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ABSTRACT

The fluid-elastic instability of hanging cantilevered tubes subject to internal

and external flows has been studied. At high enough flow velocities, these flexible

tubular cantilevers experience amplified oscillations (flutter) and/or static divergence

(buckling). Specifically, the system studied consists of a flexible tubular hanging can-

tilever, which hangs concentrically within a larger diameter outer rigid tube. The

fluid flows inside the cantilever as well as externally in the annular space. Two flow

configurations are considered here. For configuration (iii)1 , fluid is directed from the

clamped end of the cantilever to the free end and flows in the opposite direction in

the annular region between the cantilever and the outer tube. For the configuration

(iv) case, the fluid is aspirated through the cantilever tube and discharged in the an-

nular space. This entire system was contained within a closed cavity and immersed

in surrounding fluid. Modification of the traditional system from axial to radial

flow at the tube free end was accomplished with the use of end-pieces with holes

perpendicular to the tube. The end-piece created an added mass effect in addition

to diverting flow radially. For configuration (iv), experimental results indicated no

changes in system behavior between axial and radial flow. For configuration (iii), the

experimental results showed that discharging radial flow through the free end of the

cantilever resulted in stability and no flutter, while cantilevers conveying axial flow

1 Configurations (i) and (ii) have been previously studied and are not detailed in
this thesis [17]
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through the free end displayed loss of stability by flutter. A linear model is derived

based on earlier work by Paidoussis et al. (2014), in which series solutions are em-

ployed using Euler-Bernoulli beam comparison functions and applying the Galerkin

method, for configuration (iii) [23]. The experimental results are compared with the

theoretical model results. The effects of end-piece mass, confinement, pipe length,

and comparisons between radial and axial flow have also been studied. Theoretical

predictions for this system were examined by varying several parameters including

the mass of the end-piece (me), confinement length fraction (rann ), and pipe length

(L). The results indicated that, as the mass of the end-piece was increased, the can-

tilever was destabilized. With regards to confinement, experimentally stability was

seen for all cases and theoretically predicted for most cases. Theoretically and exper-

imentally, stability for all modes was seen for all tube lengths considered, suggesting

that stability may be independent of cantilever length. This system is relevant to

brine production as well as to the salt-cavern hydrocarbon storage industry, in which

piping conveying brine/oil is subject to flow-induced vibrations and instabilities. Rel-

evant brine-string system parameters were run in the theoretical model and resulted

in stability for several combination of system parameters. Additionally, the ratio

between external and internal flow velocity was investigated for configuration (iii)

flow direction and proved that higher ratios have a de-stabilizing effect.
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ABRÉGÉ

L’instabilité fluide-élastique des tubes suspendus en porte-à-faux et soumis à

des écoulements internes et externes est étudiée. À des vitesses d’écoulement suff-

isamment élevées, ces tubes flexibles présentent oscillations dynamiques (battement)

et/ou une divergence statique (flambage). Plus précisément, le système étudié se

compose d’un encastré-libre, qui est suspendu de manière concentrique à l’intérieur

d’un plus grand tube rigide externe. Le fluide circule à l’intérieur du porte-à-faux,

ainsi à l’extérieur dans l’espace annulaire. Deux configurations d’écoulement sont

considérées ici. Pour la configuration (iii),2 le fluide est dirigé de l’extrémié serrée du

porte-à-faux à l’extrémité libre et il écoule dans la direction opposée dans la région

annulaire entre le porte-à-faux et le tube extérieur. Pour la configuration (iv), le

fluide est aspiré dans le tube en porte-à-faux et déchargé dans l’espace annulaire. Ce

système est entièrement contenu dans une cavité fermée et immergé dans un fluide.

La modification de l’écoulement axial à un écoulement radial dans l’extrémité libre

du tube a été réalisée en utilisant une extrémité avec de trous perpendiculaires à

l’axe du tube. Cet embout crée un effet de masse ajouté en plus de dévier radiale-

ment l’écoulement. Pour la configuration (iv), les résultats expérimentaux n’ont

pas montré un changement dans le comportement du système avec circulation axial

ou radial. Pour la configuration (iii), les résultats expérimentaux ont montré que

2 Les configurations (i) et (ii) ont déjà été étudiées détaillées dans cette thèse [17]
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la décharge de l’écoulement radiale à l’extrémité libre du porte-à-faux a abouti à

une stabilité et aucun flottement, tandis que les tubes avec un écoulement axial à

l’extrémité libre ont montré une perte de stabilité avec du flottement. Un modèle

linéaire a été dérivé sur la base de travaux antérieurs de Paidoussis et al. (2014),

dans lesquels des solutions en série ont été employés en utilisant les fonctions propres

des poutres Euler-Bernoulli et en appliquant la méthode de Galerkin pour la con-

figuration (iii) [23]. Les résultats expérimentaux ont été comparés avec les résultats

du modèle théorique. Les effets de la masse des extrémités, de l’enfouissement, de

la longueur de la conduite et des comparaisons entre l’écoulement radial et axial ont

également été étudiés. Les prédictions théoriques de ce système ont été examinées

en variant plusieurs paramètres, tels que la masse de l’extrémité (me), le diamètre de

l’anneau (rann) et la longueur du tube (L). Les résultats indiquent qu’avec un embout

plus massif, le porte-à-faux était déstabilisé. En ce qui concerne le blocage partiel

du tube, la stabilité expérimentale a été obtenue dans tous les cas et théoriquement

prévue pour la plupart des cas. Théoriquement et expérimentalement, la stabilité de

tous les modes a été observée pour toutes les longueurs de tube considérées, ce qui

suggère que la stabilité peut être indépendante de la longueur en porte-à-faux. Ce

système est pertinent pour la production de saumure ainsi que pour l’industrie du

stockage des hydrocarbures à base de sel dans lequel la tuyauterie transmettant de

la saumure / de l’huile est soumise à des vibrations et des instabilités induites par

l’écoulement. Les paramètres du système de la saumure concernée ont été adoptés

dans le modèle théorique et ont entrâıné une stabilité pour plusieurs combinaisons de

paramètres du système. En outre, le rapport entre la vitesse d’écoulement externe et
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interne a été éudié pour la configuration (iii) et a montré que des ratios plus élevés

ont un effet déstablissant.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Fluid structure interactions and applications . . . . . . . . . . . . 1
1.2 Background and motivation . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 SMRI Background . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 System studied . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Discharging Cantilever . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Aspirating Cantilever . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Cantilevers subject to internal and external flows . . . . . . 10

1.4 End-Mass effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Discharging Radial flow . . . . . . . . . . . . . . . . . . . . 14

1.5 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Structural Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Hydrodynamic Forces due to internal flow . . . . . . . . . . . . . 19
2.3 Hydrodynamic Forces due to External Flow . . . . . . . . . . . . 21
2.4 Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Method of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



3 Theoretical Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Theoretical Results for Experimental Parameters . . . . . . . . . . 34
3.1.1 Effect of Confined Length Fraction rann . . . . . . . . . . . 35
3.1.2 Effect of Cantilever Length . . . . . . . . . . . . . . . . . . 36
3.1.3 Effect of End-mass . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Theoretical Results for Brine-string parameters . . . . . . . 38
3.1.5 Effect of Confinement αch: Brine-string parameters . . . . . 39
3.1.6 Effect of Confined Length Fraction rann: Brine-string

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.7 Effect of End-piece Mass me: Brine-string parameters . . . 41
3.1.8 Stability with Brine-string parameters: The effect of radial

flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.1 Pressure Vessel . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Flexible Tubes . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.4 Schematic of System . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Flow-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Pressure Measurement . . . . . . . . . . . . . . . . . . . . 52

4.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Experimental Results: Radial Flow . . . . . . . . . . . . . . . . . . . . . 55

5.1 Experimental Results for Configuration (iv): Pipe aspirating fluid;
the annulus discharging fluid . . . . . . . . . . . . . . . . . . . 55

5.1.1 Comparison of Experimental Results for Configuration (iv) 55
5.1.2 Conclusions of Experimental Results for Configuration (iv) 59

5.2 Configuration (iii) Radial Flow Experiments . . . . . . . . . . . . 60
5.2.1 Comparison of Experimental Results for Configuration (iii) 60
5.2.2 The Effect of Confined Length Fraction . . . . . . . . . . . 64
5.2.3 The Effect of Tube Length . . . . . . . . . . . . . . . . . . 66
5.2.4 The Effect of Flow Area . . . . . . . . . . . . . . . . . . . . 67
5.2.5 The Effect of End-Piece Circumferential Symmetry . . . . . 68

x



5.2.6 The Effect of End-Piece Orientation . . . . . . . . . . . . . 70
5.2.7 Conclusions of Experimental Results for Configuration (iii) 71

5.3 Comparing configuration (iii) and (iv) Radial flow . . . . . . . . . 71
5.4 Comparison of Experiment with Theory . . . . . . . . . . . . . . . 72

6 Experimental Investigation
Configuration (iii) varying internal and external flow velocities . . . . . 74

6.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Experiment type 1 Results . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.3 Rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Experiment type 2 Results . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 0.2 Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 Ratio Comparisons . . . . . . . . . . . . . . . . . . . . . . 81

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xi



LIST OF TABLES
Table page

3–1 Dimensional and Non-Dimensional Parameters used Experimentally
and Applied Theoretically . . . . . . . . . . . . . . . . . . . . . . . 34

3–2 Parameters for Stability: Drill String System L=200 m . . . . . . . . 46

3–3 Parameters for Stability: Drill String System L=100 m . . . . . . . . 46

5–1 Experiment and Theory Comparison . . . . . . . . . . . . . . . . . . . 73

6–1 Ratio Comparisons: Experimental Critical flow velocities . . . . . . . 82

xii



LIST OF FIGURES
Figure page

1–1 Schematic of the Drill-String System . . . . . . . . . . . . . . . . . . 4

2–1 Schematic of configuration (iii) system with radial flow . . . . . . . . 17

2–2 Forces acting on a tube element . . . . . . . . . . . . . . . . . . . . . 18

2–3 Forces Acting on an Element of Internally Flowing Fluid of Length δx 20

3–1 Theoretical Results:Effect of Confined Length Fraction rann . . . . . . 36

3–2 Theoretical Results:Effect of Tube Length L . . . . . . . . . . . . . . 37

3–3 Theoretical Results: Effect of End-Mass me . . . . . . . . . . . . . . . 38

3–4 Theoretical Results: Drill-String Parameters:Effect of αch . . . . . . . 40

3–5 Theoretical Results:Brine-String Parameters: Effect of rann . . . . . . 41

3–6 Theoretical Results:Drill-String Parameters:Effect of End-Piece Mass
me for several rann L=100 m . . . . . . . . . . . . . . . . . . . . . . 43

3–7 Theoretical Results:Drill-String Parameters:Effect of End-Piece Mass
me for several rann L=200 m . . . . . . . . . . . . . . . . . . . . . . 45

4–1 Pressure Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4–2 Experimental Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4–3 Schematic of the System . . . . . . . . . . . . . . . . . . . . . . . . . 50

5–1 Rms:Configuration (iv) Axial and Radial Flow . . . . . . . . . . . . . 56

5–2 Time Series: Configuration (iv) . . . . . . . . . . . . . . . . . . . . . 58

5–3 PSD: Configuration (iv) . . . . . . . . . . . . . . . . . . . . . . . . . 59

5–4 Rms: Configuration (iii) Axial vs. Radial Flow Comparison . . . . . . 62

xiii



5–5 Time Series: Configuration (iii) Axial vs. Radial Flow Comparison . . 63

5–6 PSD: Configuration (iii) Axial Flow . . . . . . . . . . . . . . . . . . . 64

5–7 Experimental Results: Configuration (iii): Effect of rann . . . . . . . . 65

5–8 Experimental Results: Configuration (iii): Effect of Tube Length (L) 67

5–9 Experimental Results: Configuration (iii): Effect of Flow Area . . . . 68

5–10 Experimental Results: Configuration (iii): Effect of End-Piece Balance 69

5–11 Experimental Results: Configuration (iii): Effect of End-Piece Orien-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6–1 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6–2 Time Series for Increasing Uo . . . . . . . . . . . . . . . . . . . . . . . 77

6–3 PSD: Ui=2 m/s and Ui varied . . . . . . . . . . . . . . . . . . . . . . 78

6–4 Time Series for 0.2 Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 80

6–5 PSD: 0.2 ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6–6 Comparing Instabilities for Uo/Ui ratios . . . . . . . . . . . . . . . . . 82

6–7 Rms for Several Uo/Ui Ratios . . . . . . . . . . . . . . . . . . . . . . 83

xiv



CHAPTER 1
Introduction

1.1 Fluid structure interactions and applications

Fluid-structure interaction is the study of the interactions of an impressionable

structure subject to an internal flow or surrounding fluid flow. Two main types of

instability are considered here, buckling or static divergence as well as flutter or dy-

namic, amplified oscillations. An example of flow-induced buckling is the collapse of

pliable shells. Physiologically for example, veins can collapse due to blood pressure,

flow, and tissue interactions. Examples of flutter include the waving of flags in the

wind or oscillatory motion of a free flowing garden hose. While flow-induced vibra-

tions are typically considered to be a negative result of fluid-structure interactions,

these vibrations are not always negative. Eels as well as other aquatic animals use

these vibrations to move by self-propulsion. An additional example is how wind

dynamics is responsible for seed dispersal for plants.

The fluid-structure interactions of pipes and cylinders conveying internal flow

and/or subject to external flow are of particular academic and industrial interest.

The case of a pipe conveying fluid has become a paradigm of dynamics given its

usefulness in many engineering systems including nuclear reactors, heat exchangers,

and countless others. The dynamical behavior of cantilevered pipes conveying fluid

from the clamped end to the free end as well as reverse flow are of particular research

interest.
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Of present, fluid-elastic instability has been identified to cause bending and/or

breaking of pipe-strings used in solution mining and hydrocarbon storage. As repair

and replacement of the piping is expensive, investigation of such systems is desired.

This thesis addresses the fluid-elastic instability of this system.

1.2 Background and motivation

1.2.1 SMRI Background

Solution mining is a process in which water-soluble minerals are extracted from

drilled wells underground. Freshwater is pumped underground through very long

tubes and dissolves the minerals including potash trona, magnesium and potassium

salts forming a brine solution. The saturated brine solution is then extracted by

pumping in fresh water. After, the minerals can be obtained from the saturated

brine solution through a recryastallization process.

As a result of solution mining, underground caverns also called salt caverns are

formed. These caverns are then used for underground storage of natural gas, crude

oil, and other hydrocarbons and chemicals. In order to use these salt caverns for

hydrocarbon storage, long pipes or pipe strings are lowered 1-2 km into the Earth’s

surface through a borehole. Brine-strings or very long hanging cantilever pipes are

used to add/extract the hydrocarbon for example. The brine-string is clamped at

the top of the cavern and is placed concentric with a larger diameter outer rigid pipe

called the casing. The casing serves to support the borehole and does not extend

the full length of the inner cantilevered pipe, leaving the inner pipe hanging freely

near the bottom of the cavern. The product is added to the salt cavern by pumping

the fluid through the pipe string. To extract the product, brine solution is injected

2



causing the product to be displaced and then flow through the annular space between

the brine-string and the outer rigid pipe. These pipe strings are subject to bending

and/or breaking as a result of suspected flow-induced vibrations at high enough flows

and is the motivation for this thesis.

Several flow configurations are defined and named as configuration (i), (ii), (iii),

and (iv). They are based on internal and external flow conditions that are relevant

for salt cavern solution mining and hydrocarbon storage and they are described

hereafter.

1. Configuration (i), the tube discharges fluid (flow from clamped end to free end)

and there is no flow in the annulus

2. Configuration (ii), the tube aspirates fluid (flow from the free end to the

clamped end) and there is no flow in the annulus

3. Configuration (iii), the tube discharges fluid and the annulus aspirates fluid

4. Configuration (iv), the tube aspirates fluid and the annulus discharges fluid

While all of these flow configurations are relevant to the application, configura-

tions (i) and (ii) have been previously studied and addressed. Thus, configuration

(iii) and (iv) are the primary focus of this thesis.

1.2.2 System studied

Several flow configurations relevant to different salt cavern solution mining and

hydrocarbon storage are considered in this thesis including:

1. Configuration (iii) the tube discharging and the annulus aspirating fluid

2. Configuration (iv) the annulus discharging and the tube aspirating fluid

3



In the application, for configuration (iii) brine is added through the hanging

pipe string, so that the hydrocarbon product is aspirated through the annular space.

For configuration (iv), the reverse is true.

Figure 1–1: Schematic of the Drill-String System

1.3 Literature review

In this section, we build up to the concept of tubular cantilevers conveying fluid

that are subject to external flow and immersed in fluid. Intuitively it is logical to

break down this system following its historical development. Systems with internal

flow and external flows are considered separately and then simultaneously. Thus, the

literature review progresses as follows: discharging cantilevers, aspirating cantilevers,

cantilevers subject to internal and external flows. For a more exhaustive review of

the systems presented here, refer to [20], [22], and [23].
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1.3.1 Discharging Cantilever

Previous work relating to this system includes studies addressing tubular can-

tilevers conveying fluid. An early study of the dynamics of cantilevers conveying fluid

was completed by Benjamin, in which he considered an articulated cantilever pipe

conveying fluid from a theoretical and experimental perspective [1]. An articulated

cantilever system possesses N degrees of freedom and is a series of N rigid pipes

which are interconnected by N flexible joints. From here, the continuous cantilever

was considered for which N tends to infinity. By applying a Lagrangian approach to

the system, Hamilton’s principle for a system with infinite energy (due to continuous

flow in and out of the system) was obtained for this system for a period of oscillations

T . R denotes the position at the free end of the last pipe in the articulated system,

τ is the unit vector in the tangential direction at the free end of the last pipe.

The expression

∆W =

∫ T

0

−MU(Ṙ2 + Uτ · Ṙ)dt (1.1)

denotes the work (∆W ) done on the pipe by the fluid forces.

Further, the linear equation of motion was derived as

EI
∂4w

∂x4
+MU2∂

2w

∂x2
+ 2MU

∂2w

∂x∂t
+ (M +m)

∂2w

∂t2
= 0 (1.2)

for the continuous pipe conveying fluid, where EI is flexural rigidity of the pipe, m

is the mass of the tube per unit length, M is the mass of fluid, x is the longitudinal

coordinate, w is the lateral coordinate, and U is the internal flow velocity. MU2 ∂2w
∂x2

is

known as the centrifugal term, associated with the fluid forces in the curved portions

of the pipe. 2MU ∂2w
∂x∂t

is known as the Coriolis term. The last term corresponds
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to the inertial force. Using this model, Benjamin predicted amplified oscillations or

flutter for the articulated cantilever system for high enough internal flow.

This investigation was furthered by Gregory and Paidoussis, in which they con-

sidered a cantilever in a horizontal plane [7]. By applying a Newtonian approach

to this system, they arrived at the same equation as Benjamin. To solve this equa-

tion, two methods were used. The first method was used to obtain exact solutions

by setting w(x, t) = Re[
∑4

j=1Aje
iΛjx/L × eiΩjt] and applying cantilever boundary

conditions. The second method of solution was an approximate method, solved by

discretizing the system in terms of cantilever Euler-Beam eigenfunctions and using

the Galerkin method. Amplified oscillations for this system were predicted for both

the exact and approximate solutions. Experiments by Gregory and Paidoussis (1966)

confirmed oscillatory behavior predicted theoretically [8]. Additionally, the effect of

damping was also explored, and in some cases proved to be destabilizing.

In 1970, Paidoussis studied the dynamics of vertical hanging, cantilever pipes

conveying internal flow, experimentally and theoretically [19]. In contrast with Ben-

jamin, it was concluded that buckling does not occur for this system. For this system,

flutter was the only type of instability observed experimentally. It was found that

in the case of already buckled hanging cantilevers, internal flow actually served to

re-stabilize the system, before flutter instability emerged after further increase in

flow. Additionally, an expression for the work done on the cantilever by the fluid

forces was developed over a period of oscillation, T, and is,

∆W = −MU

∫ T

0

(
(
∂w

∂t
)2 + U(

∂w

∂t
)(
∂w

∂x
)

)
dt (1.3)
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This equation is consistent with the equation provided by Benjamin. For a sim-

ply supported pipe, i.e. a pipe with supported ends, ∂w
∂t

= 0 and as a result, ∆W = 0.

This is indicative of a gyroscopic conservative system. However, a cantilever pipe

is a non-conservative system because ∆W 6= 0. For small values of internal flow

velocity, U , then ∆W < 0 and motions of the pipe are damped, as energy flows from

the pipe to the fluid. In the case of sufficiently large U , ∆W > 0 and thus, the

pipe gains energy from the fluid causing free motion of the pipe to become amplified.

Physically, this corresponds to a dragging, lagging motion of the free end of the pipe,

which was verified experimentally and was in line with previous work.

Paidoussis and Issid (1974) developed a linear equation of motion for a pipe

conveying fluid [11]. In the following equation, gravity, damping based on the pipe

material, dissipation to the surrounding fluid, effects of external tensioning and pres-

surization were considered. Additionally, variation in U was also accounted for.

(E∗
∂

∂t
+ E)I

∂4w

∂x4
+ [MU2 − T̄ + p̄A(1− 2νδ)]

∂2w

∂x2

−[(M +m)g −MdU

dt
](L− x)

∂2w

∂x2

+2MU
∂2w

∂x∂t
+ (M +m)g

∂w

∂x
+ c

∂w

∂t
+ (M +m)

∂2w

∂t2
= 0

(1.4)

E∗ is the Kelvin-Voigt type dissipation of the pipe material, T̄ is the external

tension, p̄ is the external pressurization, A is the internal cross-sectional area of the

tube, ν is the Poisson ratio of the material of the pipe, δ is a binary parameter

pertaining to axial sliding (equal to 0 when there is no contraint with respect to

axial motion at x = L and equal to 1 when axial motion is prevented for x = L),
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M is the mass of the fluid per unit length, and m is the mass of the pipe per unit

length.

In 2002, Doaré and Langre studied the flow induced instabilities of hanging

fluid-conveying pipes [5]. Here, the effect of pipe length on the stability of this

system was investigated. Experimentally and theoretically, it was determined that

flutter in these systems becomes independent of pipe length, beyond a specific critical

length. It was further explained that the stability of this hanging cantilever system

is a balance between the internal flow and the force of gravity, while internal flow

generates a de-stabilizing compressive force, the weight of the cantilever serves to

stabilize the system due to an induced tension.

1.3.2 Aspirating Cantilever

The problem of the aspirating cantilever, with internal flow directed from the

free end to the clamped end is a complex one. One of the earliest attempts made to

understand this system was researched by Paidoussis (1998) [20]. An experimental

investigation was completed by immersing a flexible pipe in a water reservoir with

a pump used to drive flow from the free end to the clamped end. While stability

was expected, the opposite occurred with the behavior characterized by amplified

oscillations.

One application of the aspirating cantilever configuration, ocean mining, gave

rise to further research into this problem. In ocean mining, a very long vacuum hose

aboard a boat is extended to the ocean floor, where it sucks up mineral-rich sea-

water. Modeling the behavior of this system, Paidoussis and Luu (1985) developed

an analytical model for this system [24]. In this model, the internal flow velocity,
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U was replaced with −U , simply to reverse the flow direction as compared to the

discharging cantilever system and thus model the flow as a reverse jet. Theoretically,

flutter for quite low flow velocities was predicted.

In 1999, Paidoussis modified the reverse jet assumption and instead modeled

the flow into the free end of the cantilever as a sink flow [21]. Thus, flow entering the

pipe free end undergoes a suction or a negative pressurization for which p̄ = −ρU2 =

−MU2

A
. This pressurization effect was input into the following equation of motion

EI
∂4w

∂x4
+ (p̄A+MU2)

∂2w

∂x2
+ 2MU

∂2w

∂x∂t
+ (M +m)

∂2w

∂t2
= 0 (1.5)

and resulted in the cancellation of the centrifugal term, (p̄A + MU2)∂
2w
∂x2

. Can-

cellation of this term implies that flutter cannot occur.

However, in 2005 Kuiper and Metrikine expressed the negative pressurization of

the free end of the pipe as p̄ = −1
2
ρU2, through the use of the Bernoulli equation.

This result contradicted the expression for p̄ suggested in 1999 [12]. Application

of the newer expression meant that the centrifugal force did not completely cancel

out and that flutter could emerge. Additionally, they also argued the aspirating

pipe could still flutter as a result of the Coriolis term, even in the absence of the

centrifugal term.

Around the same time, Kuiper and Metrikine (2008) as well as Giacobbi (2010)

and Rinaldi (2009) showed that aspirating pipes lose stability through flutter for a

defined critical flow velocity [13], [6], [25]. The motion of the pipe could be described

as irregular motion consisting of first-mode orbital oscillations as well as quasi-chaotic
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motions. ANSYS simulations completed by Giacobbi showed first mode flutter in-

stability for a similar critical flow velocity. Adding to this investigation, Butt (2016)

researched the aspirating cantilever system with water as the internal working fluid

[3]. This system was also subject to counter-current external axial flow. The results

of this experimentation showed a first mode flutter emerging for a specific critical

flow velocity that then developed into second mode flutter with increasing internal

flow.

1.3.3 Cantilevers subject to internal and external flows

In 1978, Hannoyer and Paidoussis researched the dynamics of confined cylin-

drical tubular beams subject to internal and external axial flows simultaneously [9].

This was completed for clamped-clamped and clamped-free boundary conditions.

Attached to the end of the cantilevered tubes was a tapered end-piece. The equation

of motion derived for this system was:

E∗I
∂5w

∂x4∂t
+ EI

∂4w

∂x4
+ ρiAi(

∂

∂t
+ Ui

∂

∂x
)2w

+ ρeAe(
∂

∂t
+ U∗e

∂

∂x
)(
∂

∂t
+ Ue

∂

∂x
)− (ρeAe − ρiAi −m)g

∂w

∂x

− [T (L)−
∫ L

x

[(ρeAe − ρiAi −m)g − 1

2
CftρeDeU

2
e ]dx]

∂2w

∂x2

+
1

2
CfnρeDeUe(

∂

∂t
+ Ue

∂

∂x
) +

1

2
µeCD

∂w

∂t
+m

∂2w

∂t2
= 0

(1.6)

for which the sub-script i corresponds to internal and e corresponds to external,

T (L) as the tension at the free end. Cft, Cfn, CD are parameters accounting for

viscous effects, please refer to [9] for details. The U∗e is the flow velocity related to

the development of the boundary layer. The associated boundary conditions for the

two flow systems are given as:
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∂2w

∂x2
= 0 (1.7)

and

[(ρ+ fρe)Āe + (ρi − ρ)Ai]l[
∂2w

∂t2
]L − fρe(Ae − Ai)U∗e [

∂w

∂t
]L

+ [fρe(AiU
∗
e − ĀeUe) + 2ρiAiUi]l[

∂2w

∂x∂t
]L − (E∗

∂

∂t
+ E)I[

∂3w

∂x3
]L

− [fρe(Ae − Ai)UeU∗e + [(ρe − ρ)Āe + (ρ− ρi)Ai]gl][
∂w

∂x
]L = 0

(1.8)

for which Āe = 1
l

∫ L+l

L
Ae(x)dx, with Āe and f approximated as

Āe ≈
1
3
(A

3
2
e − A

3
2
i )

(A
1
2
e − A

1
2
i )

(1.9)

f ≈ 4l2

4l2 + (De −Di)2
(1.10)

The length of the tapered end is l, Ae is the external area of the pipe, Ai is the

internal pipe area, and Āe is an average area.

For a blunt end-piece for which f ≈ 0, flutter instability was seen for sufficiently

high internal flow velocity. The external flow velocity, Ue stabilized the system in

this case. However, for a streamlined end-piece, both divergence and flutter were

seen experimentally and theoretically.

In 2008, Paidoussis developed the equation of motion to model the dynamics

of a drill-string system with floating, fluid powered drill-bit [15]. This system was

modeled as hanging tubular cantilever with internal flow in the clamped-free direction

and the external flow emerging from re-directing the internal flow axially upward
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and counter-current to the internal flow. The equation of motion for this system was

written as:

EI
∂4w

∂x4
+m

∂2w

∂t2
+ ρfAf (

∂2w

∂t2
+ 2Ui

∂2w

∂x∂t
+ U2

i

∂2w

∂x2
)

+ χρfAo(
∂2w

∂t2
− 2Uo

∂2w

∂x∂t
+ U2

o

∂2w

∂x2
)− [(T − Afρi + Aoρo)|L

+ (m+ ρfAf − ρfAo)g(L− x)− 1

2
CfρfDoU

2
o (1 +

Do

Dh

)(L− x)]
∂2w

∂x2

+ [(m+ ρfAf − ρfAo)g −
1

2
CfρfDoU

2
o (1 +

Do

Dh

)]
∂w

∂x

+
1

2
CfρfDoUo

∂w

∂t
+ k

∂w

∂t
= 0

(1.11)

In this equation, ρf is the density of the fluid, Di is the internal tube diameter,

Do is the external tube diameter for which Af and Ao are calculated as the cross-

sectional areas, respectively. The internal and external flow velocities are related

through a simple continuity equation in which Ach is the cross-sectional area of the

annular region in which external flow aspirates

UiAi = UoAch (1.12)

For this system, it was found that Uo and Ui significantly impact the dynamics

of the system. An additional parameter quantifying the confinement called αch =

Dch/Do, also impacted system behavior. It was found that for αch ≥ 20, the system

was governed by internal flow and flutter instability was seen for sufficiently high

internal flow velocity. This is logical, as a larger channel diameter corresponds to a
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smaller Uo. For smaller values of αch however, smaller than 1.2, the external flow

velocity caused de-stabilization of the system.

Further research into drill-string systems was characterized experimentally and

theoretically by Moditis [17]. In this case, the cantilever was confined by a rigid

outer tube that was shorter than the cantilever for partial confinement. Between

the cantilever and the outer tube, annular, external flow aspirates. Experiments and

theory confirmed the existence of flutter, with good agreement in terms of critical

flow velocities. The theoretical model was extended to account for longer brine-

string-like systems, and showed flutter as well as divergence instabilities depending

on the specific system parameters.

1.4 End-Mass effect

The equation of motion developed by Gregory and Paidoussis [8], and earlier by

Benjamin [1], was extended for a cantilevered pipe conveying fluid with an additional

lumped mass. For this case, the original equation of motion is modified so that the

m∂2w
∂t2

term is replaced by

[m+
J∑
j=1

mjδ(x− xj)]
∂2w

∂t2
(1.13)

with J lumped masses located at a distance xj from the clamped end [10]. Results

were obtained by the Galerkin method and the stability of the system was assessed

as a function of β, defined as a ratio between the mass of the fluid divided by the

mass of the fluid and the tube. Counter-intuitively, the effect of adding lumped
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masses caused de-stabilization of the cantilever for most cases. This depended on

the location of the lumped mass as well as the system parameters.

The three-dimensional vibrations of a hanging cantilever tube with a lumped

mass at the free end was studied experimentally for a series of different end-mass

weights [4]. Initial instability for this case was flutter, which then resulted in chaos.

An extension of the work undertaken by Copeland and Moon was completed

by Paidoussis and Semler, with the motion constrained to be planar rather than

three-dimensional motion [27]. Experimentally it was shown that even the presence

of a small end-mass on the cantilever free end resulted in chaotic oscillations. The

non-linear theoretical model predicted rich dynamical behavior consistent with the

experimental results.

Additionally, Modarres-Sadeghi et al. further studied the dynamics of this sys-

tem, reproducing analytically Copeland and Moon’s experiments [16].

1.4.1 Discharging Radial flow

Hanging cantilevered pipes with an end-mass, discharging flow radially was con-

sidered by Rinaldi and Paidoussis [25], [26]. The external, surrounding fluid in this

case was air. Experimentally, this resulted in stability of the cantilever, whereas

usually flutter was seen for discharging axial flow. Additionally, a theoretical model

was developed for this case, taking into account radial flow as well as the impact of

an added-mass to the free end of the cantilever. For radial flow, the model previously

developed by Hill and Swanson [10] was modified. For the case of radial flow, since

straight-through flow is blocked the external tension term, T̄ was set to be equiva-

lent to MU2. The result of this is the centrifugal term being eliminated from the
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equation, leaving only the impact of the Coriolis force. As seen in equation (1.2) the

Coriolis force introduces flow-induced damping preventing instability.

1.5 Research objectives

The system under consideration applies to salt cavern operations during solution

mining and hydrocarbon storage processes. Specifically the system consists of a

hanging tubular cantilever pipe that is subject to internal flow, external flow, and is

immersed in a surrounding fluid. This flexible tube hangs concentrically within an

outer rigid tube through which there is external flow and confinement effects. The

aim of this research is to address this system in the following ways:

1. Experimentally and theoretically investigate flow-induced vibrations and insta-

bilities of hanging brine-string systems that are used in solution mining and

salt-cavern hydrocarbon storage industries

2. Understand specific flow configurations relevant to different modes of salt cav-

ern operation. These flow configurations include configuration (iii) and (iv), in

which for standard operating conditions flows are axial

3. Experimentally investigate the impact of radial flow on hanging brine-string

system stability for configuration (iii) and (iv)

4. Compare configuration (iii) and (iv) behavior

5. Develop and apply a theoretical model for configuration (iii) with radial flow

applying experimental and real life application brine-string parameters

6. Compare axial and radial flow behavior

7. Determine maximum flow velocities for which instability is avoided
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8. Determine behavior and stability of partially confined cantilevered pipes con-

veying fluid in flow configuration (iii) for different ratios of external and internal

flow velocities
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CHAPTER 2
Theoretical Model

A linear theoretical model was derived for configuration (iii) with a radial flow

end-piece on the cantilever free end. A schematic of the system is displayed in Figure

(2–1a). The derivation of the system dynamics relates to work previously done in

Moditis (2014) with modifications based on the added dynamics due to the addition

of an end-piece with a non-negligible mass and radial flow [17].

(a) Schematic of entire system

(b) Three-dimensional image of pipe end

Figure 2–1: Schematic of configuration (iii) system with radial flow
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(a) Forces acting on an element of the tube
of length δx

(b) Forces due to the outside fluid acting on
the external surface of the tube element

Figure 2–2: Forces acting on a tube element

Structural and hydrodynamic forces are shown in Figure (2–2). A Newtonian

approach was used to obtain the equations of motion based on these forces. The

system studied consists of a uniform tubular cantilever beam of length L, external

cross-sectional area Ao, mass per unit length Mt, mass of the end-piece me, and flex-

ural rigidity EI. For a tubular element of length δx the structural and fluid-dynamic

forces are added. Force balances in the x and z directions give equation. (2.1) and

equation. (2.2), respectively

∂T

∂x
− ∂

∂x
(Q
∂w

∂x
) + [Mt +meδ(x− L)]g − (Fin + Fen)

∂w

∂x
+ Fit − Fet = 0 (2.1)

∂

∂x
(T
∂w

∂x
) +

∂Q

∂x
− [Mt +meδ(x− L)]

∂2w

∂t2
+ (Fit − Fet)

∂w

∂x
+ Fin + Fen = 0 (2.2)
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In equations (2.1) and (2.2), w is the lateral displacement, T is the tension in the

tube, Q is the shear force, g the gravitation acceleration. The hydrodynamic forces

due to internal flow include Fin in the normal direction and Fit in the tangential

direction. The hydrodynamic forces due to external flow are given as Fen and Fet for

the normal and tangential directions, respectively.

2.1 Structural Forces

Euler-Bernoulli beam theory is used to calculate the structural forces. This

provides a logical approximation as the tube under consideration is slender and of

uniform cross-section. Additionally we ignore viscoelastic damping effects and axial

inertial effects. Thus, applying Euler-Bernoulli beam theory, the shear force is

Q = − ∂

∂x
(EI

∂2w

∂x2
) (2.3)

Substituting the equation for shear force into equations (2.1) and (2.2) and

neglecting the higher order terms yields the following equations for the x and z

directions:

∂T

∂x
+ [Mt +meδ(x− L)]g + (Fit − Fin

∂w

∂x
)− Fen

∂w

∂x
− Fet = 0 (2.4)

EI
∂4w

∂x4
− ∂

∂x
(T
∂w

∂x
+(Mt+meδ(x−L)))

∂2w

∂t2
−(Fin+Fit

∂w

∂x
)−Fen+Fet

∂w

∂x
= 0 (2.5)

2.2 Hydrodynamic Forces due to internal flow

The forces acting on an element of internal fluid of length δx are shown in Figure

(2-2). The rate of change of momentum of the internal fluid is Mf [
∂
∂t

+Ui
∂
∂x

]2w [22].
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Figure 2–3: Forces Acting on an Element of Internally Flowing Fluid of Length δx

Mf is the mass of the internal fluid per unit length and is calculated as Mf = ρfAf ,

where pi is the internal pressure in the pipe, ρf is the density of the fluid and Af is

the cross-sectional area of the internal flow. Balancing the forces and applying the

momentum equation, gives the following equations in the x− and z− directions:

Fit − Fin
∂w

∂x
= Mfg −

∂

∂x
(Afpi) (2.6)

and

−(Fin + Fit
∂w

∂x
) = Mf (

∂

∂t
+ Ui

∂

∂x
)2w +

∂

∂x
(Afpi

∂w

∂x
) (2.7)

By substituting equations (2.4) and (2.5) into equations (2.1) and (2.2), the

effects of internal flow are summarized in the following equations:
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x− direction:

∂T

∂x
+ [Mt +meδ(x− L)]g + [Mfg −

∂

∂x
(Afpi)]− Fen

∂w

∂x
− Fet = 0 (2.8)

z− direction:

EI
∂4w

∂x4
− ∂

∂x
(T
∂w

∂x
) + [Mt +meδ(x− L)]

∂2w

∂t2
− [Mf (

∂

∂t
+ Ui

∂

∂x
)2w

+
∂

∂x
(Afpi)

∂w

∂x
]− Fen + Fet

∂w

∂x
= 0

(2.9)

2.3 Hydrodynamic Forces due to External Flow

A sum of the external hydrodynamic forces acting on the tube (Figure (2–2))

gives resultant forces Fen and Fet. These forces due to external flow are comprised of

several forces including, FA, the lateral inviscid hydrodynamic forces, Fpx and Fpz,

the forces due to the outside mean pressure, FN and FL, the frictional viscous forces.

A balance of these forces due to external flow are:

in the x- direction:

−Fen
∂w

∂x
− Fet = −FL − Fpx (2.10)

in the z- direction:

−Fen + Fet
∂w

∂x
= FA + FN − Fpz + FL

∂w

∂x
(2.11)

For the development of the lateral inviscid hydrodynamic force, the external

flow surrounding the tube is considered to be a potential flow [14], [22]. Additionally,

slender-body theory is applied to the flow, under the assumption that d << L (where
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d is tube diameter and L is tube length) and that lateral variations are small. As

proposed by Lighthill (1960), the inviscid hydrodynamic force per unit length is

equal and opposite to the rate of change of the fluid momentum and can be written

as [( ∂
∂t

) − Uo( ∂
∂x

)](Mfvf ) in which Uo is the external flow velocity, Mf is the added

mass of the fluid per unit length, and vf is the relative fluid velocity. The expression

for the added mass for an unconfined tube is the following [22]:

Ma = χρfAo (2.12)

Ao =
πDo2

4
(2.13)

in which the parameter Ao is the outer cross-sectional area based on the outer

diameter of the tube (Do). This equation for added mass is modified to account for

the spatial variation as the annulus only covers a fraction of the full length of the

tube [14], [22]. Thus, a Heaviside step function (H) and a confinement parameter

(χ) are implemented to account for the variation in confinement along the length of

the tube [17],

Ma = [χ+ (1− χ)H(x− L′)]ρfAo (2.14)

χ =

(
Dch

Do

)2
+ 1(

Dch

Do

)2 − 1
j (2.15)
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The Heaviside step function and χ are used in combination to account for the

variation in external flow velocity, which is assumed to be zero over the unconfined

portion of the tube, and Uo over the confined portion of the cantilever. An additional

parameter, Dch represents the channel diameter as seen in Figure (2–1a). Hence,

accounting for the spatial variation of the fluid added mass as well as the variation

in external flow velocity, the lateral inviscid hydrodynamic force or lift force is given

as [18],

FA = (
∂

∂t
− Uo

∂

∂x
+ UoH(x− L′) ∂

∂x
)×

{[χ+ (1− χ)H(x− L′)]ρfAo(
∂w

∂t
− Uo

∂w

∂x
+ UoH(x− L′)∂w

∂x
)}

(2.16)

and can be simplified to,

FA = −AoU2
o ρfχH(x− L′)∂

2w

∂x2
+ AoU

2
o ρfχ

∂2w

∂x2
+ 2AoUoχH(x− L′)∂

2w

∂x2

− 2AoUoρfχ
∂2w

∂x∂t
+ (1− χ)ρfAoH(x− L′)∂

2w

∂t2
+ Aoρfχ

∂2w

∂t2

(2.17)

The frictional force due to the external flow velocity in the longitudinal direction

is expressed as [17]

FL =
1

2
CfρfDoU

2
o [1−H(x− L′)] (2.18)

The coefficient of friction (Cf ) is given a value of 0.0125, in accordance with

previously documented work.

The frictional force in the normal direction is
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FN =
1

2
CfρfDoUo[1−H(x− L′)]{∂w

∂t
− [1−H(x− L′)]Uo

∂w

∂x
}+ k

∂w

∂x
(2.19)

Again, Heaviside step functions are used to account for the variation in external

flow velocity along the length of the tube. The parameter k is the viscous drag

coefficient, and is dependent on the oscillation frequency of the tube,

k =
2
√

2√
S

1 + γ̄3

(1− γ̄2)2
ρfAoR(Ω) (2.20)

The Stokes number, S, kinematic viscosity of the fluid ν, and γ̄ (another measure

of confinement based on diameter of the tube with respect to diameter of the outer

annular region) are additional parameters in this equation:

S =
R(Ω)D2

o

4ν
(2.21)

γ̄ =
Do

Dch

(2.22)

Since the parameter k also varies along the length of the tube, an additional

parameter ku is defined as [28]

ku =
2
√

2√
S
ρfAoR(Ω) (2.23)

resulting in the following simplified equation for the normal frictional force
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FN =
1

2
CfρfDoUo[1−H(x− L′)]{∂w

∂t
− [1−H(x− L′)]Uo

∂w

∂x
}+ ku[

1 + γ̄3

(1− γ̄2)2

+H(x− L′)(1− 1 + γ̄3

(1− γ̄2)2
)]
∂w

∂t
(2.24)

The mean external pressure acting on the cantilever in the x and z directions

are defined below, respectively [22]:

Fpx = − ∂

∂x
(Aopo) + Ao

∂po
∂x

(2.25)

Fpz = Ao
∂

∂x
(po

∂w

∂x
) (2.26)

in which po is the pressure outside the tube.

A force balance of the flow in the annular space yields

−Ach
∂po
∂x

+ Ff + Achρfg = 0 (2.27)

where Ach = π(D2
ch −D2

o) is the area of the annular region and Ff = FL
Stot

So
is

the total frictional force. The total wetted area of annular flow per unit length is

defined as Stot and So is the external wetted perimeter of the tube.

Stot = π(Dch +Do) (2.28)

Substituting Ff into equation (2.28), multiplying through by ( Ao

Ach
), and simpli-

fying gives

Ao
∂po
∂x

= FL
Do

Dh

+ Aoρfg (2.29)
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The parameter Dh is the hydraulic diameter of the annular channel and is ex-

pressed as Dh = 4Ao

Stot
= (Dch − Do) An expression for the external pressure, po

is defined by integrating equation (2.29) from 0 to L′. The value of the external

pressure at x = 0 is equal to zero

po(x) = [
FL
Ao

(
Do

Dh

)
+ ρfg]x (2.30)

For the portion of the cantilever between lengths L′ and L or the unconfined portion,

the external pressure distribution is assumed to be hydrostatic and is represented by

the following equation

∂po
∂x

= ρfg; (2.31)

integrating yields,

po = ρfgx+ C1 (2.32)

Relating the pressures at a location x1 (an axial location just inside the annulus)

and x2 (an axial location just outside the annulus) yields

po|x2 = po|x1 +
1

2
ρfU

2
o + ρfgha (2.33)

where ha = K1
U2
o

2g
is the head-loss due to stagnant fluid entering the annulus

and K1 is an estimate for the pressure loss due to fluid acceleration and is between

0.8 and 0.9 [2]. Therefore,

C1 = ρfgx+ [
1
2
CfρfDoU

2
o

Ao

(
Do

Dh

)
L′] +

1

2
ρfU

2
o + ρfgha (2.34)
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Combining equations (2.30), (2.32), and (2.33) gives the pressure distribution

over the entire cantilever length

po =
1
2
CfρfDoU

2
o

Ao

(
Do

Dh

)
x−

1
2
CfρfDoU

2
o

Ao

(
Do

Dh

)
(x− L′)H(x− L′) + ρfgx

+ [
1

2
ρfU

2
o + ρfgha]H(x− L′)

(2.35)

and the pressure gradient as

∂po
∂x

=
1
2
CfρfDoU

2
o

Ao

(
Do

Dh

)
[1−H(x−L′)]+ρfg+[

1

2
ρfU

2
o +ρfgha]δD(x−L′) (2.36)

where δD is the Dirac delta function.

Equations (2.18)and (2.25) are substituted into equation (2.10) and further sub-

stitution into equation (2.8) yields

∂

∂x
(T − Afpi + Aopo) + [Mt +meδ(x− L)]g +Mfg − Ao

∂po
∂x

− 1

2
CfρfDoU

2
o [1−H(x− L′)] = 0

(2.37)

as the equation of motion in the x direction.

To obtain the balance of forces on the cantilever in the z direction equations

(2.24),(2.18), (2.17), and (2.26) are substituted into (2.11) and further substitution
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into (2.9) gives

EI
∂4w

∂x4
− ∂

∂x
[(T − Afpi + Aopo)

∂w

∂x
] + [Mt +meδ(x− L)]

∂2w

∂t2
+ Afρf

∂2w

∂t2

+ 2UiAfρf
∂2w

∂x∂t
+ AfρfU

2
i

∂2w

∂x2
− AoU2

o ρfχH(x− L′)∂
2w

∂x2
+ AoU

2
o ρfχ

∂2w

∂x2

+ 2AoUoρfχH(x− L′) ∂
2w

∂x∂t
− 2AoUoρfχ

∂2w

∂x∂t
+ (1− χ)ρfAoH(x− L′)∂

2w

∂t2

+ Aoρfχ
∂2w

∂t2
+

1

2
CfρfDoUo[1−H(x− L′)]∂w

∂t

+ ku[
1 + γ̄3

(1− γ̄2)2
+H(x− L′)(1− 1 + γ̄3

(1− γ̄2)2
)]
∂w

∂t
= 0

(2.38)

An expression for the tensioning and pressurization term is given below

T − Afpi + Aopo =

− (−Mt −meδ(x− L′)− ρfAf + ρfAo)g(L− x)

− 1

2
CfρfDoU

2
o

(
Do

Dh

+ 1

)
(L′ − x)[1−H(x− L′)]

− Ao(
1

2
ρfU

2
o + ρfgha)[1−H(x− L′)] + (T − Afpi + Aopo)|L

(2.39)

and is found through the integration of equation (2.37) from x to L.

Substituting the expression for tensioning and pressurization into equation (2.38)

yields

28



EI
∂4w

∂x4
+ {[Mt +meδ(x− L) + ρfAf − ρfAo]g

− 1

2
CfρfDoU

2
o

(
Do

Dh

+ 1

)
[1−H(x− L′)]− Ao[

1

2
ρfU

2
o + ρfgha]δD(x− L′)}∂w

∂x

+ {(−Mt −meδ(x− L)− ρfAf + ρfAo)g(L− x)

+
1

2
CfρfDoU

2
o

(
Do

Dh

+ 1

)
(L′ − x)[1−H(x− L′)]

+ Ao[
1

2
ρfU

2
o + ρfgha][1−H(x− L′)]− (T − Afpi + Aopo)|L}

∂2w

∂x2

+ [Mt +meδ(x− L)]
∂2w

∂t2
+ Afρf

∂2w

∂t2
+ 2UiAfρf

∂2w

∂x∂t

+ AfρfU
2
i

∂2w

∂x2
+ AoρfχU

2
o [1−H(x− L′)]∂

2w

∂x2
− 2AoUoρfχ[1−H(x− L′)] ∂

2w

∂x∂t

+ (1− χ)ρfAoH(x− L′)∂
2w

∂t2
+ Aoρfχ

∂2w

∂t2
+

1

2
CfρfDoUo[1−H(x− L′)]∂w

∂t

+ ku{[1 + [1−H(x− L′)]
(

1 + γ̄3

(1− γ̄2)2
− 1

)
}∂w
∂t

= 0

(2.40)

with the standard cantilever boundary conditions

w|x=0 =
∂w

∂x
|x=0 =

∂2w

∂x2
|x=L =

∂3w

∂x3
|x=L = 0 (2.41)

The internal and external/outside pressures can be related through the following

relationship

pi|L = po|L −
ρfU

2
i

2
+ ρfghe (2.42)

where he is the head-loss parameter [2], with K2 = 1

he =
K2U

2
i

2g
(2.43)
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The external pressure can be calculated by evaluating equation (2.38) at x = L.

po|L =
1

2Ao
CfρfDoU

2
oL
′
(
Do

Dh

)
+ ρfgL+

1

2
ρfU

2
o + ρfgha (2.44)

Through a simple conservation of mass, the internal and external flow velocities

are related,

Uo = Ui
D2
i

D2
ch −D2

o

(2.45)

To account for radial flow at the free end of the pipe, the tension force is adjusted.

Since flow is entirely radial and straight-through flow is blocked, a tensile force is

generated, resulting in T = MfU
2
i .

2.4 Non-dimensionalization

The governing equation of motion is non-dimensionalized through the use of the

following parameters [17], [22]:

ξ =
x

L
η =

w

L
τ = [

EI

Mt + ρfAf + ρfAo
]
1
2
t

L2
Γe =

me

(Mt + ρfAf − ρfAo)L

ui =

(
ρfAf
EI

) 1
2

LUi uo =

(
ρfAo
EI

) 1
2

LUo βo =
ρfAo

Mt + ρfAf + ρfAo

βi =
ρfAf

Mt + ρfAf + ρfAo
γ =

(Mt + ρfAf − ρfAo)gL3

EI
Γ =

T |LL2

EI

ΠiL =
pi|LAfL2

EI
ΠoL =

po|LAoL2

EI
cf =

4Cf
π

κu =
kuL

2

[EI(Mt + ρfAf + ρfAo)]
1
2

ε =
L

Do

h =
Do

Dh

α =
Di

Do

αch =
Dch

Do

rann =
L′

L
(2.46)

30



The resulting non-dimensional form of equation of motion (2.40) is

∂4η

∂ξ4
+ [γ − 1

2
cfu

2
o(1 + h)[1−H(ξ − rann)]

∂η

∂ξ

− 1

2
u2
o(1 +K1)δD(ξ − rann + γΓeδ(ξ − 1))

∂η

∂ξ

− {(Γ− ΠiL + ΠoL) + γ(1− ξ)− 1

2
cfεu

2
o(1 + h)(rann − ξ)[1−H(ξ − rann)]

− 1

2
u2
o(1 +K1)[1−H(ξ − rann)]− γΓeδ(ξ − 1) + γΓeξδ(ξ − 1)}∂

2η

∂ξ2

{1 + βo(χ− 1)[1−H(ξ − rann)] + Γeδ(ξ − 1)}∂
2η

∂τ 2

+ 2{uiβ
1
2
i − χuoβ

1
2
o [1−H(ξ − rann)]} ∂

2η

∂ξ∂τ
+

{u2
i + χu2

o[1−H(ξ − rann)]}∂
2η

∂ξ2
+

1

2
cfεuoβ

1
2
o [1−H(ξ − rann)]

∂η

∂τ

+ κu{[1 + [1−H(ξ − rann)]

(
1 + α−3

ch

(1− α−2
ch )2

− 1

)
}∂η
∂τ

= 0

(2.47)

with the non-dimensional boundary conditions

η|ξ=0 =
∂η

∂ξ
|ξ=0 =

∂2η

∂ξ2
|ξ=1 =

∂3η

∂ξ3
|ξ=1 = 0 (2.48)

Additionally, the dimensional frequency Ω is translated to the non-dimensional

frequency ω through the following relationship

ω = [
Mt + ρfAf + ρfAo

EI
]
1
2L2Ω (2.49)

The internal pressure equation is non-dimensionalized to

ΠiL = α2ΠoL −
1

2
u2
i + Afρfghe(

L2

EI
) (2.50)
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and the external pressure equation is non-dimensionalized to

ΠoL =
1

2
cfhrannεu

2
o +

1

2
u2
o(1 +K1) +

AoρfgL
3

EI
(2.51)

The non-dimensional flow velocity relationship is

uo =
α

α2
ch − 1

ui (2.52)

’The non-dimensionalized tension generated by the blocking of straight-through

flow and diverting flow radially is given as Γ = u2
i .

2.5 Method of Solution

The Galerkin method [22] is applied to the governing equation of motion (2.47),

assuming an approximate solution of

η(ξ, τ) =
N∑
j=1

Φj(ξ)qj(τ) (2.53)

Φj(ξ) are Euler-Bernoulli beam cantilever beam eigenfunctions used as comparison

functions and qj(τ) are the generalized coordinates of the system with qj(τ) = eiωjτ .

The following integral relations are defined with the bounds of integration for

(0, 1) for the entire length of the tube and for (0, rann) representing the confined

portion of the tube

aij(a,b) =

∫ b

a

ΦiΦjdξ bij(a,b) =

∫ b

a

Φi
dΦj

dξ
dξ

cij(a,b) =

∫ b

a

Φi
d2Φj

dξ2
dξ dij(a,b) =

∫ b

a

ξΦi
d2Φj

dξ2
dξ

(2.54)

Equations (2.53) and (2.54) are substituted into equation (2.40), pre-multipliplied

by Φi and integrated from ξ = 0 to ξ = 1. Finally, the equation of motion is written
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in the form, Mq̈+Cq̇+Kq = 0 where ()̇ denotes a derivative with respect to τ , and

Mij = aij(0,1) − βo(1− ξ)aij(0,rann) + ΓeΦi(1)Φj(1)

Cij = 2uiβ
1
2
i bij(0,1) − 2χuoβ

1
2
o bij(0,rann) +

1

2
cfεuoβ

1
2
o aij(0,rann) + κuaij(0,1)

+ κu

(
1 + α−3

ch

(1− α−2
ch )2

− 1

)
aij(0,rann)

Kij = λ4
jaij(0,1) + γbij(0,1) −

1

2
cfεu

2
o(1 + h)bij(0,rann)

− 1

2
u2
o(1 +K1)(Φi|ξ=rann

∂Φj

∂ξ
|ξ=rann)− (Γ− ΠiL + ΠoL)cij(0,1)

− γ(cij(0,1) − dij(0,1)) +
1

2
cfεu

2
o(1 + h)(rann(cij(0,rann) − dij(0,rann)))

+
1

2
u2
o(1 +K1)cij(0,1) + u2

i cij(0,1) + χu2
ocij(0,rann)

γΓeΦi(1)
∂Φj

∂ξ
(1)− γΓecij(0,1)

(2.55)
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CHAPTER 3
Theoretical Model Results

3.1 Theoretical Results for Experimental Parameters

Dimensional and non-dimensional parameters consistent with Table 3-1 were

input into this theoretical model. These values are consistent with the experimental

parameters. The * parameters in the table indicate parameters that were varied

experimentally.

Table 3–1: Dimensional and Non-Dimensional Parameters used Experimentally and
Applied Theoretically

Di [m] Do [m] Dch [m] L *[m]

0.00635 0.016 0.0315 0.456

L′∗ [m] EI [Nm2] Mt [kgm−1] me [kg]

0.214 0.00737 0.194 0.008

α αch ε βi

0.397 1.97 28.5 0.0742

βo h γ rann*

0.471 1.03 3.14 0.453

Theoretical results for the parameters given in Table 3-1 are presented in Ar-

gand diagrams plotting the real and imaginary components of the eigenfrequencies.
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Instability/stability of the modes was then assessed. Instability occurs when the

imaginary component of the eigenfreqeuncy becomes negative; if the corresponding

real eigenfrequency is zero and the critical frequency is zero, this indicates a buck-

ling instability. However, if the corresponding real eigenfrequency is non-zero, this

is a flutter instability. Thus, if both eigenfrequency components remain positive, the

mode is stable. In the Argand diagrams, the data labels correspond to each internal

flow velocity point; the internal flow velocity Ui was increased from 0 to 12 m/s. A

minimum of 11 modes were used to satisfy convergence criteria. Results for the first

two modes are of primary focus for stability assessment, as these are the modes that

are known to be excited experimentally and/or in the drill-string application.

3.1.1 Effect of Confined Length Fraction rann

The confined length fraction (rann) is a ratio between the length of the annulus

and the total length of the cantilever (L′/L). This parameter was varied experimen-

tally for rann=0, 0.239, 0.453, and 0.668 by changing the length of the rigid outer

tube (L′) and keeping the cantilever length (L) constant (Figure (3-1)). For an un-

confined tube or for rann=0, the first four modes are stable for the entire flow velocity

range. For the exact parameters given in Table 1 with rann=0.453, the first mode

is stabl,e while the second mode loses stability by flutter for a critical flow velocity

of 5.1 m/s and a critical frequency of 22.7 rad/s, as this is where the imaginary ω

becomes less than zero. For the other confined tubes, in which rann=0.239 and 0.668,

the first two modes are stable.
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Figure 3–1: Theoretical Results:Effect of Confined Length Fraction rann

3.1.2 Effect of Cantilever Length

Several cantilever tube lengths (L) were tested, including 200 mm, 300 mm,

400 mm, 700 mm, and 1000 mm (Figure (3-2)). To isolate the effect of changing

tube length, these tubes were unconfined with rann=0. Stability for all modes was

observed. This implies that cantilever length does not affect the stability of the

system.
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Figure 3–2: Theoretical Results:Effect of Tube Length L

3.1.3 Effect of End-mass

To see the effect of the mass of the end-piece on a pipe conveying fluid with

discharging radial flow, the critical flow velocity is plotted as a function of the end-

mass (Figure (3-3)). The mass of the end-piece was increased between 0 and 0.05

kg.
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Figure 3–3: Theoretical Results: Effect of End-Mass me

If the mass of the end-piece is in the range of 0 to 0.004 kg, stability is predicted.

As the mass of the end-piece is increased to 0.005 kg, the cantilever loses stability

by flutter for a critical flow velocity of 8.6 m/s. Beyond this range, the critical flow

velocity for flutter is decreased. Thus, the cantilever is destabilized as the mass of

the end-piece is increased.

3.1.4 Theoretical Results for Brine-string parameters

Theoretical radial flow results are presented for long brine-string systems, such

as those used in industrial applications and salt-cavern hydrocarbon storage. Typical

dimensional and non-dimensional parameters for brine-string systems are defined in

Table 3-1. In the industrial application, salt-cavern operators have some flexibility in

varying parameters, including ach, rann, L, and me. In the subsequent sections, each
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of these parameters is varied to see their effect. For each case, stability was assessed

for increasing internal flow velocity Ui varying from 0 to 30 m/s. A minimum of

11 modes are used in each case, and only the first instability with increasing flow is

reported.

3.1.5 Effect of Confinement αch: Brine-string parameters

The effect of varying ach on brine-string systems is discussed here. This param-

eter, ach, is the ratio between the channel diameter (Dch) and the outer diameter of

the cantilever (Do). Thus, larger values of ach correspond to a wider channel and

a decrease in the annular flow velocity Uo. The results shown here are based on

L=200 m, me=1000 kg, and rann=0.50. The parameter ach was varied from 1.1 to

20. For very narrow channels or ach ranging between 1.1 and 1.42, the cantilever loses

stability by first-mode flutter, with the critical flow velocity (Ucr) increasing from

0.25 to 9.98 m/s and the critical frequency (ωcr) decreasing (Figure (3-4)). As the

channel widens, for ach from 1.43 to 1.8, ωcr drops to 0, indicating buckling or static

divergence instability. The critical flow velocity increases steadily from 10.4 m/s to

26.2 m/s, indicating a stabilization effect for the channel widening. Further increase

in channel diameter resulted in complete stability in all modes for ach between 1.9

and 20.
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Figure 3–4: Theoretical Results: Drill-String Parameters:Effect of αch

3.1.6 Effect of Confined Length Fraction rann: Brine-string parameters

The effect of the confined length fraction or ratio between the length of the rigid

outer tube (L′) and cantilever length (L) was investigated. Larger values of rann

signify a larger percentage of the cantilever is subjected to annular flow. Theoretical

results for the brine-string system are presented in Figure (3-5) . For this investiga-

tion, two brine-string lengths were considered, L=100 m and L=200 m. A value of

1.676 was used for ach (a common value used in real life application) and me was set

to 0.

For the 100 m length drill-string, Figure (3-5a), rann was given the following

values: rann=[0; 0.125; 0.15; 0.25; 0.47; 0.50; 0.6875; 0.70; 0.75; 0.85]. The drill-

string showed stability for rann < 0.25. For rann=0.25 first mode flutter is predicted.
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A further increase in rann to 0.47 and above resulted in first-mode static divergence;

the trend in this range showing a decrease in Ucr and ωcr=0.

For the 200 m length drill-string, Figure (3-5b), rann was given the following

values, rann=[0; 0.125; 0.15; 0.25; 0.5; 0.6875; 0.7; 0.75; 0.85; 0.875]. For rann=[0;

0.125, 0.15], no instability was detected. An increase in confined length fraction to

0.25 resulted in destabilization by first-mode flutter. Further increase in rann between

0.5 and 0.875, first-mode divergence was observed. In this range, a steady decline in

Ucr was seen between rann=0.5 to rann=0.6875 and for rann=0.85 to rann=0.875. An

increase in critical flow velocity was seen for rann=0.7 and 0.75.
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Figure 3–5: Theoretical Results:Brine-String Parameters: Effect of rann

3.1.7 Effect of End-piece Mass me: Brine-string parameters

Experimentally, discharging radial flow was achieved through the use of an end-

piece. If radial flow is to be implemented in a similar method to the bench-top scale

system, an end-piece with a given mass would need to be added to block straight

through flow and divert flow radially. This end-piece has a non-negligible weight
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and can significantly impact the dynamics of the system; thus the theoretical model

takes this mass into account. In this section, the end-piece mass was varied to see the

effect on brine-string system stability. The end-mass parameter, me was increased

from 0 to 500 kg for a drill-string length of 100 m and was increased from 0 to 1000

kg for a drill-string length of 200 m. This range was selected to be consistent with

the experimental bench-top system parameters to maintain a similar ratio between

end-piece mass and tube mass. Additionally, for both cantilever lengths, several

values of rann were tested.

Stability was seen for the entire end-piece mass range for the 100 m length and

the 200 m length cantilever for an unconfined drill-string or rann=0.

Drill-string legth 100 m: In Figure (3-6a), the cantilever length was 100 m

and rann=0.125. The drill string did not demonstrate flutter or divergence for an

end-mass between 0 and 76 kg. However, flutter instability is predicted for me >

76 kg. In terms of critical flow velocity, the critical flow velocity is maximized for a

mass of 76 kg and decays exponential for subsequent increase in mass.

In Figure (3-6b), rann=0.25 and the other parameters are kept the same. Static

divergence occurs for end-piece masses between 0 and 61 kg, as evidenced by wcr=0.

As the end-piece mass is increased beyond 61 kg, flutter is predicted for an expo-

nentially decreasing critical flow velocity. Further increasing rann to 0.50 results in

similar behavior in which initially stability is lost by divergence which is then suc-

ceeded by flutter (Figure (3-6c)). In this case, for 0 ≤ me ≤ 316 kg, static divergence

is predicted and for me > 316 kg, flutter is predicted. Again, Ucr demonstrates an

exponential decay like curve for large enough me.
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In Figure (3-6d), for rann increased to 0.75, buckling instability is shown for a

end-mass between 0 to 500 kg. In terms of critical flow velocity, Ucr is bounded

between 7.8 and 8.45 m/s and increases with increasing mass.
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Figure 3–6: Theoretical Results:Drill-String Parameters:Effect of End-Piece Mass
me for several rann L=100 m
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Drill-string length 200 m:

For the longer, 200 m length system, the same confined length fractions are

investigated for increasing end-piece mass from 0 to 1000 kg. Firstly, for rann=0.125,

the cantilever is stable for 0 ≤ me ≤ 235 kg. Subsequent increase in end-piece mass

results in flutter for which the critical flow velocity starts at 14 m/s and asymptot-

ically approaches 4 m/s . As seen in Figure (3-7a), wcr shows a continuous rise for

me >300 kg.

Figure (3-7b) shows ucr and ωcr for rann=0.25. As the mass is increased, the

first type of instability seen is flutter (for 0 ≤ me ≤ 48 kg), followed by buckling (for

49 kg ≤ me ≤ 66 kg), and again flutter (for me > 66 kg). The critical frequency for

flutter starts around 4.5 rad/s, increases sharply, and finally stabilizes around 580

rad/s.

For rann=0.50, the drill-string is unstable by static divergence (ωcr=0) for the

entire mass range (Figure (3-7c)). The critical flow velocity remains between 19 and

20.4 m/s, with a general increase in flow velocity for increasing mass, indicating a

stabilizing effect.

The 200 mm cantilever system with the highest confined length fraction, rann=0.75

also displayed static divergence for the entire mass range. In this case, Ucr ranged be-

tween 15.47 and 16.54 m/s, and displayed an increasing trend for increasing end-mass

(Figure (3-7d)).
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Figure 3–7: Theoretical Results:Drill-String Parameters:Effect of End-Piece Mass
me for several rann L=200 m

3.1.8 Stability with Brine-string parameters: The effect of radial flow

The results presented previously indicate a combination of parameters for which

the drill-string system discharging flow radially is stable and hence not demonstrating

divergence or flutter. In addition to these results, further analyses were completed

to further investigate combinations for stability. The following tables, 3–2 and 3–3
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indicate values for rann, me, and αch, for which the drill-string is stable. This was

accomplished for two drill-string lengths, 100 m and 200 m.

Table 3–2: Parameters for Stability: Drill String System L=200 m

rann me [kg] αch

0 0 –1000 1.676

0.125 0 – 235 1.676

0.125 0 – 715 ≥ 2

0.25 0 – 1000 ≥ 1.9

0.5 0 – 1000 ≥ 1.9

0.75 0 – 1000 ≥ 2.7

Table 3–3: Parameters for Stability: Drill String System L=100 m

rann me [kg] αch

0 0 –500 1.676

0.125 0 – 76 1.676

0.125 0 – 363 ≥ 2.4

0.25 0 – 493 ≥ 2.4

0.5 0 – 500 ≥ 2.4

0.75 0 – 500 ≥ 2.6
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CHAPTER 4
Experiments

Experiments were performed in the Solution Mining Research Institute (SMRI)

pressure vessel in the Fluid-Structure Interactions Laboratory of McGill University.

This pressure vessel represents a scaled down model of the brine-string and casing

found in salt cavern hydrocarbon storage applications. The pressure vessel consists

of a stainless steel chamber, a flexible rubber tube used to simulate the brine-strings,

and a larger diameter rigid tube used to simulate the casing. An annulus is formed

in the space between the flexible tube and the rigid outer tube, allowing for annular

flow.

For configuration (iii) experiments, flow is directed from the clamped end of the

tube to the free end discharging either axially or radially (depending on the end-

piece used); the flow is then re-directed into the annular space, aspirating towards

the clamped end (Figure (4–2c)).

For configuration (iv) experiments, flow is discharged through the annular space,

re-directed and aspirated either axially or radially (depending on the end-piece used);

through the free end of the hanging cantilever (Figure (4–2c)).

The pressure vessel is filled and operated with water as the working fluid. Mo-

tion capture of the free end of flexible cantilever tube is completed with an Optron

vibrometer system as well as a dual camera system.
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4.1 Experimental Apparatus

Figure 4–1: Pressure Vessel

4.1.1 Pressure Vessel

The experimental apparatus consists of a stainless steel cylindrical pressure ves-

sel that is 0.6 m tall by 0.48 m internal diameter (Figure(4-1)). The pressure vessel

has four rectangular viewing windows, positioned at right angles to one another.

Pressures up to 45 psi can be sustained in this vessel, limiting the maximum attain-

able flow velocity. To de-aerate the system, two manual bleed valves are used when

filling the chamber and in-between data recording.
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The pressure vessel is filled and flow velocity through the pipe is varied through

the use of a 2.2 kW electric centrifugal pump. The gain on the pump is controlled

by digital controllers and is manually adjusted during experimentation to adjust the

flow rate. The pump is supplied water from a large water holding tank.

4.1.2 Flexible Tubes

Flexible tubes made of Silastic RTV (two-part silicone) were cast and used

experimentally to simulate the brine string (Figure (4–2a)). The flexible tube is

secured to the top of the pressure vessel.

(a) Flexible Cantilever Tube (b) Annuli
(c) Radial Flow End-piece

with 4 Holes

Figure 4–2: Experimental Materials

4.1.3 Annulus

The casing of the brine-string system was simulated using rigid, transparent

Plexiglas tubes of larger diameter with respect to the the flexible tube. These rigid

outer tubes had an internal diameter or Dch=31.5 mm and varied in length. Three

annuli of nominal length 100 mm, 200 mm, and 300 mm were used (Figure (4–2b)).
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These rigid outer tubes were secured to the top of the pressure vessel, concentrically

surrounding the flexible tube. An annulus is formed in the space between the rigid

and flexible concentric tubes, in which water can flow external to the flexible tube.

4.1.4 Schematic of System

There is one inlet and one outlet into the pressure vessel, and no accumulation

of water into the system as water is recycled through the water tank.

Figure 4–3: Schematic of the System

4.2 Data Acquisition

4.2.1 Flow-rate

A Rosemount magnetic flow-meter system, integrated with a display was used

to measure the internal flow velocity in the flexible tube. The flow-meter output
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was measured in liters per second with a resolution of 0.001 Lt/s. Flow rate adjust-

ments were made by changing the pump gain and observing the volumetric flow rate

displayed on the flow meter.

4.2.2 Motion Capture

Optron: Motion of the free end of the flexible tube was measured through the

use of an Optron 5600 which is an analog single-point vibrometer. It was positioned

in front of one of four viewing windows of the pressure vessel. The Optron 5600 is

similar to camera in that it captures motion in a plane perpendicular to the axis of

the device. It outputs a voltage signal proportional to the displacement of a tracked

point on the free end of the pipe. To calibrate, a voltage-displacement curve was

made to convert the voltage output to displacement data.

Dual Cameras: The movement of the free end of the pipe was also tracked at

each flow velocity point using high speed cameras. Two cameras were used to capture

the movement of a target strip (about an inch in length) on the pipe free end. These

cameras were positioned perpendicularly to each other and at the same height, with

one camera viewing the target from the front window and one camera viewing from

a side window. The dual camera system was considered to be an improvement as

compared to the Optron, as movement was captured in two planes instead of only one.

For static deflections of the free end of the tube, the dual cameras were absolutely

necessary to really capture the position of the tube, as in some cases, deflections

occurred at an angle between the two windows. While the Optron could only view

defections from the perspective of one window, the dual cameras could capture the

51



full motion, giving a much more accurate depiction. All experiments were completed

with both the Optron and the dual cameras for verification of the results.

4.2.3 Pressure Measurement

A Bourdon tube gage installed on the bleed line, before the manual bleed valve

was used to measure the pressure in the pressure-vessel. Pressure readings were

monitored to ensure pressures did not exceed 45 psi to prevent leaks and potential

damage to the experimental apparatus.

4.3 Experimental Procedure

1. Depending on the configuration, piping is adjusted to change the inlet/outlet

of the system.

2. The flexible tube was painted with a dark, one inch strip around the outer

surface of the tube. This was only done for data capture with the dual cameras.

3. The front window of the pressure vessel is removed, allowing for installation of

the specimen. The flexible tube and annulus were installed to the top of the

pressure vessel; both are adjusted to ensure concentricity and verticality.

4. The front window was then re-installed, using vacuum grease to prevent leaks

through the window.

5. The pressure vessel was filled with water, pressurized, and then run for about

1 hour to de-aerate the system.

6. (a) Optron: The Optron 5600 was leveled and positioned to track a point

very close to the free end of the pipe. Since the Optron uses light lumi-

nosity contrast to track movements, the light levels of a light positioned
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behind the specimen were adjusted to obtain the required contrast. Once

the light levels were adjusted and tracking established, the Optron was

calibrated by producing a voltage vs. displacement curve.

(b) Dual Cameras: The dual cameras were positioned in front of perpen-

dicular windows, the same distance from the windows and at the came

height. Lamps positioned in between the cameras and its respective win-

dow were used to create the proper light contrast. The camera settings

were configured to focus on the dark target strip, one inch in length that

was painted on very close to the free end of the tube.

7. The pump was then turned on, and gain adjusted to reach the desired flow

velocity.

8. (a) Optron: Data was recorded for 500 seconds at a sampling rate of 2048

for each flow velocity point.

(b) Dual Cameras: H264 video data was recorded for 200 or 800 seconds

(depending on the experiment) and with a frame rate of 64 frames/second.

4.4 Data Analysis

For each internal flow velocity point recorded, the Optron produced one data

set from one of the side windows. The dual camera system produced two data sets,

one from a side window and one from the front window.

Different methods were used to extract the raw displacement data from the

Optron and the dual cameras. Raw voltage data, outputted from the Optron was

converted to displacement data using the calibration curve. However, for the dual

camera system, a separate Matlab script was used to extract the displacement data.
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The centroid of the area of the painted markers was calculated and used as the repre-

sentative position of the tube for each frame. The tube displacement was calculated

by subtracting the centroid location from the tube location at zero internal flow

velocity.

Further data analysis was completed using another Matlab script that was the

same for both motion capture systems.

Taking the raw displacement data, this data was normalized by subtracting

mean displacements from the raw displacement data. The normalized displacements

were plotted against time to produce a standard time series curve to help visualize

general system motion. The time series data was smoothed using a finite impulse

response (FIR) filter in Matlab. The root-mean-square (rms) of the displacement

data was calculated in order to visualize dynamic system behavior. The onset of

oscillatory instability can be viewed graphically from an rms amplitude vs. internal

flow velocity curve, as a sudden increase in rms amplitude.

The vibration frequencies of the flexible tube were calculated by computing the

Power Spectral Density (PSD). The PSDs were calculated and compared with two

methods: fast Fourier transform (FFT) and Welch’s method with eight windows.

The dominant peak present in these curves was identified as the vibration frequency.
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CHAPTER 5
Experimental Results: Radial Flow

5.1 Experimental Results for Configuration (iv): Pipe aspirating fluid;
the annulus discharging fluid

Several experiments for configuration (iv) were conducted for a Silastic tube

fitted with a 200 mm plexiglas rigid tube. For this set of experiments, Delrin plastic

end-pieces were fitted to the free end of the cantilever tube. These end-pieces include

one with 4 radial holes (diameter 0.25 in) and one with 8 radial holes (diameter 0.125

in). The diameter of the axial hole present in all of the end-pieces is 0.25 in, which

is the same as the interior diameter of the flexible tube.

Results for partially-confined, discharging, cantilever pipe with reverse external

flow are discussed and compared for axial and radial discharge configurations. From

the extracted displacement data, time series plots, rms amplitude plots, and PSD

plots are analyzed and compared.

5.1.1 Comparison of Experimental Results for Configuration (iv)

A flexible hanging cantilever aspirating flow axially and radially demonstrates

the same behavior. This is further verified through analysis of the displacement data

including time series plots, rms amplitudes, and PSD plots.

Visually, the tube lost stability by first-mode flutter for a low critical flow veloc-

ity. Beyond the onset of first-mode flutter, further increase in flow velocity resulted in

the emergence of first-mode flutter and second-mode flutter simultaneously. At high
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enough flows, movement of the tube can be characterized as full three-dimensional

motion, with the amplitude of this motion increasing with increasing flow velocity.

It should also be noted that when flow velocity was increased beyond points of in-

stability, impacting or contact between the flexible tube and an interior surface of

the rigid tube occurred. Again, this is consistent for both axial and radial flows.

Rms Amplitude Comparison:

Graphically, the rms amplitude (mm) vs. internal flow velocity of the pipe (m/s)

was compared for each of the cases. The rms amplitude was taken as the displacement

of the free end of the pipe and helps characterize the average movement of the pipe

end. Referring to Figure (5–1), data is given for a cantilever without an end-piece,

a cantilever with a 4 holes end-piece, an 8 holes end-piece, and an axial end-piece.
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For clarity, three regions are defined, based on internal flow velocity Ui, Region

1 (0-2.5 m/s), Region 2 (2.5-5 m/s), and Region 3 (5-7.5 m/s). In Region 1, all of

the curves are the same, with indiscernible differences in the data points. In Region

2, all of the curves show the same pattern as the flow velocity and pipe movement

increases. For this region, the 8 holes end-piece exhibited slightly less pipe movement

as compared to the other end-piece arrangements. In Region 3, curves have a similar

slope with points in each of the curves showing deviations from the general trend (at

flow velocities between 6.8 and 7.5 m/s) likely due to impacting. The critical flow

velocities Ucr for first-mode flutter and second-mode flutter were demonstrated as

the flow velocity for which there is a sudden increase in rms amplitude. According to

Figure (5-1), for all three cases, this occurs at flow velocity of 3.5 m/s for first-mode

flutter and 5 m/s for second mode flutter.

In general, the various end-piece arrangements show marginal differences in pipe

movement and stability visually as well as graphically. This implies that for config-

uration (iv) radial entry flow does not affect system behavior.

Time Series Comparison:

The time series for both axially and radially discharging flow show similar be-

havior. As seen in the displacement-time series plots, segments of nearly periodic

motion are present. Between these segments of periodic motion are periods of smaller

amplitude motion that resemble ’shuddering’ or quasi-chaotic motion. As flow ve-

locity is increased, the periodic motion can become slightly distorted and segments

of small amplitude motion increase in amplitude for higher flows.
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Low flow: For an internal flow velocity between 0.5 and 2 m/s, periodic-like

motion is seen in the displacement time series. This motion is low in amplitude, on

the order of 2 mm.

For internal flow velocities between 2 and 5 m/s, periodic-like motion is still

present. However, the amplitude of this motion is increased. Between segments of

periodic motion are periods of shuddering or quasi-chaotic motion, which are of lower

amplitude.

High flow: For flows beyond the point of instability (Ui > 5 m/s), the dis-

placement amplitude is increased for the periodic-like motion and for the shuddering

motion (Figure (5–2)).
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Figure 5–2: Time Series: Configuration (iv)

Frequency Comparison:

The frequency results for all variations in configuration (iv) were very similar.

Power Spectral Density (PSD) and Fast Fourier Transform (FFT) were calculated
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from the recorded displacement-time series data. Peaks in these graphs correspond

to dominant frequencies in the system (Figure (5–3)).
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Figure 5–3: PSD: Configuration (iv)

The behavior for configuration (iv) can be characterized as follows. For low flow

velocity, below 3 m/s, one dominant frequency peak is observed, corresponding to

the first mode of vibration of the cantilever. Between roughly 3 and 7.5 m/s a second

dominant peak can be clearly identified in Figure (5–3), with the second frequency

peak corresponding to the second mode of vibration.

5.1.2 Conclusions of Experimental Results for Configuration (iv)

Behavior and stability of an aspirating cantilever was the same for flow entering

axially or radially. The tube loses stability by first-mode flutter for critical flow

velocity Ucr of 3 m/s, and 5 m/s for second mode flutter. Beyond the onset of first-

mode flutter, further increase in flow velocity resulted in the emergence of first-mode

flutter and second-mode flutter simultaneously. This is consistent with the PSD of

the signal in which two peaks become evident for higher flow velocities.Thus at high
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enough flows, movement of the tube can be characterized as full, three-dimensional

motion, with the amplitude of this motion increasing with increasing flow velocity.

As shown in the displacement-time series plots, as the flow velocity is increased, the

amplitude of periodic-like motion and ’shuddering’ is increased. This is consistent

with the increase in rms amplitudes for higher flows.

5.2 Configuration (iii) Radial Flow Experiments

Several experiments for configuration (iii) were conducted for a 456 mm Silastic

tube fitted with an internal diameter of 6.35 mm and an external diameter of 16 mm.

For these experiments, plastic end-pieces were fitted to the free end of the cantilever

tube to divert the flow out radially from the free end of the tube. Several end-pieces

were used: with 4 large radial holes (diameter 6.35 mm x 4), 4 medium radial holes

(diameter 4.7625 mm x 4), 4 small radial holes (diameter 3.175 mm x 4), 2 radial

holes (diameter 6.35 mm x 2). The diameter of the axial hole present in all of the

end-pieces was 6.35 mm, which is the same as the interior diameter of the flexible

tube.

The effect of confined length fraction, pipe length, exit flow area, end-piece

balance, end-piece orientation, and radial flow were experimentally investigated.

5.2.1 Comparison of Experimental Results for Configuration (iii)

Axial flow results for straight through flow through the tube are compared to

discharging radial flow results for internal flow velocity increasing from 0 to 7.5 m/s.

Axial Flow: For a cantilever discharging axial flow, the flexible tube displayed

very little motion for low flow velocities. As the flow velocity was increased, the

flexible tube lost stability by second-mode flutter for high enough flows.
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Radial Flow: For cantilevers discharging flow radially, the tube displayed very

little motion for the entire flow velocity range. For radial flow, flutter ceased and

stability of the tube was observed. However, static displacement of the tube oc-

curred (likely due to geometric imperfections in the end-piece). As the internal flow

velocity was increased, static bending of the flexible tube was observed in which the

unconfined portion of the tube diverged increasingly from the vertical axis, and in

some cases made contact with the outer rigid tube.

Rms Amplitude Comparison: The rms amplitude was calculated from nor-

malized displacement data to observe vibration amplitude and to calculate a critical

flow velocity. This was done for axial flow and radial flow, allowing for comparison.

The onset of instability can be determined from rms amplitude plotted against inter-

nal flow velocity. A sudden increase in rms amplitude indicates an onset of oscillatory

instability. According to this curve (Figure (5–4)), a sudden increase in slope of the

curve occurs around 5 m/s, which is the critical flow velocity (Ucr) marking the onset

second-mode flutter, for discharging axial flow.

For discharging radial flow, rms of the normalized displacement data showed

negligible vibration over the entire internal flow velocity range. As seen in Figure

(5–4), the rms amplitude is less than 0.14 mm.
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Time Series Comparison: Axial flow: As seen in the displacement-time

series plots (Figure (5–5a)), segments of periodic motion are present. Between these

segments of periodic motion, are periods of smaller-amplitude motion. As the flow

velocity is increased, the periodic motion can become slightly distorted and segments

of small amplitude motion increase in amplitude for higher flows.

Radial flow: Only extremely small amplitude oscillatory motion is present for

the highest flow velocities (Figure (5–5b)). It can be concluded that the tube is

stable, as such oscillations are considered negligible.
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Figure 5–5: Time Series: Configuration (iii) Axial vs. Radial Flow Comparison

Frequency Comparison: A dominant frequency of 1.6 Hz is present for dis-

charging axial flow (Figure (5–6)). However, since the tube discharging radial flow

is essentially static, a dominant frequency is not resolved in this case.
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5.2.2 The Effect of Confined Length Fraction

The 456 mm Silastic tube was fitted with the 4 large hole end-piece for radial

flow. Several rigid outer tube lengths were explored, including: 0 mm (unconfined

tube), 109 mm, 206.5 mm, and 304.5 mm or in terms of confined length fraction

(rann): 0, 0.239, 0.453, and 0.668. Figure (5–7) shows the magnitude of the pipe

movement at the free end. To compute the displacement magnitude (in mm), the

lateral movement of the pipe recorded from the cameras at each flow velocity point

was subtracted from the pipe position at zero internal flow velocity. An average was

then taken. The lateral displacement data from the two cameras was then combined

using the square root of the sum of the squares to show the displacement magnitude.

This was then plotted against internal flow velocity (Ui). As shown in Figure (5-7),
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as internal flow velocity is increased, the displacement magnitude is also increased,

in a parabolic fashion.

With no outer rigid tube (0 mm), at 4 m/s, the maximum displacement observed

was 90.5 mm. At 2 m/s, the displacement magnitude was 20 mm. The curve shows

a parabolic shape, demonstrating how static deflection of the free end increases with

increasing internal flow. Displacement of the free end of the pipe starts around 0.5

m/s of internal flow.

For rann=0.239, at 2 m/s, the displacement magnitude was 20 mm. Again,

movement of the free end starts at 0.5 m/s of internal flow and for increasing flow,

a parabolic displacement curve is seen (Figure (5–7))).
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For rann=0.453, at 2 m/s, the displacement magnitude was close to 20 mm.

Again, movement of the free end starts at 0.5 m/s of internal flow and for increasing

flow, a parabolic displacement curve is seen between 0 and 2.5 m/s. The flexible

tube makes contact with the outer rigid tube for an internal flow velocity of 2.5 m/s.

This explains the change in parabolic behavior seen for 2.5 to 3.6 m/s.

For rann=0.668, movement of the free end starts at 0.5 m/s of internal flow and

for increasing flow, a parabolic displacement curve is seen between 0 and 1.8 m/s.

The flexible tube makes contact with the outer rigid tube for an internal flow velocity

of 1.9 m/s. This explains the change in parabolic behavior seen for 1.9 to 2 m/s.

5.2.3 The Effect of Tube Length

Several pipe lengths fitted with the 4 large radial hole end-piece were tested. The

tube was cut to lengths of 400 mm, to 300 mm, to 200 mm. For each tube length

investigated, static deflection occurred around 0.5 m/s internal flow velocity, with

displacement magnitude increasing parabolically with respect to increasing internal

flow velocity. The displacement magnitude decreased for decreasing tube length

(Figure (5–8)). To compare for example, for an internal flow velocity of 1.48 m/s,

the 200 mm pipe showed a displacement magnitude of 1.14 mm. For the same

internal flow velocity, the 300 mm pipe displacement was 3.19 mm, and for the 400

mm pipe the displacement was 12.27 mm.
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5.2.4 The Effect of Flow Area

On a 456 mm pipe, several end-pieces with different sized holes were tested

experimentally to see the effect of flow area on displacement magnitude. Three end-

pieces were tested with 4 radial holes: 4 large holes (diameter 6.35 mm), 4 medium

holes (diameter 4.7625 mm), and 4 small holes (diameter 3.175 mm). Due to the

different sized holes, the exit flow velocity from the cantilever free end is different

for each end-piece. The 4 large hole end-piece has the largest flow area and thus

the smallest exit flow velocity. Figure (5–9) shows the following trend, when keeping

the same exit flow velocity, the displacement magnitude decreases for a smaller flow

area. This is likely due to smaller hole size causing increased pressurization at the
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free end of the tube. An increase in pressure would cause stiffening of the tube and

thus reduced displacement.
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5.2.5 The Effect of End-Piece Circumferential Symmetry

Cantilevers are highly sensitive to forces applied at the free end. Tangential

forces applied to the free end cause static deflection, while axial forces may cause

buckling. Since static deflection was observed experimentally, the effect of modifying

the cantilever free end by adding an end-piece was observed, to see if the deflection

was caused by end-piece imbalance. End-piece balance was considered here because

at high enough flows for the pipe conveying fluid in water as well as air, deflection

of the tube end was observed, with the magnitude of deflection substantially larger
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in water. It is important to note that this deflection was considered to be static as

the rms amplitude was very close to zero, showing no vibration.
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Figure 5–10: Experimental Results: Configuration (iii): Effect of End-Piece Balance

The effect of radial hole balance was tested for a radial flow end-piece with two

holes. The two holes were positioned 180 degrees to one another. To unbalance the

end-piece, one of the two radial holes was blocked. The results indicate a substantial

increase in displacement magnitude for the unbalanced end-piece (1 hole) as com-

pared to the balanced (2 hole) end-piece. For the same internal flow velocity, for

example at 1 m/s, the 1 hole end-piece displacement magnitude was 66.2 mm while

the 2 hole end-piece displacement magnitude was only 2.4 mm. This figure, Figure

(5–10), demonstrates the importance of end-piece balance. For an effective radial

hole end-piece, there should be uniformity in the hole size to minimize defection.
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5.2.6 The Effect of End-Piece Orientation

The results presented in Figure (5–11) were for a 456 mm pipe in configuration

(iii) discharging through the cantilever and aspirating through an annular space. For

this set-up, the free end of the cantilever was fitted with a 4 hole end-piece, diverting

the flow radially. For these 4 experiments, the end-piece was rotated by 90 degrees.

In each case, static deflection was observed; however, the direction of deflection

was dependent on the orientation of the end-piece. The direction of the deflection is

consistent with a 90 degree rotation, as each 90 degree rotation changed the deflection

by 90 degrees as well (Figure (5–11)). This implies a geometric imperfection in the

end-piece.

Figure 5–11: Experimental Results: Configuration (iii): Effect of End-Piece Orien-
tation
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5.2.7 Conclusions of Experimental Results for Configuration (iii)

The experimental results showed that discharging radial flow through the free

end of the cantilever caused stability, while cantilevers conveying axial flow through

the free end displayed loss of stability by flutter. Varying the confined length fraction

rann and tube length L did not impact stability of the system, as stability was ob-

served for all radial flow cases. However, longer tubes while stable, did display higher

static displacements as compared to shorter tubes. It was also shown that the geo-

metric tolerance of the end-piece is significant. Unbalanced end-pieces magnified the

static displacement, implying that perfectly balanced end-pieces would minimize and

even eliminate displacement. Additionally, geometric imperfection in the end-piece

was likely since the orientation of the end-piece affected the direction of deflection.

Forms of geometric imperfection could be imperfect perpendicularity between radial

holes, radial hole position not exactly on the centerline of the piece, and/or slight

inconsistencies in hole size.

Radial flow stability is consistent with previous experiments conducted with air

flow (Rinaldi), the cantilever was also stable. In this case however, with water as the

surrounding fluid, while stability was observed, static deflection also occurred. This

could be the result of the buoyancy effect or added mass effect from the surrounding

water causing a magnified response to geometric imperfections on the free end of the

cantilever.

5.3 Comparing configuration (iii) and (iv) Radial flow

For configuration (iv) the flow is directed from the free end of the tube to the

clamped end and thus entry flow is radial. Modification of the entry flow from axial
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to radial did not affect the behavior or the stability of the system. However, for

configuration (iii) the flow is directed from the clamped end to the free end of the

tube, and thus the exit flow conditions change. Alteration of the exit flow direction

from axial to radial discharge resulted in a complete change in the dynamics of the

system, in which the flutter instability observed with exit axial flow was replaced

by stability for radial exit flow. This observation underscores the importance of exit

flow conditions as opposed to entry flow conditions.

5.4 Comparison of Experiment with Theory

The theoretical model was run for the physical experimental parameters. Results

in terms of system stability or instability are reported in Table 5–1 , in which L is

the cantilever tube length and L′ is the outer tube length. The mass of the end-piece

used was me=8 g, consistent with the physical component used for the experiments.

The internal flow velocity (Ui) considered here ranged from 0 to 12 m/s.
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Table 5–1: Experiment and Theory Comparison

L [mm] rann Experiment Theory

456 0 (unconfined) stability stability

456 0.239 stability stability

456 0.453 stability instability

456 0.668 stability stability

400 0 (unconfined) stability stability

300 0 (unconfined) stability stability

200 0 (unconfined) stability stability

Agreement between theory and experiment is good; in almost every case tested,

stability was observed for both. Experimentally, stability was observed for every case

tested. In the case of rann=0.453, however, the theoretical model predicted flutter

whereas experimentally stability was observed and hence, flutter was not present.

This is likely due to the model accounting for the mass of the end-piece, which

theoretically has a significant effect in inducing flutter instability and even chaos in

the system. Additionally, as the cantilever length was changed (L), no oscillations

or flutter (stability) were observed experimentally or predicted by the theoretical

model.
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CHAPTER 6
Experimental Investigation

Configuration (iii) varying internal and external flow velocities

Continuation of configuration (iii) experiments was completed to explore can-

tilever behavior for different ratios of external flow velocity (flow through the an-

nular space between the rigid pipe and flexible pipe) to internal flow velocity (flow

through the cantilever pipe) or Uo/Ui. For these experiments, the dimensional and

non-dimensional parameters are articulated in table.

6.1 Experimental Set-up

For this series of experiments, the existing apparatus was modified (Figure (6-

1)). Before modifications were made to the experimental set-up, the maximum ratio

of Uo/Ui was 0.0548, purely based on conservation of mass. However, to achieve

greater control over the external flow velocity, a second flow meter and second cen-

trifugal vacuum pump were subsequently integrated into the system. In this case,

there are two inlets into the pressure vessel: one through the top of the pressure

vessel, and one from the bottom of the pressure vessel. The flow through the top of

the pressure vessel (Ui) is driven by the first pump and flows through the cantilever

in the clamped-free direction. The flow through the bottom of the pressure vessel

(Uo1) is driven by the second pump which drives flow from the bottom of the pressure

vessel upward. The flow through the annular space is the external flow (Uo2) and is

measured by the second flow meter.

74



Ui
U

Figure 6–1: Experimental Set-Up

Again, a point very close to the free end of the tube was tracked using the Op-

tron camera, for a 456 mm pipe fitted with a 206.5 mm outer rigid tube.

6.2 General Results

For low external flow velocity, the tube displayed first-mode flutter that grew

in amplitude with increasing flow. Beyond this onset of instability, the flexible tube

began to make contact with the outer rigid tube. The effect of this impacting was

at first to limit motion, as the cantilever remained fixed, resting on a side of the

outer tube. As flow increased, the effect of impacting resulted in the emergence
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of second-mode flutter in which oscillations resumed and a higher frequency peak

emerged.

6.3 Experiment type 1 Results

For this experiment, the internal flow velocity was maintained at 2 m/s while

the external flow velocity was increased step-wise from 0 to 2 m/s, until a Uo/Ui

ratio of 1 was reached.

Visually, the behavior of the pipe for increasing external flow velocity can be

summarized as follows. Between external flow velocities 0.2 and 0.4 m/s, the flexible

tube showed no visible motion. As the external flow velocity was increased to 0.45

m/s, the entire tube demonstrated low amplitude oscillations. Further increase in

flow velocity resulted in maximized oscillations that were damped for periods when

the flexible tube made contact with outer rigid tube. Eventually, the flexible tube

rested on the outer tube and displayed low amplitude oscillatory motion that in-

creased with increasing external flow velocity. It is significant to note that both

the unconfined and confined portion of the pipe displayed oscillations that grew in

amplitude with increasing flow.

6.3.1 Time Series

In Figure (6–2a), the time series is shown for an external flow velocity of 0.45

m/s, just before the cantilever tube made contact with outer tube. As seen in the

figure, the displacement was sufficiently large ranging between -10 and 15 mm. For

an increase in external flow velocity to 0.6 m/s, the flexible tube periodically made

contact with the outer tube. As expected, this increase in external flow resulted in

even larger amplitude oscillations, ranging between -10 and 25 mm. However, the
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amplitude was reduced when contact was was made, as oscillations were damped

(Figure (6–2b)). Although the boundary conditions change for the cantilever resting

on the outer tube, several data points were recorded to characterize the behavior

post-contact. This showed increase in oscillations, as seen in Figure (6–2c).
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6.3.2 PSD

There is one frequency 1 Hz that starts at Uo=0.45 m/s and continues to Uo=2

m/s. This low frequency corresponds to the first-mode of vibration. A higher, second
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frequency between 5 and 6 Hz, starts around an external flow velocity of 0.8 m/s.

This second frequency corresponds to excitation of the second-mode, for high enough

external flow velocity and after contact was made with the outer tube. As seen in the

PSD (Figure (6–3)), this second frequency peak begins low in signal power but as flow

velocity is increased, the peak gains signal power becoming increasingly dominant as

compared to the first, lower frequency peak.
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6.3.3 Rms

6.4 Experiment type 2 Results

For type 2 experiments, the internal flow velocity and external flow velocity

were increased simultaneously to maintain a constant Uo/Ui ratio. Several ratios of

external to internal flow velocity were considered: 0.2, 0.4, 0.6, 0.8. While several

ratios were addressed here, the maximum internal and external flow velocities were
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limited to stay within safe pressure levels inside the pressure vessel. Thus, the range

of flow velocities tested is more limited for higher ratios.

6.4.1 0.2 Ratio

Detailed results are presented here for a Uo/Ui ratio of 0.2. Specifically for a

ratio of 0.2, for Ui from 0.5 to 1.75 m/s and Uo 0.1 to 0.35 m/s, the tube showed

low amplitude oscillations that were not detectable visually. Before the inner tube

makes contact with the outer tube (for 0.2 ratio: Ui=0.5 to 2.5 m/s and Uo=0.1

to 0.5 m/s), oscillations are present, that reach a maximum just before impacting

occurs. Figure (6–4a) shows the high amplitude oscillations that range between -10

and 25 mm. Again, for increasing flows, impacting occurs resulting in temporary

suppression of motion (for 0.2 ratio: Ui=3 to 4 m/s and Uo=0.6 to 0.8 m/s). Further

increase beyond the point of impacting resulted again in first and second mode flutter

simultaneously. For a ratio of 0.2, this occurs in the following flow velocity ranges:

Ui between 4.5 and 7 m/s and Uo between 0.9 and 1.5 m/s. It should be noted that

the oscillations present after impacting becomes more chaotic and irregular as seen

in Figure (6–4b). Note that trends seen here are the same as for the higher ratios.
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Figure 6–4: Time Series for 0.2 Ratio

As seen in Figure (6–5), for lower internal and external flow, one frequency peak

is present that is close to 1 Hz. For an increase in flows, two frequency peaks become

evident, again referring to the first two modes of vibration.
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6.4.2 Ratio Comparisons

For each ratio the internal flow velocity for which the first-mode demonstrated

maximum vibration was recorded. Additionally, the Ui for which the second mode

became excited was identified. These are presented as two curves in Figure (6–

6) (internal flow velocity vs. Uo/Ui ratio). The first-mode showed peak vibration

amplitude at 2.5 m/s of internal flow for Uo/Ui = 0.2. As the ratio between external

and internal flow was increased, the internal flow velocity for peak vibration was

reduced, indicating a de-stabilization effect for higher ratios. Additionally, the curve

indicating the excitation of the second mode followed a similar trend. It can be

concluded that the effect of higher ratios and higher external flow is system de-

stabilization. Further verification of this claim can be seen in the rms curves in

which the onset of the first-mode flutter is shown Figure (6–7). Two lines are shown

in each figure; the first curve marks the pre-instability region while the second curve

marks the post-instability region. The critical flow velocity associated with the onset

of instability is indicated as the intersection point between these two curves. The

critical flow velocity ucr based on the internal flow is identified for each ratio and

summarized in Table 6–1. It is evident that as the ratio increases, the critical flow

velocity is decreased. This means that instability is reached for lower internal flows,

again implying that higher ratios are de-stabilizing. In order to maintain stability,

it is recommended to minimize external flow velocity.
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Table 6–1: Ratio Comparisons: Experimental Critical flow velocities

Ratio Ucr (m/s)

0.05 5.00

0.20 1.54

0.40 1.01

0.60 0.51

0.80 0.22
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CHAPTER 7
Conclusion

7.1 General conclusions

Based on the experimental and theoretical investigations presented here, several

general conclusions can be reached.

1. A hanging cantilever subject to configuration (iii) flow conditions with dis-

charging flow radially from the free end exhibits stability both theoretically

and experimentally. Based on the theoretical investigation of the bench-top

system, stability was predicted with bench-top system parameter for several

confined length fractions rann:0, 0.239, and 0.668 and for several pipe lengths:

200 mm, 300 mm, 400 mm, and 700 mm. Additionally, experimental results

indicated stability for all varied parameters. Experimentally, stability was inde-

pendent of cantilever length and rann. These are positive results, as elimination

of flutter instability was achieved through modification of cantilever exit flow

from axial to radial.

2. The theoretical model for configuration (iii) with radial exit flow conditions

was tested and stability resulted for several combinations of brine-string pa-

rameters. These findings are relevant to the salt-cavern hydrocarbon storage

industry as cavern geometry as wells as brine-string dimensions can be adjusted

to prevent instabilities and breakage of the cantilever pipes. Modification to

radial exit flow, reduction in me, decrease in rann, and increase in αch are
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all variations in parameters that can be adjusted in the application and were

proven to tend towards system stability.

3. Static deflection. Experimentally the magnitude of static deflection was in-

dependent of rann, as for all tested cases displacement magnitude remained

consistent. For increasing tube length, increasing static deflection occurred.

Additionally, for decreased flow area from the radial flow holes, resulted in re-

duced displacements. End-piece balance and orientation was also investigated

and determined to be the cause of the deflection. Thus, it is important to

prevent geometric imperfections near the cantilever free end.

4. Modification of exit flow has a greater impact on dynamic behavior as compared

to entry flow. Altering the entry flow conditions from axial to radial flow for

configuration (iv) resulted in no change in system behavior. However, altering

the exit flow conditions from axial to radial flow for configuration (iii) resulted

in a change in system behavior from flutter to stability.

5. Higher external flow velocity has a de-stabilizing effect on configuration (iii)

systems. It was shown experimentally that higher Uo/Ui ratios resulted in

lower critical flow velocities. In order to maintain stability, higher external flow

velocities or annular flow should be minimized in the salt cavern application.

6. The dual camera system was necessary to capture static deflection observed

for the radial flow experiments for configuration (iii). This was considered to

be a significant improvement as compared to the Optron system, as with two

cameras data could be recorded for two planes instead of just one.
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7.2 Future Work

There are several areas in which the work presented here can be improved and

expanded upon. Firstly, it would be useful to develop a theoretical model for config-

uration (iv) flow. As presented previously, this flow configuration is highly unstable,

for both axial and radial entry flow. A theoretical model would be useful to help

predict critical flow velocities as well as to adjust and experiment with parameters

to see if stability can be achieved theoretically.

The radial flow investigation for configuration (iii) could be expanded in the fol-

lowing ways. It was previously noted that end-piece balance and geometric perfection

are important for preventing static deflections observed with radial flow. Thus, im-

provements can be made to the existing end-piece design to ensure better balance

and geometric tolerances. Additionally, different end-piece designs or methods for

implementing radial flow can be researched.

Furthermore, it would be useful to adjust the existing model for configuration

(iii) to account for varying Uo/Ui ratios and compare with existing experimental

results.

As of now, varying Uo/Ui ratio experiments have been completed for one pipe

length for one confined length fraction in configuration (iii). This investigation can

be expanded to include different tube lengths and different confined length fractions.

Additionally, varying Uo/Ui experiments should be completed for configuration (iv).

It would be interesting to see the stabilizing or destabilizing effect of higher external

flow velocities on this system.
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