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Abstract 

Modern particle physics and, in particular, superstring theory are reviewed. 
Thcre follows a discussion of lattices, induding self-duality, gluings and root 
lattices - conccpts central to the subsequent material. Two main ques
tions arising from rccent work in superstrings (the self-duality of gluings; 
basis transformations in "compact lattices") are then solved. 1 also prove 
that every lattice is a sublattice of sorne cubic lattice zm, and 1 discuss the 
self-duality of the momentum lattice. In addition, scattered throughout the 
t.hcsis are a Humber of smaller results. 

La physiquc moderne (les particules et, en particulier, la théorie des "su
pcrstl'ings" sont revues. Suit une discussion sur les réseaux, incluant l'auto
dualité, les collages et les réseaux de racines - concepts centraux au matiériel 
subséquent. Deux questions principaux sur des travaux récent en théorie des 
"supel'strings" (l'auto-dualité des collages; les transformations de base dans 
les "réseaux compacts") sont ensuite résoudues. J'aussi prouve que chaque 
résea.u cst. Ull sous-réseau dc réseau cubique zm, et je discute l'auto-dualité 
du réseau IIIOlllcnt. Nombrc de plus petits résultes sont éparpillés dans tout 
la dissC'rt.ation. 
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PREFACE 

This thesis is concerned with superstrings, lattices, and sorne of the appli
cations of lattice theory ta the study of superstrings. Sorne of the following 
material is a survey of known results, sorne of it is original, and some is in be
tween. In the next few paragraphs 1 hope to summarize what 1 have writtcn, 
trying to separate what 1 have figured out from what 1 have borrowed. 

In short, 1 first survey what is known in superstrings (Chapter 1) and lat
tice theory (Chapter 2); 1 then address two "big" problems (the self-duality 
of gluings in Chapter 3, and basis transformations of toroidal or compact 
lattices in §§1-3 of Chapter 4), two "medium" problems ("Evcry latticc is a 
sublattice of zm" in §5 of Chapter 2, and the self-duality of the mornclltum 
lattice in §4, Chapter 4), and a number of smaller results scattered throllgh
out the last three chapters. 

Chapter 1 is a discussion of modern parti cie physics and, in particlilar, 
the controversial theory o~ superstrings. In §1 1 give a non-techllical outlille 
of what superstring theory is aIl about: what it attempts to do, what SciCIl

tists like and dislike about it, and a brief sketch of its historical devcloprnellt.. 
§2 is a slightly more detailed investigation into many of the key concepts in 
quantum field theory. There 1 address concepts, like anomalics and r(~nor

malization, which were referred to in §1, and also others, likc syrnmctrics 
and their representations, that will appear in the following, more detailed 
sections on superstrings. The matcrial in thcse two sections come from a 
large number of sources, sorne of which are listed in the bibliography (sec, 
for example, DB). 

ln §§3 and 4 l borrowed heavily from GSW and from my notes to a course' 
taught in Fall of 1988 by Dl'. Jacques (which in turn was basc<) on GSw). 
In §3 1 begin the formai study of the string. Included is a discussion on 
why strings are studied over membranes or blohs. §4 addresses sorne more 
specialized topics, such as supersymmetry, the heterotic string, and modular 
invariance of the partition function. 

The first four sections of Chapter 1 th us provide a general ovcrview of 
superstrings. In the later chapters we will be conccrncd with specifie aspects 
of the theory; the necessary background is providcd by §.5 of Chaptf!r 1 (as 
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weil as by §1 of Chapter 3 and §§1 and 4 in Chapter 4). 
Chaptcr 2 provides us with a survey of the relevant topies in lattice theory. 

What GSW was to Chapter 1, cs is to Chapter 2. 
§ 1 introduces lattices anù sorne of the basic concepts. §2 discusses the 

important notion of sclf-duality. §3 discusses two important ways lattices 
can be "equal": congruence and similarity. §4 is concerned with the direct 
sums of lattices. 

In §5 1 ask the question: to what extent (if any) can we say each lattice 
can be embcdded in sorne cubic lattice zm. 1 answer this, and with a series of 
counterexamples show that my answer is the strongest we can expect. This 
result also has a consequence for the factorization of symrnetric matrices. 

§6 describes an important farnily of lattices called root lattices. Gluing 
thcory and the representations of Lie algebras are handled in §7, while in 
§8 we study the most Camous lattice (the 24-dimensional Leech lattice) and 
a recursive process (called lamination) which generates it. (§§5 and 8 faIl 
outside the main scope of this thesis). 

Many of the results in Chapter 2 can be found in the literature, but 1 
have been unable to locate proofs to a few of these. In those cases 1 have 
included my OWIl proofs. 

Chapter 3 is concerned with dctermining whether a given gluing is or is 
not self-dual. In §1 1 discuss how this problem arises quite naturally from the 
study of supcrstrings. In the following two sections 1 give three methods for 
testing self-duality. The first two are entirely my own; the first accornplishes 
this by finding a basis for the gluing, while the second finds the determinant 
more directly. The second is particularly intriguing, and with it 1 est.ablish 
with case a fcw intercsting rcsults. The third meth~d was proven by me, 
but was inspircd by thc work of Dr. Lam. Each of these methods have their 
own strcngths and weakncsscs. In the fourth and final section of Chapter 3 1 
describe an clegallt graphical technique (due to Dr. Lam) for computing the 
dcterminants of certain matrices. It is very useful, for ex ample, when using 
the first and third methods. 

In §5 of Chaptcr 1 1 described a certain parametrization of string theories. 
This pararnctrization unfortunately isn't one-to-one; the first three sections 
of Chaptcr ·1 address how diffcrent sets oC parameters can characterize the 
same string thcory. This amounts to finding an the ba.~is transformations in 
"toroidal" or "compact" lattices, which can be thought of as the quotients 
of "trllc" lattices. This work is ail my own. In the final section of this thesis 
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1 present a plausibility argument for the universally accepted but (1 believe) 
unproven daim that the momentum lattice be self-dual. It secms likely to 
most people that modular invariance of the partition fllnction implies its 
self-dualitYi 1 show that the modular invariance of a closely related function 
would indeed imply its self-duality. 

In Chapters 3 and 4 1 also establish a number of smaller results (c.g. 
Theorem 3.3.3) that 1 have been unable to find elsewhere. 

rd like to thank my advisor Dr. Lam, without whose patient help this 
could not have becn written. 

IV 



( 
Tables and Figures 

Table 1 The n-dimensional Self-dual Euclidean Lattices ........... ............ 33& 

Table 2 The Root Lattices ..................................................................... 51a 

Table 3 The Non·zero Glue Vectors ......................................................... 56& 

Table 4 The 24-dimensional Type II (Niemeier) Lattices ........................ 56b 

Table 5 The Basis Method ............... ........ ............ .... ....... .......... .... .......... 12& 

Figure 1 The Two·Dimensional Root Lattices ....................................... 48& 

Figure 2 The Bames-Wall Lattice ........................................................... 38a 

Figure 3 Sphere Packings in Two Dimensions ....................................... 52& 

Figure 4 The Gluings t)f D2 ..................................................................... 55a 

Figure 5 The Laminated Lattices ........................................................... 60a 

Figure 6 The Leech Lattice Generator Matrix ....................................... 61a 

Figure 7 The Coxeter Diagrams of (D~, [11], [22]) ................................... 70a 

Figure 8 The Coxeter Diagrams of the Examples of the First Method • 72b 

Figure 9 Coxcter Diagrams When J :/: J' ............................................... 84& 

v 

-



.... 

-, ' . , 

Table of Contents 

PREFACE ................................................................................................. ii 

Tables and Figures.. ..... ............. ................ ........... ............. .................. ....... v 

Table of Contents ............ ........... .................. .......... ............................. ..... VI 

CHAPTER ONE: Physical Preliminaries 

§l The Theory of Superstrings ................................................................ 1 

§2 Quantum Field Theory and the Standard Modcl .......... ..................... 7 

§3 An Introduction to String Theory ..................................................... 14 

§4 Miscellaneous Topics in String Thcory .............................................. 19 

§5 A Sumnlary of Recent Work .............................................................. 22 

CHAPTER TWO: Mathematical Pl'c1iminarics 

§l Introduction to Lattices ...................................................................... 26 

§2 Self-Dual Lattices ............................................................................... 30 

§3 Lattice Equality: Congruence and Similarity ...................................... 3tJ 

§4 Direct Sums ........................................................................................ 39 

§5 Every Lattice is a Sublattice of Sorne zm ........................................... 43 

§6 Root Lattices ...................................................................................... 48 

VI 



§7 Gluing Theory ................................................................................... 53 

§8 Lamination and the Leech Lattice ..................................................... 60 

CIIAPTER THREE: The Self-Duality of Gluings 

§1 Staternent and Motivations for the Problem ...................................... 65 

§2 Finding a Easis .................................................................................... 68 

§3 Alternatives: The Methods of Characteristics and of GCD ............... 76 

§4 Calculating the Determinants ............................................................. 81 

CIIAPTEE FOUR: Compact Lattice 

§1 The Problcm and Its Physical Context ............................................... 86 

§2 Restatemcnt and Prcliminary Results ................................................. 89 

§3 The Solution ......................................................... _ ............................. 95 

§4 Sclf-Duality and the Mornentum Lattice ........................................... 99 

ltEF'ERENCES ...................................................................................... 101 

(~ 
Vil 



-

1 PHYSICAL PRELIMINARIES 

1.1 The Theory of Superstrings 

A headline in PhysR0v G, a joke publication pl'Oduccd by University of 
Toronto physics students, rcads: "SUPERSTR!NGS Solve CadhUl'y Sccret!". 
The article continucs~ "In a stunning blow to the physics communit.y iLnd t.lw 
Cadbury corporation, U of T researchers ... have succceded in applyillg t.he 
complex and controversial theory of SUPC1'st1'ings to explain the lIlystel'y of 
Le Caramilk bar." 

The support .!rs of superstrings include some of t.he biggcst. names in 
physics (Weinberg, Salam, ... ), as Jo thc critics (Feynman, Glashow, ... ) . 
Sorne say that the transition from point 1.0 string may be "110 less profound 
th an the transition from real numbcrs to complex numbers in ma1.helltat.ics."1 
Others, less convinced, argue: 

" . years of intense effort by dozclIs of t.h" best a1ld bright.est. ha.ve 
yielded not one verifiahle prcdiction .,. Fol' the first f,i DW sin('(~ 

the Dark Ages, wc can sec hnw OUI' noble sCilrch IIIity elld, wiLh 
faith replacing science, nnlC agaill. 2 

Why aIl the fuss? What is it about superstrings that has t.he physics 
community so sharply divided bpt,,,,-een exciterncnt and fear? 

There are 3 fundamenta.l forces, dccording to modern physics (gravitat.ioll, 
the strong nuclear force, and the e1ectroweak force. Another force, a weak 
short-ranged Higgs force, is predicted but not yet observ('d). Til, re al e :n 
elementary particles (6 leptons, 3x6 quarks, 8 gluow" and iL photon, a. J Jiggs 
scala)', a graviton, and a W and Z boson), and thcrc ale sornething lil((' [8 
fundamental parameters. What superstrings clairns 1,0 be able 1,0 (UIt.i/llélt.e1y) 
do is 1,0 explain aIl this mess simply and cloquently (the off q::~lftd wonl 
is "beautifully"). Thcre r~ally Îs only 1 fundarncntal object (1.1)(' stl illg), 
superstring theorists insist. It can only interact hy joining witlt tlnot.her, 01' 

by splitting in half. And therc is only one parame ter (the string tension 
T, or Newton's gravitational constant G). Everything cIse, Uley sugs;est, is 
mathematically forced. 

Ip. 1251, WAL 

2p. 7, GG 
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That is what the ttdvocates believe. The critics whistle a sornewhat dif
ferent tune, however, but they do 50 with no less conviction. 

It ail began in the late 60's as physicists were trying to come up with a 
reasonable theory of the strong nuc1ear force. The weak nuc1ear force was 
being successfully associated with the electromagnetic. Gravit y succumbed 
to Einstein half a century earlier, but the strong force held fast. 

When we speak of "force", we usually mean something that pushes or 
pulls - accelerates - the object it acts upon. By "force" physicists now 
mean something a little different. To them, a force is simply the exchange 
of particles. They affect partide scatterings, as would be expected, but they 
also arc responsi ble for aU decays. 

The photon and the graviton are the exchange partides for electromag
netism and gravit y, the dominant macroscopic forces. ZO and W± are ex
changed in the weak force, causing among other things the instability of the 
neutron and the luminous glow of my dock. The strong force produces the 
heat and light of the sun, and, we now know, is mediated by gluons. 

But, back in thc 60's things weren't quite so dear. Among other things 
there were just too many hadrons (strongly interacting particles), and sorne 
had ridiculollsly high spin. One of the more promising possibilities was the 
bosonic string of Yoichiro Nambu. It pictured quarks as being at the end 
of a vcry short (~ 10-13 cm), elastic string. This seemed a very natural 
way of handling a force that at close ranges was negligible, but at longer 
rangcs beca.mc strongcr and more confining. It explained the extra hadrons 
as hcing diffcl'cnt modes of rotation and vibratir)fi of the string. It also had 
very good high-cnergy behavior, something which distinguished it from most 
of the compcting theories. 

Theories in particle physics scemed plagued by infinities. The rnass of the 
clectron could be ca\culated to be infinity, as could its charge, even though 
the measured values wcre considerably smaller. A procedure, developed by 
Feynman and others and cdlled 1'enormalizalion, allowed physicists to get 
finit.c, mcaningflll answers out of the theory. l'Il discuss renorrnalization in 
more detail in the following section, but essentially it is a recipe for coming 
up with sensible answers: write down the (incorrect) equations predicted by 
the theory; fiddle with them in certain rnathematically implausible ways, and 
ou t will coml;' you r (correct.) answer. If you bother to check the illtermedi
ate quantities in your calculation (i.e. the ones you're fiddling with), you'll 
filld infillities. But if the final answers will al ways be finite, the theory has 
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predictive power and is called renormalizable. 
By 1974 quantum chrornodynarnics (QCD) had been const.ruct.cd a.nd was 

rapidly becorning established as the correct theory of the strong nuclcar force. 
Interest in the bosonic string died down. 

QED (the first successful quantum theory of clcctromagnetism), t.he dec
troweak theory, and QCD aIl have infinitics, but ail itre rcnorméllizable. 'l'he 
bosonic string, on the other hand, was completely finit.~. Physicist.s diffcl'cd 
on just how reasonable renormalization was (Paul Dirac, for ('xampl<" \Vas 
one of its critics), but aU of thern recognized that a finite thcOl'y was rert.ainly 
more desirable - aIl other things being equaJ, of course. 

In spite of this success, the st.ring model of the stl"OlIg forœ had a few 
probJems of its own. It predicted a tacllyoll (a parti cie whosc mass sqllared is 
negative, and hence travels at speeds greater than light). It ollly made sensp 
in 26 dimensions, whiJe reality was clearly 4-dimensional (:1 space, 1 t,ime). Il, 
also dernanded the existence of a spin 2 particle. Dcspite t.he great prolifera
tion of hadrons, none had been found with spin 2. And finally, exp(·riment.al 
scattering data unambiguously rcvealed nature's preferellcc for QCD ove .. t.he 
bosonic string. Today no one disputes t.hat QCD more accurat.c1y describes 
the strong interaction. 

A handful of physicists (including John Schwarz) cOIlt.inuel! t.o work in 
string theory, but no longer with the goal of explaining the st.rong force. '1'0 
them, the previously embarrassing spin 2 particlc was 1I0llC otlter t.hélll t.he 
graviton. Theirs was a quantum theory of gravitation, and a whole 101. mor('. 

No physical theory is as convincing and imprcssive as Einstdn's gClleral 
relativity, where gravitation is reduced to geornctry. But I.he theory Jaas a. 
flaw that guarantees it has only limited validity: it cannot han(lIe t.he very 
small. 

This flaw is shared by aIl attcmpts a.t a quantum thcOI'y of grdvitatio/l. 
In short, quantum gravit y is nonrenormalizablc - it's illn,lIit.e, alld t,JIOS(! 

infinities can't be swept away. This is bccause the gravitoll has sllch hip,h 
spin, something we can do nothing about. But Schwarz él/ld of.}wrs w('re 
suggesting that the problems wcre due as weil to a fundatllelltal prejlldice a.1I 
those theories shared, and we could do something about tll,tL 

In QED, in the electroweak theory, in QCD, in the falllty theories of 
quantum gravit y - everywhere you lookcd you'd see point partieles. EI(·
mentary particles (e.g. electrons and quarks) wcrc supposed to be dirnen
sionless points, spheres of radius zero. Schwarz suggcstcd that this wa:'> the 
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source of the infinities. 
Sorne people (e.g. Heisenberg and Yukawa) had tried alternatives, like 

rippling membranes or pulsating blobs, but these ail violated locality or had 
sorne other crippling disorder. More to the point, they were symptomatic of 
physicists' conviction that a particle had to be a concrete object. In string 
theories the electron isn 't an oscil/ating string; it is instead the oscillation 
itself, the wave pattern on the (infinitely thin, usually circular) string. And 
that has made ail the difference. 

The string theories considered today differ from the old bosonic model 
in a number of ways. They are supersymmetric (see §5) (hence the Dame 
superstring), and th us include fermions (like the electron and quark) as well 
as bosons (like the graviton and the photon). They no longer have tachyons. 
They require only(!) 10 dimensions, instead of 26. They are 1020 times 
shorter, on the order of the Planck length (~ 10-33 cm), and are closed
i.e. circular - rather than open, with two endpoints. The various charges 
and quantum numbers are located at the endpoints of the open string, while 
they are sprea.d uniformly along the closed string, being more a quality of 
motion. And, their advocates daim, they can unify ail the forces and particles 
found in nature. 

Today's theory of parU de physics is called the Standard Model and is 
described in the ncxt section. Experimentally speaking, it has been enor
mously successful: for example, the calculated and measured values for the 
c1ectron's magnetic moment (in natural units) are respectively 

1.00115965246 ± 0.00000000020 

1.00115965221 ± 0.00000000003. 

Neverthcless, physicists are unsatisfied with it for a number of theoretical 
reasons. First and foremost, there's the problem with gravit y mentioned ear
lier. Also, they'd like to unify the forces, and in so doing reduce the number 
of elernentary particles and undetermined pararneters to more manageable 
levels. 

The Gra.nd Unified Theories (GUTs), which unify the strong and elec
troweak forces, are one way to do this. They rnake sorne interesting predic
tions, such as the decay of the proton, but don 't solve the problem of gravity. 
Recently a lot of attention has been given to supergravity theories. Like su
pcrstrings they can handle gravit y, are fini te, and require many dimensions 
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(11 for the most promising theory), but unlike superstl'Ïngs thcy have prob
lems with chirality (an ll-dimensional theory can't violate pal'Îty), and the 
attention directed on them has since been shifted to superstrings. 

The theory of superstrings is currently incomplete. Many import.ant and 
encouraging results have been obtained, but much morc wOl"k lics ahead. 
For example, John Schwarz is hopeful that by the turn of t.l1<' ccntmy t.hcre 
will have been enough successes that its validity would be clear, but evcll 
so believes superstrings won't see their greatest hour until weil inlo the 21st 
cent ury. One of the problelT1s is that sorne of the mat.hematics hasn 't bcell 
developed yet. This has been cause for frustration fol' thosc anxious lo SC(' 

experimental proof of superstrings. 
One of the most important properties of superstrings is their rcmarlmble 

uniqueness: there are very few candidates that have any hopc of being phys
ically or mathematically acceptable. Gravitation is a forccd chal'ad.el'ist.ic 
of these theories. Howevel', the uniqueness and simplicity of st.rillg t.heory 
- its "beauty" - seems hopelessly lost when you try to account. fol' t.he 
extra dimensions of the theory: depending on how you count, t.he Ilumher of 
reasonable candidate string theories is eaher around 6 or in the t.hollsallds. 
Still, there is reason to believe that bot.h thcse numbcl's can be redllcc(1 as 
deeper understanding of compactification is achieved. 

The number of theories and the complexity of t.he mat.h has made iL V('ry 
difficult to make accessible experimcntal predictions. The natural clwrgy 
scale of the theory is Planck's mass (:::::: 10J9 GeV) -- you 'd IIced a pill't.icl(· 
accelerator at least 10 light-yea"" in length to get up to t.hofie l'anges. One 
prediction that seems reasonable is the existence nf another heavy photon 
(like ZO), but no one is sure how heavy it would he. If a pal t.ide muId he 
found weighing the same as a bacteriurn but with a charge a t,illY frad.ioll of 
the electrons, that would be a major victory for supcrstrings. Some JrI()(Jds 
predict "shadow matter", matter that can intcract with us oIJly gravitation
ally; it would be invisible, and would pass l'ight throllgh ilS. lIoweVf~r, ollly 
massive clusters of shadow matter could be dircctly ob~eJ'ved, dlle 1,0 the 
weakness of gravity. But realistically there is littlc hope fol' the inllllediat(! 
contact between superstrings and experiment, and this has mally physicists 
(like Feynman and Glashow) conccrned. 

Theoretical problems that the thcory must explain include why the cos

mological constant (a rneasure of the encrgy density of the vacuum, or the 
curvature of empty space) is measurcd to be so close 1,0 zero (it sl!ould be 
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zero as long as the theory stays supersymmetric, but for experimental reasons 
the theory can't), and why there are 3 identical (apart from mass) families 
of cledrons and quarks (it seems to be related to the numher of "holes" in 
the 6 extra dimensions). But the most obvious one is why reality seems 4-
dimensional. One possibility is to imagine theqe extra dimensions as curled 
up (compaclifieJ) into tiny halls. These balls would have radii on the order of 
10-33 cm, and 50 would be unobservable. The compactification wou Id have 
occurred briefly after the Big Bang, or, as sorne suggest, may have triggered 
it. 

There are probJems, though, with straightforward compactification (see 
§4). An alternative is to not interpret the extra dimensions geometrically, 
but rather to treat them merely as interior degrees of freedom. 

In superstrings, unlike general rclativity, the formulas are coming first, 
long before the conceptual understanding of what the equations really rep
resent. In other words, string theory is at this time little more than a set of 
computational rules, with no known underlying principles. This is disturbing 
many people. Says Edward Witten, one of the architects of the theory, 

But the fact that these things work, that these seemingly bizarre 
rules give ways of computing things in quantum gravit y, giving 
sensible results and finite answers and leading in many different 
directions to ail kinds of beautiful areas in mathematics, is a very 
deep mystery - probably one of the deepest which has ever been 
encountered in physics. It is unlikely that a proper understanding 
of this mystery will he found either soon or simply. But it will 
be worth the wait.3 

Superstrings is a theory with much promise, certainly our greatest hope 
yet for a theory of everything. But whether it is an accurate theory of nature 
is a question we simply cannot answer yet. We could be living during one 
of the rare revolutions in physics, or we could be experiencing the much 
more corn mon 'false sta1't'. Only the theorists and experimenters in the next 
several years will be able to provide an answer. 

If correct, sllperstrings will have accounted for, in princip/e, aIl of the 
effects in nature. It won't solve ail mysteries, not by a long shot: our camping 
trips will still be ruined by inaccurate weather reports; the origin of life and 

3 p. 107, Gill' 
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the nature of the mind will remain as unexplained as ever. The standard 
analogy is that it's like having learned the rules to chess - you're still a long 
way from being a grandmaster. 

But that prospect doesn 't excite me too much. What illtercsts me is the 
search for the fundamental. It is only that which could have captivatcd men 
like Einstein. 1 don't mind if superstrings gets enshrined into establisbed 
physics - not at aIl - but 1 for one hope it won't stay there. 

The conclusion to a project done by me in a course earlicr this year, 
written on the desirability to science of controversies like the firth force, is 
perhaps even more appropriate here: 

May no physics paper, however desperately, ever cnd with: 

Amen! Amen! Amen! , 

and may Science, that employer of humanity's finest, may Science 
never die. 

1.2 Quantum Field Theory and the Standard Model 

The two great pillars of modern physics are relativity (both special and gcn
eral) and quantum mechanics. Relativity eloquently examines spacc and time 
and gravitYi quantum mechanics speaks of the vcry small, and in so doing 
demolishes one by one sorne of our deepest and most cherishcd intuitions 
about what reality is really like. They wcre created indcpendently carly this 
century, and it was only in 1929 that their (partial) unification was accom
plished, by Paul Dirac. Specifically, Dirac constructed a (special) l'clativistic 
theory of the electron. The complete unification of special rclativity and 
quantum mechanics is DOW realized in the framework of (Iuanturn field the
ories, but general relativity stubbornly refuses to coopcrate (unl(!ss we hc(!d 
the victory shouts of the superstring enthusiasts). 

The reason relativity and quantum mechanics are .'10 difficlIlt to bring 
together is that. thcy are nearly incompatible. Cornrnon fcatures can be 
abstracted from their very few acceptable unifications; hencc fundarncntal 
concepts (e.g. spin and antiparticles) are derivahle, rather than bcing ad hoc 
additions. 

Quantum mechanics has largely hcen unchallengcd and ullchangcd by 
the more modern theories. Its ideas concerning the fundamcntal indetermi
nacy of nature, or the superpositions of states, survive; the rncasurcrncnt 
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(pseudo-)problem is as much a (pseudo-)problem in the quantum mechan
ics of Schrodingcr or Heisenberg as in the Standard Model or superstrings. 
String theorists, fol' example, daim that generai relativity will .uise asymp
tot.ically from superstring theories, just as Newtonian gravit y arises in the 
lirnit from general relativity. But quantum mechanics, on the other hand, is 
inext.ri<:ably int.erwoven into superstrings. It's the bedrock, it's the language, 
of modem physics. 

More precisely, physicists have continually changed their minds about the 
dYflamical behavior of clementary syst.ems: first it was given by Schrodinger's 
equation, thcn Dirac's, thcn by the various models of quantum field theory 
culminating finally in the Standard Mode!. (Hence) they also have changed 
thc llilbcrt space of physical states. There have been sorne other changes (e.g. 
Ut<! idea of a particle in the carly quantum theory differs from that in the 
fl'léU1tlllll field t}lcories, which in turn diffel's from superstring's suggestion). 
But. the conc{'ptual foundation upon which they have been built has always 
hec')) <juélnt.ulll IIlcchanics. The thcory of superstrings is no exception. 

lIist.orically, field thcOl'y was introduced in the study of electromagnetism 
and gravit.at.ion 1,0 avoid the distasteful possibility of action-at-a-distancej 
UU' fi('ld would he the medium through which a disturbance would propagate 
outward wit.h finit.e vclocity. And in morc modern physics our distaste for 
act.ion-at-a-dist.ance has (thanks to relativity) grown, so simiJar reasoning 
suggcsts fields be IIsed in quantum theories as weil. What makes fields a 
practicélllIeC('ssity is that in rclativistic point theories the number of particles 
must. 1)(' colIscrV<'d. This is most dcfinitely not the case in elemcntary particle 
physics (c.g. t.he dC'cay of a neutron). 

;\ field is silllply an object (or set of objects) defined at each point in 
Sp;\(·(·-tilll(·. For example, thc c1assical electromagnetic field consists of a 
(real) 'l-vector A,,(x) defined at cach point x in space-time. A particle, 
findillg itsdf imll1ersed in the field, experiences a force proportional to the 
st.rellgt.h of t.he field at that point. What distinguishes a quantum field from 
a dal'lsÎcc\1 olle is that the objects in quantum field theory are Hermitian 
oj><'rators, as opposcd to numbers. The electromagnetic field becomes, for 
('(leh spacc-t.imc point x, a 4-vector AJ.t(x) of Hermitian operators. These 
opcrat.ols ad. on a Hilbert spa ce of state vectors. The quanta of a field -
i.e. t,II<' discrcte cnel'gy states of the field oscillatol's - are identified with 
part icl(ls (e.g. t.hc quanta of AIl(x) are photons). This will be shown in a 
Iit,t1e 0101(' dctail in the following section in the special case of superstrings. 
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Symmetries and their representations are important aspects oC quantum 
field theories (e.g. the Standard Model), and wc will now turn our attention 
to them. In order to account for experiment, a theory must be relativistic, 
and in order to be relativistic its symmetries must include the Poincaré group. 
This implies the following: 

Let uc:r(x) be a collection of fields in the theory, and considcr any Poincaré 
transformation from one coordinate system x to another x', satisCying 

for sorne 4-vector alJ (characterizing a translation) and a Lorentz transforma
tion L. Physically this corresponds to choosing to describing an evcllt \Ising 
a different reference frame - perhaps one located in a differcnt spot, in a 
different time-zone, in a laboratory rotated and moving uniformly relative to 
ours. Then there exists a matrix A (depending on L and a) sueh tltat under 
that Poincaré transformation uc:r(x) gets mapped to up(x') = A{Jc:rua(x), It is 
possible to show that A( L, a) Corms a linear representation of the Poincaré 
group. These fPpresentations are characterized by sorne non-ncgativc s E ~ Z 
(8 is called spin, though technically spin is measured in units oC Il); if s is 
an integer the corresponding fields are ealled tensor fields (c.g. AI'(x) is a 
vector field sinee the photon has spin 1), otherwise they arc ealk'<l spinors. 

For example, AIJ(x) --+ A~(x') = ~A/A(x). 
To repeat this important point, the fields transform under the symmctrics 

of the theory according to representations of the symmetry group. This ap
plies not only to Poincaré symmetries, but to internai symmetrics as weil. El
ementary particles correspond to irreducible reprcscntations of the Poin<:aré 
group. Kinematic quantities like rnomenturn, mass, encrgy and (as w(~ havc 
seen) spin arise from this correspondencc. Similarly, non-kincmatic (Illall
tities like charge and lepton numher arise likewise from otllel' symmctrics 
(though, unlike the Poincaré ones, they won't be symmetries of space-time). 

It is a theorem in quantum field theory that the tensor fields will obey 
Bose statistics (e.g. will he grcgarious), while the spinors obcy Fermi statis
tics (and the Pauli exclusion principle). They are callcd bosons and fcrmions, 
respectively. Photons and gluons arc examplcs of bosons. They arc parti~' 
des of force (e.g. two neighbouring electrons Cccl cach othcr's charge by 
exchanging photons). Electrons and quarks are Cerrnions (as are protons and 
neutrons) and are the particles of matter. 
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ln quantum mechanics the observables are associated with Hermitian op
erators and also act on the states. The state vector (or "ket") stores all the 
physical aspects of a given system. Dccornposing it into a sum of eigenstates 
of a given operator (e.g. mornentum) t,eIls you as rnuch as is possible to know 
about a subsequent observation: the coefficient in front of an eigenstate yields 
the probability that the eigenvalue of that eigenstate will be the numerical 
result of the measurernent. A simple example of astate is the vacuum ln). It 
has zero total momentum and angular momentum (e.g. it is an eigenstate of 
the morncnturn operator, corresponding to eigenvalue 0). There are also op
crators giving the total number of partides in a given state (these operators 
as wc shaH sec arc intimately associated with the fields). Their eigenvalues 
arc the natural numbers 0,1,2,.... In) is also an eigenstate of them, with 
cigenvaluc O. (This will be done more explicitly in the following section.) 

There ar{' creation and annihilation operators a and li (these are just 
the 'amplitudes' of the particle fields discussed earlier). They increase or 
dccrease by 1 the number of (anti- )particles of a given type (e.g. "elec
tron") and rnomentum. Applying these finitely often to the vacuum gener
ates ail physical state vectors (again, sec the following section). From these 
creation/ annihilation operators can be constructed the "number" operators 
discusscd earlier. 

What a quantum field theory must be able to calculate are transition 
amplitudes. Suppose we start at time to with a state lA) and we want to 
know what the probability is that at time t l the system (if measured) will 
be in state lB). This is given by I(BIA)12 «(BIA) is just the inner product 
the Hilbert spacc of states by definition possesses). For instance, lA) rnay 
dcnote an isolated neutron and 1 B) may consist of an electron, a proton, 
and an anti-clectron neutrino. Then I(BIA},2 will give the probability of the 
neutron having made the indicated decay by time t l • Transition amplitudes 
are the means through which a quantum field theory confronts experirnent. 
From them are calculated scattering cross-sections, decay rates, etc. 

1'0 cach quantum field theory is assigned an object caUed a Lagrangian 
dcnsit.y C( x). It must hc a function only of dynamical variables (i.e. the 
componcnts lla(.r) of the fields, and their derivatives). It should be invariant 
under the Poincaré transformations so quantities such as energy and mornen
tum will he constants of motion. It should be local (i.e. have no integrals 
in it), and it should he Hermitian (so that quantities such as energy and 
momcntum will be real). The Lagrangian characterizes the dynamical be-
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haviour of the theory, and can be used to calculate the transition amplit.udes 
discussed above. 

The Lagrangian also appears in classical mechanics, though in a slight.\y 
different way. The classical field obeys the action principle f,[ = 0, whcrc J 
is the action 

This leads to the well-known Euler-Lagrange equations of mot,ioJl. 'l'lU' quan
tum field behaves differently. The important quantities that III Il st, he COIll

puted are the transition amplitudes, given by the Feynman path-inl.egral. Il 
is just the weighted sum over ail possible (classical) paths going from t.\u· 
initial to the final states, the weight bcing jllst cxp(i 1/ 1,). 

In general these calculations are far 1.00 complicat,('d 1.0 yi('hl (·xact. an
swers, 80 what is used in practice is a pcrturhative expansion. A V<'ry l'l€'gant. 
way of doing these perturbativc calculations is dllc 1.0 FCYlllllilll, alld involVC's 
Feynman diagrams. Basically what you do is illlagine ail possihle ways of 
starting with lA) and ending with 1 B), apply Feynman '8 1'111('8 t.o C 1.0 ("nIClI

late the transit.ion amplitudes of each of t.hcsc possibilities, alld t.!WII t.ak(· lIlI' 
(infinite) sumo Fortunately the more complicated possibilities tel/cl t.o COII

tribute little to the sum (at least in thcories likc QED, lInlike QCD), so only 
the simplest few need hc considcrcd. In particular, t,lJ(' IIlllTlb(~r of "l()()ps" ill 
the diagram corresponds to the order of that pcrturhatiol/ !.l·rm. 

In all cases of physical interest C is not only illvariant IIl1der Poillcan'· 
symmetries, but also under so-called internai syrnmetries. 'l'lac fields Iwlaave 
under these symmetries analogously to how thcy hehaved IIl1d('r the Poillciln'· 
ones. These symmetries generally differ from the Poincaré OI)('S ill t.wo ways: 
they often are gauge, as opposcd to global, symmdries; alld I,h.'Y IIslIally 
don't affect space-time points. The Poincaré transfol'lnat.iolls (l" ft) W('J'(' 
the same at each space-time point x - i.e. L alld (L weil' COllst.allt.s. Bill. 
for gaugc symmetries the transformation is allowcd to vaJ'y fl'OIII poilll. t.u 
point. The difference is a profound one (c.g. thc diffcrclH'(' het.w(·(!11 special 
and general relativit~T, or betwcen supersymmetry and slIpergravit.y). Not. ail 
internaI symmetries nccd he gaugc ones. Sorne (c.g. paJ'ity) lJIay 11(,1. (!vell 
be continuous. 

Today's official quantum field theOl'y is called the St.alldald Mod(·1. It. is 
given bya symmetry group (namely, 8Uc(:J) x Sfh(2) x Uy(l) ) alld it. sd 
of elementary particles (6 leptons, 6 quarks, 8 glllons, the phot.oll and W± 
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and ZO bosons, and a Higgs scalar). SUc(3) characterizes the strong nuclear 
forœ, while 8Ud2) x Uy(l) is the gauge group of the unified electroweak 
forœ. The Standard Model also tells you how these particles behave under 
the symmdries. For example, the left handed particles (~e) transform as an 
SUc (3) singlct, an SUd2) doublet, and have eigenvalue -t for the generator 
of Uy { 1). In other words, they are unaffected by 8Uc(3) (which means they 
don '1. f('d the strong force), but they do take part in electroweak interactions, 
and ill fad have wcak hypercharge - ~ and their transforma.tion matrices A 
charact.erizillg their behavior under SUL(2) form a 2-dimensional irreducible 
l'(")f'('serrl,;tf,ioll of SUIJ(2). 

'1'0 be ahle to compare the theory with experimental results we need a 
Lflgrallgiall C. C will be built out of the particles given abovf', and must 
1)(' illVilriant under the symmetry group. Given the gauge group and the list 
of particles (and their transformation properties), if we are to have a renor
IlIali;t,ablp thcory, the specification of something like 17 parameters (e.g. the 
Illass of t.he dect.ron) ar(' rcquircd to determine C uniquely. Most of these 
hav(' t.o do with t.hc IIiggs part.icle, which was introduced in order to give 
t,lw tt·I(·vant. l'articles a mass -- t.hc Higgs is used to break t.he electl'Oweak 
sylllllll'l,ly (t.his proc<'ss will be cxplained short.Jy). This gives (large) mass to 
t1l<' vccl,or hosons H!± alld Zo, hcnce explaining why t.he weak force should 
1)(' so w(',lk amI short-ranged whcn electromagnetism is not. The resulting 
symllld,ry group is Ucm (1), the gauge group for e1ectromagnetism. This sym
lIld.ry Îs ('xad, so the photon is massless (thus travelling at the speed of light 
- - a. fort.lll1at.(' t,hing indccd!), and elcctlic charge is conserved. 

'l'h(· symrnetry SUc(:J) rClllains unbroken, so gluons, the exchange parti
dps of t.ht' st,JOng force, are masslcss. The thCOl'y of the strong force is called 
QCD; the St.éllldard Modcl doesn't attempt 1.0 unify the stl'ong force to the 
(·I('d.roweak OII<'S (this is one of t.he reasons why the Standard Model isn't 
(,ollsid('l'ed il final th('ory). The strong force has three types of charge. called 
CO/OUI'. Leptolls arc cololll'I('ss, but gluons are not, so QCD (like general 
l'('lat.ivil,y bllt. lItllikc QED) is nonlincar. 

Particl('s cOIIII('dcd by a symmetry have the same mass. This is one 
reason 10 break a givcn symmetry. There are t,wo ways to do this. One, 
called dynamical symmetry brcaking, involves adding a small term to the 
Lélgrélllgiall which isn 't invariant under thc given symmetry. In other words, 
the' symmd l'y wasn't, trllly exact. 

Th(· lIlore import.ant \Vay for our purposes is called spontaneous symmetry 
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hreaking. It occurs if the vacuum of the theory isn 't invariant under tl1<' 
symmetry. The original (false) vacuum was invariant, but it, wasn't astate 
of lowest energy. In effect the theory exchanges sorne symmetry for stability. 
The syrnmetry is still there, but is vcry weil hidden. It can he ('c-estahlishl'd 
(in effect) if the energy is high enough. For instance, at. about. 100 Ce V 
SU(2) x U(l) becomes unbroken and the clectroweak forces bl('l1d tog(,t.her, 
while the unification energy for the GUTs is about 1015 C('V, and t.hat. fol' 
superstrings is around 1019 CeV. 

There are two types of rnathematical problems that. plagnc quantum ficl(1 
theories. One is a problem of infillities, and the other is a probl('1Il associat.('(1 
with symrnetries. 

Quantum field theol'ies have enormous difficulty staying finit.e. SOl1le of 
these infinities can be mathematically rernovcd by proccsscs called rcnor
malizationj those that can't are called non-renorrnalizablc. '1'1)(' philosophy 
behind renormalization is that although thc results of t.hc calculat.ion of a 
physically measurahle quantity must he finite, infinitics may arise in int.'r
mediate steps. The Standard Model is renormalizahle: scnsibl(' answ('rs can 
he squeezed out. Quantum gravit y, unfortunatcly, is Ilot (t.his is l'<'Iated t.o 
the fact that the graviton has such a high spin). 

The justification for rcnol'malization is that OUI t.heory i~ not. of IIlllimit.('d 
validitYj thel'e's a "cutoff" dist.ance corresponding to the slllallest dist.ann· 
(or highest energy) t.o which our theory can be takcn seriollsly. For c1assi
cal theories (like genel'al relativity) this considerat.ion isn't import.ant., hut. 
in quantum calculations evcn the very small distanœs (f('lat.ive to the cut
off), corresponding to virtual processes of very high cncl'gies, contrihut.e Ilon
negligibly. A l'enol'malizable theory is one that rcquil'<~ only finit.dy lIlany 
parameters to handle the observable effects of tllcsc infiniksimal distallœs. 
It's a theol'Y in which the energy levcl of thc hidden, un<h!rlyillg theory of 
physics is much higher than that of the process bcing studi('d (('.g. thc old 
theory of the weak force wasn 't rcnormalizable I)(!cause t!w lllélSS of t.he W 
and Z bosons, though large, arcn't large enollgh). 

Symmetl'ies are important for a numbcr of l'casons, but OJI(' of tlle most. 
important is hecause they imply conservation laws. Elcctric charge! is con
served because the Standard Model (Lagrangian and va(;uurn) is invariant 
llnder Uem(l). An anomaly is a symmctry of the classical theory which Îs 
lost as you pass to the quantum thcory (i.e. as you "quantizc" t.11(! classical 
system) - in other wol'ds, the quantum corrections don 't rCSpf!ct the desired 
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symmctry. Thcre are many types of anomalies, and the presence of any of 
them is a serious problem for the theory. It turns out that non-chiral theo
ries (i.e. thcories invariant undcr parity) don 't have problems with anomalies, 
but chiral thcories arc plagued by them. Since experiment. demands we have 
a chiral theory, anomalies can present major dificulties. It turns out that, 
sllrprisingly, the Standard Model is anomJ.ly-free. 

(;rcen and Schwarz' 1984 calculation on anomaly cancellation in string 
theori('s was the direct cause orthe recent explosion of interest in superstrings. 

Pcrhaps a word should be mentioned about the units used in particle 
physics. Vsually the "natural units" are used: c = 1 = h. 1 will adopt this 
convention for the most part. This means that energy and mass and inverse 
distance alld inverse time will ail have the same units. Of course, when 
physicists necd to get actual numbers out of a calculation, to compare its 
pn·dictioJls with experiment, they must insert (using dimensional analysis, 
say) c and" into the relevant parts of the equations, but this isn't difficult. 

1.3 An Introduction to String Theory 

In this section we'lI begin a more mathematical study of string theory. We'll 
lead into it by first considering a more familiar quantum field theory. 

Consider first a massless c1assical point particle. It traces out a world Hne 
in spilcc-t.imc. Hs action is given by 

1 j dXlld:l.'Jl -1( )d = ----e T T 
dT dT 

w!u're T is il paramet.er running along its worldIine. x( T) is the position 
of t.he particl<, in spacc-t.ime when the parameter equals T. e is introduced 
t.o makc 1 illdependent of the specifie parametrization chosen - it's a kind 
of I-dimcnsiolla! metric along the world Hne. These reparametrizations are 
a gallgc symmctry of this theorYj we will now indicate a standard way to 
handl<, t.heori<,s \Vit.h gauge symmetries. 

Fix the gallge: take c = 1. Then the Euler-Lagrange equations (which are 
deriV<'d (rom the c1assical action principle SI jSxJl = 0) lead us immediately 
to the ('quat.ion 

d
2

XJl = 0 
dT2 ' 
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for each Il = 0,1, ... ,D - 1 (let D be the dimension of space-time; we won't 
commit ourselves yet to D = 4, but we will commit ourselves to a Minkowski 
metric). That is, this (free) particle will travel in a straight line (i.e. along a 
geodesic) in space-time. 

But we can do more. We haven't exploited yet the gauge symmetry. 1 is 
invariant under reparametrizations, so we also have M /he- t = O. This yiclds 

dxf.J dx
ll = 0, 

dT dT 

so we get that the massless classical particle travels along mIlI geodesics. 
Now let's consider the transition to a quantum theory. x" and thc canoni

cal moment a p/J = .t;; now become operators: :î;f.J is multiplication by xf.J, and 
pll is the differential operator -i-a

8 • An additional change is lhat the classi-
XI' 

cal Poisson bracket becomes a commutator. The particle is now rcprescnted 
by a field <p( x ll ). 

The gauge symmetry now yields the expression 

IUJ 82
<p _ 0 

'" {)xf.J{)x" - , 

known as the Klein-Gordan equation. However, as was mcntioned in the last. 
section, quantum mechanics doesn 't obcy the action principle, 80 thcrc is no 
analogue to the geodesic equation derived above (to a certain cxtent, though, 
the quantum particle's world line can be pictured as a fu~zy cloud ccnterc(1 
about the null geodesic). 

Now let 's consider the classical string. The obvious qucstion is what to 
choose foi' its action. Note first that there is a simplc geomct.rie interpf{~tatioll 
of the action for a classical point particle: it 's just the Icngt.h of t.he world 
line (this is more clearly seen by investigating a massive particle). 

We'll be open-minded, at least for a while, and discuss the! t.h('ory fol' ail 
higher-dimensional generalizations of a (O-dimensional) point pal't.icle. Ld 
n denote the dimension of the fundamental object of the theol'y (so point 
particles are n = 0, strings are Tt = 1, and membranes are n = 2). Again, 
the dimension of the background space-time will be D, and its points will be 
called xf.J, IL = 0, 1, ... ,D-l. The trajectories of thcse objects will be an n+ 1-
dimensional sUQmanifold in this 1 ackground spacc, and (7(X for il' = 0, ) , ... ,n 
will label its points. The (Minkowski) metric of spacc-timc will again bc! 
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denoted by ",II/(X), while hO/{J(t1) will be the induced (Minkowski) met rie on 
the 'world manifold'. Then, proceeding by analogy with the case given above, 
wc are led to consider for the c1assical action the n + 1-dimensional 'volume' 
of the world manifold: 

where h is the absolute value of the determinant of hO/{J' xl1 is a function of (7 

- it is the position in space-time of the given point on the world manifold. 
Now, the world manifold must not be observable, for it is merely an 

auxiliary object. Thus neither its coordinates (!o nor its curvatures (whieh 
arc computablc from hO (3) should survive the gauge symmetries of the theory. 
The presence of the metric h guarantees that 1 will be independent of any 
particular parametrization (7 of the world manifold. This is good. But we 
must also Le able to choose a gauge (as we did for the point particle) in 
which the metric itself is eliminated. h is symmetrÏc, so it has l(n + l)(n + 
2) independent components. But there are only n + 1 independent gauge 
transformations (one for eaeh parameter (70/), so for n > 0 we can 't quite 
eliminatc thc metric Il with these reparametrizations alone. There is an 
additional symmetry for n = 1 (a Weyl rescaling) which completes the process 
for n = l, but the higher dimensional theories can't be salvaged. And n = 
o (corresponding to the point particle) has renormalization prohlems with 
gravity. Thus wc are led to consider n = 1, i.e. string theory. 

Of course this 'no-go' 'theorem' doesn't irrefutably ru le out higher dimen
sional thcories than strings, but it does present a challenge to those who wish 
to construct non-string theories. In any event, from this point on only n = 1 
will he considered. In addition, wc will assume (as we do throughout this 
thcsis) that the strings are closed (i.e. topologically a circle), with period 1r 

(the reason 'Ir, and not 2'1r, is usually chosen is (1 believe) hecause historically 
the first string theories involved the open string, for which a period of 1r 

is qllitc natural, and the convention stuck). Unlike §5, for example, 1 will 
consider hcl'c only pcriodic boundary conditions. 

Use the gauge symmetries then to map hO/{J to the constant Minkowski 
met.ric (t.his is gauge fixing). We get as an equation of motion (varying 1 
with respect to xl'): 

(a~ - a~)xl1«(7) = O. 

16 



-
This can be trivially solved in the light-cone coordinates (u± = 0'0 ± 0"1): 

X~(O'-) = !x~ + pIJO'- + i E .!.a~e-'fl(7-
2 n~O n 

Xt(O'+) = ~x~ + pl-'O"+ + i E .!.ô~e-'n<T+. 
n~O n 

Here a and a are arbitrary complex numbers and have nothing 1.0 do wit,h 
each other nor with the indices given eartier. The subscl'ipts Rand L denotc 
right- and left-moving modes. x~ and p~ are the position and 1l10lllcnt.um of 
the centre of the string. 

The gauge constraint is that the energy-momentum t.ellSOl' TofJ must van
ish, which leads to the equations 

T can be interpreted as the tension of the string; usually T = 1 or T = ! 
is chosen to simplify the notation (we will take T = 1 hcrc). ft is relevant. 
only to the quantum theory, which we will now turn to. 

The amplitudes a~ and a~ become operators, called oscillators. In order 
that xll(O') be Hermitian, we must have 

These satisfy commutation relations derivable from the Poissoll hl'ackcts of 
the classical amplitudes. 

These operators act on a space of states, an infinite-dimensiollal indcfinit.(! 
vector space caUed a Fock space:F. It can be defined as follows. 

Assume the existence of gfollnd states: i.e. vectors 10jp} (they hav<~ f) 

components) satisfying 

a:IOjp} = ô~IOjp) = 0 for n > 0, and 
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QblOjp) = aglOj p) = p~IOj p)j 

i.e. they're annihilated by the positive oscillators and are eigenstates of the 
Tt = ° oscillators. 

Then :F is spanned by states of the form 

Not a]J these states are physicalj to be physical they must satisfy the gauge 
constraint. That is, they must be annihilated by Lm and Ln for m, n ~ 0 
(Lili and Ln are defincd as in the classical case, although for m = n = Othis 
d(!finition is slightly ambiguous). 

It tUrtlS out. that Lo - Lo generates translations in 0'1, and hence can be 
illtcl'prct.cd as a SOIt of momentum operator for the string. Lo + Lo generates 
t.l'allsla.tions in (10, and so can be intel'preted as the Hamiltonian, or energy 
operatol' (st.rictly speaking we must add a multiple of the identity to get the 
Il am il to Il i an ) . 

arc ra.lled the Humber operatorsj for example, when nh" . ,nk < 0 a straight
forward C<llculation gives 

k 

N(a 'll ••• QI1k)IO'p) = (-~n )(a~1 ... o:lIk)IO·p) 
III flk' L.-,) ni nk ,. 

)=1 

H. turns out that. not quite aIl of our gauge freedom was used up by 
fixing hrt{j =diag(-l,+l). The remaining freedom can be removed (there 
arc a.1t.cl'Ilatives) by a noncovariant gauge fixing called the light- cone gauge, 
which illvolvcs singling out the coordinates XO and .7:D- 1 • The net effect 
is t.hat t.he only indcpclldent oscillators are the transverse ones Q~ and a~ 
fol' i,) = 1, ... , JJ - 2 - ail others can be determined from these (or are 
zero) lIsing t.hc gauge COllst.ralllts. This means that we should apply only the 
t.ransverse oscillators to the ground states 1.0 get physical states. 

Ghosts ale physical states Iphys} with negative norm: i.e. (physlphys) < 
O. This is a very undesil'able situation because of our wish to interpret these 
iuncl' products as pl'Obability amplitudes. It turns out that in the light
cOlle gauge t.hcl'c arc no ghosts. However, the gauge fixing broke Lorentz 
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invariance. You must make sure the resulting theory is Lorentz invariant. It 
turns out that Lorentz invariance holds only in D = 26 dimensions (i.e. In 

the other dimensions we get an anomaly). 
Incidently, the string theory considered here is the free bosonic olle. It 

is bosonic because of our choice of action l, and in particular our implicit 
assumption that the metric hOP suffices to describe the gcometry of the 
world sheet. More promising strings (the bosonic string has tachyons and 
no fermions) can be treated more or less similarly. It is f7'ee because w(' 
ignored interactions. 

One of the appeals of string theory is the simplicity of it,s interactions: 
two strings may join into one; one string may split into two (and of comse any 
combination of these may also occur). The resulting world shcet (spcaking 
classically, for simplicity) of the scattering of two strings, say, may be two 
non-intersecting cylinders, or it may look like an 'II', or like a laddcr with 
two rungs, etc. Quantum mechanically, we must take the weighted SIIIll of 
these possibilitites. The result is a perturbation series. Which 'weight' to 
use can be determined from the Lagrangian (or the action) using Feynman's 
rules: 

1. To each external tube associate an operator called the "vertex opera
tor" . 

2. To each internaI tube associate an operator callcd a "propagator". 

3. To each loop take the trace of the corresponding produd of operators 
in the space of states. 

4. Integrate over the moment a in the ]oops. 

The vertex operators and propagators can be calculated from the Lagrangian 
(for example, the propagator can be thought of as the functional inverse of 
the hamiltonian). We will see an important example of titis in the following 
section. 

1.4 Miscellaneous Topies in String Theory 

In quantum mechanics it is possible to start with nothing and end with noth
ing, but to do 50 in a very complicated way. It does this through the so-called 
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virtual proccsses. In string theory, for example, what could happen is that a 
virtual string spontaneously appears, splits, rejoins, and then disappears. 

These proccsses contribute to what is known in quantum field theory as 
the "vacuum-to-vacuum amplitude". Its first order term looks like a torus, 
and is called the partition function. The torus can be characterized by a 
complcx number T calied the modular parameter, and 50 the partition func
tion will be a function Z( T), sometimes written as Z( T, f), where f is the 
complcx conjugate of T but is treated as an independent variable (more ac
curatcly, the first terffi of the vacuum-to-vacuum amplitude is actually the 
Hum over ail tori: J dT Z( T) or J dTdf Z( T, f), where the integrals are over the 
"fundamenta.l domain"). 

Feynman '5 rules help us to arrive at (using the Dedekind eta function 
77( T» 

Z( T = X + iy) = J dD
-

2pTr {e- yH eIXP
} 

= 11/(T)I-2(D-2)(2Im Tr(D-2)/2exp(-~Im T(D - 26». 
6 

Several different T correspond to the same torus; Z should not be in
flucnccd by which of these equivalent parameters we choose. The group 
of transformations which map each T to a T' characterizing the same torus 
can be easily found, and is called the modular group. Thus Z(T) must he 
invariant ulldcr the modulaI' group - this is how the powerful constraint 
of modulaI' invariance enters iuto string theOl"Y. It turns out that (for this 
oosonic string) modulaI' invariance also demands D = 26. Many other conse
quences of modulaI' invariance will he seen in §5, as weIl as in Chapters 3 and 
,.. Modular invariance guarantees the vacuum-to-vacuum amplitude (to first 
ordcr) is finite. Some plausibility arguments exist which seem to show that 
modular invariance also guarantees that strings are free of aH divergences, so 
t.hat. string t.heOl"y is completely finite. 

Thc commcnts thus far have concentrated on the hosonic string. In 1971 
Hamond, Ncveu and Schwarz found a fermionic string that was later discov
ered 1.0 have huilt into it a previously unknown symmetry called supersym
metry. 

The symmetry SU(3) of the Standard Model links up the quarks with 
each other, and the gluons \Vith each other. However, supersymmetry is 
t.he only symmetry that can mix bosons and fermions, and thus is our only 
hope t.o unify ail the particles found in nature. It can do this because it has a 
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fermionic generator Q which changes the spin of partic1es by !. (Sec .'IlE for a 
complete introduction to supersymmetry.) Locally supel'symmctl'ic theorics 
(called supergravity) automatically include general rc1ativity and hcncc are 
serious candidates for a theory of quantum gravity. 

There is no experimental evidence yet that nature is supcrsymmctrÏ<.' (in 
fact if it is, the supersymmetry must he badly broken), bllt môlly physi
cists are nevertheless convinced that supersymmetry is just. too heaut.iful 
and promising not to somehow play an important role in realit.y. It was 
thought for a while that it might enter through supergravity, hut. tlll'rc arc 
now reasons for doubting this (the theory may not he finit.e, and it.s 1Il0St. 
promising versions aren't chiral). Today the bcst hopc for supcrsyllllu<'t,ry 
seems to be superstrings. 

There are several classes of supersymmetrie st.rings -- i.(·. supcl'strings 
(the hosonic string has no fermions and so has no hope t.o he supcrsyllllllet.
ric). Type 1 superstrings are both open and closed, whilc type Il st.l'ings an' 
only closed. The former seems to hold sorne promise as a possihlp t.h('ory of 
physics. The latter has difficulty either with chirality 01' wit,h slIpport.illg ail 
adequate gauge group. 

But the most promising superstring today, first illtroduced in GIIMH, is 
called the heterotic string (from the Greek word "hetcrosis", Illcallillg t.he 
increased vigour displayed by erossbred plants or animaIs). It. is a c10sed 
string, and hence its right- and left-moving modes are indcpcndcllt. (thel'c arc 
no endpoints to refleet its wave). It is a hyblÎd of t.he old bosonie ~t.ring é)lld 
the type II string: its left-movers arc bosonic and its right.-movers arc t.ype II. 
This means that its left-movers live in 26 dimensions whiIe ils right-moV(!l's 
are only in 10, but this is rectified by making 8 of these tl'allsvel'SC illld 1 fi 
of them internai (2 are eliminated by t.he Iight-eone gauge). Gilly t.h(~ right.
movers are supersymmetric. The low-energy limit of t.he tlwory is f) = ] 0, 
N = 1 supergravity (D is the dimension of space-time, N is tlle lIumbel' of 
fermionic generators Q and the number of spin ~ supersyrnlllctric pill't.llers 
of the graviton, called gravitinos) couplcd to the gaugc gloup Spill(:12)j Z2 
or Es x Es. These gauge groups, and the way to redify the di frerel 1 Cf! of 1 (j 
dimensions are closely related t.o each other alld to the 1 (j-dilllC!lIsiollal evell 
self-duallattices, and is one of t.he main ways latticcs elltel illto str iJlg theory. 
The heterotic string is anomaly-free, free of ghosts alld t.achyolls, and t.hen· 
is reason to believe it's entirely finite. !ts lowest mass st.ates (alld tlH~re are 
many of them!) are aIl massless (which is good, since othcrwise their ma.<;Hes 
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would be on the order of the Planck mass, R: 1019 GeV). 
The rnost prornising of the heterotic strings is the Es X Es one. It seems 

to have the best hope of predicting the observed particles. It has been spec
ulated that one of these E8 's might give rise to aIl of the observable particles, 
while the otllcr would give rise to another type of matter (called shadow 
matter) which can intcract with our matter only gravitationally. 

The discovery of the heterotic string followed the explosion of interest 
in strings brought on in 1984 when Green and Schwarz discussed anomaly 
cancellation in type 1 strings (the only anomaly-free theories known until 
t.hen were the unpromising type II strings). For exarnple, they showed that 
cancellation of a certain gravitational anornaly could occur only when the 
gauge group was of dimension 496. Since Es and Dn =SO(2n) are of dimen
sions 248 and n(2n - 1), respectively, the gauge groups given above avoid 
thaf, anomaly. Anornaly cancellation enormously restricts the physically al
lowablc theorics and takes us a giant step forward to the dream of being able 
t,o dcrive a unique "Thcory of Everything". 

The hctcrotic string, like most of the superstrings being currently studied, 
is lO-dirncllsional (see §8, Chapter 2 for an example of a 26-dimensional 
theory). Vet nature appears to be only 4-dimensional. The most obvious 
way to explain the discrepancy is to compactify the extra 6 dimensions - to 
make thern so small (e.g. on the order of the Planck length of 10-33 cm) that 
wc have no hope of observing them. The problem with this approach seems 
to be tltat the N = 1 supersymmetry becomes N = 4 in the low energy limit, 
which is non-chiral and must be discarded. It turns out that the problem 
Îs that the tori considered here are flat_ This has led to the consideration 
of Calabi-Vau manifolds, and of orbifolds, which are fiat everywhere except 
al. a Humbcr of singlllarities. An orbifold is the 'quotient' of a lattice with 
Home subgroup of its autornorphism group - it is rnentioned here only for 
complctcllcss, and won 't he discussed again. 

1.5 A Summary of Recent Work 

As should hc fairly obvious by now, my thesis is concerned with aspects 
of superstrillg theory - more precisely, my work in Chapters 3 and 4 is 
1J10tivatcd by questions arising from the recent work in superstrings done by 
Lam (sec LAM 1-3). A similar approach was taken by the "Cornell group" 
(see, for example, KLT; the isomorphism between the two approaches was 
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made explicit in LAM!). In this section 1 will give a brief outline of some of 
these results, so that the wOl'k in Chapters 3 and 4 can be morc properly pu t 
into perspective. See also §1 of Chapter 3 and §§1 and 4 in Chaptcr 4 for 
the specifie physical questions 1 will address. 

We are interested in the type II and hetel'otic string theorics (t.hcsc c\osed 
strings allow the cancellation of anomalies; an alternative, the bosonic strillg, 
is plagued with tachyons and so is a doubtful candidate for descrihillg natmc), 
and in how the various constraints (like modu1ar invariance) restrict t.ht.' 
physically allowable theories. 

Let X± and \.II± be boson and fermion fields, rrspcctivcly. They are 
functions of (17°, 0'1) (in fad, of O'± = 0'0 ± 0'1 ), whcrc 0'0 == t is t.ime, and 
where 0'1 == 0' is a parameter that l'uns along the string. Now, our st.rings 
are aH closed, so 0' is a periodic coordinate, say with period 1r. lIow X a.nd 
\.II behave as we wrap around the string - i.e. when wc replace 0' wit.h fT + 7r 

- constitutes their boundary conditions. As they arcn't t.hclllselvcs direct.ly 
observable, they don't have to be pcriodic. 

The conformaI currents (which generatc the conformaI trallsformations) 
look something like 

T{O' t)--!aXI'.8X -~a\}lÀ.IJI\ , - 2 l' 2 A' 

They are physical, so must be periodic (i.e. T(O',t) = T{fT + 11', t», which 
suggests the boundary conditions 

X(O'+ 7r,t) = exp(-2i:nû)X(fT,t) or X(17 + 11',1) = X(l1,l) + c, 

and \.II(l1 + 7r, t) = cxp( -2i11'w)\II(l1,t), 

for constants c, w and w. These arc callcd the twist (by phflS('S 11) and ÛJ) 

and shift (by c) boundary conditions. 
The supcrconformal currcnt is a fcrmionic quantity, so il. rnay be (!itlJ(~r 

periodic or antiperiodic. Without going into details, this condit.ion rda.t.es 
sorne of the w to w, and relates theother w's by the so-callcd triplet. (·ollstra.iJlt 
(at least for D = 4). (In the heterotic string, unlikc the type Il one, ollly the 
right-hand si de is supersymmetric, so only it has a superconforma) current. 
Both sides are conformally invariant, though.) 

There are two ways \.II can he rclatcd 1,0 X. OIl'! way is via Stlpersym
metry, and was discussed in the previous section. The other way is through 
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bosonization or its inverse, fermionization, which are given by the formula 

\II =: exp( -2iX) : 

wherc the colons denote the normal ordered product, and tells you how to 
interpret products of fields. This relates the bosons satisfying the shifted 
bOlllldary Londitions to the fermions with the twist.ed boundary conditions. 
Ferrniollizi ng t.he former allows us to consider only the phase houndary con
di tiolls. 

Olle t,J.illg t,itat modular invariance tells us is that these phases must form 
ail abcliall group G (using addition modulo 1). We will assume themall to 
be rat.iollal numbers, so that G is also finite. 

Physical st.ates, unlike the fields, must he periodic. Civen an arbitrary 
(ilOt. Ilecessarily physical) statc, the GSO projection allows one to project out 
t.he physical, i.e. periodic, component. 

ModulaI' invariance reqllircs that. thcrc must be several types of boundary 
cOlldit,iom; (i.e. several different phases tu). To each possible boundary condi
t.ioll (i.e. t.o each clement h E G) there is associated a different Hilbert space 
of solutions (callcel a "scctor") satisfying that boundary condition. AIso, the 
modulaI' invariance of thc partition function demands that the phases w sat
isfy a lIumber of relatiolls, callcd (L), (Q), (0) and (N). See Chapter 4 for 
a discussion of the first tluee of thesej together with anomaly cancellation, 
(N) put.s a Humber of ronstraints on the numbers of right and left moving 
boson alld fermion fields, and on the space-time dimensions of the acceptable 
t.hcOI'ies. 

Givcn a set of twist paramcters w satisfying the ahove relations, a theory 
is spccified by choosing various vacuum parameters FI and ml] (these specify 
the eso projections pcrmissible by modular invariance). From these we can 
calculate t.he spectrum and the symmetry group of the theOl·Y. 

Span·-t.imc has ft preferred position in quantum field theory. But here 
everything is ail operator of the world sheet - including space-time. The 
Lorent.z group is on an equal footing with ail other symmctries of the theory. 
Th(· spin-st.atistics t.hcorem, giving the correct relationship bet.ween spin and 
st.at.ist.Îcs (8('(' §2), is automatic in quantum field theory, but in string theory 
its validity iSIl't guarctllteed: it 's imposed, and not derived. Insisting upon 
it. fixes the vacuum fermionic phases P.. The result is that there are only 
fillit.e1y many physically acceptable thcories allowed, given the twist group 
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G. (Presurnably other demands not yet imposed will reducc the Humber cvcn 
further). In §§1-3 of Chapter 4 we discuss how different sets of t.wist param
eters cao yield the sarne theories, 

These results aU followed from the fermionization of the OOSOIIS wit.h 
shifted boundary conditions. If we iostead bosonize all t.he fermions, we gct. 
equivalent but differeot conclusions. The main result is that the mOll1cnta of 
the bosons lie on a shifted lattice A + t. A htrns out to be self-dual. In §l 
of Chapter 3 and §4 of Chapter 4 1 provide a more detailcd account of this 
approach. 

The bosonization approach is prohably better bccausc it allows yOIl 1.0 
handle much more easily the bosons with twisted boundary condit.ions -
these bosons in fact lead quite naturally t.o the study of orhifolds, whieh 
were considered briefly in the previous section, AIso, it t.rcat.s t.Jt(' whole suh
ject in a rnuch more uniforrn fashion: you don't have to break C'verything 
down into sectors. For exarnple, the eso projection is hasically huill. rigltt. 
ioto the formulation, and the Es x Es gauge group arises mueh Illore hla
tantly in the bosonization approach. 00 the negative side, the f(,l'fniollizatioll 
pro cess presents sorne complications, as two l'cal fermions wit.h illcolllpatible 
boundary conditions cannot always he bosonized (it takcs I,wo /'('al ferllliolls, 
or one complex one, to make a boson). 

This is hardly intendcd to be an exhaustive slII'vey of this l'CCCIII. work. 
The interested reader should consult the papers mentioncd earlier for the 
details. 



<-
2 MATHEMATICAL PRELIMINARIES 

2.1 Introduction to Lattices 

Occasionally in mathematics a term is encountered that by itself represents 
several fundarnentally different structures. The c1assic example of this is 
"field": to most mathematicians this refers to a certain algebraic structure 
analogous to the rational or real numbers. Mathematical physicists usually 
mean by this a vector or tensor field, as in "quantum field theory" or the 
expression "gravitational field". And apparently in set theory it is used to 
denote the union of the domain and range of a function or relation. 

A nother examplc of a mathematical homonym is "lattice". A lattice to 
most modern mathematicians involves two binary operations on a partially 
ordercd set. This structure has applications in almost every field of math
cmati<-s (pardon the expression). In theoretical physics it can be found in 
the study of the foundations of quantum mechanics, and in quantum logic. 
This algebraic structure has absolutely nothing to do with the type of lattice 
concerned with hcre. 

Definition 2.1.1 A lattice is a finitely generated free Z -module, on which 
is tlcfincd a bi/mea1' form. 

Examples of 2-dimensionallattices are given in Figures 1 and 4. (Another 
type of lattice, a toroidal or compact one, will be studied in Chapter 4 -
it can be t.hought of as the quotient of two "true" lattices). We will use 
the symbol 1\ to denote a lattice. The familiar x . y will be used to denote 
the bilinear fonn, and x 2 == x . x will be called the no .... m. We will only be 
concerncd here with rational-valued forms. Note that calling A a finitely 
genel'atcd frcc Z-module implies that A is isomorphic to the module zn , 
whcre 11 is the rank, or dimension, of A . In other words, algebraically 1\ can 
sim ply be cOllsidercd to be zn, so cach latLice vector x can be represented by 
a column vertor x with integer components. Then the bilinear form becomes 
an n X 11 matrix A (callcd the Gram matrix), where 

x·y = xr AY. 

There arc rnany different ways to identify A with zn, and each way in
volvœ choosing a different basis {J = {hl' ... ,bn } for 1\ . A basis of course is 
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simply a set of linearly independent (over Z) latticc vectors whosc Z-span, 
{m}b1 + ... + mnbnlmt, ... ,mn E Z}, equals A. The Gram matrix A has 
entries Ali = bi . b) ; these will always be in Q. 

A is symmetric, which means it can be expressed as 

A = BTCB, 

where B is an invertible (real) matrix, and where G is a diagonal mal.rix 
whose entries are either 0, 1 or -1 (see CAR, pp.5-6). Whell G (or A) fails 1.0 

be invertible, A is called singular. We will only be inl.crested in the Cil's(' whcl'e 
Gis non-singular - Le. C's diagonal elements must be ± 1 (this implies t.h"t. 
our lattices will ail be discrete, and their basis vect.Ol'S will he H-illd(·pelldcnt., 
and not merely Z-independent). If Ci is singular, A is called sl1Igulal'. Let. 
n+ (n_) he the nurnber of +1 (-1) cntrics. Then H+ + 11- = 1/ , alld wlog 
(="without loss of generality") we can assume n+ 2: 11-. If 11_ > 0, A is 
said to be an indefinite lattice; if n_ = 0, A. is said to be a posit.ive d('nnit.(~, 
or Euclidean lattice. Most of the lattices considcrcd hcre will be Ellclidean. 
When 11._ = 1, A is also cali cd Lorclltzian. (The Sylvester law of incl'tia -
CAR - says that n+ and n_ are well-defilled, i.e. indcpcndcnt. of t.he sp('cific 
choice of B, so these designations arc meaningful.) 

Thus, there is a second, geometric interpretation of a latticc. Choose itny 
n independent vectors bk in sorne space Rm.l (Rm.l has t.he inncl' pl'Odllct. p,iven 
byt.he metric tensor Gm.l = diag( +1,+1, ... ,+1,-1, ... ,-1)). 'l'lwII t.lu· 

, 'V "__.___ 

m l 
Z-span of these bk is an n-dirnensionallattice whose bilincar 1'01'111 is illduced 
by the inner product on Rm.l . 

Note, however, that these two intcrprctations arc iJl<:olllpatjbh! ill t/\(' 
sense that when the latticc is identificd with zn, the bilillcal' f01l1l is givc!ll in 
general bya non-diagonal rnatrix A, and when the bilinear fOI'lIl is given hy 
G, the lattice vectors will no longer have intcgcr coefficiellts. (But. see !i :1.) 

The simplest ex amples of lattices are the cubic lattices z",·n, collsist.illg 
of those point.s in Rm.n with intcgral coordillates (using of cOlll'se the illll(!l 
product Gm.n ). These latticcs arc of dimension m + n. 

Consider any lattice A with basis vcctors bl , ••• , bit. Suppose t1u!Îr COlllpO-

t . "h k d " Rm,l b'" (II b2 Iml/m+1 1111+') nen S ln sorne ac groun space are k = )k' k,···')A.)k , ••. , )k , 
--T ... 

chosen 80 that bl·b] = b, cm.lb). Dcfine the gcnerator matrix M by M,] = 1;:, 
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J.(~, 

M= = 

bl b2 bm+l 
n n n 

Then the Gram matrix A, characterizing the induced bilinear form on A, is 
simply A = MG'M T , In the special - and by far the most common - case 
wher!! A is Euclidcan, wc get A = M MT, In both definite and indefinite 
cases, howcver, wc get: 

(k)b1 +.,. + knbn ) , (k~b~ + .. , + k~b~) = kT Ak'. 

;1 is ail 11 X n matrix, while M is n X (m + f) , 
This hybrid interprdaLion is the one that will be used thoughout this 

paper, for t.he most part, The lattice vectors are uniquely identified by n
t.u pl('H of i Il t.f'/~('rs, j ust as in the zn interpreti\tion, so the bilinear form is 
gi WII hy a nOIl-diagonal yet symmetric matrix A, But this identification of 
/\ wit.h zn is <'xplicitly rccognized by selecting basis vectors, and the bilinear 
fOl'ln ;1 is g('ollldrically induccd by embedding the basis vectors - and hence 
/\ -- ill sOllle HIn,I'. Although A docsn't equal sorne G (except for the cubic 
Ia,Uic('s), i t. is d('ri vcd from both i t and the choice of basis vectors. With 
t.his t1lld(·rst.flllding having beell made, it suffices to characterize a lattice by 
p,iving a set of points (albeit one c10sed under Z-linear combinations) in sorne 
Hm,l. Titus the cubic lattice may be s;mply called zn,m ,for its bilinear form 
('0111<1 1)(' IIIl1llcdiéltcly infcrrcd. 

Wc' will allllost. cxclusively be intcrcsted in inlegrallattices - i.e, lattices 
wllt')(, .,. , li E l for alliatticc vcctOI'S x and y. In other words, a lattice is 
int.<',!!,ral dr it.s bilincar (as opposed to quadratic) form is integer-valued, Ais 
int.l'gral ifr A is él Z-matrix (i.e, is a matrix whose entries are ail integers). 
This imposes a strong constraint not onlyon the norms of the lattice vectors, 
hut. 011 t,l1l' allgles betwcC'n thcm. 

U nless ot.hcl'wisc statcd, aSS1\me that A denotes an integral and Euclidean 
I"t.t.in'. Thus AC R7n and A = AI AIT. For such lattices, the vectors of norm 
land 2 éU'(' tht: Iilost intcl'cst.ing, as we shall see. (Of course we always have 
Il ~ 1/1.) 

Ail CI'Cll latt.icc is integral, with the additional property that the norm of 
('vel')' vedol' in it is even. A is cven iff A is a Z -matrix whose diagonal entries 
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are all even. Given any integral lattice A, the lattice gCllcl'atcd by ail tlH' 
norm 2 vectors in A forms an even sublattice of A, sometimcs cancel its 1'001. 

lattice. Also, the set of aU even-norm vcctors in A is also an cven sublatt,icc of 
A, of the same dimension as A ((1, l;~ttice is like a VL'Ctol' spaC<', ex('('pt \Vith il 

field like R replaced by the ring Z . This causes several Clll'iOllS diffc\('IK('S --
e.g. the possibility oi a propel' sublatticc having t.he Sélll1C dimension as t.he 
lattice that contains it). When these two even sublattices arc cqual, wc say 
that Ais saturated. Satul'ated lattices are readily handlc<1 by the machilH'ry 
of gluing theory, as we shaH see later. 

An integrallat.tice which isn't even is callcd odd (so at. least. OIlC of t.he 
diagonal elements of A must he odd). Evcn latticc~ secm slight.ly more im
portant than odd. 

Historically, it has often proved convenient to express laU,ic('s ill the lan
guage of quadratic forms. Lattices are stlldied in number t.hcory lat'gely fol' 
this reason. Given any Gram matrix A, constrllct the quadrat.ic form of JI 

variables Xl, ••• , X n by computing t.he plOduct X T Ax. To Cclch quadJ'at.ic fonll 
there is associated a unique latticc in t.his way, hut bccau!:>c (~.H·h la.t.t.i('e has 
several equally valid Gram matrices (one for each choicc of basis), 1.0 ('1\eh 
lattice is associated several "int.egrally equivalent" quaclra.tÎc fOl'llls. Sill(,(~ 

our picture of lattices will remain geomctric, we won '1. hcwc l'ca SOli t.o lise t.!){' 
language of quadratic forms. 

Lattices also find a spot in group thcory whcll olle considers t.heir gloup 
of (isometric) symmetries, called their automorphism group. Ulillally, t.h!' 
automorphism group is meant 1.0 include only thosc symJnct.l'ics which fix 
the origin - i.e. translations hy latticc vectors arc discarded as tri vial. Jt. 
turns out that t.he automorphism group of intcgral Euclid('an la.t.t.ices ill'(, 

always fini te, but that of indefinite lattiœs is usua.lly infinit.e. Johll COllway 
uscd the automorphism group of an important 21-dirncllsionallatti('(! t.o filld :~ 

previously undiscovered finite simple groups in 19G8 (sec !i8), a.lld Itclp bl'illf!, 
to a close one of mathematics' greatcst triumphs. Also, in illl IIl1rdatcd 
application of lattices, there has hcen much WOl k conccilling tl<llIslctti ug tlte 
study of integral representations of a given finite grollp G iJlt.o the stlldy 
of lattices invariant under that group - i.e. lattices whosc allt.olll()l'phi~ml 

group includes G. 
Further applications of lattices can be round in coding t.heory, cornpu1.l!J' 

design, and a number of sphcrc packing problcrns (e.g. find t.be dells(!st 
packing of identical spheres in Rn - see Figure 3). It. is wlated 1,0 the theol'y 
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of Lie algebras in a variety of ways (e.g. see §§6-7). 
The fundamental region for a lattice, given a basis hl!"" bn , is the subset 

of the background space consisting of ail points of the form tlb1 + ... + tnbn, 
for t. E [0,1). It Îs a building block for the lattice, and when repeated several 
times fills the whole space (i.e. the whole R-span of the basis vectors) with 
just 1 laUicc point per block (namely, at one of the corners). 

A deep hole is a point in the fundamental region whose distance to the 
closest Jattice vector is a global maximum. For example, zn has only one 
deep hole; it has components (l,~, ... , ~). Sorne lattices though can have 
more than one deep hole (for example see §8). 

Define the determinant (also called discriminant) of A to be lAI = lAI, 
w)wrc A is any Gram matrix of A. This is simply the volume-squared of 
the fundamental region. By Theorem 1 in §3 we see that under a change of 
basis given by the generator matrices M -+ M' = U M, A becomes U AUT , 

but lAI becomes lU AUTI = lAI. Thus lAI is independent of the choice of 
basis. Shape, but not volume, ()f the fundamental region is afFected by hasis 
transformations. 

Define A*, the dual of A, to be the set of aIl y in RA, the R-span of the 
basis vectors, satisfying y . x E Z for aIl x E A. Then A" is an n-dimensional 
lattice. though in genel'al will only he a rational lattice if A is integral. A 
consists of ail points in RA whose contravariant components (relative to bi) 
are integers, and A" consists of ail points in RA whose covariant components 
are intcgcrs. Clearly, 

A ÇA" Hf A is integral 

in which case A· is denser than A. It is possible to prove (A*)· = A. Given 
a basis b. fol' A, the dual vectors b; defined by b: . b, = 6.j Corm a basis for 
A·, cali cd the dual basis. 

2.2 Self-Dual Lattices 

Definition 2.2.1 A is cal/ed self-dual, or unimodular, iff A* = A . 

Wc shall exclusively use the term "self-dual" in the following material. 
The lattices wc are most, interested in are self-dual. There are both mathe
matical and physical reasons for this, as we shaIl see. 

Only integral lattices have a hope to be self-dual. In fact, A is self-dual 
iff both it and its dual are integral. 
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Theorem 2.2.1 A self-dual => lAI = ±1. If lAI = ±1 and A is integral, 
then A ;8 self-dual. 

pro of: Wlog take A to he integral. Choose a basis {J of A. Let M*' 
be the generator matrix for A· corresponding to the dual basis of 
{J. Then 3 an n x n Z-matrix U such that M = U M·, because 
A CA·, so 1 = M-GMT = U-lMGMT = U-lA. By Corollary 
4.2.1, U-1 is a Z-matrix iff lUI = ±1 iff lAI = ±I. That is, 
A· C A iff lAI = ±I. But A C A- for integral A. Thus A- = A Hf 
lAI = ±1. 

Of course if A is Euclidean, we have for integral A that A is self-dual 
Hf lAi = 1. In other words, self-dual lattices have 1 lattice point per unit 
volume. 

The proof of Theorem 1 can also be used to show that the Gram matrix 
(relative to the dllal basis) for A- is A- = A-l, even for A neither int.egral 
nor self-dual. Thus for integral A we have A* ç I~IA. 

Odd self-duallattices will usually be caUed Type 1 ; even self-dual lattices 
will usually he called Type II. The cubic lattices zm.n are ail Type 1. There 
are no trivial ex amples of Type II lattice., (except, if you wish, the 1-poillt 
lattice 0). There is no "Type III" lattice, for example, corresponding to those 
self-duallattices whose Dorms are ail multiples of 3. In fad, it can be shown 
that if the norms of the vectors in a self-dual lattice are ail multiples of sorne 
k E Z+, then k = 1 or 2. 

Self-duality is a very strong constraint on lattices, particularly the indeC
inite ones. zm,n is the only Type 1 lattice in the indefinite spacc Rm,n - it 
is denoted Im,n (this statement only holds of course if both m, n > 0). Tlwrc 
also is a unique Type II indefinite lattice, called Ilm,n, but it ollly exist.s 
when m - n is a multiple of 8. More precisely, wc should say: 

Theorem 2.2.2 A is an indefinite Type [ lattice of signalure (m,n) iff il is 
congruent to [m,n, and A is an indefinile Type li lattice of signf!ture (m,n) 
iff m - n = 0 (mod 8) and il is congruent to [Im,n (IIm,n will be explicitly 
given beiow). 

(See the next section for the definition of congruence). 111,1 is given by 
the Gram matrix 
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For k ~ 0 we have Ilsk+n,n = II~t œ Eg, where by 11î,1 we mean the direct 
sum 

Ilt,t œ ... fI) 111,1 
't " 

Y 
n 

(sec §4 for the definition of direct sum), and where Es is the unique Type II 
definite 8-dirnensionallatticc - it's a root lattice (see §6). These results are 
ail proven in SER, pp.48-58 (Serre and rnany others use rs for Es, and r n for 
what we'll latcr calI D;.). 

Example 2.2.1 Lorenlzian Type Il/attiees must have dimension N = 8m+ 
2. They can be defined as the set of ail xE RN-I,l satisfying both 

(i) x· T E Z , and 
(ii) cilher x E zN-t,t or x - TE ZN-l,l. 

IIcl'c, T = 0,·, . , ~a)· 
The definite case is more complicated, and hence a little richer. AlI self

dual latticcs arc known only in dimensions n < 25, and for reasons 1'11 give 
shortly il is doubtful much more progress will be made along these Hnes. 
ft. has hcen shown that for each dimension only a finite number of self
dual latticcs exist, but unfortunately that number quickly reaches unwieldly 
magnitudes if yon go much past n = 25. 

Again it happcns t.hat thcre is at least 1 Type 1 lattice in each dimension. 
And as in the above case, thcrc are Type II lattices only in dimenshns which 
are lIlultiples of 8. (Not surprisingly, t.he complex Type II lattices, i.e. lattices 
in en rat.hcr thall Rn, can occur only in dimensions n = 0 (mod 4).) The 
Type Il rcsults arc intimatcly connected: if A is a definite Type II lattice, 
//1,1 EEl A is a Lorcntzian Type II latticc, and so the dimension of A must he 
a multiple of 8. (This argument doesn 't imply that there is only one definite 
Type Ir latt.icc in each dimension n = Sk; /11,1 EEl A = 111,1 EEl A' doesn 't give 
liS A == A' - but sec ThcOl'cm 2 of §4). Since Dtk is always Type II, we 
could llilve illst.ca<j defincd Ilsk+n,n = 1 J~l œ Dtk' even though Dtk = E; 
ollly whclI ~. = 1. (Incidcntly, t,hough different lattices, E~ and Di6 have the 
saille Ilumbc}' of vcctors of norm i, for each f - i.e. their theta series are 
idcnt.icaJ. ) 

Choose any nuIJ vedor 10 E l1sk+1,1' Then w1., the subset of aIl u E 
/18k+l,1 sat.isfying lU' tt = 0, is an 8k + I-dimensional suhspace of R Sk+1,1 and 
includ('s ail points in Rw. This means 101. n J 18k+1,1 is an 8k + I-dimensional 
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sublatticeof IlskH.ll containing the points Zw = (w). Note that x and x+lw 
have the same norm for x E w i nI JSk+I.b so the induced inncr product on 
A = (wJ. n 1 IskH,t)/ (w) is well-defilled. A is aa 8k-dimensional laUicc, hoUt 
Euclidean and Type II. Depending on the w ChOSCll, this const.mction will 
pro duce every Euclidean Type II lattiœ. 

In 1938, L.J. Mordell proved Es = Dt was the uniquc Typc II lat.t.icc in 
8-dimensions. In 1941 E. Witt showed E~ = Es œ Es and Dt6 werc t.he only 
Type II lattices in 16-dimensions, and in 1968 H.- V. Niemcier found ail 24 
Type II lattices in 24-dimensions (although the most important of thcsc, t.he 
Leech lattice, was found in 1965 by John Leech). 

In 1957 M. Kneser enumerated aIl Type 1 lattices in dimensiolls 11, $ 16. 
Conway and Sloane extended this to n $ 23 in 1982, anù in his Ph.D. 
dissertation in 1984, Borcherds handled n = 24 and n = 25. See Table 1 
for a summary of the results known1 (Theorem 2.4.1 irnplies t.hc rccursion 
anH = an + bn+1 + en; the values of dn can also be derivcd from the ot.h('r 
columns - see §4 for the definition of indecomposable). 

The Minkowski-Siegel "mass" formulae can be uscd 1.0 show t.hcse ellu
merations are complete (apparently the original German is "massformel" , 
which actudIly means "measure formula", but this mistranslat.ioll is IIOW ill 
standard usage). For example: 

Theorem 2.2.3 Let n be the set of aU (non-congruent) Type Il Ruclil/cllu 
lattices of dimension n. Then 

L 1 = IBkl il IB~)I 
heO IAut(A)1 2k )=1 4) 

where 11, = 2k is a multiple of 8. 

Here, IAut(A)1 is the order of the automorphism group of A, and where Ih 
is the kth Bernoulli number. A similar, but more complicat.ed, reslllt holds 
for Type 1 Euclidean Iattices. Thcrc arc several standard ways of filldillg 
the automorphism groups (we shall sec a couple of thcse iu §~ and fi7 ), so 
Theorem 2 provides a straightforward, if sorncwhat messy, way of ve/'ifying 
the completeness of the enumerations Iisted in Tahle 1. 

lTable 1 is based on Table 2 2 in cs. The refcrcnces alludcd to Iwrc can also hf! round 
in cs 
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Table 1: The n-dimensional Self-aual Euclidean Lattices 

Dim. Total Number Number With No Total Number Indecompos-

=n Type 1= an Unit Vectors=bn Type 11= en able= d" 

1 1 0 0 1 (Zl) 

2 1 0 0 0 

3 1 0 0 0 

4 1 0 0 0 

5 1 0 0 0 

6 1 0 0 0 

7 1 0 0 0 

8 1 0 1 0+1 (E8 ) 

9 2 0 0 0 

10 2 0 0 0 

- 11 2 0 0 0 

12 3 1 0 1 (Dt2) 
13 3 0 0 0 

14 4 1 0 1 

15 5 1 0 1 

16 6 1 2 1+1 
17 9 1 0 1 
18 13 4 0 4 
19 16 3 0 3 
20 28 12 0 11 

21 40 12 0 12 
22 68 28 0 27 
23 117 49 0 48 
24 273 156 24 154+22 
25 665 368 0 367 
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Note that IAut(A)1 > 2 sinee x -. -x is always a symmctry. Thus 
doubling the right-hand side of the formula givcs a (crude) lowcr bound fOl' 
the number of Type II latticcs of dimension n. For example, this gives us 
~ 10-9 for n = 8, ~ 5 X 10-18 for n = 16, and ~ 10-14 for n = 24 (instcad of 
1, 2 and 24 respectively). But for n = 32 it gives (almost cert.ainly) a VC1'Y 

crude lower hound of 80 miJlion, It seems rather doubtflll Nicmcicr's wOl'k 
'\':i1l ever be extended. 

Similar lower bounds can he found for Type 1 lattices. For 7l = 20 we gct 
a bound of about 10-12 (instead of the actual number of 28). But for n = 28 
we get about 200, for n = 29 we get about 40 000, n = 30 about a hillion, 
n = 31 a trillion, and n = 32 about 1017, 

Mathematically, the enumerations of self-dual latticcs can be uscd in a 
fairly simple manner to find alliattices with other determinants (pal'ticularly 
the smaller determinants). For example, there are 24 lattices of dimcnsion 
17 which have determinant 2, and 53 with determinant 3. 

One important application of the enumerations for physics is that it CIlOf
mously constrains the possible gauge groups of various string theories. In 
fact, the only Yang-Mills groups that can be incorporated in the hetcfotic 
string are Spin(32)/ Z2 and E8 X Es, corresponding to the only even self-dual 
16-dimensionallattices. 

2.3 Lattice Equality: Congruence and Similarity 

A lattice can be considered as a subset of sorne Rm with certain propcrtics 
(i.e. discreteness, c10sure under Z-linear combinations, and an illduccd il111CI' 
product consistent with its Gram matrix). But in sorne ways this is llnsatis
fying: for one thing we'd like to think that the background spacc }lm, though 
computationally desirable, is hardly intrinsic to the lattice itsclf. A lattiœ 
seems in sorne fundarnental way to be independent of the background space 
it lies in. 1 hope to clarify this point in the next couple paragraphs. 

Any given Jattice, lying in sorne Rm, can be trivially crnhcdded in cach 
Rm', for m' > m, by adding m' - m zeroes to the coordinatcs of each point 
in the lattice. The reverse, deleting m - m' coordinates, ail of which vanish 
for each point in A, will sometimcs also be possible. Let t::!, : Rm -+ Rm' 
denote this embedding (m' > m) or projection (m' < ml. The Gram matrix 
is unaffected by t:,. There seems only to be a superficial, casily ignored 
difference bctween the latticcs A and t:!,(A). 
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Consider next a global rotation(ahout the origin) B : Rm -+ Rm. Since 
B leaves inner products unchanged, the Gram matrix is unaffected. Again, 
the lattices A and B( A) are intimately related - in this case they differ only 
through a different choice of coordinatizatioD of its hasis vectors in Il"', or, 
altcrnatively, through an orthogonal change of hasis of t.he background space 
Rm. Of course, any orthogonal change of basis will work here, but because 
the rnctric of Rm must rernain Euclidean, non-orthogonal transformations 
are inadcquate (otherwise aDy lattice cou Id he identified with zn). 

Both t and B transforrn the background space, leaving the Gram matrix 
and hencc the lattice itself untouched. Now, few people would identify a 
laUicc with its basis, and those who do should he quietly Jisrnissed. A lattice 
is Z-generatcd by the basis {3; there is no reason to suppose an alternate hasis 
{l' could not bc fOlmd. 

Theorem 2.3.1 Suppose f3 = {bl!"" bn} is a basis for a lattice A. Then 
f3' = {b~, ... , b~} is another basis for A iff n' = n, and the change-of-basis 
malrix U f7'Om f3 to f3', i.e. b: = E:=1 Uijbj , is a Z-matrix with determinant 
±l. 

This thcorem tells us there are several alternate bases, and it characterizes 
thcm ail. (If A was instcad a rcal vector space, U would only have to hc an 
ll-matrix with Ilonzcro determinant.) Its proof is simple: the Z-span of f3' 
cquals the Z-span of f3 iff both U and U- 1 are Z-matrices. Corollary 4.2.1 
inforrns us that. this means lUI must he ±1. 

In general, changing the hasis of the lattice will change the Gram matrix, 
but thcl'c is littlc douM the lattice itself remains unchanged. 

This discussion leads us to the concept of congruence. 

Definition 2.3.1 Two latlices A and A' are ca lied congruent if their gener
alor malrices M and AI' are related by 

M' = { U Mt::!,B ifm < m' 
UMBt::!, ifm > m' 

Here U must be a Z-matrix with deterrninant ±1, and B is orthogonal. m 
and m' are the nurnber of columns in M and M', respectively. The matrix 
t::!, consists of zeroes everywhere, except along the diagonal where it is 1. In 
addition we must demand that, in the case m > m', the projection operator 
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t::!, only projects out the directions orthogonal to B(A), or equival('ntly, that, 
M = U-1M't:'B-1

• (Ifm = m', t:, = J.) 
1t isn't difficult to verify that congruencc is an equivalcncc relation. Thc 

Gram matrix A' = U AUT , so lAI = IA/I. If A and A' are congrucnt, th en A 
is integral, self-dual, or even iff A' is integral, self-dual, or evell, respcctively. 
Congruent lattiees may, and will, be thought of as thc same abstract objcct 
coordinatized in different ways. (Latticf's, unlike vector spaccs, l'c(luire 2 
choices of bases: one for the background, and one fOl' generating t.he I"t.ticc). 

See Figures 1 and 4 for severai examples of congruences (e.g. Z2 and 
D2 [2] are congruent). 

Theorem 2.3.2 Any n-dimensionallattiee lS congruent to a laUiec in Hn. 

This follows because any unit vector can be rotatcd out.o any otlH'r unit. 
vector. Of course, this theorem does not suggest that ollly Rll should he used 
as a background; in faet the root lattices All' E6 andE7 (sec §(i) arc 1ll0St. 
conveniently expressed in spaces with more than the minimum nllmher of 
dimensions (m = n + 1, 8 and 8 are uscd instead of n = n, 6 and 7). 

Congruent lattices may, and will for the most part, be cOllsidel'ed as cqllal. 
An additionai way of constructing one lattice given anot.hcl· is t.o sCélle il. 

differently: for each ,X E R let ).A denote the Iatticc {,\:I; 1:1: E A}. llerc wc~ 
have M -+ >-'M, A -+ ,X2A, IAI-+ ).21lIAI, and A· -+ tA·. The la.ttin's A and 
).A have the sarne "shape"; the transformation can hc (passi vely) thollght. of 
as a mere rhange in the unit of measurement. 

Definition 2.3.2 A and A' are sirnilar tathees, written A ~ N, if 3,X -:f 0 
such that'xA and A' are congruent. 

The term "equivalent" is aiso uscd, but "similar" has a more des<:I'iptive 
geometric Havour. Similarity is an alternate, evcn wcakcr intcl'prdatioll of 
the equality of lattices. Thus a 'lattice' may be cOllsidercd to be an equiva
lence class of either congruent or similar lattiœs, bllt. wC! WOII '1, !,other doillg 
this explicitly. 

Sec Figures 1 and 4 for some examples of similaritics (c.g. Z2 ~ /)2)' 

However, unlike congruence, similarity docs not respect self-dllalit.y, "iute
gri\l-ity", or evcnness, and so is usually too inclusive to he Ils(!d tn defille 
lattice equality in what follows. Occasionally (e.g. the root latticŒ) it is 
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unclcar which seale factor À should be chosen - i.e. which representative of 
a c1ass of similar lattices should be singled out. The natural convention is to 
select ,\ so that lA 1 is made as small as possible, and yet the lattice remains 
integral (of course, this isn 't always possible). 

The notion of similarity crops up quite naturally in many constructions. 
The sequence of laminated lattices (see §8) includes many root lattices, aU 
of which arc scaled "incorrectly". 

Example 2.3.1 Ali l-dimensionallaitices are similar to Z. 

Example 2.3.2 In Figure 1 is shown (among other things) part of the 2-
dimensional root [aUiee A2' also called (for obvious reasons) the hexagonal 
lllllu:c. Considering this lattiee as being embedded in R2, a natural basis 
yirlds the generator matrix 

and a Gmm mal1'ix 

A=(~ t) 
'l'he hCTagonal laitiec reprcsented in this way is not intcgral, sinee not ail of 
tltc e07nponents of A are integcrs. Thc volume/area-squared of the funda
mental cell oJ tlus latllee is lAI = ~. 

More commonly, titis lattiee is embedded in R3 with a basis ehosen so that 

AI' ~ (~ -: _ ~) and A' ~ ( _ ~ - ~ ) 

7'ltis lai lice is 110W integml, with determinant 3. 
T'1CSC [altiers are similar, with À = y'2. The second representation is 

pl'('fCl'7'cd bCCllUSC in il the generator mat7'ix is simpler, and most important/y, 
thc eO/'lY'spolUliug laltiee is intcgral (in Jacl, Even). 

Thcl"c are sOllle interesting tri via in which similarity plays a roie. Con
sider, for cxamplc, a sclf-duallattice A (so A* = A). Then if A' '" A, we 
must, have A'* ~ N, but in general A'* =f A'. This is obvious. Less clear is 
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converse fails: you can have A * ~ A, but have no lattice similar to A be 
self-dual. 

Let A16 denote the 16-dimensional Barnes-Wall lattice, whose generatol' 
and Gram matrices are given in Figure 2 (for readability only the nonzero 
elements in M16 , and only half of the symmetric matrix A16, are shown). It 
is the unique laminated lattice in 16-dimensions (see §8). ft 's even, and has 
several special properties: for example, it yields the densest sphere packillg 
known in 16 dimensions. In addition, it satisfies Ai6 ~ A16, but Aia :f Aw 
- in fact, IAI61 = 256. It isn't difficult to show that no lattice similar to Al6 
can be self-dual (this would require (256)-h AI6 to be a Z-matl'ix, where Aw 
is its Gram matrix). 

Another counterexample to the converse is the 12-dimensional Coxeter
Todd lattice ](12. It is also widely studied, and for instance is the d('nscst 
packing known in 12 dimensions. 1](121 = 729, so quite definitcly /(12 iSll't 
self-dual. But again we have that both ](;2 ~ ](12' and no laUice similar to 
](12 is self-dual. 

Far simpler examples include A2 and D4' (Any 1-dimensional latticc is 
similar to its dual, but is also similar to the self-dual lattice Z, by Example 
1.) To see that Ai ~ A2' note that (using the notation of Example 2) 

A* = A-
1 

= ~ (-i -}) = ~A' 
and use Theorem 3. 

On the other hand, if an (integral) lattice is congruent to its dual, tlwn 
it equals its dual. 

We shaH conclude this section with two simple examples of congruence 
and similarity. 

Theorem 2.3.3 Let A and A' be two lattices with Gram matrices A and A'. 
Then: 

1. if A = A', A and A' are congruent; 

2. if A = À 2 A', A and A' are similar with scale factor À. 

The proof of 1. is geometrically obvious; 2. follows immediately from 1. 
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Figure 2: The Barnes-Wall Lattice 
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(only the non zero elements in M16, and only half 

of the symmetric matrix A16, are shown) 
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2.4 Direct Suros 

There are 3 basic ways of building higher dirnensionallattices up frorn smallel' 
ones (a fourth one, direct produd, is possible but never seerns to be used): 

(i) Direct surns (introduced in this section); 
(ii) Gluings (introduced in §7)j and 
(iii) Lamination (introduced in §8). 
Let Ab"" Ale be lattices of dimension n., ... , n/c. Consider the set 

A = {(XI, ... ,Xie) 1 XI E AI}' For any 2 points X = (Xt, ... ,Xie) and y = 
(Yb'" ,YIe) in A, define x+y = (Xt+Yt, ... ,Xk+Yk), X·Y = XI'YI + .. '+Xk'YIe, 
and for'\ E R, '\x = ('xXI,'" , 'xXk). 

Obviously this makes A an (ni + ... + nk)-dimensionallattice. ft is ealled 
the direct sum of the components Ai, and is denoted by Al œ· .. œ AI;. Not.e 
that it is an orthogonal surn - i.e., loosely speaking AI -L AJ for i :; j. Also, 
any X E A can be uniquely written as X = L~=I XI' where XI E AI (again, the 
notation adopted here is deliberately naive, chosen for simplicit.y). 

A basis for A consists of the union of bases of eaeh cornponent. For this 
basis, 

M = (MI M, '. 0 l and A = ( Al 

o ~ 0 :.1 
using obvious notation. Thus A is integral, even or self-dual iff caeh compo
nent is. The minimal norrn !~ of A equals the smallcst of the minimal norms 
Pi of the components, and lAI = n IA.I. We will write Al for A EB··· œ A. ------1 

Definition 2.4.1 Cali A indecomposable if A = Al œA 2 ==} AI 01' A2 is lIu; 
zero lattice, i. e. if A cannot be written as the direct sum of pm]JC7' bllb!allias, 

Indecomposable lattices are the basic building blocks (see column .1 of Ta
ble 1). Direct surns can be defined for vector spaCCSj the only indccomJ>osabl(~ 
vector space is (up to isornorphisrn) R. Lattices are much more intercst.ing 
in this respect. For ex ample, apart frorn the Zk, ail root laUieœ (sel! §6) 
are indecomposable. Dt (see §7), however, is not (in faet, Dt = Z"), TIl(! 
only indecomposable integral lattice containing unit voctors is Z. Indccd, if. 
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is possi ble to use direct surns to characterize all integral lattices with unit 
vectors. 

Theorem 2.4.1 Any integrallatlice A can be uniquely expressed as the direct 
sum A = Zk EB A', where A' contains no unit vectors, and where A has exactly 
2k unit vcctors. A is self-dual iff A' is. 

A' is callcd t.he reduced version of A. This resllit is exploited in va,rious 
c/lIlIJwratiolls - for example, to find ail self-dual lattices it is sufficient to 
find thosc containing no unit vectors (see colurnn ~ of Table 1). For srnaller 
dilllensions (Iess t.han 20 or so), weil under haH of an Type 1 lattices are of this 
forrn. A slightly weaker theorern (Witt's Theorern in §6) applies to vectors 
of norlll 2 (with the role of dir~ct surns being taken by gluings). Incidently, 
ail latt.icc equalities expressed in this section are, properly speaking, actually 
congruences. 

proof of Thcorcm 1: The proof is analogous to the Gram-Schmidt 
ort.hogonalization process. 

Lct. {b l , ... , bu} be a basis fol' A. Let 2k be the nurnber of unit 
vcclOl's in A (this nurnber is even because u· u = (-u). (-u)) 
and let u., ... , Uk he k lincarly independent unit vectors in A 
(it is sllfficient to ensUl'C U I 1= ±u) for aIl i 1= j). Then for 
i =1= j, 1t, • u) must be an integer (as A is integral), and also must 
sat.isfy -1 = -u? . u; < (u, . U))2 < u; . u; = 1 because of linear 
indcpendellcc. Thercfore, u, . U) = 0 whenever i =f:. j. 

Lct. b: = b, - L~=l(bl '1/J)uJ' Then b, . u J = 0 Vi,j. Note that if 
L 0',11, + X = L /3J u] + y, whcrc 0:" /3) E Z and x, y E (b~, ... , b~), 
th(,11 dotting t.his \Vith u( givcs o( = /3( fol' each j, implying as 
wdl that .1' = y. Also, the Z-span (UI, ••• , Uk, b~, ... , b~) must 
equal A. Thus, A = Z EB ... EB Z EB (b~, .. , b~) = Zk EB A', where 
thcrc is one Z fol' each HI) and where A' = {b~, ... , b~}. 
Of cou\'se, A' can contain no unit vectors, for such a vector (or 
it.s negativc) would have had to be contained in our original list 
Ill, •.. , Ill. of unit vectors. 

ln GO wc find t.he st.atement: "A eudidean lattice has a unique decorn
po:>it.ioll juto a direct. sum of indecomposable sublattices ... ". They don't 
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prove this, and unfortunately don't clear up a possible ambiguity conc('\'Iling 
exactly what this means. There are two possibilitics: 

(a) (the weaker sense) Al $ ... $ Ak = A = A~ $ ... œ Alo" whcrc A" 
Aj are aIl indecomposable lattices, implies k = k' and AI = A~I fol' SOllle 

permutation u E S k (again, equality here denotes congl'llcncc). 
For example, this is trivially satisfied by the vector SpélCC UII = JUI)· . ·(['IR. 

These n components R correspond to n I-dirncnsional orthogonal suhspac<'s 
of Rn. Similarly, each of the AI correspond to a sublatticc of A cOlIgnu.'1I1. t.o 
AI, in such a way that aIl of these suhlattices are rnutually ort.hogonal. 

However, note that the decornposition rcferrcd t.o in (a) can bc far fWIll 
unique in another sense. For example, the 2 orthogonal subspac,'s in }l2 ea.1I 

be chosen to be {(x,O) 1 xE R} and {(O,y) 1 y ER}, 01' {(:t·,x) 1 J' E H} alld 
{(y, -y) 1 y ER}. 

(h) (the st ronger sense) The same as abovc, except. both AI alld A~I IIlUSt. 
correspond to the same sublatticc in A. In oth~r words, considcl' only t.!w 
decompositions Al $" . $ Ak in (a) whose AI are orthogonal suhlattin's of A 
(and not melely congruent to those sublattices). Thcn for lITliqIlCIl(~SS ill t.his 
st ronger sense to hold, there must. he a permutat.ioll u sueh t.hat 1\. = A~" 

where now equalit.y is not. merely congruence. 
For example, Rn doesn't decornposc uniqucly in this sCllse. (:0 prohahly 

meant this stronger interpretation. In any case, for laUiccs (lIl1lilw vcct.or 
spaces), the uniqueness of (b) holds. 

Theorem 2.4.2 A (Euclzdean) intcgml lattire has a uniqlle dccompo.'Iilioll 
into a direct sum of indecomposable sublattzcesJ in the sl1'Ong 8('USe of (b). 

pro of: First we shaH construct one such dccornposition, alld t.hen 
we shaH show it is unique. 

Let Lk = {x E A 1 x2 = k}. Note that cach Lk is a fillite set. (i.e. 
ILkl < 00). Choose any basis {bt, ... ,bn } for A, and find an N 
satisfying N ~ b? for aIl i. 

What we will do is run through the finitely many vedol's in /, = 
U~=l Lk , discarding sorne of t.hesc, and pal'titioning the l'clllainder 
into a number of sets CI' The Cl gcneratc the cornponcnt,s AI of 
the decornposition. The discarded vectors are hyhrids, slIrm; of 
vectors from more than one component.. 
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Enumerate the vectors in L in this way: let LI = {Vt 1 l = 
1,· .. ,IL)!}, L2 = {Vt 1 f= ILll+1, ... ,ILII+IL21}, ... ,and 
LN = {Vt Il = E~=ïl ILkl + 1, ... , Er=lILkl}. 
For cOll'lenience write Vt· C, = 0 if Vt • v = 0 'Vv E Ci. Otherwise 
write Vt . C, :f:. O. Start the Collowing construction with each C, 
empty. 

Place VI in C), and set m = 1 (m is the number of Ci currently 
nonempty). Proceed recursively for l = 2,3, ... ,Ef=l ILkl. 
There are 3 possibilities: 

1. if Vt • C, = 0 for ail i = 1, ... , m, then let Cm+1 = {vil and 
increment m; 

2. if v,' C, = 0 for ail i = 1, ... ,m, i 1:- j, and if Vt· Cj 1:- 0, 
then put Vt in C]; and 

3. othcrwise do nothing (i.e. discard Vi)' 

This rccursion will produce m sets C" It isn't difficult to show 
A = (C)) œ ... EB (Cm) is one of the desired decompositions, but 
it is unDecessary to directly establish this. Since the existence 
of such decompositions is not in doubt, it is sufficient to prove 
that ally of these decompositions must equal the one constructed 
above. 

Suppose tt E A does Dot lie in a component of a given de
composition of A. Then 3v, w E A sueh that V • W = 0 and 
o < tl • V = v2 < u2, and 0 < u . w = w2 < u 2

• This simple re
suit is the central (act of this proof. For example, it immediately 
follows from this that v) must be in sorne component. 

Consider a. decomposition A = A~ œ· . ·E.BA:n, into illdecomposable 
sublaUiccs A: of A. Let C: = L n Ai. The above recursion, 
followcd stcp by step, shows m' = m and (up to a permutation 
of the indices) C, = 0:. This then implies (up to this same 
permutation) AI = A:, because a basis of A (namely {b., ... ,bn }) 

is contained in L. 

Thus the recUl'sively gj""n decomposition is the unique one. 
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Although this theorem was stated and proved for integl'allatticcs, a. slight. 
rewording o( the proof establishes it (or any (Euclidean) lat.tice. 1I0wevcr, 
the proof relied much more heavily on the assumption that A was Ellclidca.n 
- indeed, uniqueness (even in the weaker sense) fails for indcfinite «('.g. 
Lorentzian) lattices. 

This can be shown in many ways. For example, the uniqueness of Ilsk+l,l 
implies that 11skH ,t = I1t ,t œ A for any 8k-dimensional (Euclidcan) Type 
II lattice (there is more than 1 8k-dimensionaJ (Euclidean) Type IIlattice, 
\/k > 1). 

The main consequence of Theorem 2 conccrns automol'phisms. 

Theorem 2.4.3 Let A~) œ A~2 EEl .. · œ A~l be a decomposition of a f-'uclidclllI 
integral lattice A into indecomposable latlices A" whel'c for i =1 j, A. mul 
A] are not congruent. Then the automOl'phlSm 91'01l1J Alt/(A)= (An/Ad") x 
SnI x··· X (AlltA k)n" X Sn". 

For ex ample, Aut(A) has JAut(A')12k~.! clement.s, whcl'c A' <J) Zl. is t.11(' 
decomposition of Theorem 1. This theol'cm tells us t.hat. il. suHi('('s 1.0 kllow 
the automorphisms of indecomposable lattices only. 

Theorem 3 also fails in general for indefinite lattices. Fol' exampl(', 
Aut(l/t ,.) is finite, so if it applicd to []25,1I IAut(t\)1 wOllld 'weqllal fol' 
aIl Niemeier lattices A. But this is false: IAut(A)I varies fl'om arolllld 2 x 101 

to 4 X 1023 . AIso, the automorphism groups of 1 hS,l and most othel illd('finit,(, 
lattices are infinite, unlike those of 1 I l ,1 and all Euclideall lattices. 

2.5 Every Lattice is a Sublattice of Sorne Z1ll 

(In this section we will study Euclidean latt.ices, hut silllilar result,s apply 
to indefinite ones). A lattice consists of a set of point.s "isolllol'phic" t,o 
zn, and a positive definite binary fonn. ft cali he illt.el'plded !.O cousis!. 
pl'ecisely of the points in zn, but with a non-Euclideall 1I01'l1! giV/'1I \'y t.his 
[orm. Another, more geometric iIlterpretat.ioll seellls tu be ,1." a sI'/, of points 
spanning an n-dimensional subspacc of !lm, whose 1I0rlll i), illdlJ('(!d by t111' 
Euclidean norm of Rm (see §l). Here, m 2: n -- fOI ('xil/Ilple, A" is 1l~lJally 
defined to be contained in Rn+1 (r,cc Table 2). Though il. is ea),y 1.0 (>JOv(' 

that any n-dimensional integrallattice is congl1lellt (and ilOt. 1lH!1'('ly si mi lat) 
to a lattice in Rn (this is TheorclTI 2 in §3), the basis and h(!lIu~ t.he gelleral.ol' 
matrix may take a simpler form in a background space of dimell!>;olJ nt > n. 
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An interesting prohlem, however one unrelated to what follows, concerns 
whether ail Jattices can be emhedded in zm in sorne sense. (Of course, zm 
denotes the JaUice with Euclidean norm, whose basis is the standard basis 
{c.} of Rm.) Alternatively, this amounts to asking if each Gram matrix A 
can he factored into integral generator matrices M (M is n x m, so rnay not 
be square). 

Conjecture 1 Any n-dimcnsional inlegrnllallice is a sublattice of zn, where 
"is" herc is shm·thand for "is congruent to". 

Note that here m = n. This conjecture would imply that to each Gram 
llIatrix there is a square intcgral generator matrix M such that A = M MT. 

Counterexample 1: This conjecture is very false: the one-dimension al 
lattice AI = J2z is onc of several counterexamples. (See the fol
lowillg scction for the definition of the root lattices An). 

Thcre arc two natural directions to proceed from here. 

Conjecture 2 Any n-dimcnsional integmllaltice is similar (e.g. after ap-
1J7'opriale scalz1lg) to a sublaltice of zn. 

For examplc, herc v'2z would simply he rescaled to Z. Again note m = n. 
III this case AI is also integral and square, but it is sufficient that A merely 
c<!lIal >.2 M MT fol' sOllle >.. Conjecture 2 also fails. As we shaH see below, 
A2 and hCllcc An (fol' n ;:: 2) simply cannot be embedded in Z2 and zn, 
rcspcctivc1y, l'cgardless of the scaling factor. zn+! is required, in which case 
t.he simple roots c. - e.+l fonn a basÎs. 

Count.crexamplc 2: Wc know A2 has a basis consisting of 2 inde
pcndrnt. vcctors of norm 2 (usually these are taken to be el - e2 
and C2-C3)' Let this basis be mapped (under the similarity trans
format.ion) t.o thc vectors ae. + be2 and cel + de2 in Z2. Then 
(l, b, c, dE Z, Wlog we can assume a, h, c, d don't have a common 
divisor (ot.herwise absorb it in the scale factor >.). Then we have 

a2 + b2 = c2 + d2 = 2>.1 (cali this equation (a)) 

and ac + bd = ,\2 (cali this equation (b)). 
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Now (h) implies ..\2 E Z, so (a) gives us a == h, e == d (mod 2). 
But odd2 + odd2 = 2 (mod 4) and even2 + even2 = 0 (lIIod 4), 
so we must have a = b == c = d = 1 (mod 2) (hy hypot.hesis, ail 
coefficients cannot he even). But sticking this iuto (a) implics ..\2 
is odd, and sticking this into (h) implies ,\2 is even. This contra
diction implies no such similarity can he round, and COllject.ure 
2 cannot he true. 

Conjecture 3 Any n-dimensional integrallattiee is congruent io Cl sublafticc 
of som,~ zm, for m ~ n. 

So here we're fixing ..\ at 1, hut allowing nt h vary (so 1H nced no IOllge .. 
he square). For example, An can he emhedded in this way in Z"+I, ami Jkz 
can he emhedded in Zk. 

This conjecture also rails short. 

Counterexample 3: Consider the E6 latlicc (E7 or RI'. will work as 
weIl) with a hasis {7',} of simple roots. (Sec the following ~iI'Ct.iOIl, 
and in particular Table 2, for the dcfinitions of t.hese lat.t.in·s ami 
a list of their simple roots). Ali thcse basis vectols haV(' 'IOl"m 2, 
In any zm, the only vcctors with norm 2 an' of t.he f01'l1l ±c. ± (;)' 
for i f; j. 

Wlog let. el - e2 correspond to r2' 7'2' 7'3 = -l, so 7':1 "eollt.liIlS" 
either el or e2 but not both. Wlog say 1'a = C2 - (;:1' 

r4 • r3 = -1 so eithcr 7'4 contains e2, in which case r., = -CI - C2 

(since 7'4 . r2 = 0), or r4 contains C3, in which ease wc cali take 
r4 = e3 - e4. In the first case 1'5 • r4 = -1 implies 1'5 eolltaÎlls 
exactly one of el or e2, contradictillg 1'05 • 7'2 = O. Thus we fIlllst 
have r4 = e3 -- e4' 

Now look at. 1'6' From 1'6 • r3 = -1 and 7'(; , 7'2 = 7'h . 1',\ = 0 wc 
get eithcr 1'6 = -el - e2 (in which case 7', call1lot. \,(~ rOlllld) or 
r6 = e3 + e4 (in which case 7'5 <:an 't. be found), 

Therefore E6 providcs us wit.h a counterexarnple t.o COJlj(·rf.ul'e :i. 

The next, and final, hope for a gcncral theorern a~sertiJlg the possibility 
of embedding each intcgral latticc in zm tUrtlS out to he true, 
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Theorem 2.5.1 Any n-dimensional integrallattice is similar to a sublattice 
of sorne zm, for m sufficiently big, and where the scaling factor ..\ may be 
chosen to be the reciprocal of a positive integer. 

In other words, we can symbolically write A ç; ..\zm, for any integral 
latticc A. An altcrnatc formulation is given in Theorem 2 at the end of this 
scction. 

Duc to thc countcrcxamples given above, this theorem seems to be the 
strongcst result we can hope for. Roughly speaking, the extra dimensions 
are nccded to rcmove square roots from the numerators of the elements of 
a gCllcrator matrix. The scale factor is needed to remove their common 
dCllominator. 

Proof of Theorem 1: Let A be the Gram matrix for the lattice, 
using the basis {rd. Proceeding in a manner analogous to the 
Gram-Schmidt process, wc shaH find orthogonal vectors Sk, k = 
l, ... ,n , each with integral norm, satisfying 

wherc 13 is a lower triangular matrix with rational number entries. 
This can be done as follows: 

Rccursivcly define A(1) - A, stl ) - rk and for l -
1, ... , n let 

(t) {O 
r(k) = A(t) (t) 

lk St 

(Hl) {O 
, Sk = (t) (t) (t) 

otherwise Au sk - r(k) 

for k < l for k < e 
otherwise ' 

and fil1ally let A(Hl) bethe Gram matrixfor {s1tH
), ..• , {s~l+l)}. 

Each of these Gram matrices is integral. If wc set 'xt = 
(t) Au, then 
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is an othogonal decomposition of the hasis vectors. Set
ting Sk = S~k) and 

for k < e 
otherwise ' 

we get the desired expression for the rk in tcrms of that 
for St. 

The fact that B is only a rational mat ri x ean he corrected by 
factoring out a corn mon denominator from ail of its entries -- Le. 
hy choosing a scale factor ..\ = ..\1 .~.'\n' It now suffices to find an 
expression for the Sk in terms of the standard basis of sorne ZIn. 
It doesn 't matter how this is done, provided their componen ts arc 
only integers. 

Note first that Sk has length (as opposed to norm) .;>:;., so t.o 
guarantee that our generator matrix has ollly integer cntries wc 
should write SI as the sum el + ... + c,\p S2 as c,\. +I + ... + C'\I+-'2' 

etc. Thus we have m = ..\1 + ... + ..\n. (Of coursc, wc canllot in 
general simply ahsorb these radicals in the seale factor becausc 
these radieals need not he equal. ) 

Theorem 2.5.2 Let A be any positive definite matrix (50 al musl be SqlUll'(! 
and symmetric). Then there exisls a Z -matrix M (not necessarily sqlU17'e) 
and a positive integer ..\ such that 

..\2 A = MMT
• 

(This is an immediate corollary to Theorem 1. This is also t.he best rcsult, 
possible - in general you need a seale factor and M t.o be non-square in 
order to guarantee M only has integer components.) 

An almost identical proof establishes Theorem 1 for identical lattices, 
implying 

Theorem 2.5.3 Let A be any symmetric matrix (so il must he sfluarc). 
Then there exists a Z -matrix M (noi necessarzly square), a IJoszliv(~ i1tt(~gc,' 

..\, and a matrix G 0/ the form diag(+l, ... ,+/,-1, ... ,-1) sueh litai 

,\2A = MGMT . 
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2.6 Root Lattices 

The theory of Lie groups and algebras is certainly among the most elegant 
and conscquential of ail mathematical theories. Its influence is felt in areas 
sm:h as gauge thcory in physics (c.g. superstrings) and the classification 
of the fi(lit.e simple groups (16 of the 18 infinite families of finite simple 
groups arc of Lie type). And in this and the following section its significant 
applications to latticc theory will be presented. 

'1'0 evcry complex semi·simple Lie algebra there is associated a root sys
t.elll, i.e. a set of vcctors {a,} (called roots) satisfying various properties (e.g. 
2(}, (,) E Z). A basis for il. can be found - these basis vectors are called sim-
0',-0', 

pie 100tS. A con vcnient. way of graphically representing a set of simple roots 
is with d. DYllkin diagram: to each simple root there is associated a node in 
t1w diagram, and 2 nodes arc connected by 0, 1, 2 or 3 (sometimes directed) 
S('gIIlCIlt.S depcnding 011 the dot product of the corresponding simple roots. 
Ali possible connccted Dynkin diagrams are known - they correspond to 
t.he cOlllplex simple Lie algcbras An' Bn' en, Dn' E6' E7 , Es, F4 , and G2 (all 
ot.he .. Dynkin diagrams arc sirnply unions of these). 

By a 1'00t lattice of some Lie algebra we simply mean the lattice generated 
by t.he simple roots of t.he Lie algebl'a. The simple roots are known up to a 
global rot.at.ion an<1 global sca.le factor only, but we shaH fix them by adopting 
t.1I(' conventions of Bourbaki (see nou, pp. 250-262). The dimension of the 
root. laUic<" i.e. t.he number of ~il1lple roots, is the rank of the Lie algebra and 
is t.he vaille of t.he suhscript (c.g. the root. lattice for An has dimension n). 
W(, wiJl IIS(' t.he same symbol to dCllote the root lattice and the Lie algebra 
(110 complicat.ions should l'esuIt.). 

S<,e Figlll'c 1 for the 2-dimcnsional root lattices (the origin is labelled with 
.\11 110 ", .\Ild the simplc roots \Vith a bullet). As can be seen there, many of 
t.\1I' 100t. lat.t.ices a\,(' congruellt. (=) or similar (~) to one another. 

Thcorem 2.6.1 Bn = ZII, G2 = A2; en = Dn' and F4 ~ D4' Thal is; it is 
.'l1/.[licu'lIl 10 c()1l.',jllcl' only Ihe szmply-laced Lie algebms (i.e. the ones whose 
"'lill/Ile rool ... ail hllliC cquallcllg/h). /11 addilwn, Al = Dl ~ Z, D 2 = D~ '" 
Z'l, (lnd /),\ = Il:!. Thc.'if compldcly c.rhaust the szmila7'l'tieslcongruences 
bd /l'CC Il mol [al/lee.'l. 

proof: Th(' similariti('sjcongruences involving Ab Dl, D2 and 
[):I are ail ohvious whell one considers the corresponding Dynkin 
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Figure 1: The Two·Dimensional Root Lattices 
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diagrams. 

case Cl): Bn = zn 
Let ek, k = 1, ... , n he the standard basis for Zn. In tenDS of 
this basis, the simple roots ak of Bn are al = el - e2, ... ,an-l = 
en-l - en! an = en (according to Bourbaki). Thus Bn has gen,~r
ator matrix 

1 -1 
1 -1 

M' = 
1 -1 

1 

where we have displayed only the non-zero entries. zn of course 
has M = J. Sctting'\ = 1, B = 1 and U = M', and noting 
that lUI = 1 (sinee M' is upper triangular) we sec that M' = 
),,[1 M B! so the root lattice Bn is congruent to zn. (In faet, here 
we have that the span of the Ok equals the span of the ek, so the 
transition from the Ok to the ek amounts merely to a change of 
basis. Thus Bn and zn are equal here to an extent even greater 
than congruence, but this is more due to a fortuitous choice of 
basis vcctors than to sorne profound relationship hetween Bn and 
zn.) (We could ignore the projections/embeddings ,,:' hecause 
wc have hcre m = m/(= n)). 

case (2): G2 = A2 

Bourbaki gives the simple roots of G2 to be o~ = el - e2, a~ = 
-2el + C2 + C3. Hc gives the simple roots of A2 to he al = el - e2, 
0'2 = C2 - e3' (Here m = m' = 3). 

M' = ( 1 -1 0) M = (1 -1 0 ) 
-2 1 l' 0 1 -1 ' 

=} ~ = 1, B = I, U = ( -! -n. 
Sincc lUI = -1, G2 and A2 are congruent. 
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The root system for G2 consists of ail vectors in the A2 lattice 
with norms 2 and 6 - the smallest 2 norms in A:z. 

case (3): Cn = Dn 

The simple roots for Cn can be chosen to be Ok = Ck - Ck+1 for 
k = 1, ... , n - l, and o~ = 2cn • Those for Dn are ak = CA; - ek+1 

for k = l, ... , n - 1, and an = Cn-l + Cn. 

1 -1 1 -1 
1 -1 

M' = 
1 -1 

2 

,M = 

À = 1, and B = l,50 Cn is congruent to Dn. 

case (4): F4 '" D 4 

1 -1 

1 -1 
1 1 

The simple roots for F4 are o~ = C2 - e3, a~ = C3 - C4, a~ = c." 
o~ = ~(el - C2 - C3 - e4)' Thus 

(

01 

M' = 0 0 o 0 
1 1 
2 -2 

o 0 -1) ( 1 o 1 -1 1 1 
010 ,B=.;2 0 

1 0 0 0 

-1 
1 
o 
o 

1 
-1 
o 
o 

-! -no 

r J) 
and'\ = ~. Then Bis orthogonal, lUI = -l, and M' = Ml M B, 
so these lattices are similar (but not congruent). The presence of 
a scale factor, and the realization that the F4 root latticc repre
sented in this way fails to be integral, suggests that this choice of 
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simple roots for F4 isn't the most natural: a~ = v'2o~ rnay look 
rncssy, but (at least in the context of lattice theory) is a better 
choice. 

That these exhaust ail possible sirnilarities/congruences follow 
easily by computing determinants (see Table 2), for example. 

If we hadn't adopt.ed Bourbaki's selections, Theorem 1 would still be 
valid, provided we replaced congruences everywhere with similarities. In this 
sense, similarity is coordinate-independent, unlike congruence, and especially 
unlike pointwise equality (B = l,À = 1), which occurred here in cases (1), 
(2) and (3). 

Theorem 1 allows us to completely ignore the rnultiply-Iaced root lattices 
in the following pages. The root lattices An' DR, Es, E7, and Es all have 
minimum norm Jl = 2 (minimum norm is the smallest non-zero norm), aIl 
arc integral, ail are cven and all are indecomposable. (ZR is odd, has p. = 1, 
and is only indecomposable if n = 1). Only zn and Es are self-dual, however. 
The relevant features of the root lattices are given in Table 2. Bourbaki's 
("hoice of norm 2 for the simple roots of these simply-Iaced algebras is the 
smallest. possible choice for which the root lattices are integral (e.g. ~An 
isn't integral). (In Table 2 slightly different simple roots were chosen so as 
1.0 agl'ee with the notation in cs.) Provided we adopt the range restrictions 
of 11 givcn in Table 2, ail of these root lattices are distinct, in either sense of 
§3. 

From the Dynkin diagram (also given in Table 2) we can read off the 
Gram matrix. Each no de in the diagram represents a simple root (of norm 
2). T\Vo nodes are conneded iff the dot product of the corresponding simple 
roots (= basis vectors) is -1; otherwise the simple roots are orthogonal. Thus 
t.he Gram matrix has 2's down the diagonal, and only -1 's and O's scattered 
oIT t.h(' diagonal. 

The Cart.an matrix of a root system is the n x n Z-matrix whose entries 
an' :lo"Ol, for the simple roots a" i = 1, ... , n. For simply-Iaced systems, o,on. 
nOllllalized as wc have them normalized, this is precisely the Gram matrix 
of t.he corr('sponding root lattice, relat.ive to the basis of simple roots. Thus 
w(' have Gram matrix = Cartan matrix here. Similarly, the weight lattice is 
just. the dual lattice. 

Let A be any integrallattice, and AR be the sublattice generated by its 
v('("t.ors of norm $ 2 (these vectors are oCten called root vectors of A, for 
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Table 2: The Root Latticcs 

Symbol Congru. Dynkin Diagram Basis Vectors Dct 
zn, n 2: 1 Bn t 2 3 n T, = e, 1 

0 0 0 ... 0 

An' n 2: 2 G 2 = A2 "1=(-1,1,0, ... ,0) n + 1 

0--0--0-- ..• --0 
r2={O,-1,1,0, ... ,0) 

t 2 3 " · 
rn={O, .. _ ,0,-1,1) 
(ri E Rn+!) 

Dn' n 2: 4 Cn rl=(-l,-l,O, ... ,0) 4 
F .. ~D .. }:-o-R 

r2=( 1 ,-1 ,0, ... ,0) 

: ••• -0 : 

'-,,=(0, .. _ ,0,1,-1) 
(r, E /ln) 

Es - rt=(-l,l,O, .. _,O) 1 
" 8 r2=(0,-1,1,O, ... ,0) 

~ · 
r7=(0, ... ,0,-1,1) 

-
e 1 1 1 1 1 1 1) 

7'S= 2' 2'2'2'2"2'-2'2 
(7', ERS) 

E7 - rl={-I,I,O, ... ,0) 2 
'-

~ r6=(O, ... ,0,.1,1,0) 
7"7-(1 l! 1,1 _1 _1.1) 

- 2' 2'2'2' 2' 2' 2' 2 
(r, ERS) 

1~6 - rl=(O,·I,I,O, ... ,0) 3 

~ 
· 

rs=(O, ... ,0,-1,1,0) 
_( 1 1 1 1 1 1 l 1) 

r6-- 2'2'2'2'2"2"2"2' 
(riE RS) 
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reasons that will soon become clear). 

Theorem 2.6.2 (Witt's Theorem): If A = AR (i.e. if A is generated 
by its root vectors), the.n A can be de.composed into a direct sum of the root 
lalticcs zn, An' Dn, En. 

(For a proof see WIT and KNE.) 

This theorem provides us with a hint of 'he usefulness of root lattices 
which will beeome more graphie in the following pages. Most lattices known 
are cither root latticœ thcmselves, or eonstructed from them in sorne way 
(not.able exceptions are A24' 0 23,024 , AI6 and 1(12)' 

The root lattices and their duals solve many packing-type problems. (See 
Figure 3 for examples of these problems in 2 dimensions). The densest paek
ing in 2-dimensions is A2' as any billiard player can assure you. The best 
sphere packings known in dimensions 3-8 are A3' D4' Ds, E6' Er and Es (the 
laUice points are the centers of the non-overlapping n-spheres). The "dual", 
so-to-speak, of the sphere packing problem is the Covering Problem: com
pletcly COYer Rn with (overlapping) spheres of fixed radius in sueh a wayas 
t.o minimizc t.he overlap. A 2 is again the best in 2-dimensions, while AZ, {or 
k = 3, ... , 8 are the best known in their respective dimensions. Another fa
mOlls question is the kissing number problern: fix an n-sphere in Rn, and try 
t.o maximize the number of non-overlapping n-spheres of equal radius that 
just touch the central one. Isaac Newton and David Gregory apparently had 
a dcbate about this in 1694 - Newton thought that in 3-dimensions only 12 
bail bearings can simultaneously "kiss" a central one, while Gregory thought 
13 could be possible. Mathematics has since sided with Newton. It has been 
provcn in 2, 3 and 8 dimen.,ions that A2' A3 and Es are the best (in 8 di
mensions, for examplc, 240 spheres can be arranged in this way), and it is 
thought that D4' Ds, E6 and E7 are also the best. 

Thc classical representation groups of An' Bn' Cn and Dn are SU(n+l), 
SO(2n+l), Sp(2n) and SO(2n), respectively. This will prove useful in trans
lating from the language of (momentum) lattices to the language of (gauge) 
groups. More on this in the next section and in §1, Chapter 3. 

The root lattices are the solutions to another fundamental problem: enu
merate aIl fillite reflection groups, also called Coxeter groups. An irreducible 
finite reflectioll group \ the rcducible ones are simply direct products of the 
irrcducible ones) can be defined as follows: engrave on the surface of a sphere 
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Figure 3: Sphere Packings in Two-Dimensions 

3( a) The sphere packing problem ~ 
(:ffi 

3(b) The thinnest covering problem 18 
3( c) The kissing problem 
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a Rpherical simplex, ail of whose dihedral angles are of the form 1!:., and con
P, 

si der the group generated by reflections in its walls. 
H was shown by Coxeter that this definition is equivalent to the following: 

a fillit.e reOcction group is a finite group with elements R, satisfying 

R~ = 1 and (R,RJ)PI) = 1 

fol' integcrs p')' (Hefe, .L is the angle between the ith and jth walls, and R, r,) 
is the rcOcdion in the ith wall.) 

The crystallographic rcOcdion groups have each p'J=2, 3, 4 or 6. Asso
dat.e with t!J('sc gl'OUPS a Coxeter diagram where each wall of the simplex (the 
iut('rior of which is called the fundamental region of the group) is represented 
hy il Ilode, and nodes i and j are eonnected by 0, 1, 2 or 3 lines depending 
011 wlwther li,) =2, ~l, 4 01' (i, respectively. Then the Coxeter diagram is just 
a disjoint. ullion of the diagl'ams of An' En' en, Dn' En' F4 and G2 • (Non
C1'ystallogl a plll(, rdl(,ction glOlIps have also been cl assified ). From thesc wc 
Célll gel, laUi('('s hy choosing vectors orthogonal to the reftecting hyperplanes. 

WC' ('(lll gel. a rdlection group out of a lattice, as weil. Define a root vector 
for A t.o 1)(' a IJl'ill1itive r E A sueh that t.he l'eAeetion in the hyperplane 
orthogoJlal 1.0 l', givCIl by X -+ .r - 2.rr r , is a syrnraetry of A (ris said to 

r·r 
1)(' prilllit.ive if '\1' E: /\ :==} ,\ E Z). l'hese reOections generate a subgroup 
of AIII.(A), sOllletimcs called the \Veyl group. If A is self-dual, these l'oots 
,\1'(' pJ'('n:-wly the v('dors of 1101'111 1 or 2 in A - henee in agreement with our 
('(lrli .. r defillit.ioll of l'Oot vcctOI'. 

2.7 Gluing Theory 

'l'I\(' rotH'(·PI. of dircct slIln is an irnmenscly valuable tool for the analysis of 
I,II,t.in·s, ,tS '\',Ibl(' 1 ill<li(·at.cs. For example, it enables us to effectively ignore 
\at.t.in·s (,olltainillg ullit "edors. But wc can do even better than direct sumo 
,\ gt'tH'ralizat.ion of il. is called gluing theOl'Y. With it we can breakdown even 

SOI1](' ind(,(,olllJ>osahlc latt,iccs, and ean esscntially do for norrn 2 vectors what 
din'ct, sums did to 1101'111 1 vectors. 

Consid('r Rome 11-dinWllsional integra\ lattice A, and suppose the direct 
SlIIll A' = At (f) .•• Œ /\1.. is a sublattiee of A also of dimension n. (Evcry lattice 
A h'IR illfillitdy mali)' such latticcs N. vVe arc most interested, though, in 
('ases \\,11('1'(' t.he' A. a1C aIl l'Oot \atticcs, which is somewhat rarer). TheIl any 
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x E A can be uni quel y written as x = Xl + ... X k, where J'. E IlA •. In rad, wc 
can pin clown these x. even more (of course, in general .1'. fi. A, sincc usually 
A' =/:- A). 

Choose any y E A •. Then x.' y = X· y E Z, whel'c 

• -1 k- • 

Thus x. must he in h;. 
A integral ==> A. illtegral => A. îs a suhlattice of A~. COllsic\er tilt' 

quotient G. = A; / A" called the glue group of A •. It's abcliall, wit.h 01'<1<'1' 

IA,I (seeTheorem 1 below). Theclernentsin G. arc sets (i.e. cos('ts)ofv('(·t.ol's 

- choose a representative 9~') from ca ch of these IAII cosets. It 's ('oIlV('Ilt.iollal 

to choose g~') to have as small a norl11 as possibl(' (so, fol' ('xampl(', on(' of tilt' 

9~'), corresponding to the j that labels the cosd A" will he t.!l(' ;t,('I'O v('dor), 

but there's a problcm with this convention, as we will SOOIl S('('. 'l'lu's(' !J~') 
are callcd the glue vectOI'S of AI' 

Then x E A can be uniqucly expressed as 

:1' = !Ji + .. ·lJl.. + 9, 

where YI E A., and where g (also call('C\ il gille V<'clol', llllfol'tullélt,(·ly) is il SUIJl 

9 = q(l) + ... + 0(1..) • 
• J. .~ JI< 

Define the set G = AI A' = {g = 9;.1)+ .. '+9;:) 1 :J./' E A, Y E N, ~al.isryillg J' = 
y + g}. Then G is a subgrollP of (;1 x ... X (,'/." alld is célll(·d (1II1foll.lI
nately) the glue group of the gillillg of A hy Ah' .. , AI.. \V(· llIay \VI it(· 
A = (A}, ... ,A/."G). G has ol'del' (n;=IIA,I~)/IAI} (s('(' TlwOI('1I1 1 1H'low), 
and consists of ail glue vC'ctOI'S of t.he gilling. (; IlIW.,t ~·)(ttl~ry two 1'101'('1 t J('~ ill 
order fol' A to be an integl'al laUie<'. 1"II'~t" it. IIIUSt. 1)(' c1osc'rI u!ld('l ;!tldi I.ioll, 
and sccondly YI·g2 must he all illtcgel' fOI allY !Jl,fll E r; (1101,(' !'litt!, althollp,h 
the fi['st propcrty is always satisficd by n (,'n t1H' S('('OIIfI O/IC' i.., ollly if A b 
self-dual). The fil'st condition is lIsually sélti~fj('d by ~I)(·('ifyill~, 1lI~l.f·i1d of ;.11 
of C, some gencl'atol'<; 91, ... ,Yi and defilliflg (; 1,0 lw t111' .%'-"'1'<111 of tlwlII 
The sccond one Îs thcn \'el'ified hy calclllating ('ach produd, .fJ1 . rh (('(,11111111 

3 of Table 3 is designcd 1,0 make this ta!>k a liUl(· f'él...,ier, al, h'él!>!, wlwlI 1.111' 
componcnts AI are root lattîœs). 
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Sec Figure 4 for examplcs of 2-dimensional gluings (the origin is labelled 
0, whilc the glue vectors are denoted by bullets). 

Direct SIIITlS arise whcn the glue group G consists only of the zero glue, 
and thus af(~ a special <-ase of gluings. 

'l'I)('se vahws for IC.I and ICI follow from: 

Theorem 2.7.1 Ld N be a sublattzce of A such tllat RA' = RA. Then 

A / A 1 u; (lll abdian group of oalcl' J wr. ln IJartzcular, A· / A has ol'dcr 1 A 1 
lm' lItlf'!}1'al A. 

ploor: Let. (J hc tlU' nOIl-singlllar Z-matrix satisfying M' = U M, 
wll('J(' A-t' and NI (tri· the gcncrator matrices of A' and A, respec

t,ivdy. TIH'II A' = (1A(I1', so IA'I = IUI 2 IAI, and it sumces to 

show t.h,,1. IA/ A'I =II{!II. 
Expless lIas t./I(' prodll( t U = !JI.. ... UI of e1ernentary l'OW matri
('('S alld de·fitl(' A. fOI 1 = l, ... , k rccursively as bcing the lattice 
who~(' p;(·I)(,J'rlt.or lIIat 1 ix i~ IH, = U.AI'-h where Afo = AI. Then 

A/A' = (A/Ad x (AI/Al.) x .. · x (Ak-dAk)' Also, IA.-dA.1 triv
ially ('«IJab 11{l,1 1. TlwJ'('fOle IA/ A'I = lA/Ad x .. · x IAI.- I / Ak 1 =1 
Ifllll x ... x 11[11.11=lltrll. 

If, is st.alldard I>lrldiee t.o I('plc'sent the glue vcctor g~') of thc componcnt 

A, hy [J], and t.h(' .c,11I(' \,('el.ol fi = g~ll) + ... + g~~) of A by [JI" .)k]. 
Cali "II illt,('gr,t! lat.ti«· . .;alllralcd if t.he sublatticc AR spclllllcd hy the 

\'('dors of 1101 III 1 cllld '2 III :\ is lI-dimt'llsiollal (t.hesc vl'dors arc called root 
v('dors, alld An is cal1('d the root latticc of A). Witt 's ThcOlem (see the 
pl'('\'ioll~ sec! iOIl) !t·lIs lI~ t.hat AH is a direct slIm of the illdecomposablc root 
1"It.ic('s /', ,\ 11 , /)" (Ille! 1~'Il' Thlls (Illy saturatcd latticc can bc fOllned by 
glllillp, to.c,dlu·r ",lIiOIlS 1001. Icltti('(·~. For this rcason, the com))oncnts A. in 
d .c,llIillg an' c\lmost always ChŒ(,1l 10 he the root lattices. 

Not ail latti«('s are srlt.urakd -- bOIllC cxamples are 2Z and A24 - but 
s('lf-dual lat t icc)o" at Il'asl. in the small('r dimensions, oftcn are. The first un
sat matt·d st'lf-tIlIal lat.t.in· is 19-dimcllsionaJ. 26 of the 27 Type II lattices 
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Figure 4: The Gluings of D2 
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of dimcnsion n ~ 24 arc saturatcd ( the Leech lattice 1\24 is the sole excep
tioll). Besides 1\24, two other important unsaturated self-dual Jattices are the 
sh()J'ln alld odd Leech latticcs 0 23 and 0 24 • 

Olle of the grcatesf, triumphs of the gluing method was in Niemeier's 
('/1I111H'rrttioll of the 24 24-dimcnsional Type II lattices (see Table 4).2 The 
n'maiIUI('f of this s(,ction will be devoted to studying the glue groups of the 
roof, laUin'!-i. The rclevallt data is collected in Table 3 (which should be read 
i/l cOlljll/lctioll with Table 2). The glue vectors in the Dynkin diagrams are 
lal)('lh'd by J,ull('ts; for convellicncc wc have written, e.g., 

. .., 
1 -J. 'l Z -J -J 

({ _}J {-} ) fol' (-- --- -- -) 
11 + 1 ' 11 + 1 12 + 1 ' ... , Tl + l ' n + l ' ... , n + 1 . 

.., v ' " y , 

} 

I\lso illcl1Hh'd i/l Télhl(~ :J aH' the dot products of the glue vectors among 
t1H'llIsdvps (fol' J)" ami EH tlw!lc have been arranged in Gram-like fashion), 
as \V('1I ,IS 1 IH' ghJ(' groups (Ilot(' that the glue group of Dn depends on whether 
11 is ('\!('II 01 0<1<1). Note thaf, [0]=(0, ... ,0) is always il glue vector, and that 
UH' lIulIIl)('r of ghJ(' v('dors of Ali, for cxample, is IAnl = n+l (50, for example, 
1 IH' ~{'If-dllall'Oot laf.f,in's zn and 1'-"8 have only [0] for a glue vedor, and hcnce 
l'III ('I .IS COII'poIH'IIf.s i"lo gluings 0111)' tllvially, through direct f>ums). 

EX<lmplc 2.7.2 /J"+111 = (D", Dm' [20], [02]) fol' any 111, n > 4. 

Examplc 2.7.3 0//(' oflhc /1Iosl impol'Ialll gl1l111gs lS D~ - Dn[1] == (Dn' [1]) = 
/J1l U (1)" + (~, .... t )). J)~ 18 znlcgral liJ 12 lS a multiple of 4 (titis slwulcl 
lu ob "/011 .... ) , III "'"U''' faM' il i.'l self-llual (Ihzs will be shown in a couple of 
llllli /'1'111 way.>; III Illf folloll'lIIg seri 10 ilS). D;; 18 Type 1 iff n == <1 (mocl 8), 
tl/ld 'r'/JI( 1/ lIT 1/ == 0 (IT/od 8). Dt = Z4. al/d Dt = Es. IDtl lS 1 f01' 

11 ('1'( Il. ~ fo/' 11 mld. J)t , ... cO/lgrue/l1 io Dn[3], but Dn[2] = ZII so equals 
n,~ ,iT 1/= 1 (Sf'(' F'!lII/'f 4 fo/' D2 (ll/d J)2[Z]). [1} IS the deep hole fo1' Dn 
(.for Il ;:: 1: fo,. 1/=::. [2] I.~ Ihc (lrcp hole -- sec Fzgll7'e 4), so geomet1'lcally 
nt ('011 • .;1 .... 1 ... of Iwo fopic .... of /)11 supel'lmposclllll such a way litai each copy 
plu!!s 1/1' li /l11I//brr of dccjJ holes of Ihe olher. (lnezdently, il turns out lhat 
( 1'( l'y /10/1-:-( If-dllal /'(Joi laltlcc has o/l/y olle Iype of deep hole, mul one of ils 
!I/ut' l't'do 1'." pO/1/I ... al Ihal deep hole. This lS not general/y the caSt' for other 
la III(,f.~.) 

2Tahll' <1 was ha.<.l'd 011 Table 16 1 of cs 
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Ta.ble 3: The Non-zero Glue Vectors 

Glue Vectors 

An li} = 
({ n~ 1 p, { ;t. } 1) 
for i = l, ... , 71 

(j = 71 + 1 - i) 

tH jk) 1 Dynkin Dia.grams Reps 
For i > k - , 
[il . [k} = 
~ 
n+l 

len
sor 

of l"';r--o-- ... --0 
., ... rank 

(50 [i). T1 = -1) 

l~J{l) 
n 

2 '''--0 

s 

'}' t T r- ... ~ v ç ... ~'1 c. 

! 
2 
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Glue Gp 
Cnt 1 

([1) + 1"1 
=[r + kJ) 

C2 X C2 

(fol' 11 evcn) 

c., 
(for U o<ld) 

([1)+ {:l]= PD 
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Table 4: The 24-dimensional Type Il (Nicmeier) Lattices 

( 

Compo- Glue Vector Total # of IG.f IG2 1 

nents Generators 9. Glue Vectors 

D'l4 [1) 2 1 1 

DI6E8 [10] 2 1 1 

El {OOO} 1 1 6 

A'l4 [5] 5 2 1 

D~2 [(12)} 4 1 2 

Al7E7 [31] 6 2 1 

DloE? {IIO], {301] 4 1 2 

AuDg [21 ] 8 2 1 

Dl ((122)] 8 1 6 

A12 [15] 13 2 2 

11J1D7E6 [111J 12 2 1 

E~ [1(012)] 9 2 24 

A~D6 [240], [501], [053] 20 2 2 

D: [cvcn perms of {0123}] 16 1 24 

A~ [(114)] 27 2 6 
A2 D'l [1112], [1721] 32 2 4 

7 ,'; 

A~ (1(216)] 49 2 12 

A~D., [2(024)OJ, [33001J, 
[30302], [30033] 72 2 24 

D~ [lllIl1J, [0(02332)] 64 3 720 
6 

A'I [1(01441)] 125 2 I~O 

A8 
3 [3(20010 lI)J 256 2 1344 

jt~2 [2( 11211122212)] 729 2 95 040 
A 24 

1 [ 1 ( 00000 1 01 00 Il 00 Il a la 1111 ) ] 4096 1 244823040 

Al4 - - 1 1 
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It often happens that Aut(A) should he computed (e.g. when using tilt' 
Minkowski-Siegal mass formulae). When ail the compollent.s are 1'00t. Ia."
tices this is relatively easy to do. Let G' he the direct. prodlld of the Weyl 
groups of the components (the Weyl group is generated by t.he ren(,ctiolls 
in the simple roots, and is a normal subgl'Oup with low ind(~x in t.he group 
of aIl d.utomorphisms of the root lattice). Let G" be the pel'lllut.atioll group 
resulting from the automorphisms of A which map each cOlllponcllt. ont.o it.
self and which permute each componell"'s glue vectors. It is a suhgroup of 
the direct product of the symmetry groups of the Dynkill diilgrams of the' 
components (for ex ample, the symmetry group of the Dynkin diagmm for 
Dn , n > 4, consists of only two clements: 'parity', which f1ips [1] and [:1], 
and the identity. For 71 = 4 there are t.lw additiollal 'triality' (,olljugat.iolls). 
And finally, let Gill be the group of all 1)(,l'llIutat.iolls of t.he fOlllpOIH'nt.s t.hat. 
arise from Aut(A) (this is a suhgl'Oup of 51..1 x ... X Ski if tlu'r .. an' ('xadly 
kl component.s equal to AI! wherc AI # AJ whcllever l ~ l < J Se). ThC'JI 
Aut(A) = G' x G" X Gill. ln palt.icular, if G" and Gill art' .IS big .IS possihh' 
we will only get out the automorphism group of t!)(' diu'ct SUIlI of t.11C' ('0111-

ponents, so the automorphism glOUp of a. gllling is al ways a sllhglOUp of t.h.lt. 
for the corresponding direct sumo For example, G" alld Gill always hav(' ollly 
one clement for D-:;, so its autotnorphislIl group is half as litlg(' as t.hat. for 

Dn (n >4). 
What makcs this dCCOlllposit.ioll of Aut,(A) so IHlC'ful is that. (;" ancl (;'" ill 

practice tend to be small and casy to calculat.e (spe Tahl(' 1 fOI t.lll'il' OIc1('IS 

for the Niemeier gluings), and the Weyl groups (alld hel}(,(, r:') arc' ail kIlOWIl. 
My glue Vf.-'Ctors in Table 3 difrcr fJ'om t,lu)se givell C'h,(·W1 I('J'(', lIot.ilJ,ly 

cs. Unlike them 1 ncedcd the DYllkin diagnulls showlI ill '1' .. 1,1(· :1 1.0 1)(' as 
simple as possible, for a lIumhcJ' of J'caSOIlS, ~ollldhillg COllway itlld SIOill1C' 
were apparently indiifelcnt. ahout. Thcy were predornillalltly illt.(·I'I·st(·d ill 
choosing vectors of milllllln.! Icngt.h - c.g. t.h(·ir li 1 for H7 had 1101'111 :1/'1., 
while mine has norm 7/2. Also, 1 adoptcd their COOJ'diIl atil.at.ioll of t!J(' ~llIIplc' 
roots, unlike many pcople (see, c.g. LAM4), ~o rny glup w( t.OJ'S l'dll'l t.l·d this. 

1 mentioned last section that the dllal of a root. lat.tin· W.l~ ib wl'ight lat
tice. We have of course 91 E A: -- in fad it tlll'llS Ollt llaitt. tlJ(' glll(' vel tors 
are wcight vectors. This is how gluings will he roulld 1.0 J'dat.l! to 1(·llI·(·sl!lIt.a

tions: in short thc root lat.tice tells us the Lie algehra alHI the COI J(!~pollclillg 
adjoint Lie group, and thc glue vectol s give liS t.he r('IH'f!M!lItatiolls (or t.he 
relevant covering) of that Lie group. 
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We will start this discussion with a few definitions. 

Definition 2.7.1 A Lie algebra L is a vector space furnished with an an
tisymmetric bilinear product [-, -) satisfying the Jacobi identity [[a, b),c] + 
[[b, cJ, aJ+ [[c, aJ, b) = 0 (wc shall assume the Lie algebra is finite dimensional). 

A Lie algebra is often characterized in physics by its structure constants. 
Choose any basis b. for L. Since L must be closed under the biIinear product, 
w(! can write lb), bk] = d.kb. for sorne scalars c:k (called the structure constants 
of L relative to b.). 

Definition 2.7.2 Let "bc a vcctor spa ce, and L be a Lie algebra. A mapping 
p which assigns 10 cach a EL a linear transformation p(a) on Vis called a 
reprcscntat.ion of L on V if il salisfies: 

J. p(..\a + Ilb) = Âp(a) + IIp(b) for ail a, bEL, Il,'\ E Ri 

2. p([a, b)) = p(ll)p(b) - p(b)p(a). 

For (~xamplc, the trivial reprcsentation sends each vector in L to the 0 
t.ransformation. A more important example is the adjoint representation 
"'1.011, for which PA(b)) is the matrix whose zk-th entry is c: k

• The adjoint 
repJ'(~scntat.ion has dimcnsion equal t.o the rank of the algebra (the dimension 
of a l'(·presentat.ion is thc dimension of the vector space V on which it acts). 

L('t. p he a represcntation of L on V. Then a Iinear functional w on L is 
call(!d a wcight. of p if there cxists a nonzero v E V such that p( a)( v) = w( a)v 
fol' ('aeh a EL. 17 is called a wcight vector belonging to the weight w (in other 
words the wcight. vector is an eigcnvcctor of each matrix p(a), and w(a) is 
the fOJ'I'csponding cigenvaluc). 

Thc wt'ights of t.hc adjoint representation are called roots, and its weight 
vcd.ors ar(' simply t.hc root vcctors of L that we are by now quite familial' 
with. 

'l'Il<' rl'present.ation p is called irreducible if no proper subspace W of V 
is invariant und('r p - i.e. if p(a)WÇW for each a E L, then W = V or 
O. The matl'Îrcs in a reducible representation can be simultaneously put in 
block diagonal form, and so the reducible representation can be expressed as 
a direct SUI1l of irreduciblc representations. 

One of the wcights, callcd the maximal, or highest, weight of p can be 
singlcd out; it turns out that an irreducible representation p is characterized 
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by its maximal weight wp (i.e. two irreducible representatiolls arc isomorphic 
iff their maximal weights are equal). Then there is a natural, ol1e-t.o-on(' ('Or
respondence between the family of aIl n-tuples (m}, .. . , mn ) of non-Ilt'gative 
integers (where n is the rank of the Lie algcbra - i.e. t.he nUlllher of simple 
roots, or the number of nodes on its Dynkin diagram) and tht:' family of ail 
(equivalence classes of) finite-Jimensional irre<lucible r('pr('scnt,atiolls of L. 
The ml can be considered to be the values of the maximal w(·ight. 011 t.!\(' 
simple roots. 

Fundamental weight.s are those corrcsponding to the 1/-t.upl('s wit.h 71 - l 
O's and one 1. They (or rat.her t.heir correspondillg weight. vt:'dOl's) fonn a 
basis of the weight latticc dual to the basis of simple root.s of t.he root. lat.l.Ïf('. 
The irreducible represent.ations which have as their maximal w('ight. a flllula.
mental weight, are called fundament.al reprcst.'l\t.ations. Ali l't'I)J'('s('nl.at.iolls 
can be obtained from the fundalll('J}t.a1 ol1es hy d(~COlllposillg t.Ilt'ir t.('lIsor 
products. Our glue vectors (as opposcd to t.hosc of COllway alld Sloilne) 
are fundamental weight vectors (or, actually, t.hcir l1('gatiws aI('), so 1.0 eé\clI 
of our glue vectors corresponds an ilTeducihlc rcpresent.d.t.ioll (~('e Table :1). 
(The glue vector [0] always corresponds 1.0 tl\(' adjoint repr(·st'nt.at.ioll sinn' 
its weight vectors arc sirnply the mot vcctors.) 

Closely related to this is that, up to isomorphism, there ,\1'(' only fillit.('ly 
man)' complex semisimple Lie groups (i.e, cOIIII<,ct(·d Lie glOlipS wllos(' Lif' 
algebra is sernisimple) with a given Lie algcbra. The sllIall(·st. is callt'd 
the adjoint group, and has a trivial center. The ot.hers are (OV('rs of t.his 
group, and the largest is simply-conn('cted For exa.lIlpl(" t,lwJ(' ill (' t.wo 
semisimplc Lie groups corrcsponding 1,0 the Lie algehm AI' Oll(' of t1If'S(' 
is PGL(2)=SL(2)j Z2, and the othe) is SL(2). 

A less trivial example is On' SO(2n), t\w grollp of lOt.atiolls in /('J.1l, is t.1l(' 
classical Lie group corresponding to the Lie algebra f)n. It, has il t.1 i vial C('I1t.(~r. 
!ts simply-connccted covel'ing group is the spinor group Spin(211). They Ilav(~ 
the samc Lie algebra, and heI1c..c the saille mot lattice. 'l'II<' J'(ïHe~(~"t.at.iolls 

of Spin(2n) fall into 4 conjugacy class{~s: adjoint or scalill' (co/'l(':-.ponding t.o 
[0]), vector ([2]), and thc two ill'cducible spinol JepleS(~IIt.atiolis of positiVt' 
and negative chirality (spinor [1] and cOlljllgate :-,pinol [:1]). n;;, al. lf~a:-.t. fOi 
even n, corresponds to thc double cover Spin(2n)j Z'J. of SO(2n) l)('call~(~ W(~ 

want only half of the conjugacy classes of Spin(2n) tllalllely tlH~ adjoint. fllld 
spinor representations). 
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2.8 Lamination and the Leech Lattice 

Lamination is one of three standard ways of constructing higher dimensional 
lau'iccs from smaller olles. Its primary significance, at least for our purposes, 
lics in ibi ahility to providc a construction/definition of the Leech lattice, 
ess(~ntially by st.art.ing from nothing. Laminated lattices are the densest 
packings -- lattice alld non-Iattice - known in each dimension :c::; 29, except 
fOI" dillH'nsions 10-13 (thc Coxeter-Todd lattice /(12 holds the record for 12 
diulC'lISiollS, and nOIl-latticc packings are densest in dimensions 10, 11, and 
\:J. J)('lIser IdUiccs arc also known for all dimensions > 30.) 

Laminat,ed latticcs are defined to be the densest "layered" lattices of each 
dilllCIISioll, étn(1 are listed in Figure 53 (unfortunate1y, 1 was unable to label 
two of UI(' lat,t,i("(~s in Figure 5: A~~ld and A~ld). For dimensions :c::; 8, these 
ar(' silllilar (but not, cOllgruent) to root lattices. In particular, letting An 
dpllot,e a Ia.minatcd latticc of dimension 11, we have: 

(Thcse silllilarit,ies WCl'C cstablishcd by Lecch in 1969.) Other laminated 
lat.t.iccs ind ude the Lecch lattice A24 and the Barnes-Wall lattice A16' 

Ail is (h·fined rc'cursiw'ly as follo\\'s: 
Let. AI = '2Z. At the lIth stcp stack copics of An-l as densely as possible, 

\Vhil(· \H'('s('rvillg the minimal Ilorm of 4 - the resulting lattice is An. 
Eqlliv,t1('IIt1y, COll si der a.1I ll-dimensional lattices containing at least one 

subl,lUi«' A,,_I, whose minimalnorm is 4. An are simply those of smallest 
d(,t.('1'I1I i Il a 1\ t, . 

SOllwt.ill\('S the )"ecursion is taken to start with the I-point lattice Ao, 
rat.h('l' t.hall wit.h A •. Since Ao is the only O-dimensionallattice, or since Al is 
t.he ollly l-dilll<'llsionai latticc \Vith minimal norm Jl=4, lamination provides 
a \'t'Iy ,l»»ealillg dpfinition for the Leech lattice, the unique laminated lattice 
of ~·t dillWIlSiolls. 

Ohviollsly t he specifie normalization ehosen is not very important. The 
n'a SOli AI = '2Z was ChOSCIl, rathcr than, for example, Al = Z, was so 
t.hat. "'l.1 \\'ould be both intcgral and self-dual. With this normalization, An 
is ÎlIt.l'gral iff 11 :c::; '2.t. 'l'Il<' choice of normalization becomes important only 

:t Figure f, IS baset! on Figure 6 1 III cs 
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- Figure 5: The Laminatcd Latticcs 
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whcn wc dcmand each An he the lattice with the smallest determinant among 
ail inlegrallattices having the given minimal norm and having sorne An-1 as 
a sublattice. The shorter Leech lattice 0 23 is the unique integral laminated 
lattice of norm 3 in 23 dimensions, hut A23 =f. [i023' 

In general there isn't a unique An for a given n (see Figure 5), although 
An is uni(tue for n ~ 10, and 14 ~ n ~ 24. Ali An are known for n < 25, and 
at least one is known for 26 :5 n :5 48. There are exactly 23 different A25 

(one for ('ach type of deep hole in A24), and there is good reason to believe 
that the number of different A26 is weIl over 75 000. 

Of course, A24 is a sublattice of each An' n ~ 24. It has been shown that 
although not evcry An' for n ~ 24, is a sublattice of sorne An+ll every such 
An is a sublatticc of A24 • For example, A20 is obtained from A24 by equating 
any 4 coordinates 1.0 O. 

Each lattice An+I is the union of translations of sorne lattice An. A simple 
geornctric picturc of how Antl is ohtainp-d from An can be round. AnH arises 
when you place each layer (roughly speaking, each copyof An) in such a way 
that each point. in the layer is rlirectly opposite a deep hole of the adjacent 
layer. This structure can be clearly seen in the case of A2 ~ A2 in Figure 
1. Whcn thcl'e are more deep holes than points in the layers, there are 
several possibilities for thcse layel'ings. Many of these possibilities will yield 
Ilon-Iatticcs, but it secms that always at least one is a lattice. 

Usually, cach of the parallellayers of An+I is just a copy of sorne An. But 
in dimensions 8 and 24, for example, "density doubling" occurs as adjacent 
lay<'l's can actually be merged. For instance, it is possible to fit together 2 
copics of Ds, prescrving the minimal norm. The result is nt = Es fV As. 
A similar situation applies to the Leech lattice. This explains in part the 
rcmarkable pl'Opertics possessed hy Es and A24 • 

Tlu're arc several alternatives for defining A24' hut the way given ahove 
is pcrhaps thc most appealiug. !ts generator matrix is given in Figure 6 
(for l'cadability, ouly its nonzero entries are shown). A24 is even and self
dual, and is the only sueh lattice in 24 dimensions which cannot be obtained 
by glning root laUices. In fact, A24 contains no roots - its minimal norrn 
Jl = 4, Ilot 2. This is a very distinguishing property, for the only self-dual 
latticcs of dimension ~ 24 containing no roots are the Leech lattice A24' the 
23-dimensional sborter Leech lattice 0 23 , and the 24-dimensional odd Leech 
lattice O.l4' 0 23 and 0 24 both have J.l = 3, and are intimately associated 
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Figure 6: Tht! Leech Lattice Generator Matrix 
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witlt A24 • In addition, A24 is the only self-duallattice of under 32 dimensions 
witlt Il ~ 1. (On the othcr hand, there are at least two 32-dimensional 
Type Il lattiœs with JI. = 4, and at least two 48-dimensional Type II lattices 
witlt JI = 6. And if wc drop the assumption of self-duality, we get further 
lIolltrivial examplcs: both /(12 and A16 - see Figure 2 - have JI = 4 (the 
trivial cxalllples arc lattices scalcd in unusual ways, like 15Z)). Considerably 
/1101"(' COIIIJllOII arc self-d Il al lattices which, though containing roots, don't 
cOlltain e/lollgh 1,0 be saturélt.ed - i.e. which cannot be expressed as the 
gillings of JOot l,tttices. The filst examples are 19-dimensional, and in higher 
dillJeJlsiolls h('collle t.JI(· 1I00JJl rather than the exception. 

Ewry lOot I,tttin' has only 1 or 2 types of dccp holes. /(12 and A16 both 
ha Vf' only 1. Bill. :\2.1 has éln illcrcdiblc 23. Th is is also the number of Niemeier 
lau'i('('s, alld ind('('d the!'e i~ a fairly Hatural corrcspondence bctwecn them. 
H(·lat,(·d 1,0 t.his ar(' Conway's 23 "Holy Con~tructions" of "24. (These are 
giVC'1l aIl( ('I(·gélllt.ly ploved hy Borcl1('rd~ in nOR.) 

'J'1l('J(' .11(' SOIll<' illt,('r('sting COllnect ions betwœn A24 and the Lorentzian 
1 il t.t.i( (' Il .l;,.I' For ('xiIIllpl(" yOIl Cd Il &peaJ.: of fundamental (or simple) roots 
fOI illddillit,(· I,dtic('s ]lli-It as WélS donc for Euclidean latticcs. III.I has 10 
of t.l1I·1II, Illi.1 h,ls 19. ,mel 1/2'>,1 has intinitely many. The \Veyl vector of 
a I,It.t,i('C· heiS illlwl" plOdllct -1 with ail the fundamental roots; it exists for 
111l.1 fOI 11 =!I, 1 ï alld 2.J, hut Ilot for 11 = 33,41,.... The Weyl vector 
for //25.1 is /Il = (0,1,2, ... ,2'1170) - smprisingly it is a null vector, which 
Il)(',IIIH Ail' = (lIr1 n 112r..d/(1I') is a 2,1-dimensional Type II Euclidean lattice. 
(~oll\\'ay has s!town in faet that Aw = A24 . In addition, he found that the 
('oXd('I'-J)ynkill diaglcllll of /125 ,1 c.lII be idcntified with A24 (the diagrall1 
!l,IS 1 lIod(' for ('(\ch L('('('h latti('(' vedor). 

I\:ll \\'eiS dii-lcO\'('J(,d in 19G5 by John Lcech in the contcxt of sphere pack
illg "flt-r I)('inp; intl'odllc('d to it by.John Mcl\ay (a former professor at 
l\1( Cill). ('oll"'''y ~OOII t'/{'\·a!<·d it to its CUl"rcnt position as a tl'uly signifi
callt llI.tllH'lItat i( (t! COli st l'lIet. ft. hels bccll pro\'ed to have the highcst kissing 
Illllllht'r of (Illy ~1-dillH'IlHiollal Pé'cking, and holds the record at the present 
tin\(\ fol' t II(' d('lls('st parking, t,hillllcst covering, and best quantizel" (see §6 for 
d('sCl ipt ions of t ll<'s(' famous pl'Ohlcllls) in 24 dimensions. It has connections 
wit h Li(· (llg('hltlS thelt arcn '1, yd fully 1Illdcrstood. But it is perhaps in the 
theOl)" of fillite simpk groups whcre its uscfulness is most graphie. 

Ld '00 be tilt' infinite élutolllorphislll group of A24 -- i.e. ail isometries 
of U!I which "Il' ~ylllllldries of "21' '00 contains translations, for example. 
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Let ·0 (pronounced "doUo") be the stabilizer of the origin _.- 1.('. thos(' 
transformations in . 00 that fix the origin. 1t is what is IIsua lly l\l('éUlt. by 
Aut(A24). It turns out only rotations are in ·0 -- A24 is the only Typ(' 
II lattice in under 32 dimensions which isn't invariant. Hllder allY J'(·f1(·ct.iOll 
(this is in contrast to the IDot lattiees, whose l'cfledions allllost. g('!wrat.(' ail 
automorphisms, and is intimately associated, as wc lt'al'l\('d ill ~i(i, wit.h t.h(· 
fact that A24 has no l'oots). ·0 has ahout 8x 1018 clelllents, which is abolit. 
average for 24-dimensional Type II laUiccs (t.he automorphislll group of f)t. 
has order ~ 2.5 x lOi, while that eorrt'sponding to A~ has 0\'(11'1' ~ -\..1 X lO2:1). 

Like ail lattices, 1\24 is invariant lllHler ,l' - -,r. Dt>filH' ·1 = ·0/1., wlwJ'(' 
Z = {-l, I} is the center of ·0 (so ,0 18 a doublp eov('ring of ·1). In ,Hldit.lon, 
choose any vectors x, y E 1\24 of norm ,1 and fi respedi\'l'Iy, and dl'filll' .~ 

and ·3 to he thosc subgwups of ,0 fixing ,r and il respectively (·2 illld ':\ 

are independent of the choice of thcse v('dors, sillet' ·0 i~ tltllJsit.iVl' 011 1,01.11 

A(2) = {v E 1\24 1 v2 = 4} and A(3) = {li E 1\2'1 11'2 = (i}). II. C(\II 1)(· show Il 
that ·1, ·2 and ·3 are ail simple -- in fad t.1H'Y'J'(· t.h(· !)tll, Il t.h alld 121.11 
largest sporadic fini te simple group:,. TI}('Y \V ('l'(' discowll'd h Y COli Wlly i Il 
1968. 

A total of 12 sporadic glO1J»s (Il'(' «mt aill('d III ·1 (01 .() or '(0) Ml sub
groups. Mally of them arc :"tabiliz('I:" of .t "~illlplt'x" ill AlI. jll~t lil,p .), ,2 
and ,3 (the simplices in these cases are tll(' point. 0, (lIld tll(' sq~III1'IIt,:, \Vil Il 
head and tail 0 and x, alld 0 alld fi J('8IH'ctiw".y). J)"lIif·1 (;0J'('1I:,1 ('ill, hilll:,plf 
a major finite simple group tJworist, \VI ote: 

If Conway had stlldied tlw Lccc h lattin' SOIlle !) j'('ill':" ('mli('I', 
he wou Id have discovered iL total of 7 lIew simp\!' gl'Ollp:'! IJII
fOl'tunatcly he had to settl(· for :J. lIowcvel', a~ cOllsolat.ioll, his 
paper 011 ·0 will stand as olle of the 1110:"1. pl<'gallt éll hil'vI'IIH'IIt,S of 
mathematics. 4 

On the negat.lve side, COI1\\'rly's \Vork di~tracted 1I1r1lly lH'Upl(' illto Sil:', 

pecting more spoladic simple groups coult! Iw fOi III <1 ill t!w éllltOlllOI phl~lll 
groups of other lat.t.ices. Thi~ tUl'IIed out 1.0 1)(' a d(·.tel (!lId. 

Also, the Lecch latticc \\'as uf-led hy H. L. GI Jess in ) !)~O t,o «J/l~tlll('t tl\l' 
Monster group, the largest of the 26 ~pOI adic glOllp~ with al/ll(J~t ~. J x J 0<;'\ 

elements, The construction, done by hand, illvolved calclllat.iom t1li1t haVI! 

4aoR, p 125 
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he(~11 callcd "truly prodigious" and "horrendous". Conway Jater produced a 
Himplifkd construction also heavily lIsing A24 (and with it a vector space of 
dilJl(~II:;ion 196 883). The Monster 'involves' 20 - and possibly 21 - of the 
Hporadic groups, including the COllway groups ·1, ·2 and ·3 (G 'illvolves' H 
"walls that JI is iL qllotient of a subgroup of G). 

'l'hl' MOllster already has mally lises. For example, in string thcory it 
has 1)(~("1 1I~(·d (hy George ChapJine -- sec CHA) along with ·1 to construct a 
:W-dirncnsiollal allolllaly-fJ'{'c superstring tlrcory unifying an EsxEs gauge in
variaun' alld 0(8) Hupcniymrnetry. ·1 plays the role of the symmetry which 
(,()llIbi')('H Uws(', wlrile tlH' l'L'presentations of the Monster arc the fermion 
st.atps. 1'(., h<ips <tllticipat.illg a thcory likc tllis, Frccman Dyson recentJy 
\\,1'01.(': 

haVI' 1,0 COllf('hS 1.0 you that 1 have a sneaking hope, a hape un
:mppol'ted hy cilly fclCt,:.i or cvidpllCC, that sometime ill the 218t 
«'lItury phYHirihts will htlllJlhlc UpOIl the mOllstcr group, built in 
HOIIH' IIIISIIS()(·('I,{·<1 way illt.o the structure of the universe. This is 
of ('0111 Sf' ordy a wild s()('nrlation, all110st ccrtainly Wl'Ollg. The 
olll.\' argullJC'nt 1 Cdll ploduc(' in it:.; favor Îs a theological one. \\le 
haw strollg ('vidclIC(' t.hat tlJ(' creat.ol' of the llllivcrse loves sym
III d, l'y, alld if 1)(' lo\'(':-; SY III Illet l'y, wlral. lovclicl' syllll11ctry cou Id 
Ire filld t.hall tI)(' :';Yllllllct.ry of the l'vlo11stel?5 
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3 The Self-Duality of Gluings 

3.1 Statement and Motivations for the Problem 

As mentioned earlier, ail self-duallattiees of dimcnsions 11. ~ 25 have hecll 
found. For higher n (and in particular for the cven lattices of dimension 
24), these were obtained for the rnost part by gluillg togcther mot laUiccs. 
It would be interesting to sec how Nierneier, for ('xampl<" ('stahlislu'd tltt' 
self-duality of his Type II lattiees. That the gluings arc intf'gral isn 'l hard t.o 
chcck: the dot products belwœn any two generator gluc v<-.'ctors 9, IllUSt. ail 1)(' 
integers. Thc thcoretical and practical difficult.y scerns t.o be in t!f>t('rmining 
whether the gluing yields a lattice with detcrrninant 1. 

Unfortunately Nicrneier's work (see NIE) has Ilot yd bcclI trallslat.l'd int.o 
English (to my knowledge). The "modern" proof, duc t.o B. V('lIkov (s('(' cs, 
pp. 427-438) is indirect, translati ng t.he t.ask int.o a plObl('JlI of md i IIg tlwory 
(namely, c1assify the self-dual codcs ovcr ail rings Zn and t.1H' fidd 1-',,), so his 
methods arc unable to provide insight illto OUI' question (cxC('pt possihly t.o 
suggest that the question is 110 longer relevant). lIowever, in SUP('l'stlillgs if 
not in mathernatics there Îs rcason fol' devcloping 1IH't.hods to c .. kulate the 
determinant of a gluing. In the following sections l'Il ('lélholatp 011 :1 sudl 
methods, as well as deseribe a c1ever graphical techllique, dll(' t.o Lam, of 
computing determinants of certain 71 X 11. matrices. In t.ltis ~-H'('ti()n 1'11 t.ry t.o 
describe why superstrings would bother with such a <lIwstioll. 

Considcr the problern discussed in §.5 of Chapt<'l' 1 of < onstrlldlllg I)(·t.
erotie strings from free boson or fermion fields. When wc' hosolli;,,(· t.l1f' 
fermions wc find that the allowed "moment a" p f01'1II a set /\ + l, Wh('rf' 
t is a vector pointing in the "fcrmionic dir(~ction", alHI when' /\ i~ é11l ill(h·fi
nite integrallattice in RNL,Nn, for NL = 24 - d and Nil = 12 - (1 (ri + 2 is tlJ(' 
number of space-time diPlensionsj presumably wc arc ult.imaf.dy inf.t>r('st.ed 
in d = 2). For sorne p",euliar reason wc wrif.e, for examplc, ]J = (puIPI.) (so 
p2 = pi - ph). In addition, modulaI' invarianC(' of tlt(' part.itiou fUIlct.ioJl 
strongly suggests /\ be self-dual (scc §1 of the n,~xt. chapt(~r). 

Let G = Gn x GL bc the local symmetry group il. /llust IJ(' lilllk 
N = N R + NL , since our lattice has that as its dirneflsion. These 1Il0/lll'lll.a 
are the weight vect.ors of thc l'cprcsentation of G correspondillg 1.0 t,\te rd{!VilJlt, 
particle. Now d of the N n dimensions will correspond to spaœ-t,illl(! (sinCf! 
we're in the light cone gauge). Special rclativity dcmands thal. tlw Lorenf.~ 
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grollp SO«(l)=D g bc thc symmetry of those d dimensions, so GR = D!l X GR 
2 2 

(the actual Lorcnt.~ group is SO(d+l,l), but in the light cone gauge this 
h(!COllleS SO( li) -- only the transverse directions survive). If we let po be the 
1JI01ll('lItUIll f'Omponents in tr. space-time directions (Po has d/2 components 
because SO(d) is of lank d/2), wcgct that po must be a weight vedor of Dg -

2 

it. will <01 J('spolld t.o the adjoint (scalar or [0]) or fundamental (vector or [2]) 
Hï)l'('S('lltation if t1H' particlc is a boson, or to the spinar rcpresentations [1] 
01' [:~l if .1 f('J'mioll. Silllilal argulllents will apply to thc remaining symmetrics 
( " (' 

1 Il X 'l,· 

III !!,('Il('I,l! we WOIl 't kllow ail of C, and we won 't know ail of the rep
J('~('lIl,at 10llS (i.p. t1w gll1P vcdors). Wc will he givcn the Lorentz group 
f)!!, (('Ittlillly, alld a gallg(' glOlIp Cg of rank Ng • Wc will he given a set of 

2 

low IlI .. SS palt.i( k~ (l'!!, glélvitolls, gauge particles, and otIler particles, like 
Il liaI b) w hos(' 1II01llf'llta COI rf'spolld 1.0 Icpresentations of Cg. This amounts 
1.0 1 )(·i Il!!, /!,i V('11 tJl(' 1'001. laui «' Au (repl espnting the momen ta of the gauge 
1'.11 t.icl(·s) fOI f)!l x (;f} , ,lIld a set of glue vectors g, (lcprcsenting the quarks, 

J 

(·Ie.). W(· IIIIISt. filld a s('lf-dual lat.tice A of dimension N in which can be 
IOlllld tilt' Nf} + d/2-dlll\l'J\siollallattice A' = {Ao,g,). 

Illll'oltllllat.(·I.\' N fl + d/'2 CclII 1)(' 1l1lI<.h ~lllaller t.han N. The most impor-
1.1111. ~I)('(l,d (dSf' illvolv('s tll(' Standard Mode! (sec §2, Chapter 1), whcre 
fi = '2 and (,',/ =SU(:l)xSO(2)xlI(1), fOI a total rank of 5, while N = 32. 
fil <uldlf iOIl, \V(' Il.1\'(' (clf, pl L'sent) cxpclimcntal access to the low mass par
tiel('s ollly (,l('(,oldllll!, 10 tl)(' thcOlY they will in fad he ma&slcss, at lcast 
IIllt Il t,lw.\' acquil(' (\ ~Illall Illa~~ via syllllIIetry br('aking), sincc the massive 
particl(·~ will h .. \·(· lIla~~('s 011 Il)(' OIelc'r of thf' Planck mass Alp ~ 1019 Gcv, 
01 élhollt t IH' :,iz<, of il h.rdcriulIl. This Illeans that wc can only guess at the 
/!,hH' \'('dor~ (OIl('SpOlldillg to the IlldSfliv(' palticIes. (Incidently, the masslcss 
~t ,If('s COI J"('spolld to JI = (l'nlpd satisfyillg l'Il::; l, pi ::; 2.) 

SIIPPOS(' W(' gw'SS ,It il 1,lIlk N grollp G (of course Olle containing D!1 x Gg ). 
2 

'1'1)('11 I)('fore \\'(' add Illon' ghl<' V('(·tOI S '\'(' will have an N -dimensionallattice 
A = (Afi, fI!, ... ,!If). wll<'rc Ar; is the root lattire of G. First of aIl, this lattice 
IIIllst 1)(· integr .. !, 01 h('1 wise OUI task is hopeless. This is trivial to verify (just 
check 1 h,lI, 1 hl' (~) prodllcts g, g) arc in Z). Next, calculatc its determinant. If 
it's l, t h('11 \\'(·'re done; "'c will han' succt'ssfully constructcd a string theOl'Y 
witll 1 he dcsir('d Jo\\' ('Ii('r!!,y symmetrics and spcctrum. Othcrwise it will be 
I\('('('ssary 10 add additionaJ gIlle v('dors g: to the gluing. This will have the 
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effect of lowering lAI, perhaps to 1. 

This discussion, though necessarily incomplete, hopefully givcs sOllle idca 
of the motivation in superstrings behind calculating the determinallt of glu
ings (see LAM4 for a more complete account). Lam has dcvis~d 21llcthods 
of checking for self-duality: one involves manipulating theta serics (1 won't 
address that approachj it can be found in LAM4), and the othcl' invo\ves com
puting gleatest common divisors of certain determinants (l'Il disclIss this in 
§3). In addition 1 have found 2 otller techniques, which 1 will disclIss in §2 
and at the beginning of §3. 

The mathematical problem can be stated in the following way. 
Let AI! i = 1, ... , k he 71 1-dimensionall'Oot latticcs embcdded in Hill., and 

define 71 = 711 + .. , + nk, m = ml + ... + 71lk. Consider the gilling A of 
these lattices Al' ... ,Ak via the glue vectors 91' ... , gl. For i = l, ... , k, let 
r~, ri, ... ,r~. E Rm. be the simple foots of Alj these const.it.llt~ a ba...<;is fol' 
each A" and (provided we l'cad for cach ,.~ the VL'Ctor in R'" wit.h (·ompollent.s 
(oml + +m'_I, rI" om'+1 + .. +mk ) ) ail of these :.implc fOOt.S togeil\{'r fmm a ba.."Iis 

J 

for the sum Al EB· .. EB Ak. G i ven that. thc n-di mensional lattin' A is span l1('d, 
by definition, by the 71 + e vectors in B = {r;, 91, ... ,g(}, \.I\{' pl'Ol>l('111 is t.u 
determine if il. is self-dual. We shall solve this by (·xplicit.ly caklllat.ing lAI. 

Fifst note, however, that W is the square of an integ<'l', provided A' is 

an n-dimensional sublattice of A. The rcason is that becallse A' ÇA, Uw 
basis of A spans that of N, so M' = U AI for some 71 x n Z-matrix U, which 
implies A' = U AUT and hence lA'I = IA'I = IUI 2 IAI. And of c()urs(~ lUI E Z. 
This gives us the following practical test: 

Theorem 3.1.1 A gluing of Al,'" ,Ak can be .t;clf-dual only if lAd", IAkl 
is the square of an integer. 

The converse unfortllnately fails (e.g. no gluing of 2A 2 can 1)(' sdf-dual). 
This test is particularly casy to perform given that the dcterminallt.s of (!ilch 
root lattice is known (sec Table 2). 

Let b}, ... ,bn he an enumeration of the n root vcctors 1';, and let bu+, = gl' 
Define A{il' . ,In} to be that sublattice of A obtained by taking the Z-span of 
{bll , ...• b'n}' Wc will get at A by looking at thesc sllblattices, bccause it is 
not immediately ohvious how to directly compute lA 1 (B is not a ha.'iis). 

Normally, lAI would involve calculating the deterrninant of an n X Tt Gram 
matrix - a potential problcm for large n (n = 32 is an important special 
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case). But because root lattices are involved, and hecause we have chosen 
a." their ha."is vectors simple roots, the calculation of IA{ ....... ,n} 1 can he done 
quickly, using a graphical method given in §4. The question hecomes: can 
a way he round to get lAI from IA{'J ..... n}1· Two of the three methods l'li 
discuss do exactly that, and seem quite successful in practice. But the most 
promising is the third, given at the heginning of §3. 

Strictly speaking, A is indefinite and not Euclidean as we will be asSUffi

ing in this chapter. G' must decompose into the direct product GR X GL 

(l>C'cause t.he right- and Icft-movers cannut mix), and hence the root lattice 
lIIust likewise dccornp0se into the direct sum of two Euclidean root lattices 
(albeit olle is ncgative definitc). 1 see no reason, though, why the glue vec
tors mllst r('spcct titis decomposition and ha.ve ail their non-zero components 
either ollly in right-moving or only in left-moving directions. If this isn't the 
ca,'H', amI it. s('crns doubtflll that it is, then A cannot he decomposed in this 
way, and OUI' assumption wOllld appear to be groundless. However, the meth
O(ls discllssed in this chaptcr should generalize quite naturally to the more 
J'('alistic illdefinite case. The cxamples con~idered on the following pages will 
ail be Ellclid('an, boUI for rcasons of simplicity and for the wealth of explicit 
Euclid('all gluings that arc available (see, for ex ample, Table 4). 

3.2 Finding a Basis 

'l'II<' IllOSt. natural way to determine whether a lattice is self-dual is to check 
it.s deterlllinrtnt. The most natural way to do this is to find a basis for it, 
and to lise this basis to find a Gram matrix for the lattice. 

One way of Hilding il basis for A given the generating vectors bi is by 
l'Ow-rcdllcillg (over Z) the matrix 

( 

bll 

Al = : 
bn+t.l 
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into the equivalent upper triangular matrix 

T= 

* * 
o * 

o 

o 
o * * o o 

(In general A! isn't a Z-matrix, but for the gluings of l'Oot lat.t.ices 1'.,1 will 
always be rational; letting Jl be a cornillon dcnominator for ail the ('iltri('s of 
M, and noting that lZ is a principal ideal domaill, we sec that PlOp. 2.11 

p 

on page 339 of lIUN guarantees that titis decomposition is possihh'.) TI\(' 
desired basis of A is the collection of nOIl-zero rows of '/'. 'l'he n·dllctioll 
procedure itself is easily programmable. The only ('olTlplicatioll is that. M i:; 
a large matrix (e.g. n = 36 - 2d), élnd tllt' \'(·slIlt.ing Gram lIIat.lix wOllld ilOt. 
necessarily be sparse, discouraging dilect computatioll of il.s dd,(·l'Il1illilllt .. 
Thus an alternative to this procedure would he desir(lhl(', alld ill vi('w of t.he 
complication caused by a non-sparse Gram llIatrix, wlrat wO\Jld IH' pld('1 J'(~c1 
would he a method which yielded basis vect.ors closely .elated 1.0 the hl' 

This suggests that we should tl'y t.o choose hasis vedol!> frolll tlH' sPt. 
B. Now, it is CCI tainly truc that if wc were d('alillg with v('dor SpiU'('S, SOIl)(' 

subset of {b,} must be a basis for R-span { b,}. For a lattice, however, t.his isn '1. 

necesarily the case (sec the following examplcs). Callth(~ set JJ 1H/II.I/.dl/ItI if 
one of its subsets was a basis. Ultilllately, wc shaH provide il 11('( ('SSilry and 
sufficient test for rcdundancy, and also dd('rmine ail possi hl(· ~II I>S(·I.:-. of /J, 
if any, that form the basis. IL w;1I t.llln out. thclt lIlo:,t pldct.i('(1! sitll<ll.iolls ar(' 
redundant, or bccome l'edundant aft.el' triviallJlalliplllatiolls. 

Before introducing the met.hO(I, il graphic(tI f'(~pl(':,ellt.tltlon will I)(~ illtlo
duced to make the following disclIssion palt.icularly t.angible'. It, will also be 
exploited, as wc will karn in §1, in the calclllation of ddcllllill(uJI,s. 

To each Lie algcbla IS associated it.s Dyllkill diagl'dlll. Thes(' call I){· ('011-

structecl as follows: leplcscnt each of it.s simple ('oots with a n{)d(~, alld 1:011-

nect 2 such nodcs with a solid linc iff the dot !>rodlld of their cor(,(~spolldillg 
roots is non-zero (sincc we'lc dcaling Itere only with plOducts of simply I;u:ed 

algebras, only single, undil'cctccl Iincs apply). We can ddill(~ titis similiLrly 
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for lattices - the result is a graphical representation of its Gram matrix. 
For lattices wc shaH cali this the Coxeter diagram. 

For example, the Coxcter diagram of D~ is given in Figure 7(a). The 
lattiœ (D~, [lI], [22]) has the diagram shown in Figure 7(b). We see quite 
clcarly here the gcometric effect of gluings: the glue vectors [11] and [22] 
Iink up the orthogonal component lattices Ds and Ds. A few points must he 
made. Wc have adopted the convention that the simple roots be represented 
by hollow nodcs, and the glue vectors by solid ones. AIso, dot products of -1 
bctwœn vectors have becn, as hefore, represented by single solid lines; here 
dot products of + 1 are represented by hroken lines. Dot products other than 
± 1 will he explicitly indicated, as will any norm different from 2. In general, 
the Coxetcr diagrams will be useful only for root lattices and their gluings; 
the Coxeter diagram for the Lecch lattice, for example, is an impenetrable 
rnaze. 

But the main problem is that there are DOW 8+8+2 (=nl +n2+f = n+f) 
nodcs, and the dimension of the whole lattice is only 8+8 (=n. + n2 = n). 
ln Dynkin diagrams the rank of the Lie algebra equals the number of oodes; 
we would likc the number of nodes in these Coxeter diagrams to equal the 
din)('nsion of the corresponding lattice. In particular, we would like the oodes 
Lo repres('nt hasis vcctors, and not merely the generator vectors bl' 

As was disc\lsscd abovc, it would he most conveniel1t if we could choose 
our basis frolll among the vectors in B. This would amouot to removing 
f of t.he nodes. For examplc, it turos out that the generating vectors bl 

of (D~, [11], [22]) arc redundant; its correct Coxeter diagram can be seen in 
Figure 7( c) (therc are 7 other equally valid choices of node removal available 
hcr<" as wc shaH s('e in our examples). 

Lincar i ndependcllcc of vectors YI' ... ,gi of course sim ply means 

atYl + ... + a(gl = 0 ==} al = ... = at = 0 

For om purposC's wc rcquire somcthing a litUe stronger. 

Definition 3.2.1 Say Ihal {gt. ... ,Yt} isA-independent ifthey are linearly 
ÎmlCI'Cllllfl1 1 , and if whc71cvcr wc have integers ni salisfying 

nlgl + ... + n,gt E A 

t"en fol' cac" i we have l1j91 E A. 
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Figure 7: The Coxeter Diagrams of (D~, (11), (22)) 
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(a) The Coxeter diagram for D~ 

(h) An (improper) Coxeter diagram 

for (D:, (11), (22]) 

(c) A (Droper) Coxetcr diagram 

for (D~, [11], [22]) 

( d) The 5 loops through [Il] 
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We will he specifically interested in the cases where the glue vectors 9i 
for the sum A' = AI E9 ... œ Ale are A'-independent. Later we will discuss 
just how comprehensive our method can he, given this constraint of the glue 
vectors heing N-independent. An immediate consequence of this constraint 
is that the f 1I0dcs to be removed from the set of n + f generators h, must 
ail be root vc'Ctors. The actual motivation for demanding N-independence is 
both more subtlc and more significant, and will he shortly revealed. 

Note first. that the root vectors b" i = l, ... ,n, are Iinearly independent. 
Note also that the glue vectors 9, = b,+n' i = 1, ... , f, are in the R-span 
of the root vcctors. In fact, for each glue vector 9. there exists a smallest 
posi Li ve integcr k, (called the characterislic of 91) such that 

n 

k,g, = - LC'Jb), 
)=1 

whcrc cach CI) E Z. If the y, are A'-independent, these i relations generate 
ail otlters, in the sense that L~=1 n,y. E N Hf each n, is a multiple of k, - in 
rad, for H, E Z, 

11+1 

L: nIb. = 0 would imply that 3mh' ..• ml E Z such that 
,=1 

for i = 1, ... , n 
for i > n 

Now suppose for example that we remove the nodes corresponding to the 
1'00ts !JI,.'" hl. Then!JI is in Z {h, 1 i > f} iff there are integers ni such 
that bl = 'L~I~1 nib,. But then A' independence implies that there exist 
illtcgers ml), ... ,mIt such that 1 = - E~=1 ml)cJh but 0 = - 'L~=I ml)C)1 

for i = 2, ... , f. 
Similar remarks hold when b2 , ••• , bl E Z{b. 1 i > i}. Letting M and C 

denot\' t.he Z-mat.riccs with clements ml) and CI)' we get simply that -MC = 
1. Thus wc have shown that if {hl+l!'" ,bl+n } is a hasis for the gluing 
A = (N,y), ... ,Yi), thell the matrix C is invertible over the integers, and 
hCIl{o{' ICI = ± 1. 

The converse is also tl'lle, and its proof doesn 't even require A'-independence. 
W<' havc th us <.'stablished a central result of this section: 

71 



-

-

Theorem 3.2.1 Suppose the glue vectors are A'-indepentIOlt. Lei C dcnott: 
the l X n matrix whose entries art Ci). Then the gltting A = (A', gl! ... , Bt) 
is redundant iff 3J c In sttch that le JI = ± 1. ln pa1'/ieula1', {/" 1 i ~ J} is a 
basis of A iff ICJI = ±l. 

(Of course, here the cardinality IIJI! of J is e, and CJ is the lx I! submatrix 
of C obtained by retaining only those columns in C labelled by an index in 
J.) 

Corollary 3.2.1 Suppose 3J C In stleh that ICJI = ±1. l'heu {b. 1 i ~ J} is 
a basis for A. (This is true even if the glue vectors faillo be A'-indcp(,1I11cnl.) 

Note that it isn't required here that A and A' be integral or self-dual. A' 
doesn't have to be the direct sum of root lattices, and the fi. don't .lave to 
be weight vectors, but these are the cases of most interest. 

Theorem 1 forms the foundation for the first method wc shall disCllSSj 
as we shaH see it is a very practical tool, especially for small e. Tl\(' e x 1/ 

matrix C can be calculated effortlessly from Table 5. Table 5 should he tlscd 
in conjunction with Tables 2 and 3. 

Example 3.2.1 D;!" fOl' n even (sec Example 6 for n mId). 
Aecording to Table 5, e = (~,~ -l,n - 2,n - 3, ... ,1) (sinee k = 

i = 1 e can be copied di1'ectly f7'Om the table). e has a compoT/.ent (i.e. 
a 1 x 1 dete1'minanl) equal to ±1 - namcly that one C01'7'cspondwfj to Tn . 

Therefo1'e, r n can be eX]J1'essed in terms of 1'., i = l, ... , n - 1, a.ncl [1 J, so 
Dt is l'edundant, and its nth nocle shou/d be rcmoved (sec Fzg1t1'e B(u) for 
its true Coxeter diagram. Incidently we shall use tltat dUlgmm Lo show in ~j4 
that D~ is self-dual for ail n = 0 (mod 4) - for n :j. 0 (mod 4) J)~ f(uls to 
be integral). 

Similar reasoning shows A~ = An[1] and A24 [.5] arc both redllJldallt. (in 
both cases the first node is removcd). 

Example 3.2.2 Show D4 [1] = D4 [2] = D4[3] = Z4 (whcre equality lteTe ù; 
congruence). 

It is trivial to vcrify tltat t!tese 3 glumgs arc alll'cduTulaut, wllit (lu, ul(;n
tical "true" Coxeter diagrom (sec Figure 8(b)). Titus they ail ham; lit(; sam(; 
Gram matrix and thus are ail congl'uent (sec Tlteorcm 2.3 .. '1). Wc know 
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Table 5: The Basi .. , Mcthod 

Glue Vcctors Characteristic k, [C'I' ... , Cin] 
An (OJ 1 [0, ... ,OJ 

li] -!!±L (I.n~l)[i, 2i, .. ·,ii,j(i - l), .. ·,i] ( •• n+l) 

1=1, ... ,71 (j = n + 1- i) 
Dn [OJ 1 [0, ... ,0] 

[IJ 2 if n even [~, i - l, n - 2, n - 3, ... ,IJ 
4 if n odd [n, n - 2, 2n - 4, 2n - 6, ... ,2] 

( 
[2} 2 [1,1,2,2, ... ,2J 
[3] 2 if n even [i - l, i, n - 2, n - 3, ... ,1] 

4 jf n odd [n - 2, n, 2n - 4, 2n - 6, ... ,2J 
Er [0] 1 [0, ... ,0] 

[1 ] 2 [3,6,9,12,8,4,7] 
E6 [OJ 1 [0, ... ,0] 

[1 J 3 [4,2,0,1,2,3] 
[2] 3 [2,4,6,5,4,3] 

Z",Es (0) 1 [0, ... ,0) 
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Figure 8: The Coxeter Diagrams of the Examples of the First Method 
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Dt = D4 [1] is self-dual, From TatJle 1 we see the,'e is only 1 self-dual intc
gral/attiee of dimension 4. Sinee Z4 is also Type l, it must also be congl'ucnt 
to those 3 gluings. 

Witt's Theorem tells us that if each independent gluc vcd,or 9. has n01'111 
1 or 2 (as was the case above), then the gluing of root latticcs can he rcplaced 
with (i.e. is congruent to) a mere direct sum of (diffel'cnt) l'Oot latticcs. This 
rarely happens, except for smalt k. The converse must he slig,htly weak('t\(\(t: 
If a gluing of root lattices is congruent to a direct SUffi of l'Oot lattiœ<;, then 
it is possible to choose a set of glue vectol'S g; which span ail glue vcct.c"'I's 
(i.e. the g~ also are generators of the glue group), and a11 9; havc 1I0rm 1 and 
2. These g; mayor may not equal the original set 9. of gCllcratol's - i.c. Ilot 
an g, may have norm 1 or 2. 

Example 3.2.3 (AI2' A12' [15]), one of the Nzemeier lalticcs (a JlrCTJ01uLrT
anee of these examples will involve Niemeier latticcs - z.e. 24-dimmsio1tal 
Type II lattiees. This is partly because these rep7'Csent tlte grcalest single l7'i
umph of the gluing proeess, but mostly because their .qlue vcctors arc cxplicilly 
known (see Table 4)). 

Here, the glue vector [15} has characteristic equallo lcm(12 + 1,12 + 1) = 
13. From the chart 13[15} yields the matrix 

C = (1,2, ... ,12,5, 10" .. ,40,32, ... ,8), 

which has a ±1 in thc first component. Thus (A 12 , A12' [15]) is ,,1.50 7'cdun
dant. 

Similarly, (An, D7, E6, [111]) is redundant ([111] has charactcrÎslie km(11 + 
1,4,3) = 12), as are (A17, E7, [31]) and (A I5 , D9, [2]]) (the first lIode is 1,0 he 
removed in a11 of these). 

Example 3.2.4 (Ds, Ds, [11], [22]) 

Here, C = ( ~ 365 4 3 2 1 4 3 6 5 4 ,3 2 1) 
122 2 2 2 2 1 1 2 2 2 2 2 2 ' 

Note that IC{l,2}1 = 
4 3 

= 1 and 1 C{l,3} 1 = " 6 
=2. 

1 1 1 2 
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Thus we can simultaneously remove nodes 1 and 2 (i.e. root vectors bl = '~I œ 
0" and b2 = '''2 œ 0"), but not nodes 1 and 3. It ean be shown that a total of 
8 pairs of nodes may be re.moved: namely, 1 and 2; 2 and 4; 9 and 10 (i.e. 
119 = '11 œ rj" and blO = '6 El1 r2 "); 10 and 12; 1 and 10; 9 and 2; 2 and 12; 
and 10 anl[ 4. Figure 8(c) iIIustrates the re.moval of 1 and 2; Figure 7(e) 
illustratcs 2 and 12. 

ln ail of the examples given thus far, the removal of nodes did not discon
neet the originally connected Coxeter diagram. This pattern will continue. 
For one thing, a disconneeted diagram implies the gluing is decomposable 
into a direct sum of other gluings. Secondly, it is possible to prove, at least 
whcn A' is a sum of root lattices and A is integral, that each component of 
that decomposition includes unit vectors (though these unit vectors may not 
be rcprcsentcd bya node in the diagram). Thus, not only would A be decom
posable, but its components would include Z. This situation - a connected 
diagram being disconnccted by the removal of redundant nodes - is not only 
rare, but also uninteresting, as there would clearly be more convenient and 
reveaIing ways to express A than as the given gluing. 

111 none of the examples given has the demand that the glue vectors gj be 
A'-independent presented any problems. However the demand is not always 
as trivially satisfied. A'-independence of the generators 91 implies that the 
total numbe!" of glue vectors (i.e. the order of the glue group) of the gluing 
must equal thc product of the characteristics of each generating glue vector 
9 •. (The tol.alnumbe!" of glue vectors can be computed by Theorem 2.7.1. For 
A self-dual, it is nA. - otherwise this is just an upper bound.) Consulting 
Table 4 we quickly find that although most of the given choices of 91 are A'
indcpcndcnt, 110t ail arc. For example, the glue vectors [240], [501] and [053] 
of A~D6 have charaeteristics 5, 2 and 2 respectively, and apparently generate 
a glue group with 20 (=v'1024) clements (see Table 4), and so arc (A~D6)
indcpcndent. Similarly the given glue vectors for the 12 Niemeier lattices 
ahove it in Table 4 ail are A'-independent. On the other hand, 93 =127, so 
choosing as the generators for the A~ Niemeier lattice the glue vectors [114], 
[4111 and [ltll} is not acceptable for ou1 ~:>urposes (see Example 1, §3). 

Any finite abclian group (e.g. the glue group) can be expressed as the 
dil'ect product of cyclic groups CI. This implies that, given any gluing of 
N, it, is possible to choose A'-independent generators of the glue vectors. 
Well-documented proccdmes (involving "column and row operations" over 
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the btegers) exist which can be used to derive A'-independent genel'èitors 
given any set of generators g, (see Example 1 of the following section f(lr a 
non-trivial example of thisj the general theory is described on pp. 343-345 
of HUN). 

For small i, it is also possible to perturb Theol'cm 1 to acrommoclate 
A'-dependent g" as the following example indicates. 

Example 3.2.5 (A~D~, [1112], [1721]) gl = [1112] and g2=[1121J an~ not 
(A~DV-independent, as both 82 1- 32 and 49) + 4g2 E A~D~ indicatc. He1'C 
we have that C = 

(
1 2 3 4 5 6 711 2 3 4 5 6 7110 6 12 8 414 4 8 8 8) 
1 2 3 4 5 6 717 6 5 4 3 2 114 4 8 8 8110 6 12 8 4 

Instead of having to look for a ci invertible over Z, it suffices to look for one 
invertil,~e over ~ Z - i.e. ICfl could be ±2 and still be acceptable. A nd white 
IC1I IS never ±1, there are some J for which Ic1l = 2 - e.g . .J = {l, 1O}. 
It is trivial to verify that 

induces integers ni, n~ satisfying bl = L~;l.lO nibil blO = E~;l.l0 n:b, (using 
the notation of Theorem 1), so we get that (A~D~, [1112], [1721]) ;8 redundant, 
and nodes 1 and 10 can be removed. 

Unfortunately, not ail gluings are redundant. But even thclI a basis can 
sometimes be found. 

Example 3.2.6 D~ for n odd (in which case Dt = D~). 
Here C = (n, n - 2, 2n - 4\ 2n - 6, ... ,2). As none of thcse entrics are 

±1, D! is not redundant, at least as it currently stands. In other words, no 
node lies in the Z -span of the remaining nodes. 

Note however that '" (the characteristic of [1]) is relatively prime to n (the 
first entry in C). Thus, there exist integers u and v such that 4u + nv = l. 
Now if we replace gl = [1] with g~ = v[l] + ubt , wc sec that C becom,cs 

C' = (vn + 4u, v(n - 2), v(2n - 4), ... , v2). 
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Now the first node may be successfully removed. Of course, g~ is precisely as 
adcquate as 9. for generating the glue group. The only catch is that choosing 
ncw gifle vector gencmtors complicates the Coxeter diagram. 

The case for nt is given in Figure B(e) (there, g~ = 3[1] - 5b1). (Inci
dent/y, ID;!" 1 = ~ for n odd). 

Similarly A24 [5] = A24 [15], but A24 [5] is redundant and A24 [15] isn't. 
Several other examples along these tines can be found. 

To generalize these examples, when the gluing isn 't redundant it often is 
possible to make it redundant by choosing different 9 .. Of course the new 9, 
should be A'·independent, and must generate the glue group. 

U nfortunatcly, sorne gluings fail on a more fundamental level to be re· 
clundallt. Examplcs inclucle A~A~[11111] and E?EJ[11111]. These aren't 
recl ulldant., for t.he characteristic of [11111] (namely, lcm(2, 2, 3,3,3) = 6) is 
larger t.ltan the characterist.ic of each [1] (which is 2 or 3). Thus, each entry 
in C is a multiple either of 3 or 2, so not only are none of them ±1, but none 
a.re rclatively prime to 6. Hence no alternate choiee of 9. will suffiee. 

Alt.hough thcsc ex amples are integral, they fail to be self·dual (they fail 
the test given in the last section (see also Example 3 in the next section); a 
quick calculation shows their determinant is in fact 3). Every self-dual gluing 
1 have considercd eit.her was rcdunclant, or, by transforming the generators 
9, as in Examplc 6, cou Id bccome redundant. However, 1 have been unable 
tn proVf' that. t.his wi1l always be the case. 

At the bcginning of the following section is given a variation of this 
method which is significantly more efficient (at least for the problem of find
ing t.he dctcrmina.nt, as opposcd to a basis, of a gluing. 

3.3 Alternatives: The Methods of Characteristics, 
and ofGCD 

The previolls mcthod involvcs calculating at most (;) l X l determinants. 
This is trivial for small e, as we have seen. If the search through these is 
successful, one fillds a basis for the gluing A, from which, for example, lA 1 can 
b(' quickly calculatcd using the techniques described in the following section. 

One pl'oblem is that e may be large (e.g. for one of the Niemeier lattices, 
e = 23 = 71 - 1, though for most Niemeier lattices l < 3), and sinee these 
e x f matrices aren't sparsf:'. unlike those for A{il , ... ,i,}, no tricks allow for the 
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quick calculation of their determinant. AIso, there is a possibilit.y that, the 
searches described above (including those in Example 6) will fail and t.IHlt 
a basis cannot be conveniently found. And lastly, thcl'c is t.he complicat.iol\ 
that the glue generators must be N-independenl.. 

Reminding ourselves that what il' actually d('sired is mcrdy lAI, t.he <}lH'S

tion naturally arises that perhaps t.he above method may t.ry to do too Ilmch. 
Perhaps slightly moderating our ambitions will yicld mOI<' posit.ive r<'s,llt,s. 

The two methods given in this section comput.e lAI dircctly. Th(' first. is (\. 
significant improvement. over the rnethod of §2, although 1.0 filld a. Imsis t.he 
latter method is still required. 

Theorem 2.7.1 implies that the total number IGI of gille vcctors ('<tuais 

JIAI ~;;,tkl. Thus if we have some independcnt way of finding Inl, w(' cali 

immediately deduce lAI 

Theorem 3.3.1 Supposegl, ... ,gi arc N-indcpcndc1l1 a7ulgcnem/r Ill(' glue 
group. Then N is self-dual iff il zs integml, and kr'" ~'i = lAt!· . ·IAd, WhCl'(' 
kj is the chamcteristic of gl' 

Since k, can be trivially computed lIsing Table 5, alld since IA,I Ca.1I be 
read off from Table 2, Theorem 1 instant.allcollsly <'lia hies us 1.0 det.el'lllille if 
A is self-dual (if il. isn't, we can use' this argument. 1.0 ddermin(' wlla.!. lAI is). 
Ail that. is required is the A'-independencc of t.he gille gCllerat.ors, which is 
also required by the method of §2. 

A'-independence is trivially satisfied wlwnever e = 1. For ('xampl(~, we 
can trivially show that the only self-dual gluings of t.he forl1l An[A:] a.re pl'e
cisely Ak2-dk] for k = 2,3, ... (for exarnple A2,,[5]). Also, 1,11(· only self
duallattice of the form E;[k1 ••• kn ] is E?[11] (which, iIlCid(·lIt.1y, is t.he ollly 
14-dimensional indecomposable self-dual latt.icc), and t.here aJ'(~ 110 sdf-clllai 
lattices of the fmm E:f[kl .•• kn ]. For I! > 1, to gel. A'-illdepefldenœ will ill 
general require sorne straightforwanJ manipulations (se<! pp. :11:i-:110, IIll N). 

Example 3.3.1 The Niemeier lattice A = (A~, [(111)]) 
Unfortunately gl = [114], g2 = [111] and rh = [111] a1'(;n't (AV-znd';]Jcn

dent - not by a longshol. They ail hlWC clutmdl;1'ihtzc .9, and (l fjuù;k chuk 
reveals 3g1 + 3g2 + 3gJ = 0 (io see tins and the othCl' calr:lllatunu; hCl'e, 1/,',(' 

the glue group column zn Table 3, 80 addztion of gluc 1Jtct01'8 811ft])1!} ')(;C071W.C, 
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addition modulo 9). Now applying elementary row and column operations we 
get 

( ~ ~~) --+(J j ~)--+ (H ~). 
333 003 003 

The first operation operated on the columns, and so corresponded to a change 
of glue veclor generators. ln fact g3 -+ g~ = 91 + g2 + g3 = [666] with 
a new characteristic 0/ 3, while gI and 92 were unaffected. Note also lhat 
9. - .Q2 = [603], so 3g. - 3g2 = O. 

(

9 00) (9 o 9 0 0 
003 --+ 0 
3 -3 0 3 

~ ~) --+ (H ~). 
o 0 3 0 0 

Again the firsl operation is the only column one, corresponding to 9~ = gI -
g2 = [603] for a new characleristic of 3, while g2 and g~ are left unchanged. 
Finally note that 3g2 = [333], so 6g2 - 93 = O. We can proceed as above, or 
wc may simply drop g;. Eithel' way, we get that gI, g2, and g3 can be replaced 
with g~ = [603] and g2 = [411]. 

l'ltcre arc sClleral ways we can verify their (AV-independencc. For exam
lûe, looking at the second "component" of m[603] + n[411] = 0 gives us that 
9 divides 71. 

Of course, TheOlY'.7n 1 now immediately tells us that titis gluing is self-dual. 

Theorem 3.3.2 Let gI, . .. ,g( be generators, not necessarily N-independent. 
T'heu A fails 10 be self-dual if kl··· k; < IAII" ·IAkl. 

The final mcthod 1 will discuss also computes lA 1 directly. It dways works 
(unlikc the fil'st method when the gluing isn't redundant), it doesn't require 
A'-indcpend<.'l1cc in any form, but at least for smaller l requires more effort 
than the J>l'cvious two methods. We need first a preliminary result. 

Lct A be an n' x n' matrix, and let J and J' be subsets of In' with elements 
J, < J2 < ... < Jn and J; < ... < J~, respectively (so 11111 = IIJ'II = n). 
D('finc Aj, 1.0 be the TI x n submatrix of A satisfying (Ai, )11 = AJ,J; (so, for 
examplc, IAJI = IAil). 
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Theorem 3.3.3 Suppose A = BC, where Band C ure n' X n" und n" x n' 
matrices, respective/y. Then 

where the sum is over ail those sets J" ç In" with n e/cmen Is. 

(Note that this formula closely resembles ordinary mat.rix multiplication 
- in fact it reduces to it whcn n = 1. AIso, fol' n' = n = n" this bccolllPs 
the usual IBCI = IBI . ICI, In the event that n" < n, no such sets J" ran 
be found, and the sum, being over the empty collection, must vanislt. This 
corresponds to the well-known fad that thc dcterminant of il mat.I'Îx Ilot, of 
full rank must be zero (A, and hencc Ai" can have rank at. llIost 11").) 

pro of: Note that the ith column of BG Îs LJ c);J' 'l'he dl'l.cl"mi
nant can be interpreted as a bilincar alt,crnatillg f01'l11 acting 011 

column "ectors. This implies 

n" n" 

= 2: ... 2: l (jl"" ,jn)CJI.I;·'· cJn.l:.IJJj" 1 
JI Jn 

where J" = {jI,." ,in} and l{jt,.,. ,in) is the Levi-Civit.a. sym
bol, equal to ±1 or O. Of course this las!. tcrfll just si IIIplifics 1.0 

the desired expression, 

.1" 

Now let's return to the gluing A = (At, ... ,Ak,YI" .. ,!Je) (reCel' t,o t.he 
beginning of this chapter for the notation). 

Let M be the (n + f) x m (non-integ<!r) matrix 
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Choose a basis for A and let M' be the eorresponding generator matrix. 
This basis spans A, so there exists an integer matrix V sueh that V M' = M. 
Similarly, the root and glue vectors also span A, so there exists an integer 
matrix U sud that U M = M'. 

L(!t A he the (n + f) X (n + l) matrix M MT, and let A' the n x n Gram 
rnatrix M' M'7'. Then VAUT = A' and V A'VT = A. 

The above theorem now imp~ies lAI = IA'I = L t}},IA::,I, where the sum is 
over ali J', J C In+( with IP'II = IIJ" = n, and where lJJ' = lU JI'I(UT)J'I E 
Z. Therefore the greatest common divisor of aIl lA::, 1 must divide lAI. 

Similarly, lA::, 1 = tJJ' = IV}I· I(VT)J,I E Z. Therefore lAI must divide 
each IA1,1, and hence their greatest corn mon divisor. 

Thus, wc have proven: 

Theorem 3.3.4 lAI =gcdIA::", provided A (i.e. A) is iniegrnl. 

III theOl'y this requires (nt l
)2 n X n determinants to be taken, and then 

thcir g('d to he calculatcd. At least for self-dual A, in actual practice it seems 
only gc(IIA~1 is required. Though it is geometrically obvious that lAI must di
vide gcdlAj l, the reverse (to me, at least) seems far less clear. Armed merely 
with sorne gcncral gcometric considerations and a few specifie ex amples , Lam 
proposed (prior to my discovery of Theorem 4) that perhaps lAI =gcdIA}1 
always holds. Although 1 have becn unable to prove (or disprove) this origi
nal formulation of the "gcd method", his intuition has sinee been viudicated, 
to a large cxtcnt, by Thcorem 4. 

Of course, by an eartier result each IA}I must be a perfect square if A is 
to he self-dual. Also, if a gcd of 1 is reached at any time during the calcu
lation of the ('ljt)2 determinants, then (provided A is a Z-matrix) we may 
conclude that t.he gluing is self-dual. Sincc we're really only interested here 
in whctl){'r A is or isn't self-dual, for those reasons usually few determinants 
Ilced be calculated (sec, for example, the many examples given in LAM4, or 
t.he examples givcn below). 

Thcorcm 1 is valid for any integral lattice, but for the cases we're in
t.ercstcd in A is sparse and, hence, so are each 1 .. 1::,j. Thus these n x n 
deterrninants can be painlessly calculated (see the following section). 

Example 3.3.2 Dt fol' evcn n. 
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Choosing J = J' = {n} yields lAi,' = 1. Since D~ is intcgral. wc necd nol 
go any further - the detcrminant of D~ must be a posititle intrgr,' tlividing 
1, and hence must be 1. 

Example 3.3.3 E?E~[1l111], and A:A~ll11ll]. 
In both cases let J = J' = {1l+1} (i.e. remove Ihe generator). J'hen IA::,I 

is simply 2233 , which is not a perfect square. Thc detcrminalll of Ihfse two 
gluings must then both be a multiple of 3. Althotlgh wc still don '1 knolV the 
exact value of the determinant at this carly stage (in farl Ihf drle7'1/wHml 
turns out io be exactly 3 in bolh cases), we do already know IIle/lf glUl1lgs 
cannot be sdf-dual. 

These two exarnples indicatc the situations in which this ged J1l('t.hod 
can be prematurely terminated (in practicc, it seCJ1lS 2 or :1 d(,t.(~rll1inants 

are necessary). They also hint that perhaps it is only neccssary to eonsid('J' 
J = J'. 

Further (less trivial) applications of this rnethod rnay he found in LAM4 . 

3.4 Calculating the Determinants 

Two of the tluee methods considcl'ed in the previous t.wo sections l'(~qui!'e th(' 
calculation of n x n determinants for largc n. This section descrih('s one way 
to do this. 

Probably the quickest way in general to calculate the dcterminant, of a 
large N x N matrix is by making it upper triangular by applying c1emcntary 
row operd.tions to the matrix. This amounts to making about N3 /3 divisions 
and multiplications, which can bccome unmanageablc fOa' Ia!'ge N. 

The matrices considcrcd herc are fortunatcly of a rat Ile!' spc('ial fonn: 
they're sparse (i.e. most of their cntries arc 0). Stunning computat.iolls art~ 
possible with thcse. Even in 1968 solving systems of lincar cquat.ÎoJls of order 
5000 was commonplace, and today this has increased a thousalld-fold (se«! p. 
(v), PIS). AlI that is required is that the relevant matrices he sparse. 

Our matrices are not only sparsc, but thcy have a handwidth of :1 almost 
everywhere. This has enablcd Lam (sec LAM4) to come up wit.h an degant 
graphical mcans of computing their determinants. Although in the cornpllt(~r 
age his techniquc is almost cel'tainly unneccssary, a«!sthetic cOllsiderations 
demand its inclusion here. 
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The determinant of an N x N matrix A can he written as 

N 

lAI = L: (-1 t(1f) II A ,1f(i), 
1fESN 1=1 

whcrc 0(11') = 0 or 1 depending on whether 11' is, respectively, an even or odd 
permutation. Choose any index i E IN. Decompose 7r into a product of 
disjoint cycles, and let C(lT) = (j,il, ... ,it-I) denote the cycle containing j. 
Calling 11'* the permutation lT/C(lT), we get 

lAI = L r(C(7r»)(-lt(lI"e) I1A1II"e(l) = L:r(C)IA~1 (cali this (*)) 
II"E8N iE) C 

whcre J = IN \ {j,i}, ... ,it-d, r(C) = AJ)1AJIJ2 .. ·AJt_IJ(--I)l+I, and 
where the final sum is over aH cycles C containing i. A~ is the suhma
t.rix describcd in the previous section. This is called "expanding about node 
j" for l'casons soon to he apparent. 

For example, t.his formula can be used L() get the recursions 

and the c'Iuations 

whkh l'an 1)(' solvcd 1.0 yicld the values for the determinants given in Table 
~. III th{' following two examplcs 1 explicitly show the calculations involved 
in finding tlH'sC kinds of rccursions or equations. 

Exanlple 3.4.1 ntn (sec Figure B(a)) 
IVe will expalld about the glue vector [l} (this is a natural choice, as the 

1Y','iulling gml'hs will corrcspond to ordinary root laltiees whose determinants 
we ran rCUlI off f7'Om Table 2) . 

.4 ... li Iwa y.'i , lIu' I-cycle contribules a non-zero term: here 

f(C) = A[I)[II(-I)l+l = 2n/4. 

The gmph Ihal n?ma;IlS 1S ]Jl'ecisely tliat of D2n- 1 • We may now read off from 
Table 2 IIwl 1 J)2n-tl = 4. 
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The only other cycle in the Coxet[r diagram confaimng [1} ,." C = ([1]1). 
Then f(C) = (-1){-1)(-1)2+1 = -1. The dzagmm Ihal l't'mai1ls afler 
removing the nodes in C is p7'ecisely that of 11 2n - 2 - and 7i/ble 2 /flls lt,,, 

IA2n- 2 1 = 2n - l. 
Tf us IDtnl = 2n/4 ·4 + (-I)(2n - 1) = 1. 

Exarnple 3.4.2 We shall ve1'lfy (D~, [llJ, [22]) is self-dual by Itsmg IIH' basis 
given in Figure 7(c) , and by expanding about node J = [Il]. 'l'hr o1lly cyclcs 
C with non-zero r(C) are the Sloops m the CorelCl' diagmm ..,/wwn lU fi'lglLlY' 
7(d) , togelher with the Invial cycle of Icnglh 1. 

First conslder C = (j). r(C) = 4· (_1)2 = 4. 'l'hrO/lll1lg (lway {;} ((lml 
the segments contaming li) d,sconnccts the dwgmm l1lto 1100 !Hrcc.<;. 'l'heM 
pieces are indistmgtllshable from AI2 (tlwnks to the good beltall1011l' of (22J) 
and A3' so IA~I becomes sl1uply (12 + 1) . (3 + 1) = !)2. ,/,1111,., Ill/.~ In'1!l 
contribuled 4 . 52 = 208. 

There are 3 2-cycles in the dzagram passing Ihrough [11J. O/lf' yu'ld,..; 
f(C) = (-1)( -1)( _1)3 = -1 and lAi! = (Il + 1 )(:1 + 1) = ,18. "no/I!f/' IHl ... 
r(e) = (-1)(-1)(-1)3 = -1 andlAjl = (12+1)(2+1) = :m. Fm al/y, '''C1'(' 
is f(C) = (-1)(-1)(-1)3 = -1 and IA~I = (7 + 1)(4 + 1)(:1 + 1) = )()() . 
Ali other 2-cycles have 1'( C) = 0 and so fUTI br (qno1'rd. '/'h( M' l'OII/l'dml,' 

-1· 48 -1· 39 - 1·160 = -247. 
The only other non-zero terms come fl'07n a 9-cyclr. 

f ( C) = (_1)8 ( + 1 )( -1 ) 10, 1 A ~ 1 = (4 + 1)( ~ + 1) = 20. 

This cycle can be travcTsed boUt c/ockwise and couulcrclockwl.'H' (unltkt· !01' 
2-cycles, these traversais are different - i.e. C f. C- 1 J, 80 1/1(' IHW(' an 
additional factor of 2. 

The'refore lAI = lAI = 208 - 247 + 2·20 = 1 and A 18 ... df-dl/al. 

Similarly, the determinants of ail such 'r('dllndant' gluings (:-.pe ~i2) cali 
he computed. 

An additional complication is introdllœd into tlu' caklliatioll of dl'lnllli
nants IA~,I for J f. J', Of cour:-.e, cquatioll (*) still hold:-.; tlU' l'l'olllc'lII is 
with the diagrams and theil' interprctation. 

J =1= J' simply implies Ai, is no longer syrnmetric. This sugVpsts we 
huild our diagram out of directed line segments: c.g. repf(~!>Œt the sitlliltiofl 
(Ai,),] = -1 and (AJ,)], = 0 with il segment linking node!> 1 illld J, directed 
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fromt t,o J. Note t.hat in gencral a node label J may refer to a different no de 
(i.e. basis vedor) depenJing on whether you want anode at the tail of a 
s(!grnent. (i.l'. a TOW index of A, like J)) or one at the head (i.e. a co/umn 
index of A, lik(· .1;). Ail t.his tdlk of lahels and row and column indices may 
S('c'rn 011 t of pl.tcp h('1 e --- artcr ail, thc method used in thc above examples 
(>ro('(· .. <I('<I <llIite' ind('p('ndclltly of any choice of node lahels, etc. Indeed, this 
WctS on<' l)f its mo~t. appealing features. But equation (*), which lies at the 
he·alt. of t.his 1IJ('t.hod, presllpposes suclr a choice. For the symmetric case IA~I 
wc' Cél/l (ami clic!) (ompl('t.ely ignore all this as irrclevant to the calculations, 
b('('allse' al/y /'('Iahplling of t1J(' nocles induccs identical permutations of the 
row and COlll1l1ll illdi('('s, I('aving IA~I unchanged. Equally important, the 
COXl't(· .. diagl'am is abo 1I11aff"ct('d. But in the nonsymmctric case it is no 
lon~1'1' d('sirable t.o 1)(,1'1I111t.(' tire row and column indices identically, as we 
shall S(·('. Iknp! .... (· of t.his, 'A::,' can he affected (though ollly trivially - it 
can chaug(' ~lgn), bill. /JI0~t. rcl('vant., the diagram and our notions of cy::les 
alld lIod('s éll(' plofoundly aff('rI,('d: the practicality of the Il1cthod depcndson 
t1H' J'('lah('lIll1g, for t IU'lctlH'lIing we inherit. by default is hardly a satisfactory 
(1)(' in g('Iwral. 

Wc' ~hilll H'élrrilIlg<' t.he IOW:- and colul11ns of A~, so that, as much as 
pmsihll' (i.(·. fOI ail /lod('s in J' n .1), the zth row alld the zth column both 
n·f('1' t.o t,fw S<I/lH' \'(·c!ol'/lIod(·. This will at m0st change the sign of IA~,I, so 
willlrav\' IJO illfllwll('(' 011 t 1)(, final gcd ca\culation. 

III parti( IIlal', constmet the diagl'ams as follows: l'eprcscllt by "0" (as 
IlslIal) ail indi((~ in .J'n.1. HPIH('sC'llt by "6." each index in J\J', and by 
"V" t.ho~e in .J' \ .1. COIIIlC'ct thesc wit.h dircct('(1 or undirectcd segments in 
t.lH' lllallll<'1' Ollt Irlle<! dho\,('. For instancc, ail segmcnts with an endpoint at 
ét "6" will hl' dlrC'ct,(·d away fl'Om that node; ail with one at a "\1" will be 
di l'('('kd i lit () il. 

Fol' (,xéllllple, cOllsider again ([)~, [I 1], [22]). See Figure 9(a). Suppose J 
consist:- of ,III noc/es (',\('('pt fol' t.hc t,wo showll with a bar above them, and 
SllppOS(, ./' ('()IISI~t s of ail hut. t.hosc IInderlillcd. Wc wOl/ld rcpresent thi~ as 
i Il Fi~1I /'(. 9( Il). 

Nole t hélt in gellt'I'cli t ht'/'(' will he at. rnost e nodcs looking like "6." , and 
an ('qllc\1 11111111)('1' lik(· ,.,j". Pc\Îr t hese off, and treat each pair as a single 
110<1(" as was dOlw in Figure' 9(c). Therc arc diffcrcnt ways of doing this 
- SOI1l<' ways an' b<'ltC'1' than othcrs. Figure 9(d) givcs the single (and less 

dt'sil'ahle) alt<'IIlc\ti\'t' to Figmc!)(c) (among other things it is non-planar-

84 



Figure 9: Coxeter Diagrams When J #: J' 
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you must ignore the intersection of two of its Hnes). 
This pairing refers to the choice of one index (say j) to refer to two 

different vectors. One of these vectors, the one corresponding to the "f:::,." in 
the pair, is referenccd any time j is used as a row label; the other, the "'\l", 
corresponds to j as a column label. For the nodes like "0", these two vectors 
are equalj for the nodes like "0" these vectors are different. 

The use of equation (*) now proceeds as before. The resulting Coxeter 
diagrams are more complicated than in the undirected ones, but the presence 
of directed segments reduces significantly the numbers of cycles. 

Example 3.4.3 Consider the diagram in Figure 9(c) of (D~, [11], [22]). We 
shall cxpand about the upper '0". 

Conveniently, tltere are only two cycles through this node. One is the 
cycle of lengtll 1, of course, but here the corresponding term in (*) vanishes 
bccausc the node has "norm" O. The remaining cycle is of lenglh 14. For it, 
r = (_1)14(_1)14+1 = -1. The resulting 2x2 determinant is I_~-!I =-1. 
Thcrcfore IA~,I = (-1)(-1) = +1. 

Most other examples are a little more complicated, and may require ex
panding about a second no de to simplify the additional determinants that 
anse. 
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4 Compact Lattices 

4.1 The Problem and Its Physical Context 

In this chapter (at least in §§1-3) we aren't concerned directly with the 
lattices studied in the earlier chapters, but rather with thcir quotient -
i.e. with compact or toroidal lattices. In Chapter 1, §5 we discussed a 
certain parametrization of the various string theories. However, any single 
string theory could he represented by different sets of parametcl's -- wc shaH 
discuss this in the present chapter. Mathematically our task in this chapter 
will amount (as we shall see) to finding aU bases of these toroidal lattices. 

The boson fields X B in a (closed) string theory are defined on the 2-
dimensional manifold (0', t). Since t7 is the string parameter, 0' and t7 + 7r 

represent the same point. X B is itself not observable, so it isn't necessary for 
it to he well-defined in this sense (i.e. he periodic). Nevertheless its hehaviour 
under the rnapping 0' ---+- t7 + 7r is still of major importance, and the phase 
gained yields the "boundary conditions" of the field. As was mentioned in §5 
of Chapter 1, the (L + R)-tuple w characterizes these boundary conditions: 

where fA = ±l for left/right movers, and where B = 1,2, ... , L + R. Wc 
found that we needed several houndary conditions (for the eso projcction); 
each choice of boundary condition corresponds to solutions living in a differ
ent Hilbert space, called a sector, and labelled by a q-tuplc k. 

w(k) = (w~,w~, ... ,w~;w~, ... ,.w~) is the phase of the sector labclled 
with k = (kl!"" kq). It turns out to be nearly Iinear in k: 7V( k) = 
E!=l kaWa - w"(k), where (by convention) 0 ~ w~± < l, and whcre w±A(k) 
is the integer ch os en so that w~ (k) is similarly in [0, 1). 

In addition, each w~(k) is rational, so we can write w~(k) = r~~k), with 
na being the smallest corn mon denominator of thcse componcnts of wa (the 
consequences of seleding na to he a larger corn mon denominator will soon be 
clear - essentially speaking, either simplicity or information is lost). Also, 
the integers ka are in [O,na). In short, each w(k),wa E ([0,1) n Q)/,+R, and 
k E Zn! X Zn2 X ••• X Zn" = n~=l Zn ... The phases w( k) give us the boundary 
conditions and are in this sense physically significant: changing them will 
change the solutions and hence will in general change the theory (except fol' 
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global rotations SO(L)x SO(R ), sinee w(k) enters into measurable quanti
ties only in dot products, and exeept for translating the phases by integers, 
because of the factor 21ri). In this chapter we'll consider redundancies in the 
characterization of string theories given, for example, in LAM3. 

Different choices of pararneters like Wa , R, Land q (usually) amount to 
specifying different string theories. However, only sorne of these have hopes 
of adequately representing nature (they must be modular invariant, etc.). For 
example, there must exist integers Fa (associated with the fermionic phase 
F(k) of the vacuum l!l)k ) satisfying: 

(L) 2ra . 'Î' + naFa E 2Z ; 
(Q) r~/na + naFa E 2Z ; and 
(0) Ta' TlJ Dab E Z , for all a :1 b. 
Here, t = (!, ... , ~), Da" = (na, n,,), and the met rie determining the 

dot products is GL,R. Denote (L), (Q) and (0) collectively by ~ - they, 
together with (N) (see §5, Chapter 1), amount to ensuring the resulting 
theory be modular invariant. 

Dy the phase "lattice" 1 mean the structure A = {w(k) 1 k E TI Znal. It's 
not a lattice as we defined the term in chapter 2 - rather, it 's the quotient 
of the lattice Z(wa ) with its sublattice ZL,R. A is thus a kind of discrete 
tOl'US. The twist parameters wa uniquely determine A, and in fact constitute 
what we'll cali a basis for it (provided the q vectors are linearly independent 
in a sense we'lI specify in the next section). 

Now, appropriate transformations of the wa's may merely "rephrase" a 
particular string theory. Changing the wa 's doesn 't necessarily change the 
tv(k)'s, provided we also reshuffie our sect or labels k. More precisely, suppose 
wc have two different sets of twist parameters, {wala = 1, ... ,q} and {w~lb = 
l, ... , q'}, with denorninators na and n~ respectively. These both help define 
different theories, but under certain situations we may expect these theories 
to he only superficially different - isomorphic, in sorne sense. In particular, 
consider the pos si bilit Y that there is a qxq' Z-rnatrix V such that w'(V(k» = 
lV(~') V k. (As with the case of lattice congruence or similarity in §3, q ::j:. q' 
is a possibility, corresponding to an embedding or projection.) V is the 
"reshuming" mentioned above. 

Whether V is itself cne-to-one or onto is irrelevant. V induces a lattice 
transformation V : A --+ A' given by a -+ w'(V(w- 1(a»)). V must be 
well-defincd (i.e. independent of the choice of w-1(a) if w isn't one-to-one), 
onto and one-to-one. In fact, from these properties of li we can conclude that 
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the set of points that comprise A equals that of A', and li can be intcrprcted 
as the identity on that set. Also, if the twist parametcrs lba are linearly 
independent, the condition on li reduces to the simplcr condition that. tll(' 
restriction V : TI Zna --+ n Znbl be one-to-one and onto. 

The reason we must have tiJ' 0 V = W (or, cquivalently, that the points in 
A be precisely those in N) is because, unlike the twist paramctcl's t;,u 01' the 
sector labels k, the phases tU have real physical significance. Wc can '1, chang<' 
them in general without changing the fields they correspond t.o. Exccpt for 
the trivial changes obtained by adding integers, we arc considering in titis 
chapter only transformations for which, symbolically, W' (k') = tb( k). 

If such a V do es exist, then we shaH say that the linear map U scnding 
{wa} to {w~} is "reversible", and say that W/, is "attainablc" fl'Om tOa, for 
lack of better terms - the differences in the two sets of t.wist paramd('l's 
captured by this U can be undone by V. Reversibility is the genel'ali1.a.tioll 
of invertibility appropriate herej it should succced in revcaling many of t.he 
redundancies inherent in the formulations of §5, Chapter J. 

The reversible V are precisely those mappings that can he intcrpl'<'t.('d as 
basis transformations of the phase lattice. The usual rcquircmcnt. of a hasis 
tran::,formation (e.g. one in a true latticc) is that. il. be invert.ible (for il lat.l.ice 
this amounts to lUI = ±1, we found). Wc can wcaken this here 1.0 our not.ioll 
of reversibility, thanks to the fad that A is t.he quotient. of la t.t.ices. If u- 1 

exists then V = U- 1 works, but therc is little justification fol' illsist.ing UpOIl 

the (seemingly natural) demand that V always equa.l V-l. 
We are being mor ... general here than wc may appcar to be. For exitlllple, 

consider any function F : n Zna --+ n Zn~ satisfying ù/ 0 ft' = ÛJ. Theil 
wc can wlog take F to be linear, and represcnt it by a matrix V. ('1'0 sec 
this, use the (ad that ÙJ and tiJ' are tinear functiolls of k alld k', Illod 1. III 

particular, tiJ'(F(kl + k2 )) = (w' 0 F)(kl + k2 ) = w( kl + k2 ) = 1iJ(~:I) + 1iJ(~:2) = 
(tiJ' 0 F)(kd + (w' 0 F)(k2 ) = tiJ'(F(k.)) + (ti/(F(k2 )) = ti/(F(~'d + F(k2 ))·) 

We will find out in the next section that attainability is ail eqllival(,lIce 
relation. There we will express reversibility in a much more appealillg JlJatrix 
notation. In particular, we will show that il. will be suHicimt, givell sOJlJe 
matrix E, to find aIl Z-matriccs U, V sueh that II = RUV (rnod n). 

After solving this in §3, 1 will discuss how weil these basis tnnsformaf,iolls 
respect the modular invariance relations ~ given earlier. 

Perhaps the most significant consequence of the following solution is th(! 
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devcJopment of convenient machinery allowing us to handle basis transfor
mations in these compact or toroidallattices. 1 have been unable to find this 
discussed in the mat,hematicalliterature. 

ln the final section of this chapter 1 will discuss brie8y an unrelated 
problem: why the momentum lattice must he self-dual. 

4.2 Restatement and Preliminary Results 

Let n be any common multiple of nI, ... ,nq, and set ma = :0' Define 11. to 
be the (L + R) x q Z-matrix given by 

1 1 1 w1+ wH Wq+ 
1 1 

2 m1 rH mqrq+ 
WH 

L 

ll=n L L ml r I+ 
WH Wq+ - 1 

wl 
ml r l_ 

I-

R R 

wR wR 
mlr l_ mqrq_ 

1- q-

and let Ha denote its ath column. Define N =diag(n}, ... , nq), 

( 
w~ ) ( kt ) 

R(k) = n ~~ and finally k = ~ . 

In this matrix notation, we have 

R(k) = B.. k + nw"(k). 

The components of R, R, k and w"(k) are in Zn, Zn' Zno and Z respectively. 
Note that incrementing some ka by na changes each component of H· k by a 
multiple of n, so extending w"(k) in the obvious manner allows us to consider 
ail k E (ZII)q. Though this extension will prove to be mathematically desir
able, it docs present sorne complications, for now mlm2" • mq "labels" (Le. 
differellt k's) represent the same sector, i.e. the same boundary conditions. 

When tral1slated into this new notation, the relations (L), (Q) and (0) 
bccomc: 
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(V): 2&, t + nFa E 2maZ i 
(Q'): o;,,/n + nFa E 2maZ i and 
(0'): Ba· 11 E nDabZ( = mambDabZ), where Dab = (m a ,1I1,,), for ail 

a ~ b in Zq. 
The vacuum parameters used here have the same value as those used 

earlier in~. (L'), (Q') and (0') are completely equivalent to (L), (Q) and 
(0) : given any initial set of parameters Wa, L, R, etc., if wc define 11, etc. 
as above, then (L), (Q) and (0) will be satisfied if and only if (L'), (Q') and 
(0') are. 

These relations follow from the original three in !R by repeatedly making 
use of Ra = mara and n = nama' Denote these three relations also by ~. 

It is certainly not required that n be the least common multiple of ni, n2, ... 
- the form of the above relations is independent of which multiple we take. 
This is not so with na and the original equations. There, if wc allowcd n.a to 
be any common denominator of the w~± 's, new factors, complicating boUt 
sets of expressions, would have to be introduccd to accommodatc the change, 
for failure to introduce these factors would result in the constraints ~ being 
weaker than those given above. Thus, simplicity dictates that wc choose the 
na's to be minimal. However, no such argument applies to our choicc of n 
- in other words, we can fix it from the start, so the question of how it 
transforms is answered trivially. 

Note that incrementing any element oC R or k by n results only in the 
elements of Hk being multiples of n. These multiples arc readily absorbed 
by tiJ". Similarly, the right hand sides of ~ absorb the new terms creatcd 
on their left hand sides by this change in 11 or k. Thus, wc may intcrpret 
R( k) = Rk + nw" in two new ways: as an cquation over ail k E Z, or as 
an equation in the integers modulo n (i.e. the elements of il, 11, k and ÛJ" 

are aIl in Zn)' In this latter interpretation, ntiJ" = 0, so wc have cfrcctively 
linearized our equation: 

R(k) = l1.k (mod n). 

In this way we can ignore the complicated behaviour of tiJ" uudcr the trans
formations U and V - the role of W" is effectivcly handled by using modulaI' 
arithmetic. 

We shall use both these interpretations in what Collows, but for the rnost 
part we'll restrict ourselves to mod n. 
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To rcpcat, we are concerned with solving the equation (written symboli
cally) 

iiJ'(k') = iiJ(k). 

'l'hat. is, wc are intcrestcd in lattice transformations U (taking wa -+ wb), 
and rclabellings V (taking k ~ k'), whose net effect is to leave the phases 
li) of cach scctor unchangcd. This amounts to choosing a new basis for the 
'Iat.ticc'. 

Usillg the notation introduced carlier, we thus demand that Bk = RUVk 
(mod n). Since this must be sat.isfied by ail k, we immediately get 

R = RUV (mod n). 

Unfort.unatcly, this does not imply UV = 1 - a reversible transformation 
1Iccd not be inverliblc over Zn, and especially not over Z. In addition, the 
choicc of laHicc basis transformation (i.e. a rcversible U) does not uniquely 
ddcrminc the transformat.ion law of k (i.e. V), or vice versa. Thel'e exist 
li x li mat.rices E -:f 0 (c.g. of the form E = NA) satisfying RE = O. Ali that 
is rcquired is thal. UV = 1 + E fol' one of these E. 

TIH'oJ('1Il :l.5 on p. 351 of HUN tells us that: 

Theorem 4.2.1 U 18 invcrllble over a commutative l'mg R with umty ~ 
I{li ;8 a Ill/If (i.e. an l1lverlible elemeni) in R. 

[! inverti hIC' over R rncans that the R-matrix U has an inverse V which 
is also a H-matrix. This has two cOl'ollaries. 

Corollary 4.2.1 U i8 mverlible ove7' Z iff lUI = ±1. 

This illlplics, for cxamplc, that basis transformations of (true) lattices 
1Il1l:;t. have dC'tcl'rninant ± 1. 

Corollary 4.2.2 U 18 invel'fible over Zn iD lUI is relatively prime io n. 

For ('xample, the matrix 
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is invertible over Zs - its inverse is 

But U doesn't have to be invertible over Z (in which case E = 0) or 
Zn (in which case E = 0 (mod n)). For example, it is qllit.e possible for a 
perfectly acceptable U to satisfy IVI == 0 (mod n), in violent oppositioll t.o 
our two corollaries. The determinant, such a powcl'ful tool (as '1'1\('01'('111 l 
indicates) in both linear algebra and latticc thcory and c1s('wl)('re, is Il:-;e!e:-;s 
in the following analysis - it's too "high-Ievel". We noticcd BOille chang('s ill 
going from linear algebra t.o lattice thcory (e.g. not ail gcnc\'i\t.ing sds hae! 
a subset which was a basis)j there are additional casllalt.ies in goillg frolll 
lattice theory to compact lattice thcory. 

There are two possible sources of this complication: (i) the inevit.ahl(' con
sequences of our choice of notation, namcly the many-to-one la hell i ng cilused 
by our extension of the range of k, as well as the replacclllent of t.he 11et wit.h a 
corn mon multiple nj and (ii), a "removable" consequence cOl'lespondillg Ilot 
to the new notation but to a poor selection of parameters. 'l'he fornH'r sOllr('(~ 
will al ways be presentj the latter is present only if in the origilwl formulat.ioll 
(where kEn Zna' etc.) difrerent k's (i.e. different sed.ors) Gin correspond 
to identical phases w(k) - alternatively, that the wa's arc, in sonl(' weak
ened sense, linearly independent. We can avoid this (to an ext.ent indiciI,t.(~d 

below) by demanding that the wa 's be Iinearly indcpcllclcnt. lIoweV<'r, this is 
a needlessly strong restriction. The specifie fonn of lincar indepcnden('(' WC! 

require, which wc will caU (na)-independencc, is that wherwwr lhcn' (~xisl 
numbers Ca E Zna :;atisfying L: CaU}a E zq, thcn c) = ... = ';'1 = O. (This 
Is very analogous to the definition of A-independellcc given ill the previolls 
ch"pter.) For example, w) = (~, .. ·,t) and W2 = (~,,,,,~) are ind(·(>endcnt. 
in thi., sense by not in the usual sense. (ii) applics for insta.nce wh('IJ wc do 
not insist that na be the [east common denominalor of the compollPIlt.S of 
wa • 

Normally (e.g. in a vector space), when vcctors are lincarly d(!pelldcllt 
we {'an express one in ter ms of the othcrs, and thus reduce hy al least Oll(~ 
our set ot vectors. This is not ncccssarily the case he\'(!. What wc GUI always 
do (as can be seen from Example 1 in §3 of the prcvious chapter) is Iillearly 
combine the vectors wa to form new vcctors w~, whosc denornillalors Tt:, are 
in general smaller than na' Provided we discard those vcctors (if any) with 
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n~ = l, the ncw set of w~ are (n~)-independent. But n' = n, and in aIl other 
respects the theory spccified by these 1.ô~ is identical to that given by the 
original tila -- subject to the appropriate reshuffiing of the labels k of course. 
Such a basis tra.nsformation is in fact "reversible". 

III Ijllear algebra, an invcrtible transformation acting on a set of linearly 
indepenclent vectors will map them onto a second set of linearly indepen
dellt vedol's -- i.e. invertiblc transformations preserve linear independence. 
UnfOlt.lInat.c1y, (na)-indepcndcncc is not preserved by reversible transforma
t.ions, and this will cause sorne problems. 

For example, consider n = 6, 

il = (~ ~) ,U = (~ ~) ,and V = (~ ~), 
so V "reverses" U. Then 

R'- (35) - 3 1 . 

Not.e tltal. nI = 1/~ = 2 while n2 = 3, and n~ = 6. Since n}n2 < nin~, 
wc' kllow t.ltat, though the columns of Rare (na)-independent (as is readily 
sccn), t.he colllrnns of n' cannot be (71~)-independent (indeed, 

1 . ( i ) + 3. ( ~ ) = ( l~ ) = ( ~ ) 
hut. 1 t 0 (mod 6).) 

n 71, l'epn'sent.s t.he Humber of sectors (r:ounting "multiplicities" - i.e. 
diffcl'('Ilt. labels t.hat correspond to ti:e same sector) if we only allow ka E Zna' 
This Ill1l1lbcl' will change as we change bases. The minimum value it can take 
(which is l'('alized whenevcr the basis is (na)-independent) equals the total 
nllllllH'1' of physically differmt sectors, i.e. scctors corresponding to different 
hOllndary condit.ions. Allowing, however, ka E Zn yields nq total sect ors 
(counting lIlultiplicitics), wit.h many repetitions. 

ThIlR, wc can avoid the unpleasantries of (ii) by demanding from the 
start. that different scctors should correspond to different phases, or equiv
al('nt.ly, that the tVa be (l1a)-independent. (But strictly adhering to t.his de
man(1 would force us to throw away rcversible transformations like that given 
ahon'.) WheT\evcr (ii) is satisfied, we can find an equivalent theory for which 
(ii) is ilOt., so (ii) is indccd only an inconvenience caused by poor foresight 
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when choosing the parameters, and doesn't correspond to sOllle "physical" 
effect. 

So we can avoid (ii) by demanding (nll}-independencc of t.he Û'II! but w(~ 
must recognize that we cannot maintain this demand if wc ('onsider (a.<; we 
will) compositions of basis transformations (unless wc r<'strict. ollr att.(·IIt.ion 
to basis transformations that preserve (ua}-independencc - i.(~. for whkh 
nI ... nq = n~ ... n~,. This suggestion is particuJarly intcrcst.ing, as we'll s('e 
Iater). 

(i) is another story entirely. Vou cannot get sOllwthing for lIothing, il. 
seems, and the mathematical simplifications result,ing from choosing a ('0111-

mon denominator n for ail the components of ail t.he tÙ" 's -- nalll('ly, t.hat. t.Ilf' 
additions of different ra 's, relcvant when considcring basis t.rilIlSrorllléLt.ioIlS, 
now become trivial - are directly responsible. Wc cannot, as \Vas tlw CiU;(' 

with (ii), assume the problem away. OUI' intuitions t.hat 1.11(, 1.,'(\IISrorlllill.ioIlH 
U and V be invertible, that given one the otller is IIniqllely dd.('J'JJlill('d, al'(' 
violated here, but only by this translatcd version of the problclIl (alld hy (ii)). 
Within t.he confines of the original, physical phase lau'icc t.hes(' illl.uit.ions (lI'(' 

indeed valid, but t.he corresponding mathematics is mlJ('h 1II00e awkwar(1 alld 
artificial. We have merely substituted olle pl'ObleIll fol' allOth(~I', bllt 0111' dailll 
is that the new problem is much more easily tractable thé-tll t1l(~ old. III par
ticular, standard mathematics may now hc IIH('d to hdp 111'1 find ail {! and \l, 
as we'll see in the next section. 

Incidently, we have diligently distinguishcd betwœn li and q' i.p. he-
tween the number of basis vectors wa and the Ilumber of hasis V(·ct,OI'S û'b' 
Consider the following example: take n = 6, 

R = (~ ~) and U = ( .~ ) . 

Here q = 2, of course, but 

R' = ( ~ ) 

has n~ = 6 and q' = 1. U is revcrsible (c.g. take V = (2,3)). In addit.ion t.he 
columns of Rand those of E' are (na)- and (n~)-independcnt, resped.ivdy. 

Due to examples like that given ahovc, it scems unjustified to demand 
q = ri. Thus it seems that cvcn the concept of dimension doeslI '1. extend 
naturally to these compact latticcs. 
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Indced, for eaeh prime p let N(p) be the number of i E Iq sueh that p 
dividcs nI' Dcfinc q< to be the maximum (taken over aIl p) of N(p), and define 
'1> to be the sum of ail N(p). Then q E [q<,q>], and for any q' E [q<,q>], 
tllere (!xists a revcrsihle transformation sending q -t q'. (This is related to 
the fad that Zm X Zn = Zmn if[ m and n are relatively prime.) 

Finally, it. shoulrl be mcntioned that attainability, which simply means 
that. the Lwo functions 'Ii) and Û)' ean he connected by one of these sector 
rdahdlings \1, is an cquivalcnce relation. 

Theorem 4.2.2 Attaznabzlity is an eqllivalence relation. 

pl'(h)f: Fol' rcflcxivit,y take U = 1 = V. For symmetry just inter
challge the l'OIes of U and V. For transitivity let V" = UU' and 
V" = \l'V. 

4.3 The Solution 

Givcn a Z-matrix R, wc must find an Z-matrices U and V sueh that RUV = 
H. 

A frcqucntly cxploitcd tcchnique in lincar algebra is to decompose a ma
tl·ix into plOducts of pal'ticularly simple matrices. The most common exam
pif' of this involw's e1clllClltary column and row matrices (abbreviated em). 
Wp can takf' thcse to bc pl'ccisely those matrices of thc following forms: 

o 

1 
1 o 

1 

1 

1.('. t.he id('ntity matrix \Vith rows (or columns) 1 and j interchanged (for 
J'('adahilit,y wc haven't displayed the off-diagonal zeros). This corresponds 
1.0 a (l that real'l'anges the basis vectors tÙa so that û)~ = WJ , w~ = Wl' and 
1;': = Û'I fol' 1 =1 l, j. 
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i , 

...... 

corresponding to multiplying the basis vedor lÜt hy the scalél\' d, and I(,é\.ving 
aIl other basis vectors tVa unchanged. 

corresponding to w~ = Wt +ÛJ2' and lÛ~ = lb. for i =Il; as wdl as it.s t.l"anspos('. 

1 

o o 0 

if q < q', or its transposc if q > (/ (so D'I''1 consis!.s of Z('I'O('S eV<'l'ywht''''' 
except on its diagonal whc\'c it's all 1 's). 

A), Bd and C are all q x li Z-matrices. J),/,'1 is q' x q. lf!->lI(tlly sli).!,ht.ly 
more general matrices al'c ChOSCIl by tcxthooks, alld I)(~V('I' /)'1"1' bill, t.)WS(' 

are clearly necessary and sufficient for 0111" pllrposes (~('C '1'1)(,01'('111 2). Fol' 
example, note that Cn

- 1 = C- t (mod n) (ovel" the int.<'g('I'S Irlt.lWI" than h ll 

we must include C- l in OUI" list). 
Defore we try to dcwmpose U int.o pl'Oducts of t1J(~s(' ('III'S, Id's try 1,0 

determine which of t.hesc cm's (ln' thClIlS('IYt's !(!V('J'sibl(!. 

Theorem 4.3.1 (a) Each A J tH /'cvers1b1c; 
(b) Bd is reverstble liJ 3bl!'" ,b" .,>uc!t Ih(L1 h, E h lll , [.b,JJ.., == 0 (moff 

n), and d dzvules bl + 1 mod 11,; 
(c) C lS a/ways l'eversible; and 
(d) Dq'q is a/ways 1'evel's1blc lf Cf < 'l'; lf Cf > r/ li 's 7'f:v(;1"~lM(; ziT fOl' r:fu:h 

i> q' there exist numbers bl , E Z sallsfying E. = I:1~1 b.llL (1fwd n). 
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(For cxarnple, (1)) holds whenevcr d is relatively prime to nt. It can also 
lJappcm, thollgh, for otl)(,1 d if the wa arc (na)-dependent.) 

ploof' (a) illld (c) are obvious, sine€' thcy arc invertible (and Ilot 
IIICldy /f'V('I~)blc'). (d) is illlllost as casy: if q < (i' take V = Dqql; 
if q > 'l' t.IH're is ft II ivial 1 c1ationslllp bctwccn the last q - q' rows 
of V (lIld the llulllhclS bal. So consider (h). 

"{::=". Supposc' cl dividcs b, + 1 and 'L,bdL == 0 (moe! n). Let e 
1)(' ail ('I('II)(,l1t in Z'II sali~·,fyil1g cd == bl + 1 (mod nd. Define V 
Il'y 

v=(:: 1 J 
" ;.". Ld b~ 1)(' the (,OlllpOIlClIls in the first column of the V 
t orr('sponding to tl)(' givclJ Bd. Dcfine the l1umbers bl by bl -

db; - 1 (Illod lit) éllld h, = b; for l > 1. 

Thcorcm 4.3.2 A ".'/ Il/all'II U Ol'er Zn fan be e:C]J1'essed as a finite product 
of th( ('III· • .., /lJ' Nd, (' fll/d /J",'I' 

pl'Oof: Su l'pOSt' {lIs 1/ X q. If fi > q' let U' = DqqlU; if q < q' let 
{l' = {! f)'1'1' 1"10111 p. :1:19 of IIUN W(' sec that any square matrix 
0\'('1 ri Euclidt'(ln dOlllrlill (Iikc Z, but llllfortul1iltcly Bot likc Zn) 
cali IH' ('XPlt's!'>('d as il fillit<> pl'odud of the enù Al' Bd and C (for 
Z ,1lIcl lll'lllY ot ht'I dOl1lailJs wc IllU~t add C-') Applying this to 
t 1](' .%'-lIli!t IIX {l' \\'(' gel, the product. [1' = El'" El.. Then we get 
fo\' (i t·it 1\('1' /Jql'll,,') ... El. 01' E, ... El. Dqlq. Thcs(' expressions, 
holdillP; as t h<,)' do 0\('1 X. must <llso hold, of course, over Zn' 

Thcol'cm 4.3.3 If {! = J:: •... 1~'1. 1."1 revcrs1ble (rclatwe to R), then Et zs 
1'11'1"'8,blr (l'I/al/l'f 10 If J, Hz 18 l'fl'rl'Slblf (relative to RE.), .. , and Ek lS 

1'II'II'."hll (1'1 /I/fll'I to 111.,', ... HI.-l J. 

pl'oof: :3\' suclt t hat HI-;. ' .. Ek l' =.il. Then.il = (1l)E1 (E2 ••• Ek \1) = 
(In~'I)/~'AF.\· ··/~'!.F) = ... = (R)(E,··· EI.-dEk(V). 
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Corollary 4.3.1 U is revel'szble with 1'eSpCct to Elff thcrc CJ'Îsf cm 's El, ... , I~k 
such that U = El'" Ek (mod 11,) and cach El is /'cvrrsiblf willl resJJect 10 
RBI .. , EI - 1 ) (these El are gZVCll by Thcorem J). 

Thus we have characterizeo ail reversible matrice., (wit.h \'esp<'d. t,o il giV<'1\ 
R), solving the maitl pruhlel1l of this chapter. 

An example of a revelsible mat.rix \Vit.h dcte\'mil\élnt = () (\1l()t! 'IL) cali IIO\\' 

be easily constructed. Suppose we have 11,\ = 1/2 = :J, 1/3 = ·1 and 1/ = 12. 
Let 

( 
2 0 0) u= 0 2 0 . 
003 

Then U is guaranteed to be l't,vc\'sihle (it \'everses itself), even thollgh it.s 
determinant is 0 (mod n). 

What remains is to check for modulaI' invdriélnce. III pal t.iclllal', if Il 
satisfies ~, then will R' if R' is at.tainable flom R? The élnsw('\' is SIII J>l'isillp,. 

Theorem 4.3.4 AJ , Bd and D'l'q ail 8nlisfy 3? (al [('([.'II whll l!try'l't' /,('
versûJ[e). C does if nI = n'u bllt othenV/8C llHght 1/0/. 

proof: Obvious for A3' Bd and Dqlq. Consid('1' (c), wlw\'(' "I = Il;. 
Then n2 divides nt, ml divides 7n2 (so Dub = ml) and 1111 = 711~. 
Let F{ = FI + F2 • Then il, is straightforwal'd 1.0 VPI if y t.'lat. In is 
satisfied. 

Consider RI = (1,1,3,1,2), R2 = (:3,1,1,1,2), and 1/1 = 1/2 = 71,:'0 

ml = ffi2 = 1. Then R'l = (0,2,0,2,0), so n; = 2 = 1I1~. U sat.lsfi('s !R, ilS 

can be immediatcly yerified, but R' canllot. :,at.isfy t.he relat.ioll (Q'). 
This result is surprising becausc il. sccms to say tIJat. Illodlllar iIlVal'ialJ((', 

which in one sense guarant.ecs t.hat t.he choice of a basis (of fi. CI'l't.aill 2-
dimensional torus - sec §4 of Chapter 1) shouldn't. IIlat.!,pl', is it.s('lf, ill Ulis 
sense, basis dependent. As suggcsted by Theorem 4 alld tlu' (~x;uJlpl(', il. il' 
conceivable that modulaI' invariance (i.e. the relat.ions ln) is »1(':'('1 Vl'd I)y 
those U that preserve (na)-indcpendcncc. This has lIeit.her be('n plovell 1101' 

disproven al. the time of WI itin~. (Obviously one way if. could be: plOvc~d is 
if it could be shown that any (j which prc:,erves (n,,)-IIHlepelldeIH't! cali Ill! 

expressed as a pl'Oduct of em's that individually !>Ic:,el've (1I,,)-i/lCkpetJch!/I(,(! 
- I.e. if an analogue t.o the corollary can be found). 

98 



{ 

{. 

4.4 Self-Duality of the Momentum Lattice 

(This section is doser in spirit to the previous chapter, but is added here to 
more closely equalize the lengths of Chapters 3 and 4.) 

In Chaptel 3 we considered bosonizing ail fermions, and looked at the set 
{p} consisting of the moment a of these bosons. This set tums out to be a 
shifted lattice A + t - where A is a true (as opposed to compact) lattice. A 
is indefinite with metric GNL.NR, for NL = 24 - d, and N R = 12 - d. It can 
be shown to be integral, and, finally, to be self-dual. In this section 1 will 
briefly discuss the demonstration that A must be self-dual. 

A self-dual is supposed to follow from the moclular invariance of the par
tition function Z(T, f). We have 

Z(r, f) = ,,(r)-NL,,(T)*-NRL(r,f) and 

L(T, f) == E exp(1riT(qL + tL)2 -1rif(qR + tR)2 + 27riq· s). 
qeA 

f/( T) is the Dedekind eta function, and r is the modular parameter. f is its 
complex conjugate, but is treated as an independent variable. r lies in the 
fundamental region F={z E C 1 lm z > 0, -l < Re z < l,lzl > I}. sis the 
vector such that 2(p - t) . s is the fermionic number. 

Z must be invariant under the modular group, and sinee the modular 
group is generated by the transformations T ~ r + 1 and r -+ -*, it suffices 
to show that Z is invariant under these two. Self-duality is supposed to follow 
from the invariance of Z under the second one. 

Define as in LAM3 

G(u, vlr, f) = L exp(1rir(qL + VL)2 -1rif(qR + VR)2 + 21riq . u). 
qEA 

(For example, G(s, tir, f) = L( r, f).) Under T -+ -~ G becomes 

G(u,vl- !, -~) = L exp(7riT(qL - uL)2 - 7rif(qR - UR)2 + 27riq· v) 
r r qEA. 

aCter using the Poisson summation formula. 
We know how fI transforms uuder r -> -~ ('1(-~) = (-iT)!'1(r», so we 

know that if Z is to have a hope of being modular invariant, G(u, vl-;, -~) 
must be a certain scalar multiple of G(u,vlr,f) (at least for (u,v) = (s,t». 
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One obvious way this can happen is if A * = A (and sand t arc rcla.ted in the 
obvious way) - i.e. if A is self-dual. It is conjectured that this is the only 
way this can happen; hence the conclusion that A must he sclf-dual. 

Clearly this argument has not succeeded in rigorously establishing that 
A must be self-dual, and to my knowledge no such proof has been found. 
Nevertheless, it is a very desirahle property of A for, as we have shown in 
Chapter 2, self-duality is a very strong constraint. Its usefulness in p;rcatly 
restricting possible models of superstrings can be quite graphically secn in 
both LAM! and LAM4, for example (they do this explicitly for d = 8). 

While 1 haven't found a rigorous proof of its self-duality, 1 ha.vc pcrhaps 
made that conclusion even more plausible. My argument is that in the special 
case where sand t are in A (in which case we can wlog take them to be the 
zero vector), self-duality is forced. (String theory, howevcr, is more intercsl,cd 
in sand t being in ~A·.) 

Theorem 4.4.1 T/(r)-NLT/(r)*-NRG(O, Olr, 1') is modttlar inval'innt for NL = 
24 - d, NR = 12 - d ifT A is self-dunl. 

proof: Wemusthave(-iT)-NLl2(i'T)-NRI2G(O,OI-~, -~) = G(O,Olr,f) 
for aIl T E F. From the previous argument these become 

E exp( 7riTql- 7rifqh) and :E cxp( 1rirqi - 1rifq~l) 
qEA* qeA 

Take r = iy for sorne y E R, so f = -iy. Then the exprcssions 
become 

L: exp(-1ry(qi + q~)) and LCxp( -1ry(qi + (/~l))' 
qeA· qEA 

Note that every term in both these series is positive. Also, A 
is integral, so A CA·. If A fA·, thc left cquation must be 
larger than the right one, 80 they cannot be equal. Thus modular 
invariance requires here that A = A·. 

This argument seems to collapse for (u, v) = (s, t) because we no longer 
have the positivity of each term. The right equation will have an additional 
factor of (_l)F in each term (F is the fermionic number), and for the left 
equation the additional factor will be a more complicated cornplcx numbcl'. 
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