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Abstract

This thesis presents a theoretical and experimental study of the stability of cantilevered
coaxial cylindrical shells conveying incompressible, viscous fluid inside the inner shell
and/or in the annulus between the two shells. Two analytical models are developed
with experimental verification.

In the first model, fluid viscous effects are partially taken into consideration. Both
shells are generally considered flexible. Shell motions are described by Fliigge'’s shell
equations, modified to take into account the steady viscous loads—flow pressurization
and skin friction—acting on the shells. These equations are solved by means of the
extended Galerkin method, in which the shell equations and the free~end boundary
conditicns can be satisfled simultaneously. The unsteady viscous forces are approxi-
mated by their inviscid €ounterparts, the formulation of which is based on linearized
potential-flow theory with the assumption that the fluid is inviscid. The solution for
these forces is obtained with the Fourier-transform technique; in connection with this
technique, different so—called out-flow models are examined, concerning the effect of
the downstream flow perturbations on the dynamics of the system.

The second analytical model, on the other hand, fully accounts for the viscous ef-
fects of the flow. Here, only the inner shell is flexible, while the outer shell is replaced by
an identical rigid cylinder. Shell motions are also described by Fliigge’s modified shell
equations, which incorporate the steady viscous loads exerted on the shell. These equa-
tions are solved numerically with the finite-difference method. The unsteady viscous
forces are evaluated from flow perturbations which are the solution of the linearized,
unsteady Navier~Stokes equations subject to the divergence—free constraint on the flow
velocity perturbation. A recently developed, time-marching finite-difference method
using “artificial compressibility” is applied to solve the Navier-Stokes equations; for the
problem under consideration, this method employs the pressure and velocity perturba-
tions as the dependent flow variables on a staggered grid.

In the experimental part of the thesis, tests involving either annular or inner flow
are conducted on cantilevered silicone rubber shells concentrically located within rigid
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plexiglas cylinders. Measurements are made of (i) the critical flow velocity of the syslem
for various lengths of the shell and annular widths, and (ii) the dominant frequencies
of oscillation of the shell for certain selected cases. Both divergence- and flutter-type
instabilities are observed.

Comparisons between analytical results and test measurements show that the
agreement between experiment and the two proposed analytical models is generally
good, both qualitatively and quantitatively, in terms of the overall (lowest) critical flow
velocities and frequencies of oscillation (first model only) of the tested shells.

Finally, future work is suggested with regard to improving the second model and

conducting further calculations.
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Résumé

Cette thése présente une étude théorique et expérimentale sur la stabilité de coques
cylindriques coaxialles encastrées-libres, dont la coque interne et/ou P'espace annulaire
sont soumis 4 un écoulement de fluide visqueux et incompressible. Deux modéles ana-
fytiques ont été développés et vérifiés expérimentalement.

Mans le premier modéle, les effets fluides visqueux sont partiellement pris en con-
sidération. Les deux coques sont généralement considérées flexibles. Les déplacements
des coques sont décrits par les équations de Flugge. Ces dernitres sont modifiées pour
tenir compte des charges stationnaires—Ia pressurisation dans I’écoulement et la friction
en surface—agissant sur les coques. Ces équations sont solutionnées par une méthode
de Galerkin modifiée dans laquelle les équations et les conditions limites peuvent &tre
satisfaites simultanément. Les forces visqueuses instationnaires ont été approximées
par leur contre-parties nonvisqueuses, la formulation desquelles est basée sur la théorie
linéaire des écoulements potentiels, donc sur I'hypothése que le fluide est nonvisqueux.
Ces forces sont obtenues en utilisant la technique de la transformée de Fourier; en rela-
tion avec cette technique, différents modéles dits “out-flow models” sont examinés, qui
tiennent compte des eifets des perturbations en aval de Pécoulement sur la dynamique
du systéme.

D’autre part, le second modéle analytique considére entiérement les effets visqueux
dans P’écoulement. Dans ce cas paticulier, seule la coque interne est considérée flexible,
tandis que la coque externe est supposée rigide. Les déplacements de la coque sont aussi
décrits par les équatior__xs de Fligge modifiées afin d’incorporer les forces visqueuses sta-
tionnaires agissant sur la coque. Ces équations ont été résolues numériquement avec la
méthode des différences finies (FDM). Les forces visqueuses instationnaires sont évaluées
a partir des perturbations dans ’écoulement. Ces perturbations constituent une solution
des équations linéarisées de Navier—Stokes sujettes & une condition de divergence nulle
des champs de vitesse. Une méthode récemment développée d'intégration temporelle
par différences finies employant une “compressibilité artificielle”, fut appliquée pour so-
lutionner les équations de Navier-Stokes; pour le probléme considéré, cette méthode
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uiilise les perturbations de pression et de la vitesse comme variables dépendantes de
I’écoulement, sur un maillage décalé.

Dans la partie expérimentale de la these, des essais impliquant des écoulements
soit annulaires soit internes, ont été effectués sur des coques en silicone-caoutchouc,
localisées concentriquement & ’intérieur de cylindres de “plexiglas” rigides. Des mesures
oni été effectuées sur (i) la vitesse critique du systéme pour diverses longueurs de la
coque et largeurs de I’anneau, et (ii) les fréquences dominantes de I'oscillation de la
coque, pour certains cas spécifiques. Des instabilités de type de divergence ainsi que de
type de flottement ont été observées.

Les comparaisons entre les résultats analyiiques et les mesures reflétent un ac-
cord généralement bon, aussi bien qualitativement que quantitativement, que ce soit en
termes de la vitesse critique principale ou des fréquences d’oscillation (premier mode
seulement) des coques mises & I’essali.

Finalement, des travaux connexes futurs sont suggérés dans le but d'améliorer le

deuxieme modeéle et pour pouvoir procéder & d’autres calculs.
P p P



Contributions to New Knowledge

The original contributions of the thesis, to new knowledge in the field of flow-induced

vibrations, are as follows.

o The development of a new analytical model, based on potential-flow theory and
the extended Gazlerkin method, for predicting the dynamics and instabilities of
cantilevered coaxial cylindrical shells, conveying incompressible viscous flow within
the inner shell and/or in the annular region. The dynamical behaviour of the
cantilevered shell system is found to be very much different from that of the

clamped—-clamped or pinned-pinned shell system.

o The development of another new analytical model to examine the unsteady viscous
effects of the annular flow on the cylindrical shell concentrically located in a coaxial
rigid cylinder. For the first time, (i) unsteady viscous forces exerted on the shell
are properly formulated and evaluated, and (ii) the existing time-marching finite-
difference method with “artificial compressibility” is applied to solve a fiuid-shell

coupling problem.

¢ Extensive experimental measurements—critical flow velocities and frequencies of
oscillation—on cantilevered shells subjected to annular flow and internal flow.
These are obtained to support the theories presented herein and can be used to

assess future theoretical work on the same subject.
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Chapter 1

Introduction

1.1 Literacure Review

1.1.1 General Remarks

Research into the dynamics of cylindrical structures containing, or immersed in, flowing
fluid has been pursued quite intensively over the past thirty years or so. Although the
first serious study of the dynamics of fiexible pipes conveying fluid was undertaken by
Bourriéres (1939), interest in the subject did not really come about until the occurrence
of oscillations of the Trans—Arabian aboveground oil pipelines (Ashley and Haviland
1950). Since then, fluid-structure interactions have been found to be responsible for
failures of many crucial components in such diversified engineering applications as nu-
clear reactors, heat exchangers, jet pumps, aircraft jet engines, and so on.

In general, cylindrical structures may be excited by either azial flow or cross flow,
the former of which could be further divided into three different classes, depending on
how the flowing fluid comes in contact with the structure(s) involved: (i) axial flow
inside tubular structures, (ii) axial flow outside cylindrical structures, and (iii} axial
flow in annular regions between coaxial cylinders.

This literature review is meant to be selective, not exhaustive; only key references
will be mentioned to show various stages of research development on azial flow—the
type of flow to be considered in this thesis. For interested readers, a rather recent,
very comprehensive survey on all kinds of flow—induced instabilities given by Paidoussis

1



(1987) should be consulted.

1.1.2 Axial Flow inside Tubular Structures

This is the oldest, most fundamental type of problem, dating back to the early 1950’s
when Ashley and Haviland (1950}, Feodos’ev (1951), Housner {1952), and Niordson
(1953) investigated the stability of pipes containing flowing fluid. Using different means
of analysis, involving beam theory, they all came to the same conclucion that, at suf-
ficiently high flow velocities, pinned—pinned pipes may buckle like columns subjected
to compressive axial loading. This phenomenon is commonly referred to as divergence,
which is another term for buckling instability.

Tt is known that pipes conveying fluid with both ends supported belong to the
family of gyroscopic conservative systems. With linear beam theory, Paidoussis and
Issid (1974) studied in a general way the dynamics of both members of this family,
namely pinned-pinned and claﬁlped-—clamped pipes; they found that conservative sys-
tems are not only subject to divergence but also to coupled-mode flutter {a form of
oscillatory instability). Later, Paidoussis (1975) showed that, in the case of thin-walled
pipes, thin-shell theory predicts the same dynamical behaviour of the system and that
the critical flow velocity obtained by beam theory converges to that ziven by shell the-
ory as the length of the pipe increases. Predictions for divergence of pipes with ends
supported have been well verified by series of experiments conducted by Naguleswaran
and Williams (1968), Liu and Mote (1974), and more recently Jendrzejczyk and Chen
(1985). Nevertheless, post—divergence oscillatory instability has never been observed
experimentally, therefore confirming a theoretical prediction made by Holmes (1978)
through nonlinear analysis that coupled-mode flutter cannot occur.

Benjamin (1961a,b) examined the dynamics of a cantilevered system of articulated
pipes (consisting of a finite number of rigid pipes connected by flexible joints) containing
flowing fluid; the system is non—conservative. As the number of rigid pipes approaches
infinity, he predicted analytically the existence of oscillatory instability (of the single-
mode flutter type) of cantilevered pipes conveying fluid and the possibility of divergence

if gravity is operative and if the fluid is sufficiently heavy. Only the former prediction
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was later confirmed by Gregory and Paidoussis’ (1966a,b) theoretical and experimental
work. Paidoussis (1970) subsequently found that vertical, continuously flexible pipes are
never subject to divergence. Thus, the dynamics of articulated and continuously flexible
pipes conveying fluid is not strictly analogous in the sense that articulated systems may
exhibit radically different dynamical behaviour from the continuous systems they are
supposed to represent—see Paidoussis and Deksnis (1970).

Pajdoussis and Denise (1970,1971,1972) demonstrated for the first time, both the-
oretically and experimentally, that thin-walled pipes (or cylindrical shells) conveying
incompressible fluid flow are subject to both shell- and beam~mode instabilities at suf-
ficiently high flow velocities: shells with both ends clamped lose stability by divergence,
while cantilevered ones do so by flutter. In those studies, the motions of the pipe were
described by Fligge’s thin—shell equations and the fluid forces were obtained by po-
tential flow theory; reasonably good agreement was obtained between analytical results
and experiments.

Similar predictions were also reported for the case of simply-supported shells by
Weaver znd Unny (1973) with the aid of the Fligge-Kempner shell equation and of the
Fourier integral thec.;nry. The problem was later re-examined by Shayo and Ellen (1974),
who derived asymptotic expressions for the generalized pressures, thus avoiding consid-
erable numerical computation required in previous methods of solution, and showed the
relationship between travelling wave and standing wave instabilities for shells of large
length-to-radius ratios. The problem was further studied by Pham and Misra (1981)
with special attention given to the effect of a superimposed linearly varying or constant
axial loading on the shell.

Shayo and Ellen (1978) investigated the importance of the fluid behaviour beyond
the free end of the shell on the dynamics of cantilevered shells conveying fluid, an
aspect not considered in earlier analyses due to the utilization of different methods of
solution (e.g. Paidoussis and Denise 1972), by introducing the so—called “downstream
flow models” to describe fluid behaviour in that region, in conjunction with the Fourier-

transform technique.

The research on axial flow inside cylindrical structures, having established the
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fundamental behaviour of the system, “ran out of steam”, so to speak, by 1980 for
lack of practical interest in the problem: unless the cylindrical shell were very flexible
(e.g. made of elastomer), the flow velocities required to give rise to these instabilities
were too high to be of practical concern. Nevertheless, interest was resuscitated by
applications in the area of biomechanics, notably in the study of the collapse and flutter
of pulmonary passages due to high aspiration rates (Grotberg and Davis 1980, Webster
et al. 1985).

1.1.3 A -ial Flow outside Cylindrical Structures

The dynamics and the stability behaviour of cylinders subjected to external axiai flow
are generally quite similar to those of pipes conveying fluid.

The early theoretical work on unconfined axial flow by Paidoussis (1966a) showed
that cylinders first lose stability by divergence and then at higher flow velocities by
coupled—-mode flutter if the cylinders are supported at both ends, or by single-mode
flutter if the cylinders are cantilevered. What is particularly interesting about this type
of flow is that the post—divergence behaviour, whether it be coupled—mode flutter for
cylinders with both ends supported or single-mode flutter for cantilevered cylinders,
does materialize in experiments (Paidoussis 1966b). For cylinders supported at both
ends, the oscillatory instabilities were shown to be caused by lateral frictional forces
resulting from lateral motion of the cylinder.

Research on the stability of cylindrical shells exposed to external subsonic or super-
sonic axial flows were also undertaken in a number of studies, including that by Dowell
(1966); these studies were mainly concerned with flutter of the shell(s) at very high
compressible flows. One important study, on the same subject, that must be mentioned
here is by Dowell and Widnall (1966), who applied the Laplace transform technique in
the evaluation of the aerodynamic generalized forces on the shell. The use of a trans-
form method to treat such a problem was considered to be a novelty; other researchers
pursued this idea, but, as Dowell and Widnall (1966) recommended, they employed a
more realistic transform method-—the Fourier transform method—in their work, so as

to avoid certain difficulties experienced with the Laplace transform method.
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In subsequent investigations, Paidoussis {1973,1979) found that if the flow along
the cylinder is confined either by a conduit or by adjacent structures (e.g. a cluster of
uniform cylinders in a rigid channel), then there is an increase in the hydrodynamic vir-
tual mass of the fluid, which effectively lowers the critical flow velocities associated with
instabilities; nevertheless, the fundamental nature of the stability behaviour remains
unchanged. With the Fourier transform technique a.mi Galerkin’s method, Paidoussis
and Ostoja—Starzewski (1981) studied the effect of fluid compressibility on the stability
of a system consisting of a pinned-pinned, flexible cylinder in a generally bounded, axial
flow. It was shown that the effect of compressibility on the dynamics of the system is
rather weak for slender cylinders, but becomes more significant for nonslender ones.

For the first time, Chen {1975) presented a general method to study the eflect of
fluid coupling on the dynamics of a group of parallel, closely spaced, flexible cylinders in
a dense, axially flowing fluid. Because of this coupling, which reflects the faci that any
motion of a cylinder will excite all other surrounding cylinders, the instabilities of the
systemn occur at much lower flow velocities than for either a single flexible cylinder or
a flexible cylinder surrounded by rigid ones. Predicted natural frequencies for various
arrangements of cylinders were found to be in good agreement with experimental data
{Chen and Jendrzejczyk 1978).

In a much more thorough theoretical investigation of the fluid coupling, Paidoussis
and Suss (1977) dealt with a cluster of parallel, flexible cylinders in a cylindrical channel
in the presence of axial fluid flow. Both inviscid and viscous hydrodynamic coupling in
motions of the cylinders was treated; in addition, the confinement of the fluid was taken
into account completely, which is due to the small spacing among cylinders, as well as
between the channel wall and the adjacent cylinders. It was found that the theoretical
inodel and experiment agree qualitatively in most essential features of the dynamical
behaviour of the system, while quantitative agreement is remarkably good in terms of
the first critical buckling velocities (Paidoussis 1979, Paidoussis, Curling and Gagnon
1982).

Hannoyer and Paidoussis (1978) examined the dynamics and stability of uniform

tubular beams simultaneously subjected to internal and external flows under different
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end-support conditions. In the case of clamped—clamped beams, the effect of the two
flows on stability was shown to be additive; if either flow is just below the corresponding
critical value for instability, an increase in the other flow precipitates instability. This
stability characteristic does not always hold true for cantilevered beams; if the system is
just below the threshold of instability due to either flow, instability may be eliminated
if the other flow is increased.

Further theoretical and experimental work by Hannoyer and Paidoussis (1979a,b)
was focussed on the effect of either internal or external nonuniformity of cantilevered
axisymmetric beams on their stability in the presence of internal and external flows. The
effect of the boundary layer of the external flow was approximately taken into account in
the theoretical model. Beams within a conical internal conduit were found to be much
less stable than similar cylindrical ones subjected to the same flow discharge. In the
case of external flow, the opposite effect was observed; fully conical cantilevered beams
do not become unstable; for truncated conical cantilevers, instabilities are possible at

substantially higher flow velocities if the tip of the free end is streamlined sufficiently.

1.1.4 Annular Flow in Coaxial Cylindrical Structures

Annular-flow-induced instabilities are sometimes referred to as leakage—flow—induced
instabilities, which were found to occur often in such engineering components as fuel
stringers in coolant channels (UK Advanced Gas Cooled Reactors) and certain types of
pistons and valves, where the annular flow passage is quite narrow. An excellent review
on leakage-flow-instabilities was given by Mulcahy (1983).

Early studies on the stability of flexible cylinders in axisymmetrically confined flow
were carried out by Chen (1974), Paidoussis and Pettigrew (1979), and Paldoussis and
Ostoja~Starzewski (1981). The mathematical models developed therein are in principle
applicable to any degree of confinement and, although different from one to another due
to the nature of the problems being solved, they all lead to the same conclusion: flow
confinement destabilizes the system.

However, problems involving cylinders in highly confined axial flow were not given

full attention until Hobson (1982) considered a rigid cylindrical body, hinged at one
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point and coaxially positioned in a flow—carrying duct, generally of nonuniform cross-
sectional area. The mathematical model showed that the main ingredient for instability
via a negative-damping mechanism is the enhanced coupling between fluid and structure
caused by the narrowness of the annular gap; in other words, the extreme confinement
of the narrow annular passage produces a substantial increase in the negative fluid
damping, which easily overcomes the positive structural damping, leading to oscillatory
instabilities. The model was also capable of explaining, in an approximate manner, the
stability effect of an upstream constriction or of the gradual enlargement of the flow
passage.

Mateescu and Paidoussis (1985) re-formulated the problem and presented a more
rigorous, analytical inviscid model. It was shown that there exists a critical location of
the hinge: if the hinge is situated upstream of that location, then the system remains
stable at all flow velocities; on the other hand, oscillatory instability is possible if the
hinge is moved farther downstream past that location. In addition, the critical location
of the hinge is substantially influenced by axial variations of the annular gap. Some
improvement to the model was later made to account for the unsteady viscous effects
which were found to have a stabilizing influence on the system (Mateescu and Paidoussis
1987). The theory developed in these studies was eventually validated by experiments
at a very fundamental level: the unsteady pressures for various positions of the hinge,
frequencies of oscillation and flow velocities, were measured and then compared with
the corresponding analyticai ones. Good agreement was obtained, except near the body
extremities (Mateescu, Paidcussis and Bélanger 1988). Recently, the theory has been
further extended to deal with turbulent annular flow (Mateescu, Paidoussis and Bélanger
1991b).

A geometry of practical concern, where flow~induced problems are not unusual, is
that of coaxial cylindrical shells, with still or flowing fluid in the annulus and sometimes
in the inner shell also (Paidoussis 1980,1987). A few typical examples are shrouds, flow-
directin_g baflles and thermal shields in gas— or water—cooled nuclear reactors, or thermal
shields in"-'a.ircra.ft jet engines. In general, the primary interests in research on this type

of configurations have been (i) the dynamics of the system, which are greatly affected
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by the virtual mass of the annular fluid and the hydrodynamiz coupling between the
shells, if the fluid is stationary, and (ii) the stability of the system if the fluid is flowing.

The case of coaxial shells with annular (and sometimes internal) still luid will be
considered first. Chen and Rosenberg (1975) studied the dynamics of two concentrically
located circular cylindrical shells containing and separated by quiescent fluids. The
shells are simply-supported at both ends. With the use of Fliigge’s shell equations and
potential-flow theory, a closed—form solution was obtained for the natural frequencies of
the shell system containing incompressible fluid. It was found that the lowest frequency
of the coupled system is associated with one of the out—of-phase modes, and is lower
than the frequencies of the individual shells. Au-Yang (1976) considered a similar
problem, consisting of two coaxial cylinders of different lengths immersed in a restricted
inviscid fluid medium. The analytical model, well-verified by experiment, demonstrated
that the cylinders have their coupled axial mode numbers directly proportional to their
lengths; for the uncoupled modes, each cylinder vibrates as if the other were rigid.

As the finite—element method becomes more and more popular in solving dynami-
cal problems involving structures with complicated physical boundary conditions, quite
a few researchers have turned to this numerical method, often for a quick solution,
when a mathematical model is neither available nor feasible. Brown and Lieb (1980)
used FESAP (a finite-element package) to examine the dynamical behaviour of narrow—
gap, fluid—coupled, coaxial flexible cylinders as variations are made to such parameters
as cylinder wall thickness, gap width, and boundary conditions. Similarly, Chung et al.
(1981) with NASTRAN and SAP4 evaluated the vibration characteristics of a fixed—free
flexible cylindrical shell, concentrically positioned in a rigid cylinder, with *he annulus
filled with fluid. In these studies, numerical results for natural frequencies and mode
shapes of the flexible cylinders were found to be generally in fair agreement with the
measured experimental values. It should be noted that, in any finite-element analysis,
the accuracy of the solution could easily be improved (e.g. by increasing the number
of modelling elements), but the computing cost would normally render the analysis
prohibitively expensive.

Yeh and Chen (1977) were the first to examine the effect of fluid viscosity on the
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dynamics of coaxial cylindrical shells separated by fluid. The analysis involved the use of
Fligge’s shel] equations and Navier-Stokes equations for viscous fluid, with a travelling-
wave-type solution taken for the shells and the fluid. The main finding of this study was
that the effect of the fluid viscosity on the system natural frequencies is negligibly small
in most practical systems. However, the modal damping ratio is noticeably increased for
some cases when the fluid viscosity is included, especially for the lower frequencies. For
a coupled shell system, the viscous effects are mostly pronounced for the out-of-phase
modes, but are negligible for the in—phase modes. The effect of fluid viscosity on natural
frequencies, as a function of annular gap and shell thickness, was also touched upon by
Brown and Lieb (1980).

In all the above-mentioned studies of the dynamics of coaxial cylindrical shells,
the fluid was taken to be stationary. Krajcinovic (1974) appears to be the first one to
formulate the problem with the annular fiuid being either still or flowing. The shells
were treated as being infinitely long, and “piston theory” was employed to determine
the unsteady local pressures on the surfaces of the shells. However, only results for the
lowest natural frequencies of the system at zero flow velocity were given. A more general
analysis came later when Weppelink (1979) investigated the free vibrations of a flexible
cylindrical shell (clamped—clamped or cantilevered) in a concentric rigid cylinder, where
incompressible fluid is flowing inside the inner shell and/or in the annulus. The fluid
dynamic forces were calculated from potential flow theory, and the shell motions were
described by the Morley~Koiter shell equations.

Paidoussis, Chan and Misra (1984) conducted the first comprehensive study on
the stability of systems where the shells are coaxial and generally flexible while the fluid
flowing inside the inner shell and/or in the annulus is inviscid and generally compressible.
The fluid motions were governed by potential flow theory and the shell motions by
Fliigge’s shell equations. It was found that, for the clamped--clamped shells considered,
stability was lost by divergence at sufficiently high flows of either the internal or annular
fluid, followed by coupled-mode flutter. The main effects of fluid viscosity were later
taken into account by Paidoussis, Misra and Chan (1985}, specifically those associated

with the steady, time-independent viscous loads on the shell due to loss of pressure
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along the shell (i.e. axially variable pressurization and surface traction effects). These
viscous effects were found to be very important on the stability of the system.

El Chebair, Misra cnd Paidoussis (1990) attempted to account for the unsteady,
time—dependent viscous forces in an approximate way by adapting the work originally
developed for quiescent fluids by Yeh and Chen (1977) to flowing fluids. This attempt
was only partially successful, having run into difficulties when the no-slip boundary
condition was rigorously applied at the shell surface in the method of solution. Although
the Navier-Stokes equations were used for the calculation of the unsteady viscous forces
exerted on the shells, they were in fact never solved. In any event, for shells with both
ends supported, unsteady viscous forces were found to have only a slight influence
on the dynamics of the system. At the same time, the first experimentzl study of
annular-flow~induced instabilities of clamped-clamped coaxial shells was undertaken
(El Chebair, Paidoussis and Misra 1989), which verified the dynamical behaviour of the
system, qualitatively very well indeed, but quantitatively only within the usual margin
of uncertainty associated with the effect of shell imperfections.

Finally, the earlier experimental study by Ziada, Bithlmann and Bolleter (1988)
should be mentioned, involving slightly conical cantilevered shells subjected to both
internal and annular flows. Their principal objective was to determine the excitation
mechanism which had created difficulties in the heat-shielding shroud of a jet engine;
these difficulties were shown to be flow—induced. It was found that, for shells of such
geometry, the annular flow destabilized the systemn while the internal flow stabilized
it; on the basis of that research, the design was modified and the problem solved.
Clearly, had a theory been available for the dynamics of cantilevered coaxial conical
shells subjected to internal and annular flows, then it could have been applied directly
to solve such a problem. This illustration served as an added impetus for the present
research work; its main aim, however, is much more fundamental: to study the stability

of cantilevered coaxial cylindrical shells conveying incompressible viscous fluid.
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1.2 Aims and Overview of the Thesis

The primary objective of this thesis is to develop and experimentally validate two differ-
ent analytical models for predicting instabilities of cantilevered coaxial cylindrical shells
subjected to flowing incompressible viscous fluid in the annular region between the two
shells and/or within the inner shell.

Both analytical models take into consideration the main effects of fluid viscosity,
namely, the steady (time-independent) viscous loads on the shells. These models differ
in the way the unsteady fluid forces are calculated: in the first model, potential flow
theory is used to formulate those forces, the solution of which is then obtained by means
of the Fourier transform technique; in the second model, such forces are obtained by
solving the Navier-Stokes equations with the finite~difference method.

This thesis consists of six self-contained chapters. Chapter 1 has given a brief
review of previous studies closely related to the research work of the thesis. It has also
stated the goals undertaken by the thesis, and now presents the outline of the thesis.

In Chapter 2, the development of the first analytical model for predicting instabil-
ities of cantilevered coaxial cylindrical shells conveying internal and/or annular flows is
given in detail. Presented are (a) the formulation of the problem with Fliigge’s modified
shell equations and potential flow theory, (b) the solution of the fluid-dynamic forces
acting on the shells by means of the Fourier-transform generalized—force approach, (c)
the solution of the governing equations of motion with the ertended Galerkin method,
(d) the validation of the present analytical model by solving a number of test problems
and comparing the results generated with previously obtained experimental and ana-
lytical ones, and (e) a new set of results on some typical steel-water systems considered
earlier by Paidoussis et al. (1984,1985).

Chapter 3 is an extension of Chapter 2 as far as analytical results are concerned.
This chapter begins with the theory developed in Chapter 2, but simplified for the case
in which the outer shell is rigid while the inner one remains flexible. Both systems of
clamped—clamped and cantilevered shells are considered. For the case of a clamped-

clamped shell, the effects of (a) shell length, (b) shell-wall thickness, (c) annular width,
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and (d) counter-flows, on the stability of the system are investigated. The same system
parameters, except (d), are also studied for the case of a cantilevered shell.

Chapter 4 is focussed on experimentation. Presented here are (a) a description
of the apparatus, (b) the procedure of conducting experiments involving a cantilevered
shell concentrically positioned in a rigid cylinder and subjected to either internal or an-
nular flow, and (c) a comparison between the experimental results and the corresponding
analytical ones obtained with the theory presented in Chapter 2.

In Chapter 5, the second analytical model is developed. An unsteady viscous
theory is developed to evaluate the effect of unsteady viscous loads on the stability of
cantilevered coaxial cylindrical shells conveying annular flow. Presented in detail are
(a) the formulation of unsteady viscous forces from the Navier-Stokes equations, (b)
the discretization of the Navier~Stokes equations and Fligge’s shell equations, (c) the
time integration of these two sets of equations by the finite—~difference method with a
fully implicit scheme, and (d) a comparison of results obtained with this new theory
with those obtained with the theory in Chapter 2 and with experimental data presented
in Chapter 4.

Finally, Chapter 6 wraps up the thesis with a summary of the important findings of
the thesis, conclusions regarding the contributions of the thesis, and recommendations

for future work.
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Chapter 2

An Analytical Model: Detailed

Development

2.1 Introduction

The main goal of this chapter is to develop an analytical model to study the stability of
cantilevered coaxial cylindrical shells conveying internal and/or annular incompressible
flowing fluid, In this model, the original system is replaced by a system with pre-
stressed flexible shells subjected to inviscid flow. The key assumption here is that the
forces pre-stressing the shells are the same as those resulting from flow pressurization
and traction effects on the shell surfaces in the original system. The unsteady fluid
forces will be formulated with potential-flow the.ory, thus not accounting for unsteady
viscous effects. For narrow annuli, these effects may become important, and hence a
full viscous theory (Chapter 5) should be used.

The following theory is presented for the general system in which both shells are
flexible. Certain important aspects of the theory will be verified by solving a number of
classical problems, and the results compared with previous experimental and analytical
ones. For practical and economical reasons, the theory will then be used to study a sim-
pler case with the outer shell replaced by a rigid cylinder whereas the inner one remains
flexible. This simplified system, nevertheless, still retains all dynamical characteristics

of the general one.

13
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2.2 Formulation of the Analytical Model

2.2.1 System Definitions and Assumptions

Figure 2.1 shows the system under consideration. It consists of two coaxial cylindrical
shells of length L. At the upstream end, z = 0, the shells are assumed to be connected
(clamped) to semi-infinite rigid cylinders of the same radii and wall thicknesses as the
two shells. At the downstream end, z = L, which is unsupported, the fluid is generally
discharged freely into the surrounding medium, unless one of the two shells is rigid, in
which case the same arrangement as for the upstream end may be considered to apply
to that cylindrical conduit.

The inner and outer shells have mean radii a and b, and wall thicknesses h; and
h,, respectively, such that h;/a, hy,/b <« 1. The shells are assumed to be elastic and
isotropic with Young’s moduli E; and E,, densities p,; and p,,, and Poisson’s ratios v;
and v,, in all cases subscripts ¢ and o being associated with the inner and outer shells,
respectively. Incompressible fluid is generally flowing both inside the inner shell and in
the annulus, with densities p; and p,, and flow velocities U; and U,, respectively.

Shell motions are assumed to be sufficiently small, so that linear shell theory
may be employed. As already mentioned, these perturbations will be formulated using
potential-flow theory. Neverthelzss, the flows are considered to be viscous, in the steady
sen'ge, and hence pressurization, necessary to overcome pressure drops, and traction
effects on the shells are indeed taken into considerztion. Finally, flow perturbations are

assumed to vanish upstream and far downstream of the flexible shells.

2.2.2 Governing Equations of Motion

In its most general form, the present theory considers both cylinders involved to be
flexible thin shells. Shell motions are described by Fliigge’s (1960) shell equations, as
modified by Paidoussis, Misra and Chan (1985) to take into account the stress resultants

due to steady viscous effects.
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With inner—shell and outer—shell quantities characterized by subscripts ¢ and o,

respectively, the equations of motion for the two shells are given by

L 1 (L] 1 . aw
Lyi(ug,vi,wi) = u; + -2-(1 -viy; + E(l + v)vi + vowg + ki {%(1 -y — w

1 ae i - (1] t 62 5
+=(1- V-)‘W' } -+ [Qh'u:' + qoi{v; +wi) + gsi(u; - w,-)] =% _'% =0, (2.1)
2 ot
1 te s 1 " . 3 1"
Loi{uwi, vi,w5) = '2-(1 +ridu; +op T+ 5(1 - vy tw; +k {5(1 - V)
e " . (1] . 620;
- 3@ = v f o+ fae] oo+ w)] - SR b =0, (2.2
Lyi(ui, veows) = viug+v; +wi+ ki { (1 - w)u” - -(3 — )y + Viwy
+ 2w, + w-} - [ w; + -(ur- — v + wT')] + v Oru; T (2.3)
1 i Wy T 933l i i T ETD peihi ) .
1) 1 .e 1 ‘e b 1 e PR ]
Llo(uo: Yo, wa) = u, + 5(1 - Vo)uo + 5(1 + Vo)"-’o + Voo + Kk, {5(1 - Vo)u-o — Wp
Tew IR} - .e H] aZUo
+ (1 — Vo)W, + [qlouo + q2o(vy + wo) + g3o(u, — w.,)] Yo\ GE (= 0, (2.4)
(Y] 1 »n - 3 L]
Lao(to, vo,w,) = —-(1 + v,,)uo +v, += (1 —~ V)V +w, + ko {5(1 — Vg)¥o
1 1. -. L] 62
et ot ] 2] o s
Lgo(uo,vo,wa) = vou:,+v;+wo+ko{ (1 ) Tee “u;n 3 _(3_%)”;: +Vf,4wo
+2w,” + 1 } - [ wo + (1o — v] w")] + Olwy g =0 (2.6)
o [ FloWo 30l Yo o T W, To 3tz ﬂaoha y .
where
. 3() () a) , _1 (h,-)2 1 (h.,)z
()_ B’() ()_b dx kl‘—lz a :ko“"lz b ]
2 2 2 2 2 2 2 2
_ psiat(1—v)) pob®(1—vg) o7 0% 0 2_;26° 9
i—-—‘"—T, 7a=L§-‘3—a Viz=dogtom V% =gt gm

u(z, 0,t), v(z,0,t) and w(z,0,t) are the axial, circumferential and radial displacements

of the middle surface of the undeformed shell; g;, g, and g¢; denote the nondimensional

and

r=a

forces associated with steady viscous effects (Section 2.3.3); ¢ = (p,- — p,,)
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g = (po — p,)'rm, with p;, p, and p, being the perturbation pressures in the inner fluid,
the annular fluid and the fluid surrounding the outer shell, respectively. Thus, ¢; and ¢,
represent the unsteady radial forces acting on the shells per unit area (Section 2.3.2.3).

Shell motions must satisfy the following boundary conditions (Fligge 1960): (i}
at the clamped end, u, v, w and dw/3z are all equal to zero; (ii) at the free end,
the normal force N,, the bending moment M, and Kirchhoff’s effective shearing stress
resultants @, — (6 Mys/80)/a and Nzp — M;s/a must all vanish. Thus, in terms of shell

displacements, these boundary conditions are equivalent to

(i) atz =0,
6w,~
i =y =w =0, -_—=0 2.7
U = vy = wy F (2.7)
Jw
U =Yg = W, =0, a; = 0 (2.8)
(i) atz=L,
Rylus,viyws) = ui-Fwy; +vw; — kyw; =0, (2.9)
Rai(wi,vi,wi) = u +v; +3ki(v;— w;) =0, (2.10)
Raius,vi,wi) = w; +vw; — v0; —u; =0, (2.11)
" (X 3 bt : te 1 - s .. 1
Rylus,vr,ws) = —wi' — (2-p)w’ " + ( ZV‘) v — ( ;‘) w tu =0 (2.12)
Rio(to,vo,w) = uy vov; + Volo — koo = 0, (2.13)
Rao(to,vo,ws) = u, + vo +3ko(v:. - w:,.) =0, (2.14)
Rso(uo,vp,wo) = w:,’ + vaw;' - vou; - u:, =0, (2.15)
» . *e — le 1 -— L XY
Rio(to,vo,wo) = —w, —(2- vo)wy | + (3 2”") v, — ( 2%) uw)' tu, =0. (2.16)

2.2.3 Perturbation Pressures

As mentioned in the last section, the unsteady fluid forces (¢; and g,) in the governing
equations of motion are simply the differences between the perturbation pressures on
the two sides of the shells. Thus, the determination of these forces reduces to that of
the perturbation pressures, Since the analysis here applies equally to the internal and

annular flows, the subscripts ¢ and o will be suppressed until required for clarity.
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- The perturbation pressures will be formulated by means of potential flow theory?.
Thus, for this purpose, the flow is considered to be inviscid and irrotational, and also
isentropic. Hence, the velocity V may be expressed in terms of a velocity potential
¥(x,8,r,t), such that
V= V. (2.17)

Moreover, ¥ is considered to consist of a steady component due to the mean, undis-
turbed flow velocity U in the z-direction and an unsteady component ¢ associated with

perturbations due to shell motions; in other words,
U=Us+ ¢ (2.18)

Hence, from Equation (2.17), the velocity components of the perturbed flow field may

be expressed as
3 194 . _ 94
VZ"U+;9_3’ Ve—-;"a—e, Vr—g‘;' (2.19)
With the substitution of Equation (2.18) into (2.17) and thence into the continuity

equation for an incompressible flow, V.V = 0, ¢ is found to be governed by the Laplace

<
- equation,
3¢ 10¢  10% 9%
ot Trar Ve T =0 (2.20)
which is subject to the impermeability boundary conditions on the shell surface(s), ss,
requiring that
d¢ w ow
=t ==_ —. 2.
Thus, for the annular flow, Equations (2.20} and (2.21) take the form
&g, 109, , 18%¢, 3¢,
2 Trar TrEat T e O (2.22)
96, _ | B+v.4E  for 0<z<L, 221
91 lr=q 0 for z<0andz>» L;
9| _ %1y, e for 0<2<L, 224
ar lr=p 0 for z<0andz>»L;
a similar set of equations also applies to the internal flow,
dl¢; , 19¢4; 1 3% 8¢
-~ S trer TGt S0 (2.25)

1This is clearly an approximation. Nevertheless, as mentioned in the foregoing, certain aspects of the
viscous nature of the fluid flow are taken into account (Section 2.3.3).
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6_(;5.- - %%+U-a§'- for 0<z<1L,

(2.26)
Or ly=g 0 for z<0andz>» L.

Here, a note should be given, concerning the boundary conditions (2.23), (2.24) and
(2.26). Since ¢; and ¢, are both shell-motion induced and the shells are clamped-free,
it is natural to assume that ¢; = ¢, = 0 for z < 0; 1.e,, flows entering the system are
undisturbed. On the other hand, as the downstream end of the shells is free to move,
it is unrealistic to assume that ¢; = ¢, =0 for z = L + AL, where AL — 0. However,
¢; and ¢, should vanish when AL is sufficiently large.

The perturbed pressure may then be determined from Bernoulli’s equation for

unsteady flow,

Y 1., P_PR
= 2.27
3+2 -l- L (2.27)

where V2 = V2 + V2 + V2, P, is the sta,gnatlon pressure, and P is the pressure in the
perturbed flow field. Expressing the pressure in terms of its mean, undisturbed value P

and its perturbation counterpart p, such that P = P + p, and substituting (2.18) and

. {2.19} into Equation (2.27) gives

p P, 8 99 p} (aqs) (1 a¢)2 (6¢)2
2 - _ =
{ Ut = - p}+{6t+Uaz +2{ ) t{>3) t{5 0. (2.28)
In this equation, the first term is time-independent while the second one is time—

dependent. Equation (2.28) therefore implies that its first two terms must individually

vanish, yielding

P = P,—%pUz, (2-29)
- ¢, 94
p = -o{m+UZ], (2.30)

for which it has been assumed that all second-order perturbations, grouped in the third
term of Equation (2.28), are negligibly small—by considering motions of the shell to
be small. It is seen that p is readily given by (2.30) once ¢ has been determined from
Equations (2.22)-(2.24) for the annular flow, or from Equations (2.25)-(2.26) for the

internal flow,
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2.3 Method of Solution

2.3.1 Introduction

Section 2.2 has presented two different sets of equations, which are integral parts of the
theory and must be solved sequentially.

The first set of equations, known as the Laplace equations, need to be solved in
order to determine the unsteady fluid-dynamic forces exerted on the shells. The method
of solution for these equations is the Fourier-Transform Generalized-Force technique
(Section 2.3.2}, also employed by Paidoussis et al. (1984,1985). Such forces, once calcu-
lated, are substituted into Fligge’s modified shell equations, which are then solved with
the extended form of Galerkin’s method (Section 2.3.4). With regard to the second set
of equations, all steady viscosity-related forces on the shells have been evaluated and
given by Paidoussis, Misra and Chan (1985); since the same procedure will be followed
herein, only the final results will be presented without details of the derivation (Section
2.3.3).

For the purposes of satisfying Equations (2.1)-(2.6), the solutions of the shell

displacements are expressed in the following functional forms:

u; o o | Amcos nf (ad/3z) l
v; } = Z Z B sinnf & () e'™, (2.81)
n=1 m=1
| wi " | Cp cosnd )
( '1 f 3
Ug o o | Dmcosnd (b3/3xz)
§ v, } = Z Z 4 E,, sinnf > B () e, (2.32)
n=1 m=1
L Wo | | Fy, cosnf )

where m and n are the axial and circumferential wave numbers, respectively; An, ...,
Fy, are constants to be determined; ®,,(z) are appropriate admissible functions for the
z-variations of shell displacements, here taken to be the eigenfunctions of a cantilevered
beam (Bishop and Johnson 1960), and £ is the angular frequency of oscillation. As ex-
pected, the @,,(z} do not satisfy the free~end boundary conditions (2.9)-(2.16); for this

reason, the extended form of the Galerkin method is required to ensure that Equations
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(2.1)-(2.18) are all satisfied equally. More discussion on this aspect will be given later
(Section 2.3.4).

The solutions to the perturbation velocity potentials and pressures are taken to

be of the form

éi =Y #ilz,7) cosnf e, %o =Y bo(z:1) cos nf &', (2.33)
p" n=1 ﬁ,‘(ﬁ. T) pa n=1 ﬁo (::, T)

The determination of ¢;, ¢,, #; and 7, is the subject of the analysis of the next section.

2.3.2 Solution for the Perturbation Pressures
2.3.2,1 Annular Flow

Substituting ¢, from Equations (2.33) into (2.22) and taking the Fourier transform of

the resulting equation gives

= 32 5; 1 35; 2 n2 T

;{W+;3r | +,._2 ¢, ¢ cosnld =0, (2.34)
where ¢ denotes the Fourier transform of ¢, defined by

(=]

o(z,7) €% dz, (2.35)

Blar)= [

and €™ # 0 (in fact, |¢"¥| = 1) has been taken into consideration.
It is noted that the right-hand side of Equation (2.34) is zero whereas the left—
hand side is an infinite series of cosnf. Since cosnf # 0 in general, the coefficient of

cos nf for any given n must equal zero, or

3¢,  19¢; 2, 72\ o
St \ ¥t E ¢, =0. (2.36)

Equation (2.36) is known as Bessel’s modified equation, admitting solutions of the

general form

5;(&, 1‘) = ClOIﬂ(ar) + C2oKn(af); (2.37)

where I,(ar) and K,.(ar) are the nth—order modified Bessel functions of the first and
second kinds, respectively, and C,, and C}, are constants of integration to be determined

from the boundary conditions at the shell surfaces, namely Equations (2.23) and (2.24).
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The procedure to evaluate Cy, and Cy, is as follows. Equations (2.31)-(2.33) are
appropriately substituted into Equations (2.23) and (2.24), then the Fourier transforms
of the resultant equations are taken, and finally @} is replaced by its functional form
on the right-hand side of (2.37). Thus, the boundary conditions (2.23) and (2.24) are

effectively equivalent to

i { [C!I:,(aa)] Cio+ [aK;(aa)] Czo} cosnf =

n=l

i {i (@ -Ueoa) i Com [®rn(ce) + R.‘n(a)]} cos nf, (2.38)

n=1 m=1 .

i { [aI:,(ab)] Cio+ [aK:‘(ab)] C'go} cosnd =

n=1

i {i (= Vsr) i Fon [®),(a) + R:n(a)]} cas nf. (2.39)

n=1 m=1

Before Cy, and C,, are obtained from Equations (2.38) and (2.39), it is important to
discuss the reasons for introducing into these equations the new function R} (), which
is the Fourier transform of R, (z).

As previously touched upon, the method of solution being employed is the Fourier
transform method (see, for example, Bracewell 1974), implicit in which is the specifica-
tion of ¢(z,r), 8¢/8z, and p(z,r) at £oo, whereas the variations of these quantities are
dependent on z through the beam-eigenfunction expansions, which are specified only
within the interval [0, L]. Furthermore, on physical grounds, although it may reasonably
be argied that perturbations in flow and pressure are nearly zero for z < 0 (and hence
at £ = —0o0), the same would be quite unreasonable if applied for z > L; perturbations
should die out in a finite length beyond the free end of the shells and do so as smoothly
as in reality. Hence, the need arises, both mathematically and physically, of specify-
ing how ¢ and § decay beyond z = L—since decay they must, on physical grounds,
by dissipation and diffusion. The functional form of the decay of the perturbations is
in fact given by Rn(z), L < z < L', which may be visualized as an “extension” of
the beam eigenfunctions ®,,(z), 0 < z £ L. Thus, effectively, it is assumed that flow
perturbations vanish for z > L', where L' > L.

The functional form of Rm(z) constitutes what has been referred to as an “out-



22
flow” model; such models were first proposed by Shayo and Ellen (1978) and later
elaborated further by Paidoussis, Luu and Laithier (1986). The procedure of how the
optimum L' is selected is discussed in Section 2.4.4.2 while the description of such models
and the corresponding functional forms of R, (z) may be found in Appendix B.

Equating the coefficients of cosn8 on the two sides of (2.38) and of (2.39) leads to

[ (a)] Cro + [aKp(ea)| €20 = (2= Usar) i Crm |82, (2) + Ro(a)], (2.40)
(o] Cuut [ak(ed)] Cas = §(0-Uu) 3 Fmlh(o) 4 Bnled], (241

from which C;, and C,, are found to be

_ i -Ue) S ~K, (ab)Cn + K, (ca) Fr (o) B
€. = o mle {Ig(ab)rf;(aa) — 7 (aa) K (o) } [mle) + B}, (242)
i -Ue) 1,(eb)Cp, — I (a2) Fp, } ‘)t B e
G0 = a = {I,',.(ab)K;,(aa) - I (ac) K, (ab) (@ (@) + Era(e)]. (2.43)
As a result of (2.42) and (2.43), Equation {2.37) may be rewritten as
330 = L3200 S (11 0, 1)Con o Wan( 1) Pl [0 0) + Ri(all}, (240
m=]
where
o) = I(ab)Ku(ar) — I(ar) K, (ab)
Win(7) I(ad) K, (aa) ~ I (xa) K, (ab)’ (245)
Wzn(a, r) — Iﬂ(ar)Kn(om) - In(aa)Kn(ar) . (2.46)

I (ab) K, (ea) ~ I, (ca) K, (b))’
in these expressions C,, and F, have been defined in Equations (2.31) and (2.32),
respectively; primes denote differentiation with respect to the argument of Bessel’s
modified functions. To obtain 7}, Equations (2.33) are substituted into (2.30), and then
the Fourier transform of the resultant equation is taken with ¢}(a,7) replaced by its
value in (2.44) and, finally, the coefficients of cos nf on the two sides of the equation are

equated, giving

poll - an)z i {Win(o,r)Cm + Wan(a, r) Frn) (@7 (e) + Ry ()]} (2.47)

m=1

Polayr) ==—
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2.3.2.2 Internal Flow

With the same procedure as was carried out for the annular flow, ¢ (e, r) of the internal

flow is also found to be governed by a modified Bessel equation, similar to Equation
(2.36),

25 198 [ o, %) -
3t T ("‘ Tz )#i=0 (248)

which admits solutions of the form

¢t (a,r) = Cul,(ar) + CyuKau(ar). (2.49)

Here, it should be recalled that lim,..; K,{(z) = co. Hence, for ¢} to be finite as r
approaches 0, Cy; must be set to zero (Cy; = 0). Meanwhile, Cy; is determined from the
boundary condition (2.26). Substituting (2.31) and (2.33) into (2.26), taking the Fourier
transform of the resulting equation and making use of (2.49), and finally equating the

coefficients of cosnd on the two sides of the equation yields

el (0a)] Cui = (2~ Via) 3 Cm [Bha(e) + Rin(e)], (2.50)
m=1
or equivalently,
L f(ﬂ - U,'O!) 2 Cm . .

Cy = — mz=1 T (o) (@, (a) + B ()] (2.51)

With Cy; given by (2.51) and Cy; = 0, Equation (2.49) becomes

T (- Ui - In M »
Fileor) = 0T 57 SO0 00, (e) + Ri(o)] (252

thus, p!(e,r) can now be obtained from (2.30). Proceeding in the same manner as was

done for g{a,r) results in

pi(Q — Uia)? i I.(ar)

% =
b; (a,") @ e I,',(aa)

Con [®7,(c) + Rra(e)] - (2.53)

2.3.2.3 Nondimensionalization and Generalized Forces

As it is more convenient to deal with dimensionless quantities, Equations (2.1)~(2.6) will
be nondimensionalized prior to being solved. For this purpose, the following reference

velocities and forces per unit area are defined:

Ef 1/2 Eo 1/2
W= -] o= [Pao(l - Vﬁ)] ’



(2.54)
poitil _ _ EihiL 7, = Psohol _ Egh.L
BE T Tea-y T T Tea-a)
from which the following dimensionless parameters are introduced:
U . U = fNa = b ; all,
P ._.'- fd ---2 n- T ﬂ _—— Q = -_-_—'— =
UI ; ] [} ua } t u'_ H] a uo) r no bui ]
r a b z FA
€=E’ E;—E, EO—E, Cz—-ﬂ:L, E—E, 2—-1_7, (255)
~ _Am s Bn 5 _Cm = _ Dm  Em . _ Fn
Am—T; Bm*—"‘i—: Cm— Ls Dm'— L: Em— L: Fm'—L-

Thus, in terms of (2.54) and (2.55), the perturbation pressures evaluated in (2.47) and
(2.53) may be written as

i

= 2 o _
e = 2 {3 - U~} I"(“ ) Con {85.(3) + R%(a)} (2.56)

=1
x {2,(8) + RY (@)}, (257
where

I (&e,) K (ae) - In(&e)K;(&eo)
I(ae,) K, (3e;) — I(6e;) K, (ae,)’
I(ae) K, (ag;) ~ I, (ae;) K (as)
In(Be,) Ko (ae;) — I (aei} Ky (&e,)”

Wln(c_!, 6)

(2.58)

Wzn (&, E)

(2.59)

Finally, the terms ¢; and g, in Equations (2.3) and (2.6), respectively, are given by

g = (ﬁ.- -p)| %= (po—p)| . =po (2.60)

r=a r=b r=b’
where the quiescent fluid surrounding the outer shell has been assumed to have a neg-
ligibly small inertial effect on the dynamics of the system (e.g., if the fluid is air), or
p. = 0; p; and p, are obtainable from (2.56) and (2.57), respectively, after inverse Fourier
transformation and utilization of (2.33). The following analysis will be devoted to the

evaluation of the generalized forces associated with perturbation pressures in the flows.

For the inner shell, if ¢; is taken to have the form

gi(£,8,t) Z Z Qmn(&) cosnd ™, (2.61)

n=1 m=1
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then substituting (2.33) and (2.61) into the first of (2.60), taking its Fourier transform

and utilizing (2.56) and (2.57), then taking the inverse transform and equating the
coefficients of cosnf on the two sides of the resulting equation will give
= = 2
_ piu;‘zc‘m foo l 91'_ T = {In(&ei)} . = . [ —i&E 3=
ame) = 25 [ 1{% g {BED} o1 o)+ m et an
= 2
p°u2 0 1 Q'. _ _ - ~ =
- L j_m = {eonr - an} {Win(@,&)Cm + Win(a, &) Fin )
x {®},(&) + R;. (&)} e~ da. (2.62)
In the process of solving the equations of motion by the extended Galerkin method
(Section 2.3.4), all the terms are made to have the same common factor L. It is noted
that the resulting term <¢: /(psih:L) from Equation (2.3) is simply ¢;/, with §; having
been defined in (2.54). Thus, for later convenience, Q.,.,(£) needs to be nondimen-
sionalized with respect to §;. In the present method of solution, Q. (&) is eventually
multiplied by 9,(¢) and integrated over the domain [0, 1] of £. Hence, the dimensionless
generalized force may be written as
“ _ 1 1
- Qi = - [ 2(E) Qunl) e (2.6)
1
The substitution of {2.62) into (2.63) leads to
- - 2
N _ G [ 1[0 - {In(&ef)} i} _\1 1A
Qimn = “ong /_m 3 { . Usa} T (ae;) {Him (@) + Nem(a)} da
= 2
Pauz ® 1 £ . - = = A
— ﬁf_m z {EaQr - an} {Wln(a,e;)Cm +W2n(cz,e‘-)Fm}
X {Hkm(ﬁ) + Nkm(&)} dé, (2.64)
where Hym(&) and Ni,.(&) are defined as
1 ) 1 .
Hinia) = {[ @ ac}{ ["ante et ac}, (2.65)
1 . ¢ ,
Wnle) = { [ ot ocac}{ [ mate) s}, (2.6)
0 1
both of which can be determined analytically. The evaluation of Hi, (&) and Nim(&) is
presented in Appendices A and B, respectively. Qimn may also be expressed explicitly

"

s

as a quadratic function of {;,

Qumn = {40 Com + i Fn} 2+ 2{al2) Gt 7 P} i 4 {40, Con+ 0 P}, (2.67)

kmn



26

{ where

2rq; g?-j —oo I:: (del')

o g () [ Wt i it

- polly | U3 (% iceyy (s 3 ) da
o = (—1)’2,@{(509,)3-,-} [ & Wan(Ge:) {Hem() + Niem(8)}

with the value of j being 1, 2 or 3.

Similarly, for the outer shell, g, may be written as

9.(£,8,1) = i Z Smn (€) cosnd eim; (2.68)
n=l m=1

using the same procedure as was carried out for the generalized force on the inner shell

results in
Stmn = {56 Crm + toh P } 02 + 2 {500, O + 00, Fru} 0 + {52, O+ t8) Fn}, (269
( where

j +1p0Uz | T3 ® i _ _ v s
‘ggcjn)'m = (_1)J+1p {(Eoﬂr)li—:'}/_m & ZWIH(QEO) {Hkm(a) + Nkm(a)}da:

27 q_o

G)  _ (_pgtrpele [0 f°° -2 - " 1\ as
e (-1) o7, {(Eaﬂ,.)s‘j uma’ Wan(aeo) {Him (&) + Nim(2)} da.

To recap, what has been done in the foregoing analysis is the derivation of the
unsteady fluid-dynamic forces exerted on two coaxial cylindrical flexible sheils due to
the internal and annular flows. For the system with a flexible shell concentrically inside

a rigid cylinder, the force on the outer cylinder [Equation (2.89)] is of no practical

interest while the one on the inner shell, Equation (2.67), reduces to

G = {4000 Cn} 2 + {2600, G} i+ {42, Cn } (2.70)

where the g0’} are the same as those defined for Equation (2.67).
For the reason to be discussed next, attention is now focussed on Wy, (&, ¢;), which
appeared in the second integrand of q,(;:ln and can be obtained directly from (2.58),

L(&e,) Kn(ae;) — I{ae) K, (ac,)

Win(@:8) = 71 (Ge ) (aee) = I, (e Ko (5,)

(2.71)



)

¢

;

B

27
It is seen that as the radius of the outer cylinder becomes very large, £, — oo, the
inner shell becomes simultaneously subjected to internal and ezternal axial flows, a
configuration similar to that analyzed by Hannoyer and Paidoussis (1978) with beam
theory. The present theory is sufficiently general to handle such a problem; all that
needs to be done here is to evaluate lim,, .o Wln(&,e,-), because W;,(&,¢;), given by
(2.71), has the form co/occ as €, approaches co. From the limiting values of the modified
Bessel functions,

Jim I.(z) = oo, Jim K,(z)=0,

and from their recurrence relationships,

@) = ZIn(@)+ I (o),

] n
K, (z) = z n(z) ~ Kni1(z),
it may be seen that
. ' _ . ' _
lim I (z) =0,  lim K,(z) =0. (2.72)

As a result of (2.72), the limiting value of (2.71) is found to be

. _ v DL(ae)Ka(ae) | Ka(ae)
A We(®5) = I, T e Ko (aer) — Knlae)

(2.73)

With Equation (2.73), the present theory becomes particularly useful in solving
problems involving cantilevered cylindrical shells (thin-walled cylinder) containing inner

flowing fluid and surrounded by stationary or axially moving, externally unconfined fluid

(Section 2.4).

2.3.3 Steady Viscosity—Related Stress Resultants

As explained earlier, the viscous nature of the fluid results in both steady and unsteady
viscosity-related loads being exerted on the shells, the latter of which will be the subject
of investigation of Chapter 5. The steady loads have already been derived (Paidoussis,
Misra and Chan 1985) from the time-mean Navier-Stokes equations for the case of
clamped—clamped shells. The same procedure will be followed herein to calculate such

loads acting on the clamped-free shells. Since details of the derivation have been given
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by Paidoussis et al. (1985), they will not be repeated here; however, the final results
with all the assumptions involved will be presented.

The steady loads are evaluated under the assumption of a fully—developed tur-
bulent, incompressible flow. The fluid pressure and the surface frictional force inside a
circular cylinder and in the apnulus between two coaxial cylinders are derived by further
assuming that the cylinders are rigid.

Figure 2.1 is referred {0 once more in this section. The flow velocity components
in the cylindrical coordinates z, f and r are V, + V,: , V,; and V,', respectively; V, is the
mean velocity in the axial direction while V., V, and V, are the fluctuating velocity
components of the turbulent flow. (Here, Vp = V, = 0.) For a flow velocity V, and static

pressure P, the time-mean Navier-Stokes equations may be written as (Laufer 1953);

1P 1d j o5 , v d de}
pdz  rdr {erV,,}-f- r dr {r dr |’ (2.74)
18P _  1d (==, (V)2
23 = TiE {rv)?} + 24, (2.75)
—— d f e V?"V; o
0 = a{Vrv‘,}u £, (2.76)

where ( ) denotes the time mean of ( ); p and v are the density and the kinematic
viscosity of the fluid, respectively; these equations apply to both internal and annular
flows.

After lengthy mathematical manipulations, the solutions of the above equations
for the internal and annular fluid regions are obtained. The results of interest are given

below.
e For the internal flow,
Pi(z,r) = -2 (%) U2z — pi(V2)2 + pi _/ar w dr + F(0,a), (2.77)
with U,;, the so—called stress velocity, being given by

. 1/2 .y1/2 1/2
= [ -u e ) M {”_p*e*_} - {%fiU‘?} , (2.78)

dr
where U; is the mean axial velocity of the internal fluid, r,; is the fluid frictional

force per unit area on the interior surface of the inner shell, P;(z,r) is the time-

averaged pressure of the internal fluid, and P;(0,a) is the internal-fluid pressure

at the position z =0, r = a.
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e For the annular flow,

2 r(VI)E - (V)2
Po(:c,r)=—{m-—} U‘rr.'c»m pO( o) +pﬂf L_EQ_’_—('E")_dr'l'Pﬂ(O)a): (2'79)
m

a

with U,.; and U,,, being the stress velocities on the outer surface of the inner shell

and the inaer surface of the outer shell, respectively,

dVi, 1 Twoi 1/2 1ry, 2 12
U‘rm’ = {"'Vo r=a.} - { 2o } {80(6 )fmU } H (280)

dr
1/2 Tweo | /2 152~ 12, 1/2
=) {ab(b— a) /o0 } > (e

here U, is the mean axial velocity of the annular fluid, 7,.,; and 7,,, are the fluid

dv;
Usoo = { dro

frictional forces per unit area on the exterior surface of the inner shell and on
the interior surface of the outer shell, respectively, P,(z,r) is the annular time-
averaged pressure, P,(0, a) is the annular-fluid pressure at the position =z = 0 and

r = a, and rp, is the radius at which the mean velocity V,, is maximum.

In Equations (2.79}~{2.81), r,, cannot be evaluated analytically; it is herein deter-
mined from a multi-linear representation of Brighton and Jones’ (1964) experimental
measurements. Nevertheless, these measurements showed that if ¢/b > 0.8 then r,, can
be approximated by its counterpart in the case of laminar flow; in other words,

2 _ .2 1/2
rm = {26111(5;)} ' (282)

The friction factor f, appearing in Equations (2.78), (2.80) and (2.81), is a function
of the Reynolds number Re, and of the relative roughness of the cylinder &/d, where k
is the average height of surface protrusions and d is the diameter of the cylinder. The
friction facior may be found graphically from a Moody diagram, which is a plot of f
versus Re for different values of k/d. Alternatively, it may be determined from a number

of empirical formulas. A common practice is to use the Colebrook equation (Murdock
1976),

1 kfd 251
77 = ~2logu { o Re\/}_'} : (2.83)

To avoid solving the above implicit Colebrook equation, Moody himself derived the
following a.pproximatidn, which matches Equation (2.83) within £5% for k/d < 0.015
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and Re < 107:

g71/3
f. = 0.0055 {1 + [20000 (S) + %} } . (2.84)

The accuracy of f, can be significantly improved if f, is substituted back into Equation
(2.83), namely

1 k/d 251 }; (2.85)

V7~ Tt {57 * Rev/t,
the value of f so obtained is then within +0.7% for k/d < 0.05 and Re < 10® from that
of Equation (2.83).

Equations {2.84) and (2.85) are valid for both internal and annular flows. For
internal flow, d; is the diameter of the inner cylinder, 2a, and Re; = Ud;/v; = 2al;/u;.
For annular flow, d, is equal to the equivalent hydraulic diameter d; = 2(b — a), and
Re, = Upd, /1o = 2(b — a)U, /v,.

With the fluid pressures determined, the basic loads on the shells can now be
evaluated. The steady radial differential pressure on the inner shell is given by P =

Pi(z,a) — Po(z,a) which, in terms of (2.77) and (2.79), may be written as
_ 2b 2p;
FPp= {mpoufoo - Tf"Ufi} z -+ P,-(O,a.) - Po(oy a’)’ (2'86)

where I stands for tnitial or steady-state, and use has been made of the condition that
at the surfaces of the inner shell,

=0.

r=a

Vi)F| = (V)

r=a

P;(0,q) and P,(0, a) may be determined from Equations (2.77) and (2.79), respectively,
if the static pressures of the two flows at either end of the shell are known. Since the
shell is cantilevered, the exit pressures of the two flows are essentially the same; as a

result,

2 UL (2.87)

20,
AP = P‘-(O,a)—Po(O,a) = p'U,?;L—mPo roo
m

o
The corresponding surface traction in the axial direction on the inner shell is Py =
Twi + Twoi, OF in terms of the corresponding stress velocities defined in Equations (2.78) |
and (2.80),

Pori = piU% + poU%y. (2.88)
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Similarly, with the presumption that the outer shell is surrounded by quiescent

fluid at pressure P,, the steady radial differential pressure on the outer shell is found
from Py, = Po(z,b) — P., or

- 2b b (v, )2 - (V)2
PrIo - - {T_Tponoa} T+ Pof (_ﬂo_)____(_m_)_ dr + PO(O, a) - .P,, (289)
b2 — T a r

where the fact that (V,,)?|,_, = 0 has been utilized, and

e

2b
AP, = Po(oaﬂ') ~F = WPOUEOOL' (2.90)

The quantities in the integral correspond to the mean-squared tangential and radial
flow velocities in the annular flow; the value of this integral is quoted from Paidoussis
et al. (1985),

b (VY — (V)2 0.5 5672 5064 rm
S = f (_e_q_)_?i_ridr = {0.7864— Grm+[056rm o ]l"(_b_)}Uz

b—rn (b~rm)? . Ton *m Teo
0.56 0.56r2 0.5064 rp,
-30.7864 4 — ™ _ Tm i n ("ﬁ) Ul (2.91)
Yom — @ (rm — a) -, a

and has been found to be numerically rather insignificant, as compared to the other
terms on the right~hand side of Equation (2.89). Finally, the corresponding traction

load on the outer shell is given by

P::Io = Twoo = pOU‘;z'oo' (292)

It is noted that, for both internal and annular flows, Equations (2.88) and (2.92)

as well as (2.86) and (2.89) may be expressed in the functional forms

Py=B, PFy=-(Cz+D), (2.93)
where
B; = pU%+p.UL, By = poUls
Ci = %Uf,-—b—zib—r’zn-ponw Co = ng_fr_snangoo (2.94)
D; = -AP, Dy = —(poS+APF,)

with AP;, AP, and S being defined in (2.87), (2.90) and (2.91), respectively.
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Now that the pressures and shear stresses acting on the shells have been fully

determined, they will be transformed into the terms g); to ¢5; in Equations (2.1)-(2.3)

and gy, to g3, in Equations (2.4)-(2.6). By balancing forces on an infinitesimal shell

element in the z—, #~ and r—-direction, the stress resultants may be determined and are
found to be

ONzor _ 19Ny ONay _ 5 10Ny

Nor=Faf, 57 ="F%3 oz = T3 a

(2.95)

where Ny and N, are the hoop and axial stress resultants, respectively, while N,y is the
shear stress resultant; ¥ is equal to a for the inner shell and b for the outer one. In (2.95),
the first equation shows that Ny, is independent of @, or 8N;;/36 = 0; hence, the second
equation becomes N,g; = f1(f), and the third simplifies to 8N,;/8z = —FP,r — %—fl'(ﬂ)
or N;y = —Bz + f>(8). However, since the shells are axisymmetric, N.o; and Ny must

be functionally independent of #; in other words,
Negr =Chy, Nyy = —Bz +C,, (2.96)

where C) and C; may be determined from the end boundary conditions. At z = 0,
Ny =0o0r Cy =0;at z =L, N;y =0 or C; = BL, Thus, with the substitution of
these values into (2.96) and P,; from (2.93) into (2.95), the following relationships are

obtained:

Nygy=-B(z~1L), Nyy=-#Cz+ D), Nyr=0. (2.97)

Finally, the terms ¢; to g3 may be calculated from the following relationships
(Paidoussis, Misra and Chan 1985): :

1-22 F1—0v3) | - 1-02
fh={ R }Nzn Qz={i-5h—)}f’m fh'—'{ E;: }Nar, (2.98)

where subscripts 7 or 0 may be added as necessary, ‘vith # = a or b, respectively. It is

noted that g, . and ¢s as given by {2.98) are dimensionless and may be expressed in

the following functional forms:

q1 = A€ + By, g2 = B, gs = Asé + Bs, (2.99)

where { is a nondimensionalized length variable defined in (2.55), and

. 1-2) . 1-p? _
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(2.100)

- 1-2 - 1 -2 . oA 1—v? _
Bl— { Eh }BL, Bz— {‘——Eh }Bf, Bs—— { Eh }Dr,
are all dimensionless constants, resulting from the substitution of (2.93) and {2.97) into

(2.98).

Thus, Equations (2.99), together with (2.87), (2.90), (2.91) and (2.94), fully specify

these dimensionless steady—viscous forces acting on the shells.

2.3.4 Solution to the Governing Equations of Motion

With the unsteady generalized fluid forces and steady viscous loads acting on the shells
completely determined, the solution for the governing equations of motion (2.1)-{2.6)
subject to the free-end boundary conditions (2.9)-(2.16) can now be carried out using
the extended form of Galerkin’s method (see, for example, Anderson 1972) which, for

the present system, is expressed by the following variational statement

SE =6E; 4+ 6E, =0, (2.101)

with

27 D: 1
§E; = / s—'f [L1i6u; + LasSv; — Ly6wy)d€
0 i Jo

- b [Rl.-ﬁu,- + (1—123'1) Ry vi + ki(Raibw; + R4;5w;)J }do, (2.102)
£=1

2r Da 1
SED = / —f {Lloﬁuo + L206”o - L306w0] dE
0 € JO

~ b, [Rloé'uo + (1121) Raobvo + ko (Raow, + R4o6wo)]£_l}d0, (2.103)
where D; = E;h;/(1-v) and D, = E,h,/(1—v2); w; = €;0w; [0¢ and w, = £,0w,/dE; L's
were defined in {2.1)—(2.6) and R’s in (2.9)~(2.16), and subscripts ¢ and o are associated
with the inner and outer shells, respectively. The minus sign associated with the term
Lg;6w; in (2.102) is necessary as Ly; represents the negative of the load per unit surface
(unit length and unit radian). As a matter of fact, in the original expression of Ly

that Flugge derived, most of the terms were preceded by minus signs; for convenience
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in writing, Fliigge himself switched the sign of the expression. The same explanation
can be given to —Ls,6w, in (2.103).

Since 6 E; and 6 E, are generally independent, the implication of Equation (2.101)}
is that both §E; and § E, must individually vanish, or

§E; =0, §E, =0, (2.104)

and hence these two equations must be solved simultaneously. Each of the variational
statements (2.104) may be derived from an extended form of the principle of virtial
work (Altman and De Oliveira 1988) or from Hamilton’s principle. It should be men-
tioned here that the clamped—end boundary conditions (2.7) and (2.8) are automatically
satisfied by the admissible functions chosen for u, v and w [Equations (2.31) and (2.32)).

As the procedure to solve the first equation of (2.104) is ezactly identical to that
of the second one, only the former will be presented in full, whereas the final results
from the second equation will be given in Appendix C.

The variations in u;, v; and w; are simply derived from (2.31). Expressed in terms

of dimensionless parameters as were defined in (2.55}, these variations may be writien

as follows
Su; o o §Ay cosll (£;8/9€)
sy v=LY. Y 5B, sinlf B (£) €™, (2.105)
=1 k=1 —
Swy; §Ct cosll

In the above expressions, for the purpose of evaluating {2.102), different indices have
been used for the two summations—%k and [ denote the axial and circumferential wave
numbers, respectively.

Each of the terms in (2.102) will now be considered individually. Substituting
(2.31) into (2.9)~(2.12), multiplying the resulting R’s by the appropriate variations in
(2.105), and then evaluating such products at £ = 1 gives

o0 oo
Ry;6u; = Z Z coslf cos nffir(n), (2.108)
=1 1=1 n=1
Ry;i6v; = Y D sinl8sinnffsp(n), (2.107)
=1 i=1 n=1
[++] [+ o]
Ra;6w; = Z Z coslf cosnffsr(n), (2.108)
=1
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> Y coslf cosnb fir(n), (2.109)

R4.-6w:- =
=1 =1 n=1

where

fir(n) = Lzezimi i SEk{[vms,-‘IJ;,(l)‘I’m(l)]Bmﬁ- [u;e;@l(l)@m(l)]ém}, (2.110)

k=1 m=1

for(n) = Lzezinti iaBk{— [ @k (1)@}, (1) Am + [(1 + 3k:)e:i(1) 2}, (1)] B
k=1 m=1

+[3nk;s,-<1>k(1)<1>:n(1)]ém}, (2.111)
f3R(n-) = L2e2int i i Sc_'k {[%2(1 - V.')E,'@k(l)@;n(l)]ﬁm
k=1 m=1
+ [g(s - uf)ei@k(1)@;(1)]ﬁm + [n¥(2 - yf)e;¢k(1)¢;(1)]6m}, (2.112)

k=1 m=1

f.ug(ﬂ.) = L2e2|'nt i i SC_';C{'— [v,-ns,@;,(l)@m(l)]ﬁm - [nzv,'ﬁ‘;@;:(l)@m(l)}ém}, (2.113)

and the fact that, for a cantilevered beam,

has been taken into consideration in the evaluation of (2.106)-(2.109).
Similarly, substituting (2.31) and (2.61) into Equations (2.1)-(2.3) and multiplying
the resulting L's by the appropriate variations in (2.105) yields the following products

[+.¢] [e)
Lybu; = D > coslfcosndfir(n), (2.114)
I=1 n=1
oo o0
Loibu; = sin {8 sinn8 far (n}, (2.115)
i=1 n=1
[=.+] o0
Labwi = Y > cosldcosnffs(n), (2.116)
=1 n=]
where
;' 2 x - = ﬂ.z 2 ] ]
fi(n) = LM} 5" 64 {[(ﬂf - (k) (1-) - 93s’ﬂ2) &; 4 (£) 2 ()
k=1 m=1

+a+ ql.-)e:-*@;(a@::(s)] At [3(1 O AGLAGES qz;ne;@;(e)ém(e)] Bm
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+ qz:E:"I’l(E)@m(f)] C_'m}, (2.117)

fz[,(n) = Lzezmt i i EB}.:{"’ [%(1 + V{)E?@k(f)(:b:;(f)]d‘im

k=1 m=1

+ [(ﬁ? — n2(1+ gai)) Br(§)@m(E) + (%(1 + 3k:) (1 - ) + qh-) sf@k(e)é',‘n(s)] B

+ [9—2’&(3 - Ui)S?@k(E)@;(E) - n(l+ qs;)@k(f)cl)m(g)J ém}, (2.118)

fouln) = L2043 Zam{[( -k vy, ) 4(6) 25 (2)

k=1 m=1

~ k.-e:-‘»\:‘m(e)@m(f)} Am+ [n(1+ 951) 2(§)@m(¢) - —(3 ~ i)l @i (€) m(f)]
+ [(1 + kit XE + ki(n? ~ 1)+ nlgg; — F) @4(E)@m(€) — (2kin? + qui)el k(€)1 (€)

- %m(f)qm(e)] ém}, (2.119)

where A,, are the roots of the transcendental equation cosh A, cos A, + 1 = 0; further
details on A,, may be found in Appendix A.

Before further analysis is made, it is useful to recall the orthogonality property of

the sine and cosine functions; for any two integers [ and n,

2 2x . 0 if l#mn,
f coslf cosnfdf = f sinlfsinnd df =
0

0 n if l=n,

which lead to

j:r {i f: coslf cos n()fc(n)} dé = i i {/:rcoslﬂ cosnf dﬁ} f{n) = i 7fe(n), (2.120)

=1 n=1 n=1

'/;2” {f: i sin lf sin an,,(n)}dB :2 g{j;zrsinlﬂ sinanB} fs(n) = iﬂf,(ﬂ.), (2.121)

i=1 n=1 n=1

where f,(n) and f,(n) are some particular functions of n. In effect, Equations (2.120)
and (2.121) show how the terms cos!f cosnf and sinlfsinné in Equations (2.106)-
(2.109) and (2.114)—(2.116) are decoupled once the extended Galerkin method is applied
via Equation (2.101).
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Now, if all the terms ¢y;, g2; and ¢5; in Equations (2.117)-(2.119) are replaced by
their functional forms in (2.99), then substituting (2.106)-(2.108) and {2.114)-(2.116)
into (2.102) and performing (i) the integration over the domain [0, 27] of # with (2.120)

and (2.121) taken into account and (ii) the integration over the domain [0,1] of ¢ will
lead to

. D\ & M _ ~ —
. (_E_‘) Z Z{Wlkn Ay + Woky 6By + Wagy, 501;} =0,
Y on=1 k=1

and because mL*e¥™(D;/¢;) # 0 for all ¢,

oo M

Z Z {Wlkn §Ar + Wapn 6 B + Wagn Eék} =0. (2.122)
n=1 k=1

In Equation (2.122), M is the number of admissible functions taken for the analysis,
thus replacing the upper limits of the summations of the axial wave numbers in (2.31)
and (2.105), i.e. 1 £ £ < M and 1 < m < M; the coefficients Wyin, Wakn, Wapn are

functions of A,,, B, C,, being associated with the inner shell,
M - n.2 2 1 ' '
Witn = D, {[(9? - 7[(1 + ko) (1 - w) + 233{]) 5;2[0 0, (€) 2, (€) A€
m=1
A 1 t ) - 1 t 1
- nzs,?As,-/o £, (8) ), (6)d€ + (14 By) egfo ®,(6) @ (6) dé
~ 1 i 1t - 1 ] 1
+ E?A1€L € &:(¢) ‘I’m(f)df] Am+ [112‘(1 + Vi)eizj; P, (€) 2p(€)dE
oy 1 ] ' -
+ nEngf./; (&) Dm(£)dE — v;ns,?@k(l)@m(l)]Bm
2k‘_ . 1, ' . 1 ' :
+ [(W - 12—(1 - vi) ~ Bsi) E.gj; ®,(€) @, (€)dE - E?Asij; £ @, (6) P, (6)dE

~ ke fo *B),(6) 87(6) dé + €3 B fo " 8,(6) ®m(€)dE v;-e?ﬁ(l)@m(i)}ém} , (2.123)

M n 1 ] nE? ' -
Wotn = {[—5(1 + Va‘)*—'?jc; Pi{€) D (€) A€ + — - Vi)‘I’k(l)‘I’m(l)]Am

=1

3

+

02 - n2(1+ Bl || 2u(6) 2ml€) A€ -~ n?Ass [ €24(6)2m(€)

+

m

20+ 3K)(1 - )+ Bu) o [ @O E(OA(E) +e2An [ €l B(0)d6

- ‘2‘(1 - )1+ 3ki)¢k(1)‘1’:n(1)]3m + [%(3 - vi)e? j;l Dp(£) B, (€) dE
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~n (14 B) [ (6 2n(@) a6 ~ndn | €84(6) 2m(E) €

- %nk;ﬁ:?(l - v;)tbk(l)@'m(l)]ém} s (2.124)

M nzk,- - 2 1 " 2% 1 "
Wakn = {[(“2—(1 — ) -vi+ Bs:‘) £ ]0 Pr(£) @, (6)dE+ E,‘AS;'_/O £®,(€) @, (&) d¢

m=1

1
+ ket [ 240 8n(g)ag - 15

nlelk; f -
- B8]
+ [%(3 - )€l _/;1 8(€) @,,,(€)dE~ n (1 + Bsi) fol i (€) B (£) dE

g2 ' -
— ks [ €24(6) ()36 + nkiust B (1@n(1) - T (5 - Vi)‘pk(l)@m(l):le
+ {(Qf — [1+ kiefrd, + ki(n? - 1)+ nzéae]) /;1 D (€) Bpn(£)dE
a 1 "

— s [ €84(6) Bn(€)de+ (2hn® + Bug) o [ @) @) e

21 1 " 1 1 2 9/
+ E;An[ ED,(€) 2, (6)dE+ ?__[ B (€) Qmn(€) A€ + kivin’e; @, (1)Pr (1)

0 gz JO

— k;n?el(2 ~ v,-)@k(l)§>:n(1)]ém}, (2.125)

where filg, ..., Bs; were defined in Equations (2.100).
Because § A4y, § B, and 6C, are totally arbitrary, Equation (2.122) is equivalent to

Lo s ] 00 (=]
Y Wiun=0, D Waun=0, Y Wyn=0. (2.126)
n=1 n=1 n=1

As may be seen from Equations (2.123)-(2.125), each term of any of the above three
series is a function of n and is independent of other terms in the same series. Equations
(2.126) thus imply that individual Wign, Wi, and Wi, must be equal to zero, namely

M
Wike = 3 {ThmaAm+ Tin Bt Jhn, O+ T Do+ T Bt T, P} = 0,

m=1

(2.127)

M
Wakn = 3 {Jimn Am + Timy B+ Jim O+ T D+ i B i P} = 0.

m=1

Similarly, with the foregoing analysis carried out for the second equation of (2.104), the
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following equations will be obtained

M
W4k“ = Z {J:;in j'm + J;:tﬁn Bm + J:;:n C'm + J:;':n Dm + Jl:;:n Em + J:r‘rfn Fm} = 0'
m=1
(2.128)
i 6 T 6 5 6 -
Woin = 2 {Jona Am+J0n Bt Jim Cont T Dont JE5 B+ I35, Fn} =0,
m=1

Thus, Equation (2.101) is in effect equivalent to a set of 6M equations, Equations
(2.127)~(2.128) inclusive, in which 4, Bn, ..., F,, are the unknowns to be solved for.

Equations (2.127) and (2.128) may be grouped together and put in the matrix
form

(IMI0F + (18 + [K]) {X} = {0}. (2.129)
It should be emphasized here that [M], [C] and [K] in Equation (2.129) are not the
traditional mass, damping and stiffness matrices but are proportional to them. M, [C]
and [K] are the coefficient matrices of 07, 1} and 01?, respectively. The clements of [M],
[C], [K] and {X} are given in Appendix C.
So far, energy dissipated internally in the material of the shells has been neglected.
If dissipation is considered to be a hysteretic effect (structural damping), it may be
taken into account by replacing Young’s modulus E by E(l + ﬁ-g—t) in Equations
(2.1)-(2.6), where u is called the structural damping factor. Alternatively, dissipation
may be considered to be a viscoelastic effect (viscoelastic damping), in which case £
is replaced by E(l + x%), where x is the viscoelastic damping coefficient. In general,
E is replaced by E{l + ("& + x);%} with the understanding that either z or x will
be zero for a given system. As a reminder of the notation used in Equations (2.1)-
(2.6), E{1+ (%-{- x) -(%} is to be written with the subscript i for Equations (2.1)-(2.3),
namely E,-{ 1+ (%1 + x,-) 3%}, and with the subscript o for Equations (2.4)-(2.6), namely
{1+ (5 + )3
To give a simple illustration of changes Equation (2.129) may be subject to when
internal damping is included, it is assumed that both inner and outer shells are made
of the same material and hence neither subscript 7 nor o is required for u and x (and

other material properties). Equation (2.129) then becomes

(IMIE + [C}h: + [1 + (s + x)][K] }{X} = {0}. (2.130)
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Since

= () 2)(5)- (24

Equation (2.130) may be rearranged and rewritten as

(M0 + (') + K] }{X} = {0}, (2.131)
where .
M=, (C)=(01+ (S8, (K= (1 i)l (2.152)
If a new vector {Y} is introduced and defined as
_ ] &}
{Y}= { () ] ) (2.133)

Equation (2.129) [or Equation (2.131) if internal dissipation is to be accounted for] can

be simplified to
(IP] + QI ){ Y} = {0}, (2.134)

K] [C] (0] [M]

with [I] being the identity matrix of the same size as [M], [C] and [K]. Equation (2.134)

where

represents a standard eigenvalue problem and can readily be solved by any available
computer subroutines such as those of IMSL (International Mathematical and Scientific

Libraries), giving the eigenfrequencies of the system.

2.3.5 Summary

Section 2.3 has presented in detail (1) the evaluation of the unsteady generalized fluid
forces acting on the shells by means of the Fourier transform technique and (ii) the
procedure of solving the governing equations of motion using the extended Galerkin
method. It has also given all final, important results for the steady viscous forces

appearing in the governing equations of motion.
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2.4 Preliminary Calculations

2.4.1 Introduction

Before the theory presented earlier in this chapter was actually applied to the system
under consideration (Section 2.5), a series of preliminary calculations were conducted
to examine different aspects of the theory.

Firstly, natural frequencies of a cylindrical shell in vacuo were calculated (Section
2.4.2). The aim of these calculations was to assess how well the extended Galerkin
method works through Equation (2.101) in solving the equations of motion {(2.1)-(2.6)]
subject to the free-end boundary conditions {(2.9)-(2.14)}, and hence to validate certain
segments of the computer program developed for Section 2.5.

Secondly, as the solution for the unsteady fluid forces is obtained by the Fourier
transform method, numerical integration is required and was performed in the present
analysis using a composite formula based on the two-point Gaussian quadrature. For
computational economy, it is thus necessary to determine the optimum values of such
important parameters involved as the integration stepsize A&, the domain of integration
(—2z, 2), and the number of admissible functions M taken for the analysis. The selection
of these values was based on the calculations of the critical flow velocity of a caniilevered
cylinder conveying fluid (Section 2.4.3).

Finally, different out-flow models, the concept of which has been introduced earlier
in the Fourier transform method, were examined (Section 2.4.4) with regard to (i) their
essence in the theory, (ii} the most suitable distance beyond the free end of the shells for
flow perturbations to die out, and (iii) the best of the models considered for specifying
the downstream flow perturbation behaviour.

It should be noted that the results to be presented below were obtained without
steady viscous effects (Section 2.3.4) included. There were two reasons for doing so:
(i) all the above-mentioned aspects are part of the inviscid theory only, and (ii) the
present results could be compared with previous theoretical ones which did not involve

any viscous effects.
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2.4.2 Natural Freqguencies of a Cylinder in the Absence of Flow

Natural frequencies of a cantilevered cylindrical shell were calculated, in the absence of

fluid flow (U; = U, = 0) and for the following parameters:

E; =21 x 10" N/m®, v; = 0.28, p,; = 7.8 x 10°kg/m®, L = 0.502m,
a = 0,0635m, h; = 0.0016 m, y; and x; are zero.

These parameters are the same as those in Gill’s (1972) experiments and in Sharma’s
(1974) theoretical calculations, to which the present results are compared, in Figure 2.2
and Table 2.1.

In Figure 2.2, the results obtained with six admissible functions (M = 6) are
compared with Gill’s measurements and with Sharma’s sextic approximation. It is seen
that the agreement is quite good and, in fact, the present results are closer to the
experimental values than Sharma’s. The agreement improves further, if only slightly,
when the calculations are carried out with a larger M, since the natural frequencies
then become smaller, especially as the axial wave number, m, increases—thus, bringing
the present results closer to the measured natural frequencies.

In general, the theoretical results are closest to the experimental ones for higher
n, the circumferential wave number, and lower m, and vice versa. Since the effect of M
on the natural frequencies is not overwhelming, especially for low m (= 1,2}, quite a
number of the calculations that follow have been conducted with M = 6, or even 4, to

reduce the computing time required.

2.4.3 Convergence Study

The optimum values of the parameters involved in numerical \inucfration were judged
on the convergence rate of the solution. In this study, the critical dimensionless flow
velocity of the cantilevered cylindrical shell conveying fluid in Paidoussis and Denise’s

(1972) problem was calculated. The same physical properties and géémetricéfda.ta. of

the shell were used:

E; = 89.57 x 10* N/m’, v; = 0.5, py = 0.85 x 10°kg/m®, a = 7.85 x 103 m, £ = 3.0,
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L/a =128, h; = 0.178 x 1073 m, p,5r = 1.1564kg/m® [(a/h:)(pair/ 0s) = 0.06].

For comparative purposes, the present resalts will be tabulated together with those
cbtained by Paidoussis and Denise (1972) using a different theory; in the tables to be
presented, the latter results are shown merely as a reference, not as a means to mea-

sure how accurate the present results are, or how fast the solution under consideration

converges.

2.4.3.1 Integration Stepsize

When the integration stepsize was being examined, the following parameters were held
fixed:

(—z,2) = (-200,200), M =4.

The results obtained for three different flow models® are presented in Table 2.2.
As may be seen, there is a large difference between A& = 4.0 and A@ = 2.0 in terms
of the critical (dimensionless) flow velocity, Us,. For n = 1, for instance, the relative
discrepancies are 2.26% with Model 1, 11.76% with Model 2, and 9.39% with Model
3. It is obvious that A& = 4.0 is too large. On the other hand, there is very little
difference between A& = 2.0 and A& = 1.0, especially with Models 1 and 3 in which
the predictions for U;, are identicz;l up to the fourth significant digit for n = 1 and up to
the sixth one for n = 2 and n = 3. The foregoing comparison has shown that A# = 2.0

is perfectly adequate for the present numerical integration procedure.

2.4.3.2 Domain of Integration
When the domain of integration was varied, the following parameters were held fixed:
Ad=4, M=4.

Table 2.3 shows how the domain of integration chosen affects the critical flow
velocity U;,. With Models 1 and 3, the relative difference between two successive values

of U;, reduces almost by one half as the domain of integration is increased by 100,

2Further discussions on these models are given in Section 2.4.4.
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starting from (—150,150). With Model 2, the convergence of U;. is not obvious because
the relative difference remains almost unchanged for the four domains considered. In all
cases, however, discrepancies are found to be very small. Thus, a domain of integration
as small as (—150,150) may be considered to be sufficient as far as the lowest three
circumferential wave numbers are concerned. Nevertheless, (—200, 200) will be adopted

for all subsequent calculations.

2.4.3.3 Number of Admissible Functions

In this case, the following values were taken for the other two parameters:
Az =20, (-zz2)=(~200,200).

The effect of the number of admissible functions M on U, is shown in Table 2.4,
where M is incremented by 2 from 4 to 10. For n = 1, the relative differences in U,
corresponding to any two successive chosen values of M are (0.58%,0.25%,0.13%) with
Model 1, (1.02%,0.41%,0.21%) with Model 2, and (0.93%,0.37%,0.19%) with Model 3.

The same trend is also observed for » = 2. Here, it is important to mention that, for

" n =1 and 2, the critical flow velocities are associated with m = 2. For n = 3, instability

occurs in m = 3 with Model 1 for all four values of M considered; with Models 2 and 3,
instability also occurs in m = 3 but only for M =4 and 6, and theninm =2 for M =8
and 10. As a result, U;, converges monotonically with Model 1 [(0.25%,0.08%,0.03%)],
but not with Model 2 [(0.31%,0.21%,0.30%)] or Model 3 {(0.83%,0.19%,0.28%)] due
the change in the critical axial mode m (from 3 to 2). Nevertheless, insofar as the lowest
critical flow velocity is concerned, which is associated with n = 2, it may be seen that

M = 6 is sufficiently large to be used in future calculations (Section 2.5).

2.4.4 Out—-Flow Models

In what follows, four different flow models are evaluated {as a note, the words “out—
flow” and “flow” are used interchangeably throughout the thesis): Models 0 to 3. For
interested readers, the physical and mathematical descriptions of these models are given

in Appendix B, and may also be found in Faidoussis, Luu and Laithier (1986). The
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same test problem as was considered in Section 2.4.3 is utilized here to examine various

aspects of the flow models. In addition, the following parameters were taken for the

calculations of T;,:
(-2z,2) = (-200,200), Aa=40, M=4.

2.4.4.1 Effect of Having No Model

Having no model in the theory is basically the same as applying Model 0. Indeed, Model
0 was the first one used to calculate the critical flow velocity, U;.. Table 2.5 shows the
values of U;, obtained with Models 0 to 3. It is seen that the results with no model are
abnormal, in the sense that the dynamical behavicur predicted for a cantilevered shell
is the same as that of a shell with both ends supported: the shell loses stability first by
divergence, and then by coupled-mode flutter. In fact, Model G is physically unrealistic
and hence so are the results. This will be discussed below.

Clearly, it is mathematically essential to model the flow perturbation behaviour
beyond € = 1 and not to impose any artificial discontinuities in that behaviour. In
other words, the inclusion of an out-flow model in the present theory is a necessity, not
a refinement as may have thought (Shay~ and Ellen 1978}. Moreover, such a flow model
may also be necessary for shells with thé downstream end pinned because, as shown
in Appendix B, the functional form of a flow model is generally a function of both the
lateral displacement and the slope of the shell at its downstream end; in this case, the
pinned end has no displacement, but it has a non-zero slope. It is further noted that the
values of U;, according to Models 2 and 3, which have the least amount of discontinuity,

are rather close and reasonzbie.

2.4.4.2 Selection of ¢

Calculations have been performed with different values of £, and the esults are given in
Table 2.6. It should be reiterated that flow perturbations completely die out at £ = £.
Ideally, the solution should converge as £ approaches co. However, as seen from Table

2.6, there is generally no convergence in the solution obtained with any of the three
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models (1-3), although Appendix B shows that, as £ approackes co, the solution does
converge with Modz! i, but not with Models 2 and 3.

The convergence problem associated with Models 2 and 3 was identified as being
related to the expression for Ny, (&) in Equation (2.64). Although Ny, (&) is finite for
any value of £, nevertheless in the limit, lim,_,c; Nim (&) ceases to exist (Appendix B);
hence, in the numerical calculations, when £ becomes very large, the overall problem
becomes ill-behaved (a similar example pertains to £cos ¢; for any large ¢, £cos £ is finite,
but lim,, £cos £ does not exist). For Model 1, the zigzag pattern of Uy, corresponding
to the values of £ considered in Table 2.6, mayv well be due to the fluctuations of the
harmonic term e'®¢ in Equation (B.5).

Another observation of Table 2.6 is that, for £ = 3, the results obtained with
Models 1-3 are of the same order of magnitude; on the other hand, for £ <« 3 or £ >» 3,
the results (particularly, the ones denoted by %) obtained with one of the models could
be very different from (i) those obtained with other models, and (ii) those obtained with

the same model but for £ = 3. Attempts have been made to account for this observation,

~ but no satisfactory explanation is found; the intriguing nature of £ = 3 remains to be

studied in future work. Such a phenomenon was also reported, though not elaborated
upon, in Paidoussis, Luu and Laithier (1986), where £ = 2.8 was adopted. Since £ =3
is the largest value obtained without any numerical problem in the solution, it will be

adopted for all subsequent calculations.

2.4.4.3 Selection of Most Suitable Model

Presented in Table 2.7 are numerical results for U;. as a function of n and L/a with
Models 1 to 3. Qualitatively, the variations according to the three models are similar.
Quantitatively, it may be observed that the results with Models 2 and 3 are very close,
stemming from the fact that these two models only differ for large ¢, far away from the
free end of the shell (Figure 2.3). Thus, for the same case, the relative difference in
U;. obtained with Models 2 and 3 is about 0.6%, while the values of T;, obtained with
Model 1, on the one hand, and Model 2 or 3, on the other, differ by about 10%.

The results of this table make either Model 2 or 3 more acceptable than Model
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1; the choice of Model 3 as the most suitable, to be utilized in subsequent calculations,
was made on physical grounds as being most realistic for prescribing the smoothest
decay, characterized by the second and fourth boundary conditions of (B.20), of flow
perturbations.

Som:e {urther physical observations may be made frorn the results of Table 2.7. Tt
is seen that for 10 < L/a < 20 the critical circumferential mode is n = 2, while for
L/a =51t is n = 3. Moreover, for a given n, the axial mode associated with instability,
namely the one that undergoes a Hopf bifurcation is not always m = 2; higher m may
be involved, especially as L/a is increased (e.g., for L/a > 15, n = 3).

Finally, the results obtained with Model 3 with M = 6 are compared with Pai-
doussis and Denise’s (1972) theoretical and experimental results in Figure 2.4. As may
be seen, the results for U;, by the two theories are almost identical for n = 1, but larger
differences are evident for n = 2 and 3. Here, it should be remarked that in the method
of solution utilized by Paidoussis and Denise, the question of specifying fluid flow be-
haviour beyond £ = 1 did not arise; hence, the differences in Figure 2.4 are likely due
to the two different methods of solution. Significantly, however, the present theoretical
results are closer to the experimental ones for small L/a, as is reasonable, because the
effect of the fluid beyond the free end of the shell, not taken into account by the earlier

theory, becomes more significant for short shells.

2.4.5 Summary

Section 2.4 has presented the results of preliminary calculations conducted to verify

some important aspects of the present theory.

e As a means to check the extended Galerkin method, natural frequencies of a
cantilevered shell in the absence of fluid flow were calculated and found to be in

excellent agreement with available experimental and analytical results.

¢ Concerning the numerical integration procedure employed in the Fourier transform
method, the optimum values of the integration stepsize A&, the integration domain

(—z,z), and the number of aimissible functions M were desired. The selection



P

48

of these values was based on the critical flow velocity Ui, of a cantilevered shell

conveying fluid flow. Such optimum values were found to be

Aa=20, (-zz)=(—200,200), M =8,

e Different out—-flow models were examined and compared. It was found that (i) the
presence of 2 flow model in the theory is a necessity, (ii) the optimum value of £
at which (¢ = £) flow perturbations vanish is about 3.0, and (iii) Model 3 appears

to be the best in prescribing the downstream flow perturbation behavinur.

2.5 Theoref,ical Results

2.5.1 Introduction

Although the theory given in Sections 2.2 and 2.3 was developed for the general case
of two coaxial flezsble shells, nevertheless for the calculations to be performed here,
the outer one is replaced by a rigid conduit. This is done partly to achieve some
computational economy, but also because most physical problems of interest are like
that; another reason is that, at least for shells with both ends supported, the dynamical
behaviour of such systems is qualitatively the same whether one or both shells are
flexible {Paidoussis et al. 1984,1985), the main effect of an outer flexible conduit being
to diminish the critical flow velocities.

The calculations were conducted for shells with the same geometries and properties
as those in the earlier studies of clamped—clamped shells (Paidoussis et al. 1984,1985),

namely:
E; =20 x 10" N/m®; 15 =0.3, p, = 7.8 x 10° kg/ms, pi = po = 10° kg/ms;

b =100mm, a = (10/11)b for the so-called 1/10-gap system,
a = (100/101)b for the 1/100-gap system, L = 1.00m, h; = 0.5 mm;

thus, U; = 5308 m/s and p.-a,/(p,,-h,-) = 23.30.
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Although the present results are specific to this system, they have nevertheless been
found to be qualitatively valid, in terms of the general dynamical behaviour of the
system, over considerable ranges of dimensionless parameters relating shell and fluid
properties and geometric factors.

It is known (Evensen 1974, Evensen and Olson 1968) that shells are subject to
impertant softening—type nonlinearities. Since the theory is linear, the results gencrated
are expected to be physically correct only for sufficiently small-amylitude perturbations;
thus, the intricate behaviour of the system beyond the first loss of stability as predicted
by the present theory may not be reliable. However, the results are still of academic
interest and are therefore presented.

Three different cases of flows will be considered and discussed in the following
order: (i) internal flow alone, U, = 0 (Section 2.5.2), (ii) annular flow alone, U; = 0

(Section 2.5.3), and (iii) both internal and annular flows together (Section 2.5.4).

2.5.2 Internal Flow Alone
2.5.2.1 General Dynamics of the System

Typical results are shown in Figure 2.5, involving internal flow only, while the annular
fluid is quiescent (U, = 0). Calculations were carried out using inviscid theory, with or
without steady viscous effects taken into account.

Figure 2.5 is in the form of an Argand diagram, in which the real and imaginary
parts of the eigenfrequencies of the system €);, for n = 2 and m = 1,2, 3, are plotted
against each other, with the flow velocity U; as the parameter. Clearly, if Im(ﬁ,-) <0
the system is unstable, the stability having been lost when Im({2;} = 0 by futter, if
Re{{);) # 0 and by divergence if Re(f);) = 0. In Figure 2.5, it is seen that single-mode
flutter occurs in the second axial mode, m = 2, at U;, = 0.0311 with no steady viscous
effects, a~d at a slightly higher flow, U;. = 0.0326, when such effects are included.

More extensive results in which n was varied are shown in Table 2.8. It is seen that
all modes are slightly stabilized by the inclusion of steady viscous terms, even (albeit

very slightly) the » = 1 mode, which corresponds to beam-like motiors of the shell; it is
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recalled that, according to beam theory applicable to thicker cylinders conveying fluid,
the net effect of viscous forces is exactly zero (Paidoussis 1987). It is also seen in Table
2.8 that stability according to inviscid theory is lost in the fourth circumfsrential mode,
n = 4, whilst in the third circumferential mode, n = 3, with the steady viscous forces
taken into account; thus, the critical flow velocities depicted by Figure 2.5 for n = 2 are
not the overall {lowest) critical ones. From Table 2.8, the overall stabilizing effect due
to the viscous terms is calculated to be 15% on U,..

The physical explanation for this stabilizing influence of viscous effects is the same
as for clamped~clamped shells (Paidoussis, Misra and Chan 1985): the steady loads due
to viscosity induce a tensile hoop stress and a tensile axial load, the latter of which is
largest at £ = 0 and vanishes at £ = 1. Both the hoop stress and the axial tension
effectively render the shell stiffer, thus raising ;.. However, this effect is not very
pronounced, since for this shell L/a = 11 only; calculations for larger L/a will be
presented in Section 2.5.2.3.

A final point of interest in the results of Table 2.8 is associated with the fact that
the n = 6-8 modes lose stability by divergence according to inviscid theory, followed at
slightly higher flow by restabilization and then by single-mode flutter at U; = 0.03115
for n = 6, and by coupled—-mode flutter® at U;, = 0.03895 for n = 7 and at U;, = 0.05185

for n = 8.

2.5.2.2 Effect of Annular Gap

The effect of narrowing the annular gap on stability of the system was investigated by
means of inviscid theory only. Although the annulus is filled with quiescent fluid, this
fluid nevertheless does participate in the dynamics of the system inertially; examination
of the generalized fluid forces [Equation (2.64)] on the inner shell shows that setting
U, = 0 does not totally eliminate the forces associated with the annular fluid. The

results for the critical flow velocity, U, corresponding to n = 1-9 are shown numerically

31n this analysis, no differentiation is made in the notation “coupled-mode flutter” between (i) cases
where the two modes involved are of the same mode number {rs) but one is from the right-hand plane
of Q1; (Figure 2.5} and the other from the left-hand side plane (not shown), and (ii) cases where different
modes m are involved.
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in Table 2.9 and graphically in Figure 2.6.

It is seen that there is a very substantial reduction in U;. in every mode n as
the annular gap size is diminished; a tenfold diminution in the annular gap leads to
a maximum of 44% reduction in U, in the n = 3 mode. The physical reason for this
destabilizing effect of the stagnant annular fluid is associated with the correspondingly
large increase in virtual or added mass. Thus, although the stiffness of the system is
not affected by the annular gap size, the increase in added mass may be thought as an
effective reduction in stiffness, hence causing a reduction in all U;,, as well as in the
overall critical flow velocity Uy, namely U;,. This effect is weakest for n = 1, as scen in
Figure 2.6.

Finally, it should be pointed out that similarly to Table 2.8, some of the results
in Table 2.9 correspond to loss of stability by divergence, namely those associated with
n = 6-9 for the 1/10-gap system and n = 8,9 for‘ the 1/100-gap system. In each
case, flutter of the coupled—mode variety follows at higher U;; for instance, for n = 7 in
the 1/10-gap system, divergence occurs at U; = 0.03427 and coupled-mode flutter at
U; = 0.03895, in the m = 1 mode(s) in both cases.

2.5.2.3 Effect of Length of the Shell

The results for the overall critical flow velocity U7, and the associated circumferential
wave number n are presented in Table 2.10 and Figure 2.7 for different length-to-
radius ratios of the shell, L/a; the radius a was fixed at (10/11) x 100 mm as listed in
Section 2.5.1.

According to inviscid-flow theory, U;, is diminished monotonically with increasing
L/a. Furthermore, as previously found (Paidoussis and Denise 1972}, the value of n
associated with loss of stability becomes larger as L/a is reduced. The situation is
slightly more complicated when steady viscous effects are taken into account. Firstly,
as L/a is increased sufficiently, there is a stabilizing effect, with Uy, becoming slightly
larger (U3, = 0.02717 for L/a = 25, and 0.02841 for L/a = 30); the physical reason for
this phenomenon is that the stabilizing effect of the steady viscous forces of the internal

flow, which increases with L/a due to the higher pressurization and traction effects,
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overcomes the destabilizing effect of increased L/a due to the inviscid forces. Here, it
should be recalled that the dimensionless U; does not involve length; thus, variations of
U, with L/a correspond to similar variations of the critical dimensional flow velocities,
U:. Secondly, the progression to higher n as L/a is decreased is nct as smooth as in
the case of purely inviscid flow,

Perhaps, the most important point that emerges from Table 2.10 is that the relative
difference in U}, between inviscid and viscous versions of the theory increases with L /a:
for L/e = 5, this difference is 10% (based on the inviscid result) whereas it becomes
52% for L/a = 30. It is quite obvious that steady viscous effects are hardly negligible
for long shells.

2.5.3 Annular Flow Alone
2.5.3.1 General Dynamics of the System

In the present case, the flow is purely annular while the fluid filling the inside of the inner
shell is stagnant. Results were again obta.inéd with both inviscid and viscous versions
of the theory, so that steady viscous effects of the annular flow could be assessed.

Shown in Figure 2.8 is a typical Argand diagram for n = 2 of the 1/10-gap system,
where “1/k-gap system” means that the ratio of (annular gap)/e = 1/k. It is seen that,
according to inviscid—flow theory, the system loses stability in its second axial mode by
single-mode flutter (Hopf bifurcation) at U, = 34 x 10~3. The first mode is not plotted
beyond U, = 7 X 1073, but suffice to say that it remains stable. Thus, the behaviour of
the system as predicted by inviscid theory is similar to the case with internal flow.

However, unlike for internal flow, steady viscous effects due to the annular fl_ow
on the stability of the system are profound. Figure 2.8 shows that the system now
loses stability by divergence at a flow velocity approximately ten times smaller (U,, ~
3.4 x 1073, m = 1), followed by coupled~mode flutter at a considerably higher flow
velocity (U, = 15 x 1073} (involving the two branches of the sime mode, m = 1, from
the left— and right-hand sides of the complex {1;—plane).

The results of Figure 2.8 are for n = 2. The values of U, for different n are shown
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in Table 2.11, in which the results on the far right (x; # 0) of the table should be ignored
for the moment. It is observed that, for n > 2, U,. according to the viscous theory is
one order of magnitude less than that obiained via the inviscid theory. On the other
hand, for n = 1, U,, are sensibly the same (still, the system is slightly destabilized).
Both theories nevertheless predict a local minimum of U, at n = 3. With steady viscous
effects taken into account, U, becomes smaller and smaller with increasing n (n > 5),
at least up to n = 8.

Mathematically, such a steady drop in U,. may be identified with the destabilizing
effect of the viscous force g¢s;, which is the dominant pressurization term [Equation
(2.98)]. It is seen from Equations (2.2) and (2.3) that gs is associated with the first and
second derivatives of v; and w; with respect to #, thus leading to terms proportional to
n and n?; hence, the destabilizing effect of the steady viscous forces increases with n
without limit. However, this result is physically unreasonable since it implies that wiih
sufficiently large n the system is unstable for U,, > ¢, ¢ — 0. The resolution of this

question is discussed in the immediately following section.

2.5.3.2 Effect of Dissipation

The key to this paradox lies in the fact that all dissipative terms, both structuré.l and
fluid unsteady viscous dissipation, have not been accounted for in the results presented
so far. Both mechanisms are expected to give rise to increased damping as n is increased.

Because the treatment of unsteady viscous forces is beyond the scope of the present
theory, it was decided to take into account zll dissipative terms as if they were of the
structural (hysteretic) type*. Accordingly, calculations have been conducted, where
Young’s modulus E; in Equations (2.1)-(2.3) [in the present calculations, only the inner
shell is flexible] was replaced by E; (1 + %‘;%), presuming shell motions to be oscillatory
and lightly damped (Bishop and Johnson 1960); thus, this model is suitable for the
prediction of the effect of dissipation at the onset of flutter, where overall damping is
evanescent. On the other hand, for divergence, which is of course non-oscillatory and

hence independent of damping, the results obtained for u; = 0 should be adequate.

4Viscoelastic, rather than structural, damping could have been used instead.
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Calculations were conducted with g; = 5x 1073, 5 X 1072 and 5 x 107}, where the
first value would be of the right order of magnitude for steel shells if only structural
damping is considered; the higher values of u; were considered to see what the effect of
increased damping due to iluid unsteady viscous effects might be, at least qualitatively.
The results for u; = 5 x 10~2 are shown in the rightmost columns of Table 2.11, while
those for g; = 5 x 1072 and 5 x 107! are plotted in Figure 2.9; the values of U,. for
p; = 5x 1072 and 5 x 10~ differ by less than 4% for n > 2 and less than 1% for
n > 5, being larger for the larger u;. Interestingly, for n = 1 dissipation destabilizes the
system, as is known to be possible for nonconservative systems (Paidoussis 1987).

With the exception of n = 1, it is seen from Figure 2.9 that flutter is more prevalent
than when dissipative terms were neglected. Furthermore, in terms of overall stability
of the system, there exists a divergence instability for low values of n, and flutter is
assobiated with a higher but finite values of n; in these results, n = 5 for g; =5 x 10~*
and 5 x 16~%, and n = 4 for y; = 5 x 1071,

Thus, inclusion of dissipation corrects the physically strange findings obtzined
without it when steady viscous effects are taken into account. It should be remarked
here that, although the results calculated with u; = 5 x 107! are all associated with
flutter (Figure 2.9), the dissipative model for such high values is unreliable for 2; = 0 and
hence cannot predict divergence; divergence should be presumed to occur nonetheless,
as obtained with g; =0, 5 x 1073, and 5 x 1072 (at sensibly the same value of U,.).

In summary, the predicted dynamical behaviour with steady viscous forces taken
into account is that, except for n = 1, the system loses stability by divergence first,
followed By coupled-mode flutter at higher U,, similarly to predictions by the inviscid
theory, but with the following important differences: (i} critical velocities are much
smaller, (ii) the flow velocity gap between divergence and flutter is much greater, and
(iii) flutter in the case of viscous theory is of the coupled~mode variety as opposed to

the single-mode type.
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s 2.5.3.3 Effect of Steady Viscous Forces on Stability
Here it should be noted that the destabilizing effect of some of the steady viscous forces
on the inner shell, specifically g3; as seen in Equations (2.1)~{2.3), depends not only on
the circumferential wave number n as was mentioned in the foregoing discussion, but
also on the gap size of the system. Thus, the trend of the magnitudes of the critical
flow velocities for various n encountered in the 1/10-gap system may not necessarily be
the same for systems with much wider gaps.
The influence of the annular gap size on stability of the system via the steady
viscous forces may be qualitatively predicted by examining the expressions of qi, s
and gs;. With the stress velocities replaced by their expressions in (2.78), (2.80) and
(2.81), the constants B;, C; and D; given earlier by (2.94) may be rewritien as
c = P:;f v? - 4{;’3" )Uf, (2.135)
- L ptfg
“ D; = %Uz —=2=UF.

Substituting (2.93) and (2.97) into (2.98) and then making use of (2.135) leads to

w = - () {8+ ) (2120
.

o ( ) {% : Poéfa: a?'b_ a)Uﬂz}’ (2.137)

w = o(S) (el - St - a3

In the absence of the internal flow (U; = 0), it is seen from Equations (2.136)-(2.138)

that
r:i a2 | _ 2, — a? L - .
Qi ~ {a—'(ng__—c;“)}Uoz: gai {E(T:T)}Uz 3 ~ {b—a}U‘f; (2.139)

consequently, the associated forces as qy;, g»; and gs; enter Equations (2.1)-(2.3) have
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the form
Fulw) ~ {32 ‘f)}r?zf(n), 2140
Fri(gas) ~ {:ﬁ:‘:}ﬁfﬂn), (2.141)
Fuilgs) ~ {b fa}fffg(n,nz), (2.142)

where f(n), g(n,n?) denote functions of n and of n as well as n?, respectively.

It has been pointed out (Paidoussis, Misra and Chan 1985) that gy; and gy are
associated with surface traction, causing axial tension in the shell, and hence can be
identified as stabilizing steady viscous forces. On the other hand, gs; represents the
compressive loads, acting radially inward, tending to buckle the shell; therefore, they
are identified as destabilizing forces. The expressions in (2.139) show that all gy;, ¢s; and
gsi are dependent on the gap size, (b — a). However, the factor {(rZ, — a®)/a(b—a)} =1
for any gap size; thus, as far as stability is concerned, ¢;; and ¢»; depend on (b — a)
only imp.licitly, through UZ, since it has been found that U,. becomes larger as (b — a)
is increased (Section 2.5.3.4). On the other hand, insofar as gy; is concerned, this effect
is moderated by division by (b — a), as seen in the second equation of (2.139). The
overall result is that for low values of n [where the effect of g{n,n?) does not become
important|, the destabilizing effect of F5;{gs;) is overwhelmingly strong for narrow-gap
systems; however, it may be overtaken by the stabilizing effect of Fy;{g;;) and F;(gz)
relatively stronger in wider—gap systems®.

Some results with n = 1 are shown in Table 2.12 for the 1/10- and 1/2-gap
systems. As may be seen for the 1/10-gap system, the steady viscous forces have a
destabilizing effect on the critical flow velocity which drops by 0.2% with g; = 0 and by
2.4% with g; = 5x 1073, On the contrary, the steady viscous forces tend to stabilize the
1/2~gap system, raising the critical flow velocity by 1.7% with u; = 0 and by 1.5% with
#; = 5 x 1073, In both systems, structural damping (included in the calculations) has

a destabilizing effect only. The fact that the steady viscous forces can possibly stabilize

5This, by the way, applies equally to the stability of shells with other boundary conditions than those
considered here.
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a system subjected to the annular flow is an important finding of this study and has
never been reported heretofore.

As a further remark to the foregoing discussion, if overall stability is lost in a
sufficiently high circumferential mode, or if L and n are sufficienlly large, the cflect
of Fzi(gsi) will be dominant [as seen from Equation (2.142)] and viscous forces will
destabilize the system; for the cases presented in Table 2.11, the destabilizing nature of

steady viscous forces prevail for all n > 1.

2.5.3.4 Effect of L/a

The effect of varying L/a on stability, according to both inviscid and viscous (with g; =
5 X 10~%) theories is shown in Figure 2.10; for the viscous theory, both the divergence
and flutter boundaries are shown. As expected, the values of U, become progressively
smaller as L/a is increased, which is reasonable on physical grounds.

The results by inviscid theory in all cases are associated with loss of stabilily
by flutter, except those for L/a = 20 and 30, which arc associated with divergence;
nevertheless, flutter in these two cases follows at slightly higher flow (3% and 10%
higher, respectively). The viscous results, on the other hand, indicate that the initial
loss of stability in all cases is by divergence, followed by flutter, with an appreciable flow
velocity gap between the two. In both sets of results, the circumferential mode number
associated with loss of stability becomes progressively smaller as L /¢ becotnes larger,

an exception being the case of L/a = 10 in the inviscid results.

2.5.3.5 Effect of Annular Gap

The critical flow velocities 7,, predicted by inviscid theory for different n and gap
sizes are shown in Figure 2.11. It is seen that, for any given n, the value of U,. keeps
diminishing as the gap becomes narrower. In addition, for all gap sizes of this particular
system, the overall critical flow velocity U}, is associated with n = 6 (and m = 1). For
the wider gaps (1/5, 1/10), stability is lost by single-mode flutter in the » = 1-5 modes;
however, for n > 6, loss of stability is by divergence, followed by restabilization and then

by coupled-mode flutter in the same mode (m = 1) at slightly higher flows. Similarly,
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for the narrower gaps (1/20, 1/100), instability is found to be single~mode flutter for
n = 1-6, or divergence followed by coupled-mode flutter for n > 7 (m = 1).

It is worthwhile to mention that the axial mode number m associated with each
U,. (though, not shown in Figure 2.11) does not generally vary systematically as n is
varied, except that for n > 6 it is always m = 1; for example, in the 1/10-gap system,
for n = 1-5, the axial wave number associated with U, is, respectively, m = 4,3,3,4,3

as seen in Table 2.11 (g; = 0}.

2.5.4 Internal and Annular Flows Together

It has been shown thaﬁ each flow by itself, whether internal or annular, is capable of
leading to instability of the system; nevertheless, if one of the two flows is present and
the system is stable, the addition of the second flow does not necessarily bring it closer to
instability, as may be seen in Figure 2.12, specifically for n = 3. Conversely, the addition
of the second flow may render a system stable that would be unstable if one of the two
flows were present alone. For instance, in a system subjected to a constant internal flow,
U; = 0.010, the system becomes unstable (in this particular circumferential mode) if the
annular flow is sufficiently high, namely U,. = 0.032. However, if U: had been zero, the
instability due to the annular flow would have occurred earlier, at U, = 0.025. Hence,
in this particular example, the effect of having U; # 0 has been stabilizing rather than
destabilizing. A different effect is obtained for U; = 0.030 and U, = 0, at which point
the system is unstable by virtue of internal flow alone; however, if U, is incremented,
ithe system is first restabilized, and then at higher U, flutter ensues once again.

The reason for this intricate behaviour of the system in the presence of both flows
together may be found in the Argand diagrams of Figures 2.5 and 2.8. It is seen that,
as each of the flows is increased, the flow-induced damping, Im({;} > 0, also increases,
subsequently reaching a maximum and then becoming smaller again with local non~
monotonic variations, before turning negative. Thus, in general terms, there is a middle
range of one flow that causes maximum stabilization wvhen the other flow is being varied.
Some of these observations are qualitatively similar to those by Hannoyer and Paidoussis

(1978) for cantilevered tubular beams simvltaneously subjected to internal and exiernal
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axial flows, although the dynamical behaviour of the latier system was not as intricate
as that of Figure 2.12 here, notably the fact that there are ranges of one flow for which
stability car only be achieved provided that the other flow is neither too low nor too
high.

Thus, the effect on stability of the two flows simultancously present is not as
simple as in the case of shells clamped at both ends, where the two flows acted purely
additively. The difference lies in the latter system being inherently conservative, whereas
the cantilevered system is inherently nonconservative (Paidoussis 1987).

The foregoing calculations were for inviscid flow. Similar results are expected to
be obtained when viscous effects are taken into account, the only diflerence being thal
the system is much more sensitive to changes in the annular flow, since the transition
from stability to instability occurs in a range of U, one order of magnitude smaller than
had been the case for inviscid flow. Nevertheless, the equivalent of Figure 2.12 with the
viscous flow model has not been generated because of the elaborate procedure involved

and the large amount of computing time required.

2.5.5 Summary

Section 2.5 has presented the results for the dynamical behaviour of the system of
cantilevered coaxial cylindrical shells, with the outer “shell” being rigid while the inner
one remains flexible. The system was subjected to internal flow and/or annular flow.
Investigated were the effects of varying annular gap, of varying length of the shell, and
of éteady viscous loads on stability of the system.

It was found that, whether the system is conveying internal flow or annular flow,
reducing the annular gap diminishes the critical flow velocities in all circumferential
modes, n; longer shells are gencrally associated with smaller critical flow velocities. In
the case of internal flow, steady viscous effects are stabilizing in all circumferential
modes, n. Such effects become destabilizing in the case of annular flow, but only
for narrow gaps; for wider gaps, however, they could be stabilizing if n is sufficiently
low. As far as overall critical flow velocities are concerned, internal dissipation plays

an important role in rectifying the strange finding that the critical velocity keeps on
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decreasing with increasing n as steady viscous effects are taken into account. When
both flows are simultaneously present, the effect of one flow on the system could be

stabilizing or destabilizing, depending on the current value of the other flow.

2.6 Conclusion

In Chapter 2, an analytical model was introduced to predict the dynamical behaviour of
the system of cantilevered coaxial cylindrical shells subjected to internal and/or annular
flow. In this model, potential-flow theory was used to formulate the unsteady fluid-
dynamic forces acting on the shells, the solution of which was subsequently obtained
by the Fourier transform method. Shell motions were described by Fliigge’s equations,
modified by Paidoussis, Misra and Chan (1985) to take into account steady viscous loads
that give rise to pressurization and traction effects on the shells. Due to the complexity
of the boundary conditions at the free end of the shells, the equations were solved by the
extended Galerkin method. Before the theory was actually applied to give theoretical
results for the system under consideration, some important aspects of the theory were
verified as 2 number of classical problems were solved and the results generated were

then compared with previously obtained experimental and analytical ones.
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Chapter 3

Flexible Shell in a Coaxial Conduit:

Effect of System PParameters

3.1 Introduction

The aim of this chapter is to complete some important items that had not been treated
in previous studies concerning the system of clamped-clamped or cantilevered coaxial
cylindrical shells within the scope of the theory developed in Chapter 2. A brief re-
view of the previous, related work is considered, which will be particularly useful in
understanding what will be covered in this Chapter.

For the system of clamped-clamped shells, although the eflect of seme system
parameters on the critical flow velocity associated with a specific circumferential mode
of the shells has been investigated in the past by Paidoussis et al. (1984,1985) and El
Chebair et al. (1989,1990), the influence of these parameters on the overall (i.e. lowest)
critical flow velocity, which is in fact the most important from a practical viewpoint, has
never heretofore been reported. Furthermore, it is also of interest to study the stabiiity
of the system when subjected to counter~current flows, since so far only the case of
co~current flows has been undertaken.

For the system of cantilevered shells, results in Chapter 2 (also Paidoussis, Nguyen
and Misra 1991) showed that steady viscous forces strongly destabilize the system, and

the overall critical flow velocity is greatly dependent on the amount of internal damping
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present in the shell material, assumed to be purely hysteretic. However, only limited
calculations into the effect of system parameters have been conducted; for instance,
investigations into how such an important parameter as the annular width affects the
stability of the system have up until now been carried out by means of inviscid theory
only.

This chapter is concerned with the system of a flexible clamped—clamped or can-
tilevered cylindrical shell in a rigid coaxial conduit conveying internal and/or annular
incompressible, viscous flow, Attention is first given to the influence of such system
parameters as wall-thickness and length of the shell, and annular width on the over-
all critical flow velocity. Steady viscous effects are then examined when the system is
subjected to counter-current, as opposed to co-current, flows in the case of a clamped-
clamped shell and to co~current flows in the case of a cantilevered shell.

Since the theory introduced in Chapter 2 is used in the present analysis, many
of the final results will be quoted or inferred from those of the previous chapter, thus
avoiding the repetition of the derivations. In addition, new results will be presented,
particularly those pertaining to the case of counter—current flows. It is also feit necessary
to reformulate the problem and reiterate the solution procedure. Finally, the notation
employed in this chapter is the same as that of Chapter 2; thus, no confusion is expected

to arise.

3.2 Solution Prccedure

3.2.1 Formulation of the Problem

Figu.e 3.1 shows the system of coaxial cylinders under consideration; it is almost iden-
tical to that considered in Chapter 2, except that, here, the outer cylinder is rigid. A
portion of the inner cylinder is flexible and thin enough to be considered as a shell; at
its upstream end, z = 0, the shell is assumed to be connected (clamped} to a semi-
infinite rigid cylinder of the same inrer or outer radii as the shell, for internal or annular
flow, respectively; at the downstream end, z = L, the shell is either clamped onto an-

other semi-infinite rigid cylinder {tlamped-clamped shell) or unsupported (cantilevered
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shell).

Shell motions are described by Fligge’s modified equations, Equations (2.1)-(2.3),
which take into account the stress resultants due to steady viscous effects. These equa-
tions are subject to the end boundary conditions of the shell: (i) if the shell is clamped-
clamped, the equations of motion must satisfy the boundary conditions (2.7) at both
z = 0 and z = L; (ii) if the shell is clamped—free (cantilevered), the equations of motion
must satisfy the boundary conditions (2.7) at £ =0 and (2.9)~(2.12) at z = L.

The perturbation pressures, giving rise to the unsteady radial forces acting on the
shell, are formulated by means of potential-flow theory, i.e. via Bernoulli’s equation

for unsteady, flow. The perturbation pressure p; associated with the internal flow is

determined by

where the perturbation velocity potential ¢; is governed by the Laplace equation (2.25)
subject to the impermeability boundary conditions (2.26).

Similarly, p, associated with the annular flow is given by

- 0¢. 9¢, .
Po = Po{ gy +1\Uo‘é—‘z“}, (3.2)

where ¢, is determined from the equation set (2.22)~(2.24), in which U, is to be replaced
by AU,; A = 1 if the annular fluid flows in the positive z—direction, and A = —1 if the
annular fluid flows in the negative z~direction. It is important to point out that, in the
case of counter-current flows, it makes no difference whatsoever as to which of the two
fluids flows in the negative z-direction if both ends of the shell are clamped. As far as
the cantilevered shell system is concerned, A = 1 is taken always for the sake of physical

realism; i.e., both internal and annular flows are co~current.

3.2.2 Unsteady Radial Forces

The functional forrs (2.31) and (2.33) are taken for the shell displacements and for the
perturbatisn pressures and velocity potentials. Once Equations (2.22) and (2.25) are

solved by means of the Fourler transform method, the perturbation pressures, p; and
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Po, ate delermined [rom Equations (3.1) and (3.2), respectively. The unsteady radial

force exerted on the shell is then given by ¢; = (p; — p,) .
Using the functional form (2.61) for ¢; and defining the dimensionless general-
ized force Qgmn according to {2.63) leads to the following expression, for the case of a

clamped-clamped shell,

- = 2
= UCp [ 1 _ Q L
o = 82 [~ ot (229
ﬁ 2
- PoZZn(&:Ei) (;_)\ﬁoa) }Hkm(&)da: (3‘3)

which may be inferred from Equation (2.64) by eliminating the ‘erms associated with
F., (tor the outer shell); in essence, U, is replaced by AU,, and Ny, (&) is eliminated
since no out—flow model is required for a clamped-clamped shell. Similarly, for the case

of a cantilevered shell,

- UG, [ 1 N A
Qimn = ﬁ B {p.Zm(a,e.) (; -~ ,a)
a 2
- Poz2n(a:5:'] (E— - ﬁoa) } {Hkm(&) + Nkm(a)} da. (3'4]

In Equations (3.3)—(3.4), Zi.(&,€;) and Z,,(&,¢;) are defined as

In(ae)
I:‘(&Ei),

I;(&ea)K,.,(&s) - In(&e)K:,(c'Eeo) ]

Zya(@,€) = I(aeo) K (ae:) — I,(ae:) K, (&)’

Zgn(c—!, E) =

Hym(&) and Ny, (&) were defined in (2.65) and (2.66), respectively; other dimensional

and nondimensional parameters were defined in (2.55).

3.2.3 Steady Viscosity—Related Stress Resultants

The viscous nature of the fluid results in both steady (time-independent) and unsteady
(time—-dependent) viscosity—related loads being exerted on the shell, the latter of which
is the subject of investigation of Chapter £. The steady viscous loads have already been
evaluated from the time-mean Navier-Stokes equations (Laufer 1953) for both systems
of clamped-clamped shells (Paidoussis, Misra and Chan 1985) and clamped-free shells
as in Chapter 2 (also Paidoussis, Nguyen and Misra 1991).
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In the case of co~current flows, the steady radial and axial viscous loads on the

shell are found to be [Equations (2.86) and (2.88)]

- 2b 2p;
P = {mpalffm - %Uf,-} z+ Pi{0,a) — P,(0,a), (3.5
m

Py = PiUE:' + pDU-rzci' (3‘6)

In the case of counter—current fows, which is herein considered for the system of
a clamped—clamped shell only, the same procedure as in Chapter 2 is used Lo determine

the steady viscous loads, giving
= 2p; 2b 2b 2 .
P = —{TUE;-FEZ—:E%UEW}W‘!‘ (W) PoqroaL"f‘Pi(O:ﬂ) ~ P,(L,a), (3.7)
P = P:‘Ufi - PaU-foi! (3‘8)

where P,(L, a) is the entrance pressure of the annular flow. The minus sign in Equation
(3.8) stems from the fact that the annular flow shears the shell in the ncgative z-
direction.

The determination of the differential pressures AP = P;(0,a) —FP,(0, a} in Equation
(3.5) and AP = P,(0,a) — P,(L,a) in Equation (3.7) requires that the static pressurcs
of both flows at either end of the shell be known. In the case of a cantilevered shell,
where the inner and annular fluids flow co—currently and merge into each other at the
free end of the shell, the exit pressures of the two flows are essentially the same. In
the case of a clamped-clamped shell, where the two flows can be either co-current or
counter-current and are separated throughout, it is assumed that the exit pressures
of the flows are also equal. This assumption by no means changes the nature of the
system; the only advantage resulting thereby is that the radial differential pressure P,;
depends only on the pressure drops of the two flows along the shell. For both types of

flows, the foregoing reasoning effectively leads to

2p; b
ap=ghs - 2 UL (3.9)

2. .2 Toot
be — rz,

3.2.4 Extended Galerkin Method

In the case of a cantilevered shell, the eztended Galerkin method is required to solve

the governing equations of motion subject to the free-end boundary conditions, since
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functional forms of the shell displacements satisfying simultaneously these two sets of
equations are not known to exist. For the present system, with only the inner shell
being flexible, the method is expressed by the first equation of (2.104). In the absence
of the free-end boundary conditions, as is the case of a clamped-clamped shell, the
extended Galerkin method gives the same results as does the usual form of Galerkin’s

method (Paidoussis ef al. 1984,1985). Interested readers should consult Section 2.3.4.

3.3 Theoretical Results

3.3.1 Introduction

Section 3.3 presents the results concerning the effect of varying length L, shell wall
thickness h;, and annular gap (b — a) on the stability of both clamped-clamped and
cantilevered shell systems. In most cases to be considered, the internal fluid is stagnant
(U: = 0). The analysis also covers the stability of 2 clamped-clamped shell subjected
to counter—current flows and that of a cantilevered shell conveying co—current flows.
Calculations were conducted with the series in Equation (2.31) truncated at m =3
for the case of a clamped-clamped shell (as was the case in Paidoussis, Chan and Misra
1984) and m = 6 for the case of a cantilevered shell (as was the case in Chapter 2). For
convenience, the material properties (steel shells and water as the working fluid) and the
geometric dimensions of the cylinders are the same as had been taken in previous studies
(Paidoussis et al. 1984,1985). In addition, the shells were considered to be subject to
internal dissipation which could be approximated by a hysteretic model as was used in
Chapter 2. However, here, an equivalent viscoelastic model® will be utilized instead,
whereby E;, appearing through «; in Equations (2.1)-(2.3), is replaced by E,-(l -+ x,.a%)
with x, determined from p; for each 2. Thus, calculations were performed with the
following set of parameters:
E;=2.0x 10" N/m®, 1 =03, p; =7.8x 10%kg/m®, 4 =5x10%, x; = %

1t is worthwhile to point out that this model has the advantage, over the hysteretic one, that it does
not increase the stiffness of the system and does not destroy tue self-adjoint character of the problem.
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1 1

¢=7m, b—-l—dm, h; =05x10%m, L=10m, p,-=po=103kg/m3;

in studying the effect of system parameters, a was held fixed, while b, &; or L could be
varied.

The system of a clamped-clamped shell will be considered first, followed by the
system of a cantilevered shell. However, before any results are presented, one important
remark, similar to that already given in Section 2.5.1, should be made here. Since the
theory is linear, the results generated are expected to be physically correct only for
sufficiently small-amplitude perturbations; hence, the intricate behaviour of the systemn

beyond the first loss of stability as predicted by the present theory may not be reliable.

3.3.2 Stability of the System of a Clamped—Clamped Shell

3.3.2.1 Effect of Shell Length

Shown in Figure 3.2 are the results for U, as a function of the ratio L/a in a j5—gap
system [i.e., (b~ a)/a = 1/10]. It should be reiterated here that J;, denotes the overall
{lowest) critical flow velocity, whereas U, refers to the critical flow velocity associated
with some particular n. Two variants of the theory have been used to calculate U3;
in the inviscid variant, the fluid is assumed to be purely inviscid while, in the viscous
variant, steady viscous effects of the flow(s} are taken into account.

The values of U}, predicted by the viscous variant of the theory is of the order
of three to six times smaller than that by the inviscid counterpart as L/a is varied
from 5 to 20. This destabilizing effect of the steady viscous {orces with increasing L/«
is not surprising since, as was already pointed out in Chapter 2 (Section 2.5.3.3), the
destabilizing effect of the crushing compressive load g3 appearing in Equations (2.1}~
(2.3) is in fact proportional to L; thus, these results quantify the influence of L/a on
stability.

In gencral, as L/a is increased, U}, decreases and so does the circumferential mode
associated with U?,. Consequently, if L is large enough, the shell will eventually lose
its stability by divergence in the n = 1 {beam) mode. This observation is similar to

that made earlier by Paidoussis and Denise {1972} for the system of an unconfined
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clamped-clamped shell conveying internal flow.

3.3.2.2 Effect of Shell Thickness

‘The variation of U}, with shell thickness, expressed nondimensionally as k;/a, is plotted
in Figure 3.3. Again, the steady viscous forces have a destabilizing effect on the system.
As may be seen from the figure, U}, increases with k;/a, whereas the circumferential
mode n associated with U, decreases. The effect of h;/a on U}, and n may be understood
by rensidering the strain energies resulting from circumferential bending and stretching
of the shell.

For shells with both ends supported, if the strain energies are plotted against
the circumferential wave number n, it will be observed that the bending energy &
increases with n while the stretching energy &, varies in the reverse manner, resulting
in a curve for the total strain energy & (i.e. & = & + &) of quasi-parabolic form
(Arnold and Warburton 1949). The approximate value of n at which & is minimum
may be determined when & = £;. Considering an element of the shell, so small as
to be approximated as a plate of thickness h;, it has been shown (Timoshenko and
Woinowsky-Krieger 1959) that for such a plate &, is proportional to A} while &, is

proportional to h;. The notional relationships between &, £, and h; are thus

Eb = Cbnh?, (E, = -%h,',
n

where C) and C, are some proportionality constants. Hence, equating &, = £, leads to

2 C

3

n' = —
27

Cbh"

which implies that, as far as ()i, is concerned, n decreases with increasing h;.
On the other hand, the energy £, required to overcome ¢&;, and hence to collapse the
shell, comes from the centrifugal fiuid—dynamic force, which is known to be proportional

to U? according to inviscid theory. Implicitly, &, is also proportional to U?,
& = Uf(n),

where f(n) is some function of the circumferential wave number n. It is apparent that
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the system loses stability when
Et — ef = 6; —_ sz(n) = 0,

which implies that U, will become higher if there is an increase in (&), due to

increasing h;.

3.3.2.3 Effect of Annular Gap

Figure 3.4 shows how U}, varies with the annular gap, expressed in the dimensionloss
form (b — a)/a. As might be expected, for both cases of inviscid and viscous (lows, the
system becomes unstable at lower flow velocities as the annular gap gets narrower. This
phenomenon has been well explained in the previous studies.

Firstly, the reduction in the annular gap results in a corresponding increase in the
virtual or added mass of the annular fluid; the increase in the added mass is associated
with higher fluid dynamic forces and hence causes an effective reduction in the siiflness
of the shell and a diminution of U},. Secondly, in the case of a viscous fluid, a higher
upstream pressure is required to push the fluid through a narrower annular gap, thus
resulting in a larger pressure drop along the shell and a stronger destabilizing effect due
to pressurization. Once again, however, these effects are here quantified explicitly, and
the effect on the overall stability is given. Another observation {rom Figure 3.4 is thal,
for the range of gap sizes considered, the circumferential mode n associated with U,
remains unchanged, at least for the parameters being studied.

It should be reiterated here that the results presented in Figures 3.2-3.4 were

obtained for a system with annular flow and a stagnant inner fluid (J; = 0).

3.3.2.4 System with Counter—Current Flows

Figure 3.5 compares the results for U,. as a function of n, obtained with the viscous
variant of the theory for two types of flows: co- and counter-current flows. In both
cases, the internal flow velocity was constant and taken to be U; = 0.010. It may be
seen from this figure that the system subjected to counter-current flows loses stability

at slightly lower flow velocities than when subjected to co—current flows. The difference
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between the two types of flows in terms of U,. ranges from virtually 0% {with respect
to U,, for co-current flows) at n = 1 to a2 maximum of 11.6% at n = 5. As far as
the overall critical flow velocity U}, is concerned, which happens to be associated with
n = 4, the difference is 8.3%.

The above results are specific to the value of L/a and of other geometrical param-
eters chosen for the calculations, and also to the assumption made earlier that the exit
pressures of the two flows are equal. Under these conditions, it was found that, in the
case of co—current flows, the static pressure of the annular flow is higher than that of the
inner flow; consequently, the entire shell is subjected to a radially-inward compressive
load, decreasing linearly from some certain value at z = 0 to zero at £ = L. In the
case of counter—current flows, about two-thirds of the shell from the downstream end
(z = L) are under circuraferential compression, and the last one-third is under ¢ircum-
ferential tension because the entrance pressure of the inner flow is higher than the exit
pressure of the annular flow. The maximum value of the compressive load in the latter
case is about 1.5 times that in the former case; this may explain the reductions in U,

for the range of » considered, despite the fact that a small portion of the shell is under

tension.

3.3.3 Stability of the System of a Cantilevered Shell

3.3.3.1 System with Co—Current Ilows

Figure 3.6 presents the results obtained for U, as a function of n for two cases of flows,
U; = 0and U; = U,, for which only the viscous variant of the theory was used. In
all circumferential modes considered, except n = 1, flutter of coupled-mode type (solid
curves) is preceded by divergence (broken curves, essentially coincident) at a much lower
flow velocity.

As far as the first loss of stability (divergence) is concerned, the system hecomes
unstable at a slightly higher flow velocity when U; = U, (U}, = 0.00331, n = 4) than
when U; = 0 (U}, = 0.00321, n = 4), although in the scale of the figure the two broken

curves are essentially coincident. The stabilizing effect as a result of U; = U, may be
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attributed to the fact that the steady viscous forces due to the internal flow increase the
axial tension in the shell and reduce the compressive hoop stress in the shell wall caused
by the annular flow, thus resulting in an increase in the stiffness of the shell, thereby
stabilizing the system. Furthermore, the inviscid results obtained in Section 2.5.4 lor
by Paidoussis, Nguyen and Misra (1991)] also showed a similar effect when U; = U,.
There is no doubt that the presence of internal flow in the present case would give rise
to an increase in U}, albeit small. It may be expected that a stronger stabilizing effect
would have resulted if U; had been taken to be larger, say U; > U, (provided, of course,
U; remained smaller than the critical value for instability by the internal flow alone).

Another observation from Figure 3.6 that should be touched upon here is that the
internal flow has a post-divergence destabilizing effect on the system. Nevertheless, as
has been mentioned earlier, any predictions beyond first loss of stability by the present
linear theory are Questiona.ble, in the sense that they may not occur in reality; hence,
physical explanations for such post—divergence behaviour of the system may not be too
meaningfu! é.nd are not attempted. Still, the results in Figure 3.6 nevertheless are of

academic interest and are therefore presented (here and in subsequent figures of Chapter

3).

3.3.3.2 Effects of Shell Thickness, Length, and Annular Width

Figure 3.7 shows the results for U}, as a function of the shell thickness h;/a for two
different lengths of the shell, L/a = 5 and L/a = 10. Although the type of instability is
flutter preceded by divergence, the stability of the system is affected by the parameters
pretty much in the same way as in the case of clamped—clamped shells considered
earlier. In other words, U}, increases and the circumferential mode n associated with
Uy, decreases with increasing k;/a; furthermore, for a given thickness of the shell, both
U:, and its associated n decrease as L/a goes up.

Figure 3.8 is similar to Figure 3.7 in the sense that it shows the variation of U,
with h;/a, but now for two different annular widths, Again, similarly to what was
observed for the system of a clamped-clamped shell, the smaller the annular width,

the lower the overall critical flow velocity U},; in addition, the circumferential mode n
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associated with U}, remains almost unchanged as the annular width is varied. It may
be worth reiterating once more that the results presented in Figures 3.7 and 3.8 (unlike

some in Figure 3.6) were obtained for the system with annular flow and a stagnant inner

fluid.

3.3.4 Summary

Section 3.3 has presented the results concerning the effect of length and wall-thickness of
the shell and annular width on the stability of both clamped-clamped and cantilevered
shell systems. Further investigation was made on the steady viscous effects when the
clamped-clamped shell system is subjected to co- and counter—current flows, or when
the cantilevered shell system is subjected to co—current flows.

It was found that the overall critical flow velocity is diminished when (i) the length
of the shell is increased, or (ji) the annular gap or the shell wall thickness is reduced.
Due to steady viscous forces, (i) the system of a clamped-clamped shell when conveying
counter—current flows loses stability earlier than when conveying co-current flows, and
(i) the system of a cantilevered shell subjected to co-current flows becomes stabilized

more with larger ;.

3.4 Conclusion

In Chapter 3, the theory in Chapter 2 was used to investigate some important aspects
concerning the stability of a flexible cylindrical shell within a rigid coaxial conduit.
Some new results of the unsteady fluid forces and of the steady viscous loads on the
shell were also presented for the case of counter—current flows. This chapter covered the
effect of wall-thickness and length of the shell, and of annular width on the stability of
the clamped—clamped or cantilevered shell system. Finally, steady viscous effects were
studied when the clamped—-clamped shell system was subjected to counter-current flows

and when the cantilevered shell system was subjected to co—current flows.
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Chapter 4

Experimental Verification

4.1 Introduction

There is little doubt that experimental verification is desirable in the development of any
new analytical model. The goal of the present experimental work was to validate—to the
fullest possible extent—(i) the theory presented in Chapter 2, and (ii) 2 new theory to be
developed in Chapter 5, for the study of instabilities of cantilevered coaxial cylindrical
shells subjected to internal and/or annular incompressible viscous flow.

In the tests conducted, measurements were made of the critical flow velocity of
a cantilevered cylindrical flexible shell, confined within & concentric rigid cylinder and
subjected to either internal flow or annular flow. In certain selected cases, frequencies
of oscillation of the shell were also recorded for various flow velocities.

This chapter is devoted to (i) describing the apparatus used in the tests, (ii)
explaining the testing procedure, and (iii) comparing experimental results with their

analytical counterparts obtained with the theory in Chapter 2.

4.2 Description of the Apparatus and Procedure

4.2,1 Apparatus

Figure 4.1 shows a schematic vertical cross section of the experimental setup for the

tests involving annular flow. In the upper half of the setup (above the horizontal surface

73
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marked “table”), a cylindrical shell made of silicone 1« ber is positioned coaxially within
a bigger cylinder made of transparent plexiglas; the free end of the shell is at least 19 mm
(3/4 inches) lower than that of the outer cylinder. The lower half consists mainly of an
axisymmetric hollow body with contracting sections near its top and bottom. Mounted
inside this body are a honeycomb and three screens, the role of all of which is to break
up large turbulent eddies and enhance mixing {hence uniformity) of the air flow that
comes in from a reservoir, pressurized and maintained by an air compressor(s). The
air flow, leaving the hollow body and entering the annular region, is further rendered
uniform and straight by a long solid cylinder with an ogival, streamlined jower end.
The annular region is ultimately bounded by the rubber shell and the plexiglas cylinder;
plexiglas cylinders of different inner radii give different widths of the annular gap. For
convenience, the same notation as was used in Chapter 2 {or Figure 2.1) is adopted

here. Shells and cylinders associated with annular flow had the following dimensions:

hi = 1.37mm, ¢ =24.84mm, b=28.02mm (1/10-gap),

b = 32.63mm (1/4-gap), b= 33.1mm (1/2-gap),

where the g/a-gap refers to the experimental setup with g/e = [b — (a + h;/2)]/a. The
value of g/a in the term “g/a-gap” is based on the designed width of the gap. However,
the actual values of g/a, which are determined from the test measurements and will be
used in all theoretical ca.lcula.ﬁons, may be somewhat different: 0.100 for the 1/10-gap,
0.286 for the 1/4-gap, and 0.506 for the 1/2-gap.

Figure 4.2 is the setup for the tests involving internal flow. It is very similar
to the setup for annular flow, the only difference being that an adaptor of gradually
decreasing inner radius is used to guide smoothly the air flow from the hollow body into
the shell. In the case of internal flow, only one annular gap (filled with quiescent fluid)

was considered with the following dimensions:
hi =1.37Tmm, ¢=24.79mm, b=63.35mm (3/2-gap).

The above-mentioned rubber shells were cast in a special mould. Liquid Silastic

E-RTYV silicone rubber was first mixed with a catalyst, called “curing agent”, and then
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injected into the mould. Such a mixture remained workable for 2 hours and reached
full physical strength in about 72 hours. Thc material properties of the rubber were
determined from measurements of the first—-mode frequency of oscillation and logarith-
mic decrements for a vertically hanging cantilever (solid rubber tube cast from the
same batch of silicone rubber as the shells) at various lengths (Paidoussis and des Trois
Maisons 1969). For the particular batch of silicone rubber used in the present study, it

was found that
E; = 2.8246 x 10° N/m?, p,; = 1158.8kg/m®, v; = 0.47, p; = 0.01948.

Here, it is recalled that E; is Young’s modulus; p,; is the density; v; is Poison’s ratio,

and y; is the hysteretic damping coefficient.

4.2.2 Measuring Instruments

The flow velocity in the annulus or within the shell was determined from the flow rate
measured by a rotameter (tapered-tube-and—float type) for low flows, or by an orifice
plate for high flows. Both devices were located upstream of the apparatus. With the
rotame.er, the readings taken were air temperature, outlet pressure of the rotameter,
and percentage of the calibrated flow rate under prescfibed conditions; the flow rate
was then calculated according to the manufacturer’s instructions. With the orifice, the
readings of air temperature, inlet pressure and differential head (pressure drop) across
the orifice were recorded; the ASME-recommended procedure (for instance, Bean 1971)
was then employed to calculate the flow rate. Orifice plates having holes of various sizes
were available to accommodate a wide range of flow rates.

To detect small-amplitude vibrations of the shell induced by the flow, two fibre—
optic sensors (MTI KD-100 “Fotonic” sensors) were mounted 90° azimuthally apart
and 25mm {1 inch) above the clamped end of the shell. The side and top views of such
a setup are shown in the photographs of Figure 4.3. The signals produced by these
sensors were fed into and processed by a dual-char- * "Iewlett—Packard 5420A Digital
Signal Analyzer, which appears as three separate decké in the left half of the photograph
labelled Figure 4.4. The two U-tubes (grey and red) near the centre of this photograph
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are manometers of different sensitivities, giving different ranges of differential heads
across the orifice. Cross Spectral Densities (CSDs), generated by the analyzer, revealed
the dominant frequencies of the shell excited by the flow. The corresponding phase plots,
showing the phase differences of the shell displacements monitored by the two sensors,
helped (to a certain extent) identify the modes associated with such {requencies. The

onset of instability of the shell was assessed visually.

4.2.3 Testing Procedure

Tests, involving either annular or internal flow, were all conducted with great care and
with the same preparatory steps. The testing procedure to be sequentially described

below applies to annular flow. Variations, if any, for experiments with internal flow will

be pointed out later.

1. First of all, the critical flow velocity was obtained for the rubber shell with length-
to-radius ratio L/a (5 < L/a < 8). The experiment was repeated at least 6 {and
at most 16) times, so that as many values of the critical flow velocity were taken,

and hence the average value and the uncertainty involved could be calculated.

2. The fibre-optic sensors were then set up and calibrated in such a way that the

vibration signals given by these sensors were in the linear range.

3. The flow velocity was incremented up to (but not including) the critical limit
obtained in Step 1, to avoid damage to the fibre—optic sensors. For each new flow
velocity, a CSD was obtained after averaging 30 time records to eliminate noise.

Step 3 was repeated at least once.

4. Steps 1-3 were carried out for g/a = 1/10 and g/e = 1/4 by using the appropriate
plexiglas cylinders. For g/a = 1/2, only Step 1 was conducted while Steps 2 and
3 were skipped due to the difficulty in maintaining steady flow; it should be note
that tests with ¢/a = 1/2 involved very high flows, and the pressure(s) of the air
reservoir was not high enough to keep such high flows steady or quasi-steady for

a long period of time.
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5. Steps 1-4 were repeated as the length of the shell was gradually reduced from
Lfa = 8 to L/a = 6 in steps of approximately 0.5. Step 1 continued to be

repeated as L/a was further reduced from 6 to 5.

6. To ensure the repetition of the above-recorded results, Steps 1-5 were repeated

with another nominally identical shell.

For experiments with internal flow, the same procedure was followed, except that
Step 4 was skipped since only one annular gap was considered (g/a = 1.5); nevertheless,

the effect of quiescent annular fluid on the critical flow velocity was also investigated.

4.3 Experimental Results—Annular Flow

4.3.1 Observations

In general, instabilities are associated with very large displacements of the the shell(s).
Both types of instabilities—divergence and flutter—were encountered in certain tests
involving annular flow, but flutter occurred in all the tests conducted. With g/a = 1/10,
divergence and flutter were both observed, but only for L/a = 8 which was the length
of any newly moulded shell. At such a length, when the flow velocity was sufﬁciently
high, the free-end cross section of the shell became oval and remained stationa.rj‘-r,.sig-
nalling divergence in the second circumferential mode (n = 2). As the flow velocity was
further increased, the oval cross section started oscillating with its major and minor
axes exchanging their places; this is flutter with n = 2, and a photograph of the cross
section in motion is shown in Figure 4.5. In one test run with the first nominal shell,
divergence was observed at the flow velocity of 24.08 m/s, and flutter at 25.35m/s. For
L/a £ 7.5 (the shell was shortened by A(L/a) = 0.5 each time), divergence was hardly
noticeable before the shell fluttered.

With g/a = 1/4 and 1/2, only flutter was observed but it was short-lived. When
the flow velocity was large enough, the cross section of the shell became oval and then
oscillated for about 3 cycles; subsequently, the cross section became flattened by the

flow—the inner surface of the shell near the free end touched the opposite side (i.e., the
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shell became closed at the top). After that, the shell started flapping violently against
the inner wall of the plexiglas ¢ linder.

It is worthwhile to reiterate here that instabilities discussed so far were associated
with n == 2. Flutter with n = 3 also took place; however, it was observed only once

when the first nominal shell was tested with g/a = 1/10 and L/a = 5.5.

4.3.2 Frequencies of Oscillation

Figure 4.6 shows a typical cross spectral density (CSD) and its corresponding phase
plot, for which g/e = 1/4, L/a = 8, and U, = 33.0m/s. The dominant frequencies,
given by the abscissae of the peaks of the three “mountains” in the CSD, and their
associated phase angles are (13.3 Hz,—136.6°), (21.1 Hz,—177.9°), and (49.6 Hz,—178.1°).
Such peaks are identified v the centres of the three broken circles as seen in Figure
4.6(a}); their relative heights indicate that the second peak, which corresponds to 21.1 Hz,
represents the most dominant frequgncy. For the reasons to be discussed in the coming
footnote, (33.0m/s,13.3Hz) is plotted in Figure 4.8(a), while (33.01n/s,21.1 Hz} and
(33.0m/s,45.6 Hz) are plotted in Figure 4.8(b).

The analytical results (by the theory in Chapter 2) and the measured dominant
frequencies? (from the CSDs) are presented in Figures 4.7 and 4.8 for g/a = 1/10 and

1The way these measurements were plotted in Figures 4.7 and 4.8 was based on a number of important
observations, which will be discussed below using the case of g/a = 1/4 as an example.

Firstly, preliminary calculations presented earlier in Chapter 2 (Section 2.4.2) showed that predicted
frequencies of a cantilevered shell in vacuo were very close to test measurements by Gill (1972). Moreover,
theoretical results as well as experimental data obtained herein showed that frequencies of the shell
(subjected to annular flow) in all modes varied very slowly with flow velocity. From these two observations,
it can be inferred that a data point (11.5m/s,10.9 Hz) with a phase angle of approximately 180°, for
instance, should be put in Figure 4.8(a) (n = 1) rather than Figure 4.8(b) {n = 2), in which the lowest
frequency (m = 1) corresponding to U, = 12m/s is of the order of 16 Hz. For data points with their
frequencies ranging from about 20 Hz to 26 Hz, there was no difficulty in deciding that such points should
be plotted in Figure 4.8(b) since (i) they are closest to the frequency curve associated with n = 2 and
m = 2, and (ii) they are too far away from any other curve associated with either n # 2 or m # 2,

Secondly, due to the fact that the two fotonic sensors were positioned 90° azimuthally apart, the
phase angle corresponding to a frequency excited in n = 1 or n = 3 could vary from 0° to 180° (after
time-record averaging), depending on where the sensors happened to be relative to the oscillating cross
section of the shell (Figure 4.9); for n = 2, the phase angle is always 180°, at least in principle. As can
be seen from Figure 4.8, not only are the (n = 2,m = 3) and (n = 3,m = 3) frequency curves nearly
coincident, they are also equally close to the data points having their frequencies between 47 Hz and 52 Hz.
Thus, such peints may be put in either Figure 4.8(b) or Figure 4.8(c). All the points (11.5Hz to 52 Hz)
plotted in Figure 4.8{b) are associated with phase angles of the order of 180°; of course, some of them,
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g/a = 1/4, respectively. In both cases, L/a = 8 and the experimental results were
obtained for flow velocities ranging from the smallest measurable value up to (but not
including) the critical one. As seen from the figures, the agreement between theory and
experiment is generally good—even excellent for n = 2.

In the case of g/a = 1/10, only the second circumferential mode {n = 2) was
excited; as an illustraiion, Figure 4.7(a) gives the analytical resuilts for n = 1 without
experimental counterparts. For n = 2, the measured frequencies decrease slightly with
flow velocity and are seen to be associated with the lowest three axial modes (m = 1-3).
With g/a = 1/4, all three lowest circumferential modes (n = 1-3) were excited, with
n = 2 being the main one, since the dominant frequencies in this mode appeared in all
the CSDs recorded. Here, too, the frequencies of n = 2, and of n == 3, vary the same
way as those in the case of g/fa = 1/10 {n = 2). What is different here is the slight
increase in the measured frequency of n = 1, followed by a relatively quick drop when
the flow velocity is near the critical value (41.4 m/s).

In general, reductions in the frequencies associated with n = 2 can be attributed
to the flow pressurization that tends to compress the shell, thereby reducing the effective
stiffness of the system. On the other hand, increases in the n = 1 frequencies are likely
due to the axial tension in the shell resulting from the shearing forces exerted by the
annular flow on the (outer) shell surface.

A close look at all the CSDs of g/a = 1/4 (not shown here) indicates that the
frequencies of n = 1 were most dominant for U, < 22.3m/s; they then subsided, while
those of n = 2 became stronger as U, was increased further; the latter were found

to be most dominant when U, > 25.5m/s. Consequently, the dominant mode, as the

particularly those between 47 Hz and 52 Hz, could have been in Figure 4.8(c), while the ones presently
appearing in this figure have their phase angles much less than 180°. On the other hand, although the
point (33.0m/s,13.3 Hz) and those in its neighbourhood are closer to the {n =: 2,m = 1) curve than the
{n = 1,m = 1) curve, they are plotted in Figure 4.8(a), instead of Figure 4.8(b), because their phase
angles are of the order of 130°,

As a final note, for g/a = 1/4 and L/a < 8, the lowest predicted frequencies associated with n > 4 for
any subcritical flow velocity were greater than 80 Hz, and no frequencies of such a magnitude or greater
were found in any of the CSDs recorded. These findings imply that frequencies in n > 4 were never
excited to a sufficiently sizable amplitude by the flow for the above-mentioned values of g/a and L/a;
consequently, this casts some doubt on the experime;.tal results—frequencies and critical flow velocities
associated with n = 4—reported previously by El Chebair et al. (1989) for a similar clamped—free shell.
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flow velocity approaches the critical value, is also the one in which the shell becomes
unstable. A sirmuler pattern was also found in the CSDs of g/a = 1/10, where the
dominant frequencies were associated m = 1 at low flows and with m = 2 at higher

flows (these frequencies were associated with the same n = 2 mode).

4.3.3 Effects of L/c and g/a

The results for the overall critical flow velocity U;, as a function of L/a are shown in
Figure 4.10{a) for g/c = 1/10, in Figure 4.10(b} for g/a = 1/4, and in Figure 4.10(c)
for g/a = 1/2. In these figures, pairs of small black circies plotted for certain values of
L/a represent measurements obtained from two nomiinally identical shells.
Qualitatively, theory and experiment agree very well in terms of (i) the critical
circumferential mode n associated with U, (here, n = 2) and (ii) variations of U,
with L/e and g/a; U, generally becomes larger as L/a is reduced or g/a is increased.

Quantitatively, the degree of agreement varies not only with L/a, but also with g/a:

¢ In Figure 4.10(a), for which g/a = 1/10, there is very good agreement betv.\l/een
theory and experiment for L/a > 6.5; the discrepancy (based on the larger test
value) at L/a = 6.5 is calculated to be 11.7%. For L/a < 6.5, measurements
for U}, start to level off, hence widening the gap between theory ard experiment.
This could be attributed to imperfections of the apparatus used; specifically, the
shell and the cylinder were not perfectly concentric. Thus, for a narrow annular
passage as in the present case, even a small non-alignment of the two axes could

result in relatively considerable non—uniformity of the annular region.

o In Figure 4.10(b), for which g/a = 1/4, good agreement is also found between
theory and experiment. As seen from the figure, the velocity gap between the
solid curve and the data points plotted is rather uniform; nevertheless, in terms
of percentage, the difference calculated varies from 25.4% at L/a = 8 to 12.1% at
L/a=35.

e Of the three, Figure 4.10(c) with g/a = 1/2 shows the best agreement between
theory and experiment; the discrepancy is of the order of 4% for L/a < 7. It
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becomes larger for L/a > 7; however, unlike the case of g/a = 1/10, the wider
velocity gap between the results for such a range of L/a seems to be due to some

peculiarity (to be explained next) in the theoretical resulis.

It is seen from Figure 4.10 that each of the solid curves plotted exhibits a “bump”, which
seems to grow more pronounced with ¢g/e; it signals a switch from the divergence- to
flutter-type instability as L/a is further reduced. The type of instability predicted by
different parts of the curves is indicated either by a “D” for divergence, or by an “F”
for (single-mode) flutter, as shown in the figure. In general, theoretical predictions for
U, are all higher than their experimental counterparts. In addition to the above-stated
reasons, discrepancies between theory and experiment may also be due to the fact that
unsteady viscous effects have been ignored by the theory in Chapter 2; they are treated

in Chapter 5, and then further comparison will be presented.

4.4 Experimental Results—Internal Flow

4.4.1 Observations

There were certain similarities and differences between clamped—free systems subjected
to annular flow and those subjected to internal flow regarding their dynamical behaviour.
In the case of internal flow, the only type of instability observed was flutter, which was
always associated with n = 2. Flutter was found to be quite violent and remained so
even if the flow was slightly reduced. It might be of interest to mention that the first
shell tested for instabiljiy was torn apart because of the intensity of the flutter and high
stresses in the shell. Once flutter had occurred, the free—end cross section of the shell
became oval to such an extent that one side of the inner wall of the shell touched the
opposite one; the cross section appeared to have the shape of two bows with their main
axes of symmetry being perpendicular to each other.

Although only one annular gap was considered in the case of internal flow, the
effect of the quiescent annular fluid (air) on the stability of the shell could easily be

examined quantitatively by removing the plexiglas cylinder, thus making g/a — co.
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Table 4.1 shows experimental results of the critical flow velocity U?, with and without
the plexiglas cylinder installed; these results were obtained from tests on one shell.
For three different lengths of the shell tested, there were hardly any changes in U, as
g/a was increased from 1.5 to oo. Indeed, this observation was expected; it may be
accounted for by two main factors. Firstly, the air density is relatively low, and hence
the corresponding inertial effect is also small. Secondly, the inertial effect of the annular
fiuid changes dramatically with g/a only when g/a is very small; it then levels off when
g/a is sufficiently large; however, the violence and amplitude of the flutter precluded

using very small g/a (e.g., g/a = 1/10).

4.4.2 Frequencies of Oscillation

Figure 4.11 shows the analytical and experimental results for the frequencies of the
shell (L/a = 8) at various flow velocities. The CSDs and their corresponding phase
plots indicate that the dominant frequencies excited are mostly associated with n = 2.
In general, the measured frequencies slightly increase with flow velocity; this is mainly
due to the flow pressurization that tends to expand the shell radially, hence rendering
it stiffer. On the other hand, there are slight reductions in the predicted frequencies
associated with all 7n # 1 (except the lowest two frequencies of n = 3), at least for the
values of n considered. In spite of this opposite trend, theory and experiment are still in
fairly good agreement; for a typical case of n = 2 and m = 2, the discrepancy between

theory and experiment varies from about 8% at U; = 29m/s to 24% at U; = 64 m/s.

4.4.3 Effect of L/a

The effect of L/a on the stability of the system is presented in Figure 4.12, where U
is plotted against L/a. Both theory and experiment agree that (i) Ui} increases as L/a
is reduced, and (ii} the only type of instability incurred by the shell is flutter, which is
associated with n = 2 for the range of L/a considered. Quantitatively, the agreement
is considered to be fairly good, and its extent appears to be a function of Lfa. Tt

becomes better as L/a is increased; predictions for U} differ from the test results by an
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amount varying from 27.0% (based on the smaller test value) at Lfu = 5 to 3.5% at
L/a=17.9. It is also noted that the theoretfical results obtained herein are lower than

their corresponding experimental counterparts; this is opposite to the case of annular

flow.

4.5 Conclusion

Chapter 4 covered the experimental work conducted to complement and validate (to the
extent possible) the analytical model given in Chapter 2 for the study of the stability
of cantilevered coaxial shells subjected to internal and/or annular viscous flow. For
the analytical model developed in Chapter 5, further comparison between theory and
experiment will be made in Section 5.4.2. Presented in this chapter were (i) the detailed
description of the apparatus employed in the tests and of the testing procedure, and (ii)
test measurements as well as analytical results for frequencies and critica~1 flow velocities
of shells under various flow and geometric conditions. The following main findings were

obtained:

¢ In the case of annular flow, dominant frequencies u’ the shell, appearing in the
CSDs (Cross Spectral Densities), slightly decreased (n # 1) with increasing flow
velocity and agreed very well with analytical results. As far as the overall {lowest;
critical flow velocities U}, are concerned, theoretical predictions were somewhat
higher than experimental results; nevertheless, theory and experiment were gener-
ally in good agreement, altliough the extent of the agreement varied with annular

gap width and length of the shell.

¢ In the case of internal flow, dominant frequencies of the shell slightly increased
with flow velocity and verified the analytical results best at low flow velocities.
Furthermore, predictions for U were lower than, but in fairly good agreement

with the test measurements.
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Chapter 5

Viscous Theory

5.1 Intrcduction

As was mentioned in previous chapters, the viscous nature of the fluid flows gives rise
to both steady and unsteady viscosity-related forces acting on the shells. While the
steady viscous forces were evaluated in Chapter 2 for the system of clamped-free coaxial
cylindrical shelis and by Paidoussis et al. (1985) for the system of clamped-clamped
shells, the unsteady viscous forces have heretofore been substituted by their inviscid
counterparts formulated by potential flow theory, as no theoretically sound model has
ever been proposed for the determination of these forces. Thus, the unsteady viscous
effect, if any, on the stability of the system still remains to be investigated.

The first attempt to evaluate the unsteady viscous forces exerted on coaxial cylin-
drical shells conveying fluid was made by El Chebair et al. (1990). Nevertheless, the
problem did not seem to be properly formulated in the sense that such forces should
have been determined from the solution of the momentum (Navier-Stokes) equations; in
fact, a full solution of these equations was never achieved in that study. It is well-known
that any viscous flow field is governed by the Navier-Stokes equations, which must be
solved in order to obtain information about the flow field.

This chapter is devoted to the development of a new analytical model to study the
unsteady viscous effect on the stability of the system under consideration. The chapter

consists mainly of four parts: (i) formulation of the problem, (ii} procedure to solve

84
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the equations governing the shell motions, (iil) procedure to solve the Navier-Stokes
equations and determine the unsteady viscous forces therefrom, and (iv) comparison
of the results given by the new model with those obtained by the theory in Chapter
2 and experimental data presented in Chapter 4. Because of the enormous amount of
computing time required in the solution process, the analysis is carried out only for the
system involving a cantilevered flexible cylindrical shell concentrically located inside a
rigid cylinder, with incompressible fluid flowing in the annular region and with stagnant
fluid within the flexible shell; even so, because calculations had to be done outside McGill
University (and thanks to generously donated but limited computing time by CRAY

Research Inc.), calculations could only be performed for a limited number of cases.

5.2 Formulation of the Analytical Model

5.2.1 System Definition and Assumptions

Shown in Figure 5.1 is 2 system of coaxial cylinders. The outer cylinder is rigid and is
assumed to be infinitely long. A portion, of length L, of the inner cylinder is flexible and
thin enough to be considered as a shell; at its upstream end, z = 0, the shell is assumed
to be connected (clamped) to a semi-infinite rigid cylinder of the same outer radius as
the shell; at the downstream end, z = L, the shell is unsupported (cantilevered shell).
The basic notation is reiterated here for the reader’s convenience. The inner shell
has mean radius a, and the outer cylinder has inner radius 4. The shell has thickness
h such that /e < 1, and is assumed to be elastic and isotropic with Young’s modulus
E, density p,, and Poisson’s ratio v. In general, incompressible fluid of density p is
flowing in the annulus with mean flow velocity U/. Shell motions are considered to be
small enough so that a linear shell .theory may be utilized and the shell-motion-induced
perturbations to the flow may be derived from linearized theory. These perturbations,
which lead to unsteady viscous forces acting on the shell, will be determined by solving
the linearized Navier-Stokes equations, considering the entire flow field to be viscous.
The steady viscous loads resulting from pressure drops and traction effects on the shell

have already been given in Cliapter 2, and they can readily be incorporated into the gov-
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erning equations of motion. Finally, flow perturbations are assumed to vanish upstream

and far downstream of the flexible shell.

5.2.2 Governing Equations of Motion

Like the theory presented in Chapter 2, shell motions are herein described by Fliigge’s
(1960) linear shell equations, Equations (2.1)—(2.3) [the subscript 7 in these equations
will be omitted herein since it is no longer necessary|, as modified by Paidoussis, Misra
and Chan (1985) to take into account the stress resultants due to steady viscous effects.

As internal dissipation in the shell is modelled by viscoelastic damping, Young’s
modulus E, present in ~ [defined for Equations (2.1)-(2.3)] and in ¢, ¢; and g3 [Enua-
tions (2.98)], needs to be replaced by E(l + x%) , where y is the viscoelastic damping

coefficient. Hence, Equations (2.1)—(2.3} take on the new form

a 1] 1 (1) ]. ie ! 1 L1} m 1 las
(l-i-xa){u +§(1—v)u +§(1+V)U + vw +k[§(1-—v)u -w +§(1—V)w ]}

. ) t 62U
:+ [qlu" +qv +w)+alv —w )] - 1(%? - i—”h) =0, (5.1)

(1 + x%){-lz-(l Fohu 0T+ %(1 ~vp w4 ’“[%(1 =) - '12'(3 - ”)w".] }

Hn .e . azv /[
+ [a0" + gs(v” +w)] “’T(a—z-m =0, (5.2)

(1 + x%){v,-u‘ +v +wtk [%(1 - u,-)um - - %(3 — o)+ Vit 2w + w]}

” t . an 62w r .
"’[%w +g(u —v +w )]+7(@—p‘i—h)=0, (5.3)
where
e a() L 8() _1(5)2 _pdt1-vY) _, 8 8
(Y=a75 () =% k=gl3) » 7= E y Vi=atog t g

u{z,9,t), v(z,6,t) and w(z,8,t) are the axial, circumferential and radial displacements
of the middle surface of the undeformed shell; ¢;, ¢; and ¢z denote the nondimensional
forces associated with steady viscous effects {Section 2.3.3); ¢;, ¢» and g, represent
the unsteady viscous forces acting on the shell in the axial, circumferential and radial

directions, respectively (Section 5.2.3).
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Shell motions must satisfy the following boundary conditions (Fliigge 1960), as
already described in Section 2.2.2,

(i) at z=0,
u=v=w=0, %‘:—=0; (5.4)
(ii) at z=L,
o Frw-kvw' = 0, (5.5)
v v +3k(v —w') = 0, (5.6)
w +vw —w —u = 0, (5.7)
—w" = (2-v)u" + (3 —2' V)v“ - (1 ; ”)u" +4' = 0. (5.8)

Section 5.3.2 will present details of how Equations (5.1)-(5.3) subject to boundary
conditions (5.4)—(5.8) may be solved.

5.2.3 Unsteady Viscous Forces

Unsteady viscous forces on the shell are due to shell-motion-induced perturbations in
the viscous flow field. These perturbations are assumed to be small and thus may be
considered to be the solution of the linearized, time-dependent Navier~Stokes equatiéns.
This section will be focussed on the derivation of the appropriate form of the Navier—
Stokes equations, from which linearization may be carried out.

The flow in the annulus is assumed to be either fully-developed laminar or fully-
developed turbulent; in addition, the fiuid is assumed to be incompressible and also
isentropic. It is worthwhile to reiterate here that the fluid within the inner flexible shell

is quiescent. If the flow is turbulent, the flow field will be described by the following

continuity and momentum equations

av;
— =9 .
az; } (5.9)
v; 8v; _ 18P 8 Vi ——
5 i dz; ~ poz; Oz ("’“axi -V VJ) ’ (5.10)

where ¢ and j may be 1, 2 or 3; V; is the :th component of the mean—flow velocity in

Cartesian coordinates; V; is the #th component of the turbulent fluctuating velocity;
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P is the mean—flow static pressure, and v, is the molecular kinematic viscosity of the

fluid, which is a fluid property and is constant. It should be noted that Equation (5.10)
still holds good if the flow is laminar, since in that case V_"FJ'- =0.

To evaluate the terms TV; in Equation (5.10), a turbulence model will be required.

Boussinesq’s {1877) eddy viscosity concept assumes that, in analogy to the viscous

stresses in laminar flows, the turbulent stresses are proportional to the mean—-velocity

— av; av; 2
-v'v! = LA N I o N
V: f “‘(ax,- -+ 31:,') 3K5;,, (5.11)

where v is the eddy (or turbulent) kinematic viscosity which, in contrast to the molec-

gradients:

ular kinematic viscosity v,,, is not a fluid property but depends strongly on the state of
turbulence; v; may vary significantly from one point to another and also from flow to

flow; K is the kinetic energy of the fluctuating motion, given by

K= [+ %R +W% ), (5.12)
and 6;; is the Kronecker delta, having the following values
1 ifi=37,
0 if 5.

The distribution of v; is determined by the particular turbulence model employed in the

bi; =

analysis. In this theory, the so—called mixing-length model suggested by Prandtl (1925)
will be used. This is the simplest possible model for dealing with the turbulent (or
Reynolds) stresses. In view of the computational difficulties that will become evident
in due course, its use is justifiable. Details of the evaluation of v, using this turbulence
mode] are presented in Appendix E.

With the substitution of (5.11) into Equation (5.10), the following equation is
obtained

v; av;  10P o av; av;  av; 2.0
a TV dz;  pd + dx; {”"‘ax,- MG (63:,- + Iz B
or
oV v 135 8tV; Ay [ 9V, av;
at +V; dz;  p o + (vm 1) dix; + dz; \ 9z; + dz; |’ (5.13)

where P, = P + (2/3)pK represents the total pressure in the flow, and the fact that

8 ravi\ 8 (av;\ _
Vtaxj(aa:;) - ”‘ax.-(az,-) =0 (5.14)
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by virtue of Equation (5.9) has been taken into account.

Equation (5.13) may also be rewritten in vector form as

Vv 1
aa_t +(V-V)V = —VR + (Vm + V) VIV + (Vi - V)V + (VV). Vi
or
v 1 .
T + (V-V)V = —;th + vVV + SVV'V)V + (VV) 'VV) (5.15)
) (b)

where VV is called a dyad {see the following development or, for example, Wills 1931);
vV = Uy + 4, and hence Vv = Vi, since vy, is a constant, as mentioned earlier. It is
further noted that, in most turbulent flow regions, 14 is much larger than v, and thus
the latter may be neglected if desired.

Because the flow is axisymmetric, it is convenient to express Equation (5.15) in
cylindrical coordinates. Part (a) of Equation (5.15) can easily be found in most text
books of Fluid Mechanics [for example, Schlichting (1968)], while Part {b) will be eval-

uated below. In cylindrical coordinates,
8 13 2]
o - a(g) ralid) s of2)
V = eV, + eV + eV,
v = vpt+wulr) = vr),

where v = v(r) results from the axisymmetric nature of the flow and from the assump-
tion made earlier that the flow is fully—developed; the distribution of v(r) in the annulus

is given in Appendix E. Since

e = (o) o) #0(2) +o2)] s e e

_ av, d_v) (an d_V) (BV, dv)
- e’(ar dr te Ar dr te: or dr/’

and
(FF)eree + (FhJeres + (FF)eres
V)% = | (5o (5w + (HJeen | o]
+ (%)ezer + (61; )ezeg + (%T—;i)ezez

. BV,.dv) (l%d_u)_i_ 3V, dv
= e e\ 50 ar e‘(%?)’
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it follows that

dv\ (. /8V. aVy 18V, vy 9V,
v . = | — -t =7 o
(Vo V)V 4 (VV) - Vo (dr){z(ar )e,+(ar - aa)e“+(ar + a;)“‘}'

b

Equation (5.15) is in fact equivalent to three independent equations corresponding to

the r—, - and z—direction, namely

v, v, Vpdv, Vi Vel _ ,dvdV, 19F
{6t+var+ 38 T T e[ T *TIer s

138/ 9V, V., 10%, @8, 24V,
+"{: (%) gt es - 6

at a8 " r 98 ) dr\ r " r 30,/ pr o0

14 ( -6‘_1-’&) : K’L 10%, 0%V, 248V,
rar\ or

Ve Ve OV, V Vi
{QY&JFT,,;?_&JF__&EJ AL ae} _ d_V(?ﬁ 16\/) 1 9P,

225 T Ty (5.17)

5t F T a\3r Y 3z) " 7oz
19 oV, 18, 3%,
{Fa"( ar ) T T [ (5.18)

The continuity equation in cylindrical coordinates has the form

v, vy Vyav, vz dv/av, oV, 18P
+V, =

1

¢

-}%(rv,-) + l‘?;e + 6:;;“ = 0. (5.19)

Equations (5.16)—(5.19), describing the mean flow characterized by the velocity V

and the total pressure F;, provide the basis for the derivation of the equations governing

the flow perturbations associated with shell motions. It is important to mention here

that, in the flow under consideration, there are two types of disturbances. The first

type of disturbances is due to turbulent eddies, whereas the other is induced by shell

motions. The combination of these two types of disturbances is often referred to as

“unsteady turbulence.” The word “mean” that has been used since the beginning of
this chapter is intended to be associated with the first type of disturbances only.

Each component of V as well as P, may be regarded as consisting of a steady part

and a small shell-motion-induced perturbation, namely

69

Vi=v, Vo=vg, Ve=U(r)+vs, Pfp=P+p, (5.20)
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where U(r) and P denote the steady parts of V,, and P;/p, respectively, while the steady
parts of V, an?! V; are zero, since the flow is axisymmetric; v,, v4, vz, and p are flow
perturbations associated with the components of V and P;/p.

With the substitution of (5.20) into Equations (5.16)~(5.19) and with the assump-
tions that (i) the steady flow also satisfies the continuity and Navier-Stokes equations
and (ii) all quadratic terms in the flow perturbations are negligible with respect to the

linear terms, the following equations are obtained

dv, dv. | _ d_v(%) dp
{ +U(r ) } - 2dr or ar
du, v 1 a%, v, 2 Bvg
{?5?( ar) e T v e il CR G

(o ) o S, 1oy 1%

ot dz dr r 08 r d
18/ 9y 1 vy D%y 2 8vu,
+ {a(a_) dtaam tam tas | G
Ovs dv, dU _ dv(% %) ap
{ . U, +EF”’} = a\3r " 9z) 3z
13/ 8v,\  138%, &%,
¥ ”{:5:("5)+r—zw+w ! (5-23)
and
14 1305 du,

el G Bliel v Sl

which are subject to the no-slip condition at the interfaces with the cylinders: at the

outer surface of the flexible shell, r = a + h/2,

3u v ow
e U= v = (5.25)

where u, v and w are the axial, circumferential and radial displacements of the shell,

=0, (5.24)

vr =

respectively; at the inner surface of the rigid cylinder, r = b,
v = vy = v, = 0. (5.26)

1t is seen that v,, vy, v; and p are fully specified by Equations (5.21)~(5.24) and,
in principle, can be solved for. Once these perturbations are determined, the unsteady
viscous forces (or stresses) on the shell are given by (Schlichting 1968):

- _y{au,+a}
= = Oz = P\ 3. 7 3y

, (5.27)
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_ _ i vy 13v, ,
@ = O = Pv{rar( . ) + =58 } K (5.28)
dvr
@ = O = {—(pp)-}-Zpu at:_} , (5.29)
23

where pp is the perturbation pressure, as defined in (5.20); the notation “ss” stands for
the condition that the expression(s} be evaluated at the shell surface.

The procedure to solve Equations (5.21)-(5.24) for the flow perturbations and
hence to evaluate (5.27)-(5.29) will be given in Section 5.3.3.

5.2.4 Summary

Section 5.2 has formulated the problem involving a cantilevered, flexible cylindrical shell
confined inside a coaxial rigid cylinder and subjected to an incompressible viscous fluid
flow in the annular region. In the formulation, the shell displacements were described
by Fligge’s shell equations, and the unsteady viscous forces acting on the shell were

calculated from the flow velocity and pressure perturbations governed by the unsteady

linearized Navier—Stokes equations.

5.3 Method of Solution

5.3.1 Introduction

The method of solution to be presented covers two different, but interrelated procedures:
one for solving Fliigge’s shell equations (Section 5.3.2) and the other for solving the
linearized Navier-Stokes equations (Section 5.3.3).

Since a closed—form solution for the Navier-Stokes equations is not possible due
to their complexity, a numerical solution will be obtained instead, with the aid of a
special technique developed by Soh and Goodrich (1988) and originally intended to give
an unsteady solution for the incompressible Navier-Stokes equations. This technique is
based on the popular finite-difference method, and is for the first time applied to solve a

fluid-shell coupling problem. (A similar, fluid-cylinder coupling problem has also been
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considered by Mateescu et al. 1991a.) In the solution process, as the output (solution)

of one set of equations is the input for the other and wice versa, Fliigge's shell equations

will have to be solved numerically, also by the finite~difference method

5.3.2 Solution to the Governing Equations of Motion

For the purposes of solving Equations (5.1)-(5.3), the shell displacements u, v, and w
are expressed in the following functional forms

u(z,8,t) - iz, t) cos nf

o{z,8,¢) ¢ = D1 (z,t)sinnd |,
=1

w(z,,t) i

(5.30)
w(z,t) cos nd

where n is the circumferential wave number. Similarly, the solutions for ¢., g4, and g,
are taken to be

9z(z,6,t) g(z,t) cosnf

@0
go(2,0,t) ¢ = D3 @z, t)sinng (5.31)
gr(z,9,1) - 7r(z,t) cosnf
Thus, in terms of (5.30) and (5.31), Equations (5.1)-(5.3) may be rewriiten as
3 s n 95 | 3w
[( *"at){“ g~ G D0 S0 el ket T
kn? 9w 20%8 - 2_ , OW
+ (u - —-2—(1 - y))a.ga-:-} + {qla 227 + g2 (nO+ 1) - qs(ﬂ. u+ab:)}
% g
_7{¥—p—a}:}]cosn0—0, (5.32)
- a\[ n dn 1 25 En
ngl [(1 + Xa){—a(l + v)a-(% + §(3k+ 1)(1-v)e®— - n*o+ —

= (3 - ) 82_13_
T YT ¢ 8z2 nw
%y v g
20V 25 4 niD v _ 9 i —
ﬁ-{qla 322 qs(n v-i-nw)} {azz ) }]smnﬁ_o, (5.33)
3 333_ kﬂ
LCraf el

Jdi  kn 32 841I;
3 ———(1— )) a5 —-—(3— v)a* ——-!-fw - ka* ey
9%w _ 9% b3

e v — ni@m

" aax nv nw)}
oo _ g

+'T{Ft'2——z}; cosnf =0,

(5.34)
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which are subject to the following boundary conditions: at the clamped end, z = 0,

el = 2] [« 8] o0 [= =] a!D
n%:lﬁcosnﬂ = ;ﬁsinnﬁ = nglﬁ}cosnﬂ = nglgcosnﬂ = 0 (5.35)
and at the unsupported end, z = L,
[==] - -
o o 021D
— 5 — - g = .
nz-_;l {aax + nvv — ka 20 T vw} cosnd =0, (5.36)
(=] o —
,,2 {—nﬁ +(1+ 3k)a—g£- + 3kna2—:} sinnf =0, (5.37)
o0 _ 2
Z {—a-a— —vni+a 3_1.;) - nsz} cosnf = 0, (5.38)
oyrd oz
> 3a  n? % w 0w
gl (1 - — ={(3 — bl 32 7 _fo_ = —
g { o 2 (1-v)a (3 v)a + i (2 — v)n? aZ—pcosnd =0. {5.39)
1t is noted that Equations (5.32)—(5.39) have the unit of length; hence, they will
be rendered dimensionless if divided by L, the length of the flexible shell. For the
purpose of nondimensionalization, in this section and the subsequent ones, the following
— dimensionless parameters are defined:
- LY SRS SRS SRS R
—L! 77‘—L) i“'La O—Ly u_L: —L: w—L’
- _ _ (5.40)
s 4z P 148 P Tqr
RPN YA N Y AR PN Y A
Another observation that should be made here is that since sinnf and cosnf are not
generally equal to zero and the series in (5.32)—(5.39) are infinite, the coefficients of sin nf
and cosnf in these series must vanish. Thus, Equations {5.32)-(5.39) are cffectively
equivalent to
o 32 ] 3*w kn® o
14 x=[{efom — = - : - (1= v)|ei=s
[ +xat]{ i gg2 (k-i-l)(l v+ - (1+u)e, k'3§3+ly 5 (1 u)]e 36}
, 0% O e,
+ {915. EY3) + g2 (nd + ) ~ 43("- i+ £ af)} - {75;5* - qz} =0, (5.41)
[1+x3] R+ v)eias + 3 (3k+1)(1 - e 2 B (a-v)el 2200
ot 2 ‘35 tgg ! 3{2
%% g - 3%
+ {qlst EYS - qS(n v nw)} {’7 atz qa} 0, (5 42)
- 38% kn? ot kn ,0% 9
2 kel -2 - el i P Rk
[1+xat]{ ks,af +[ 5 (1-~v) 6‘55 2( )E’3£2+n + 6‘354
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at 5 o] ) 2 1
- 2kn2£,2-a-z:i-+ [1+k(n - 1) ]w} -~ {q;e, 30 + g3 e.a—E- - nd — n“w
v
+ {'7‘37 - ‘Jr} =0, (5.43)
subject to the boundary conditions:
e at £ =0,
ﬁ=ﬁ=tﬁ=%—l§=0; (5.44)
e at £=1,
2 0% !
e,% + nvd — ka® Er +vib = 0, (5.45)
ow
-ni+ (14 3Ic)€, —I- 3kne;— 3¢ = 0, (5.46)
~ & —nfu = 4
e‘,aE vnv-{-s,asz nvib 0, (5.47)
0% n*, . n ab 38 D g OW
‘EF_ z(l—v)u—i(.?.-u)s;-a-—e ,363—(2—12)115,65 = 0. (5.48)

It may be seen that the only independent spatial variable in Equations (5.41)-
(5.48) is £, the nondimensionalized axial variable defined in (5.40}. To solve these
equations using the finite-difference method requires that the shell be represented by
(N 4 1) nodal points, all evenly spaced in the axial direction; node 0 is at £ = 0, the
clamped end of the shell, and node N is at £ = 1, the unsupported end. Fach node
J is associated with three unknowns u;, v; and w; representing, respectively, the axial,
circumferential and radial displacements of the shell at £ = £;, with the subscript j
denoting the number of the node under consideration. Equations (5.41)-(5.43) will
then be written for all nodes 7, such that 1 < 7 < N, with nodes 1 and N given more

attention because these are the locations where the boundary conditions are taken into

account.

At node 0, the houndary conditions (5.44) could be rewritten as

g = % = wp = 0, (5.49)
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and if the first derivative of 1 with respect to ¢ is replaced by the O[(A¢€)*|-accurate

central difference representation, then

e - 0_ =0 _1 = 10
A (w]_ W 1) or w_y 1, (5.50)

where node —1 is fictitious and is symmetrical with node 1 about node 0; A¢ being the

spacing between any two successive nodes is determined by

A= %= G
At node N, the boundary conditions (5.45)~(5.48) are imposed, thereby increasing
the number of equations to (3N + 4), whereas there are only 3N unknowns associated
with N nodal points. To increase the number of unknowns, another fictitious node

(N +1) beyond the free end of the shell is introduced, thus increasing the number of

unknowns to (3N + 3); nevertheless, the number of equations is still one higher than

¢hat of unknowns. This difficulty may be resolved by realizing that, for node N (and for
node N alone), it is possible to combine Equation (5.43) and the boundary cendition
(5.48) to yield one single equation, hence reducing the total number of equations by one
and making it equal to the number of unknowns.

What has just been discussed above involves differentiating Equation (5.48) with
respect to £ and multiplying the resulting equation by ke;; after some rearrangements,

the following equation is obtained

5 0%4  kn? i kn

3%
{965 2 = (A=vleige Frd

—-——(3-v)e k"——2k %e 300 = —kvn’e 200 (5.51)
T TRy figer T el Bez
It is seen that the terms on the left-hand side of (5.51) are all present in the first pair
of braces in Equation (5.43); substituting the right-hand side of (5.51) for these terms

simplifies Equation {5.43) to

—kei —=

4

d 0% 9 9]
( + x=— ){vs,a€+nu—kun '662+[1+k(n -—-1)]w}
,3%% 94 .. Fo
{q;e, 3¢ + g3 (e,aE —nd—~n w)}+{’7-ét—2—q,-} = 0. (5.52)

Thus, discretized about node N are the six equations: (5.41), (5.42), (5.52), and (5.45)-
(5.47).
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In the present analysis, a fully implicit scheme is adopted to carry out numerical

time integration; all equations involved are evaluated at the new time level (n+1) where

ﬁ;_:+1’ ,un+1 +1

second time derivatives are approximated by the O[(At)?]-accurate backward difference

and ®7"" are nodal unknowns to be solved for. Consequently, all first and

representations, namely

(B = skl are ] woran, 559
(%i—f) = @%F[zf“+‘—5f"+4f"'1—f"-2] + 0l(at)?, (5.54)

where f denotes a nodal unknown, and At is the time step taken for the numerical time
integration.
On the other hand, for inner nodes ¢ such that 2 < ¢ < (N —1), all spatial deriva-

tives are approximated by the O[(A€£)*]-accurate central difference representations:

(af) = ZAE[f"H_f"'] + 0[(Aag)}, ' (5.55)
(321’) - (Als) [fosr =2 fia] -+ 01880 (5.56)
(g%) = ml.q-j[ff+z-2ff+1+2f,-_1—f;-z] + 0{(a¢)?, (5.57)
(66*). - (‘A%ﬂ"ﬂ‘4f*+1+6f='—4f=-—1+fe-z] +0[(a8)%. (5.58)

For node ¢ = 1, the approximations (5.55) and (5.55) can still be applied, because
g, Up and Wy as required for these approximations are givéi.\ by the first three of the
clamped-end boundary conditions, Equations (5.49). However, the approximations
(5.57) and (5.58) further involve @#_;, 9.; and @_;, only the last of which is known
and prescribed by the fourth clamped-end boundary condition, Equation (5.50). Thus,
as far as 1 is concerned, (5.57) and (5.58) do not pose any diificulty. However, for
# and ¥, which happen not to have any fourth derivative, the third derivatives are
approximated by the following forward difference representation, which still takes 44

and 7 into account but does not make use of iy and 9,

33f 1 \
%) = SOAER |~ fies +8fire — 2 106~ 3fir]  +O[ALY.  (559)
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Similarly, for node 7 = N, the approximations (5.55) and (5.56) still hold; expres-

sion (5.58) is of no concern because none of 4, 9 and ¥ has any fourth derivative; but
the approximation (5.57) requires ¢xy42, On42 and Wy4q, which are new unknowns and
cannot be accounted for. This obstacle can be bypassed by using the following backward

difference representation for third spatial derivatives

(32)‘ = 2(1516)3 [3f|'+1 = 10f; +12f;—y — Bfiz + fi—s] + 0[{Aag)?]. (5.60)
It should be recalled here that although @x41, 441 and Wy, are also new unknowns
[through expressions (5.55), (5.56) and (5.60)], they are in principle determinable by
three additional equations given by the first three free-end boundary conditions [Equa-
tions (5.45)—(5.47)]. The derivation of (5.59) and (5.60) is presented in Appendix F.

For the sake of convenience and simplicity in writing the equations of motion for

each nodal point in finite difference form, the following group of constants are defined:

_ (a)? _ X _ _ SGael _ St
G=0 6= G=GH3G), = iy, e = (ke 1)(1-v)
_ $3&in _ Sake} LT kn?
a3_4A§(1+V)’ a4—2(A§)3, 115---213‘f 1 2(1 v)|,
_ o GeEl _ a2 _ Sgkne? _ —
by =asz, b= 2(AE)2(3k+1)(1 v), by = ¢3n®, 64—-————2(AE)2(3 ), bs = gn,
(5.61)
ket 2¢,kn?
c1=ayg, Co=as, ca=bs, c4=bs c5= (gze)ai! Ce = T%_Ej?’
_ 2 _ 32 _ Svei _ Gkenled &
67—‘§.3[1+k(n 1)]3 Cg == 2A€, cg = (A£)2 ) dl—ZAE, dz--rw,
ke? &i(1 + 3k) 3kne; g?
= ! = = =— =—, dg =+
d3 (Ae)za d4 v, d5 n, d6 ZA&' H d7 ZAE ; G8 (Af)z’ dg n v,
as well as a group of functions of §, implicit via ¢, g; or gs:
i E? e ot i Es i
i = 05, i = G, = Gan, 3= 00T d =g,
e . : iy o (5.62)
bl =ai, by =8, bi=Cam; & =8}, §=14}, &§=2a], &=aj

where the superscript 7 is the number of the node for which the function is evaluated.
After all time and spatial derivatives in Equations (5.41)-(5.43), (5.45)-(5.47), and
(5.52) are appropriately substituted by the difference approximations given in (5.53)-

(5.60), the resulting equations will be rearranged and rewritten in such a form that all
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nodal unknowns [corresponding to time level (n + 1)] are on the left-hand side of the
equation and all known quantities [associated with time levels n, (n — 1), and (n — 2}]
are on the right-hand side.
For node 1,

(2 4 2a1 + 2a} + a2 + a3)87F! ~ a307T — (aq + @1)WPT? - (a1 + 81 AP — ggoft?

+ (8] — 204 — as)BF T + et = ¢ (E)07 + Fli0) + & {201 + 02) £(i)

- asL{B1) = a1 £(41) — agL(D2) — (2a4 + as) L{D2) + a4 L(aDa)}, (5.63)
(2 + 25} + 2ba + B} + ba) 97+ + (B + 2bs + b )T + byaft — (B] + ) 9p*! — beupt

= ¢ (@a)T71 + F(01) + & {(2b2 + b3) £(1) + (264 + b5) L{wh1) + by £(8i2)

— boL{B2) — bel ()}, (5.64)
~10e185+ + (& + 2¢5 + e) 00T + (2 + 285 + &) + Tos + 2¢6 + cr) P + (1201 — &) + )25

— csdP! = (&) + des + cg) BT — Bey80F + cglt 4 y@ft! = ¢ (§) + F ()

+ G {=10c1 L{@h1} -+ (23 + e4) £{01) + (Tes + 26 + ¢7) L{101) + (1201 + ¢2) L(8i2)

— cgL(D2) — (des + cg) L(D2) ~ 6c1L(is) + cs L{D3) + c1 £(24)} s (5.65)

where F( ) and £( ) will be defined by Equations (5.75).
For node 7 such that 2 <7 < (N —1),

—-a4w“+’ (a1 + 4 ) “+1+a31;"+1+(2a4—0-4+35) “:‘_’4?{1-}-(2-]-2&14‘2&1+a2+a§)ﬁ?+1

w1 andl

_ _ At an+l

antl -t o Hntl
P = (e + “1)"1-1-1 ey — (204 — 84 + ‘15)"’;-1-1 +agw;yy

= ¢ (@) + F(8) + & {~aa L{i—z) — a1 L{fii—1) + ag L(Pi1) + (204 + 25) £ (Dizy)

+ (2a1 + a2) L{&) — a1 L(iy1) — as L(Dis1) — (204 + a5) L(Dig1) + ag L{this2)} (5.66)
—bpalt — (B + by)oPtE ~ by + (2 258 + 2bp + B 4 BB Y (B + 264 + bs )l t?
+ byl — (] + B2)OP! - badFH = G ()7 + F(5:) + G {—b1L(Rim1) — b2L(Bim1)
— baL{Wiz1) + (2by + bs) L(5;) + (2ba + bs) £(35) + by L{is1) — baL(Bi1) - baL(Bis1)}, (5.67)

clu:ﬂ'zl + csw:'_',"z1 (2e1 - cl + 2 )il "'H - csv“+1 (Cs 4+ deg - ce)w“"’l + (E‘z + 2¢5 + q)ﬁ?ﬂ

+ (24285 + & + Bos + 2e6 + en)BPHY o (201 — & + ) AT ~ cadPHL — (G5 + 4es + co) B
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g — eyl + es @l = 6 (@0 + Fs) + & {e1L{fima) + s L{hi—g) — (261 + c2) £(Biy)
- caﬁ(ﬁ;_l) - (405 <+ cs)ﬂ(tﬁ;_l) 4 (263 + 64)12(13,') + (GC5 + 2¢6 + Cy)f.(fl),')

+ (2e1 + c2) L(fig1) — ca L{Diy1) — (4es + c6) L{thiw1) ~ e1L{Dine) + 5 L{Dig2)}. (5.68)

For node N,
a4tﬁ?\rtls, - 6a4tbnNt1 (a1 + & )”N-1 + asvn+1 + (12a4 - ‘14 + “5)“’R’+11

+ (2+ 201 + 281 + ag + &) )Rt ~ &l O — (10, + & )Rt - o + & )Ry

— ag¥th + (3as + &) — as) O, = ¢ (=) + F(en) + & e L(tn-3) — BagL(n-3)

—ay L(fn-1) + azL{dn_1) + (1204 + a5) L(Dn—1) + (221 + a2) L(En) — 10asL(WN)

— a1 L(tn+1) ~ esL{Dn+1) + (Baq — a5) L(@N41)}, (5.69)
by tY — (BN 4 b2) oty - bad ity 4 (24 2B + 262 + B + ba) 0T + (BY + 2b4 + bs)t

+ bR — (B + ba)ORh ~ bedRRy = G (@)NT + F(Bw) + G {=biL(En-1)

-

- bzﬂ(ﬁN_].) - b4£(d}N_1) <+ (2b2 + bs)ﬂ(ﬁN) + (254 + bs)ﬁ(tﬁN)

+ b1 LN +1) — B2L(ON41) — Bal(tv41)}, (5.70)
(& — co)afty — (& + co)iyty + (&8 + ca) 357 + (24 28 + &8 + o7 + 200) B
= (& — ca)iity — (@ + o)y = G @)V + F () + G {~caL{Bn-1)
~ eo L(BN-1) + cs L(DN) + (e7 + 2¢0) L) + ea L(En 1) — coL{Dn+1)} 5 (5.71)
there are also the following equations resulting from the free-end boundary conditions:
- d]_TJ.N By d3w + dz gl -+ (2d3 + dq) Rr'i-l + dluN+1 - d31f)?f{_'+_ll = 0, (5.72)
- dsUN 1- d-;w"'“ - d5‘U‘.n+1 -+ dﬁujr\‘ftll - d'(ﬁJ?i:_ll = 0, (5.73)
dsfty + debfty — ottt — (2ds + do) Wt — dsii + dedi, = 0. (5.74)
In the foregoing, Equations (5.63)~(5.71), () and £( ) are two short-hand notations,
and they are defined as
A% -1 -2 1
i FO = 8Om0 (O L) == (69)
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Equations (5.63)~(5.74) are subsequently assembled into the global matrix equa-
tion of the form

[A{x™*1} = (&™)

or equivalently,

{X™1) = [47{EMY, (5.76)
where [4] is 2 constant coefficient matrix of size 3(V +1) by 3(N +1); as a result, {4]™!
will be calculated only once in the first time step and then reused over and over in all
subsequent time steps; {X"*'} is a vector of size 3(IV + 1), containing unknown nodal
displacements at the time level (n + 1), that is

{(x~\T = (., | apt? ot aptt L} for 1KiS (V).

—

at node §

Initially, the displacements at node (N + 1} which is beyond the free end of the shell
are not known at t = 0,—At and —2(At); here, they are linearly extrapolated from
those at nodes N and (N — 1) (the reason for doing this will become obvious in the
next paragraph). {R"*'} is a vector of size 3(/N + 1) and is a function of {Q"*'}, {X"},
{X~-1} and {X"~?}, where

T ~ y A - .
@ = {1 @ @) @100 g} for1Si<N
at node § at node (N +1)

The elements of {@"*!} will be determined in Section 5.3.4.

As may be expected, the present time integration procedure is not self--starting;
for the first time step (n = 0), the vectors {X°}, {X~*} and {X~?}, corresponding to
t =0, —At and —2(At), respectively, are needed in order to determine {X'} according
to Equation (5.76). These vectors will be evaluated below using the theory presented

in Chapter 2; from the functional forms (2.31) taken for the shell displacements, it is

seen that
{X—2} — e—2mAt{XD}’ {X—l} — e—iﬂAt{Xﬂ}, {Xl} = eiﬂAt{xﬂ}’ (5.77)

where {X°} corresponds to the initial conditions.
It should be pointed out that the theory in Chapter 2 gave frequencies of oscillation

and mode shapes of the shell, but not the actual displacements. Thus, the magnitudes
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of the elements of {X?} for the present analysis have to be arbitrarily imposed; after

calculation from (2.31), normalized {X°} is scaled down by a factor of 1/100 of the

annular gap width, i.e.

5.3.3 Solution to the Linearized Navier—Stokes Equations

The solution of the linearized Navier—Stokes equations is much more complex than that
of the shell equations, principally because it is not possible in this case to reduce the

problem to one involving only one spatial independent variable, as will be seen in the
following.
5.3.3.1 Numerical Formulation

For purposes of solving the linearized Navier-Stokes and continuity equations [Equations

(5.21)-(5.24)], v, vs, v, and p are taken to be of the form

( ve(z,0,7,1) W ’ oy (z,r,t) cos né
vg(z,8,r,t) | _ {24 Ug(z,r,t)sinnd (5.79)
vz(x,8,7,1) n=1 | Uz(z,r,t) cosnf
| p(z,0,1,t) | | p(z,7,t) cosnd
which are then substituted into Equations (5.21)-(5.24), yielding
2. [ 3%, .
Z E+G,(u,,va,v=,p) cosnf = 0, (5.80)
n=1
had 8y o .
> —a?+Gg(v,-,vg,v=,p) sinnd = 0, (5.81)
n=1
o [ 8%, o
Z Y + Gz (r, T, 0z,p) pcosnd = 0, (5.82)
n=1
[=.+]
ZGv(ﬁr,ﬁg,ﬁz)cosnO = 0, (5.83)
n=1

where

SO dv ap dv 9%
Gr("n”&:“:,?) = U(T)a—;-{-a-—- aa_:
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8%4, L8 ] ( au,) _ (1—}-112]ﬁ _n,

v dx rér\ Oodr r? R

Gﬂ(ﬁr‘:ﬁﬂ:ﬁ-a‘:ﬁ) = U(T)E“‘"P—dr
o 10(am) 1td, o,

Y 9z  rdr\ &r 2 T Er

ad Op dv/ov av
Go(By, 09,72,8) = U(7) U’+U’() +am U( s v’)

{a\?az 1a auz

dz? ty r Br

\_v_/‘*

14 _
Gy (r, Up, 0z) = ;b—r(fvr)-i";va'*"*—-

As sinnfd and cos nf are generally not zero, their coefficients in the infinite series

(5.80)~(5.83) must vanish, or equivalently
D 6Es) = o (580
Gy({¥) = 0, (5.85)

where ¥ = (¥,,%,9;), and G(¥,p) = [G,(¥,5), Gs(V, ), G.(¥, p)]; Equation (5.84) thus
represents three equations corresponding to the r—, 0— and z-coordinate.

As was mentioned in Section 5.3.1, the numerical method developed by Soh and
Goodrich (1988) will be adopted in this study to solve Equation (5.84) with the velocity
components satisfying the constraint (5.85). Since the background of the method was
fully discussed by the authors, it will not be repeated here; nevertheless, every step of
the solution procedure will be explained below in detail.

To be consistent with the fully implicit scheme employed in Section 5.3.2 for time
derivatives, the two—point backward difference approximation is now used to discretize
Equation (5.84) in physical time |

\7“"'1 I

ST+ GEmLEY) = o, (5.86)

which has first-order accuracy in time. Since the continuity equation (5.85) should be

satisfied in every time step,

Gv(¥"t) = 0. (5.87)
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It is noted that, by means of the new notations

Gn"l'l — .‘i"ﬂ"'f'l _‘—rﬂ’ ﬁn‘i‘l —_ ﬁn-i-l __p-ﬂ’ (5.88)

Equations (5.86) and (5.87) may be rewritten as

gl AtG({,n+1,ﬁn+1) = —-AtG(F",p"), (5.89)
Gv(i’ﬂ'{-l) = 0, (5.90)

since G( ) and Gy( ) are linear operators.
For the solution of Equation (5.89) satisfying the divergence-free constraint (5.90)

on the perturbation velocity, a continuous auxiliary system in pseudo-time and involving

an artificial compressibility is introduced

ov

5o+ T+ AG(H) = —ALGE"FY), (5.1)
ﬁaﬁ +Gy(¥) = 0 (5.92)
or v - )

where 7 is a pseudo-time which should be distinguished from the physical time t, §
is the artificial compressibility coefficient, and v = ¥* — ¥*, § = g* — p"; here, the
asterisk denotes a transient value in pseudo-time. It is seen from Equations (5.91)
and (5.92) that, as the steady state is reached in pseudo-time, 8V/dr and 85/dr are
both virtually zero; hence, ¥ and $ become ¥"+! and $"*!, respectively. Evidently,
the solution of the set (5.89) and (5.90) in each physical time step is practically the
same as the steady solution of the set (5.91) and (5.92) in pseudo-time. Equations
(5.91) and (5.92) therefore have no physical meaning until reaching the steady state in
pseudo-time.
Equations (5.91) and (5.92) may be written in a more compact form as

%—13 + (Ar+ A+ A)II = R, (5.93)

where R is kept constant at its value at the physical-time level n, and

3 r \
(3, —aG, (%", 7%)
) —-aGy (¥, p"°
m=<{ '}  R=/{ o7 )L, o= At,
ﬁz —OzG:(\_’n,_")
\ ﬁ / \ O
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and
1 dvd vof.d 3 ]
&g 8- 440 F) 0 ° ar
dv 8 _pvadf,k d
A = 0 -5 -55(%) o 0
rT dvd _vd(.a :
0 ~E5-45(5) o
1(1, 8
Gl ) 0 0 0
\ ]
U~ vir 5 ° °
2
0 U(NE -viy 0 0
Az:& _dva 0 .1.+U(r)a-»y62 3 H
dr 3z o 0z = "9z Oz
19
v(1+ n?) 0 0 0 ]
r
d 9 1 v(1+ n?
Ay = « %(a%+7u) a+_(_r’—1 0 —%
- 2
U'(r) 0 m 9
0 vk 0 0

Equation (5.93) may be integrated in pseudo-time through two intermediate steps

denoted by * and **:
I - 11*
Ar
II** - II*
AT
Hk+1 _ nk
AT

+ AII" + (A;+A,)TIF = R,
+ AT +ATI™ + AIIF = R,

+ AJI" + AT + AJIF = R,

Briley and McDonald (1980) introduced a compact form of the above equations, which

is called the “delta form”,

(I+A7ANT = Ar[R - (A + A, + AT, (5.94)
I+arA)ll = 17, (5.95)
I+ ArA)ATI = II, (5.96)

where IT = TI* — TI*, =11 — TI*, AIT = IT¥*! —TI*, I is the identity matrix of size

4 x 4, and &k denotes a certain pseudo-time step. The method of solution represented
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by Equations (5.94)—(5.96) is commonly referred to as the ADI (Alternating Direction
Implicit) scheme, and is carried out on a staggered grid (further discussion on the
staggered grid is given in Appendix H). Equations (5.94), {5.95) and (5.96) are called
the r—, z— and O-sweep, respectively. In the staggered grid, 0, is coupled with the

pressure p during the r—sweep. Similarly, U. and ¥, are coupled with § in the z- and

f-sweep, respectively.

5.3.3.2 Initial and Boundary Conditions

Since the physical-time system (5.89)-(5.90) and the pseudo-time system (5.91)-(5.92)
are both initial boundary value problems, initial and boundary conditions must be
specified to complete these systems. For the problem under consideration, the initial

flow variables for the systems (5.89)—(5.90) and (5.91)-(5.92) are taken to be zero:

- -

$=p5=0 at t=0, v =p=0 at r=0. (5.97)

At the inlet (¢ = 0), the flow is assumed to be undisturbed; in essence, flow

perturbations are zero, or equivalently
F=Vv=p=§5=0 at £=0. (5.98)

At the exit (¢ = 1), flow perturbations must tend to die out according to any of the
realistic outflow models described in Chapter 2. Explanations on how to impose this
boundary condition will be given when the z-sweep is considered (Section 5.3.3.3).
Because the staggered grid is being used, the pressure boundary conditions are
not needed at the physical boundaries, which are a rigid wall and a flexible (moving)
wall in the present problem; this is a great advantage of this method. In the following
analysis, n is the nondimensionalized radial variable, n = r/L, as defined in Equations

(5.40). Thus, at n =€, (rigid wall), the velocity boundary conditions are
v=7 =0, {5.99)

while at 7 = &; (moving wall),

vt o= -a-f—l- y = ...E._ an~2 _ 4ean=1 ~n a
T (at) = Gap7T - 40" 4307+ 0((At)7, (5.100)
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where @ = (#&,9,%W) is a vector whose components are the shell displacemen s, and
it = et g (5.101)

nevertheless, ¥**! is not known at the beginning of the physical-time step (n + 1), and
hence an iterative procedure has to be cmployed here. First of all, the right-hand side
of Equation (5.101) is approximated from the known quantities in previous time steps:
v*~2 ¥"~! and ¥". This can be achieved by expanding Equation (5.101) in a Taylor

series about n,

¥t = {v"+At(%—‘;)n+ (A;)2 (32—;) +O[(At)3]} - "

-~ At(a‘?)n + (an)* (-azl)n + 0[(At)*]

Bt 2\ ot

92— gyl 4 39n (At)? {92 — 2971 4 ¥" 3
At{ oAl } + = o) + 0[(At)7],

or

71 = 9h2_3entl L oet 4 0[(AL)Y) (5.102)

Then, from the approximation (5.102), i"*! is obtained [through the solution of Equa-
tion (5.76)], thus allowing ¥7+! and 9! to be recalculated according to Equations
(5.100) and (5.101), respectively. A new value of i"*! is again obtained, and the same
procedure is repeated until the change in i"*! between any two successive iterations is
negligibly small. Numerically, this condition is considered to be achieved when, between

any two successive iterations,

A&r_‘H—l Aﬁ'—H-I Atf)'-"i'l
Max 1 2 1s < 1073 5.103
ﬁ:_'il-i-l ! ﬁ?n.u ? .lb?a-i-l = ! ( )

where 7, 7; and 73 are integers, representing the numbers of some nodes on the shell
such that 1 < 1;,15,73 < (N + 1).
For n = 0, Equations (5.100) and (5.102) become

V0 = % W2 - 407 +30%) +0[(At)Y (5.104)

and

¥ = 1 -¥Y (5.105)
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here, according to Equation (5.100}, ¥! is given by

2L

= 5 a7t~ 40 +34Y)  +0[(A)Y); (5.106)

in Equations {(5.104) and (5.106), @™, ..., 0! were given in Equations (5.77).

5.3.3.2 Evaluation of the r, z, and § Sweeps

Equations (5.94)-(5.96) show that the r~ and z—sweep represent two sets of differential
equations which indeed have to be treated differently, whereas the §-sweep is simply a
set of linear algebraic equations. During the r—-sweep, the values of each intermediate
flow variable at all the grid points aligned in the r—direction for a given 7 are solved for
simultaneously, as ¢ is incremented (by one) from its smallest value to its largest one.
Similarly, the z—sweep involves solving simultaneously for the values of each intermediate
flow variable at all the grid points aligned in the z-direction for a given j, as j is
incremented. The range in which ¢ or j is incremented may vary slightly from one flow
variable to another, since the flow variables are not defined at the same location in the
staggered mesh. In this section, the r, z and # sweeps will be considered in the same
order as indicated by Equations (5.94)-(5.96).
r—-Sweep

If the right-hand side of Equation (5.94) is denoted by § = {5, 55 S, Sy}, then

the r-sweep can be written in full as

{(1 + Ar) - a—;i [2%%% + %%(n%)]}ﬁ, + airg—i = 5, (5.107)
{1 - % [3—::—’] + %c—;% (ﬂ'%)]}ﬁa = Sy, {5.108)
D o

Tiaselni) + 5 = So, (5.110)

where 7 is defined as r/L; the difference expressions for S,, S;, S; and Sy are given in
Appendix G. In this r-sweep, the solution is carried out first for Equation (5.108), then
for Equation (5.109), and finally for Equations (5.107) and (5.110) together.
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{' With the substitution of the appropriate difference expressions in Appendix H for

the partial derivatives in Equation (5.108), it is found that
for3<j<(M-2},

1 (dv)z V;’?;_l "
— | (1~dnf) - (Po)i.j-1
An,’-{ dn /; T niAn?

L L (¥ _mj Mi-1 z  az (dv)’ .
+ {aA‘r + An; [TI,: (A’?,z'-i-l * An? — (1 —dnf — df,,) an J; (T6)i.5

1| du)= vint .- L?
SN FUCI 6 A WL i/ N VORI So)i i 5.111
Aﬂ;l nJ“i'l(dn J+ f}fﬁﬂfﬂ (UG):,J+1 aAT ( 8) W1 ( )
for y =2,
I*  1-dp? (du)= z( 1—dn§) "
- — | —v3| bp + vg)i
{am Ay \an)y VB0 gy )i
dnz (du)’ ( dn3 ) ) 2
=8 (= cq == | — ; gt 5.112
{Aqg ), T\t A (To)i,s 7 |(Se)izi (5.112)

and for y = j* = (M - 1),

1-dnh (dvV - 1-dni .
U (). o on )

L} dni rduY dn7. L
— —) —vi|br- Bodige = | —— J(Sedige. (5.113
+ {am A (dq),-. vi\br nZ.Aq. (Fo)i anr (e (5:113)

For the above equations as well as for subsequent equations, M denotes the total number

of (%s)i,; grid points for a given 7, including the two [(Ds):,1 and ()] outside the
computational domain (Figure 5.2). In the derivation of Equations (5.112)-(5.113),
attention has been given to the fact that the values of 3, at the two physical boundaries
are prescribed and remain unchanged during the pseudo—time integration; as a result,
ADy = ¥y = Uy = 0 at the physical boundaries. Equations {5.111)—(5.113) constitute a
tridiagonal system of linear algebraic equations, which are solved for each 7, such that
2 < ¢ < (N + 1) as depicted by Figure 5.2. It is worthwhile to mention here that a
rapid solver (Anderson et al. 1984} is used to solve all the tridiagonal systems of linear
algebraic equations in the present work.
Since (i) Equations (5.108) and (5.109) are of the same form and (ii) (%);; and
{#z);,; have the same n—coordinate in the staggered mesh, the difference representations
{- of Equation (5.109) for 1 < ¢ < N may be obtained from Equations (5.111)-(5.:13) by
replacing the subscript & by z; thus,
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for3<j<(M-2),

1 (dv)” vint_y1,.
WX —anry - izt Loy
An;: { dn J.( nJ) n;Ang ( z)hJ 1

LZ 1 V.;F n;: ’73 1 T -
" {O‘AT + Aﬂ; [E (Aﬂf+1 A’?,' (1 dnj J+1)( ) (vz)i'j

1 dv Vf’l; - _ L? .
Anf {dn,+1(dn) + PFATE, (Bz)ij41 = vy (Sz)i 43 (5.114)
forj =2,
L 1-dnifdvY z( 1—dn2\,.
{QAT An; (dﬂ)z vi\br + f]%Ang) (Bz)i2
dng (dv) ( dng ) Sy I? _

{Aﬂz an ) TUNF F A ) (Fedis = | o7 J(Se)ia (5.115)

and for j = j* = (M - 1),

1 — dnf. (dV) 1-dn

o Ba)ie- 5.116
{ AqJ dn R _.,z--A’?;- ( )1,1 1 ( )

Lz d'?_-, = z dr)f - L2
+{aAr+ Anf. (dq) vf'(bR_ nZAnL. (Bz)eg- = AT (Sz)ize-  (5.117)

The determination of 7, and § is somewhat more involved, as these two variables

are coupled in Equations (5.107) and (5.110), the difference representations of which
are found to be

{w(g—:j - i z }(vf)ia-l -+ { L (14 A7) - 21 il d'?,.H) (dy)

Kt N al A \an
et (e e (M) N
t r v,
;A% A'7}:+1 Ang ! Anfi \dn/; - nFAnf ANy, ’
L 1. o
+E;J;:[(P)=.:+1"(P)l.:] = (am)( P (5.118)

and

1 AT

AT] (Lﬁ)[ﬂj (”r)t.g ’7;—1(”»‘):.;-—1] (P)i.:f' = (SV)i,j) (5-119)
respectively, after a.ll the derivatives in the two equations have been replaced by their
difference expressions in Appendix H. Subtracting Equation (5.119) for j = 7 from the

same equation for j = 7 4+ 1 and then multiplying the resulting equation by (L/An},;)
yields

Ar f)‘;:..]_ - , 1 1 - ’7;-1-1 ~ }
') .l il — n A + v -' . D et £V -' i1
Eomb e o] C o
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g +A7?;+ [ Pij+1— (P)IJ] = L+1 [(Sv),-.j+1'-(3v),~,j], (6.120)

which is then subtracted from Equation (5.118), giving

- — ,ﬂ - AT nj-1 =Y. . L_z 1+ Ar)AnR?

{ (1= dnj )(dn) njAnt B |njln] (Br)ajms+ | Gar A+ ATAN
deY Vi i n; niAr 1 1 .

— 2(1 - dn} — dn}. (—)+—’ s et + 4 (0e)i g

(O =dns — Gy ) * i | Anrs T 2| T TF | mEbn T AT (5 )i

dv vinf.i  Ar n,’-;: ,
— {2dnt ( )+._.i.._3_+________ Br )i ja1
{ T\dn ;T nAngy B [0, B

= Aﬂ:ﬂ(“‘%‘“) (Sr)ig — L[(Sv),-,,-+1 ~ (S9)i]- (5.121)

Equation (5.121) can now be solved for (#,);;, for 2 < 7 < (M — 2) with ¢ incremented
such that 2 <7 < (N +1), using the tridiagonal matrix solver, and (p);,; is subsequently
obtained from Equation't5.119) for2<j<({M-1)and2<:<{N+1),

()i = (Sv)ig— "';‘AT( )[ HOr)ig — 7);:—1(5:-):‘,;;'-—-1] . (5.122)
{ z-Sweep

The z-sweep, characterized by Equation (5.95), involves the following equations
REEES R

{1+ ee [LU(n) fE u%}}m = %, (5124

{(1—|—Ar)+ ; [LU( )3aE y%]}az - %{(%)36_1‘2 + (“—-‘21\)3—‘; = 9, (5.125)
(A3 5 = 5, (oang

Lg

where ¥,, Uy, U, and § have all been determined in the r—-sweep. Here, the sequence

I

g, (5.123)

in which Equations (5.123)-(5.126) are solved is quite obvious: the only equation that
can possibly be solved first is (5.124), then Equation (5.123) for #, since ¥ is already
known, and then Equations (5.125) and (5.126) together since %, and § are not only
coupled in these equations but also dependent on ¥,. In the z—sweep, the diffusion terms
ﬁ‘ (i.e. 8%/8£?) are approximated by the three—point central difference expression whereas

the two-point backward difference representation is used for the convective terms {i.e.
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0/0€). It should also be reiterated that Equations (%.123)—(5.126) are approximated at

the locations of (¥,)i;, (Us)ij, {(¥z)i; and (B):;, respectively, in the staggered mesh.

Accordingly, for 3 < i < N, Equation (5.124) is represented by

LU(nf) : ], 2 LU@E) e ]
- [ AZJ + (:JE)Z](UB):’—I,J‘ [aAr + A(zj) + (Al;’)z](ve);,j
z . L2 .
- [(Av—'é)z}(ve)i-i-],j = (m)(w);li, (5,127)
which can be simplified for ¢ = 2,
L? LU(n% 2v7% vz I2
[aAr e (AI;V](”")”" i [E‘?F]“”’“”-f = (m)("’a)w (5.128)

because (¥);; = 0 is imposed at the inlet of the flow (Section 5.3.3.2); for { = N + 1,
Equation (5.127) becomes

Lu(nf) . ¥ 1. L2 | LU(mg) | 2vf
P o [420

A7 " AZ (Ae)zl(ﬁ")”“"'

— [—(:2)2](;'}0)1\'-1-2.:' = (ali:f)(ﬁg)gv.*_llj. (5]29)

Here, the value of (¥y)n42; represents the boundary condition at the exit of the flow,
and must be such thet ¥ would vanish somewhere downstream [i.e. ¥y = 0 at £ = ¢,

£ > 1] as prescribed by any of the realistic flow models discussed in Chapter 2. It may
be shown that

(Vo)n+2,; = A(Be)n; — B(¥s)N+14, (5.130)

where the constants A and B depend on the particular flow model adopted and are

given in Appandix B. With the houndary condition (5.130) imposed, Equation (5.129)

turns out to be
n v ], L LU(93 Yi e
A(EJ) MG A)Ajsz](w)m" * [E + _&(EJ—) + @+ B) g | Bl

- (&) -

It is seen that Equations (5.127), (5.128}, and (5.131) form another tridiagonal system,
which is then solved for 2 < ¢ < (N +1) with 7 incremented such that 2 < j < (M ~1).
The above procedure is also applied to Equation (5.123) with 2 < 7 < (M - 2),

resulting in the following equations:
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f{ for 3 5%5 ;
v ], L* | LU(9 Yi iy
[ = (Ae)Z](”')“"" i [aAr"*' Ag (AEP](U')” il [W]“”)‘“*"

= L (Urdig - oy 2 [dﬂ;+1(”8)t2+1+(1 d’?3+1)(‘”9)u]i (5.132)

aAr (n)
fori=2
LU(n% v, Lzl .

(250 2o [2hlons = [
f:u ) [dn,+1(vo) 2541+ (1— df),+1)(va)2;] (5.133)

fori=(N-+1),

r

LU(n3) vi 1. L LU(q) 2v;
- [ A + (1 + A)(—A-J—)z](v,-)mj + [a‘z\-; + Y +(2+ B) (Af)z}( P N+,

L? 2nv} .
= (o:A )(”r)N-E-l.J - [( r) ][dﬂ3+1(”8)N+11+1+(1 d’?gz'+1)("-’ﬂ)N+1.J']- (5.134)
- The solution of Equations (5.125) and (5.126) involves the decoupling of ¥; and 3.
L First of all, the discretization of Equation (5.125) gives
LU(n? v L LU(n})
) [ 2 TR ](”’)’"1" T [W(l PANE TRt (Ae)? (Bl
vi |, L, y Lt ..
- [“—A*’&Tgl(vz)m,f + KE[(P):‘H.:'- @)s] = ( . Ar)(”z)i.z‘
dv
+ A_f(_) {d’?; [(Ur)|+1.3 (Ur)t ] + 1 - dn,)[(ur)l+1 -1 (vr)i,j-l]} ) (5-135)
while it follows from Equation (5.126) that
AE(Lﬁ)[( :)IJ (Uz)| 1IJ] (V)‘-'J. = (ﬁ)!‘ﬂ" (5'136)
Subtracting Equation (5.136) for ¢ = ¢ from the same equation for 7 = ¢ 4 1 and then
multiplying the resulting equation by (L/A£) gives
AT L 9 Lo, -
AaE)? [@B2)i17 - 2(B2)is + (”z):+1.1] + A—E[(ﬁ)iﬂ,j - (P)e,,‘] = KE[(P):‘-{-I,J' - (P]:‘,J‘]: (5.137)
which is then subtracted from Equation (5.135), yielding the following relationship for
X 2<i1<(N-1),

) {”’JZ’ * agE |t %:]}(ﬁ‘)""" ¥ {alz bron g7+ 5
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LU(’? }(Uz) 1 (Ale)z[ z 4 AT]( z)itl,; = (cj;r)(”z)n - (Z’LE) [(f’)l‘ﬂ.j - (,ﬁ).‘.,‘]
+ KEG—:) {d”§ [('\5*)"“.:' - (“r)i,:'] + {1 - dn})[(ﬁr)m,,--x - (1“:,.).-,,-_1]} : (5.138)

Similarly, it is found that, for t =1,
L arl LUED] . 1 [, A,
{ ( + Ar)+ (AE)2 [2 + 3 ] + —'-Z-E—*—}(Uz)l,j - —H—&(Af)z |:VJ~ + 'B—](U:)Z.J'

= ( 2 )( )i~ (A_E)(ﬁh.j + EEG:) [dn,(vr)n (1—dq§)(a,)2_,-_1], (5.139)
and fort= N,

B 224G B SV Y -G R _ L*  (2+B)[ . Ar
{ INERRTNGE X ﬁ]}( 2N-14 + {am Gep 5+

LU(n2 §
+ B0 o, = Ens - el oo

+ 31_5(3:) {dn; [(‘Ur)N+1.J (vr)N.J'] + (1-dnj}) [(r‘:vr)Nﬂ,,-_] - (ﬁ,)N,,-_l]}, (5.140)

where the boundary conditions (¥:}o; = O and (¥:z)n+15 = A(¥z)N-1,; — B{¥:)n; have
been imposed. Here, Equations (5.138)-(5.140) also form a tridiagonal system with j
incremented from 2 to (M — 1). For the same range of j, the pressure § is calculated

subsequently from Equation {5.136): for 2 <z < N,

(Bis = (Bl - 731_6 (%é)[(ﬁ:):,,- = (¥)i-14], (5.141)
and for ¢ = (N + 1),

Bwsss = P - 2z Te)[ABIwass = O+ BI) (5149)

0-Sweep

The f-sweep, characterized by Equation (5.96), covers the following equations
a1 |v(l+n? n Y
{1-;- I [ ( p )]}Av, = ¥, (5.143)
aAr (n\[dv 207,. aAr [v(1 + n?) ,  alr .
T (;?—)[d—q-+?]Av,-+{(l+Ar)+ 72 [ py ]}Ave 5 (n)ﬁp = g, (5.144)
alr (AU, . aAr {un? .
—"L'—('d—;)ﬂvr + {1"1"2‘5“(7)}&1& = vz, (5.145)

Ar
Lﬁ( )A‘“ + AP

!

%, (5.148)
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where ¥,, ¥y, ¥,, and P have been determined in the z—sweep. In the f#-sweep, Adj is
coupled with Af, and the sequence in which Equations (5.143)—-(5.146) are solved is still
selective: {5.143), then (5.145), and finally (5.144) and (5.146) together; nevertheless,

no tridiagonal systems of linear algebraic equations are generated.

For 2<i< (N +1)and 2 < j < (M —2), Equation (5.143) is represented by

alAr
14 Iz
Similarly, for 1 <7 < N and 2 < 7 < (M — 1), Equation (5.145) becomes

aAT FV aAr arr
{1 + - l( z)zl}(A‘Uz)l,J (Vz)ij — (d ) {dnJ [(Avr),,, + (ABr )iy, J]

+ (1-dnf) [(Aﬁ,.),-,j_l + (A% )i41,5-1]) } - (5.148)

u"(1+n

r)z )]}(A B)iy = (¥r)ig- (5.147)

Equations (5.147) and (5.148) can both be solved directly for (A#,);; and (A%:):;,
respectively. On the other hand, the difference expression of Equation (5.144) contains
(Aﬁg);,_f and (Aﬁ),‘,j

(2] (] 2] o -t

v’ n? o
{(l"i'A )+ccA2‘r[ ((1:;2 )]}(Ai}g),-,,- - "é"( }‘(AP)M = (”6) £,7. (5-149)

As expected, the elimination of (Ap);; from the above equation requires the difference

expression of Equation (5.146),

?;( )(A"”]'J + (80)i; = (Biss (5.150)

which is multiplied by (eA7/L)(rn/n?) and then subtracted from Equation (5.149), giving

alr niAr

{(H—Ar)-}- ( ;1:)2( I3 )[Vf(l-i-ﬂz)-l- 7 ]}(Aﬁa)i.j = (9g)i; + a—f(:—?)(ﬁ)id

- %Azi(_;:) [(g:)g + V;] [dﬂg (Avr)m + (1 dn;)(A”r)i J"'l] (5.151)

for2<71< (N +1)and 2 <j < (M ~—1). The pressure Ap is calculated subsequently

from Equation (5.150) for the same ranges of 7 and j as for Ay,

(AP)i; - (B - ?;( )(Ave) i (5.152)
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Once (A%,)i;, (Ad)ijy (A¥z)ij, and {Af);; have been determined and so have

(85 )i, (087Y)i;, (05D 4, and (p*+);; according to TIF+! = IT* 4 AIT as defined

in Equation (5.96), the next pseudo-time step is advanced. In principle, this process
continues until

(A%)i; = (Adg)iy = (A%); = (AP)i; = 0, {5.153)

at which time the steady solution in pseudo-time has been obtained. The next physical-

time step can then be advanced after ¥"*! and 5"+ have been updated according to

Equation (5.88). In the actual numerical calculations to be conducted, the condition
(5.153) is considered to be achieved when

(A0:)isgy  (BDo)inge (Afs)inge (BP)i -
Max 1.1 2.J2 . 3,73 , 14,74 S 10 3
{ ({’,:-“)h.:h ’ (ﬁ§+1)f2:i2 (”§+1)fa,.fa (P51 )i ,

where %1, 1, ..., 4, j+ may take on any (integer) value as long as the location of the

(5.154)

corresponding flow variable is within the computational domain considered.

5.3.4 Determination of the Unsteady Viscous Forces

If (i) the functional forms taken for the unsteady viscous forces, Equation (5.31), and for
the flow perturbations, Equation (5.79), are substituted into the relationships between
these forces and perturbations, Equations (5.27)-(5.29), and (ii} the coefficients of sinnd
or cosnf in the series on the two sides of each of the resulting identities are equated,

then the following equations will be obtained

5. = {?_U_' + aﬁz}
= = /v 8z Jr

, (5.155)

33

, (5.156)

(5.157)

For the convenience of solving the shell equations of motion, Equations (5.155)—(5.157)

are now nondimensionalized according to Equation (5.40), thus producing

6: = G{aﬁr + 'a—ﬁz'}

-r 5.158

i

0[5y n
v = ofrg(3) - 3w
Tan\n nor

=
I

, (5.159)
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P : a”r}
& = G{ +23’?

(5.160)

where G = (vypv)/(p,hL?) with v = vy, at the shell surface,

The difference representations of Equations (5.158)-(5.160) can be obtained by
replacing 8/8¢ by the two~point central difference approximation and o, and 4, by the
difference expressions derived in Appendix F. According to the numbering of the nodes
on the sheil and of the locations of the flow variables in the staggered mesh, the following

expressions are obtained:

(@) = 226{( o ipar — (571 )1F‘} + %{ﬁ[(ﬁ'g“)w+(172+1)e+1,1=]
+ B2 sz + (00 )iraa] + E {55 Nes + (30 )ing] } (5.161)

@) = G{(ﬁ—%) i r + O igr,2 + ¥(B] )'+13_n_1( +1).+1F}, (5.162)

n L Af Y AR _
(qr+1)" = '—G(;){(l Aﬂg)p?-:-l]k Anzp:‘:llS}

+ 2G{a(‘73+1):‘+1.F +5(E 2 + 5(93+1)i+1,3}, (5.163)

where &, &, ..., & and ¢ are constants given in Appendix F.

5.3.5 Remarks on the Moving Boundary

Since shell motions are assumed to be sufficiently small, the width of the annular gap
may be considered to vary neither with £ (uniform gap} nor with time ¢; nondimension-
ally, it is taken to be (e, — &;) for which the shell is motionless. (This, as will shortly be
seen, is unsatisfactory, but its consideration is instructive.) Hence, n; could be calcu-
lated from Equation (H.1), and the resulting staggered mesh becomes fixed throughout
the physical-time integration. Thus, when the shell is in motion, the flow velocities
U(n) at some of the grid points that were initially in contact with the undeformed shell
surface may no longer he zero due to a rapid increase in U(n) in the vicinity of the shell
wall.

In earlier stages of developing the theory, the use of this fixed grid had led to

the results that were virtually identical, both qualitatively and quantitatively, to those
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obtained with the theory in Chapter 2 but without the unsteady fluid forces included.

As such, the only type of instability obtained was divergence, which is evidently due to
the flow pressurization required to push the fluid through the annular gap. Furthermore,
the discrepancy between the predictions of U given by the two theories was found to
be 3.9% (based on U = 33m/s by the theory of Chapter 2) for g/a = 1/10, 1.1%
(U; = 90m/s) for g/a = 1/4, and 0.8% (U = 141m/s) for g/a = 1. (With the
unsteady fluid forces included, the results for U were much lower, as will be seen later
in Figure 5.6.) The foregoing comparison has shown that the unsteady viscous forces
were completely missing when the fixed grid was used.

The actual grid, on the other hand, continuously deforms with the moving shell,
such that they always remain in contact; this requires the continual recalculation of (i)
the coordinates of, and (ii) U(n) at, all spatial locations of the flow variables, as the time
integration progresses. Hence, all the coefficients of the tridiagonal systems of linear
algebraic equations presented earlier (Section 5.3.3.3) would need to be reevaluated at
the beginning of all iterations (see Section 5.3.3.2) within every physical-time step, for
a large number of time steps. Consequently, the amount of computing time associated
with the use of the actual grid is prohibitively enormous, considering the very limited
funding and resources available for this research. It might be of interest to mention that
the programming effort involved in such a procedure would also be equally substantial.

The calculations to be presented in Section 5.4.2 adopted what may be considered
as an approximation to the actual grid; Section 5.4.1 will briefly discuss the computing
cost associated with this approximate scheme. The approximation involves the use of
the fixed grid; nevertheless, at the beginning of every iteration within each physical-
time step, the flow velocities U(n) at all the grid points that were initially in contact
with the motionless shell-wall are updated. For a given &;, U{n) is determined from the
velocity profile defined on [e; 4+, €,], where 1; is the instantaneous radial displacement
of the shell at £ = &;. This approximation was found to recover the unsteady viscous

forces, which were missing when the purely fixed grid was used.
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5.3.6 Summary

Section 5.3 has presented in detail (i) the numerical solution of Fligge’s shell equations
and of the unsteady linearized Navier-Stokes equations, and (ii) the evaluation of the
time-dependent viscous forces acting on the shell. The finite-difference method was
applied to discretize Fligge's equations into linear algebraic equations. Similarly, a
factored ADI (Alternating Direction Implicit) finite-difference method was used to solve
the linearized Navier-Stokes equations with the flow field represented by a staggered
mesh of flow variables; the divergence-free velocity constraint was satisfied at each
physical-time step by means of a time-marching method in pseudo-time with artificial

compressibility.

5.4 Numerical Results

5.4.1 Numerical Procedure

The purpose of this section is to explain the procedure involved in running the computer
program encoding the theory presented earlier in this chapter.

First of all, the initial displacements of the shell have to be provided as input; it is
recalled that the shell mode shape is characterized by the axial wave number m and the
circumferential wave number n. Once m and n have been chosen, the theory in Chapter
2 is used to obtain the corresponding eigenfrequency and eigenvector (for U, = (), from
which the displacements of the shell in early physical-time steps (t = —2At, At, 0, At)
can be calculated.

Next, the pseudo-time step Ar and the artificial compressibility coefficient # have
to be selected. For simple 2-D inflow-outflow problems, optimum values of A7 and
B may be approximated analytically {Soh and Goodrich 1988). However, given the
complex nature of the fluid-shell coupling problem here under consideration, no rela-
tionship is known to exist which would suggest proper values for Ar and 8. As far as
the present analysis was concerned, for a particular configuration of the system and for

a given average flow velocity U,, the optimum values of A7 and  were determined via
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series of nurnerical experiments: firstly, some good guesses were made for Ar and § (the
very first good guesses were found accidentally!); secondly, 8 was kept unchanged while
the computer program was run for various values of Ar until convergence (the steady
solution) was obtained with the lowest number of pseudo—~time steps; in turn, with the
newly found optimum value of A7 fixed, the program was again run for various values
of 8 until convergence was obtained with the lowest number of pseudo-time steps. If
the nurmber of pseudo-time steps required for convergence were plotted versus Ar (for
a given §) or 8 (for a given Ar), then the curve would be found to be quasi-parabolic.

In general, the optimum values of Ar and # vary from one physical-time step to
another; nevertheless, it is not feasible to determine them for every single time step.
What was actually done was that the optimum values of A7 and 8 found for the first
time step, in which the program had been run on the McGill IBM mainframe computer,
were used for all subsequent time steps, in which the program was run on the CRAY
X-MP 2/8 computer. As a result, convergence was achieved with as few as 35 pseudo-
time steps in the first physical-time step but with as many as 150 pseudo-time steps in
subsequent physical-time steps.

For each configuration of the system considered, the program was run for a total of
40T, or 960 physical-time steps with At = T,/24, where T; is the period of oscillation of
the shell at time ¢ = 0 (for given m and n). Here, although the time interval over which
numerical time integration is performed is selected arbitrarily, it must be long enough
to ensure that a conclusion regarding stability of the system at a given average flow
velocity U, can be_ drawn from a displacement—time plot generated from the computer
run. For systems having their parameters listed in Section 5.4.2, each run on the CRAY

computer was found to take from 1600 to 2400 CPU seconds.

5.4.2 Numerical Results

Due to a tremendous amount of computing time required for each computer run in
searching for the optimum values of A7 and # and especizally in carrying out the time
integration for a large number of {ime steps, it was not feasible for the present analysis

to cover all the cases as were presented in Chapter 2 or 3. (Besides, since the financial
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support for this research was limited, the use of the CRAY computer was restricted to
time donated by the CRAY Research Inc.; once the computer left Montréal, no more iree
computing time was available.) Instead, numerical results were obtained for a limited
number of geometries, with attention being paid to the unsteady viscous effects of the
annular flow on the stability of a system having a narrow annular gap; hence, for the
same length of the flexible shell, considered were systems of various annular gap widths,
for more than half of which the corresponding experimental results had been obtained.

For comparative purposes, the present analysis was conducted for systems with

the same material properties and geometries as those tested in Chapter 4, namely

E = 2.8246 x 105 N/m?®, v = 0.47, p, = 1.1588 x 10%kg/m®, u = 0.01948,

U = 55.934m/s; for air at 21.1°C (70°F): pair = 1.205kg/m3,

Um = 15.178 x 10™°m?*/s; a = 24 "4mm, h = 1.37mm, L/a =8,

b =28.02mm (1/10-gap), b = 32.63mm (1/4—gap), (5.164)
b= 38.1mm (1/2-gap), b = 44.45mm (3/4-gap), b = 50.93 mm (1/1-gap);
non-uniform staggered mesh: ~, =4, N = 30, M = 20 for the 1/10- and

1/4-gap, M = 30 for the 1/2—, 3/4- and 1/1-gap.

For clarity, it should be recalled that v is Poisson’s ratio; u is the structural damping
coefficient; the term “g/a-gap” refers to the system with annular gap width g/a =
[6 — (@ + k/2))/a; 7, is the parameter that controls how much the staggered mesh is
stretched in the n-direction; M and N determine how finely the flow field is discretized
in the n— and ¢-direction, respectively; U = [E/ p(l—-yz)]ll ? is the reference flow velocity,
from which a nondimensionalized average flow velocity U can be defined, U = U, /U.
Section 5.2 indicated that internal dissipation within the shell was taken to be
represented by viscoelastic damping; the viscoelastic damping coefficient y¥ was found
by equating the energy dissipated by the viscoelastic damping to that of the structural
damping characterized by g, which is constant and frequency—independent. The value

of p shown in (5.164) was measured as part of the experimental work presented in
Chapter 4. '
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With the same procedure of analysis as adopted in Chapter 2, some preliminary
calculations were first carried out to check some important part of the computer pro-
gram developed herein. Theoretically, in the absence of internal dissipation, the present
method of solution and that in Chapter 2 should give similar predictions for the fre-
quency of oscillation of the shell in vacuo for a certain mode shape {i.e. for a certain
combination of m and n). In Figure 5.3, the nondimensionalized radial shell displace-
ment % at £ = 1 is plotted against the number of time steps for (a) At = T,/24 and (b)
At = T,/48. In both cases, the shell was excited in m = 2 and n = 2. It is found that (i)
f =27.7THz (between t; = 160At and ¢, = 801A¢t) for At = T, /24, (ii) f = 28.4Hz (be-
tween t; = 313At and ¢; = 1608A¢) for At = T, /48, and (iii) f = 26.5 Hz by the theory
of Chapter 2. The smallness of the discrepancies between these calculated values of f
may be considered to validate the segment of the computer program. The damping~like
effect, clearly seen in Figure 5.3(a) and characterized by a reduction in the amplitude
of %, is due to the discrete time integration currently used. A comparison of Figures
5.3(a) and 5.3(b) indicates that such an effect becomes diminished as At is reduced.
There is little doubt that At = T7,/48 is sufficiently small; nevertheless, the use of this
time stepsize would have significantly increased the number of time steps required for
each computer run. For this reason, At = T, /24 was used for all subsequent calculations
as mentioned in Section 5.4.1.

Regardless of how the shell was excited initially, if the average flow velocity were
below some critical value, shell motions would die out with time due to the presence
of material damping and fluid damping. However, if the flow velocity were greater
than a critical value, shell motions would become continually larger, signifying a loss
of stability. In the present work, both types of instabilities were observed: divergence
(static instability), as illustrated in Figure 5.4 for the 1/10-gap system, and flutter
(oscillatory instability), as in Figure 5.5 for the 1/2~gap system. Again, plotted in these
figures is the nondimensionalized radial shell displacement at £ = 1 versus the number
of time steps; the shell was excited in m = 2 and » = 2 in the case of Figure 5.4 and in
m =1 and n = 2 in the case of Figure 5.5. It is seen from Figures 5.4(a) and 5.4(b) that
when U is 0.35 or 0.40, the displacement becomes rapidly diminished after about 400
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time steps; on the contrary, when U is 0.45 as in Figure 5.4{c), the displacement sharply
increases without any limit (i.e. divergence) after about 320 time steps. A similar trend
is also found in Figures 5.5(z) and 5.5(b), for which U is 0.90 and 0.95, respectively—
the displacement exhibits a harmonic pattern with a diminishing amplitude; however,
with U incremented to 1.00, the displacement still retains its harmonic nature, but
the amplitude keeps on increasing with time (i.e. flutter). Needless to say, the critical
flow velocities depicted by Figures 5.4 and 5.5 are within (0.40,0.45) and {0.95,1.00),
respectively.

For a particular annular gap, the overall critical flow velocity U of the system
is the lowest of those obtained for different combinations of m and n; ie., U} is the
value of U at which the system first loses stability either by divergence or by flutter.
The significance of unsteady viscous effects on the stability of a system can then be
revealed by plotting U for various annular gap widths g/a. Presented in Figure 5.6
are available experimental measurements and the analytical results given by the present
theory, shown as the cross-hatched curve, and by the theory in Chapter 2, the solid
curve. The thickness of the cross—hatched curve represents the range in which the
predicted value of U* fell, since computer runs were made with U incremented by 0.05
until instability was encountered. In general, with the chosen mesh size of the staggered
grid (prescribed by the listed -y,, M and N), there is excellent agreement between the
numerical results and experiment, at least for 0.1 < g/a < 0.5. A comparison between
the cross-hatched curve and the solid one shows that, for g/a < 0.8, the unsteady viscous
forces have a destabilizing effect on the system, lowering the value of U* predicted by the
previous theory (potential theory with steady viscous effects taken into account); the
widest gap between the two curves appears to be at g/a = 0.5. As g/a becomes smaller,
the predictions of U given by the two theories are seen to approach each other, thus
narrowing down their discrepancy. This observation therefore implies that the unsteady
viscous effects tend to be diminished and become less important with decreasing g/a.
The effecfs are in fact more significant with moderate g/a, which is of the order of 0.5
for the present system parameters.

With the numerical results obtained so far, the present theory has proved to be
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quite promising; nevertheless, it should be borne in mind that the foregoing analysis
has been based on the results for L/a = 8. In the light of the fact that the degree of
agreement between the previous theory and experiment varied not only with g/a but
also with L/a (Chapter 4), it is certainly desired to investigate such variations, if any, of
the present theory by performing the same type of calculations as in Figure 5.6 for a wide
range of L/a; the numerical aspect of the analysis also needs to be undertaken, namely
the convergence study of U as each of ,, M and N is varied. These suggested studies

should be carried out whenever the necessary computing resources become available.

5.5 Conclusion

A new analytical model has been introduced for the study of instabilities of the system
involving a cantilevered flexible cylindrical shell confined in a coaxial rigid cylinder and
subjected to an incompressible viscous flow in the annular region. This model took into
account both steady and unsteady types of viscosity—related fluid forces exerted on the
shell. The main aim of the analysis conducted was to examine the unsteady viscous
effects on the stability of the system, especially when the annular gap was relatively
small.

In the new model, shell motions were also described by Fliigge’s modified shell
equations (Paidoussis, Misra and Chan 1985), which were solved numerically by the
finite-difference method. The unsteady viscous forces, acting as forcing functions in
the shell equations, were determined from the velocity and pressure perturbations in
the flow. These perturbations were governed by the linearized, unsteady Navier-Stokes
equations, the solution of which was obtained using a time-marching finite-difference
method with artificial compressibility on a staggered grid. This method involves (i)
introducing a pseudo time between two physical time steps and (ii) using a factored
ADI (Alternating Direction Implicit) scheme to solve for the flow variables in the grid.
In the analysis, the actual grid changing continuously to remain in contact with the
moving physical boundary was approximated by a fixed grid, in which the mean axial

flow velocities at all spatial locations on the boundary grid line were updated in every
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iteration within each physical time step.
it was found that numerical results obtained for a particular set of system param-
eters are in excellent agreement with experiment; the unsteady viscous effects tend to
be diminished with diminishing annular gap width, provided that the gap is sufficiently
small (g/a < 0.5, approximately). Nevertheless, effects of a number of important system

parameters still remain to be explored in future work.
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Chapter 6

Conclusion

6.1 Contributions of the Thesis

This thesis presented two new analytical models for the study of the stubility of ciamped-
free coaxiai cylindrical shells subjected to internal and/or annular incompressible viscous
fluid flow. A substantial amount of experimental werk was also conducted to verify the
analytical results obtained and hence validate such models.

In the first model, Fliigge’s shell equations were used o describe the shell motions;
the complexity of the free—end boundary conditions oi  the shells was dealt with by the
extended form of the Galerkin method in solviﬁg the governing equations of motion. The
unsteady fluid—dynamic forces in these equations were formulated from potential flow
theory: the perturbation pressures on the shells were determined from the perturbation
velocity potentials via the unsteady Bernoulli equation; those velocity potentials were
governed by the Laplace equation, which was solved by the Fourier transform method.
As the downstream end of the shells was unsupported, different so-called outflow models
were examined in modelling the decay of flow perturbations beyond the free end. Also
incorporated into the equations of motion were the ttme-independent viscosity-related
effects, which result from (i) flow pressurization necessary to keep the fluid flowing
and (ii) shear stress on the shell due to surface traction. Such steady viscous effects
were evaluated for cantilevered shells using the same procedure previously proposed by

Paidoussis, Misra and Chan (1985) for the system of clamped-clamped shells,

126



5y

127

The theory was first used to solve test problems involving cantilevered cylindrical
shells: (i) the natural frequencies of a shell in vacuo and (ii) the critical flow velocity
of another shell conveying fluid. In both problems, predictions were found to be in
excellent agreement with experimental results available in the literature. The theory
was then applied to investigate the dynamical behaviour of a cantilevered steel shell
located coaxially inside a rigid cylinder; the system had water flowing within the shell

and/or in the annular region. The following main findings were obtained:

e In the case of internal flow, only in beam-like motions of the shell (n = 1) are
steady viscous effects truly negligible; for shell-type motions (n > 2), flow pres-
surization and skin friction stabilize the shell by a considerable amount, especially
if the shell is long. The presence of the quiescent annular fluid lowers the natural
frequencies by increasing the effective inertia of the system. A reduction in the
annular gap destabilizes the system by increasing the virtual mass of the annular
fluid and hence reducing the effective stiffness of the system. With the system
parameters taken for the analysis, loss of stability is not always by flutter. For
some large n, divergence occurs first, followed by single— or coupled-mode fiutter;
nevertheless, loss of stability is always by single-mode flutter in the most critical
mode, i.e. the mode associated with the lowest critical flow velocity, U;. In con-
nection with the Fourier transform method employed in the theory, the utilization

of an outflow model :s not only desirable, but essential.

o In the case of annular flow, the systern may lose stability either by flutter directly,
or by divergence, followed by flutter at a higher flow. Unless the annular gap is
relatively wide and n is very low, the principal effect of the steady viscous forces
is to severely destabilize the system. This is due to the fact that pressurization of
the annular flow results in inward-directed, crushing compressive loads acting on
the shell. The inclusion of internal dissipation in the analysis rectifies the physical
paradox that the critical flow velocity, U,., becomes progressively smaller with
increasing n in the absence of dissipative forces. As the annular gap is reduced,

U;. becomes smaller since inviscid and pressurization forces become larger; this
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trend is expected to level off or even become reversed once unsteady viscous effects
are taken into account. The value of U, is decreased as length of the shell, L,
is increased or its thickness, h;, is reduced; this finding also holds for the case of
internal flow and for systems with other end boundary conditions (for instance,

clamped~clamped).

e Each flow by itself, whether internal or annular, is capable of leading to instability
of the system. However, if one of the two flows is present and the system is stable,
the addition of the second flow does not necessarily bring it closer to instability.
Furthermore, there are certain ranges of one flow for which stability can only be
achieved provided that the other flow is neither too low nor too high. This intricate
dynamical behaviour stems from the nonconservative nature of the cantilevered
system. With a shell clamped at both ends, the system loses stability more easily

when conveying counter—current flows than when conveying co—current flows.

The theory was generally well supported by the experimental part of the thesis, at least
for the results of natural frequencies and of overall critical flow velocities of the system
under various flow and geometric conditions. Both types of instability, divergence and
flutter, predicted by theory were also observed experimentally.

In the second analytical model, much attention was given to the unsteady viscous
effects of the annuler flow on the stability of the system with narrow annular gaps. Such
effects, which had been neglected in previous studies, were evaluated in a formal manner
for the first time. Although the model also used Fliigge’s shell equations to describe
the shell motions, it formulated the unsteady fluid-dynamic forces on the shell from
the flow perturbations governed by the linearized, unsteady Navier-Stokes equations
subject to the divergence-free velocity constraint. Such flow perturbations, namely the
perturbed pressure and components of the perturbed flow velocity, were shell-motion
induced; they were determined by solving the linearized Navier-Stokes equations with a
time~marching, factored ADI (Alternating Direction Implicit) finite-difference method
on a staggered grid (Soh and Goodrich 1988). This method involves introducing a

pseudo—time between two physical-time levels. The momentum equations are first dis-
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then rewritten in a continuous pseudo—time derivative form. The continuity equation is
preconditioned with a pseudo-time derivative of the pressure multiplied by an “artificial
compressibility” coefficient. The actual solution at the advanced physical~time level is
the same as the steady solution of the preconditioned equations in the pseudo-time. For
the problem under consideration, the choice of the artificial compressibility coefficient
and of the pseudo-time stepsize played a crucial role in determining how fast the steady
state in pseudo~time was reached in each physical-time step. Optimum values of the two
parameters had to be found through many numerical experiments. For compatibility
between the methods of solution, the finite-difference method was also used to solve
Fliigge’s shell equations, modified to take into account flow pressurization and basic
loads pre-stressing the shell. Thus, the second model in effect treated both steady and
unsteady types of viscous forces due to the annular flow.

The new theory agreed quite well with experiment in terms of the overall critical
flow velocities for various annular gaps of the system; the shell had the same length in all
cases considered. For sufficiently small widths of the annular gap, the unsteady viscous
effects of the annular dow were found to be destabilizing; they became diminished as
the gap was reduced. This observation by no means rules out the possibility that the
unsteady viscous forces stabilize the system with a very narvow annular passage. This

can only be confirmed with further calculations and analysis.

6.2 Suggestions for Future Work

In the development of the first analytical model, it was shown that the use of an outflow
model in the Fourier transform method is very essential, and that a realistic outflow
model depends not only on the displacement, But also on the ¢lope of the downstream
end of the shell(s). Therefore, the stability of the system of pinned-pinned coaxial cylin-
drical shells conveying fluid should be re-examined; it was préviously studied without
the inclusion of any outflow model.

With the second model, only a limited set of calculations was presented: the effect

of varying annular gap on the overall stability of the system for a certain length of the
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of varying annular gap on the overall stability of the system for a certain length of the
shell. Once computing resources are available, it is important to study such an effect
for a wide range of shell lengths; in addition, the possibility that the unsteady viscous
effects are stabilizing for the system with an extremely narrow annular passage should
also be investigated. There is an important numerical aspect of the mode!, which should
be considered in future work as well. This is particularly concerned with the compu-
tational domain of the annular region: the effect of varying the parameter controlling
the concentration of nodes in the vicinity of large gradients (physical walls), of varying
the number of nodes in the radial direction, and of varying the number of nodes in the
axial direction. Furthermore, all calculations in Chapter 5 were carried out with a fixed
mesh, in which the coordinates of the nodes (i.e. locations of flow variables) remains
unchanged even if the shell is in motion. In order to use a more realistic mesh, which
continuously deforms with the moving shell, further research needs to be done on how
to re—evaluate the coefficients of the flow variables in the tridiagonal systems of lincar
equations (in the factored ADI method) without substantially increasing the amount
of computing time required. Once the model is completely validated and possibly im-
proved, it is worthwhile to undertake similar studies of the unsteady viscous effects on
systems of coaxial shells with other boundary conditions, such as clamped-clamped and

pinned-pinned.
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Table 2.1

Comparison between natural frequencies of a cantilevered shell, as measured by Gill
(1972) and as calculated by Sharma’s (1974) sextic approximation and by this theory
with different numbers of admissible functions M, for different circumferential and axial

mode nubers, n and m, respectively.

n Experiments or Natural Frequencies (Hz)

Theory m = m=2 m=3 m =4

Gill (1072) 293.0 827.0 1894.8 —
Sharma (1974) 318.0 1006.4 2356.5 3882.3
2 ‘ M= 312.4 953.3 2246.7 3818.3
Present M=6 312.0 946.3 2225.8 3734.7
Theory M=28 311.8 942.9 2214.7 3701.7
M =10 311.6 940.9 2207.9 3683.4
Gill (1972) 760.0 886.0 1371.0 2155.0
Sharma (1974) 769.7 927.7 1504.2 | 2403.6
3 M=4 755.5 906.5 1461.7 2361.9
Present M=26 755.4 905.0 1454.9 2331.6
Theory M=28 755.4 904.3 1451.2 2318.2
M =10 755.4 903.8 1449.0 2310.6
Gill (1972) 1451.0 1503.0 1673.0 | 2045.0
Sharma (1974) 1465.3 1523.3 1726.1 2148.5
4 M=4 1438.3 1494.6 1693.1 2116.5
Present M=6 1438.3 1494.1 1690.9 2103.8
Theory M=28 1438.2 1493.8 1689.7 2008.4
M=10 1438.2 1493.7 1688.9 20954




i

Table 2.2

138

4

Comparison between critical flow velocities U;, of a cantilevered shell, as calculated
by Paidoussis and Denise (1972) and by the present theory with different integration
stepsizes A&, for different circumferential mode numbers n and three different flow

models; the axial mode number m shown in each case is associated with instability.

Critical Flow Velocity, U;, ]
n | Model Present Theory Paidoussis &
Aa=4.0 |m| Aa=20 [m| Aa=10 | m | Denise (1972)
1 0.911096 2 0.8%0955 2 0.890971 2
1 2 1.095842 2 0.980529 2 0.980665 2 0.959
3 1.066014 | 2 0.974488 2 0.974496 2
1 0.374694 | 2 0.367785 2 0.367785 2
2 2 0.475056 2 0.420881 2 0.420882 2 0.452
3 0.456199 2 0.418705 2 0.418705 2
1 0.405467 3 0.406670 3 0.406670 3
3 2 0.423276 | 3 0.466205 3 0.466203 3 0.524
3 0.453574 | 3 0.467168 3 i 0.467168 3
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Table 2.3

Comparison between critical flow velocities U;. of a cantilevered shell, as calculated
by Paidoussis and Denise (1972) and by the present theory with different integration
domains {~z, z}, for different circumferential mode numbers n and three different flow

models; the axial mode number m shown in each case is associated with instability.

Critical Flow Velacity, ;. |
n | Model Present Theory Paldoussis &
(~150,150) |m ||{~200,200) |m ||(~250,250) |m | (—300,300) |m [ Denise (1972)
1 0.850971 2 0.890955 2 0.890948 2 0.890945 2
1 2 0.080526 | 2 0.9805286 | 2 0.980534 1 2 0.980538 | 2 0.959
3 0974459 | 2 | 0.974488 | 2 | 0974502 | 2 || 0.974509 | 2
1 0.367808 | 2 || 0.367785 | 2 { 0.367774 | 2 || 0.367769 | 2
2 2 0.420876 2 0.420881 2 0.420888 2 0.420894 2 0.452
3 0.418670 | 2 [ 0.418705 | 2 | 0.418721 | 2 || 0.4.8730 | 2
1 0.406738 | 3 || 0.406670 | 3 || 0.406639 | 3 | 0.406622 | 3
3 2 0.466193 | 3 || 0.466205 | 3 || 0466218 | 3 || 0.466230 3_"--\ 0.524
3 0.467105 | 3 || 0.467168 | 3 |i 0.467198 | 3 || 0.467214 | 3
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Table 2.4

Comparison between critical flow velocities Ui, of a cantilevered shell, as calculated
by Paidoussis and Denise (1972) and by the present theory with different number of
admissible functions M, for different circumferential mode numbers n and three different

flow models; the axial mode number m shown in each case is associated with instability.

Critical Flow Velocity, Ui,
n | Model Present Theory | Paidoussis &
M=4 m| M=6 |m| M=8 |m| M=10 | m || Denise (1972)
1 0.890955 | 2 | 0.885828 | 2 D._883633 2 || 0.882477 | 2
1 2 0.980529 { 2 | 0.970659 | 2 || 0.966729 | 2 ‘“0.964672 2 0.959
3 0.974488 | 2 || 0.965498 | 2 |} 0.961962 | 2 | 0.960117 | 2
1 0.367785 | 2 | 0.36609% | 2 || 0.3652)0 | 2 || 0.364690 | 2
2 2 0.420881 | 2 |} 0.419166 | 2 |} 0.418412 | 2 | 0.418124 | 2 0.452
3 0.418705 | 2 | 0.417027 | 2 || 0.418304 | 2 || 0.416019 } 2
1 0.406670 | 3 | 0.405667 | 3 || 0.405351 | 3 || 0.405209 | 3
3 2 0.466205 | 3 || 0.464739 | 3 || 0.465733 | 2 | 0.467141 | 2 0.524
3 0.467168 | 3 | 0.463316 { 3 | 0.464220 | 2 || 0.465516 | 2
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The effect of the sut-flow model used in the calculations on Uy,; the calculations were

conducted for » = 2, with Aa = 4.0, (~z,2) = (—200,200), M =4,£=3.

Model U, Type of Instability
0 0.1311 Divergence
0.9505 Coupled-mcde flutter
1 0.3747 Single-mode flutter
2 0.4751 Single-mode flutter
3 0.4562 Single-mode flutter




Table 2.6

The effect of length £ on the critical flow velocity, Ui, for different circumferentiz! mode
numbers n and three different flow models; here, Aad = 4.0, (~z,z} = (-200,200),

M = 4. An asterisk signifies that 7;. < 0.1.

n Model Critical Flow Velocity, U;
£=2.0 =30 £=4.0 {=10"
1 0.8530 0.9111 0.8623 0.8911
1 2 0.8966 1.0958 * 0.6570
3 0.8996 1.0660 0.8992 1.0134
1 0.3505 1.3747 0.3618 0.3642
2 2 0.3737 0.4751 * 0.2090
3 0.3847 0.4565 0.4452 0.3853
1 0.4164 0.4054 0.4082 0.4189
3 2 0.4927 0.4233 * *
3 0.4726 0.4536 0.4197 *
1 0.4445 0.4526 0.4752 *
4 2 % 0.5484 * *
3 0.4774 0.5273 1.0221 *
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Table 2.7

The effect of varying the length~to-radius ratio of a cantilevered shell on the critical
flow velocity, U;,, for different circumferential mode numbers n and three different flow
models; the axial mode number m shown in each case is associated with instability. The

calculations were conducted with A&, {—z, z) = (—200,200), M =4 and £ = 3.0.

n Lja Critical Flow Velocity, U;
Model 1 m Model 2 m Model 3 m
5 1.552088 2 1.605623 2 1.608831 2
1 10 1.060300 2 1.145292 2 1,139270 2
15 0.794790 2 0.882841 2 0.877991 2
20 0.625826 2 0.705826 2 0.702593 2
) 0.765242 2 0.827623 2 0.823093 2
2 10 0.452692 2 0.510982 2 0.508065 2
15 0.327084 2 0.378561 2 0.376519 2
20 0.286602 2 0.345992 2 0.344017 2
5 0.493430 2 0.551185 2 0.547451 2
3 10 0.506381 2 0.519440 2 0.519359 2
15 0.365939 3 0.432463 2 0.430596 3
20 0.400745 4 0.459856 3 0.459928 3
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Table 2.8

The critical flow velocities, Ui, with n = 1-8 for the 1/10-gap system subjected to
internal flow according to the inviscid and viscous (i.e., including steady viscous effects)
versions of the theory, with the axial mode number m involved in each case. Cases in

which stability is first lost by divergence, for a particular n, are marked by !.

n Critical Flow Velocity, U;,
Inviscid Theory m Viscous Theory m
1 - 0.06899 2 0.06904 2
2 0.03107 2 0.03261 2
3 0.02772 3 0.03117 3
4 0.02705 4 0.03356 4
5 0.02990 5 0.03488 4
6 0.029111 1 0.04808 4
0.03115 1
7 0.03427! 1 0.11065 4
0.03895 1
8 0.04359! 1 0.41368 3
0.05185 1




Table 2.9

The critical flow velocities, U;., associated with n = 1-9 for the 1/10- and 1/100-gap
systems subjected to internal flow according to inviscid theory, with the axial mode

number m involved in each case. Cases in which stability is first lost by divergence, for

a particular n, are marked by '.

n Critical Flow Velocity, U;
%-Gap | m 15-CGap | m
i 0.06899 | 2 0.06439 2
2 0.03107 | 2 0.02657 1
3 0.02772 | 3 0.01565 1
4 0.02705 | 4 0.01739 2
5 0.02000 | 5 0.01881 3
6 0.029111 1 0.02093 4
0.03115 1
7 0.03427" | 1 0.02316 5
0.03895 1
8 0.0435¢' | 1 0.03662! 1
0.05185 1 0.04423 | 1,2
9 0.05634! | 1 0.04645! 1
0.06839 1 0.05855 | 1,2
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Table 2.10
The effect of varying the length-to-radius ratio on the overall critical flow velocity, U,
fo1 the 1/10-gap system subjected to interna! flow, according to the inviscid and viscous

(i.e., including steady viscous effects) versions of the theory; the circumferential mode

number n associated with T}, is shown in each case.

L/a Critical Flow Velocity, Uy,
Inviscid Theory n Viscous Theory n
5 0.03484 5 0.03842 4
10 0.02827 4 0.03241 3
15 0.02242 3 0.02741 2
20 0.01956 2 0.02838 3
25 0.01895 2 0.02717 3
30 0.01869 2 0.02841 2 B
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Table 2.11

Critical annular flow velocities, U,., with different n for the 1/10-gap system, according
to the inviscid and viscous versions of the theory; “S” stands for single—-mode flutter,
“C” for coupled-mode flutter, and “D” for divergence. The identification of the mode
number m at instability for some of the results with dissipation (p; # 0) was not clear-

cut; hence, no value of m is given.

Inviscid Theory Viscous Theory Viscous Theory
{ni = 0) (i = 0) (i =5 x 107%)
n Instability Instability Instability
Use Type m U, Type m U.. Type m
1 |l 0.06672 S 4 || 0.06656 S 4 | 0.06508 S 4
2 || 0.03429 S 3 || 0.00361 D 1 }1 0.00361 D 1
0.0151 C 1 | 0.0151 C 1
3 || 0.02461 S 3 || 0.00288 D 1 | 0.00284 D 1
0.0102 C 2 | 0.0102 C 1
4 (1 0.02534 S 4 | 0.00294 D 1 | 0.0086 C —
0.0108 C 1
5 || 0.02559 S 3 || 0.00306 C 1 || 0.0080 C —
6 | 0.02130 D 1  0.00208 C 1 f 0.0087 C —
0.02284 C 1
7 || 0.02650 D 1 || 0.00140 C 1 || 0.00173 C —
0.03000 C 1
8 | 0.03526 D 1 3 0.00107 C 1 > 0.1 C —
0.04179 C 1
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X Table 2.12

The effect of steady viscous forces and structural damping on stability with n = 1,

showing that they can be either stabilizing or destabilizing, depending on the gap size.

Gap Size, Critical Flow Velocity, U,.

(6—-a)/a Inviscid | Viscous {g; =0) | Viscous (p; = 5 x 1073)
1/10 0.06672 0.06656 0.06508
1/2 0.10099 0.10272 0.10253

6.3
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Table 4.1

The effect of annular fluid on the critical internal flow velocity, U, for different lengths

of a cantilevered silicone rubber shell. The fluid is air.

(b—a)/a Critical Flow Velocity, U}, (m/s)
Lia=28 Lia=1T Lia=86
1.5 63.71 £ 2.66% 70.30 % 1.17% 78.03 £ 0.60%
e | 63.25 + 1.71% | 70.11 = 0.99% | 78.08 + 0.47%

A \’\_

sy



é.' ;;é ¢ s

it

Figure 2.1: Schematic of the system under consideration.
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Figure 2.2: Comparison of the in vacuo natural frequencies calculated by this theory
with Gill’s (1972} measurements and Sharma’s (1974) sextic-approximation calculations;

the shell parameters are given in Section 2.4.2. (a) n =2; (b) n = 3; (c) n = 4.
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Perturbation level

Figure 2.3: The so—called “out-flow” models considered in this theory for the decay of
perturbations beyond the free end of the shells; Model 0 effectively corresponds to no
model at all. £ = z/L = 1 corresponds to the free end of the shell; £ = £(= L'/L) is

the pcint where perturbations are assumed to vanish.
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Figure 2.4: Comparison of the dimensionless critical flow velocities, Uy, calculated by
the present theory with Paidoussis and Denise’s (1972) theoretical and experimental
values, for a cantilevered elastomer shell conveying air flow; the system parameters are

given in Section 2.4.3.
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Figure 2.5: Typical Argand diagram involving the real, Re({};}, and imaginary, Im(f1;),

parts of the dimensionless eigenfrequencies of the so—called 1/10-gap system, consisting

, of a cantilevered steel shell surrounded by quiescent annular fluid (water) while con-

veying internal water flow, 2= ‘he dimensionless flow velocity U; is varied; the system

p.rameters are given in Section 2.5.1. These calculations were carried out for n = 2,

m=1,2,3; - - - -, inviscid theory; —— , with steady viscous terms taken into account.
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0 1/10 - Gap system
6 I & 1/100 - Gap system -

o
<
X 4 -
u
=
2 —
0 A l 1 1 i 1 . L

0 2 4 6 8 10
Circumferential mode, n

Figure 2.6: The dimensionless critical flow velocity U;, of a cantilevered steel shell,
surrounded by quiescent annular fluid (water) while conveying internal water flow, as a
function of n for two different annular gaps; the system parameters are given in Section
2.5.1, These calculations were done with the inviscid theory; —— , flutter boundary;
- - - - , divergence boundary (for the modes in which stability is first lost by divergence).

Note: “1/k-gap” system means one where (annular gap) / (inner-shell radius) = 1/k.
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Figure 2.7: The effect of L/a on the overall {lowest) critical dimensionless flow velocity,
U2, for the 1/10-gap system conveying internal water flow and quiescent annular fluid
(water); the circumferential mode number, n, associated with first loss of stability is

shown in the figure. O, inviscid flow; A, with steady viscous effects taken into account.
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Figure 2.8: Typical Argand diagram for the dimensionless eigenfrequencies {}; of the
1/10-gap system conveying annular water flow and quiescent interna! fluid (water), as
the dimensionless flow velocity U, is varied; the system parameters are given in Section
2.5.1. These calculations were carried out for n =2, m = 1,2,3; - - - -, inviscid theory;

-—— , with steady viscous effects taken into account.
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Figure 2.9: The effect of structural damping (variable ;) on stability of the 1/10-gap
system with annular water flow according to the viscous version of the theory, showing
the emicrgence of a minimum U, for flutter, at n = 5 when p; £ 0; - - - -, divergence

boundary; —— , flutier boundary.
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Figure 2.10: The effect of L /a on the overali (lowest) critical dimensionless flow velocity,
U3,, for the 1/10-gap system conveying annular water flow and quiescent internal fluid
(water); the circumferential mode number, n, associated with first loss of stability is
shown for each value of L/a for which calculations were conducted. - - - - , divergence

' boundary; —— , flutter boundary. The viscous results were obtained with p; = 5x1073,
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Figure 2.11: The effect of annular gap size on the critical annular flow velocity U,

according to the inviscid theory as n is varied. In cases where divergence precedes

flutter, the divergence boundaries ( - - - - ) are also shown.
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Figure 2.12: Stability map with n = 3 for the 1/10-gap system simultaneously subjected

to internal and annular flows according to the inviscid theory.
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Figure 3.2: The overall (lowest) critical dimensionless annular flow velocity, U2, in the
llﬁ—gap system as a function of the dimensionless length of the shell L/a, with the
circumferential mode, n, associated with first loss of stability indicated in the figure;
Q, inviscid flow; A, with steady viscous effects taken into account. The shell is clamped

at both ends and the inner fluid is stagnant.
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Figure 3.3: The overall critical dimensionless annular flow velocity, T3, in the ild—gap
system as a function of the dimensionless wall-thickness of the shell h;/a, with the
circumferential mode, n, associated with first loss of stability indicated in the figure;
O, inviscid flow; A, with steady viscous effects taken into account. The shell is clamped

at both ends and the inner fluid is stagnant.
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Figure 3.4: The overall critical dimensionless annular flow velocity,

0.5
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U:., as a function of

the dimensionless annular gap (b — a)/a, with the circumferential mode, n, associated

with first loss of stability marked in the figure; O, inviscid flow; A, with steady viscous

effects taken into account. The shell is ¢lamped at both ends and the inner fluid is

stagnant.
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Figure 3.5: The critical dimensionless annular flow velocity, U,., in the I%-gap system

as a function of the circumferential mode, n; , flows in the same direction; - - - ~ ,

flows in opposite directions. The shell is clamped at both ends and the inner flow

velocity is constant (U; = 0.01).
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Figure 3.6: The critical dimensionless annular flow velocity, U,., in the —110—ga.p system

as a function of the circumferential mode, n, for two different inner flow velocities;
O, U0 =0; A, U; =U,; - - - -, divergence boundary; — , flutter boundary. The

divergence boundaries for the two values of U; are generally coincident. The shell is

cantilevered.
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25

Figure 3.7: The overall critical dimensionless annular flow velocity, U7, in the 'llﬁ"
gap system as a function of k;/a for two different shell lengths, with the circumfer-
ential mode, n, associated with first loss of stability marked in the figure; O,L/a =

5;A,L/a = 10; - - - -, divergence boundary; —— , flutter boundary. The shell is

 cantilevered and the inner fluid is stagnant,
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Figure 3.8: The overall critical dimensionless annular fAow velocity, U?

., as a function of

h:/a for two different annular widths (L/a = 10), with the circumferential mode, n, asso-
ciated with first loss of stability marked in the figure; O, (b—a)/a =1/5; 4, (b—a)/e =
1/10; - - - -, divergence boundary; —— , flutter boundary. The shell is cantilevered
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Figure 4.1: Schematic of the test apparatus involving annular flow.
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RN I gl

{‘ Figure 4.3: Photographs of a silicone rubber shell inside a plexiglas cylinder with two

mounted fotonic sensors: (a) side view, (b} top view.
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Figure 4.4: Photograph of the entire experimental setup.
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Figure 4.5:

Photograph of the free-end cross section of the shell fluttering in n = 2.
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Figure 4.7: Predicted and measured frequencies of the shell at various annular fiow

{ velocities: (a) n =1, (b) n = 2. The system has g/a = /10, L/a = 8.
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Figure 4.9: Cross section of the shell vibrating in (a) n =1, (b) n = 2, (¢) n =3, and

(d) n=4.
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Figure 4.11: Predicted and measured frequencies of the shell at various internal flow

velocities: (a) n =1, (b) n =2, and (c) »n = 3. The system has g/a = 1.5, L/a = 8.
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Appendix A
Expression for Hy,,(a)

Hyp (@) was defined in Equation (2.65) as

Him(&) = Hi(-a&)Hm(a), (A.1)

where & and m are indices such that 1 < k,m < M, and

1 ,
Hi(a) = [ ;(¢) % ag. (r2)
In the above integral, ®;(¢) are beam eigenfunctions, which have a general form

P;(€) = (cosh A;€ — cos As€) - o;(sinh ;€ — sin A;£), (A.3)

and satisfy the equation

Hy

@, (€) = Aj@;(8), (A1)

where primes denote differentiation with respect to the argument of the function, £; for

a cantilevered beam, the constants o; are

cosh A; + cos A;
;= AD
i = Sinh Aj+sin;’ (A-5)
and the eigenvalues A; are the roots of the transcendental equation
coshAjcosA; +1=0. (A.6)
By successive integration by parts, it is found that
1
. 1 i ey M . f e .

H;(@) = pr—az 27 (6) - (2)8;() + (3)°2;(6) - Ga e;()) €, (A7)

; 0
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and using the boundary conditions of a cantilevered beam, i.e. ,

®;(0) = o, ®;(1) = 2(-1)",
%(0) = o, (1) = 2os(-1),
2;(0) = 243 8;(1) = o,
®;(0) = 2io;, (1) = o
gives the following expression for H;(&):
Bi(e) = 33 2 [ a - Aes) (- 1)+ Mt Ajoy) . (A.8)
It is noted that H;(&) becomes undefined when
a=a" =+, £, (A.9)

because the right-hand side of {A.8) has the form 0/0; in such cases, applying L’Hépital’s
rule to Equation (A.8) yields

(@) = 5 (;*)3 { [(@)2 +ilyo; - 3)(@")? + 2A 050 | (~1)7* = ixd} . (A.10)
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Appendix B

Out—Flow Models: Description

As a note, the analyses in Sections B.1 and B.2 are related to the Fourier transform

method in Chapter 2 and to the finite-difference method in Chapter 5, respectively.

B.1 In the Fourier Transform Method

B.1.1 Introduction

These “models” effectively prescribe the manner in which flow perturbations beyond
the free end of the shells decay to naught, by dissipation and diffusion. Another in-
terpretation of these flow models is to imagine that beyond the free end there exists a
“collector pipe” (Shayo and Ellen 1978), which at its upstream end generally moves in
synchronism with the shell free end so as to “collect” the fluid and quieten it down over
a certain distance. However, the first interpretation is considered to be the correct one.

The functional form of each model is given by Ry (€), defined over 1 < ¢ < ¢,
where £ is the location at which flow perturbations vanish. R,(£) may be considered
as an extension of the beam eigenfunctions (the admissible functions), (), beyond
¢ = 1. In the process of obtaining the generalized fluid forces acting on the shells

(Chapter 2), another function Nim(&) closely related to R.(£) was defined [Equation
(2.66)],

Niem(@) = Hi(~8) N (@), (B.1)
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where
H(-8)= [ g ag,  Na(@) = [ Ralg) #5iae. (82
It should be recalled that H)(—&) was completely determined in Appendix A; thus,

what still remains to be done in this appendix is to evaluate N,,(&) corresponding to

each flow model.

B.1.2 Model 0: No Model

This is a trivial model in which flow perturbations are assumed to go to zero immediately

upon exit from the shell (Figure 2.3); i.e., R»(£) = 0 and hence Np,(&) = 0.

B.1.3 Model 1: Straight Decay Model

o In this model, first introduced by Shayo and Ellen (1978), flow perturbations are
considered to decay linearly between 1 and £. The model was originally visual-
ized as a collector pipe, unconnected to the shell, yet following its motion. The

characteristic function of this model thus must satisfy the boundary conditions:

Bn(8)],, =%n()),  Ra(9)]_,=0, (B.3)
from which R,,(&) takes the form
Ro(e) = O.(1)(¢-£)/(E~1) for1<£<E, B.4)
" 0 for £ > £, '

» Npn(a), defined in (B.2), can easily be found by integration by parts

Na(@) = 5"1(1)) f(ﬂ—e)e"‘*fde,

(1)
t-1)a"

For & =0, L’Hépitai’s rule gives

{¢*[1+ia(e-1)] - £} (B.5)

Na(0) = 28n(1)(e~1). (B.6)

Since the value of £ is artificially imposed, it is of interest to evaluate N, (&) as £
approaches oo,
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in finding limyc Nin (&), attention has been given to the fact that the term ¢

is a harmonic function, related to trigonometric functions by Euler’s identity,

e% = cosal + isin&l, (B.8)

and hence [¢'3¢| = 1.

B.1.4 Model 2: Curved Decay Model

e In Model 1 there exists a discontinuity in the slope of the fluid flow at € = 1.
To improve this, Paidoussis, Luu and Laithier (1986) have refined matters by
requiring that flow perturbations have the same slope across £ = 1. Thus, three

boundary conditions need be imposed on R, (¢):

Bu(@)|_, = ®m(l), Bn(®)|_, =%n(1), Bn(a)],_,=0. (B9)
Using a quadratic polynomial fit, R, (&) is found to be given by
_1) , _
Rm(€) = @m(l){l - '((%__]]:))2} + @m(l){(g -1)- (_(68___:;))—2} (B.10})

for 1 < ¢ < £ and, as before, R,(¢) =0 for £ > £

e TFor the evaluation of N,,{&), it is convenient to define the following functions

No(a) = f:e*ﬁfdf =z.i_{e"“—e"ﬁ}, (B.11)
M@ = [:(E—l)e"&fdf =${[1~fa(e-1)]efﬁf—eﬁ}, (B.12)

(@) = f:(f _1)etdge = (—% {[2i + 282 - 1) ~ ia?(e - 1)?] ¥ — 2ieié) . (B.13)

For & = 0, applying L’Hépital’s rule to (B.11)~(B.13) yields

No(0) = (£-1), (B.14)
M = 3e-1% (B.15)
R(0) = %(2—1)3. (B.16)

Substituting (B.10) into the second equation of (B.2) and taking {B.11}~(B.13)

into account results in

Mole) = 2 {ute) - 72} + oo - S} )
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< The limiting value of N,,(&) as £ approaches co is given by
. _ . AL f\‘r (5] t . A, Nola
) = alt) i { ) - T+ .00 i ) -
— LAY : S =\ _ Ny(@)
- Qm(l)(a)e +),(1) Jim {Nl(a) = 1)}. (B.18)

From Euler’s identity in (B.8), it is seen that
lim (£ - 1)’ = lim{€— 1)cosal + { lim (&~ 1)sin &2 (B.19)
{0 &~ {—co

does not exist, thus leading to the non-existence of the limit on the right-hand
side of (B.18), which in turn gives rise to the non-existence of limg—o N (). The

resolution of this will be discussed in Section B.1.6.

B.1.5 Model 3: Refined Curved Model

e This is a refinement to Model 2, by requiring further that the slope of the per-

turbation curve also vanish at £ = £, thus imposing a total of four boundary

£

conditions on R,,(£),

Bul€)],_, = ®n(1)s Bn(®)],_, =%n(), Bu(d)],_, =0 En(0)],_,=0. (B20)

Hence, with a cubic polynomial fit, R.(£) is obtained, R,(&) =0 for ¢ > £ and

R.(8) = (f’j(ll))3{ze3-3(e+ 1)52+see+zz(.e—3)}

o,.(1)

t -

{53—(2e+1)52+£(£+2)5—22} for1<e<e (B.21)

o As done for Model 2, the following functions are defined

No(&) = ./: etfde = l_ {e‘m - eiﬁ} , (B.22)

(1 - ial) - e*(1-1a)}, (B.23)

{

Fy(&) = [1 ‘ergaege o L {e 26+ a0 - ia*et] - &% [2(i + &) - ia?] }, (B29)
{et [a2€%(3 - iat) + 6(iae - 1)]
[

- &% [&*(3 - ia) +6(ia - 1)|}, (B.25)
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and for & = 0, L’Hépital’s rule gives

No(0) = (e-1), (B.26)
MO = (-1, (B.27)
N2 (0) = %(23—1), (B.28)
N3(0) = i(ﬂ“—l). (B.29)

Finally, Nm(&) for Model 3 is determined from (B.2), together with (B.21) and
(B.22)-(B.25),

N.(a) = (‘fﬂ_‘(ll))s{zﬁrs(a)-s(z-;-1)ﬁ2(a)+seﬁr1(a) + e’(e-s)ﬁo(a)}

+ ‘—((ff(ll))z {Ns(a) — (28+ 1) Wy (&) + e+ 2)W(a) - £Vo(@)}.  (B.30)

The limiting value of N,,(&) is found the same way as was done in Equation
(B.18), namely

Jim Nou(a) = cbm(l)(é)e"*

, Gy (&) 4 of T I _ PR m
t—oo (e -1)2
which does not exist due to the non—existence of lim,, o £e®¢. Further discussion

on this matter will be given in the immediately following section.

B.1.6 Remarks

A comparison of Equations (B.7), (B.18) and (B.31) shows that the non-existence of
im0 N (&) in Models 2 and 3 is attributed to the presence of the term(s) associated
with ®.,(1). Since it is the dependence on &, (1) that makes Models 2 and 3 more
realistic than Model 1, £ should be taken to be finite so as to produce physicaily reason-

able results. Further discussion on the magnitude of £ was given in Chapter 2 (Section
2.4.4.2).
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£ B.2 In the Finite—Difference Method
The aim of this Section is to find the expressions represented by the constants A and B
in Equation (5.130} [Chapter 5|. Here, for practical purposes, only Models 1-3 will be
considered.
It is noted that the characteristic functions R,.(§) of flow models as were found
in Section B.1 could all be expressed in the following general form
Rn(€) = Ci{£,8%a(1) + Co(& 93, (1), (B32)
where R, (€) generally has a non—zero value for 1 < ¢ < £ and,
¢ for Model 1,
-
C]_(f,ﬂ) = e—_%, Cl(f,f) = 0; (B.33)
s for Model 2,
= (-2 B (2 ¢
gu CI(E:E) - {1 (e_ 1)2 ) 02(6:'2) - (E 1) (5—1) } (B'34)

¢ for Model 3,

1
(£-1)

1
-1y

CI(E: £)

{28 -3¢+ 1)€* +oeg+ £(e~3)},
(B.35)

Ca(,8) = {€ - 22+ 18+ ee+ 26~ £}

If V(&) stands for a component of the perturbation velocity, then V(&) can also
be written in the form of Equation (B.32) for 1 < £ < ¢,

V(E) = Ci(&,0V(1) + Ca(E,0)V'(1)
= il % + Cale, i)

= _[02_(&.5_) -

AE ]'Vio_l,j + [Cl(f,ﬂ)+c_2(§’_e)]vi.|j, (3'36)

Ag
where V(1) has been replaced by V. ;, and V'(1) by the two-point backward difference

approximation, with :* denoting the last spatial location of V in the computational

g» domain for a given j; thus, * = Nfor ¥V = V,,and i* = (N + 1) for V = V, or V. Since
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the grid is uniform in the {~direction, the £-coordinate of V.41 ; being just outside the

domain (Figure 5.2) would be £ = §* = (1 + A¢). According to Equation (B.36),

Cy(€ L Cale e
Vi = — [%]vﬁ-—l,j + [C1(£ ,£)+———-—2(AE£ )]’V.--_,-,
or
Viewr,; = AVieo1; — BVi-j, (B.37)
where
_ _[ca¢,8) _ . Cy(£",9)
A= [ - } B = [cl(g,e)+———A£ ] (B.38)



Appendix C
Definition of {M], [C] and [K]

The following are the elements of [M], {C] and [K].
Matrix [M]

M2 = bim; MEE = 6im; M = Bem + ql); MpS = r1;

M = e2/0% MBS = 6um /0% MES = s(): MES = 6pm/002 + ().

km?

The remaiﬁing elements are zeros.
Matrix [C]
ci2 =25l €88 = a1,

km

otf =2

Thmd

o33 =l

Tkmi

The remaining elements are zeros.
Matzix [Kl: (K] = [Ki] + [Ke] + Ko

Each constituent part of [K| has a different physical basis. Matrix [K;| results
from the strain energy associated with the standard Fliigge’s shell theory; matrix [K,)
accounts for the free—end boundary conditions, whereas matrix [Ks| represents a change

in the effective stiffness of the system due to steady viscous effects of the flowing fluid.

The elements of [K;] are:
Kyt = =n(1 4+ k)1 - 04)e2bim + €idim; K1l = 1n(1 + 14)e?bim;
K = {vi = in?ki(1 = v0)} €2bim — Kichdimi Kb, = —3n2(1+ )eZcim;
Kl = =138+ 3(1+ 3k)(1 - vi)ekerm; K, = 3nki (3 = vi)efeim — nbiem;
Klkm {1 n?ki(1- ) - v,}e Ckm -+ kigi AL 6km; Kf’kfn Kfﬁn
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j=
[#1]

Kf;in = —[ki(n? — 1) + kiefA} + Ubim + 2hinelepm + E’l, K3 = rﬂl;

Kl = —1n2(1 4+ ko) (1 = vo)e2bym + idim; K = 1n(1+ v,)elbym;

Ki’ﬁn = {uo — 1n%k, (1~ Vo)} €2b — kocidim; Kipy = —in(1+4 vo)elcim;

Ki';fm = —n?b, + -12-(1 + 3k }{(1 — o)l ckm; Ki’ﬁn = %nko(S — Vo)EiChm — nkm;
KiS = g;)u K = {%"zko(l - V) — Vo} 2ckm + koed X Bkm; KD = KIS

Ky, = — {ko(n? — 1)% + koed X4, + 1} Sim + 2Kkon?e2chm + tﬁ);

The remaining elements are zeros.

The elements of [Kj)| are:

. opld _ 2 — 1.2 .
K = —vinelern; K2 = -vieleyn; Kb = 7nel (1= 1) fem;

K22 = —12(143K)(1 - 1) fim; Ko = —~2nkie?(1 = 1) fim;

Kka = ——-n €2k (1 - Vt)fkm; szm = nk‘-ef [V:‘Ckm. - %(3 - U,')fkm] ;
. . s _ . 8 )
Koyim = nzk;e,? viekm — (2 = ) fem]|; Kabp = —Vonelepm; Kopn = —VoElerm;

Kzsfm = %"’53(1 - VO)fkm; ngin = _':12'53(1 + 3ko)(1 - Vo)fkmi
Kka = —3nkoej(1 - )fkmi Koy, = —3n2e2ko(1 = Vo) fim;

The remaining elements are zeros.

The elements of matrix {Kj] are:

K3, = e} [Avidin + Budim| = n'e? [Asibim + Baibim) ;

K32 = nBoeiarm; Kap = Baiciagm — € [Asif?km + BSibkm] ;
K3, = € [Alsckm + Bl;ckm] -n [A3takm + Bstfskm.]

K = [A3ta'km + BS|5km] K3y, = ¢ [A3=Ckm + BSackm] ;
K32 = g2 . K33 = [Al, Bem + Bl,ckm] —-n [A3,akm + Byibem)
K3, = &4 [Arodim + Brodim| — 162 [Agobim + Baobim)

K = nBooeohm; K48, = Brootpm — €2 [ASOEkm + BSobkm] ;

KSkm = ¢l [A1oCkm + B1ockm] - n? [Asoakm + Bso5km]
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56 R r . 64 __ 2|2 = 5 .
K.'.'.km =—-n [A30akm + B305km] i KSkm =E&, [ASOCkm. + BSockm] )
6,5 586 |, 66 __ o I 212 - b
K.’ikm = ngm, K3km = 53 [Alockm. + Blackm] —-n [ASaakm + BSoskm] .
The remaining elements are zeros.

In the above matrix elements, A’s and B’s are constants defined in (2.100), while

i ] 1

Gim = fo B, (€) Bm(€) d&, bim = fo £ 24(€) m(€) dE,
1 ' : " 1 ' '

bem = [ 3,,(€) ., (6) dé, b, = [0 £B,(€) B (€) e,
1 " 1 i

o = [0 0, (€) B0 (6) ¢, fom = fo £ B4 (€) Do (€) dE,
1 1 " - 1 t m

dim = [o &), (€) B () e, dim = [o £ B, (€) B (€) de,

all of which are evaluated in Appendix D, and

1 0 if k#m,
R NCE MG B
0 1

if k=m,

Erm = @;(1)¢m(1)=4Akak(—l)k+m,

fem = €me,
where fin has been used to denote e for the sake of clarity, and @,,(¢) are the
cigenfunctions of a cantilevered beam,

B (€) = (cosh Am — cos Amk) — Om(sinh A€ — sin Anf),

with
§=z/L, coshdmcosAm+1=0, o = (cosh Ap, + cosAp)/(sinh Ap + sin Am).

In the above expressions, primes denote differentiation with respect to the argument of

the function, £.
Vector {X}
{X}T = {4 B C Din B Frn).
It should be noted that, since ¥ and m are indices such that 1 < k,m < M, each

element of [M], [C], or [K] is in effect an M X M submatrix of scalars, and each element

of {X} is a subvector of M (scalar) elements.
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Appendix D

Integrals Involving Beam

Eigenfunctions

A number of definite integrals involving beam eigenfunctions were encountered in Chap-
ter 2 (Section 2.3.4), as the extended Galerkin method was utilized to solve the equations

of motion. Such integrals were denoted by the following constants in Appendix C:

G, = Ol%qmde, bm = j;lecbkémds.
- /olclnk%df, fem = [0 Iétmd:f;"df,
G = [ m = [ £ Lingg

where § = z/L is a dimensionless length variable, defined in (2.55).

The above integrals will be evaluated using the same procedure as introduced by
Gregory and Paidoussis (1966a); nevertheless, Sharma’s (1978) notation will be adopted
here. Consideration is now given to two eigenfunctions @,()¢) and ¥,,(amf), satislying

the relationship

Ll Hu

B (M) = B(Aef), P (om€) = Um{amt), (D.1)
where primes denote differentiation with respect to the arguments of the functions.
Here, it should be pointed out that, although the definition of primes in this appendix
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is the same as that in the previous appendices, the current arguments of the functions
®,, and ¥,, are different: A.¢ for &, and o, for ¥,, (in the previous appendices, £
was the argument of ®,,). By integration by parts, it follows that

Ly o

1
(a;‘n-—,\z)[ By ¥mde = {ah Bl - Mol BLUL, + Moam@\ ¥, — X0} U }U, (D.2)
0

N n m !

1
(a;*,,—,\z)/; B, U, de = {2 3,0, — 0al 80, + 2 la,d, V), —-Aicbk!llm} , (D.3)

Ho

1 . 1
(a;*n—,\z)f B UL dE = {ad®i¥l, — Aok By T + Adan®y U — MO UL}, (D)
0 0

Ht

1 m " 1
(of;‘n--,\;t)f0 @, 0. dE = {afnqakxzf — M BT Al ®) U — A} O, T, }0, (D.5)

1 Hl'
-,\;ﬁ)[o B, Umde = {6633,V — AL B,V + EA et @, T, — EA)D)
n ! H 1 1 Hr
+ 302300, — 22 om®, T, + Ai@k\pm}. - 4afn]; O, U, dE, (D.6)
0
1 ! M " 1
(a;*,,-,\i)‘[o £@, 0 dE = {fa B W — ENGAEBLY! + EXBam B UL, — M3, T,
m n ] 1 I 1 1 !
+ 302 B,V — 2@y U + 2B, U }‘ -4a$n/ &, U, dE, (D.7)
0 0
(o, —A)/ £ U, dE = {£ad@0;, — EMahB U + EXJam By Ty — ENJOL Ty,
1 1 ;
+ 302 8,V — 2Aeam @V, +A,,<I>:\I!"}| - 40, / &, ¥, dE, (D.8)
0 [t}

"1

1 (1] "
(afn—)\}i)/o £3, U, dE = {Eo: O Wy, — EMOE BT, + EXBop @) U, — EAJDLT,,
1 [ i 1 ¢ "
+ 30 BV, — 2 am® Vo +A,,<1a',¢'q:“ ‘ ~ 40, f &, U, GE. (D.9)
0 0
When ¥, is replaced by ®;, both sides of Equations (D.2-D.9) identically vanish
and hence the values of the integrals cannot be calculated from these equations. For
such a case, the limiting procedure outlined by itayleigh (1945) will be used; the idea
here is that by letting o = Ay + 8\, then as 6, approaches zero, ¥, approaches @,.
In this procedure, ¥, and its derivatives are anproximated as

d®
¥, = \I!k(Ak-}-S)\k) ~ P+ (dAk) Xy, (D.10)
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¥, = T+ 6)) o, + (dﬁ’s) 5Aks

R

v

h

H " d@"
Te(Ae+60) ~ @)+ (—” ' 52k,
k

Uy o= U e+ M) = &+ (—md@")a,\k,
k

where terms of higher powers of §A; than unity are neglected.

Substituting the above approximations into Equations (D.2)-(D.8) and cvaluating

the resulting equations as § A, approaches zero gives '

L h

1 . ; 1
4)\,;/; $hde = {398y + ENB) - 260038, — By + EN(21)?)

1

e

1 ! r n
2)\::_[0 B, 8rd§ = {2‘3’1:‘1’1:"(‘1’1:)2}

1 " 4 ! " ! [/ 1 1) 1
4)\1:/; 8 3pde = {26008:0; — EAL(DL)? - Nk ()7 + i) + TLO} |

1

1 i " | " m
4)\k/; BEAE = (260000 - On(O))7 - enal + e+ o0 )|

"

1 L n 1 ] w
8)@]; gatae = {260 [32u®y - 2,3;] + €04F 81 + (2)° - 20,0
t "t 1
+4(8,)" - G‘I’k‘I’k}. ;
0

i _In

sz\i,[:s(ébl)zdf = {260 [30,2, - 2,2} | + €231 [(@))° + (8)? - 20,2

1
+ 4(2})? - 68,2} }

o

1 " ' H 1 o
of [emaide = {260 [0u8+ oi0}] + e [2,9] - (@4)° - (#))7]

1
+168,8; - 92} - 9(2,)?} 0

It

! ! H ' Ly U L H
sA}‘;fo 0,8, d¢ = {26\ [3,8; + 2] + €] 20,8} — (2})° - ]

I 1
+ 168, 8, — 9(2,)° - 9(2,)%} | .
0

For a cantilevered beam, the eigenfunctions are known to be

B {Am€) = (cosh A€ — cos A &) — om(sinh A€ — sin An &),

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)
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where the constants o, are defined as

_coshdp +cosdp,

¢

7™ = Sinh Am + Si0 Ay’ (D-23)
and the eigenvalues A,, are the roots of the transcendental equation

coshApmcos A +1=0. (D.24)

With the boundary conditions of a cantilevered beam,

2nlnf)|, = O En(ndl]y = 20
Tn(Am)|_, = O Enmb)|,_, = Zm(-1)™,
CnMmé),, = 2 Eu(Amd)],, = O
OnAmb)|,_, = —20m; 2n(Amd)_, = O

the integrals in (D.2)-(D.9) and (D.14)-(D.21) may now be evaluated. Finally, the
integrals denoted by @im, ..., dem and Gpm,y -- -, cfkm in the beginning of this appendix

can be inferred from the above-determined integrals and are found to be

4 .
Qpy, = FF (R 20 ifk#m,
2 if k= m;
bk = ;:I-i#; [(Ai"m — R AR) ()M + (A fom — a‘kz\iz\m)] if k # m,
An0m(2+ Amom) hem
4(Ai0L—AmOm .
Chm = (,\_,‘Erﬁff.ml? if k # m,
A’7""0""""(2 - ’\mam) if k=m;
0 ifk#m,
dkm =
=M ifk=m;
Ggm = ﬂﬁfﬁgm(_l)“’m-f Eﬁﬁ%& [Agn(_l)Hm _ ’\i] kot m
m =
ﬁ;()\fn + 4a2) —
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2 18A3)1 m a .
52 [Mom = %) (-0 = 2] + B DM - 0] itk m,
%‘Am‘fm(s + v\mo'm.) -2 ik =m;

2
st [M 4 AL 00k = Amom = (=147 4+ (8 [0 - A (-1)47] itk om,
Amzam (2~ Amom) itk =m,

3 T
= LR =yl B GV B L

4
_Ain ifk=m.



Appendix E

Velocity Profiles and Turbulent

Viscosity in Annuli

E.1 Velocity Profiles in annuli

When the flow in an annulus is laminar, the velocity profile therein can be determined

analytically and is found to be

(E.1)

U(r) = ZUQ[bz —r? - 2rfnln(b/r)] ,

a? +b% —2r2,

‘where U, is the average flow velocity, defined as the ratio of the volume fiow rate to the

cross—sectional area of the annulus; r,,,, denoting the radius at which U(r,,) is maximum,

is given by
b2 _ az 1/2
m = {21n(b/a)} ' (E2)
Details of the derivation of (E.1} and (E.2) may be found in most text books of Fluid
Mechanics (for example, Knudsen and Katz 1958).
On the contrary, when the flow is turbulent, the determination of U(r) and r,, by

analytical means is out of the question. With the turbulent velocity profiles obtained

from a number of experiments, Knudsen and Katz (1958) showed that

} 0.102

1-14Ua[,-:;:_aa for e<r<ry,

Ur) = - (E.3)

b 1042
1 14Uﬂ[m] for rm <7< b
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nevertheless, they did not present any results on the variation of r,, with a/b, either
implicitly or explicitly. A subsequently study by Brighton and Jones (1963}, who devised
a new method for measuring accurately r,, gave extensive experimental measurements
on r,, in addition to other quantities of their interest. For the present analysis, the
relationships (E.3) are adopted with 7, determined from the multilinear representation
of the experimental results reported by Brighton and Jones (1963).

Although there are indications that Equations (E.3) are not valid for Reynolds
numbers below 10%, these equations are currently believed to be the best approxima-
tions available to the velocity distributions in annuli with 2.3 x 10® < Re < 10%; more-
over, since the main parameter of interest herein is the critical flow velocity with its
corresponding Reynolds number ranging from 7.3 x 10° to 2.7 x 10°, Equations (E.3)

are perfectly adequate for most of the cases to be tested.

E.2 Turbulent Viscosity in Annuli

The distribution of the turbulent kinematic viscosity v; in a flow may be evaluated by
a number of turbulence models currently known in the literature. A brief description of
these models and their applications have been given by Rodi (1980). Since the velocity
profile in an annulus is already given empirically [Equations (E.3)], a simple turbulence
model like the mixing-length hypothesis proposed by Prandtl (1925) is deemed to be
the most appropriate for the present theory.

It should be recalled that Prandtl’s mixing-length hypothesis leads to

W = { -CE N (E‘i)

where { is known as Prandil’s mixing length and y is the coordinate measured from the
wall, along which the fluid passes in turbulent motion.
For the case of smooth pipes, experiments carried out by Nikuradse showed that

the variation of ! with y/R can be represented by the empirical relation (Schlichting
1968)

i=014—008(1—-y~)2-006(1—i)4 (E.5)
= = 0.14-0. ) -o. 21, :

where R is the radius of the pipe.
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Because of the absence of such a relation for annuli in the literature, Equation
(E.5) will have to be adapted to annular flows. As U(r,,} in an annulus corresponds to

U{0) in a pipe, Equation (E.5) will take on the following new forms for the flow in an

annulus
! —a 2 - 4
= 014~ 0.08[1 - “] - 0.05[1 - r-e ] for »<r<rm, (E.6)
and
I b—r 12 L
— _ — —0.06l1 - <. :
p— 0.14 0.08[1 - m] 0 06[1 - T-m.] for rm<r<b (E.T)

As a comparison between the flow in a pipe and that in an annulus, the fluid—structure
interface at the pipe surface is similar to that at the outer surface (r = b), but not at
the inner surface (r = a), of the annulus; hence, the actual mixing length in the annular
flow is closer to the approximation given by Equation (E.7) for r,, < r < b than that
given by Equation (E.6) for a < r < rp..
The evaluation of dU/dy in Equation (E.4) is rather straightforward with
du__ _ dU

d_U_ -d—(;—_—Ej——urr— for a<r<ry, ©3)
dy dU _ _ _dUu

azﬁ)’— g for rm<r<b,

where dU /dr is obtained by directly differentiating Equations (E.3) with respect to r.

It is noted that, for the velocity distribution given by (E.3), dU/dy is always
positive because dU /dr is positive for ¢ < r < r,, and negative for r, < r < b; thus,
the absolute signs in Equation (E.4) may be removed and the turbulent viscosity v can

now be rewritten in terms of (E.6)-(E.8) as

2
(rm—a)z{rmi_a} (%g) for a <r<rpy,

Vg(r) = ) (Eg)
—(b—rm)z{b_l—r} (%g) for rmeSb.

Finally, it should be recalled that the total viscosity in the flow is the sum of the

molecular and turbulent viscosities, namely

v(r) = vm + wfr). (E.10)
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Appendix F

Finite—Difference Expressions for

Derivatives

F.1 In a Uniform Grid

For a function f(z) which is analytic in the neighbourhood of a point z, the forward

Taylor series expansion about z gives
! hz " hs m h4 g
fath) = 1) +hf @) + 55 f @)+ f @)+ /@) +0(%), (R

which is the basis for deriving difference approximations of any order of accuracy for
derivatives of f(z). Here, & is a small increment in z.
In this Appendix, it is desired to express f" (z) in the following form

RPf(2) = Mf(z— k) +Aaf{z) + Asf(z + k) + Asf (z + 2R) + Xs f (2 + 3h), (F.2)

where Aj, ..., As are constants to be determined.

Now, expanding the right-hand side of Equation (F.2) in the form of (F.1) gives

i

RBf(z) = X

[

[ , R RS B ]
@) =k (@) + 1 @)~ Gl @)+ 5y ) + (W)

+ Ao f(z)

m

i 2 3 4 1
|1+ hF @)+ g @)+ ") 4 e f () + O()

t

@)+ 2o fn(e) +00)

+
2z

[ 3
f(z)+ 2hf'(z) + 2h%f" (z) + %—f
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9hn®

2 4
+ | 1@+ 381 (@) + o (@) + 2 o)+ T () +O()|. (R

It should be noted that Equation (F.3) is an identity; thus, the coefficients of f(z),
f'(z), ..., f(z) on the right-hand of (F.3) must identically equal the corresponding

ones on the left-hand side, namely

A +A2+As+Ad+As = 0, (F.4)
Mt A4 2 +3s = O, (F.5)

';')‘1 + -;v\s +2X4+ "2')\5 = 0, (F.8)
—%1\1 + %1\3 + :;-)\4 + %As = 1, (F.7)
-21?\1 + %/\3 + %)u + %As = 0. (F.8)

Equation (F.4)-(F.5) are five linear equations with five unknowns; the solution of these
equations is found to be
A1=—'— A2=5, A3="-6, A4=3, )\5:-—--’. (FQ)

Thus, Equation (F.2) may be rewritten as

K" (z) = —-%f(z—h)+5f(z)—6f(:c-{-h)+3f(=+2h)-%f(=’+3h) +0(x%), (F.10)

or
33
(5;%) = %[—ma +8fit2 —12fi41 +10f; - 3 f;_l] + O(h?). (F.11)

This is the forward difference representation introduced in {5.59). The backward differ-

ence representation in (5.60) can also be obtained from Equation (F.10) by replacing A
by -h:

a3
(3?'2) = 5:;_3 [3fi+1 —10f; 4+ 12fi-1 —8fia + fi—s] + O(h?). (F.12)

F.2 In a Non—Uniform Grid

F.2.1 Near a Flexible Wall

Figure 5.2 shows the local area near a flexible wall in the staggered grid. The aim of

this section is to express (‘?3‘_1:;0')2 as a linear function of (V;);r which is the value of Y
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at the wall, (W)i 2, and (Vs):3; in other words,

62
(—a,:f) = ap(W)ir + br(W)iz + er(Vodis, (F.13)
i,2

where ap, bp, and cr are constants which will be determined in the same way as was
done in Section F.1. Therefore, all the terms on the right-hand side of Equation (F.13)

are first expanded in Taylor series about 57, giving

2 =2 2

4+ bF(vg),'lz
+ cF{(va),-.zMn;(i—‘j),;%(?%) +0[(An§)81}- (F.14)
i, 02

where A7 = n§ — 0] and An§ = 5§ — ni. Next, the coefficients of (Vs);2 and of its
derivatives on one side of the identity (F.14) are equated to those on the other side,

resulting in

ap +bpfcr = 0, (F.15)
—(Af)ar + (Anf)er = O, (F.16)
[(A§)2]0F+ [(A’f)a]cp = 1, (F.17)

which constitute a system of three linear equations with three unknowns. The solution
of (F.15)-{F.17) is found to be

2 2 2
OF = 7= oy FE =g CF= = .
P=Af(ar+Ag) T T ARanp’ T T Ani(AR+An)

(F.18)

F.2.2 Near a Rigid Wall

Figure 5.2 also shows the local area near a rigid wall in the staggered grid. Here, it is

desired to express
Y,
Er = ap(W)ijo—1 + br(W)ij + cr(V)ir, (F.19)
ig"

where 7* = (M —1); (V)i r is the value of V, at the wall; ag, bg, and cg are constants to

be determined in the remainder of this section. The right~hand side of Equation (F.19)
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is now expanded in Taylor series about 77, with j* = {M — 1), namely

z 3
ol () B
( ar]2 ),' I aR{(%)I.J" - Aﬂj.( on ),',J'- + 2 3112 ” + O[(Aﬂj') ] ’

)

I

+ bR(Vs),‘IJ‘-

+ cg{(%)s’.j‘ + Aﬁ(%—?){j‘ + (Azﬁ)z (%2_::) ‘. + O[(Aﬁ)sl} ’ (F.20)

where A7 = n}. —nj. and An}. = 7nj. ~ n%._;. Equating the corresponding coefficients

of V; and of its derivatives on the two sides of the identity (F.20) leads to

eg+bp+cp = 0, (F.?l)
~(Anf)ag +(Ad)er = 0, (F.22)
AnZ)? A2
2 2 :
which are three linear equations with three unknowns, hence admitting the solution
2 2 : 9 -
R = y b= = F.24
R ann(an+ Ayt Ajank’ BT AR(An+ An) (F.24)

It is noted that since (V%); g = 0 at the rigid wall, Equation (F.19} inay be rewritten as

(362,7‘12!9) = ap(W)ijo-1 + bp(Ws)i s +()[(An1=__)3’ (Ar‘;)?']. ‘(F.25)
1S .

F.2.3 At the Flexible Wall

A difference expression for the gradient of ¥; may be obtained in the same manner as

was done in the last two sections, that is
v .
(ane).,, = &(W)ir + bWz + s, (F.26)

where the subscript F denotes the value of Vj at the flexible wall; &, b, and & are constants
to be determined below. If the right-hand side of the above equation is expanded in
Taylor series about nj (here, 7] = &),

Q = | . {3V, (AF)? {82V,
(a??a)‘.'F = d(Vo)ir + E{(W)"F-*-Aﬂ(a_;_).j.-" 1 ( ne){

1y

+ &'{(Ve)i.f‘ +Aﬁ(%)_F + (A;’)z-(i;‘) + O[(Aﬁ)s]} F.21)
' iF

+ O[(Aﬁ)3]}
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s _ with Ajj = 7 — 5] and Af = ¥ — nf, then
s+b+& = o (F.28)
(A + (Af)E = 1, (F.20)
~\27 Av2
[M]b + [(ﬁ’-’-)—]a = 0. (F.30)
2 2
The solution of the above equations is found to be
o An + Af ) A " A
=—-—-——-—~ ) = - =) ‘:-—'—“““-—'__' r — F.31
¢ ATAT) Af(a - A7)’ T T Ah(AG - AF) (F-31)
Similarly, for the gradient of V,,
a-vr - T -
( ) = a(Wir + Bz + E(Wis. (F.32)
an Jir

where the constants @, b, and € are also found by expanding the right~hand side of

Equation (F.32) in Taylor series about 57. It turns out that

it An g = | S (F.33)
X7 A N v L X TV g e &

ol

a=

¢

with Ang = n; — n] and A = nz —n].



Appendix G

Evaluation of S;, Sy, Sz, S¢

In this appendix, the components of S = {S, & S; Sv }T representing the right-hand
side of Equations {5.107)-(5.110) will be evaluated. In all cases, only the final results
will be presented with a detailed description of how they could be obtained, as their
derivation is rather straightforward but very cumbersome. As S,, S3, Sz, and Sy are
associated with the r—, §—, z—momentum equations, and the continuity equation, their
expressions will be approximated about the points at which #,, %, 7., and p, respectively,
are defined in the staggered grid. These components will be considered individually in
the foregoing-listed order. It is recalled that

[ 3y

ﬁk-}-aG (0k+5?,a’§+%,”k+”m +p-ﬂ)

U7 + aGy(UF + o2, 0k 40 gk 4 g0
S=AT[R“(Ar+A9+A=)Hk]=——Ar< % + oGl (0F + 97, 0F + 97,0 + 9%, * + p") >

3% + oG (0F + o7, 6F + o7, 0% + 87,55 + 5™)
\ (1/ﬂ)Gv(ﬁ,,ﬁ?,ﬁ§)

where G,, Gy, G, and Gy were already defined in conjunction with Equations (5.80)-
(5.83).
Thus, S, may be written in full as

sk o ~k st =n
= _Arpk_ 9B O(r +97) , ;OB +5") _ (dV)a( r + o)
§ = -ardf- 25 {LU( TR - ) o

Bp+or) , 13 ( A@F+op)) 140 . .
—u[—a§—+-’-"-§5n 3 > (or +97) — 2(”9+”a) . (Ga)

In the present numerical procedure, in addition to the use of fully implicit schemes for

the time derivatives, the backward differencing is applied to the convective terms (first
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derivatives with respect to £) and the central differencing to the diffusion terms (second
derivatives with respect to £) in the momentum equations; the reason for doing so is to
ensure numerical stability in the solution obtained. Since the grid is non~uniform in the
n—direction with a finer grid near the walls (further discussions on the non-uniformity
of the grid are given in Appendix H), derivatives of flow variables {v,, vs, v, and p) with
respect to 1 require a special treatment which is presented in Appendix H. Once all
the derivatives in Equation (G.1) have been substituted by appropriate finite-difference
representations, it is found that, for 2 < ¢ < (N +1) and 2 < j < (M - 2),

Ar 1 vin% dvY
Sy = ~Ar(F);+ 2 { [ . —21—d:f-(—) o 4 91); 4
( r)u ( )n.’f L2 An?ﬁ-l ﬂ,A'IJ ( )J) d’? A ( r )‘-J 1
N [2(1—dﬂ§—dﬂ§ﬂ-1)(§5)'_ Vi ( M T ) _ 2y LU=
A dn/;  njAnf \Ani, An] ALl A

A | 1 dv Vinie ;.
- W}(vf + )5 + A 2dﬂ,+1(dq) - *—’A:)—“ (0% + M) 541
3 3

741
v; LU _ Iy L
+ l(Aé)z + AEJ ]( + T )ie1j + AEZ(U + 0 )ip1,y — r)z[d’T;-H 55 4 93)i i1

r

k4 ] =n L L.y =T - ¥l
+ (1 - dnf,, )55 + 95 )e,j] plypr [(Pk +p")ei~ (8" + 5 )i.j-i-l]} ;
M+
where (9F); ar-1 = 0 for all pseudo-time levels & and (%7); pr—; = O for all physical-time

levels n because the outer wall is rigid. It should be mentioned here that, in the above

equation as well as in the subsequent equations, the following short-hand notation is

used
dvY _ dv dvyY¥  dv
vi=v(n), vi=v(n), (—-)E'— ) (—)E—“‘ G.2
FEvi), vi=ving) dn/; ~ dnlyey dn/;  dnlpe,s (G2
Similarly, the expression for Sy has the form
ek BT Ao +7) |, Ln ﬂ(_d_v) O(f+75) _niok on
Sp = —Arif -3 {LU( ) ——t—£ 65 (p ) In o n("' +37)

E(ok+ap) 18 a(a§+ag) 14n% . . 20 .
_D[T+E'c9—n "5 T (%5 +vﬂ)_F(vr+vr) . (G.3)
Due to the relative location of (vg);; in the grid, the discretized form of §; is diflerent
for different values of 7, although it remains the same for all 7 in the computational

dormain, namely 2 <7 < (N +1). Thus,
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for3<j<(M-2),
N eAr | 1 [¥ini, dv
(Se)s = —A7(3)ki+ 3 {AWE[U}AJT)}‘ - (1= dﬂf)(a‘n"):’](”a +93)is-1

. 1~-dn?—dni, (d_y)z _ vi u + ) 2vf B LU (n3)
Anl dn/;  njoni\Ani, Ani] AL Ag

lﬁ(]‘ + nZ) - _ 1 dr \* y?n': . .
R ](Vg )it A_m[d”fﬂ(ﬁ). + (0§ + 9}
j 7

() Y
+ [( :’Z)z + Lrﬁ?)]( + 9 )i-1 + Ai’;(ag + 90 )is1g
_ 5 2:" + (j:)}] [An5 (95 + 52+ (1 = An)) (o5 4+ 70)igme] + (f:)(p s } ;
for 7 = 2, which is adjacent to the inner flexible wall,
A A Y
e ) ] 5
+[v%(m?li;%i’i;‘;(i;’)]th')m i B Gt

(L\E) ooy (3 + 0 )iz — mr- [2V2 + (::) ] [‘i'?z(ﬁ,= + 572+ (1= dug) (oF + 97, w]

ng
+(35)6* +P")az},

for j = 5* = (M — 1), which is adjacent to the outer rigid wall,

= AR QAT e 1zdmi) 1 dnp ( )
(Sa)',J - AT(”B)’-J + I2 {[UJ' (GR ng..An;_'. AUJ dn (UG + v )‘ g1
dnZ. dn?. /dy 2v%.  LU(n%)  vi(l+n?)
+ |vElbg — k] i ( ) P’ LA ~k + 7)o
[’ (R n?-/—‘-n}-) Ani\dn/. (B8 AL e A

vi. LUn3),., vh L .
T [[AE)Z e [0+ T)imng + g (0 T )i

n{l —dn".
- 4 n;-nj )[ﬂj° + (::) ](” + 97 )i 5 —-1+(;§;_)(P +5")ige }

The expression for S, has the form

. Apgk_ OAT (ok+o8)  a(pt+p) v\l a(sF +97) (% + %)
S, = -Arif Lz{LU() 3¢ +1I 5 _(dn)[ o 5

v ) | St Tn) 10 oz HaE)) Pk o
+L(dn)(r+”r)"v[—“—3£2—+;§5 "am “;g(vz'l*vz) : (G.4)
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i Like Sy, 5, does not vary with ¢ in the computational domain, here 1 <1 < N. Thus,
for3<j< (M -2),

L — aky | alr 1 v.‘l'?n; 1 _ _ T Ak
(Sz)l,.} - Ar(vz)i.J + L? {Aﬂ;lﬂfAﬂ, ( d ) (U +U:)! =1
[ —dnF —dnZ, (gl_g)’ i ( Ui frE-l) _ 2y LU(n)
Anf dn/;  njAnj\Anf,  Anf) (A8 AL
V n 1 dy\¢ vint
my o nfdnz . (S0 + = |3k 4 gm),
( ) ](0 T ’7;[ i+ (dﬂ)j + ﬂ;AﬂfH (02 + )i
[ uZ Lvin)],.. _ VP o
+ (Aé)z + AEJ ](U: + v:)f-l.j + '(?)2(”:"' -'::)l'-i-l.j

[ 1 (v | L/AUY e .
- -_A_E(E) + E\E)] [df];(‘v,- + U0+ (L~ dn;)(ur + o )1'.1‘-1]

+
I

DIL‘” l>

E( )z_f( )}[(1 d"J)(” + 97 )‘+1,;-1+qu( )i-f-l.j]
[p +9")ig— (B + P )‘+1.,]}

«u—t for j = 2,

NP _1) l(dv)
(Sz)iz = —Ar(%)iz+ 33 {[vz(GF niAny/)  Anj\dp (92 + %)iw

1—dng ( = z( 1- dn§) 2v3 LU(n;)  vgn ] .
dn vi\br + - - + oY,
Any \dn/, 2\VF nEig; (a€)? A€ (’7%) J( 7z

[ d
+

dn;3 (dv
+

[Ani dn

V3 ik, - 1 /dv L .
(Aé’)z (U: + U2)€+1,2 - I:Ec: (d_r;)g + = 2 d’?) ][dﬂz ),‘,2 -+ (1 - dq’é)(uf + o) }i.W]

HEST [T

du)
)2 +u2’(cp+ zA’?z ](ﬁk+vz);3+ [(;;)2 4 LL;(QE)](ﬁ:'i'ﬁ:)f—l,z

4

-+

Noh ] L
« N [V;. (bR— zdn;-‘. ) _ dnf. (93) _ (2u;.=. _LU(n:)  vpn
Ll J-. x
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V;-u LU(T}:-) ok —ny ) vE, ok —ny ) . i dv\®
+ [( ALE + AE (o2 + vz):—l,J' + (Ag)z(vz + Uz )|+1.J' -(1- d’?j') ZE (d—E),--
UN n 1 /d L/dUN|,. n
2 (T) } +7)ijo-1 + (1= doje )[AE (d:) ) (g‘n‘)j_](“f + T )it o1

txe [(ﬁk +p%)ige = (85 + P'")i+1.j-]}-

Finally, the expression for Sv has the form

sv=—%[—;{1 o (n8%) + (g)ag %ﬁf}. (G .5)

For2<i<(N+1and2<j<(M-1),

arf 1 . - ) ) .
(Sv)ij = _E%{ AT [15 085 — 51 (65)ii-a] + (%)(”a)i.j + 11—5- [(65):5 - (vi)f—x.a']} -
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Appendix H

Evaluation of Derivatives in a

Non—Uniform Staggered Grid

H.1 Generation of a Staggered Grid

As was mentioned in Section 5.2.1, the problem under consideration involves an axisym-
metric viscous flow inside the annular region bounded by an outer rigid cylinder and an
inner flexible cylindrical shell as shown in Figure 5.1. As a result of the viscous effect
of the fluid, flow variables would undergo rapid variations near the physical boundaries
(cylinder walls); thus, to capture such variations in the analysis requires a larger number
of grid points in the vicinity of the boundaries. An obvious choice here is to employ a
two-sided stretching function to generate the grid points in the p—direction. Although
quite a few functions may be used for this purpose, the hyperbolic tangent function
has been demonstrated to be the best one based on a number of important numerical
criteria (Vinokur 1983); therefore, it will be adopted in the present work.

If M denotes the number of unequal intervals into which the nondimensionalized
annular gap (g, ~ &;) is discretized and #7; is the nondimensionalized radial coordinate

of a grid point J such that 0 < 7 € M, then the hyperbolic tangent stretching function

gives

oo () pomBgem)

where 4, is a parameter that controls the amount of stretching; the grid becomes uniform

225



iy

226
as v, approaches zero. It is seen from Equation (H.1) that np and nar are the coordinates
of the grid points on the outer surface of the shell and on the inner surface of the rigid

cylinder, respectively.

H.2 Flow Variables in the Staggered Grid

The staggered grid was first used by Harlow and Welch (1965) and has proved to have
significant advantages over the conventional grid (Patankar 1980).

The idea here is to define a different grid point for each velocity component. For
2-D flow problems, the two velocity components are located either midway between the
pressure points if the grid is uniform, or slightly off the midpoint if the grid is non-
uniform. For the axisymmetric flow being considered, only two independent variables
are needed; nevertheless, there is now a third circumferential velocity component V; in
addition to V; and V,, which may be regarded as being equivalent to the horizontal and
vertical velocity components, respectively, in the 2-D problem (the calligraphic letter
V here stands for either 4 or ¥ used in Chapter 5; a similar interpretation should also
be made for P). One convenient way is to locate V; at the pressure point: as shown in
Figure 5.2. Since the flow variables are defined at different locations, the designation
{¢,J) in fact identifies a cluster of three distinct spatial locations as indicated by the
L-shaped enclosure in Figure 5.2. In this particular staggered grid, (V,);, is located
above (P):; while (Vz);; is to the right of (P);;.

H.3 Evaluation of Derivatives in a Stretched Grid

H.3.1 General Remarks

It is important to mention that the mesh in Figure 5.2 is un:'fofriz in the {-direction but
stretched in the n—-direction, although the mesh was drawn uniform in both directions for
the sake of clarity and simplicity. Since finite-difference representations of derivatives
for a uniform grid have been well estabfished, the following sections are concerned only

with derivatives of dependent variables in a non-uniform grid (n-direction).
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In the staggered grid, the r—, §~, and z-momentum equations are approximated
about the points at which Y., V;, and V,, respectively, are defined, whereas the continuity
equation is approximated about the point at which P is defined. One traditional method
of evaluating derivatives in a non—uniform grid is to map the grid onto a uniform one
and then, by means of the chain rule, substitute central difference expressions for the
resulting derivatives; for instance, if f is a dependent variable in a stretched grid with

the coordinate #, and # is the coordinate of a new uniform grid, then (8 f/dn) will be

approximated as follows

(a_f) _ (87789); _ (fiea = f5-0)/28% _ [i41 = fi-
an/t;  (8n/99);  (mi+1—n;-1)/289  fj00 -0

(H.2)

In the staggered grid, a better approximation than (H.2) can be made for (8f/8n),
namely

(g) _ Ty = dieg

5 : (H.3)

FRL R S )

where f;, 1 and f-a_% are the values of f at the two spatial locations adjacent to the one
2

at which f; is defined. Equation (H.3) is the basis for all derivations in the following

sections.

H.3.2 Grid Points far from Physical Boundaries
H.3.2.1 Location of (1),),-,,-

Appearing in the r—momentum equation are derivatives of ¥, and of P (with respect to

n), which are approximated at the location of (V,);; in the staggered grid. Based on
Equation (H.3),

(av,) _ iy = Oesg  Obdigey = )iy
1,

- (H.4)
o i Mt~ Mi-4 Tl A

where (V}; ;41 and (W); ;.1 are the values of V, at the locations of (£); ;41 and (P)iss

respectively; n} and 77 denote the n-coordinates of (V});; and (Vz, W, P):;, respectively.

('1),];.3-_% is interpolated between (V)i ;-1 and (W.)i; as follows

(V)ij-1 = (Vedig-1+ (ki = ()i (n,‘- —nj-1). (H.5)

n;— Moy
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Here, it is convenient to introduce the following short-hand writing notation

r r r z z z r ng_ - n;—l z 77;:_1 — M
An;=mnj-nj_y, Anj=ni-ni,, dnj= T’ dn} = T’ (H.86)
i

in terms of which Equation (H.5) may be rewritten as
(vr)i,j-g = dnf(vr)i.a' +(1- dﬂ;)(vr)i.f—l- (H.7)

The expression for (V); ;.1 can be either derived in the same manner or obtained from
! 2

Equation (H.5) by replacing the subscript j by 7 + 1, namely

(vr)",j+-2‘- = dnje (Vi + (1 - dnipa) (Wi s (H.8)

The results in (H.7) and (H.8) are now substituted into Equation (H.4), yielding

aV, 1 ; r r
(Fr)., = mg [4nisa Mg + (1= ] = ) O = (L= )W) (819)

Similarly, for the second derivative of V., Equation (H.3) gives

w05, = - ()
on\"on iy Ty =y UG dgy N0 oy

_ 1 { g Odigen = Obdig o (Wi~ (Vr)i.j—l}

z _ .z )'1ifl r  _..r i r_ T
M1 =% Trar— My — -1

1 Nir1 ni1 n; n3
= 2 MY o — _J_+__l_ v .._|_.._!_'1)r‘.._ . (H.10
An;+1 { An;:.l.l ( ")‘|.1+1 [An;+1 An;]( r)‘lJ Aﬂ; ( ) J=-1 ( )

The last derivative to be approximated at the (%), grid point is that of P,
(ap) _ Pligei=(Phis _ _1
Ut

91 /i; = Anfy

[(P)i,j+1 - (P)i,:']- (H.11)
H.3.2.2 Location of (V);;

In the §-~momentum equation, only V; has derivatives which are approximated at the

(Vs)i; grid point. With the same procedure as was carried out in the last section, it is
found that

avﬂ 1 T z
("é;)m_ = an [anfe (W) + (1 = dnf — dnZ) )iy — (L~ d58) oga], (H12)

and

3 ( av,,\] 1 n; m, M Ni-1
— (g1 = — (V)i 41 — ’ 2 Vodis+ 2=Ve)sjo1 . (H.I3
[aﬂ n dn / i Aﬂ; An;+1( s) J+1 Aﬂ;.ﬂ + Aﬂf ( 9):.3 + Aﬂ;( ﬁ)t.; 1 ( )
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H.3.2.3 Location of (V,);;

Similar to the case of (Vs)i;> only V, has derivatives with respect to 7 in the z-
momentum equation. They are approximated at the {V.);; grid point and have the

same forms as those of V; since (V,}i,; and (V)i ; have the same n—coordinate.

a‘v; 1 T z x z
(“g)i_.j = E};E[d’?j+l(v=)f.i+1 + (1 —dnf —dnf ) (Ve)iy — (L= dﬂj)(v:)i.j—ll ) (H.14)

and

d sz) ] 1 n; n nJ..l 51
— | n— = P11 - 15
[ar] (’7 3!1 is An;{A ;',+1 (‘v:)l j+l1 = A ;z+1 A ; (vz):g + A 3(1”:)1,1 1 (H 1 )

H.3.2.4 Location of (P);;

The continuity eguation has only one derivative, of V,, which is approximated at the

(P);; grid point,

(Vi =0t (V)i
[ai(q.vr)] _ 77 (V) -Jr ’?Jr1( )i -1
i M~ M-

qu[ 75 (V)i ~ 15— 1(Vr)=.,-1] (H.16)

H.3.2.5 Applicability of the Approximations

In the present staggered grid, the locations of (V,};; are chosen to be on the flexible
physical boundary (Figure 5.2); hence, (V.);, are shell-motion dependent, generally hav-
ing non—zero values and theoretically remaining unchanged throughout the pseudo-time
integration [more details on (V,)i1, (Vb)i,1 and (V)1 were given in Section 5.3.3.2]. On
the other hand, the locations of {V.); a1 are on the rigid physical boundary; (V,); ar-1
are zero for .all 7. With the locations of (V,);; so arranged, Equations (H.9)~(H.11)
are applicable to all the (V);; grid points within the computational domain, namely
2 < 7 £ (M —2); likewise, Equation (H.16) holds for all the (P);; grid points with
2 £ 7 < (M —1). Here, for a given 7, M denotes the total number of {P);; grid points
including the two [(P); and (P):ar} outside the domain as shown in Figure 5.2.

On the contrary, difficulty arises when Equations (H.12)—-(H.15) are used at the
boundary grid points of (V4);; and (V;}; ;, specifically with j = 2 or j = (M —1), because
these approximations require the value of the dependent variable outside the domain.

To overcome this difficulty and also to take into account the boundary conditions at the
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physical boundaries, a different treatment for the derivatives of (V;);; and (.);; at the

boundary grid points is needed and will be covered in the coming sections.

H.3.3 Grid Points near the Flexible Physical Boundary
H.3.3.1 Location of (V).

For the #-momentum equation, the first derivative of V; with respect to # is evaluated

at the (W); . grid point in the usual way,

(B_'Ug) _ (Vo);,s — ()i
02

H.17
an ny — 0 (H.17)

where (va).-, 1= (Vs): r, representing the value of V; at the surface of the flexible sheli,
is in principle known and prescribed by the history of the shell circumferential motions;
(V4);,5, being the value of V at the location of (V)2 is interpolated between (V4);2 and
(Vh)is, that is

(Ve);,g = dng(W)is + (1 —dn3)(Vki2,

from which Equation (H.17) becomes

(aa—::)m = Ai’?;- [dﬂg(‘vo)i,s + (1 - dn§)(‘vg);lz - (‘vg].‘,p] . (H.IS)

The second derivative of ;, in the form that has been considered in this appendix,

d ( c‘m)] (3‘1’9) o[ 8* Ve
—(222)] = (Z2) + w2 H.10
[3'1 "on ) ki an fig | P\ On? i2 (H.19)

the first term of the right-hand side of this expression was just given in (H.18) while

is first rewritten as

the derivative in the second term has the following form

Y, '
(aqza) = ap(Wir + br(Vo)iz + cr(Vs)is, (H.20)
i,2
where
oF = 2 bp = 2 ep = 2 Minfouh  (H21)

The derivation of Equation (H.20) was given in Appendix F.
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H.3.3.2 Location of ().

Since (V,}; 2 has the same 7 coordinate as does (V}); s, the difference expressions for the
derivatives of ¥, at the (V;); ; grid point may be obtained from Equations (H.18)-(H.20)
by simply replacing the subscript & by z, namely

(ac;:;),-.2 = Alq; [dnF (Voo + (1 — dnF)(Wdiz — (Vo)ior], (H.22)

where ().);r denotes the value of V; at the surface of the flexible shell, and
3 av,)] (avz) =(azv.—.) :
-— = + , H.23
[an (n an /s \anky " 2\ an? (2 (H.23)

aty
(an;) = ap(Vo)ir + br(Va)iz + er(Va)is- (H.24)
02

where

H.3.4 Grid Points near the Rigid Physical Boundary
H.3.4.1 YLocation of (V)iar-1

The evaluation of the derivatives of V at the (V); ;- grid point with j* = (M ~ 1) is
carried out in the same way as was done in Section H.3.3.1. For the first derivative,

(52) .= iy = Oy Obliy = sy
a9 J; ;- N = nfey anj. ’

where (Vg);'_,,-._,_% = 0 is the value of V; at the rigid physical boundary, and

(W) jey = dnf-Ohdige + (1= dnf)(W)ijo—1i

hence,

(%_1::),-,5. = ‘ﬁ[dnf--(%).-,_,-- + (l_dn;‘:')(vﬂ)i.j‘—l]- (H.25)

2
For the second derivative,

2(6I)] - () (u
3 \"on )iz 3 fige T\t )L

Y,
(aﬂ;) = ap(Ve)ij-1 + br(Va)ije; (H.26)
Lt

where
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in the above expression, ag and bg were derived in Appendix F and had the following

values:
= 2 bp= ————, Af=nl —1f (H.27)
BT RME(B T AnL) FT TRAjann 1T 0T '
Hence,
0 oV _ z 1_d7?;- z dﬂ;.
[an (n P )L,;- = [ann,« A (Vodijo—1 + |br7j — An. (Vo)ijo-  (H.28)

H.3.4.2 Location of (Vx).-,M_l

Similarly, the difference representations for the derivatives of V; at the (V;);;- grid point

[7* = (M — 1)] may be obtained from Equations (H.25) and (H.28) by replacing the
subscript @ by z; thus, for the first derivative,

(%?zz);j. - _A:?l‘,l [dn3 ()i + (1~ dn2) (Vai-1]; (H.29)

J‘l

for the second derivative,

9 [ av, [, 1-am . dna
[%(n Bn)],-,,-- = [aﬂnj-— AT ](vz)i.j'—l + [bﬂﬂj-— AT (Ve)ij-.  (H.30)

3=
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Appendix I

Computer Listing

The purpose of Appendix I is not to show every single computer program ever written
in the course of the thesis. Rather, the appendix describes the programming technique
(style, to be exact!) adopted by the author in developing his computer codes; for this
reason, only one computer listing will be given and discussed. Nevertheless, interested
readers may obtain other listings, related to different parts of the thesis, from the author.

Following is a listing of the computer program developed for Section 2.5. This
program was written in FORTRAN 77 (Standard FORTRAN). Tt has the following

characteristics:
¢ It runs on IBM AT compatible microcomputers with the DOS operating system.

¢ Most variables used in the program have the same physical meanings as those in

the theory.

e AllSUBROUTINE and FUNCTION subprograms appear in an alphabetical order

according to their names.

¢ All multi-dimensional arrays have the so—called pseudo dimensions, which change

automatically according to the data provided.

o All physical data are read in by the program; i.e. all changes in the data are made

in the data file, not in the computer program.

233
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100

un§J> 0. SDU*RINT*HGT(J)
= 0. soo RINT*NIN

HT= 6*NT*

CALL CLEAR ﬁFR MT)

DO _300

RLOW= R NT*&[ = 1) - RLIM
RHl' aLou + RlNT

NT‘ g a
RA~ D o *iRLOH + RHI + RINT*XG(J))

BI1= CINCAEI,N)
B2= CINCAEI'N+1)
CON1= B /éBi*FN/AEl + B2)
Ci= CKN(AEI,N}
C2= CKN(AEIIN+1)
IF (DABSCRALFA}.GT.72.D0) GO TO 120
B3= CIHCAED,N)
B4= CIN{AED,N+1)
€3= CKNCAEQ!N)
Ch= CKN{AEQIN+1)
CON= (B *FN/AEO+BA}*(C1*FN/AEI -[2)- %B1*FNIAEI+82 *ccs*rufneo-can
Eg"%ﬁ SABBS*FN/AE + B&I*CT - BI*(C3*FN/AED - C4) 37DREAL(CON)
120 CON= (CI*FH/AE] - €2)
CON2=_C1/DREAL (CON)
140 00 200 17=1,3
RE=_RA**(1T ° 2)
00 200 M=1,NT
D0 200 K=1.NT
HN= GH(RA K M, 2)
FR(K,M,IT?: FRCK M,IT% + WT*RE*HN*DREAL (CONT)
200 FRCK M 3+1T)y= FREK M, 3+1T) + HT*RB* *BREAL{CON2)
300 coNTInE
DO 320 (T=1,6
DO 320 M=1,RT
D0 350 X=1)NT
320 gg}aEN(Js1> FREK,M,1T)
C ... READ IN VALUES OF INTEGRALS IN EXPRESSIONS OF FLUID FORCES
360 OG 380 IT=1,6
Do 380 M=1,RT
DO 380 K=1'NT
380 EE¢3R§JS1> FRCK,M,1T)
€ ,.. READ DATA FOR THE. INTERHAL AND ANMULAR FLUIDS
430 READ (JIN,1000) VISI,RHOT,UIR
READ (JIN;1000% VISA) RHOA JUAR
?? ??T I£§1'Ea 0,460.4
440 R1= RHOI'U]**E 2.06* P I*QI*REI**2)
§%=16Rg83 / 2.00*p1 QI*(REO*DMR)**EJ
460 Ri= -RHOI*UI**2*IR / PI¥QI*RE])
Eg=103283*un**2*u R/{PI D!*REO OMR)
480 R1= RADI*UI**2*UIR**2/(2.D0*P*Q])
RZ: -RHOA*UA**Z¥UAR**2/(2.D0*P1*Q] )
so0 85 588 bl A
600 Eg%ﬁku,IT)='R1*FR(K,M,IT) + RZ*FR(K,M,3+1T)
1000 FORMAT (3D15.6)
c END
COMPLEX*16 FUNCTION GH 1D)
... FUNCTIONS GKM AND HKM F R tLAMﬁEn FREE BEAMS
IMPLICIT COMPLEX*16¢A- H), REAL*8(0-2)
Ci= ¢6.00,1.00)
CA= CI*RA
C ... ID=1 FOR _GKM, 1D=2 FOR HKM
60 TQ (100,200), Ip
100 GK= 2,00%(-1)* tk+1)*cnsxp( CA) + CA*HH{RA,X,-1)
EE$U35*(HH<RA.M,1) CHCRA,M))
200 GH= HHCRA,K,~1Y*(HH(RA,M,1) + CN(RA,M))
RETURN
c END
COMPLEX*1& FUNCTION HH (RA,M
C ... FUNCTIONS  HK AND M FOR CLAMPER- =FREE BEAMS
IMPLICIT COMPLEX*16(A H}, REAL*8(0-Z)
DOUBLE PRECISION DAB
COHMOH/CDAXIRLA(10? anoc1o) OMR,RINT,MINT,N
C ... I=-1 FOR HK, I bR
Ci= 50.00*1.001
CA= CI*RA*I
RB= RLA(M%‘RHD(M)
PR L o
HH="(2.20/ (RLACHY**§-RA* 4))*( H+1)*RA**2*CDEXP(CA)*(CA RB)
g (2.20/¢ ﬁL MJS*E*(CA RB) )
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CLFR.FOR Monday, December 2, 1991

READ (JSZi CM CK
NS+1,4d
)' CH

URAL ANB Vl SCOUS AMPING INCLUDED
SCOUS EFFECTS INCL

REWIND s §3
IOP )]

0
7 STRUCTﬂRAL AND VISCOUS DAMPING INCLUDED
TEADY VISCDUS EFFECTS INCLUDED

E

om

[= 17173

—rd e I
+4+++O04+00+ 4+ +r0O0NN - + 4+ ~Am0O00n

P ——

ING INCLUDED
ED

[A5IAY)

HI*CK + CV
J)= DvI*cK

"

+J)= CM

? DTAD THE UMSTEADY INVISCID FORCES
T

————_

e & = AN

(=t o)
(A 4x 4,8 ] ZZZUDNN:I::-IZZUD-—I—IIIA

[+3

o=t

W
K
*
J)= AP(NS+I] J) + CA(K M
NS+J +1 NS+ ] +
NS+J$ A0§NS+I Na+Jé +
ON TAPE ]

M2
V&

3
QeK,
Q

RAGE fO FIND INVERSE OF AQ

)

(K
(K. M
AG

fPLpLEPLE
AT = s DN

e £l
Il Y L
D vr =3 b LA
o~

$3 T SavE 570

O~
—
el
zx=
2008

"TRECL, )

]
NVERSE OF MATRIX AQ (VALUES STORED IN AP)
(AP N
g)rnbu Js3
,Nx

AP(! J)
Y AP BY THE INVERSE OF AQ AND STORE THE PRODUCT ON JS3

LA T e
- M@OmEmMnnen
eI
AT e
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e
~ it

mrs
L 8 TN e 0 = O v ) e 20 22 2 ZE O
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o
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()
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X
]
_—

Do)

ﬁP(I.NX+K)*AP(K,J)

PRODUCT FROM 2S3 AKD STORE IN ON AP
X

X

P

[ w1~

TO

=

—A A

mlll‘é‘

T
~ITey O

.t NN e N

mX
Jd bt
—
ol T =W W O It A 2 Ter 1] I M

ECISION FUNCTION RE1 (K,M,ID)

néﬁfeg ING FUNCTIONS OF £L- FR AND CL-CL BEAMS
AX RLA;10),RHO(10) OMR,RINT,NINT,N
0,200,3003; 1D

My~ cd 10" i20

(=}

AMPED-FREE BEAMS ONLY
DO*RLACK)Y*RHO(K)*(~ 1)‘*(K+M)

SDO*RLACMI*RHOCM)*( - 1)** (K+M)

Q
MmmmMmOoOmMmmMmmT
e L S e e e T L
=
thhFZAzo
.

70 23 XD YA TD AT XD Ay —
cHCH

m

=

(=]
)

DOUBLE PRECISION FUNCTION REZ (K. M &
{ﬁ;EIR?%SRINEOEVING CHARAC, FUNCTfOﬁS F CLAMPED-FREE BEAMS
EOMMDNICQAX/RLA€10) RHO{10),0MR, RINT  NINT N

RM= RLA(M
K= RHO(K
SM= RHO(M
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CLFR.FOR Honday, December 2, 1991

)100
x#M) + (RM/RK)**2)
M

*kCKEM I (SHYRKA*T - SK*RM** + SM*RK*RM**S . cpw
BORRK* Ry CRIHHL - Reagy ) © SHRKIRHUXZ - SK*RMtRK**2

RN

ﬁ -DO*(RK*SK - RMWSM)/((RK/RMI**2 - (-1)**(K+M))
0,00

RN

0_70
nez- (120,140, 160, 1803, 1D

N
RE%" RM*SM*(2.D0 + RM™SM)
RE2= RM*SM¥(2.D0 - RM*SM)

0
0
4
S

ZJNWW;U:U-!WWQ—
-—|N—lN—|N W =il
cn % ncn

—

ON FUNCTION RE3 (K.M
OLVING CHARAC. Funcrioﬁs OF CLAMPED - FREE BEAMS

*8(0D
LA§10) RHOC1UY,OMR,RINT,NINT, N

OXAOXDGAD

TgD 1D
gﬁ &k**k 1)** K*M)*RM**Z = RK**2)/(RK**4 - RM**4)
'1)*'(K+ﬂ) %
RK*R é& K**4 - RM**
H1 * 2 2*RK**2 - ** )
(-1 *(K*M) (SM* *3 - SK*RM**3) - 2.DO*RK*RM) + TM2
RM*‘EéiRK**L - RH**4£ K
- RMERO¥ (- 12**( K+M) 3 -
*Z + RMARZR(-T)*e(K+MI*(RK¥SK - RM*SM - 3. + TM2
Mk T . -
BgHDSKSH (RKvSL BNy
RK**2 - 3, DD‘RM**E‘( 1)**EK+HJ)

140,160,180
o'+ DO'(SH/%H)"Z

«SDO*(RM*SM*(5.00 + RM*SM) - 4.D0)
.SDO*RM*SM*(2.D0 - RM*SH)

3= -0,SDO*RM**4

URN

=~ bt
e - 1

~
ZQZOZQ F e 2t o3 4 -.,-\.k-z—u-\r-z [ ]

(K+M)£/(RK**4 - RM*‘A)

:; —~ % —~—1* ~ad

ax

.DO
M*
HI*(R
DO
DO
1w
12

5D

e v e

%I Cll%li—lcll nnenucCnir e u =t~

REE

xﬂl\,l\,f\ r'W

PRECISION FUNCTION RFAC (N
T_REAL*8(0-2) R

l
LE 1) RETURN

IO z P o=

l"ln‘l
Fol
— T
= =
l:"lr\.l
=1 3
=

DD 2601 1,

REIS RFL +1.00/
RETURN
ND

OO D200 m
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