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Preface

Rapid advances in the classification of Natural Fixponential families using their Vari-
_ ance Funclions make the present work timely, both from a theoretical point of view,
‘where a handy reference can always be helpful, and from an applied perspective,
‘Where Quasi-likelihood estimation algorithms and Generalized Linear Models can
‘easily be customized to accomodate new and potentlally useful models using only
variance funcl,lons or variance and link functions.

This work was undertaken at the suggestion of Professor V. Seshadri, who as
thesis supei:viser, has from the onset expressed great enthusiasm for the prdjec_t and
Edi_splayed "more'pa‘tience than the anthor probably dese;ved. The author’s heartfelt

Lo gratitude gocs to him, as well as to Professors George PIH" Styan, David B. Wolfson '
‘| o and Keith .J. Worsley from the Dcpa.rtment of \lathematlcs and Statistics of MCUIU.
: . Umvcxmt}, for their un[alhng support and open Ir lendlmess The author also wishes
B w “ll "+ 'to thank Professor Geratd Letac of the Université Paul Saba.tler in Toulouse, France
| _ “or an enlightening conversation concerning probab!hty measure inversion, as well as -
: || \\ for suggesting the inclusion of a table of Canorncal ‘Caste Membels for the variance

| functions.

e ‘. .Onamore personal note, the author also W1shes to express his thanks and affection
|

GO to de C]IIwrt -whose suppom\ eness was one of the few consmtent aspects of the
A :Etlme spent in the preparation of this thesis. :

Algebraic results werc verified using Maple V release 2: Ma.ple is a trademark of
Waterloo Maple Software. QOmL numerical checks were performed with S- plus version

3. 2, -plus is'a trademark of Statsci. This wotk was typeset using IATEXversmn 2.09
by t,he author. ' i o
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’llns lcsoa.rch was supported.in part by NSERC gra,nt 283-34 and NATO collab- -
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Abstract

Natural Exponential Familics (NEF) belonging to the Grand-Babel class have vari-
ance functions (VF) of the form Vg (m) = P(m)A (m) + Q(m)/A (m), with I, Q-

“and A polynomials with deg P > 3, deg Q > 2and deg A > 2. Although the mcmbers
of this class have not as yci all been enumemted ‘several useful sub-classes have been
fully described, namely the Morris class, with at most quachatm polynomml VTs: the
Mora class, with cubic polynomial Vis; the Babel class with deg P = 0, deg@Q £ 4

cand deg A < 2; and the Seshadri class, with deg P = clch_— dch = 1. In order

to motivate a uniform presentation of each member of these classes in.compendinm-

~form, the basic properties ol NTFs are surveyed; with special insistance on extension
models such as<convolution families, exponential dispersion-models and affinities of

" NEFs. The ,Gr_and—BaLbel NEFs are presented with both a canonical paramelrization

which emphasizes the link to their basis measure and a more familiar ov utilitarian

. parametrization. Expressions {or the variance functlon the cumulant transform, the
mean-domain mapping, the ‘density (when awallable) the Legendre transform and
some asymptotics are given for each NEF, thus providing links to the theories of
- Lll\ehhood and Quasi-likelihood, Gemeralized Linear Models, Saddlcpomt approxi-
matlon, Large deviations, Distributions and Asymptotic approximation. The notion
of Ca,nohical Caste Membier (CC \I) an-easily identifiable Ieptcsentativc of the equiva-
lence class of all affinities of a NEF, is introduced; correspondingly, a table of variance
functions for the CCMs of the currently clissified Grand-Babel NEFs is prvided.

i
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Résumé

Les Familles Exponentielles Naturelles (FEN) appartenant a la classe de Grand-Babel
sont caractérisées par une fonction variance (FV) de la forme Vg (m) = P(m)A (m)+
Q(m)/A(m), o P, @ et A sont des polyndmes avec deg P > 3, degQ > 2 et
deg A > 2. Bien que les membres de cette classe n'aient pas tous été recensés, cer-
taines sous-classes fort utiles sont déja exhaustivement décrites, nommément la classe
de Morris, possédant des I'V polynémiales de dcgi‘é inférieur ou égal a deux; la classe
de Mora, aux I'V polyndmiales cubiques; la classe de Babel, ou deg P = 0; deg@ <1
‘et deg A < 2, et la classe de Seshadri, oil deg P = deg () = deg A = 1. Dans le but
de motiver une présentation uniformisée de chacun des membres de ces classes sous
forme de cdmpe.ndium, on effectue un survol des propriétés élémentaires des FEN,
en insistant plus spécialement sur leurs extensions, telles que les familles de convo-
lution, les modéles expoﬁcntiels de dispersion et les affinités de FEN. On présente
les FEN de Grand-Babel A la fois sous une paramétiisation canonique qui :souligne'le
lien qu’elles possédent avee leur mesure génératrice et sous-ane paramétrisation plus

familiére ou utilitaire. Chaque FEN est décrite a I'aide de sa fonction variance, de sa

tranformée des cumulants, de sa fonction de moyenne, de sa densité (lorsque celle-¢i *

est disponible), de sa translormde de Legendre et de certains résultats a.sympto:tiques,
établissant ainsi des liens avec les théories de vraisemblance et de quasi—x'rra,isémbla.nce,
des modeles linéaires généralisés, de approximation de point de selle, des gra.ndles
déviations, des lois de probabilités et des approximations asymptotiques.  On intro-
duit la notion de Membre Canonique de la Caste (MCC), un représentant facilement
identifiable de la classe d’équivalence [orfnée par les affinités d’une FEN; y faisant
suite, on produit un_,@ table des IV de chaque MCC pour les FEN de Grand-Babel

i
actuellement classifiéss.

i
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Intro duction

Inrlg"TS, Ole Bau‘ndorfT-N'iclsen-publishcd Information and Fxponenlial Families in
Statistical Theory, a treatise which exposed the first firmly measure Lheorelic con-
structive approach to Exponential Families and inference theory. Four years laler, the
~ publication of Carl N. Morris® seminal “Natural exponential families with quadratic
variance functions” spurm(l a flurry of research in the theory of Natural xponen-
" tial Families (NEF) and the classification of their Variance Funclious (VI), nolably
though not exclusively by a teantof students and researchers al the Université Paul-
Sabatier in Toulouse led by Gérard Letac. Tor these reasons, what we have scen lit,
to dub “constructive NEI* theory” has been variously dubbed the “Danish” and the
“Toulousain™ approach. .

Research in the classification of NEI's using their variance functions has uncarthed
not only many useful techniques in distribution theery but also a good umber of
theoretical gems, particularly as concerns relationships between NIFs. The coneepl
of inversion of a probability mcasm‘é_, for e.xample (§2.4, ch. 1), was pionecred hy .
M.C.K. Tweedie'(lgcli")) and later formalized by Tetac (1992): it boasts of an elegant
formulation as well as a deep association with Lévy processes, and still harhours
several open problems, even in the one-dimensional case. Likewise, the reduction of
NEF's to equivalence classes of generating measures (§2.1) has illuminated previously
unsuspected kinships between NEFs, which in turn have opened up new avenues for
research. . - ‘ |

Efforts at classification of NET's began with power variance functions (PVFs), VFs
of the form Vg (m) = em® for m € R* and ¢, o. € IR, introduced by Tweedie (1984).
PVFs were later explored and their classification completed by Jorgensen (1986 and
1987), Bar-Lev and Enis (1986) and Bar-Lev and Stramer (1987). Anocther important,
class of NEI's has been dubbed the Grand-Babel class (see §2.6, chapter 1) by Letac
(1992), a whimsical acronym based on the names ol ils originators, namely Bar-Lev, .
\ Bshouty, Enis (1991) and Letac (who had broached the subject in the discussion
following Joréénsen’s [1987] paper). The classification of Grand-Babel NEFs has
. been progressing steadily. | |

At this stage in NEF VF résearch, the present work intends to provide a com-
pact handbook on Grand-Babel class natural exponential families and their variance -

functions, thus partially fulfilling a need expressed in the research community for a



dictionary or atlas of classified variance functions. Space constraints have limited
the scope of the present work to classified Grand-Babel class NEI's; PV s are thus
excluded from it, except insofar as they also belong to Grand-Babel subclasses. The
PVIs incidonta]l& covered hy this work are the Normal (p. 20), the Poisson (p. 21),
the Gamma (p. 26) and the Inverse Gaussian (p. 37) families. The Gamma-Poisson
Mixture families are also mentioned in appendix section 1. Stable laws and a dis-
cussion of PVF classification are thus set outside the scope of our study. Recent -
work by Malouche (1994) on the partial classification of a Grand-Babel subclass was
completed too recently Lo be incorporated here. ‘ '

Chapter 1 is devoted to-a brief, almost purcly terminological, exposition of the
‘mathematical gears-and levers of constructive NET theory in general, and includes
a description of the role of the variance function in the related fields of Saddlepoint
approximation, Quasi-likelihood theory and Generalized Linear Models. A note on
an original cxtension of probability measure inversion appears in §2.4. The Grand-
Babel class is presented in §2.6, along with a discussion of Canonical Caste Members,
a concept suggested by G. Letac as a lexical device useful for the recognition of
variance functions of affine NEFs (see §2.2).

- Chapter 2 forms the core of this work, presenting in compendium form the classi-
fied Grand-Babel NEFs and VFs, including the Morris (p. 19), Mora (p. 29), Babel
(p. 39) and Seshadri (p. 78) classes. To each convolution Jamily (See §2.3) belongiﬁg
to these classes corresponds a standardized entry; the originality and usefulness of
the compendium lay in this standardization: variance functions, generating measure
and Laplace transform related expressions are paramctrized uniformly throughout us-
ing a form of extended canonical parametrization, while expressions for the density,
when available, include an explicit reparametrization in more familiar, meaningful or
~ convenient terms. On this topic, we note that scveral new explicit expressions for
- densities are stated in chapter 2 and derived in the appendix: these are the densities
for the Trinomial families, the Pascal Sum, Poisson-Pascal Sum, Binomial Sum and
Gamma Sum families, the S-Abel and S-Takacs families, and the Reciprocal Inverse
Gaussian [amilies with arbitrary dispersion parameter. _

Chapter 3 is a simple table of Canonical Caste Member variance functions for
the families described in chapter 2. The inclusion of this section was suggested by
G. Letac as a valuable addition to a compendium of variance functions. Appendix
B contains important proofs and derivations and some relevant mathematical back- .
ground. ' | ' '

[ )



Chapter 1

Measure and Natural Exponential

Families

- We deﬁne_hcre the basic building blocks of (_:orlstructi\-'e_Naturzi.l Exponential Fam-
ily (NEF) theory on IR, beginning with the positive‘genera.ting measures and their
Laplace transforms, and ending with statistical properties and concepts related to
NEFs or useful for their description. - OQur discussion will be limited wholly to the
real line; ‘however, success has been met in sti'ucturi.ng higher-dimensional NEFs,
notably by Letac (1988,1992 ch. 6), Casalis (1992, 1994) and Hassairi (1993). The
one-dimensional case evlclentl\ cmbodies many of the fundamental concepts of NEF
theory and is also (and naturally) more fully explored tlum tts higher- dmlcnblonal
relatives. '

 The roader is assumed familiar with the fundamental definitions of measure theory

.and of statlstlcal estimation and inference. The notation used throughout this Chaplq

-will be used uniformly throughout the compendium, and is summarized in Appendix

C.

1 Basis Measures and the Laplace Transform

In the constructive, measure theoretical approach to Natural Lxponential Family the-

ory, the most basic object is the generating measure, also called the basis of the ‘ﬂmmily.
As we will sce in section 2, this measure is determined up to an. equivalence class. In
generai however, most NEFs can be generated by qlmple transformations of simple
measures: the transformations involved not only oftcn have a concrete piobabahstlc

meaning, but are also convcmont]y manipulated using the Laplace transform.

We will first define some operations on ._méas'{_lres:and then establish a proper .

panoply of genc:rating and transformable mea:_sufcs.

1.1 The Laplace Transform and Operatlons on Measure

Let M.,. be the set of positive measures on IR and COﬂS]del the Laplace tmnsfozm of.

p € M, given by

) = [

Y



defined for # € D(p) = {0 € R | L.(0) < +c0}. We will be concerned only with the
interior of D{u)} as the domain of variation for 8, which we denote © () = intD(p).
A {undamental result associates leectuc‘]} any measure with its Laplace trans-
form, through an inversion formula (see for instance Feller [1971]), XII1.4). The in-
version of a Laplace translorm is often a difficult task, and in some cases an explicit
expression for the measure to which it corresponds remains unavailable. Nevertheless
the Laplace transform enables us to define some useful and natural operations on
measures. ' ' '

The sct of basis measures for real NEFs will be

M= {reM, 10(n) #0 & ﬁaeﬂ:p{a}=#(m)} ;

and our initial objective will be to construct measures belonging to this set. The main
operations reviewed, apart from scaling (' = ap, a € R*, with L,,(8) = aL,(8)) and

 addition (p' = gty + g2, With L, 4,0(0) = Ly, (8) + 1., (8)) are imaging under affinity,

convolution, power, exponentiation and geometric expansion. A discussion of measure
inversion is postponed until §2.4. The operation of mixing is described in §3.1. Most
- of the following statements are proved or otherwise discussed in Letac (1992, chapter
n. | o o '
The Dirac measure at 0 & is defined in §1.2.
Affinity Imaging '\
Let 7 = d‘(iR) be the o-field of “in‘terest. Consider the affine transforma.tion '

..A:m-ﬂm.mau;b e, beRR, a0

© We call A * I the image meastre of p: under A, denoted and defi_ned by A* ,u(B)
p(A™Y(B)) VB € A(F). With this definition (see Theorem 2.1 below) ifpeM
(respectiv dv, M.; ythen Axpu € M (1espect1vel), My).as well and G)(A*,u) ) ().
- Moreover L., (8) = €Ly (a0). :

Convolution

The convolution of two measures j and v in M is denoted p * v and deﬁned‘ by
" (o)) = jR (A — :r)ﬂ(cl;r) A€ Fo

" The. Laplace transform of a convolutxon ‘measure is given by Ly (8) = L#(G)L (),
with © (pt) = © (p:) N 9( ) (see Letac [1992]). We abbreviate repeated convolution -

of thé same measure by g™ = g+ p* ...+ u for n € IN, with the convent1on that -
0 _ g ‘



Power

The simplest method by which a well-defined notion of power for measures can be
established is the consideration of their Jgrgensen scf. The Jgrgensen set of p € M
is described by ' '

Ap)={A>0]3p € M : L, (0) = L,,(a))j‘,o €0(n)}

By a.nalogy with L, (8) = (L (0 )) for n € IN as seen above, we define v = »°* for
A€ Ap) L, (8) = (L.() for all 6 € © (p).
A measure g will be said to be infinitely div isible it Alp) = 1R+ this definition is
~ equivalent to the usual defimition of infinite divisibility as provided, for instance, by
~ Peller (1971). We can note immediately that IN* C A(p) for all y € M, (scé §2.3).

Exponentiation _ : . ' ' .

If ,u. € M+, define .
. &a *j
con=iot 5L

=1

Then exp p E-M if i # 6o, Oexpp) = O (p) and Loyp 1 (0) = :exp L‘,(O.) for 0 € ©(pr).

Geometric Expansion

Let 4 € My be such that ©*(x) = {0 € © (4) | L,(0) < 1} #0. Defne

(60_“*( ) __ 6+Zl ’+.7 *J

Then v, € M if »; is not a multiple of 6o, O(v;) = ©(4) and L,-,,'(@) = (1 =L, (0)
for 8 € O(v,). ' ' & ‘ '

1.2 Ex.l:imples of Measureé‘ and Transformations

We list here a certain number of important measures on. IR. Not all of thcse may
form the basis for a NEI", but all form a starting point for the construction of such
a basis using the above operations. '



Table 1.1: Some important positive measures on IR.

Name of measure  Definition
Dirac ~ &, where §;(A) =1ifz € A and
(A) = 0 otherwise, for A C IR

Counting Measure Z 8;

Abel Z (J—f,)—haj
| 2 rlasr2i+)
. . e +1)7+1
kécs(a) L (e §; 0
Takdcs(a) ;F(J-i-l) (g + 3 or a >
Lebesgue on A 14(x) where A C R
Kendall-Ressel T ]1R+( )

’-.1

_ ( +
" Standard Normal: ( )

Hypeibol]c Sccant it = sech(z )IIR(:L)

u\._x

2
&

~ Most of the NEFs included in thls compendium are . rooted in one or more of the
3 above measures. By suitably applying the various operations on measures mentioned -
a,bove we can create a rich (h\’(‘lblty of bases for NEFs. Some fundamental examples

are 1nclud<‘(i here.

Example 1.2, 1 Blnomial Measure _ S ‘
Let p = 60 + 61 Then forn E IN , - Z ( n )53-,' called the Binomial merisur}:. |

i=0

Example 1.2.2 Gamma I\‘Iéaéure

r—1 o

Let p = ]IR+(5), the Lebesque measure on. R*. Then Tl F( )]lR+ (1), for r € RY,

is called i._hr: Gamma Tmeasre with scale parameter r.

Example 1.2.3 Poisson Measure

00 .
Let p = emp(ﬁl) Then o= ;I’ called the Pmcson measure.
. . =

Example 1.2.4 Pascal and Negative Binomial Measures

00 1 - .
Let p = (8 = &), Then pi = Z( Tt )6_,-, the Pascal measure for r €

; = =0 = \1

RY. Ifr € IN* the image measure p' of p by the aﬁ"mty Ay =t+ris gwen by
[ ] "y - 1 .

w=> ( I . )5_,, the Negalive Binomial measure.

= AT~



2 Natural Exponential Families and Extensions -'

Natural exponential families are constructed here, as well as the objects which most
naturally characterize them, such as cumulant transform, mean domain and, of
course, variance function. The aforementioned measure operations of affinity imaging
and power are recast in terms of extension models of NEFs, and probability measure
inversion is introduced. We quote some basic results in the asymptotic theory of vart-
ance functions. Finally we make a note on castes, a type of lexical construct derived
from variance functions, and introduce an equivalence class across aflinities of NEIs
with the niotion of Canonical Caste: Member (CCM). |

N

2.1 Natural Exponehtial Families

We need a few more definitions before moving on to the construction of NET's.

We first deﬁhe the cumulan! transform of u as
ku(6) =log Lu(8), 0 € © (p).

Holder’s inequality can be used to show that k,(8) is strictly convex and m'ml;ytic ol
© (1). Hence for p € M and '€ O (), define the probability measure

P(0, 1)(dz) = exp (Oz — k,(0)) u(dx).

We call § the canonical parameterof the probzibiiity_measure P{0, t) and the parametriza-
tion in ternis of § € © (1) the canonical form of the NEF. It is a simple matter to
show that the__ moment generating function M(s) for this probability measure exists

in a neighborhood of 0 when § € O () and is given by |

M(s) = exp (ku(0 + ) — k,(0)) .

+ The basis measure geng.'ating‘P‘(G,y) is not unique. If H‘; = explaz - b)ji, with
a,b € R, then &, (0) = k(0 + a) +b,0 € O (1) = © () — a. But then P(0,py) =
P(O+a,p),0+a €0 (m)ta=0(p) Hence defining '

F(x) = {P(0, n)(ds) | 0 € O ()} ,

we see that since F(p) = F(u), F(p¢) depends not strictiy on g but rather.on the -
equivalence class {g; € M | iy = exp(az + b)i, ¢,b € R}; we can thus write J” =

" F(u), called the natural exponrntzal family (NEF) generated by .

In the sequel; we assume as a matter of notational convenience that X ~P(0, 11)(dz)-
" Since k, is stnctly convex on © (,u) the mapping 7,(0) = k,(0) is injective. Define

M = 7,(0 (1))



called the mean domain of F and easily seen to depend on F' rather than u. The

name mean domain comes from the property

k()= [ PO, (de) = ELX],

so that 7, maps 0 € O () bijectively to the mean associated with the probability

‘measure (0, ). We denote ¢ : Mp — O (p), m — 7,}(m). The bijectivity of ¢
~ allows a reparametrization of P(0,1), 0 € © (y) as P(m, F), m € Mg.

Denote now Vg (m) = k (¢(m)). It is easy to show that
 Vp(m) = / (z — m)?P(m, F)dz = Var[X],

whence we call (Vp, Mp) the variance function associated with F. An alternative

expression [or the variance function is

Ve(m)= ,m € M,

¢’( )’

sometimes uscful in computatlon It is a well- Lnown and easily shown result tha.t the

variance function (Vp, My) characterizes the NEI among all NEF’s (see for mstance .
Morris {1982}, Letac and Mora [1990]) though it does not characterize any pa,rtlculm
member of the family. .

The 7Legendre_ transform of measure p is‘ given by

ky(z) = sup x0 —k, 6)
fe®(p) -

= zd(x)— k“(¢“($)), z € Mp.

-The Legendre transform, like the cumulant transform, is a property of the measure
p and not of the family Fi(u). Letac (1992) provides details about the use of the = -

Legendre transform in large deviation 'the'o‘ry.' Further motivation is provided for the -

inclusion of the Legendre transform in the compendium throughout section 3.

2.2 Affine Natﬁral Exponential Families

Consider the real a,fﬁnity Aty = at+b,a,b € R,a # 0. The following thcorem
summarizes lacts concelnmg the NEF genera,ted by A p as'it relates to the NFF
generated by u.

Theorem 2.1 (Letac and Mora [1990]) Let A be an affine tmnsformatwn as above, |

“and F = F(p) be-a NEF. Then

(i) AxpeM and O(A * p) = (y,)

() Faunl8) = Ku(a0) 410, 0 € O (u) ~ |
(i) If for some p' € M, F_(,u) = F(y), then F(A*,u) F(Ax*py)
(i) Maun = A(My), and A+ P (m, F(s)) = P (A(m), F(A» )

(v) Vi = GZVF'.(I"} (A_l.(m)) »m € My

8



~ The following corollary, though trivial in nature, spells out the computational
method and probabilistic interpretation associated with actual members of afline
NEFs, by extendiug part (iv) of Theorem 2.1.

Corollary 2.2 With A, y and I as abbve,
(vi) AxP(8,p) = P(0/a, Axp).
(vii) If X~P(0, p)(dz), then A(X)~[Ax P(8, 1)} (d2).

Part (vii), in turn, allows us to introduce a natural notation. We will write

[r:.P(O,l',[.r.) +b for AxP(0, ”)"
[aF(p)+b] for F(Axpu),

and so on, whenever convenient.

2.3 Convolution Families and Exponential Dispieréion'Mod—
e ol . | T

TR

Let F = F(u) be a NEI. The .Jgrgensen sets of all measures in the class which
genera.tes I” must be 1deni ical, and thus we can define the Jgrgensen set ol a . NI 1‘ as
A(F) = A(p). |

For A € A (F), let ) € M be such that k,, () = Ak, (0), and denote

PN ) = F()

The IlOtELthI] is not abusive, since for p\ = exp(az +b)uy, a,b € IR, we have l' Mp) =

F(u) = F(ph) = FM(u"), where ' = exp(az + b/A)p(dz) also generates /7. We then .

call convolution family (CF) (or additive model) the set of probability measures
CF(F) = U b
NEA(F)
.‘énd exponential dispersion model (EDM) the set
. o
- EDM(F) = AU [T} :
EALF)
We call A the dzsperszon paramcter of the CF or EDM. EDMs were first mttodu(,cd
by J¢rgcnse11 (1986 and 1987). TFrom the above it is clear that every NEF gencrates a
CF (respectively, EDM), and that the Jgrgensen set induces and indexes a partition
of the CF (respectively, EDM) into NEFs. The actual forms of the densities are
ED" (0, )) = exp (02 — Ak, (0)) 1™ (dz)
for CF's and :
ED(0,)) = exp [A {0y — ku(0))] (A + p)(dy)

9 -



for EDMs, where the affinity A is given by A(t) = ¢/, t € IR; in both cases the
_ range of the parameters (0, A) is © (#)xA(y). EDMs are sometimes reparametrized
. ’ in terms of the mean m-and o = 1/}, yielding the density

ED(m, o) = exp (= [ad, (m) = kuld, (m))]) (4% p)(da).

We note that A(F) is an additive semigroup in R*. Let p,g¢ € A(F). Since
for v € M, ko (0) = k, (0) + k() we have that &, ... (6) =k, (6) + k., (9) =
(p+ q)ku (). Hence there exists jipq = ity * fig such that k.. () = (p + g)k,, (8),
whence p+ ¢ € A(F). In particular, since 1 € A(F), we get IN* C A (F).
* The following theorem (proposition 2.5 in Letac and Mora [1990]) surnmarizes the
above results, and introduces others which will enable us to determine the interplay
between variance function and CI's and EDMs. '

Theorem 2.3 (Lefac and Mora [1990]) Let s, 4} € M and their Ath power iy = 3>
and i\ = PN with A in A(jun) and A(p}) respectively. Assume that F(uy) = F(u).
'T];;:)n. A(p) = A(py) (denoted by A) and Fpy) = F(i)) (denoted by F2) for A € A;
(ii) For0 €0 (m), P(0, 1) = PO, 1n); o |

, (i) Forall \€ A, Mps = AMg; . :

| . ~ (iv) Perallx€A andallme Mp,

Vir(m) =2V ()

~ The [;'foofs are all straight[orivard. Parp_‘(iv) above allows us, given a variance
' function, not only to identify the particular NEF but also the CF and EDM associated
- with it. _(The relationship in part (iv) implies a mapping F—F*for A€ A (F), the
so-called Jirgensen frﬁnsformaiion.) For this reason, the variance functions in this
'compendium all represent a generic member of their NEF F* as a subset of the CF
generated by F. The génel.'atisng measure is thus a,lways‘represented as the power
of some fundamental measure, and the mean domain, in general, will be found to
depend upoﬁ this power. ' o ‘
"~ A pair of simple propositions, useful in determining the form of an affine CF or
- EDM from its variance fﬁnction, close off this section. |

P.roposit.ion 2.4 Let F and G be NEF s, and let A € A(G).
(i) Suppose that H is a NEF and that and a,b€ R, a # 0. | .
S+ Then R=G" and G = G" =[aH + V] implies that F = [aH* + ).

@ () UmeMrnMo then R S

. - : : 1 e AT

Ve(m) = :\~Vg(m) if and only if F = [GT] for A€ A(F).

10



2.4 Inverse Natural Exponential Families

Measure inversion is a remarkable operation which can best be defined in the context
of probability measures. It was formalized by Letac (1992) and generalizes the coneept,
of inverse distribution introduced by Tweedie (1945). A good treatment is found in
Seshadrl (1993, ch. 5). Inversion is defined as follows.

Deﬁmtlon 2.5 (Letac and Mora [1990]) Let p,p1y € M. Denote 9% () = 0 (p) N

(0,400). (1, 1) 2s an inverse pair (similarly, py is the tnverse of p or vice versa) if
(i) ©F(p)#0#060%(m) | ‘

(1) =R+ 1 ©F (1) = ©F (i) is a bijection, and —kujor(y) (—J.:M l(-)*(m)(a)) =0

L for0eOt(m). | - |

|

3 If (1, ,ul) is an inverse pair as dcﬁned a.bove 1t can be shown Lhat (er=+p, b tey)

is also an inverse pair; hence inverse pairs of NEFs such as (£ = fu), F' = F(p')).

'are well-defined.
‘I Inversron sometimes admits of a plobablllstlc interpretation, CbSCIllla.“y relating
1 andom processes and their hlttmv time distrlbutlon The reader may wish to consult
lgeta,c and Mora (1990) for more details and 1eferences we will blmply indicate that

<Lmong the most famous interpr ctable i inverse pairs of NEFs are:
\

‘L‘ (i) the Binomial and _Néga.tive Binomial families (pages 23 and 24);
\L(ll) -the Poisson and Gamma families (pages 21 and 26);

\(111) the Normal and Tnverse Gaussian families (pages 20 and 37)

In mbst caées, such as the Generalized Hyperbolic Secant and Arcsine inverse pai r
(pages 27 and 34), such an intcrpretation is still lacking. Moreover a given measure
need not have an inverse in M. The Hermite families (page 42), for instance, do not -
have inverses, as is shown in appendix (§B.5).

When inversion is possible, however, the followmg theorem shows thai there ex-
ists a natural 1nject1ve correspondence not only between NEI's, but in fact bhetween ‘
individual members of the '\IEFH when the mean domains are conccnttated on R*.

Theorem 2.6 (Letac and Mora [1990]).Let F and Fy be NEF’s in IR. For G a NEF,
denote M} = Mg N (0, +00). Then (F FYy) is an invérse pair if and only if
(i) MFE #0# Mg, and the map m 1/m restricted to M{ is a bijection onio MI:’ '

(ii) For all m € M, Vp( ) = m3Vg (;)

- V. Seshadri and the authof, in joint unpublished work based in part on Kendall
(1957), Khan and Jain (1978) and Jain and Khan (1979), have generalized somewhat
the notion of inversion. Two NEFs F and G are said to form an ezlended inverse
 “pair indexed by r if [-brF 4 b] and [rG 4 b7'] form an inverse pair for some r € IR,

11



~and for all b € Ag. Forr > 0, I can be thought of as a family of distributions ruling
an input (discrete or continuous) in an infinite storage space subject to deterministic
output, while G is a family of distributions ruling the time to first emptiness of this
space. A siriking property of extended inversion is that it can be used to generate
the Mora class convolution families from the families in the Morris class (chaptér 2).

See appendix (§B.2) for details on the measure transformation involved.

- 2.5 Asymptotic Distributions and the Variance Function

Because they are often much simpler in form than their parent density and Laplace
~ transform, and because they characterize their NEF, variance functions can provide
“quick asymptotic results throngh the followmg theorem, due to Mora (1990), and

_ hcre restricted.to the real line.

Theorem 2.7 Let (FL)22, be a sequence of NEFs on IR with mean domains M,

and variance functions V,,. Assume thal there exists a non-emply open subset M’ C

NS M, such that lim, oo V,.(m) = V(m) e:r.zsts uniformly for all m € M and

V(m) >0 forme M. ' ' '
Then H:cre exists ¢ NEF F on IR such that

V= Vp_, M’p CM, and P(m F, )—)P(m F),
in the sense of tight convergence. |

Jgrgensen and Martines (1991) consider- convergence of EDMs to EDMs Wlth
' power variance functions (Vr (m) = am®).

2_.6" Canonical Caste Members
" The so-called Grand-Babel class of NEF’s on IR is chara.cteﬁzed by"VF’s of the form

Ve (m)= P(m)A +Qm)\/

" where P, @ and A are polvnom;a,ls such that deg P < 2, deg Q) <1 and deg A-< 2.
Various specializations of the Grand-Babel form of the variance function give rise to

~ the groupings of VFs used in this compendium. A pa,rtla,l list of these groupmgs is

given below.

Ta.ble 1.2: Cl{é.ssiﬁ_cd sub-classes of the Grand-Babel class

_l.Class P Q A
“Morris  deg'P(m) = Q(m) =0 deg A(m) €2
Mora P(m)=0 deg RQ(im)=2  degA{m)=2

Babel deg Pim)=0 degQ(m)<1 1 < degA(m) <2
Seshadri deg P(m) =1 degQ(m)=1 t.eg A(m) =1

12



The conditions on P, @ and A are not by themselves suflicient-to characterize a
given class. The notion of caste must be introduced in order to o so.

Among the various groupings it is convenient for geometrical, probabilistic and
lexical reasons to eipress the VE’s of the Grand-Babel class in a canonical form based
on the polynomial A(m). We shall say, following Letac’s (1992) and Kokonendji's
(1993) lead, that if there exists an affinity K'() = at + b, a,b € IR and a constant. &
such that kA (K7(m)) =1, m, m?, m?— 1, 1 —m? or m* +1, then I belongs to the
caste kA (K~ (m)). Kokonendji (1993) lists various properties associated with castes,
such as closure properties under various meastre operations, geometric interpretation,
etc. We note that the above dcﬁmtmn of caste together with I‘wbie 2.0 1s eqm\ralcnl
to Kokonendji’s definition.

Morris (1089) introduces the canonical membev ol the Morris class as the family
with variance function V(m) = am? + s, where a € R and s € {-1,0,1}. We¢ .
extend the conceﬁt by applying it to the poly'nomizﬂ A and arranging, without loss
of generality and at the cost of an affinity, for a to belong to {—1,0,1}. The caste .
member with variance_fuﬁction VKF(m) ="a?Vp (K~(m)) will then be called the
canonical casle member (CCM) of the affinity family {[aF + 8] | (a,b) € ]1{2}.

‘ The usefulness:of canonical caste representation as a lexical tool is obvious, as
it simplifies recognition of a particular NEI" given its VF by providing a uniform
representation amongst all aflinities of the fmmlly The following proposition makes

explicit the transformations used to produce caste canomc,al members (01 equivalent, ly
' their variance functlon)

Proposﬂ:mu 2.8 Let Vi (m) = P(m)A(m) + Q(m)y/A(m), with A(m) = am? -+
fm+ v, a8,y € IR. Assume |ﬁ] # 2:/af, i.e. that A(m) is not a perfect square,
and that-deg A # 0. ’

Case 1: Ifa =0, let A(t) = -t —). If G = ATV, then Vg, (m) =
Py(m)m + Qu(m)/m, with o
P(m) = B°P[A(m)]
Ql(m) = 132Q [A (m)]. :
Case 2: Ifa # 0, let D = p* — 4oy, 0. = sgna and § = JsgnD Let Aq(t) =
VIl _ 5

—ém' ~ o If Gy = AEIFK, then ng(m) = Po(m)A*(m) + Qa2(m) A*(m)i witb’
Am) = om? 5
- B(m) = |a|P A (m)],
3/2
Qz( ) 2|e|

= —(} [Ay(m
)

These transformatzons facilitate the automatic determination of the CCM of a cr
from its variance function when the CF belongs to the Grand-Babel class.
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3 Statistical Aspects

We now provide motivation for the information included in the compendium by de-

scribing some relevant statistical concepts as they relate to.constructive NETF theory.

3.1 Mixture Distributions

Consider the sct of measures A = {g, € My | r € T} for some index set 7 C IR, and
a measure ¥ with support S{v) C Z. (The support of v is the smallest set’ A such
that (IR \ A) = 0.) Then we define the mixture of A by v as

e Ay V= f( )#r”(dr)‘

Consmk‘r now a measure gt € My, T = A(p) and A = {p*\ ] A€ Ap )} Then
dcﬁne for S(v) C A(,u) :

.v,f\u=a*}’/\yv=./ “Yu(dy).
phv =4 Ll P dC)

Here s is called the kernel measure and v the mizing measure. Henceforth, unless

" otherwise sp_dciﬁed, the term “mixture” will be used to denote the above type of
mixing (with respect to powers of a single measure). Then km\,,(ﬂ) =k, (k,(8)) and

(A v) = () k7 (O(1). |

. The mixture of NEIl meml)ors itself belongs to a NEF, since, as is shown in
appendix (§B.3), . o

' ' P01, 0) A P(by,v) = P(f),},pll Av)

where 11 = exp (6 — k. (01)) £, 01 € Oy A v) = O() Nk (B(v) + 6, — k(1))
As 6 and @, vary, the mixture itself does not in general define a NEF (since

1 A v and O(uy A v) depend upon 8 and 8), but each mixture belongs to and

induces a NEF. Mixture distributions often make for straightforward probabilistic

interpretations; these have been made explicit in several cases in the compendium.

3.2 Saddlepoint Approx1mat10n

‘Let m€ M bea probability measure . with 0 € O(r), and consider a ra.ndom sample
X1,..., Xp~w(de), with X, = (1/n) o X Da.mels (1954) has shown that if

falz) is the density of X, and if g,(z) = o V V(e exp(—ki(z )), where k*(z) is

the Legendre transform of 7, then (fn(2)/gn(z)) — 1 as n— + oo for all o € Mpey.
The function g, may require renormalization to be used as an approximate density,
but the error involved in the approximation is O(l /n). ' |
- Since for 4 € M and ' = exp(az + b)u we get k(z) = X, (z) — (az + b), the
Legendre transforms included in this compendium may be used to derive a saddlepoint
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approximation for the mean of Xi, oo Xp~r(da) = PO € O (), ) (). say, by
taking kZ(2) = K (z) — (fox — k,(00)), for g € O (). Note that in this case O €
O(x), since g € O {u) = O(5) + 0p. The Legendre transform cau thus be used to
approximate densitics for EDMs when closed forms are unavailable or intractable,

Daniels (1980) has also shown that the only univariate distributions for which
the saddlepoint approximation is exact are the Normal and Inverse Gaossian, The
Gamma distribution also vields an exact saddlepoint approximation, up to.a factor
- which depends on n.

Seshadri {1993) provides an effective summary of saddlepoint approximation in
the context of NEF theory.

3.3 Generalized Linear Models

" Consider a sample X;,¢ = 1,...,n and a covariate mateix ¥, = [ij] = [y, . 9,1
where y; € IR?, 2 =1,...,n. The associated generalized linear model (GLM) s given
by ' - _

Xi~ED(my,08),i=1,...,n
and

g(E[X Z Vi B = y JB

j= .
where ¢ : Mr—TR is an injective functmn, called the li-n.k funcltion, and 8 € IR" is
a parameter vector to estimate such that y'8 € g(Mr). Generalized linear models
‘were initially introduced by Nelder and Wedderburn (1972).
Under a GLM, the density of X; 1s

ED(m;, 0F) = exp ( [oguto™ (i) - knwu(g"‘(y:-ﬁ)))l) ()

_.M|—-

from which an expression for the likelihood can eaéily be derived. We call g = ¢, Lhe

canonical link function. Under a canonical link, the density becomes
‘ . .
ED(1ms o) = x0 ( 3 o0l — kP ).

This form may be computationally convenient in some ways, because the expression
for the likelihood function is simplified. The canonical link function, however, may in
practice make unreasonable restrictions on 8 and lack a meaningful interf)rctai;i'on. _
The deviance can be used to perform tests of hypotheses in the GLM sctting.
Assuming equal weights for the observations z;, and denoting the estimated mcan
vector for the observations by 1, the deviance may be written as '

ma:)-?AZj

i=1 Vo) Vf'
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The deviance may be construed as a measure of goodness of {it of the GLM, and is

asymptotically distributed as \’i_q as n— + 00.

3.4 Quasi-Likelthood and the Variance Function

For a general family of real non-degenerate probability measures F, define the mean
domain of I by Mp = {in € R|m = E,cr [X]}. Then define the variance function
Vet Mp—=RY  m = Var,ep[X]. For p € F, X~p and m = E[X], call quasi-

likelihood function the map K defined by the relation

OR(X,m) X —m
om  Ve(m)

Wedderburn {1974) shows how estimation techniques using quasi-likelihood par-
allel those which use the log lrikolihood‘, and how, in fact, quasi- and log-likelihood
are equal when F is a NEF. The properties of quasi-likelihood depend on the fact .
that estimation under z is done using a NEF probability measure & which closely

approximates u in a neighborhood of the maximum likelihood estimate under =.
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Chapter 2

Classiﬁed Real Grand'—-Babel_
‘Natural Exponential Families

All currently classified Grand-Babel variance functions are listed in the prcscnﬁ chap-
ter along with other basic information. The entrics (rom each class are preceded ’by a
synoptic listing of the class accompanied by general information, incl'udiug the main
references concerning the class. ‘ |
The convolution families are all generatcd from a basis measure cliosen to be
" as convenient as posssble. expression and rocognwablhty ol the measure and of its
~ Laplace transform, shape of the support and mean domain, amenability to interpreta-
tion, clarity of the relationship to the generated convolution family were all concerns
in the choicc of the basis measure, as well as a’ desire to simplily the form of Lhc
variance {unction and of the dcnsxty (when av, m]able)

“We brmﬂy describe the structure of each entry.

' Introduétion Section

Various details coricerning the families are lisled before each entry, including no-"
tational information, historical details, probabilistic interpretations, occurrence in

statistical literature, etc. |

Variance Function Section

The variance function is expressed in terms of no more than: four terms:
m: the variance function argnment in Mp; '

A the dlspersmn parameter from A (I'), 1dent1fy1ng the CF

g: in most cases, a secondary dispersion parameter ratlo
- a:  apossible index to the generating measure. 7

The mean domain My and: J¢rgenscn set A (F) are spemﬁed when known, as well

as the domains of variation of ¢ and a when approprla,te The dispersion ratio q-
~ corresponds most often to-the ratio of the powers of two convoluted measures, viz.
the generating measure. 1 = v \*vz 7 Negative values for q, however, may sometimes
- occur when the relevant Laplace transform corresponds to a non-negative measure;

probabilistic 1nterpretat10ns are quite difficult to come by in such cases.

17



Basis Measure Section

The basis measure is specificd in terms of the simple measures of table 1.1 and
operations of §1.1 in chapter’l whenever possible. The operation of inversion is not

used explicitly to derive measures in this section.

Cumulant Transform and Mean Domain Mapping Section

The mappings k, (§) and &, (m) are specified, as well as the canonical parameter

space O (j1).

Density Section

The density is specified in explicit form whenever such a form is known; _othefwise
it is expressed in terms of a Laplace or Mellin transform ‘on the support of the basis
measure. A reparametuzatlon is effected to bring the canonical and dispersion (and

‘ posmbly other) parameters in line w1th the usual forms of the distribution, or-to
simplify the C}.pleSSIOD Hor the density when the dlstrlbutlon has had little exposure
in the liter at ure. The ‘mean is expressed using the new parametnza.tlon ‘

Legendre Trans'form Se"ction |

'.I‘hé‘Lege'ndre transform of the basis measure is indicated under this heading. The
transform is To[ten expressed of simple1 quémtities The information in §3 2, chapter
- -1, should he consulted in order to use the Legendle tra.nsform in the context of
saddlepomt apprommatlon
' Asymptotics Section o
In accordance with Theorem 2.7 in chapter 1, asymptotlc results hold true for fixed

m. In some cases the aqymptotlcs are sta.ted usmg ‘the para.metuza,tlon supphed mn
the Denmty section. )

Notes Section
The Néteéwqection contains other relevant information such as the inverse distribution -
when it exists and belongs to a classified NEF, spec1a.l forms for the density or the
variance functlon, and othel potcntlally useful facts '

' Other References Sectlon

_Refereuces not. mdlca.ted elsew here are included in thls sectlon along with a motwa.—
tion. ' ' '
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1 Morris Class

The Morris class contains all convolution families with at most quadratic polynomial

‘variances. [t was shown to contain exactly the six following families by Morris (1982):

Table 2.1: Morris class convolution families

Normal: {N({,0%) | (&, o) e R x ]R"'l supported on IR
Poisson: } Po(é) | £ € IR+} supportod on IN
Binomial: {Bin(n,p) | (p,n) € (0,1) x IN*},
supported on {0, 1, ey}
S Pascal = _ -
(Ncgatwc Binomial): NB(w p) ] (p, ) (0,1) % IR"’} supported on IN
Gamma: F(a B) | (ﬁ,a) € RY x IR"'} supported on R*
Generalized Hyperbohc 1C‘HS(? BY| (B,7) € (=7 /2,7 [2) % ]R,+},
Secant: supported on IR

_ “_Let"ac- (1992, ch. 3) quotes and reworks characterizations o__f the Morris cl:ﬂs_s by
Meixner (1934) and Feinsilver (1986), the latter being based essentially on the Cramér
transform, f,(z,m) = exp(—kj (z)). Shanbhag (1972, 1976) produces another char- -

. acterization of the Morris class based on the dmgona.hty ol their 3 x 3 Bhattacharya .

" matrix. Laha and Lukacs (1960) characterized the Morris class as those [amilies for

which a quadratic form in the r.v. has quadratic regression on a linear form in the

RS

The Morris class families are among the most’ ﬁseful in applications, a fact which _
' convmcmgly illustrates Letac’s principle (1992, ch. 1): the simpler Vi, 'th.e more
useful is F . The Morris and Mora classes together form a kernel of such useflul /s .
* which may be transformed and combined to form most families of the Babel class :
and of the Seshadri class. | 4
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1. 1 Normal Famuilies

The Normal or Gaussian distribution is denoted N(¢,¢?), with parameters £ € IR
and o? € IRt denoting the mean and variance of the distribution res-pectively.

One of the carliest mentions of a Normal-like distribution occurred when De
Moivre attempted to derive an approximation for the Binomial distribution (see for
instance Stigler (1986]). The Normal in fact occurs as the limiting distribution of
standardized sums of independent random variables with common mean, provided
their second moments are suitably small (see, for instance, Billingsley [1979], sec.
27). Closely associated with this property is the fact that N(0,0?) is a stable dis-
tribution (see Feller [1971], ch. VI). Perna.ps due to these properties, it is found to
reflect or closely approximate the actual dlstrlbutlon of many naturally occurring

" random variates.

Variance Function:
Ve (m)= A\ -
Mp=TR,A(F)=R*

Basis Measure:
oy 2

M-(dx);i—%éxp( 2)\) ﬂn(m)(dm) :

Cumulant Transform and -Mear} ‘Domain Mé.pping:
ku(0) = M?/2,0 () =R |
¢ (m)=m/X,m € Mp

Denéiﬁy:.

] -
f—"(‘”)—_mexp( 202 ) zeR
%, 6eR;A=0" 0" ¢ RY ; ~

- thenm =¢£. |

Leg'endf'e “.'I‘ransform:

x?

k7, () =5 € Mp
" Notes: - o
o IG(1/ 62',52./ aQ)Iis the‘i.nv:erse diéfributidn of N({,b2) for £ >0.:

s The Normal and the Inverse Gaussian famlhes are the only univariate NDF’s for
' ' wh1ch the saddlepoint ‘appr oximation i is exact. '



1.2 Poisson Families

The Poisson distribution is denoted Po{€), where ¢ is often called the it-lt-(‘!‘lh‘it}-‘ pa-
rameter, and equals both mean and variance for the distribution.

‘Historically, it was derived as the limiting distribution for a Binemial distribution
Bin(n, p) as n — co with np = ¢ constant (Stiglér [1982]). More generally, Jgrgensen
(1986) showed that every univariate discrete positive exponential dispersion model
converges to Po(m) as A — oo while m remains fixed. ‘

The Poisson distribution is also defined as the distribution of the number of events

within a fixed time interval which occur in a Poisson process.
Variance Function:

Vp(m)=m
| Mp=RY,A(F)=R"

Basis Measure:
= exp(Aéy)
Cumulant Transform and Mean Domain Mapping:

ky(8) =2, 0 ()=
¢ (m) = Ibg% m € Mp

Den:sity: :
fr(e) = & exp(—£), 2 € N

0 #'log (%) JEeRY;
thenm=§‘ ”

Legendre Transf'orm: ’

I, (z)i= z(log(z) — 1),z € Mp
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Notes:
e I'(1, 1/6) is the inverse distribution of Po(£) .

¢ A can always be taken to be 1 by adjusting the canonical parameter § appropriately.
However, the convolution [amily or exponential dispersion model form may make
the Laplace transforms of convolutions involving Poisson random variables easier
to manage. We may c:famine, for instance, the closure under convolution of the
" Poisson distribution: since in gé_neral ED(A1, 8)* ED(A2,8) = ED(M + Ag,0), we get
"Po(£,) * Po(£2) = Po(& + &) by taking Po™ = ED , 8 = log (&1 + £2), Ay = 14+ &/&,
and da = 14-&, /& (Jprgensen [1987]). See also, for instance, the NB+P and P.— NB
families in the Babel class, ‘

Other References:

. Billingsley (1979) for a discussion of central limit theorems appliéd to triangular

arrays of random variables.



- 1.3 Binomial Families

The Binomial distribution Bin(n, p) occurs as the number of successes in a series of
n € IN" independent trials, cach with a probabili ty p € (0,1) of success. The Binomial
distribution arose very early in the history of prbbabililty, ostensibly in the course ol
mathematical descriptions of games of chance (see for instance Stigler [1986], ch. 2).

Bin(1, p) is often called the Bernoulli distribution. -

‘Variance Function:

(A—m)
A(F)=1IN"

m

Vi (m) = ;
),

Mp=1(0,A
‘.Basié Measure:

= (8o +6)"

Cumulant Transform and Mean Domain Mapping:

k, (6) = og(1+¢"), 0 () =R~

b (m) = log ) M

%(m)j Og(m ,m € Mg
-Den's'ity:"

T T

Hziog (ﬁ),pE(O,l) ; )\'=-n,nG:[N* : mm

| then m = np

Legendre Transform:

. X (A — :::)(‘\_‘_x)
k#(a:)zlog( A)‘ . 7$EMF

‘ Asyfnptotics: =

Bin(n, p)LPo(g') if n — co while np = £ remains fixed.

Notes:

] NB(]./n,p) is the inverse distribution of Bin(n, p).
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1.4 Pascal (Negative Binomial) Families

~ The Pascal or Negative Binomial-1 distribution NB(r, p) with r € IN" occurs as the
_ number of failures required to obtain r successes in a series of independent trials when
" “the probability of success for each trial is p. Often in the literature, the names “Neg-
ative Binomial” or “Negative Binomial-2” will refer to the [NB(r, p) 4 =] distribution
while NB(r,p) is called the Pascal distribution for r € IN". NB(1,p) is often called
the Geometric distribution. - '

" The choice of r may be extended to the positive real line. A simple interpretation
" for this case results from the fact that NB(r,p) = Po(é) A¢ I'(r,p/(1 — p)). In this
compendium, we abusively retain the name “Pascal distribution” for general r € RY

instead of the more acceptable but less wiéldy name of “Negative Binomial-1”.
Variance Function:

Vi ) = T m+ )

- Mp = (0, +00), A(F) = RY

BE.lSiSl Measure: -
= (6~ 51)*_'\

Cumu'lant; Transform and Mean Domain Mapping:

-k,u (0) = —\log (1 - 69) O () =R~

bu(m) = log (7 ) m € M

Den.sity:
6 =log(1-p),p€(0,1); \=r & R";
1—p , ' '

‘then m = p—

P

Legendre Transform:

Fd

k;(m) = ]Og (($ + /\)x.p,\) ) Te MF



Asymptotics:

NB(r, p)—Po(m) if r — oo while m as in the Densily section above remains

constant.

Notes:
o If 1/r € IN*, then Bin(1/r, p) is the inverse distribution of [NB(r, )+ 7.

EY)

\ m) is the inverse distribution of NB(r, p).

¢« NB (1

)
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1.5 Gamma Families

The Gamma distribution with parameters a, 8 € RY is denoted (e, B), and is a left-
skewed distribution with applications in modeling failure-time distributions, among
* other phenomena. It arises as a result of convolution aﬁd/or division of the simpler
EXP(B) distribution (scc helow), which has the useful ‘memorylessness property (i.e.
il X~EXP(), Plt+ 40> X 24X > 1] = Plh > X]). '

The case of I'(1,8) is the exponential distribution with parameter 3, denoted
EXP(B) The case of T(#/2,2) is the chi-squared distribution with v degrees of
freedom, dénotqd 2 In pa.rtic.u]a‘r, this latter distribution rules sums of v squared

standard normal random variables when » € IN*.

Variance Function:
: ‘, 2
V)r (m) = —n%-
Mp =T A(F)=R*

Basis Measure:
f= 7*.\ |
where v = lg+(a)

" 'Cumulant. Transform and Mean Domain Mapping:

ki (0) = —Mog(=0), 0 () =R~
- A _ '
T Py (m) = — m e Mp .

Density:
1 1. .4 ( a:)
(2) = =——2lexp[-= 1] ,2 € R"
0:—-5,/3’61[{"' cA=aeRY ; then m = af

Legendre Transform:
| T

K, (z) = =A [1og (K) + 1] s € Mp

Notes:
o [(1/a)Po(1/8)] is the inverse distribution of T'(a; 8).

+ The saddlepoint approximation foi the Gamma distribution is exact, up to a constant =
factor. ' | a



1.6 Generalized Hyperbolic Secant Families

The Generalized Hyperbolic Secant distribution, denoted GIIS(r, 8), is the distribu-
tion of the area comprised between an arc in a planar Brownian curve and the chord
subtending it {Talacko [1956]). Morris {1982) notes that the GHS distribution is the
natural ohservation of the Beta distribution. Harkness and Harkness (1965) charac-
terize GHS(‘JI, 0}, n € IN*, as the distribution of the logarithm of the geomelric mean
“of indepenclcﬁt Cauchy random variables. Shanbhag (1976) arrives al a full form ol

the GHS distribution through a Bhattacharya matrix characterization.

Variance Function:

m2

VE(m)zTH,'AeW
Me=M,A(F)=R*

Basis Measure:

pEt
sech({mx/2)

where 7 = 5 Tt () |

Cumulant Transform and Mean Domain Mapping:

K, (0) = /\log(sef:é)_, 0 (= (—% %) |

¢, (m) = arctan (E) ,m € Mp

A
Density: -
. _ F(T‘/2+t'l)|2 o
— 97 2| g Bax T .
fx(z) =2 TR cos"(B)e ,’L‘GIR,
_, Ty a—roreR*
0=B,pe(-5,3) i A=r.reR;

then m =rtan § _

Legendre Transform:

K} (z) = xa.rctan.(x) — §]og (ﬁ + l) ,z € Mp
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Notes:

o [(1/7)Arc(1,0,7/2 — )] is the inverse distribution of GIIS(r, ).

o Correspondingly to the form of the generating measure with A = 1, the densitv for

7 =1 can be wrilten as

_ cos(f3) gz -
Jx(z)= 2 cosh (%)e @ € IR

Other References: -
¢ Johnson and Kotz (1970) for general properties of the distribution. |

e Abramowitz and Stegun (1964) for expansions of the Gamma function

in the complex plane.



2 Mora Class

The Mora class in its restricted form contains all convolution families with strictly
cubic variance functions. In the literature, “Mora class” and *Morris-Mora class™ are
also used to denote the class of convolution families with al mest cubic polynowmial
variance functions. In her thesis, Mora (1936) showed that the following live families,

up to aflinity, account for all cubic variance functions:

Table 2.2: Mora class convolution families

Generalized Poisson (Abel):  {GP (1, &2) | (k2,81) € (0,1) x IR* },

supported on IN

Generalized Negative {GNB(r,ra, ) | (mim1) € (ra/ (2 + 1), 1) x R),
Binomial (Takdcs): for r, € IRY, supported on IN
Arcsine: {Arc(r,a,f) | (£,7) € (0,arctan ¢7!) x‘lR.“L},
for a € R*T U {0}, supported on N
Kendall-Ressel: {KR(r€) | (&,7) € (1, +00) x RY},
| supported on IR*
Inverse Gaussian: - {IG(,\’,'I,/)).[ (1, ) € RY x IR*'}', :

~supported on IRY

Although we retain Mora’s 01“igi11a1 classification concerning the Arcsine Lype,
Letac and Mora (1990) in an important papetr surveying cubic variance exponential "
families sce fit to distinguish between the Strict Arcsine and the Large Arcsine fami-
lies; eliminating the distinction provides us with a uniform way of treating this family
in the context of convolution families. ' |

An immediate applicalion of Theorem 2.6 shows that the Morris-Mora families
are closed under inversion. It is likewise straightforward to show thal these familics

are closed under weak convergence.
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' 0ulog(hg)-n2,n2€(0,1) 1= h1€m+ then m =
’ ’ . K2 ,

2.1 Generalized Poisson (Abel) Families

The Generalized Poisson distribution, denoted GP(xq, £2),.81 € I, was introduced
by Consul and Jain (1973) to provide a Poisson-like model which admits of unequal
mean and variance. It also arises as a limiting distribution for the Generalized Neg-
ative Binomial distribution. [GP(k1, K ) + K1£2] is usually called the Borel- Tanner
distribution, introduced by Borel (1942) for xyx2 = 1 and generalized by Tanner
(1953) for xry € RT .

The Generalized Poisson NEFs are called Abe! type by Mora (1986) and Letac and
Mora {1990).

Variance Function:

Vi(m)= —)\—z(m + )\)
Mp=T*" A= R*

Basis Measure:
o= r;"\
e ‘ o (54 1)1
where v = Z "("i_'“‘)"“_(sj
: i=0 7!

Cumulant Transform and Mean Domain Mapping:

k, (0) = MY, O (1) = (—o0, —1)
where 7' is the reciprocal of f:(0,1) — (0,e71), 1+ k2

ol
m m
1 _
%( )= Og(m+\) m4+ A’

mEﬁ/f_p

Density:

f\( ) Ky (h1+h2&)z -1 —(rc1+»i2:t:) , T eIN

K1

Legendre Transform:

}\;() [log( j_/\) ],.‘L‘EMF

I
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Notes:
o {(ko/x1)T(1,1/k1) = (w2/%)] is the inverse distribution of GP{ky. 82).

¢ The form of the density-for the Borel-Tanner disiribution is

1,.:E;r—-r—l

Mz —r+1)

H’I—Te—ﬂl.'

BT(r,x) =

forre RY, k€ (0,1). 2 € {r,r+1,...}. (The form relates to the GP distribution _
through BT(r, &) = [GP(r/k.x) +7].} Note the curious (ormal relationship hetween
. . the densities of the Borcl-Tanner and the Kendall-Ressel distributions.

Othe;r _Réferences:

e Consul (1989) de}'oteé a complete monograph to the Generalized Poisson dis-
tribution. ' ' '

o Haight and Breuer (1960) provide a survey of the Bo1‘el§T31111e1‘ disl'.ribu‘t,ion,.'ﬁ
including tables of probability. - ‘
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2.2 Generalized Negative Binomial (Takécs) Families

The Generalized Negative Binomial distribution, denoted GNB{ry, Té,. p), was intro-
duced in restricted form by Takics (1962), Mohanty (1966), and generalized to its
~present form by Jain and Consul (1973), as a probability distribution involved in
queueing theory and, more generally, as a discrete distribution the variance of which
- increases with the mean at a rate which may difler from that of the Pascal.

The Generalized Negative Binomial [amily is also called Fluctualion type, after
Feller, by Mora (1986) and Takdes type by Letac and Mora (1990). |

Variance Function:

Vp(m) = %[(a + 1)m 4+ A[am +. Al
_ wherea>0 _
Mp=R*, A(F)=R*

Basis Measure:

o ;\I“.)\+ a+1)) .
R (dl‘)=z;i I(‘(/\ -E-(aj-i--];)é?‘(da:)

J=0
Cumulant"'l‘ransforni and Mean Domain Maﬁ;ping:
I{ 9:/\ -1'-.0':l —_ | _.i___‘ )
0 0) =MoL+ 572, ©16) = (oo, log | =]}
where [~ is the reciprocal of f : (0, 1/a) — (0 a®/(a+ 1) )

-' . mlam+ A
@, (m) = log ([(a +[1)m n ,1]“'*”1) ym € Mp

.
(1 OB

) ]jensity:
‘. r.I‘r-i-.la:.—l—r .ch it
fx(=) = ;uggrzﬁlﬁﬁ)’ (=P s e DR
6 = log (p(1:— p)" gj pe (0 1/(1‘2+1)) A=n EIR+ ;a=1g,73 € (0, +o0) ;-

then m =7

1-—- (7‘2 + I)P

Legendre Transforrn-

o ‘I a— .’L‘ (a—-—l)x-l—.\
ke (2) = ]og( o= 1o+

reMp
[Gm‘lf/\]am.‘i-\' ) TE F



Asymptotics: .
* GNB(ry, 2, p)—NB(r1.p) as ra — 0.
Notes:

1. ¥4 1. . . . - )
—NB|1,— -_ t inv i hut { GNB(r L Ta ’
. [?‘1 ( T p) + T]] is the inverse distribution of GNB(ry, 72, p)



2.3  Arcsine Families -

The Arcsine type, which we denote Arc(r, a,{), @ > 0, was introduced by Mora (1986)
as one the five NEF’s with cubic variances. Seshadri (private communication) has
discovered that the Arcsine [amilies represent the distribution of time to vahishing of
a queuc with binomial input and deterministic output. - _
The Arcsine type was partitioned into two distinct classes by Letac and Mora
(1990), corresponding to Arc(),0,€) (*Strict Arcsine”) and Arc(h,a > 0,€) (PEx-
tended” or "Large Arcsine”). The reparametrization with respect todeA (F) allows

us to constriuct the two types simultaneously with a single generating measure.
Variance Function:
LMo 0 -
Vi(m)= ;Y] [(am + A+ mz]

where a € R* U {0}
Mp=TR*", A(F) =R

Basis Measure:

A

p=v o
where v = Z ———-*"pj(a.]-l‘ 1)6—: k
i e+l ot .
. R U -1
with po;(4) = [ (t2 + fli2) and pojp1(t) =t [] (t2 + (2t + 1)2) .

=0 : =0 ..

Cumulant Transform and Mean Domain Mapping:

k, (0) = arcsin(f(e?)), © (i) = (-_oé, —log V1 + a* — aarctan a'l)

where [ is the reciprocal of

o (0, Vv1+ a2) — (0,\/ L + a? exp(a arclan a'l))7 , i ——t—“—-—
__ exp(a arcsint)
qﬁﬂ (m) = lo.g.(s_in arctanl[amn:_ X ) — aarctan [am n /\] ,m € Mp

e

Density:

oy rpelartr)sin®E o
f-\(m)— ! a1,+'r £ EZ:,- .‘
where p,- is as in the Measure section above; _

-0 =log(sing) —at, £ € (0,arctana™) ; A=r,r e RT ,a c RT U {0} ;

then m =

;8 €IN

coté —a
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Legendre Transform:

K (z) = xlog (sin arctan

o 2
— T A ar t: ———— "[;‘
) .(m_—i— Jare 'mm:_l_{\,lei I

ar + A

Asymptotics:

D : . : . . _
Arcr,a,£)——Po(m) as A — +oo while m as in the Density section dbove re-
mains constant. S

Notes_:

o [(1/r)GIES(1, % — &) — a/r] is the inverse distribution of Arc(r,a,§).

"y
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2.4 Kendall-Ressel Families

The Kendall-Ressel distribhution, which we denote KR(r,¢), arises naturally as the
first-passage time distribution of a Gamma process (Letac and Mora [1990]). Kendall

(1957) obscrved this and derived the densily function of this hitting time in the
context of storage theory. Ressel, in an unpublished result reported by Mora (1986),
demonstrates that the exponentiated reciprocal of f : RT—=IR*, ¢ — ef —1 —1is the
| Laplace transform of a positive measure by showing its complete monotommty (see

Feller [1()?1] XII1.4).

Variance Function:

Basis Measure:

p=uv
where ¥ = ————1g+(x)

I'(z +2)
Cumulant Tra:1§form and Mean Domain Mapping:

ke (0) = —Af(=0), () = ™
where f~' is the reciprocal function of f:IR* — R¥,t> e’ —t -1
.qs“ (m) = 1+ log (m + ]7) _ (m-l- P) m € My

| m ™m .

Denéity:

o rg=tr=1 S
“Fe — 41 —€x +
fx(z) ——"———l,($+r+1)5 e, ze R
0=1+It‘)g§w§,£€_(1,+oo) s A=r,reR* ;then-m=£r 1

' ﬁegendne" Transform:

T4 A

© K (=) = (v + A) log (‘T)'——)\,meﬂﬂr

~ Notes::

o [(1/7)Po(£) — 1/7] is the inverse di.stributio'n of KR(r,£).
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2.5 Inverse Gaussian Families

The Inverse Gaussian distribution. denoted IG(y,v'), is the first-passage time distri-
bution of a Wiener process. Its many interesting properties and relationship with
the Normal distribution have made it a choice object of stilti);iixl the 20th century.
Tweedic {1056, 1957) pr__o\‘idcd the name for this distribution, even though it had
been discovered on several occasions since the early 20th c_ent.ury.. Seshadri (194%1)
provides a dctailed monograph on the Inverse Gaussian [amilies in the context of
NEF theorj?,‘including a historical survey. |

The 1G(0,1) distribution is a stable distribution. In general, the Inverse Gaussian
also acts as a limiting distribution lor all members of the Mora class of NEFs, among’

others.

Variance Function:

o0 Tﬁa

V=
C Mp=R*,A(F)=R*

Basis Measure:

=

S | ]
where v = = eXP (————) Tg+ (2)dz

Q3 2

o

Cumulant Transform and Mean Domain Mapping:

k,(0) = —AV=20,0 (p) = IR~
e

: AR
¢'L¢ (m): —‘)—W,m G.z“[[:' ) : e

Density:

N eV PR

&) = pmvXe sl ) o e R
/

6=—L gpeR*; A=, xeR";

then m = ~=

Vi

-

 Legendre Transform:

A?
k;(:c)z—;:—,wEMF
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- Notes:

o N{v/1"/x, 1/x) is the inverse distribution of IG(x, ).

o The Inverse Gaussian and the Normal distributions are the only univariate distribu-

“tions for which the saddlepoint approximation is exact.

Other References:

e Chhikara and Folks (1989) for a monograph on the statistical properties of the

- Inverse Gaussian distribution.
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3 Babel Class

The Babel class is defined as that class of NEFs F for which the variance finetion
 has the form

Vi (m)=PA(m)+ Q(m)/A(m)

with deg P = 0, deg@ < 1 and I < -degA < 2. If a family sporting a variance
function of this form belongs to caste 1 or m?, it will be seen immediately to belongs
to the Marris class. Only the so-called non-degenierate castes m, m® — 1, | — m?
and m? + 1 will therefore be admitted within the Babel class. (Soc ch. 1, §2.6 lor
more details concerning castes). The Babel class was exhaustively classified by Lelac

(1992); convolution families are listed below by caste, '_up to aflinity.

Caste m contains three sets of {amilies.

Cable 2.3: Babel caste m convolution familics

Hermite: ' Hermite{r, £) | (¢,r) € RY x lR*'}, supported on IN.
' illaguerrc(rl 72,8 1 (€ m) e IRT x IR"'}' ’ '

for o € (—71,+o0), supported on IN-.

~ Non-Central Chi-Squared: {I(c, 3,6) | (8,8) € R* x IR*} for a € R* U {0},

Laguerre:

supported on R*.

Babel caste m distributions are fairly welf—documentﬁl in the statistical literature.

Exponentiation is involved in {he expression of Lhe basis measure [or all three Lypes.

Caste m?-1 contains two complex sets of convolution families indexed by two
parameters. o

Table 2.4: Babel caste m? — 1 convolution families £

Mixed Geometric: {MG(?‘,{,?@,@,E) | (€,m) €-(0,1) x 111+},
for (r2,4) € [0, +00) X [~1,1)\ {(0, 1)),
' supported on N . |
Mixed Exponential: {ME(rl,rg; b,8) | (8,r1) € IRF x IRJ“}, .
for (rq,b) € IRT x IRF, supported on IR*.

These distributions are probably common in the literature, but can also be difficult
to identify at a glance (sec the examples for the Mixed Geometric families).
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Caste 1-m? conlains a single set of families, indexed by one parameter.

Table 2.5: Babel caste 1 — m? convolution family

Trinomial:

{Trin{n,a, B) | (B,n) € R x N"}, for @ € (0,1),

supported on {—n,—n+1,...,n}.

Caste m>+1 is the most populous of the Babel class with 12 sets of families.

Table 2.6: Babel caste m?+ 1 convolution families

Pascal Sum:
Pascal Dillerence:

Pascal-Binomial Sum:

Poisson-Pascal Sum:

Poisson-1ascal
Difference:

Binomial Sum:

Poisson-Binomial Sum:

Poisson Dilference:

Gamma Sum:
"Gamma Difference:
Normal-Gamma Sum:

Hyperbolic Secant

~ Sum:

for (¢,0

" for (B2,72) € (—

{‘\‘B + NB(ry,r2,p1,22) | (;,71) € (0,1) X R+},
for (p2,72) € (0,1) x IR*, supported on IN
{NB = NB(ri,r2,p1,22) | (p1,m1) € (0,
for (pa,72) € (0,1} IR+_, supported on Z
{B -+ NB(n;r,p1,p2) | (p1,m) € (0,1) x A},
for (py,r ) (0,1) x RY, suppmted on ]N
A so [ar is still unknown.
{P + NB(&,7,p) | (p,r) € (0,1) % 1R+}, for £ € RY,
supported on IN. C '
{P—NB(,7,p) | (n,7) € (0,1) x IR*}, for £ € R,
supported on Z ' .
{B +B(m,n2,p1,p2) | (pr, 1) € (0,1) x N},
for (p2,n2) € (0,1) x IN*, supported on IN.
{P+B(&n,p) | (p,n) € (0,1) x IN*}, for £ € RY,
supported on IN. .

P+ P(61, &) | (€1.62) € RY x IR“I”}, supported on Z.

G+ Glan, 02,81, 8) | (B, 1) e RT x RY},
for (B, cz) € RT x IR*, supported on IRY.
{C — G(on, @2, 81, 52) | (Br,0n) € RY x 1R+}7
for (B2, ;) € RY x R, supported on IR.
{N+G(0%a,¢8)] (B,0) e RY x R*},
) € R x IR*, supported on IR. _
{H + H{ri, 2, 81, 62) | (B, ) € (—7/2,7/2) % ]R+}:' '
7/2,7/2) x R*, supported on IR.

)X,

These families consist of distributions of sums or differences of discrete families in

‘the Morris class, of Normal and Gamma families, and of two Generalized Hyperbolic
Secant familics. Since Poisson random variables are reproductive under convolution, -
their sum belongs to the Morris class.

replaced by a sum with a translated family member or with another member of the
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family in the following cases:

[Bin(n;1 — p) —n].
} N('—Ea 0-2)
GHS(r,—3) .

[—Bin{n,p)] -
['—:\th‘ 02)]
[~GHS(r, 8)]

e Jiw 1=

The operation of difference does not create new families in these situations.
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3.1 Caste m — Hermite Families

The Hermite distribution, which we denote Hermite(r, ), arises as a generalization
. of the Poisson distribution. Kemp and Kemp (1965) propose several probabilistic
interpretations of the Ilermite random variable: '

(1) As a special case of the Poisson Binomial Po(J¢) Aj Bin{2,7).

(2) As the distribution of the sum of two correlated Poisson r'_cindom variables
(being an application of casc (3) below, in accordance with Ahmed [1961], section 2).

(3) As the sum of a Poisson random variable and a so-called Poisson doublet: if
X~Po(&) and Y ~Po(£;) with X and Y independent, then '

71
X 4 2Y ~Hermite (3(&?/53)7 52) .

Variance Function:

Vi (m)= ;)lj (A (Tﬂ) —-.,\\/W) |

_A(vn)=-1)\m+/\2 .
Mp=RY, A(F)=1R" .
Basis Measure:
.= exp(Ar)
‘where v = §; + 62/2

Cumulant Transform and Mean Domain Mapping:

20

v}

| k“(o)=x(e"+_ ),c-)(#)..:m

: A —-A '

Density:

|

xta) = exp (~rele +2) H2(r), e € N

where H;(m) = 1~ Hy(iz), I1; the j*h Hermite polynomial.
f=1logé,E€cRY ; A=2?2 pe Rt : then m = (1 +¢€) .

. Legendre Transform:

l\;(m) = xlog (—A*g-})-i) — :]J;- (23, - X +'\/A(a:))



Asymptotics:

Hermi!e*(r,{)%[QPO(M)] as 7 — 0 while m = 2r2¢(1 + ¢) remains constant.,

Notes:

¢ Unlike Kemp and Kemp (1965) or Kendall aud Stuart {(1953), we arce using the
classical definition of the Hermite polynomial {sce, for instance, Szegd [1939]), so
that

i Il'j(a)-;— = exp (?.az - :2)
J=u o

¢ The polynomials H;(z}),j € IV above are simply polynomials with coellicients equal

to the absolute values of the coefficients of the Hermite polynowials 17;(2).

o Letac (1992) starts with the basis - measure p' = A™F 50 that ky(8) = VAcl 4202,
In gencral, if &,(8) = exp(a;e? + a2e?/2), 8 € IR, then we get F(v) = P(e'), taking
A =aj/ag. ' : : ‘ o

¢ Letac (1992) shows how the Hermite type can be thought of.as a limiting casc of the
Laguerre type.

e See appendix (§B.5) for a derivation of the basis measure for }Ll‘l)itl;ill‘y power A.

Other References:
¢ McKendrick (1926) for an early application of the Hermite distribution.
e Jain (1983) for a general discussion ol the Hermite distribution.

e Watson (1988) for another approach to the derivation.
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3.2 Caste m — Laguerre Families

The Laguerre distribution, denoted Laguerre(ry, 7, €), arises in practice in quantum
theory. CGurland et al. (1983) describe the Laguerre distribution, which Letac (1992)
generalizes by allowing r2 > —ry instead of rp > 0. ')

For @ > 0 and € > 0, if X~NB(re,(1 + £)~!) (assuming a degenerate dis-
tribution at 0 if ¢ = 0) and SN[NB(N,(I + &)71) + N] An Po{r£™t), then (X +
S)~Lagucrré(r, a,€). It is casy with this interpretation to see that the Laguerre type
is a generalization of the so-called Poisson-Paseal distribution (given by NB(N,p) Ay

Po(-)) (see, for instance, Johnson and Kotz [1969}).

Variance Function:

Vi(m)= H21K (—qA (m)+ [2m + Aq(1 + q)] VA (m))
A (m) =4im + X (g +1)? R
‘where g> -1

Mp =R, A(F)=R"

.Basié Méa.s-ure:
| I —_-" (50 - 61)*(""‘1).,* e.\'ﬁ (,\ [6] *(6g — 61)‘(‘1)])

" Cumulant Transforrh and Mean Domain Mapping: :

o

K (0) = Mqlog1— €Y+ o O (W) =R Ch
ER om + A(1 +q) A(m)
L Z (m)= gf( 2Am+ Ag) © ) ».€ M

o

Density:

{

| G+e=" "0
wheleL"‘()' —z20,7 €N, &
~ is the g Generalized Laguorre polynomlal in z € IR of order a.

8= log( ¢ ) {EIR+ ; )\=__7‘1',7‘1€IR ;g =r2fm ;7‘2,_\6:("—7"17:4'00) ; ‘

fx(z) = ﬁ;%é\-l(_n) ;fflﬁ———fx ze N

1+¢ :
Jthen m= rlcf(l +£) +72§ |

[
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Legendre Transform:

() = 5 (Ma+ 1) = /A ) +

/jx - Ag -
log ([?“m e . [’\(q “DEVE (m)] ' ) o & M

e+ M)

Other References:
e Helstrom (1976) for an application to quantum theory.
- o Watson (1988) for another derivation of the distribution.

o Szegd (1939) for background material concerning generalized Laguerre polyno-

mials.
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3.3 Caste m — Non-central Chi-Squared Families

The Non-central Chissquared distribution, which we will denote (e, 8, 6), is in fact
a generalization of the distribution of the same name introduced by Fisher {1928), the
properties of which are summiarized in Johnson and Kotz (1970). The less general
version of the distribution is denoted x.%(§) in the latter work, corresponding to
I"(1/2,2,6/2) in our notation. ' o
" For ,4.6 > 0, if X~T(a, ) and S~T(J, ) As Po(6), then X + S~I"(a, B, 5).
A'typical application arises if X;~N(&,1),i=1,...,nand § = =1 Z:‘_l(X - X)z"
for then S~x 2 (L0, (& — €)' ) where X = n~! 57 x and & = L zino A

Variance Function:

V;; (m) = - 33 ( gA (m) + 2m + )\qz]\/—)

A(m) Adm + A%¢?, q>0
Mp =R+, A(F) = R

- Basis Measure:

,u, = "y* \"‘ s exp Ay
where 7 = I+ (@ )

L -Cimmla_nt Ti-a_nsfdl__'m and"l\’[ean‘bo_main Mapping:-

Tk (0) = ig — Mqlog(—0), © () =

:" A JA
S (m) =— R (_m ‘m € Mp

' .Den51ty

fx(ici) = *L"'l ~(s+2/m L i () z E“IRJr
. C L PETG DN atg) --
0= _% , _,ﬁ eR*; ,\ =56 €R jq=Tae RIU0} -

. then ‘m“= B(a +86).
Legendre ’I‘lansform

_k?;( )"" Alog (E_'*_V?_(_l) —VA(z),z€ Mp
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Notes:

" & The density of the Non-central Chi-squared distribution \}2(8) = 1"(¢/2,2,6/2) can
be expressed in terms of clementary functions — see Johnson and Kotz (1970) for
results and references. '

e T(0.8,8)=T(J,8) As Po(#} is a member of the Tweedie scale.



- 3.4 Caste m? — 1 — Mixed Geometric Families
The Mixed Cieometric type, denoted MG(ry, ra, a, £), with fixed (a,r2) € [—1,1) %[0, +o0)\

{—1,0}, and parameter £ € (0,1),is 2 rich and complex type which allows for several

~ different interpretations. Among these are:

o (Letac [1992]) The (Iisi.ribuhons with Mobius probability generating functions
appearing in Harris (1-900) belong to the NEF F ((b+ 1)ép 4 >0y é,), which
can be shown Lo cdrrespancl to the [(b+1)MG(8/(b+ 1), 1/b,b/(b+ 1),6)], € €
(0,1) family. ' |

ok‘(cha(‘.[IQQ‘)]) FOffwd a € (0,1), the [Bin (N, fc;(g))+N]ANNB (1,1 —x2(8)) , ¢ €
(0,1) family, with #;(£) = a€/(a€ +1 — @) and x2(€) = £(af +1 — a) can be
shown to correspond to the family MG(a, (1 — a)/a, —a, £).

o (Letac [1992]) [2NB(A;,1 — €)] * [NB(A Az, 1 = €) 4+ M] = MG(Ap, A, —1, ).
This dtstnbutlon is analogous to the Hermite (llstrlbutlon in its interpretation-

" as the mm of a Poisson and a Poisson doublet.

) (Scshaflri (1991}) Thc mixture distribution -

1
NB +
, pw + 1 ¢ ) P+ o
where NB*(r,p) = [NB(T‘+ 1,p)+1] is the so-called length-biased distribution of
NB('fr 7, belongs to the Mixed Geometric typeifw > 1. The distribution is then
+ given by MG (2(p + 1)/ (k + 1) k1 / — 1), ), where k is a rather complicated
ehprosmon in 1p and w. S o

] NB* (7‘,.p)

bla

b0 t5 mean lintl)(l-—az). = exp(=bz),

. In the [ollowing we use the notatlon (1-0z )
for b e IR.

.‘ Varianée Functien:
Vi (m) = PA(m )+ QAT

_1-a(l+q) Om) = (1~ a)[L + a1 + g)]m — Mgl = a(l + )]
Arg Lo PO-oltg

o 2
A(m)— m —§-9,\ m+ ( A ) ;
l—a

. a€(—-1,1), q>0 or a=—1, q>0
- Mp=W' A (F)—IR‘*’ '
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- Basis Measure:

L= I/;'\ * (60 - 61)'(_'\0)_ _
where v, =y, C1(j)8; with Cl(j) such l.lia_t

i=0

{1- az)‘f”

—(—TT,(: e [-1,1)

> ) =

Cumulant Transform and Mean Domain Mapping;:

k, () = Aog (1 - aeg)]/a — Mg+ 1) log (1 - eg) , O (1) = (~00,0)

VAm) —(1+a)m—A
b (m) = log ( /\[i _)au(+ q)l)— am q) ym € M

4

. Density:

" — £yt ' .
Jx(z) = Q-i—"{xc{:”‘?(m) ,z €N,

(1 — a&)n/e / , .
& . — bz)elh L o ‘
where > C2°(j)z! = %‘_..))Td for be[-1,1),ce RY,de R U0}, =e€(0,1)
j=0 A== o

0=logt,E€(0,1); A=r,r €RY : g=rofri,ms € RY U {0} ;
« € [-1,1) such that (e,r2) # (—1,0) ; then '

- Ta 1
m_rlé(l—ﬁ_l—q.f)

Legendre Transform:

A(z)*[1 = Az))
[1 = aA(z)PY® )

(1+a)z+ Ag—JA(z)

2(az +A[a(q+1) =1])

| k";; (z) = log (

where A(x) =

Asymptotics:

MG(rl,rg,qi,ﬁ)—DaPo(m) as ry— + 00 or T3— + oo while m as in _i;he Density -
section above remains fixed. o ‘ )

MG(ry; 9, —1,6) 25 [2NB(ry, 1 — £)] as r,—0.

MG(ry, 72, a, .f)—'D—>N]3(r"q,1 —£) as a—1.
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Notes:

e The combination (a,7;) = (-1,0) is disallowed simply because in such a case the

basis measure p = ég.

o If — T; < a < 1, we ran pot an explicit form for the density:
1+ T2 '
L B . ‘ ‘ : .,’.1.+ o (1 _ E)T1+r2 z
f_\(.E)—.F(""SC,—-?]/ﬂ.,]—7‘1-12-*1?,(1’.)( . )mg ,.’EE]N

where F is the hypergeometric function. See appendix (§B.8) for a derivation.
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3.5 Caste m? — 1 — Mixed Exponential Families

The Mixed Fxponential type, which we denote MIE(~, ay, ag, #) is another rich class

of NEF’s. I{ arises naturally (Seshadri [£991]) as the mixture distribution

yes

Flor8) + ~

w+ afd

w
(e, 8
i (v, ),

where T (o, 8) = I'(a -+ 1, 3) is the length-biased distribution ol*I'(ev, #); this distfi-

bution belongs to the Mixed Fxponential family MEko/a, 1 a, 5], 8 € IR*,

Variance Function:

= m (qu\. (m)+ [(q + 2ym + ,\qlza] A (m)) |
A(m) =m® 4+ 2Xa{g + 2)m + Xa’q® ;

where a,q € R

Mp=R*,A(F)=IR"

VF (m)

Basis Measure:

p= (aﬁn + ’)’)*'\ * Thg
where v = I+ (2}

Cumulant Transform and Mean Domain Mapping:

ku(6) = Mog (a + :15) ~ Mlog(~0),© (1) = R™.

CPu{m) = - A{m)—m+ dga,m € My

2am

Density:

IOr]-I-OtQ 2}“2—1
frle) = £
(B4 &) I(re) | |
where 1] is the confluent hypergeometric function;
: 1
f=—-
B
a= :;“] .k eRT; :
Q’]_iﬁﬁ g\ -
th = —
egm ﬁ(l+n{'+01)

c—(ﬁ+ﬁ)$1F1[a1 + Qg Oy fC.'L'] y &L € IR'+1

,BeR* :j;_’;'5‘-)\ =m,m €RY ; g=0ap/on, 0 €EIRY ;

[t gl
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Legendre Transform:

Mog+1)
’ k‘; () = Al [)_\qu -1+ /A (3:)] _ A (2) < il
AT = Cg P — , T F
o [2ax]™ [,\qag +az + ay/A (1:)]

Asymptotics:
i D . Qg .
ME(k, ay, o, B)—1 (0'1 + "—,ﬁ) as £ — +o0o.
x| -

NiE(f\".,ﬂ'],OfQ,.ﬁ)i)F (21 H) as h.'.“') 0'

441

‘Notes:

e See appendix (§B.9) for a derivation of the Mixed Exponential density.

52



3.6 Caste 1 — m? — Trinomial Families

The Trinomial type, which we denote Trin(n, a, £8), is a generalization of the Binomial -

type, to whicl it converges. up to an aflinity, as a approaches the houndaries of (0, 1).

The Trinomial type is not infinitely divisible.

The Trinomial type was apparently introduced initially by Jérgensen, Letac and

Seshadri (1939) as a counter-example to a property of quadratic variance function

NEF’s. It is the only Babel type in caste 1 —m?.
Variance Function.:_
Ve (m)= m (A (m) —_m//_\ (m))
A(m) = AP = (1 - a¥)m?,

“where a € (0, 1)
Mpr = (=M, A(F)=N"

Basis Measure:

p= (6o + 2ado+ 8,)

Cumulant Transform and Mean Domain Mapping:

k,(9) = \log(Q Césh(Q) + 2¢), © (,u) =R
8. (m) = log (am +yA = (- eyt

A=—m

) ,m = J’FWF.

Density:

fx(z) = (H-c’i_sﬁﬁ) |J=]ZJ’:E‘2 ( T: ) ( Izi_ ) (2&)_‘1 e? xe{-n, —n+ ‘,l,...;ﬁ.}

0=8,8eR; A=n,nelN";a€c(01);

. sinh 8
then m =n B

cosh B+ a
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Legendre Transform:

A 3
ki (z) = log( ) ; ,\)
_ [A(z)? -+ 20 A(x) + 1]
Alxr)
where A{r) = ﬂj\-{%l ;T € Mp

, 'ASymf.)totics: ‘
Trin{n, a, 8)-2>[2Bin '(n,cﬁ/(_l + eﬁ)) —n] as a — 0.
Trin(n, a, )~ [Bin (Qn_,eﬁ/(l + eﬁ))‘ —n] as a — 1.

[Trin(n, a, B) + n}-=+Po(e”) as n — +o0.

- Notes: -

@ See appendix (§B.10) for a derivation of the Trinomial density.

Other Ré_fei'encesi '

. Jgffgollsezi (1986) for a discussion of convergence of univariate discrete distribu-

tions 1o the Poisson distribution. . -



3.7 Caste 1+ m? — Pascal Sum Families

The NB + NB(Tl,?g, p1, p2) rules the sum of two Pascal 1‘21.11d011i variables, viz.

NB—{-NB(?‘;,?; s pg)—l\B(rI p])xLNB(h p)) )

Vai'iance Function:
(m.)=P/_\( m) + Q m)\/A(m) where -
+1 - 1fg=l a4
=5, Al ) (qA m—1lg az__-“’)

T3 - 2q 1
' N ) L | | o
A_(m)_—m S P LR e BT

- WhereqelR+ aEIR+
Mp=TR*, A(F) = R¥

 Basis Measure:
= am(c‘?o - 5i)*.(f"\) * _(;:_"”(60 ;751)*_(_'\‘?) e
Cumula_nt_ T:rar'is.form and Mean Doma'in-lMappihg: )

k,(8) = —/\log(l — ae’ ) Aq log(l — eg/a) O(p ) = (—o0, - log.a) _

() = log (éi [42 G DA + ey + UD ity

- om+Ag+1)
Densn‘,y

r4ra e —1 L B U
()—pl (1+2+ )(l—pﬂIF(“lT1:71'+72:p1 Pz),me:lN_

€T I —p

T

where F 13 the hypergeometu(, quCLIOIl,

0= Jlogl(1=p)(A = pa] 5 0= - /(L= pa), m,sz(O DENE
‘-’\—rla’“lem 1q'—?"2/7"1,'r2€1R+-

1= " . 1 —
: then m=1r— + g ‘ Pz
o ' n P2
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Legendré Transform:
e (L@ 4 ) B() - Cl)
k“ (.T) = iOg ( [2 B( B(:.r} arMe=1) .
b
_} log([(l — (:2)13 ) -+ C(.’L)]/\ [ O‘. - 1)B($) - C(T)] q) 3

where B(z) =z + Mg+ 1) and C(z) = Mag® +1) + (¢* — 1)y/A ()
Asymptotics:

NB‘[‘NB(pl,pg,?l,Tg) NB{ry,m) as p, — 1 or rp — 0.
NB + NB(py, p2, 71,72)-—+1\B(r2,p2) as pp — lorr — Q.
NB + I\B(pl,pg,rl, )—)Po(m) as 7, Or rg — +00 whlle m as in the Den51ty _

section above remains constant.

NoteS'

e. Watson (1988) produces distributions based on the Legendxe and on the Gegenbauer
: polynomlals The Gegenbauer polynomials C?{(k) have generating function

ZC"(L)zJ (1= 2kz+ %)~

Letting r; = 75 = rin our pammetriza.tion of the NB4-NB distribution thus yields the
Gegenbauer distribution. In this case, putting ¢y = 1—p1, g2 = 1-p2, §u = (1 +92)/2
‘and §g = /q1G2, the density ‘can be written as

Fx(2) = (mp2) (ma2)*/2CE (g—z)

for x € IN. Since Cj (k) is the. ﬁegendre polynomial, the so-called Legendre distribu- -
tion occurs for » = 1 (Watson [1988)). ' :

¢ See appendix ('sec. B.11) for a derivation of the Pascal Sum density.

Other References:

o Meixner (1938 and ].941)'for a definition of Meixner polynomials, on which the
'NB + NB density is based. ‘ : :

. E'rdélyi' (]953. sec. 10.24) for properties of the -Meixner polynomials.

- . Abramo\\rltz and Stegun (1()7(]) for propertles of the Legendre and Gegenbauer
“7 polynomials.
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3.8 Caste 1+ m? — Pascal Difference Families

The NB — NB(r, 73, p1, p2) vules the difference of two Pascal random variables, viz.
NB — NB (‘!‘l, ra, P],pz) = NB(‘I']_,PI) * ["'NB(I:, ‘pg)] K

Variance Function:

Vi{m) = PA(m)+ Q(m)yA(m) , where

. 1 . 2 2.2 2
p="F1 o )_“(um_w)

2\g = 2q\ X a?—1
‘ a® - 2 24q+a%(qg—=1)?
A(m) =m? + 2\ ( (f ) m + Aa? 1 -(}_a(: (ql)z ) ;

where ¢ € IR*, ¢ € (0,1)
Mp=TR,A(F) =

- Basis Measure:

p=a (6 — 51)*(—)\) x 0% (8 — 6_1)*(—,\q) ‘

Cumulant Transform and Mean Domain Mapping:

k,(0) = ——/\log(l — ae®) — Aqlog(t — ae™®), O (1) = (loga, —loga)

(a2 +1)m — ra?(q — 1) — (a? = 1A (m)

Density:

A" l—p gk
f ( ) pl p2 2 al(Plz-Pz)( )(l-_pz) 11'.62

where a(py, p2) = \/(1 = pu)(1 = p2) and

o0

where > WA ()2 = (1 = k2)™® (1 - E) yhee RT, 0< |z} < k <1

1 1-—-
= 3105 (1_—1;;) pLp2 €(0,1) 5 a=a(p,p2) ;
)\=7‘1,7‘1€IR+ Q—T2/T|,T2€IR+'
l—p 1—p2

thenm=nr; — Ty
h P2
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Legendre Transform:

A B+ C@PICE) - BE) "
o) = log (a“[?(:z N2z — Ble) - C(I)].\q-r) w & My

u
where B(r) = a®hg+ (® = I)WAlz) ; Clz) =z — d®(r + ))

Asymptotics:

With m as in the Density scction above remaining constant:

NB — NB(T‘l,TQ,p],])Q)-P—?NB ('rl, N ) fm>0as (1 —-pr)(L - p2) — 0.

mn+m

NB — NB(ry, 72, p1, p2)— - [“NB (’"2’ r = n)] if m < 0 as (1= py)(1 —pz) = 0.

T2 —7
" NB - Nn(rlzrg,'pl,pg)—fl»[—'l’o(—m) + ry] as ry — +o0.
NB — NB(rl,rz,pi,;u)ﬁé[l’o(in) —~1g} as 1y — +o0. -

i



3.9 Castel+m?— Pascal Blnomlal Sum Fannhes

. The B + NB distributions rule th(' sum of a Binomial and a Pascal mndom v, mahh s,
"iz- . N - | .
B+ NB(n.‘r, Psp2) = Bin(n,pi) * NB(rops)

Variance Function:

VE (m) = PA(m)+ Q(rm)\/;&(m) ,_wh__ere |

1-g _-L g+l (g=D@F )\

' 2 2 2.
. 2 _ 9,2 2007+ )"
A(m) m _)Aa2+ 'm—i-\ Y@

‘whelquIR"” ae Rt -
Mp=TR* A(F) as yot unknown’

Basis Measure:
p = a8+ 6) k a (50 _ & ) *=(ha)
Cumulant Transform and 1\*I_eéi1 quéin Mapping:

K, (0) = Xog(1+e') = \glog(1 = /), (1) = (=00, o)

| éu (m) ='.lqg_((a - I)T.n.— \(“ +q (a® + 1)\/__77_1_)

)ﬂ[m+/\(1—1)l

- I:[_)elll-si_t}{:l-

o o 1-p
fx(z) = (1 _Pl) P2 3Aa(m,p, (’5)‘(2’1 - pf) szelN
 where G(Pnpz) — SO~ (T —p0)ips and R
* where Za;ﬁlic (1) = ((I * k/k))c and kb, c are bUCh t,ha,t 3Abr( ) > U ] €N .
ST =0 -

0= —105 (PI '—'%") i Pth-E (0;1) ; @ =-§¢(‘P1,‘P2') P
1 } s . s

. —)\-_ n,n with unknm\n rannc ba==, re IR.+ Hs
l“Pz ‘ : '

zrthenm—nplﬁ—‘r
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Legendré Transform:

. 1 '[(a"—I)B(:r)—C(;)]r[(a2+1jB(x)+C(m)]f\e L
= on ( ee T1B) = ) 17 € M
where B(z) == + Mg — 1) and C(s) = A(a®q + 1) — (a® + 1)/A(2)

~Asymptotics:

-~ With m as in the density section above remaining constant:

NB + B(n, 7, p1, p5) > [NB(r, r/(r +m)) + n] a5 a— + oo,
NB + B(n,r, pl,pg)—‘DﬁNB(r} r/(r -+ m)) as a—0.
. NB4 B(n,r, Pi,Pz)i*Po(':??) as ry— + o0 ot Tp— + 0.

Note_éi _

o N ecessary and sufficient conditions on _a,‘/\; gfor p{n} > 0,7 € IN, are not yet kr}o\x}n.
. Letac (1992, ch. 5) points ot that the basis measure remains positive for a = 1 and
g =1, lefting A€ Y, . : -

\
2y
N
e o
Tud P
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3.10 Caste 14+ m? — Poisson—‘-"’ascal Sum Families .

e 3 The P+ NI (g,r p) rules the sum of a Poisson and a Pascal random \anables viz,

P+ NB(£, 7 p) = PO(TE) * NB(r, p).

Variance Function:

Vi (m) = i'(a (m) + [ = A(a® + D)y/A m)
A(m) =m? - 2X(a® - 1)m + \2(a +1)
where a € R*

C Mp=R' A(F)=R*

Basis Mecasure:

= e <G — )

Cumulant Transform and Mean Domaln Mappmg:'
' ’ ' . ok w(0) = \ar, ——)\log (1’—6 /a)@(p:) (=20,loga) .
- L {mAMe?—1)—A(m) .

- m(m):log( NN =B e
| 'De.r_l"sity'; |
g%”*‘; \'\ o = —€yr :r:‘ _N\TF-r—=z 'rg - ‘I::\-\\\f )
e, Ixt = ety o ()] een
) NI i ' ’ -

S e =E0-D
oo 9"5103[5( -p)], €€ IR+ p€(0,1) ; a=alp) ; T.?TEIR'-‘--__;.
I3 theri m = (5 - l_;f)

Wz

Legendre ﬁTransfoi-m :

RS

ki (z) =--}0g;(B($)(éiﬁ?xp\(f(x)] ) - -21-B(’L) , T EMp

. o o whére'B(:t) =z4+Ma®+1) - /A‘-_(w) )

. /r S /) !
: ’ :—17:——“‘_ <
oo o . - M\v
_ X
i
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Asymptotics:

With rn as in the Density section above remaining constant:

NB + P(r._{,p)LPO(m) as r —> +00 or as a — +oo.

NB +P(r, £,p)-2 [NB (r,

Notes:

rm) —r] as a(€, p) 0.

* See appendix. (§B.12) {or a derivation of the density.

e
* \7\"..
IS
g
&k
Pl
o
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3.11 Caste 1+ m?2 — Poisson-Pascal Difference Fal_n'iliés

The P — NB distribution rules the difference of a Poisson and a Pascal random
variables, viz. '

P—-NB(,rp)= Po('rg) * [—~NB(r, p)]
Variance Function: |
o Ty i
Ve(m)= 5 (A (m) + [Ma® +2) — m]y/A (m))
A (m) = m? — 2 a*m + ,\2(12((12 +4)

- where a € R*
Mp=1R,A(F) = R*¥

Basis Measure: _
Cp=aTexp(M) ke (G — b)Y SRR

Curﬁulant Transform and Mean Domain Mapping:

k, (8) = Aae’ — Mog(l — ae™?), © (1) = (loga, +o0)

. m 4+ Aa? + /A (m) N
¢, (m) =log. — ym € Mg

2Aa
Density: - _
Fx(@) = (pe™ s Afje () (r:;) el
Q& where a(¢,p) - £(1 =ip) and
“:§\ . . . K
CWhere Y sANi)7 = (M(1-k/2) ke RY, 2>k
Q.\s_.{el‘/.’——": 6 : .l ' . . ‘ i
0=Glog (g2 ) E=RTpe(0,1) sa=albp) s A=r, e RY 7
-thenm =r ({—~—~——p)
! Legéhdre Transform: )
e (BEPOBE) - 2P 1 )
| k% (z) = log ( )" — §B(a:), z € Mp
» where B(z) = z + Aa® + /A (z) -
Asymptotics:
. o P - NB(f,r,p)l}Po(-nz) as r — +oo whilem remains constant.
/o P — NB(¢,r,p)—=Po(m} as £(1 — p) — 0 while m remains constant.
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'3.12 Caste 1+ m? — Binomial Sum Families

The B+B(ny, ne, p1, p2) distribution rules the sum of two Binomial random variables,
viz. ' )

B + B(N], Tlg._]’)],pg) = Bin(nl-, pl) * Bin(ng,pg)

‘Variance Function:

YF (m) = 5}\-— (—[(H- A (m) + [(q— 1)m+)\( +q] VA (m ))
(@240
A(m)—m --9)\ A? m—-

where g € {j/}; j € N },ae R
Mp=(0.Mg+1)) , A(F) = N

s ‘Basis rMeasu’re:
p= a:.-f(-ao_l_ 61)*.\ *a-—r(éq_l_&)*,\q‘

Cumulant Transform and Mean Domain Mappmg

k,. (())'-— \log(l 1 ae’) + Nglog(l + ¢ /a), @ (1) =

(@ + )m = Ma® + q) + (® — 1) A( m)\ -
"5“("?):“’5'(‘- RECERVE ).’TEMF |

Density:

: | Ti=Tare=T | l -,y =T p]q2 +
fx(@) = a7 e (Pz )fP_f’“ m2=z). 4\ o iifh) zeN
where P is the Jacobl po]ynomla,l '

a(p1,p2) = P1g =2 and ' -
: P2 ' ) -
1 (ppe P12 | - L
ém§lo(q1q2 :a" mm,pl,pzE(U,l),qi=1—Pi13=1:2:
/\=ﬂ-],q=n2/n1;nls_n‘2€m ; #

then m = n1py + nops

Lk
L
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Legendre Transform:

k(o) < | ([B(:vj—c“(m D)) 2aC (@) Wa e
w(2) =log B+ Cla) + D(a) )
~ log ([2M(a%¢ + 1) = B(a) = C(x) + D)) v € My

where B( Y=dr—Ma®—1): Cla)= Mg+ 1) —z ; D(x) = (a® ~ DA ()
. Asymptotics:
With m as in the Density scction above remaining constant:

B + B(T?l-,.‘nﬁv P13P2)£—*-I)0(ﬂ1) as np — +o0 6r ] = +OO
. 1"1(1 Pz)

— +00 and ny varies appro-
p2(1—p

. B+ B(n,n2, p1, p2)—=Bin(ny, m/n,) as
" priately. "

)
K : 1—-p
B+ B(n;,_ng,pl,pg)—-g—er(ng,m./ng) as P “% - { and v varies appropri-

P2(1 -
ately. .

Other Reférences:

o Szego (1939) for propertics of the Jacobi polynomial.

:;:{ﬁ.}
R
]
!
Vs
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3.13 Caste 1 +m?> — Poisson-Binomial Sum Families

The P + B distribution rules the sum of a Binomial and a Poisson random variables
. 3.

ViZ.

P+ B(¢,n,p) = Po(né) * Bin(n, p)
Variance Function:

Vi (m) = 2/\
A (m) = m? 4+ 2X(a® — 1}m + A3(a® + 1)?
where o € IR*

Mp=RY, A(F)=IN"

1 ( A (m) fm —[—l.)\(az—}; 1)] A (m))

- Basis Measure:

= a*(fa+ 61)" * a” " exp(Aé))
Cumulant Transform and Mean Dom_aih Mapping: o =

k, (0) A(ae + log(1 +ee/a)) (,u) R

: Aa? \/
cbp(m)_:lc?g(m (i)t ) m e Mg

2Xa
Density:

_ n - zf2
(@)= {1 -p) 1Al (@) (Tp_—gia) eel,
 where (e, p) = /(1 — p)¢/p.and

where E A = [exp(R)(1+2/k)) ,be N", ke RY, 2 .‘E R*

. j=0
@.1 A _pE o _ ot
9 EIS(H)’:G—G('E‘»P):geIR 1p€(0:1).:
A=n,n€N";
then m = n(E + p)

Legendre 'I\‘ansform:

, T € Mp

. B('L) a[2\a] T | B(z)
ko) = og ( [B(z) + 22a?]’ ) N
\‘vl}ere B(z) =2 - Ac* + 1) + /A (2) '

[t



Asymptotics:
With m as in the Density section above remaining constant:

Po{m) as n — +o00 or as {1 — p}¢/p — oo,

P+ B(&.on,p) o
[Po(m)+n]ilk=£-+p>1,as p— 1 while n (and thus &) also

P +B(&n,p)
‘remains fixed. _ o : _ -
P—|—B(E,n,p)LBin(n,'nr./n) ifk=£+p <1 as £ — 0 whilen also remains fixed.

D .
—

D
—

N'otg_gz
o I{ £ < 1, from Erdélyi (1953) the density becomes
fx(z)= e L) (—nf%) P (1= )%z e N
where Lga)(-) is the jih Generalized L.aguer-re po]yﬁomial of order a.

* e See appendix (§B.14) for a note on the asymptotics of the P 4 B families.

" Other References:

o Szegd (1939) for propertics of the Gencralized Laguerre polynomial.

o

67 o :?{,}ﬂ':



3.14 Caste 1+ m* — Poisson Difference Families
The P — P distribution rules the difference of two Poisson random variables, viz.

PP, ) = Po(6u) # [-Po(ca)

Variance Function:

Vi (m)=/A(m)

A(m)—m +4A2
Mp=R,A(F ) R -

Basis Measure:
p = exp{Ad;) xexp(Aé_y)

Cumulant Transform and Mean Domain Mapping:
k,(6) = 22 cosh 0, & (1) = IR

: m + /A (m
¢ (m) = log (——5)\—(—)

| » Density:

~

S =e [“(51“/62)] 2 bte) (6/6)7 5 €2 B

where I.{-) is the modified Bessel function of the first kind;

:llog( ) ; \/$l€21fls§ZEIR+

then'm =& —&

Legendre Transform:

k;;(::):.rlgg(&\’ ),/ (2),z € Mp

68
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Asymptotiésﬁ 7
With m.as in the Density sebf.ion above remaining cbnst;ant:
- P — P(&,&)—Po(m) as &0,

P — P(&1, &)~ Po(—m)] as & 0.

: Notes:‘. :

. 'Thei'-Bes;;eI distribution is the inverse of the P — P distribution.

Other References: -
o Abramowiti and Stegun (1970) for'a reference on modified Bessel -_[unct"ions.l, -

o

¥l
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'3.15 Caste 14+ m? — Gamma Sum Families

The G + G diétributions rule the sum of two gamma random variables, viz.

’ .G + G(m, 0'273157;82) = F(ﬂl,ﬁi) *r(azyﬁz)

Variance Function:

Vatm = gl 12 00 - Jfg - o+ XL R

) =4 A (AR

o

whequIR+ a€eR
‘Mr =IRY A(F) = IR+

-Basis Measure: o

p= cx1>(;a:};)fy*‘\ % exp(az)y™™
“where ¥ = I+ (2) o

Cum_ulant Transform arid Mean Domain Mapping: -

K (0) = —Alog(a = 0) — Aglog(—a—0), 0 (4) = (o0, —lal)
2a,/A( )+)\(q+1) '
Im

‘?Su ('m') M E JUF

De'nsity: '

f ‘ "1+a2—1' ~2/6, o o : +
: srar 141 | @y ot o —lz],zeR
(@) = oo | aon i|5-a]e) mem
where ]I 1 is the confluent hy pergeometric' function;

1f11) o _1(1 1 .
2(@*&2)’ 2(/31 ﬁz) bR

A=, q= afar; oy, a0 € R ; then m.= 61 + azfe

o Legendre Transform:

[B(z) + 20z][B(z) = 2am]-‘é). B e

k. (z) = log ( Re]Me+D) 5
WhCl(‘ B (2) = Mg + 1) + 2a\/A ()

70



Asymptotics:
With m as in the Densily section above remaining constaut:

G+ G(“ha?aﬁhﬁa)j—’r (0’1,;) as (-1— - —1-) — —CO.

1 B P
G+ Glar, 2,81, B2) =T (a—) (L - “1“) - oo,
: 2

S B

Notes:

e See appendix (§B.15) for a derivation of the density of the G +  distribution,

e

1 e
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3.16 Caste 1 +m’ — Gamma Difference Families "

The G — G distributions rule the difference of two gamma random variables, viz.

G- C(ﬂ'l s ﬂz-ﬁl ;_62) = F(Ofb ﬁl) * [“P(a2=482)]
Variance Function:

Vp(m)= %q([q +1]A (m) + [(q ~1jm + M)—jl A(m))

2a
‘ 2
a 2a

where g € R, e € R*™
Mp=M,A(F)=R"

Basis Measure:

o= exp(—az)y; exp(az)y=T -
where v;. = I+ (2) and 7= = Tg-(2)

Cumulant Tranéform and Mean Domain Mapping;:

k, (0) = ‘—=)\10g(a —0)— Aqlog(a + 8), 6 () = (—a,a)
) 2a\/A (m) = A :
¢'u(m)_’) (m) (q+1)-,mEMp

2m
Density:
RSN N
f_\(‘l : ‘ ﬁih 20'2 EBﬂ(]péi.hz)(m)’melR
' 1/{1 1Y
where a(3,B2) == | — + —
re a(fh, Ba) -_Q(ﬁ: ﬁz)
+oo ' : : -
where [ % BY(a)dn = (k — £)(k+ 1)~ b e,k € RY , 1 € (<k, )
1/1 1 SR |
= _ — - ‘ +
9 9 (F}'J 161) , @ a.(}gla.32); ) _.81)?2 < IR.

,\ ='a1,q=ag/a1 ) 0’1,(3”2 GIR.+ )
then m = a1 81 — a3,
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Legendre Transform:

K (I:g) = log ([Qa;t + B(2)]\[az — B(_t)].\q) B()

[251~]~\{1+1) 2

- where B(x) = Mg+ 1) — 20/A (x)

, it € AMp.

Asymptotics:
With m as in the Density section above remaining constant:

G- G(ﬂ"luﬂ’z}ﬁhﬁﬂ-ﬂm (0‘1, 2*1") as ay — 0.

1

G — G, @2, B, ﬁz)i’ [—;F (sz, —g‘)]_ai‘ oy — 0.
G- G(n'lea2:ﬁlaﬁ2)—p"r (ﬂ‘h E) as (i + i) — oo il B1 > B
A Q1/. [31 ,32 .
G = Glon, e, 81, )2 [T (a3, = )] s (o + - ) = Hoo i 8, <
_ (45} (‘}1 - ﬁ‘.! . g
f .il.'f"f—
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3.17 Caste 1+ m? — Normal-Gamma Sum Families

The N + G Jistributions rule the sum of a gamma and a normal random variables,

ViZ.

N4 G(e%, 0,6, 8) = N(€,0%) # (e, )

Variance Function:

Vi (m) = -21—/\ (A (m) + [m — 2Aqaly/A (m)) |

A{m) = mn?* — 4hgam + l\zr,r(qa +1)
where g € IRY, a € IR
Mp=W",A(F) =R

Basis Measure: -

A =\g

i = exp(—az)y
1

) Whel.'e 7= ]ll_’{"j (m) a-ndr Vo= o exp(z?/2)

* explax)v

Cumulant Transform and Mean Domain Mapping:

ki (0) = = Mog(a = 0) + 20 + 0, 0 (1) = (~o0,0)

, m + /A (m) - -
SN (S — - Az
qﬁ_n(m) v ,me Mp

Density:

‘. A S |
f(’l:) _e}‘p( 26 2) 3Ba(fa/22,8)( )exp 1:; (5-5_2_ - %)] 1 CE € ]Rt

where «af .\, ,ﬁ) Y (5 + 3) and 7

) oo “‘\ - ‘. , 2

where . [ ., \ Po(@)de = ———-—————»C)\p(_[]::(f;t) ) b,c € IR+ ke€R,t € (—o0,k)
1 1“*‘3,

9“‘5(;“5),a=ﬂ(6;02ﬁ) 661R+ felR;

A=a,q=0"a ; a,0? € RY ;
then m = £+ ap '
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Legendre Transform:

2Mq S\ —{aB(x)+ \),x € My

kmﬂ_x (m +J__) (B )+th)

where B{x) = 2Aga — x |
Asymptotics:

With m as in the Density scction above remaining constant:

,N + G(o?, & ¢, ﬁ)--—»\*(m,zn) as 6% — +o00.
N+maaéﬁrar@ 2 asamo.

N+ Glo,0,6,8) 2oN(m ) w5 5 41 oo

.\\I\‘.

15



3.18 Castel+ mg — Hyperbolic Secaht Sum Families

The H + H distributions rule the sum of two Generalized Ilyperbolic Secant random
variables, viz.

H+ H(Tl- T2y El 352) = GHS(TI? ﬁl) * GHS(T‘Z’ /’32)

‘ Varlance Function:

Vi (m) = PA(m) + Q( n:)\/A(m

P:s'z'i\“(qu), |
Q(m) = s;r;qa ((1 —q)m+ A CSC(2G) ((1 - Q) cos(2 ) 4(})) and

A (m) =m? + 201 — q) cot(2a)m + N2 [(1 — q)? cot?(2a) + 4q csc(?a)]
where ¢ € R* | @ € (=7/2,7/2)
Mp=TR,A(F)=RY

Basis Measure:

= exp(az)y™
where 7 = ﬂ:P—(;T—:L/—)]l r+ ()

B

* exp(— a;r)n"‘\q \m

. f . . \\ - .
Cumulant Transform. ﬁi‘.d Mean Domain Mapping:

l\u (0) = Mogsec(f + ¢) + Aqlogsec(f — r*) , © L,u) = (—7r/9 +la|,7/2—la])

¢ (m) = 4}7(q+\ 1)csc(2a) + /A (m)

“mtana + A(1 — q)

,m & Mg

Density: \ s

%

[z} =cxp ([ﬁl Al ) Bl sy (2) cos™ Breos™ B2,z € R,

2
Twhere a(By, B) = (ﬂl ~ ;) and
where [ ;m e””qu (e)e = sech(t + k) sect(i — k).
ke (-r[2m/2), bee R te (~m/2+ |kl m/2 ~ ) 5
0——(ﬁ1+ﬁz) a = a(fh, B ﬂhﬁze(_ﬂ'/ ,7[2)

,,.) =7,q=r3/r1 ;

““then m = ritan By +rotan By g
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Legendre Transform::

k*

n

(z) = log (cos’\(B(:tf) — a)cos\(B(x) + a)) - :er(:alf)
Mg+ 1) esc(20) + /A (x) :
xtana + M1 — q)

where B{x) =

Asymptotics:

2y/rira{m +r : : : .
T s ,60) [ DN 1) a0 B B — 0, with s i
ry — T3 '

the Density section above remaining constant.
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- 4 Seshadri Class

" The Seshadri class contains all convolution families with variance functions of the

form .
| Vi (1) = P(m)A (m) + Q(m)y/A (m)

where deg P = deg@Q = deg A = 1. Kokonendji (1993, ch. 2) has exhaustively
classified its members, by showing that for deg A = 1, their variance function could

be written in the form

Vr = VAP(VA)

where P, is a polynomial of degree 3. P., in fact, ranges across the forms of all
variance functions of Mora class members. ‘
Kokonendji and Seshadri (1994) show that [amilies generated by the Lindsay

* transform of measures with. stricily cubic variance functions are infinitely divisible

and belong to the Seshadri class. Seshadri (1991) investigates several members of the
Scshadri class in thr: context of fiite mixtures of Mora class members.

The Seshadti class coniamq up to affinities, 5 convolution famlhes

Table 2.7: Seshadri class convolution families

S-Abel:  {SAb(ry,72.€) | (¢,71) € (0,1) x [max(0F, —r;), +00)},
) for ry € IR, supported on IN 7
S-Takdcs:  {STa(r1,r2,a,€) | (§71) € (0,(a +1)™Y) x [max(0t, —rg), +00)},
Co ) for (rp,a) € R x IR, supported on IN
" S-Arcsine:  {SArc{ri,rs,a,€) | (£,71) € (0, arctan a=1)x
L [max(0%, —ars), +00)},for (r2,a) € R % [0, +c0),
supportedion IN
S-Kendall-Ressel: {SKR(ry,7, &) | (£,m) € (1, +00) x [max(0F, —r2), —I—oo)}
| for r; € IR, mpported on IR
Reciprocal {RIC Y | (G r) e Rt x IR+}

Inverse Gaussian: . for ¢ € IR‘*' quppori ed on Rt

(e
Kokonendji (1993, ch. 2) distinguishes between the S-Strict Arcsine (a = 0) and

S-Large Arcsine (a.> 0) distributions. -
A
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4.1 S-Abel Families

' 9 The S-Abel [amilies, denoted SAbL(ry, 1, £), arisc as generalizations of the Babel Gen-
 eralized Poisson families. Members of these families were discussed-in the context of -
random mapping theory by Berg and Nowicki (1991), while Kokonendji and Seshadri

{1994) recast these distributional results within exponential family theory. |

Variance Function:

Vr (m) = 9;2OmﬁmM]A(m)+[M1m3@nr—A2Wq+Lﬂ _swq)
A(m) =4dm+ A (g+1)%,

where ¢ € [—1, 4+00)

Mp =1, A(F)=R*

- Basis Measure:

: 4= (6o — I})..( A gt

1)i-!

where v = 50 + Z HZ-:%‘-)-—**
j=1 )

- isa generatmg measure for ¢ > 0.

6;

; .:‘ Cumulant Transform and Mean DomamMappmg

k, (0) = =Mog (1= 77(e")) + Agf ("), © () = (—o0, ~1)
where {71 is the reciprocal of f : (0,1) = (0,e7"), t— —:?
¢u (m) = log (A(m)) — A(m) -
2m 4+ Mg+ 1) — /A (m)

2(m + Aq)

- where A(m) =

A
. Density:

y,
/4

27

T
fx(m) T+ 1)
where ;C®9(0) = 1 and ;0% (z) = [(b+ 2)+ (c+ 1) =,
for be H{+,c€(‘—b,+oo),zE}N* d =

/ where s +t =3 ( " )s"(l)(“'j) |
" J—O J N . X L . . -
/f’ 10g£ g 6 € (0 1) A = L R ] € IR'+ y 4 = T“?/T‘1 ». T2 € _[—-T-[,-l—OO)

R ¢
’ '- | thenm—-ﬁ[rl+12(l E)]

C(" ’rz)(:rje_é(m+r2)(1 - E)ER, z€ ]Nv



Legendre Transform:

1 (feeMa+ 1) —/AE] [Me—1D) + /A (m)_")

ke () = =1
.!l(l’) 2 Og [2(3:_;_’\(1)]"1'5‘.\

. (2$+)\(f1+1)— A(m)) .1 € Mp

)
Asyrﬁptotics:.
With m as in the Density section above remaining constant:

_ SAb(r,rs, {)—-&Ro(m) as ry — o0 or ry — +oo.
SAb(ry, 2, )24 GP ( mr_ _m ) as 1y — 0 for 77 > 0.

m+ry m+rs

Notes:

e The variance function may also be written out as

Ve(m = 50 (/a0 ) (VEE +20-0)

a representation which emphasizes the rélationship between the S-Abel families and _'
the Mora Abel families, '

¢ When rp = —ry the variance [unction takes the following simple form: °
| ' 2m : 2
Vi (m) =5 (\/T_n+\/X)

¢ See appendix (§B.17) for a derivation of the dénsity.
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4.2 S-Takacs Families

The S-Takacs families, denoted STa(ry, 72, a, ), arise as further generalizations of Lhe
Babel Generalized Negative Binomial families.

Variance Function:

Vr (m) = P(m)A (m) + Q(m)y/A (m) |

. P{m) = m [a{a + )m + Ag{qg - 1}] ,

Q(m) = m [,\a.(a +Ufa+2-3¢)m— Nqlg— )(a+ q)l '
A(m) = Ada(e+ V)m + A2 (a +q)%,

where @ € RY and g € [—a,400)

Mr=TR*", A(F)=R*

" Basis Measure:

p= (b — av) M g

. & 1T(aj+5+1
where v = > _ ".“f“‘"‘g'gj—j-,_—‘]:"‘i_'—)(‘)‘j
R %1 laj+2) 7
is.a generating measurg for ¢ > 0. e

e,

Bamrs

Cumulant Transform and Mean Domain Mapping: -

W

k. (0) = —log (1-a f'](e9?+ Aqlog 1+ /7)) ,
0 () = (~o0,l0g (a*) —Iog ({a-+ 1**))
where [~ is the reciprocal of -
Fr(0,1/a) = (0,0%/(a + 1)) o t/(1 + 1) |

| [2(a+ 1ym + pla + q) = LB (m)]
m) = lo Aol
() g( [2(a + 1) ((a + Lym + pi)}*

+alog (2a(an+ )m + p(g + 2¢q — a) + /A (m)) rm € My

31



Density:

’ o Ix(z)=(1=(a+ 1)&)”7 £5(t - ﬁ)m—arzcirl'r?)(sc) ,z € IN, where
‘ 9C — 1”"”(0) =1 and _
21 (r) = ( [(e— 1+ kx t @)u + K577 + kb[(ra + ko + 2)u + k(b= 1))

n

where (5. + ™) = > ( 7T )(s)mtn"j('u)("“j) , and.
j=o \ J 3 '

wherc( —b(b—l—l) A{b+e—1),ce N,z eN"

0=logé —alog(1—¢),£€(0,1/(a+1)) ;a=a,ac RT

A=r, " eRT ; ¢g= rofr1, 72 € [—ary, +00) ;

R ' ¥ — (<

then m = €a71 + (1 —(a+ ].);)'Pg

Legendre Transform:

K (i_)-_.(! (12B(z) + C ~/A (2)[2aB(z) = C + /A ()]
ki () = log | - [2B(z) = 2(s T NP2(a 1 1)B(2)| @

e C A —())\/\/\
~ e q'),meMF

L | [2aB(:r) — O — sqrtd (z)]e
‘ where B(x) = (a + 1)1. + /\q, C= ; Me—g) -~ i

o~ Bl

Asymptotics:

STa(ry.r2,a ,f)——+Po(m) as r;, — +oo or rp — +oo for m as in the Density sec-

tion above remaining constant.

3 . (

L‘\‘3«": ,/":"
- Notes:
e As a factored polynomial of \/ , the variance function is ) v

yp (@ = 8)\3—(12(‘/“::1.)_2 (f Aa+ q)) (@+ A(a - q)) (\/-A_ +Aa+2- q))
/



4.3 S-Arcsine Familics

O The S-Arcsine families, denoted SArc(ri.m.a,8), first arose in the course of the
' classification of the members of the Seshadri class by Kokounend]i (1993).

: No probabilistic interpretation has been proposed for these families thus far.
Variance Function:
Vi (m) = P(m)A (m) + Q(m)y/A (m).
P(m) = [(a + Dym + A(¢* + l)]

Q(m) = DT [Ma? +1)(a —~3g)m — A2(a+ A+ 1)

A(m) = 4A(@® + D)m + 43¢ + a)?,
- where « € RY U {0} , ¢ € [~a.+00)
L Mp=TRY, A(F)=IR*

N2 (a2 + 1) -

Basis Measure:

o wN *\q
K= V1 *Vz )

where vy = ZHM i ﬂ“d = ZW.J ir o

. - S mtllzy” =(\/1-f- (:) -aj—l( )) y23=~1~&«(-w~—[—)

| it oej 41
where p2;( t2 + 44%) and pg +1(2 —i t2 (20 + 1)
J n J . .

1—0

and f7'(-) as below,‘\"?_f_-

is a generating measuré‘}l"dr-fq = 0.
Cumulant Transform and Mean Domain:Mapping:

ku () = =log (/1= F1(e%) = ae? ) + Agarcsin(/ (),
O (1) = (m.oc,i‘-‘l{—,log V1 4+ a? — aarctan a"l) P '
- where f~! is the reciprocal of ‘

(0 \/ﬁaz)l—i' (0 V14 a?exp (aa.rctann ])) S - L

exp (aarcsint) ;

E qbu( ) log (sm arctan A('m)) — aarctan A(m),

v here Al )/ 2am + Md+ q) — /43 (m)
i v where ? 2(a?m 4+ Mag —1)).
: ‘ . . i'ti’::i\/’-'/
N N
= 4 ,./';'/ v
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Density:

fx(x) = (cosé — asin €)' 3C ™ (2} sin® fc—f(ur+'r2) ’
= exp (caresin f71(2))

where ) 4O () =

j=0 (\/1 - f1 (2)2 — A‘f—l(-z))b

_ [ éxp(arctan a™1)
+ oL + ~a =
forbe R ke RTU{0},c€] arl,_-}-oo),..E\O, e

0 = logsin€ - af, £ €(0,arctana™") ;_,\ =r;,r € RT;
L a=a,a €IRY ; g=7r./r1, 72 € (—ary, +o0)
then m = (1—'."60—5)2' [(ary 4+ r2) + €(r1 — G-'f‘gx)).

Legendre T}ansform:

1-*(1:):5&( LORON [avﬂ(m)¥D]2A ) 2
B .‘2 ) .2r+A, [20(7:)(0(1:)4- )+ A(z) - B(z)y/A (7) renyl BE |
where 13(;1'.) = 2az +Aa +q), C('b)‘: a®r + Mag—1),D = ,}\[Q(a +4)—2)]

Asymptotics:

SArc(rl,?‘g,a,ﬁ)—-?»l’o(m) as ri — 400 or ry — +oo while m as in the Density

section above remains [lixed.

Notes:

¢ Kokonendji (1993) treats as separate the cases where ¢ = 0 and @ > 0; in the first
case the distribution is denoted SSA (Seshadri Strict Arcsine) and in the second SLA

(Seshadri Large Arcsine).

o The variance function of the SArc families may also be written out as

Vi (m) =§j\-——-——m (\/A (m) - ;\(a +'lq)) ([\/A (m)+ Aa —"-.q)} ’ + 4)\2)

a representation which emphasizes the relationship between the Seshadri Arcsine

familics and the Mora Arcsine families.

- & The generating measure becomes more tractable when a = 0. In this case we get
S.‘\..I‘C(T] s T‘Z-:‘Ov 6) = [2NB(1.1 21 p)] * AIC'(TszaE/ V 1 + E?) ‘
where p = log (1' - 6/\/1_ + E‘Z) '
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4.4 S-Kendall-Ressel Families

The S-Kendall-Ressel famihoq denoted SKR(r1,72,§), arise as generalizations of the
Babel Kendall-Ressel familics. Kokonendji (1993) gives a sllalghtion\m(l probabilis-
tic interpretation of the SKR families for ry > 0 and ry >0 let X~RKR(R.&) Ag
NB(ry,1 —1/¢) and Y ~KR (7, £); then X + Y ~SKR(ry, 12, 8).

Variance Function:

Vi (m) = )iz ([m + Malg =] A (m) = 37— 2m + N¢* (g — )] /A (m))
- A (m) = 4dm + A%, . |

where ¢ € [—1, +00)
"My =R, A(F)=R*

Basis Measure:

t= (60 _ ‘I'/)*)\ x U*Aq ;

&;l‘ 6—-‘1:

[(z+2)-

-1s a gencrating measure for ¢ > 0.

Cumulant Transform and Mean Domain Mapping:

ki (0) = —Alog (L — f7(=0)) = XS (=0), O () =R~ S
where [~ is the reciprocal of f:IRT — R*, 1 e — t -1 ‘

2m + Ag+ /A (m) Mg+ /A (m)
¢u(m)=10g,( P )—— i _,mGMﬂ

Density:

fX($) = m (]. —.6— ) 5(1'4'?'2)11"1 (7‘1 - 1 3, + LA Dt ) T ]R.+

where 1} is the confluent hypergeometric function
aﬂdg:logfl"l‘l'—f}fe(]rf‘oo) ;)\=T1,T1€IR.+ ;q=T2/T;'11?72€[“11-]—00) L8
1+ ro(et = 1) . _ = '

then m = = 1')2
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gendre Transform:

K- (2) = log ([23; -+ B(:r')]r+.\[rl—1}[_8(.1:)]'\) B B(x) e Al

. [2m]rtie 2
where B(:r)_: Ag+ /A (m)

Notes:

o An alternative expression for the variance function is given by Kokonenjdji (1993)
and clarifies th2 relationship between the variance functions of the Kendall-Ressel
and tlic 5-Kendall-Resscl families: '

VA ' 2 RN .
Ve (m) = __.....V\\(B"” (\/z_\. (m) - Aq) (v:_..ﬁ(;m) FA2- q))

e The farm of the density is due to Kokonendji (1993).
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4.5 Reciprocal Inverse Gaussian Families

The Reciprocal Inverse Gaussian families, denoted RIG(4, x, r), consist of the pow-
ers of the reciprocal of an IG(y", v) random variable, namcly ANRIG(¢,x,1/ ) =
~I~IG(4, X))

Since the Inverse Gaussian has a natural interpretation as a first-passage time in
Brownian motion, the Reciprocal Inverse Gaussian v, i proportional to the speed
with which the process approaches a bound. RIG(-,-,1/2) and IG are both special

- cases of the Generalized Inverse Gaussian distribution. An important feature of the
RIG families in application is that they consist of convolutions of Gamma and Inverse
Gaussian random variables.

The RIG families corrmpon(l to I\okonendjl s (1993) SIG type

Variance Function:

Vir(m) = 35 (Im+ A4 (m) + Aafsm + Aqm/ )
A (m) =4 m + A2q2

- where g€ IR
Mg = IR*, A(F) = R*

Basis Measure: - o i

p=(27)" %

where v =

1 B
23 P (_Z) T (2)

Cunmulant r1\\'&11rlsfcbrn'1 and Mean Domain Mapping:

0(0) = =2 og(=20) = 2oy, 6 (4 = IR~
4, (m) ‘)Mn-l-/\?q + Agy/A(m)
p\1) =

)= — - ,m € Mp
o _ 4qm?2
Density:
& .- — \-’eﬁ r—1 "1/"{\r+LII) 114
f(=) = 3T(r) iir=35igigg )t
| e T(r) 3 ¢
1 — 9 ¥
( "WaTry1/2) 1F‘( 22)]

where [} is the confluent ]wpergeometnc function;

=—%,___,\'EIR+,A£21-',«1__ 2'¢,r61fi+¢G]R+'
vl -2
then m = Xy +2r
X
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Legendre Transform:

: A Az _ Al Alx

where A(z) = 2Ax + \2¢* + Agy/A ()
Asymptotics:

With m as in the Density scction above remaining constant:
RIG(ip,x,?‘)LIG(nz/ﬂ, ¥} as » — 0 while m, ¥ remain fixed.
RIG(¢, v, r)i)l"(v‘, m/r) as ¢* — 0 while m,r remain fixed.

‘Notes:
2

1 v
_—,—) as ¢ — 0.
X

o RIG(\, ¢, r)—=T (2

s See appendik (§B.16) for a dcrivatid'n of the density.

Other References:
» J¢réensén (1982) for a éomplete survey of the Generalized Inverse Gaussian.

e Seshadri (1993) for a complete survey of the Inverse Gaussian and related dis-
tributions in the ¢ontext of exponential family theory.

<
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" Chapt.er 3
Canonical Cas't_e- Members

We prox"i'r;i; in this tabular chapter a synoptic able of the variance functions of the

* Canonical Caste Members [lor all classified convolution families in the compendium. -

The Graml-ﬁ_abel form of the variance function Vg (m) = P(m)A (m)+Q(m)\/A (m)

s assumicd; accerdingly, the variance of the CCMs is expressed in terms of P and @),

with A corresponding to the caste. The background material is presented in §2.6,

“chapter 1.

Family - Caste A(m) K(t) //’V}\*F(m)

i
W

# Morris:Ciass . e
N1t
’ . P=)
” Q=0
o Po ™m t i
© P= 1,
% Leogr —
! B » --4‘ ‘I R Q =
S Bin . 1-m? « 2 X—1
// ' o I’ 3l
g '\ i P\,‘,E 1/)\’ e It ‘ b
i Yoo Q=0 - a
NB  mf-1°  2/A+1 .
I ‘ P=1/), o “\“&\ ~
i i . - st
, @=0 e oow
o £r
& P =1/},

GIS  mP41 /)
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I

i
s

(...'f:___‘,/,_'f 7
.

ey

ey

Fanﬁi]y Caste A(m) K(t) [/ Vi.p(m)

‘Mora Class

GP. m> t
\ P=0,
Q(m) = (m/A +1)*
GNB m>

L.UH-

= 0 : '
Q(n ?) = [{a + 1):11/\ + 1][(1:11/\ + l]
a>0 _
N Arc  '::, m? .t
\f‘;} S T\P =0, SR
- Q(m) = (am//\ + ) + (m/X)?
: "a 20 : Lo
KR m2 %)
Qm) = (m/A—1)
o i P=0,
S Q(m) = (/)

o - Babel Class

Hermite - | m 40+ N2
P =8, | S
Q(m) = —8\?
‘Laguerre | m AN+ X3+ 1)?
# | Q( ) = 4[m + X(¢? —1)]
| g2 -1 "
>| T om O AMt+ A%
t | | P = _827‘]:
Q(m) = 4(m + f\zfiz)
qg>0
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T b V

(53
]

w2

Family Caste A(m)

K(t) [ Vi-r(m)

Babel Class
(contlinued)

MG

- ME

Trih

NB '+ NB

., )
s
N3 —NB -
3/

‘ .
.oms —

‘m?4+1

m24+1

- Q(m) =

a—1 3% —q?
Q(m)= T _~m - 211

a—1 g+2

{t —
20/g+ 1 a1

_l1—a(l+gq)
B .,/\(q-i—l ’
QR{m) = — (l+a(q+1)
’ q+1( 4)+3q+4)

- NS
(a,9) € [=1,1)x[0, +00) \ {(~1,0)}

t q+2
2/\a\/q——+-_lq+ m
T
1
Ma+1) _H)(q +2)m |
Et R :
)\ .- : R
P=1/x
Q(m) = a/X?

a €(0,1)

-1, a—¢

y ‘ZAa\/& + Qa\/cj

- 2Aq ’
m —a®+ 3¢
T 2)g Aag./q

| (a, g) € R*xR* .

9*1 (g +1) +2g

Q(m) m —

2)\g 2(a? ~1)q
(a,9) € (0,1)xR¥
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Family Caste A{m) K(1)/ Vi.r(im)

Babel Class
(continued)

NB+B  m?+1 b

P+NB  m?+1 —t—

B+B- mP+1 - t— -

T

- L Qm) = o ((q ~1)m— @’ ~ 3“:1\/—6 3¢ + q"’)
. (e,g) € R¥x {j/A]j € N} |

2

t a®—1p
2\a 2a

P+B m?+1
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Family Caste A(m) K(t)/ Vi.r(m)

Babel Class
(continued)

P-P

G-+G

G-G

N+G

H+H

m? 41

m? 41

m? 41

m? 41

m?+1

in?a [sin(2a)
. ((q —1)m + T
[tan(2a)(g—1)? + 4¢ CSC(QG)])

(a,q) € (—7/2, W/.‘Z) xR+
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Family Caste A(m) K(1)/ Viup(m)

Seshadri
Class

SADb

STa -

SArc

SKR-

RIG

m

m

AM + XM (g+1)?
P(m)=2m/X +2\(3q+ D{g—1),
Q(m) = (2 —6g)m — 22*(g + 1)(q — 1)*

q€[~1,+0)

4Aula + 1t + /\2((1 + q)"?.:i

- P(m) =2m/X —2Ma® + 2aq + 4q - 3¢°),

Q(im) =2(a+2—3q)m —2X(a+2 - g)(a* — ¢}
a € R¥, q € [-a,+oo)

4\ (a® + 1)h1 + 44X (g + a)?
P(m) = 2m /X — 8\Ma® + 2aqg— 1) 7
Q(m) = 2(a — 3g)m — 8X\*(a + q){(a® — 2aq — 2¢* + 1)

. a €[0,+0) , q € [~a,+c0)
" 4\t + N2¢g?

P(m) =2m/A + 2Xq(3g — 4)
Q) = —2(3¢ — 2)m — 2X%¢*(q — 2)
q € [~1,+00)

4Am + Ng?
P(m) =2m/) +6A¢?,

Q) = —6gm — 2)2¢°

geRT
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o | ~ Appendix A
Examples of Other Variance
Functions

‘We include here a few examples of variance functions which do not belong to the
- {ully classificd sets of families. Our purpose here is simply to provide an immediate

reference to two sets of convolution families to which chapter 2 refers.

e S

3



1 Gamma-Poisson Mixture Families .

‘The gamma-Poisson mixture distribution, denoted I' A Po(8, p) has the interesting
‘property of being a sell-inverse distribution. The full form of the mixture, I'(J, 3) Ay
Po()), clarifies its probabilistic interpretation.

Variance Function:

e

2m

Vﬁ(m)=
Mp =Rt , A(F)=1R"

>

Basis Measure:

p{dx) = exp M‘l
where v{dz) = Z &u(dx) .

n=0
Cumulant Transform and Mean Domain Mapping:

k() = 25, 0(0) =R~

&, (m) = -\/;, m € Mp

. Density:

N 01N L & (pr)
Fe(r) = ex (—p———_) L W B Vi) S
() = exp | =p—- L GG

""9l= -B,BeRY ;A ="'Hp,_p.6 R* ; then m = é% .

 Legendre Transform:

k: (T) = -2 )‘.’B, T e .A'Ip

Notes:

¢ The T A Po(5,p) distribution is its own inverse.

Other References: -

o Tweedie (1984) in the context of a discussion of Tweedie scale families (F;:Lmiliesd
* F for which Vg (m) = am® for some (a,b) € IR x IR).
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2 Bessel Families

Variance Function:
2

V].‘ (m) —_ %"V 7’?12.-}- A?
“Mp=RY,A(F)=T"

Basis Measure:

plde) = A (z)a ™ I+ (2)dz,
where I,(+) is the modified Bessel function of the first kind with index A .

Cumulant Transform and Mean Domain Mapping:

ky (0) = Mog (=0 = VIT=1) , © () = (—00,~1)
- Jm2 2
By (m) = _ymr+ ,me Mg
n .

Densirty:

<

fx(x)= P-ij H{&) exp [-——i (% + §) g,] ’ m,be R*
B
£ +1

2

1 ) .
0= (%+§),€€(1=+00);/\=p,p.€1R+;thenm=p
Légendfe Transform:

I

2 2 _
k* (2) = —v/m? + A2 — log ("_m—-f;—i) ,z € Mp

Notes: ,
o [(1/p)P = P(X = 1,.)], the Poisson Difference type, is the inverse distribution of
Bessel(p, £).

o The density g(z;A)de = e “u(de), A € IN* was determined by Feller to be the
" density of the first-passage time through A for a randomized random walk.

o Bessel(p, )-21G(p?, 462/(€2 + 1)) as p — 0.

Other Réferen“ces:

s

o Feller (1971) p.437

; Jrgensen (1987) presents this type as an example of EDM generation from a
NEF.. -
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Appendix B
Proofs and Derivations

B.1 Preliminaries

Measures Concentrated on IN
“’e\reprbduce here part ol Proposition 4.4 from Letac and Mora (1990), which will .
help us to determine whether inverse families exist in cerlain cases.
" Theorem B.1 Let F be a NEF concentrated on R wilh variance function N defined
on Mp. Then F = F(u) is concentrated on IN such that p {0}, ;0 {1} > 0 if and only
1: Mp = (0,b) for some 0 < b > 4o00;
2. There exists an open subscl A of the complex planc containing [0,b) and an

analylic function & on A such that #'(m)=m/V{(m) if 0 < m < b and such

Lagrange Expansion

Let g be a mapping analytic at 0 and such that g(0) # 0. Consider the translormation

u= E Il f is analytic in a neighborhood of 0, then
0 .1 lJ 1 ) .
() = J(0) + Z - {‘ _P(0gty]] (B.1)
d“ t=0

called the Lagrange expansion (sometimes Lagmngc ezpansion of the first kind) of [
in terms of u. See for instance Consul and Shenton (1972) for an application to Lhe
generation of probability distributions.

(Mora [1986, ch. II, Prop. 4.1] provides a streamlined version of the Lagrange
- expansion formula, directly applicable to the computation of variance funclions for -

the discrete Mora class families, among others.)

Meixner Polynomials

From Meixner (1941) we get that with £ <0, + 8 € R o > 0, if
(- p)Eem

Z P;(z) m (‘}3,.2) _
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then

ﬂuﬂ=(k@ﬁ)(ﬁyr(‘r+‘“ k/ﬂJ“QM) (B.3)

where (...} is the hypm'geomotric function. We call P;(z) the Meixuner polynomial.
Erdélyi (1953, §10.24) defines the Meixner polynomial as

PPe(ay = (B+2)F (=j—21=8—j—=c™) (B4
= (B);F (=i, =2 81— ) "
for 8 >0 and 0 < ¢ < 1. Tn this case, it has generating function

Zﬂ”c : = (=P 1=2)F (B.5)
for [z] < min(1,|c|). We shall use identities B.3 and B.4 associated 1espect1vcly with
gcncmtmb {unctions B.2 and B.5 according to convenience.
Jacobl Polynomials

LEr (Eclyl (19 53, §10.8) gives the lollowing e\pllclt expression f01 the Jacobi polynomial: |

P z) = ’“JZ(HI:“ ) (jtf )(z—l)j“’f_(wrl)“g - (B.6)

" Erdélyi’s Generating Function for Laguerre Polynomials

Erdélyi (1953, §10.12) produces the following generating function for Laguerre poly-

nomials: :
SOLYT g = exp(— zz)(1 + 2)* (B.7)
j=0 .
for |2} < 1.

Meijer’s G-functions

Meijer’s G-functions turn out to be quite useful in the determination of closed-form
densities, mamly because in spite of their apparent unwieldiness, they can easily
be manipulated into inverse Laplace transforms and can represent a wide array of

higher functions. We list.here some key identities and properties taken or adapted
" from Mathai (1993, ch. 2 and 3).

Identity 1 Rational Function

(I4aeze) T(y) M\

1—v+8/e , '
(B.8)
Ble

for |az®| < 1.
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Identity 2 Confluent [Tupergeemeétric Function

,ﬂ) F(1_0‘|‘3),3F
7 I'(l—v+8)
Identity 3 Erponential Function

Gl (p:“ )=p"’“:‘3 exp (pz®) | (13.10)
8l .
Identity 4 Whittaker Function | |

G13 ( ) =S e

where W. (-} is the Whitlaker f-rﬁzciion (see Abramowitz and Stegun [1964]).

l—a],....,'lf(l.-p ‘ .
_ S (BA2)
by ol =bg ; L
k
C‘lmn‘*‘l . -,aln 1&p
g+l
prla B bk
- m+41,n’
= Gt (3

1 yoenitp,k
Property 7 Additivity of indices:

R

(l—a+ g1+ 8—v-2) (B.Y)

o

, §+1—2'.?n11‘p%1(2), . ‘ (B.l'l)

Property 5 Analytic Continuation:

A yenylip 1

G L . G nm | —
g - q.p

Brunby N

. Property 6 Order increase/reduction:

o =

K B

= b

- ~

\..______,/
il

)' Jorp,q,n20; (B.13) |

) fm“p,-q,m 2 0;

kby,by /o

G ( 531 ’“-vnp) G ( d[+ﬂ,..:,(l:p+c‘t) ) < ) 13 .
Loman b ma | Y o ’ 4
PN Ibyby PT A by drarbgbar _ ( )
Property 8 Multiplicativily of indices: _ -
. : 01 4entt . AA (e}, Aren)
G;—;&n (2.’ . ") _ (2“_)(1-—7')6 HG:;,R;.Q. (zrrr(p—q) ) ) (B.JS)
' 1 v-'-qu A(T,b] ),..’.,A(T,bq)

where § = m-l—n.—qu;

v = Zb —Za +—+1
' j=1 i=1
' a a+1 a+r—1
A(r,a) = (m, ,...,m——).
r’or T ‘
Property 9 Laplace Transform: ' .
. { J|@0rmee C o R afeiint ‘ R
uﬂ-lc:;";;*j;l_.(— = j e G (k| )de  (B.16)
\ by e 0 SR bi yernb L

for R(k) >0, 6=m+n— é(p +q) >0, [ arg‘k] < 6w, R(min; b; — a) > ~1.
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B.2 Extended Inversion

We make oxplicit the basis measure transformation involved i extended inversion
(§'2.4, ch. 1). The following is a reworking and extension of the work of Khan and
Jain (1978), itself largely hased on Kendall (1957).

"Consider a measure yt € M, and a2 measure 1 defined by its Laplace transform

L.(8) = L, (g7(e")

n
ki

where
t

. N ? “ : €
Arga, g7 is the reciprocal of g : ¢ —» ———
) u € r(‘,)} g™ 1s the reciprocal of g : L+ L#(t)f’
r € IR is sucii-that » € M, and
Cbe{teR|t—rk(l) € O(p)} |
.Then, writing F' = F (/fr) and (7 = G(v), and applying the definitions of section 2

in chapter 1, it is a simple matter to show that

rm 4+ u

Vg (m — u) _ 7.-'-’-m‘3VF (_l [_U_ _ D
T rlm.

4
- so that, using Theorem 2.1,

VG(m)=(rm+z?)3vF( m )

- whence

Viera(m) = m Vi ppear) ( ) :

m
Letting l/u=b€ Ag yields the parameirizdtion of §2.4, ch.. 1..

‘B.3 Mixture Measures

Under the setup described in §3.1, the Laplace transform of p A v is given by
CLunl0) = [ exp(0 U - dA) dr)
@) = [ P( )| s _V( )| (dz)

fs(u) (fs;;_) explfa)u(ds )) ()

il

_ L(u) exp(Aky, (0))v(d}) , for. 6 € ® ()
= L (ku(0)) sfor _k;;_(’a)5-e O(v).

Thus k;mu(g) = kp__(ku(ﬁ)). and @(.,u A 1/) = @(;z) n k;l (@(V)):.
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Now consider the NEF generated by yr A v, with € € O, and S(») € A(p).
PO, Av) = fexp(0z) =k (h(O))] [ NGy
S :

/S(v) exp (0 — /\k; (0)) u™ ?'xp (A, (6)) -- hyu(k, () v(dN)

— js o) PO 1Pk, (0), v){dN)
= P{0,p) A P(k,(0),0) .,
Since P(6, i) = P(9, ebp) for all b € IR, it is a simple matter to see that
(Ol,y) AP0, v) = P(Ol, fir A v) -
where 1 = exp (02 — k,,(U );z. Then we need 0 € @(,u, A v). By putting =z =
ko (8) = Ru(t) 4 82 = ku(01), we get that k71(z) = k' (2 + Ku(01) — 02); since _alSo
O(p) = O(n), we see that O Av) = Q) N AT (O(v) + k(1) — 02). '

For ;L € M, we establish the relationship between P(,exp(rp)) (and, respec-
tively, P (0 (6o — )*(“\’)) and the mixture distribution P(#, u*/) A; P (&) (respec-
tively, P(0, ') Ay NB(r, p)) ¢ nectly ' '

In the Poisson mixing case,

P(0,exp(rp)) = exp (9 -k -e,;p(,,“)(é’))'etp(?'p)

a0 J . .
"= exp(fz—rL,(0 )Z?'y
- =0 J
: oo ku(g)) o
= Y exp(—rLu(0)) ——J-,-—-—-—ekp(ﬂm ——jl\“( I
i - !

= Ze}\p L, (0 )—_(’I_“;(O)) PO, u)

J--D

= P(0,p™") Ay Po(rL,(0))

" To detetmine the NET i in canonical form produced by mixing P(O, Ty ) w1th Po(¢),
" € > 0 arbitrary, the paramcter r may be adj usted appropriately.
To mix with a Pascal probability measure, consider

P(0,(60—p)yt") = exp (O:r. . u,-.(_;)w)) (60 — )77 |
l-'z. cxp(()'c—{-rlogl— )Z(T*‘Jml)”'i .
i=0 r= 1: VA o
3=0 a , .
S explik0) exp(0s <l O
& +_1 | : ‘ - % »j
-y ( T ) (1 = Ly(O)] Lu(0)/ (0, 4)

i=0 =

= P(0,x™) AyNB (r,1 —L,(6))

s i("JTJ"]1‘")ex'i><r_log[1~L;(o)]) |
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 _thus

To determine the NET' in canonical form produced by mixing P(0, u™7) with
NB(r,p), p € (0,1) arbitrary, the basis measure must be adjusted appropriately,
viz. '

PO, p") Ay NB(r,p) = P (01 (60 — ,ul")‘(“’))

o .
where gy = (—-—)-;z
TR TALG)

B.4 .Basis Measure for the Hermite Families

Using Szegd's (1939) definition of the Hermite polynomials,

o0 J -
S Ii(z)= = exp(2zz — 2%)
=0 J: '

so that if we let HI(z)} = i7" H;(iz) (so that H;(z) has coefficients equal to the

coeflicients of I7;(z) in absolute \-'alue),

Z H(z f -‘exp(?:t:z +27).

7=0
If we now let z = A/2¢° and @ = \/ A2, we get

oo | i 20\
_Z; Hi(/A/2) ( ,\/zeﬂ) = exp (/\e" + )\%—) .
j= N

The explicit form of the basis measure for the Hermite distribution with power' Ais ©

. | #:g (%)j,rg H;_ (\/gi) |

B.5 Inversion and the Hermite Families
Proposition B.1 The Hermite i[amilies have no inverse.

Pmof If F is the inverse family, then Vg (m) = = )\‘ZVG()\m), where Vc;(m) =
m{m? + 4m) — m%y/m? + 4m. Thus we can take ¢g(m) = tlog(m? + my/m? + 4m)
and LG(B) $1/1 +exp(40)/2. Up to an affinity, we can therefore take the Laplace

transform of the inverse f"nm]y to be LFI(G) = exp. (1\/1 +e /2), which in tlirn
‘corresponds to a'variance function VF1 (m) mA (m) — 2m? \/ ), with A {m) =

- Eém + 1.

Now IRY > My, = Mg, since Mp = R* and the map Mp—)Mg,m — l/m is
~ bijective. Also, Vpl(m) <0form <0,so thaf/M 7, = R*. Hence a straightforward -
_ application of theorem B.1 shows that F, is “concentrated on IN if Fy is a NEF. .
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Compulation of the first terms of the entire series expansion

da;r = 5 €XP (-5\( ! + :/'3)

j=o 2 2
shows that ag = €'/2, a; = €'/?/8 as required by the theorem, bul ay = —e'/?/128.
Hence Fy is not a NEF, and the Hermite type does not have an inverse. : 0

B.6 Letac’s Second Mixed Geometric Example

Let P[X; = 1] =1~ & and P[X; = 2] = &1, &1 € (0,1}, i = 1,2,.... Then if
S, =¥, X;, Su =T, +n, where T,,~Bin{n, x,). Hence Ms, (1) = "M, (¢) where
A‘[Tﬂ(t) = (1 — k1 + m1e))". Now let P[N =n] = (1 — s2)sF,n = 0,1,..., so that -

N~[NB(1,1 — £3) — 1]. Then

[,

Ms, (1) = 1 — K2) ) Ms, ()&
n=0
= (1- ﬁ?g)z [.-cg‘e‘(l — K+ xle')] "
n=0 '

(1—ky)
1 - h’.z(l - fi])et - &2&162f

Now setling Eg(l—.ﬂl) = aed and Kok = ae?? and solving, we gct-'[rom log Mgy (L) =

ku(0+1) — K, (6) that -
. .
L;L(av) 1— (1 - a)cﬂ — aegg
= ‘: C *gl—a (0)

This completes the proof. -

B.7 Length-Biased Distributidn of a Pascal-Rahe
dom Variable and Seshadri’s Mixture NEF's
- aP(0, )

Y

If X~P(8, 1), then the length-biased distribution of X is given by P*(0, p) =

, : m
‘where m is the expected value of X. Thus if .

:1:+7’—r1‘

r—1

P(0(p), ﬁfr) = ( )p"(l —p)%6; = [NB(r, p)},

-~ we get

P*(a(p), 'u.,.) = ( z + : - 1) p-r-i-l(l _ p)z‘_lé‘x
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for £ € IN, since E[X] = r(1 — p)/p. Thus P*(0(p),p.) = [NB{r + 1,p) + 1],'sinc_e
if Yl (0, p)dz, then PIY = 2] = P[X =2 —1] = P[X +1 = z] so that ¥ Z
(X + )~[NB(r + 1,p) + 1}
In the case mentioned under the Mixed Geometric type, we have

o

. [#3 m =
Pu(0,v) = w,+mP(9,#)+w,+mP (0,1).
' wp l1—p )
—rf N — _ -
Py [ B(r,p) — ]+~ Pl [NB(T+1,p) ]

where w' = rw, yielding a Mixed Geometmc type, a Pascal type or a NB+ NB type as
u; >l,w=lorw<1 rQSpcctxytrly (from the form of the mixture variance function;

see Seshadri [1991]). Looking more closely at the case w= 1, we get that in fact

ROLW) = pNBG L+ (- pINB( 4 Lp) 1

] "L‘+T‘_1l r r x;l-Tml .'r x
= ( - )p“(l—'p) +( | )p“(l—p)
-1 r o ,
r+r -~ . : .
= ( ) )p-“(l-rv)

= [NB(r+1,p)]

as required by the Variance function. .

-B.8 Den51ty for a. Spemal Case of the MlXGd Ge—"

ometric Type

o

< a < 1. We wish to find C172(5), jEN, such that

Assume that
LT -|‘ T2

ri,r (1 —" az)"lfﬂ-
Z C, '2(3 "——‘),.1—4_,.2'

3“0

" Letc=1/a,z=r1/a and f = r + 7, —ri/a, , we sée that 0<e< 1and 8 >0,
We can therefore use equa.tions B.5 and B.4 to show that

The final form of theudensity is thus’

1 — £)r1+re =
frle) = oo neCrnE) |
’ o | < _ r:+rz
= F(-z,-mfe;1 - " 2= 2,0) ( i :m ) HWE”

where F' is the hypergeometric function.
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B.9 DenSity for the Mixed Exponential Type

We need to find p{dz) = E,,(x){dx) such that
¥ (1+at)r
L(i) = L € { Ea,-\,q(ﬂ:)dm = W 3 t e .“\.+ .
Now with « = ay and -

Eorgl#) = @ODTE]  (afa), man

_ we have

B L (1+t)
[) 3 tyE (y)d’l‘ W

We let « = u(t) = (141¢)77, so that 0 < u < 1 and t= tu) = (1 — u)/u. We
denote L*(u) = L (t(u)); then ’ - : ' |

: u™
L-(.u) N (1 = u)Ma+1)
ut—1 ‘
From equation B.S, | ‘ , ' | |
w1 (—1)M-1 Gif‘ ( ) |1 \(q+'l)+\q—-.)

(1 =) ™ g + 1))
where G is Meijer’s G-function, whence we get

(-1

‘ L*(u) = m

ﬁC’l'l (—ul"‘\__ )

From equation B.13,

and thus , ( )/\ 1 ' o :
—1)Me- .
o= el o ()
l. (u) P[)\(q + 1)] #02;2 u_1 IAq—l 0 .
~ We now use equation B.16, which governs the Laplace transform ‘of G-functions.
Taking ' |
| | w=u"1,s0 R(w) >0,
m=n=p=1,p=2,5s0 6:1/2>0,
: n=-1,s0fargy|=1<6r ,and
o=1,s0 R(c + min; bi)=1>0.

‘we get B

0 o o
S Tl ) ~A .
./0 € Gl,z (“?}IAq-—l.o) dz
o ,
— —ty ~yall S -X -
= _/0‘ e VeVl (—y_ll\q__l‘g) dz-
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so that we ran put, by uniqueness of the Laplace transform,

- (=121 |
Braal®) = gy Ot (viotas) (B.18)

From equatlion B.14,
* _— - N 1=X\ + .
&1 (<) = (- " lc*”( vl ") (B.19)
and from cquation B.9,

(o T[M\g + 1) |
12 (—"J (1),11(,{':1)) = “"-"I(\%(ﬂ—)lﬂ‘_i [Alg +1);Aq; 9], (B.20)

where 1 is the confluent hypergéometric function. Combining equations B.19 and
'B.20 with equation B.18, we get ‘
| y/\q_le_y

“a \q(y) T(/.\"QT)_I.-FI[A(Q + 1); Ag;y]

and finally, from B.17

Ag—1l xfa -
FAVOE cr‘%n%rlfl[A(q +1); A3 w/al

'1hus we can wnte the density fx of a Mixed Exponentlal random variable as

aé1tl A m,\q-
fx(“l‘) = (1 i—aﬁ) ( ) —(E+1/a)z Fl[/\(q + 1) )\q,:c/a]
. 'y re ro—1- . " .

_ where r = A, Ty = A, a=1/a andf'z —6.

B.10: | Dehsity"for the Trinomial Familiés-

. We wish to ﬁn-c.l‘ﬁk such that 35 _, apz® = (z+1/z + 2a)", for n € IN. We define
. the symbols £p and Op as the nearest even, respectively odd, integer not exceeding
.p. N . .

o = 5(7) e

. _ (Qa)"i-(' ,:) (za)__gi ( ;) Jini

=0 i=0
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Now let &k =2j — 1, s0 that k € {=i,—i4+2,...,i}. Then

(e +1/z+2)" = >a)"2( ' ) ) Z (*—It ):k

=0 k=—i,2
T "2“ n -9 2 2? k
= (2a)" [Z ( 2% )(20) Y s ): o+
=0 = k=--2{2 )
C’n—l. -3-+'1
: ' 23 o
Z n (‘)a')“2i'1 Z 2 + LY
im0\ 2+l pmgrag | B
En 5 n : %
= (2 Z ( . )(2“)—h k2 4
h=—En,2 (] 2 e
n Or;—-l n 2 + 1
Z Z o (‘%L)“" ! . L
k==0On2 ;|1 241 —i—-i—-}
="z .

Thus the coefficients are given by

" = (2a)" E ( ’: ) (_:-_ )(_20,)-5.

i:[kl 2 12

'B 11 Densﬂ:y for the Pascal Sum Famlhes

- The Mellin tt‘ansform of the basis measure of a Pascal sum famtly is gl\fCﬂ by

= s c (1= z/a)M
> ;Amé 1 =) = Gl

. From equa.tlon B.3 above, putting =@, 8 = 1/a = Mg+a*)/aand k = —Ag+1),

we have that if

P,;(»\;q,a)_-= ( “'\(ff b )(—_a)‘"F(--n; ¥ Q\(q_+ 1);1 —a?)

Jc.hen _
. Z P ) gq,a

n=0

Thus we obtain

Il

(AT () ( —(m+ ?“2) )(—-a)"’F( —z;7;71 + 1951 — d?)

m .

x B

i \
( Lk T hE : )a_’"F(——x;rl;m + 131 —a?)



The density is then given by

Ix(x}y = pi'py lﬂr(n?ml( )[(I—Pl)(l_m)],mp

T1,.T2 oty ta— 1 (1 '—pl)mmj2
= Plp o ‘
T L=

r (_-'r-; T+ T = P2) [(1 = p)(L ~ p2)]*/*

1—p2 .
= PUPY ( " rg:-:c i ) (1~ p2)°F (*-’v; 1371 + Ty ‘T __;):)
The densitly is of course symmet r ical in bubscrlplq 1 andl , a8 ca,ﬁ easily be shown by
sta,rtlng‘wn.h l\’.’I(u). (%1__:%

‘B.12 Density for the Poisson-Pascal Sum Fami-
lies B | o

We wish to find 4A7(j), § € IN, such that

mtne . exp(—raz)
WAL = /2.
j;) 1. (JT) (1—2/(1)7'
" Using equation B.7, 1'(.~pla"ci'ng z with —z/a and putting z = re® and o = —r, we
. get | ‘ _ ( ) ' | ‘
LT i(ra?) (2 fa) = DA T%E) ,
_fg(:) 7 ( )( / ) | (1_2/‘1)1.
~ hence 4A%(j) = (— .) J'L " "(m ). Smcea = /&1 - ) the den31ty is given by
L R = e - @)
— T ¢ $L—T—$
oo iz (25)]
for z € IN.

B 13 Densfcy for the Bmomlal Sum Famlhes

We w1sh to find GA’” m2(5), j € IN; such that
,n1+ﬂ¥ | -

> cAR()2 = (1+az) (1 + 2/a)™

j=0
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Expanding the right-hand side viclds

(1+ ai)‘”‘ (‘l +z/a) = [i (

2(5)] (7)) O]
EE(0)er()) 0
Sl ()

From equation B6 witha=n) —j, f=ny— j, 2 = and P the Jacobi

n
LD}

J

polynomial we get

P'(m-i-na“.f) a‘27+1 _ 5=i : /n1 ‘ na a®+1 .y i=k
2 az -1 o L j—fm @t —1

!
o
!
w

(1l = ps)

Since a =
N p2(l =p1)

, the densify becomes (putting ¢; -1 Pnt=1,2)

zf2 S
)y .
fx(x) = aper (%Jrl—') sAg"™ (@)

42

-2 ro—r —T,r—T maq +p2q1 i
= ¢ e ;- Pl)xP,Em né ) (W) €N

The apparent asymmetry between subscripts 1 and 2 disappears in light of the rela-
tionship '

(o 8Yp gy P (B 3
PP (k) = (—1) PP (—k).

B.14 Asymptotics for the Poisso_n—Binbmial Sum
Families: |

Let a = a(&,p) €ef (L_—ZJ)E We then g'etA
. p .

$| -

Vg(m) — — ((mj{-n)lmﬁn[—(mmn)z) as a — 0

for fixed m and n.
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Now if m > n, or cquivalently sin‘ce m=n(ll+p ilk=¢+p > 1, then
Vi (m) = m—mn, so that F'(m) — [Po(m)+n]. Also k must remain fixed, since both

d-pf — 0 (1 —p)(k—

f)) — (0&p — 1, this last condition being equivalent to £ — &k — 1 under k fixed.

m and n must themselves remain fixed. But then a — 0«

If'm < n, or equivalently if &k = £ +p < 1, then Vr(m) — m — m?/n, so that
F(m) — Bin(n,m/n). As before, with k <1 fixed, « = 0= (1 -k +{)§ — 04 — 0,
this last condition being cquivalent to p — & under k fixed.

B.15 Density for the Gamma Sjuni Families

. The Laplace transforrh of the measure exp(—az)y™ * exp(.a:v)",r*”, which generates
the G + G distributions, is given by

Lasa(0) = (0= 0" (—a = 0)7 = a7 (L= 0/a) (14 6/a)™ ,a > 0

“with @ € (=0, —a). _
Let u =:1+ 8/a, so that « € (0,2). Then

'L. o W) = LW
G'E'-G( (U.)) T gnite (1 —u+ 1)1'1
B S 1 @ T2
om0 (1 — uf2)n
- ‘ ]_ . 1 1,1 u l=r1~72 . Lo . .
= Gaye F(rl)Gl’l (—‘3‘ . ) _. ~ from eq. B.8
= (‘)a)n_m] (71)0 ( m . | . from eq..B.12
' 1 1 9 [1l4rz
= —Gzi| - | from eq. B.13-
(2a)1+r C(r) s ( Ulrytrg, 1) : rom eq. B.13 .
e

1 —ur ‘ 1+1‘2 ' |
T (ga),1+,2 ?1)f 612( 2z - )dm _ from eq. B.16

-z 147y
— —G(r/zl]e G’“ ( )da:
(2a)r1+r'.> 71)_/. . r147e,1
. 1 1 ® g™ Lin 1472 : .
= T b ¢ TGW (el ) w=e

Thus the genel'ating measure g for a G + G fa,niily can be given by
11 e 1472
S Gy (—2a:c '
(2(1)r1+r2 I (7'1) P 4 M VI r1+ra,1
emar T14rp—1 ‘

= (‘)a)fl*}"?]’(r — r2)1F1 (ri,71 + Tz;_ﬁdm) from e‘q.‘ B.9

‘p{dz)
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Reparamelrizing as in 3.135 vields the final form of the density. Note that the familiar-
reproductivity property of the Gamma distribution in its dispersion parameter o for

fixed f is obvious from the form of the density when #y = 3.

B.16 Denmnsity for the Reciprocal Inverse Gaussian
Famili_es
We wish to find p(dz) such thal
Lrig(0) = (—20)~2 exp(—Aqv/=20)
i.e. we need E;,q(m) sﬁch ihat
/000 G_er.\.q(-‘B)d&? = .::'."'V‘2 exp (—,\q:”?)

where z = —26 > 0. Now

=M exp (__qulﬁ) - ;"‘-_\/2(,’&? (qulﬁ ) ' from eq. B.10
. o :
SV A2q2 . :
= =G 4, . [rom eq. B.15
v ( TR )
1,1/2
~—Af2 4 .
= —G% - fromeq. B.12
NZE A2g2z .
Y'Y A 1-0/2,0,1/2
= e3P [rom eq. B.14 .
ﬁ A%zl a '
1,1/2
1 geo 4s
= — [ e_”x’\/z"]Ggf . dz from eq. B.16
7 Jo g2 |,y
1,172
1 e 102 | 2y e
o \/‘)_\};jo enyA/2 1G_2;1 _;\,;;_; dx (y = 2z)
24w Jo, 1Az .
Hence
1 A)2—1 a0 [ AP M ' |
p(dz) = ==z Gl dz -~ fromeq. B.12
2% 2z lo,i/2 _

. : 22_1/4 22‘., )\22 .
- \/IA—xAjz_] (»\_‘___q_) - exp (__)\__g_v_) Wi—i*‘,_!.( q' ) dz from °d. B.11

with W the Whittaker function.
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I'rom Abramowitz and St-égun (1964)
SR ]1(1/52) 1/4 _ e )“‘1,1.'
W%__%(.,) 1‘(A/253 exp(—z/2} 1 Fy 55
( ]/)) 3/ '9 ” .
+ (/\/2 _ ]/2) exp( /‘-‘)1F1_
1
2

L) A= 1
= Tog)t oA )[1“(

2
P2 1 o (A3 N\
- =Ny P \2ys
_Simﬁlifying, we get '

AT
L BRI GIE) (iﬁ }
R T2+ 1)\ 2D

- B.17 Explicit Measure for the S-Abel Families

P21 A2 ' A—1 1 /\2.2
pdz) = )\/21“!,\/9) e:‘p( % ) [lFl ( ' )+

tol
o

l\:‘!

We determine an explicit expansion for the measure u described in section 4.1 of
chapter 2. The Laplace: tlaanonn of this measure lb given by

- -exp(raf” ( )
e MO Ty
- where ry = A > O, ra=MA > —r,0<t<1and

If we writc gt} = e™*(1 - i)‘” then the Lagrangc expansion (eq. B.1) of g in terms
of u ytclds .

 g(t(w) =

(-1

o J!

. e (IJ -1 rl e(] +r2 )t uJ
- ©+3 |5 -
i=1

A1 (1 = )i+t

0 +i [(Fl Jtr )jl u?
J=1 ' 0

t=0 j-‘
It is easily shown by induction that

i o i : f;i
iwe = E X rksli=h) °
(11 =\ k

(1 _ t)s+i—k

“Ta) . Hence

_ - - ;
g(t = 1+ Z [n > ( ) (j 4 72)*(ry + 1)V7F-1 %
i=1 k=0 : v
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: oy T =R A

o =1 ¢, i l'kj.'

= 143 S SR
r= J
R

Lu[_

(G +r2) + (4 1) ]“ui |
where we int roduée the notation
[ + 07" = 3" & ()9, - (B.21)

Note thai in particular, for 7o = 0 and r{ = 1 we get

I (= YT Vi I
T IR PN P v ]“ |

e

- B.18 Exp11c1t Measure for the S-—Takacs Famllles |

Here we derive an’ exphmt measure for ,L.z as defined in section 4.2 in chaptm 2

Consider first fb,c,d(i) =(1 -H) (1— ct) 3 with 8> —d and d > 0- It is casy Lo show
by induction that ‘ : )

k=0

3 . z_ o ) : . | . ]
'&Ff( )= Z (Ic )b(k)cl—kd(‘ Dy pearioa(t) . -

so that
: b N

' ' '. . T
introducing an obvious notation analogous to that of eq. B.21, where ot = —(—?—iﬁ)—

| I(a)
i I‘(a + 1) o )
and aqn) = Fla—n+ 1) | ” |
t . 14-¢)m : a
Now if we let U = m and,g("t)_ = -(_.(i..:---)-)— - f?’z,a 1'1( ) with T2 > __..r] \

the Lagrange expanswn (B.1) for g in terms of u becomeb immediately avalla.ble smce -

> 'U,J dJ -1 (u+1)
9 = o0+ 2 5 | T OIS

J—I ‘ 1 t=0
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= 143 dtTfr2fr2-l+(a+l)j,atr1 (t)+

= ol [ di-t
dj—l .
;ﬁ?_‘"{arl fr2+(ﬂ.+1)j;ﬂ-,f: -1 (t)] —
= 143 (Gralin -1+ e D)o +ar
i= : ‘

ar (r2 4 (a+ 1)j)~ + a(ry — I)N]j_l) !

from which an ‘explicit form for the measure may be determined to produce a density.
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Appendix C

Notaticn

- Notation used in the compendium

]lA (IB)
(@®

(@)@
A-Z.B

8, Gn, a4
[aA() + I;]

AZB
.
A d
Asxp-
prv
>
(60— p)" =Y
e
k=ji

X~A
(abo + cd)"
pr Ar v

Arc(': "y )
. B+ 'B('a ) )

indicator functvion:: ]l;,;(:r) =3 1 %f ved . ) )
’ : S 1.0 ifag A _
T'(a+ k) : ) :
I‘ a)
a+l)
I‘(a —k+1)

family, distribution, random varla.ble, A convergcq weakly to-B
arithmetic mean of a collection ay, as,...,a,
geometric mean of a collection ay, as, . ; ., Gy

affine density, distribution or family of probability‘ IMEasures;

if X~faA(-) +b], (X — b)/a~A() (ch. 1, §2.1) .

A and B belong to the, same distributi&n
T{a+1)
b+ 1)MNa—b+1)

transpose of the matrix A, the vector a

image of a measure & under an a,fﬁﬁity A (ch.1, 81.1)
convolution of two measures p and v (ch.L, §1.1)
Ath power of a measure g (ch.1, §1.1)

Ath power of the geometrlc expansion of 1 (ch.1, §1.1)

a; + Gjti + (IJ+2, +.+ Gn—(n—J)(mod i)

random varmble X has dlstrlbutlon, probablhty measure family .
or density A, depending on the context

H n »
. notation for Z ( n )aJ by d(“"”
J

7=0
mixture measure of the measure set {p, |7 6 I )} by the measure

v def'ned on T (ch.1, §3.1)
- Arcsine distribution (ch.2, §2.3)-

Binomial Sum distribution (ch.2, §3.12)

- B+NB(,,-,-) Pascal-Binomial Sum distribution (ch.2, §3.9)
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Notation used in the compendium (continued)

Bessel{-, )
~ Bin(-,-)
CCM
CF,CF(F)
D(p)
D(r, )

£a

ED,(6,)),ED(6,}) -
EDM(F)
exp(i)

 QHS(-,)
QLM
GNB(,-, ")

[{z)

I""(.’ : )

. I‘(_, _) |
Hermite(-,\)
"H+H(,-,-.)
 KR(,")

IG(+, ).

ka(6)

k. ()

CL{X)
L.(6)

Bessel distribution (ch.2, §2)

Binomial distribution {ch.2, §1.3)

canonical caste member (ch.1, §2.6)
convolution family generated by F' (ch.1, §2.3)
for pe My, D{p} = {6 € R |L,(0) < +oo} (ch.1,81.1)

- deviance associated with a GLM and an observation

z from it (ch.1, §3.3)

" polynomial function of degree < 2

Dirac measure at a (ch.1, §1.2)
expected value, expected value under probability measure 7

- ncarest even integer not exceeding a
ED’(6,)),ED"(4, )

convolution family density (ch.1, §2.3)

es;po'nenlial dispersion model density (ch.1, §9 3)
exponential d1spe1 sion model genemted by F (ch.1, §2.3)
exponentiation of a measure g (ch.1, §1.1)

NEF generated bv the measure u € M (ch.1, §2.1)

Meijer's G-function (see appendm §B.1

CGamma Dilference distribution (ch.2, §3. 16}
Gamma Sum distribution {ch.2, §3.15)

~Generalized Hyperbohc Secant dlstnbutmn (ch.2, §1.6)

Generalized Linear Model (ch.1, §3.3)

Také,cs (Genera.lized Negative Binomial) distribution
(ch.2, §2.2) -

Abel (Genelahzed Poisson) distribution (ch.2, §2.1)

gamma functlon/ ==1etdt E
Non:central Chi-squared distribution (ch. 2 §3.3)

- Gamma distribution (ch.2, §1.5)

Hermite distribution (ch.2, §3.1)

" Hyperbolic Secant Sum distribution (ch.2, §3.18) .'
~ Kendall-Ressel distribution (ch.2, §2.4)

Inverse Gaussian distribution (ch.2, §2.5)

_cumulant transform of y: log L”(_H) (ch.1, §2.1)

Legendre transform of y with argument & € M,

F=F(u) (ch.1, §2.1)

probability distribution of the r.v. X

Laplace transform of g with argument 8 (ch.1, §1.1)
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. Notation used in the compendium {(continued)

Lg(-) “Generalized Laguerre polynomial °
Laguerre(-,-,-)  Laguerre distribution (ch.2, §3.2)
A(p),A(F) = the Jgrgensen set associated with measure
or family I (ch.1, §2.3)
M, _ set of positive measures on IR (ch.1, §1.1) .
M . subsct of M not concentrated on a single point (ch.l, §1.1)
Mg mean dornain of the NEF F (ch.1, §2.1) .
ME(-,-,-.-)  Mixed Exponential distribution {ch.2, §3.5)
MG(-,-,-.-) - Mixed Geometric distribution (c'h.‘z, 83.4)
N, IN o {0,1,2,...), {1,2,3,...)
. N(-,4) - Normal distribution (ch.2, §1.1)
N+ G(-, -, Normal-Gamma Sum distribution (ch.2, §3.17) ~
NB(-,-) Pascal (Negative Binomial) distribution (ch.2, §1.4)

'NB — NB(-,,-,+) Pascal Difference distribution (ch.2, §3.8)

NB + NB(-;+,-} Pascal Sum distribution {ch.2, §3.7)

NEF Natural Exponential Family (ch.1, §2) -
Qe ~ nearest odd i"nteger not exceeding a
P(m,F) " teparamelrization of P(8, 1) in terms of its meat in
o - and its NEF F = F(,u) (ch.1, §2.1) o
P(),Q() polynomials of degrees < 2 and < 1 respectively
P8, ) : NET probability measure generated by '(ch.l, §2.1)

P = NB(-,--)  Poisson-Pascal Difference distribution (ch.2, §3.11)
P+ NB(,-,) Poisson-]?"jnomia.l Sum-distributiop {ch.2, §3.13)
P +NB(,-,") Poisson-Pascal Sum distribution (ch.2, §3.10)

Pj(“’m(-j ~ Jacobi polynomial .
P—P(,") P-P distribution (ch.2, §3.14) - |
' éu() . mean domain mapping Mp—0(p), m—0, m the mean of
- . . o P(oa :“') (Ch°1: §21) : . |
Po(:) . ~ Poisson ‘distrill)utioh (ch.2, §1.2)
RY, R™ - (0, +00), (—00,0) - ,
RIG(+,-,-}- . Reciprocal Inverse Gaussian distribution (ch.2, §4.5)
V.o random variable . - | ‘
SAb(-,-,-) | - 5-Abel distribution (ch.2, §4.1)
“SArc(s, ) * S-Arcsine distribution (ch.2, §4.3)
| o ~1 ifa<0
sgna . _signum function: sgna=4{ 0 ifa=0

1 ifa>0
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Notation used in the compendium (continued)

STa(-,-,-,-) S-Takics distribution (ch.2, §4.2)

SKR(:,+,+) S-Kendall-Ressel distribution (ch.2, §4.4)

Trin(-,-,-)  Trinomial distribution (ch.2, §3.6) »

7.(*) " the mapping © (¢)—Mp, 8 — m, m the mean of P(8,u) (ch.1, §2.1)

o) canonical parameter space of u for g € My, © () = intD(p)
' (ch.1, §1.1) :

- Vi(m) variance function Mp—IR*, E[X] — Var[X] if X~P(m, F)
o (ch.1, §2.1) '

Var, Var, -~ variance, variance under probability measure =

We s Whittaker {unction (ch.2, §B.1)

§
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