

i

Contquer: An optimized distributed

cooperative query caching architecture

by

Shamir Sultan Ali

School of Computer Science

McGill University, Montréal

January 2011

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2011 Shamir Sultan Ali

i

 Abstract

The backend database system is often the performance bottleneck in multi-tier

architectures. This is particularly true if there is a cluster of application servers while

there is only a single database backend.

A common approach to scale the database component is query result caching. The

idea is to cache the results of a query submitted to the database in a cache. If the

query is consequently requested again, the result can be retrieved from the cache

instead of the query again being submitted to the database. Query caching can play a

vital role in reducing latency by avoiding access to the database, and improving

throughput by avoiding a database bottleneck.

Existing approaches, however, have two limitations. First, they do not exploit the full

capacity of the caches. Each application server has its own cache and frequently used

objects will likely be cached in all caches, limiting the number of different objects and

queries that can be cached. Furthermore, a query can only be served from the cache if

previously the exact same query was posed.

In this thesis, we introduce Contquer, a distributed cooperative caching algorithm that

uses a distributed caching architecture where each object is only cached at one

application server and each application server has access to local and remote caches.

Thus, the full capacity of all caches can be exploited. Furthermore, we optimize the

query cache by exploiting the cache even if only part of a query can be served from

the cache. For that we analyze the containment of queries within other queries.

Contquer determines when a query can be fully or partially served from the cache, and

ii

automatically generates remainder queries to the database if necessary.

This thesis reports on the design and implementation of Contquer. It also conducts

experiments that show that performance is improved considerably with the proposed

algorithm. We conclude that the use of a distributed caching infrastructure and the

ability to retrieve partial results from the cache improves performance in terms of hit-

rate, throughput and latency.

iii

Résumé

Le système de base de données est souvent un point critique en terme de

performance dans les architectures multi-tiers. Ceci est particulièrement vrai dans le

cas d'un groupe de serveurs d'application alors qu'il y a seulement une seule base de

données.

Une approche commune pour améliorer la performance de base de données est la

mise en cache de résultat de requêtes. L'idée est de mettre en cache les résultats

d'une requête soumise à la base de données. Si cette requête est demandée à

nouveau, le résultat peut être récupéré à partir du cache au lieu de soumettre la

requête à nouveau à la base de données. La mise en cache de requêtes peut jouer un

rôle vital dans la réduction de latence en évitant l'accès à la base de données, et

d'améliorer le débit en évitant la congestion de la base de données.

Les approches existantes ont cependant deux limitations. D'abord, ils n'exploitent pas

la pleine capacité des caches. Chaque serveur d'application a son propre cache et des

objets fréquemment utilisés seront probablement mis en cache dans tous les caches,

ce qui limite le nombre d'objets et de requêtes qui peuvent être mis en cache. En

outre, une requête ne peut être servie à partir du cache que si elle a déjà été servie de

la base données.

Dans cette thèse, nous introduisons Contquer, un algorithme de mise en cache

distribué et coopérative qui utilise une architecture de mise en cache distribuée où

chaque objet est uniquement mis en cache à un seul serveur d'application et que

chaque serveur d'application a accès à des caches locaux et distants. Ainsi, la capacité

iv

totale de tous les caches peut être exploitée. En outre, nous optimisons le cache de

requête en exploitant la mémoire cache, même si une partie seulement d'une requête

peut être servie à partir du cache. Pour cela, nous analysons le confinement de

requêtes dans les autres requêtes. Contquer détermine le moment où une requête

peut être totalement ou partiellement servie à partir du cache, et s'il le faut génère

automatiquement le reste des requêtes à la base de données.

Cette thèse porte sur la conception et la mise en œuvre de Contquer. Il mène

également des expériences qui montrent que la performance est considérablement

améliorée avec l'algorithme proposé. Nous concluons que l'utilisation d'une

infrastructure de mise en cache distribuée et la possibilité de récupérer les résultats

partiels de la mémoire cache améliore la performance en termes de taux de réussite,

de débit et de latence.

v

Acknowledgements

I am thankful to my supervisor, Professor Bettina Kemme, whose encouragement,

guidance and support from the initial to the final level enabled me to develop an

understanding of the problem. Her perpetual energy and enthusiasm in research had

motivated me alot. In addition, she was always accessible and willing to help her

students with their research. As a result, research life became smooth and rewarding

for me.

I would like to thank all the members of the Distribution Information Systems Lab

(DISL) team specially Kamal Zellag and Neeraj Tickoo for providing their support and

help.

Moreover, I would also like to thank my parents, siblings and all my friends for always

encouraging me and believing in me.

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgement v

Table of Contents vi

List of Figures ix

1 Introduction ... 1

1.1 Contribution .. 4

1.2 Thesis Outline ... 4

2 Background and Related Work .. 5

2.1 Introduction .. 5

2.2 Typical Web Application Architecture .. 5

2.3 SQL Queries and Query Parameters ... 7

2.4 Scope and Limitation .. 12

2.5 Flow of a simple Query Cache .. 13

2.6 Full and Partial Containment .. 16

2.6.1 Full Containment .. 17

2.6.1.1 Exact Query Matching .. 17

2.6.1.2 Multiple Subset Queries ... 18

2.6.1.3 Superset Query ... 18

vii

2.6.2 Partial Containment ... 20

2.7 Caching in JBoss Application Server .. 22

2.7.1 Memory Costs for Query Caching .. 26

2.8 Related Work .. 27

2.8.1 Query Caching in Database Systems ... 29

3 Contquer: An optimized Query Caching Framework ... 30

3.1 Introduction .. 30

3.2 Contquer Algorithm .. 31

3.3 Query Transformation and Identifying Initial Candidate Set 39

3.4 Range Checker .. 42

3.5 Remainder Query Generation... 42

3.5.1 Approach # 1... 44

3.5.1 Approach # 2... 47

3.6 Final Example .. 50

3.7 Complex Queries ... 52

3.8 Commutativity of Predicates ... 53

4 Distributed Cooperative Query Caching Architecture ... 54

4.1 Introduction .. 54

4.2 Distributed Cooperative Cache ... 54

4.3 Contquer in a Distributed Environment ... 59

5 Experimental Results ... 60

5.1 Introduction .. 60

5.2 Hardware Platform ... 60

5.3 Software Environment .. 61

viii

5.4 Performance Metrics .. 61

5.4.1 Average Response Time .. 61

5.4.2 Throughput .. 62

5.4.3 Query Cache Hit Rate ... 62

5.5 Measurement Methodology ... 62

5.5.1 Load Generation .. 63

5.5.2 RUBiS Benchmark .. 63

5.5.3 Micro Benchmark for Query Caching .. 63

5.6 Experimental Results .. 64

5.6.1 RUBiS Benchmark .. 65

5.6.2 Micro-Benchmark .. 68

6 Conclusions and Future Work.. 74

6.1 Introduction .. 74

6.2 Conclusions ... 74

6.3 Future Work .. 76

Bibliography ... 77

ix

List of Figures

Figure 1: Common architectures for web-sites ... 6

Figure 2: Elements of a simple SELECT query statement .. 7

Figure 3: Query execution with simple query cache ... 15

Figure 4: Full containment of query response with an exact match 17

Figure 5: Full containment of query response with multiple subset queries 18

Figure 6: Full containment of a query response with a superset query 19

Figure 7: Partial containment of a query response ... 21

Figure 8: Partial Containment of a query response with two cached queries 22

Figure 9: Hibernate Caching Architecture ... 23

Figure 10: Tree shown for the WHERE clause of a query .. 41

Figure 11: Graph plotting cached query C and remainder queries (R1, R2 and R3) for

Approach1 .. 45

Figure12. Matrices representing remainder queries for two and three inequality

predicates in a given query for Approach 1 ... 46

Figure 13: Graph plotting cached query C and remainder queries (R1 and R2) for

Approach2 .. 48

Figure 14: Matrices representing remainder queries for two and three inequality

predicates in a given query for Approach 2 ... 49

x

Figure15: Our cooperative cache layer in JBoss / Hibernate / EHCache infrastructure 56

Figure 16: Average response time for RUBiS benchmark .. 66

Figure 17: Throughput in WIPS for RUBiS benchmark ... 66

Figure 18: Query cache hit rate (%) for RUBiS benchmark and partial hits for Contquer

cache model ... 67

Figure 19: Breakdown of the response time into percentage of the total time spent at

the database and application server ... 68

Figure 20: Response time for micro benchmark .. 70

Figure 21: Throughput (WIPS) for micro benchmark... 70

Figure 22: Query cache hit rate for micro benchmark .. 71

Figure 23: Partial hit rate breakdown into number of partial queries found in the cache

 .. 72

Figure 24: Performance comparison for different number of clients for micro-

benchmark ... 73

xi

1

Chapter 1

1 Introduction

The Internet has become a common model of interaction between businesses and

customers in present time. Buying and selling products or services through the web

has been popular for the last two decades and has seen revenue for many companies

grow exponentially. It is thus very important that the customers are provided quick

and easy service at all time. E-commerce is dynamic and constantly evolving,

supported by technologies that are constantly changing. E-commerce web applications

are generally based on a client/server model where the client is defined as the

requestor of the service and a server is the provider of the service. To make this model

scalable, e-commerce web applications are hosted in a multi-tier architecture, which is

a software system segregated into separate layers.

A typical multi-tiered application consists of a presentation tier, a business tier and a

data tier. The presentation tier is the presentation logic layer, something that the

users view, but it does not expose anything about the internal structure of the system.

A webpage being shown on a client’s browser is such an example. The business tier,

also often referred to as middle tier, is the brain of the entire application, as it

provides business logic and controls data access. The business layer is usually

2

implemented within a web and/or application server. A web server usually delivers

content such as web pages using HTTP. HTTP Requests from clients (usually through a

browser) are forwarded to the application server causing the appropriate business

logic to be executed. Based on the business rules set forth, the application server asks

the data tier accordingly to get the required information. The data tier typically

consists of a database system where information is stored and retrieved. The data

retrieval process is most likely in the form of selecting, querying, inserting, updating,

or deleting data stored at the data tier. The database is usually the bottleneck in a

data-driven application. There are usually two approaches to scale the database

component. One is to replicate the database; the other is to introduce layers of

caching. Database replication is a complex process and is difficult to handle. In

contrast, caching is a more common solution to avoid the database bottleneck.

A cache provides temporary storage of data. It improves performance by transparently

storing data such that the future requests for the stored data can be served faster. A

cache keeps a representation of recently accessed database content close to the

application, either in memory or on disk of the application server machine. The cache

is a local copy of the data. Caching could be incorporated at the business tier/middle

tier before the database, or both. We look at middle-tier caching where the cache is

located inside the application server.

Web applications often want to pose declarative queries (e.g., SQL queries) that return

a set of objects that fulfill a certain predicate. The application sever can cache the

results of SQL queries posed to the system into its memory and hence, improve the

response time of subsequent queries to the same data by avoiding the need to make a

database connection, reforming the query, re-executing it and retrieving the results.

We stand to gain even more in terms of response times and resources used on

systems where the database does not reside on the same machine as the application

3

server and requires a remote connection (TCP or similar). Also, during application

processing, data is transferred from the database, transformed into business objects

and manipulated by complex processes in the application server layer. If the ready-to

use business objects are cached, this can dramatically improve the performance. Thus,

caching queries and their results can dramatically improve response time and resource

requirements.

Furthermore, performance of the overall system can be improved by scaling the

business tier. This can be done through replication. Having multiple application

servers, each having its own cache, results in reducing the number of queries that

must be executed at the database system.

In this thesis, we introduce Contquer, a distributed cooperative query caching

algorithm. Existing approaches for distributed query caching do not fully exploit the

aggregate capacity of the caches. Having multiple caches without further coordination

means that frequently used objects will likely be cached in all the caches, resulting in

less objects cached overall. Therefore, we propose a cooperative caching architecture

whereby every cache has knowledge of the contents of other caches. An object cached

at a remote cache is transparently fetched from the remote cache as if the objet were

cached locally. The full capacity of all the caches is exploited by having an object only

cached at one application server.

Furthermore, query caching in most database systems can only serve queries if the

exact same query was posed previously. To increase the query cache hit-rate and

decrease access to the database, we optimize the query cache by using the cache

content even if only part of the query result is cached. Contquer determines if a query

can be fully or partially served from the cache, generating remainder queries to the

database in case of partial hits.

4

1.1 Contribution

The thesis makes the following contribution:

 Improving query caching by not only serving exact queries from the cache but

other forms of queries as well.

 Supporting query caching in a distributed environment by designing and

implementing of distributed query caching algorithm – ‘Contquer’.

 A detailed analysis of the impact of the distributed query caching framework.

1.2 Thesis Outline

This thesis is divided into 5 chapters (including this introduction chapter). Chapter 2

provides background on the architecture of typical web applications, and a general

overview of how query caching works in such environment. It also explores the related

work done in the context of this thesis, which helped us to form the base of our

research, and the ways in which our approach differs from them. In Chapter 3 we

present and discuss in detail our Contquer algorithm. Chapter 4 discusses the

distributed cooperative caching architecture and how Contquer works in such

distributed environment. Chapter 5 reports performance evaluations for the model

proposed. Finally, Chapter 6 presents our conclusions and outlines some possible

future research work in this domain.

5

Chapter 2

2 Background and Related Work

2.1 Introduction

In the following section we first describe a typical web application architecture. We

then also describe the general structure of queries with the help of some example

queries and show how the simple query cache works. Then we discuss how the

caching ideas are integrated into a web application architecture. Related work in the

area of query caching is also discussed.

2.2 Typical Web Application Architecture

Figure 1 shows a typical architecture for web sites serving dynamic content. The web

server receives the request (HTTP) from a client (usually through a browser), which is

then forwarded to the application server causing the appropriate application logic to

be executed. The application in turn sends queries, depending upon the client request

and application logic, to the database. Upon receiving a reply from the database for

the queries, the application server then constructs a reply, which is then sent through

6

the web server back to the client.

In a three-tier architecture, as the one discussed here, web server and application

server constitute the middle-tier. A web server usually delivers content such as web

pages using HTTP. Some examples of web server technology include Apache Tomcat,

IIS from Microsoft, OpenLink etc. The role of the application server is to provide

business logic for an application program and also middleware services for security

and state maintenance, along with data access. Glassfish, JBoss, and WebLogic are a

few examples of widely used application servers. Usually application servers have a

built-in web server component for receiving requests and returning responses to the

client. For the purpose of this thesis, we consider the combination of web server and

the application server collectively as application server.

Figure 1: Common architectures for web-sites

Internet

HTTP HTTP SQL

Client Web server Application
server

Database
Server

7

2.3 SQL Queries and Query Parameters

In this section we introduce some example queries and terms related to query caching

that will be used in the following sections. SQL, often referred to as Structured Query

Language, is a database language primarily designed for managing data in RDBMS

(relational database management systems).

A query consists of several clauses as shown in Figure 2.

Figure 2: Elements of a simple SELECT query statement

SELECT id, salary SELECT clause

columns to be returned

FROM employee FROM clause

Table

Query statement

WHERE name = ‘BOB’;

WHERE clause

Predicate

Expression

8

The most common clauses used in a query are:

• The SELECT clause indicates the attributes (columns of a table) to be retrieved.

For example in the query below, only the name and age attributes from the

employee table are returned.

SELECT name, age

FROM employee

If all attributes should be returned, SELECT * is used as shown by the query

below.

SELECT *

FROM employee

• The FROM clause indicates table(s) from which data is to be retrieved. The

FROM clause can also include optional JOIN sub clauses to specify the rules

for joining tables.

• The WHERE clause is a Boolean expression, with operators AND, OR and NOT,

where each literal is a comparison predicate. Each comparison predicate

evaluates to either FALSE or TRUE, determining the Truth-value of the entire

Boolean expression.

The comparison predicates can be sub-categorized as "equality" and "inequality"

comparison predicates:

• Equality predicates have a comparison based on equality (= equal sign). The =

9

(equals) comparison operator compares two values for equality. Most of the

equality predicates compare the contents of a table column to a value, as in

the example query below. A comparison expression may also compare two

columns to each other.

SELECT *

FROM employee

WHERE name = ‘BOB’;

This query returns all employee records that have in their column name the

string value ‘BOB’.

• Comparison operators other than equal lead to inequality predicates. Examples

are ">" (greater than), ">=" (greater than or equals to), "<" (less than), "<="

(less or equals to), "<>" (not equal to). An example for inequality predicate is

shown in the example query below:

SELECT *

FROM employee

WHERE salary > 50000

This query returns all employee records that have a salary attribute value

above 50000.

Complex queries combine several comparison predicates in a Boolean expression

using the AND, OR and NOT operators. Some examples are:

10

Query I:

SELECT *

FROM employee

WHERE city = ‘Montreal’ AND salary > 50000 AND salary < 75000;

Query I has both equality and inequality predicates in a Boolean AND-expression. The

query returns all records of the employee table where the city attribute has the value

‘Montreal’ and the salary attribute is between 50000 to 75000.

Any arbitrary combination of AND, OR and NOT operators can be used. In many cases,

a NOT operator transforms an inequality predicate into another inequality predicate.

For instance, the two following predicates (P1 and P2) are equal.

P1: NOT salary < 5000

P2: salary >= 5000

Therefore, we ignore the NOT operator for inequality predicates in the thesis.

In query II, all records of the employee table are returned where the city attribute

either has a value of ‘Montreal’ or ‘Toronto’, and the salary attribute is greater than

50000.

Query II:

SELECT name, position, salary

FROM EMPLOYEE

WHERE (city = ‘Montreal’ OR city = ‘Toronto’) AND salary > 50000;

11

There could be multiple conjugations within a single query as shown in Query III:

Query III:

SELECT name, position, salary

FROM EMPLOYEE

WHERE (city = ‘Montreal’ OR city = ‘Toronto’) AND

 (department = ‘Marketing’ OR department = ‘IT’) AND

 salary > 50000;

Any Boolean expression can be transformed into a disjunctive normal form (DNF). A

DNF is a disjunction (sequence of ORs) consisting of one or more disjuncts, each of

which is a conjunction (AND) of one or more literals [17]. The only operators in DNF

are AND, OR and NOT. The NOT operator can only be used as part of the literal,

preceding a variable. In DNF, the query can be processed as one or more independent

conjunctive queries (having AND operators only) linked by UNIONS (sequence of ORs).

For instance Query III can be re-written into disjunctive normal form as:

SELECT name, position, salary

FROM EMPLOYEE

WHERE (city = ‘Montreal’) AND (department = ‘Marketing’) AND salary > 50000

 OR

(city = ‘Montreal’) AND (department = ‘IT’) AND salary > 50000

 OR

(city = ‘Toronto’) AND (department = ‘Marketing’) AND salary > 50000

OR

(city = ‘Toronto’) AND (department = ‘IT’) AND salary > 50000 ;

12

In general, a DNF is represented as:

(p11 ∧ p12 ∧ · · · ∧ p1n) ∨ (p21 ∧ p22 ∧ · · · ∧ p2n) ∨ · · · · ∨ (pm1 ∧ pm2 ∧ · · · ∧

pmn)

where each pij is an equality predicate, possibly preceded by a NOT operator, or an

inequality predicate.

In this thesis, we distinguish two different query types. Query type 1 consists of

comparison predicates that are connected through AND operators only. Query type 2

has OR operators in addition to AND operators. Thus, the query needs to be

transformed into a DNF. In general, we do not consider NOT operators.

2.4 Scope and Limitation

In this thesis, we only consider queries involving one table. Joins and other multi-table

queries are difficult to handle in dynamic environments and thus, not considered here.

Also, only the most widely used operators and expressions are supported. Inequality

operators such as greater than (>), greater or equal (>=), less than (<), less or equal

(<=) are supported. Other relational operators that are supported are equals (=),

BETWEEN and IN. The NOT IN and LIKE operators are not supported.

13

2.5 Flow of a simple Query Cache

Database access is expensive as it consists of many steps. Avoiding such database

access is necessary since it is a time consuming process. It includes:

• Connection to the database

• Preparation of the SQL query

• Sending the query to database

• Formation of the query plan at database

• Execution of the query

• Retrieving the results

• Closing the database connection

The above process is quite resource intensive and can adversely affect systems

performance. Also, during application processing data is transferred from the

database, transformed into business objects and manipulated by complex processes in

the application server layer. Having multiple parallel connections at the database and

fetching huge result sets from the database usually results in the database becoming

the bottleneck. Thus, a query cache can result in improving performance of the overall

system and avoiding bottleneck.

The query cache can be useful in an environment where we have tables that do not

change very often and for which the server receives many identical queries. This is a

typical situation for many web servers that generate many dynamic pages based on

database content. For example, an e-commerce website may have many web pages

14

listing all the products for a specific category that they are selling (e.g. books,

electronic items, services, etc). By caching content generated by executing one or

more queries at the database, we can greatly increase the response time by fetching

the content from the cache rather than going to the database. Thus, we reduce the

number of queries that must be executed at the database system and also save the

execution time.

Figure 3 shows the typical flow of query execution as currently found in most

application servers that offer a simple query cache.

Query execution is triggered upon receiving a query from the application. First, the

query is looked up in the query cache. If there is an exact match (the exact same query

with the same attributes in the select clause and the same Boolean expressions in the

where clause exists in the cache), the relevant tables involved in the query are

checked. If any of the tables was changed since the query was cached, the query has

become stale. If the query is not stale, the cached results are returned to the client.

Otherwise, if the query is found to be stale it is removed from the cache, the query is

executed again, and the results are cached before returning them to the client.

Whenever an UPDATE, INSERT or DELETE statement is submitted, some of the cached

queries might become stale. A simple and common approach uses a table level

invalidation. We assume such an approach in this thesis. It is achieved by having

timestamps assigned to every table and every query. The timestamp of a table

increases whenever the table changes. A query receives the current timestamp of the

table referenced in the query.

15

Figure 3: Query execution with simple query cache

Execute Query
with Cache

Construct Key

Execute Query

Query, Parameters

Query Key

 Is Key
in Cache ?

Put result in Cache

Return List of
Entities

No

List <Result>

List <Result>

Yes Have tables
been updated?

Yes

No

Remove old Query
from Cache

16

Thus, upon finding a candidate query (CQ) in the cache, we compare the current

timestamp of the table referenced in the query with the timestamp of the candidate

query. There are two cases:

1. Timestamp of the table = timestamp of the cached query (CQ); this means that

the query was cached after the table was last modified, and thus, the

cached query result is not stale and can be used.

2. Timestamp of the table > timestamp of the cached query (CQ); this means that

the table was modified after the query was cached. Therefore, the cached

query is invalidated and removed from the cache. The query is then sent to

and executed at the database. The query and its results are cached and the

current timestamp is assigned to the newly cached query.

In case where the incoming query is not cached, the query is immediately sent to the

database, executed and results are stored in the cache before returning them to the

client. If the same query is called again, the query results can be fetched from the

cache and the query does not need to be executed again.

2.6 Full and Partial Containment

If only exact query matching is done, the hit ratio can be small. The question is

whether we can take advantage of cached queries even if they only partially help the

currently posed queries. For that let’s have a look at containment. Full and partial

containment happens when a query response is completely or partially contained

within one or more cached query result sets.

17

employee

C = select * from employee
where salary > 40000 and
salary < 80000

salary

0

100000

2.6.1 Full Containment

Full containment occurs when the query response can be satisfied fully from the

cached query itself and there is no need to consult the database for returning the

query response to the client. There could be different scenarios that could result in full

containment.

2.6.1.1 Exact Query Matching

We discussed exact matching before where the cache contains exactly the query that

is posed. For that, the query string must be identical. For example, in Figure 4, the

incoming query Q is identical to the cached query C.

Figure 4: Full containment of query response with an exact match

Q = select * from employee where salary > 40000 and salary < 80000

18

C1 = select * from employee
where salary > 40000 and
salary <= 75000

C2 = select * from employee
where salary > 75000 and
salary < 80000

employee
salary

0

100000

Figure 5: Full containment of query response with multiple subset queries

Q = select * from employee where salary > 40000 and salary < 80000

2.6.1.2 Multiple Subset Queries

Multiple cached queries can also result in full containment. More than one query,

each having as result a subset of the result of the incoming query, can be combined to

get the required response. For example, in Figure 5, merging the result sets of two

already cached queries (C1 and C2) satisfies response of the incoming query Q. Here,

the multiple cached queries might have overlapping result sets. Therefore, the

duplicates must be filtered out.

2.6.1.3 Superset Query

Full containment is also given if there exists a cached query whose result set is a

superset of the current query’s result set. In other words, there are more tuples

cached then the required response. The situation is depicted in Figure 6. In this case,

19

however, there needs to be a mechanism whereby the extra tuples are removed from

the cached result set before the response is returned to the client. This can be

difficult. For instance, information required for this filtering mechanism is missing if

the attributes involved in the comparison predicates of the where clause are absent in

the select clause.

For example, the current query (Q) requests for all the tuples in the employee table

where the salary attribute value is more than 60000 and less than 75000:

Q: SELECT name, address, city

FROM EMPLOYEE

WHERE salary > 60000 AND salary < 75000;

Figure 6: Full containment of a query response with a superset query
The cached query is a superset of the current query response.

Current query (Q)

Cached query (C)

20

The following query C is a potential candidate for a full containment for Q as its result

set has all employee records where the salary attribute value is more than 50000 and

less than 100000.

C: SELECT name, address, city

FROM EMPLOYEE

WHERE salary > 50000 AND salary < 100000;

Both the above queries (Q and C) have only three columns (name, address and city) in

their result set. However, in order to find the subset of tuples in the result set of C that

fulfill the where clause of Q, we would need the salary column. Therefore, the filtering

mechanism cannot proceed and the cached results cannot be used. Hence, it is

necessary to have all the required information in the result set of the cached query

(SELECT clause) to filter out such extra tuples. Even if all the information is present,

the cache has to implement the necessary filter mechanism, thus, partially copying the

functionality of the database. Although in our infrastructure we do have all the

required information we do not consider superset queries in this thesis, as it requires

extra query processing which is difficult to achieve.

2.6.2 Partial Containment

While full containment can return the entire result form the cache, partial

containment has only a subset of the necessary tuples in the cache. The additional

records, which are not yet cached, are fetched from the database. Similar to full

containment, it is possible that multiple cached queries can be used to get as much

partial result as possible.

21

Multiple Cached queries

Current query

Figure 7: Partial containment of a query response
Multiple cached queries build a subset of the current query response.

The missing tuples that are not yet cached, can be obtained by generating a remainder

query that is then sent to the database. In the example of Figure 7, three partially

contained cached queries are used to get a partial response for the current query. The

remaining tuples (represented by white space) are fetched from the database by

generating one or more remainder queries.

All cached result sets and the records from the database are then merged and the final

merged query result is returned back to the client. For example, in Figure 8, C1 and C2

can partially respond to the incoming query Q. The missing tuples with salary attribute

values between 60000 and 75000 are fetched from the database system by generating

a remainder query. The tuples from the cached results of C1 and C2, and from the

database are merged and returned back to the client.

22

employee

C1 = select * from employee
where salary > 40000 and
salary < 60000

C2 = select * from employee
where salary > 75000 and
salary < 80000

salary

0

100000

Figure 8: Partial Containment of a query response with two cached queries
Q = select * from employee where salary > 40000 and salary < 80000

2.7 Caching in JBoss Application Server

The cache in a 3-tier architecture is usually located on the middle tier as part of the

application server enivronment. As we discussed in the introduction chapter, one of

the ways of scaling the overall system is to replicate the business tier. This means

having multiple application servers each of them having their own cache. Therefore, it

is important to understand how caching, and in particular query caching, works in a

distributed environment.

To better understand how the cache and the query cache work we should know how

application servers interact with their cache. The JBoss Application Server (JBoss AS) is

a widely used open-source Java EE based application server. We have used the JBoss

23

AS to carry out all our experiments. The JBoss AS provides many features, among them

the Hibernate object-relation mapping. Hibernate acts as a mapping tool from Java

classes to database tables, thus replacing direct persistence related database accesses

with high-level object handling. In general each row of the database is represented as

an object in Hibernate. Hibernate also provides data query and retrieval facilities, and

uses a two-level cache architecture as seen in Figure 9.

Figure 9: Hibernate Caching Architecture

JVM

Thread 2

First Level

Cache

Thread 1

First Level

Cache

Second Level Cache

<Object Identifier, Object>

Query Cache

<Query String, List of

Object Identifiers>

DB

24

 The first-level cache in Hibernate is a local session level cache. A page request

from a client may require a transaction to be executed on the database. This

transaction might contain different queries that need to be executed. The first

level cache here only caches objects and queries pertinent to that particular

transaction. When the transaction completes the cache is no longer available

and is destroyed. Thus, multiple client requests each have their own first level

cache. This can also be seen in Figure 9. Thread 1 and thread 2 represent

different requests from either the same client or different clients, having their

own first level cache.

 The second-level cache in Hibernate is pluggable and has as scope the whole

application across many client requests. For example, a website XYZ hosted by

an application server gets web page requests from various clients. For all the

requests, or in other words, for the whole application, there is only one global

cache, which is second level cache. Thus, all client requests have access to this

second level cache. The second-level cache has object identifiers that are

mapped to the object themselves. We have used EHCache [10] as the second-

level cache.

 Hibernate also implements a query cache that is integrated closely with the

second-level cache as seen in Figure 9. It works as discussed in Section 2.5. It

caches query strings and a list of object identifiers that are in the queries’

result sets. Those object identifiers are then mapped to their respective objects

in the second-level cache. A query is removed/evicted from the query cache

either by invalidation or because of memory constraints. In this case, only the

query string and corresponding object identifiers of the query’s result set are

removed from the query cache and all respective objects remian in the second-

25

level cache. Similarly, if an object is removed/evicted from the second-level

cache the queries that contain that objects identifier in their list remain in the

query cache. If a client makes a request resulting into one of those queries, the

query still exists in the query cache and also its corresponding object identifiers

in its result set. But the references of objects that were evicted no longer point

to the second-level cache. Instead, these objects are fetched from the

database and put into the second-level cache.

When a query is executed for the first time (it is not in the cache) the query is

rewritten to only retrieve the object identifiers. Then, in a second step, only

the objects that do not yet exist in the second-level cache are retrieved and put

in the second-level cache.

It is possible for a query, which does not already exist in the query cache but

some of the objects in its result set might already be present in the second-

level cache. In that case only the objects that do not exist in the second-level

cache are fetched from the database and put into second-level cache.

When the client requests a page, typically through a browser’s HTTP request, it is

received by the web server and is then forwarded to the application server. Here,

based on the page requested, the business logic is executed which usually results in

forming a SQL query. As we discussed, there are two levels of cache in Hibernate.

Upon formulating a SQL query at the application server the query is looked up in the

first level cache and then, if not found, in the second level cache.

Second level cache is something that is interesting to us as it represents a shared

cache of the whole web application. For example, client X requests all products priced

less than $2000. Lets denote this with Q1. If it is neither found in the first level cache

26

nor in the second level cache, it is submitted to the database and the resulting objects

are cached in both the first level cache and the second level cache. If another client Y

requests the same list of products, the first level cache will not have the query cached

as a different client has requested it. But the second level cache, which is global for all

the client requests, has the resulting objects, and the results are returned from the

second level cache rather than fetching it from the database again.

2.7.1 Memory Costs for Query Cache

As discussed that queries cached in query cache only store query result identifiers and

corresponding objects are cached in second-level cache. Thus, memory costs for query

cache is minimal as compared to second level cache because query cache only caches

query string and object identifiers in its result set where as second level cache

contains all the objects.

27

2.8 Related Work

Database query caching has been proposed by many to improve the throughput of the

whole system [1, 5, 6, 7, 8]. The idea is to cache the database queries and their results

in order to improve latency and reduce the load on the back-end database server(s). If

the database server is the bottleneck, query caching has the potential to greatly

improve performance of the overall system.

Caching is an integral part of object-oriented database systems. Distribution of such a

cache is considered by [1]. The paper analyzes the effect of query caching on a typical

three-tier architecture maintained with multiple application servers. The paper

proposes full and partial containment of query results to reduce the number of cache

misses. This is primarily achieved by use of templates. For every query possibly

submitted, a template has to be provided in advance. We illustrate this by the

following example taken from the paper:

T: (SUBJECT = ?) AND (PRICE < ?)

Q: (SUBJECT = ‘KIDS’) AND (PRICE < 100)

C1: (SUBJECT = ‘KIDS’) AND (PRICE < 50)

C2: (SUBJECT = ‘ARTS’) AND (PRICE < 100)

The template T describes the WHERE clause of a query indicating all the predicate

comparisons but not the actual values to be compared to. That is, a template

represents a parameterized query. Only AND operators are considered in the paper. A

posed query Q or a cached query C provides concrete values for the parameters. For

an incoming query Q of template T, all cached queries Ci of template T are checked for

partial containment. In above example, we can see that C1 is partially contained in Q

but C2 is not. Thus, C1’s response along with the response from a remainder query

28

suffices to get Q’s response. The design is pretty simple but is conservative as it is

based on templates that have to be defined in advance.

The paper also discusses the effect of invalidations as a result of writes by evaluating

coarse-grain table-level invalidation versus fine grain column-level invalidations. Table

level invalidation, as discussed in Section 2.5, invalidates all queries on a table

whenever any change on the table occurs. This may cause many queries to get

invalidated even if the update to the table may not have altered the invalidated

query’s result set at all. In contrast, with column level invalidation only the queries

that contain a column that was changed by the update, are invalidated. [1] shows that

this greatly reduces the number of incorrect invalidations.

The paper also evaluates different system designs such as a purely distributed cache as

well as a central cache in front of the database. The closer the cache is to the front-

end, the shorter will be the latency to get the data from the cache. Therefore, the

paper looks into tradeoffs of having the cache at different locations within the system.

The paper, however, does not explore distributed query execution over several caches

and how the different caches can cooperate with each other.

The location of the query cache, e.g. whether it is part of the server system or residing

in a proxy cache close to the user, has been explored by [8, 12].

Cooperative caching has been considered by [11, 13, 14, 15] in peer-to-peer systems

with the idea to retrieve data from the caches of nearby nodes instead of from the

database system. However, the solutions are quite different to what is required to be

done in a cluster environment with dynamic data.

In the context of web-caching, cache sharing has been explored in several ways. For

29

instance, in order to find web pages in neighboring caches, distributed [3] or centrally

managed [4] dictionary information could be used. The interrelationship between

caches or the distribution of caches has not received a lot of attention.

2.8.1 Query Caching in Database Systems

MySQL Query Cache caches queries and their results at the database, just as described

in Section 2.6.1.1. The query cache stores the text of a SELECT statement together

with the corresponding result that was sent to the client. Upon receiving an identical

query later, the server retrieves the results from the query cache rather than parsing

and executing the statement again [9]. This eliminates executing a query again but

only if there is an exact match. Other commercial databases just cache the query plan

and not the result, therefore, eliminating the need for making a query plan whenever

the same query is executed. However, the query itself has to be executed again.

30

Chapter 3

3 Contquer: An Optimized Query Caching

Framework

3.1 Introduction

Supporting declarative queries has a huge potential for reducing the load on the

database. However, as discussed in the previous chapter, the simple query-caching

model only matches queries that are exactly the same. Thus, in this thesis, we

develop a query caching framework that can serve queries from a cache whenever full

and partial containment is given. The algorithm developed in this thesis, called

Contquer, looks for all disjoint and partially contained queries that can fully or partially

satisfy a current query response.

An existing open-source cache (EHCache) is extended to provide support for such

sophisticated query caching. EHCache is an application server based cache used to

boost performance, offload the database and simplify scalability [10]. Like most other

caches it only supports the simple query cache model.

31

3.2 Contquer Algorithm

To better understand the Contquer algorithm, the following example queries are used.

QUERY A:

SELECT *

FROM employee

WHERE name = ‘BOB’ AND city =’Montreal’;

QUERY B:

SELECT *

FROM EMPLOYEE

WHERE city = ‘Montreal’ AND salary > 50000;

QUERY C:

SELECT *

FROM EMPLOYEE

WHERE city = ‘Montreal’ AND salary > 40000 AND salary < 80000 AND age > 25;

QUERY D:

SELECT *

FROM EMPLOYEE

WHERE (city = ‘Montreal’ OR city = ‘Toronto’) AND salary > 50000;

In the following, we first present a high-level algorithm of the Contquer algorithm that

has been developed in this thesis.

32

Input:

Q: Incoming Query

All we need is just the incoming query, and the Contquer algorithm undertakes the

following five steps.

Step 1: Query transformation

Any incoming query is transformed into a disjunctive normal form (DNF) first. Query A,

B and C are already in DNF, but Query D is not, and therefore, is transformed into DNF

as:

SELECT *

FROM EMPLOYEE

WHERE city = ‘Montreal’ AND salary > 50000

 OR

city = ‘Toronto’ AND salary > 50000;

Once a query is in DNF, OR-operators are always outer operators. In a next step,

whenever a query contains OR-operators, it is split into sub-queries such as none of

the sub-queries contains an OR-operator. In the above example, only D has to be split,

separating it by the OR-operator gives two queries:

33

Query 1:

SELECT *

FROM EMPLOYEE

WHERE city = ‘Montreal’ AND

salary > 50000;

Query 2:

SELECT *

FROM EMPLOYEE

WHERE city = ‘Toronto’ AND

salary > 50000;

Query 1 and Query 2 are considered as two separate and distinct queries. The

Contquer algorithm takes each of the query to see whether it can be partially or fully

served by the cache. Once the results have been calculated from the cache and/or the

database for each of the two queries, the result sets are merged and duplicates are

eliminated. Thus, the Contquer algorithm itself only handles queries that contain AND-

operators. Furthermore only equality predicates can be preceded by a NOT-operator.

Step 2: Identifying initial candidate set

This step identifies all queries already cached that are similar to the incoming query

and are potential candidates. It results in:

C: List of cached queries similar to Q that are potential candidate queries for full

or partial containment. A candidate query must be over the same table as the

incoming query and have predicates over the same attributes.

Details for identifying initial candidate set are discussed in Section 3.3.

34

Step 3: Exact match lookup

In this step the Contquer algorithm checks whether there is an exact match of Q in the

query cache. If so, the query result already cached is returned to the client. Exact

match means that all the equality and inequality predicates must exactly match a

cached query. For example assume step 2 gives initial candidate set C = {C1, C2 ,C3} for

the queries shown below, where C2 is an exact match to Query A. Thus C2’s result set

is sent back to the client.

Query A: name = ‘BOB’ AND city =’Montreal’;

C1: name = ‘TOM’ AND city =’Montreal’;

C2: name = ‘BOB’ AND city =’Montreal’;

C3: name = ‘TOM’ AND city =’Toronto’;

Step 4: Candidate set refinement

If no exact match is found, the next steps 4a and 4b look for containment within the

initial candidate set. Queries that do not qualify for containment are removed from

further consideration. That is, the candidate set is refined at each step.

Step 4a: Check equality constraints

One condition is that the incoming query and the candidate queries must have the

same equality predicates. Therefore, all queries are removed from the candidate set

that do not have the same equality predicates as the incoming query.

35

FOR EACH Ci in C

IF equality predicates are not the same as in Q THEN

 remove Ci from C

END IF

END

For example, for Query B, assume there exist candidate set C = {C4, C5, C6, C7, C8}. C5

is eliminated since it does not have the same equality predicate as Query B. The

candidate set is updated to C = {C4, C6, C7, C8}

Query B: city = ‘Montreal’ AND salary > 50000;

C4: city = ‘Montreal’ AND salary > 60000;

C5: city = ‘Toronto’ AND salary > 75000;

C6: city = ‘Montreal’ AND salary > 40000;

C7: city = ‘Montreal’ AND salary > 75000;

C8: city = ‘Montreal’ AND salary > 50000 AND salary < 55000;

Step 4b: Check inequality constraints

The next step compares inequality predicates. For every query Ci in the updated

candidate set C, the range of each inequality predicate is compared to that of Q. If for

any inequality predicate, the range of that predicate of Ci is not a subset of or equal to

the range of the corresponding predicate of Q, Ci is removed from the candidate set C.

That is, to remain a candidate query, Ci’s ranges in the inequality predicates must be

subsets of the ranges of the corresponding predicates in Q.

36

FOR EACH Ci in C

FOR EACH inequality comparison predicate in Ci

IF range of predicate in Ci is not a subset of corresponding predicate

in Q THEN

remove Ci from C ;

END IF

 END

END

Continuing with the previous example of Query B, we had so far C = {C4, C6, C7, C8} as

candidate set. Considering one cached query at a time, the range for each inequality

predicate, which in this case is only the salary attribute, is compared to the range for

the same inequality predicate of Q. Inequality predicate ranges for C4 (salary attribute

above 60000), C7 (salary attribute above 75000) and C8 (salary attribute between

50000 and 55000), are a subset of that of Q (salary attribute above 50000). Therefore

C4, C7 and C8 remain in C. The predicate range of C6 (salary attribute above 40000),

however, is a superset of Q’s range. Therefore it is eliminated from the candidate set.

As a result, C is now {C4, C7, C8}.

Step 5: Candidate selection and Iteration

If the candidate set C is now empty, then no containment queries are found in the

cache, and Q is sent to the database. Otherwise, if there exist queries in C, the query Ci

with the largest result set is chosen. Note that we look at the size of the result set and

not the size of the range because we want to choose the query that minimizes the

number of tuples that must be retrieved from the database.

37

The missing tuples, i.e. those that are in the result set of Q but not in that of selected

candidate query Ci, have to be retrieved. This can be done by generating a remainder

query R = Q – Ci that returns exactly those tuples.

IF C is empty THEN

 send Q to database

ELSE

 choose Ci  C such that Ci has largest result set of all queries in C ;

Prepare a remainder query: R = Q – Ci ;

remove Ci from C ;

Continue from Step 4b ;

END IF

R could be sent to the database. But it might also be possible that a query is cached,

that is an exact match for R or that is a containment query for R. Therefore, the

Contquer algorithm is reiterated, R now becomes the incoming query Q, and the

algorithm is continued from Step 4b. As the inequality predicates are only changed in

the remainder query, the candidate set thus far refined can be used and comparison

of inequality predicates takes place as in Step 4b. Such iteration is done until R has no

containment within C, and thus, R is sent to the database.

Continuing with the example of Query B, and C = {C4, C7, C8}, the cached query with

the largest number of tuples is selected as a partial containment query. Assume this is

C4. C is updated to C = {C7, C8}. A remainder query R1 is generated to get the missing

tuples, i.e., those that must be returned by Q but that are not returned by C4.

38

R1: city = ‘Montreal’ AND salary > 50000 AND salary <= 60000;

R has all the equality predicates of Q; only the inequality predicates are changed so as

to get the missing tuples. R now becomes the new incoming query Q, and the

algorithm continues from Step 4b. C8 is found as a partial containment query for Q in

the candidate set C, and a new remainder query R2 is generated as:

R2: city = ‘Montreal’ AND salary >= 55000 AND salary <= 60000;

This R2 becomes the next incoming query Q and the containment algorithm continues

from Step 4b comparing the inequality predicates of Q to the queries in candidate set

C, which right now is C = {C7}. C7 does not qualify for the partial containment and

upon finding no partial containment for R2, it is sent to the database.

Step 6: Merge

In the last step all the result sets from the cached queries that were selected by the

Contquer algorithm, and the result set from the remainder query sent to the database,

are merged and returned to the client.

In our example, the response for Query B is generated by merging the result sets from

the cached queries C4 and C8, and from the query R2 that was sent to the database.

Some aspects of the Contquer algorithm are discussed in the next few sections in

detail.

39

3.3 Query Transformation and Identifying Initial Candidate

Set

The first and an important part of the Contquer algorithm is to identify all queries in

the cache that are similar to the incoming query (Q) and can be considered as

potential candidate queries for containment of Q’s response. This could simply be

achieved by using templates as done by [1]. But for that, all query types of the

application have to be known in advance. This requires upfront intervention and is

application dependent. This means that the approach is only conservative and can

only match queries for which the templates have been provided.

Instead, in this thesis, we opted to match queries dynamically, and no application

dependent generation is needed. Every incoming query is first parsed and a query tree

is built. An example query tree is shown in the Figure 10. The query tree helps in

identifying if the incoming query is in DNF or not. If not, the query is transformed into

a DNF and split into several queries based on the number of disjunctions of

conjunctive clauses in the WHERE clause.

For example, the query below (only where clause shown here), which produced the

query tree of Figure 10, is first converted into DNF, then is further split into three

different queries that are considered as three distinct incoming queries for the

algorithm:

40

Q: salary > 50000 AND city = “Montreal” AND ID < 100

 OR

salary > 50000 AND city = “Vancouver” AND ID < 100

 OR

salary > 50000 AND city = “Toronto” AND ID < 100 ;

Q1: salary > 50000 AND city = “Montreal” AND ID < 100 ;

Q2: salary > 50000 AND city = “Vancouver” AND ID < 100 ;

Q3: salary > 50000 AND city = “Toronto” AND ID < 100 ;

To get the candidate set C of queries from the cache for any incoming query Q, the

table involved in Q is identified first. All queries over the same table are selected from

the cache. Having found all cached queries that match the table, attributes involved in

the WHERE clause of Q are compared to the attributes in the WHERE clause of the

cached queries so far selected. Only cached queries that have the same attributes in

the WHERE clause are further considered. Then, for every cached query considered,

the columns in the SELECT clause are compared to those in the SELECT clause of Q.

The columns in the SELECT clause of Q need to be a subset of the columns in the

SELECT clause of a cached query for the cached query to remain in the candidate set. If

not, the cached query is not considered as a candidate query for Q. Thus, after

comparing tables, attributes in the WHERE clause and columns in the SELECT clause,

all the cached queries (Ci) so far selected are considered as candidate queries for

potentially containing the response of Q.

41

And
Expression

>
Expression

salary
Column
name

50000
Value

AND
Expression

<
Expression

ID
Column

100
Value

OR
Expression

=
Expression

city
Column

“Montreal”
Expression

OR
Expression

=
Expression

city
Column

“Toronto”
Expression

=
Expression

city
Column

“Vancover”
Expression

Figure 10: Tree shown for the WHERE clause of a query
select * from employee where salary > 50000 and (city = “Montreal” or city =

“Vancouver” or city = “Toronto”) and ID < 100

42

3.4 Range Checker

Basis for finding a full or partial cache response in the query cache is to identify the

range for every inequality predicate. This is simply achieved by finding the upper and

lower bound of the range. That is, for each inequality predicate in Q and all Ci  C we

calculate the bounds. Then, for each Ci in C and for each inequality predicate in Ci we

compare the bounds with the bounds of the corresponding predicate in Q. If the

bounds of Ci are within the bounds of Q, Ci remains in the candidate set as a potential

candidate query. Some example predicates and their corresponding ranges are shown

below:

salary > 50000 and salary <= 80000 : salary (50000 , 80000]

salary >= 30000 and salary < 50000 : salary [30000 , 50000)

salary > 50000 : salary (50000 , 

3.5 Remainder Query Generation

An integral part of the Contquer algorithm is the generation of the remainder query.

Once the candidate query Ci  C with the largest result set is determined in Step 5 of

the algorithm, a remainder query needs to be generated to get the missing tuples. The

Remainder query R = Q – Ci is generated by rewriting the inequality predicates so as to

get the tuples that are not covered by the partial cached query.

To better understand how a remainder query is generated, we take an example query

(Query D) and a cached query (C) that contains partial results of Q.

43

Q: city = ‘Montreal’ AND salary > 40000 AND salary < 80000 AND age > 25;

C: city = ‘Montreal’ AND salary > 60000 AND salary < 80000 AND age > 30;

In the above queries, there is one equality predicate (city attribute) and two inequality

predicates (salary and age attribute). The ranges for the two inequality predicates are

found through the range-checking algorithm:

Ranges of Q: salary (40000 , 80000) ; age (25 , 

Ranges of C: salary (60000 , 80000) ; age (30 , 

The upper bound for the age predicate for both Q and C is the maximum value of age

in the table employee. From the ranges identified for Q and C, the ranges for the

missing tuples (S1 for salary and A1 for age) are identified, and represented by a

remainder query.

Ranges of R: salary (40000 , 60000] ; age (25 , 30]

Now there are two options to build remainder queries to fetch the missing tuples in C

salary

40000 60000 80000

S1 – not cached S2 – cached

age

25 30 Max age in table employee

A1 – not cached A2 – cached

44

in order to complete Q’s response. In both cases, we have to make sure that the

remainder query preserves all the equality predicates as is. In the example above, city

= ‘Montreal’ is included in all the remainder queries generated. The approaches differ

in how they determine the inequality predicates.

3.5.1 Approach # 1

In the first approach the first remainder query R1 is generated as follows by taking the

missing S1 and A1 ranges:

 R1: city = ‘Montreal’ AND

salary > 40000 AND salary <= 60000 AND

age > 25 AND age <=30;

But the remainder query R1’s response combined with C’s response still is a partial

response to Q. As there are still missing tuples for salary between 40000 to 60000

(inclusive) and age greater than 30 and also for salary between 60000 to 80000 and

age between 25 to 30 (inclusive). Therefore, R2 and R3 are generated.

R2: city = ‘Montreal’ AND salary > 40000 AND salary <= 60000 AND age > 30;

R3: city = ‘Montreal’ AND salary > 60000 AND salary < 80000

AND age > 25 AND age <=30;

We can illustrate the ranges of Q covered by C, R1, R2 and R3 in Figure 11.

45

salary

age

80000

60000

40000

25 30 max

C R3

R1 R2

Figure 11: Graph plotting cached query C and remainder queries (R1, R2 and R3) for

Approach1

In general, for a query Q with two inequality predicates, and a corresponding

candidate query C, the generation of remainder queries can be described as follows:

Q: a1 AND a2

C: b1 AND b2

The remainder queries generated are:

R1: (a1 – b1) AND (a2 – b2)

R2: (a1 – b1) AND b2

R3: b1 AND (a2 – b2)

46

In Figure 12, each row of the two matrices represents a remainder query. The two

matrices represent remainder queries generated for queries with two and three

inequality predicates, respectively. The value ‘C’ for inequality predicate p1 in the

matrix means that the corresponding remainder query has to have a value the same

ranges as C for the predicate P1. The value ‘d’ indicates that the remainder query must

take the range difference between Q and C for this predicate.

In general, for ‘n’ inequality predicates in a given query 2
n
-1 remainder queries have to

be generated.

 p1 p2

R3 C d

R2 d C

R1 d d

p1 p2 p3

C C d

C d C

d C C

d d C

d C d

d d C

d d d

Figure12. Matrices representing remainder queries for two and three inequality

predicates in a given query for Approach 1

47

3.5.1 Approach # 2

In the second approach, a remainder query is generated individually for every

inequality predicate. Only one inequality predicate’s range is changed to get the

missing tuples, all other inequality predicates maintain Q’s original range.

In the example above, we first consider the salary attribute and transform Q to get the

missing tuples for salary ranges between 40000 to 60000. The age predicate is not

changed and has the same value as in Q.

R1: city = ‘Montreal’ AND

salary > 40000 AND salary <= 60000 AND

age > 25;

Similarly, the other remainder query is generated by considering the age inequality

predicate, transforming Q to get the missing tuples for age between 25 and 30 while

the salary predicate has the same value as in Q.

R2: city = ‘Montreal’ AND

salary > 40000 AND salary < 80000

AND age > 25 AND age <=30;

48

salary

age

80000

60000

40000

25 30 max

C

R2

R1

Figure 13: Graph plotting cached query C and remainder queries (R1 and R2) for

Approach2

This approach, however, results in duplicate entries as seen in Figure 13. R1 and R2

have a region where their result sets overlap. When the result sets are merged in step

6 of the Contquer algorithm, these duplicates have to be eliminated, leading to

computational overhead. On the other hand, considerably fewer remainder queries

are generated.

For a query Q having two inequality predicates and a corresponding candidate query

C, we can generalize as follows:

Q: a1 AND a2

49

C: b1 AND b2

The remainder queries generated are:

R1: (a1 – b1) AND a2

R2: a1 AND (a2 – b2)

In Figure 14, the value ‘Q’ for inequality predicate p1 in the matrix means that the

remainder query generated has to have the same range as incoming query Q for

predicate p1. Similarly the value ‘d’ indicates that the range difference (Q-C) must be

taken for this predicate.

In general, for ‘n’ inequality predicates in a given query there are only n remainder

queries generated through this approach.

 p1 p2

R2 Q d

R1 d Q

p1 p2 p3

Q Q d

Q d Q

d Q Q

Figure 14: Matrices representing remainder queries for two and three inequality

predicates in a given query for Approach 2

50

3.6 Final Example

Let us consider a further example to understand the working of Contquer algorithm.

Consider the following incoming query (Q) and a candidate set C having five initial

candidate queries C = {C1, C2, C3, C4, C5}. This initial set is obtained as described in

Section 3.3. Only the WHERE clauses of the queries are shown in the example.

Q: city = “MONTREAL” AND salary >= 25000 AND salary < 80000

C1: city = “MONTREAL” AND salary > 60000 AND salary < 80000

C2: city = “TORONTO” AND salary >= 25000 AND salary < 60000

C3: city = “MONTREAL” AND salary >= 25000 AND salary < 45000

C4: city = “VANCOUVER” AND salary > 60000 AND salary < 100000

C5: city = “MONTREAL” AND salary > 100000 AND salary < 150000

The Contquer algorithm first of all checks if the queries in C fulfill all the equality

predicates of Q. C2 and C4 do not fulfill this condition and are removed from the list C

and eliminated from further consideration. The updated candidate set is C = {C1, C3,

C5}. The next step determines for all inequality predicates the ranges of all candidate

queries in C and of Q. Only the salary attribute has to be considered in our example.

Q: salary [25000 , 80000)

C1: salary (60000, 80000)

C3: salary [25000, 45000)

C5: salary (100000, 150000)

After identifying the ranges, the algorithm checks for containment by comparing the

ranges of each of the queries in the candidate set C with the corresponding ranges in

51

Q. C1 and C3 are within the range of Q, and therefore, have potential for being

selected for partial containment. C5 is not in the range of Q and is discarded. The

updated candidate set is now C = {C1, C3}.

As discussed previously, if there is more than one potential query to be selected, the

query in C having the most tuples in its result set is selected. Assume C3 has more

tuples in its result set than C1. Then C3 is selected as a partial hit and its result set is

saved for a merge later on. After C3 is selected, C = {C1} and a remainder query (R = Q

– C3) is generated:

R: city = “MONTREAL” AND salary >= 45000 AND salary < 80000

A recursive algorithm is employed. The remainder query R becomes the current

incoming query Q and the Contquer algorithm is continued with the current candidate

set which only has C1 left in the candidate cached query list. Therefore, the range for

inequality predicate for both C1 and Q are compared.

Q: salary [45000 , 80000)

C1: salary (60000, 80000)

C1 is within the range of Q and a partial response can be gathered from it and is

considered as a partial hit. A new remainder query is generated as (R = Q – C1):

R: city = “MONTREAL” AND salary >= 45000 AND salary <= 60000

Since there are no more queries in the candidate set that can be compared for

overlapping regions, the final remainder query is sent to the database system. Finally,

the results from partial cached queries of C3 and C1, and the tuples from database are

52

merged and returned to the client.

3.7 Complex Queries

Queries can have special operators in their WHERE clauses such as IN and BETWEEN.

The IN operator is handled similar to OR operators. For that, IN operators are

transformed into OR operators. For example the following query uses the IN operator

in its WHERE clause, which we transform into an OR operator.

SELECT *

FROM employee

WHERE city IN (‘Montreal’ , 'Toronto')

 AND salary > 40000;

 SELECT *

FROM employee

WHERE (city = 'Montreal'

 OR

 city = 'Toronto') AND

 salary > 40000;

BETWEEN operators are transformed into two inequality comparison predicates of

greater than equals (>=) and lesser than equals (<=) for the same attribute. For

example the following query, using the BETWEEN operator in its WHERE clause, is

transformed so that it only has inequality predicates.

SELECT *

FROM employee

WHERE salary BETWEEN

 40000 AND 80000;

 SELECT *

FROM employee

WHERE salary >= 40000 AND

 salary <= 80000;

53

3.8 Commutativity of Predicates

AND and OR operators are commutative. The order of the predicates does not change

the semantics of the query and its result set. For example, the following three queries

are syntactically different but all of them have the same response.

Q1: salary > 40000 AND salary < 80000 AND city = ‘Montreal’;

Q2: city = ‘Montreal’ AND salary > 40000 AND salary < 80000;

Q3: city = ‘Montreal’ AND salary < 80000 AND salary > 40000;

Since in this thesis we only look for single table queries and all the queries are

transformed into DNF, supporting commutativity is simple.

54

Chapter 4

4 Distributed Cooperative Query Caching

Architecture

4.1 Introduction

In the previous chapter we introduced how the Contquer algorithm works on a single

application server. This chapter is dedicated to a distributed environment. We first

present a distributed caching infrastructure that allows for cooperation of caches.

Then we show how Contquer can be used in this distributed environment.

4.2 Distributed Cooperative Cache

To meet the demands for large-scale web-sites, it is very common to use multiple

application servers. A load balancer forwards each HTTP request to one of these

application servers, for example, in a round robin fashion. As each application server

has its own cache, we have multiple caches in the system. This can reduce the load on

55

the database if utilized effectively.

In most existing systems, each application server caches data without knowing what

other application server caches have stored. With such an approach it is possible that

the same object resides in many caches. As a result, the full capacity of the cache

space is not exploited.

Therefore, in the context of this thesis work we have developed a cooperative caching

infrastructure. Each application server cache in the system has knowledge of all caches

and has access to contents of other caches. As a result we can utilize the aggregate

capacity of all the caches very well. We term this approach "distributed cooperative

cache". That is, every cache in the system knows what other caches have stored. Thus,

if a request for a certain query or object is made to an application server that does not

have that query or object in its cache it can check if other caches have that requested

query or object. If this is the case, a remote call is made to the remote cache fetching

the object from there.

In order to facilitate such remote access each cache needs to know the content of the

other caches. We have implemented this distributed cooperative cache with the

JBoss/Hibernate/EHCache infrastructure as shown in Figure 15.

56

Figure15: Our cooperative cache layer in JBoss / Hibernate / EHCache infrastructure

Our cooperative cache is a thin layer above EHCache, the second-level cache. It wraps

the original EHCache providing exactly the same interface. Whenever Hibernate makes

a call to check whether a data item is in the second-level cache our cooperative layer

will either return it from the local cache or a remote cache if it resides in any of the

other caches.

In order to know where objects are cached, the cooperative cache layer at each node

maintains a cache directory. The directory contains for each object cached a reference

to the location of the cached object. The directory information also keeps track of the

content in the query cache. For example, an object O stored at application server A

would be listed as a local object available locally from its second level cache but for all

other caches in the system, O would be listed as a remote object located at application

server A. On receiving a request for O, if the request is received by application server

A, a local call is made to its cache. Otherwise, if it exists remotely, the location in the

57

directory structure helps us identify which cache has the object and therefore, a

remote call is made to that cache to fetch O.

Having such cooperative mechanism in a distributed environment, it is important that,

if possible, we utilize the aggregate cache capacity of the overall system as much as

possible. Thus, we make sure that any object is stored only once in the whole system.

If an object O exists at application server X, none of the other application servers’

caches in the system will put O in their local caches. This greatly increases the overall

cache capacity. The cache directory, distinguishing between local objects and remote

objects, makes sure that an object is cached only at one location.

A query might not exist in the query cache but it is possible that some of the objects in

its result set exist in either local or remote second-level caches. As we discussed, we

make sure only one copy of an object exists in all the caches. So irrespective at which

node the query is requested, objects in the query’s result set that do not exist in any of

the second-level caches are fetched from the database and cached at that requested

node’s second-level cache.

The cache directory up-to-date at each server needs to be kept up-to-date. Whenever

a new object/query is loaded into a cache or an object/query is removed from a cache,

the cooperative cache layer at this node multicasts this information to all other servers

who then update their directory information. As a result, the directory information at

all servers is consistent.

As an example, assume that client X poses a query Q1 at application server A (e.g. all

products priced less than $2000). Also, assume the query Q1 is not cached yet. Thus, it

is submitted to the database and the results are cached in both the first level cache

and the second level cache. This indicates the query string and associated object

58

identifiers in the query cache and objects themselves are stored in the second-level

cache.

Furthermore, the information that query Q1 and its result set are newly cached at

application server A’s cache is published to all the application servers in the whole

system. Therefore, the cooperative caching layer at all servers update their directory

information to list Q1 as cached at application server A. This means the directory at

application server A contains a reference for Q1 pointing to its cache entry in the

query cache. The location is marked as local since it is locally stored in its own cache.

The cache directories at all other application servers in the system, however, only

have a reference of Q1, i.e., the query string of Q1 and application server A listed as its

location. Thus, if a client Y poses the same query Q1 at application server B, the

cooperative caching layer at B will find in the cache directory that query Q1 is already

cached at application server A. Thus, the cooperative cache layer makes a remote call

to A, fetches the identifiers of all objects in the result set of Q1. The objects

themselves might be located at different application servers’ second-level caches. In

order to have fast object transfers, we make batch calls to each server that has at least

one cached object. This batch call retrieves all objects in the result set that are cached

by this server with only one data transfer. Upon merging results from various

application servers, the final result set for Q1 is formulated and is returned to the

upper layer.

59

4.3 Contquer in a Distributed Environment

The Contquer algorithm supports the distributed cooperative caching model as

discussed in Section 4.2. This means that all the properties of the distributed

cooperative caching model can be used in the query caching model that we have

developed.

As objects are distributed across different caches in the distributed cooperative

caching model, queries and their results are distributed across different caches.

However every cache knows about all the queries that other cache nodes have stored,

but not their result sets.

Thus, in the algorithm, when identifying an initial candidate set, all queries that are

cached in the whole system are taken into consideration. The cache directory that

exists in every application server contains all the query strings that are either cached

locally or remotely. The cache directory therefore provides us with all cached queries,

from which an initial candidate set is identified. The Contquer algorithm then looks for

exact matches, and if not found, does further confinement of candidate sets as

explained before. If a candidate selection is required for partial containment from a

candidate set having more than one query, the one with the largest number of tuples

should be selected. In this case if the query in the candidate set is located at a remote

location, a remote call is made to get the number of tuples for that query.

60

Chapter 5

5 Experimental Results

5.1 Introduction

This chapter shows results from the experiments conducted to analyze the behavior of

the cooperative cache model and the Contquer algorithm. We begin with a description

of the performance metrics used in our performance measurements, and the

benchmarks that were used for the experiments. This is followed by a comparison of

performance numbers for different caching designs.

5.2 Hardware Platform

All machines, which include client emulator, application servers and the database,

have the same hardware. Each machine has Intel (R) Pentium (R) Dual CPU 2.80GHz, 1

GB RAM and an 80 GB hard disk drive. All machines are connected through a 100

Mbps LAN switch.

61

5.3 Software Environment

All machines run Ubuntu 9.1 Linux distribution and have three application servers

running on three different machines. We use JBOSS 5.1.0 as our application server.

Linux Virtual Server (LVS) installed on a different maching has been used as a load

balancer. All the HTTP requests go through LVS to the 3 application servers in a round

robin scheme. PostgreSQL 8.4.1 is used as our back end database server, again

installed on a different machine.

5.4 Performance Metrics

We use several performance metrics to analyze the behavior of the caching system.

5.4.1 Average Response Time

We measure average response time as:

T = total response time for n queries / n.

It represents the total time needed from sending a web-page request (HTTP request)

from the client to receiving the response and showing it on the client’s browser.

Note that we only consider clients in the same LAN.

62

5.4.2 Throughput

Throughput is measured as web-interactions per second (WIPS), i.e., the total number

of web requests that are satisfied per second by the application servers.

5.4.3 Query Cache Hit Rate

The query cache hit rate includes both full and partial hits, and is represented as two

different entities. Any query that has an exact match or is fully contained in the query

cache is considered a query hit. Otherwise, any incoming query having one or more

partially contained queries in the cache is considered as one partial hit, irrespective of

the number of partial responses contained in the cache for that incoming query.

5.5 Measurement Methodology

We evaluated our Contquer model using two different benchmarks, namely RUBiS and

a micro-benchmark. We use a client emulator, which allows us to change the load of

the application by varying the number of emulated clients. Each experiment runs on

an average for one hour, where the first 25% of the time is used to warm up the cache

(warm-up phase) and the last 15% of the time is considered as cool-down phase. The

time in between is considered as measurement phase and the results are measured

only in this phase. Each experiment also starts with the same identical database.

We compare EHCache, the cooperative cache model and the Contquer

implementation. EHCache represents the normal caching mechanism including simple

query caching. Cooperative cache is the distributed caching mechanism where

duplicate entries in the cache are avoided. It also includes a simple query caching

model. The Contquer model represents the implementation of our Contquer

63

algorithm, which is again a distributed caching model.

5.5.1 Load Generation

Workload is generated in the used benchmarks by having multiple clients running

concurrently. Each client sends request to the application servers as soon as the

previous request’s response is received.

5.5.2 RUBiS Benchmark

RUBiS is an auction site prototype modeled after eBay that is used to evaluate

application server performance and scalability [16]. Several versions of RUBiS are

available. We have used the RUBiS Hibernate Java servlets version for our

experiments. The benchmark is purely read-oriented, as we have only used the

browsing mix of the benchmark for the evaluations.

5.5.3 Micro Benchmark for Query Caching

In RUBiS, most of the queries can only be satisfied by an exact query as queries mostly

have only equality comparison predicates and no inequality comparison predicates in

there WHERE clause. Thus, we needed another benchmark that can reflect the true

potential of the Contquer cache model and act as our primary benchmark.

The micro-benchmark uses the same database schema as the one used in RUBiS.

Based on that schema a few queries were generated that included queries having

equality predicates only, and also both equality and inequality predicates. The

generated queries had empty query parameters and for each of these queries many

different queries were generated having different values of the parameters. The

64

parameter values were assigned randomly but lied within the minimum and maximum

values that existed in the database for that attribute. For example a query Q was

generated as follows:

Q: SELECT *

FROM item

WHERE category = ? AND price > ? AND price < ? ;

The query parameters, i.e., the attribute values of category and price were left empty.

Starting from there, multiple queries were generated with assigned attribute values

such as (only WHERE clause shown here):

Q1: category = 4 AND price > 1000 AND price < 5000

Q2: category = 5 AND price > 3000 AND price < 4500

Q3: category = 6 AND price > 100 AND price < 1000

Q4: category = 4 AND price > 3000 AND price < 4000

Q5: category = 4 AND price > 7500 AND price < 10000

Above queries (Q1 to Q5) are only a few queries that were generated from the source

query Q.

5.6 Experimental Results

We studied the effects of the Contquer caching model with the two benchmarks

separately.

65

5.6.1 RUBiS Benchmark

As discussed, most of the queries in this benchmark are very specific in nature and

most include only equality predicates in their WHERE clauses. Still, there were a few

queries that could potentially exploit the Contquer algorithm.

Figures 16 and 17 show the average response time and throughput for the browsing

mix of RUBiS, respectively, with 1000, 1500 and 2000 clients submitting the requests.

Compared to EHCache, the cooperative cache has significant lower response time and

high throughput. Although it only supports simple query caching, the fact that the

cooperative cache can hold more objects as caches can cooperate with each other,

more queries can be stored in the cache (local or remote). Therefore queries can be

served more often from the cache leading to lower response time and high

throughput.

The Contquer cache model reduces response time and increases throughput further,

but to a lesser degree. The reason for the little improvement is that there are not

many queries in the benchmark that can potentially become partial hits.

66

Figure 16: Average response time for RUBiS benchmark

Figure 17: Throughput in WIPS for RUBiS benchmark

67

The results in response time and throughput are best explained by looking at cache hit

rates. The gain in query cache hit rate as shown in Figure 18, is very substantial for the

cooperative cache compared to EHCache as it improves from 23% to 48%, almost

110% improvement. Incoming queries forwarded to an application server may be

cached at some other application server and therefore, because of the cooperation

between the nodes, it results in a query hit, which is not the case for EHCache. For the

Contquer cache model the query hits increased from 48% to 50%, which is a very small

change. Here, the 2% change only reflects queries that are fully contained within the

query cache. A 7% further improvement results from partial containment of cached

queries, which results in an overall improvement of 20% for the query hits. Note, that

the increase in the query hits due to partial containment means that 7% of all queries

have one or more partially contained queries, which also resulted in generating

remainder queries that are sent to the database.

Figure 18: Query cache hit rate (%) for RUBiS benchmark and partial hits for Contquer

cache model

68

5.6.2 Micro-Benchmark

The micro-benchmark acts as our primary benchmark as it reflects the true potential

of the Contquer algorithm. First, we wanted to figure out the breakdown of response

time in terms of percentage of time spent at the database and the application servers.

Figure 19 shows this breakdown of response time for EHCache, the cooperative cache

and the Contquer cache model. We clearly see that for EHCache, most of the time is

spent at the database, showing the huge potential for performance gains from query

caching. In fact, this gain in performance improvement can be seen by looking at the

results for the cooperative cache and Contquer cache model.

Figure 19: Breakdown of the response time into percentage of the total time spent at

the database and application server

69

In Figure 19, the total time spent at the database represents the total time of sending

the query to the database from the application server, execution of the query at the

database and the results returned to the application server. The percentage of the

total time spent at the application server includes:

 Network traffic generated between the client and the application server

including the HTTP request sent from a client to an application server

and the response that is sent back to the client by the application

server in the form of HTML pages.

 Application server processing.

 Network traffic among application servers due to cooperation. This

occurs only in the cooperative cache and Contquer cache model.

Figures 20 and 21 show the response time and throughput, respectively, for the micro

benchmark for the different caching models. Since the database becomes the

bottleneck during some periods of the experiment, the cache improves throughput, in

addition to producing better response times. The response time with the cooperative

cache is barely half the response time recorded for EHCache. The Contquer model

further reduces response times in a significant way. Similarly, throughput is

significantly improved from 65 WIPS for EHCache to 154 WIPS (almost 140%) for the

cooperative cache model and to 181 WIPS for the Contquer cache model.

70

Figure 20: Response time for micro benchmark

Figure 21: Throughput (WIPS) for micro benchmark

71

The query hit rates for EHCache, cooperative cache and Contquer cache model are

shown in Figure 22. The improvements are significant for both the cooperative and

Contquer cache model. Almost 240% improvement compared to EHCache is recorded

for the cooperative cache, which had 44% query hits as compared to 13% for EHCache.

For the Contquer cache model, the full query hits increased to 51% and further

improvements resulted from 15% partial hits of cached queries. The increase of 7%

(44% to 51%) in cache hit rates means that the Contquer cache model found a full

containment from more than one query. The 15% partial hits are further categorized

in Figure 23. 4.2% of the overall queries found one matching sub query in the cache,

4.8% found two, 3.15% found three, 1.2% found four and 1.65% found five or more

partial queries in the cache.

Figure 22: Query cache hit rate for micro benchmark

72

Figure 23: Partial hit rate breakdown into number of partial queries found in the cache

Finally, Figure 24 shows the response time for different number of clients. The

experiment was conducted under different number of emulated clients for EHCache,

Cooperative cache and Contquer cache model. Response time becomes stagnant upon

reaching 7500 clients for all the models. Upon heavy load of over 9000 clients the

experiment saturates, thereby increasing the response time drastically. Although the

change in response time from 8500 to 9000 clients for EHCache model is more than

our cooperative cache model and Contquer cache model.

73

Figure 24: Performance comparison for different number of clients for micro-
benchmark

74

Chapter 6

6 Conclusions and Future Work

6.1 Introduction

In this chapter we discuss the contributions made by this thesis. We start with an

overview of the driving principle in the design of our cooperative query caching

algorithm Contquer. We then discuss the contributions made by this thesis. Then, we

briefly discuss the different steps of the Contquer algorithm. We conclude with a

discussion of results on two different benchmarks that were used to conduct all the

experiments for measuring performance improvements. In the future work section,

we discuss possible enhancements that can be done to Contquer.

6.2 Conclusions

E-commerce web applications are hosted in a multi-tier architecture, where database

systems are often the bottleneck. A common approach to scale the database

component is query result caching. Queries and their results are cached such that

future requests for the same queries do not need to go to the database, and have

shorter response times. Work already exists in this area but has two major limitations.

75

First, the aggregate capacity of all the caches in the system is not fully exploited.

Second, queries can only be served from the cache if they exactly match an exisiting

query.

In this thesis we introduce Contquer, a distributed cooperative query caching

algorithm. It uses a distributed cooperative caching architecture whereby all

application server caches interact with each other such that an object is stored only

once in the whole system. Therefore, we exploit the aggregate capacity of all caches.

Local and remote calls are made to fetch objects that exist on local or remote caches,

respectively. Moreover, we optimize the algorithm by serving not just exact queries

but also part of the query’s response from various partial queries. Missing records are

fetched from the database by generating remainder queries.

The Contquer algorithm involves six steps. In the first step, the incoming query is

transformed into a DNF. An initial candidate set for full or partial containment is

identified as the next step. The third step looks for an exact match of the query in the

cache. If an exact query is not found, refinement of the candidate set takes place as

the next step. Equality and inequality constraints are checked. In step 5, a query is

chosen which contains a partial response to the query posed. A remainder query is

generated to get the missing tuples that do not exist in that partial response. The

algorithm further looks for containment with this new remainder query until there are

no partial queries in the cache. In that case, the missing tuples are fetched from the

database. Finally, in step six all the results from different partial queries and database

are merged.

We evaluate our cooperative caching model and Contquer with two different

benchmarks. All the results show that our cooperative caching architecture improves

response time and throughput because of a higher cache hit rate. Also, utilizing a

76

partial response for a query from the cache means lower load on the database.

6.3 Future Work

In this thesis, we only looked into single table queries, as queries involving multiple

tables has significant complexity. The Contquer algorithm also does not support all

SQL operators. Thus, queries with multiple tables are interesting and supporting

operators like NOT, NOT IN, LIKE tasks for future work.

77

Bibliography

[1] C. Amza, G. Soundararajan, and E. Cecchet. Transparent caching with strong

consistency in dynamic content web sites. In International Conference on

Supercomputing (ICS), pages 264–273, 2005.

[2] M. J. Franklin, M. J. Carey, and M. Livny. Transactional client-server cache

consistency: Alternatives and performance. In ACM Transactions on Database Systems

(TODS), 22(3):315–363, 1997.

[3] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: A scalable wide-

area web cache sharing protocol. In ACM SIGCOMM Conference, pages 254–265,

1998.

[4] S. Gadde, M. Rabinovich, and J. S. Chase. Reduce, reuse, recycle: An approach to

building large internet caches. In Workshop on Hot Topics in Operating Systems, pages

93–98, 1997.

78

[5] Jim Challenger, Arun Iyengar, and Paul Dantzig. A scalable system for consistently

caching dynamic web data. In Proceedings of IEEE INFOCOM’99, pages 294–303,

March 1999.

[6] Anindya Datta, Kaushik Dutta, Helen M. Thomas, Debra E. VanderMeer, Krithi

Ramamritham, and Dan Fishman. A Comparative Study of Alternative Middle Tier

Caching Solutions to Support Dynamic Web Content Acceleration. In Proceedings of

the 27th International Conference on Very Large Databases, pages 667–670,

September 2001.

[7] Q. Luo, S. Krishnamurty, C. Mohan, H. Pirahesh, B. Lindsay, and J. Naughton.

Middle-tier database caching for e-business. In Proceedings of the 2002 ACM

International Conference on Management of Data, pages 600–611, June 2002.

[8] Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching for database-backed

web sites. In Proceedings of the 27th International Conference on Very Large

Databases, pages 667–670, September 2001.

[9] http://dev.mysql.com/doc/refman/5.1/en/query-cache.html

[10] http://ehcache.org/

[11] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer

networks. In ACM SIGMOD Conf., pages 177–190, 2002.

[12] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal. Enabling dynamic

content caching for database-driven web sites. In ACM SIGMOD Conf., pages 532–543,

79

2001.

[13] M. E. Dick, E. Pacitti, and B. Kemme. Flower-cdn: A hybrid p2p overlay for efficient

query processing in CDN. In Int. Conf. on Extending Database Technologies (EDBT),

2009.

[14] O. D. Sahin, S. Antony, D. Agrawal, and A. E. Abbadi. Probe: Multi-dimensional

range queries in p2p networks. In Int. Conf. on Web Information Systems Engineering

(WISE), pages 332–346, 2005.

[15] K. Lillis and E. Pitoura. Cooperative xpath caching. In ACM SIGMOD Conf., 2008.

[16] http://rubis.ow2.org/

[17] http://en.wikipedia.org/wiki/Disjunctive_normal_form

