PARTICLE BEHAVIOUR IN NEWTONIAN AND NON-NEWTONIAN LIQUIDS

~

-

oy



N \ PHENOMONOLOGICAL BEHAVIOUR OF PARTICLES

IN NEWTONIAN AND NON-NEWTONIAN LIQUIDS
3

by

Eric Bartram, B.Sc. (Hons). Salford University, England.

f

A thesisvc)sgbmitted to the Faculty of Graduate
Studies and Research, of McGill University in
partial fulfilment of the requirement for the

degree of Master of Science.

L

Department of Chemistry
McGill University
Montxeal, Canada - August, 1973.

R

(
© Eric Bartram 1974




ACKNOWLEDGEMENTS ” »
The author wishes to express his sincere thanks to
Dr. S.G. Mason
for his unfailing interest and direction during the course

of this work.

Grateful acknowledgement is also made to:

Dr. H.L. Goldsmith for generous advice and assistance
in preparing this thesis.

Mr. M. Ryan for help in characterization of the
polymer solutions.

Mr. W. Poar for experimental assistance in the
design and execution of some of the investigations.

Miss G. von Chamier and Mrs. G. Brunet for typing
this thesis,

The Spruce Falls Pulp and Power Company for a
Scholarship during the session 1971-72.

The Pulp and Paper Research Institute of Canada for
léboratory accomodation and equipment and for use of the .
technical facilities. |

Last, but not least, my fellow students and

bt

colleagues for their encouragement and friendship.



A d

4

ABSTRACT

The behaviour of rigid and miscible deformable
particles suspended in Newtonian and non-Newtonian liquids
undergoing slow Couette flow was investigated. The rotations
of rgdé and discs in pseudoplastic liquids were in quantita-
tive agreement with the equations derived by Jeffery, whereas
the particles suspended in viscoelastic fluids were not.
Rotational orbits, C, drifted to limiting values, correspond-
ing to minimum energy dissipation, in pseudoplastic liquids.
However, in viscoelastic liquids discs drifted in orbit
constent where 0<C<= and, although periodic, varied from a
maximum at ¢l = 0, v and a2 minimum at ¢1 = n/2, 3n/2. Also
in viscoelastic liquids, under certain ¢tonditions, both rods
and discs assumed a steady orientation aligned with the flow

and without rotation.

A theory predicting the behaviour of miscible drops

(012 = 0) in Newtonian systems was found to be in fair agreement

with experimental results. A novel deformation phenomenon was
found for viscoelastic systems where the interfacial tension
was zero.

A speculative explanation involving the rheological
properties of the fluids is advanced to explain the phenomena

outlined above.



RESUME
,

- Le comportement de particules rig%des ainsi qﬁe de
particules miscibles et déformables, en suspension dans des ,
iiquides Newtoniens et non-Newtoniens, et subissant un courant
de Couette lent, a &té exploré. Les rotations de disqyeé
et de tiges dans des liquides pseudoplaétiques sopt,idq point
de vue quantitatif, en bon accord aveqxlés équations dérivées
par Jeffery, tandis que les particules en suspensio& dans des
liquides viscoélastiques ne le sont/pas. Dans les liquides
pseudoplagtiques les orbites de rotation se modifient o
jusqu'a des Qaleurs limites, correspondant 3 une perte d'@nergie
minimum. Cependant, dans les liquides viscoélastiques les
disques modifient leur constante orbitale C telle que 0<C<w,
constante qui bien que pééioqique, varie d'un maximum 3
¢ = 0, " & un minimum a ¢1 = /2, 31/2. De plus dans les
liquides viscoélastiques et dans certaines conditions, et
les disques et les tiges;conservent un orientation stable;
align s dans le sens du courant et sans rotation. Une théorie
prédisant le comportement de gouttes miscibles (c12 = 0} dans
des systemes Newtoniens, semble en bon a?cord avec les résultats
expérimentaux. Un nouveau phénoméne de déformation a été
découvert dans le cas des systdmes viscoélastiques, alors que
la tension de l'interface est zéro. Afin d'expliquer les
phénoménes abordés ci-dessus, une explication spéculative

introduisant les propriétés rhéologiques des fluides est

proposée.

p
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2I A
. . "Rheplogy. Study of the deformation and flow of

oY matter in terms of{stress, strain and time".l)

From the above definition it can be understood

that the scope of this scientific subject encompases many

o

disciplines. This broad definition can be broken down into
two inter-related categories: (i) macrorheology, which regards

all materials as homogeneous and devoid of structure, and
I
(ii) microrheology which, from a detailed study of the behaviour

of the elemental particles of which a material is composed,

predicts the macroscopic rheological properties. This thesis

s l‘”’o.
is concerned with the study of the behaviour of individual

m‘partlcles suspended in. elementary volumes of Newtonlan and
non-Newtonian liquids under901ng 1am1nar shear flow.

The first theory for the steady rotation of rigid

spheres was that given by EinsteinZ). This was later

3)

extended by Jeffery to include spheroids, (the relevant

details of which are given in Part II). A recent theory by

4)

Cox ' presents in a more general form, the earlier work of Taylor

5'6), who described the deformation and internal circulation of

fluid drops. The equations of importance ‘to this work being

described in Part I1II of this thesis. Goldsmith and Mason7)
have reviewed the subsequent experimental investlgations

s -~ carried out in this laboratory and elsewhere, along with the
underlying theories, and describe the behaviqur of rigid and
deformable particles in Newtonian liquids ungérgoing Couette

| .

and Poéseuille flow at low Reynolds numbers.  Since then other

workerss'g) here have studied the motions of particles in

" -
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non-Newtonian syspending fluids. The angular velocities

of rigid particles in pseudoplastic liquids were found to be

in agreement with equations derived by Jeffery3), but the

\

orbit constants of rods and discs drifted to limiting values.

&

In viscoelastic liquids, at sufficiently high shear rates,

3

the discs ceased to rotate and aligned themselves with the
direction of the flow. Alsomigration of rigid particles in
pseudoplastic liquids in Couette flow was towards the region
of increasing velocity gradient, whereas the opposite was
true in viscoelastic fluids.

Part II of this study extends this earlier work

8) and Gauthierg) for single rigid cylinders suspended

of Karnis
in non-Newtonian liquids, special attention being focussed
on the behaviour ‘of particles suspended in viscoelastic
liquids at shear rates greater than previously used and
also the drift to an equilibrium orbit for discs having axis
ratios closer to unity.

Part III deals with the behaviour of liquid drops,
having zero or near zero interfacial tension with respect to
the suspending medium, undergoing slow Couette flow. The

theory by Cox4)

which predicts the behav}our of these particles
under the above conditions when both drop and medium are
Newtonian is tested experimentally, and also the deformation
and‘burst of non-Newtonian systems are characterized.

Parts II and III have been written in a form

suitable for publication and as such are complete with their

own experimental and theoretical backgrounds and references.
AN
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Part IV contains the General Conclusions, Suggestions for

Further Work and Claims to Original Research. The Couette

devices used in this study are described in the Appendix.

”
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1. ABSTRACT

Investigations of the behaviour of rigid cylinders
suspended in pseudoplastic and viscoelastic liquids subject
to slow Couette flow have been carried out. The results in
both types of solutions showed that there was a steady drift
in the orbit constant, C, to an equilibrium orbit. For the
pseudoplasfié ;éaia, the orbit drifts were towards an
asymptotic value corresponding to minimum energy dissipation
in the flow, where C = O for rods and C = » for discs. How-
ever, discs in viscoelastic solutions of polyacrylamide
drifted to an intermediate orbit with O<C<» which was
periodic, although C continually varied between a maximum
at ¢l = 0, m and a minimum at ¢l « /2, 3 n/2. Furthermaore,
both rods and discs suspended in P.A.A., under certain
condiéions, aligned themselves with the flow and ceased to
rotate. Also in viscoelastic media, the observed periods
of rotation for cylinders were markedly greater than those
given by theory. )

A qualitative explanatioﬁ of the above phenomena

has been advanced utilizing the measured normal stress

differences and elastic properties of these fluids.

&



The theory and behaviour of rigid and deformable
particles suspended in Newtonian liquids undergoing Couette

or Poiseuille flow at low Reynolds numbers has been studied

1)

in this laboratory over the last 20 years;’.

Pl

More recently, investijgations into the behaviour

of single rigid particles suspen in pseudoplastic and
viscoelastic polymer solutions, subject Yo slow Couette flow,

have also been carried o

these studies of the mgtions of cylinders
fluids to particles hawing axis rdtios cl¢gser to unity} and
to a wider range of shear rates Qualitative observations
were also made on the behaviour of conducting particles when
an electric field was superimposed on the shear field.
Whereas many of the phenomena observed in
Newtonian media have been theoretically predicted4'5’6),
there is no such basis at present for describing certain of
the particle motions in non-Newtonian fluids. Thus the .. _
migration of rigid spheres and cylinders across the planeé\\\\\\
of shear, the changes in rotational orbits or rods and discs
with time and the irreversibility of two-body collisions
which occur both in pseudoplastic and.%iscoelastic media are
not observed in Newtonian fluids.
In the case of discs, which under certain condi-
tions in viscoelastic fluids wete found to align themselves

without further rotation in the direction of flow3), a

~




qualitative explanation invoking an elastic restoring
torque oppoéing that due to viscous deformation of the
fluid was advanced.

Although the present study does not give any
theoretical basis for the above mentioned phéhomena, it
was hoped that the work would result in further qualitative
understanding of the motions of rods and discs described

below.

3. THEORETICAL AND EXPERIMENTAL BACKGROUND

We consider the motions of single, isolated,
neutrally buoyant rigid particles suspended in liquids of
density Po and viscosity o subjected to laminar viscous
Couette flow. oA
An extension of the mathéhaticai treatment by

7)

Einstein concerning the increase in fluid viscosity due

to the presence of suspended spheres, as well as the results

of Oberbecke) and Edwardsg) led Jeffery4)

to formulate a set
of equations describing the rotation of the axis of revolu-
tion of small ellipsoidal particles suspended in Newtonian
liquids at the origin of a field of plane Couette flow

u; =0, uy =0, u; = GX,. Here u,, u,, u, are the respective
fluid velocities along the Cartesian coordinates X:, Xg, X4
shown in Figure la, and G is the velocity gradient or shear
rate. In the case of an ellipsoid of revolution (spheroid)
the equations show that the movement of the axis of revolu-

tion about the polar, xl-axis is somewhat like the motion

of a precessing top, with the angular rotation given by:



(a)

(b)

(c)

FIGURE 1

Cartesian coordinate system X10 X5, X of the

3
external flow field. 61 and ¢1 are the polar
coordinates witL respect to X, as the polar -axis.
The upper end of the axis of revolution of a )
prolate spheroid (re > 1) is shown tracing out
the path of a spherical elliptical orbit having

the orbit constant C.

Stresses acting on three faces of a unit cube in
a Cartesian coordinate system xl, xz, x3; Py’
Py2 and P33 are the normal stress components and

pij' (i #3j), are the tangential (or shear) stress

Projections of a disc (left) and a rod (right)
rotating in Couette flow viewed along the Xl-axis
after they have attained orbits having the

respective limiting ’alues C=oand C = 0.

3)

(After Gauthier, Goldsmith and Mason™'.)

v
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Wy = | = c (r2
= 5 =
1 dt (rg-+1) p

coszq;l + sin2¢1) ' (1]

de. G(rZ-1) .
g sin2¢,sin2e,. [2]
dat; 4(rp+l) -

ot

-t
Here ¢1 and el are the spherical polar angles defined in
Figure la, rp is the particle axis ratio (axis of revolution/

equatorial diameter) = 2a/2b.
&

a) Angular velocities

For the simplest case of a sphere (a=Db), Eq.[1l]

9

reduces to

w, = G/2 - [3]

€

The particle rotates with a constant angular velocity and has

the period of rotation

T = 4n7/G. [4]

Rigid spheres suspended in Newtonian liquidslo) have been
shown to obey Egs. [3] and [4]. With pseudoplastic carbopol

solutions which followed the power law relation;
- n
Py3 = KG™ (5]

Py3 being the tangential shear stress (Figure 1lb) and K and

n constants depending upon the fluid. The mean observed

angular velocities over a range of G from 0.13 sec -

3)

to
2.18 sec‘l were also in agreement with theory™’ , provided the

shear rate at the stationary layer in the annulus of the

12
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Couette was calculated taking into account the non-Newtonian

velocity profile;

a R2/M - o g2/n
Gm) =2 I 11 11 (6]
n R2/n _ R27h :
II I

N

Here QI and QII are the angular velocitiés ofvthe inner and
outer cylinders respectively, R is the radial distance from
the centre of rotation and RI and RII the radii of the inner
and outer cylinders respectively. When the liquid is Newtonian,
n=1 in Eq.[&]. For the viscoelastic polyacrylamide solu-
tions complete velocity profiles were not available, but a
few measurements of the local G at the stationary layer
suggested that here too 2m1/G = 1 and that the rotation of
the field is equal to half the velocity gradient3).

. When rp # 1, Eq. (1] indicgtes that the angular
velocity, Wy varies periodically: for a prolate spheroid,
rp > 1, it is at a maximum when the axis of revolution,
coincident with the major axis of tﬁe particle, is at right
angles to the direction of the flow (¢l = 0,n), and at a
minimum (but not zero) when'the particle major axis is
aligned with the flow (¢1 = n/2, 31/2). For an oblate
spheroid, the positions of maximum and minimum velocity are
reversed, since here the axis of revolution is coincident
with the particle minor axis.

The particles used in nearly all previous experi-

mental studies were cylinders (rods and discs) and not

ellipsoids. Nevertheless, it was found that Egqs. [1]}] and [2]



were obeyed provided an equivalent ellipsoidal axis ratio ry

.was used instead of the particle axis ratio.rp: r, is

obtained from the integrated form of Eq. (1]

Gt

S S
e

tan¢; = r_tan ’ (7]

using the experimentally determined period of rotation T -

of the cylinder about the vorticity axis,

T=2 e (8]
e
Experimental studies of the relationship between Te and rp
for cylinders have also led to the following empirical
relationshipll): | éﬁ@
loglore = 0.78 loglorp + 0.051 , (91

which can be used to obtain the r, value of cylindrical ’

-

particles in Newtonian liquids when TG is unknown. The r,
value o%tainedlfrom this result is acc;rate to t 5% in the
range r§)= 0.1 - 50.

} Previous work3) showed that for a given particle,
the valu%s of ry calculated from Eq. [{8] were the same in
Newtonian and pseﬁfoplastic solgtions of Carbopol. Moreover,
the measured ;ngular velocities d¢1/dt in these solutions
were in good a%feement with those calculated from Egs. [1]
and [6]. Similar rgsults were obtained at low shear rates
with rods and discs in viscoelastic 2% aqueous$ polyacrylamide

solution.

14
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l

b) Drift in orbit constant

s Upon integration, Eq. [2] becomes; '

tanel =

’ [10]

where C is ;he orbit constant which defines the eccentricity
of the spherical ;llipse t:eced out by the ends of the
particié axis of revolution whose principal axes are tan-ICre
at ¢, = 7/2, 31/2, and tan 'C at ¢, = 0, n. The orbit
cqns;a may take on any value between the limits 0 and <.
Exper tally, good agreement with Eq. [10] in Newtonian
fluideNsubjected to Couette or Poiseuille flow at very low

Reyholds numbers has been foundls12:13.14,15)

, provided tpe
particles do not sediment or interact with each other and
there is no Brownian motion. Under these cohditions, single
rods and discs rotate indefinitely in orbits determined only

14
by the initial conditions of release. -

The value of C at any given ¢, can be determined
from Eq. [10] with 6; obtained from the projected lengths
of the axis of revolution 2a'(¢1) and the equatorial dia-

”

meter 2b'(¢1) of the cylinders in the X2X3-p1ane;

iliill = gin@ [1la]
a 1’

sl LA cos [11b]
b ( 1°,

0
A convenient illustration of a spherical elliptical

orbit is provided by plotting the projection of the axis of .

~
"«



behaviour in non~-Newtonian fluids was reported by Gauthier

revolution'a'(¢l) in the X2X3—p1ane. At a finite value

of C, this is an ellipse of axis ratio Ry3, given by;
1 ,-32

1,3
(1 =) + ) . (12]
c? c?r

-
1

23 © 2
e
»
When C = «, R23 = 1 and the projection is a circle whose
centre represents the projection at C = 0. Figures 2a and
3a show a set of ellipses for various C in the case of a
rod and disc respectively3).

In non-Newtonian fluids, however, rods of particle
axis ratios from 10 to 24 23 Qarifted into orbits of C = 0
where the particle spins about its axis of revolution

o
aligned with the Xl-axis (Figure 1lc). Discs having r

p
between 0.11 to 0.17 drifted into orbits of C = » in which
the axis of revolution rotates without spin in the X2X3—plane.
Plots of the projection a'(¢l) for particles drifting into
these 1i@iting orbits, in which the diésipation of energy in

4)

Couette flow is a minimum™’ , are shown in Figures 2b and 3b.

A special case of the above particle rotational

3)
who found that above a critical Bhear rate, discs in 2%
aqueous polyacrylamide solutions oriented themselves with
their axis of revolution along the X,-axis, ¢, = 0, 8, = 9Q°
and ceased to rotate further (Figure 3c). They remained
aligned with the direction of flow even when the velocity
gradient was further increased. The drift in the angle 8,
to 90° occurred even when the discs were initially in tﬂe

¢1-orientation = 0°.’ No such behaviour was reported in the

g

16



FIGURE 2

(ay Calculated and computer—drawn x2X3-projections
of the axis or revolution’of a rod (= semi-major
axis) with ro, = 16.% in various spherical ellip-
tical orbits whose constant C increases from 0

at the origin to the circle corresponding to

C=m' ‘ ]

(b) The measured projections of one end of the same
rod suspended in a viscoelastic 2% P.A.A. solution
(G = 0.53 sec )) showing the progressive drift of
.;rbit cbéstant from C' = » to C close to 0 in the
direction given by the arrows. The line is the
bést fi? of the ;xpeqimeptal points. (after

Gauthier, Goldsmith and Mason3).

g
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(a)

(b)

(c)

FIGURE 3

Calculated and computer-drawn x2X3-projection of
the axis of revolution (= semi-minor axis) of a
disc with r, = 0.24 rotating in various spherical
elliptical orbits. At the origin C = 0, the

circle corresponds to C = =,

Measured projections of one end of the axis of
revolution of the same disc suspended in a pseudo-
plastic Carbobql solution (G_ = 1.11 sec™l) as the
orbit constant drifted from a value initially close
to C' =0 toC' = » in the direction given by the

arrowvws.

Measured projections for a disc, I, = 0.15 suspended
in a viscoelastic 4.0 $ P.A.A. solution, showing
the orientation of the particle with the axis of

revolution along the Xz—axis and where it ceased

to rotate further. Open circles: G = 1.04 sec1;

closed circles: G = 0.31 sec’l. 1In (b) and (c),

the lines are the best fit through the experimental

points.

(After Gauthier, Goldsmith and Mason3)).
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case of rods suspended in viscoelastic media2'3).

(c) Lateral migration

In addition to the drifts in orbits, rods and
discs were found to migrate across the planes of shear in
Couette flow towards the re;ion of lower G (in the direction
of the outer cylinder) in viscoelastic suspending media, and
towards the region of higher G (towards the inner cylinder)

in pseudoplastic suspehding fluids>) .

4, EXPERIMENTAL PART

(a) Apparatus

~

The suspended particles were observed in the
X2X3-plane (Figure 1) in the annulus between two counter-
rotating cylinders of a Couette apparatus as described in
previous papers from this laboratory16'17)(for details, see
Appendix A) . The apparatus has a range of shear rates from

0 to 20 sec-l; most of the experiments here were carried out

between 1 and 10 sec-l, The experiments in which an
electrical field, applied along the xz—axis, were made in
an apparatus essentially the same as that above, exgggt the
two counter-rotating concentric cylinders were of st;inless
steel}G)These were- electrically insulated from one another
and the electric field applied to the outer cylinder with
the inner one grounded. The power supply was 60 Hz a.c.

(0 to 25 KV).

The particle rotational motions were recorded
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on 1émm cine film using a Paillard Bolex camera aligned

with the Xl-akis. The films were analysed by projecting
them onto a drafting table and the changes in particle
orientations measured, frame by frame. In order to measure
the a;gle ¢1, the orientation of the reference x3-axis was
first determined by filming a short-sequence of the cylinder

wall before each experiment,'the angle 91 was then calculated

from Egs. [lla] or [1llb]}.

(b) Fluids '

The viscoelastic fluids investigated were pre-
pared at a concentration of 2.5% w/V for the aqueous solutions
of”ﬁglyacrylamide, P.A.A. (Cyanamer P. 250, American Cyanamide
Company), and up to 5% w/V for polyisobutylene, P.I.B.
(Vistanex, Enjay Company, New York, N.Y.) in decahydro-
napthalene (Decalin).

The pseudoplastic media employed were "Close-up”
toothpaste, a submicroscopic suspension of silicone in-.a //{///ﬂ\\
medium of unknown composition (sample, courtesy of Lever
Brothers Inc.) and a neutralised aqueous solution of carboxy-
vinyl polymer (Carbopél 940, B.F. Goodrich Chemical Co.) at

concentrationsup to 0.25 w/V of polymer.

In order to obtain reproducible data, great care

-had to be taken in the preparation of the polymer solutions,

particularly in the case of polyacrylamide where the apparent
viscosities were noticeably affected by the stirring rate

employed to dissolve them. Such behaviour has been
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documented by Haas and MacDonaldl®:1%)

who have also given
data on the shelf-life of these solutions. All stock
solutions of P.A.A. were prepared at the same concentra-

.

» » 3 . K”
tions employing constant volumes and stirring ratesJA

(c) Rheological parameters

Various rheological characteristics of the above

fluids (except "Close-up" toothpaste) have been reported2'3'

20_23). .In this study, all three normal stress differences
and the apparent viscosity were measured at 20° t 0.5°C
émploying the- cone and plate fixtures on a Mechanical
Spectrometer (Rheometrics Inc., Louisville, Ky.). The

cone angle used was 0.04 radiafis with a plate diameter of

7.2 cm. The elastic modulii were measured on the same instru-
ment utilizing eccentric rotating discs of the same diameter
as the cone And plate fixtures. This rotational rheometer
has a newly developed transducer system held in place by

four cantilever arms each of which supports four piezoresis-
tive silicone cells. This enables an instantaneous and
simultaneous measurement of the three separate force com-
ponents F,, F2 and F3 acting along the respective coordinates
X0 X, and X3 (Figure la) as well as the resulting torque T,.
Al% four.results can be displayed on an automatic chart s
recorder. Here Xy is the vorticity axis, being the vertical
axis of rotation of the spectrometer spindles.

From the above data the shear rate G, the

tangential shear stress Py3e the apparent viscosity q)and
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the first normal stress difference (p33-p22) (Figure 1b)

were calculated by means of the following relationships:

G = ml/B
- Py3 = 3T1/2nR2
P33=Pyy = 2F/7R.
N = p23/G . .

Here wy is the angular velocity of the cone, B the cone
angle and R, the radius of the fixture.

The technique of using eccentric rotating discs
‘for measuring elasticity has been fully described by
Macosk024). fhe geometry of the flow system is shown in

Figure 4. The relevant parameters were calculated from
L4

the following relationships:

Strain: Yy = x3/x1 N
Fixy

Dynamic shear G' =

storage chx3

(elastic) modulus
FaXy

Dynamic shear loss G" =

. TR X3
Dynamic viscosity n' = G"/w1 .

Here, X5 is the horizontal displ;cement between the axes\of
the discs (1 mm) and Xy %s the gap width between the parallel
plates (also 1 mm).

A decrease in the apparent viscosity with increasing

shear rate was found for all the solutions used. This is



FIGURE 4

The geometry of the system for the flow
between eccentric rotating discs, where X3
is the horizontal displacement between
disc axes, X, the gap width and Rc the
radius of the fixture. Fl’ F2 and E3 are
“the forces acting along the respective co-

ordinates xl, X2 and X3, when subject to

angular velocity Wy .
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illustrated in Figure 5 over a range of G from I to 450 sec—{
The liquids studied were neither rheopectic nor thixotropic.
In addition, as illustrated in Figure 6 both the

pseudoplastic and viscoelastic solutions exhibited consider-
able first normal stress differences, even at shear rates
below 1 sec-l. No second or third normal stress differences
were detected at the shear rates employed. Although the
first normal stress differences increased with increasing

3)

shear rates as previously found™’, the values of (p33-p22)

measured in the mechanical spectrometer at a given G were
considerably larger, especially 'in the Carbopol solutions,
than those previously obtained using the Weissenberg

Rheogeniometer3)

3)

. A comparison of the results reported by
Gauthier and those of the present study are shown in
Table I. In contrast, the measured apparent viscosities in
the present study appear to be in the range previously' found
by Gaughier3). The discrepancies in the normal stress dif-
ference is quite possibly related to the mode of solution
which was mentioned earlier.

The storage modulus, the loss modulus as well as
the dynamic viscosity are shown in Figure 7 as a log-log plot
for angular velocities up to 40 radians sec-1 for a poly-
acrylamide solution and c}early iilustrates the presence of \
considerable elastic modulus. No elastic properties could
be ascertained from the test data on the Carbopol solution.

Further qualitative evidence for this difference in properties

between these two types of fluids was obtained by the presence
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FIGURE 5

4

Appatent viscosity as a function of shéar
rate rate for "Close-up” toothpaste (closed
circles), 0i25% carbopol solution (cldged
squares) and 2.5% P.A.A. solution (closed

triangles).
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FIGURE 6

Log-log plot of first normal stress

(;933-;)22) against shear rate (sec-l)
determined on the Mechanical Spectrometer

_ using the cone and plate fixtures. t
Closed triangles, "Close-up” toothpaste;
closed circles, 2.5% PgA.A. solution; and,
closed squares, 0.25% Cérbopol solution. '
There were no suspended paréigles in these

liquids.
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FIGURE 7
b N
*
P~
Showing a log-log plot of the dynamic
viscosity n', the dynamic shear storage
modulus G ' and the dynamic shear loss

modulus as a function of angular velocity

(rad/sec) .
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TABLE I

Comparison of first normal stress differences

in fluids; present and previous study a)
s
- p., dyne cm 2
P33~ P22
G
sec™1 GAUTHIER et al. PRESENT STUDY
3% PAA 2% PAA 0.35% Carbopol | 2.5% PAA 0.25% Carbopol
1 - - 0 - 44 ’
5 9 5 0 460 -
10 20 7 0 660 104
100 120 32 v 0.4 2000 270
™
° a) From Gauthier, Goldsmith and Mason 3). L0

A




of the Weissenberg effect upon stirring the viscoeléstic

solutions and also the translational recovery of small
tracer particles in the P.A.A. solution upon cquation of

flow. Neither of these effects were observed with the

pseudoplastic solutions. o

(d) Particles

Discs of diameter 0.180 cm and thickness 0.012 cm
were prepared by punching out mylar computer tape. Particles
of axis ratios 0.477, 0.675 and 0.881, but constant diameter,
were then made by gluing together 7, 10 and 13 discsciespec-
tively by placing them in a jig qnd employing ethyl acetate
. as the solvent. Examination of the measured particle axis
ratios obtained in this manner indicates that some swelling
of the mylar occurred during this process. The rods were
machine cut from polyethylene filaments of ~ 0.05 cm diameter
to give axis ratios of 5.61 and 9.03.

Aluminium coated nylon rods o§ length 3 mm and
diameter 175y and polyester laminated aluminium discs of
diameter 1.83 mm and thickness 94 were used as the conduc-
ting particles in the electrical field experiments, in which
a 3% pglyisobutylene/decalin solution was used as the suspen-
ding medium. Tetrabromoethane waskédded to this solution' to

match the densities of the media and the particles.

1

S. RESULTS
The results described below deal only with particle

behaviour in viscoelastic fluids undergoing Couette flow,




- obtained for djijscs of r_ Vv 0.1 in this medium

since observations made in the pseudoplastic "Close-up"

toothpaste and Carbopol solutions at shear rates up to

1

20 sec =~ showed that there was no qualitative difference

in the particle motions from those previously found at

shear rates < 5 sec 1. 2,3)

(a) . Rotation of discs in 2.5% P.A.A. solutions

(i) Angular velocities. Unlike previous results
3)

p , the
observed periodgd of rotation of particles having axis

ratios from 0.067 to 0.881 were markedly greater than those
given by theory, as calculated from Eq. [8], with the vélue

of r, obtained from the measured rp and Eq. [9]. A compari-

son of the experimental and ;aszaa%ed values of T for discs

of various rp over a range of G is given in Table 2.
In Figure 8, a plot of the measured ¢, against t/T__,
for a disc p = 0.477, r, = 0.634) at a shear rate of
6.53 s c—l, is_ecompared with the' theoretical curve calculated
from Eq: [7}, again using re obtained from the empirical
relation [9].

It is evident from the table that, at a given rp,
the ratio of the calculated to measured period of rotation
increases with ;ncreasing shear rate. While there was a

obs./T
from rp = 0,067 to 0.477 a further increase in axis ratio at

marked decrease in T at G = 0.15 sec“1 in going

calc.

"a given G did not appear to have any significént effect.

(ii) Drift in orbit constant. Again,unlike previous

observations in viscoelastic solutions of P.A.A.3) in which
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FIGURE 8

Variation of ¢, with time for a rigid dtsc

=0.477, G = 6.53 sec L. T is

*p
obtained from Eq. [8] using ry calculated

calc.

from the measured rp and Eq. [9]. The -
theoretical curve is calculated from Eq. [7],
again using r, obtained from the empirical

E

relation [9].
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thin discs (rp = 0.067) were found to drift into orbits of
C = =, here at low G (< 0.15 sec !) the discs listed in
Table II drifted into equilibrium orbits in which C < =
and continually varied between a maximum at ¢ = 0,m and
a minimum at ¢1 = n/2, 3n/2. A portion of such an orbit
is shown by a plot of a'(¢1) for the disc, rp = 0.067, in

Figure 9. Bgecause the period of rotation was almost 500

s;ébnds long, there was appreciable migration of the particle
across the planes of shear towards the outer cylinder wallz’
taking it out of the field of view of the camera before the
complete orbit could be photographed. Similar behaviour was
found for discs with axis ratios rp between 0.477 and 0.88]},

the particles taking up stable equilibrium orientations with .

0.< C < », Figure 10 shows a typical series of transient

orbits for a disc rp = 0.675, as it drifted into an equili-
brium orbit. It should be noted that although the particle

never rotated in a spherical elliptical orbit with a constant

C, the instantaneous values of the orbit constant were

computed from Egq. [10] using the measured angles ¢1 and 8,/

and the value of Lo calculated from Eq. [9].

In contrast to the behaviour of thin discs (r_< 0.1)

P
which, as previously observed3), drifted into orbits of.C

9

[4

’

and at sufficiently high G, aligned themselves with the flow and

ceased to rotate (See Figure 3(c)), discs of axis ratios closer

to unity continued to rotate in equilibrium orbits in which C

was variable and < ®, A comparison of the calculated C values

when the axes of revolution were aligned with the X, and

!



TABLE II

Effect of shear rate and axis ratio on

period of rotation of discs

r re a) G T obs.
P sec” sec calc.
obs. calc b)
*

0.067 | 0.141 0.15 490 303 1.62
0.15 96.0 93.0 1.04
1.14 16.4 12.2 1.35
1.18 16.8 11.8 1.43
2.44 9.70 5.69 1.70
0.477| 0.634 03.47 7.32 4.00 1.83
5.40 5.55 2.57 2.15
6.53 5.10 2.13 2.40
8.09 4.20 1.72° 2.45
8.77 4.10 " 1.58 2.59
10.6 3.94 1.31 3.02
0.15 97.0 85.0 1.14
1.14 14.8 11.2 1.32
0.675) 0.832 3.00 5.60 4.26 1.32
5.40 4.80 2.37 2.03
0.15 90.0 84.0 1.07
‘ 1.14 12.9 11.1 1.17
0.8811 0.905 3.00 5.80 4.21 1.32
5.40 4.65 2.34 1.99

a) Calculated from Eq. [9] using measured rp.

b)

From Eq.

[8] using the measured G and calculated ry-



!*la

s,

FIGURE 9

The equilibrium orbit for a disc,
rp = 0.067 suspended in 2.5% P.AHA?
. solution, G = 0.15 sec-l, obtained from
. the measured projections of the axis of
.

revolution in the x2x3-p1ane. “The outer

circle corresponds to C = =,

M
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o FIGURE 10

RPN g

Measured projections of one end of the

axis of revolution of a disc, fp;=0.675 ]
: &
suspended in 2.5% P.A.A. solution,

G = 1.14 sec . The solid line shows

the equilibrium orbit and the dotted line

the transient orbit constant. The oﬁté;.
B fe A
circle corresponds to C = =,

A

43
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and x3-axes is shown in Table III for a series of discs at
1

G = 5.4 sec ~. The Table shows that as re became lérger

so qpe equilibrium orbits were characterized by smaller

values of the constant C. Projections of the axis of
revolution for discs with rp = 0.477, 0.675 and 0.881 at

G =1,.14 sec-1 are shown in Figure 11. The effect of
increasing shear rate on the equilibrium orbit of a given
disc is shown in Figure 12, where it may be seen that the
value of C at ¢, = n/2 decreases while that at ¢ =0 remains
sensibly constant. Table IV lists the values of C at ¢l = 0

and 1/2 at shear rates from 1.14 o 10.6 s.ec-1 for a disc,

r = 0.881.
P

(b) Rotation of rods in viscoelastic media

The gradual, steady drift in orbit of rods to an
orientation where the major axis is aligned with the

vorticity axis, C = 02'3)

was again observed in this study
at shear rates < 0 sec-l both in pseudoplastic solutions of
Carbopol and "Close-up" Toothpaste, as well as in the visco-
elastic solutions of P.I.B. and P.A.A: (see Figure 3b).
However, at higher shear rates in the viscoelastic media a
behaviour analogous to that ;} the non-rotating disc aligned
with the direction of flow was found. This occurred when a
rod was initially aligned with the Xz-axis and lay in, or’
very close to, the X,X;-plane. Upon shearing the fluid, the
particle rotated'to the“orientatign ¢1 = n/2 and then, once

aligned with the flow, ceased to rotate. This was observed




FIGURE 1l

Showing equilibrium orbits for discs of

various axis ratios suspended in 2.5%

P.A.A. solution subjected to a shear rate

of G= 1.14 sec—,l.
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TABLE III

Equilibrium orbit constants at ¢; = 0 and

n/2 as a function of axis ratio

2.5% PAA Solution
G = 5.4 sec-1

rp r, Orbit constant(:a)

¢1=O ¢l = n/2

0.067 0.141 i .
non-rotating particle

0.477 0.634 2.53 2.10

0.675 0.832 2.35 1.66

0.881 | 0.905 1.32 1.08

a)

calculated from Eq. [9].

Calculated from Eg. [10], with o

48




FIGURE 12

Equilibrium orbits for a discs, ry= 0.634°
suspended in 2.5% P.A.A. solution at various

shear rates. The outer circle corresponds

to C = o,

v .
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TABLE IV

Equilibrium orbit constants for a
disc as function of shear rate

r = 0.881
2.5% PAA solution

G T Orbit Constant Ratio
-1 obs. .

sec sec. ¢1 =0 ¢1 = n/2

1.14 16.8 3.04 3.08 0.99
2.44 9.7 3.04 2.44 1.25
3.47 7.3 3.43 2.78 1.23
6.53 5.1 2.35 1.79 1.31
8.09 4,2 3.04 1.97 1.55
8.717 4.1 3.04 1.97 1.55
10.6 /3.8 3.04 1.79 1.70




with rods of axis ratio 9.03, suspended in 2.5% P.A.A.
at G > 5 sec l. The rods remained in this orientation
provided that there were no particle interactions or dis-
turbances to the flow. If these occurred, the particles
resumed their angular motion and drifted into the orbit

cC = 0.

A variation of the above described motions was
found for rods of shorter rp, which again if initially
placed in the orientation ¢1 = 0 and lying ip the x2x3—
plane exhibited the following four stages of behaviour:

(i) The rod rotated through the first quadrant of
its orbit wiﬁh only small éhanées in orbit constant, then
when aligned with the Xj-axis, : ,

(ii) there was no further change in“¢i or eljorientation
for a period as long as 10 sec and during this "residence"
time the rod migrated slowly towards® the outer cylinder wall.

(iii) After the "residence time" there followed a shorter
"induction period"” during which the angle 61 increased with-
out a change in the angle ¢1. This continued until the rod
reached a critical Gl-orientation, whereupon,

(iv) the angular rotation of the rod resumed and the

particle drifted through a series 6§ transient orbits to a

v

‘final orientation C = 0. An X, X.-projection of the axis of

2
revolution during this process is shown in Figure 13. The

time course of the above events is illustrated in Figure 14

by plots of ¢1 and'sinel.



: FIGURE 13

Measured projections of one end of a rod
r, = 5.6 suspended in 2.5% é.A.A. solution
(G = 6.43 sec ') showing the different
stages of behaviour in the prog}essive
drift of the orbit constant from C' close

T to » to C' close to 0 in the direction

given by the arrows.
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FIGURE 14

‘Bhow?ng the variation of ¢1 and sinel with
time for a Tod suspended in,a viscoelastic
liquid. Same particle and conditions as in
i’ighre 13.
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c) Rotation of roas and discs in shear and electric fields
in 3% polyisobutylene/decalin solution

Single, isolated conducting rods (rp = 17.14) and

disdés (r; = 0.052) in shear flow were allowed to reach the
equiliprium orbits of C = 0 and C = o respecgively (no experi-
ments were;carried)out with the rod in the non-rotating
equilibrium éosition with C,= «»). An A.C. electric field of

~ 1000 volts was then applied acrods the’ annular gap and the
®

following observations of particle behaviour noted. Both
discs (whether non-rotating or rotating) -and rods left their

limiting orbits and drifted into equilibrium orbits in which

v

0 <C < =, A further increase in the ﬁagnitude of the electric
field resulted in a further change in equilibrium orbit.
However, when the electric field was removed, the original

limiting orbits were regained. Similar behaviour has been

25)

observed for these particles in a 0.25% pseudoplastic

solution of Carbopol/propylene glycol.

6. CONCLUDING REMARKS .

-

)

A previous study3 with rods and discs in pseudo-

plastic Carbopol solutions had shown that the experimentally

determined 'period of rotation and that calculated from Eq. (8]

were in good agreement and that this was alsa true for visco-

elastic fluids of P.A.A. at low shear rates. However, the
24 &
present investigation has demonstrated that even at relatively

low shear rates in 2.5% P.A.A. solution there is a pronounced

+

”~ ’ J

C .
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-increase in the period of rotation from that predicted using

Jeffery's theory, and that this difference further increases
with increasing shear rate. No doubt such discrepancies in
obs;rved and measured anbular velocities (cf. Figure 8) are
due to an elastic restoring torque, which at low G. results

in the retardation of the angular velocity and thus anhincrease
in the period of rotation. Eventually, as previously
observed3) when the velocity gradiene,reaches 5 critical
value, rotation ceases and the disc ;i}gns itself with the
flow. Now, as previously stated by Gauthier3)'The alignment
... 1s most likely due to the elastic properties of the poly-
acrylaﬁide solutions which in:rease with increasing polymer
concentration and which, during sbear give rise to a restoring
torque opposing that due to viscousrdéfghmgtion of the fluid.
When the particles cease to rotate, the two.torqges balance
each other ... As G is further increased, the particle
remains at a constant orientation indicating that the elastic
torque is increasing faster than the hydrodynamic torque".

The fact that the above phenomenon doe; not occur in pseudo-
plastic.ghlutions of Carbopol can then be attr}buted to the
absence of an elastic modulus in these fluids.

In the present work, for the first time a similar
phenomenon was observed with rods, although here the equili-
brium ﬁosition of alignment with the flow in which the
pérticle)lies in the'xzx3—p1ane is a metastable one.

The fact that some of these phenomena were not

previously observed may in part be a reflection*on the much

' “»
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higher normal stresses and, one presumes, elastic modulii
of the P.A.A. solu{}ons used in the present work.

The obser&g#ions that the drift into limiting
rotationgl orbits of minimum energy dissipation in the
flow occurs both in pseudoplastic gnd viscoelastic polymer

2,3 suggests that it is the first normal stress

solutions
difference which is responsible, and that the modifications
of the above behaviour observed with discs of the same
diameter but with rp closer to unity suSpended in P.A.A.
solutions are due to the presence of the elastic properties
of the fluid. Thus for discs in 2.5% P.A.A. solution at a
éiven shear rate, as the rp value increased from 0.067 to
0.881, the equilibrium orbit decreased from C = « to C clése
to unity. For particle axis ratios above unity, the first~
normal stress difference and the elastic modulus appear to
compleﬁent each other in the steady drift in the orbit
towards the asymptotic value of C = 0.

Nevertheless, in thesabsence of theory giving

quantitative descriptions of ghe rheological properties

of these non-Newtonian fluids, the above considerations must

‘be consideréd speculative.
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LIST OF SYMBOLS

Ui

!

axis of revolution of spheroids;
projection of this axis on the X,X4-plane
at ¢,.

1

equatorial diameter; and projection of
this axis on the X,X3-plane at ¢,.

orbit constant.
electric field.

normal forces measured along the X, ,X,,X
: 177273
axes of a mechanical spectrometer.

velocity gradient, at R in the Couette
annulus.

dynamic shear storage modulus; dynamic
shear loss modulus.

constants for power law fluid.

)

tangential shear stress; first normal
stress difference.

particle axis ratio = a/b.

equivalent ellipsoidal axis ratio

radial distance of the particle centre B}
from the axis of rotation in Couette flow;
radius of inner and outer cylinders of
Couette apparatus.

radius of the fixtures of the mechanical
spectrometer.

axis ratio of the ellipse, projection of
particle rotational orbit in the X, X -plane.

time
period of rotation of particle

total torque applied on liquid in mechanical
spectrometer.

fluid velocity along X,-axis.

3
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R(R); QI' QII

’ 61

Cartesian coordinate axes of the external
flow field.

distance between the plates and
axial displacement of eccentric rotating
discs.

cone angle

apparent viscosity, dynamic viscosity.

- *
strain

spherical polar coordinates referred to
the polar axis x1 of the external flow
field.

angular velocity of spheroid or mechanical
spectrometer fixtures.

angular velocity of the fluid at R;
angular velocities of the inner and outer
cylinders of the Couette apparatus.
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PART III

BEHAVIOUR OF DEFORMABLE PARTICLES IN NEWTONIAN
AND NON-NEWTONIAN LIQUIDS, HAVING ZERO OR

NEAR ZERO INTERFACIAL TENSION




o}
]

1. ABSTRACT

, A preliminary study of the behaviour of deformable
particles undergoing slow Couette flow was undertaken, where
the drop and the medium were mutually soluble. For Newtonian
systems a fair agreement with theory was observed. Thus,
when the drop was much more viscous than’the medium, the
deformation parameter D', and the transient orientation a',
oscillated without'qamping, whereas for the drop/medium
viscosity ratio A<l, D! and o' were found to increase steadily
with time to asymptotic values of 1.00 and 90° respectively.
This latter case was also observed for viscoelastic system;
when A<l, However, for viscoelastic pairs when A>>1, the drop
deformed into a cylinder with its long axis aligned along the
vorticity axis and the subsequent break-up formed two or more
daughter Eylinders. This phenomenon was repeated until the
two liquids were completely indistinguishable. Results
indicated that this behaviour was a consequence of both the
elastic properties of the system and the zero interfacial

tension. Pseudoplastic drops in viscoelastic fluids were

found to follow the class A mode of deformation up to burst.

-,

m\é\




2. INTRODUCTION

This investigation was undertaken to extend earlier

experimentallns)

and theoreticalG) studies from this laboratory
dealing with the behaviour of fluid drops in shear flow. In
particular, to verify experimentally, a part of the most

recent theorys)

concerning the deformation and orientation of
Newtonian fluid systems with zero interfacial tension. Also,
due to the scarcity of literature, either theoretically or
experimentally, concerning the dispersion of drops in totally
non-Newtonian systems (in most cases at leasF ohe of the
liquid phases was Newtonian) included in the present study

are the results of the behaviour of pseudoplastic and visco-

elastic drops suspended in viscoelastic media.
3. THEORETICAL AND EXPERIMENTAL BACKGROUND

a) Deformation and orientation of drops

The case of a liquid drop of radius b ?9@ viscosity
ny immersed in a second immiscible fluid of viscosity n, under-
going Couette flow as shown in Figure 1, u; =0, u, =0,
uz = GX,, G being the velocity grddient, was first treated
by Taylor7'8). He obtained the result that deformation of
the drop from its initial spherical shape depends only upon
two dimensionless parameters A = nl/n2 and k = Gb "2/012'
where o,, is the interfacial tension of the 12 interfacea).

For two particular cases in steady shear flow, Taylor showed

that the drop deforms into an ellipsoid whose axes are
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Figure 1 Cartesian (Xl, Xy x3) and spherical polar coordinates
(r, ¢, 6) for the shear flow; xl and 6 are not drawn. The
principal axes of deformation are indicated by the arrows on the
undeformed drop. The transient deformation parameter D', which
is always positive, and the transient ;rientation angle o'

of the deformed drop are indicated on the right. The centre

of the drop lies in the stationary layer where U, = 0. (After

3
Torza, Cox and Mason)

.



P
g+ _
g-"1 a
_ NOISS34¥dN0D ZO_mzw.P
_ N
\i/./L / °x
,0 NOISN3L NOISS3NdWOD
- —
e ®




2b(1+D), 2b, and 2b(1-D), of which the first and third
correspond to the length L and breadth B of the respective
major and minor axes (Figure 1), the particle being oriented
at an angle a to the X, - axis of the' flow field:

case (i)

A fixed, k * o

192+ 16

G*ﬂ/4;D:=k(m). [1]
case (ii) A » =, k fixed !
a =m/2; D= 5/4)\. (2]

o

D is a steady deformation parameter, physically given by

! "L - B
D=L B (3]

Q

Equations (1] and [2], which were derived under conditions

that D is close to zero, have been shown to apply in various
systems undergoing Couette flowl 3.

Subsequent theoretical studiestef drop deformation
3’9-11), while providing a more accurate expression for the
origntation a at low'x, essentially trééted the problem in

the manner of Taylor. Recently, however, Coxs)

has given a
more general theory for the time dépendent deformation D'
of a drop which places no limitations on k or A and is
subject only to the condition that 6' + 0. The time
dependent deformation D' and orientation a' of a spherical

drop initially placed in a fluid at rest was shown to be

given by

206t _ 40Gt
D' = D(L - 2¢ 19KX _ogq(Gt) + e I9KN1/2 (44



70
_ 206Gt _ 206Gt
ot =% _ L=l 19)[e 19K s (Gt)-1] + 20k e 19Exsin(ct))
i~ 2 720Gt 306Gt
~20k e I®Acos(Ge)-1] + 19%e 17FAgin(Gt)
\ o
[4b)
where B = _ 5(19) + 16) '

(51

4(v§ii/fzfgx)2 + ézok;Igz

is the equilibrium value of the deformation parameter obtained

as t + », Similarly, the equilibrium a obtained from equation

[4b] by letting t + = is -

~

kK ‘ A
a=7n/4+ 1/2 tgn—l (119%1) ' (6] /

’

If D' and D are always taken to be positive, it can.be shown .

from equations [4b] and [6] that Y
. /4 <a' <3 u/4; [7a]
/4 < a < m/2. ' (7b]
- A )

-
~

Equations [#] show that if the fluid is suddenly
sheared from rest the drop will undergo a transient™motion

which will appear as a damped "wobble" having a relaxation
-

time 1, approximately given by

o

= g =P yey, ’ (8]

For the case of zero interfacial tension, considered

in the experimental work described below, k = » and 1" = =,

7/ ° a °

Here, when the'drOp is much more viscous than the medium, -" .

A + =, there is no damping and equations [4] reduce to



5 . Gt '
- D' = 3y sin (39), . ) [9a)
g ) ’ -
a' = 1/4 [n (1-2n) + Gt]; , [9b]
U.
g
where - 2mp < Gt < 27 (n+1), ) (9c}

o )

and n is any integer greater, or equal to zero. This condition
is illustrated in Figure 2 where it may be seen that the

ini;ial.E;;entation“angle a'v=‘45°, and that with time, both

y e

¢ '/ - ! )
a' and D' increase until a maximum value for the deformation,
D' = 5/2) is reached at a = 90°. At this p01nt there is a -
steady decrease in D' until it assumes its 1n1t1a11y spherical

shape while a' continues to increase to a maximum ¥alue of
ou » .
135°. A" further increése in time results in a cyclical \\

v,

repetition of the above phenomena;‘with the period of

oscillation To = 21T/G.

. For the épecial‘case of 012 =0, A = 1, correspond-
\

L]
ing 'to an initially spherical domain 6@ pure medium the
drop “is stretched into an ellipsoid whose equation is:

~

L X

o

i

2, .2 L 2 _ .2
1 + 32 + (x3 Gtxz) = b*®, {10]

from which it can be shown that the following values of D'
k

. \ 5
and a' are obtained a l :

D'm /GI —Icos?a'+l+2Gtsina'cosa' - JGthcosran—ZGtcosuf'sina'
(@?’zcosi; +1+2Gtsina’ cosa' + /G t cosja '+1-2Gtsina’'cosa’
- gesy
where o' = % + % tan 1(77) with 0 < tpn —70 < 90°, [(12]
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3
uQy

L ¢
Figure 2 The undamped oscillations of a sdluble dros (A
largé) SudAenly subjected to g shear field. Boig the grop
deformation D' and orientation angl;;a',‘calculated fromv
Equat%on8\19]§ have p;riod of oscillation T0 = 2n/G: The
steadily increasind D' and a' to agymptoéic values of 1.00 and
90°“§or A = 1 calculated frogngdatiqné [11] and [12] are
shown as broken lines.

(After Torza, Cox and Mascn)

3
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The dashed line in Figure 2 shows this monotonic increase of
D' and o' predicted from equations [11] and [12]. A similar
continuous increase in deformation and orientation is
predicted for all values of Ai<l.

Fair agreement of the measured transient deformation
and orientation of drops in Newtonian systems of silicone
oils, polyglycol and castor oils having interfacial tensions !
>0, with that predicted by the above theory has been obtained
5). In general, however, the measured D' and o' and tﬁe

period of oscillation were found to be somewhét greater than

predicted. These differences were ascribed to the relatively

higher transient deformations which produced longer periods <r
of oscillations since the deformed drop required moré time
to reérqange its shape, and also sg the fact that the theory

is strictly only applicable at values of D' close to-.zero.
. .

)

b) Break-$ of drops

Q

8)

In the driginal treatmen%*’Taylor suggested that »

when the difference in normal stresses at the interface exceedeu’

the surface tension forces tending to restore the drop shape,
the drop will burst, and that should occur at a deformation
D‘ v 1/2. He demonstrated the existance of three.classes of

burst depending on thg value of A, of which one, that at high
. ‘

A did not involve actual bre?k—up of the ﬁérticles, which
instead aligned themselves with the flow, a = n/2, at a
limiting deformation. Subsequent experimentél work 1,12)
confirmed these'results, adding a sub-group to the original
class B break-up (Avl). The 3 modes of b&rst are illustrated

1 -




4
. . ( . 12)
in Figure 3, taken from the work of RumScheidt and Mason .
N \ More recent works), however, demonstrated that drops

-

exhibiting class A break-up (1<0.2) in which the particles
develope pointed ends from which frhgments of the drop phase
are ejected, are in unstable equilibrium as 5 result of high
dG/dt. Wheg\fhe velocity gradient was increased very slowly,
class B-1 break-up, in which the drops neck-off in the middle,
was observed in systems of low A. Type B-1 break-up at low
dG/dt was in fact noted for systems having A from 10_3 to -
3.0,.above which value of i, no break-up occured.

Other workers4’13’l4) have investigated the behaviour
of Newtonian drops i; non-Newtonian media and non-Newtonian
drops in Newtonian media. Similar results to those obtained

in completely Newtonian éystgms were observed for the deform-

ation, orientation and break-up with the exception of suspended

.
,

viscoelastic drops in a Newtonian fluid, where the deformation

]
was smaller than the theoretical.

[a}
A

4, EXPERIMENTAL PART

a) Apparatus

The Couette appargtus used (Mark. IV) consisted of

two counter-rotating plexiglass éylinders connected to
16)

1 %3

continuously variable_speed drives and the particle
motaons in the annulus could be Viewed either along the x1 -
or X, - axis of the shéar field (see Appendix). In order to
ensure that éhe translational velocity of the drops were

) e

initially zero when rotation of the qylihdera suddenly
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Figure 3 Tracing from photographs of drops,in shear fields
described by Rumscheidt and Mason, illustrating the behaviour
of drops in shear flowup to burst. Shown are: Class A

(0.03 < A < 2.2); Class C (A > 3.8).

(A < 0.2); Class B, and B

2
It was reported that the three classes were related to X but

that there were no sharp bounderies between them.
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commenced, they were inserted into the suspending fluid
using a long capillary needle attached to a syringe placed
at the radial position of the previously determined stationary
layer. However, with the appreciable lateral migration of
deformable particles suspended in non-Newtonian liquids
under the conditions of the experiments, movement of the drop
out of the stationary layer sooh occured.

Particle deformation and break-up over a range of

shear rates from 0 to 20 sec !

were viewed through a
microscope aligned either along the Xy - or X, - axis and
the events recorded by means of a Paillard Bolex camera.

The cine films were subsequently analyzed by projecting them

onto a drafting table.

b) Fluids

The Newtonian liguids gpplgyed in this study were
silicone oils (Dow Corning 200 series) having viscosities°
from 10 to 500 poise at 21° + 0.5°C. The pseudoplastic
solutions were obtained by dissolving a carboxyvinyl polymer
(carbopol 940, B.F. Goodrich Chemical Co.) ih water aﬁ
concentrations ranging from 0.05% to 0.15% w/v. Beside the -
viscoelastic solutions of pdlyacrylamide in water (Cyanamer
P250, American Cyanamide Company)rag concentrations froﬁ~1§‘
to 5% w/v and Polyisobutylene in Decalin (Vistanex, Enjay
Company, New York, New York) in the rangé 2.5% to 5% w/v,
aguebus guar gum solutions (Jagquar A20D, Stein-Hall Lfd.,
Torpnto, O;tatio) at concentrations.up to 1.5% w/v Qere also

utilized.
£
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Siﬁce the experiments involved the deformation of
drops in systems having zero or near zero interfacial tensions,
the phase boundary was often not clearly visible. rGuanine
particles were therefore added to the drop phase so that it
could more easily be seen. The viscosities of the Newtonian
silicone oils,were measured in a rotational viscometer (Epprecht

Rheomat 15); no difference in the values of n, were detected

after the addition of guanine marker particles. L
The apparent viscosity, normal stress differences

and the elastic properties of the carbopol, P.A.A. and P.I.B.

solutions used hdve been given in the previous chapter of this

thesis.

N 5. RESULTS AND DISCUSSION

o

a) Drop deformation in Newtonian systems, 919_= 0

Systems using pairs of silicone oils in which the

viscosity ratio was varied from 0.02 to 50 were used to test
the theory outlined in Section 2.

(i) High viscosity ratios. A typical result, obtained with

a 200 poise silicone oil drop in a 20 poise silicone oil at

G = 0.974 sec }, is shown in Figure 4. Little or no damping

of the wobble was observed, but as can be seen the measured

period of oscillation T, wgé appreciably longer’than that

calsulated from equation [9c] and D' greater’%han predicted
N .

from equation (9aj. The orientation a' increased from an

initial value of 45° to 135° as predicted, but at a rate
AN

»
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DY

Figure 4 Showing the undamped oscillation for a soluble drop
(A = 10). Drop viscosity = 200 poise, medium viscosity = ’
20 poise (Dow Corning silicone oils, 200 series). G = 0.947

sec—l. Both the theoretical drop deformation D' (5/2) = 0.25)
and the orientation angle a' are calculated from Equation [9],

have a period of oscillation TO = 2 n/G = 6.45 sec.

Lo
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which fluctuated somewhat. Although the measured T, were
always greater than the theoretical“values, the transient
deformations exhibited a scatter within the same systenm,
being mostly greater but sometimes also smaller than the
predicted values. This result proBably reflected an error
inherent in the\experimental method viz. the difficulty of
producing a spherical drop in a\éystem of zero interfacial
tension. It was thus likely that one sometimes observed a

time dependent deformation D"sﬁperimposed on the 'deformation'

of an initially non-spherical drop.

(ii) Low viscosity ratios. The p;ediction of the theory under
these conditions fs that the deformation and orientation
increase monotanically from 0 and 45° to 1 and 90° respectively
i.e. the drop becomes indefinitely extended and aligned with
the flow; _This is borni out experimentally in systems having

A =0.25 and 0.5, aligg;gh Eath the time dependent deformation
and orientation were found to be greater than the theoretical
values predicted by equations [1lb] and [12].‘ Figure 5,
illustrates the variation of deformation and orientation for

a silicone o0il n, = 50 poise in a medium n, = 100 poise at

a shear rate G = 0.022 sec 1.

\

b) Drop deformation in viscoelastic Systems

Here the fluids used consisted of pairs of aqueous
P.AMA. solutions giving Oy = 0, and drqps of aqueous guar
gum solutions suspended in an aqueous polyacrylamide media.
, Systems of high and low viscosity ratio were made up haq}ng

~

012 close to zero. 4 -

o {

]
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Figure 5 Plot of the drop deformation D' and orientation angle
a' against Gt for a soluble drop (n = 50 poise) suspended in «

a medium (n = 100 poise) [Dow Corping 200 series]. G = 0.0215 ¢

sec-l. The dotted line shows the theoretical curves calculated

Bl

from Equations [1ll] and ([12]. °
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(i) High viscosity ratios. When the combinations of poly-

acrylamide solutions were vie&ed along the vorticity (xl-)
axis, a rather cbmplex mode ofadeformation and break-up was |
observed upon shearing. A somewhat clearer picture, however,
emerged when the same events were viewed in a direction normal
to the planes of shear i.e. along thé X,-axis. The initially

2

spherical drop became extended vertically (along the x1
)

into a cylindrical shape. This then exhibited a r cking-&otion

-axis)

from side to side about the X,-axis, somewhat reminiscent of
"

rotation in a spherical elliptical orbit of a rod in Couette
flow when viewed along the eraxisls). As the longitudinal
deformation continues a buckling motigp sets in,‘which progresses
to th mode of break-up schematically shown in Figure 6.
Although e time to break-up in a’given system
decreased with increasing shear rate, the mode of extension
af the drop.and final burst were identical even at G as low
as 0.05 sec-l. Moreover, when shear continued aft;; break-up,
the daughter droplets in turn“exhibited the same longitudinal
aeformation into cylinders and the break-up illustrated in
Figure 6, thus giving one a ‘large number of very small c&lin-

drical droplets which‘eventuakly'were completely mixed with

the medium. It-thus appears that this method of deformation

~/ and break-~up is independent of drop size.

&

Similar behaviour was obﬁérved with the guar gum
drops in P.A.A. solutions, except that here the cylinders
'became varicose and necked off at intervals along their length
as the deformation continued. This efert is probably due to

the existance of a finite interfacial ‘tension in_the system.

A #
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Figure 6 Schematic representation of the deformation and

break-up procedure for a viscoelastic drop suspended in a

viscoelaspic medium with zero or near-zero interfacial tension

N\

an@fﬁiah visqésipy ratio subject to Couette flow."

#
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In order to ascertain whether %he above observed
4 //
vertical deformation into cylinders was an effect due solely

to the viscoelastic properties of the two liquids or whether
it was a combination of viscoelasticity and zero or very low
interfacial tension, a drop of 5% polyisobutylene in Decalin
solption was suspended in 3% P.A.A. solution, A v 2. It

was observed that the deformation and burst over a range of

1

G from 0.05 to 5 sec © followed class B-1, i.e. when shear

was suddenly imposed, the drop extended into an ellipsoid at

low G; at higher G it was further pulled out into a thread
/\
which above a certain critical value of the gradient necked

off and formed two large droplets seperated by tiny sattalite
——

droplets. If the shear was slowly increased with time the

same progressive deformation and break-up occured.

"

(ii) Low viscosity ratios. Here, the drops in the polyacr{7/
lamide and guar qum/P.A.A. systems were drawn out into infinitely
long threads, a behaviour simidar to that in silicone oils

previously described, where D' and a' tend monotonically to

1.00 and 90° respectively. é(////

c) Pseudoplastic dfop in viscoelastic medium ‘ *

T

The System consisted of aqueous éarbopol drops
suspended in aqueous ﬁblyacrylamide solutions, both high and
" low viscosity ratios. The Qbserved mode of deformation here
was independent of the viscosity/ratio: both at high or low
A, the initially spherical drop, upon suddenly being sheared,
deformed into an ellipsoid from which continuous threﬁds of

liquid were withdrawn from the ﬁointed ends. Thus, the drop,




“~
3

- while retaining its ellipsoidal shgbg, gradually diminished
in size with time. The continuous ejectiom of a thread,

rather than that of discrete droplets as in type A break-up
1-3,5)

4)

previously found in Newtonian systems as well as for

pseudoplastic drops in Newtonian media is most probably due
to the low value of the interfacial tension in the systems
used here.

6. CONCLUDING REMARKS

_This Part presents the results of a preliﬁinary
investigation into the deformation and bx@ak-up of liquids
drops having zero or near zero interfacial tension with the
suspending medium. The observations employing Newtonian
liquids were found to be in fair agreement with the proposed

6)

theory taking into consideration the difficulty in obtaining

a perfectly spherical drop. The astonishing deformation and

break-up of two mutually soluble viscoelastic liquids, when

LEPen R

n

the drop is much -more viscous than the médium, howevei, cannot
be explained at present, although by compariéon of the results
using pseudoplastic drops and also viscoelastic drops where
92 waslfinite, it appears to be due to a combination of’the
elasticity of the system and the zero interfacial tension.

It is interesting to note here the behaviour of an elastomeric

filament suspenﬁé@nin a Newtoniaﬁvfluid, which when subject‘

to Couette flow under certain cogditions orients itself similar

to a corkscrew rétating around tﬁe verticity (xl-) axisl7).

/

I

/
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LIST OF SYMBOLS

radius of the spherical drop
minor and major axis of deformed drop
(L-B)/(L+B), transient drop deformation;

-

steady value; value at burst.
velocity gradient ¢

(Gbnz/clz)

spherical polar coordinates

time

period of oscillation

velocity along x3-axis

Cartesian coordinate axes of external

flow field

steady orientation angle; tr;nsi yalue
viscosity of drop and medium reépectively
“1/“5' viscosity ratio ~
interfacial tension

relaxation time defined by Equation [8]
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GENERAL CONCLUSIONS

The main fjndingg and conclusions arising from the

work described in thiis thesis may be s arized as follows.

-

A

a) Rigid particles

.

The angular velocities of rigid particles in the

pseudoplastic liquids were in agreement with Jeffery'sl)

equations whereas with the viscoelastic fluids there was a )

pronounced increase in the period of rotation. Rods and discs

drifted into limiting rotational orbits of C

O and C = =«
réspectively,(yhen suspended in pseudoplastic fluids. However,
discs in viscoelastic media drifted to an equilibrium orbit
where 0O<C<«, and although the rotation was periodic the ;élue
of C varied from a maximum at ¢1 = 0, 1™ and a minimum at

¢1 = n/2, 3n/2. At sufficiently high shear rates discs of

p
direction of the flow. A similar phenomenon was observed with

r_ < 0.007 ceased to rotate and aligned themselves with the
rods under certain conditions, although in this case the ) !
equilibrium position of alignment with the flow was a

metastable one. For rods suspended iy viscoelastic liquids

in which the drift in orbit was towards C = 0O, four distinct

stages of bghaviour could be discerned in this movement
towards the equi&}pﬁ;um position, )

The r@sulte suggest that it was the first normal
stress which was responsible for the orbit drift in these i

solutions, whereas {the difference in particulate behaviour in



the two types of non-Newtonian madia was attributed to th

presence of elastic forces in the viscoelastic fluids.

-

f

b) Deformable Particles

. ”;v/rair aér?ement with the theory proposed by Co*z)
was fouqd with Newtoniarn systems where the drop and medium
were miscible, for viscosity ratios above arid below unity.'
For viscoelastic pairs when A<<1l, deformation was found to
proceed suéh_ghat the drop became cylindric$1 in “'shape aligned
with its long axis {Eyibe Xl-directiQn, the subééquent burst
forming two or more daughtér cylf;dess. _Resulés suggested
that this method of-mixing'was due to the elastic properties
of the liquid agd the zero interfacia tension._ Mutually
soluble pseudoplagtic drops i; viscoelastic media were fouﬁd
to follow the class A mode of deformation and burst, with
the difference, that instead of discrete droplets being
ejected from the pointed ends, continuous ﬁhré%ds of liquid
were withdraQn, this presumably being a consequenée of the

very low interfacial tension.

1
Y «
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2./ SUGGESTIONS FOR FURTHER WORK

In light of this and previous studies in this

laboratory,/ the following suggestions are made for further

investigations.

) Formulation of a theory Eo predict particle
\

behaviour in non-Newtonian media.

\
S
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}i) Experimental investigation of single particle
behaviour in other types of non-Newtonian fluids such as i
plastic and dilatent fluids and Molten polymers, along with a
full description of the rheological properties of these
liquids. ’

iii) Determination of the stream lines aroﬁnd
rigid and deformable particles in non-Newtonian fluids.

iv) Study of deformable particles, having zero
interfacial tension with respect to the medium, in tube’ flow.

v) Determination of the critical value of the
viscosity ratio A belo;'which no wobble occurs for a miscible
liquid drop (012 = 0).

, vi) Further experimental work to correlate particle
behaviour with known rheological parameters of the suspending
fluid.

vii) 1Investigation on the effect of a slowly
increasing int acial tension for non-Newtonian drops sus-
pended in non-flewtonian media. With a view to defining the
mixing or blending procedures in these systems.

viii) Experimental studieslof optical anisotropy
rgsulting from preferred~orientations in flowing suspensions

4

of cylinders.
3. CLAIMS TO ORIGINAL RESEARCH

‘ i)' Rigid particles suspended in viscoelastic
fluids show a pronounced increase in the period of rotation

from that given by Jeffery's theoryl).

R
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ii) Discs in viscoelastic media drift in orbit

"where 0<C<»,

4
iii) Rods in viscoelastic solutions, under certain

conditions, can align themselves in the plane of shear and
cease to rotate. It was found, however, that this was a
metastable equilibrium position.

iv) Establishment of four distinct stages ‘in the
drift in orbit towards C = O ﬁbr rods suspended in viscoelastic
liquids. A ;

v) Fair agreement was found with the proposed
theoryz) for the behaviour of miscible liquid drops (a12
=.0) in Newtonian systems.

vi) A novel cylindrical deformation was observed

for miscible drops in.completely viscoelastic systems.
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APPENDIX

THE COUETTE DEVICES
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APPENDIX

™

Principles and description of the Couette devices

/

(a) Principles \ ' ’
Both Couette.:i;iiii/COnsisted of two concentric
counter-rotating, verti®al Eylinders which establish laminar

shear of the liquid contained in the annular gap. . Due to

the curvature of the cylinders, the velocity gradient G(R)

across the annulus is not constant and has a minimum value
at the outer cylinder and a maximum at the inner cylinderl)
(see Figure 1). The velocity gradient at the stationary

1)

layer for a Newtonian 1iquid is given by ™ ’,

2 (Riﬂl + R%ﬂz)
G(R) = ——3 % . (1)

Here, R is the radial distance from the centre of rotation,
R1 and R, the radii of the inner and outer cylinders respec-
tively and 91 and 92 their, corresponding angular velocities.
The latter being calculated from the spéeds of rotation of
the motors as measured by two direct reading tachometers.
The velocity gradient at the stationary layer G(R), after

calibration, can be determined from the following relationship:

oo _

G(R) = klNl + k2N2 ' [2]

1
where N, and N, are the tachometer readings arid kl and k

constants which vary with varying cylinder diameters.

2
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(b) Description

The experiments employing the use of an electric
field were perf&rmed in the Couette Mark II (see Figure 2),
the rest of the work being carried out in thQ\Couette Mark IV
(see Figure 3).

~, (1) Couette Mark IIZ). The two concentric cylinders

were of stainless steel, the bottom of the outer cylinder
being plate glass enabling illumination and viewing of the

events along the X,-axis. The internal diameter of the outer

1
cylinder was 15.24 cm and the inner cylindér had an outside
diameter of 13.25 cm.

The independent motor drives were (H.P., d.c. with
magnetic amplifier control (Bepco Canada Ltd.) and were
connected to the cylinders through 4-speed gear boxes (1:400,
1:100, 1:20, 1:5) giving a continuously variable shear rate
up to 40 sec I,

A Paillard Bolax Reflex lémm cine camera was mounted
on a column which permitted movement in the vertical direction.
This was attached to a platform which could be rotated either
manually or electrically, through 120° about the x3-axis of

rotating cylinders. A compound slide device also permitted

adjustment in the X} and x3-direc£ions.

(ii) Couette Mark IV. This device is essentially the

sqme“as’that above, having motors, gear boxes qnd camera
mountings identical to those of the Mark II. However, this

machine can facilitate not only cylinders, but also parallel

IS
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‘ plate and cone énd plate fixtufes” ,.which are mounted on
concentric, counter-rotating spindles.
In this study, variousigets of transparent
cylinders (Plexiglas) were employed, thus allowing obser-

/
Y vation of the events along the X;- and X,-direction.

12
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