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Abstract

Modern particle physics and, in particular, superstring theory are reviewed.
There follows a discussion of lattices, including self-duality, gluings and root
lattices — concepts central to the subsequent material. Two main ques-
tions arising from recent work in superstrings (the self-duality of gluings;
basis transformations in “compact lattices”) are then solved. I also prove
that every lattice is a sublattice of some cubic lattice Z™, and I discuss the
self-duality of the momentum lattice. In addition, scattered throughout the
thesis arc a number of smaller results.

La physique moderne des particules et, en particulier, la théorie des “su-
perstrings” sont revues. Suit une discussion sur les réseaux, incluant l'auto-
dualité, les collages et les réseaux de racines — concepts centraux au matiériel
subséquent. Deux questions principaux sur des travaux récent en théorie des
“superstrings” (P’auto-dualité des collages; les transformations de base dans
les “réscaux compacts”) sont ensuite résoudues. J’aussi prouve que chaque
réscau cst un sous-réseau de réseau cubique Z™, et je discute 'auto-dualité
du réseau moment. Nombre de plus petits résultes sont éparpillés dans tout
la dissertation.
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PREFACE

This thesis is concerned with superstrings, lattices, and seme of the appli-
cations of lattice theory to the study of superstrings. Some of the following
material is a survey of known results, some of it is original, and some is in be-
tween. In the next few paragraphs I hope to summarize what I have written,
trying to separate what I have figured out from what I have borrowed.

In short, I first survey what is known in superstrings (Chapter 1) and lat-
tice theory (Chapter 2); I then address two “big” problems (the self-duality
of gluings in Chapter 3, and basis transformations of toroidal or compact
lattices in §§1-3 of Chapter 4), two “medium” problems (“Every lattice is a
sublattice of Z™” in §5 of Chapter 2, and the sclf-duality of the momentum
lattice in §4, Chapter 4), and a number of smaller results scattcred through-
out the last three chapters.

Chapter 1 is a discussion of modern particle physics and, in particular,
the controversial theory of superstrings. In §1 I give a non-technical outline
of what superstring theory is all about: what it attempts to do, what scien-
tists like and dislike about it, and a brief sketch of its historical development.
§2 is a slightly more detailed investigation into many of the key concepts in
quantum field theory. There I address concepts, like anomalies and renor-
malization, which were referred to in §1, and also others, like symmetries
and their representations, that will appear in the following, more detailed
sections on superstrings. The material in these two sections come from a
large number of sources, some of which are listed in the bibliography (sce,
for example, DB).

In §83 and 4 { borrowed heavily from GSW and from my notes to a course
taught in Fall of 1988 by Dr. Jacques (which in turn was based on Gsw).
In §3 I begin the formal study of the string. Included is a discussion on
why strings are studied over membranes or blobs. §4 addresses some more
specialized topics, such as supersymmetry, the heterotic string, and modular
invariance of the partition function.

The first four sections of Chapter 1 thus provide a gencral overview of
superstrings. In the later chapters we will be concerned with specific aspects
of the theory; the necessary background is provided by §5 of Chapter 1 (as
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well as by §1 of Chapter 3 and §§1 and 4 in Chapter 4).

Chapter 2 provides us with a survey of the relevant topics in lattice theory.
What Gsw was to Chapter 1, CS is to Chapter 2.

§1 introduces lattices and some of the basic concepts. §2 discusses the
important notion of self-duality. §3 discusses two important ways lattices
can be “equal”: congruence and similarity. §4 is concerned with the direct
sums of lattices.

In §5 1 ask the question: to what extent (if any) can we say each lattice
can be embedded in some cubic lattice Z™. I answer this, and with a series of
counterexamples show that my answer is the strongest we can expect. This
result also has a consequence for the factorization of symmetric matrices.

86 describes an important family of lattices called root lattices. Gluing
theory and the representations of Lie algebras are handled in §7, while in
§8 we study the most famous lattice (the 24-dimensional Leech lattice) and
a recursive process (called lamination) which generates it. (§8§5 and 8 fall
outside the main scope of this thesis).

Many of the results in Chapter 2 can be found in the literature, but I
have been unable to locate proofs to a few of these. In thosz cases I have
included my own proofs.

Chapter 3 is concerned with determining whether a given gluing is or is
not self-dual. In §1 I discuss how this problem arises quite naturally from the
study of superstrings. In the following two sections I give three methods for
testing self-duality. The first two are entirely my own; the first accomplishes
this by finding a basis for the gluing, while the second finds the determinant
more directly. The second is particularly intriguing, and with it I establish
with casec a few interesting results. The third method was proven by me,
but was inspired by the work of Dr. Lam. Each of these methods have their
own strengths and weaknesses. In the fourth and final section of Chapter 3 1
describe an elegant graphical technique (due to Dr. Lam) for computing the
determinants of certain matrices. It is very useful, for example, when using
the first and third methods.

In §5 of Chapter 1 I described a certain parametrization of string theories.
This parametrization unfortunately isn’t one-to-one; the first three sections
of Chapter 4 address how different sets of parameters can characterize the
same string theory. This amounts to finding all the basis transformations in
“toroidal” or “compact” lattices, which can be thought of as the quotients
of “true” lattices. This work is all my own. In the final section of this thesis
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I present a plausibility argument for the universally accepted but (I believe)
unproven claim that the momentum lattice be self-dual. It seems likely to
most people that modular invariance of the partition function implies its
self-duality; I show that the modular invariance of a closely related function
would indeed imply its self-duality.

In Chapters 3 and 4 I also establish a number of smaller results (e.g.
Theorem 3.3.3) that I have been unable to find elsewhere.

I'd like to thank my advisor Dr. Lam, without whose patient help this
could not have been written.
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1 PHYSICAL PRELIMINARIES

1.1 The Theory of Superstrings

A headline in PhysRev G, a joke publication produced by University of
Toronto physics students, reads: “SUPERSTRINGS Solve Cadbury Secrzt!”,
The article continues,“In a stunning blow to the physics community and the
Cadbury corporation, U of T researchers ... have succeeded in applying the
complex and controversial theory of superstrings to explain the mystery of
t'.e Caramilk bar.”

The supporters of superstrings include some of the biggest names in
physics (Weinberg, Salam, ...), as do the critics (Feynman, Glashow, ...).
Some say that the transition from point to string may be “no less profound
than the transition from real numbers to complex numbers in mathematics.”!
Others, less convinced, argue:

...years of intense effort by dozens of the best and brightest have
yielded not one verifiable prediction ... For the first time since
the Dark Ages, we can see liow our noble scarch may end, with
faith replacing science, once again.?

Why all the fuss? What is it about superstrings that has the physics
community so sharply divided between excitement and fear?

There are 3 fundamental forces, according to modern physics (gravitation,
the strong nuclear force, and the electroweak force. Another force, a weak
short-ranged Higgs force, is predicted but not yet observed). Thire are 37
elementary particles (6 leptons, 3x6 quarks, 8 gluons, and a photon, a Higgs
scalar, a graviton, and a W and 7 boson), and there are something like 18
fundamental parameters. What superstrings claims to be able to (ultimately)
do is lo explain all this mess simply and cloquently (the oft guoted word
is “beautifully™). There really is only 1 fundamental object (the string),
superstring theorists insist. It can only interact hy joining with another, or
by splitting in half. And there is only one parameter (the string tension
T, or Newton’s gravitational constant G). Everything else, they suggest, is
mathematically forced.

1p. 1251, waL
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That is what the @dvocates believe. The critics whistle a somewhat dif-
ferent tune, however, but they do so with no less conviction.

It all began in the late 60’s as physicists were trying to come up with a
reasonable theory of the strong nuclear force. The weak nuclear force was
being successfully associated with the electromagnetic. Gravity succumbed
to Einstein half a century earlicr, but the strong force held fast.

When we speak of “force”, we usually mean something that pushes or
pulls — accelerates — the object it acts upon. By “force” physicists now
mean something a little different. To them, a force is simply the exchange
of particles. They affect particle scatterings, as would be expected, but they
also are responsible for all decays.

The photon and the graviton are the exchange particles for electromag-
netism and gravity, the dominant macroscopic forces. Z° and W are ex-
changed in the weak force, causing among other things the instability of the
ncutron and the luminous glow of my clock. The strong force produces the
hecat and light of the sun, and, we now know, is mediated by gluons.

But back in the 60’s things weren’t quite so clear. Among other things
there were just too many hadrons (strongly interacting particles), and some
had ridiculously high spin. One of the more promising possibilities was the
bosonic string of Yoichiro Nambu. It pictured quarks as being at the end
of a very short (= 107'* cm), elastic string. This seemed a very natural
way of handling a force that at close ranges was negligible, but at longer
ranges became stronger and more confining. It explained the extra hadrons
as being different modes of rotation and vibratinn of the string. It also had
very good high-energy behavior, something which distinguished it from most
of the competing theories.

Theories in particle physics seemed plagued by infinities. The mass of the
electron could be calculated to be infinity, as could its charge, even though
the measured values were considerably smaller. A procedure, developed by
Feynman and others and called renormalization, allowed physicists to get
finite, meaningful answers out of the theory. I’ll discuss renormalization in
more detail in the following section, but essentially it is a recipe for coming
up with sensible answers: write down the (incorrect) equations predicted by
the theory; fiddle with them in certain mathematically implausible ways, and
out will come your (correct) answer. If you bother to check the intermedi-
ate quantitics in your calculation (i.e. the ones you’re fiddling with), you’ll
find infinities. But if the final answers will always be finite, the theory has

2



-

predictive power and is called renormalizable.

By 1974 quantum chromodynamics (QCD) had been constructed and was
rapidly becoming established as the correct theory of the strong nuclear force.
Interest in the bosonic string died down.

QED (the first successful quantum theory of electromagnetism), the elec-
troweak theory, and QCD all have infinitics, but all are renormalizable. The
bosonic string, on the other hand, was completely finite. Physicists differed
on just how reasonable renormalization was (Paul Dirac, for example, was
one of its critics), but all of them recognized that a finite theory was certainly
more desirable — all other things being equal, of course.

In spite of this success, the string model of the strong force had a few
problems of its own. It predicted a tachyon (a particle whose mass squared is
negative, and hence travels at speeds greater than light). It only made sense
in 26 dimensions, while reality was clearly 4-dimensional (3 space, | time). It
also demanded the existence of a spin 2 particle. Despite the great prolifera-
tion of hadrons, none had been found with spin 2. And finally, experimental
scattering data unambiguously revealed nature’s preference for QCD over the
bosonic string. Today no one disputes that QCD more accurately describes
the strong interaction.

A handful of physicists (including John Schwarz) continued to work in
string theory, but no longer with the goal of explaining the strong force. To
them, the previously embarrassing spin 2 particle was none other than the
graviton. Theirs was a quantum theory of gravitation, and a whole lot. more.

No physical theory is as convincing and impressive as Einstein'’s general
relativity, where gravitation is reduced to geometry. But the theory has a
flaw that guarantees it has only limited validity: it cannot handle the very
small.

This flaw is shared by all attempts at a quantum theory of gravitation.
In short, quantum gravity is nonrenormalizable — it’s infinite, and those
infinities can’t be swept away. This is because the graviton has such high
spin, something we can do nothing about. But Schwarz and others were
suggesting that the problems were due as well 1o a fundamental prejudice all
those theories shared, and we could do something about that.

In QED, in the electroweak theory, in QCD, in the faulty theories of
quantum gravity — everywhere you looked you’d see point particles. Ele-
mentary particles (e.g. electrons and quarks) were supposced to be dimen-
sionless points, spheres of radius zero. Schwarz suggested that this was the
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source of the infinities.

Some people (e.g. Heisenberg and Yukawa) had tried alternatives, like
rippling membranes or pulsating blobs, but these all violated locality or had
some other crippling disorder. More to the point, they were symptomatic of
physicists’ conviction that a particle had to be a concrete object. In string
theories the electron isn’t an oscillating string; it is instead the oscillation
itself, the wave patlern on the (infinitely thin, usually circular) string. And
that has made all the difference.

The string theories considered today differ from the old bosonic model
in a number of ways. They are supersymmetric (see §5) (hence the name
superstring), and thus include fermions (like the electron and quark) as well
as bosons (like the graviton and the photon). They no longer have tachyons.
They require only(!) 10 dimensions, instead of 26. They are 10% times
shorter, on the order of the Planck length (= 1073 c¢m), and are closed —
i.c. circular — rather than open, with two endpoints. The various charges
and quantum numbers are located at the endpoints of the open string, while
they are spread uniformly along the closed string, being more a quality of
motion. And, their advocates claim, they can unify all the forces and particles
found in nature.

Today’s theory of particle physics is called the Standard Model and is
described in the next section. Experimentally speaking, it has been enor-
mously successful: for example, the calculated and measured values for the
clectron’s magnetic moment (in natural units) are respectively

1.00115965246 + 0.00000000020
1.00115965221 = 0.00000000003.

Nevertheless, physicists are unsatisfied with it for a number of theoretical
rcasons. First and foremost, there’s the problem with gravity mentioned ear-
lier. Also, they’d like to unify the forces, and in so doing reduce the number
of elementary particles and undetermined parameters to more manageable
levels.

The Grand Unified Theories (GUTs), which unify the strong and elec-
troweak forces, are one way to do this. They make some interesting predic-
tions, such as the decay of the proton, but don’t solve the problem of gravity.
Recently a lot of attention has been given to supergravity theories. Like su-
perstrings they can handle gravity, are finite, and require many dimensions
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(11 for the most promising theory), but unlike superstrings they have prob-
lems with chirality (an 11-dimensional theory can’t violate parity), and the
attention directed on them has since been shifted to superstrings.

The theory of superstrings is currently incomplete. Many important and
encouraging results have been obtained, but much more work lies ahcad.
For example, John Schwarz is hopeful that by the turn of the century there
will have been enough successes that its validity would be clear, but cven
so believes superstrings won’t see their greatest hour until well into the 21st
century. One of the problems is that some of the mathematics hasn’t been
developed yet. This has been cause for frustration for those anxious to sce
experimental proof of superstrings.

One of the most important properties of superstrings is their remarkable
uniqueness: there are very few candidates that have any hope of being phys-
ically or mathematically acceptable. Gravitation is a forced characteristic
of these theories. However, the uniqueness and simplicity of string theory
— its “beauty” — seems hopelessly lost when you try to account for the
extra dimensions of the theory: depending on how you count, the number of
reasonable candidate string theories is either around 6 or in the thousands.
Still, there is reason to believe that both these numbers can be reduced as
deeper understanding of compactification is achieved.

The number of theories and the complexity of the math has made it very
difficult to make accessible experimental predictions. The natural energy
scale of the theory is Planck’s mass (= 10'® GeV) — you'd need a particle
accelerator at least 10 light-years in length to get up to those ranges. One
prediction that seems reasonable is the existence of another heavy photon
(like Z°), but no one is surc how heavy it would be. If a paiticle could be
found weighing the same as a bacterium but with a charge a tiny fraction of
the electrons, that would be a major victory for superstrings. Some models
predict “shadow matter”, matter that can interact with us only gravitation-
ally; it would be invisible, and would pass right through us. However, only
massive clusters of shadow matter could be directly observed, due to the
weakness of gravity. But realistically there is little hope for the immediate
contact between superstrings and experiment, and this has many physicists
(like Feynman and Glashow) concerned.

Theoretical problems that the theory must explain include why the cos-
mological constant (a measure of the energy density of the vacuum, or the
curvature of empty space) is measured to be so close to zero (it should be
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zero as long as the theory stays supersymmetric, but for experimental reasons
the theory can’t), and why there are 3 identical (apart from mass) families
of eclectrons and quarks (it seems to be related to the number of “holes” in
the 6 extra dimensions). But the most obvious one is why reality seems 4-
dimensional. One possibility is to imagine the<e extra dimensions as curled
up (compactified) into tiny balls. These balls would have radii on the order of
1073 c¢m, and so would be unobservable. The compactification would have
occurred briefly after the Big Bang, or, as some suggest, may have triggered
it.

There are problems, though, with straightforward compactification (see
§4). An alternative is to not interpret the extra dimensions geometrically,
but rather to treat them merely as interior degrees of freedom.

In superstrings, unlike general relativity, the formulas are coming first,
long before the conceptual understanding of what the equations really rep-
resent. In other words, string theory is at this time little more than a set of
computational rules, with no known underlying principles. This is disturbing
many people. Says Edward Witten, one of the architects of the theory,

But the fact that these things work, that these seemingly bizarre
rules give ways of computing things in quantum gravity, giving
sensible results and finite answers and leading in many different
directions to all kinds of beautiful areas in mathematics, is a very
deep mystery — probably one of the deepest which has ever been
encountered in physics. It is unlikely that a proper understanding
of this mystery will be found either soon or simply. But it will
be worth the wait.>

Superstrings is a theory with much promise, certainly our greatest hope
yet for a theory of everything. But whether it is an accurate theory of nature
is a question we simply cannot answer yet. We could be living during one
of the rare revolutions in physics, or we could be experiencing the much
more common ‘false start’. Only the theorists and experimenters in the next
several years will be able to provide an answer.

If correct, superstrings will have accounted for, in principle, all of the
effects in nature. It won’t solve all mysteries, not by a long shot: our camping
trips will still be ruined by inaccurate weather reports; the origin of life and
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the nature of the mind will remain as unexplained as ever. The standard
analogy is that it’s like having learned the rules to chess — you’re still a long
way from being a grandmaster.

But that prospect doesn’t excite me too much. What interests me is the
search for the fundamental. It is only that which could have captivated men
like Einstein. I don’t mind if superstrings gets enshrined into established
physics — not at all — but I for one hope it won’t stay there.

The conclusion to a project done by me in a course earlier this year,
written on the desirability to science of controversies like the fifth force, is
perhaps even more appropriate here:

May no physics paper, however desperately, ever end with:
Amen! Amen! Amen! ,

and may Science, that employer of humanity’s finest, may Science
never die.

1.2 Quantum Field Theory and the Standard Model

The two great pillars of modern physics are relativity (both special and gen-
eral) and quantum mechanics. Relativity eloquently examines space and time
and gravity; quantum mechanics speaks of the very small, and in so doing
demolishes one by one some of our deepest and most cherished intuitions
about what reality is really like. They were created independently carly this
century, and it was only in 1929 that their (partial) unification was accom-
plished, by Paul Dirac. Specifically, Dirac constructed a (special) relativistic
theory of the electron. The complete unification of special relativity and
quantum mechanics is now realized in the framework of quantum ficld the-
ories, but general relativity stubbornly refuses to cooperate (unless we heed
the victory shouts of the superstring enthusiasts).

The reason relativity and quantum mechanics are so difficult to bring
together is that they are nearly incompatible. Common features can be
abstracted from their very few acceptable unifications; hence fundamental
concepts (e.g. spin and antiparticles) are derivable, rather than being ad hoc
additions.

Quantum mechanics has largely been unchallenged and unchanged by
the more modern theories. Its ideas concerning the fundamental indetermi-
nacy of nature, or the superpositions of states, survive; the measurernent
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(pscudo-)problem is as much a (pseudo-)problem in the quantum mechan-
ics of Schrodinger or Heisenberg as in the Standard Model or superstrings.
String theorists, for example, claim that general relativity will arise asymp-
totically from superstring theories, just as Newtonian gravity arises in the
limit from general relativity. But quantum mechanics, on the other hand, is
inextricably interwoven into superstrings. It’s the bedrock, it’s the language,
of modern physics.

More precisely, physicists have continually changed their minds about the
dynamical behavior of elementary systems: first it was given by Schrodinger’s
cquation, then Dirac’s, then by the various models of quantum field theory
culminating finally in the Standard Model. (Hence) they also have changed
the Hilbert space of physical states. There have been some other changes (e.g.
the idca of a particle in the early quantum theory differs from that in the
quantum field theories, which in turn differs from superstring’s suggestion).
But, the conceptual foundation upon which they have been built has always
heen quantum mechanics. The theory of superstrings is no exception.

Historically, ficld theory was introduced in the study of electromagnetism
and gravitation to avoid the distasteful possibility of action-at-a-distance;
the field would be the medium through which a disturbance would propagate
outward with finite velocity. And in more modern physics our distaste for
action-at-a-distance has (thanks to relativity) grown, so similar reasoning
suggests fields be used in quantum theories as well. What makes fields a
practical necessity is that in relativistic point theories the number of particles
must be conserved. This is most definitely not the case in elementary particle
physics (e.g. the decay of a neutron).

A ficld is simply an object (or set of objects) defined at each point in
space-time.  For example, the classical electromagnetic field consists of a
(real) 4-vector A,(z) defined at each point z in space-time. A particle,
finding itself immersed in the field, experiences a force proportional to the
strength of the field at that point. What distinguishes a quantum field from
a classical one is that the objects in quantum field theory are Hermitian
operators, as opposed to numbers. The electromagnetic field becomes, for
cach space-time point , a 4-vector A,(z) of Hermitian operators. These
operators act. on a Hilbert space of state vectors. The quanta of a field —
i.e. the discrete energy states of the field oscillators — are identified with
particles (e.g. the quanta of A,(x) are photons). This will be shown in a
little mote detail in the following section in the special case of superstrings.
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Symmetries and their representations are important aspects of quantum
field theories (e.g. the Standard Model), and we will now turn our attention
to them. In order to account for experiment, a theory must be relativistic,
and in order to be relativistic its symmetries must include the Poincaré group.
This implies the following:

Let u,(z) be a collection of fields in the theory, and consider any Poincaré
transformation from one coordinate system z to another z’, satisfying

' v
z, =L, x" +a,

for some 4-vector a, (characterizing a translation) and a Lorentz transforma-
tion L. Physically this corresponds to choosing to describing an event using
a different reference frame — perhaps one located in a different spot, in a
different time-zone, in a laboratory rotated and moving uniformly relative to
ours. Then there exists a matrix A (depending on L and a) such that under
that Poincaré transformation u,(z) gets mapped to up(z') = Apaua(r). It is
possible to show that A(L,a) forms a linear representation of the Poincaré
group. These representations are characterized by some non-negative s € 32
(s is called spin, though technically spin is measured in units of k); if s is
an integer the corresponding fields are called tensor fields (e.g. A,(z) is a
vector field since the photon has spin 1), otherwise they are called spinors.
For example, A,(z) — Al(z') = -g—:—%A,,(m).

To repeat this important point, the ficlds transform under the symmetries
of the theory according to representations of the symmetry group. This ap-
plies not only to Poincaré symmetries, but to internal symmetries as well. El-
ementary particles correspond to irreducible representations of the Poincaré
group. Kinematic quantities like momentum, mass, energy and (as we have
seen) spin arise from this correspondence. Similarly, non-kinematic quan-
tities like charge and lepton number arise likewise from other symmetrics
(though, unlike the Poincaré ones, they won’t be symmetrics of space-time).

It is a theorem in quantum field theory that the tensor ficlds will obey
Bose statistics (e.g. will be gregarious), while the spinors obey Fermi statis-
tics (and the Pauli exclusion principle). They are called bosons and fermions,
respectively. Photons and gluons are examples of bosons. They are parti-’
cles of force (e.g. two neighbouring electrons feel each other’s charge by
exchanging photons). Electrons and quarks are fermions (as are protons and
neutrons) and are the particles of matter.



In quantum mechanics the observables are associated with Hermitian op-
erators and also act on the states. The state vector (or “ket”) stores all the
physical aspects of a given system. Dccomposing it into a sum of eigenstates
of a given opcrator (e.g. momentum) tells you as much as is possible to know
about a subsequent observation: the coefficient in front of an eigenstate yields
the probability that the eigenvalue of that eigenstate will be the numerical
result of the measurement. A simple example of a state is the vacuum |Q2). It
has zero total momentum and angular momentum (e.g. it is an eigenstate of
the momentum operator, corresponding to eigenvalue 0). There are also op-
crators giving the total number of particles in a given state (these operators
as we shall sce are intimately associated with the fields). Their eigenvalues
are the natural numbers 0,1,2,.... |2) is also an eigenstate of them, with
eigenvalue 0. (This will be done more explicitly in the following section.)

There are creation and annihilation operators a and a (these are just
the ‘amplitudes’ of the particle fields discussed earlier). They increase or
decrease by 1 the number of (anti-)particles of a given type (e.g. “elec-
tron”) and momentum. Applying these finitely often to the vacuum gener-
ates all physical state vectors (again, see the following section). From these
creation/annihilation operators can be constructed the “number” operators
discussed carlier.

What a quantum field theory must be able to calculate are transition
amplitudes. Suppose we start at time t, with a state |A) and we want to
know what the probability is that at time ¢, the system (if measured) will
be in state |B). This is given by |(B|A)|* ((B]A) is just the inner product
the Ililbert space of states by definition possesses). For instance, |A) may
denote an isolated neutron and |B) may consist of an electron, a proton,
and an anti-clectron neutrino. Then [(B|A),? will give the probability of the
neutron having made the indicated decay by time t,. Transition amplitudes
are the means through which a quantum field theory confronts experiment.
From them are calculated scattering cross-sections, decay rates, etc.

To cach quantuin field theory is assigned an object called a Lagrangian
density £(z). It must be a function only of dynamical variables (i.e. the
components u,(.r) of the fields, and their derivatives). It should be invariant
under the Poincaré transformations so quantities such as energy and momen-
tum will be constants of motion. It should be local (i.e. have no integrals
in it), and it should be Hermitian (so that quantities such as energy and
momentum will be real). The Lagrangian characterizes the dynamical be-
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haviour of the theory, and can be used to calculate the transition amplitudes
discussed above.

The Lagrangian also appears in classical mechanics, though in a slightly
different way. The classical field obeys the action principle 81 = 0, where /

is the action
/ dzL(z).

This leads to the well-known Euler-Lagrange equations of motion. The quan-
tum field behaves differently. The important quantities that must he com-
puted are the transition amplitudes, given by the Feynman path-integral. It
is just the weighted sum over all possible (classical) paths going from the
initial to the final states, the weight being just exp(:7/h).

In general these calculations are far too complicated to yield exact an-
swers, so what is used in practice is a perturbative expansion. A very elegant
way of doing these perturbative calculations is due to Feynman, and involves
Feynman diagrams. Basically what you do is imagine all possible ways of
starting with |[A) and ending with | B), apply Feynman’s rules to £ to calcu-
late the transition amplitudes of each of these possibilities, and then take the
(infinite) sum. Fortunately the more complicated possibilities tend to con-
tribute little to the sum (at least in theories like QED, unlike QCD), so only
the simplest few need be considered. In particular, the number of “loops” in
the diagram corresponds to the order of that perturbation term.

In all cases of physical interest £ is not only invariant under Poincaré
symmetries, but also under so-called internal symmetries. The fields behave
under these symmetries analogously to how they behaved under the Poincaré
ones. These symmetries generally differ from the Poincaré ones in two ways:
they often are gauge, as opposed to global, symmetries; and they usunally
don’t affect space-time points. The Poincaré transformations (l,a) were
the same at each space-time point z — i.e. L and a were constants. But
for gauge symmetries the transformation is allowed to vary from point to
point. The difference is a profound one (e.g. the difference hetween special
and general relativity, or between supersymmetry and supergravity). Not all
internal symmetries nced be gauge ones. Some (e.g. parity) may not cven
be continuous.

Today’s official quantum field theory is called the Standard Model. It is
given by a symmetry group (namely, SU.(3) x SUL(2) x U,(1) ) and a set
of elementary particles (6 leptons, 6 quarks, 8 gluons, the photon and W#
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and ZY hosons, and a Higgs scalar). SU,(3) characterizes the strong nuclear
force, while SUL(2) x Uy(1) is the gauge group of the unified electroweak
force. The Standard Model also tells you how these particles behave under
the symmetries. For example, the left handed particles (%) transform as an
SU.(3) singlet, an SUL(2) doublet, and have eigenvalue -] for the generator
of U/,(1). In other words, they are unaffected by SU.(3) (which means they
don’t feel the strong force), but they do take part in electroweak interactions,
and in fact have weak hypercharge -% and their transformation matrices A
characterizing their behavior under SUL(2) form a 2-dimensional irreducible
representation of SUL(2).

To be able to compare the theory with experimental results we need a
Lagrangian £. L will be built out of the particles given above, and must
be invariant under the symmetry group. Given the gauge group and the list
of particles (and their transformation properties), if we are to have a renor-
malizable theory, the specification of something like 17 parameters (e.g. the
mass of the electron) are required to determine £ uniquely. Most of these
have to do with the Higgs particle, which was introduced in order to give
the relevant particles a mass -— the Higgs is used to break the electroweak
symmietty (Lhis process will be explained shortly). This gives (large) mass to
the vector bosons W# and Z°, hence explaining why the weak force should
be so weak and short-ranged when electromagnetism is not. The resulting
symmetry group is U, (1), the gauge group for electromagnetism. This sym-
metry is exact, so the photon is massless (thus travelling at the speed of light

- a fortunate thing indeed!), and electiic charge is conserved.

The symmetry SU.(3) remains unbroken, so gluons, the exchange parti-
cles of the stiong force, are massless. The theory of the strong force is called
QCD; the Standard Model doesn’ attempt to unify the strong force to the
clectroweak ones (this is one of the reasons why the Standard Model isn’t
considered a final theory). The strong force has three types of charge, called
colour. Leptons are colourless, but gluons are not, so QCD (like general
relativity but unlike QED) is nonlinear.

Particles connected by a symmetry have the same mass. This is one
rcason to break a given symmetry. There are two ways to do this. One,
called dynamical symmetry breaking, involves adding a small term to the
Lagrangian which isn’t invariant under the given symmetry. In other words,
the symmetry wasn’t truly exact.

The more important way for our purposes is called spontaneous symmetry
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breaking. It occurs if the vacuum of the theory isn’t invariant under the
symmetry. The original (false) vacuum was invariant, but it wasn’t a state
of lowest energy. In effect the theory exchanges some symmetry for stability.
The symmetry is still there, but is very well hidden. It can be re-established
(in effect) if the energy is high enough. For instance, at about 100 GeV
SU(2) x U(1) becomes unbroken and the electroweak forces blend together,
while the unification energy for the GUTs is about 10'® GeV, and that for
superstrings is around 10" GeV.

There are two types of mathematical problems that plague quantum field
theories. One is a problem of infinities, and the other is a problem associated
with symmetries.

Quantum field theories have enormous difficulty staying finite. Some of
these infinities can be mathematically removed by processes called renor-
malization; those that can’t are called non-renormalizable. The philosophy
behind renormalization is that although the results of the calculation of a
physically measurable quantity must be finite, infinities may arise in inter-
mediate steps. The Standard Model is renormalizable: sensible answers can
be squeezed out. Quantum gravity, unfortunately, is not (this is related to
the fact that the graviton has such a high spin).

The justification for renormalization is that our theory is not of unlimited
validity; there’s a “cutoff” distance corresponding to the smallest distance
(or highest cnergy) to which our theory can be taken seriously. For classi-
cal theories (like general relativity) this consideration isn’t important, but
in quantum calculations even the very small distances (relative to the cut-
off), corresponding to virtual processes of very high energies, contribute non-
negligibly. A renormalizable theory is one that requires only finitely many
parameters to handle the observable effects of these infinitesimal distances.
It’s a theory in which the energy level of the hidden, underlying theory of
physics is much higher than that of the process being studied (e.g. the old
theory of the weak force wasn’t renormalizable because the mass of the W
and Z bosons, though large, aren’t large enough).

Symmetries are important for a number of reasons, but one of the most
important is because they imply conservation laws. Electric charge is con-
served because the Standard Model (Lagrangian and vacuum) is invariant
under U.(1). An anomaly is a symmetry of the classical theory which is
lost as you pass to the quantum theory (i.e. as you “quantize” the classical
system) — in other words, the quantum corrections don’t respect the desired
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symmetry. There are many types of anomalies, and the presence of any of
them is a serious problem for the theory. It turns out that non-chiral theo-
ries (i.c. theories invariant under parity) don’t have problems with anomalies,
but chiral theories are plagued by them. Since experiment demands we have
a chiral theory, anomalies can present major dificulties. It turns out that,
surprisingly, the Standard Model is anomaly-free.

Green and Schwarz’ 1984 calculation on anomaly cancellation in string
theories was the direct cause of the recent explosion of interest in superstrings.

Perhaps a word should be mentioned about the units used in particle
physics. Usually the “natural units” are used: ¢ = 1 = k. I will adopt this
convention for the most part. This means that energy and mass and inverse
distance and inverse time will all have the same units. Of course, when
physicists need to get actual numbers out of a calculation, to compare its
predictions with experiment, they must insert (using dimensional analysis,
say) ¢ and h into the relevant parts of the equations, but this isn’t difficult.

1.3 An Introduction to String Theory

In this section we’ll begin a more mathematical study of string theory. We’ll
lead into it by first considering a more familiar quantum field theory.

Consider first a massless classical point particle. It traces out a world line
in space-time. Its action is given by

where 7 is a parameter running along its worldline. z(7) is the position
of the particle in space-time when the parameter equals 7. € is introduced
to make I independent of the specific parametrization chosen — it’s a kind
of 1-dimensional metric along the world line. These reparametrizations are
a gauge symmetry of this theory; we will now indicate a standard way to
handle theories with gauge symmetries.

Fix the gauge: take e = 1. Then the Euler-Lagrange equations (which are
derived from the classical action principle 6 1/éz# = 0) lead us immediately
to the equation

&z,
dr?
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for each p = 0,1,...,D —1 (let D be the dimension of space-time; we won't
commit ourselves yet to D = 4, but we will commit ourselves to a Minkowski
metric). That is, this (free) particle will travel in a straight line (i.e. along a
geodesic) in space-time.

But we can do more. We haven’t exploited yet the gauge symmetry. I is
invariant under reparametrizations, so we also have 61 /§e~! = 0. This yiclds

so we get that the massless classical particle travels along null geodesics.
Now let’s consider the transition to a quantum theory. = and the canoni-

n Aqg * . . .
cal momenta p* = dd% now become operators: * is multiplication by =*, and

p* is the differential operator —i%. An additional change is that the classi-
cal Poisson bracket becomes a commutator. The particle is now represented

by a field @(z*).

The gauge symmetry now yields the expression

0%¢
fug —
" oz+dzv 0,

known as the Klein-Gordan equation. However, as was mentioned in the last
section, quantum mechanics doesn’t obey the action principle, so there is no
analogue to the geodesic equation derived above (to a certain extent, though,
the quantum particle’s world line can be pictured as a fuzzy cloud centered
about the null geodesic).

Now let’s consider the classical string. The obvious question is what to
choose foi its action. Note first that there is a simple geometric interpretation
of the action for a classical point particle: it’s just the length of the world
line (this is more clearly seen by investigating a massive particle).

We'll be open-minded, at least for a while, and discuss the theory for all
higher-dimensional generalizations of a (0-dimensional) point particle. Let
n denote the dimension of the fundamental object of the theory (so point
particles are n = 0, strings are n = 1, and membranes are n = 2). Again,
the dimension of the background space-time will be D, and its points will be
called z#, u = 0,1,..., D—1. The trajectories of these objects will be an n41-
dimensional submanifold in this | ackground space, and 0® fora = 0,1,...,n
will label its points. The (Minkowski) metric of space-time will again be
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denoted by 7,,(z), while h,g(c) will be the induced (Minkowski) metric on
the ‘world manifold’. Then, proceeding by analogy with the case given above,
we are led to consider for the classical action the n + 1-dimensional ‘volume’
of the world manifold:

1= -1 [ @40 VR oY 2)uz Ops",

where h is the absolute value of the determinant of k,g4. ¥ is a function of o
— it is the position in space-time of the given point on the world manifold.

Now, the world manifold must not be observable, for it is merely an
auxiliary object. Thus neither its coordinates ¢* nor its curvatures (which
are computable from h,z) should survive the gauge symmetries of the theory.
The presence of the metric h guarantees that I will be independent of any
particular parametrization o of the world manifold. This is good. But we
must also be able to choose a gauge (as we did for the point particle) in
which the metric itself is eliminated. h is symnetric, so it has }(n + 1)(n +
2) independent components. But there are only n + 1 independent gauge
transformations (one for each parameter %), so for n > 0 we can’t quite
eliminate the metric h with these reparametrizations alone. There is an
additional symmetry forn = 1 (a Weyl rescaling) which completes the process
for n = 1, but the higher dimensional theories can’t be salvaged. And n =
0 (corresponding to the point particle) has renormalization problems with
gravity. Thus we are led to consider n = 1, i.e. string theory.

Of course this ‘no-go’ ‘theorem’ doesn’t irrefutably rule out higher dimen-
sional theories than strings, but it does present a challenge to those who wish
to construct non-string theories. In any event, from this point ononly n =1
will be considered. In addition, we will assume (as we do throughout this
thesis) that the strings are closed (i.e. topologically a circle), with period =
(the rcason 7, and not 2r, is usually chosen is (I believe) because historically
the first string theories involved the open string, for which a period of =
is quite natural, and the convention stuck). Unlike §5, for example, I will
consider here only periodic boundary conditions.

Use the gauge symmetries then to map h,p to the constant Minkowski
metric (this is gauge fixing). We get as an equation of motion (varying I
with respect to #):

(88 - 82)z#(0) = 0.
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This can be trivially solved in the light-cone coordinates (¢t = o° + o):

##(0) = zh(07) + oL (0*)

1 . -

zh(e™) = 5:1:“ +ptoT +1 )y, %aﬁe""‘"
n¥0

we _+ 1 By oot "

mL(a)=-2-a: + p*o 'HZ;%G :
n#0

Here a and a are arbitrary complex numbers and have nothing to do with
each other nor with the indices given earlier. The subscripts R and L denote
right- and left-moving modes. z* and p* are the position and momentum of
the centre of the string.

The gauge constraint is that the energy-momentum tensor 7,5 must van-
ish, which leads to the equations

1 o0
L,= 5 Z ah_nabn,, = 0and
- 1 &=
L, = 3 Y. ah .k, =0.

T can be interpreted as the tension of the string; usually ' =lor T = 1
is chosen to simplify the notation (we will take T' = 1 here). It is relevant
only to the quantum theory, which we will now turn to.

The amplitudes o¥ and &% become operators, called oscillators. In order
that z#(0) be Hermitian, we must have

ot ot @t =a

These satisfy commutation relations derivable from the Poisson brackets of
the classical amplitudes.

These operators act on a space of states, an infinite-dimensional indefinite
vector space called a Fock space F. It can be defined as follows.

Assume the existence of ground states: i.e. vectors |0;p) (they have D
components) satisfying

a’|0;p) = &|0; p) =0 for n >0, and
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ap|0;p) = a50; p) = p*|0; p);
i.c. they’re annihilated by the positive oscillators and are eigenstates of the
= 0 oscillators.
Then F is spanned by states of the form

#1 BEAM L. SV IO
ahl - abkan - --ap |0; D).

Not all these states are physical; to be physical they must satisfy the gauge
constraint. That is, they must be annihilated by L,, and L, for m,n > 0
(L and L, are defined as in the classical case, although for m = n =0 this
definition is slightly ambiguous).

It turns out that Lo — Lo generates translations in 6!, and hence can be
interpreted as a sort of momentum operator for the string. Lo+ Lo generates
translations in 6%, and so can be interpreted as the Hamiltonian, or energy
operator (strictly speaking we must add a multiple of the identity to get the
Hamiltonian).

N = Z at,atn,, and N Z al aln .,

n=1 n=1

arc called the number operators; for example, when n,,...,n, < 0 a straight-
forward calculation gives

k
N(aft - a)0;p) = (= 3 n,)(akd -~ a)[0;).

ny nk
=1

It turns out that not quite all of our gauge freedom was used up by
fixing h*? =diag(-1,+1). The remaining freedom can be removed (there
arc alternatives) by a noncovariant gauge fixing called the light-cone gauge,
which involves singling out the coordinates ° and zP~!. The net effect
is that the only independent oscillators are the transverse ones o}, and &,
for i,y =1,...,D —2 — all others can be determined from these (or are
zero) using the gauge constramts. This means that we should apply only the
transverse oscillators to the ground states to get physical states.

Ghosts are physical states |phys) with negative norm : i.e. {phys|phys) <
0. This is a very undesirable situation because of our wish to interpret these
inner products as probability amplitudes. It turns out that in the light-
cone gauge there are no ghosts. However, the gauge fixing broke Lorentz
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invariance. You must make sure the resulting theory is Lorentz invariant. It
turns out that Lorentz invariance holds only in D = 26 dimensions (i.e. in
the other dimensions we get an anomaly).

Incidently, the string theory considered here is the free bosonic one. It
is bosonic because of our choice of action I, and in particular our implicit
assumption that the metric AP suffices to describe the geometry of the
world sheet. More promising strings (the bosonic string has tachyons and
no fermions) can be treated more or less similarly. It is free because we
ignored interactions.

One of the appeals of string theory is the simplicity of its interactions:
two strings may join into one; one string may split into two (and of course any
combination of these may also occur). The resulting world sheet (speaking
classically, for simplicity) of the scattering of two strings, say, may be two
non-intersecting cylinders, or it may look like an ‘II’, or like a ladder with
two rungs, etc. Quantum mechanically, we must take the weighted sum of
these possibilitites. The result is a perturbation series. Which ‘weight’ to
use can be determined from the Lagrangian (or the action) using Feynman’s
rules:

1. To each external tube associate an operator called the “vertex opera-

tor”.

2. To each internal tube associate an operator called a “propagator”.

3. To each loop take the trace of the corresponding product of operators
in the space of states.

4. Integrate over the momenta in the loops.

The vertex operators and propagators can be calculated from the Lagrangian
(for example, the propagator can be thought of as the functional inverse of
the hamiltonian). We will see an important example of this in the following
section.

1.4 Miscellaneous Topics in String Theory

In quantum mechanics it is possible to start with nothing and end with noth-
ing, but to do so in a very complicated way. It does this through the so-called
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virtual processes. In string theory, for example, what could happen is that a
virtual string spontaneously appears, splits, rejoins, and then disappears.
These processes contribute to what is known in quantum field theory as
the “vacuum-to-vacuum amplitude”. Its first order term looks like a torus,
and is called the partition function. The torus can be characterized by a
complex number 7 calied the modular parameter, and so the partition func-
tion will be a function Z(7), sometimes written as Z(7,7), where 7 is the
complex conjugate of 7 but is treated as an independent variable (more ac-
curately, the first term of the vacuum-to-vacuum amplitude is actually the
sum over all tori: [drZ(7) or [drdT Z(r,7), where the integrals are over the

“fundamental domain”).
Feynman’s rules help us to arrive at (using the Dedekind eta function

(7))
Zr=z+1y)= /dD‘szr {e7vH P}

= In(7)|"HP-B(2Im r)~(P-A/2 exp(—-glm 7(D — 26)).

Scveral different 7 correspond to the same torus; Z should not be in-
fluenced by which of these equivalent parameters we choose. The group
of transformations which map each 7 to a 7’ characterizing the same torus
can be easily found, and is called the modular group. Thus Z(7) must be
invariant under the modular group — this is how the powerful constraint
of modular invariance enters into string theory. It turns out that (for this
bosonic string) modular invariance also demands D = 26. Many other conse-
quences of modular invariance will be seen in §5, as well as in Chapters 3 and
4. Modular invariance guarantees the vacuum-to-vacuum amplitude (to first
order) is finite. Some plausibility arguments exist which seem to show that
modular invariance also guarantees that strings are free of all divergences, so
that string theory is completely finite.

The comments thus far have concentrated on the bosonic string, In 1971
Ramond, Neveu and Schwarz found a fermionic string that was later discov-
cred to have built into it a previously unknown symmetry called supersym-
metry.

The symmetry SU(3) of the Standard Model links up the quarks with
cach other, and the gluons with each other. However, supersymmetry is
the only symmetry that can mix bosons and fermions, and thus is our only
hope to unify all the particles found in nature. It can do this because it has a
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fermionic generator @ which changes the spin of particles by 1. (Sce FRE for a
complete introduction to supersymmetry.) Locally supersymmetric theories
(called supergravity) automatically include general relativity and hence are
serious candidates for a theory of quantum gravity.

There is no experimental evidence yet that nature is supersymmetric (in
fact if it is, the supersymmetry must be badly broken), but many physi-
cists are nevertheless convinced that supersymmetry is just too beautiful
and promising not to somehow play an important role in reality. It was
thought for a while that it might enter through supergravity, but there are
now reasons for doubting this (the theory may not be finite, and its most.
promising versions aren’t chiral). Today the best hope for supersymmetry
seerns to be superstrings.

There are several classes of supersymmetric strings — i.c. supcerstrings
(the bosonic string has no fermions and so has no hope to be supersymmet-
ric). Type I superstrings are both open and closed, while type 11 strings are
only closed. The former seems to hold some promise as a possible theory of
physics. The latter has difficulty either with chirality or with supporting an
adequate gauge group.

But the most promising superstring today, first introduced in GUMR, is
called the heterotic string (from the Greek word “heterosis”, meaning the
increased vigour displayed by crossbred plants or animals). It is a closed
string, and hence its right- and left-moving modes are independent (there are
no endpoints to reflect its wave). It is a hybiid of the old bosonic string and
the type II string: its left-movers are bosonic and its right-movers are type 11
This means that its left-movers live in 26 dimensions while its right-movers
are only in 10, but this is rectified by making 8 of these transverse and 16
of them internal (2 are eliminated by the light-cone gauge). Only the right-
movers are supersymmetric. The low-energy limit of the theory is D = 10,
N = 1 supergravity (D is the dimension of space-time, N is the number of
fermionic generators @ and the number of spin 2 supersymmetric partners
of the graviton, called gravitinos) coupled to the gauge group Spin(32)/Z,
or Fg X Eg. These gauge groups, and the way to rectify the difference of 16
dimensions are closely related to each other and to the 16-dimensional even
self-dual lattices, and is one of the main ways lattices enter into string theory.
The heterotic string is anomaly-free, free of ghosts and tachyons, and there
is reason to believe it’s entirely finite. Its lowest mass states (and there are
many of them!) are all massless (which is good, since otherwise their masses
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would be on the order of the Planck mass, ~ 10'® GeV).

The most promising of the heterotic strings is the Eg x Eg one. It seems
to have the best hope of predicting the observed particles. It has been spec-
ulated that one of these Eg’s might give rise to all of the observable particles,
while the other would give rise to another type of matter (called shadow
matter) which can interact with our matter only gravitationally.

The discovery of the heterotic string followed the explosion of interest
in strings brought on in 1984 when Green and Schwarz discussed anomaly
cancellation in type I strings (the only anomaly-free theories known until
then were the unpromising type II strings). For example, they showed that
cancellation of a certain gravitational anomaly could occur only when the
gauge group was of dimension 496. Since Eg and D,=S0(2n) are of dimen-
sions 248 and n(2n — 1), respectively, the gauge groups given above avoid
that anomaly. Anomaly cancellation enormously restricts the physically al-
lowable theories and takes us a giant step forward to the dream of being able
to derive a unique “Theory of Everything”.

The heterotic string, like most of the superstrings being currently studied,
it 10-dimensional (see §8, Chapter 2 for an example of a 26-dimensional
theory). Yet nature appears to be only 4-dimensional. The most obvious
way to explain the discrepancy is to compactify the extra 6 dimensions — to
make them so small (e.g. on the order of the Planck length of 10732 c¢m) that
we have no hope of observing them. The problem with this approach seems
to be that the N =1 supersymmetry becomes N = 4 in the low energy limit,
which is non-chiral and must be discarded. It turns out that the problem
is that the tori considered here are flat. This has led to the consideration
of Calabi-Yau manifolds, and of orbifolds, which are flat everywhere except
at a number of singularities. An orbifold is the ‘quotient’ of a lattice with
some subgroup of its automorphism group — it is mentioned here only for
completeness, and won’t be discussed again.

1.5 A Summary of Recent Work

As should be fairly obvious by now, my thesis is concerned with aspects
of superstring theory — more precisely, my work in Chapters 3 and 4 is
motivated by questions arising from the recent work in superstrings done by
Lam (sce LAM1-3). A similar approach was taken by the “Cornell group”
(see, for example, KLT; the isomorphisn between the two approaches was
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made explicit in LAM1). In this section I will give a brief outline of some of
these results, so that the work in Chapters 3 and 4 can be more properly put
into perspective. See also §1 of Chapter 3 and §§1 and 4 in Chapter 4 for
the specific physical questions I will address.

We are interested in the type Il and heterotic string theorics (these closed
strings allow the cancellation of anomalies; an alternative, the bosonic string,
is plagued with tachyons and so is a doubtful candidate for describing nature),
and in how the various constraints (like modular invariance) restrict the
physically allowable theories.

Let X, and ¥y be boson and fermion fields, respectively. 'They are
functions of (02, 0!) (in fact, of 0% = ¢ £ o' ), where 0° =t is time, and
where 0! = o is a parameter that runs along the string. Now, our strings
are all closed, so ¢ is a periodic coordinate, say with period 7. HHow X and
¥ behave as we wrap around the string — i.e. when we replacco witho + 7
— constitutes their boundary conditions. Asthey aren’t themsclves directly
observable, they don’t have to be periodic.

The conformal currents (which generate the conformal transformations)
look something like

T(o,t) = —%(’)X“ X, - %a\p* 0y

They are physical, so must be periodic (i.e. T(o,t) = T'(s + 7, t)), which
suggests the boundary conditions

X(o+ 7, t) = exp(-2imw)X(o,t) or X(o + 7, t) = X(o,t) + ¢,

and ¥(o + 7, t) = exp(—2irw)W(o,t),

for constants ¢, w and w. These are called the twist (by phases w and W)
and shift (by ¢) boundary conditions.

The superconformal current is a fermionic quantity, so it may be cither
periodic or antiperiodic. Without going into details, this condition relates
some of the w to w, and relates the other w’s by the so-called triplet. constraint,
(at least for D = 4). (In the heterotic string, unlike the type Il one, only the
right-hand side is supersymmetric, so only it has a superconforinal current.
Both sides are conformally invariant, though.)

There are two ways ¥ can be related to X. One way is via supersym-
metry, and was discussed in the previous section. The other way is through
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bosonization or its inverse, fermionization, which are given by the formula
¥ =: exp(-2X):

where the colons denote the normal ordered product, and tells you how to
interpret products of fields. This relates the bosons satisfying the shifted
boundary conditions to the fermions with the twisted boundary conditions.
Fermionizing the former allows us to consider only the phase boundary con-
ditions.

One thing that modular invariance tells us is that these phases must form
an abelian group G (using addition modulo 1). We will assume them all to
be rational numbers, so that G is also finite.

Physical states, unlike the fields, must be periodic. Given an arbitrary
(not necessartly physical) state, the GSO projection allows one to project out
the physical, i.e. periodic, component.

Modular invariance requires that there must be several types of boundary
conditions (i.e. several different phases w). To each possible boundary condi-
tion (i.c. to cach clement h € G) there is associated a different Hilbert space
of solutions (called a “sector”) satisfying that boundary condition. Also, the
modular invariance of the partition function demands that the phases w sat-
isfy a number of relations, called (L), (Q), (O) and (N). See Chapter 4 for
a discussion of the first three of these; together with anomaly cancellation,
(N) puts a number of ronstraints on the numbers of right and left moving
boson and fermion fields, and on the space-time dimensions of the acceptable
theories.

Given a sct of twist parameters w satisfying the above relations, a theory
is specified by choosing various vacuum parameters F, and m,, (these specify
the GSO projections permissible by modular invariance). From these we can
calculate the spectrum and the symmetry group of the theory.

Space-time has a preferred position in quantum field theory. But here
everything is an operator of the world sheet — including space-time. The
Lorentz group is on an equal footing with all other symmetries of the theory.
The spin-statistics theorem, giving the correct relationship between spin and
statistics (sce §2), is automatic in quantum field theory, but in string theory
its validity isn’t guaranteed: it’s imposed, and not derived. Insisting upon
it fixes the vacuum fermionic phases F,. The result is that there are only
finitely many physically acceptable theories allowed, given the twist group
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G. (Presumably other demands not yet imposed will reduce the number even
further). In §§1-3 of Chapter 4 we discuss how different sets of twist param-
eters can yield the same theories.

These results all followed from the fermionization of the bosons with
shifted boundary conditions. If we instead bosonize all the fermions, we get
equivalent but different conclusions. The main result is that the momenta of
the bosons lie on a shifted lattice A + ¢. A turns out to be self-dual. In §1
of Chapter 3 and §4 of Chapter 4 I provide a more detailed account of this
approach.

The bosonization approach is probably better because it allows you to
handle much more easily the bosons with twisted boundary conditions --
these bosons in fact lead quite naturally to the study of orbifolds, which
were considered briefly in the previous section. Also, it treats the whole sub-
ject in a much more uniform fashion: you don’t have to break everything
down into sectors. For example, the GSO projection is basically built right
into the formulation, and the Eg x Eg gauge group arises much more bla-
tantly in the bosonization approach. On the negative side, the fermionization
process presents some complications, as two real fermions with incompatible
boundary conditions cannot always be bosonized (it takes two real fermions,
or one complex one, to make a boson).

This is hardly intended to be an exhaustive survey of this recent work.
The interested reader should consult the papers mentioned earlier for the
details.



2 MATHEMATICAL PRELIMINARIES

2.1 Introduction to Lattices

Occasionally in mathematics a term is encountered that by itself represents
several fundamentally different structures. The classic example of this is
“field”: to most mathematicians this refers to a certain algebraic structure
analogous to the rational or real numbers. Mathematical physicists usually
mcan by this a vector or tensor field, as in “quantum field theory” or the
cxpression “gravitational field”. And apparently in set theory it is used to
denote the union of the domain and range of a function or relation.

Another example of a mathematical homonym is “lattice”. A lattice to
most modern mathematicians involves two binary operations on a partially
ordered set. This structure has applications in almost every field of math-
ematics (pardon the expression). In theoretical physics it can be found in
the study of the foundations of quantum mechanics, and in quantum logic.
This algebraic structure has absolutely nothing to do with the type of lattice
concerned with here.

Definition 2.1.1 A lattice ¢s a finitely generated free Z-module, on which
is defined a bilinear form.

Examples of 2-dimensional lattices are given in Figures 1 and 4. (Another
type of lattice, a toroidal or compact one, will be studied in Chapter 4 —
it can be thought of as the quotient of two “true” lattices). We will use
the symbol A to denote a lattice. The familiar z - y will be used to denote
the bilincar form, and z? = z - z will be called the norm. We will only be
concerned here with rational-valued forms. Note that calling A a finitely
generated free Z-module implies that A is isomorphic to the module Z" |
where n is the rank, or dimension, of A . In other words, algebraically A can
simply be considered to be Z™, so each latiice vector z can be represented by
a column vector & with integer components. Then the bilinear form becomes
an n X n matrix A (called the Gram matrix), where

x-y =TT A7,

There arec many different ways to identify A with Z™, and each way in-
volves choosing a different basis § = {b,...,b,} for A . A basis of course is
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simply a set of linearly independent (over Z) lattice vectors whose Z-span,
{miby + - + myub,|my,...,m, € Z}, equals A. The Gram matrix A has
entries A,; = b; - b, ; these will always be in Q.

A is symmetric, which means it can be expressed as

A= BTGB,

where B is an invertible (real) matrix, and where G is a diagonal matrix
whose entries are either 0, 1 or -1 (see CAR, pp.5-6). When G (or A) fails to
be invertible, A is called singular. We will only be interested in the case where
G is non-singular — i.e. G’s diagonal elements must be 1 (this implies that
our lattices will all be discrete, and their basis vectors will be R-independent,
and not merely Z-independent). If G is singular, A is called singular. Let
n4 (n-) be the number of +1 (-1) entries. Then ny + n_ = n , and wlog
(=“without loss of generality”) we can assume ny > n_. Il n_ > 0, A is
said to be an indefinite lattice; if n_ = 0, A is said to be a positive definite,
or FEuclidean lattice. Most of the lattices considered here will be Euclidean.
When n_ =1, A is also called Lorentzian. (The Sylvester law of inertia -
CAR — says that n, and n_ are well-defined, i.e. independent of the specific
choice of B, so these designations are mecaningful.)

Thus, there is a second, geometric interpretation of a lattice. Choose any
n independent vectors by in some space R™¢ (R™*¢ has the inner product given
by the metric tensor G™*¢ = diag( +1, 41,41, -1, .. L =1)). Then the

Z-span of these by is an n-dimensional latiice whose bililfcar form is induced
by the inner product on R™* .

Note, however, that these two interpretations arc incompatible in the
sense that when the lattice is identified with Z*, the bilinear form is given in
general by a non-diagonal matrix A, and when the bilincar form is given by
G, the lattice vectors will no longer have integer cocllicients. (But sce § 3.)

The simplest examples of lattices are the cubic lattices 2", consisting
of thuse points in R™™ with integral coordinates (using of course the inner
product G™" ). These lattices are of dimension 2 + n.

Consider any lattice A with basis vectors by, . . ., b,. Suppose their compo-
nents in some “background space” R™ are by = (b, 03, ..., b7 |bi+", ... b +"),

-T —
chosen so that b,-b, = b,” G™*%b, . Define the generator matrix M by M,, = b],
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i.c. . -
b{ bf o bi""" b,

M = =
é é---@“ b,

Then the Gram matrix A, characterizing the induced bilinear form on A, is
simply A = MGM7T | In the special — and by far the most common — case
where A is Euclidean, we get A = MMT . In both definite and indefinite
cascs, however, we get:

(kiby + oo+ kaby) - (kb + - - +kb,) = kT AR
A is an n X n matrix, while Misn x (m+ €) .

This hybrid interpretation is the one that will be used thoughout this
paper, for the most part. The lattice vectors are uniquely identified by n-
tuples of integers, just as in the Z™ interpretation, so the bilinear form is
given by a non-diagonal yet symmetric matrix A. But this identification of
A with Z™ is explicitly recognized by selecting basis vectors, and the bilinear
form Ais geometrically induced by embedding the basis vectors — and hence
A —-in some ™€ Although A doesn’t cqual some G (except for the cubic
lattices), it is derived from both it and the choice of basis vectors. With
this understanding having been made, it suffices to characterize a lattice by
giving a set of points (albeit one closed under Z-linear combinations) in some
R™¢, Thus the cubic lattice may be simply called Z™™ | for its bilinear form
could be immediately inferred.

We will almost exclusively be interested in integral lattices — i.e. lattices
whete v -y € 7 for all lattice vectors z and y. In other words, a lattice is
integral 1ff its bilinecar (as opposed to quadratic) form is integer-valued. A is
integral il A'is a Z-matrix (i.e. is a matrix whose entries are all integers).
This imposes a strong constraint not only on the norms of the lattice vectors,
but on the angles between them.

Unless otherwise stated, assume that A denotes an integral and Euclidean
lattice. Thus A C ™ and A = MMT . For such lattices, the vectors of norm
I and 2 are the most interesting, as we shall see. (Of course we always have
n < m)

An even lattice is integral, with the additional property that the norm of
cvery vector in it is even. A is even iff A is a Z-matrix whose diagonal entries
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are all even. Given any integral lattice A, the lattice gencrated by all the
norm 2 vectors in A forms an even sublattice of A, sometimes called its root
lattice. Also, the set of all even-norm vectors in A is also an even sublattice of
A, of the same dimension as A (a lattice is like a vector space, except with a
field like R replaced by the ring Z . This causes several curious diffciences —
e.g. the possibility of a proper sublattice having the saine dimension as the
lattice that contains it). When these two even sublattices are equal, we say
that A is saturated. Saturated lattices are readily handled by the machinery
of gluing theory, as we shall see later.

An integral lattice which isn’t even is called odd (so at least one of the
diagonal elements of A must be odd). Even lattices seem slightly more im-
portant than odd.

Historically, it has often proved convenient to express lattices in the lan-
guage of quadratic forms. Lattices are studied in number theory largely for
this reason. Given any Gram matrix A, construct the quadratic form of n
variables z1,...,2, by computing the product 7 Az. To each quadratic form
there is associated a unique lattice in this way, but because each lattice has
several equally valid Gram matrices (one for each choice of basis), to cach
lattice is associated several “integrally equivalent” quadratic forms. Since
our picture of lattices will remain geometric, we won’t have reason to use the
language of quadratic forms.

Lattices also find a spot in group theory when one considers their group
of (isometric) symmetries, called their automorphism group. Usually, the
automorphism group is meant to include only those symmetrics which fix
the origin — i.e. translations hy lattice vectors are discarded as trivial. [t
turns out that the automorphism group of integral Fuclidean lattices are
always finite, but that of indefinite lattices is usually infinite. John Conway
used the automorphism group of an important 24-dimensional lattice to find 3
previously undiscovered finite simple groups in 1968 (sce §8), and help bring
to a close one of mathematics’ greatest triumphs.  Also, in an unrelated
application of lattices, there has been much work concerning translating the
study of integral representations of a given finite group G into the study
of lattices invariant under that group — i.e. lattices whose automorphism
group includes G.

Further applications of lattices can be found in coding theory, computer
design, and a number of sphere packing problems (e.g. find the densest
packing of identical spheres in R* — see Figure 3). It is 1elated to the theory
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of Lie algebras in a variety of ways (e.g. see §8§6-7).

The fundamental region for a lattice, given a basis by, ..., b,, is the subset
of the background space consisting of all points of the form ¢;b, + - - - + tpb,,,
for t, € [0,1). It is a building block for the lattice, and when repeated several
times fills the whole space (i.e. the whole R-span of the basis vectors) with
just 1 lattice point per block (namely, at one of the corners).

A deep hole is a point in the fundamental region whose distance to the
closest lattice vector is a global maximum. For example, Z™ has only one
decp hole; it has components (1,1,...,7). Some lattices though can have
more than one deep hole (for example see §8).

Define the determinant (also called discriminant) of A to be |A| = |4,
where A is any Gram matrix of A. This is simply the volume-squared of
the fundamental region. By Theorem 1 in §3 we see that under a change of
basis given by the generator matrices M — M' = UM, A becomes U AUT,
but |A| becomes |[UAUT| = |A|. Thus |A| is independent of the choice of
basis. Shape, but not volume, of the fundamental region is affected by basis
transformations.

Define A*, the dual of A, to be the set of all y in RA, the R-span of the
basis vectors, satisfying y - z € Z for all z € A. Then A* is an n-dimensional
lattice, though in general will only be a rational lattice if A is integral. A
consists of all points in RA whose contravariant components (relative to b;)
are integers, and A* consists of all points in RA whose covariant components

are integers. Clearly,
A C A" iff A is integral

in which casc A* is denser than A. It is possible to prove (A*)* = A. Given
a basis b, for A, the dual vectors b7 defined by b} - b, = §,; form a basis for
A, called the dual basis.

2.2 Self-Dual Lattices
Definition 2.2.1 A is called self-dual, or unimodular, {f A* = A .

We shall exclusively use the term “self-dual” in the following material.
The lattices we are most interested in are self-dual. There are both mathe-

matical and physical reasons for this, as we shall see.
Only integral lattices have a hope to be self-dual. In fact, A is self-dual
iff both it and its dual are integral.
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Theorem 2.2.1 A self-dual = |A| = £1. If |A] = %1 and A is integral,
then A is self-dual.

proof: Wlog take A to be integral. Choose a basis fof A. Let M*
be the generator matrix for A* corresponding to the dual basis of
B. Then 3 an n x n Z-matrix U such that M = UM*, because
AC A*yso I = MGMT = U"'"MGMT = U-'A. By Corollary
4.2.1, U™ is a Z-matrix iff |U] = +1 iff |A|] = £1. That is,
A* C Aiff |A] = £1. But A C A* for integral A. Thus A®* = A iff
|A| = £1.

Of course if A is Euclidean, we have for integral A that A is self-dual
iff |A] = 1. In other words, self-dual lattices have 1 lattice point per unit
volume.

The proof of Theorem 1 can also be used to show that the Gram matrix
(relative to the dual basis) for A* is A* = A~!, even for A neither integral
nor self-dual. Thus for integral A we have A* C I%IA'

0dd self-dual lattices will usually be called Type I ; even self-dual lattices
will usually be called Type II. The cubic lattices Z™" are all Type 1. There
are no trivial examples of Type II lattices (except, if you wish, the 1-point
lattice 0). There is no “Type III” lattice, for example, corresponding to those
self-dual lattices whose norms are all multiples of 3. In fact, it can be shown
that if the norms of the vectors in a self-dual lattice are all multiples of some
ke Z*, thenk =1 or2.

Self-duality is a very strong constraint on lattices, particularly the indef-
inite ones. Z™" is the only Type I lattice in the indcfinite space R™™ — it
is denoted I, , (this statement only holds of course if both m,n > 0). There
also is a unique Type Il indefinite lattice, called I, ., but it only exists
when m — n is a multiple of 8. More precisely, we should say:

Theorem 2.2.2 A is an indefinite Type I lattice of signature (m,n) iff il is
congruent 2o I, ,, and A is an indefinite Type Il lattice of signature (m,n)
iff m—n =0 (mod 8) and it is congruent to I1,,, (I, , will be explicitly
given below).

(See the next section for the definition of congruence). I1,, is given by

the Gram matrix
0!
10
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For k >0 we have Ilgiynn = 11}, & Ef, where by I}, we mean the direct
sum

1h,8---01h,

o

n

(see §4 for the definition of direct sum), and where Es is the unique Type II
definite 8-dimensional lattice — it’s a root lattice (see §6). These results are
all proven in SER, pp.48-58 (Serre and many others use I's for Eg, and Ty, for
what we'll later call D}).

Example 2.2.1 Lorentzian Type Il lattices must have dimension N = 8m +
2. They can be defined as the set of all z € RN~1! satisfying both

(i)z-T €Z,and

(ii) cither x € ZN" orz — T € ZN-11,

Here, T = (3,..., L)

The definite case is more complicated, and hence a little richer. All self-
dual lattices are known only in dimensions n < 25, and for reasons I'll give
shortly it is doubtful much more progress will be made along these lines.
It has been shown that for each dimension only a finite number of self-
dual lattices exist, but unfortunately that number quickly reaches unwieldly
magnitudes if you go much past n = 25.

Again it happens that there is at least 1 Type I lattice in each dimension.
And as in the above case, there are Type Il lattices only in dimens’i>ns which
are multiples of 8. (Not surprisingly, the complex Type II lattices, i.e. lattices
in C™ rather than 2%, can occur only in dimensions n = 0 (mod 4).) The
Type Il results are intimately connected: if A is a definite Type II lattice,
11,y @ A is a Lorentzian Type II lattice, and so the dimension of A must be
a multiple of 8. (This argument doesn’t imply that there is only one definite
Type I lattice in each dimension n = 8k; Iy @ A= 11, ® A’ doesn’t give
us A = A’ — but see Theorem 2 of §4). Since Dg; is always Type II, we
could have instcad defined Ilgiinn = 11}, @& D§, even though D}, = E}
only when & = 1. (Incidently, though different lattices, E? and Dj; have the
same number of vectors of norm ¢, for each £ — i.e. their theta series are
identical.)

Choose any null vector w € Ilggy1;. Then wt, the subset of all u €
R+ 11 gatisfying w - u = 0, is an 8k + 1-dimensional subspace of R%+1! and
includes all points in Rw. This means w* N Ilg;y,, is an 8k + 1-dimensional
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sublattice of IIgi41,1, containing the points Zw = (w). Note that x and z+Lw
have the same norm for z € wt N IJg4,,1, 50 the induced inner product on
A = (w N Ilgi41,1)/{w) is well-defined. A is an 8k-dimensional lattice, both
Euclidean and Type II. Depending on the w chosen, this construction will
produce every Euclidean Type II lattice.

In 1938, L.J. Mordell proved Eg = Dg was the unique Type II lattice in
8-dimensions. In 1941 E. Witt showed E3 = Eg @ Eg and D werc the only
Type II lattices in 16-dimensions, and in 1968 H.-V. Niemeicr found all 24
Type II lattices in 24-dimensions (although the most important of these, the
Leech lattice, was found in 1965 by John Lecch).

In 1957 M. Kneser enumerated all Type I lattices in dimensions n < 16.
Conway and Sloane extended this to n < 23 in 1982, and in his Ph.D.
dissertation in 1984, Borcherds handled n = 24 and n = 25. Sce Table |
for a summary of the results known! (Theorem 2.4.1 implics the recursion
Un41 = Qn + by + €y; the values of d,, can also be derived from the other
columns — see §4 for the definition of indecomposable).

The Minkowski-Siegel “mass” formulae can be used to show these enu-
merations are complete (apparently the original German is “massformel”,
which actually means “measure formula”, but this mistranslation is now in
standard usage). For example:

Theorem 2.2.3 Let Q be the set of all (non-congruent) Type Il Fuclidcan
lattices of dimension n. Then

Z 1 — |Bkl kI—Il |B2]l
Aca |Aut(A)| 2k =1 4;

where n = 2k is a multiple of 8.

Here, |Aut(A)| is the order of the automorphism group of A, and where I3
is the kth Bernoulli number. A similar, but more complicated, result holds
for Type I Euclidean lattices. There are several standard ways of finding
the automorphism groups (we shall see a couple of these in §4 and §7 ), so
Theorem 2 provides a straightforward, if somewhat messy, way of verifying
the completeness of the enumerations listed in Table 1.

!Table 1 is based on Table 22 in ¢s. The references alluded to here can also be found
in cs
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Table 1: The n-dimensional Self-aual Euclidean Lattices

Dim. | Total Number | Number With No | Total Number { Indecompos-
=n Type I=a, Unit Vectors=b,, | Type ll=c, able= d,
1 1 0 0 1(Z%)

2 1 0 0 0

3 1 0 0 0

4 1 0 0 0

5 1 0 0 0

6 1 0 0 0

7 1 o 0 0

8 1 0 1 0+1 (Es)
9 2 0 0 0

10 2 0 0 0

11 2 0 0 0

12 3 1 0 1 (D)
13 3 0 0 0

14 4 1 0 1

15 5 1 0 1

16 6 1 2 1+1
17 9 1 0 1

18 13 4 0 4

19 16 3 0 3

20 28 12 0 11
2] 40 12 0 12
22 68 28 0 27
23 117 49 0 48
24 273 156 24 154422
25 665 368 0 367
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Note that |Aut(A)] = 2 since £ — —z is always a symmetry. Thus
doubling the right-hand side of the formula gives a (crude) lower bound for
the number of Type II lattices of dimension n. For example, this gives us
~ 10~° for n =8, 5 x 107 for n = 16, and ~ 10~ for n = 24 (instecad of
1, 2 and 24 respectively). But for n = 32 it gives (almost certainly) a very
crude lower bound of 80 million. It seems rather doubtful Niemecier’s work
will ever be extended.

Similar lower bounds can be found for Type I lattices. For n = 20 we get
a bound of about 10~!? (instead of the actual number of 28). But for n = 28
we get about 200, for n = 29 we get about 40 000, n = 30 about a billion,
n = 31 a trillion, and n = 32 about 10'7.

Mathematically, the enumerations of self-dual lattices can be used in a
fairly simple manner to find all lattices with other determinants (particularly
the smaller determinants). For example, there are 24 lattices of dimension
17 which have determinant 2, and 53 with determinant 3.

One important application of the enumerations for physics is that it enor-
mously constrains the possible gauge groups of various string theories. In
fact, the only Yang-Mills groups that can be incorporated in the heterotic
string are Spin(32)/Z; and Es x Eg, corresponding to the only even self-dual
16-dimensional lattices.

2.3 Lattice Equality: Congruence and Similarity

A lattice can be considered as a subset of some R™ with certain propertics
(i.e. discreteness, closure under Z-linear combinations, and an induced inner
product consistent with its Gram matrix). But in some ways this is unsatis-
fying: for one thing we'd like to think that the background space 1™, though
computationally desirable, is hardly intrinsic to the lattice itsclf. A lattice
seems in some fundamental way to be independent of the background space
it lies in. I hope to clarify this point in the next couple paragraphs.

Any given lattice, lying in some R™, can be trivially embedded in cach
R™, for m’ > m, by adding m’ — m zeroes to the coordinates of cach point
in the lattice. The reverse, deleting m — m’ coordinates, all of which vanish
for each point in A, will sometimes also be possible. Let &% : ™ — R™
denote this embedding (m’ > m) or projection (m’ < m). The Gram matrix
is unaffected by . There seems only to be a superficial, easily ignored
difference between the lattices A and ((A).
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Consider next a global rotation(about the origin) B : R — R™. Since
B leaves inner products unchanged, the Gram matrix is unaffected. Again,
the lattices A and B(A) are intimately related — in this case they differ only
through a different choice of coordinatization of its basis vectors in R™, or,
alternatively, through an orthogonal change of basis of the background space
R™. Of course, any orthogonal change of basis will work here, but because
the metric of R™ must remain Euclidean, non-orthogonal transformations
are inadequate (otherwise any lattice could be identified with Z").

Both ¢ and B transform the background space, leaving the Gram matrix
and hence the lattice itself untouched. Now, few people would identify a
lattice with its basis, and those who do should be quietly dismissed. A lattice
is Z-generated by the basis 3; there is no reason to suppose an alternate basis
/¥ could not be found.

Theorem 2.3.1 Suppose B = {b;,...,b,} is a basis for a lattice A. Then
= {b,...,b.} is another basis for A iff n’ = n, and the change-of-basis
matrizU from B to B, i.e. b] =37_, Ui;b; , is a Z-matriz with determinant
+1.

This theorem tells us there are several alternate bases, and it characterizes
them all. (If A was instead a real vector space, U would only have to be an
R-matrix with nonzero determinant.) Its proof is simple: the Z-span of §
cquals the Z-span of § iff both U and U~! are Z-matrices. Corollary 4.2.1
informs us that this means |U| must be £1.

In general, changing the basis of the lattice will change the Gram matrix,
but there is little doubt the lattice itself remains unchanged.

This discussion leads us to the concept of congruence.

Definition 2.3.1 T'wo lattices A and A’ are called congruent if their gener-
ator malrices M and M' are related by

M = UMSLWB ifm <m'
| UMB™, ifm >’

Here U must be a Z-matrix with determinant %1, and B is orthogonal. m
and m’ are the number of columns in M and M’, respectively. The matrix
s consists of zeroes everywhere, except along the diagonal where it is 1. In
addition we must demand that, in the case m > m', the projection operator
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™, only projects out the directions orthogonal to B(A), or equivalently, that
M=U"'M"'"B. Ifm=m', =1)

It isn’t difficult to verify that congruence is an equivalence relation. The
Gram matrix A’ = UAUT, so |A| = |A’]. If A and A’ are congruent, then A
is integral, self-dual, or even iff A’ is integral, self-dual, or even, respectively.
Congruent lattices may, and will, be thought of as the same abstract object
coordinatized in different ways. (Lattices, unlike vector spaces, require 2
choices of bases: one for the background, and one for generating the lattice).

See Figures 1 and 4 for several examples of congruences (c.g. Z* and
D,[2] are congruent).

Theorem 2.3.2 Any n-dimensional lattice 1s congruent to a lattice in R™.

This follows because any unit vector can be rotated onto any other unit
vector. Of course, this theorem does not suggest that only 2" should be used
as a background; in fact the root lattices A,, I and[F; (see §6) are most
conveniently expressed in spaces with more than the minimum number of
dimensions (m =n + 1, 8 and 8 are used instead of n = n, 6 and 7).

Congruent lattices may, and will for the most part, be considered as equal.

An additional way of constructing one lattice given another is to scale it
differently: for each A € R let A denote the lattice {Az|z € A}. Here we
have M — AM, A — XA, |A| — A*|A], and A* — {A*. The lattices A and
AA have the same “shape”; the transformation can be (passively) thought of
as a mere change in the unit of measurement.

Definition 2.3.2 A and A’ are similar latlices, written A = A’, if AN # 0
such that AA and A’ are congruent.

The term “equivalent” is also used, but “similar” has a more descriptive
geometric flavour. Similarity is an alternate, even weaker interpretation of
the equality of lattices. Thus a ‘lattice’ may be considered to be an equiva-
lence class of either congruent or similar lattices, but we won’t bother doing
this explicitly.

See Figures 1 and 4 for some examples of similarities (e.g. Z* = 1)y).

However, unlike congruence, similarity does not respect self-duality, “inte-
gral-ity”, or evenness, and so is usually too inclusive to he used to define
lattice equality in what follows. Occasionally (e.g. the root lattices) it is

36



unclear which scale factor A should be chosen — i.e. which representative of
a class of similar lattices should be singled out. The natural convention is to
select A so that |A| is made as small as possible, and yet the lattice remains
integral (of course, this isn’t always possible).

The notion of similarity crops up quite naturally in many constructions.
The sequence of laminated lattices (see §8) includes many root lattices, all
of which are scaled “incorrectly”.

Example 2.3.1 All I-dimensional lattices are simtlar to Z.

Example 2.3.2 In Figure [ is shown (among other things) part of the 2-
dimensional root laltice A,, also called (for obvious reasons) the hexagonal
lattice.  Considering this lattice as being embedded in R?, a natural basis
yields the generator matriz

10
(1)
2 "2
and a Gram matriz )
1 1
A=(11)
11

The heragonal lattice represented in this way is not integral, since not all of
the components of A are integers. The volume/area-squared of the funda-
mental cell of this lattice is |A] = 2.

More commonly, this lattice is embedded in R® with a basis chosen so that

1 -1 0 2 -1
r__ -
Al—(o 1_l)andA—(__1 2)
This lattice is now integral, with determinant 3.
These lattices are similar, with X\ = /2. The second representation is

preferred because in it the generator matriz is simpler, and most importantly,
the corresponding lattice is integral (in fact, even).

There are some interesting trivia in which similarity plays a role. Con-

sider, for example, a self-dual lattice A (so A* = A). Then if A’ = A, we
must have A™ = A’, but in general A # A’. This is obvious. Less clear is
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converse fails: you can have A* = A, but have no lattice similar to A be
self-dual.

Let A6 denote the 16-dimensional Barnes-Wall lattice, whose generator
and Gram matrices are given in Figure 2 (for readability only the nonzero
elements in My6, and only half of the symmetric matrix A6, are shown). It
is the unique laminated lattice in 16-dimensions (see §8). It’s even, and has
several special properties: for example, it yields the densest sphere packing
known in 16 dimensions. In addition, it satisfies Alg = Ayq, but Ajg # Ase
— in fact, |A16| = 256. It isn’t difficult to show that no lattice similar to Ayg
can be self-dual (this would require (256)‘316/1,6 to be a Z-matrix, where A
is its Gram matrix).

Another counterexample to the converse is the 12-dimensional Coxeter-
Todd lattice K,2. It is also widely studied, and for instance is the densest
packing known in 12 dimensions. |K;;] = 729, so quite definitely K3 isn’t
self-dual. But again we have that both K7, = K\, and no lattice similar to
K, is self-dual.

Far simpler examples include Az and D4. (Any 1-dimensional lattice is
similar to its dual, but is also similar to the self-dual lattice Z, by Example
1.) To see that A; = A,, note that (using the notation of Example 2)

4 ) J— 2
= A = = 2 = —A
A A 3(_% 1) 3A

and use Theorem 3.

On the other hand, if an (integral) lattice is congruent to its dual, then
it equals its dual.

We shall conclude this section with two simple examples of congruence
and similarity.

Theorem 2.3.3 Let A and A’ be two lattices with Gram matrices A and A'.
Then:

1. if A=A, A and N’ are congruent;
2. if A= NA', A and A’ are similar with scale factor A.

The proof of 1. is geometrically obvious; 2. follows immediately from 1.
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(only the nonzero elements in My, and only half

Figure 2: The Barnes-Wall Lattice
of the symmetric matrix Ai, are shown)
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2.4 Direct Sums

There are 3 basic ways of building higher dimensional lattices up from smaller
ones (a fourth one, direct product, is possible but never seems to be used):

(i) Direct sums (introduced in this section);

(ii) Gluings (introduced in §7); and

(iii) Lamination (introduced in §8).

Let A,,...,A; be lattices of dimension n,,...,n;. Consider the set
A = {(z1,-.-,2%) | € A,}. For any 2 points 2 = (zy,...,7x) and y =
(yls ..oy ¥k) in A, define x4y = (z1+y1, .., Tk +Yr), Ty = T+ -+ Tho g,
and for A € R, Az = (Azy,..., Azy).

Obviously this makes A an (n; +- - - 4 ng)-dimensional lattice. It is called
the direct sum of the components A;, and is denoted by A, ®--- @ Ax. Note
that it is an orthogonal sum — i.e., loosely speaking A, L A, for i # j. Also,
any x € A can be uniquely written as z = ¥, z,, where z, € A, (again, the
notation adopted here is deliberately naive, chosen for simplicity).

A basis for A consists of the union of bases of each component. For this
basis,

M, 0 Ay 0

M. A
M= * and A = 2

0 M, 0 Ay

using obvious notation. Thus A is integral, even or self-dual iff each compo-
nent is. The minimal norm 2 of A equals the smallest of the minimal norms
p; of the components, and |A| = [|A,|. We will write A for A& --- @ A.

t

Definition 2.4.1 Call A indecomposable if A = A{\® A, = A, or Ay is the
zero latlice, i.e. if A cannot be written as the direct sum of proper sublallices.

Indecomposable lattices are the basic building blocks (see column 5 of Ta-
ble 1). Direct sums can be defined for vector spaces; the only indecomposable
vector space is (up to isomorphism) R. Lattices are much more interesting
in this respect. For example, apart from the Z*, all root lattices (sce §6)
are indecomposable. D} (see §7), however, is not (in fact, D} = Z'). The
only indecomposable integral lattice containing unit vectors is 7. Indeed, it
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is possible to use direct sums to characterize all integral lattices with unit
vectors., ’

Theorem 2.4.1 Anyintegral lattice A can be uniquely expressed as the direct
sum A = Z¥® A’, where A’ contains no unit vectors, and where A has ezactly
2k unit veclors. A is self-dual iff A' is.

A" is called the reduced version of A. This resuit is exploited in various
cnumerations — for example, to find all self-dual lattices it is sufficient to
find those containing no unit vectors (see column 5 of Table 1). For smaller
dimensions (less than 20 or so), well under half of all Type I lattices are of this
form. A slightly weaker theorem (Witt’s Theorem in §6) applies to vectors
of norm 2 (with the role of direct sums being taken by gluings). Incidently,
all lattice equalitics expressed in this section are, properly speaking, actually
congruences.

proof of Theorem 1: The proof is analogous to the Gram-Schmidt
orthogonalization process.

Let {by,...,b,} be a basis for A. Let 2k be the number of unit
vectors in A (this number is even because u - u = (—u) - (~u))
and let wy,...,u;x be k lincarly independent unit vectors in A
(it is sufficient to ensure u, # zu, for all ¢ # j). Then for
i # J, u, - u, must be an integer (as A is integral), and also must
satisfy —1 = —u! - u? < (u, - u;)? < u?-u? = 1 because of linear
independence. Therefore, u, - v, = 0 whenever ¢ # j.

Let b = b, — Zle(b, -u,)u,. Then b, - u, = 0 Vi, 7. Note that if
Sou+a =Y fu, +y, where o, 8, € Z and 2,y € (b},...,08)),
then dotting this with w, gives a; = B¢ for each j, implying as
well that » = y. Also, the Z-span (uq,...,ux,b,...,b)) must
cqual A. Thus, A=Z®---®Z & (b}, ..,b.) = Z*® A, where

there is one Z for each u,, and where A’ = (b},...,b,).

Of course, A’ can contain no unit vectors, for such a vector (or
its negative) would have had to be contained in our original list
Uy, ..., u; of unit vectors.

In GO we find the statement: “A euclidean lattice has a unique decom-
position into a direct sum of indecomposable sublattices ...”. They don’t
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prove this, and unfortunately don’t clear up a possible ambiguity concerning
exactly what this means. There are two possibilitics:

(a) (the weaker sense) Ay @ ---® Ay = A = Ay @ --- ® Ay, where A,,
A’ are all indecomposable lattices, implies & = &’ and A, = A, for some
permutation o € S; (again, equality here denotes congruence).

For example, this is trivially satisfied by the vector space ™ = R®- - (D R.
These n components R correspond to n 1-dimensional orthogonal subspaces
of R". Similarly, each of the A, correspond to a sublattice of A congruent to
A,, in such a way that all of these sublattices are mutually orthogonal.

However, note that the decomposition referred to in (a) can be far from
unique in another sense. For example, the 2 orthogonal subspaces in 122 can
be chosen to be {(z,0) | z € R} and {(0,y) | y € R}, or {(z,x) | » € R} and
{(v,-v) |y € R}.

(b) (the stronger sense) The same as above, except both A, and A/, must
correspond to the same sublattice in A. In other words, consider only the
decompositions A; @--- @ A, in (a) whose A, are orthogonal sublattices of A
(and not meiely congruent to those sublattices). Then for uniqueness in this
stronger sense to hold, there must be a permutation o such that A, = A/ |
where now equality is not merely congruence.

For example, R™ doesn’t decompose uniquely in this sense. GO probably
meant this stronger interpretation. In any case, for lattices (unlike vector
spaces), the uniqueness of (b) holds.

Theorem 2.4.2 A (Euclidean) integral latlice has a unique decomposilion
into a direct sum of indecomposable sublattices, in the slrong sense of (b).

proof: First we shall construct one such decomposition, and then
we shall show it is unique.

Let Ly = {z € A | 2® = k}. Note that each Ly is a finite set (i.c.
|Lk| < o0). Choose any basis {by,...,b,} for A, and find an N
satisfying N > b2 for all .

What we will do is run through the finitely many vectors in L =
U | Ly, discarding some of these, and partitioning the remainder
into a number of sets C,. The C, generate the components A, of
the decomposition. The discarded vectors are hybrids, sums of
vectors from more than one component.
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Enumerate the vectors in L in this way: let L, = {v, | £ =
1,...,[[41]}, L2 = {U[ I (= ‘Ll' 4 1,...,|L1| + ILQI}, “aay and
Ly = {ve| €= 05" |Lil + 1,..., ThL, |}

For convenience write v¢-C, =0 if v, - v =0 Vv € C;. Otherwise
write v, - C, # 0. Start the following construction with each C,
empty.

Place v, in C}, and set m = 1 (m is the number of C; currently
nonempty). Proceed recursively for £ =2,3,..., 5N | |L;|.

There are 3 possibilities:

1. ifv,-C, =0for alli=1,...,m, then let Cp,yy = {v¢} and
increment, m;

2.ifvy-C,=0forali=1,...,m,i#j, andif v, - C; # 0,
then put v, in C,;; and

3. otherwise do nothing (i.e. discard vy).

This recursion will produce m sets C,. It isn’t difficult to show
A=(C))® - & (Cy) is one of the desired decompositions, but
it is unnccessary to directly establish this. Since the existence
of such decompositions is not in doubt, it is sufficient to prove
that any of these decompositions must equal the one constructed
above.

Suppose u € A does not lie in a component of a given de-
composition of A. Then Jv,w € A such that v-w = 0 and
0<u-v=1v"<u? and 0 < u-w = w? < u?. This simple re-
sult is the central fact of this proof. For example, it immediately
follows from this that v, must be in some component.

Consider a decomposition A = A{®- - -@A!,, into indecomposable
sublattices A; of A. Let C; = LN Al. The above recursion,
followed step by step, shows m’ = m and (up to a permutation
of the indices) C, = C}. This then implies (up to this same
permutation) A, = A}, because a basis of A (namely {b,...,b,})
is contained in L.

Thus the recursively giv-n decomposition is the unique one.
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Although this theorem was stated and proved for integral lattices, a slight
rewording of the proof establishes it for any (Euclidean) lattice. However,
the proof relied much more heavily on the assumption that A was Euclidean
— indeed, uniqueness (even in the weaker sense) fails for indefinite (c.g.
Lorentzian) lattices.

This can be shown in many ways. For example, the uniqueness of [ lggq
implies that Ilg411 = 11,1 @ A for any 8k-dimensional (Euclidean) Type
IT lattice (there is more than 1 8k-dimensional (Euclidean) Type Il lattice,
Yk > 1).

The main consequence of Theorem 2 concerns automorphisms.

Theorem 2.4.3 Let AT' @A d--- B ALk be a decomposition of a Euclidean
integral lattice A into indecomposable lattices A,, where for i # 3, A, and
A, are not congruent. Then the automorphism group Aut(A)= (AulA{)™ X
Spy X oo X (Authy)™ X Sy, .

For example, Aut(A) has |Aut(A")|2Fk! elements, where A’ @ Z* is the
decomposition of Theorem 1. This theorem tells us that it suffices to know
the automorphisms of indecomposable lattices only.

Theorem 3 also fails in general for indefinite lattices. Ior example,
Aut(I1,,) is finite, so i it applied to Iy, JAut(A)] would be equal for
all Niemeier lattices A. But this s false: [Aut(A)] varies from around 2 x 107
to 4 x1023. Also, the automorphism groups of / I25; and most other indefinite
lattices are infinite, unlike those of 17} ; and all Euclidean lattices.

2.5 Every Lattice is a Sublattice of Some Z™

(In this section we will study Euclidean lattices, but similar results apply
to indefinite ones). A lattice consists of a set of points “isomorphic” to
Z™, and a positive definite binary form. It can be interpreted to consist
precisely of the points in Z™, but with a non-Euclidean norm given by this
form. Another, more geometric interpretation scems to be as a set of points
spanning an n-dimensional subspace of R™, whose norm is induced by the
Euclidean norm of R™ (sce §1). lere, m > n — for example, A, is usually
defined to be contained in R™*! (sce Table 2). Though it is casy to prove
that any n-dimensional integral lattice is congiuent (and not merely simnilar)
to a lattice in R* (this is Theorem 2 in §3), the basis and hence the generator
matrix may take a simpler form in a background space of dimension 1n > n.
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An interesting problem, however one unrelated to what follows, concerns
whether all lattices can be embedded in Z™ in some sense. (Of course, Z™
denotes the lattice with Euclidean norm, whose basis is the standard basis
{e,} of R™.) Alternatively, this amounts to asking if each Gram matrix A
can be factored into integral generator matrices M (M is n x m, so may not

bhe square).

Conjecture 1 Anyn-dimensional integral lattice is a sublatlice of Z", where
“s” here is shorthand for “is congruent to”.

Note that here m = n. This conjecture would imply that to each Gram
matrix there is a square integral generator matrix M such that A = MMT.

Counterexample 1: This conjecture is very false: the one-dimensional
lattice Ay = V2Z is one of several counterexamples. (See the fol-
lowing scction for the definition of the root lattices A,).

There are two natural directions to proceed from here.

Conjecture 2 Any n-dimensional integral lattice is similar (e.g. after ap-
propriale scaling) to a sublattice of Z".

For example, here v/2Z would simply be rescaled to Z. Again note m = n.
In this case M is also integral and square, but it is sufficient that A merely
cqual A*’MMT for some A. Conjecture 2 also fails. As we shall see below,
A; and hence A, (for n > 2) simply cannot be embedded in Z? and Z",
respectively, regardless of the scaling factor. Z™*! is required, in which case
the simple roots e, — e, form a basis.

Counterexample 2: We know A; has a basis consisting of 2 inde-
pendent vectors of norm 2 (usually these are taken to be e; — e,
and e;—e3). Let this basis be mapped (under the similarity trans-
formation) to the vectors ae, + bey and cey + de; in Z%. Then
a,b,c,d € Z. Wlog we can assume a, b,c,d don’t have a common
divisor (otherwise absorb it in the scale factor A). Then we have

a® + b = ¢* + d* = 2)\! (call this equation (a))

and ac + bd = A? (call this equation (b)).
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Now (b) implies A? € Z, so (a) gives us @ = b, ¢ = d (mod 2).
But odd? + odd?® = 2 (mod 4) and even? + even? = 0 (mod 4),
so we must have a = b= c =d = 1 (mod 2) (by hypothesis, all
coeflicients cannot be even). But sticking this into (a) implics A?
is odd, and sticking this into (b) implies A? is even. This contra-
diction implies no such similarity can be found, and Conjecture
2 cannot be true.

Conjecture 3 Anyn-dimensional integral lattice is congruenl lo a sublaftice
of somz Z™, for m > n.

So here we're fixing A at 1, but allowing m t vary (so M nced no longer
be square). For example, A, can be embedded in this way in Z"*!, and VkZ
can be embedded in Z*.

This conjecture also falls short.

Counterexample 3: Consider the I lattice (F7 or I5g will work as
well) with a basis {r,} of simple roots. (Sce the following section,
and in particular Table 2, for the definitions of these lattices and
a list of their simple roots). All these basis vectors have norm 2,
In any Z™, the only vectors with norm 2 are of the form +e, £ ¢,,

for ¢ # ;.

Wlog let €; — €3 correspond to ry. 7213 = —1, 50 13 “containg”
either e, or e; but not hoth. Wlog say r3 = ¢; — ¢y.

r4 - 73 = —1 so either r4 contains eq, in which case ry = —e¢; — ¢y
(since 74 - 2 = 0), or ry contains e3, in which case we can take
r4 = e3 — €4. In the first case r5 - r4 = —1 implies r5 contains

exactly one of e; or e, contradicting r5 - 7, = 0. Thus we must
have r; = €3 - e4.

Now look at r¢. From rg-7r3 = —1 and rg 19 = 1 - 174 = 0 we
get either r¢ = —e; — e, (in which case r; cannot he found) or
re = €3 + €4 (in which case 75 can’t be found).

Therefore Eg provides us with a counterexample to Conjecture 3.

The next, and final, hope for a general theorem asserting the possibility
of embedding each integral lattice in Z™ turns out to he true.
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Theorem 2.5.1 Any n-dimensional integral lattice is similar to a sublattice
of some Z™, for m sufficiently big, and where the scaling factor X may be
chosen to be the reciprocal of a positive integer.

In other words, we can symbolically write A C AZ™, for any integral
lattice A. An alternate formulation is given in Theorem 2 at the end of this

section.
Due to the counterexamples given above, this theorem seems to be the

strongest result we can hope for. Roughly speaking, the extra dimensions
are nceded to remove square roots from the numerators of the elements of
a generator matrix. The scale factor is needed to remove their common
denoninator.

Proof of Theorem 1: Let A be the Gram matrix for the lattice,
using the basis {7;}. Proceeding in a manner analogous to the
Gram-Schmidt process, we shall find orthogonal vectors s;, k =
l,...,n, each with integral norm, satisfying

where B is a lower triangular matrix with rational number entries.
This can be done as follows:

Recursively define AV = A, s = r; and for ¢ =

1,...,n let
#0 - 0 fork< ¢ S(H_l) _ 0 . for k< ¢
(k) AP otherwise ' s _ rgc)) otherwise

and finally let A*1) bethe Gram matrix for {s{*"), ..., {sl¢+D}.
Each of these Gram matrices is integral. If we set A\, =
Aﬁ?, then

M@ ()

r r r
O R T B
s VL W VLA Vs W
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is an othogonal decomposition of the basis vectors. Set-
ting s = sg‘) and

0 fork <@
By =

AU) . [
&  otherwise
X-he

we get the desired expression for the ry in terms of that
for s,.

The fact that B is only a rational matrix can be corrected by
factoring out a common denominator from all of its entries — i.c.
by choosing a scale factor A = «\1-?- -. It now suffices to find an
expression for the s; in terms of the standard basis of some Z™.
It doesn’t matter how this is done, provided their components are
only integers.

Note first that s; has length (as opposed to norm) /A, so to
guarantee that our generator matrix has only integer entries we
should write s; as the sum e; +- - - +ey,, sz as ey, 414+ )\ 41,
etc. Thus we have m = Ay +--- 4+ A,. (Of course, we cannot in
general simply absorb these radicals in the scale factor because
these radicals need not be equal.)

Theorem 2.5.2 Let A be any positive definite matriz (so it must be square
and symmetric). Then there ezists a Z-matriz M (not necessarily squarc)
and a positive integer A such that

MA= MM,

(This is an immediate corollary to Theorem 1. This is also the best result
possible — in general you need a scale factor and M to be non-squarc in
order to guarantee M only has integer components.)

An almost identical proof establishes Thecrem 1 for identical lattices,

implying

Theorem 2.5.3 Let A be any symmetric matriz (so it must be square).
Then there ezists a Z-matriz M (nol necessarily square), a posilive inleger
)\, and a matriz G of the form diag(+1,...,+1,-1,...,~-1) such that

MA=MGMT.
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2.6 Root Lattices

The theory of Lie groups and algebras is certainly among the most elegant
and conscquential of all mathematical theories. Its influence is felt in areas
such as gauge theory in physics (e.g. superstrings) and the classification
of the finite simple groups (16 of the 18 infinite families of finite simple
groups are of Lie type). And in this and the following section its significant
applications to lattice theory will be presented.

To every complex semi-simple Lie algebra there is associated a root sys-
tem, i.e. asct of vectors {a,} {called roots) satisfying various properties (e.g.
2{;-"{—"{—'.1- € Z). A basis for it can be found — these basis vectors are called sim-
ple 1oots. A convenient way of graphically representing a set of simple roots
is with a Dynkin diagram: to each simple root there is associated a node in
the diagram, and 2 nodes are connected by 0, 1, 2 or 3 (sometimes directed)
segments depending on the dot product of the corresponding simple roots.
All possible connected Dynkin diagrams are known — they correspond to
the complex simple Lie algebras A,, B,, C,, D,, Eg, E;, Eg, Fy, and G, (all
other Dynkin diagrams are simply unions of these).

By aroot lattice of some Lie algebra we simply mean the lattice generated
by the simple roots of the Lie algebra. The simple roots are known up to a
global rotation and global scale factor only, but we shall fix them by adopting
the conventions of Bourbaki (see Bou, pp. 250-262). The dimension of the
root lattice, i.e. the number of simple roots, is the rank of the Lie algebra and
is the value of the subscript (e.g. the root lattice for A, has dimension n).
We will use the same symbol to denote the root lattice and the Lie algebra
(no complications should result).

See Figure 1 for the 2-dimensional root lattices (the origin is labelled with
an “o”, and the simple roots with a bullet). As can be seen there, many of
the 1oot lattices are congruent (=) or similar (=) to one another.

Theorem 2.6.1 B, = Z", Gy = Ay, Cp, = D,,, and Fy = Dy, That is, it is
suflicrent to consider only the sumply-laced Lie algebras (i.e. the ones whose
sumple roots all have equal length). In addition, A, = D, 2 Z, D, = D? =
2% and Dy = Ay These completely cxhaust the similarities/congruences
between root lattices.

proof: The similaritics/congruences involving A;, Dy, D, and
D)4 are all obvious when one considers the corresponding Dynkin
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diagrams.

case (1): B, = 2"

Let ex, k = 1,...,n be the standard basis for Z". In terms of
this basis, the simple roots a; of B, are a, = €; —e3,...,0,-7 =
€n-1 — €n,Q, = €, {(according to Bourbaki). Thus B, has genar-
ator matrix

1 -1

M': % *e

where we have displayed only the non-zero entries. Z™ of course
has M = I. Setting A =1, B =1 and U = M’, and noting
that |U| = 1 (since M’ is upper triangular) we see that M’ =
AUM B, so the root lattice B, is congruent to Z". (In fact, here
we have that the span of the a; equals the span of the e, so the
transition from the ay to the e; amounts merely to a change of
basis. Thus B,, and Z" are equal here to an extent even greater
than congruence, but this is more due to a fortuitous choice of
basis vectors than to some profound relationship between B, and
Z".) (We could ignore the projections/embeddings :»" because
we have here m = m/(= n)).

case (2). Gg = A2

Bourbaki gives the simple roots of G2 to be aj = ¢; — €3, a) =
—2e1 + ez + 3. He gives the simple roots of A; to be a; = ¢; —e,,
a; = ¢3 —e3. (Herem =m' = 3).

,_f 1 =10 (1-1 0
M‘(—‘z 11)’M“(0 1—1)’

1 0
:A_I,B_I,U_(_2 _1).

Since [U| = -1, G, and A, are congruent.
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The root system for G, consists of all vectors in the A, lattice
with norms 2 and 6 — the smallest 2 norms in A,.

case (3): C, = D,

The simple roots for Cy, can be chosen to be af = ¢, — €x4y for
k=1,...,n—1, and a/, = 2¢,. Those for D, are a; = ex — €x4s
fork=1,...,n—1,and a, = ¢p_1 + €.

1 -1 1 -1
1 -1 1 -1
M': et ,M: ‘
1 -1 | G
2 1
1
U= ,

1
1 -1

A=1, and B = I, so C,, is congruent to D,,.
case (4): Fy = D,

The simple roots for F, are o) = e; — €3, aj = e3 — €4, ay = €4,
r__ 1
oy = ;(ey — €3 — e3 — eq). Thus

0 1 -1 0 1 -1 0
1o o0 1 -1 0 1 -1 0
M=1o o o 1|'M=]l0o o 1 21|
i 0 0 I
1 00 -1 1 10 0
001 -1 11 -10 o0
U=1o 01 O’B‘E 0 61 1
010 0 0 01 -1

and A = 7'5 Then B is orthogonal, |U| = —1, and M' = AUMB,

so these lattices are similar (but not congruent). The presence of
a scale factor, and the realization that the Fy root lattice repre-
sented in this way fails to be integral, suggests that this choice of
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simple roots for Fj isn’t the most natural: af = \/§a;‘ may iook
messy, but (at least in the context of lattice theory) is a better
choice.

That these exhaust all possible similarities/congruences follow
casily by computing determinants (see Table 2), for example.

If we hadn’t adopted Bourbaki’s selections, Theorem 1 would still be
valid, provided we replaced congruences everywhere with similarities. In this
sense, similarity is coordinate-independent, unlike congruence, and especially
unlike pointwise equality (B = I,A = 1), which occurred here in cases (1),
(2) and (3).

Theorem 1 allows us to completely ignore the multiply-laced root lattices
in the following pages. The root lattices A,, D,,, Eg, E7, and Ej all have
minimum norm g = 2 (minimum norm is the smallest non-zero norm), all
arc integral, all are even and all are indecomposable. (Z™ is odd, has p = 1,
and is only indecomposable if n = 1). Only Z" and E; are self-dual, however.
The relevant features of the root lattices are given in Table 2. Bourbaki’s
choice of norm 2 for the simple roots of these simply-laced algebras is the
smallest possible choice for which the root lattices are integral (e.g. %An
isn’t integral). (In Table 2 slightly different simple roots were chosen so as
to agree with the notation in CS.) Provided we adopt the range restrictions
of n given in Table 2, all of these root lattices are distinct, in either sense of
§3.

From the Dynkin diagram (also given in Table 2) we can read off the
Gram matrix. Each node in the diagram represents a simple root (of norm
2). Two nodes are connected iff the dot product of the corresponding simple
roots (= basis vectors) is -1; otherwise the simple roots are orthogonal. Thus
the Gram matrix has 2’s down the diagonal, and only -1’s and 0’s scattered
off the diagonal.

The Cartan matrix of a root system is the n X n Z-matrix whose entries
are 2—:.'—::1, for the simple roots a,,i = 1,...,n. For simply-laced systems,
notmalized as we have them normalized, this is precisely the Gram matrix
of the corresponding root lattice, relative to the basis of simple roots. Thus
we have Gram matrix = Cartan matrix here. Similarly, the weight lattice is
just the dual lattice.

Let A be any integral lattice, and Ag be the sublattice generated by its
vectors of norm < 2 (these vectors are often called root vectors of A, for
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Table 2: The Root Lattices

Symbol Congru. Dynkin Diagram Basis Vectors Det
2"n2l B, 1 2 3 n T, =€ 1
0 O 0 +++ O
A",HZQ G2=A2 1‘1=(-1,l,0,...,0) n+4l
1‘2=(0,- 1,1,0,. .o ,0)
o___o__o-—- e e s —-O .
12 3 n :
r,=(0,...,0,-1,1)
(ri € R™)
Dp,n2>4 Cn ry=(-1,-1,0,...,0) 1
F.g = D.| 1 n 1‘2=(l,-l,0,. . ,0)
3 see =0 M
z 2 r,=(0,...,0,1,-1)
(r.,€ R")
Eg - ry=(-1,1,0,...,0) 1
8 1‘2—-(0,-1,1,0, .e ,O)
? 3 4 35 G 7 :
7.7=(09 . ,0,-1,1)
r=(h, bbb D
(r € R®)
1'1‘7 - L =(-l,1 ,0, . ,0) 2
2 7 :
! 2l 2 S re=(0,..,0,:1,1,0)
(b, Lhdcd o)
(r. € R°)
I - r,;=(0,-1,1,0,...,0) 3
1 o .
23 4 s | = (o 01,1 0)
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reasons that will soon become clear).

Theorem 2.6.2 (Witt’s Theorem): If A = Ag (i.e. if A is generated
by its root vectors), then A can be decomposed into a direct sum of the root

laltices Z™, A, D, , E,.

(For a proof see WIT and KNE.)

This theorem provides us with a hint of ihe usefulness of root lattices
which will become more graphic in the following pages. Most lattices known
are cither root lattices themselves, or constructed from them in some way
(notable exceptions are Azyq, Oq3, O24, Ajg and Kp2).

The root lattices and their duals solve many packing-type problems. (See
Figure 3 for examples of these problems in 2 dimensions). The densest pack-
ing in 2-dimensions is A,, as any billiard player can assure you. The best
sphere packings known in dimensions 3-8 are As, Dy, Ds, Eg, E7 and Ejg (the
lattice points are the centers of the non-overlapping n-spheres). The “dual”,
so-to-specak, of the sphere packing problem is the Covering Problem: com-
pletely cover R* with (overlapping) spheres of fixed radius in such a way as
to minimize the overlap. A; is again the best in 2-dimensions, while Ag, for
k =3,...,8 arc the best known in their respective dimensions. Another fa-
mous question is the kissing number problem: fix an n-sphere in R*, and try
to maximize the number of non-overlapping n-spheres of equal radius that
just touch the central one. Isaac Newton and David Gregory apparently had
a dcbate about this in 1694 — Newton thought that in 3-dimensions only 12
ball bearings can simultaneously “kiss” a central one, while Gregory thought
13 could be possible. Mathematics has since sided with Newton. It has been
proven in 2, 3 and 8 dimensions that A;, A3 and Eg are the best (in 8 di-
mensions, for example, 240 spheres can be arranged in this way), and it is
thought that Dy, Ds, Eg and E; are also the best.

The classical representation groups of A,,, B,, C,, and D,, are SU(n+1),
SO(2n+1), Sp(2n) and SO(2n), respectively. This will prove useful in trans-
lating from the language of (momentum) lattices to the language of (gauge)
groups. More on this in the next section and in §1, Chapter 3.

The root lattices are the solutions to another fundamental problem: enu-
metate all finite reflection groups, also called Coxeter groups. An irreducible
finite reflection group (the reducible ones are simply direct products of the
irreducible ones) can be defined as follows: engrave on the surface of a sphere
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Figure 3: Sphere Packings in Two-Dimensions

3(a) The sphere packing problem

3(b) The thinnest covering problem

3(c) The kissing problem
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a spherical simplex, all of whose dihedral angles are of the form o and con-
sider the group generated by reflections in its walls.

It was shown by Coxeter that this definition is equivalent to the following;:
a finite reflection group is a finite group with elements R, satisfying

R?=1and (RR,)" =1

for integers p,,. (Here, % is the angle between the zth and jth walls, and R,
is the reflection in the ith wall.)

The crystallographic reflection groups have each p,,=2, 3, 4 or 6. Asso-
ciate with these groups a Coxeter diagram where each wall of the simplex (the
interior of which is called the fundamental region of the group) is represented
by a node, and nodes ¢ and j are connected by 0, 1, 2 or 3 lines depending
on whether p,,=2, 3, 4 or 6, respectively. Then the Coxeter diagram is just
a disjoint union of the diagrams of A,, B,,, Cy, D,,, E,, F4 and G2. (Non-
crystallographic reflection groups have also been classified). From these we
can get lattices by choosing vectors orthogonal to the reflecting hyperplanes.

We can get a reflection group out of a lattice, as well. Define a root vector
for A to be a primitive » € A such that the reflection in the hyperplane
orthogonal to r, given by ¢ = = — %Lr’ is a symmetry of A (r is said to
be primitive if Ar € A :=> A € Z). These reflections generate a subgroup
of Aut(A), sometimes called the Weyl group. If A is self-dual, these roots
are precisely the vectors of norm 1 or 2in A — hence in agreement with our
carlier definition of root vector.

2.7 Gluing Theory

The concept of direct sum is an immensely valuable tool for the analysis of
lattices, as Table 1 indicates. For example, it enables us to effectively ignore
lattices containing unit vectors. But we can do even better than direct sum.
A generalization of it is called gluing theory. With it we can breakdown even
some indecomposable lattices, and can essentially do for norm 2 vectors what
direct sums did to norm 1 vectors.

Consider some n-dimensional integral lattice A, and suppose the direct
sum A= A @---PA; is a sublattice of A also of dimension n. (Every lattice
A has infinitely many such lattices A’. We are most interested, though, in
cases where the A, are all root lattices, which is somewhat rarer). Then any
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z € A can be uniquely written as ¢ = x,+- - - T4, where r, € RA,. In fact, we
can pin down these z, even more (of course, in general r, € A, since usually
A #£N).

Choose any y € A,. Then z,-y =z -y € Z, where

y=069"1'@069y€9069;“®0€/\.

Thus z, must be in A].

A integral == A, integral == A, is a sublattice of A]. Consider the
quotient G, = A7 /A,, called the glue group of A,. It’s abelian, with order
|A,] (see Theorem 1 below). The elementsin G, are sets (i.c. cosets) of vectors

— choose a representative gf') from each of these |A,| cosets. 1t’s conventional

to choose gJ') to have as small a norm as possible (so, for example, one of the

gf'), corresponding to the j that labels the coset A,, will be the zero vector),

(1)

but there’s a problem with this convention, as we will soon see. These ¢

are called the glue vectors of A,.
Then = € A can be uniquely expressed as

r=yt-nt g,
wherey, € A,, and where g (also called a glue vector, unfortunately) is a sum

1 A
g=g§|)+'”+g§k"

il

Definetheset G = A/N = {g = g](:)—f—- . '+g§f) | dr e A,y € A, satisfying »
¥y + ¢g}. Then G is a subgroup of Gy x -+ x Gy, and is called (unfortu-
nately) the glue group of the gliing of A by Ay, ... AL We may write
A = (A, ...,A,G). G has order (TTA, |A,|%)/]/\|% (see Theorem 1 helow),
and consists of all glue vectors of the gluing. (7 must satisfy two properties in
order for A to be an integral lattice. IFirst, it must bhe closed under addition,
and sccondly g; - g, must be an integer for any ¢,,¢9, € ¢/ (note that althongh
the first property is always satisfied by [1(7,, the second one is only if A s
self-dual). The first condition is usually satisfied by specifying, instead of all
oi (4, some gencrators ¢y, ...,¢; and defining ( 1o be the Z-span of them
The second one is then verified by calculating each product ¢, - ¢, (column
3 of Table 3 is designed to make this task a little easier, at least when the
components A, are root lattices).
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See Iigure 4 for examples of 2-dimensional gluings (the origin is labelled
0, while the glue vectors are denoted by bullets).

Direct sumns arise when the glue group G consists only of the zero glue,
and thus are a special case of gluings.

These values for |G| and |G| follow from:

Theorem 2.7.1 Let A’ be a sublatlice of A such that RA' = RA. Then

AN s an abelian group of order ‘/%i'l In particular, A*[A has order |A|

Jor indegral N,

prool: Let U he the non-singular Z-matrix satisfying M' = UM,
where M’ and M are the generator matrices of A’ and A, respec-
tively. Then A’ = UAUT, s0 |A’'| = |U|?|A], and it suffices to
show that |A/A'] =] U] |.

[xpress {7 as the product U = Uy - - - Uy of elementary row matri-
ces and define A, for 1 = 1,...,k recursively as being the lattice
whose generator matiix is M, = U, M,_,, where Mg = M. Then
AN = (AJA)) < (A JA2) x -« X (Ak_1/Ax). Also, |A,-1/A,] triv-
ially equals | 7] |. Therefore |[A/A'] = |AJA % - x|y [Ak] =]
% - x U =] U] .

Example 2.7.1 A somple crample of a glung s A7 = (Ay, ..., A, Gh,..., Gi).

It 15 standard practice o 1epresent the glue vector gJ(') of the component
A, by [y]s and the glue vector g = gﬁ,” + 4 gj:) of A by [51...2x].

Call an integral lattice saturated if the sublattice Ag spanned by the
vectors of norm | and 2 m A is n-dimensional (these vectors are called root
vectors, and Ap is called the root lattice of A). Witt’s Theorem (see the
previous section) tells us that Ap is a direct sum of the indecomposable root
lattices 7, 1, D, and I,. Thus any saturated lattice can be formed by
gluing, together vatious 1oot lattices. For this reason, the components A, in
a gluing are almost always chosen to be the root lattices.

Not all lattices are saturated — some examples are 2Z and Agy — but
self-dual lattices, at least in the smaller dimensions, often are. The first un-
saturated self-dual lattice is 19-dimensional. 26 of the 27 Type II lattices
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D; = D,[0]
Dy1]
Dy[2]) = 72

Figure 4: The Gluings of D,

= D,[3]
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of dimension n < 24 are saturated ( the Leech lattice Ay is the sole excep-
tion). Besides Ay, two other important unsaturated self-dual Jattices are the
shorter and odd Leech lattices Oz3 and Oy,.

One of the greatest triumphs of the gluing method was in Niemeier’s
enumeration of the 24 24-dimensional Type II lattices (see Table 4).2 The
remainder of this section will be devoted to studying the glue groups of the
100t lattices. The relevant data is collected in Table 3 (which should be read
in conjunction with Table 2). The glue vectors in the Dynkin diagrams are
labelled by bullets; for convenience we have written, e.g.,

!
n+1

J =J for _L__l —J
}’{n+l}) of fn-{-1"”’n+ll’\n+l’“"n+l‘)'

~ —— —

J 3

(

Also included in Table 3 aie the dot products of the glue vectors among
themselves (for D, and Eg these have been arranged in Gram-like fashion),
as well as the glue groups (note that the glue group of D, depends on whether
n is even o1 odd). Note that [0]=(0,...,0) is always a glue vector, and that
the number of glue vectors of A, for example, is |4,| = n+1 (so, for example,
the self-dual root lattices Z™ and g have only [0] for a glue vector, and hence
enter as components into gluings only tnvially, through direct sums).

Example 2.7.2 D, = (D,, D,,,[20],{02]) for any m,n > 4.

Example 2.7.3 One of the most important glungs s D} = D, [1] = (D, (1])
DU Dy 4+ (3,...08). DY s ntegral off no1s a multiple of 4 (this should
b obmous), i which case it is self-dual (this will be shown in a couple of
difforent ways m the followmyg sections). DY s Type iff n =4 (mod 8),
and Typc 1 ffn =0 (mod 8). DY = Z*, and D = Eg. |D}| 1s 1 for
noeven, 5 forn odd. DY s congruent to Dy [3], but Dy[2] = Z" so equals
DY ff n={ (Sce Fgure § for Dy and D3[2]). [1] 1s the deep hole for D,
(for n > 1: for n=2, [2] 1s the deep hole — sec Figure {), so geometrically
DY consists of two copies of D, superimposed m such a way that each copy
plugs up a number of deep holes of the other. (Incidently, it turns out that
cvery non-self-dual root lattice has only one type of deep hole, and one of its
glue vectors pomts at that deep hole. This is not generally the case for other

lattices.)

2Table 4 was based on Table 16 1 of cs
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Table 3: The Non-zero Glue Vectors

Glue Vectors li}-{k] | Dynkin Diagrams | Reps | Glue Gp
Ad il = Fc.n' 12k, ,o—o0— n | ten- Cntt
({nﬂ}J {n+l} ) i) [kk] = L £}] sor ([ + (K]
fori=1,...,n L ] of =l + &)
n+l W ces —O
‘/‘ rank
(J=n+1-1i) (so fi)-r, = -1) i
Dn | 1)=({3}™) (1) s C; x Cs
"\ " (for n even)
+ —o0
2
[2]=({0}",1) no 1 a2 v
{1 >
a2 1 a TN Ci
_ ¢ (2) (for 1 odd)
[Bl=(-3. {31"™") cs | ((1]+ (2= [3))
- o O
(3
E [l]’-‘- (1
({3, 9 2 7 26 Cy
1 2 3 4 5
ks | [t]= 6 2 Cy
5
('%1:1 {—é}sv ; A2 ! 2 3 !
3
2= (1) |o g e
(-2:45)% -63)

-~
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Table 4: The 24-dimensional Type II (Niemeier) Lattices

Compo- Glue Vector Total # of | |Gyl |G|
nents Generators g, Glue Vectors
D4 ] 2 1 1
DyeEs (10] 2 1 1
E? (000] 1 1 6
Az (5] 9 2 1
D%, (12)) 4 1 2
Avrkr [31] 6 2 1
Diol? [110), [301] 4 1 2
AysDs 21] 8 2 1
D3 [(122)) 8 1 6
A, [15] 13 2 2
AnD?Ef, [111] 12 2 1
E} [1(012)] 9 9 24
AZD, [240], [501], [053] 2 2 2
D¢ [even perms of {0123}] 16 1 24
A [(114)] 27 ) 6
A3D? (1112}, [1721) 32 2 4
Al [1(216)] 49 2 12
AD, (2(024)0], [33001],
(30302}, [30033] 72 2 24
DS (111111], {0(02332)] 64 3 720
A (1(01441)] 125 9 120
A [3(2001011)] 256 2 1344
Al? [2(11211122212)] 729 2 | 95040
AH [1(000001010011001101011ll)] 4096 1 244 823 040
Aqs - - 1 1
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It often happens that Aut(A) should be computed (e.g. when using the
Minkowski-Siegal mass formulae). When all the components are root lat-
tices this is relatively easy to do. Let G’ be the direct product of the Weyl
groups of the components (the Weyl group is generated by the reflections
in the simple roots, and is a normal subgroup with low index in the group
of all automorphisms of the root lattice). Let G” be the permutation group
resulting from the automorphisms of A which map each compouent onto it-
self and which permute each component’s glue vectors. It is a subgroup of
the direct product of the symmetry groups of the Dynkin diagrams of the
components (for example, the symmetry group of the Dynkin diagram for
D, , n > 4, consists of only two elements: ‘parity’, which flips [1] and [3],
and the identity. For n = 4 there are the additional ‘triality’ conjugations).
And finaily, let G be the group of all permutations of the components that
arise from Aut(A) (this is a subgroup of Si, x --- x 84, if there are exactly
k, components equal to A,, where A, # A, whenever | <1 < j < €). Then
Aut(A) = G' x G" x G". In patticular, if G and G™ are as big as possible
we will only get out the automorphism group of the ditect sum of the com-
ponents, so the automorphism gioup of a gluing is always a subgroup of that
for the corresponding direct sum. For example, G" and (" always have only
one element for D}, so its automorphism group is half as large as that for
D, (n >4).

What makes this decomposition of Aut(A) so useful is that (" and (" in
practice tend to be small and easy to calculate (see Table 4 for their orders
for the Niemeier gluings), and the Weyl groups (and hence (") are all known.

My glue vectors in Table 3 differ from those given clsewhere, notably
cS. Unlike them I needed the Dynkin diagrams shown in Table 3 to be as
simple as possible, for a number of reasons, something Conway and Sloane
were apparently indifferent about. They were predominantly interested in
choosing vectors of minnaal length — e.g. their [1] for I7 had norn 3/2,
while mine has norm 7/2. Also, I adopted their coordinatization of the simple
roots, unlike many people (sce, c.g. LAM4), so my glue vectors reflected this.

I mentioned last section that the dual of a 100t lattice was its weight lat-
tice. We have of course g, € A7 — in fact it turns out that the glue vectors
are weight vectors. This is how gluings will be found to relate to 1epresenta-
tions: in short the root lattice tells us the Lie algebra and the conesponding
adjoint Lie group, and the glue vectors give us the representations (or the
relevant covering) of that Lie group.



We will start this discussion with a few definitions.

Definition 2.7.1 A Lie algebra L is a vector space furnished with an an-
tisymmetric bilinear product [—,—] salisfying the Jacobi identity [[a, b],c] +
[[6,¢],a]+[[c,a],b] = O (we shall assume the Lie algebra is finite dimensional).

A Lie algebra is often characterized in physics by its structure constants.
Choose any basis b, for L. Since L must be closed under the bilinear product,
we can write [b,, b} = &*b, for some scalars ¥ (called the structure constants

of L relative to b,).

Definition 2.7.2 Lel V be a vector space, and L be a Lie algebra. A mapping
p which assigns to each a €L a linear transformation p(a) on V is called a

representation of L on V if it satisfies:

1. p(Aa + pb) = Mp(a) + pup(b) for alla,b€ L, p, A € R;
2. pl[a, b)) = p(a)p(b) — p(b)p(a).

For example, the trivial representation sends each vector in L to the 0
transformation. A more important example is the adjoint representation
rhoy, for which pa(b,) is the matrix whose zk-th entry is c*. The adjoint
representation has dimension equal to the rank of the algebra (the dimension
of a representation is the dimension of the vector space V on which it acts).

Let p be a representation of L on V. Then a linear functional w on L is
called a weight of p if there exists a nonzero v € V such that p(a)(v) = w(a)v
for cach a €L. v is called a weight vector belonging to the weight w (in other
words the weight vector is an eigenvector of each matrix p(a), and w(a) is
the corresponding eigenvalue).

The weights of the adjoint representation are called roots, and its weight
vectors are simply the root vectors of L that we are by now quite familiar
with.

The representation p is called irreducible if no proper subspace W of V
is invariant under p —i.e. if p(e)WCW for each a € L, then W = V or
0. The matrices in a reducible representation can be simultaneously put in
block diagonal form, and so the reducible representation can be expressed as
a direct sum of irreducible representations.

One of the weights, called the maximal, or highest, weight of p can be
singled out; it turns out that an irreducible representation p is characterized
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by its maximal weight w, (i.e. two irreducible representations are isomorphic
iff their maximal weights are equal). Then there is a natural, one-to-one cor-
respondence between the family of all n-tuples (m,,...,m,) of non-negative
integers (where n is the rank of the Lie algebra — i.e. the number of simple
roots, or the number of nodes on its Dynkin diagram) and the family of all
(equivalence classes of) finite-dimensional irreducible representations of L.
The m, can be considered to be the values of the maximal weight on the
simple roots.

Fundamental weights are those corresponding to the n-tuples with n — 1
0’s and one 1. They (or rather their corresponding weight vectors) form a
basis of the weight lattice dual to the basis of simple roots of the root lattice.
The irreducible representations which have as their maximal weight a funda-
mental weight, are called fundamental representations. All representations
can be obtained from the fundamental ones by decomposing their tensor
products. Our glue vectors (as opposed to those of Conway and Sloanc)
are fundamental weight vectors (or, actually, their negatives ate), so to cach
of our glue vectors corresponds an irreducible representation (sce Table 3).
(The glue vector [0] always corresponds to the adjoint representation since
its weight vectors are simply the root vectors.)

Closely related to this is that, up to isomorphism, there are only finitely
many complex semisimple Lic groups (i.e. connected Lie groups whose Lie
algebra is semisimple) with a given Lie algebra. The smallest is called
the adjoint group, and has a trivial center. The others are covers of this
group, and the largest is simply-connected  For example, theie are two
semisimple Lie groups corresponding to the Lic algebra A One of these
is PGL(2)=SL(2)/Z,, and the other is S1.(2).

A less trivial example is D,,. SO(2n), the group of rotations in /
classical Lie group corresponding to the Lic algebra D,,. It has a trivial center.
Its simply-connected covering group is the spinor group Spin(2n). They have
the same Lie algebra, and hence the same root lattice. The representations
of Spin(2n) fall into 4 conjugacy classes: adjoint or scalar (cortesponding to
[0]), vector ([2]), and the two itreducible spinor 1epresentations of positive
and negative chirality (spinor [1] and conjugate spinot [3]). D}, at least for
even n, corresponds to the double cover Spin(2n)/Z,; of SO(2n) because we
want only half of the conjugacy classes of Spin(2n) (namely the adjoint and
spinor representations).

%" s the
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2.8 Lamination and the Leech Lattice

Lamination is one of three standard ways of constructing higher dimensional
lattices from smaller ones. Its primary significance, at least for our purposes,
lics in its ability to provide a construction/definition of the Leech lattice,
essentially by starting from nothing. Laminated lattices are the densest
packings -- lattice and non-lattice — known in each dimension < 29, except
for dimensions 10-13 (the Coxeter-Todd lattice K, holds the record for 12
dimensions, and non-lattice packings are densest in dimensions 10, 11, and
13. Denser lattices are also known for all dimensions > 30.)

Laminated lattices are defined to be the densest “layered” lattices of each
dimension, and are listed in Figure 5% (unfortunately, I was unable to label
two of the lattices in Figure 5: AM'? and AM'?). For dimensions < 8, these
are similar (but not congruent) to root lattices. In particular, letting A,
denote a laminated lattice of dimension n, we have:

Algzg/‘l7A2§A27A32A3=D.’33A42D4

As =Dy, Ag= Eg , A7 = E; , Ag = Ej.

{‘ ("These similarities were established by Leech in 1969.) Other laminated
lattices include the Leech lattice Ayy and the Barnes-Wall lattice Aqg.

A, is defined recursively as follows:

Let Ay = 2Z. At the nth step stack copies of A,_; as densely as possible,
while preserving the minimal norm of 4 — the resulting lattice is A,.

Lquivalently, consider all n-dimensional lattices containing at least one
sublattice A, —,, whose minimal norm is 4. A,, are siimply those of smallest
determinant.

Sometimes the recursion is taken to start with the l-point lattice Ay,
rather than with A,. Since Ag is the only 0-dimensional lattice, or since A, is
the only 1-dimensional lattice with minimal norm =4, lamination provides
a very appealing definition for the Leech lattice, the unique laminated lattice
of 24 dimensions.

Obviously the specific normalization chosen is not very important. The
reason Ay = 27 was chosen, rather than, for example, A, = Z, was so
that Ay, would be both intcgral and self-dual. With this normalization, A,
is integral iff n < 24, The choice of normalization becomes important only

Figure 515 based on Figure 6 1 m cs

60



-

Figure 5: The Laminated Lattices

Ao=1-point lattice

A1=\/2-Z

A2=\/§A2
A3"‘\/§A3

A4= \/é/i‘
AS"\/§05

Ae ="\/2 Eq
Ar = 2E,

As = V2 Es

Ay T RRNE
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when we demand each A,, be the lattice with the smallest determinant among
all integral lattices having the given minimal norm and having some A,,_; as
a sublattice. The shorter Leech lattice O3 is the unique integral laminated

lattice of norm 3 in 23 dimensions, but Az # /302s.

In general there isn’t a unique A, for a given n (see Figure 5), although
A, is unique for n < 10, and 14 < n < 24. All A, are known for n < 25, and
at least one is known for 26 < n < 48. There are exactly 23 different A5
(one for cach type of deep hole in Az4), and there is good reason to believe
that the number of different Ayg is well over 75 000.

Of course, Ay, is a sublattice of each A, n > 24. It has been shown that
although not every A,, for n < 24, is a sublattice of some A,4,, every such
A, is a sublattice of Ay4. For example, Ay is obtained from A4 by equating
any 4 coordinates to 0.

Each lattice A,4; is the union of translations of some lattice A,,. A simple
geometric picture of how A, is obtained from A, can be found. A4, arises
when you place each layer (roughly speaking, each copy of A,,) in such a way
that each point in the layer is directly opposite a deep hole of the adjacent
layer. This structure can be clearly seen in the case of Ay = A; in Figure
1. When there are more deep holes than points in the layers, there are
scveral possibilities for these layerings. Many of these possibilities will yield
non-lattices, but it seems that always at least one is a lattice.

Usually, cach of the parallel layers of A, 4; is just a copy of some A,. But
in dimensions 8 and 24, for example, “density doubling” occurs as adjacent
layers can actually be merged. For instance, it is possible to fit together 2
copics of Dg, preserving the minimal norm. The result is Df = Eg & As.
A similar situation applies to the Leech lattice. This explains in part the
remarkable propertics possessed by Eg and Ay

There are several alternatives for defining Ay4, but the way given above
is perhaps the most appealing. Its generator matrix is given in Figure 6
(for rcadability, only its nonzero entries are shown). A, is even and self-
dual, and is the only such lattice in 24 dimensions which cannot be obtained
by gluing root lattices. In fact, Ay contains no roots — its minimal norm
it = 4, not 2. This is a very distinguishing property, for the only self-dual
lattices of dimension < 24 containing no roots are the Leech lattice Ay, the
23-dimensional shorter Leech lattice O,3, and the 24-dimensional odd Leech
lattice C,4. Oz3 and Oz4 both have g = 3, and are intimately associated
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Figure 6: The Leech Lattice Generator Matrix
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with Agy. In addition, Ay, is the only self-dual lattice of under 32 dimensions
with ¢ > 4. (On the other hand, there are at least two 32-dimensional
Type Il lattices with g = 4, and at least two 48-dimensional T'ype II lattices
with ¢ = 6. And if we drop the assumption of self-duality, we get further
nontrivial examples: both K, and A;¢ — see Figure 2 — have ¢ = 4 (the
trivial examples are lattices scaled in unusual ways, like 15Z)). Considerably
more common are sclf-dual lattices which, though containing roots, don’t
contain enough to be saturated — i.e. which cannot be expressed as the
gluings of 100t lattices. The fitst examples are 19-dimensional, and in higher
dimensions become the norm rather than the exception.

Every 100t lattice has only 1 or 2 types of decp holes. K3 and Ajg both
have only 1. But Agy has an incredible 23. This is also the number of Niemeier
lattices, and indeed there is a fairly natural correspondence between them.
Related to this are Conway’s 23 “Holy Constructions” of Az4. (These are
given anc clegantly preved by Borcherds in BOR.)

There are some interesting connections between Agy and the Lorentzian
lattice 11,5, For example, you can speak of fundamental (or simple) roots
for indefinite lattices just as was done for Euclidean lattices. I, has 10
of them, I'ly7; has 19, and 1, has infinitely many. The Weyl vector of
a lattice has inner product -1 with all the fundamental roots; it exists for
I,y for n =9, 17 and 25, but not for n = 33,41,.... The Weyl vector
for 11,5, is w =(0,1,2,...,24]70) — surprisingly it is a null vector, which
means Ay, = (wr N T ys,)/(w) is a 24-dimensional Type II Euclidean lattice.
Clonway has shown in fact that A, = Ay. In addition, he found that the
Coxeter-Dynkin diagram of 11y, can be identified with Ayy (the diagrain
has 1 node for each Leech lattice vector).

Ayy was discovered in 1965 by John Leech in the context of sphere pack-
ing  After being introduced to it by Join Mclkay (a former professor at
McGill), Conway soon elevated it to its current position as a truly signifi-
cant mathematical construct. It has been proved to have the highest kissing
number of any 2l-dimensional packing, and holds the record at the present
time for the densest packing, thinnest covering, and best quantizer (see §6 for
descriptions of these famous probleins) in 24 dimensions. It has connections
with Lic algebras that aren’t yet fully understood. But it is perhaps in the
theory of finite simple groups where its usefulness is most graphic.

Let -o0 be the infinite automorphism group of A2y — ie. all isometries
of R*' which ate symmetries of Ag,. -0o0 contains translations, for example.
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Let -0 (pronounced “dotto”) be the stabilizer of the origin - i.e. those
transformations in -oco that fix the origin. It is what is usually meant by
Aut(Ag). It turns out only rotations are in -0 — Agy is the only Type
IT lattice in under 32 dimensions which isn’t invariant under any reflection
(this is in contrast to the 100t lattices, whose reflections almost generate all
automorphisms, and is intimately associated, as we learned in §6, with the
fact that Ay, has no roots). -0 has about 8x 10'® clements, which is about
average for 24-dimensional Type Il lattices (the automorphism group of DJ,
has order &~ 2.5x 107, while that corresponding to A3 has order &= 1.5 x 10%%),

Like all lattices, Ay4 is invariant under @ — —r. Define -1 = -0/7, where
Z = {~1,1} is the center of -0 (so -0 1s a double covering of -1). In addition,
choose any vectors x,y € Ay of norm 4 and 6 respectively, and define -2
and -3 to be those subgroups of -0 fixing r and y respectively (-2 and -3
are independent of the choice of these vectors, since -0 is transitive on both
A(2) = {v € Ay | v? =4} and A(3) = {v € Agq | ¥* = G}). It can be shown
that -1, -2 and -3 are all simple -- in fact they're the 5th, 11th and 12th
largest sporadic finite simple groups. They were discovered by Conway in
1968.

A total of 12 sporadic groups are contained -1 (o1 -0 or -00) as sub-
groups. Many of them are stabilizers of a “stimplex™ in Ay, just like -1, -2
and -3 (the simplices in these cases are the point 0, and the segments with

head and tail 0 and x, and 0 and y 1espectively). Daniel Gorenstein, himself

a major finite simple group theorist, wrote:

If Conway had studied the Leech lattice some 5 years carlier,
he would have discovered a total of 7 new simple groups! Un-
fortunately he had to settle for 3. However, as consolation, his
paper on -0 will stand as one of the most elegant achievements of
mathematics.*

On the negative side, Conway’s work distracted many people into sus-
pecting more sporadic simple groups could be found in the antomorphism
groups of other lattices. This turned out to be a dead end.

Also, the Leech lattice was used by R. L. Griess in 1980 to constinet the
Monster group, the largest of the 26 sporadic groups with alinost 8.1 x 10%
elements. The construction, done by hand, involved calculations that have

iGoRr,p 125
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been called “truly prodigious” and “horrendous”. Conway later produced a
simplified construction also heavily using A4 (and with it a vector space of
dimension 196 883). The Monster ‘involves’ 20 — and possibly 21 — of the
sporadic groups, including the Conway groups -1, -2 and -3 (G ‘involves’ H
means that H is a quotient of a subgroup of G).

The Monster already has many uses. For example, in string theory it
has been used (by George Chapline — see CHA) along with -1 to construct a
26-dimensional anomaly-free superstring theory unifying an Fgx Fg gauge in-
variance and O(8) supersymmetry. -1 plays the role of the symmetry which
combines these, while the representations of the Monster are the fermion
states. Perhaps anticipating a theory like this, Freeman Dyson recently

wrotoe:

[ have to conless to you that 1 have a sneaking hope, a hope un-
supported by any facts or evidence, that sometime in the 21st
century physicists will stumble upon the monster group, built in
some unsuspected way into the structure of the universe. This is
of course only a wild speculation, almost certainly wrong. The
only argument I can produce in its favor is a theological one. We
have strong evidence that the creator of the universe loves sym-
mietry, and if he loves symmetry, what lovelier symmetry could
he find than the symmetry of the Monster ??

Spvs, p. b
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3 The Self-Duality of Gluings

3.1 Statement and Motivations for the Problem

As mentioned earlier, all self-dual lattices of dimensions n < 25 have been
found. For higher n (and in particular for the even lattices of dimension
24), these were obtained for the most part by gluing together root lattices.
It would be interesting to sec how Niemeier, for example, established the
self-duality of his Type II lattices. That the gluings are integral isn’t hard to
check: the dot products between any two generator glue vectors g, must all be
integers. The theoretical and practical difficulty seems to be in determining
whether the gluing yields a lattice with determinant 1.

Unfortunately Niemeier’s work (sce NIE) has not yet been translated into
English (to my knowledge). The “modern™ proof, duc to B. Venkov (sce ¢S,
pp- 427-438) is indirect, translating the task into a problem of coding theory
(namely, classify the self-dual codes over all rings Z,, and the ficld Fy), so his
methods are unable to provide insight into our question (except possibly to
suggest that the question is no longer relevant). However, in superstiings if
not in mathematics there is reason for developing methods to calculate the
determinant of a gluing. In the following sections I'll elaboiate on 3 such
methods, as well as describe a clever graphical technique, due to Lam, of
computing determinants of certain n x n matrices. In this section I'll try to
describe why superstrings would bother with such a question.

Consider the problem discussed in §5 of Chapter 1 of constructing het-
erotic strings from frec boson or fermion fields. When we bosonize the
fermions we find that the allowed “momenta” p form a set A + {, where
t is a vector pointing in the “fermionic direction”, and where A is an indefi-
nite integral lattice in RNvNr for Ny = 24 —d and Np = 12—d (d + 2 is the
number of space-time dimensions; presumably we are ultimately interested
in d = 2). For some peculiar reason we write, for example, p = (pnlp1.) (s0
p® = p% —p%). In addition, modular invariance of the partition function
strongly suggests A be self-dual (sce §4 of the next chapter).

Let G = Gp x G be the local symmetry group it must. be rank
N = Npg + N, since our lattice has that as its dimension. These momenta
are the weight vectors of the representation of G corresponding to the relevant,
particle. Now d of the Np dimensions will correspond to space-time (since
we're in the light cone gauge). Special relativity demands that the Lorentz
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group S()((l):[);_; be the symmetry of those d dimensions, so G = D;_: x Gy
(the actual Lorentz group is SO(d+1,1), but in the light cone gauge this
becomes SO(d) — only the transverse directions survive). If we let py be the
momentum components in tk space-time directions (pp has d/2 components
because SO(d) is of 1ank d/2), we get that po must be a weight vector of Dg —
it will correspond to the adjoint (scalar or [0]) or fundamental (vector or [2])
tepresentation if the particle is a boson, or to the spinor representations [1]
or [3]if a fermion. Similar arguments will apply to the remaining symmetrics
(:"” X (:'/,.

In general we won’t know all of G, and we won’t know all of the rep-
tesentations (i.e. the glie vectors). We will be given the Lorentz group
Dy, cettainly, and a gauge group Gy of rank N, We will be given a set of
low mass patticles (e g gravitons, gauge particles, and other particles, like
quarks) whose momenta cotrespond to 1epresentations of ;. This amounts
to being given the root lattice Ay (repiesenting the momenta of the gauge
patticles) for Dy x ¢/, , and a set of glue vectors g, (1epresenting the quarks,
cte.). We mst. find a self-dual lattice A of dimension N in which can be
found the N, +d/2-dimensional lattice A" = (Ag, g.).

Unfortunately N, 4 d/2 can be mudch smaller than N. The most impor-
tant speaal case involves the Standard Model (see §2, Chapter 1), where
d =2 and (i, =SU(3)xSU(2)xU(1), for a total rank of 5, while N = 32.
In addition, we have (at present) experimental access to the low mass par-
ticles only (according to the theory they will in fact be massless, at lcast
until they acquire a small mass via symmetry breaking), since the massive
particles will have masses on the order of the Planck mass Mp =~ 10'2 Gev,
ot about the size of a bacterium. This means that we can only guess at the
glue vectors cotiesponding to the massive particles. (Incidently, the massless
states cotrespond to p = (pr|py) satislying ph, < 1, pi <2.)

Suppose we guess at arank N group G (of course one containing Da X G).
T'hen before we add more glue vectors we will have an N-dimensional lattice
A = (A¢ g1, ge). where Ag is the root lattice of G. First of all, this lattice
must be integral, otherwise our task is hopeless. This is trivial to verify (just
check that the (§) products g, g, arcin Z). Next, calculate its determinant. If
it’s [, then we're done: we will have successfully constructed a string theory
with the desired low energy symmetries and spectrum. Otherwise it will be
necessary to add additional glue vectors g/ to the gluing. This will have the
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effect of lowering |A|, perhaps to 1.

This discussion, though necessarily incomplete, hopefully gives some idea
of the motivation in superstrings behind calculating the determinant of glu-
ings (see LAM4 for a more complete account). Lam has devised 2 methods
of checking for self-duality: one involves manipulating theta series (I won’t
address that approach; it can be found in LAM4), and the other involves com-
puting gieatest common divisors of certain determinants (I'll discuss this in
§3). In addition I have found 2 other techniques, which I will discuss in §2
and at the beginning of §3.

The mathematical problem can be stated in the following way.

Let A,,z = 1,...,k be n,-dimensional root lattices embedded in ™, and
definen = ny + -+ + ng,m = my + .-+ + my. Consider the gluing A of
these lattices Ay, ..., A, via the glue vectors g;,...,g,. Fori = 1,...,k, let
273 ..., T, € B™ be the simple roots of A,; these constitute a basis for
each A,, and (provided we read for each 1} the vector in R™ with components
(Omat Aoy gt gretrtedmk) ) all of these simple roots together form a basis
for the sum A, @ --@ Ai. Given that the n-dimensional lattice A is spanned,
by definition, by the n + € vectors in B = {r}, g),...,g¢}, the problem is to
determine if i is self-dual. We shall solve this by explicitly caiculating [A|.

First note, however, that 1|ATI|I is the square of an integer, provided A’ is
an n-dimensional sublattice of A. The reason is that because A’ C A, the
basis of A spans that of A/, so M'= UM for some n x n Z-matrix {/, which
implies A’ = UAUT and hence |A'] = |A'| = |UJ?|A]. And of course U| € Z.
This gives us the following practical test:

Theorem 3.1.1 A gluing of A,,..., Ay can be self-dual only if |Ay|--- |Ax
is the square of an inleger.

The converse unfortunately fails (e.g. no gluing of 24, can be self-dual).
This test is particularly easy to perform given that the determinants of each
root lattice is known (sce Table 2).

Let by, .. ., b, be an cnumeration of the n root vectors 1}, and let by, = g,.
Define Ay, . ., to be that sublattice of A obtained by taking the Z-span of
{by,....b.,}. We will get at A by looking at these sublattices, because it is
not immediately obvious how to directly compute |A| (B is not a basis).

Normally, |A| would involve calculating the determinant of an nxn Gram
matrix — a potential problem for large n (n = 32 is an important special
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case). But because root lattices are involved, and because we have chosen
as their basis vectors simple roots, the calculation of Ay, ,.....}| can be done
quickly, using a graphical method given in §4. The question becomes: can
a way be found to get |A] from [Ay,, ...}- Two of the three methods I’ll
discuss do exactly that, and seem quite successful in practice. But the most
promising is the third, given at the beginning of §3.

Strictly speaking, A is indefinite and not Euclidean as we will be assum-
ing in this chapter. G must decompose into the direct product Gp x G,
(because the right- and left-movers cannot mix), and hence the root lattice
must likewise decompose into the direct sum of two Euclidean root lattices
(albeit one is negative definite). 1 see no reason, though, why the glue vec-
tors must respect this decomposition and have all their non-zero components
cither only in right-moving or only in left-moving directions. If this isn't the
case, and it seems doubtful that it is, then A cannot be decomposed in this
way, and our assumption would appear to be groundless. However, the meth-
ods discussed in this chapter should generalize quite naturally to the more
rcalistic indefinite case. The examples considered on the following pages will
all be Euclidean, both for reasons of simplicity and for the wealth of explicit
Fuclidean gluings that are available (see, for example, Table 4).

3.2 Finding a Basis

The most natural way to determine whether a lattice is self-dual is to check
its determinant. The most natural way to do this is to find a basis for it,
and to use this basis to find a Gram matrix for the lattice.

One way of finding a basis for A given the generating vectors b; is by
row-reducing (over Z) the matrix

bll et blm

bn+l,l e bn+t,m
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into the equivalent upper triangular matrix

(0. )

0 =%

¥ : )

(In general M isn’t a Z-matrix, but for the gluings of root lattices M will
always be rational; letting p be a common denominator for all the eatries of
M, and noting that %Z is a principal idecal doinain, we see that Prop. 2.11
on page 339 of HUN guarantees that this decomposition is possible.) The
desired basis of A is the collection of non-zero rows of I'. 'T'he reduction
procedure itself is easily programmable. The only complication is that M is
a large matrix (e.g. n = 36 — 2d), and the resulting Gram matiix would not,
necessarily be sparse, discouraging direct computation of its determinant..
Thus an alternative to this procedure would be desirable, and in view of the
complication caused by a non-sparse Gram matrix, what would be preferred
would be a method which yiclded basis vectors closely 1elated to the b,

This suggests that we should try to choose basis vectors from the set
B. Now, it is certainly true that if we were dealing with vector spaces, some
subset of {b,} must be a basis for R-span{b,}. For a lattice, however, thisisn’t
necesarily the case (sce the following examples). Call the set B3 redundant if
one of its subsets was a basis. Ultimately, we shall provide a necessary and
sufficient test for redundancy, and also determine all possible subsets of 13,
if any, that form the basis. It will tuin out that most practical situations are
redundant, or become redundant after trivial manipulations.

Before introducing the method, a graphical representation will be intro-
duced to make the following discussion patticularly tangible. It will also be
exploited, as we will lcarn in §4, in the calculation of determinants.

To each Lie algeb:a 1s associated its Dynkin diagram. These can be con-
structed as follows: 1epresent each of its simple roots with a node, and con-
nect 2 such nodes with a solid line iff the dot product of their corresponding
roots is non-zero (since we'te dealing here only with products of simply laced
algebras, only single, undirected lines apply). We can define this similarly
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for lattices — the result is a graphical representation of its Gram matrix.
For lattices we shall call this the Coxeter diagram.

For example, the Coxeter diagram of D2 is given in Figure 7(a). The
lattice (D2, [11],[22]) has the diagram shown in Figure 7(b). We see quite
clearly here the geometric effect of gluings: the glue vectors [11} and [22]
link up the orthogonal component lattices Dg and Dg. A few points must be
made. We have adopted the convention that the simple roots be represented
by hollow nodes, and the glue vectors by solid ones. Also, dot products of -1
between vectors have been, as before, represented by single solid lines; here
dot products of +1 are represented by broken lines. Dot products other than
1 will be explicitly indicated, as will any norm different from 2. In general,
the Coxeter diagrams will be uscful only for root lattices and their gluings;
the Coxeter diagram for the Leech lattice, for example, is an impenetrable
maze.

But the main problem is that there are now 84842 (=n; +n3+¢ = n+{)
nodes, and the dimension of the whole lattice is only 848 (=ny + n; = n).
In Dynkin diagrams the rank of the Lie algebra equals the number of nodes;
we would like the number of nodes in these Coxeter diagrams to equal the
dimension of the corresponding lattice. In particular, we would like the nodes
to represent basis vectors, and not merely the generator vectors b,.

As was discussed above, it would be most convenient if we could choose
our basis from among the vectors in B. This would amount to removing
¢ of the nodes. For example, it turns out that the generating vectors b,
of (DZ,[11],[22)) are redundant; its correct Coxeter diagram can be seen in
Figure 7(c) (there are 7 other equally valid choices of node removal available
here, as we shall see in our examples).

Lincar independence of vectors ¢,,...,g, of course simply means

ay gy +---+(l(yz=0=>(l1 = r=aeg=10
For our purposes we require something a little stronger.

Definition 3.2.1 Say that {gi,...,9¢} is A-independent if they are linearly
independent, and if whencver we have inlegers n; satisfying

nigi+---+nge €A

then for each i we have n;g, € A.
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Figure 7: The Coxeter Diagrams of (D3, [11},(22])
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We will be specifically interested in the cases where the glue vectors g;
for the sum A’ = Ay @ -+ ® A, are A’-independent. Later we will discuss
just how comprchensive our method can be, given this constraint of the glue
vectors heing A’-independent. An immediate consequence of this constraint
is that the € nodes to be removed from the set of n + £ generators b, must
all be root vectors. The actual motivation for demanding A’-independence is
both more subtle and more significant, and will be shortly revealed.

Note first. that the root vectors b,, i = 1,...,n, are linearly independent.
Note also that the glue vectors g, = b,4n, ¢ = 1,...,¢, are in the R-span
of the root vectors. In fact, for each glue vector g, there exists a smallest
positive integer k, (called the characteristic of g,) such that

n
kg, = — Zc,JbJ,
1=1

where cach ¢,; € Z. If the g, are A-independent, these £ relations generate
all others, in the sense that 30 n,g, € A’ iff each n, is a multiple of k, — in
fact, for n, € Z,

n+l
E n,b, = 0 would imply that 3m,,....m; € Z such that

=1

¢ .
n = Ly=1mye, fori=1,...,n
! My—nkon fori>n

Now suppose for example that we remove the nodes corresponding to the
roots by,...,be. Then by is in Z{b, | ¢ > €} iff there are integers n; such
that b, = Z:‘:;H n,b,. But then A’ independence implies that there exist
integers myy,...,mye such that 1 = — E;=] my,c;,, but 0 = — Zf=1 my,c,,
forze =2,...,¢.

Similar remarks hold when by,...,b, € Z{b, | i > €}. Letting M and C
denote the Z-matrices with clements m,; and c,,, we get simply that ~-MC' =
I. Thus we have shown that if {byyy,...,b4n} is a basis for the gluing
A= (N,q,...,g:), then the matrix C is invertible over the integers, and
hence |C| = %1.

The converse is also true, and its proof doesn’t even require A’-independence.
We have thus established a central result of this section:
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Theorem 3.2.1 Suppose the glue vectors are A’'-independent. Let C denote
the £ x n matriz whose entries are c;;. Then the gluing A = (A’ gy,...,9¢)
is redundant iff 3J C I, such that |C;| = £1. In particular, {b, |1 ¢ J} is a
basis of A iff |Cy| = £1.

(Of course, here the cardinality ||J|| of J is €, and Cy is the £ x € submatrix
of C obtained by retaining only those columns in C labelled by an index in

J.)

Corollary 3.2.1 Suppose 3J C I, such that |Cs| = £1. Then {b, | i¢ J} is
a basis for A. (This is true even if the glue vectors fail to be N'-independent.)

Note that it isn’t required here that A and A’ be integral or self-dual. A’
doesn’t have to be the direct sum of root lattices, and the ¢, don’t nave to
be weight vectors, but these are the cases of most interest.

Theorem 1 forms the foundation for the first method we shall discuss;
as we shall see it is a very practical tool, especially for small ¢. The £ x n
matrix C can be calculated effortlessly from Table 5. Table 5 should be used
in conjunction with Tables 2 and 3.

Example 3.2.1 D} forn even (see Exzample 6 for n odd).

According to Table 5, C = (3,5 —1,n — 2,n - 3,...,1) (since k =
£ =1 C can be copied directly from the table). C has a component (i.c.
a 1 x 1 determinant) equal to £1 — namely that one corrcspondung to r,.
Therefore, r,, can be expressed in terms of vyt = 1,...,n— 1, and [1], so
D} is redundant, and its nth node should be removed (sce Iigure 8(a) for
its true Cozeter diagram. Incidently we shall use that dragram to show in §
that D} is self-dual for alln =0 (mod 4) — forn £ 0 (mod ) D} fails to

be integral).

Similar reasoning shows Al = A,[1] and A24[5] are both redundant (in
both cases the first node is removed).

Example 3.2.2 Show Dy[l] = D4[2] = D4[3] = Z* (where equality here is
congruence).

It is trivial to verify that these 3 gluings are all redundant, wilh an wden-
tical “truc” Cozeter diagram (see Figure 8(b)). Thus they all have the same
Gram matriz and thus are all congruent (see Theorem 2.3.3). We know

2



e,

e

Table 5: The Basis Method

Glue Vectors | Characteristic k, | [C,.. ., Cin]
A, [0] i (0,....0]
[i] F%ﬁ ml.ﬁj[isziv'-,ji,j(i—1),'~-,j]
1=1,...,n G=n+1-1)
D, (0] 1 [0,...,0]
(1] 2if n even 22-1,n-2,n-3,...,]
4if n odd [n,n—-2,2n-4,2n-6,...,2
2] 2 (1,1,2,2,....2]
[3] 2if n even 3-1,%n-2,n-3,...,]]
4if n odd n-2,n,2n—-4,2n-6,...,2
F, (0] 1 0,...,0}
1) 2 3,6,9,12,84,7)
Fg 0] 1 0,...,0]
(1] 3 [4,2,0,1,2,3]
2] 3 94,6,5,4,3]
Z" Eg )] 1 0,...,0]
72a




|

X

Figure 8: The Coxeter Diagrams of the Examples of the First Method
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D = D4[1] is self-dual. From Taole I we see there is only | self-dual inte-
gral lattice of dimension §. Since Z* is also Type I, it must also be congruent
to those 3 gluings.

Witt’s Theorem tells us that if each independent glue vector g, has norm
1 or 2 (as was the case above), then the gluing of root lattices can be replaced
with (i.e. is congruent to) a mere direct sum of (different) root lattices. This
rarely happens, except for small k. The converse must be slightly weakened:
If a gluing of root lattices is congruent to a direct sum of root lattices, then
it is possible to choose a set of glue vectors g; which span all glue vecters
(i.e. the g also are generators of the glue group), and all g} have norm 1 and
2. These g} may or may not equal the original set g, of gencrators —i.c. not
all g, may have norm 1 or 2.

Example 3.2.3 (Aiz, Aj2, [15]), one of the Niemeier laltices (a preponder-
ance of these ezamples will involve Niemeier lattices — 1.e. 24-dimensional
Type II lattices. This is partly because these represent the grealest single iri-
umph of the gluing process, but mostly because their glue vectors are explicitly
known (see Table 4)).

Here, the glue vector [15] has characteristic equal to lem(12 +1,12+1) =
13. From the chart 13[15] yields the malriz

C =(1,2,...,12,5,10,...,40,32,....8),

which has a £1 in the first component. Thus {Ayy, A1z, [15]) is also redun-
dant.

Similarly, (A, D7, Eg,[111]) is redundant ({111] has characteristic lem(11+4
1,4,3) = 12), as are (A7, E7,[31]) and (A5, Do, [21]) (the first node is to he
removed in all of these).

Example 3.2.4 (Ds, Dg,[11],[22))

Hoo Gt 3654321436543 21
et =l11222222| 112222 22)
43 46
NOtCthatIC{1'2}|=|1 1|=1(mdlc{1’3}|=l1 2l=2
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Thus we can stmultaneously remove nodes 1 and 2 (i.e. root vectors b, = “r1 @
0” and b, = “r, 696”), but not nodes 1 and 3. It can be shown that a total of
8 pairs of nodes may be removed: namely, 1 and 2; 2 and 4; 9 and 10 (i.e.
bo=O@®r” and bjo =0 r,”); 10 and 12; 1 and 10; 9 and 2; 2 and 12;
and 10 and 4. Figure 8(c) illustrates the removal of 1 and 2; Figure 7(c)
illustrates 2 and 12.

In all of the examples given thus far, the removal of nodes did not discon-
nect the originally connected Coxeter diagram. This pattern will continue.
For one thing, a disconnected diagram implies the gluing is decomposable
into a direct sum of other gluings. Secondly, it is possible to prove, at least
when A’ is a sum of root lattices and A is integral, that each component of
that decomposition includes unit vectors (though these unit vectors may not
be represented by a node in the diagram). Thus, not only would A be decom-
posable, but its components would include Z. This situation — a connected
diagram being disconnected by the removal of redundant nodes — is not only
rare, but also uninteresting, as there would clearly be more convenient and
revealing ways to express A than as the given gluing.

In none of the examples given has the demand that the glue vectors g; be
A'-independent presented any problems. However the demand is not always
as trivially satisfied. A’-independence of the generators g, implies that the
total number of glue vectors (i.e. the order of the glue group) of the gluing
must equal the product of the characteristics of each generating glue vector
g, (The total number of glue vectors can be computed by Theorem 2.7.1. For
A self-dual, it is [T A, — otherwise this is just an upper bound.) Consulting
Table 4 we quickly find that although most of the given choices of g, are A’-
independent, not all are. For example, the glue vectors [240], [501] and [053]
of A2Dg have characteristics 5, 2 and 2 respectively, and apparently generate
a glue group with 20 (=v/1024) elements (see Table 4), and so are (A3Dg)-
independent. Similarly the given glue vectors for the 12 Niemeier lattices
above it in Table 4 all are A'-independent. On the other hand, 9% # 27, so
choosing as the generators for the A3 Niemeler lattice the glue vectors [114],
[411] and [141] is not acceptable for our purposes (see Example 1, §3).

Any finite abelian group (e.g. the glue group) can be expressed as the
direct product of cyclic groups C,. This implies that, given any gluing of
A, it is possible to choose A-independent generators of the glue vectors.
Well-documented procedures (involving “column and row operations” over
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the iategers) exist which can be used to derive A’-independent generators
given any set of generators g, (see Example 1 of the following section for a
non-trivial example of this; the general theory is described on pp. 343-345
of HUN).

For small ¢, it is also possible to perturb Theorem 1 to accommodate
A’-dependent g,, as the following example indicates.

Example 3.2.5 (A2DZ,[1112],[1721]) g, = [1112] and g,=[1721] are not
(A2D?)-independent, as both 8 # 32 and 4g, + 49, € AXD? indicate. Here
we have that C =

(1234567|1

23 2 844 48 88
123456177 635 8 4

4 95 1

4 3 8 8 8|10 6 12
Instead of having to look for a C invertible over Z, it suffices to look for one
invertible over 1Z — i.e. |C]| could be +2 and still be acceptable. And while
|CY]| 15 never £1, there are some J for which |C]| =2 — e.g. J = {1,10}.
It is trivial to verify that

induces integers n;,n} satisfying by = Y23, 1onibi, bo = T, jonib, (using

the notation of Theorem 1), so we get that (A3D?,[1112], [1721)) is redundant,
and nodes 1 and 10 can be removed.

Unfortunately, not all gluings are redundant. But even then a basis can
sometimes be found.

Example 3.2.6 D} for n odd (in which case D} = D;).

Here C = (n,n —2,2n —4,2n —6,...,2). As none of these cnlries are
+1, D} is not redundant, at least as it currently stands. In other words, no
node lies in the Z-span of the remaining nodes.

Note however that § (the characteristic of [1]) is relatively prime to n (the
first entry in C). Thus, there exist integers u and v such that 4u + nv = 1.
Now if we replace g, = (1] with g; = v[l] + ub,, we see that C becomes

C' = (vn + 4u,v(n — 2),v(2n - 4),...,v2).
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Now the first node may be successfully removed. Of course, gy is precisely as
adequale as g, for generating the glue group. The only catch is that choosing
new glue vector generators complicates the Cozeter diagram.

The case for D is given in Figure 8(e) (there, gi = 3[1] — 5b1). (Inci-
dently, |D}| =1 for n odd).

Similarly Ay[5] = A[15], but Ay4[5] is redundant and Ag[15] isn’t.
Scveral other examples along these lines can be found.

To genceralize these examples, when the gluing isn’t redundant it often is
possible to make it redundant by choosing different g,. Of course the new g,
should be A’-indcpendent, and must generate the glue group.

Unfortunately, some gluings fail on a more fundamental level to be re-
dundant. Examples include A2A43[11111] and E?E3[11111]. These aren’t
redundant, for the characteristic of [11111] (namely, lem(2,2, 3,3,3) = 6) is
larger than the characteristic of each [1] (which is 2 or 3). Thus, each entry
in C is a multiple either of 3 or 2, so not only are none of them 1, but none
are relatively prime to 6. Hence no alternate choice of ¢, will suffice.

Although these examples are integral, they fail to be self-dual (they fail
the test given in the last section (see also Example 3 in the next section); a
quick calculation shows their determinant is in fact 3). Every self-dual gluing
| have considered either was redundant, or, by transforming the generators
¢, as in Example 6, could become redundant. However, I have been unable
to prove that this will always be the case.

At the beginning of the following section is given a variation of this
method which is significantly more efficient (at least for the problem of find-
ing the determinant, as opposed to a basis, of a gluing.

3.3 Alternatives: The Methods of Characteristics,
and of GCD

The previous method involves calculating at most (7) ¢ x € determinants.
This is trivial for small ¢, as we have seen. If the search through these is
successful, one finds a basis for the gluing A, from which, for example, |A| can
be quickly calculated using the techniques described in the following section.

Onc problem is that £ may be large (e.g. for one of the Niemeier lattices,
{ = 23 = n — 1, though for most Niemeier lattices £ < 3), and since these
{ x € matrices aren’t sparse, unlike those for Ay;, i}, no tricks allow for the

76



quick calculation of their determinant. Also, there is a possibility that the
searches described above (including those in Example 6) will fail and that
a basis cannot be conveniently found. And lastly, there is the complication
that the glue generators must be A-independent.

Reminding ourselves that what is actually desired is merely |A], the ques-
tion naturally arises that perhaps the above method may try to do too much.
Perhaps slightly moderating our ambitions will yield mote positive results.

The two methods given in this section compute |[A] directly. The first, is a
significant improvement over the method of §2, although to find a basis the
latter method is still required.

Theorem 2.7.1 implies that the total number |G| of glue vectors equals

M—‘—lelﬂl Thus if we have some independent way of finding |7}, we can

immediately deduce |A|

Theorem 3.3.1 Suppose g1, ...,¢¢ are A'-independent and generate the gluc
group. Then A’ is self-dual iff it 1s integral, and k¥ --- k7 = |Ay| - - - |Ay], where
k; is the characteristic of g,.

Since k, can be trivially computed using Table 5, and since |A,| can be
read off from Table 2, Theorem 1 instantancously cnables us to determine if
A is self-dual (if it isn’t, we can usc this argument to determine what |A] is).
All that is required is the A’-independence of the glue generators, which is
also required by the method of §2.

A’-independence is trivially satisficd whenever € = 1. For example, we
can trivially show that the only self-dual gluings of the form A, [k] are pre-
cisely Ag_1[k] for k = 2,3,... (for example Ag[5]). Also, the only sclf-
dual lattice of the form E}[ky ... k] is E2[11] (which, incidently, is the only
14-dimensional indecomposable sclf-dual lattice), and there are no self-dual
lattices of the form EZ[k,...k,]. For € > I, to get A'-independence will in
general require some straightforward manipulations (see pp. 343-345 HUN).

Example 3.3.1 The Niemcier laltice A = (A3, [(114)])

Unfortunately g, = [114], g2 = [A11] and g3 = [141] aren’t (A )-indepen-
dent — not by a longshot. They all have characteristic 9, and a quick check
reveals 3g; + 392 + 395 = 0 (to sec this and the other caleulalions here, use
the glue group column wn Table 3, so adduion of glue vectors semnply becornes
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addition modulo 9). Now applying elementary row and column operations we
gel

9 00 9 00 900
090___+ 090___»090
0 09 -9 -9 9 000
3 33 0 6 3 003

The first operation operated on the colimns, and so corresponded to a change
of glue veclor generators. In fact g3 — g3 = g1 + g2 + g3 = [666] with
a new characteristic of 3, while g, and g, were unaffected. Note also that
91~ g2 = [603], so 3g) — 39, = 0.

— —_—

W oo
w o e o

0 990 000
0 090 09 0
3 003 00 3
0 300 J 00

Again the first operation is the only column one, corresponding to g} = g; —
g2 = [603] for @ new characleristic of 3, while g, and g are left unchanged.
Finally note that 3¢, = [333), so 6g, — g3 = 0. We can proceed as above, or
we may simply drop ¢5. Fither way, we get that g1, ga, and g3 can be replaced
with g1 = [603] and g, = [411].

There are several ways we can verify their (A3)-independence. For ezam-
ple, looking at the second “component” of m[603] + n[411] = 0 gives us that

9 divides n.
Of course, Theorem I now immediately tells us that this gluing is self-dual.

Theorem 3.3.2 Letg,, ..., be generators, not necessarily A'-independent.
Then A fails to be self-dual if k2 - - - k? < |Aq] -+ |Axl.

The final method I will discuss also computes |A| directly. It always works
(unlike the first method when the gluing isn’t redundant), it doesn’t require
A'-independence in any form, but at least for smaller ¢ requires more effort
than the previous two methods. We need first a preliminary result.

Let A be an n’ xn' matrix, and let J and J' be subsets of I, with elements
Ji < Jy <o < Jyand Jf < --- < JE respectively (so ||J]] = || Y| = n).
Define AF, to be the n x n submatrix of A satisfying (47,),, = Aj,; (so, for

example, |Ay| = |AJ)).
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Theorem 3.3.3 Suppose A= BC, where B and C are n' x n" and n" x n'
matrices, respectively. Then

IAJII = EIBJII J" )
where the sum is over all those sets J" C I,,n with n elements.

(Note that this formula closely resembles ordinary matrix multiplication
— in fact it reduces to it when n = 1. Also, for n’ = n = n” this becomes
the usual |BC| = |B| - |C|. In the event that n” < n, no such sets J” can
be found, and the sum, being over the empty collection, must vanish. This
corresponds to the well-known fact that the determinant of a matrix not of
full rank must be zero (A, and hence A7, can have rank at most n).)
proof: Note that the ith column of BC'is }°, cJ,b The determi-
nant can be interpreted as a bilincar alternating form acting on
column vectors. This implies

nll
det(EcJ,Jr Ji,chJ/ gy - - - Zc,,ydet(l ,»ZCJQng],,
)

ll

3

n
< e —'J
S Y et det®, 1)
N In
ﬂ'll n/'
= (71, - .,Jn)CJlJl’"'CJ"J’IIII}::HI
J1 In

where J” = {j1,...,jx} and €(ji,.. ., jn) is the Levi-Civita sym-
bol, equal to £1 or 0. Of course this last term just simplifies to
the desired expression,

Yo 1CT | 1B,

Jr

Now let’s return to the gluing A = (A4,..., Ak, 91,-. ., g¢) (refer to the
beginning of this chapter for the notation).
Let M be the (n+ ¢) x m (non-integer) matrix

bll blm

bn+l,1 bn+t,m
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Choose a basis for A and let M’ be the corresponding generator matrix.
This basis spans A, so there exists an integer matrix V' such that VM’ = M.
Similarly, the root and glue vectors also span A, so there exists an integer
matrix U such that UM = M’

Let A be the (n + €) x (n +¢) matrix MMT, and let A’ the n x n Gram
matrix M'M'". Then UAUT = A’ and VAVT = A.

‘The above thcorem now implies |A| = |A!| = ¥ ty,1|A}|, where the sum is
over ali J', J C Luye with ||J’) = ||J]| = n, and where ¢y = |Us|-|(UT)”| €
Z. Therefore the greatest common divisor of all |AJ,| must divide |A|.

Similarly, |A%,] = ¢, = |V!|- |(VT)y| € Z. Therefore [A] must divide
cach |A4|, and hence their greatest common divisor.

Thus, we have proven:

Theorem 3.3.4 |A| =gcd|AJ|, provided A (i.e. A) is integral.

In theory this requires ("$)? n x n determinants to be taken, and then
their ged to be calculated. At least for self-dual A, in actual practice it seems
only ged|AJ] is required. Though it is geometrically obvious that |A| must di-
vide ged|A3J)|, the reverse (to me, at least) seems far less clear. Armed merely
with some general gecometric considerations and a few specific examples, Lam
proposed (prior to my discovery of Theorem 4) that perhaps |A| =gcd|AJ]
always holds. Although I have been unable to prove (or disprove) this origi-
nal formulation of the “gcd method”, his intuition has since been vindicated,
to a large extent, by Theorem 4.

Of course, by an earlier result each |A]] must be a perfect square if A is
to be self-dual. Also, if a gcd of 1 is reached at any time during the calcu-
lation of the (*§%)? determinants, then (provided A is a Z-matrix) we may
conclude that the gluing is self-dual. Since we’re really only interested here
in whether A is or isn’t self-dual, for those reasons usually few determinants
need be calculated (see, for example, the many examples given in LAM4, or
the examples given below).

Theorem 4 is valid for any integral lattice, but for the cases we’re in-
terested in A is sparse and, hence, so are each |AJ,|. Thus these n x n
determinants can be painlessly calculated (see the following section).

Example 3.3.2 D} for even n.
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Choosing J = J' = {n} yields |A},| = 1. Since D} is integral, we need not
go any further — the determinant of D} must be a positive integer dividing
1, and hence must be 1.

Example 3.3.3 E?E2[11111], and A]A3|11111].

In both caseslet J = J' = {n+1} (i.e. remove the generator). Then |A},|
is simply 2233, which is not a perfect square. The determinant of these two
gluings must then both be a mulliple of 3. Although we still don’t know the
exact value of the determinant at this early stage (in faet the determ:nant
turns out to be exactly 3 in both cases), we do already know these gluings
cannot be sclf-dual.

These two examples indicate the situations in which this ged method
can be prematurely terminated (in practice, it scems 2 or 3 determinants
are necessary). They also hint that perhaps it is only necessary to consider
J=J".

Further (less trivial) applications of this method may be found in LAM4.

3.4 Calculating the Determinants

Two of the three methods considered in the previous two sections require the
calculation of n x n determinants for large n. This section describes one way
to do this.

Probably the quickest way in general to calculate the determinant of a
large N x N matrix is by making it upper triangular by applying clementary
row operations to the matrix. This amounts to making about N*/3 divisions
and multiplications, which can become unmanageable for large N.

The matrices considered here are fortunately of a rather special form:
they’re sparse (i.e. most of their entries are 0). Stunning computations are
possible with these. Evenin 1968 solving systems of linear equations of order
5000 was commonplace, and today this has increased a thousand-fold (see p.
(v), P1s). All that is required is that the relevant matrices he sparse.

Our matrices are not only sparse, but they have a bandwidth of 3 almost
everywhere. This has enabled Lam (see LAM4) to come up with an clegant
graphical means of computing their determinants. Although in the computer
age his technique is almost certainly unnecessary, aesthetic considerations
demand its inclusion here.
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The determinant of an N x N matrix A can be written as

N
1Al = Y (=1)°7 [ Aungs,

nTESy 1=1

where o{7) = 0 or 1 depending on whether 7 is, respectively, an even or odd
permutation. Choose any index j € In. Decompose 7 into a product of
disjoint cycles, and let C(x) = (j,j1,.- - ,Je-1) denote the cycle containing j.
Calling 7* the permutation 7/C(7), we get

1A] = 3= I(C(m)(=1)"") [] Auresy = 3 T(C)|A7] (call this (x))
RGSN ieJ C
where J = In \ {4,J12---1jec1}, T(C) = A,y Apy o+ Ay, (1)1, and
where the final sum is over all cycles C containing j. AjJ is the subma-
trix described in the previous section. This is called “expanding about node

J" for reasons soon to be apparent.
For example, this formula can be used o get the recursions

Aal = 20 Aus] = (~1|Anss], 1Dl = 21Dns] = (=1)?|Dncal
and the cquations
|l = 2Ds|— (=1)*|Aal , |E7] = 2|Ds|~(~1)*|4s] , |Eg| = 2Dz}~ (~1)*| Aq]

which can be solved to yield the values for the determinants given in Table
2. In the following two examples I explicitly show the calculations involved
in finding these kinds of recursions or equations.

Example 3.4.1 D}, (sec Figure 8(a))

We will expand about the glue vector [1] (this is a natural choice, as the
resulting graphs will correspond to ordinary root lattices whose determinants
we can read off from Table 2).

As always, the I-cycle contributes a non-zero term: here
I'(C) = Apy(-1)'* = 2r/4.

The graph that remains s precisely that of Dy,—y. We may now read off from
Table 2 that |Da,_,| = 4.
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The only other cycle in the Coretcr diagram containing [1]1s C = ([1]1).
Then T(C) = (-1)(=1)(=1)2*! = —1. The diagram that remains after
removing the nodes in C is precisely that of Ay_q — and Table 2 lells us
|A2n_2| 2n — 1.

TFus |D},| =2n/4 - 44 (=1}(2n~1) = 1.

Example 3.4.2 We shall verify (D}, [11],(22)) is self-dual by using the basis
given in Figure 7(c), and by expanding about node j = [11]. The only cycles
C with non-zero I'(C) are the 5 loops in the Coreter diagram shown i Figure
7(d), together with the trwial cycle of length 1.

First consider C = (j). [(C) =4 - (=1)* = 4. Throunng away {)} (and
the segments contamning i) disconnects the diagram into two picces. These
pieces are indistinguishable from Ay (thanks lo the good belaviour of [22])
and Az, so |AJ| becomes simply (12 + 1) - (3 + 1) = 52. Thus Hus term
contribuled 4 - 52 = 208.

There are 3 2-cycles in the dwugram passing through [11]. One yelds
T(C) = (~1)(—=1)(=1)® = =1 and |A}] = (11 + 1)}(3+ 1) = 48. Another has
[(C) = (=1)(=1)(=1)® = =1 and |A}] = (124 1)(2+41) = 3. Fnally, there
is T(C) = (-=1)(=1)(=1)* = =1 and |AJ] = (7 + D)(4 + D3 + 1) = 160.
All other 2-cycles have I'(C) = 0 and so can b(‘ zgnmrd. These contribute
-1-48-1:39 —1-160 = -247.

The only other non-zero terms come from a 9-cycle.
I(C) = (=1)PHD)(=1)"% AT = (4 4+ )3+ 1) = 20.

This cycle can be traversed both clockwise and counlerclockunse (unbke for
2-cycles, these traversals arc different — ie. C # C7'), so we have an
additional factor of 2.

Therefore |Al = |A| =208 — 247+ 2-20=1 and A 15 self-dual.

Similarly, the determinants of all such ‘redundant’ gluings (sce §2) can
be computed.

An additional complication is introduced into the calcvlation of determi-
nants |A%| for J # J'. Of course, equation (*) still holds; the problem is
with the diagrams and their interpretation.

J # J' simply implies A, is no longer symmetric. 'This suggests we
build our diagram out of dirccted line segments: e.g. represent the sitnation
(A}),; = -1 and (A},),, = 0 with a segment linking nodes 2 and 3, directed
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fiom: to j. Note that in general a node label j may refer to a different node
(i.e. basis vector) depending on whether you want a node at the tail of a
segment {i.c. a row index of A, like J,) or one at the head (i.e. a column
index of A, like J7). All this talk of labels and row and column indices may
seem out, of place here --- after all, the methad used in the above examples
proceeded quite independently of any choice of node labels, etc. Indeed, this
was one of its most appealing features. But equation (%), which lies at the
heart of this method, presupposes such a choice. For the symmetric case |AJ]
we can (and did) completely ignore all this as irrelevant to the calculations,
because any relabelling of the nodes induces identical permutations of the
row and column indices, leaving |AJ| unchanged. Equally important, the
Coxeter diagram is also unaff~cted. But in the nonsymmetric case it is no
longer desirable to permute the row and column indices identically, as we
shall see. Becanse of this, |AY| can be affected (though only trivially — it
can change sign), but most relevant, the diagram and our notions of cycles
and nodes are profoundly affected: the practicality of the method dependson
the relabelling, for the labelling we inherit by default is hardly a satisfactory
one in general,

We shall rearrange the 1ows and colummns of AY, so that, as much as
possible (i.e. for all nodes in J'0 J), the 2th row and the :th column both
refer to the same vector/node. This will at most change the sign of |A7.[, so
will have no influence on the final ged calculation.

In particular, construct the diagrams as follows: represent by “o” (as
usual) all indices in J'NJ. Represent by “A” each index in J\ J', and by
“Y" those in J'\ J. Connect these with directed or undirected segments in
the manner outhned above. For instance, all segments with an endpoint at
a “A" will be directed away from that node; all with one at a “y” will be
directed into it.

For example, consider again (DZ,[11),[22]). See Figure 9(a). Suppose J
consists of all nodes except for the two shown with a bar above them, and
suppose J" consists of all but those underlined. We would represent this as
in Figure 9(b).

Note that in general there will be at most € nodes looking like “A”, and
an equal number like *7”. Pair these off, and treat each pair as a single
node, as was done in Figure 9(c). There are different ways of doing this

some ways are better than others. Figure 9(d) gives the single (and less
desirable) alternative to Figure 9(c) (among other things it is non-planar —
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you must ignore the intersection of two of its lines).

This pairing refers to the choice of one index (say j) to refer to two
different vectors. One of these vectors, the one corresponding to the “A” in
the pair, is referenced any time j is used as a row label; the other, the “y”,
corresponds to j as a column label. For the nodes like “0”, these two vectors
are equal; for the nodes like “O” these vectors are different.

The use of equation (*) now proceeds as before. The resulting Coxeter
diagrams arc more complicated than in the undirected ones, but the presence
of directed segments reduces significantly the numbers of cycles.

Example 3.4.3 Consider the diagram in Figure 9(c) of (D%,[11],[22]). We
shall expand about the upper “©7.

Conveniently, there are only two cycles through this node. One is the
cycle of length 1, of course, but here the corresponding term in () vanishes
because the node has “norm” 0. The remaining cycle is of lengih 14. For it,
[ = (=1)"(-1)"* = —1. The resulting 2x2 determinant is | §~}| = -1.
Therefore |A),| = (-1)(—=1) = +1.

Most other examples are a little more complicated, and may require ex-
panding about a second node to simplify the additional determinants that

arise,
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4 Compact Lattices
4.1 The Problem and Its Physical Context

In this chapter (at least in §§1-3) we aren’t concerned directly with the
lattices studied in the earlier chapters, but rather with their quotient —
i.e. with compact or toroidal lattices. In Chapter 1, §5 we discussed a
certain parametrization of the various string theories. However, any single
string theory could be represented by different sets of parameters -— we shall
discuss this in the present chapter. Mathematically our task in this chapter
will amount (as we shall see) to finding all bases of these toroidal lattices.
The boson fields X2 in a (closed) string theory are defined on the 2-
dimensional manifold (¢,t). Since o is the string parameter, o and o + 7
represent the same point. X B is itself not observable, so it isn’t necessary for
it to be well-defined in this sense (i.e. be periodic). Nevertheless its behaviour
under the mapping ¢ — & + 7 is still of major importance, and the phase
gained yields the “boundary conditions” of the field. As was mentioned in §5
of Chapter 1, the (L + R)-tuple & characterizes these boundary conditions:

XB(o + 7,t) = exp(-2mieBwP) X B(o,t)

where ¢4 = %1 for left/right movers, and where B = 1,2,...,L + R. We
found that we needed several boundary conditions (for the GSO projection);
each choice of boundary condition corresponds to solutions living in a differ-
ent Hilbert space, called a sector, and labelled by a g¢-tuple k.

w(k) = (wh,w?,...,wi;w!,..., wh) is the phase of the sector labelled
with k = (k,..., k). It turns out to be nearly linear in k: 1w(k) =
Y2 1 katb, — 6" (k), where (by convention) 0 < w2, < I, and where w/{’(k)

is the integer chosen so that w{(k) is similarly in [0, 1).
TA g .
In addition, each w{(k) is rational, so we can write w(k) = 2 - yith

n, being the smallest common denominator of these components o?au”)., (the
consequences of selecting n, to be a larger common denominator will soon he
clear — essentially speaking, either simplicity or information is lost). Also,
the integers k, are in [0,7,). In short, each @(k),®, € ([0,1) N Q)**", and
k € Zn, X Zny X+ + X Zn, = [I3=1 Zn,. The phases (k) give us the boundary
conditions and are in this sense physically significant: changing them will
change the solutions and hence will in general change the theory (except for

86



global rotations SO(L)x SO(R ), since (k) enters into measurable quanti-
ties only in dot products, and except for translating the phases by integers,
because of the factor 273). In this chapter we'll consider redundancies in the
characterization of string theories given, for example, in LAM3.

Different choices of parameters like w,, R, L and ¢ (usually) amount to
specifying different string theories. However, only some of these have hopes
of adequately representing nature (they must be modular invariant, etc.). For
example, there must exist integers F, (associated with the fermionic phase
F(k) of the vacuum [Q2); ) satisfying:

(L) 27, T 4+ n,F, €27 ;

(Q) 7%/n, + n,F, € 2Z ; and

(O) 7y 7y/Dgp € Z ,for all @ £ b.

Here, T = (3,...,3), Day = (n4,ms), and the metric determining the
dot products is G*®. Denote (L), (Q) and (O) collectively by ® — they,
together with (N) (see §5, Chapter 1), amount to ensuring the resulting
theory be modular invariant.

By the phase “lattice” I mean the structure A = {w(k) | k€ [1Z,,}. It’s
not a lattice as we defined the term in chapter 2 — rather, it’s the quotient
of the lattice Z(w,) with its sublattice Z“®. A is thus a kind of discrete
torus. The twist parameters w, uniquely determine A, and in fact constitute
what we’ll call a basis for it (provided the ¢ vectors are linearly independent
in a sense we'll specify in the next section).

Now, appropriate transformations of the #,’s may merely “rephrase” a
particular string theory. Changing the w,’s doesn’t necessarily change the
w(k)’s, provided we also reshuflle our sector labels k. More precisely, suppose
we have two different sets of twist parameters, {t,]la =1,...,q} and {W}]b =
1,...,4'}, with denominators n, and n} respectively. These both help define
different theories, but under certain situations we may expect these theories
to be only superficially different — isomorphic, in some sense. In particular,
consider the possibility that there is a ¢x ¢’ Z-matrix V such that @'(V(k)) =
(k) Vk. (As with the case of lattice congruence or similarity in §3, ¢ # ¢/
is a possibility, corresponding to an embedding or projection.) V is the
“reshuffling” mentioned above.

Whether V is itself cne-to-one or onto is irrelevant. V' induces a lattice
transformation V : A — A’ given by a — W' (V(4~(a))). V must be
well-defined (i.e. independent of the choice of W~ (a) if @ isn’t one-to-one),
onto and one-to-one. In fact, from these properties of V we can conclude that
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the set of points that comprise A equals that of A’, and V can be interpreted
as the identity on that set. Also, if the twist parameters w, are lincarly
independent, the condition on V reduces to the simpler condition that the
restriction V : [1Z,, — [1Z,,, be one-to-one and onto.

The reason we must have @’ o V = w (or, equivalently, that the points in
A be precisely those in A’) is because, unlike the twist parameters 1, or the
sector labels k, the phases 1 have real physical significance. We can’t change
them in general without changing the fields they correspond to. Except for
the trivial changes obtained by adding integers, we are considering in this
chapter only transformations for which, symbolically, w'(&") = w(k).

If such a V does exist, then we shall say that the linear map U sending
{w,} to {w.} is “reversible”, and say that @} is “attainable” from 1, for
lack of better terms — the differences in the two sets of twist paramecters
captured by this U can be undone by V. Reversibility is the generalization
of invertibility appropriate here; it should succeed in revealing many of the
redundancies inherent in the formulations of §5, Chapter 1.

The reversible U are precisely those mappings that can be interpreted as
basis transformations of the phase lattice. The usual requirement of a basis
transformation (e.g. one in a true lattice) is that it be invertible (for a lattice
this amounts to |U| = +1, we found). We can weaken this here to our notion
of reversibility, thanks to the fact that A is the quotient of lattices. If U~
exists then V = U~! works, but there is little justification for insisting upon
the (seemingly natural) demand that V always equal U~!.

We are being mor. general here than we may appear to be. For example,
consider any function F' : [1Z,, — [1Z,; satisfying @' o F' = . Then
we can wlog take F to be linear, and represent it by a matrix V. (To sec
this, use the fact that 1 and ' are linear functions of k& and &', mod 1. In
particular, lI)’(F(k] +k2)) = (II)'OF)(kl +k2) = lb(kl +k2) = 1l~)(k|)+'l;)(k'g) =
(W o F)(k) + (@' o F)(ky) = &' (F(ky)) + (W (F(ka)) = &' (F(k) + F(ky)).)

We will find out in the next section that attainability is an equivalence
relation. There we will express reversibility in a much more appealing matrix
notation. In particular, we will show that it will be sufficient, given some
matrix R, to find all Z-matrices U,V such that £ = RV (mod n).

After solving this in §3, I will discuss how well these basis transformations
respect the modular invariance relations R given carlicr.

Perhaps the most significant consequence of the following solution is the
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development of convenient machinery allowing us to handle basis transfor-
mations in these compact or toroidal lattices. I have been unable to find this

discussed in the mathematical literature.
In the final section of this chapter I will discuss briefly an unrelated
problem: why the momentum lattice must be self-dual.

4.2 Restatement and Preliminary Results

Let n be any common multiple of ny,...,n,, and set m, = % Define R to
he the (L + R) x ¢ Z-matrix given by

1 1
(wiy wiye oo wpy ) ; .
w? : USRI
1+ : . .
: L
_ L L — | ™7y
R=n| wy, why | = myr]
w;_ : : :
3R 0 \ murf o0 mgrR
\ wl— e o wq—

and let R, denote its ath column. Define N =diag(n,,...,n,),

'U).l'_ k]

Rk)y=n| : and finally k =
wh k,

In this matrix notation, we have
R(k) =Rk + ni"(k).

The components of R, R, k and w"(k) are in Z,, Z,, Z,, and Z respectively.
Note that incrementing some &, by n, changes each component of Bk by a
multiple of n, so extending @” (k) in the obvious manner allows us to consider
all k € (Z,)?. Though this extension will prove to be mathematically desir-
able, it does present some complications, for now mym;---m, “labels” (i.e.
different k's) represent the same sector, i.e. the same boundary conditions.

When translated into this new notation, the relations (L), (Q) and (O)
become:
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(L'): 2R, - T + nF, € 2m,Z ;

(Q): B2/n +nF, € 2m,Z ; and

(O'): R, - Ry, € nDabZ(z mamyDgpZ), where Dyp = (mq,my), for all
a#bin Z,.

The vacuum parameters used here have the same value as those used
earlier in R. (L), (Q') and (O') are completely equivalent to (L), (Q) and
(O) : given any initial set of parameters w,, L, R, etc., if we define R,, etc.
as above, then (L), (Q) and (O) will be satisfied if and only if (L'), (Q') and
(0 are.

These relations follow from the original three in R by repeatedly making
use of R, = m,7, and n = n,m,. Denote these three relations also by R.

It is certainly not required that n be the least common multiple of ny,no, ...
— the form of the above relations is independent of which multiple we take.
This is not so with n, and the original equations. There, if we allowed n, to
be any common denominator of the wA,’s, new factors, complicating both
sets of expressions, would have to be introduced to accommodate the change,
for failure to introduce these factors would result in the constraints  being
weaker than those given above. Thus, simplicity dictates that we choose the
ng’s to be minimal. However, no such argument applies to our choice of n
— in other words, we can fix it from the start, so the question of how it
transforms is answered trivially.

Note that incrementing any element of R or k by n results only in the
elements of Rk being multiples of n. These multiples are readily absorbed
by @”. Similarly, the right hand sides of ® absorb the new terms created
on their left hand sides by this change in R or k. Thus, we may interpret
R(k) = Rk + ni” in two new ways: as an equation over all k € Z, or as
an equation in the integers modulo n (i.e. the elements of R, R, k and "
are all in Z,). In this latter interpretation, nw"” = 0, so we have cffectively
linearized our equation:

R(k) = Rk (mod n).

In this way we can ignore the complicated behaviour of w” under the trans-
formations U and V — the role of &" is effectively handled by using modular
arithmetic.

We shall use both these interpretations in what follows, but for the most
part we'll restrict ourselves to mod n.
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To repeat, we are concerned with solving the equation (written symboli-
cally)
@' (k') = w(k).

That is, we are interested in lattice transformations U (taking @, — }),
and relabellings V (taking & — k'), whose net effect is to leave the phases
w of cach sector unchanged. This amounts to choosing a new basis for the
‘lattice’.

Using the notation introduced earlier, we thus demand that Rk = RUVk
(mod n). Since this must be satisfied by all k, we immediately get

R = RUV (mod n).

Unfortunately, this does not imply UV = I — a reversible transformation
need not be inverlible over Z,,, and especially not over Z. In addition, the
choice of lattice basis transformation (i.e. a reversible U) does not uniquely
determine the transformation law of k (i.e. V), or vice versa. There exist
g %X ¢ matrices IY # 0 (c.g. of the form £ = NA) satisfying RE = 0. All that
is required is that UV = I + E for one of these F.

Theotem 3.5 on p. 351 of HUN tells us that:

Theorem 4.2.1 U s invertible over a commutative mng R with unity <
/] is @ umt (i.c. an nvertible element) in R.

{/ invertible over R means that the R-matrix U has an inverse V which
is also a R-matrix. This has two corollaries.

Cerollary 4.2.1 U is wverlible over Z ff |U| = +1.

This implics, for example, that basis transformations of (true) lattices
must have determinant 1.

Corollary 4.2.2 U s invertible over Z,, iff |U| is relatively prime to n.
20
0 4
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is invertible over Z; — its inverse is

(59)

But U doesn’t have to be invertible over Z (in which case E = 0) or
Zy (in which case E = 0 (mod n)). For example, it is quite possible for a
perfectly acceptable U to satisfy |U| = 0 (mod n), in violent opposition to
our two corollaries. The determinant, such a powerful tool (as Theorem 1
indicates) in both linear algebra and lattice theory and clsewhere, is uscless
in the following analysis — it’s too “high-level”. We noliced some changes in
going from linear algebra to lattice theory (e.g. not all generating sets had
a subset which was a basis); there are additional casualtics in going from
lattice theory to compact lattice theory.

There are two possible sources of this complication: (i) the inevitable con-
sequences of our choice of notation, namely the many-to-one labelling caused
by our extension of the range of k, as well as the replaceiment of the n, with a
common multiple n; and (ii), a “removable” consequence cortesponding not
to the new notation but to a poor sclection of parameters. The former source
will always be present; the latter is present only if in the original formulation
(where k € [] Z,,, etc.) different k’s (i.e. different sectors) can correspond
to identical phases w(k) — alternatively, that the w,’s are, in some weak-
ened sense, linearly independent. We can avoid this (to an extent indicated
below) by demanding that the w,’s be linearly independent. However, this is
a needlessly strong restriction. The specific form of linear independence we
require, which we will call (n,)-independence, is that whenever there exist
numbers ¢, € Z,, satisfying Y- ¢, € Z9, then ¢y = --- = ¢, = 0. (This
is very analogous to the definition of A-independence given in the previous
chapter.) For example, #; = (3,---,3) and W, = (},--+, 1) are independent
in this sense by not in the usual sense. (ii) applies for instance when we do
not insist that n, be the least common denominator of the components of
W-

Normally (e.g. in a vector space), when vectors are lincarly dependent
we can express one in terms of the others, and thus reduce by at least one
our set ot vectors. This is not necessarily the case here. What we can always
do (as can be seen from Example 1 in §3 of the previous chapter) is lincarly
combine the vectors W, to form new vectors W, whose denominators !, are
in general smaller than n,. Provided we discard those vectors (if any) with
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n! =1, the new set of W), are (n,)-independent. But n’ = n, and in all other
respects the theory specified by these 1) is identical to that given by the
original w, — subject to the appropriate reshuffling of the labels k of course.
Such a basis transformation is in fact “reversible”.

In lincar algebra, an invertible transformation acting on a set of linearly
independent vectors will map them onto a second set of linearly indepen-
dent vectors — i.e. invertible transformations preserve linear independence.
Unfortunately, (n,)-independence is not preserved by reversible transforma-
tions, and this will cause some problems.

For example, consider n = 6,

3 2 11 15
n=(53)v=(o1)mav=(s7)
s0 V “reverses” U. Then
R = 3 5
“\3 1)

Note that n; = n} = 2 while n, = 3, and nj = 6. Since niny < ninj,
we know that, though the columns of R are (n,)-independent (as is readily
seen), the columns of R’ cannot be (n!)-independent (indeed,

3 5 18 0
=(3)+(1)-(%)=(3)
but 1 £0 (mod 6).)

[1n, represents the number of sectors (counting “multiplicities” — i.e.
different labels that correspond to tire same sector) if we only allow k, € Z,,.
T'his number will change as we change bases. The minimum value it can take
(which is realized whenever the basis is (n,)-independent) equals the total
number of physically different sectors, i.e. sectors corresponding to different
boundary conditions. Allowing, however, k, € Z, yields n? total sectors
(counting multiplicities), with many repetitions.

Thus, we can avoid the unpleasantries of (ii) by demanding from the
start that different sectors should correspond to different phases, or equiv-
alently, that the w, be (n,)-independent. (But strictly adhering to this de-
mand would force us to throw away reversible transformations like that given
above.) Whenever (ii) is satisfied, we can find an equivalent theory for which
(i1) is not, so (ii) is indeed only an inconvenience caused by poor foresight
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when choosing the parameters, and doesn’t correspond to some “physical”
effect.

So we can avoid (ii) by demanding (n,)-independence of the w,, but we
must recognize that we cannot maintain this demand if we consider (as we
will) compositions of basis transformations (unless we restrict our attention
to basis transformations that preserve (n,)-independence — i.c. for which
ny---my = ny---ny. This suggestion is particularly interesting, as we'll see
later).

(1) is another story entirely. You cannot get something for nothing, it
seems, and the mathematical simplifications resulting from choosing a com-
mon denominator n for all the components of all the w,’s -—— namely, that the
additions of different 7,’s, relevant when considering basis transformations,
now become trivial — are directly responsible. We cannot, as was the case
with (ii), assume the problem away. Our intuitions that the transformations
U and V be invertible, that given one the other is uniquely determined, are
violated here, but only by this translated version of the problem (and by (ii)).
Within the confines of the original, physical phase lattice these intuitions are
indeed valid, but the corresponding mathematics is much mote awkward and
artificial. We have merely substituted one problem for another, but our claim
is that the new problem is much more easily tractable than the old. In par-
ticular, standard mathematics may now be used to help us find all {7 and V|
as we'll see in the next section.

Incidently, we have diligently distinguished between ¢ and ¢'  i.e. be-
tween the number of basis vectors W, and the number of basis vectors .
Consider the following example: take n = 6,

3 2 1
ﬁ=(3 2) andU=(5).

Here ¢ = 2, of course, but
’ - 1
r=())

has n} = 6 and ¢’ = 1. U is reversible (e.g. take V = {2,3)). In addition the
columns of R and those of R’ are (n,)- and (n!)-independent, respectively.

Due to examples like that given above, it scems unjustified to demand
g = ¢. Thus it seems that cven the concept of dimension doesn’t extend
naturally to these compact lattices.
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Indeed, for each prime p let N(p) be the number of i € I, such that p
divides n,. Define q¢ to be the maximum (taken over all p) of N(p), and define
¢> to be the sum of all N(p). Then ¢ € [¢<, ¢5], and for any ¢’ € [g<, 5],
there exists a reversible transformation sending ¢ — ¢/. (This is related to
the fact that 7, x Z, = Z,, f m and n are relatively prime.)

Finally, it should be mentioned that attainability, which simply means
that the two functions @ and @' can be connected by one of these sector
relabellings V, is an equivalence relation.

Theorem 4.2.2 Attanability is an equivalence relation.

proof: For reflexivity take U = I = V. For symmetry just inter-
change the roles of U and V. For transitivity let U"” = UU’ and
v'=Vv'V.

4.3 The Solution

Given a Z-matrix 2, we must find all Z-matrices U and V such that RUV =
k.

A frequently exploited technique in lincar algebra is to decompose a ma-
trix into products of particularly simple matrices. The most common exam-
ple of this involves elementary column and row matrices (abbreviated em).
We can take these to be precisely those matrices of the following forms:

(0 1 \

\ y
i.c. the identity matrix with rows (or columns) 1 and j interchanged (for
readability we haven’t displayed the off-diagonal zeros). This corresponds
to a U that rcarranges the basis vectors 1, so that w) = w,, W) = iy, and
W) = w, for ¢ # 1, j.
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By =
1

corresponding to multiplying the basis vector w, by the scalar d, and leaving
all other basis vectors w, unchanged.

1

corresponding to Wy = W)+, and W) = w, for i # 1; as well as its transpose,
(1 )

Dra=119 00

il ¢ < ¢, or its transposc il ¢ > ¢’ (so Dy, consists of zeroes everywhere
except on its diagonal where it’s all 1’s).

A,, By and C are all ¢ x ¢ Z-matrices. Dy is ¢/ x ¢. Usually slightly
more general matrices are chosen by textbooks, and never Dy, but these
are clearly necessary and sufficient for our purposes (sce Theorem 2). For
example, note that C"~! = C~1 (mod n) (over the integers 1ather than 7,
we must include C~! in our list).

Before we try to decompose U into products of these em’s, let’s try to
determine which of these em’s are themselves reversible.

Theorem 4.3.1 (a) Fach A, s reversible;

(b) By is reversdble off 3by, ..., b, such that by € Z,,, Y bedt, =0 (mod
n), and d divnides by + 1 mod n;

(c) C 1s always reversible; and

(d) Dy, is always reversible of ¢ < ¢'; f ¢ > ¢ 1l’s reversible off for cach
i > q' there exist numbers b, € Z salisfying R, = Z',":l by, (mod n).
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(For example, (b) holds whenever d is relatively prime to n,. It can also
happen, though, for other d if the w, are (n,)-dependent.)

proof: (a) and (c) are obvious, since they are invertible (and not
merely teversible). (d) is almost as easy: if ¢ < ¢’ take V' = Ds;
il ¢ > ¢ there is a trivial relationship between the last ¢ — ¢’ rows
of V' and the numbers b,. So consider (b).

“e="- Suppose d divides by + 1 and - bR, = 0 (mod n). Let e
be an element in 7, satisfying ed = by + 1 (mod n;). Define V
by

“=3"- Let 0, be the components in the first column of the V
corresponding to the given By, Define the numbers b, by b =
dby — 1 (mod n,) and b, =¥, for 1 > 1.

PRy

Theorem 4.3.2 Any malrir U over Z,, can be expressed as a finite product
of the em’s Ay, By, (" and Dy,

proof: Suppose /s ¢" x q. If ¢ > ¢’ let U' = Dy U; if ¢ < ¢ let
U= UD,y From p. 339 of HUN we see that any square matrix
over a luclidean domain (like Z, but unfortunately not like Z,,)
can be expressed as a finite product of the em’s A,, By and C (for
7 and many other domains we must add C')  Applying this to
the Z-matnx U we get the product U’ = Ey --- ;. Then we get
for U7 cither Dy by -+~ ov [+ Ey Dy, These expressions,
holding as they do over Z, must also hold, of course, over Z,,.

Theorem 4.3.3 If UV = I\ --- I} 1s reversible (relatwve to R), then Ey is
reversible (rddative to IR), Fy s reversible (relative to RE,), .., and E) is
reecrsible (relatioe to RE - k).

proof: 3V such that &y - BV = R Then B = (R)E, (£ - EyV) =
(BEOE(Ey - EV) = oo = (B)(E) - - - Ex) B (V).
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Corollary 4.3.1 U is reversible with respect to R 1ff there exist em’s £, . .., I,
such that U = E,;--- Ey (mod n) and each E, is rcversible with respeet lo
RE,---E,_1) (these E, are qrven by Theorem 1).

Thus we have characterized all reversible matrices (with respect to a given
R), solving the main problem of this chapter.

An example of a reversible matrix with determinant = 0 (mod n) can now
be easily constructed. Suppose we have ny = ny =3, ny = 4 and n = 12,
Let

200
U=10 20
0 03

Then U is guaranteed to be reversible (it reverses itself), even though its
determinant is 0 (mod n).

What remains is to check for modular invariance. In particular, if I
satisfies R, then will R’ if [’ is attainable fiom 27 The answer is surprising.

Theorem 4.3.4 A,, By and Dy, all satisfy R (at least when they've re-
versible). C' does if ny = n|, but otherwise might not.

proof: Obvious for A;, By and Dy,. Consider (¢), where ny = nf.
Then ny divides ny, m; divides my (so Dy = m,) and mny = m].
Let F{ = Fy + I;. Then it is straightforward to verify that R is
satisfied.

Consider R; = (1,1,3,1,2), Ry, = (3,1,1,1,2), and ny = ny = n, s0
mi = my = 1. Then R = (0,2,0,2,0), so ny = 2 =} I satisfies R, as
can be immediately verified, but B cannot satisfy the relation (Q').

This result is surprising because it scems L6 say that modular invariance,
which in one sense guarantees that the choice of a basis (of a certain 2-
dimensional torus — see §4 of Chapter 1) shouldn’t matter, is itself, in this
sense, basis dependent. As suggested by Theorem 4 and the example; it is
conceivable that modular invariance (i.c. the relations R) is preseived by
those U that preserve (n,)-independence. This has neither been proven nor
disproven at the time of wiiting. (Obviously one way it could be proved is
if it could be shown that any U which preserves (n,)-independence can bhe
expressed as a product of em’s that individually pieserve (n,)-independence
— i.e. if an analogue to the corollary can be found).
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4.4 Self-Duality of the Momentum Lattice

(This section is closer in spirit to the previous chapter, but is added here to
more closely equalize the lengths of Chapters 3 and 4.)

In Chapter 3 we considered bosonizing all fermions, and looked at the set
{p} consisting of the momenta of these bosons. This set turns out to be a
shifted lattice A +t — where A is a true (as opposed to compact) lattice. A
is indefinite with metric GNv'N®_ for N, = 24 — d, and Ng =12 — d. It can
be shown to be integral, and, finally, to be self-dual. In this section I will
briefly discuss the demonstration that A must be self-dual.

A self-dual is supposed to follow from the modular invariance of the par-
tition function Z(r,7). We have

Z(r,7) = 9(r)"Neq(r)* "R L(r,7) and

L(r,7) = E exp(rit(qr +t1)? — niv(qr + tr)? + 2miq - s).
q€A
() is the Dedekind eta function, and 7 is the modular parameter. 7 is its
complex conjugate, but is treated as an independent variable. 7 lies in the
fundamental region F={z € C | Imz > 0,—- < Rez < },|z| > 1}. s is the
vector such that 2(p — t) - s is the fermionic number.

Z must be invariant under the modular group, and since the modular
group is generated by the transformations 7 — 7 +1and 7 — —1, it suffices
to show that Z is invariant under these two. Self-duality is supposed to follow
from the invariance of Z under the second one.

Define as in LAM3

G(u,v|r,7) = 2 exp(mir(qL + vL)2 —mi7(qr+ vR)2 + 27iq - u).
g€EA

(For example, G(s,t|r,7) = L(7,7).) Under r — —1 G becomes
1

1 . . .
G(u,v| - = —;) = Y exp(mit(qr — ur)® — mi¥(qr — ur)* + 2miq - v)
q€EA*

after using the Poisson summation formula.
We know how 5 transforms under r — ~1 (p(-1) = (=ir)in(7)), so we
know that if Z is to have a hope of being modular invariant, G(u, v| - 1, -1

must be a certain scalar multiple of G(u, v|r,7) (at least for (u,v) = (s,t)).
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One obvious way this can happen is if A* = A (and s and ¢ arc related in the
obvious way) — i.e. if A is self-dual. It is conjectured that this is the only
way this can happen; hence the conclusion that A must be self-dual.

Clearly this argument has not succeeded in rigorously establishing that
A must be self-dual, and to my knowledge no such proof has been found.
Nevertheless, it is a very desirable property of A for, as we have shown in
Chapter 2, self-duality is a very strong constraint. Its usefulness in greatly
restricting possible models of superstrings can be quite graphically scen in
both LAM1 and LAM4, for example (they do this explicitly for d = 8).

While | haven’t found a rigorous proof of its self-duality, | have perhaps
made that conclusion even more plausible. My argument is that in the special
case where s and t are in A (in which case we can wlog take them to be the
zero vector), self-duality is forced. (String theory, however, is more interested
in s and ¢ being in JA*.)

Theorem 4.4.1 5(r)~Neg(r)*=NrG(0, 0|7, 7) is modular invariant for Ny, =
24— d, Np =12 —d iff A is self-dual.

proof: We must have (~ir)=Ne/2(i7)=Ne/2G(0,0|-1, — 1) = G(0,0]7,7)

T? T
for all + € F. From the previous argument these become

E exp(miTq? — 1i7q%) and Zexp(wirqi ~ mitgh)

geA® q€A
Take r = iy for some y € R, so T = —iy. Then the expressions
become
Y exp(=my(qi + qf)) and Y _exp(—=ylqi + qh))-
gEA® q€A

Note that every term in both these series is positive. Also, A
is integral, so A € A*. If A # A*, the left cquation must be
larger than the right one, so they cannot be equal. Thus modular
invariance requires here that A = A*.

This argument seems to collapse for (u,v) = (s,t) because we no longer
have the positivity of each term. The right equation will have an additional
factor of (—1)F in each term (F is the fermionic number), and for the left
equation the additional factor will be a more complicated complex number.
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