peter's children.

The link relation between CHILD and PARENT would therefore look as follows:

PA_ID CH_ID

PA1 CH2

PA2 CH1

PA2 CH3

PA3 CH2

PA4 CH4

Table 2-3 Link relation for the sample data

2.2 Comparison to Other Representations

In his first paper about nested relations, Makinouchi [2] defines sorne properties

about nested relations. The first ofthose properties is dependence; a tuple from an

embedded relation cannot exist without the parent tuple nor independently from it.

In other words, the child entity is meaningless without its parent entity. Many

authors have also followed that path. Roth states in [8] that "... a particular

14

(

(

(

nesting scheme should not be used unless functional dependencies that enforce

Partitioned Normal Form (PNF) hold in the relation".

We believe that any object has the right to be modeled independently from other

entities regardless of what relationships it has with them. The data model should

allow the same object to stand alone independently from other objects, to be

shared by several complex objects, or to be a composite of other objects, an

depending on the access method used in the query. So the nature of the nesting is

determined dynamically by the query, and not by a static data representation.

Similar objectives were sought by Batory [39] and Mitschang [40] in the

Molecular·Atom model (MAD model), although their definition of the complex

objects is more explicit.

The main advantage of our approach is symmetry. In static nested relations we

have to introduce redundancy in order ta achieve symmetry between objects [33],

whereas symmetry cornes free if we model objects as independent entities related

by link relations. Symmetry is revealed in three fonns. First, a given sub·object

may belong to multiple abjects, in other words, it has many parents. For example,

a movie theater may belong to a shopping malI, a municipality and to a film

company. Second, a sub·object may have many child relations. So several

employees can work for a movie theater, and various movies could be playing at

the same theater. Finally, a movie theater can exist as an independent entity,

without any of its super-abjects or sub-objects. The type of relationship an entity

assumes is therefore detennined by the query and not by the definition of that

~bject.

It is important to add that symmetry cannot exist efficiently without the help of

unique object identifiers. Otherwise, the whole key of a relation has ta be

duplicated each time it is involved in a relationship with another objecte The

concept of abject identifiers is borrowed from object-oriented databases. By

introducing it into the relational data model, we hope to close the gap between the

15

(

.(

pure relational paradigm on one hand, and the object-oriented paradigm on the

other. To our knowledge, the first such effort was made by Scholl and Schek in

[20]. Their object algebra, however, is restricted to object preserving operators,

Le. to operators that do not generate new objects. Queries in their model are

considered as view definitions on stored objects, whereas our model allows

queries to create new objects. In that aspect, our model is closer to the work of

Kim [41] and Shaw [42].

Once we have symrnetry, we can upgrade the data model from a hierarchical

structure into a network representation with possible cyclic structures. In that

aspect, our approach differs from those followed in [2, 3, 8,43, 44] and resembles .

the semantic data models such as the KL-ONE semantic network [45] and the ER

diagram [14]. A positive aspect of network structures is that their physical

implementation remains independent of the way data is accessed. Since in

hierarchical data models objects are clustered in a single way (without

replication), they tend to favor sorne access patterns at the expense of others. The

result is that sorne queries run very fast while the performance of other

syntactically equivalent queries deteriorates. If the application requires a single

access pattern, then using our model introduces overhead without any gain.

Luckily, however, many applications such as engineering design, CAD tools and

GIS all involve multiple access patterns.

Unlike the nested relational approach, objects in our model are always

independent and are nested only dynamically within a given query. Rence, we

have found no need for restructuring operators such as the NEST and UNNEST

operators. This is a big advantage over the other non-first-normal-form relational

rnodeIs, since it frees us from all the drawbacks of NEST and UNNEST,

discussed profoundIy in [3,4,46,47].

Finally, like most extensions to the relational model, our modei fully supports the

flat relational approach. In fact, our aim is to have the mutually nested relational

16

(

(

model built on top of flat relational database systems. Unless users choose

explicitly to create nesting relationships between objects, relations remain

independent just as in the flat mode!.

2.3 Modeling of Geographieal Data

Using the data model defined in section 2.1, we describe in this section the data

set on which most examples and queries in the remaining of the thesis will be

based. The geographical context is chosen because it lends itself very naturally to

complex objects and nested queries. First, we will describe the objects of the data

set as stand alone objects, using flat relations. Then, we will create relationships

between these objects, and introduce the notion of nesting in the data

representation.

The basic elements of the data set are the following:

• A municipality is a geographical surface which may be described using the

following schema:

MUNICIPALITY (MU_NAME, MU_MAYOR, MU_POPULATION,

MU_AREA)

• A shopping malI may be considered either as a polygonal surface, or a

point object, depending on the detail level required. It may have the

following structure:

• A restaurant is a point object described by the following relation:

RESTAURANT (RS_NAME, RS_SPECIALITY, RS_CAPACITY,

RS_ADDRESS)

17

(

(

• A movie theater, also a point object, may have the following attributes in a

relation:

• A movie may have many attributes like the title, director, actors, producer

and so on. We restrict the movie relation in this data set to the following

schema:

The reader might have noticed that we do not store coordinates in our relations.

The reason is simply because our interest is not in the spatial representation and

handling of geographical entities, but rather in the relationships these objects have

with each other. In our case these links happen to be spatial, but that is not

restrictive by any means. In fact, the MOVIE relation is not spatial and still obeys

the same data model.

The first step in building a complex object model is to introduce object identifiers

for the tuples in every relation. Here is a sample data of the new augmented

relations:

MUNICIPALITY (MU ID, MU_NAME, MU_MAYOR, MU_POPULATION,

MU_AREA)

MU_ID MU_NAME MU_MAYOR MU_POPULATION MU_AREA

MU1 Montreal Richard Bourque 1,000,000 1,000,000

MU2 Longueuil Patrick Gagnon 300,000 700,000

MU3 London Philip Cook 1,320,000 800,000

MU4 Brossard Sue Young 400,000 400,000

Table 2-4 Sample data for the MUNICIPALITY relation

18

(

.(

SM_ID SM_NAME SM_AREA SM_BUILTIN

SM1 Eaton 200 1969

SM2 Place Longueuil 270 1986

SM3 La Baie 230 1974

SM4 Champlain 290 1984

Table 2-5 Sample data for the SHOPPING_MALL relation

RESTAURANT (RS ID, RS_NAME, RS_SPECIALITY, RS_CAPACITY,

RS_ADDRESS)

RS_ID RS_NAME RS_SPECIALITY RS_CAPACITY RS_ADDRESS

RS1 Croissant Plus Snacks 40 Eaton center

RS2 Le Sultan Lebanese 200 2354 Laval

RS3 Georgio Italian 100 827 Tashereau

RS4 Croissant Plus Snacks 30 Place Longueuil

RS5 Croissant Plus Snacks 40 1234 Milton

RS6 TikiYon Chinese 60 83 Joliette

Table 2-6 Sample data for the RESTAURANT relation

19

(

MT_ID MT_NAME MT_CAPACITY MT_COMPANY

MT1 Loews 2000 Odeon

MT2 Eaton 2550 Famous Players

MT3 Faubourg 1500 Odeon

MT4 Place Longueuil 2000 Odeon

MT5 Cinefun 1800 Famous Players

Table 2-7 Sampie data for the MOVIE_THEATRE relation

MOVIE (MV ID, MV NAME, MV DIRECrOR, MV YEAR,- - -

MV_DURATION)

MV_ID MV_NAME MV_DIRECTOR MV_YEAR MY_DURATION

MV1 Nell Judie Foster 1995 102

MV2 12 Monkeys Terry Gilliam 1995 96

MV3 The Silence of the Lambs Jonathan Demme 1994 113

MV4 Dances with Wolf Kevin Kastner 1993 92

MV5 Wayne's World Penelope Spheeris 1994 107

Table 2-8 Sample data for the MOVIE relation

Next, let us describe the initial relationships that exist between those objects.

• The municipality is the main complex objet in this data set. It may include

shopping malIs, restaurants and movie theaters.

• A shopping mali is a complex object, and can in turn include restaurants

and movie theaters.

20

(

(

• A restaurant is an atomic object, contained by a municipality, a shopping

malI or both.

• A movie theater is a complex object, contained in a municipality, a

shopping mall or both. It may have several theaters, and hence can feature

several movies. Although the relation between movie theaters and featured

movies is not geographical in nature, it is also a nested relation.

• A movie is an atomic object, and may only be linked to a movie theater.

The relationships between these objects are best described with the following

graph:

Figure 2-2 Graph showing the links between objects of the data set

In order to model the network structure described in Figure 2-2 , we need, for

every double arrowhead connection a link relation. The picture below shows

graphically how the geographical objets of the sample data are linked to each

21

(

(

(

other. As for the movies, we assume that they are showing at the following movie

theaters:

• "Nell" and "Dances with Wolf' are showing at LOEWS;

• "12 Monkeys" and "The Silence of the Lambs" are displayed at the

Faubourg;

• "Wayne's World" is available at aH Famous Players theaters;

22

(
MU1

MT3

c=ll::2c::1C1
c=I CI CI CI

.. CI .. CI .. c::I .. t=I

MT2

MU3

n""n
MT5

5M1

5M2

RS5

RS3

RS1

(

(
Figure 2-3 Geographical relationship between objets of the sample data

23

(

(

(

The resulting link relations are described as follows:

• MUSM_LINK (MU ID, SM ID)

Link relation between municipalities and shopping malls;

MU_ID SM_ID

MU1 8M1

MU1 8M3

MU2 8M4

MU3 8M2

Table 2-9 Link between municipalities and shopping malis

• MUMT_LINK(MU ID, MT ID)

Link. relation between municipalities and movie theaters;

MU_ID MT_ID

MU1 MT1

MU1 MT2

MU1 MT3

MU2 MT4

MU3 MT5

Table 2-10 Link between municipalities and movie theaters

• MURS_LINK (MU ID, RS ID)

Link relation between municipalities and restaurants;

24

'.

(

(

MU_ID RS_ID

MU1 RS1

MU1 RS2

MU1 RS5

MU2 RS4

MU2 RSe

MU3 RS3

Table 2-11 Link between municipalities and restaurants

• SMMT_LINK (SM ID, MT ID)

Link relation between shopping malIs and movie theaters;

SM_ID MT_ID

SM1 MT2

SM4 MT4

Table 2-12 Link between shopping malis and movie theaters

• SMRS_LINK (SM_ID, RS_ID)

Link. relation between shopping malls and restaurants;

SM_ID RS_ID

SM1 RS1

SM1 RS2

SM4 RS4

Table 2-13 Link between shopping malis and restaurants

25

(

(

(

• MTMV_LINK (MT ID, MV ID)

Link relation between movie theaters and movies.

MT_ID MV_ID

MT1 MV1

MT1 MV4

MT2 MV5

MT3 MV2

MT3 MV3

MT5 MV5

Table 2-14 Link between movies and movie theaters

By introducing the link relations and the object identifiers to the original relations,

we have extended the flat relational model into a mutually nested model. Now we

are ready to tackle the relational algebra that operates on the new data

representation. Since the proposed algebra is an extension to the Relix system, we

dedicate the next chapter to presenting those features of Relix that are affected by

ourwork.

26

(

:(

3. Relix

3.1 Introduction

This chapter is an introduction to Relix, the language used for the query definition

in this work. The name Relix is a concatenation of the abbreviations of Relations

and UNIX. The language was originally developed at the school of Computer

Science at McGill, in the context of the Aldat project.

The first implementation of Relix produced in 1982 [48J aimed at administrative

data processing applications. In the rnid and late 80's, Relix was used to

manipulate unstructured data such as text and pictures. Today, with features such

as procedures, event handling and computations, Relix is evolving from a

database system into a programming language for relational database access.

An in depth presentation of Relix can be found in [49]. In this chapter, we will

describe the basic concepts of Relix, as well as other topics required for a full

understanding of this thesis. Sorne features of Relix were left out because they

were either experimental, had no impact on nesting or were simply judged beyond

the scope of this work. The full syntax ofRelix cao be found in Appendix A.

3.2 Termina/ogy

Relix is mainly composed of a relational algebra and a domain algebra. When it

cornes to relations, relational algebra plays the same role scalar operators (+, -, 1

...) have on nurnbers. It manipulates relations as a single object, a unit, rather than

a set of tuples, exactly as the plus sign (+) hides the operations performed on each

digit during an addition.

27

(

(

Domain algebra, as the name indicates, deals more with domains and attributes

rather than with the relation itself. In fact, a domain algebra expression holds no

reference to the relation name. There are two types of domain algebra expressions,

namely horizontal and vertical. The result of a horizontal expression depends

uniquely upon the values of a single tuple, whereas vertical operators apply to a

set of tuples in the relation.

In the following sections, we will discuss the components of relational and

domain algebra that are relevant to the Relix extensions we introduce in chapter

four. The reader will also find sorne helpful examples for a better understanding

ofRelix.

3.3 Re/afional Aigebra

Relational algebra is used to create relations, extract data from them, and make

them interact with each other to produce more useful information. The following

are the basic families ofoperations.

3.3.1 Assignment

Definition

Assignment is the most basic operation in Relix. It is used to create new relations

or append data to an existing relation. There are two types ofassignments, the first

instantly interprets and executes the assignment, while the other just interprets the

expression and stores it as a view in Relix's internai structures.

Example

The simplest forms of assignment is copying one relation to another:

28

(

(

(

In this case NEW_RELATION is immediately created. Ifwe just need to create a

view, however, we would use the "is" operator. The following expression

» FUTURE_RELATION is [MV_NAME, MV_YEAR] where

(MV_DIRECTOR ="TERRY GILLIAM") in MOVIE;

is compiled and stored for future use.

Syntax

<identifier> +- <rel-expression>;

< identifier> is <rel-expression>;

<rel-expression> == <rel-name> 1 <projection> <selection> <rel-expression>

1 • <projection> <selection> <rel-expression>

1 # <projection> <selection> <rel-expression>

1<join-expression>

1 <scalar-expression>

3.3.2 Selection

Definition

A selection defines a new relation based on a subset of the tuples of a given

relation. This is also referred to as a horizontal selection. The selection is based on

the value of a logical expression called a predicate which is evaluated on every

tuple of the relation.

Example

To retain only municipalities with a population larger than SOOK, we can use the

following statement:

29

(

(

)- POPULATION_saa ~ where (MU_POPULATION> 500000) in

MUNICIPALITY;

Syntax

<selection> =: in 1 <T-Selector> 1<QT-Selector>

The syntax for the <T-Selector> and the <QT-Selector> will be given in sections

3.3.4 and 3.3.5, respectively.

Note

Please note that the predicate is a single boolean value, evaluated on a single tuple

in the relation. In nested queries, the clause after the where statement may include

conditions on relations that would be considered nested within the relational

expression after the in operator.

3.3.3 Projection

Definition

A projection defines a new relation based on a subset of the attributes of a given

relation. This is also referred to as a vertical selection.

Example

In order to create a new relation NAMES which contains only the names of the

municipalities in the MUNICIPALITY relation, we project the relation

MUNICIPALITY on the attribute MU_NAME, as follows:

~ NAMES~ [MU_NAME] in MUNICIPALITY;

30

(

(

Syntax

<projection> == <empty> 1 [<domain-list>]

<domain-list> == <domain-list>, <domain-name> 1 <domain-name>

Note

In flat relational databases, the projection list is composed uniquely of atomic

attributes. In the case of nested queries, we will expand the definition of a

projection to include relational expressions as well.

3.3.4 T-Expressions

Description

In the original Relix documentation, T-Expressions are viewed as the combination

of a projection (The horizontal bar of the T) and aT-Selection (The vertical bar

of the T). This is the simplest forro of relational expressions.

Example

Assuming we needed the names of municipalities with a population larger than

500K, then we would formulate the query using the following T-Expression:

~ MU_NAME_POP_500 +- [MU_NAME] where (MU_POPULATION >

500000) in MUNICIPALITY;

[MU_NAME] specifies a projection on the attribute MU_NAME, the condition

(MU_POPULATION > 5000000) IS the selection condition, and

MUNICIPALITY is the name ofthe relation where the query is applied.

31

(

.(

(

Syntax

<T-Selector> == where <domain-expression> in

3.3.5 QT-Expressions

Description

QT-Expressions~ or quantifiers~ provide a means in Relix to count the number of

different values of an attribute in a relation. They are based on two notations,

namely the counter "#"~ and the proportion symbol~ "." (a dot). The first counts

the number of tuples satisfying a given condition, and the second computes the

proportion ofthose tuples with respect to a larger set of tuples.

QT-Expressions can be divided into three groups~ namely QT-Counters~ QT­

Predicates and QT-Selectors. QT-Counters and QT-Predicates retum scalar

values, either numeric or boolean. QT-Selectors return relations based on a COllOt

or proportion criteria. The best way to understand QT-Expressions is using

examples.

Example

We will illustrate QT-Expressions using the movies relation described in chapter

two. To calculate the number of movies in 1995 (assuming each movie has a

unique name), we use the following QT-Counter expression:

~ MOVIE_1995 ~#MV_NAME where (MV_YEAR =1995) in MüVIE;

It evaluates to 2.

If we need the proportion ofmovies with a duration longer than 100 minutes, then

we use the proportion notation as follows:

32

(

(

(

~ PROP_LONGER_IOO ~. MV_NAME where (MV_DURATION > 100) in

MOVIE;

and that evaluates to 0.6, which is the number of movies longer than 100 minutes

(3) divided by the total number of movies (5).

Finally, if we need the list of directors with at least two movies in 1995, we could

formulate that query using the following QT-Selector:

~ TWO_95 -(- [MV_DlRECTOR] where { (# ~ 2) MV_NAME }, (MV_YEAR

= 1995) in MOVIE;

Syntax

<QT-Counter> == . <projection> <selection> <rel-expression> 1

<projection> <selection> <rel-expression>

<QT-Selector> == where { <quantifier-list> } in 1

where { <quantifier-list>}, <domain-expression> in

<quantifier-list> == <QT-Predicate> 1 <quantifier-list> , <quantifier-list>

<QT-Predicate> == (<domain-expression>) <domain-expression>

Note

In the above examples, the count operator is applied to atomic attributes. But in

the context of nested queries, an attribute can be atomic or composed. That raises

a question not only about the syntax of QT-Counters applied to nested relations,

but also the semantics of such expressions. What does the expression

~ # [SHOPPING_MALL] in MUNICIPALITY;

mean? Should it retum a single or multiple tuples? How is it translated into flat

relational algebra? For now, we will essentially look at QT-Expression as inner-

33

(

(

(

most expressions in a nested query, leaving the discussion on expressions similar

to the above to chapter seven.

3.3.6 J,1-Joins

Description

The ~-joins - read mu-joins - are a family of binary operators on relations. They

are defined as follows:

• ijoin == natjoin: Intersection join, also called natural join;

• ujoin: Unionjoin;

• djoin == dljoin: Difference join, also called difference left join;

• sjoin: Symmetric difference join;

• Ijoin: Leftjoin;

• rjoin: Right joïn;

• drjoin: Difference right join;

To help the reader's intuition, we will show through examples the use of each of

the joins.

Example

A typical example demonstrating the fJ-joins is that of a store' s inventory. We

define as sample data set the following two relations:

SALES (SALES_ID, ITEM_ID, QUANTITY_SOLD)

34

(

(

SALES_ID ITEM_ID QUANTITY_SOLO

AT5467 TS6832 4

AT5467 SK0970 3

AT5467 SHOO98 2

Table 3-1 Tuples of the SALES relation

and

PURCHASE (PURCHASE_ID, ITEM_ID, QUANTITY_IN)

PURCHASE_ID ITEM_ID QUANTITY_IN

MJ0986 TS6832 20

LK9573 SK0970 15

LK9573 TD0943 8

Table 3-2 Sample data for the PURCHASE relation

The ijoin between the two relations gives the transactions for items that were both

sold and bought in the sample data. The query could be expressed as follows:

IJOIN_PURCHASE_SALES +- [ITEM_ID, QUANTITY_IN, QUANTITY_SOLD] in

PURCHASE ijoin SALES;

The result would be the following table:

ITEM_ID QUANTITY_IN QUANTITY_SOLD

TS6832 20 4

SK0970 15 3

Table 3-3 Result of the IJOIN_SALES_PURCHASE query

35

(

(

In order to demonstrate the union join, we will assume that the manager of the

store wishes to put in a single relation the number of items sold and purchased for

each item. The query could be expressed as follows:

~ UJOIN_SALES_PURCHASE~ [ITEM_ID, QUANTITY_IN, QUANTITY_SOLD]

in PURCHASE ujoin SALES;

The result of that query for the two tables given in this example is:

ITEM_ID QUANTITY_IN QUANTITY_SOLD

TS6832 20 4

SK0970 15 3

TOD943 8 OC

SHOO98 OC 2
:

Table 3-4 Result of the UJOIN_SALES_PURCHASE query

where DC is a symbol for NULL values.

Similarly, the difference join between PURCHASE and SALES, expressed in the

query

~ DJOIN_PURCHASE_SALES +- [ITEM_ID, QUANTITY_IN,

QUANTITY_SOLD] in PURCHASE djoin SALES;

results in ail items that were purchased but never sold

ITEM_ID QUANTITY_IN QUANTITY_SOLD

TD0943 8 OC

Table 3-5 Results ofthe DJOIN_PURCHASE_SALES query

36

(

(

To help the reader visualize the Jl-joins, we define in Figure 3-1 below the set B to

be the intersection joïn between the PURCHASE and SALES relations, A to be

the difference joïn and A u Bue the union join. The remaining J..l-joïns could

then be described as follows:

• sjoin=AuC;

• ljoin= A u B;

• rjoin = BuC;

• drjoin = C;

SALES

PURCHASE \

Figure 3-1 Analogy of JI-joins with set graphs

Finally, in the examples given above, the joins were applied on the common

attribute between the two relations, namely ITEM_ID. Relix, however, allows

joins on attributes with different names. Given relations RI (X,Y) and R2 (Z,W),

we cao join RI and R2 on attributes Y and Z as follows:

~ R3 ~ RI [Y ijoin Z] R2;

37

(

(

Syntax

<identifier>~ <join-expression>;

<jain-expression> == <rel-expression> <join-mode> <rel-expression>

<join-mode> = <~-join> 1 [<domain-list> ~~-join> <domain-list>]

<Jl-join> =ijoin 1natjoin 1ujoin 1djoin 1dljoin 1sjoin Iljoin 1rjoin 1drjoin

3.3.7 cr-joins

The sigmajoins played a minor role in this research, and hence due to scope

limitations, they will not he presented in this chapter.

3.4 Sea/ar Expressions

Description

In Relix, relations defined on a single attribute can appear in scalar expressions.

For example, given two relations P (A) and Q (B), with A and Breal integers, the

following expression is legal in Relix:

~ R~ (P + Q) / 2;

Relix produces the Cartesian product of P and Q, computes the expression

(A + B)/ 2

for every tuple in the Cartesian product, and then assigns the result to R. Since R

has no defined attributes from the assignment, Relix automatically generates a

system attribute name. The name selected depends on the domain of(P + Q) / 2.

38

(

(

Example

To demonstrate Relix's behavior with scalar expressions, we will assume that the

relations P (A) and Q (B) have the following sample data sets:

1

2

Table 3-6 Sample data for the relation P

4

5

6

Table 3-7 Sample data for the relation Q

The expression

)0> R~ (P + Q);

evaluates to

39

.(

(

.real

5

6

7

8

9

Table 3-8 Result of R ~ (P + Q)

and the expression

» R +- (Q - Pl;

evaluates to

.real

1

2

3

4

5

Table 3-9 Result of R ~ (0 - P)

Syntax

<scalar-expression> ='unary-relation' 1«scalar-expression» 1

<unary-op> <scalar-expression> 1

<function-op> «scalar-expression» 1

<scalar-expression> <binary-op> <scalar-expression>

40

(

(

<unary-op> == '+' ; '-" ; 'not' ; "!' ; '-' ; "eval'

<function> == 'abs' ; 'acos' ; "asin' ; "atan' ; 'ceil' ; 'chr' ; 'cos' ; 'cosh' ; "floor' ;

'isknown' ; "log' ; "loglO' ; 'ord' ; "round' ; 'sin' ; 'sinh' ; 'tan' ;

'tanh'

<bl"nary-op> = '+' " "-' " '*' " 'l' . 'and' ""&' . 'or' . 'l' ""<' " '<=' . '=' . '-=' .- , , " , , " , , , ,

'!=' ; '>=' ; '>" ; 'max' ; 'min' ; 'mod' ; 'pow' ; 'cat' ; 'II'

3.5 Empty Projections

Description

In Relix, it is aiso possible to project on an empty set of attributes" Relix creates a

system generated attribute called .bool, and the result is stored in a relation with a

single boolean value (true or false).

Example

The following example returns the value true if at least one municipality in the

MUNICIPALITY relation has a population larger than SOOK.. and faIse otherwise.

~ BOOLEAN 500 ~ [] where (MU_POPULATION > 500000) in

MUNICIPALITY;

For the data set given in section 2.3, the result of this query would be true, as

shown in Table 3-10.

EJ
U

Table 3-10 Result of the empty projection BOOLEAN_SOO

41

~(

oC

This possibility in Relix will prove to be very useful in transforming atomic

predicates into relational predicates in section 4.2.1.

3.6 Domain Aigebra

Domain algebra has been the main focus of our research, since in nested queries

we widen the notion of domain ta include relational attributes as weIl as atomic

attributes. So a good understanding of the nature of domain algebra is essential to

the understanding of the extensions we introduce to Relix.

Let us assume that a teacher has set up a relation to store the grades of his

students. It could look like

with the following tuples:

STUDENT_ID EXAM_1 EXAM_2 FINAL

9110769 78 83 85

9234598 89 82 87

9289765 85 79 80

9124659 87 92 90

Table 3-11 Tuples ofthe relation GRADES

At the end of the semester, the teacher needs to calculate the final grade for each

student, the class average, and the class distribution. The final grade is calculated

as follows:

20% * EXAM_l + 30% * EXAM 2 + 50% * FINAL

42

(

.(

(

In order to represent this formula, we need to create a virtual domain called

FINAL_GRADE which would be applied to the relation GRADES.

~ let FINAL_GRADE be (O.2*EXAM_l + 0.3*EXAM_2 +O.5*FINAL);

Then we need to instantiate the virtual attribute by associating it with a relation, in

this case GRADES, and assigning the final result to a new relation called

MARKS:

~ MARKS~ (STUDENT_ID, FINAL_GRADE] in GRADES;

STUDENT_ID FINAL_GRADE

9110769 83

9234598 85.9

9289765 80.7

.
9124659 90

Table 3-12 The MARKS relation

Please notice that the formula for the final grade depends uniquely on attributes of

the same tuple. This type of operators are called horizontal operators, as opposed

to vertical operators the result ofwhich depends on the attributes of several tuples,

and sometimes aH the tuples of the relation.

In order to calculate the class average, for example, the teacher needs a vertical

operator that would SUIn the grades and then divide by the number of the students.

Relix offers several vertical operators, the simplest of aIl being the red operator,

which stands for reduction.

43

(

(

Using the red operator, this is how we may compute the class average:

» let SUM be red + of FINAL_GRADE;

» let STUDENT_NUM be red + of 1;

» let AVERAGE be SUM / STUDENT_NUM;

» CLASSE_AVERAGE «- [AVERAGE] in MARKS;

AVERAGE

84.9

Table 3-13 The CLASS_AVERAGE

That was a brief introduction to domain algebra. In the next two sections, we will

examine with more details the horizontal and the vertical operators in Relix.

3.6.1 HorizontalOperators

Description

As explained above, horizontal operators apply to attributes of the same tuple.

They are classified in three categories, namely unary operators, functions and

binary operators.

Unary operators, including { +, - , not ... }, are the first set of horizontal

operators. Along with functions, { abs, cos, sin ... }, they apply to a single

attribute, and are of no particular interest to our study.

Binary operators are grouped into commutative/associative operators and order

operators. An operator ro is commutative if ro{a,b) = ro(b,a) and associative if

ro(a,ro(b,c» = ro(ro(a,b), cl. For instance, max(A,B) =max(B,A), whereas (A-B) 1:­

(B-A).

44

(

(

Finally, the successor (suce) and predecessor (pred) operators, although unary,

also belong to the order operators.

Syntax

<domain_expression> == <domain-name> 1 «domain-expression»

<unary-op> <domain-expression>

<function> (<domain-expression»

<domain-expression> <binary-op> <domain-expression>

<unary-op> == '+' ; '-' ; 'not' ; '!' ; '' ; 'eval'; 'vir'

<function> == 'abs' ; 'acos' ; 'asin' ; 'atan' ; 'ceil' ; 'chr' ; 'cos' ; 'cosh' ; 'floor' ;

'isknown' ; 'log' ; 'loglO' ; 'ord' ; 'round' ; 'sin' ; 'sinh' ; 'tan' ;

'tanh'

<binary-op> = '+' .' '. '*' . '/' . 'and' . '&' . 'or' . , l ' . '<' . '<=' . '=' . '......:=' •- ,-, " , , , , , , , ,

"=' . '>=' . '>' . 'max' . 'min' . 'mod' . 'pow' . 'cal' . 'II'., " , , , , ,

<associative-op> == '+' ; ,*, ; 'and' ; '&' ; 'max' ; 'min' ; 'or' ; 'l'

<order-op> = '+' . '-' . '*' . '/' . 'and' . '&' . 'or' . , 1 ' . 'max' . 'min' . 'morl' .- , , " , , , , , , ,

'pow' ; 'cal' ; 'II' ; 'pred' ; 'suce'

3.6.2 Vertical Operators

Description

Reduction and functional mapping are the two forms of vertical operators. The

first produces a single result and applies to a single attribute in the relation. The

general fonn of reduction is

red <associative-op> of<domain-expression>

45

(

(

(

The result is obtained by cumulatively applying the associative operator to the

domain expression of ail tuples. The order in which the operator is applied is

irrelevant to the operation; hence the operator should be associative and

commutative.

Equivalence reduction is similar to simple reduction, but tuples are grouped

according to a given attribute. The syntax for equivalence reduction is:

equiv <associative-op> of <domain-expression> by <domain-list>

The other form of vertical operators is functional mapping. It differs from

reduction in that functional mapping gives a different result for every tuple in the

relation. In fact, the result at any given tuple level depends on the tuple itself as

weIl as a1l the tuples before il. Therefore, functi.onal mapping depends on the

order induced by one or more attributes. The syntax for functional mapping is

given by

par <order-op> of <domain-expression> order <domain-list> by <domain­

list>

Example

In order to illustrate the concept of equivalence reduction, let us go back to the

GRADES relation and modify it slightly. Assuming the professor teaches three

courses, and wants to put all grades in the same relation, the relation becomes

with the foIlowing tuples:

46

(
COURSE STUDENT_ID EXAM_1 EXAM_2 FINAL

CS318-612 9110769 78 83 85

CS318-612 9234598 89 82 87

CS318-575 9289765 85 79 80

CS318-575 9124659 87 92 90

Table 3·14 Tuples ofthe relation ALL_GRADES

Computing the average of each student remains the same as before~ but we

instantiate the domain expression onto ALL_GRADES rather than GRADES:

)Po ALL_MARKS~ [COURSE, STUDENT_ID, FINAL_GRADE] in

ALL_GRADES;

The average per course would be calculated as follows:

c(
~

~

~

~

let ALL_SUM be equiv + of FINAL_GRADE by COURSE;

let ALL_STUDENT_NUM be equiv + of 1 by COURSE;

ALL_CLASSE_AVERAGE~ [COURSE, ALL_AVERAGE] in

ALL_MARKS;

.(

The results of both queries are shown in the tables below:

47

(

(

(

COURSE STUDENTJD FINAL_GRADE

CS318-612 9110769 83

CS318-612 9234598 85.9

CS318-575 9289765 80.7

CS318-575 9124659 90

Table 3-15 Tuples of the relation ALL_MARKS

COURSE ALL_AVERAGE

CS318-612 84.45

CS318-575 85.35

Table 3-16 Tuples of the relation ALl_CLASS_AVERAGE

Example

In order to illustrate the use of functional mapping, we will assume that the

professor in the above example has kept records of his earnings for the past five

years, and needs to find out how much money was accumulated at the end ofeach

year. The professor stored his data in a relation called EARNINGS, which has the

following form:

EARNINGS (SCHOOL, YEAR, SALARY)

with the following data set:

48

(

(

(

SCHOOL YEAR 'SALARY

Concordia 1991 60000

Concordia 1992 65000

McGill 1992 65000

McGiII 1994 78000

McGiII 1995 80000

Table 3-17 The professor's earnings in the last five years

In order to compute the cumulative earnings in the past five years, the professor

needs to define a virtual attribute as fol1ows:

~ let CUM_SALARY be fun + ofSALARY order YEAR;

and then instantiate it on EARNINGS using the expression

~ TOTAL_EARNINGS ~ [YEAR, CUM_SALARY] in EARNINGS;

to give the following result:

YEAR CUM_SALARY

1991 60000

1992 125000

1994 203000

1995 283000

Table 3-18 Result ofTATAl_EARNINGS

In the same manner we introduced grouping to reduction, when tuples are grouped

by an attribute in the relation, functiopal mapping (fun) becomes partial functional

mapping <RW.

49

c

(

(

Syntax

<domain-expression> == <vertical-op>

<vertical-op> == red <associative-op> of <domain-expression>

equiv <associative-op> of <domain-expression> by <domain-list> 1

fun <order-op> of <domain-expression> order <domain-list>

par <order-op> of <domain-expression> order <domain-list>

by <domain-list>

par <order-op> of <domain-expression> by <domain-list>

order <domain-list>

3.7 Closure

Definition

Relix has the closure property, so any selection on one or more relations results in

a relation. Although that property allows the user to successively apply selections

to the result of previous queries, except for QT-Counters, that result can never be

used in a scalar expression, even when it is a singleton.

Example

In section 3.6, we computed the class average for the sample data in the MARKS

relation, and stored the result in the relation

AVERAGE

84.9

Table ~19The CLASS_AVERAGE relation

Even though the content of the relation CLASS_AVERAGE is a single value, we

cannot use it as a scalar. So the expression

50

&

(

(

~ PASSING_STUDENTS (- [STUDENT_ID] where (FINAL_GRADE >

CLASS_AVERAGE) in MARKS;

is illegal in Relix. We will find out in chapter four that this property is sometimes

undesired and willlearn how it can he countered.

3.8 Order of Execution

Description

Before we plunge into a full discussion of the proposed extensions to Relix, we

would like to expose Relix's order of execution. In any given relational

expression, the following rules apply:

1. Joins have precedence over T-Expressions and QT-Expressions;

2. AH joins have the same precedence;

3. Join expressions are executed from left to right;

4. T-Expressions and QT-Expressions are executed from right to Left;

5. Parentheses can change the default order ofexecution;

Example

Relix interprets the query

)00 MY_STUDENTS -E- [STUDENT_ID, AVERAGE] where (COURSE =

"CS318-612") in ALL_GRADES ijoin ALL_MARKS;

in the following order

1. Executes the expression (ALL_GRADES ijoin ALL_MARKS);

51

(

(

(

2. Selects tuples satisfying (COURSE = "CS318-612");

3. Projects on the attributes STUDENT_ID and AVERAGE;

4. CaUs the result MY_STUDENTS;

52

(

-(

(

4. User's Manual

4. 1 Introduction

This chapter aims at introducing the extensions proposed for Relix. It serves as a

user's manual for someone who wants ta build nested queries in Relix. The user is

not required to be familiar with the low level data modeling in order to understand

this chapter. Throughout chapter four, objects are conceived as mutually nested,

regardless of the way nesting is implemented. In chapter five, we will link nested

queries to the implementation of the data model and show how nested queries

may be transformed into a series of flat relational expressions.

4.2 Changes Proposed to Relix

We recall that the main difference between flat relations and nested relations is

that in the context of nested relations, an attribute cau be atomic or composed

(relational). Hence the scope of the domain algebra widens naturally to

accommodate relational expressions where only domain expressions were allowed

with flat relations.

In the following sections, we examine the two basic components of relational

algebra, namely selection and projection, in the context of nested relations. For

each component, we discuss the meaning of domain expressions when we

substitute relational domains for atomic domains. In the third section, we add

another feature to Relix, namely attribute migration, which allows the user to port

an attribute from one relation ta another via the link between the two relations.

Each section of this chapter is divided into three parts, a description of the

proposed modification, one or more examples supporting the description and

53

(

(

explaining how the new facility cao be used in a query, and finally the syntax of

the new Relix statement.

4.2.1 Selection

Description

In flat relational algebra, a selection clause resolves to a boolean expression. A

selection condition is evaluated on each tuple in the relation, and only those tuples

that satisfy that condition are selected.

In queries involving complex objects, the selection condition may be tested on the

child relation as weIl as the parent relation. We calI this condition an inner or

embedded selection, and express it using the syntax for empty brackets described

in section 3.5 of chapter three. For example, the general form of an embedded T­

Selection is given by the following:

where ([] where «inner-selection» in «inner-rel-expression») in «outer-rel­

expression»

The inner selection clause may he of any selection form allowed in Relix. The

interpretation of that selection, however, will not he the same as that of the flat

selection. In fact, chapter five is dedicated to examples with different types of

inner selections and how they are translated into flat relational and domain

algebra.

Example

We would like to demonstrate the use of inner selections with the following

example. Let us assume that we are asked to name all municipalities containing

large shopping malIs. The answer would require the SHüPPING_MALL relation

to be nested within the MUNICIPALITY relation. Since the condition for

54

{

(

(

selecting the municipalities depends on the inner relation, we apply the extension

proposed above.

In this case,

«inner-selection» ="where SM_AREA> 10000 in"

and

«inner-rel-expression» = "SHOPPING_MALL"

The nested query would be

~ Q ~ [MU_NAME] where ([] where SM AREA > 10000 in

SHOPPING_MALL) in MUNICIPALITY;

Syntax

<selection> =in 1 T-Selector 1 QT-Selector 1

where ([] <selection> <rel-expression» in <rel-expression>

4.2.2 Projection

Description

The adjustments brought to the projection clause in a nested query cao be stated in

very simple terms. Instead of allowing only atomic domain names in the

projection list, we include relation names as weIl. The forernost challenge of this

evolution, however, is to rnaintain the symmetrical model after the projection.

At the conceptual level, we would like to think about every relation name in the

projection list as a new object mutually nested with the parent entity in the query.

However, defining the objects in the implementation depends on the nature of the

relational expression in the projection. In order to prepare the reader for the

55

(

(

.(

discussion in chapter five, this section describes the two types of relational

expressions in a projection list, followed by two illustrating examples.

Sorne expressions represent only a view on an existing relation, and those are

labeled object preserving expressions. Others, called object generating

expressions, generate new objects that do not maintain a one-to-one relationship

with the original entity from which they spanned. In Relix, the first type of

expressions, also called horizontal relalional expressions, satisfy one or more of

the following conditions:

• The relational expression has no projection list;

~ Q~ where (MU_AREA> 50000) in MUNICIPALITY;

• The projection list of the relational expression contains at least one domain

name from the projected relation;

~ Q~ [MU_NAME] in MUNICIPALITY;

• The projection list of the relational expression contains at least one

horizontal domain expression;

~ let DENSITY be (MU_POPULATION / MU_AREA);

~ Q~ [DENSITYl in MUNICIPALITY;

The second type of expressions, also called vertical relalional expressions, are

defined as relational expressions where aU domain expressions in the projection

list are given in terms ofvertical operators.

56

(
Example

We define large shopping malls as

~ SM LARGE is [SM_NAME] where (SM_AREA > 10000) in

SHOPPING_MALL;

Then, if we need to find large shopping malIs in large municipalities, we include

the relation name SM_LARGE in the projection list, along with the municipality

name, as follows

~ MU_SM_LARGE +- [MU_NAME, SM_LARGE]

(MU_POPULATION> 500000) in MUNICIPALITY;

where

{

The query would result in two new relations, MU_SM_LARGE and

SM_LARGE, which form, along with the relationship between them, a new

couple of mutually nested objects. It is important to note, nonetheless, that every

tuple in SM_LARGE corresponds to a single shopping maIL Hence, SM_LARGE

maintains a one-to-one relationship with the relation from which it spanned.

Example

We assume that in sorne comparative study on the toOOst attractions in

municipalities, we are asked to provide a list of municipalities along with the

number of restaurants in each municipality. Taking advantage of nested

expressions, we express that query as fol1ows:

~ let RS_NB be red + of 1;

)0- RS_COUNT is [RS_NB] in RESTAURANTS;

)0- ANSWER +- [MU_NAME, RS_COUNT] in MUNICIPALITY;

57

(

(

The details of how such expressions are handled is given in section 5.4.2. For

now, we just need the result of RS_COUNT in order to pursue our argument. In

flat relational algebra, RS_COUNT would be a singleton relation with a single

tuple holding the total number of restaurants in the relation RESTAURANTS.

In the context of nested queries, RS_COUNT would be a unary relation, where

each tuple corresponds to the number of restaurants per municipality. In other

words, every tuple in RS_COUNT corresponds to a municipality and not to a

restaurant. So the relationship between RS_COUNT and the restaurants is broken.

That is a major difference with the tirst example, and will prove to be crucial at

the implementation level in chapter five.

Syntax

<projection> == <projection>, <rel-name> 1<projection>, <domain-name> 1

<rel-name> 1 <domain-name>

Note

Despite the consistency in the conceptual data representation, we will find out in

chapter tive that implementation is slightly different depending on the nature of

the relation in the projection list.

4.2.3 Attribute Migration

Description

We recall from section 3.7 that attributes in one relation cannot be used as scalars

in a T-Selector involving the parent relation. Researchers in the domain of nested

relations have introduced the NEST and UNNEST operations [3, 47] to resolve

that problem (among others). We argued in chapter one, however, that our

definition of nested queries does not require those facilities. As an alternative, we

introduce the notion of attribute migration which allows us to bring an attribute

58

(

(

from one relation to another, without actually changing the structure of both

relations.

Example

Imagine having two relations,

EMPLOYEE (EM ID, EM_NAME, EM_AGE, EM_DEPARTMENT)

and

CHILDREN (CH ID, CH_NAME, CH_AGE)

linked by

EMCH_LINK (EM ID, CH ID)

We are asked to compute the average age difference between a parent and a child

for each department. One way to implement the query is to join the three relations

together and then apply flat domain algebra on EM_AGE, CH_AGE and

EM_DEPARTMENT.

A more interesting way is to use nested queries. If we do so, we create the

following nested view of the two relations:

EMPLOYEE (EM_NAME, EM_AGE, EM_DEPARTMENT, CHILDREN)

(CH_NAME, CH_AGE)

At this point, we need to compute the difference between EM_AGE and

CH_AGE. But those two attributes belong to different relations, and Relix does

not allow us to have domain expressions involving attributes from different

relations. In addition, any relational operation on CHILDREN, by the closure

property, will itself result in a relation. So the way to solve this problem is to

bring CH_AGE up one level from CHILDREN ta EMPLOYEE. We cali that

facility attribute migration.

59

(

(

(

In the implementation of attrihute migration, we propose using scalar expressions.

We recall from chapter three that any relation defined on a single attribute can he

used both as a scalar and a relation. Similarly, a nested singleton relation can be

transformed into an atomic attribute of the parent relation. The following

sequence of Relix expressions demonstrates the concept:

~ CHILD_AGE is [CH_AGE] in CHILDREN;

~ NEW_EMPLOYEE is [EM_DEPARTMENT, EM_AGE, CHILD_AGE] in

EMPLOYEE;

~ letCOUNT_AGE_DIFheequiv+ofl byEM_DEPARTMENT;

Please note how CHILD_AGE was defined as a relation using the "is" assignment

operator, and was later used as a scalar in computing the age difference

AGE_DIFF. Most important, the user does not have to specify explicitly the link

between EM_AGE and CHILD_AGE. By including CHILD_AGE as an attribute

of NEW_EMPLOYEE, it became part of the same complex object which has

EM_AGE as attribute. In section 5.5.1, we will show how a nested query

involving attribute migration is translated into a series of flat relational

expressions.

60

(

(

4.3 Is That Ail?

At tirst look, the proposed extensions to Relix seem minimal, and possibly

insufficient. However, the simplicity and the invariance of our mode} (always one

link relation for every couple of related objects) saves us from dealing with

restructuring operators such as NEST and UNNEST as in [3, 4, 46, 47] . In

addition, the symmetry in our mode} makes an queries equivalent in treatment and

performance, so we need not duplicate any information nor create redundant

objects. Finally, we did not make any distinction between object preserving

operators and object creating operators, so we did not have to introduce special

operators such as the Project operator in [20].

We believe, therefore, that the modifications discussed in this chapter are

sufficient to caver ail potential queries on mutually nested relations. In fact, we

will present in the next chapter over fifteen queries of ail types, expressing them

in nested format as well as the equivalent flat format, and providing the reader

with a full description of the translation from one syntax to the other.

61

(

(

(

5. Implementation

5. 1 Introduction

Having defined the new syntax proposed to Relix, we now proceed to working out

an algorithm for a parser which transforms nested queries into a series of flat

queries. We choose to work this problem bottom up, starting with a series of

examples that cover most aspects of nested queries, and leading to a formaI

algorithm in section 5.6. AlI the queries are based on the sample data proposed in

chapter two, hoping the reader would find it useful to follow the evolution of the

queries on the same data set.

The queries of this chapter are grouped into four sections, namely Flat Queries,

Nested Expressions in the Selection Clause., Nested Expressions in the Projection

Clause and Miscellaneous queries. Each of the queries includes a description of

the query, an English statement of the query., the nested query, the equivalent

query expressed in flat Relix and finally a discussion about the major issues

conceming that query.

5.2 Flat Queries

Description

This example shows how flat Relix queries can still be applied without the parser

even knowing anything about nesting.

Query

Name aIl municipalities with population larger than 500K.

62

(

(

Nested expression

~ Q ~ [MU_NAME] where (MU_POPULATION > 500000) in

MUNICIPALITY;

Translated code

None.

Discussion

The parser detects no nesting, and the query is executed as a flat query.

5.3 Nested Expressions in the Selection Clause

5.3.1 Horizontal Expression with no Predicates

Description

In this first example on nested queries, we test the existence ofone object in

another.

Query

Name all municipalities that have shopping malIs in them.

Nested expression

~ Q +- [MU_NAME] where ([] in SHOPPING_MALL) in MUNICIPALITY;

Translated code

63

(

(

~ 83 ~ 82 ijoin MUNICIPALITY;

~ Q~ [MU_ID, MU_NAME] in 83;

Discussion

We see here how the inner relational expression replaces the boolean expression

in the selection clause. The steps to follow in transforming the nested query into a

series of flat queries are the following:

1. Join the inner relation (SHOPPING_MALL) with its link relation to the

outer relation (MUSM_LINK);

2. Augment the empty projection by the identifier of the outer relation,

namely MU_ID;

3. Join the result of2 (82) with the outer relation (MUNICIPALITY);

4. Project 83 on the projection clause of the original relational expression

containing only domain names. The system uses MU_ID to generate the

object identifier of the new relation.

5.3.2 Expression Showing the Symmetry in the Data Madel

Description

This query is given in comparison with the query in section 5.3.1. It shows how a

relation can be a parent or a child relation depending on the access mode to the

information.

Query

Name ail shopping malis in the municipality of Longueuil;

64

•

(

.(

Nested expression

);- Q (- [SM_NAME] where ([] where MU_NAME = "LONGUEUIL" in

MUNICIPALITY) in SHOPPING_MALL;

Translated code

);- SI (- MUNICIPALITY ijoin MUSM_LINK;

);- S2 (- [SM_ID] where MU_NAME = "LONGUEUIL" in SI;

);- S3 (- S2 ijoin SHOPPING_MALL;

Discussion

While the previous query returns aH the municipalities having a shopping mali,

this query returns the shopping malIs of a given municipality. So the

MUNICIPALITY relation becomes the child relation and the SHOPPING_MALL

relation becomes a parent relation. Both queries use the same link relation, namely

MUSM_LINK, and require the same amount of effort to evaluate. Most

important, no restructuring is needed when we switch from one query to another.

5.3.3 Horizontal Expression, a Single Predicate

Description

This query introduces predicates ioto the selection clause. Therefore, we need to

apply a selection criterion on the inner relation before joining it with its parent

relation.

65

(

(

(

Query

Name aH municipalities with shopping malls larger than 10000m2
•

Nested expression

~ Q +- [MU_NAME] where ([] where SM AREA > 10000 in

SHOPPING_MALL) in MUNICIPALITY;

Translated code

~ SI +- 8HOPPING_MALL ijoin MUSM_LINK;

~ S2 +-[MU_ID] where SM_AREA > 10000 in SI;

~ S3 +- 82 ijoin MUNICIPALITY;

Discussion

1. Again, the first step is to join the inner relation with its link relation to the

outer relation;

2. Next, we need to apply the selection criteria on the inner relational,

namely SHOPPING_MALL. 8ince this relation is nested in the

MUNICIPALITY relation, the selection will be made on 81.

In addition, please notice how we include in the outcome of 82 the

identifier of the outer relation. We will need that identifier when we join

back S2 with MUNICIPALITY in 83.

So the golden mIe is that whenever we translate a nested expression of the

form

[] where <inner-selection> <inner-rel-name>

66

{

,(

into a full Relix expression, we add to the projection list the identifier of

the outer relation.

3. We join S2 with the outer relation to get al1 the needed attributes of

MUNICIPALITY;

4. Project on MU_NAME and MU_ID to get the final result;

One might argue that steps 1 and 2 can be formulated more efficiently, namely as

fol1ows:

» SI -E- [SM_ID] where SM_AREA > 10000 is SHOPPING_MALL;

» S2 -E- SI ijoin MUSM_LINK;

Performing the selection on SHOPPING_MALL before the join with

MUSM_LINK is with no doubt faster than the suggested sequence. In fact, the

"select then join" sequence works weIl as long as we have horizontal expressions

in the selection clause. Unfortunately, as will he shown in section 5.3.4, that it is

not the case with vertical operators.

Since performance and optimization are not major issues in tbis work, we favored

the simple algorithm to one which would have to read ahead, detect the type of

selection and then back track and perform the query. What we could do, however,

is replace SI and S2 by a single statement, namely

~ SI -E- [MU_ID] where SM_AREA > 10000 in SHOPPING_MALL ijoin

MUSM_LINK;

For clarity, however, we decide to generate two assignments instead ofone.

67

(

(

5.3.4 A Reduction Expression

Description

We mentioned previously that vertical expressions have a special treatment when

they appear in a nested expression. We start with the simplest of vertical

operators, the reduction statement.

Query

Name aIl municipalities where the total area of shopping malIs exceeds

100000m2
•

Nested expression

~ Q ~ [MU_NAME] where ([] where (TÛT_AREA > 100000) in

SHÛPPING_MALL) in MUNICIPALITY;

Translated code

~ 82~ [MU_ID] where (TÛT_AREA> 100000) in 81;

~ 83~ 82 ijoin MUNICIPALITY;

68

(

(

(

Discussion

We solve this query by computing the total area of shopping mails in each

municipality, and then selecting those with total area greater than 100000 m2
• The

translated code can be explained as follows:

1. Join the inner relation with its link to the outer relation;

2. Ifwe instantiate the domain expression

let TOT_AREA be red + ofSM_AREA;

in the SHOPPING_MALL relation, that would result in the total area ofaIl

shopping malis. But we need the total shopping mall area per

municipality. For that reason, the vertical expression appears as a nested

expression in the query.

As we recaIl from chapter three, the reduction operator does not allow

grouping, but the equivalence reduction operator does. So, as a general

mIe, a reduction statement appearing in a nested expression is translated

into an equivalence reduction, with grouping on the identifier of the outer

relation.

ln the case of the example in hand, the outer relation is MUNICIPALITY,

so the reduction is transfonned into an equivalence reduction with

grouping on MU_ID:

3. Translate the nested expression into a full Relix expression by adding the

identifier of the outer relation and assigning it to S2;

4. Join S2 with the MUNICIPALITY relation to get back aIl the

MUNICIPALITY attributes;

69

(

5. Finally, project S3 on aH the atomic attributes of the original expression,

in this case MU_NAME, including MU_ID. The system then uses MU_ID

to generate new unique identifiers.

5.3.5 A QT-Predicate

Description

In addition to horizontal and vertical expressions, the inner expressions in a nested

query may contain QT-Expressions. With this example, we start the study of QT­

Expressions by looking at QT-Predicates.

Query

Name aU municipalities where more than three quarters of the shopping malIs

have areas less than 20000 m2
•

Nested expression

~ Q ~ [MU_NAME] where ([] where (. > 0.75) SM_NAME, SM_AREA <

20000 in SHOPPING MALL) in MUNICIPALITY;

Translated code

» SI -E- SHOPPING_MALL ijoin MU8M_LINK;

» 82 -E- [MU_ID] where (. > 0.75) SM_NAME, SM_AREA < 20000 in SI;

» 83 -E- 82 ijoin MUNICIPALITY;

70

•

(

(

Discussion

It turns out that QT-Predicates need no special treatment.

1. The first step, as before, is to join the inner relation with the link relation.

2. The inner expression is then converted into a flat Relix expression by

appending the identifiers to the empty brackets. That also tells Relix to

group SI by MU_ID before performing the proportion operator.

3. We joïn S2 with MUNICIPALITY to get the attributes we need for the

projection;

4. We project 83 on MU_NAtvIE and MU_ID to obtain the result required.

5.3.6 A QT·Counter

Description

The other type of QI-Expressions to examine are the QT-Counters in the nested

expression. In fact, QT-Counters are allowed in inner expressions uniquely with a

predicate, otherwise they make no sense.

Query

Name aIl municipalities that have more than ten shopping malIs in them.

Nested expression

);0- Q +- [MU_NAME] where «# SM_NAME in SHOPPING_MALL) > 10) in

MUNICIPALITY;

Translated code

);0- SI +- SHOPPING_MALL ijoin MUSM_LINK;

71

.(
"

(

)0- S2 +- [MU_ID] where «# > 10) SM_NAME) in 81;

)0- S3 +- 82 ijoin MUNICIPALITY;

)0- Q +- [MU_ID, MU_NAME] in S3;

Discussion

QT-Counters cannot be treated as such in nested relations. They have to be

transformed into QT-Predicates before evaluation. That is the only way we would

be able to group the counting by municipality. This translation is always possible,

and the two expressions are equivalent.

In statement 82, we demonstrate how the translation may be done without loss or

modification of the original information.

5.3.7 Two "anded" Predicates

Description

In all the examples we examined till now in chapter five, there was at most one

predicate in the selection clause. But what happens if we have two predicates or

more? How do we translate a nested query with multiple predicates into flat Relix

expressions?

Query

Name ail shopping malIs in Longueuil that have Italian restaurants in them.

Nested Expression

)0- Q +- [SM_NAME] where (([] where MU_NAME = "LONGUEUIL" in

MUNICIPALITY) and ([] where RS TYPE = "ITALlAN" in

RESTAURANT) in SHOPPING_MALL;

72

•

(

(

Translated code

~ SI ~ RESTAURANT ijoin SMR8_LINK;

)0- 82 ~ [SM_ID] where RS_TVPE ="ITALIAN" in 81;

)0- 83 ~ MUNICIPALITY ijoin MU8M_LINK;

~ 84~ [SM_ID] where MU_NAME = "LONGUEUIL~' in S3;

~ 85 ~ 84 ijoin S2;

)0- 86~ 85 ijoin SHOPPING_MALL;

)0- Q~ [SM_ID, SM_NAME] in 86;

Discussion

This query involves not two but three relations, two of which are nested in the

third. In addition, the selection involves two conditions, (MU_NAME =

"LONGUEUIL") and (RS_TYPE ="ITALIAN").

We propose that each predicate be treated as if it was the only predicate in the

inner selection. Then~ depending on the logical operator between the two boolean

expressions, we link the two results by a corresponding J..l-join.

81 and 82 represent the instantiation of the second predicate in the selection

clause. Similarly, S3 and 84 represent the instantiation of the first predicate in the

selection clause. The "and" operator in the inner expression is mapped onto an

ijoin. If we recall from chapter three, the ijoin is the intersection of two relations;

so if we apply it to S2 and 84, the result would be the tuples that satisfy both the

first and the second conditions.

73

(

(

(

Once we have 85, the rest is similar to the previous examples: we join S5 with the

SHOPPING_MALL relation to get aH the attributes, then project on SM_NAME

and SM_ID to obtain the final result.

But what happens if we had an operator different from the "and" operator? The

answer is given in the following two sections.

5.3.8 Two "ored" Predicafes

Description

In the previous example, we saw that an "and" operator between two predicates in

an inner selection is mapped onto an ijoin in the translated Relix code. The reader

might have guessed that in the same manner, an "or" operator translates into a

ujoin.

Query

Name all shopping malls that have an Italian restaurant or an Odeon movie

theater.

Nested expression

~ Q <E- [SM_NAME] where «[] where RS_TYPE = "ITALIAN" in

RESTAURANT) or ([] where MT_COMPANY "ODEON" in

MOVIE_THEATRE)) in SHOPPING_MALL;

Translated code

» SI <E- MOVIE_THEATRE ijoin 8MMT_LINK;

~ S2 <E- [SM_ID] where MT_COMPANY = "ODEON" in 81;

~ S3 <E- RESTAURANT ijoin SMRS_LINK;

74

(

(

> S4~ [SM_ID] where RS_TYPE = ~'ITALIAN" in 83;

> 85 ~ S4 ujoin S2;

> S6 ~ 85 ijoin 8HOPPING_MALL;

Discussion

The procedure for translating the nested query into flat expressions is identical to

that of the previous example, except that 85 is the ujoin of 82 and 84 rather than

the ijoin.

The case for a "not" operator is trickier than that of the "and" and the "or"

operators. In conjunction with the "and" operator, the "not" operator maps well

into the djoin relational operator. Yet, it has no immediate equivalent when it is

placed alone in front of the predicate or in conjunction with an "or" operator. The

following example demonstrates the procedure for handling negation.

5.3.9 The "natif Operator

Description

In our study, we handle the negation of a predicate by introducing a djoin into the

translated code. The original expression in which the inner selection is applied is

djoined with the result of the inner selection.

Query

Name aIl shopping malIs that have no Italian restaurants.

75

(

(

Nested expression

~ Q ~ [SM_NAME] where (not ([] where RS_TYPE = '~ITALIAN" ln

RESTAURANT)) in SHOPPING_MALL;

Translated code

~ SI ~ RESTAURANT ijoin SMRS_LINK;

~ S2 ~ [SM_ID] where RS_TYPE = "ITALIAN" in SI;

~ S3 ~ SI djoin 82;

~ 84~ 83 ijoin SHÛPPING_MALL;

Discussion

From the example given above, we see that the "not" operator is translated onto a

djoin of SI with the translation of the inner expression. The result would be, as

required, all the tuples in 81 that do not satisfy the stated condition.

Once we have computed 83, we would just need to join back with the parent

relation to get a11 the attributes of 8HOPPING_MALL, and then project the result

on SM_NAME and SM_ID.

5.3.10 Four Predicates with Parentheses

Description

When dealing with more than two predicates in an inner expression, the

parentheses cao play an important role in determining the precedence of

evaluation of each predicate. In nested queries, it is no different, as we will find

out in the following example.

76

(

(

Query

Name aB shopping malIs in Longueuil that are smaller than 20000 m2 or in Laval

and are smaller than 10000 m2
•

Nested expression

~ Q +- [8M_NAME] where «([] where MU_NAME = "LONGUEUIL" in

MUNICIPALITY) and (SM_A,REA < 20000)) or «[] where MU_NAME =

"LAVAL" in MUNICIPALITY) and (SM_AREA < 10000))) in

SHOPPING_MALL;

Translated code

~ 81 +- where SM_AREA < 10000 in SHOPPING_MALL;

~ S2 +- MUNICIPALITY ijoin MU8M_LINK;

~ S3 +- [SM_ID] where MU_NAME = "LAVAL" in 82;

~ S4 +- SI ijoin S3;

»- 85 +- where SM_AREA < 20000 in SHOPPING_MALL;

»- S6 +- MUNICIPALITY ijoin MU8M_LINK;

)- S7 +- [SM_ID] where MU_NAME = "LONGUEUIL" in 86;

)- S8 +- S5 ijoin 87;

)- S9 +- 84 ujoin 88;

)- S10 +- S9 ijoin 8HOPPING_MALL;

77

(

(

Discussion

The lesson to draw from this example is that the parser respects the precedence

order imposed by the parentheses. The translated code clearly shows how the two

"and" operators are applied before the "or" operator.

5.4 Nested Expressions in the Projection Clause

5.4.1 Horizontal Relational Expression

Description

This is the first example of a query containing a relation name in the projection

list. It is identical to the query ofthe first example in section 4.2.2.

Query

Name aIl municipalities that have a population over 500000 and the shopping

malis in them that have an area greater than 10000 m2
•

Nested expression

> SM_LARGE is [SM_NAME] where SM_AREA > 10000 in

SHOPPING_MALL;

» Q -E- [MU_NAME, SM_LARGE] where MU_POPULATION> 500000 in

MUNICIPALITY;

Translated code

» SI ~ where MU_POPULATION> 500000 in MUNICIPALITY;

» Q -E- [MU_ID, MU_NAME] in SI;

78

(

(

~ S2~ SHÛPPING_MALL ijoin MUSM_LINK;

~ <link-relation name> ~ [SM_ID, MU_ID] in (where SM_AREA > 10000 in

S2) ijoin SI;

Discussion

Unlike queries we have seen till now, this query has no nesting in the selection

clause, but contains a relation name in the projection list. Handling projection lists

starts after Relix encounters the closing bracket "]" of the projection clause ­

Remember that Relix parses T-Expressions from right to left. At that point, it has

already computed the relation on which the domain list would be projected,

namely SI.

Before dealing with non atomic attributes in the projection list, Relix creates a

new relation Q, which is the projection of aH atomic attributes in the domain list

on S1. In the case of this example, there is only on such attribute, namely

MU_NAME. The object identifier of MUNICIPALITY is included in the

projection list ofQ.

The relation SM_LARGE in the projection list was defined as a T-Selector view

on the SHOPPING_MALL relation. Since it is nested in the projection list of the

outer query on MUNICIPALITY, Relix proceeds by joining SHOPPING_MALL

to its link relation with the parent relation. The result of the join is stored in 82.

As mentioned in chapter four, every relational expression in the projection list

results in a new object mutually nested with the parent object in the query. That

means that new object identifiers should be generated for the new objects. In the

case of SM_LARGE, it was defined using only horizontal operators, and hence

every tuple in it still has a one to one correspondence with tuples in

79

(

(

SHOPPING MALL. Therefore, we include SM ID in the projection list of

SM LARGE.

Finally, Relix creates a new link relation between Q and SM_LARGE. The new

link relation in this case is a subset of MUSM_LINK and includes only the tuples

where both MU_ID and SM_ID exist in Q and SM_LARGE, respectively. It can

be generated more efficiently, however, using SI and S2. Relix generates

automatically a name for the link relation, then renames the MU_ID and SM_ID

in Q, SM_LARGE and their link relation.

5.4.2 Vertical Re/ational Expression in the Projection

Clause

Description

In the previous example, we saw how horizontal relational expressions are dealt

with at the implementation level when they appear in the projection list of a

nested query. This query, which was introduced as the second example of section

4.2.2, demonstrates the equivalent treatment for vertical relational expressions.

Query

Name municipalities along with the number of restaurants in each ofthem.

Nested Expression

~ let RS_NB he red + of 1;

~ RS_COUNT is [RS_NB] in RESTAURANTS;

~ Q~ [MU_NAME, RS_COUNT] in MUNICIPALITY;

80

(

(

Translated code

~ SI +-- RESTAURANTS ijoin MURS_LINK;

~ Q +-- [MU_ID, MU_NAME] in MUNICIPALITY;

» let RS_NB be equiv + of 1 by MU_ID;

Discussion

At the conceptual level, each relational expression appearing in the projection list

of a nested query gives birth to a new set of objects. When the relational

expression in the projection list is a horizontal expression, each new object

corresponds to a tuple from the original relation, which was the case in the

previous example. In this query, if we include the restaurant identifier in the

projection list of RS_COUNT, we would obtain for the geographical data of

chapter two the following result:

81

(

.(

(

RS_ID RS_NB

RS1 3

RS2 3

RS3 1

RS4 2

RSS 3

RSe 2

The number of restaurants (RS_NB) for RS1, RS2 and RSS aH represent the same

entity, namely the number of restaurants for municipality MU1. Similarly, RS4

and RS6 faIl in the same municipality. In our opinion, grouping the result of a

vertical relational expression by the identifier of the child relation in a nested

query leads 10 redundant objects. A better solution would be to group

RS COUNT by the municipality OIDs, leading to the following result for

RS COUNT:

MU_ID RS_NB

MU1 3

MU2 2

MU3 1

This result is more compact and more accurate. Therefore, horizontal relational

expressions are grouped by the object identifier of the child relation in the query,

whereas vertical relational expressions are grouped by the object identifier of the

parent relation in the query.

82

(

Again, Relix generates a link relation between RS_COUNT and Q. The link

relation in this case is not a subset of MURS_LINK. It is constructed initially as

the join of RS_COUNT and Qby renaming MU_ID in each relation, which would

look as fol1ows:

RS_COUNT_ID Q_ID

MU1 MU1

MU2 MU2

MU3 MU3

Table 5-3 Initial Iink relation between RS_COUNT and Q

Then, when Relix reassigns unique object identifiers for each tuple in Q and

RS_COUNT, it reassigns new OIDs to the link relation. Q_ID follows the

renumbering of the Q relation, and RS_COUNT_ID follows that of RS_COUNT.

The resulting link relation may look as follows:

RS_COUNT_ID QJO

RC1 Q1

RC2 Q2

RC3 Q3

Table 5-4 Finallink relation between RS_COUNT and Q

5.4.3 Another Type ofHorizontal Re/ational Expressions

Description

To end this section on relational expressions in projection lists, we provide the

reader with an example that helps us make a clear distinction between horizontal

and vertical relational expressions.

83

(

(

(

Query

Name the largest and the smallest shopping malis in every municipality

Nested Expression

~ let MAX_AREA be red max of SM_AREA;

~ let MIN_AREA he red min ofSM_AREA;

~ MAX_MIN_SM is [SM_NAME] where (MAX_AREA = SM_AREA) or

(MIN_AREA = SM_AREA) in SHOPPING_MALL;

~ Q~ [MU_NAME, MAX_MIN_SM] in MUNICIPALITY;

Translated code

~ Q~ [MU_ID, MU_NAME] in MUNICIPALITY;

~ SI ~ SHOPPING_MALL ijoin MUSM_LINK;

~ MAX_MIN_SM +- [SM_ID, SM_NAME] where (MAX_AREA =

SM_AREA) or (MIN_AREA = SM_AREA) in SI;

~ <link-relation name> +- [MU_ID, SM_ID] in (where (MAX_AREA =

SM_AREA) or (MIN_AREA = SM_AREA) in SI) ijoin MUNICIPALITY;

Discussion

At first look, this example might look more complex than the previous ones. In

fact, it just contains more expressions in the original nested query. The treatment

is no different from what we have encountered till now.

84

.(

(

First, the atomic attributes in the projection list are projected on

MUNICIPALITY. Then, the Relix parser encounters a relation name in the

projection list and attempts to evaluate it as a nested expression. It therefore joins

the child relation with the link relation.

Next, every domain expression involving a vertical operator is converted into a

vertical expression with grouping by the parent relation identifier. So

becomes

and

~ let MIN_AREA be red min ofSM_AREA;

becomes

~ let MIN_AREA be equiv min ofSM_AREA by MU_ID;

At that point, MAX_MIN_SM is evaluated on SI rather than the

SHOPPING_MALL relation. Since MAX_MIN_SM contains a domain name in

its projection list, it is considered as a horizontal relational expression, even if its

selection clause includes vertical domain expressions. Therefore, SM_ID and not

MU_ID, is appended to the projection list of MAX_MIN_SM. The final result is

composed of MAX_MIN_SM, Q and the link relation as constructed in section

5.4.1.

85

(

(

5.5 Miscellaneous Queries

5.5.1 Abstraction From a Relation to an Attribute

Description

We explained in chapter four how atomic attributes in a relation can be extracted

from that relation and migrated into another relation. In the context of a nested

query, that concept is very useful if we need to bring an attribute from a child

relation into a parent relation in a given query.

Query

Get the ratio of area covered by restaurants in a shopping malI to the area of the

shopping maIl.

Nested expression

~ SM_RS_AREA is [SM_NAME, SM_AREA,TOT_AREA_RS] in

SHOPPING_MALL;

Translated code

(

~ SM_RS_AREA is

SHOPPING_MALL;

86

in

(

~ SI -E- RESTAURANT ijoin SMRS_LINK;

~ let RATIO be (TOT_AREA * 100) 1SM_AREA;

Discussion

The translation of the query starts at the assignment which creates the relation Q.

First, SM_RS_AREA is defined by projecting SHOPPING_MALL on all atomic

attributes in the projection list of SM_RS_AREA. The second step is to translate

TOT_AREA_RS. Since TOT_AREA_RS appears in the projection list of a

relational expression involving the SHOPPING_MALL relation, we proceed by

forming the iioin ofRESTAURANTwith its link relation to SHOPPING_MALL.

The reduction in the domain expression which defines TOT_AREA is then

translated into an equivalence reduction with grouping on SM_ID, as we are now

computing the area of restaurants per shopping malI. Since TOT_AREA_RS is a

vertical relational expression in the projection clause of SM_RS_AREA, its

projection list is augmented by SM_ID, the object identifier for SM_RS_AREA.

Both SM_RS_AREA and TOT_AREA_RS are defined using the "is" operator, so

they only define views on existing relations, and hence do not constitute new

objects; therefore, their unique object identifiers don't need to be recalculated at

this point in the translated code. The domain expression which expresses RATIO

in terms of TOT_AREA_RS and SM_AREA is translated as is. TOT_AREA_RS

87

(

(

is a unary relation, so according to section 4.2.3, it may be used in a domain

expression.

The last step in the translation is the projection of RATIO and SM_NAME on

SM_RS_AREA. At the conceptuallevel, SM_RS_AREA and TOT_AREA_RS

are mutually nested, so depending on the query, any of the two relations can be

fully nested within the other. In the case of the query in hand, TOT_AREA_RS is

embedded in SM_RS_AREA, so TOT_AREA_RS is perceived as a relational

attribute of SM_RS_AREA. Knowing that RATIO involves an arithmetic

operation between attributes from SM_RS_AREA and Tor_AREA_RS, we need

to joïn those two relations.

This operation is allowed if and only if one of the two following cases applies:

1. Both relations are view definitions and have the same object identifier;

2. Both relations are full assignments and represent new objects in the

database.

In the first case, both relations are joined together on the common attribute

without the help of the link relation. In the second case, each relation would have

a different object identifier, and hence the two relations may only be joined via

the link relation.

In this example, the first condition is satisfied, hence we join SM_RS_AREA and

TOT_AREA_RS directly, and then project the result on SM_ID, SM.:....NAME and

RATIO.

88

(

(

(

5.5.2 Two Levels of Nesting

Description

We end the series of examples with a query involving two levels of nesting.

Expressions involving more nesting levels are also possible, and they are treated

no different than the two level nesting.

Query

Name aH shopping malIs with more than ten restaurants, along with their

corresponding municipality.

Nested expression

» let TüT_RS be red + of 1;

» SM_lORS is [SM_NAME] where ([] where TOT_RS > 10 in NEW_RS) in

SHOPPING_MALL;

» Q~ [MU_NAME, SM_lORS] in MUNICIPALITY;

Translated code

» SI ~ SHüPPING_MALL ijoio MUSM_LINK;

» S2 ~ RESTAURANT ijoin SMRS_LINK ijoin MUSM_LINK;

89

(

:(

» S4~ S3 ijoin SHOPPING_MALL;

» Q~ [MU_ID, MU_NAME] in MUNICIPALITY;

Discussion

The query can be divided into two subqueries, finding shopping maIls that have

more than ten restaurants in them, and then finding municipalities that contain

such shopping mans.

If we proceed to evaluate the query from right to left, we encounter the first level

of nesting between the SHOPPING_MALL relation and the MUNICIPALITY

relation. So we evaluate the first link between SHOPPING_MALL and its link

relation to MUNICIPALITY, namely MUSM_LINK.

Next, the parser encounters NEW_RS which is defined on the RESTAURANT

relation. At this point, the parser knows that this is the second level of nesting,

and hence, instead of linking the RESTAURANT relation to SMRS_LINK, it

links it to (SMRS_LINK ijoin MUSM_LINK). That way, we have in S2 the

unique identifiers of both the SHOPPING_MALL and the MUNICIPALITY

relations.

From that point on, the unique identifier for the parent relation ofRESTAURANT

is (MU_ID, SM_ID). This difference is clearly noticed in the domain algebra

expression: the reduction is converted to an equivalence with grouping on both

MU_ID and SM_ID. Similarly, we append to the empty bràckets in S3 both

MU_ID and SM_ID.

The rest of the translation is trivial. We joïn with SHOPPING_MALL to

reintroduce the shopping malI attributes in S4, and then project on SM_NAME

and SM_ID (SM_lORS is a horizontal relational expression). Additionally, the

90

(

(

(

atomic attributes are projected on MUNICIPALITY and assigned to Q. Relix then

creates new object identifiers for Q and SM_lORS and generates a link. relation

between the two new entities.

5.6 An Aigorithm for Parsing Nested Queries

Throughout the queries of chapter five, we have provided the reader with a

translation of each nested query into a sequence of flat relational expressions.

Time has come to describe the algorithm for a parser which receives at the input a

nested query and generates at the output the translated code for the current

implementation of Relix. We would like to remind the reader that we have not

implemented this algorithm in our work, and that it covers only the syntax

covered in the chapters four and five of the thesis.

The algorithm is called upon whenever the Relix parser detects a nested

expression:

1. DETECTION

The nested query flag is raised when the parser encounters a relational

expression in place of a domain expression. In the selection clause, that

corresponds to a relational expression instead of a boolean expression, and to

a relational expression instead ofan attribute name in the projection list.

2. RELATIONAL EXPRESSION IN THE SELECTION CLAUSE

2.1. Every predicate in the selection clause is evaluated. If it involves a nested

relation, then we caU the procedure EVALUATE_NESTED, otherwise we caU the

procedure EVALUATE_FLAT.

2.2. If a not operator is found in front of an expression, the relation on which the

expression is evaluated is djoined with the outcome of step 2.1.

91

(

(

2.3. Next, the parser concatenates the generated relations. For every boolean

operator between predicates corresponds a join operation, as shown in Table 5-5.

The relations resulting from step 2.2 are hence joined, in the same order the

boolean expressions would have been computed (that is respecting the order

imposed by parentheses). From the concatenation results a single relation,

containing the unique identifier of the parent.

2.4. Join the relation of 2.3 back with the parent relation.

2.5. We project the atomic domain names on the relation of the previous step,

including the OID of the outer relation. The result is a single relation R.

Logical expression Relational expression

and ijoin

or ujoin

not, ! djoin

Table 5-5 Correspondence table between the logical operators and the J.l-join

3. RELATIONAL EXPRESSION IN THE PROJECTION LIST

3.1. For every relational expression in the projection list, we eValuate this relation

by calling the EVALUATE_NESTED procedure. For every such projection Pi' we

get a new relation Ci. The object identifier is selected as the object identifier ofthe

parent entity in the query if Ci is a vertical relational expression, and as the object

identifier of the chiId entity in the query if Ci is a horizontal relational expression.

3.2. For every pair (R, Ci)' we create a new link relation, based on the following

mies:

92

(

(

(

3.3. If Ci is a vertical relational expression, then the new link relation is the

projection of the object identifiers ofR and Ci on the unionjoin between R and Ci;

3.4. If Ci a horizontal relational expression, the new link relation is the projection

of the object identifiers of R and Ci on the union join between R, Ci. and the

originallink relation between the ancestors ofR and Ci'

The EVALUATE_NESTED and EVALUATE_FLAT functions may be described

as follows:

EVALUATE_NESTED

The evaluation of a nested relational predicate takes place exactly as a flat

relation, with the following modifications:

• Instead of applying the query to the relation after the in operator, we apply

it to the ijoin of the nested relation with its link relation to the parentes)

relation(s);

• We augment the empty projection list by the identifier of the outèr

relation(s);

• Ifwe encounter a QT-Predicate, the expression is translated literally, as it

is expressed in the nested query. However, if the relational expression

contains a QT-Counter in a predicate, it is translated into a QT-Predicate

before evaluation.

• The

red <associ_op> of<dom_expr> ;

translates into

equiv <associ_op> of<dom_expr> by parent_ides);

93

(

(

.(

• The

equiv <associ_op> of <dom_expr> by <dom_list>

translates into

equiv <assocï_op> of <dom_expr> by <dom_list>, parent_id(s);

• The

fun <order_op> of <dom_expr> order <dom_list>;

translates into

par <order_op> of <dom_expr> order <dom_list> by parent_id(s);

• The

par <order_op> of <dom_expr> order <dom_list> by <dom_list

translates into

par <order_op> of <dom_expr> order <dom_list> by <dom_list>,

parent_id(s);

• The

par <order_op> of <dom_expr> by <dom_list> order <dom_list>;

translates into

par <order_op> of <dom_expr> by <dom_list>, parent_id(s) order

<dom_list>;

EVALUATE_FLAT

When this function is called, it means that the predicate is not a relational

expression. It is just a boolean condition on the parent relation in the query. The

predicate is therefore translated into the following relational expression:

<system_name> is [<parent_id>1where <condition> in <parent_relation>;

94

(

(

(

6. Nested SQL Queries

6. 1 Introduction

In recent years, SQL has become accepted as the industry standard language for

relational database access. It is widely implemented and supported by large

commercial database management systems such as ORACLE, SYBASE and DB2.

Many attempts have been made in the past to extend SQL and make it operational

on nested relations [50, 7]. What we describe in this chapter is not as complete as

sorne ofthe literature, and serves only as a proofofconcept.

We will start by giving a general presentation of SQL, highlighting only those

topics that will be covered by the examples on nested queries. Then, we will

analyze the potential changes required for the general SQL statement to fit within

the mutually nested objects model. Finally, we will give sorne examples to

illustrate the proposed extensions to SQL.

6.2 General Presentation of SQL

Many books and manuals have ~een written about SQL since SEQUEL2, the

original SQL language, was described by Chamberlin et al. in [51]. Even the

American National Standard Institute (ANSI) and the International Standards

Organization (ISO) have adopted SQL as the standard language for relational

database management systems. The reader can find literature on ANSI SQL in

[52] and on ISO SQL in [53].

One benefit of SQL is that the same language provides commands for a wide

range oftasks such as

95

(

(

(

• querying data;

• creating and modifying objects;

• inserting deleting and updating tuples in tables;

Following the same pattern used with Relix, we will focus only on the SQL query

facilities, at the heart of which is the SELECT statement.

The basic SELECT statement in SQL has the following structure:

SELECT <domain-expression>

FROM <relational-expression>

WHERE <condition>

In comparison with Relix, the <domain expression> is equivalent to the projection

list, the <relational-expression> clause is equivalent to the relational expression

after the "in" operator, and the <condition> is equivalent to the selection clause. If

we need, for example, to find the names of movies directed by "Steven

Speilberg", we would express the SQL query as follows:

SELECT mv narne

FROM movie

WHERE mv_director = 'STEVEN SPEILBERG';

The extension from SQL to nested SQL is discussed next. We will first propose a

syntax for expressing nested queries, then show through examples how nested

SQL can be translated back into standard SQL.

6.3 Changes Proposed to SQL for Handling Nested

Queries

The difference between flat and nested queries is that ooly atomic attributes are

allowed in flat que~es, whereas nested queries can have atomic as weIl as

96

(

(

(

composed attributes. Hence, in porting SQL to nested SQL, we need to allow

relations where only atomic attributes were previously allowed. In the simple

SELECT statement we introduced in the previous section, the changes would

affect the WHERE clause - discussed in section 6.3 .1- as weIl as the SELECT

clause - discussed in section 6.3.2. In section 6.3.3, we compare single row

functions with group functions in SQL, and introduce the special treatment

required for group functions.

6.3.1 Selection: The WHERE Clause

SQL provides the equivalent of the "[] where" clause we introduced in chapter

four, namely the EXISTS operator. The expression

EXISTS <subquery>

evaluates to TRUE ifthe SQL subquery returns at least one row.

For instance, if we need to select the municipalities that have large shopping

malis, we express the query in the following standard SQL statement:

SELECT mu_name

FROM municipality, musm_link

WHERE EXISTS

(SELECT *

FROM shopping_malI, musm_link

WHERE sm_area > 10000 AND

municipality.mu_id = musm_link..mu_id AND

shopping_mall.sm_id = musm_link.sm_id)

The above expression, however, is very complex, and references the object

identifiers explicitly. So we would like to reduce it simply to

97

SELECT mu_name

FROM municipality

WHERE EXISTS

(SELECT *
FROM shopping_maIl

WHERE sm_area > 10000)

This way, we hide from the user aIl references to the link relations and the unique

identifiers, without altering the existing SQL syntax.

6.3.2 Projection: The SELECT Clause

Since attributes may be relational expressions, we will allow SELECT statements

into the projection list of another SELECT statement. So the expression

{
SELECT mu_name, (SELECT

FROM

WHERE

sm name

shopping_malIs

sm area > 10000)

(

FROM municipality

WHERE mu-population > 500000

will be a legal statement. We have not introduced new keywords to standard SQL,

but we have modified the syntax of the projection clause in the SELECT

statement to allow nested selection. The whole concept of nested SELECT

statements in the projection list of other SQL queries is still absent from standard

SQL. It has been introduced, however, into other extensions to SQL, such as

SQL/NF [7], although that was in the context of one-directional oesting.

98

(

(

6.3.3 Functions in SQL

Before we illustrate the use of the proposed extensions to SQL in answering

queries, we need to discuss SQL functions, as they play an important role in

nested queries. As we may recall from chapter three, we identified in Relix two

types of expressions, vertical and horizontal. And we showed how vertical

operators need a special treatment when used in the context of nested queries.

Well, SQL is no different. SQL functions can he divided into single row functions

and group functions. Single row functions, such as ABSO, SINO and TRIMO, are

equivalent to horizontal expressions, for their result depends on a single tuple.

SUM, COUNT, MIN and the rest of the group functions return results based on a

group ofrows, just as the vertical operators in Relix.

Whenever a group function appears in a nested selection, we need to group the

nested relation by the parent identifier before we execute the function. The

following expression is an illustration of the concept:

SELECT mu_name

FROM municipality

WHERE (SELECT COUNT(*)

FROM shopping_mall) > 3;

The COUNTO function in the inner SELECT statement counts the number of

shopping malis. Since it is embedded in an outer select statement involving the

MUNICIPALITY relation, COUNT() would logically have to return the number

of shopping malis per municipality. The same query could not be expressed in

standard SQL without using the GROUP BY clause and making direct references

to the object identifiers. Integrating the notion of nesting within SQL reduces the

complexity of the expression and releases the user from worrying about tuple

references.

99

(
6.4 Examples of Nested Queries

In this section, we choose three nested queries among those discussed in chapter

five and show how they can be expressed using nested SQL.

6.4.1 SELECT Clause in the WHERE Condition

Query 5.3.3

Name aH municipalities with shopping mans larger than lOOOOm2
•

Nested expression

(

SELECT

FROM

WHERE

mu_name

municipality

EXISTS

(SELECT *
FROM shopping_malI

WHERE sm_area> 10000);

(

Translated code

SELECT mujd, mu_name

FROM municipality

INTERSECT

SELECT mujd

FROM shopping-ftlall, musm_link

WHERE (sm_area> 10000) AND

(shopping_mall.sm_id = musm_link.sffi_id)

100

(

(

Discussion

The first thing to do in the translation of the nested query is to evaluate the inner

condition, which can be decomposed into three components. The EXISTS

operator, combined with the SELECT * expression, are replaced by a selection on

the object identifier of the parent relation in the query, namely MU_ID. The inner

query on SHOPPING_MALL is translated into a query on SHOPPING_MALL

and its link relation to MUNICIPALITY, namely MUSM_LINK. Finally, in

addition to the original condition on the shopping mall area (sm_area > 10000),

the selected tuples should satisfy the additional condition (shopping_mail.sm_id =

musm_link.sm_id), which guaranties that they have an entry in MUSM_LINK.

Once the inner relation is resolved, we form the outer relation. The translation

involves extending the selection clause to include the object identifier of the

MUNICIPALITY relation in the statement. Finally, we build the intersection of

the two relations ta get the final result consisting of tuples satisfying both the

outer and the inner conditions.

6.4.2 SELECT Clause in the Projection List

Query 5.4.1

Name all municipalities that have a population over 500000 and the shopping

malIs in them that have an area greater than 10000 m2
•

Nested expression

SELECT mu_name, (SELECT sm_name

FROM shopping_mall

WHERE sm_area > 10000)

FROM municipality

WHERE mu-population> 500000;

101

~(

{

Translated code

SELECT mu_id, mu_name

FROM municipality

WHERE (mu--population> 500000);

SELECT sm_name, sm_id

FROM shopping_man, musm_Iink

WHERE (sm_area> 10000) AND

(shopping_mail.sm_id =musm_link.sm_id)

Discussion

The treatment of relational expressions in the projection list of a nested SQL

query is identical to that realized in Relix. At the conceptual level, the result is

composed of two new mutually nested relations. At the implementation level, new

abject identifiers are created for the new objects, and a new link relation

establishes the relationship between the two objects. The nested query is therefore

translated into two distinct queries.

The first SELECT statement stands for the outer selection in the nested query.

The projection list is however extended to include the object identifier of the

municipality. The translation of the embedded SELECT statement is less trivial,

and the changes are listed below:

1. We have included the shopping malI identifier in the projection list. As we

recall from chapter four, horizontal relational expressions preserve the

objects of the relation in which they are instantiated, and hence the

identifiers of those objects can be reused. If the nested SELECT statement

was a vertical relational expression, the OIn of the parent object in the

102

(

(

(

query would have been included in the projection list of the translated

code.

2. The selection is made in SHOPPING_MALL and MUSM_LINK, since

we need to select only those shopping malls that are linked to

municipalities in the database. That criterion is met thanks to the added

condition in the WHERE clause.

3. Although not shown above in the translated code, the nested SQL database

manager would also create the link relation between the two new objects,

and rename the object identifiers in aU three relations.

6.4.3 Group Functions in the WHERE Clause

Query 5.3.4

Name aU municipalities where the total area of shopping malls exceeds

100000m2
•

Nested expression

SELECT mu_name

FROM municipality

WHERE (SELECT SUM(sm_area)

FROM shopping_mall) > 100000;

Translated code

SELECT mu_id, mu_name

FROM municipality

INTERSECT

SELECT mu id

103

(

(

(

FROM shopping_maIl, musm_link.

WHERE (SELECT SUM(sm_area)

FROM shopping_malI, musm_link

WHERE (shopping_mall.sm_id = musm_link.sm_id)

GROUP BY mu_id) > 100000;

Discussion

The translation of this query is identical to that in section 6.4.1, except for the

added GROUP BY clause. We argued in section 6.3.3 that whenever a group

function appears in a nested selection, we need to group the nested relation by the

parent identifier before we execute the function. The SUMO function is a group

function, and it is used in the selection clause of a nested SELECT statement.

Therefore, when we translate the nested'query into a series of flat SQL statements,

a GROUP BY clause is introduced. In the case of this example, the grouping is

done on the identifier of the parent object, namely mu_id.

6.5 Comparison Between Nested and Standard SQL

If we compare the code for the nested query with the translated standard SQL

statements, we see that the nested query enjoys several important properties over

standard SQL. At the usage level, nested SQL expresses more naturally the

statement of the query, which makes it more user friendly. It is almost a direct

translation from the definition of the query.

Second, nested SQL expresses the query independently from the implementation

model, so the user is not aware of how relationships between entities are

represented in the system. In addition, it allows the same query to be ported

transparently from one data model to another without modifications or

adaptations. Even optimization would be done on the implementation side rather

than on the query side.

104

(

(

In the standard SQL statement, the user has to reference the object identifiers

explicitly. This is undesirable since OIDs are supposed to be' hidden to the user

and managed entirely by the system. The alternative would be to use foreign keys

for referencing, a concept we argued against in chapter two.

The nested query is very simple and elegant compared to its translation. It holds

no references to any ofthe abject identifiers nor the link relations, and grouping is

implied by the mere fact that one SELECT statement is embedded in another. In

standard SQL, on the other hand, an explicit GROUP BY clause is mandatory to

create groupings. In short, when it cornes to expressing queries on mutually

nested objects, nested SQL expressions are far more advantageous than standard

SQL statements.

105

(

{

(

7. Conclusion and Future Work

We have presented in this thesis a new data model for objects which are mutually

nested. Our data representation is characterized by symmetry, which enables us to

achieve our main objectives, namely dynamic complex object definition and

modeling of graph connected (rather than hierarchical) data structures. We believe

that this system architecture is better suited for applications with multiple access

patterns than traditional non-first-normal-form data models.

In addition, we introduced to the relational database system an important concept

from the object-oriented paradigm, name1y object identifiers. It helped us create

direct and multiple object referencing in an efficient and consistent manner,

without data or structure duplication. This modification has brought our model

closer to the object model, without giving up the benefits of relational databases.

In recent years, several authors such as Schek [20] and Stonebraker [21] have

followed a similar approach. By designing data models that combine features

from relational as weIl as object-oriented databases, they have laid out the

foundations of a new "wave" of database management systems, the object­

relational model.

In order to support our data model, we have proposed an extension to the Relix

syntax which would enable users to deal with nested queries at a conceptual level.

We offered a high level discussion of the necessary changes to the syntax of

Relix, as well as a detailed explanation of how nested queries may be translated

into flat relational algebra based on our data mode!. By examining over fifteen

queries, ranging in difficulty from flat to doubly nested queries, we hope to have

found an interesting way to get the reader familiar with all the problems involved

in resolving nested queries. Finally, we proposed certain modifications to SQL in

order to transfonn it into nested SQL, a language capable of dealing with

mutually nested objects in an implicit way.

106

(

.(

The domain of complex objects, however, is extremely vast. Just covering the

literature on various complex object models and algebra, for example, is worth

months of work, especially in that our model is rooted in both the relational and

the object-oriented schools. There are various possibilities and options worth

investigating which we decided to drop altogether because of scope and time

limitations.

At the Relix level, for example, we have left out several interesting issues, such as

the cr-joins. Let us consider for instance the following query,

~ SM_LIST~ where (SM_AREA > 2000) in SHOPPING_MALL;

~ Q ~ [MU_NAME] where (SHOPPING_MALL ::> SM_LIST) in

MUNICIPALITY;

where the::> notation stands for the greater-than-join, and returns true if ail tuples

in SM_LIST are included in SHOPPING_MALL.. We have not discussed how

such expressions may be translated into flat relational algebra.

Another aspect missing from our discussion of chapters four and five is the effect

of QT-Counters when applied to embedded relations in a given query. For

example, what does the expression

~ # [SHOPPING_MALL] in MUNICIPALITY

mean? The QT-Counter usually counts the number of different attrihute values in

a relation. But in this case, the attribute is itself a relation, so we need to do

relational comparison which again caUs upon cr-joins.

A third possibility for nested expressions involves J.l-joins and the domain algehra.

We saw in chapter three that a reduction expression takes the form

~ let <domain-name> he red <associative-op> of<domain-expression>;

107

(
as in

» let SUM be red + of SM_AREA;

The only condition placed on the operator that follows the reduction is that it

should be associative and commutative. Certain).l-joins, such as the iioin for

example, are both commutative and associative. So expressions such as

» let NEW_RELATION be red ijoin of MOVIE;

which are not allowed currently in Relix, should be legal in the context of nested

queries. Moreover, when instantiated in the assignment

» Q +- [NEW_RELATION] in MOVIE_THEATER;

the result should retum movies that are shown ln aIl movie theaters.

Unfortunately, the algorithm we presented in section 5.6 does not take into

account that kind of statements. Fortunately, however, those queries are

exceptions to the more common standard queries we discussed in chapter five. In

fact, if any additional effort should be spent to complete our work, it should focus

on implementing the data model and the Relix extensions we proposed,

optimizing the query translations, and investigating new requirements for updates

and integrity constraints in the context of mutually nested relations.

108

(

.(

(

Appendix A: Relix Syntax

A. 1 Re/afional Aigebra

<rel-algebra> ::= <rel~expr> 1 <rel-expr> -E- <rel~expr>

1 <rel-expr> <+ <rel-expr>

1 <rel-expr> [<dom-list> -E- <dom-list>] <rel-expr>

1 <rel-expr> [<dom-list> <+ <dom-list>] <rel-xpr>

1 relation <rel-name> «dom-list»

1 relation <rel-name> «dom-list» <rel-input>

1 <rel-update>

<dom-list> ::= <dom-name> 1 <dom-list>, <dom-name>

<rel-input> ::= of- "unix-path" 1~ { <tuple-list> }

<tuple-list> ::= «const-list» 1 <tuple-list> , «const-list»

<const-list> ::= <empty> 1<constant> 1<const-list>, <constant>

<constant> ::= <constant-in> : <dom-type> 1 <constant-in>

<constant-in> ::= dc 1 dk 1true 1 faise 1NUMBER l "STRING"

EXAMPLES:

)00. domain A: short;

)00. domain B: short;

)00. domain c: string;

109

» relation R(A, B)~ "my-file";

(
» relation S(A, C)~ {(l, "one"), (2, dc), (3, ltthree")};

» t~ [A] inR;

» t [A <+ B] [B] in S;

» T initial R is T ujoin (T [B icom A] R);

~ t~T;

A.2 Re/ational Expressions

,(

(

<rel-expr> ::= <rel-name> 1 <scalar-expr>

1 «rel-expr» 1 pick <rel-expr>

1 • <projection> <selection> <rel-expr>

1 # <projection> <selection> <rel-expr>

1<projection> <selection> <rel-expr>

1 <projection> vedit <rel-option>

1<projection> zorder <rel-expr>

1<rel-expr> <join_mode> <rel-expr>

1<rel-expr> { <const-list> }

<projection> ::= <empty> 1 [<dom-list>]

<selection> ::= in 1where <dom-expr> in 1 where { <quan-list> } in

1where { <quan-list> } <dom-expr> in

1 when <dom-expr> in 1 when <dom-expr> from

<rel-option> ::= <empty> 1 <rel-expr>

110

<joïn-mode> ::= <joïn> 1 [<dom-list> <joïn> <dom-list>]

(
<joïn> ::= nop 1 <mu-joïn> 1 <not> <sigma-joïn>

<not> ::= <empty> 1 -- I! 1not

<mu-jaïn>

1 drjoin

::= ijoin 1 natjoin 1djoin 1 ujoin 1sjoin Iljoin 1rjoin 1 dljoin

(

<sigma-join> ::= gtjoin 1gejoin 1eqjoin Ilejoin Iltjoin 1div 1icomp 1sep 1 sub

1 sup

<quan-list> ::= (<dom-expr>) <dom-expr> 1 <quant-list>, <quan-Iist>

<dom-list> ::= <dom-list>, <dom-name> 1 <dom-name>

<const-list> ::= <const-list>, <constant> 1 <constant>

<constant> ::= <constant-in> : <dom-type> 1 <constant-in>

<constant-in> ::= dc 1dk 1true 1false 1NUMBER l "STRING"

EXAMPLES:

~ domain A: short;

~ domain B: short;

~ domain C: string;

~ domain D: boolean;

~ relation R(A, C);

(~ relation S(B, D);

111

~ t ~ where A > 2*356 & C = "X" in R;
(

~ t ~ [B] where not D in S;

~ t ~ R ijoin R;

~ t ~ R [A ijoinB] S;

~ t ~ [A] where {(# = 2) C} in R;

~ t ~ [B] where {(. = 1/2) D} where D or B = 2 in R;

~ t ~#{B] where {(. = 0.5) D} where B != 2 in R;

~ t ~A { 3 };

~ t ~vedit R;

(~ t ~[A, B] vedit;

A.3 Domain Aigebra

<dom-algebra> ::= domain <dom-name> <dom-type>

1 let <dom-name> be <dom-expr>

1 let <dom-name> initial <dom-expr> be <dom-expr>

<dom-type> ::= any 1bool 1boolean 1long 1 integer 1intg

1real 1float 1 string 1strg 1expr 1expression

1 stmt 1 statement 1 short 1text

(

112

(

(

(

<dom-expr> ::= <dom-name>

1 «dom-expr» 1«dom-type> <dom-expr»

1<constant> 1 # 1·

1 <unary-op> <dom-expr> 1 <function> «dom-expr»

1<dom-expr> <binary-op> <dom-expr>

1 if <dom-expr> then <dom-expr> else <dom-expr>

1 <vertical-op>

1 pick <scalar-name> 1pick(<rel-expr>)

<constant> ::= <constant-in>: <dom-type> 1 <constant-in>

<constant-in> ::= dc 1 dk 1true 1faise 1NUMBER l "STRINGII

<unary-op> ::= + 1 - 1not I! 1 -- 1evai 1vir

<function> ::= abs 1acos 1asin 1atan 1ceill chr 1cos 1cash 1floor 1

isknown 1 log 1log! 0 lord 1 round 1 sin 1 sinh 1 tan 1 tanh

<hinary-op> ::= + 1 - 1 * 1 / 1and 1& 1or Il 1 < 1<=

1 = 1-= 1 != 1>= 1> 1max 1min 1mod 1pow 1cat III

<associ-op> ::= + 1 * 1max 1min 1and 1 & 1 or Il

<order-op> ::= + 1 - 1 * 1 / 1and 1 & 1 or III cat III

1max 1min 1mod 1pow 1pred 1succ 1..... I!-

<dom-list> ::= <dom-list> , <dom-name> 1 <dom-name>

113

(

(

(

<vertical-op> ::= red <associ-op> of<dom-expr>

1 equiv <associ-op> of <dom-expr> by <dom-list>

1 fun <order-op> of <dom-expr> order <dom-list>

1 par <order-op> of <dom-expr> order <dom-list>

by <dom-list>

1 par <order-op> of<dom-expr> by <dom-list>

order <dom-list>

EXAMPLES:

)0- domain A be long;

~ domain B be integer;

~ domain C be real;

~ let X be (A + B) / 2;

~ let Y be red * ofA;

)- let Z be equiv + of 1 by C;

~ let T be fun + of pred Border A;

A.4 Sea/ar Expression

<scalar-expr> ::= <rel-set> 1 <rel-sequencial>

1«scalar-expr»

1 «type> <scalar-expr»

1 <unary-op> <scalar-expr>

1<fun-op> «scalar-expr»

114

(

<type>

1 <scalar-expr> <binary-op> <scalar-expr>

1 if <scalar-expr> then <scalar-expr> else <scalar-expr>

::= any 1 bool 1boolean 1 long 1 integer 1 intg

1real 1float 1expr 1expression 1stmt 1statement

1 string 1 strg 1 short

(

(

<unary-op> ::= + 1 - 1not I! 1 1eval

<function> ::= abs 1acos 1asin 1atan 1 ceil 1 chr* 1 cos 1 cosh 1 floor 1

isknown 1

log 1 log10 1ord* 1round 1sin 1sinh 1tan 1tanh

<binary-op> ::= + 1- 1* 1/ 1and 1& 1or Il 1< 1<= 1= 1-= 1!= 1>= 1
>

1max 1min 1mod 1pow 1cat III

EXAMPLES:

}o- domain A real;

}o- relation R(A);

}o- relation S(A);

}o- t +-- (R + R) / S;

}o- t +-- round(R * 2);

115

(

(

(

References

1 E. Codd. A Relational Model for Large Shared Data Bank, ACM Communications, June 1970, pp

377-387

2 A. Makinouchi. A Consideration on Normal Fonn ofNot-Necessarily-Normalised Relation in

the Relational Data Model. Proceedings of/he International Conference on Very Large

Databases, pp 447-453, Tokyo, 1977.

l G. Jaeschke, H. J. Schek. Remarks on the Aigebra ofNon First Normal Form Relations,

Proceedings ACM SIGACTISIGMOD Symposium on Princip/es ofDatabase Systems, Los

Angeles, March 1982, pp 124-138.

4 S. J. Thomas, P. C. Fisher. Nested Relational Structures. Advances in Computing Research, The

Theory ofDa/abases, P. C. Kanellakis, ed. JAl Press, Vol. 3, 1986, pp 269-307.

S K. Takeda. On the Uniqueness ofNested Relations. Nested Rela/ions and Complex Objects in

Databases, LNCS #361, eds. A. Abiteboul, P. C. Fischer, H.-J. Schek, Springer-Verlag,

Heidelberg, 1989, pp. 139-150.

6 M. A. Roth, H. F. Korth, A. Silberschatz. Theory of"Non-First-Normal-Form Relational

Databases. Technical Report TR-84-36 (Revised January 1986), University ofTexas at Austin.

1984.

7 M. A. Roth, H. F Korth, O.S. Batory. SQLINF: A Query Language for -,INF Relational

Databases.lnformation Systems Vol. 12, No. 1, pp. 99-114, 1987.

8 M. A. Roth, H. F. Korth, A. Silberschatz. Extended Aigebra and Calculus for Nested Relational

Databases. ACM Transactions on Database Systems, Vol. 13, No. 4, December 1988, pp 389-417.

116

(

(

(

9 H.-J. Schek and P. Pistor. Data Structures for an Integrated Database Management and

Information Retrieval System. Proceedings on Very Large Databases, Mexico City, Mexico,

1982.

10 H.-J. Schek and M. H. Scholl. The Relational Model With Relation-Valued Attributes.

Information Systems, Vol. 11, No. 2, 1986, pp 137-147.

Il P. Pistor, F. Andersen. Designing a Generalised NF2 Model with an SQL-Type Language

Interface. Proceedings ofthe Twelveth Conference on Very Large Databases, Kyoto, Japan, 1986,

pp. 278-288.

12 M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidoit, S. Gamennan, D. Plateau, P. Richard, A.

Verroust. VERSO: A Database Machine Based on Nested Relations. Nested Relations and

Complex Objects in Databases, LNCS #361, eds. A. Abiteboul, P. C. Fischer, H.-J. Schek,

Springer-Verlag, Heidelberg, 1989, pp. 27-49.

13 H.-B. Paul, H.-J. Schek, M. H. Scholl, G. Weikum, U. Deppisch. Architecture and

Implementation ofthe Darmstadt Database Kernel System. Proceedings ACM SIGMOD

Conference on Management ofData, San Francisco, 1987, pp 196-207.

14 P. P. Chen. The Entity-relationship Model: Towards a Unified View of Data. ACM rODS, Vol.

l, No, 1, 1976.

IS D. Shipman. The Functional Model and the Data Language DAPLEX. ACM Transactions on

Database Systems, Vol. 6, No. 1, 1981, pp 140-173.

16 M. Hammer and D. McLeod. Database Description with SDM: a Semantic Database Model.

ACMTransactions on DatabaseSystems, Vol. 6, No. 3,1981, pp 351-386.

17 E. Codd. Extending the Database Relational Model to Capture More Meaning. ACM

Transactions on DatabaseSystems, Vol. 4, No. 4, 1979, pp 397-434.

18 S. Abiteboul and R. Hull. IFO: A Formai Semantic Database Model. ACM Transactions on

Database Systems, Vol. 12, No. 4, 1987, pp 525-565.

19 R. Hull. Four Views ofComplex Objects: A Sophisticate's Introduction. Nested Relations and

Comp/ex Objects in Databases, LNCS #361, eds. A. Abiteboul, P. C. Fischer, H.-J. Schek,

Springer-Verlag, Heidelberg, 1989, pp. 87-116.

117

(

.(

20 M. H. Scholl, H.-J. Schek. A Relational Object Madel. Proceedings ofthe Third International

Conference on Database Theory~ Paris, December 1990, pp.89-105

21 M. Stonebraker. The Object-Relational DBMSs: The Next Great Wave. Morgan Kaufmann

publishers, San Francisco, Califomia, 1996.

22 M. Tresch and M. H. Scholl. Implementing an Object Madelon Top of Commercial Database

Systems (Extended Abstract). Proceedings ofthe 3rd 01 Workshop on Foundation ofDatabase

Systems, Volkse, May 1991.

23 B. Mitschang, H. Pirahesh, P. Pistor, B. Lindsay, and N. Südkamp. SQLlXNF : Processing

Composite Objects as Abstractions over Relational Data. Proceedings ofthe 9th Dola Engineering

Conference, pp 272--282, Vienna, April 1993. IEEE, IEEE.

24 J. E. Rumbaugh, M. R. Blaba, W. J. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented

Modelling and Design. Prentice-Hall International, Ine., 1991.

25 T. Learmont and R.G.G. Cattell. An Object-Oriented Interface to a Relational Database. In K.R.

Dittrich, U. Dayal, and A. P. Buehmann, editors, On Objecl-Oriented Database Systems. Springer,

1991.

26 P. Lyngbaek and W. Kent. A Data Modelling Methodology for the Design and Implementation

oflnfonnation Systems. ln K.R. Dittrich, U. Dayal, and A. P. Buchmann. editors, On Object­

Oriented Database Systems. Springer, 1991.

27 I.A. Chen and V.M. Markowitz. OPM Schema Translator 3.1. Technical report LBL-35582,

Lawrence Berkeley Laboratory, Mareh 1995.

28 A. Keller, R. Jensen, S. Agrawal. Persistence Software: Bridging Object Oriented Programming

and Relational Databases. ACM SIGMOD Conjèrence. 1993, pp 523-528.

29 M. Rys, M.C. Norrie and H.J. Schek. Intra-Transaction Parallelism in the Mapping ofan Objeet

Model to a Relational Multi-Processor System

30 S. Zdoniek and D. Maier. Fundamentals ofObject-Oriented Databases. S. Zdonick and D.

Maier, editors, Readings in Objeet-Oriented Database Systems. Morgan-Kaufmann Publishers,

Ine., 1990.

118

(

(

(

31 R. Ananthanarayanan, V. Gottemkkala, W. Kaefer, T. J. Lehman and H. Pirahesh. Using the

Coexistence Approach to Achieve Combined Functionality of Object·Oriented and Relational

Systems. Proceedings ACM SIGMOD International Conference on Management ofData,

Washington, OC, 1993, pp 109·118.

32 W. Kim, E. Bertino and lF.Garza. Composite Objects Revisited. Proceedings ofACM SIGMOD

International Conference on the Management ofData, Portland, Oregon, 1989, pp 337·347.

33 H.-J. Schek and M. H. Scholl. The Two Roles ofNested Relations in the DASOBS Project.

Nested Relations and Complex Objects in Databases, LNCS #361, eds. A. Abiteboul, P. C.

Fischer, H.-J. Schek, Springer-Verlag, Heidelberg, 1989, pp. 50-68.

34 R. Lorie and H.-J. Schek. On Dynamically Defined Complex abjects and SQL. Proceedings of

the Second Workshop on Object-Oriented Database Systems, Bad Münster, September 1988.

35 L. Kerschberg and J.E.S Pacherco. A Functional Data Base Model. Technical Report, Pontificia

Universidade Catolica do Rio de Janeiro, Rio de Janeiro, February 1976.

36 A. Ohori. Representing Object Identity in a Pure Functional Language. Proceedings ofthe Third

International Conference on Database Theory, Paris, December 1990, ppAI-55

37 P. Valduriez. Join Indices. MCC Technical Report Number DB-052-85, submitted for

publication July 1985.

38 P. Valduriez, S. Khoshafian and G. Copeland. Implementation Techniques ofComplex abjects.

Proceedings ofthe Twelfth Conference on Very Large Data Bases, Kyoto, Japan, August 1986,

pp.lOl- 110.

39 O.S. Batory and A. P. Buchmann. Molecular abjects, Abstract Data Types and Data Models: A

Framework. Proceedings ofthe Tenth Conference on Very Large Data Bases, Singapore, 1984, pp

172-184.

40 B. Mitschang. Extending the Relational Aigebra to Capture Complex Objects. Proceedings of

the Fifteenth International Conference on Very Large Databases, Amsterdam, August 1989, pp

297-305.

41 W. Kim. A Model ofQueries for Object-Oriented Databases. Proceedings ofthe Fifteenth

International Conference on Very Large Databases, Amsterdam, August 1989, pp 423-432.

119

(

(

(

42 G. M. Shaw and S.B. Zdonik. An Object-Oriented Query Algebra.IEEE Data engineering, Vol.

12, No. 3, September 1989, pp 29-36. Special Issue on Database Programming Languages.

43 S. Abiteboul and N. Bidoit. Non First Nonnal Form Relations: An Aigebra Allowing Data

Restructuring. Journal ofComputer Systems Science, Vol. 33, 1986, pp 361-393.

44 R. Hull and C. K. Yap. The Format Madel: A Theory of Database Organisation. Journal ofthe

ACM, Vol. 31, No. 3, 1984, pp 518-537.

45 R. J. Brachman and lG. Schmolze. An Overview ofthe KL-ONE Knowledge Representation

System. Cognitive Science, Vol. 9,1985, pp 171-216.

46 S. Abiteboul and N. Bidoit. Non-First-Normal-Form Relations to Represent Hierarchically

Organised Data. Proceedings ofthe Third ACM SIGACTISIGMOD Symposium on the Princip/es

ofDatabase Systems, 1984, pp 191-200.

47 P. C. Fisher and S. J. Thomas. Operators for Non-First-Normal-Fonn Relations. Proceedings

IEEE Computer Software and Applications Conference, pp 464-475, 1983.

48 N. LaLiberté. Design and Implementation ofa Primary Memory Version of ALDAT, Including

Recursive Relations. McGill University, School ofComputer Science, Thesis. 1986

49 T.H. Merrett. Re/ational Information Systems, Reston Publishing Co., Virginia, 1984.

50 J. Bradley. Application ofSQLIN to the Attribute-Relation Associations Implicit in Functional

Dependencies.lnternationa/ Journa/ ofComputer Information Science. Vol. 12, No. 2, 1983, pp

65-86

51 D. Chamberlin et al. SEQUEL 2: A Unified Approach to Data Definition, Manipulation and

Control. IBM Journal ofResearch and Deve/opment Vol. 20, No. 6, pp 560-575 (1976)

52 Document number ANSI X3.135-1989 entitled "Database Language SQL with Integrity

Enhancement"

53 Document number ISO 9075-1989 entitled "Database Language SQL with Integrity

Enhancement"

120

·"-~ . .,"'''''

Il.0 := IIIII~ 1iiIIii
I~ ~ l.iii 11111

22:Lii. .

11111

11 ~ ~~ 11111

2
.
0

~ "." 111111.8

11111
1
.
25 I l.4 11111.6

150mm ------~-....

6" -------~.... 1....
1

APPLIED ~ IIVIAGE 1_ ,ne-== 1653 East Main Street
~ Rochester, NY 14609 USA

~.-== Phone: 716/482-0300
__ Fax: 716/288·5989

C 1993. Applled Image, Inc., Ali Rlghts Reserved

