Variational Autoencoders for Simplicial
Complexes

Modelling Higher Order Relations

Ariella Smofsky

School of Computer Science
McGill University

Montreal, Quebec, Canada

July 2021

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

©Ariella Smofsky, 2021

Abstract

A graph is a combinatorial object that captures a binary relation as a set of edges between
pairs of vertices. The generalization of a graph is a hypergraph, consisting of hyperedges
between any subset of vertices. A simplicial complex is a hypergraph with additional struc-
ture and constraints in which the family of edges is downward closed. In this thesis, we
design and implement an end-to-end trainable variational autoencoder for simplicial com-
plexes. This is achieved through the construction of a new representation, encoder, and
decoder for simplicial complexes. Our work bridges software libraries for topological data
analysis and graph representation learning. We train and evaluate our variational autoen-
coder for simplicial complexes on the task of relation prediction for higher order relations,
the higher order counterpart of link prediction. Finally, we discuss future work at the inter-

section of topological data analysis and graph representation learning.

Abrégé

Un graphe est un objet combinatoire qui capture une relation binaire par un ensemble
d’arétes entre des paires de sommets. La généralisation d’un graphe est un hypergraphe,
constitué d’hyperbords entre tout sous-ensemble de sommets. Un complexe simplicial est
un hypergraphe avec une structure et des contraintes supplémentaires dans lequel la famille
d’arétes est fermée vers le bas. Dans cette these, nous concevons et implémentons un auto-
codeur variationnel entrainable de bout en bout pour les complexes simpliciaux. Ceci est
réalisé par la construction d’une nouvelle représentation, d’un encodeur et d’un décodeur
pour les complexes simpliciaux. Notre travail établit un lien entre les bibliotheques logi-
cielles pour I’analyse topologiques des données et 1I’apprentissage de représentations de
graphes. Nous formons et évaluons notre auto-codeur variationnel pour les complexes sim-
pliciaux sur la tiche de prédiction de relation pour les relations d’ordre supérieur, la con-
trepartie d’ordre supérieur de la prédiction de lien. Enfin, nous discutons des travaux futurs
a I'intersection de 1’analyse topologiques des données et de I’apprentissage de représenta-

tions de graphes.

il

Contributions

This thesis is the product of joint work between my supervisor Prakash Panangaden and

myself. Our contributions are:

1. Design and implementation of a new simplicial complex representation, bridging the
gap between the topological data analysis library Gudhi [20] and the graph represen-

tation learning library PyTorch Geometric [7].

2. Creation of 3 synthetic abstract simplicial complex datasets, including the implemen-

tation of code to prepare datasets for training and testing.
3. Design and implementation of two new simplicial neural message passing encoders.
4. Design and implementation of two new decoders for triangle prediction.

5. Definition and implementation of loss functions based on our new simplicial en-

coders and decoders.

11

Acknowledgements

I would like to thank everyone who has helped encourage me during my graduate studies.
To my supervisor Prakash Panangaden, thank you for your dedication and guidance. I will
be forever grateful of your nurturing my sense of adventure in research. To Will Hamil-
ton, thank you for being an exceptional teacher and researcher in all things pertaining to
graph representation learning. To my loved ones, thank you for the endless giggles and for

reminding me of who I am outside of my work.

Y

1 Introduction

2 Background

2.1 Simplicial Complexes
2.1.1 Geometric Simplicial Complex
2.1.2 Abstract Simplicial Complex

2.2 Neural Networks for Graphs
2.2.1 Feedforward Neural Networks
2.2.2 Graph Representation.
2.2.3 Graph Neural Network
2.2.4 Graph Convolutional Network

2.3 Variational Graph Autoencoders

2.3.1 Encoder-decoder Latent Variable Model

2.3.2 Link Prediction
233 Encoder
234 Decoder.
235 Learning,
2.4 Topological Data Analysis
2.4.1 Cech Complex
2.4.2 Vietoris-Rips Complex

3 Variational Autoencoders for Simplicial Complexes

3.1 Simplicial Complex Representation
3.1.1 Simplex Trees
3.1.2 Tensor Representation

Contents

3.2 Relation Prediction 37

33 Encoder e e e e 37
3.3.1 Message Passing for Simplicial Complexes 38

3.3.2 Probabilistic Autoencoder 40

3.3.3 Non-probabilistic Autoencoder 41

34 Decoder e e e e e 41

35 Learning e e e e e e e 44

4 Experiments 46
4.1 Datasets e e e e e 46
4.2 Triangle Prediction for Simplicial Complexes 47

5 Conclusion and Future Work 51
Bibliography 53
Acronyms 58

Vi

2.1
2.2

2.3

3.1
3.2

List of Figures

Abstract simplicial complex example Lo 7
Graph representation 11
Vietoris-Rips and Cech complexes 30
Simplextree e e e 34
Tensor representation of an abstract simplicial complex 36

vii

List of Tables

4.1 Abstract simplicial complex datasets 47

4.2 Triangle prediction experiments o 48

viii

Introduction

Link prediction is a popular task within machine learning and is used in a multitude of
applications such as drug reactivity [31] and knowledge base completion [22]. Given two
entities, the task of link prediction is the inference of whether an edge exists. In this thesis,
we define relation prediction as the generalization of link prediction to higher order rela-
tions, which are relations between more than two entities. Applications of relation predic-
tion include co-authorship citation networks, online thread participation and drug networks
[3]. In particular, this thesis focuses on the task of predicting whether a triangle exists given

a triplet of corresponding edges.

This work presents a novel simplicial autoencoder and pipeline; an initial attempt at
bridging the gap between topological data analysis and graph representation learning. First,
we define a new abstract simplicial complex representation based on the simplex tree [4]
and the coordinate list representation of the machine learning library PyTorch Geometric
[7]. Next, we present our novel simplicial neural message passing encoders. These encoders

are inspired by the highly popular variational graph autoencoder [14]. In order to adapt

Introduction

the simplicial model’s reconstructed output to the relation prediction setting, in particular
to the task of triangle prediction, we present two novel decoders. The first is based on
multi-relational graph representation learning, the second is based on the Cech complex.
Finally, we demonstrate our simplicial autoencoder effectively performs triangle prediction

on synthetic abstract simplicial complex datasets.

Background

In this chapter we provide the reader with the necessary mathematics and machine learn-
ing background to understand our construction of variational autoencoders for simplicial
complexes. To start we introduce the simplicial complex as a structurally constrained hy-
pergraph, the generalization of graphs to higher-order relations. These structural constraints
are imposed and arise from geometrical considerations. We then give a brief introduction to
graph neural networks and graph convolutional networks. We proceed with Kipf et al.’s [14]
latent variable machine learning model, variational graph autoencoders. Finally, we review
two important concepts in topological data analysis: Vietoris-Rips and Cech complexes, as

mechanisms to construct simplicial complexes from points in a metric space.

2.1 Simplicial Complexes

Simplicial complexes generalize graphs from binary relations to higher-order relations. In

their simplest form, graphs are pairwise relationships between entities, often referred to as

2.1 Simplicial Complexes

nodes or vertices. In this thesis, we will use the terms nodes and vertices interchangeably.

Formally, graphs can be defined as follows.
Definition 2.1.1 (Graph). A directed graph G is a tuple (V, E) consisting of

o A set of vertices V,

o A set I of ordered pairs of elements of V' called edges; EE <V x V.
An undirected graph is a graph such that E is a set of 2-element subsets of vertices V.

As can be seen from the definition, the edges of a graph represent a binary relation
between the vertices. We now build toward the definition of a simplicial complex. The

building block of a simplicial complex is a simplex, which can have multiple forms.

2.1.1 Geometric Simplicial Complex

Let us start with a preliminary geometry definition.

Definition 2.1.2 (Convex hull). The convex hull of a subset of k points V' = {vy, ..., v} <

R™ is the set of all convex combinations,

a1V + QoUy + ... + oy, such that

k
Vi€ [k].a; = 0and Zai =1,

i=1

of points in set V.

Note the convex hull is the smallest convex set containing all the points in set V.

2.1 Simplicial Complexes

Definition 2.1.3 (Geometric k-simplex in R"). A geometric k-simplex is the convex hull
of k + 1 vertices {vg, vy, ..., v} S R™ such that {vy — vg, Ve — Vg, ..., V), — Vo} are linearly

independent.

A geometric 1-simplex in R" can be viewed as a graph edge incident to vertices vy and
vy, embedded in R™. Naturally graph edges must be embedded in a vector space of at least
dimension 1. More generally, a geometric k-simplex embedded in R™ must have n greater
or equal to k. For this reason, a geometric k-simplex is sometimes called a geometric k-

dimensional simplex. Similar to unit vectors, there is a standard (unit) geometric k-simplex.

Definition 2.1.4 (Standard geometric k-simplex). The convex hull of vertices
{ v e RFHI ‘ Zfill v, =1,v,=>0 } is the standard geometric k-simplex A¥, where v; is the

i-th component of vector v and 1 is a vector in RF*1,

A crucial feature of simplices is their hierarchical definition. The concept of faces al-

lows us to formalize this hierarchy.

Definition 2.1.5 (Face and coface of a geometric k-simplex in R™). Let L = { vg, vy, ..., vy }
be a geometric k-simplex. A d-face of simplex L is the convex hull of a non-empty subset
D < Lofd+ 1vertices. A f-coface of simplex L is the convex hull of a superset ' 2 L of

f + 1vertices.

Note that the face and the coface of a geometric simplex, are themselves geometric

simplices. We are now ready to define a geometric simplicial complex.

Definition 2.1.6 (Geometric simplicial complex K in R™). A geometric simplicial complex

K is a set of geometric simplices, of possibly various dimensions, in R" such that

2.1 Simplicial Complexes

e Every face of each geometric simplex in K is in turn a geometric simplex of K,

o The intersection of any two geometric simplices of K is a face of each simplex.

The dimension of geometric simplicial complex K is equal to the largest dimension of its

constituent geometric simplices.

The first condition ensures the closure of simplices under subsets. The second condition

constrains how simplices can be connected to form a valid geometric simplicial complex.

2.1.2 Abstract Simplicial Complex

An abstract simplicial complex is the purely combinatorial counterpart to a geometric sim-
plicial complex. Abstract simplicial complexes are composed of simplices, which are sub-

sets of vertices rather than geometric convex hulls of these subsets.

Definition 2.1.7 (Abstract simplicial complex K). Let V = {wvg,v1,...,vy } be a set of
vertices. Then abstract simplicial complex K consists of subsets of these vertices such that

for each k = 0:

o Ky is a set of k-simplices, subsets of size k + 1 of vertices V,

e Every (j + 1)-element subset of Ky, is an element of K; , where j < k.

Here, each K, is an abstract simplicial complex consisting of a set of k-simplices,
where each simplex is closed under subsets. Similar to definition 2.1.6, the dimension of
abstract simplicial complex K is equal to that of its simplex with the largest dimension.

Let us illustrate with an example in Figure 2.1.

2.1 Simplicial Complexes

oe
o
o

Figure 2.1: An example of a 2-dimensional simplicial complex K where (a) is the set of
vertices Ky, (b) is the set of vertices and edges Ky U K1, and (c) is the set of vertices, edges,
and triangles K = Ky u K U K.

Definition 2.1.8 (Face and coface of d-simplex o). Let K = Kyu Ky U ... U K be a
k-dimensional abstract simplicial complex and o € K, be a d-simplex of K. A f-face of

simplex o is a f-simplex belonging to K whose vertices form a subset of 0. A j-coface of

simplex o is a j-simplex belonging to K whose vertices form a superset of o.

Note that an abstract simplicial complex of dimension 1 is an undirected graph. Abstract
simplicial complexes are ideal for representing binary, ternary, and generally any higher-
order undirected relation between entities. The property of closure under subsets ensures a
higher-dimensional simplex can only belong to the abstract simplicial complex if all of its
lower-dimensional simplices are included. In other words, higher-order relations can only
be present if they are built upon the necessary lower-order relations. It is in this manner
that tetrahedra are composed of triangles which are composed of edges formed by vertices.

Thus, the notion of hierarchical relations is inherent to abstract simplicial complexes.

2.2 Neural Networks for Graphs

2.2 Neural Networks for Graphs

A feedforward neural network, also called a multilayer perceptron (MLP), is a composi-
tional model originally proposed by Greenblatt [25] to learn a mathematical function ca-
pable of mapping input values to a target output value. In the 2010s, Bengio, LeCun et al.
[2][19] trained neural networks with deep architectures to successfully perform tasks such
as object detection and speech recognition. A currently active area of research is focused
on leveraging the success of neural networks in continuous domains, to discrete domains;
in particular, to model relationships between entities. In this section we introduce an im-

portant approach to deep learning for relational data: neural networks for graphs.

2.2.1 Feedforward Neural Networks

In the simplest case, feedforward neural networks are used for the task of supervised classi-
fication. The aim of supervised classification is to learn a function fp : R™ — [k], where k
denotes the number of classes the function must learn to map a given input to. The training
dataset for the classification task is a set of training examples of the form (z,y) € R" x [k]

where « is the input representation vector and y is the target class.

The key innovation of feedforward neural networks in the deep learning setting is the
stacking of layers to automate the extraction of features from input data. These layers
{1,...,N } are a sequence of linear functions { fi, fo, ..., fv } each followed by a non-

linear activation o, composed together such that the function learned by the neural network

2.2 Neural Networks for Graphs

is as follows:

fo(x) = (fnooo fy_1000...000 f)(x). 2.1

The non-linear activation ¢ is commonly chosen to be the rectilinear unit function
ReLU(h) = max (0, h). Note the function f is parameterized by the set of parameters

6. These parameters are the learnable weights W, at each layer i:

fi(h) = W,"h + b;, (2.2)

where b; is the bias term. Training a neural network refers to learning the parameters 6 =
{ Wi, Wy, ..., Wy } by minimizing a differentiable loss function £ with respect to 8. The
loss function L is the objective function which is optimized using backpropogation [28] in
conjunction with stochastic gradient descent. The benefits of the compositionality of neural
networks are twofold: first, complex features, represented by deep layers, can be learned
from simpler features and the corresponding shallow layers; and secondly, the architecture

is amenable to automatic differentiation.

2.2.2 Graph Representation

As seen in section 2.2.1, feed forward neural networks take as input £ € R"™ where n is
the number of features in the input representation. This setup works well for tasks with a
natural vector representation of the input data. For graph representation learning tasks, two

components must be captured: the structure of the graph and the features of the graph.

The structure of a graph refers to its set of edges E, which represent the binary relations

2.2 Neural Networks for Graphs

between vertices V. The structure of a graph with n nodes is commonly represented as

follows.

Definition 2.2.1 (Adjacency matrix A € RVl x RIVl), An adjacency matrix of graph

G = (V, E) is a square matrix A € RIV! x RV such that:

o Ali,j]=1if(i,j) € E,

o Ali,j]=0if(i,j) ¢ E.
A weighted adjacency matrix is a variant where the entries of matrix A are real-valued.

Here, A[i, j] is notation for the matrix entry A;; and the adjacency matrix of an undi-
rected graph is symmetric. Note the ordering of vertices along the rows and columns of
adjacency matrix A is crucial as it alters the matrix. The problem of finding whether two
adjacency matrices represent equivalent graphs is known as the graph isomorphism prob-
lem and is NP-intermediate. Thus, a vertex order is often assumed. An alternate graph

structure representation, convenient for sparse graphs with few edges, is:

Definition 2.2.2 (Coordinate list (COO) of graph G). The coordinate list (COO) of graph
G = (V, E) is the enumeration of the set { (i,7) | (i,j) € E }.

The features of a graph refer to additional information, aside from connectivity struc-
ture, known about a graph. A common type of feature is node-level features, represented
by real-valued matrix X € RIVIXD where D is the number of features of each node. Note
that entry X [i] € RP is the feature vector of node i. For this reason, the node ordering
across node features X € RIVI*? and adjacency matrix A € R!V*IVI must be consistent.
As we will see in section 2.2.3, graph neural networks require node features. For tasks with

no apparent node features, a one-hot indicator feature is used to identify each node.

10

2.2 Neural Networks for Graphs

@ 3 ®fo11000 0 0]

6 10111000

11011000

2 4 /\ 01101000

' 01110000

y 5 7 000000O0T1O0

0000010 1

0 [0 00000 1 0
(© ojo|1|1|1|2|2]|8 6(1|2|2|3|4|3|4|4|6]|7

Figure 2.2: (a) is a graph G = (V, E) with |V| = 8 and |E| = 10. The corresponding rep-
resentations of graph G are: (b) the adjacency matrix A € RIV!*IVI and (c) the coordinate
list E € R2¥2151,

Definition 2.2.3 (Node-level one-hot features X € RIVI*XIVI), For graph G = (V, E),

node-level one-hot features are a square matrix X € RIVI*IVI such that:

o X|[i,i| = 1foreverynodeicV,

e X|i,j| =0 foreverynodei,jeV, i+ j.

The level of granularity of features can be adjusted to edges, for which there exists

analogous edge-level one-hot features.

2.2.3 Graph Neural Network

Graph neural networks (GNNs) are a specific type of neural network designed for learning
functions which take graphs as input. As seen in the discussion about the representation

of graphs 2.2.2, graph-structured data is composed of two components: structure and fea-

11

2.2 Neural Networks for Graphs

tures. Graph neural networks essentially combine these two components with a mechanism
referred to as message passing. In its simplest form, message passing is the process of up-
dating node embeddings according to the local structure of each node. The local structure

of a node is formally defined as:

Definition 2.2.4 (Neighbourhood of node u, N (u)). Given the graph G = (V| E), the
neighbourhood of node u € V, denoted N (u), is the set of nodes { v | (u,v) € E }.

Let us consider the graph G = (V, E), represented by adjacency matrix A e RIV*IVI,

and the node features X € RIVI*P Message passing for node u € V at iteration k + 1 is as

follows:

h{+1) — UPDATE (h(Y), AGGREGATE ({ h(*) v e N'(u) })) (2:3)

— UPDATE (h,f), mf\];)(u)> , (2.4)

where hl¥) € RP™ is the node embedding of node v and mf\l;)(u) e RP" is the message

vector aggregated from the node embeddings of neighborhood N (u). Here, the functions
AGGREGATE and UPDATE are differentiable and each node embedding is initialized to
the corresponding input node features R = x [v] € RP “ where D© = D. Note the first
iteration of message passing can be understood as each node u € V' obtaining information
from its one-hop neighbourhood. After k iterations, each node u € V' obtains information
from its k-hop neighbourhood, which is the set of nodes that can be reached within k steps

of node w.

The foundational GNN model designed by Scarselli et al.[26] selected the following

12

2.2 Neural Networks for Graphs

AGGREGATE and UPDATE functions:

m®) = AGGREGATE ({ h®) Vv e N(u) }) = h*) (2.52)
N (u) v v
veN (u)
R{*D — UPDATE (R, m\\),)) = o (WHRS + Wihm{,). (2.5b)

Note the use of a linear function followed by a non-linear activation is reminiscent of the

multilayer perceptron in section 2.2.1.

The message passing framework can be generalized to include edge features Y e
RIZI*7 where .J is the number of features of each edge. Message passing for edge (u, v) €

FE and node v € V at iteration k£ + 1 is:

h(:) = UPDATE, (h{\), .n(", n(") (2.6)
m{s.) = AGGREGATE ({ D o e N (u) }) 2.7)
h(:+1) — UPDATE, (hgﬁk m 1))) : (2.8)
where each edge embedding is initialized to hgg)w) = Y|[(u,v)] € R’. This framework

is named the message passing neural network (MPNN), and was designed by Gilmer et
al. [11] to unify existing forms of message passing. At each iteration the MPNN updates
each edge embedding with its incident node embeddings, aggregates incident edge embed-
dings to generate a message vector per node, and finally updates each node embedding.
The MPNN effectively incorporates both node and edge features into the message passing

framework to generate embeddings for the various components of a graph.

The MPNN also generates a global embedding for the entire graph, however this thesis

13

2.2 Neural Networks for Graphs

does not utilize graph-level embeddings. For more details on variants of the GNN, Hamil-

ton’s "Graph Representation Learning" [12] is an excellent reference.

2.2.4 Graph Convolutional Network

Graph convolutional networks (GCNs) are a specific type of graph neural network (GNN)
designed to be the graph-structured equivalent to image-based convolutional neural net-
works (CNNs). Authored by Kipf et al. [15], GCNs build upon graph convolutions and
message passing GNNs to construct a spectral graph theory motivated model. This section
provides a brief discussion of graph convolutions and their incorporation into the graph

neural network, to form the graph convolutional network.

Definition 2.2.5 (Continuous convolution f x h). Let f and h be two real-valued functions

on R%. Then the continuous convolution of functions f, h is defined as

(f*h)(x) = | fly)h(z—y)dy.

Rd

The connection between convolutions and Fourier transforms from the field of signal

processing is particularly useful:

(f *h)(x) = F ' (F(f (=) © F(h(=))) . (2.9)

where F is a Fourier transform, F ! is the inverse Fourier transform, and ® is the element-

wise (Hadamard) product.

Let us consider a graph G = (V, E) represented by adjacency matrix A € RIVI*IVI and

node features X € RIVI*”, We now introduce some foundational spectral theory defini-

14

2.2 Neural Networks for Graphs

tions.

Definition 2.2.6 (Eigenvector v, eigenvalue \). Given a linear map f : R — R", a non-
zero vector v € R is called an eigenvector if there exists A € R such that f(v) = Av. Such

a \ is called an eigenvalue.

Definition 2.2.7 (Graph Laplacian operator L). The graph Laplacian operator L € RIVI*V!
is defined as:

6. L = D — A (unnormalized Laplacian)

7. L=I-D3AD 2 (normalized Laplacian),

where D € RVIXIVl is the diagonal degree matrix such that D[i,i] = > Ali, gl is the

degree of node i and I € RIVI*IVl is the identity matrix.

The graph Laplacian L is an essential operator in spectral graph analysis, whose eigen-

decomposition is
L=UAU', (2.10)

where U = [uy, ..., uy(] € RIV*IV is the matrix of eigenvectors of L, and A € RIVI*IVI
is the diagonal matrix of the corresponding eigenvalues A[i,i| = \;. The graph Fourier
transform of node-level signal € RVl is defined as U« and its inverse is U (U).

Now we are ready to re-write equation 2.9 in terms of the graph Fourier transform:

xxgy=UU'z0U"y). (2.11)

15

2.2 Neural Networks for Graphs

The main design concern when constructing a spectral graph convolution is the choice of
the filter U Ty. The spectral filter can be defined as py(A), such that the spectral graph

convolution becomes

zxgy = (Upn(A)U)z (2.12)

= (pn(L))z, (2.13)

where py(A) = Zf\:ol 0;A" is a polynomial of eigenvalues of the graph Laplacian of
degree N —1 and @ € R" is a vector of polynomial coefficients. The calculation of equation
2.12 is costly, with a time complexity of O(|V]?). To reduce the computational overhead,

Defferrard et al. [6] use the following approximation:
N—1 _
pv(A) =) 6T(A), (2.14)
i=0

where TZ([\) e RIVI*IVI is the recursively defined Chebyshev polynomial for normalized
eigenvalues A = 2-A — I € RIV*IVI and 6 € R" is a vector of Chebyshev coefficients.

Thus the spectral graph convolution is defined as

N-1
TG Y = (U (Z 01-1}(]\)) UT) x (2.15)
=0
N-1 N
:<2@n@0% (2.16)
=0

where T;(L) € RVI*IVl is the Chebyshev polynomial for the normalized graph Laplacian

L= /\,i,xL — I e RVIXIVI This spectral graph convolution reduces the time complexity to
O(N|E|), which is an improvement in the case of sparse graphs.

16

2.2 Neural Networks for Graphs

The graph convolutional network (GCN) [15] is a first-order spectral graph convolution
within the GNN message passing framework. The GCN has the following AGGREGATE

and UPDATE functions to calculate the node embedding for node u € V' at iteration £ + 1:

k) _ (k) _ 1 (k)
m ;. = AGGREGATE ({ h{" Vv e N(u) }) = hYY (2.17)
N 2 VNN
k k k k
R{*) = UPDATE (b, m{{],) = o (WHRE + Wimil),). (2.18)

Note the term 1/4/|N (u)||N (v)| is a degree normalization constant derived from the nor-
malized Laplacian in definition 2.2.7. Re-written in matrix notation, the GCN message

passing function becomes:
HE — o (HYWS + DS AD S HOWS,), (2.19)

where H® e RIVI*P® i the matrix of all node embeddings at iteration k£ and D :AD:
is the normalized adjacency matrix. The GCN message passing function can be viewed as

the non-linear activation of the spectral graph convolution from equation 2.15, in the case

where A\pax = 2and N = 2:

xxgy =0px+0,(L—1Ix (2.20)

— 0,z +6,D :AD 2. (2.21)

The GCN was originally designed for the task of semi-supervised node classification,
where a subset of nodes U < V' is masked and the goal is to learn node embeddings to

predict the label of each of the masked nodes with one of { 1, ..., C' }. To reduce overfitting,

17

2.3 Variational Graph Autoencoders

a single parameter variant of the GCN message passing function in equation 2.19 is:
HMD — 4 <<I + D-%AD-%) H(’“)W(’“)> , (2.22)

where W = Wy = Wieien. The final iteration /' of message passing yields node embed-
dings Z € RIVI*F As we will see in section 2.3, the learned node embeddings Z can be
used for a multitude of tasks including link prediction, where the task is to predict whether

an edge exists between two given nodes.

2.3 Variational Graph Autoencoders

Variational graph autoencoders (VGAEs) are the extension of variational autoencoders
(VAEs) to the graph domain. This thesis is built upon VGAEs, which we will see provide
convenient node-level embeddings for the task of link prediction. This section begins with
a brief overview of generic latent variable models and in particular the VAE as conceived
by Kingma and Welling [13]. We proceed by defining the task of link prediction. Finally,
we introduce the components of a variational graph autoencoder (VGAE): the graph con-
volutional network (GCN) encoder, the dot product decoder, and the optimization of the

VGAE objective function for end-to-end differentiable learning.

2.3.1 Encoder-decoder Latent Variable Model

The motivation for latent variable models is the assumption that there exists both observ-
able variables € R” and latent (hidden) variables z € R which are needed to model a

data distribution. The goal is to formulate a probabilistic model of the data distribution as

18

2.3 Variational Graph Autoencoders

a joint distribution over observable and latent variables:

po(x) = J po(x, z)dz (2.23)

= J po(x|2)pe(2)dz, (2.24)

such that the parameters @ are learned to maximize pg(x) for all observable data x in
dataset D. Equation 2.23 is called the marginal likelihood or the model evidence. The
distribution pg(x|z) is referred to as the model decoder, which is often modelled with the

Gaussian distribution:

po(x|z) = N(x; p, 0”) (2.25)

= N(z; fo(2),0°I), (2.26)

where fg(z) is a MLP that outputs mean pu € R” . However, the model evidence pg(x)
in equation 2.23 becomes intractable in this case, and thus requires approximate inference
techniques to compute. In their construction of the variational autoencoder, Kingma and
Welling [13] use variational inference to approximate the model encoder, also called the

model posterior:

po(zl) = PoLZ:2) 2.27)

po(T)

with a variational term ¢4 (z|x), which is then used to approximate the otherwise intractable

model evidence pg(x). The model evidence is maximized through the maximization of its

19

2.3 Variational Graph Autoencoders

lower bound, referred to as the evidence lower bound (ELBO), which we now derive:

IOgPB(CB) = Eq¢(z|a:) (Inge(w))

p@(wa z
= Eqgy(2le) (log (F

)

(z]x)
S)
e (o (2 (o (122

qs(z|x
where the ELBO is
_ 3 qe(z|x)
Lop(x) = logpe(x) — Egyzpa) | log po(zla) (2.29)
— log po(@) — KL(gg(=Iz) || po(z|)) (2.30)
< log pe (), (2.31)

and KL(p || ¢) measures the non-negative Kullback-Leibler divergence [17] between the
distributions p and ¢. Here we see maximizing the ELBO Ly 4(x) over the parameters

0, maximizes the model evidence pg(x). Now, let us re-write the ELBO in the form

20

2.3 Variational Graph Autoencoders

commonly used to define the VAE objective:

Lo.p() = Egy (2| (log (pg(:c, z))) (2.32)

qp(z|2)
= By, (2lz) (log(po(x[2)pe(2)) — log(gp(2]T))) (2.33)
= Egy(zla) (10g po(w]2)) + Eqy (1) (log pe(2) — log gy (z|x)) (2.34)
= Eqgyz12) (log po(x[2)) + Egy(2a) (log (%)) (2.35)
= Eqy (212 (log po(x[2)) — KL (g4(2|) || po(2)) - (2.36)

The first term of equation 2.36 is referred to as the reconstruction term, which measures
how well input « is recovered from its encoded latent z. The second term of equation
2.36 regularizes the encoder ¢,(z|x) with a chosen prior pg(z), to prevent the encoder
from overfitting the training data. A common choice for the prior is the standard Gaussian

N (z;0,I), however other distributions can be used to regularize the encoder accordingly.

The motivation for encoder-decoder latent variable models is the assumption that there
exists a low-dimensional representation of the data we wish to model. The encoder is
trained to map high-dimensional input data to a low-dimensional latent space, and the
decoder is trained to learn the inverse of this mapping. In short, the goal of an encoder-
decoder latent variable model is to learn “meaningful” latent embeddings. The rest of this
section explores encoding and decoding graphs at the node level, within the variational

graph autoencoder (VGAE).

21

2.3 Variational Graph Autoencoders

2.3.2 Link Prediction

Link prediction is a popular task within machine learning and is used in a multitude of
applications such as drug reactivity [31] and knowledge base completion [22]. Given a
graph G = (V, E) and its adjacency matrix A € RIVI*IVI and node features X e RIVI*P,
the task of link prediction is the inference of whether an edge exists between a given pair
of nodes. A subset of edges Ey.in © F is used to train the machine learning model, which
is then evaluated on the test set Fiegy = (E — Eyin) U E’, where (E — Ein) is the set of

edges existing in the original graph and F’ is the set of non-existent edges.

Link prediction is considered a semi-supervised task because the model is given access
to a subset of edges during training, rather than to the full graph as in the supervised setting.
As previously mentioned in our discussion of simplicial complexes in section 2, the set of
edges E represents a binary relation. Thus, the task of link prediction can be viewed as a

specific case of relation prediction, the general task of inferring relations of a given order.

2.3.3 Encoder

Let us consider graph G = (V| E), with its structure represented by adjacency matrix
A € RVI*IVI and its node features X € RIVI*P_ In a VGAE, the encoder q, : (RMXD) X
(RVIV) — Dist (RIVI*#) maps the node features X € RIV*P to a distribution over node

latents Z € RIVI*F where X[u] € RP and Z[u] € RY are the node features and the node

22

2.3 Variational Graph Autoencoders

latent for node u, respectively. The encoder is modelled with the Gaussian distribution:

4

s(Z| X, A) qu il| X,A) (2.37)
\w

= HN i, diag(a*[4])) , (2.38)

where the assumption of conditional independence is used in equation 2.37. How does one
learn the parameters ¢ such that the encoder distribution ¢,(Z | X, A) is maximized for
given node features X and adjacency matrix A? Kipf et al. [14] select a 2-layer graph

convolutional network (GCN) as seen in equation 2.22:

p = GCN,(X,A) = AReLU(AXW,)W,,,, (2.39)

log(o) = GCN, (X, A) = AReLU(AX W,)W, (2.40)

where p € RVI*F g e RVI*F A = I + D 2AD" 2 is the normalized adjacency
matrix and D € RIVI*!Vl is the diagonal degree matrix as seen in definition 2.2.7. Here, the
GCN can be replaced with any graph neural network (GNN) which utilizes both the input
graph structure and node features. Finally, once the encoder is trained, node latents Z are
sampled from the learned encoder distribution ¢,(Z | X, A). In order to avoid overfitting,

the encoder is regularized with the prior p(Z) = N (Z;0,I).

There exists a non-probabilistic version of the VGAE, simply referred to as the graph

autoencoder (GAE). In this setting, the encoder is a deterministic function learned by a

23

2.3 Variational Graph Autoencoders

graph neural network:

Z = GCN(X,A) = AReLU(AX W,)W,. (2.41)

In practice, the GAE is more susceptible to overfitting than the VGAE. As detailed in

chapter 3, this thesis builds upon both the GAE and VGAE.

2.3.4 Decoder

Given a set of node-level latents Z € RIVI*¥ generated by the encoder, the VGAE decoder
o : RIVIXF — Dist(RIVI*IVI) maps the node-level latents to a distribution over adjacency
matrices A € R!VI*IVI The goal of the decoder is to reconstruct the structure of the original

input graph, using the encoded node latents. The decoder takes the form:

V| V]
polA | 2) =[] [polAli.d] = 1] 210} Z[5)) (2.42)

V| V]
=[111=1us(z0. 200). (2.43)

where s : RF x R — R is a scoring function for the pair of node latents and [: R — [0, 1]
is a nonlinear activation. Note in equation 2.42 the assumption of independence between
edges allows for the factorization over Bernoulli distributions. In their VGAE formula-
tion, Kipf et al. [14] select a simple dot-product scoring function and sigmoid nonlinear

activation to model the Bernoulli distribution for edge (i, j):

pe(Ali,j] = 1| Z[i], Z[j]) = o(Z[i]" Z[v]). (2.44)

24

2.3 Variational Graph Autoencoders

This scoring function does not have learned parameters, although more expressive param-

eterized decoders that are valid probability distributions can be employed.

For the non-probabilistic GAE, Kipf et al. [14] use the same scoring function and non-
linear activation as in equation 2.44, except the output does not model a Bernoulli distribu-

tion and instead corresponds to a soft adjacency matrix A e RIVIXIVI:
A[i, j] = o(Z[i]" Z[3)), (2.45)
which we will see in section 2.3.5 can be trained using a binary cross-entropy loss.

2.3.5 Learning

Learning, the process of iteratively updating parameters to maximize a given objective
function, is where the benefit of node-level latents becomes apparent. Based on equation

2.36, the objective function for the VGAE is the ELBO for graphs:
Ly =Eyy(z1x.4) (logp(A | Z)) =KL (5(Z | X, A) || p(Z))- (2.46)

Note that distribution p is not parameterized, although the VAE allows for this. The adja-
cency matrix A the decoder reconstructs from the given node latents Z is binary-valued
and thus the reconstruction term E,, 7 x 4) (logp(A | Z)) is calculated using a binary-

cross entropy loss of the following form:

VI Vi

20 Alillogl(s(Z[i), Z[1)) + (1 — Ali, 1) log (1 — U(s(Z[4]. Z[4]))) -

i=1j=1

1
Erecon = _W

(2.47)

25

2.3 Variational Graph Autoencoders

Note the use of node-level latents circumvents the problem of graph isomorphism: input
node u corresponds to its latent representation and reconstruction, thus enabling a straight-
forward calculation of the binary cross-entropy loss. This is a significant challenge for
autoencoders which encode latent representations at the graph level, such as GraphVAE

[27], where no feasible exact matching of the input and output nodes exists.

Now let us consider how to optimize the variational parameters ¢. A problem occurs

when trying to compute the gradient of the ELBO with respect to ¢:

Voly = V¢Eq¢(z|x,,4) (logp(X, A, Z) —loggys(Z | X, A)) (2.48)

Eq,zix.4) (Vg (logp(X, A, Z) —logqe(Z | X, A))). (2.49)

To overcome this problem, a technique known as the reparameterization trick [13] [24] is

used to isolate the stochasticity when sampling from the encoder ¢,(Z | X, A):

Z=e®o+u, (2.50)

where € ~ f(€) = N(0,1I)

and ¢ = { p,o } are the parameters for which we want to calculate the gradient of the

ELBO. The gradient of the ELBO can now be written as:

= Efe) (Vo (logp(X, A, Z) —logqe(Z | X, A))), (2.52)

which can be estimated using Monte Carlo approximation.

26

2.4 Topological Data Analysis

For the GAE, the objective function consists solely of the reconstruction term as there
is no need to regularize the deterministic encoder. The reconstruction term is computed
with the binary cross-entropy loss seen in equation 2.47 and the reparametrization trick is

irrelevant in this non-stochastic setting.

2.4 Topological Data Analysis

Topological data analysis is a field of study largely concerned with the shape of data; in
particular the presence of holes. The simplicial complex is a useful mathematical construct
to generalize networks to higher order relations, in a geometric space. We explore two
methods of construction of simplicial complexes: the Cech complex and the Vietoris-Rips
complex. Each of these constructions maps a set of points embedded in a metric space to

an abstract simplicial complex. Let us begin by defining a metric space.

Definition 2.4.1 (Metric space (X, d)). A metric space is a set X equipped with a function
d: X x X — R>Y satisfying:

1. Forallz e X, d(z,x) =0, (reflexivity)
2. Forallx,y € X, d(x,y) = d(y, x), (symmetry)
3. Forallx,y,z€ X, d(x,y) <d(x,z) + d(z,y), (triangle inequality)

4. Forall z,y € X,d(x,y) = 0 ifand only if x = y.

We call d a metric and the pair (X, d) a metric space.

27

2.4 Topological Data Analysis

2.4.1 Cech Complex

The Cech complex determines connectivity based on circles centered at each embedded

point in the metric space, thus connecting simplicial complexes with metric spaces [10].

Definition 2.4.2 (Cech complex). Let us consider a set of V = { vg, vy, ..., un } vertices
embedded in the metric space (R",d) and radius v > 0. The Cech complex is the con-
struction of the abstract simplicial complex K equal to the union of every k-simplex such

that:

k

ﬂB(Ui,T) # O,

=0

where B(v;,r) is a ball of radius r centered at vertex v; and k ranges over the values

{0,1,....N}.

Note that the edges (1-simplices) of a triangle might be present in Cech complex K
but the 2-simplex triangle is not necessarily an element of K’; the 2-simplex triangle also
requires the triple intersection of balls centered at the corresponding nodes be non-empty.
Figure 2.3 visualizes the construction of a Cech complex from a set of embedded vertices.
The hierarchical construction of Cech complexes across dimensions ensures it satisfies the

properties of an abstract simplicial complex in definition 2.1.7.

2.4.2 Vietoris-Rips Complex

The Vietoris-Rips complex is an alternate and more computationally efficient construction

than the Cech complex [9].

28

2.4 Topological Data Analysis

Definition 2.4.3 (Vietoris-Rips complex). Consider a set of V = { vy, v1,...,vn } vertices
embedded in the metric space (R", d) and radius r > 0. The Vietoris-Rips complex is the
construction of the abstract simplicial complex K equal to the union of every k-simplex o

such that:

d(vi,v;) < r forall v;,v; € o.

The metric d is often chosen to be the Euclidean metric, which has the following famil-

iar definition.

Definition 2.4.4 (Euclidean metric d). Let x,y € R". Then the Euclidean metric is

n

d(@,y) = llz —yll = \ [> (@ —y:)*

i=1

Note that the Vietoris-Rips complex is, like the Cech complex, also a valid abstract
simplicial complex. Unlike the Cech complex, if the edges (1-simplices) of a triangle are
present in the Vietoris-Rips complex K, the 2-simplex triangle is necessarily an element of
K. Tllustrated in Figure 2.3, if each pair of 3 vertices is within r distance, then by definition
the three edges and triangle connecting these vertices must be present. This is an important
consideration when selecting a construction for relation prediction, which is discussed in

section 3.4.

Both of these types of simplicial complexes are often used for persistent homology [5],
the study of the appearance and disappearance of topological holes in data as parameters
are varied. However, this thesis is concerned with the quality of information captured by

node embeddings, measured by how well a reconstructed simplicial complex matches the

29

2.4 Topological Data Analysis

0 0 0 0
° °

1 2 1 2 1 2 L 2

0 0 0

° °

r LT

[SE— ® [] [[} []
¢ 05r 5 1 2 1 2

Figure 2.3: (a) is a set of vertices embedded in R™ and its corresponding simplicial complex
constructions: (b) Vietoris-Rips complex constructed from distance r and the distances
between each pair of embedded vertices, (c) Cech complex constructed from balls of radius
¢, (d) Cech complex constructed from balls of radius 1.5¢. Cech complex (c) has an empty
intersection of the balls centered at the embedded vertices and is thus a 1-dimensional
simplicial complex Cech complex, whereas (d) has a non-empty intersection and is thus a
2-dimensional simplicial complex.

input simplicial complex.

30

Variational Autoencoders for Simplicial

Complexes

This chapter weaves the extensive work done on simplicial complexes with variational
autoencoders to produce a novel variational autoencoder suitable for relation prediction,
the generalization of link prediction to higher order relations. In this thesis we focus on
the extension of the variational graph autoencoder to the variational autoencoder for 2-
dimensional simplicial complexes, however, our formulation can be extended to higher
dimensional simplicial complexes. This chapter begins with our representation of abstract
simplicial complexes, which combines computationally efficient simplex trees [4] with a
tensor representation amenable to machine learning frameworks. We then present the en-
coders, comprised of a message passing neural network for simplicial complexes. Next
we present the decoders, a multi-linear dot product and a differentiable variant of the Cech
complex. Finally, we directly define the optimization objective for the variational simplicial

autoencoder, without relying on additional regularization terms.

31

3.1 Simplicial Complex Representation

The novelty of this thesis lies in the adaptation of the variational graph autoencoder
to the variational autoencoder for simplicial complexes. Our goal is to encode meaningful
node-level embeddings, which in turn are used to infer relations between entities. This the-
sis limits its focus to latent variable models, although other models designed for higher or-
der link prediction on hypergraphs [29] [18] are comparable. Previous work has been done
on autoencoders for simplicial complexes, however these works differ both in approach
and application: simplicial autoencoders [8] constrain the latent embeddings to a simpli-
cial complex via a regularizer and this model is designed for image-domain tasks, rather
than link prediction; topological autoencoders [21] add a topological-preserving regularizer
to the autoencoder objective; autoencoding topology in generative models [16] addresses
manifold learning by viewing the decoder as an atlas, a set of maps, to be learned from the

latent embeddings. We now present our variational autoencoder for simplicial complexes.

3.1 Simplicial Complex Representation

Abstract simplicial complexes are combinatorial objects on which operations can quickly

become infeasible. The design goal of our simplicial complex representation is two-fold:

1. Computationally efficient representation for simplicial complex operations.

2. Representation compatible with a widely used graph representation learning frame-

work.

The first design concern is addressed with simplex trees in section 3.1.1. The second
concern factors into the design of a tensor representation for simplicial complexes in section

3.1.2.

32

3.1 Simplicial Complex Representation

3.1.1 Simplex Trees

Simplex trees are a data structure designed by Boissonnat et al. [4] to efficiently store ab-
stract simplicial complexes of any finite dimension. The crucial property of simplex trees is
the storing of one node per simplex, which enables the efficient storage of incident relations

between simplices.

Definition 3.1.1 (Simplex tree of K). Let K be an abstract simplicial complex with vertices
V = {w,v1,...,vN }, where each k-simplex of K is a sequence o = { v, v, ...,v, },
v, € V,1; €{0,...,N},andly < ly < -+ < ly. The simplex tree of K is a tree T

satisfying the following properties:

1. The nodes of the simplex tree are in bijection with the constituent simplices of K.

The root of the simplex tree is associated with the empty simplex o = (.

2. Each node of the simplex tree, except the root, stores the label of the last vertex in

the k-simplex sequence o to which the node is associated, where last(o) = .

3. The vertices whose labels are encountered along a path from the root of the simplex
tree to a node n, associated with a simplex o, are the vertices of o. The labels are
sorted by increasing order along such a path, and each vertex label appears exactly

once.

Note the ordering of vertices in a sequence is necessary to attain a bijection between

simplex tree nodes and simplices. We illustrate with an example in Figure 3.1.

Let us consider the runtime of some important operations on simplex trees. Let D,,, be

the maximal number of operations needed to perform a search, insertion, or removal of a

33

3.1 Simplicial Complex Representation

Figure 3.1: Above is a 2-dimensional abstract simplicial complex and below is its sim-
plex tree representation. The nodes at depth d in the simplex tree correspond to (d — 1)-
dimensional simplices, except the root. This simplicial complex has 8 O-simplices (ver-
tices), 10 1-simplices (edges), and 3 2-simplices (triangles).

node in simplex tree 7. The term D,, depends on two factors: the maximal degree of a
node, distinct from the root, in simplex tree 7, and the type of tree data structure used to
represent 7. Assume we wish to find a k-simplex o in the simplex tree 7. This operation
takes time O((k + 1)D,,,) as a path of size k + 1 must be found from the root to a node
n, associated with the vertices of ¢. This operation can be extended to insert a k-simplex

o and all of its lower dimensional faces in the simplex tree 7. The k-simplex o has 25!

subfaces and thus recursive insertion requires time O(2*"1D,,,).

The removal of a simplex requires the removal of its cofaces to ensure the simplex
tree still represents a valid simplicial complex. Assume we wish to remove the simplex
o= { Vlgs Vlys -+ 5 UL, } from simplex tree T representing simplicial complex K. Cofaces
of simplex ¢ take the form { *Upy * Uy KK UK }, where * represents an arbitrary subse-

quence. First, all simplices of the form { xv;, » v, * - -- » v, } are searched: if a node N,

34

3.1 Simplicial Complex Representation

is found at depth at least j + 1, then the tree 7 is traversed upward to the root, yielding
cofaces ending in label /;. This procedure takes O(k) time, where k is the dimension of
simplicial complex K. The remaining cofaces of simplex o are represented by the nodes
in the subtree rooted at IV;,. Thus the complexity of finding all the cofaces of simplex o is
O(kﬁjj), where 7;;] is the number of nodes with label /; at depth at least j + 1 in simplex

tree T .

The Gudhi (Geometric Understanding in Higher Dimensions) library [20] provides a
Python interface on top of an efficient C++ backend for state-of-the-art computational
topology algorithms. This thesis employs Gudhi simplex trees as an efficient data struc-

ture to create and update valid simplicial complexes.

3.1.2 Tensor Representation

The simplex tree is an efficient data structure for simplicial complex operations, however,
a tensor representation is required for representation learning compatible with the widely
used software library PyTorch Geometric [7]. An extension of the deep learning framework
PyTorch [23], PyTorch Geometric is designed expressly for efficient representation learn-
ing on irregular graphs. In particular, PyTorch Geometric provides a general interface for
graph neural networks and message passing. Within PyTorch Geometric, graph G = (V, E)
is represented using the coordinate list (COO) as seen in definition 2.2.2. We extend this

representation to abstract simplicial complexes.

Definition 3.1.2 (Tensor representation of abstract simplicial complex K'). The tensor rep-
resentation of k-dimensional abstract simplicial complex K = Koy U --- U Ky, is the enu-

meration of each set K; forie€ {0,... k}.

35

3.1 Simplicial Complex Representation

(b) o|o[1|1|1]2|2|3|5|6[1|2|2|3|4|3|4|4|6|7

Figure 3.2: (a) is an abstract simplicial complex K = Ky u K; u Ky with |Ky| = 8,
|K| = 10, and |K53| = 3. The tensor representation of abstract simplicial complex K is
composed of: (b) the coordinate list E € R?*2/K1l and (c) the coordinate list T € R3* 6%z,

Figure 3.2 is an illustration of the tensor representation of abstract simplicial com-
plex K. Note that K, Ky, Ky are the sets of vertices, edges, and triangles, respectively. In
practice, our abstract simplicial complex representation is a PyTorch Geometric data class
AbstractSimplicialComplex of our tensor representation in definition 3.1.2, with
an additional simplex tree property. This property is used to perform simplicial complex
operations, whereas the tensor representation is used for representation learning. Within
the class AbstractSimplicialComplex, we provide methods to convert to and from
simplex tree and tensor representations. Equipped with an abstract simplicial complex rep-

resentation, we now present the representation learning task relation prediction.

36

3.2 Relation Prediction

3.2 Relation Prediction

In this thesis we define relation prediction as the generalization of link prediction to higher
order relations. Of particular use in domains where we wish to model relations between
three or more entities, applications of relation prediction include co-authorship citation

networks, online thread participation, and drug networks [3].

In the link prediction setting discussed in section 2.3.2, an adjacency matrix represents
the graph’s structure and a node feature matrix captures node-level features. However, in
the relation prediction setting, there are higher order features to be considered. Let i =
Ky u Ky U ... U K}, be a k-dimensional abstract simplicial complex with node features
X € RIFolxDo edge features X; € RIE11*D1 triangle features X, € RI¥21*P2 and higher
order features up to Xy, € RIE&*Dx where Dy, Dy, D5, and Dy, are the number of features
for each node, edge, triangle, and k-simplex respectively. The task of relation prediction
is the inference of whether a j-simplex exists, given a set of (j — 1)-simplices and their
corresponding features. This thesis explores the task of triangle prediction. For this task, a

subset of triangles (K5) c K5 is used to train the machine learning model, which is then

train

evaluated on the test set (K5),., = (K2 — (K3) u K, where (K — (K3),,,,) is the set

test train) train)

of existing triangles in simplicial complex K and K, is the set of non-existent triangles.

3.3 Encoder

The aim of the encoder is to compress hierarchical relations and their corresponding fea-
tures into node-level latent embeddings. These node-level embeddings circumvent the prob-

lem of simplicial complex isomorphism when calculating the reconstruction loss, as will

37

3.3 Encoder

be detailed in section 3.5. We extend the message passing framework to abstract simplicial

complexes; the higher order counterpart to graph neural networks.

3.3.1 Message Passing for Simplicial Complexes

Message passing for 2-dimensional abstract simplicial complex K = Ky u K; U K, has

three steps:

1. Update triangle embeddings of the form F .y, Where {u } ,{v },{w } € K,
{u,v}, {v,w},{w,u}e Kyand {u,v,w} e K.

2. Update edge embeddings of the form h, ,;, where { u } ,{ v } € K, and
{u,v}e K.

3. Update node embeddings of the form by, where { u } € K.

Message passing for triangle { u, v, w } € K at iteration k + 1 is as follows:

{u,v,w}

(k+1) (k) (k) (k) (k)
h - UPDATET <h{u,v,w}7h{u,v}7h{v,w}’h’{w,u}> (3.1)

o (WOR® ® (p® ., p® (0
—o (WiPR), .+ Wil (), 4, 4R L)) 62)

u

c RDg(k> h(k) h(k)

{uv} {ow}p

where hgku) Y hgk) } € RDl(k>, Wi and Wy, are each a learn-

w } w,u

able matrix of parameters, and o is a non-linear activation such as ReLU. After the triangle
embeddings are updated, message passing is performed for each edge { u,v } € K. First,

let us build upon the notion of a neighbourhood, introduced in definition 2.2.4.

Definition 3.3.1 (j-Neighbourhood of (j — 1)-simplex s, N;(s)). Given the abstract sim-
plicial complex K = Ky u K U ... U Ky, the j-neighbourhood of (j — 1)-simplex s € K

is the set of j-cofaces of s.

38

3.3 Encoder

Concretely, the 2-neighbourhood of edge { u,v } is:

/\fg({u,v})={{u,v,w}]{u,v}eKl,{u,v,w}eKQ},

whereas the 1-neighbourhood of node { u } is:

N({u}) = {{uwov}|{u}e Ko {uv}eK}.

We are ready to define message passing for each edge { u,v } € K;:

k+1 (k+1)
m{i{,.)) = AGGREGATEy, ({ A0, [{uv.w}e Na({uo}) })

u,v w}
B (k+1)
= 2 By
{u,0,w }eNa({u,w })

(k+1) (k) (k+1)
h{"*!) = UPDATEj <h{u7v},mN2({uyv})>

k: k: k 1
=0 (ngl R,y + Wim N;({)uv}))

Finally, message passing is performed on each node { u } € Kj:

mEtD AGGREGATE ({ hgk;;)} ‘ {u,0}eM({u}) })

N({u})

. (k+1)
= > R
{uw}eMi({u))

(k+1) (k) (k+1)
h{"*! = UPDATEy (h{ i }))

_ (k) (k) (k+1)
—0<W h{ }+WN2mN1({ })>

k)

where hg wy € R Here, each d-simplex embedding is initialized to h

39

(3.3)

3.4)

(3.5)

(3.6)

3.7

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

= Xd[s] €

3.3 Encoder

RPa,

Message passing for abstract simplicial complexes effectively incorporates triangle,
edge, and node features to generate hierarchical embeddings for the various components of
the abstract simplicial complex. Note the aggregate and update functions for each dimen-
sion may be arbitrary differentiable set functions. In our formulation, we have chosen the

same functions as those seen in equations 2.5a and 2.5b.

3.3.2 Probabilistic Autoencoder

Let us consider abstract simplicial complex K = Ky u K; u K, with its structure rep-
resented by tensors E € R2*IKil T e R3*61Kz2l and its features X, € RIFolxPo X e
RIExD - X, e RIF2I¥D2 Tn a simplicial variational autoencoder (SVAE), the encoder
s : (R2><|K1|) % (R3><6|K2\) % (R|K0|><Do) % (Ru{l\xpl) % (R\KQ\xDQ) _ Dist (R|K0\><F)
maps the node features to a distribution over node latents Z € R0 where X.[u] € R*
and Z[u] € R are the node features and the node latent for node u, respectively. The en-

coder 1s modelled with the Gaussian distribution:

| Ko

46 (Z|E, T, X, X1, X;) = qu il| B, T, Xo, X1, X>) (3.13)
\KO\
—HN i], diag(a[4])) . (3.14)

How does one learn the parameters ¢ such that the encoder distribution ¢4 (Z|E, T', X, X1, X>)

i1s maximized for given simplex features and simplicial complex structure? We choose a 2-

40

3.4 Decoder

layer simplicial neural network (message passing) architecture:

uli] = SNN,, (E, T, Xo, X, X») (3.15)
_ D P @)

— ReLU (W, A+ Wim). (3.16)

log(a[i]) = SNN,, (E, T, Xy, X, X,) (3.17)
_) e

— ReLU (W), h{Y), + Wi,m®). (3.18)

The intent of this architecture is to avoid over-smoothing, where node-level features are

homogeneous due to too many iterations of message passing.

3.3.3 Non-probabilistic Autoencoder

We present a non-probabilistic version of the SVAE in section 3.3.2, simply referred to as
the simplicial autoencoder (SAE). In this setting, the encoder is a deterministic function

over the set of nodes i € | K| learned by a simplicial neural network:
Z[i] = ReLU (W}Jﬁh?j} + Wﬁgmﬁ({i})) . (3.19)

Note the non-probabilistic SAE is more susceptible to overfitting than the SVAE, which is

regularized with a KL divergence term. This will be explored further in section 3.5.

3.4 Decoder

Given a set of node-level latents Z € R!50I*F generated by the simplicial encoder, the

SVAE decoder pg : RIVoI*F — Dist(R3*61%21) maps the node-level latents to a distribution

41

3.4 Decoder

over triangles T' € R**61%2l_ The goal of the decoder is to reconstruct the triangles Ko
present in the original input 2-dimensional abstract simplicial complex /. The decoder

takes the form:

po(T|Z)= || pollu,v,w]eT | Z[u], Z[v], Z[w]) (3.20)

{u,v,w }er(K)
= I 162, 2], Z[w), (3:21)
{u,v,w }eT(K)
where s : R x R xR — Ris a scoring function, [: R — [0, 1] is a non-linear activation,

and 7(K) is the set of possible triangles given the 1-skeleton of simplicial complex K.

Let us explore two possibilities for the scoring function s and non-linear activation [,
which define the Bernoulli distribution used to model the existence of triangle { u, v, w }.
Our first simplicial decoder builds upon the multi-relational decoder DistMult [30], which
defines the dot product of two node embeddings Z[u], Z[v] and one relational embedding

< Z[u),r. Z[o] >= 3 (Z[u,i]) (r[i]) (20, i), (3.22)

where <>: R x RF x R — R. Note this multi-linear dot product is not an intrinsic
geometric distance, unlike the usual dot product over two vectors. This formulation allows
us to generalize the VGAE dot product decoder from equation 2.44 to a multi-linear dot

product over three vectors. In particular, we define the simplicial decoder of three node

42

3.4 Decoder

embeddings:

pe ([u,v,w] € T | Z[u], Z[v], Z[w]) (3.23)

— o (< Z[u], Z[v], Z[w] >) (3.24)

=1

o (Z (Z[w.i)) (Z[01]) (Zw, z‘])) , (325)

where o is the sigmoid activation function. Note this decoder is only suitable for symmetric
relations because this 3-vector dot product is commutative. Although this is a limitation for
modeling directed graphs, this decoder is amenable to modeling the undirected relations of

abstract simplicial complexes.

Our second simplicial decoder is designed to be analogous to a Cech complex intro-

duced in definition 2.4.2 and takes the form:

po ([u,v,w] € T | Z[u], Z[v], Z[w]) (3.26)
= (1 — tanh (max (| Z[u] — Z[v][|-r, | Z[v] — Z[w][|-r, || Z[u] — Z[w]||-r,0))).
(3.27)

Let us unpack this decoder. Remember we defined a Cech complex triangle as the non-
empty intersection of three balls of radius r centered at points P = { z,y, z }. An equivalent
definition is a Cech complex triangle exists if and only if the radius of the minimal ball
enclosing points P = { x,y, z } is less than or equal to r. This property is satisfied by P
when max, p ||p — q|| < v/2r [1]. If we take P = { Z[u], Z[v], Z[w] }, then the max
term in equation 3.27 is only positive when the distance between a pair of node embeddings

in set PP exceeds . In this case, the larger the distance between this pair of nodes, the lower

43

3.5 Learning

the probability [u,v,w] € T'. In the case where the max term evaluates to 0, all pairs of
node embeddings are within distance r and the probability of [u,v,w] € T = 1. Here,
tanh is our choice of activation function because it is a smooth mapping of positive real
numbers to [0, 1]. Thus we have constructed a differentiable triangle decoder analogous
to the Cech complex. Note radius r is a hyperparameter to the simplicial autoencoder and

must be chosen accordingly.

In the non-probabilistic simplicial autoencoder setting, the simplicial dot-product de-
coder from equation 3.24 and the simplicial Cech decoder from equation 3.27 can be read-
ily used, except the output does not model a Bernoulli distribution and instead corresponds

to a soft triangle tensor T e R3*I7(K).

A~

T|u,v,w] = DEC(Z[u], Z|v], Z[w]),

which we will see in section 3.5 can be trained using a binary cross-entropy loss.

3.5 Learning

Similar to the learning objective function of the VGAE in section 2.3.5, the objective func-

tion for the SVAE is:

Lo = Eqyz1x0.%:,%:,81) (l0gp(T | Z)) =KL (g5((Z | Xo, X1, X, E,T)) || p(Z)) -
(3.28)

Note that distribution p is not parameterized, although a more expressive decoder may be

used instead. Triangle tensor 7" is in coordinate list form, but for convenience let us use

44

3.5 Learning

the notation T'[u, v, w| = 1 to denote [u,v,w| € T and T'|[u,v,w] = 0 otherwise. The
reconstruction term Ey, 7z x, x, x,,e,r) (logp(T' | Z)) is calculated using a binary-cross

entropy loss of the following form:

Lo =~ Y Tluvulloglls(Z[ul. Z[0]. Z[u]) (:29)
|T(K)‘ {u,vw ter(K)

+ (1 = T[u,v,w])log (1 — I(s(Z[u], Z[v], Z[w]))) . (3.30)

Note the use of node-level latents circumvents the problem of simplicial complex iso-
morphism, where it is prohibitively expensive to determine whether the input abstract sim-
plicial complex K and the output simplicial complex K’ are equivalent in structure but with
different node labelling. Node-level latents ensures input node u corresponds to its latent
embedding and reconstruction, thus enabling a straight-forward calculation of the binary
cross-entropy loss. The reparameterization trick and Monte Carlo approximation, intro-
duced in section 2.3.5, are used to estimate the gradient of the SVAE objective function in

equation 3.28 with respect to the variational parameters ¢.

In the non-variational setting, the SAE objective function consists solely of the re-
construction term as there is not need to regularize the deterministic encoder. The recon-
struction term is computed with the binary cross-entropy loss in equation 3.29 and the

reparametrization trick is irrelevant in this non-stochastic setting.

45

Experiments

The experiments in this chapter evaluate the proposed simplicial variational autoencoder
and its non-probabilistic variant on the task of triangle prediction, on synthetic datasets.
The purpose of these experiments is to demonstrate functional end-to-end latent variable
models that successfully consolidate simplicial complex software with machine learning

software.

4.1 Datasets

We generate three synthetic abstract simplicial complex datasets of varying number of
triangles. Table 4.1 details the synthetic abstract simplicial complex datasets labelled ASC
I, ASCII, and ASC III. The datasets have a varied number of positive triangles and negative
triangles. Let K = K, u K; u K, be the 2-dimensional abstract simplicial complex in
a given dataset. Here, a positive triangle is defined as a triangle { u,v,w } € K, and a

negative triangle is defined as a candidate triangle { u, v, w } such that the necessary edges

46

4.2 Triangle Prediction for Simplicial Complexes

{u, v}, {v,w}, {u,w}e K, but{u,v,w}¢ K.

Each of the datasets contains node-level, edge-level, and triangle-level one-hot input
features. These datasets were generated using the library Gudhi [20], where a given num-
ber of positive triangles are generated by selecting random triplets of nodes and the corre-
sponding lower-dimensional simplices are added to the simplicial complex. The transfor-
mation from a Gudhi simplicial complex into a PyTorch Geometric [7] dataset is our own
implementation. These synthetic datasets are small in terms of their number of nodes and
serve as simple examples on which to measure the effectiveness of encoding and decoding
higher-order structure and features. However, our models are amenable to larger simplicial

complexes.

Dataset Num. Nodes Num. Edges Num. +ve Triangles Num. -ve Triangles

ASCI 52 106 20 10
ASCII 52 126 20 20
ASC III 502 1321 500 640

Table 4.1: Statistics for three synthetic simplicial complex datasets. Each of these datasets
is comprised of a 2-dimensional abstract simplicial complex K = Ky u K; U K5 where
| K| is equal to Num. Nodes, | K| is equal to Num. Edges and | K| is equal to Num. +ve
Triangles.

4.2 Triangle Prediction for Simplicial Complexes

We evaluate the simplicial variational autoencoder (SVAE) and its non-probabilistic variant
(SAE) on the triangle prediction task for the datasets described in section 4.1. The results

are presented in table 4.2 where the scores reported are area under the ROC curve (AUC)

47

4.2 Triangle Prediction for Simplicial Complexes

and average precision (AP). The receiver operating characteristic (ROC) graphically illus-
trates the performance of a binary classifier by plotting sensitivity, the rate of true positives,
versus 1-specificity, the rate of false positives. The AUC score allows for easy comparison
between ROC curves where an AUC of 1.0 is a perfect binary classifier and an AUC of
0.5 is a random binary classifier. Alternately, the AP score captures the trade-off between
precision, the ratio of predicted true positives to total predicted positives, and recall, the

ratio of predicted true positives to total true positives, of a binary classifier. The AP score:

AP = Y'(R, — R,_1) P, (4.1)

is a weighted sum of precision scores at each classifier threshold n, where the weight is the

gain in recall between subsequent classifier thresholds.

Model ASCI1 ASCII ASCIII

Encoder-Decoder AUC AP AUC AP AUC AP
GAE-MultDot 0.51 +£0.01 0.66 +£0.01 0.66+0.06 0.78 +£0.05 0.56+0.01 0.69 + 0.01
VGAE-MultDot 0.41+0.20 0.70£0.10 0.60+0.05 0.72+0.08 0.54+0.02 0.68 +0.01
SAE-MultDot 0.49 +0.03 0.66 + 0.01 0.60+0.02 0.64 +0.06 0.56 +0.00 0.69 + 0.00
SVAE-MultDot 0.69 + 0.01 0.86 +0.01 0.68+0.10 0.79 +0.10 0.54 +0.05 0.63 +0.03
SAE-Cech 0.50 £ 0.00 0.67£0.00 0.50+0.00 0.504+0.00 0.50+ 0.00 0.50+ 0.00
SVAE-Cech 0.50 £ 0.00 0.67+0.00 0.50+0.00 0.50+0.00 0.50+0.00 0.50+ 0.00

Table 4.2: Experimental results for triangle prediction on three synthetic datasets ASC I,
ASC I, and ASC III.

The baselines are VGAE-MultDot and GAE-MultDot; models where the encoder is a
VGAE or GAE [14] and the decoder is our multi-linear dot product decoder from equation
3.24. The baseline models treat the input abstract simplicial complex as a graph and output

triangle predictions. The simplicial models SVAE-MultDot and SAE-MultDot differ from

48

4.2 Triangle Prediction for Simplicial Complexes

the baselines in their choice of encoder; these models utilize simplicial message passing
encoders described in section 3.3. The simplicial models SVAE-Cech and SAE-Cech use

the Cech decoder from equation 3.27.

All models were run with a similar experimental setup. Each model’s encoder is a 2-
layer architecture with a latent space of dimension 8 and a hidden layer of dimension 16.
Each model was trained for 500 epochs, where the graph autoencoders had a learning rate
of 0.01 and the simplicial autoencoders had a learning rate of 0.001. The results reported

in table 4.2 are the mean and standard error for 5 runs on fixed dataset splits.

The largest gain in performance over the baselines is by SVAE-MultDot on the dataset
ASC I. Note that dataset ASC I has 5 times more positive triangles than negative triangles.
SVAE-MultDot is also the best performant model on the dataset ASC II, however, by a
smaller margin. For the dataset ASC III, the best model is SAE-MultDot by an even smaller
margin. On this dataset, SAE-MultDot performs marginally better than a random model,
indicating none of the evaluated models can successfully perform triangle prediction on

this dataset.

All models struggle most on the dataset ASC III, which has the largest proportion of
negative triangles to positive triangles. It is on datasets with few empty triangles that the
simplicial autoencoders perform best. On all abstract simplicial complex datasets, these re-
sults corroborate our hypothesis that encoding higher-dimensional simplices using simpli-
cial message passing improves performance on triangle prediction. We expect larger gains
would be observed on datasets with meaningful node-level, edge-level, and triangle-level

features.

The simplicial autoencoders with a Cech decoder do not perform well for two reasons.

49

4.2 Triangle Prediction for Simplicial Complexes

Firstly, the Cech decoder depends on the radius hyperparameter, which cannot adapt to the
learned embeddings. Secondly, the Cech decoder has many terms which leads to unstable
optimization. The multi-linear dot product performs well, supporting the hypothesis that

restricting a decoder’s complexity forces the encoder to learn meaningful embeddings [12].

50

Conclusion and Future Work

We have shown that our simplicial autoencoder effectively models higher order relations on
the task of triangle prediction, evaluated on synthetic abstract simplicial complex datasets.
Our work drew heavily on graph representation learning algorithms and topological data
analysis formalism to create a novel simplicial representation learning pipeline; simplicial
complex representation using simplex trees; simplicial neural message passing encoders,
including variational and deterministic variants; simplicial decoders based on multi-relational

graph representation learning and the Cech complex; simplicial autoencoder loss functions.

There are several avenues for future work on simplicial autoencoders. A low hanging
fruit is to evaluate the simplicial autoencoders presented in this thesis on datasets with
meaningful input features. Co-authorship citation networks, where the task is to determine
whether a triplet of authors have co-authored a paper, is of particular interest. For this, hy-
pergraph relation prediction models can serve as useful baselines. Another direction is to

remedy the Cech decoder so that the radius is a learnable parameter. Using sophisticated

51

Conclusion and Future Work

hyperparameter sweep techniques to determine the best fixed radius is not enough; the de-
coder radius must change to accommodate the geometry of the learned latent embeddings.
Finally, a broader research direction is to design a new encoder, perhaps a new convolu-
tional network for simplicial complexes, capable of capturing topological properties other

than local structure.

52

(1]

(2]

(3]

(4]

[5]

[6]

Bibliography

ATTALI, D., LIEUTIER, A., AND SALINAS, D. Vietoris-Rips Complexes also Pro-
vide Topologically Correct Reconstructions of Sampled Shapes. Computational Ge-
ometry 46, 4 (May 2012), 448-465. special issue 27th Annual Symposium on Com-
putational Geometry (SoCG 2011).

BENGIO, Y. Learning deep architectures for ai. Foundations 2 (01 2009), 1-55.

BENSON, A. R., ABEBE, R., SCHAUB, M. T., JADBABAIE, A., AND KLEINBERG,

J. Simplicial closure and higher-order link prediction. Proceedings of the National

Academy of Sciences 115, 48 (2018), E11221-E11230.

BOISSONNAT, J.-D., AND MARIA, C. The simplex tree: An efficient data structure
for general simplicial complexes. In Algorithms — ESA 2012 (Berlin, Heidelberg,
2012), L. Epstein and P. Ferragina, Eds., Springer Berlin Heidelberg, pp. 731-742.

CARLSSON, G., ZOMORDIAN, A., COLLINS, A., AND GUIBAS, L. J. Persistence
barcodes for shapes. International Journal of Shape Modeling 11, 02 (2005), 149—
187.

DEFFERRARD, M., BRESSON, X., AND VANDERGHEYNST, P. Convolutional neu-

ral networks on graphs with fast localized spectral filtering. In Advances in Neural

53

BIBLIOGRAPHY

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Information Processing Systems (2016), D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds., vol. 29, Curran Associates, Inc., pp. 3844-3852.

FEY, M., AND LENSSEN, J. E. Fast graph representation learning with pytorch geo-

metric. arXiv preprint arXiv:1903.02428 (2019).
GALLEGO, J. Simplicial autoencoders. Master’s thesis, 2018.

GHRIST, R. Barcodes: the persistent topology of data. Bulletin of the American

Mathematical Society 45, 1 (2008), 61-75.
GHRIST, R. W. Elementary applied topology, vol. 1. Createspace Seattle, 2014.

GILMER, J., SCHOENHOLZ, S. S., RILEY, P. F., VINYALS, O., AND DAHL, G. E.
Neural message passing for quantum chemistry. In Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70 (2017), ICML’17, JMLR.org,
p. 1263-1272.

HAMILTON, W. L. Graph representation learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning 14, 3, 1-159.

KINGMA, D. P., AND WELLING, M. Auto-Encoding Variational Bayes. In 2nd In-
ternational Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,

April 14-16, 2014, Conference Track Proceedings (2014).

KIpPF, T. N., AND WELLING, M. Variational graph auto-encoders. NIPS Workshop

on Bayesian Deep Learning (2016).

54

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

KipF, T. N., AND WELLING, M. Semi-Supervised Classification with Graph Convo-

lutional Networks. In Proceedings of the 5th International Conference on Learning

Representations (2017), ICLR ’17.

KORMAN, E. O. Autoencoding topology. arXiv preprint arXiv:1803.00156 (2018).

KULLBACK, S., AND LEIBLER, R. A. On information and sufficiency. The annals

of mathematical statistics 22, 1 (1951), 79-86.

KUMAR, T., DARWIN, K., PARTHASARATHY, S., AND RAVINDRAN, B. HPRA:

hyperedge prediction using resource allocation. CoRR abs/2006.11070 (2020).

LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. nature 521,7553 (2015),
436-444.

MARIA, C., BOISSONNAT, J.-D., GLISSE, M., AND YVINEC, M. The gudhi li-
brary: Simplicial complexes and persistent homology. In Mathematical Software —
ICMS 2014 (Berlin, Heidelberg, 2014), H. Hong and C. Yap, Eds., Springer Berlin
Heidelberg, pp. 167-174.

MOOR, M., HORN, M., RIECK, B., AND BORGWARDT, K. Topological autoen-
coders. In International Conference on Machine Learning (2020), PMLR, pp. 7045—
7054.

NICKEL, M., MURPHY, K., TRESP, V., AND GABRILOVICH, E. A review of re-
lational machine learning for knowledge graphs. Proceedings of the IEEE 104, 1
(2015), 11-33.

55

BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

[28]

[29]

PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z.,
LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic differentiation

in pytorch. In NIPS-W (2017).

REZENDE, D. J., MOHAMED, S., AND WIERSTRA, D. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning (Bejing, China, 22-24 Jun 2014),
E. P. Xing and T. Jebara, Eds., vol. 32 of Proceedings of Machine Learning Research,
PMLR, pp. 1278-1286.

ROSENBLATT, F. Principles of neurodynamics: Perceptions and the theory of brain
mechanisms.
SCARSELLI, F., GORI, M., Tsol, A. C., HAGENBUCHNER, M., AND MONFAR-

DINI, G. The graph neural network model. IEEE Transactions on Neural Networks

20, 1 (2009), 61-80.

SIMONOVSKY, M., AND KOMODAKIS, N. Graphvae: Towards generation of small

graphs using variational autoencoders. In International Conference on Artificial Neu-

ral Networks (2018), Springer, pp. 412-422.

WERBOS, P. J. Applications of advances in nonlinear sensitivity analysis. In Pro-

ceedings of the 10th IFIP Conference, 31.8 - 4.9, NYC (1981), pp. 762-770.

YADATI, N., NIMISHAKAVI, M., YADAV, P., NITIN, V., LOUIS, A., AND TALUK-
DAR, P. Hypergcn: A new method for training graph convolutional networks on

hypergraphs. In Advances in Neural Information Processing Systems (2019), H. Wal-

56

BIBLIOGRAPHY

[30]

[31]

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.,

vol. 32, Curran Associates, Inc.

YANG, B., YIH, W.-T., HE, X., GAO, J., AND DENG, L. Embedding enti-

ties and relations for learning and inference in knowledge bases. arXiv preprint

arXiv:1412.6575 (2014).

ZITNIK, M., AGRAWAL, M., AND LESKOVEC, J. Modeling polypharmacy side
effects with graph convolutional networks. Bioinformatics 34, 13 (06 2018), 1457—
1466.

57

COO
CNN
GAE
GCN
GNN
MLP
MPNN
SNN
SAE
SVAE
VAE
VGAE

Coordinate list

Convolutional neural network
Graph autoencoder

Graph convolutional network
Graph neural network
Multilayer perceptron

Message passing neural network
Simplicial neural network
Simplicial autoencoder
Simplicial variational autoencoder
Variational autoencoder

Variational graph autoencoder

58

Acronyms

	Introduction
	Background
	Simplicial Complexes
	Geometric Simplicial Complex
	Abstract Simplicial Complex

	Neural Networks for Graphs
	Feedforward Neural Networks
	Graph Representation
	Graph Neural Network
	Graph Convolutional Network

	Variational Graph Autoencoders
	Encoder-decoder Latent Variable Model
	Link Prediction
	Encoder
	Decoder
	Learning

	Topological Data Analysis
	Cech Complex
	Vietoris-Rips Complex

	Variational Autoencoders for Simplicial Complexes
	Simplicial Complex Representation
	Simplex Trees
	Tensor Representation

	Relation Prediction
	Encoder
	Message Passing for Simplicial Complexes
	Probabilistic Autoencoder
	Non-probabilistic Autoencoder

	Decoder
	Learning

	Experiments
	Datasets
	Triangle Prediction for Simplicial Complexes

	Conclusion and Future Work
	Bibliography
	Acronyms

