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Abstract

A graph is a combinatorial object that captures a binary relation as a set of edges between

pairs of vertices. The generalization of a graph is a hypergraph, consisting of hyperedges

between any subset of vertices. A simplicial complex is a hypergraph with additional struc-

ture and constraints in which the family of edges is downward closed. In this thesis, we

design and implement an end-to-end trainable variational autoencoder for simplicial com-

plexes. This is achieved through the construction of a new representation, encoder, and

decoder for simplicial complexes. Our work bridges software libraries for topological data

analysis and graph representation learning. We train and evaluate our variational autoen-

coder for simplicial complexes on the task of relation prediction for higher order relations,

the higher order counterpart of link prediction. Finally, we discuss future work at the inter-

section of topological data analysis and graph representation learning.
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Abrégé

Un graphe est un objet combinatoire qui capture une relation binaire par un ensemble

d’arêtes entre des paires de sommets. La généralisation d’un graphe est un hypergraphe,

constitué d’hyperbords entre tout sous-ensemble de sommets. Un complexe simplicial est

un hypergraphe avec une structure et des contraintes supplémentaires dans lequel la famille

d’arêtes est fermée vers le bas. Dans cette thèse, nous concevons et implémentons un auto-

codeur variationnel entraînable de bout en bout pour les complexes simpliciaux. Ceci est

réalisé par la construction d’une nouvelle représentation, d’un encodeur et d’un décodeur

pour les complexes simpliciaux. Notre travail établit un lien entre les bibliothèques logi-

cielles pour l’analyse topologiques des données et l’apprentissage de représentations de

graphes. Nous formons et évaluons notre auto-codeur variationnel pour les complexes sim-

pliciaux sur la tâche de prédiction de relation pour les relations d’ordre supérieur, la con-

trepartie d’ordre supérieur de la prédiction de lien. Enfin, nous discutons des travaux futurs

à l’intersection de l’analyse topologiques des données et de l’apprentissage de représenta-

tions de graphes.
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Contributions

This thesis is the product of joint work between my supervisor Prakash Panangaden and

myself. Our contributions are:

1. Design and implementation of a new simplicial complex representation, bridging the

gap between the topological data analysis library Gudhi [20] and the graph represen-

tation learning library PyTorch Geometric [7].

2. Creation of 3 synthetic abstract simplicial complex datasets, including the implemen-

tation of code to prepare datasets for training and testing.

3. Design and implementation of two new simplicial neural message passing encoders.

4. Design and implementation of two new decoders for triangle prediction.

5. Definition and implementation of loss functions based on our new simplicial en-

coders and decoders.
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1
Introduction

Link prediction is a popular task within machine learning and is used in a multitude of

applications such as drug reactivity [31] and knowledge base completion [22]. Given two

entities, the task of link prediction is the inference of whether an edge exists. In this thesis,

we define relation prediction as the generalization of link prediction to higher order rela-

tions, which are relations between more than two entities. Applications of relation predic-

tion include co-authorship citation networks, online thread participation and drug networks

[3]. In particular, this thesis focuses on the task of predicting whether a triangle exists given

a triplet of corresponding edges.

This work presents a novel simplicial autoencoder and pipeline; an initial attempt at

bridging the gap between topological data analysis and graph representation learning. First,

we define a new abstract simplicial complex representation based on the simplex tree [4]

and the coordinate list representation of the machine learning library PyTorch Geometric

[7]. Next, we present our novel simplicial neural message passing encoders. These encoders

are inspired by the highly popular variational graph autoencoder [14]. In order to adapt
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Introduction

the simplicial model’s reconstructed output to the relation prediction setting, in particular

to the task of triangle prediction, we present two novel decoders. The first is based on

multi-relational graph representation learning, the second is based on the Čech complex.

Finally, we demonstrate our simplicial autoencoder effectively performs triangle prediction

on synthetic abstract simplicial complex datasets.
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2
Background

In this chapter we provide the reader with the necessary mathematics and machine learn-

ing background to understand our construction of variational autoencoders for simplicial

complexes. To start we introduce the simplicial complex as a structurally constrained hy-

pergraph, the generalization of graphs to higher-order relations. These structural constraints

are imposed and arise from geometrical considerations. We then give a brief introduction to

graph neural networks and graph convolutional networks. We proceed with Kipf et al.’s [14]

latent variable machine learning model, variational graph autoencoders. Finally, we review

two important concepts in topological data analysis: Vietoris-Rips and Čech complexes, as

mechanisms to construct simplicial complexes from points in a metric space.

2.1 Simplicial Complexes

Simplicial complexes generalize graphs from binary relations to higher-order relations. In

their simplest form, graphs are pairwise relationships between entities, often referred to as

3



2.1 Simplicial Complexes

nodes or vertices. In this thesis, we will use the terms nodes and vertices interchangeably.

Formally, graphs can be defined as follows.

Definition 2.1.1 (Graph). A directed graph G is a tuple pV,Eq consisting of

‚ A set of vertices V ,

‚ A set E of ordered pairs of elements of V called edges; E Ď V ˆ V .

An undirected graph is a graph such that E is a set of 2-element subsets of vertices V .

As can be seen from the definition, the edges of a graph represent a binary relation

between the vertices. We now build toward the definition of a simplicial complex. The

building block of a simplicial complex is a simplex, which can have multiple forms.

2.1.1 Geometric Simplicial Complex

Let us start with a preliminary geometry definition.

Definition 2.1.2 (Convex hull). The convex hull of a subset of k points V “ tv1, ..., vku Ď

Rn is the set of all convex combinations,

α1v1 ` α2v2 ` ...` αkvk such that

@i P rks.αi ě 0 and
k
ÿ

i“1

αi “ 1,

of points in set V .

Note the convex hull is the smallest convex set containing all the points in set V .

4



2.1 Simplicial Complexes

Definition 2.1.3 (Geometric k-simplex in Rn). A geometric k-simplex is the convex hull

of k ` 1 vertices tv0, v1, ..., vku Ď Rn such that tv1 ´ v0, v2 ´ v0, ..., vk ´ v0u are linearly

independent.

A geometric 1-simplex in Rn can be viewed as a graph edge incident to vertices v0 and

v1, embedded in Rn. Naturally graph edges must be embedded in a vector space of at least

dimension 1. More generally, a geometric k-simplex embedded in Rn must have n greater

or equal to k. For this reason, a geometric k-simplex is sometimes called a geometric k-

dimensional simplex. Similar to unit vectors, there is a standard (unit) geometric k-simplex.

Definition 2.1.4 (Standard geometric k-simplex). The convex hull of vertices
!

v P Rk`1
ˇ

ˇ

ˇ

řk`1
i“1 vi “ 1, vi ě 0

)

is the standard geometric k-simplex ∆k, where vi is the

i-th component of vector v and 1 is a vector in Rk`1.

A crucial feature of simplices is their hierarchical definition. The concept of faces al-

lows us to formalize this hierarchy.

Definition 2.1.5 (Face and coface of a geometric k-simplex in Rn). LetL “ t v0, v1, ..., vk u

be a geometric k-simplex. A d-face of simplex L is the convex hull of a non-empty subset

D Ď L of d` 1 vertices. A f -coface of simplex L is the convex hull of a superset F Ě L of

f ` 1 vertices.

Note that the face and the coface of a geometric simplex, are themselves geometric

simplices. We are now ready to define a geometric simplicial complex.

Definition 2.1.6 (Geometric simplicial complexK in Rn). A geometric simplicial complex

K is a set of geometric simplices, of possibly various dimensions, in Rn such that
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2.1 Simplicial Complexes

‚ Every face of each geometric simplex in K is in turn a geometric simplex of K,

‚ The intersection of any two geometric simplices of K is a face of each simplex.

The dimension of geometric simplicial complex K is equal to the largest dimension of its

constituent geometric simplices.

The first condition ensures the closure of simplices under subsets. The second condition

constrains how simplices can be connected to form a valid geometric simplicial complex.

2.1.2 Abstract Simplicial Complex

An abstract simplicial complex is the purely combinatorial counterpart to a geometric sim-

plicial complex. Abstract simplicial complexes are composed of simplices, which are sub-

sets of vertices rather than geometric convex hulls of these subsets.

Definition 2.1.7 (Abstract simplicial complex K). Let V “ t v0, v1, ..., vN u be a set of

vertices. Then abstract simplicial complex K consists of subsets of these vertices such that

for each k ě 0:

‚ Kk is a set of k-simplices, subsets of size k ` 1 of vertices V ,

‚ Every pj ` 1q-element subset of Kk is an element of Kj , where j ă k.

Here, each Kk is an abstract simplicial complex consisting of a set of k-simplices,

where each simplex is closed under subsets. Similar to definition 2.1.6, the dimension of

abstract simplicial complex K is equal to that of its simplex with the largest dimension.

Let us illustrate with an example in Figure 2.1.

6



2.1 Simplicial Complexes
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Figure 2.1: An example of a 2-dimensional simplicial complex K where (a) is the set of
verticesK0, (b) is the set of vertices and edgesK0YK1, and (c) is the set of vertices, edges,
and triangles K “ K0 YK1 YK2.

Definition 2.1.8 (Face and coface of d-simplex σ). Let K “ K0 Y K1 Y ... Y Kk be a

k-dimensional abstract simplicial complex and σ P Kd be a d-simplex of K. A f -face of

simplex σ is a f -simplex belonging to K whose vertices form a subset of σ. A j-coface of

simplex σ is a j-simplex belonging to K whose vertices form a superset of σ.

Note that an abstract simplicial complex of dimension 1 is an undirected graph. Abstract

simplicial complexes are ideal for representing binary, ternary, and generally any higher-

order undirected relation between entities. The property of closure under subsets ensures a

higher-dimensional simplex can only belong to the abstract simplicial complex if all of its

lower-dimensional simplices are included. In other words, higher-order relations can only

be present if they are built upon the necessary lower-order relations. It is in this manner

that tetrahedra are composed of triangles which are composed of edges formed by vertices.

Thus, the notion of hierarchical relations is inherent to abstract simplicial complexes.

7



2.2 Neural Networks for Graphs

2.2 Neural Networks for Graphs

A feedforward neural network, also called a multilayer perceptron (MLP), is a composi-

tional model originally proposed by Greenblatt [25] to learn a mathematical function ca-

pable of mapping input values to a target output value. In the 2010s, Bengio, LeCun et al.

[2][19] trained neural networks with deep architectures to successfully perform tasks such

as object detection and speech recognition. A currently active area of research is focused

on leveraging the success of neural networks in continuous domains, to discrete domains;

in particular, to model relationships between entities. In this section we introduce an im-

portant approach to deep learning for relational data: neural networks for graphs.

2.2.1 Feedforward Neural Networks

In the simplest case, feedforward neural networks are used for the task of supervised classi-

fication. The aim of supervised classification is to learn a function fθ : Rn Ñ rks, where k

denotes the number of classes the function must learn to map a given input to. The training

dataset for the classification task is a set of training examples of the form px, yq P Rnˆrks

where x is the input representation vector and y is the target class.

The key innovation of feedforward neural networks in the deep learning setting is the

stacking of layers to automate the extraction of features from input data. These layers

t 1, ..., N u are a sequence of linear functions t f1, f2, ..., fN u each followed by a non-

linear activation σ, composed together such that the function learned by the neural network

8



2.2 Neural Networks for Graphs

is as follows:

fθpxq “ pfN ˝ σ ˝ fN´1 ˝ σ ˝ ... ˝ σ ˝ f1qpxq. (2.1)

The non-linear activation σ is commonly chosen to be the rectilinear unit function

ReLUphq “ max p0,hq. Note the function f is parameterized by the set of parameters

θ. These parameters are the learnable weightsWi at each layer i:

fiphq “W
J
i h` bi, (2.2)

where bi is the bias term. Training a neural network refers to learning the parameters θ “

tW1,W2, ...,WN u by minimizing a differentiable loss function L with respect to θ. The

loss function L is the objective function which is optimized using backpropogation [28] in

conjunction with stochastic gradient descent. The benefits of the compositionality of neural

networks are twofold: first, complex features, represented by deep layers, can be learned

from simpler features and the corresponding shallow layers; and secondly, the architecture

is amenable to automatic differentiation.

2.2.2 Graph Representation

As seen in section 2.2.1, feed forward neural networks take as input x P Rn where n is

the number of features in the input representation. This setup works well for tasks with a

natural vector representation of the input data. For graph representation learning tasks, two

components must be captured: the structure of the graph and the features of the graph.

The structure of a graph refers to its set of edgesE, which represent the binary relations

9



2.2 Neural Networks for Graphs

between vertices V . The structure of a graph with n nodes is commonly represented as

follows.

Definition 2.2.1 (Adjacency matrixA P R|V | ˆ R|V |). An adjacency matrix of graph

G “ pV,Eq is a square matrixA P R|V | ˆ R|V | such that:

‚ Ari, js “ 1 if pi, jq P E,

‚ Ari, js “ 0 if pi, jq R E.

A weighted adjacency matrix is a variant where the entries of matrixA are real-valued.

Here, Ari, js is notation for the matrix entry Aij and the adjacency matrix of an undi-

rected graph is symmetric. Note the ordering of vertices along the rows and columns of

adjacency matrix A is crucial as it alters the matrix. The problem of finding whether two

adjacency matrices represent equivalent graphs is known as the graph isomorphism prob-

lem and is NP-intermediate. Thus, a vertex order is often assumed. An alternate graph

structure representation, convenient for sparse graphs with few edges, is:

Definition 2.2.2 (Coordinate list (COO) of graph G). The coordinate list (COO) of graph

G “ pV,Eq is the enumeration of the set t pi, jq | pi, jq P E u.

The features of a graph refer to additional information, aside from connectivity struc-

ture, known about a graph. A common type of feature is node-level features, represented

by real-valued matrix X P R|V |ˆD, where D is the number of features of each node. Note

that entry Xris P RD is the feature vector of node i. For this reason, the node ordering

across node features X P R|V |ˆD and adjacency matrix A P R|V |ˆ|V | must be consistent.

As we will see in section 2.2.3, graph neural networks require node features. For tasks with

no apparent node features, a one-hot indicator feature is used to identify each node.

10



2.2 Neural Networks for Graphs
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Figure 2.2: (a) is a graph G “ pV,Eq with |V | “ 8 and |E| “ 10. The corresponding rep-
resentations of graph G are: (b) the adjacency matrix A P R|V |ˆ|V |, and (c) the coordinate
list E P R2ˆ2|E|.

Definition 2.2.3 (Node-level one-hot features X P R|V |ˆ|V |). For graph G “ pV,Eq,

node-level one-hot features are a square matrixX P R|V |ˆ|V | such that:

‚ Xri, is “ 1 for every node i P V ,

‚ Xri, js “ 0 for every node i, j P V, i ‰ j.

The level of granularity of features can be adjusted to edges, for which there exists

analogous edge-level one-hot features.

2.2.3 Graph Neural Network

Graph neural networks (GNNs) are a specific type of neural network designed for learning

functions which take graphs as input. As seen in the discussion about the representation

of graphs 2.2.2, graph-structured data is composed of two components: structure and fea-
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2.2 Neural Networks for Graphs

tures. Graph neural networks essentially combine these two components with a mechanism

referred to as message passing. In its simplest form, message passing is the process of up-

dating node embeddings according to the local structure of each node. The local structure

of a node is formally defined as:

Definition 2.2.4 (Neighbourhood of node u, N puq). Given the graph G “ pV,Eq, the

neighbourhood of node u P V , denoted N puq, is the set of nodes t v | pu, vq P E u.

Let us consider the graph G “ pV,Eq, represented by adjacency matrix A P R|V |ˆ|V |,

and the node featuresX P R|V |ˆD. Message passing for node u P V at iteration k` 1 is as

follows:

hpk`1qu “ UPDATE
`

hpkqu ,AGGREGATE
` 

hpkqv , @v P N puq
(˘˘

(2.3)

“ UPDATE
´

hpkqu ,m
pkq
N puq

¯

, (2.4)

where hpkqu P RDpkq is the node embedding of node u and mpkq
N puq P RDpkq is the message

vector aggregated from the node embeddings of neighborhood N puq. Here, the functions

AGGREGATE and UPDATE are differentiable and each node embedding is initialized to

the corresponding input node features hp0qu “Xrvs P RDp0q where Dp0q “ D. Note the first

iteration of message passing can be understood as each node u P V obtaining information

from its one-hop neighbourhood. After k iterations, each node u P V obtains information

from its k-hop neighbourhood, which is the set of nodes that can be reached within k steps

of node u.

The foundational GNN model designed by Scarselli et al.[26] selected the following

12



2.2 Neural Networks for Graphs

AGGREGATE and UPDATE functions:

m
pkq
N puq “ AGGREGATE

` 

hpkqv , @v P N puq
(˘

“
ÿ

vPN puq

hpkqv (2.5a)

hpk`1qu “ UPDATE
´

hpkqu ,m
pkq
N puq

¯

“ σ
´

W
pkq
selfh

pkq
u `W

pkq
neighm

pkq
N puq

¯

. (2.5b)

Note the use of a linear function followed by a non-linear activation is reminiscent of the

multilayer perceptron in section 2.2.1.

The message passing framework can be generalized to include edge features Y P

R|E|ˆJ , where J is the number of features of each edge. Message passing for edge pu, vq P

E and node u P V at iteration k ` 1 is:

h
pk`1q
pu,vq “ UPDATEe

´

h
pkq
pu,vq,h

pkq
u ,hpkqv

¯

(2.6)

m
pk`1q
N puq “ AGGREGATE

´!

h
pk`1q
pv,uq , @v P N puq

)¯

(2.7)

hpk`1qu “ UPDATEn
´

hpkqu ,m
pk`1q
N puq

¯

, (2.8)

where each edge embedding is initialized to hp0q
pu,vq “ Y rpu, vqs P RJ . This framework

is named the message passing neural network (MPNN), and was designed by Gilmer et

al. [11] to unify existing forms of message passing. At each iteration the MPNN updates

each edge embedding with its incident node embeddings, aggregates incident edge embed-

dings to generate a message vector per node, and finally updates each node embedding.

The MPNN effectively incorporates both node and edge features into the message passing

framework to generate embeddings for the various components of a graph.

The MPNN also generates a global embedding for the entire graph, however this thesis

13



2.2 Neural Networks for Graphs

does not utilize graph-level embeddings. For more details on variants of the GNN, Hamil-

ton’s "Graph Representation Learning" [12] is an excellent reference.

2.2.4 Graph Convolutional Network

Graph convolutional networks (GCNs) are a specific type of graph neural network (GNN)

designed to be the graph-structured equivalent to image-based convolutional neural net-

works (CNNs). Authored by Kipf et al. [15], GCNs build upon graph convolutions and

message passing GNNs to construct a spectral graph theory motivated model. This section

provides a brief discussion of graph convolutions and their incorporation into the graph

neural network, to form the graph convolutional network.

Definition 2.2.5 (Continuous convolution f ‹ h). Let f and h be two real-valued functions

on Rd. Then the continuous convolution of functions f, h is defined as

pf ‹ hqpxq “

ż

Rd

fpyqhpx´ yqdy.

The connection between convolutions and Fourier transforms from the field of signal

processing is particularly useful:

pf ‹ hqpxq “ F´1
ppFpfpxqq d Fphpxqqq , (2.9)

where F is a Fourier transform, F´1 is the inverse Fourier transform, andd is the element-

wise (Hadamard) product.

Let us consider a graph G “ pV,Eq represented by adjacency matrixA P R|V |ˆ|V |, and

node features X P R|V |ˆD. We now introduce some foundational spectral theory defini-
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2.2 Neural Networks for Graphs

tions.

Definition 2.2.6 (Eigenvector v, eigenvalue λ). Given a linear map f : Rn Ñ Rn, a non-

zero vector v P R is called an eigenvector if there exists λ P R such that fpvq “ λv. Such

a λ is called an eigenvalue.

Definition 2.2.7 (Graph Laplacian operatorL). The graph Laplacian operatorL P R|V |ˆ|V |

is defined as:

6. L “D ´A (unnormalized Laplacian)

7. L “ I ´D´ 1
2AD´ 1

2 (normalized Laplacian),

where D P R|V |ˆ|V | is the diagonal degree matrix such that Dri, is “
ř

jAri, js is the

degree of node i and I P R|V |ˆ|V | is the identity matrix.

The graph Laplacian L is an essential operator in spectral graph analysis, whose eigen-

decomposition is

L “ UΛUJ, (2.10)

where U “ ru1, ...,u|V |s P R|V |ˆ|V | is the matrix of eigenvectors of L, and Λ P R|V |ˆ|V |

is the diagonal matrix of the corresponding eigenvalues Λri, is “ λi. The graph Fourier

transform of node-level signal x P R|V | is defined as UJx and its inverse is UpUJxq.

Now we are ready to re-write equation 2.9 in terms of the graph Fourier transform:

x ‹G y “ UpU
JxdUJyq. (2.11)
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2.2 Neural Networks for Graphs

The main design concern when constructing a spectral graph convolution is the choice of

the filter UJy. The spectral filter can be defined as pNpΛq, such that the spectral graph

convolution becomes

x ‹G y “ pUpNpΛqU
J
qx (2.12)

“ ppNpLqqx, (2.13)

where pNpΛq “
řN´1
i“0 θiΛ

i is a polynomial of eigenvalues of the graph Laplacian of

degreeN´1 and θ P RN is a vector of polynomial coefficients. The calculation of equation

2.12 is costly, with a time complexity of Op|V |2q. To reduce the computational overhead,

Defferrard et al. [6] use the following approximation:

pNpΛq “
N´1
ÿ

i“0

θiTipΛ̃q, (2.14)

where TipΛ̃q P R|V |ˆ|V | is the recursively defined Chebyshev polynomial for normalized

eigenvalues Λ̃ “ 2
λmax

Λ ´ I P R|V |ˆ|V | and θ P RN is a vector of Chebyshev coefficients.

Thus the spectral graph convolution is defined as

x ‹G y “

˜

U

˜

N´1
ÿ

i“0

θiTipΛ̃q

¸

UJ

¸

x (2.15)

“

˜

N´1
ÿ

i“0

θiTipL̃q

¸

x, (2.16)

where TipL̃q P R|V |ˆ|V | is the Chebyshev polynomial for the normalized graph Laplacian

L̃ “ 2
λmax
L´ I P R|V |ˆ|V |. This spectral graph convolution reduces the time complexity to

OpN |E|q, which is an improvement in the case of sparse graphs.
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2.2 Neural Networks for Graphs

The graph convolutional network (GCN) [15] is a first-order spectral graph convolution

within the GNN message passing framework. The GCN has the following AGGREGATE

and UPDATE functions to calculate the node embedding for node u P V at iteration k` 1:

m
pkq
N puq “ AGGREGATE

` 

hpkqv , @v P N puq
(˘

“
ÿ

vPN puq

1
a

|N puq||N pvq|
hpkqv (2.17)

hpk`1qu “ UPDATE
´

hpkqu ,m
pkq
N puq

¯

“ σ
´

W
pkq
selfh

pkq
u `W

pkq
neighm

pkq
N puq

¯

. (2.18)

Note the term 1{
a

|N puq||N pvq| is a degree normalization constant derived from the nor-

malized Laplacian in definition 2.2.7. Re-written in matrix notation, the GCN message

passing function becomes:

Hpk`1q
“ σ

´

HpkqW
pkq
self `D

´ 1
2AD´ 1

2HpkqW
pkq
neigh

¯

, (2.19)

whereHpkq P R|V |ˆDpkq is the matrix of all node embeddings at iteration k andD´ 1
2AD´ 1

2

is the normalized adjacency matrix. The GCN message passing function can be viewed as

the non-linear activation of the spectral graph convolution from equation 2.15, in the case

where λmax “ 2 and N “ 2:

x ‹G y “ θ0x` θ1pL´ Iqx (2.20)

“ θ0x` θ1D
´ 1

2AD´ 1
2x. (2.21)

The GCN was originally designed for the task of semi-supervised node classification,

where a subset of nodes U Ă V is masked and the goal is to learn node embeddings to

predict the label of each of the masked nodes with one of t 1, ..., C u. To reduce overfitting,
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2.3 Variational Graph Autoencoders

a single parameter variant of the GCN message passing function in equation 2.19 is:

Hpk`1q
“ σ

´´

I `D´ 1
2AD´ 1

2

¯

HpkqW pkq
¯

, (2.22)

whereW “Wself “Wneigh. The final iteration K of message passing yields node embed-

dings Z P R|V |ˆF . As we will see in section 2.3, the learned node embeddings Z can be

used for a multitude of tasks including link prediction, where the task is to predict whether

an edge exists between two given nodes.

2.3 Variational Graph Autoencoders

Variational graph autoencoders (VGAEs) are the extension of variational autoencoders

(VAEs) to the graph domain. This thesis is built upon VGAEs, which we will see provide

convenient node-level embeddings for the task of link prediction. This section begins with

a brief overview of generic latent variable models and in particular the VAE as conceived

by Kingma and Welling [13]. We proceed by defining the task of link prediction. Finally,

we introduce the components of a variational graph autoencoder (VGAE): the graph con-

volutional network (GCN) encoder, the dot product decoder, and the optimization of the

VGAE objective function for end-to-end differentiable learning.

2.3.1 Encoder-decoder Latent Variable Model

The motivation for latent variable models is the assumption that there exists both observ-

able variables x P RD and latent (hidden) variables z P RF which are needed to model a

data distribution. The goal is to formulate a probabilistic model of the data distribution as
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2.3 Variational Graph Autoencoders

a joint distribution over observable and latent variables:

pθpxq “

ż

z

pθpx, zqdz (2.23)

“

ż

z

pθpx|zqpθpzqdz, (2.24)

such that the parameters θ are learned to maximize pθpxq for all observable data x in

dataset D. Equation 2.23 is called the marginal likelihood or the model evidence. The

distribution pθpx|zq is referred to as the model decoder, which is often modelled with the

Gaussian distribution:

pθpx|zq “ N px;µ,σ2
q (2.25)

“ N px; fθpzq, σ
2Iq, (2.26)

where fθpzq is a MLP that outputs mean µ P RD . However, the model evidence pθpxq

in equation 2.23 becomes intractable in this case, and thus requires approximate inference

techniques to compute. In their construction of the variational autoencoder, Kingma and

Welling [13] use variational inference to approximate the model encoder, also called the

model posterior:

pθpz|xq “
pθpx, zq

pθpxq
(2.27)

with a variational term qφpz|xq, which is then used to approximate the otherwise intractable

model evidence pθpxq. The model evidence is maximized through the maximization of its
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2.3 Variational Graph Autoencoders

lower bound, referred to as the evidence lower bound (ELBO), which we now derive:

log pθpxq “ Eqφpz|xq plog pθpxqq

“ Eqφpz|xq
ˆ

log

ˆ

pθpx, zq

pθpz|xq

˙˙

“ Eqφpz|xq
ˆ

log

ˆ

pθpx, zq

qφpz|xq
˚
qφpz|xq

pθpz|xq

˙˙

“ Eqφpz|xq
ˆ

log

ˆ

pθpx, zq

qφpz|xq

˙˙

` Eqφpz|xq
ˆ

log

ˆ

qφpz|xq

pθpz|xq

˙˙

, (2.28)

where the ELBO is

Lθ,φpxq “ log pθpxq ´ Eqφpz|xq
ˆ

log

ˆ

qφpz|xq

pθpz|xq

˙˙

(2.29)

“ log pθpxq ´ KLpqφpz|xq || pθpz|xqq (2.30)

ď log pθpxq, (2.31)

and KLpp || qq measures the non-negative Kullback-Leibler divergence [17] between the

distributions p and q. Here we see maximizing the ELBO Lθ,φpxq over the parameters

θ,φ maximizes the model evidence pθpxq. Now, let us re-write the ELBO in the form
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2.3 Variational Graph Autoencoders

commonly used to define the VAE objective:

Lθ,φpxq “ Eqφpz|xq
ˆ

log

ˆ

pθpx, zq

qφpz|xq

˙˙

(2.32)

“ Eqφpz|xq plogppθpx|zqpθpzqq ´ logpqφpz|xqqq (2.33)

“ Eqφpz|xq plog pθpx|zqq ` Eqφpz|xq plog pθpzq ´ log qφpz|xqq (2.34)

“ Eqφpz|xq plog pθpx|zqq ` Eqφpz|xq
ˆ

log

ˆ

qφpz|xq

pθpzq

˙˙

(2.35)

“ Eqφpz|xq plog pθpx|zqq ´ KL pqφpz|xq || pθpzqq . (2.36)

The first term of equation 2.36 is referred to as the reconstruction term, which measures

how well input x is recovered from its encoded latent z. The second term of equation

2.36 regularizes the encoder qφpz|xq with a chosen prior pθpzq, to prevent the encoder

from overfitting the training data. A common choice for the prior is the standard Gaussian

N pz; 0, Iq, however other distributions can be used to regularize the encoder accordingly.

The motivation for encoder-decoder latent variable models is the assumption that there

exists a low-dimensional representation of the data we wish to model. The encoder is

trained to map high-dimensional input data to a low-dimensional latent space, and the

decoder is trained to learn the inverse of this mapping. In short, the goal of an encoder-

decoder latent variable model is to learn “meaningful” latent embeddings. The rest of this

section explores encoding and decoding graphs at the node level, within the variational

graph autoencoder (VGAE).
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2.3 Variational Graph Autoencoders

2.3.2 Link Prediction

Link prediction is a popular task within machine learning and is used in a multitude of

applications such as drug reactivity [31] and knowledge base completion [22]. Given a

graph G “ pV,Eq and its adjacency matrix A P R|V |ˆ|V | and node features X P R|V |ˆD,

the task of link prediction is the inference of whether an edge exists between a given pair

of nodes. A subset of edges Etrain Ă E is used to train the machine learning model, which

is then evaluated on the test set Etest “ pE ´ Etrainq Y E 1, where pE ´ Etrainq is the set of

edges existing in the original graph and E 1 is the set of non-existent edges.

Link prediction is considered a semi-supervised task because the model is given access

to a subset of edges during training, rather than to the full graph as in the supervised setting.

As previously mentioned in our discussion of simplicial complexes in section 2, the set of

edges E represents a binary relation. Thus, the task of link prediction can be viewed as a

specific case of relation prediction, the general task of inferring relations of a given order.

2.3.3 Encoder

Let us consider graph G “ pV,Eq, with its structure represented by adjacency matrix

A P R|V |ˆ|V | and its node features X P R|V |ˆD. In a VGAE, the encoder qφ :
`

R|V |ˆD
˘

ˆ

`

R|V |ˆ|V |
˘

Ñ Dist
`

R|V |ˆF
˘

maps the node featuresX P R|V |ˆD to a distribution over node

latents Z P R|V |ˆF , where Xrus P RD and Zrus P RF are the node features and the node
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2.3 Variational Graph Autoencoders

latent for node u, respectively. The encoder is modelled with the Gaussian distribution:

qφpZ |X,Aq “

|V |
ź

i“1

qφ,i pZris |X,Aq (2.37)

“

|V |
ź

i“1

N
`

Zris;µris, diagpσ2
risq

˘

, (2.38)

where the assumption of conditional independence is used in equation 2.37. How does one

learn the parameters φ such that the encoder distribution qφpZ | X,Aq is maximized for

given node features X and adjacency matrix A? Kipf et al. [14] select a 2-layer graph

convolutional network (GCN) as seen in equation 2.22:

µ “ GCNµpX,Aq “ ÃReLUpÃXWµ0qWµ1 , (2.39)

logpσq “ GCNσpX,Aq “ ÃReLUpÃXWσ0qWσ1 , (2.40)

where µ P R|V |ˆF , σ P R|V |ˆF , Ã “ I ` D´ 1
2AD´ 1

2 is the normalized adjacency

matrix andD P R|V |ˆ|V | is the diagonal degree matrix as seen in definition 2.2.7. Here, the

GCN can be replaced with any graph neural network (GNN) which utilizes both the input

graph structure and node features. Finally, once the encoder is trained, node latents Z are

sampled from the learned encoder distribution qφpZ |X,Aq. In order to avoid overfitting,

the encoder is regularized with the prior ppZq “ N pZ; 0, Iq.

There exists a non-probabilistic version of the VGAE, simply referred to as the graph

autoencoder (GAE). In this setting, the encoder is a deterministic function learned by a
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2.3 Variational Graph Autoencoders

graph neural network:

Z “ GCNpX,Aq “ ÃReLUpÃXW0qW1. (2.41)

In practice, the GAE is more susceptible to overfitting than the VGAE. As detailed in

chapter 3, this thesis builds upon both the GAE and VGAE.

2.3.4 Decoder

Given a set of node-level latents Z P R|V |ˆF generated by the encoder, the VGAE decoder

pθ : R|V |ˆF Ñ DistpR|V |ˆ|V |q maps the node-level latents to a distribution over adjacency

matricesA P R|V |ˆ|V |. The goal of the decoder is to reconstruct the structure of the original

input graph, using the encoded node latents. The decoder takes the form:

pθpA | Zq “

|V |
ź

i“1

|V |
ź

j“1

pθpAri, js “ 1 | Zris,Zrjsq (2.42)

“

|V |
ź

i“1

|V |
ź

j“1

“ lpspZris,Zrjsqq, (2.43)

where s : RF ˆRF Ñ R is a scoring function for the pair of node latents and l : RÑ r0, 1s

is a nonlinear activation. Note in equation 2.42 the assumption of independence between

edges allows for the factorization over Bernoulli distributions. In their VGAE formula-

tion, Kipf et al. [14] select a simple dot-product scoring function and sigmoid nonlinear

activation to model the Bernoulli distribution for edge pi, jq:

pθpAri, js “ 1 | Zris,Zrjsq “ σpZrisJZrvsq. (2.44)
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2.3 Variational Graph Autoencoders

This scoring function does not have learned parameters, although more expressive param-

eterized decoders that are valid probability distributions can be employed.

For the non-probabilistic GAE, Kipf et al. [14] use the same scoring function and non-

linear activation as in equation 2.44, except the output does not model a Bernoulli distribu-

tion and instead corresponds to a soft adjacency matrix Â P R|V |ˆ|V |:

Âri, js “ σpZrisJZrjsq, (2.45)

which we will see in section 2.3.5 can be trained using a binary cross-entropy loss.

2.3.5 Learning

Learning, the process of iteratively updating parameters to maximize a given objective

function, is where the benefit of node-level latents becomes apparent. Based on equation

2.36, the objective function for the VGAE is the ELBO for graphs:

Lφ “ EqφpZ|X,Aq plog ppA | Zqq ´ KL pqφpZ |X,Aq || ppZqq . (2.46)

Note that distribution p is not parameterized, although the VAE allows for this. The adja-

cency matrix A the decoder reconstructs from the given node latents Z is binary-valued

and thus the reconstruction term EqφpZ|X,Aq plog ppA | Zqq is calculated using a binary-

cross entropy loss of the following form:

Lrecon “ ´
1

|V |2

|V |
ÿ

i“1

|V |
ÿ

j“1

Ari, js log lpspZris,Zrjsqq ` p1´Ari, jsq log p1´ lpspZris,Zrjsqqq .

(2.47)
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Note the use of node-level latents circumvents the problem of graph isomorphism: input

node u corresponds to its latent representation and reconstruction, thus enabling a straight-

forward calculation of the binary cross-entropy loss. This is a significant challenge for

autoencoders which encode latent representations at the graph level, such as GraphVAE

[27], where no feasible exact matching of the input and output nodes exists.

Now let us consider how to optimize the variational parameters φ. A problem occurs

when trying to compute the gradient of the ELBO with respect to φ:

∇φLφ “ ∇φEqφpZ|X,Aq plog ppX,A,Zq ´ log qφpZ |X,Aqq (2.48)

‰ EqφpZ|X,Aq p∇φ plog ppX,A,Zq ´ log qφpZ |X,Aqqq . (2.49)

To overcome this problem, a technique known as the reparameterization trick [13] [24] is

used to isolate the stochasticity when sampling from the encoder qφpZ |X,Aq:

Z “ εd σ ` µ, (2.50)

where ε „ fpεq “ N p0, Iq

and φ “ t µ,σ u are the parameters for which we want to calculate the gradient of the

ELBO. The gradient of the ELBO can now be written as:

∇φLφ “ ∇φEqφpZ|X,Aq plog ppX,A,Zq ´ log qφpZ |X,Aqq (2.51)

“ Efpεq p∇φ plog ppX,A,Zq ´ log qφpZ |X,Aqqq , (2.52)

which can be estimated using Monte Carlo approximation.
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2.4 Topological Data Analysis

For the GAE, the objective function consists solely of the reconstruction term as there

is no need to regularize the deterministic encoder. The reconstruction term is computed

with the binary cross-entropy loss seen in equation 2.47 and the reparametrization trick is

irrelevant in this non-stochastic setting.

2.4 Topological Data Analysis

Topological data analysis is a field of study largely concerned with the shape of data; in

particular the presence of holes. The simplicial complex is a useful mathematical construct

to generalize networks to higher order relations, in a geometric space. We explore two

methods of construction of simplicial complexes: the Čech complex and the Vietoris-Rips

complex. Each of these constructions maps a set of points embedded in a metric space to

an abstract simplicial complex. Let us begin by defining a metric space.

Definition 2.4.1 (Metric space pX, dq). A metric space is a set X equipped with a function

d : X ˆX Ñ Rě0 satisfying:

1. For all x P X , dpx, xq “ 0, (reflexivity)

2. For all x, y P X , dpx, yq “ dpy, xq, (symmetry)

3. For all x, y, z P X , dpx, yq ď dpx, zq ` dpz, yq, (triangle inequality)

4. For all x, y P X, dpx, yq “ 0 if and only if x “ y.

We call d a metric and the pair pX, dq a metric space.

27



2.4 Topological Data Analysis

2.4.1 Čech Complex

The Čech complex determines connectivity based on circles centered at each embedded

point in the metric space, thus connecting simplicial complexes with metric spaces [10].

Definition 2.4.2 (Čech complex). Let us consider a set of V “ t v0, v1, ..., vN u vertices

embedded in the metric space pRn, dq and radius r ą 0. The Čech complex is the con-

struction of the abstract simplicial complex K equal to the union of every k-simplex such

that:

k
č

i“0

Bpvi, rq ‰ H,

where Bpvi, rq is a ball of radius r centered at vertex vi and k ranges over the values

t 0, 1, . . . , N u.

Note that the edges (1-simplices) of a triangle might be present in Čech complex K

but the 2-simplex triangle is not necessarily an element of K; the 2-simplex triangle also

requires the triple intersection of balls centered at the corresponding nodes be non-empty.

Figure 2.3 visualizes the construction of a Čech complex from a set of embedded vertices.

The hierarchical construction of Čech complexes across dimensions ensures it satisfies the

properties of an abstract simplicial complex in definition 2.1.7.

2.4.2 Vietoris-Rips Complex

The Vietoris-Rips complex is an alternate and more computationally efficient construction

than the Čech complex [9].
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Definition 2.4.3 (Vietoris-Rips complex). Consider a set of V “ t v0, v1, . . . , vN u vertices

embedded in the metric space pRn, dq and radius r ą 0. The Vietoris-Rips complex is the

construction of the abstract simplicial complex K equal to the union of every k-simplex σ

such that:

dpvi, vjq ď r for all vi, vj P σ.

The metric d is often chosen to be the Euclidean metric, which has the following famil-

iar definition.

Definition 2.4.4 (Euclidean metric d). Let x,y P Rn. Then the Euclidean metric is

dpx,yq “ ‖x´ y‖ “

d

n
ÿ

i“1

pxi ´ yiq2.

Note that the Vietoris-Rips complex is, like the Čech complex, also a valid abstract

simplicial complex. Unlike the Čech complex, if the edges (1-simplices) of a triangle are

present in the Vietoris-Rips complex K, the 2-simplex triangle is necessarily an element of

K. Illustrated in Figure 2.3, if each pair of 3 vertices is within r distance, then by definition

the three edges and triangle connecting these vertices must be present. This is an important

consideration when selecting a construction for relation prediction, which is discussed in

section 3.4.

Both of these types of simplicial complexes are often used for persistent homology [5],

the study of the appearance and disappearance of topological holes in data as parameters

are varied. However, this thesis is concerned with the quality of information captured by

node embeddings, measured by how well a reconstructed simplicial complex matches the
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Figure 2.3: (a) is a set of vertices embedded in Rn and its corresponding simplicial complex
constructions: (b) Vietoris-Rips complex constructed from distance r and the distances
between each pair of embedded vertices, (c) Čech complex constructed from balls of radius
ε, (d) Čech complex constructed from balls of radius 1.5ε. Čech complex (c) has an empty
intersection of the balls centered at the embedded vertices and is thus a 1-dimensional
simplicial complex Čech complex, whereas (d) has a non-empty intersection and is thus a
2-dimensional simplicial complex.

input simplicial complex.
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3
Variational Autoencoders for Simplicial

Complexes

This chapter weaves the extensive work done on simplicial complexes with variational

autoencoders to produce a novel variational autoencoder suitable for relation prediction,

the generalization of link prediction to higher order relations. In this thesis we focus on

the extension of the variational graph autoencoder to the variational autoencoder for 2-

dimensional simplicial complexes, however, our formulation can be extended to higher

dimensional simplicial complexes. This chapter begins with our representation of abstract

simplicial complexes, which combines computationally efficient simplex trees [4] with a

tensor representation amenable to machine learning frameworks. We then present the en-

coders, comprised of a message passing neural network for simplicial complexes. Next

we present the decoders, a multi-linear dot product and a differentiable variant of the Čech

complex. Finally, we directly define the optimization objective for the variational simplicial

autoencoder, without relying on additional regularization terms.
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3.1 Simplicial Complex Representation

The novelty of this thesis lies in the adaptation of the variational graph autoencoder

to the variational autoencoder for simplicial complexes. Our goal is to encode meaningful

node-level embeddings, which in turn are used to infer relations between entities. This the-

sis limits its focus to latent variable models, although other models designed for higher or-

der link prediction on hypergraphs [29] [18] are comparable. Previous work has been done

on autoencoders for simplicial complexes, however these works differ both in approach

and application: simplicial autoencoders [8] constrain the latent embeddings to a simpli-

cial complex via a regularizer and this model is designed for image-domain tasks, rather

than link prediction; topological autoencoders [21] add a topological-preserving regularizer

to the autoencoder objective; autoencoding topology in generative models [16] addresses

manifold learning by viewing the decoder as an atlas, a set of maps, to be learned from the

latent embeddings. We now present our variational autoencoder for simplicial complexes.

3.1 Simplicial Complex Representation

Abstract simplicial complexes are combinatorial objects on which operations can quickly

become infeasible. The design goal of our simplicial complex representation is two-fold:

1. Computationally efficient representation for simplicial complex operations.

2. Representation compatible with a widely used graph representation learning frame-

work.

The first design concern is addressed with simplex trees in section 3.1.1. The second

concern factors into the design of a tensor representation for simplicial complexes in section

3.1.2.
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3.1.1 Simplex Trees

Simplex trees are a data structure designed by Boissonnat et al. [4] to efficiently store ab-

stract simplicial complexes of any finite dimension. The crucial property of simplex trees is

the storing of one node per simplex, which enables the efficient storage of incident relations

between simplices.

Definition 3.1.1 (Simplex tree ofK). LetK be an abstract simplicial complex with vertices

V “ t v0, v1, . . . , vN u, where each k-simplex of K is a sequence σ “ t vl0 , vl1 , . . . , vlk u,

vli P V , li P t 0, . . . , N u , and l0 ă l1 ă ¨ ¨ ¨ ă lk. The simplex tree of K is a tree T

satisfying the following properties:

1. The nodes of the simplex tree are in bijection with the constituent simplices of K.

The root of the simplex tree is associated with the empty simplex σ “ H.

2. Each node of the simplex tree, except the root, stores the label of the last vertex in

the k-simplex sequence σ to which the node is associated, where lastpσq “ lk.

3. The vertices whose labels are encountered along a path from the root of the simplex

tree to a node n, associated with a simplex σ, are the vertices of σ. The labels are

sorted by increasing order along such a path, and each vertex label appears exactly

once.

Note the ordering of vertices in a sequence is necessary to attain a bijection between

simplex tree nodes and simplices. We illustrate with an example in Figure 3.1.

Let us consider the runtime of some important operations on simplex trees. Let Dm be

the maximal number of operations needed to perform a search, insertion, or removal of a
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Figure 3.1: Above is a 2-dimensional abstract simplicial complex and below is its sim-
plex tree representation. The nodes at depth d in the simplex tree correspond to (d ´ 1)-
dimensional simplices, except the root. This simplicial complex has 8 0-simplices (ver-
tices), 10 1-simplices (edges), and 3 2-simplices (triangles).

node in simplex tree T . The term Dm depends on two factors: the maximal degree of a

node, distinct from the root, in simplex tree T , and the type of tree data structure used to

represent T . Assume we wish to find a k-simplex σ in the simplex tree T . This operation

takes time Oppk ` 1qDmq as a path of size k ` 1 must be found from the root to a node

n, associated with the vertices of σ. This operation can be extended to insert a k-simplex

σ and all of its lower dimensional faces in the simplex tree T . The k-simplex σ has 2k`1

subfaces and thus recursive insertion requires time Op2k`1Dmq.

The removal of a simplex requires the removal of its cofaces to ensure the simplex

tree still represents a valid simplicial complex. Assume we wish to remove the simplex

σ “
 

vl0 , vl1 , . . . , vlj
(

from simplex tree T representing simplicial complex K. Cofaces

of simplex σ take the form
 

‹vl0 ‹ vl1 ‹ ¨ ¨ ¨ ‹ vlj‹
(

, where ‹ represents an arbitrary subse-

quence. First, all simplices of the form
 

‹vl0 ‹ vl1 ‹ ¨ ¨ ¨ ‹ vlj
(

are searched: if a node Nlj

34



3.1 Simplicial Complex Representation

is found at depth at least j ` 1, then the tree T is traversed upward to the root, yielding

cofaces ending in label lj . This procedure takes Opkq time, where k is the dimension of

simplicial complex K. The remaining cofaces of simplex σ are represented by the nodes

in the subtree rooted at Nlj . Thus the complexity of finding all the cofaces of simplex σ is

OpkT ąjlj
q, where T ąjlj

is the number of nodes with label lj at depth at least j` 1 in simplex

tree T .

The Gudhi (Geometric Understanding in Higher Dimensions) library [20] provides a

Python interface on top of an efficient C++ backend for state-of-the-art computational

topology algorithms. This thesis employs Gudhi simplex trees as an efficient data struc-

ture to create and update valid simplicial complexes.

3.1.2 Tensor Representation

The simplex tree is an efficient data structure for simplicial complex operations, however,

a tensor representation is required for representation learning compatible with the widely

used software library PyTorch Geometric [7]. An extension of the deep learning framework

PyTorch [23], PyTorch Geometric is designed expressly for efficient representation learn-

ing on irregular graphs. In particular, PyTorch Geometric provides a general interface for

graph neural networks and message passing. Within PyTorch Geometric, graphG “ pV,Eq

is represented using the coordinate list (COO) as seen in definition 2.2.2. We extend this

representation to abstract simplicial complexes.

Definition 3.1.2 (Tensor representation of abstract simplicial complex K). The tensor rep-

resentation of k-dimensional abstract simplicial complex K “ K0 Y ¨ ¨ ¨ YKk, is the enu-

meration of each set Ki for i P t 0, . . . , k u.
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Figure 3.2: (a) is an abstract simplicial complex K “ K0 Y K1 Y K2 with |K0| “ 8,
|K1| “ 10, and |K2| “ 3. The tensor representation of abstract simplicial complex K is
composed of: (b) the coordinate listE P R2ˆ2|K1|, and (c) the coordinate list T P R3ˆ6|K2|.

Figure 3.2 is an illustration of the tensor representation of abstract simplicial com-

plex K. Note that K0, K1, K2 are the sets of vertices, edges, and triangles, respectively. In

practice, our abstract simplicial complex representation is a PyTorch Geometric data class

AbstractSimplicialComplex of our tensor representation in definition 3.1.2, with

an additional simplex tree property. This property is used to perform simplicial complex

operations, whereas the tensor representation is used for representation learning. Within

the class AbstractSimplicialComplex, we provide methods to convert to and from

simplex tree and tensor representations. Equipped with an abstract simplicial complex rep-

resentation, we now present the representation learning task relation prediction.
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3.2 Relation Prediction

3.2 Relation Prediction

In this thesis we define relation prediction as the generalization of link prediction to higher

order relations. Of particular use in domains where we wish to model relations between

three or more entities, applications of relation prediction include co-authorship citation

networks, online thread participation, and drug networks [3].

In the link prediction setting discussed in section 2.3.2, an adjacency matrix represents

the graph’s structure and a node feature matrix captures node-level features. However, in

the relation prediction setting, there are higher order features to be considered. Let K “

K0 Y K1 Y ... Y Kk be a k-dimensional abstract simplicial complex with node features

X0 P R|K0|ˆD0 , edge features X1 P R|K1|ˆD1 , triangle features X2 P R|K2|ˆD2 , and higher

order features up toXk P R|Kk|ˆDk , where D0, D1, D2, and Dk are the number of features

for each node, edge, triangle, and k-simplex respectively. The task of relation prediction

is the inference of whether a j-simplex exists, given a set of pj ´ 1q-simplices and their

corresponding features. This thesis explores the task of triangle prediction. For this task, a

subset of triangles pK2qtrain Ă K2 is used to train the machine learning model, which is then

evaluated on the test set pK2qtest “ pK2 ´ pK2qtrainq YK
1
2, where pK2 ´ pK2qtrainq is the set

of existing triangles in simplicial complex K and K 1
2 is the set of non-existent triangles.

3.3 Encoder

The aim of the encoder is to compress hierarchical relations and their corresponding fea-

tures into node-level latent embeddings. These node-level embeddings circumvent the prob-

lem of simplicial complex isomorphism when calculating the reconstruction loss, as will
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be detailed in section 3.5. We extend the message passing framework to abstract simplicial

complexes; the higher order counterpart to graph neural networks.

3.3.1 Message Passing for Simplicial Complexes

Message passing for 2-dimensional abstract simplicial complex K “ K0 Y K1 Y K2 has

three steps:

1. Update triangle embeddings of the form ht u,v,w u, where t u u , t v u , t w u P K0,

t u, v u , t v, w u , t w, u u P K1, and t u, v, w u P K2.

2. Update edge embeddings of the form ht u,v u, where t u u , t v u P K0 and

t u, v u P K1.

3. Update node embeddings of the form ht u u where t u u P K0.

Message passing for triangle t u, v, w u P K2 at iteration k ` 1 is as follows:

h
pk`1q
t u,v,w u “ UPDATET

´

h
pkq
t u,v,w u,h

pkq
t u,v u,h

pkq
t v,w u,h

pkq
t w,u u

¯

(3.1)

“ σ
´

W
pkq
T1 h

pkq
t u,v,w u `W

pkq
T2

´

h
pkq
t u,v u ` h

pkq
t v,w u ` h

pkq
t w,u u

¯¯

, (3.2)

where hpkq
t u,v,w u P R

D2
pkq

, hpkq
t u,v u,h

pkq
t v,w u,h

pkq
t w,u u P R

D1
pkq

,WT1 andWT2 are each a learn-

able matrix of parameters, and σ is a non-linear activation such as ReLU. After the triangle

embeddings are updated, message passing is performed for each edge t u, v u P K1. First,

let us build upon the notion of a neighbourhood, introduced in definition 2.2.4.

Definition 3.3.1 (j-Neighbourhood of pj ´ 1q-simplex s, Njpsq). Given the abstract sim-

plicial complex K “ K0 YK1 Y ... YKk, the j-neighbourhood of pj ´ 1q-simplex s P K

is the set of j-cofaces of s.
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3.3 Encoder

Concretely, the 2-neighbourhood of edge t u, v u is:

N2pt u, v uq “ t t u, v, w u | t u, v u P K1, t u, v, w u P K2 u , (3.3)

whereas the 1-neighbourhood of node t u u is:

N1pt u uq “ t t u, v u | t u u P K0, t u, v u P K1 u . (3.4)

We are ready to define message passing for each edge t u, v u P K1:

m
pk`1q
N2pt u,v uq

“ AGGREGATEN2

´!

h
pk`1q
t u,v,w u

ˇ

ˇ

ˇ
t u, v, w u P N2pt u, v uq

)¯

(3.5)

“
ÿ

t u,v,w uPN2pt u,v uq

h
pk`1q
t u,v,w u, (3.6)

h
pk`1q
t u,v u “ UPDATEE

´

h
pkq
t u,v u,m

pk`1q
N2pt u,v uq

¯

(3.7)

“ σ
´

W
pkq
E1 h

pkq
t u,v u `W

pkq
E2m

pk`1q
N2pt u,v uq

¯

. (3.8)

Finally, message passing is performed on each node t u u P K0:

m
pk`1q
N1pt u uq

“ AGGREGATEN1

´!

h
pk`1q
t u,v u

ˇ

ˇ

ˇ
t u, v u P N1pt u uq

)¯

(3.9)

“
ÿ

t u,v uPN1pt u uq

h
pk`1q
t u,v u, (3.10)

h
pk`1q
t u u “ UPDATEN

´

h
pkq
t u u,m

pk`1q
N1pt u uq

¯

(3.11)

“ σ
´

W
pkq
N1h

pkq
t u u `W

pkq
N2m

pk`1q
N1pt u uq

¯

, (3.12)

where hpkq
t u u P RD0

pkq

. Here, each d-simplex embedding is initialized to hp0qs “ Xdrss P
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3.3 Encoder

RDd .

Message passing for abstract simplicial complexes effectively incorporates triangle,

edge, and node features to generate hierarchical embeddings for the various components of

the abstract simplicial complex. Note the aggregate and update functions for each dimen-

sion may be arbitrary differentiable set functions. In our formulation, we have chosen the

same functions as those seen in equations 2.5a and 2.5b.

3.3.2 Probabilistic Autoencoder

Let us consider abstract simplicial complex K “ K0 Y K1 Y K2, with its structure rep-

resented by tensors E P R2ˆ|K1|,T P R3ˆ6|K2| and its features X0 P R|K0|ˆD0 , X1 P

R|K1|ˆD1 , X2 P R|K2|ˆD2 . In a simplicial variational autoencoder (SVAE), the encoder

qφ :
`

R2ˆ|K1|
˘

ˆ
`

R3ˆ6|K2|
˘

ˆ
`

R|K0|ˆD0
˘

ˆ
`

R|K1|ˆD1
˘

ˆ
`

R|K2|ˆD2
˘

Ñ Dist
`

R|K0|ˆF
˘

maps the node features to a distribution over node latentsZ P R|K0|ˆF , whereXkrus P RDk

and Zrus P RF are the node features and the node latent for node u, respectively. The en-

coder is modelled with the Gaussian distribution:

qφ pZ|E,T ,X0,X1,X2q “

|K0|
ź

i“1

qφ,i pZris | E,T ,X0,X1,X2q (3.13)

“

|K0|
ź

i“1

N
`

Zris;µris, diagpσ2
risq

˘

. (3.14)

How does one learn the parametersφ such that the encoder distribution qφ pZ|E,T ,X0,X1,X2q

is maximized for given simplex features and simplicial complex structure? We choose a 2-
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3.4 Decoder

layer simplicial neural network (message passing) architecture:

µris “ SNNµ pE,T ,X0,X1,X2q (3.15)

“ ReLU
´

W p1q
µN1
h
p1q
t i u `W

p1q
µN2
m
p2q
µN pt i uq

¯

, (3.16)

logpσrisq “ SNNσ pE,T ,X0,X1,X2q (3.17)

“ ReLU
´

W p1q
σN1
h
p1q
t i u `W

p1q
σN2
m
p2q
σN pt i uq

¯

. (3.18)

The intent of this architecture is to avoid over-smoothing, where node-level features are

homogeneous due to too many iterations of message passing.

3.3.3 Non-probabilistic Autoencoder

We present a non-probabilistic version of the SVAE in section 3.3.2, simply referred to as

the simplicial autoencoder (SAE). In this setting, the encoder is a deterministic function

over the set of nodes i P |K0| learned by a simplicial neural network:

Zris “ ReLU
´

W
p1q
N1h

p1q
t i u `W

p1q
N2m

p2q
N pt i uq

¯

. (3.19)

Note the non-probabilistic SAE is more susceptible to overfitting than the SVAE, which is

regularized with a KL divergence term. This will be explored further in section 3.5.

3.4 Decoder

Given a set of node-level latents Z P R|K0|ˆF generated by the simplicial encoder, the

SVAE decoder pθ : R|V0|ˆF Ñ DistpR3ˆ6|K2|q maps the node-level latents to a distribution
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3.4 Decoder

over triangles T P R3ˆ6|K2|. The goal of the decoder is to reconstruct the triangles K2

present in the original input 2-dimensional abstract simplicial complex K. The decoder

takes the form:

pθpT |Zq “
ź

t u,v,w uPτpKq

pθ pru, v, ws P T | Zrus,Zrvs,Zrwsq (3.20)

“
ź

t u,v,w uPτpKq

l pspZrus,Zrvs,Zrwsqq , (3.21)

where s : RFˆRFˆRF Ñ R is a scoring function, l : RÑ r0, 1s is a non-linear activation,

and τpKq is the set of possible triangles given the 1-skeleton of simplicial complex K.

Let us explore two possibilities for the scoring function s and non-linear activation l,

which define the Bernoulli distribution used to model the existence of triangle t u, v, w u.

Our first simplicial decoder builds upon the multi-relational decoder DistMult [30], which

defines the dot product of two node embeddings Zrus,Zrvs and one relational embedding

r as:

ă Zrus, r,Zrvs ą“
F
ÿ

i“1

pZru, isq prrisq pZrv, isq , (3.22)

where ăą: RF ˆ RF ˆ RF Ñ R. Note this multi-linear dot product is not an intrinsic

geometric distance, unlike the usual dot product over two vectors. This formulation allows

us to generalize the VGAE dot product decoder from equation 2.44 to a multi-linear dot

product over three vectors. In particular, we define the simplicial decoder of three node
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embeddings:

pθ pru, v, ws P T | Zrus,Zrvs,Zrwsq (3.23)

“ σ pă Zrus,Zrvs,Zrws ąq (3.24)

“ σ

˜

F
ÿ

i“1

pZru, isq pZrv, isq pZrw, isq

¸

, (3.25)

where σ is the sigmoid activation function. Note this decoder is only suitable for symmetric

relations because this 3-vector dot product is commutative. Although this is a limitation for

modeling directed graphs, this decoder is amenable to modeling the undirected relations of

abstract simplicial complexes.

Our second simplicial decoder is designed to be analogous to a Čech complex intro-

duced in definition 2.4.2 and takes the form:

pθ pru, v, ws P T | Zrus,Zrvs,Zrwsq (3.26)

“p1´ tanh pmax p‖Zrus ´Zrvs‖´r, ‖Zrvs ´Zrws‖´r, ‖Zrus ´Zrws‖´r, 0qqq .

(3.27)

Let us unpack this decoder. Remember we defined a Čech complex triangle as the non-

empty intersection of three balls of radius r centered at points P “ t x, y, z u. An equivalent

definition is a Čech complex triangle exists if and only if the radius of the minimal ball

enclosing points P “ t x, y, z u is less than or equal to r. This property is satisfied by P

when maxp,qPP ‖p´ q‖ ď
?

2r [1]. If we take P “ tZrus,Zrvs,Zrws u, then the max

term in equation 3.27 is only positive when the distance between a pair of node embeddings

in set P exceeds r. In this case, the larger the distance between this pair of nodes, the lower
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the probability ru, v, ws P T . In the case where the max term evaluates to 0, all pairs of

node embeddings are within distance r and the probability of ru, v, ws P T “ 1. Here,

tanh is our choice of activation function because it is a smooth mapping of positive real

numbers to [0, 1]. Thus we have constructed a differentiable triangle decoder analogous

to the Čech complex. Note radius r is a hyperparameter to the simplicial autoencoder and

must be chosen accordingly.

In the non-probabilistic simplicial autoencoder setting, the simplicial dot-product de-

coder from equation 3.24 and the simplicial Čech decoder from equation 3.27 can be read-

ily used, except the output does not model a Bernoulli distribution and instead corresponds

to a soft triangle tensor T̂ P R3ˆ|τpKq|:

T̂ ru, v, ws “ DECpZrus,Zrvs,Zrwsq,

which we will see in section 3.5 can be trained using a binary cross-entropy loss.

3.5 Learning

Similar to the learning objective function of the VGAE in section 2.3.5, the objective func-

tion for the SVAE is:

Lφ “ EqφpZ|X0,X1,X2,E,T q plog ppT | Zqq ´ KL pqφppZ |X0,X1,X2,E,T qq || ppZqq .

(3.28)

Note that distribution p is not parameterized, although a more expressive decoder may be

used instead. Triangle tensor T is in coordinate list form, but for convenience let us use
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the notation T ru, v, ws “ 1 to denote ru, v, ws P T and T ru, v, ws “ 0 otherwise. The

reconstruction term EqφpZ|X0,X1,X2,E,T q plog ppT | Zqq is calculated using a binary-cross

entropy loss of the following form:

Lrecon “ ´
1

|τpKq|

ÿ

t u,v,w uPτpKq

T ru, v, ws log lpspZrus,Zrvs,Zrwsqq (3.29)

` p1´ T ru, v, wsq log p1´ lpspZrus,Zrvs,Zrwsqqq . (3.30)

Note the use of node-level latents circumvents the problem of simplicial complex iso-

morphism, where it is prohibitively expensive to determine whether the input abstract sim-

plicial complexK and the output simplicial complexK 1 are equivalent in structure but with

different node labelling. Node-level latents ensures input node u corresponds to its latent

embedding and reconstruction, thus enabling a straight-forward calculation of the binary

cross-entropy loss. The reparameterization trick and Monte Carlo approximation, intro-

duced in section 2.3.5, are used to estimate the gradient of the SVAE objective function in

equation 3.28 with respect to the variational parameters φ.

In the non-variational setting, the SAE objective function consists solely of the re-

construction term as there is not need to regularize the deterministic encoder. The recon-

struction term is computed with the binary cross-entropy loss in equation 3.29 and the

reparametrization trick is irrelevant in this non-stochastic setting.
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Experiments

The experiments in this chapter evaluate the proposed simplicial variational autoencoder

and its non-probabilistic variant on the task of triangle prediction, on synthetic datasets.

The purpose of these experiments is to demonstrate functional end-to-end latent variable

models that successfully consolidate simplicial complex software with machine learning

software.

4.1 Datasets

We generate three synthetic abstract simplicial complex datasets of varying number of

triangles. Table 4.1 details the synthetic abstract simplicial complex datasets labelled ASC

I, ASC II, and ASC III. The datasets have a varied number of positive triangles and negative

triangles. Let K “ K0 Y K1 Y K2 be the 2-dimensional abstract simplicial complex in

a given dataset. Here, a positive triangle is defined as a triangle t u, v, w u P K2 and a

negative triangle is defined as a candidate triangle t u, v, w u such that the necessary edges
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t u, v u , t v, w u , t u,w u P K1 , but t u, v, w u R K2.

Each of the datasets contains node-level, edge-level, and triangle-level one-hot input

features. These datasets were generated using the library Gudhi [20], where a given num-

ber of positive triangles are generated by selecting random triplets of nodes and the corre-

sponding lower-dimensional simplices are added to the simplicial complex. The transfor-

mation from a Gudhi simplicial complex into a PyTorch Geometric [7] dataset is our own

implementation. These synthetic datasets are small in terms of their number of nodes and

serve as simple examples on which to measure the effectiveness of encoding and decoding

higher-order structure and features. However, our models are amenable to larger simplicial

complexes.

Dataset Num. Nodes Num. Edges Num. +ve Triangles Num. -ve Triangles
ASC I 52 106 50 10
ASC II 52 126 50 50
ASC III 502 1321 500 640

Table 4.1: Statistics for three synthetic simplicial complex datasets. Each of these datasets
is comprised of a 2-dimensional abstract simplicial complex K “ K0 Y K1 Y K2 where
|K0| is equal to Num. Nodes, |K1| is equal to Num. Edges and |K2| is equal to Num. +ve
Triangles.

4.2 Triangle Prediction for Simplicial Complexes

We evaluate the simplicial variational autoencoder (SVAE) and its non-probabilistic variant

(SAE) on the triangle prediction task for the datasets described in section 4.1. The results

are presented in table 4.2 where the scores reported are area under the ROC curve (AUC)
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and average precision (AP). The receiver operating characteristic (ROC) graphically illus-

trates the performance of a binary classifier by plotting sensitivity, the rate of true positives,

versus 1-specificity, the rate of false positives. The AUC score allows for easy comparison

between ROC curves where an AUC of 1.0 is a perfect binary classifier and an AUC of

0.5 is a random binary classifier. Alternately, the AP score captures the trade-off between

precision, the ratio of predicted true positives to total predicted positives, and recall, the

ratio of predicted true positives to total true positives, of a binary classifier. The AP score:

AP “
ÿ

n

pRn ´Rn´1qPn, (4.1)

is a weighted sum of precision scores at each classifier threshold n, where the weight is the

gain in recall between subsequent classifier thresholds.

Model ASC I ASC II ASC III
Encoder-Decoder AUC AP AUC AP AUC AP

GAE-MultDot 0.51˘ 0.01 0.66˘ 0.01 0.66˘0.06 0.78˘ 0.05 0.56˘ 0.01 0.69˘ 0.01
VGAE-MultDot 0.41˘ 0.20 0.70˘ 0.10 0.60˘0.05 0.72˘ 0.08 0.54˘ 0.02 0.68˘ 0.01
SAE-MultDot 0.49˘ 0.03 0.66˘ 0.01 0.60˘0.02 0.64˘ 0.06 0.56˘ 0.00 0.69˘ 0.00

SVAE-MultDot 0.69˘ 0.01 0.86˘ 0.01 0.68˘0.10 0.79˘ 0.10 0.54˘ 0.05 0.63˘ 0.03

SAE-Čech 0.50˘ 0.00 0.67˘ 0.00 0.50˘0.00 0.50˘ 0.00 0.50˘ 0.00 0.50˘ 0.00

SVAE-Čech 0.50˘ 0.00 0.67˘ 0.00 0.50˘0.00 0.50˘ 0.00 0.50˘ 0.00 0.50˘ 0.00

Table 4.2: Experimental results for triangle prediction on three synthetic datasets ASC I,
ASC II, and ASC III.

The baselines are VGAE-MultDot and GAE-MultDot; models where the encoder is a

VGAE or GAE [14] and the decoder is our multi-linear dot product decoder from equation

3.24. The baseline models treat the input abstract simplicial complex as a graph and output

triangle predictions. The simplicial models SVAE-MultDot and SAE-MultDot differ from
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the baselines in their choice of encoder; these models utilize simplicial message passing

encoders described in section 3.3. The simplicial models SVAE-Čech and SAE-Čech use

the Čech decoder from equation 3.27.

All models were run with a similar experimental setup. Each model’s encoder is a 2-

layer architecture with a latent space of dimension 8 and a hidden layer of dimension 16.

Each model was trained for 500 epochs, where the graph autoencoders had a learning rate

of 0.01 and the simplicial autoencoders had a learning rate of 0.001. The results reported

in table 4.2 are the mean and standard error for 5 runs on fixed dataset splits.

The largest gain in performance over the baselines is by SVAE-MultDot on the dataset

ASC I. Note that dataset ASC I has 5 times more positive triangles than negative triangles.

SVAE-MultDot is also the best performant model on the dataset ASC II, however, by a

smaller margin. For the dataset ASC III, the best model is SAE-MultDot by an even smaller

margin. On this dataset, SAE-MultDot performs marginally better than a random model,

indicating none of the evaluated models can successfully perform triangle prediction on

this dataset.

All models struggle most on the dataset ASC III, which has the largest proportion of

negative triangles to positive triangles. It is on datasets with few empty triangles that the

simplicial autoencoders perform best. On all abstract simplicial complex datasets, these re-

sults corroborate our hypothesis that encoding higher-dimensional simplices using simpli-

cial message passing improves performance on triangle prediction. We expect larger gains

would be observed on datasets with meaningful node-level, edge-level, and triangle-level

features.

The simplicial autoencoders with a Čech decoder do not perform well for two reasons.
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Firstly, the Čech decoder depends on the radius hyperparameter, which cannot adapt to the

learned embeddings. Secondly, the Čech decoder has many terms which leads to unstable

optimization. The multi-linear dot product performs well, supporting the hypothesis that

restricting a decoder’s complexity forces the encoder to learn meaningful embeddings [12].
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Conclusion and Future Work

We have shown that our simplicial autoencoder effectively models higher order relations on

the task of triangle prediction, evaluated on synthetic abstract simplicial complex datasets.

Our work drew heavily on graph representation learning algorithms and topological data

analysis formalism to create a novel simplicial representation learning pipeline; simplicial

complex representation using simplex trees; simplicial neural message passing encoders,

including variational and deterministic variants; simplicial decoders based on multi-relational

graph representation learning and the Čech complex; simplicial autoencoder loss functions.

There are several avenues for future work on simplicial autoencoders. A low hanging

fruit is to evaluate the simplicial autoencoders presented in this thesis on datasets with

meaningful input features. Co-authorship citation networks, where the task is to determine

whether a triplet of authors have co-authored a paper, is of particular interest. For this, hy-

pergraph relation prediction models can serve as useful baselines. Another direction is to

remedy the Čech decoder so that the radius is a learnable parameter. Using sophisticated
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hyperparameter sweep techniques to determine the best fixed radius is not enough; the de-

coder radius must change to accommodate the geometry of the learned latent embeddings.

Finally, a broader research direction is to design a new encoder, perhaps a new convolu-

tional network for simplicial complexes, capable of capturing topological properties other

than local structure.
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Acronyms

COO Coordinate list

CNN Convolutional neural network

GAE Graph autoencoder

GCN Graph convolutional network

GNN Graph neural network

MLP Multilayer perceptron

MPNN Message passing neural network

SNN Simplicial neural network

SAE Simplicial autoencoder

SVAE Simplicial variational autoencoder

VAE Variational autoencoder

VGAE Variational graph autoencoder
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