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Abstract

This thesis presents a theoretical and experimental study of the stability of cantilevered

coaxial cylindrical shells conveying incompressible, viscous fluid inside the inner shell

and/or in the annulus between the two shells. Two analytical models are developed

with experimental verification.

In the first model, fluid viscous effects are partially taken into consideration. Both

shells are generally considered flexible. Shell motions are described by Flügge's shell

equations, modified to take into account the steady viscous loads-flow pressurization

and skin friction-acting on the shells. These equations are solved by means of the

extended Galerkin method, in which the shell equations and the free-end boundary

conditions can be satisfied simultaneously. The unsteady viscous forces are approxi­

mated by their inviscid counterparts, the formulation of which is based on Iinearized

potential-flow theory with the assumption that the fluid is inviscid. The solution for

these forces is obtained with the Fourier-transform technique; in connection with this

technique, different so-called out-flow models are examined, concerning the effect of

the downstream flow perturbations on the dynamics of the system.

The second analytical model, on the other hand, Jully accounts for the viscous ef­

fects of the flow. Here, only the inner sheIl is flexible, while the outer shell is replaced by

an identical rigid cylinder. Shell motions are also described by Flügge's modified shell

equations, which incorporate the steady viscous loads exerted on the shell. These equa­

tions are solved numerically with the finite-difference method. The unsteady viscous

forces are evaluated from flow perturbations which are the solution of the Iinearized,

unsteady Navier-Stokes equations subject ta the divergence-free constraint on the flow

velocity perturbation. A recently developed, time-marching finite-difference .method

using "artificial compressibility" is applied to solve the Navier-Stokes equationsj for the

problem under consideration, this method employs the pressure and velocity perturba­

tions as the dependent flow variables on a staggered grid.

In the experimental part of the thesis, tests involving either annular or inner flow

are conducted on cantilevered silicone rubber sheIls concentrically located within rigid
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plexiglas cylinders. Measurements are made of (i) the critica! !low velocity of the .y.Lem

for various lengths of the shell and annular widths, and (ii) the dominant frequencies

of oscillation of the shell for certain selected cases. Both divergence- and !lutter-type

instabilities are observed.

Comparisons between analytical results and test measurements show that the

agreement between experiment and the two proposed analytical models is generally

good, both qualitatively and quantitatively, in terms of the overall (lowest) critica! flow

velocities and frequencies of osciIlation (first model only) of the tested shells.

Final1y, future work is suggested with regard to improving the second model and

condueting further ca1culations.
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Résumé

Cette thèse présente une étude théorique et expérimentale sur la stabilité de coques

cylindriques coaxialles encastrées-libres, dont la coque interne et/ou l'espace annulaire

sont soumis à un écoulement de fluide visqueux et incompressible. Deux modèles ana­

lytiques ont été développés et vérifiés expérimentalement.

T)ans le premier modèle, les effets fluides visqueux sont partiellement pris en con­

sidération. Les deux coques sont généralement considérées flexibles. Les déplacements

des coques sont décrits par les équations de Flügge. Ces dernières sont modifiées pour

tenir compte des charges .stationnaires-la pressurisation dans l'écoulement et la friction

en surface-agissant sur les coques. Ces équations sont solutionnées par une méthode

de Galerkin modifiée dans laquelle les équations et les conditions limites peuvent être

satisfaites simultanément. Les forces visqueuses instationnaires ont été approximées

par leur contre-parties nonvisqueuses, la formulation desquelles est basée sur la théorie

linéaire des écoulements potentiels, donc sur l'hypothèse que le fluide est nonvisqueux.

Ces forces sont obtenues en utilisant la technique de la transformée de Fourier; en rela­

tion avec cette technique, différents modèles dits "out-flow models" sont examinés, qui

tiennent compte des effets des perturbations en aval de l'écoulement sur la dynamique

du système.

D'autre part, le second modèle analytique considère entièrement les effets visqueux

dans l'écoulement. Dans ce cas paticulier, seule la coque interne est considérée flexible,

tandis que la coque externe est supposée rigide. Les déplacements de la coque sont aussi

décrits par les équations de Flügge modifiées afin d'incorporer les forces visqueuses sta­

tionnaires agissant sur la coque. Ces équations ont été résolues numériquement avec la

méthode des différences finies (FDM). Les forces visqueuses instationnaires sont évaluées

à partir des perturbations dans l'écoulement. Ces perturbations constituent une solution

des équations linéarisées de Navier-Stokes sujettes à une condition de divergence nulle

des champs de vitesse. Une méthode récemment développée d'intégration temporelle

par différences finies employant une "compressibilité artificielle" , fut appliquée pour so­

lutionner les équations de Navier-Stokes; pour le problème considéré, cette méthode

iv
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utilise les perturbations de pression et de la vitesse comme variables dépendantes de

l'écoulement, sur un maillage décalé.

Dans la partie expérimentale de la thèse, des essais impliquant des écoulements

soit annulaires soit internes, ont été effectués sur des coques en silicone-caoutchouc,

localisées concentriquement à l'intérieur de cylindres de "plexiglas" rigides. Des mesures

om été effectuées sur (il la vitesse critique du système pour diverses longueurs de la

coque et largeurs de l'anneau, et (iil les fréquences dominantes de l'oscillation de la

coque, pour certains cas spécifiques. Des instabilités de type de divergence ainsi que de

type de flottement ont été observées.

Les comparaisons entre les résultats analytiques et tes mesures reflètent un ac­

cord généralement bon, aussi bien qualitativement que quantitativement, que ce soit en

termes de la vitesse critique principale ou des fréquences d'oscillation (premier mode

seulement) des coques mises à l'essai.

Finalement, des travaux connexes futurs sont suggérés dans le but d'améliorer le

deuxième modèle et pour pouvoir procéder à d'autres calculs.

v



{ Contributions to New Knowledge

The original contributions of the thesis, to new know!edge in the field of f1ow-induced

vibrations, are as follows.

• The development of a new analytical model, based on potential-f1ow theory and

the extended G"lerkin method, for predicting the dynamics and instabilities of

cantilevered coaxial cylindrical shells, couveying incompressible viscous f10w within

the inner shell and/or in the annular region. The dynamical behaviour of the

cantilevered shell system is found to be very much different from that of the

clamped-clamped or pinned-pinned shell system.

• The development of another new analytical model to examine the unsteady viscous

effects of the annular flow on the cylindrical shell concentrically located in a coaxial

rigid cylinder. For the first time, (i) unsteady viscous forces exerted on the shell

are properly formulated and evaluated, and (ii) the existing time-marching finite­

difference method with "artificial compressibility" is applieà to solve a f1uid-shell

coupling problem.

• Extensive experimental measurements-critica! f10w velocities and frequencies of

oscillation-on cantilevered shells subjected to annular f10w and internaI flow.

These are obtained to support the theories presented herein and can be used to

assess future theoretical work on the same subject.
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Chapter 1

Introduction

1.1 Litera·~ure Review

1.1.1 General Remarks

Research into the dynamics of cylindrical structures containing, or immersed in, flowing

fluid has been pursued quite intensively over the past thirty years or so. Although the

flrst serious study of the dynamics of flexible pipes conveying fluid was undertaken by

Bourrières (1939), interest in the subject did nat really come about until the occurrence

of oscillations of the Trans-Arabian aboveground ail pipelines (Ashley and Haviland

1950). Since then, fluid-structure interactions have been found to be responsible for

failures of many crucial components in such diversified engineering applications as nu­

cIear reactors, heat exchangers, jet pumps, aircraft jet engines, and so on.

In general, cylindrical structures may be excited by either axial flow or cross flow,

the former of which could be further divided into three different classes, depending on

how the flowing fluid comes in contact with the structure(s) involved: (i) axial flow

inside tubular structures, (H) axial flow outside cylindrical structures, and (Hi) axial

flow in annular regions between coaxial cylinders.

This Iiterature review is meant to be selective, not exhaustive; only key references

will be mentioned to show various stages of research development on axial flow-the

type of flow to be considered in this thesis. For interested readers, a rather recent,

very comprehensive survey on all kinds of flow-induced instabilities given by Païdoussis

1
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(1987) should be consulted.

1.1.2 Axial Flow inside Tubular Structures

This is the oldest, most fundamental type of problem, dating back to the early 1950's

when Ashley and Haviland (1950), Feodos'ev (1951), Housner (1952), and Niordson

(1953) investigated the stability of pipes contaÎlling flowing fluid. Using different means

of analysis, involving beam theory, they al1 came to the same conclu~ion that, at suf­

ficiently high flow velocities, pinned-pinned pipes may buckle like columns subjected

to compressive axial loading. This phenomenon is commonly referred to as divergence,

which is another term for buckling instability.

Tt is known that pipes conveying fluid with both ends supported belong to the

family of gyroscopic conservative systems. With linear beam theory, Paidoussis and

Issid (1974) studied in a general way the dynamics of both members of this family,

namely pinned-pinned and clamped-clamped pipes; they found that conservative sys­

tems are not only subject to divergence but also to coupled-mode flutter (a form of

oscil1atory instability). Later, Paidoussis (1975) showed that, in the case of thin-wal1ed

pipes, thin-shel1 theory prediets the same dynamical behaviour of the system and that

the critical flow velocity obtained by beam theory converges to that ziven by shell the­

ory as the length of the pipe increases. Predictions for divergence of pipes with ends

supported have been wel1 verified by series of experiments conducted by Naguleswaran

and Williams (1968), Liu and Mote (1974), and more recently Jendrzejczyk and Chen

(1985). Nevertheless, post-divergence oscillatory instability has never been observed

experimentally, therefore confirming a theoretical prediction made by Holmes (1978)

through nonlinear analysis that coupled-mode flutter cannot occur.

Benjamin (1961a,b) examined the dynamics of a cantilevered system of articulated

pipes (consisting of a finite number ofrigid pipes connected by flexible joints) containing

flowing fluid; the system is non-conservative. As the number of rigid pipes approaches

infinity, he predicted analytical1y the existence of oscillatory instability (of the single­

mode flutter type) of cantilevered pipes conveying fluid and the possibility of divergence

if gravity is operative and if the fluid is sufficiently heavy. Only the former prediction
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was later confirmed by Gregory and Paidoussis' (1966a,L) theoreLical and experimental

work. Paidoussis (1970) subsequently found that vertical, continuously flexible pipes are

never subject to divergence. Thus, the dynamics of articulated and continuously flexible

pipes conveying fluid is not strictly analogous in the sense that articulated systems may

exhibit radically different dynamical behaviour from the continuous systems they are

supposed to represent-see Paidoussis and Deksnis (1970).

Paidoussis and Denise (1970,1971,1972) demonstrated for the first time, both thc­

oretically and experimentally, that thin-walled pipes (or cylindrical shells) convcying

incompressible fluid flow are subject to both shell- and beam-mode instabilities aL suf­

fieiently high flow veloeities: shells with both ends clamped lose stability by divergence,

while cantilevered ones do so by flutter. In those studies, the motions of the pipe were

described by Flügge's thin-shell equations and the fluid forces were obtained by po­

tential flow theoryj reasonably good agreement was obtained between analytical results

and experiments.

Similar predictions were also reported for the case of simply-supported shells by

Weaver and Unny (1973) with the aid of the Flügge-Kempner shell equation and of the

Fourier int,egra! theory. The problem was later re-examined by Shayo and Ellen (1974),

who derived asymptotic expressions for the generalized pressures, thus avoiding consid­

erable numerical computation required in previous methods of solution, and showed the

relationship between travelling wave and standing wave instabilities for shells of large

length-to-radius ratios. The problem was further studied by Pham and Misra (1981)

with special attention given to the effect of a superimposed linearly varying or constant

axial loading on the shell.

Shayo and Ellen (1978) investigated the importance of the fluid behaviour beyond

the free end of the shell on the dynamics of cantilevered shells conveying fluid, an

aspect not considered in earlier analyses due to the utilization of different methods of

solution (e.g. Paidoussis and Denise 1972), by introducing the so-called "downstream

flow models" to describe fluid behaviour in that region, in conjunction with the Fourier­

transform technique.

The research on axial flow inside cylindrical structures, having established the
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fundamental behaviour of the system, "ran out of steam", 50 to speak, by 1980 for

Jack of practical interest in the problem: unless the cylindrical shell were very flexible

(e.g. made of elastomer), the flow velocities required to give ri5e to these instabilities

were too high to be of practical concern. Nevertheless, interest was resuscitated by

applications in the area of biomechanies, notably in the study of the collapse and flutter

of pulmonary passages due to high aspiration rates (Grotberg and Davis 1980, Webster

et al. 1985).

1.1.3 A. ;ial Flow outside Cylindrical Structures

The dynamics and the stab ility behaviour of cylinders subjected to external axial flow

are generally quite similar to those of pipes conveying fluid.

The early theoretical work on unconfined axial flow by Paidoussis (1966a) showed

that cylinders first lose stability by divergence and then at higher flow velocities by

coupled-mode flutter if the cylinders are supported at both ends, or by single-mode

flutter if the cylinders are cantilevered. What is particularly interesting about this type

of flow is that the post-divergence behaviour, whether it be coupled-mode flutter for

cylinders with both ends supported or single-mode flutter for cantilevered cylinders,

does materialize in experiments (Paidoussis 1966b). For cylinders supported at both

ends, the oscillatory instabilities were shown to be caused by lateral frietional forces

resulting from lateral motion of the cylinder.

Research on the stability of cylindrieal shells exposed to external subsonie or super­

sonie axial flows were also undertaken in a number of studies, including that by Dowell

(1966); these studies were mainly concerned with flutter of the shell(s) at very high

compressible flows. One important study, on the same subject, that must be mentioned

here is by Dowell and Widnall (1966), who applied the Laplace transform technique in

the evaluation of the aerodynamic generalized forces on the shell. The use of a trans­

form method to treat such a problem was considered to be a noveltYi othe. researchers

pursued this idea, but, as Dowell and Widnall (1966) recommended, they employed a

more realistie transform method-the Fourier transform method-in their work, so as

to avoid certain difficulties experienced with the Laplace transform method.
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In sub~equent investigations, Paidoussis (1973,1979) found that if the fiow along

the cylinder is confined either by a conduit or by adjacent structures (e.g. a ciuster of

uniform cylinders in a rigid channel), then there is an increase in the hydrodynamic vir­

tuai mass of the fluid, which effectively lowers the critical flow velocities associated with

instabilities; nevertheless, the fundamental nature of the stability behaviour remains

unchanged. With the Fourier transform technique and Galerkin's method, Païdoussis

and Ostoja-Starzewski (1981) studied the effect of fluid compressibility on the stability

of a system consisting of a pinned-pinned, flexible cylinder in a generally bounded, axial

f1ow. It was shown that the effect of compressibility on the dynamics of the system is

rather weak for slender cylinders, but becomes more significant for nonslender ones.

For the first time, Chen (1975) presented a general method to study the effect of

f1uid coupling on the dynamics of a group ofparallel, c10sely spaced, flexible cylinders in

a dense, axially f10wing f1uid. Because of this coupling, whieh refiects the faci that any

motion of a cylinder wiIl excite ail other s'Jrrounding cylinders, the instabiiities of the

system occur at much lower f10w velocities than for either a single flexible cylinder or

a flexible cylinder surrounded by rigid ones. Predieted natura! frequencies for various

arrangements of cylinders were found to be in good agreement with experimental data

(Chen and Jendrzejczyk 1978).

In a much more thorough theoretieal investigation of the f1uid coupling, Païdoussis

and Suss (1977) dealt with a c1uster of parallel, flexible cylinders in a cylindrical channel

in the presence of axial f1uid f1ow. Both inviscid and viscous hydrodynamic coupling in

motions of the cylinders was treatedj in addition, the confinement of the f1uid was taken

into account completely, which is due to the small spacing among cylinders, as weil as

between the channel wall and the adjacent cylinders. It was found that the theoretical

model and experiment agree qualitatively in most essential features of the dynamical

behaviour of the system, while quantitative agreement is remarkably good in terms of

the first critical buckling velocities (Paidoussis 1979, Paidoussis, Curling and Gagnon

1982).

Hannoyer and Paidoussis (1978) examined the dynamics and stability of uniform

tubular beams simultaneously subjeeted to internai and external fiows under different
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end-support conditions. In the case of c1amped-c1amped beams, the effect of the two

f10ws on stability was shown to be additive; if either f10w is just below the corresponding

critica! value for instability, an increase in the other f10w precipitates instability. This

stability characteristic does not always hold true for cantilevered beams; if the system is

just below the threshold of instability due to either f1ow, instability may be eliminated

if the other f10w is increased.

Further theoretical and experimental work by Hannoyer and Paidoussis (1979a,b)

was focussed on the effect of either internaI or external nonuniformity of cantilevered

axisymmetric beams on their stability in the presence of internai and external f1ows. The

effect of the boundary layer of the external f10w was approximately taken into account in

the theoretical mode!. Beams within a conical internai conduit were found to be much

less stable than similar cylindrical ones subjected to the same f10w discharge. In the

case of external f1ow, the opposite effect was observed; fully conical cantilevered beams

do not become unstablej for truncated conical cantilevers, instabilities are possible at

substantially higher flow velocities if the tip of the free end is streamlined sufficiently.

1.1.4 Annular Flow in Coaxial Cylindrical Structures

Annular-f1ow-induced instabilities are sometimes referred to as leakage-flow-induced

instabilities, which were found to occur often in such engineering components as fuel

stringers in coolant channels (UK Advanced Gas Cooled Reactors) and certain types of

pistons and valves, where the annuiar flow passage is quite narrow. An excellent review

on leakage-f1ow-instabilities was given by Mulcahy (1983).

Early studies on the stability of flexible cylinders in axisymmetrically confined f10w

were carried out by Chen (1974), Paidoussis and Pettigrew (1979), and Paidoussis and

Ostoja-8tarzewski (1981). The mathematical models developed therein are in principle

applicable to any degree of confinement and, although different from one to another due

to the nature of the problems being solved, they aIl lead to the same conclusion: fiow

confinement destabilizes the system.

However, problems involving cylinders in highly confined axial fiow were not given

full attention until Hobson (1982) considered a rigid cylindrical body, hinged at one
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point and coaxially positioned in a flow-carrying duct, generally of nonuniform cross­

sectional area. The mathematical model showed that the main ingredient for instability

via a negative-damping mechanism is the enhanced coupling between fluid and structure

caused by the narrowness of the annular gap; in other words, the extreme confinement

of the narrow annular passage produces a substantial increase in the negative fluid

damping, which easily overcomes the positive structural damping, leading to oscillatory

instabilities. The model was also capable of explaining, in an approximate manner, the

stability effect of an upstream constriction or of the graduai enlargement of the flow

passage.

Mateescu and Paidoussis (1985) re-formulated the problem and presented a more

rigorous, analytical inviscid mode!. It was shown that there exists a critical location of

the hinge: if the hinge is situated upstream of that location, then the system re!fiains

stable at ail flow velocities; on the other hand, oscillatory instability is possible if the

hinge is moved farther downstream past that location. In addition, the critical location

of the hinge is substantially influenced by axial variations of the annular gap. Sorne

improvement to the model was later made to account for the unsteady viscous effects

which were found to have a stabilizing influence on the system (Mateescu and Païdoussis

1987). The theory developed in these studies was eventual1y validated by experiments

at a very fundamental level: the unsteady pressures for various positions of the hinge,

frequencies of oscillation and flow velocities, were measured and then compared with

the corresponding analyticai ones. Good agreement was obtained, except near the body

extremities (Mateescu, Paidoussis and Bélanger 1988). Recently, the theory has been

further extended to deal with turbulent annular flow (Mateescu, Paidoussis and Bélanger

1991b).

A geometry of practical concern, where flow-induced problems are not unusual, is

that of coaxial cylindrical shells, with still or flowing fluid in the annulus and sometimes

in the inner shel1 also (Paidoussis 1980,1987). A few typical examples are shrouds, flow­

directing baffles and thermal shields in gas- or water-cooled nuclear reactors, or thermal

shields in aircraft jet engines. In general, the primary interests in research on this type

of configurations have been (i) the dynamics of the system, which are greatly affected
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by the virtual mass of the annular fluid and the hydrodynamk coupling between the

shells, if the fluid is stationary, and (ii) the stability of the system if the fluid is flowing.

The case of coaxial shells with annular (and sometimes internai) still fluid will be

considered first. Chen and Rosenberg (1975) studied the dynamics of two concentrically

located circular cylindrical shells containing and separated by quiescent fluids. The

shells are simply-supported at both ends. With the use of Flügge's shell equations and

potential-flow theory, a closed-form solution was obtained for the natural frequencies of

the shell system containing incompressible fluid. It was found that the lowest frequency

of the coupled system is associated with one of the out-of-phase modes, and is lower

than the frequencies of the individual shells. Au-Yang (1976) considered a similar

problem, consisting of two coaxial cylinders of different lengths immersed in a restricted

inviscid fluid medium. The analytical model, well-verified by experiment, demonstrated

that the cylinders have their coupled axial mode numbers directly proportional to their

lengthsj for the uncoupled modes, each cylinder vibrates as if the other were rigid.

As the finite-element method becomes more and more popular in solving dynami­

cal problems involving structures with complicated physical boundary conditions, quite

a few researchers have turned to this numerical method, often for a quick solution,

when a mathematical model is neither available nor feasible. Brown and Lieb (1980)

used FESAP (a finite-element package) to examine the dynamical behaviour of narrow­

gap, fluid-coupled, coaxial flexible cylinders as variations are made to such parameters

as cylinder wall thickness, gap width, and boundary conditions. Similarly, Chung et al.

(1981) with NASTRAN and SAP4 evaluated the vibration characteristics of a fixed-free

flexible cylindrical shell, concentrically positioned in a rigid cylinder, with ~he annulus

filled with fluid. In these studies, numerical results for natural frequencies and mode

shapes of the flexible cylinders were found to he generally in fair agreement with the

measured experimental values. It should he noted that, in any finite-element analysis,

the accuracy of the solution could easily he improved (e.g. hy increasing the number

of modelling elements), hut the computing cost would normallY render the analysis

prohihitively expensive.

Yeh and Chen (1977) were the first to examine the effect of fluid viscosity on the
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dynamics of coaxial cylindrical shells separated by fluid. The analysis illvolved Lhe use of

Flügge's shell equations and Navier-Stokes equations for viscous fluid, with a travelling­

wave-type solution taken for the shells and the fluid. The main finding of this study was

that the effect of the fluid viscosity on the system natural frequencies is negligibly small

in most practical systems. However, the modal damping ratio is noticeably increased for

some cases when the fluid viscosity is induded, especially for the lower frequencies. For

a coupled shell system, the viscous effects are mostly pronounced for the out-of-phase

modes, but are negligible for the in-phase modes. The effect of fluid viscosity on natural

frequencies, as a function of annular gap and shell thickness, was also touched upon by

Brown and Lieb (1980).

In all the above-mentioned studies of the dynamics of coaxial cylindrical sheIls,

the fluid was taken to be stationary. Krajcinovic (1974) appears to be the first one to

formulate the problem with the annular fluid being either still or fiowing. The shells

were treated as being infinitely long, and "piston theory" was employed to determine

the unsteady local pressures on the surfaces of the shells. However, only results for the

lowest natural frequencies of the system at zero flow velocity were given. A more general

analysis came later when Weppelink (1979) investigated the free vibrations of a flexible

cylindrical shell (damped-damped or cantilevered) in a concentric rigid cylinder, where

incompressible fluid is flowing inside the inner shell and/or in the annulus. The fluid

dynamic forces were calculated from potential flow theory, and the shell motions were

described by the Morley-Koiter shell equations.

Païdoussis, Chan and Misra (1984) conducted the first comprehensive study on

the stability of systems where the shells are coaxial and generally flexible while the fluid

flowing inside the inner shell and/or in the annulus is inviscid and generally compressible.

The fluid motions -.vere governed by potential flow theory and the shell motions by

Flügge's shell equations. It was found that, for the damped-damped shells considered,

stability was lost by divergence at sufliciently high flows of either the interna! or annular

fluid, followed by coupled-mode flutter. The main effects of fluid viscosity were later

taken into account by Païdou:;sis, Misra and Chan (1985), specifically those associated

with the steady, time-independent viscous loads on the shell due to loss of pressure
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along the sheJJ (i.e. axiaJJy variable pressurization and surface traction effects). These

viscous effects were found ta be very important on the stability of the system.

El Chebair, Misra Md Paidoussis (1990) attempted ta aCCOl1nt for the unsteady,

time-dependent viscous forces in an approximate way by adapting the work originaJJy

developed for quiescent fiuids by Yeh and Chen (1977) ta fiowing fiuids. This attempt

was only partiaJJy successful, having run into difficulties when the no-slip boundary

condition was rigorously applied at the sheJJ surface in the method of solution. Although

the Navier-Stokes equations were used for the ca1culation of the unsteady viscous forces

exerted on the sheJJs, they were in fact never solved. In any event, for sheJJs with bath

ends supported, unsteady viscous forces were found ta have only a slight influence

on the dynamics of the system. At the same time, the first experiment,J study of

annular-flow-induced instabilities of clamped-clamped coaxial shells was undertaken

(El Chebair, Paidoussis and Misra 1989), which verified the dynamical behaviour of the

system, qualitatively very weJJ indeed, but quantitatively only within the usual margin

of uncertainty associated with the effect of sheJJ imperfections.

FinaJJy, the earlier experimental study by Ziada, Bühlmann and BoJJeter (1988)

should be mentioned, involving slightly conical cantilevered sheJJs subjected to both

internaI and annular flows. Their principal objective was ta determine the excitation

mechanism which had created difficulties in the heat-shielding shroud of a jet enginej

these difficulties were shawn ta be fiow-induced. It was found that, for sheJJs of such

geometry, the annular fiow destabilized the system while the internai fiow stabilized

itj on the basis of that research, the design was modified and the problem solved.

Clearly, had a theory been available for the dynamics of cantilevered coaxial conical

sheJJs subjected to internai and annular fiows, then it could have been applied directly

to solve such a problem. This illustration served as an added impetus for the present

research workj its main aim, however, is much more fundamental: to study the stability

of cantilevered coaxial cylindrical sheJJs conveying incompressible viscous fiuid.
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The pl'imary objective of this thesis is to develop and experimentally validate two differ­

ent analytical models for predicting instabilities of cantilevered coaxial cylindrical shells

subjected to flowing incompressible viscous fluid in the annulaI' region between the two

shells and/or within the inner shell.

Both analytical models take into consideration the main effects of f1uid viscosity,

namely, the steady (time-independent) viscous loads on the shells. These models differ

in the way the unsteady fluid forces are calculated: in the first model, potential f10w

theory is used to formulate those forces, the solution of which is then obtained by means

of the Fourier transform technique; in the second model, such forces are obtained by

solving the Navier-Stokes equations with the finite-difference method.

This thesis consists of six self-contained chapters. Chapter 1 has given a brief

review of previous studies c10sely related to the research work of the thesis. It has also

stated the goals undertaken by the thesis, and now presents the outline of the thesis.

In Chapter 2, the development of the first analytical model for predicting instabil­

ities of cantilevered coaxial cylindrical shells conveying internaI and/or annulaI' f10ws is

given in detail. Presented are (a) the formulation of the problem with Flügge's modified

shell equations and potential f10w theory, (b) the solution of the f1uid-dynamic forces

acting on the shells by means of the Fourier-transform generalized-force approach, (c)

the solution of the governing equations of motion with the extended Galerkin method,

(d) the validation of the present analytical model by solving a number of test problems

and comparing the results generated with previously obtained experimental and ana­

Iytical ones, and (e) a new set of results on some typical steel-water systems considered

earlier by Paidoussis et al. (1984,1985).

Chapter 3 is an extension of Chapter 2 as far as analytical results are concerned.

This chapter begins with the theory developed in Chapter 2, but simplified for the case

in which the outer shell is rigid while the inner one remains flexible. Both systems of

c1amped-c1amped and cantilevered shells are considered. For the case of a c1amped­

c1amped shell, the effects of (a) shelllength, (b) shell-wall thickness, (c) annulaI' width,
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and (d) countcr-flows, on the stability of the system are investigateù. The same system

parameters, except (d), are also studied for the case of a cantilevered shell.

Chapter 4 is focussed on experimentation. Presented here are (a) a description

of the apparatus, (b) the procedure of conducting experiments involving a cantilevered

shell concentrically positioned in a rigid cylinder and subjected to either interna! or an­

nular fiow, and (c) a comparison between the experimental results and the corresponding

analytical ones obtained with the theory presented in Chapter 2.

In Chapter 5, the second analytica! model is developed. An unsteady viscous

theory is developed to eva!uate the effect of unsteady viscous !oads on the stability of

cantilcvcrcd coaxial cylindrical shells conveying annular fiow. Presented in detail are

(a) the formulation of unsteady viscous forces from the Navier-Stokes equations, (b)

the discretization of the Navier-Stokes equations and Flügge's shell equations, (c) the

time integration of these two sets of equations by the finitc--difference method with a

fully implicit scheme, and (d) a comparison of results obtained with this new theory

with those obtained with the theory in Chapter 2 and with experimental data presented

in Chapter 4.

Finally, Chapter 6 wraps up the thesis with a summary of the important findings of

the thesis, conclusions regarding the contributions of the thesis, and recommendations

for future work.



Chapter 2

An Analytical Model: Detailed

Development

2.1 Introduction

The main goal of this chapter is to develop an analytical model to study the stability of

cantilevered coaxial cylindrical shells conveying internaI and/or annular incompressible

flowing fluid. In this model, the original system is replaced by a system with pre­

stressed flexible shells subjected to inviscid flow. The key assumption here is that the

forces pre-stressing the shells are the same as those resulting from flow pressurization

and traction effects on the shell surfaces in the original system. The unsteady fluid

forces will be formulated with potential-flow theory, thus not 'lccounting for unsteady

viscous effeets. For narrow annuli, these effects may become important, and hence a

full viscous theory (Chapter 5) should he used.

The following theory is presented for the general system in which both shells are

flexible. Certain important aspects of the theory will be verified by solving a number of

classical problems, and the results compared with previous experimental and analytical

ones. For praetical and economical reasons, the theory will then be used to study a sim­

pler case with the outer shell replaced by a rigid cylinder whereas the inner one remains

flexible. This simplified system, nevertheless, still retains ail dynamical characteristics

of the general one.

13
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2.2.1 System Definitions and Assumptions

Figure 2.1 shows the system under consideration. It consists of two coaxial cylindrical

shells of length L. At the upstream end, x =0, the shells are assumed to be connected

(clamped) to semi-infinite rigid cylinders of the same radii and wall thicknesses as the

two shells. At the downstream end, x = L, which is unsupported, the fluid is generally

discharged freely into the surrounding medium, unless one of the two shells is rigid, in

which case the same arrangement as for the upstream end may be considered to apply

to that cylindrical conduit.

The inner and outer shells have mean radii a and b, and wall thicknesses hi and

ho, respectively, such that h;ja, ho / b « 1. The shells are assumed to be elastic and

isotropie with Young's moduli Ei and Eo, densities P.i and P.o, and Poisson's ratios Vi

and vo, in ail case~ subscripts i and 0 being associated with the inner and outer shells,

respectively. Incompressible fluid is generally flowing both inside the inner shell and in

the annulus, with densities Pi and Po, and flow velocities Ui and Uo, respectively.

Shell motions are assumed to be sufficiently small, so that linear shell theory

may be employed. As already mentioned, these perturbations will be formulated using

potential-fiow theory. Nevertheless, the flows are considered to be viscous, in the steady

serise, and hence pressurization, necessary to overcome pressure drops, and traction

e!fects on the shells are indeed taken into consideration. Finally, flow perturbations are

assumed to vanish upstream and far downstream of the flexible shells.

2.2.2 Governing Equations of Motion

In its most general form, the present theory considers both cylinders involved to be

flexible thin shells. Shell motions are described by Flügge's (1960) shell equations, as

modified by Païdoussis, Misra and Chan (1985) to take into account the stress resultants

due to steady viscous e!fects.
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With inner-shell and outer-shell quantities characterized by subscripts i and 0,

respectively, the equations of motion for the two shells are given by

Il 1 •• 1 t. , { 1 •• II/

Lli(llj, "j, Wj) = Ilj + 2(1- IIj)llj + 2(1 + IIj)"j + IIjWj + kj 2(1- IIj)lli - Wj

1 ( ,•• } [ " ( • ) .., ] { a2
1lj }+ 2 1- IIj)Wj + qljllj + q2j "j + Wj + q3j(llj - Wj) - "Ij at2 = 0,

,. { 1 1.. III 1 ".-1
L3j (Ilj, "j. Wj) = IIjllj + "j + Wi + ki 2(1 - IIj)llj - Ilj - 2(3 - L'il"j + 'Vj Wj

•• } [" ,... ] {
a2W

i qj}+ 2Wj + Wi - qljWj + q3i(llj - "j + Wj ) + "Ij at2 - p,jhj = 0,

where

( ).=~ ()'=aa() ()'=b a() k.=2.(hi )2 k =2. (ho )2
an ' ax ' ax' • 12 a ' 0 12 b '

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

u(x, 0, t), v(x, 0, t) and w(x, 0, t) are the axial, circumferential and radial displacements

of the middle surface of the undeformed sheIl; ql> q2 and q3 denote the nondimensional

forces associated with steady viscous e!fects (Section 2.3.3); qj = (Pj - Po)!.=. and
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qo = (Po - p,) Ir=.' with Pi, Po and P, being the perturbation pressures in the inner fluid,

the annular fluid and the fluid surrounding the outer shell, respectively. Thus, q, and qo

represent the unsteady radial forces acting on the shells per unit area (Section 2.3.2.3).

Shell motions must satisfy the following boundary conditions (Flügge 1960): (i)

at the clamped end, tL, v, W and 8wj8x are aU equal to zero; (ii) at the free end,

the normal force N., the bending moment M., and Kirchhoff's effective shearing stress

resultants Q. - (8M.ejaO)ja and N.e - M.eja must all vanish. Thus, in terms of shell

displacements, these boundary conditions are equivalent to

(i) at x = 0,

( "
."

(ii) at x = L,

Uj = 11i = Wi = 0,

Ua == Va = Wo == 0,

,. "
= Ui + lIiVi + lIiWi - kiWi = 0,

" •• • 1
= Wi + lIiWi - ViVi - Ui == 0,

8w, _ O.
8x - ,

8wo
-=Oj
8x

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Rso(uOJ Vo)wo)

,. J)

== Ua + lIoVa + !IoWa - kowo == D,

., 1 1.

= "'o+vo +3ko(vo - Wo ) = 0,

" .. . ,
= Wo + !IoWa - lIoVo - Ua == 0,

= -w;" - (2 - "o)w;·· +C~ "0) v;· - C~ "0) ...:. +...:' = O.

(2.13)

(2.14)

(2.15)

(2.16)

(

2.2.3 Perturbation Pressures

As mentioned in the last section, the unsteady fiuid forces (q, and qo) in the governing

equations of motion are simply the differences between the perturbation pressures on

the two sides of the shells. Thus, the determination of these forces reduces to that of

the perturbation pressures. Since the analysis here applies eaually to the internai and

annular fiows, the subscripts i and 0 will be suppressed until required for clarity.
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The perturbation pressures will be formulateù by means of potential f10w theoryl.

Thus, for this purpose, the f10w is considered to be inviscid and irrotational, and also

isentropic. Renee, the velocity V may be expressed in terms of a velocity potential

\If(x,0, r,t), such that

V =V1lI. (2.17)

Moreover, \If is considered to consist of a steady component due to the mean, undis­

turbed flow velocity U in the z-direction and an unsteady component </> associated with

perturbations due to shel! motionsj in other words,

1lI=Ux+</>. (2.18)

Renee, from Equation (2.17), the velocity components of the perturbed f10w field may

be expressed as
a</> 1 a</> a</>

V.=U+ ax' VO=;:ao' Vr = ar' (2.19)

With the substitution of Equation (2.18) into (2.17) and thence into the continuity

equation for an incompressible flow, V· V = 0, ri> is found to be governed by the Laplace

equation,
a2</> 1 a</> 1 a2</> a2</>
ar2 + ;: ar + r2 ao2 + ax2 = 0, (2.20)

which lS subject to the impermeability boundary conditions on the shel! surface(s), ss,

requiring that

for 0::; x ::; L,

vr=a</>I =aw+Uaw.
ar 55 at ax

Thus, for the annular f1ow, Equations (2.20) and (2.21) take the form

a2</>o +! a</>o +.!. a2cPo + a2cPo _ o.
ar2 r ar r 2 a02 ax" - ,

a</>o 1 _ { aa~i +Uo~~i for 0::; x ::; L,
ar r=o - 0 for x < 0 and x » Lj

acP01 = { ~+Uo~
ar r=b 0 for x < 0 and x » Lj

a similar set of equations also applies to the internai flow,

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

1This is clearly an approximation. Nevertheless, as mentioned in the foregoing, certain aspects of the
viscous nature of the f1uid f10w are taken into account (Section 2.3.3).
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(2.26)
for 0:5 x :5 L,a'h 1 = { ~ + UiP;,f

ar r=. 0 for x < 0 and x » L.

Here, a note should be given, concerning the boundary conditions (2.23), (2.24) and

(2.26). Since <Pi and <Po are both shell-motion induced and the shells are cIamped-free,

it is natural to assume that <Pi = <Po = 0 for x < 0; i.e., flows entering the system are

undisturbed. On the other hand, as the downstream end of the shells is free to move,

it is unrealistic to assume that <Pi = <Po = 0 for x = L + t>L, where t>L -t O. However,

<Pi and <Po should vanish when t>L is sufficiently large.

The perturbed pressure may then be determined from Bernoulli 's equation for

unsteady flow,

(

Ml + ~V2 + P = p. ( )at 2 pp' 2.27

where V2 = V; + Vl +V/, p. is the stagnation pressure, and P is the pressure in the

perturbed flow field. Expressing the pressure in terms of its mean, undisturbed value P
and its perturbation counterpart p, such that P = P +p, and substituting (2.18) and

(2.19) into Equation (2.27) gives

{1 2 PP,} {a<p a<p p} 1{(a<P)2 (1 a</» 2 (a</»2}-U +--- + -+u-+- +- - + -- + - =0.
2 p p at ax p 2 ar r ao ax (2.28)

In this equation, the first term is time-independent while the second one is time­

dependent. Equation (2.28) therefore implies that its first two terms must individually

vanish, yielding

1 2P = P, - '2PU ,

P = _p{a</>+u a</>}at ax'

(2.29)

(2.30)

(

for which it has been assumed that ail second-order perturbations, grouped in the third

term of Equation (2.28), are negligibly small-by considering motions of the shell to

be small. It is seen that p is readily given by (2.30) once <P has been determined from

Equations (2.22)-(2.24) for the annular flow, or from Equations (2.25)-(2.26) for the

internaI flow.
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2.3.1 Introduction

Section 2.2 has presented two different sets of equations, which are integral parts of the

theory and must be solved sequentially.

The first set of equations, known as the Laplace equations, need to be solved in

order to determine the unsteady fluid-dynamic forces exerted on the shells. The method

of solution for these equations is the Fourier-Transform Generalized-Force technique

(Section 2.3.2), also employed by Paidoussis et al. (1984,1985). Such forces. once calcu­

lated, are substituted into Flügge's modified shell equations, whkh are then solved with

the extended form of Galerkin's method (Section 2.3.4). With regard to the second set

of equations, all steady viscosity-related forces on the shells have been evaluated and

given by Païdoussis, Misra and Chan (1985)j since the same procedure will be followed

herein, only the final results will be presented without details of the derivation (Section

2.3.3).

For the purposes of satisfying Equations (2.1)-(2.6), thp. solutions of the shell

displacements are expressed in the following functional forms:

1
Ui

) 1A. 00'.' 1"1") 1
IIi = ~fl BmsinnO i1im(x)e

iOl
• (2.31)

Wi Cm cos nO

1
Uo l 1D. , ••~ 1"1") l
110 = ~ fI Em sin nO i1im(x) e

mt
• (2.32)

Wo Fm cosnO

where m and n are the axial and circumferential wave numbers, respectively; Am• ... ,

Fm are constants to be determinedj i1im (x) are appropriate admissible functions for the

x-variations of shelI displacements, here taken to be the eigenfunctions of a cantilevered

beam (Bishop and Johnson 1960), and n is the angular frequency of oscillation. As ex­

pected, the !Pm(x) do not satisfy the free-end boundary conditions (2.9)-(2.16); for this

reason, the extended form of the Galerkin method is required to ensure that Equations
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(2.1)-(2.16) are ail satisfied equally. More discussion on this aspect will be given later

(Section 2.3.4).

The solutions to the perturbation velocity potentials and pressures are taken to

be of the form

~i(x,r) } 'n,cosnO el ,
Pi(""r) {

c/>o } _ ~ { ~o(x,r)} 0 ml- L." cosn e .
Po n=l Po(x, r)

(2.33)

The determination of ~i' ~o, Pi and Po is the subject of the analysis of the next section.

2.3.2 Solution for the Perturbation Pressures

2.3.2.1 Annular Flow

Substituting <Po from Equations (2.33) into (2.22) and taking the Fourier transform of

the resulting equation gives

00 {a2~' 1 a~' ( n2) _ }'" __0 + __0 _ a 2 + - c/>' cos nO = 0,
L..J ar2 r ar r2 0
n=l

where ~~ denotes the Fourier transform of ~o defined by

(2.34)

(2.35)

and em, # 0 (in fact, Ie'n'I = 1) has been taken into consideration.

It is noted that the right-hand side of Equation (2.34) is zero whereas the left­

hand side is an infinite series of cos nO. Since cos nO # 0 in general, the coefficient of

cos nO for any given " must equal zero, or

2- - ( 2)a c/>~ 1 ac/>~ 2 n J.'--+--- a +- '1' =0.ar2 r ar r2 0
(2.36)

Equation (2.36) is known as Bessel's modified equation, admitting solutions of the

general form

(2.37)

(

where In(ar) and Kn(ar) are the nth-order modified Bessel functions of the first and

second kinds, respectively, and clo and c20 are constants of Integration to be determined

from the boundary conditions at the shell surfaces, namely Equations (2.23) and (2.24).
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The procedure to cvaluate CIo and C20 is as follows. Equations (2.31)-(2.33) are

appropriately substituted into Equations (2.23) and (2.24), then the Fourier transforms

of the resultant equations are taken, and finally ~~ is replaced by its functional form

on the right-hand side of (2.37). Thus, the boundary conditions (2.23) and (2.24) are

effectively equivalent to

00

I: {[<>I~(<>a)]CIO+[<>K~(<>a)]C20}cosnO -
n=l

~ {i (0- Uo<» fI Cm[~;"(<» +R;"(<»]} cosnO,

00

I: {[<>!,,(<>b)] CIo + [<>K~(<>b)] C20} cos nO =
n==l

(2.38)

(2.39)

Before CIo and C20 are obtained from Equations (2.38) and (2.39), it is important to

discuss the reasons for introducing into these equations the new function R;'(<», which

is the Fourier transform of Rm(x).

As previously touched upon, the method of solution being employed is the Fourier

transform method (see, for example, Bracewell 1974), implicit in which is the specifica­

tion of ~(x, T), a~/ax, and p(x, T) at ±oo, whereas the variations of these quantities are

dependent on x through the beam-eigenfunction expansions, which are specified only

within the interval [0, LJ. Furthermore, on physical grounds, although it may reasonably

be argued that perturbations in flow and pressure are nearly zero for x < 0 (and hence

at x = -00), the same would be quite unreasonable if applied for x > L; perturbations

should die out in a finite length beyond the free end of the shells and do so as smoothly

as in reality. Hence, the need arises, both mathematically and physically, of specify­

ing how if> and fi decay beyond x = L-since decay they must, on physical grounds,

by dissipation and diffusion. The functional form of the decay of the perturbations is

in fact given by Rm(x), L < x :::; L', which may be visualized as an "extension" of

the beam eigenfunctions <pm(x), 0 :::; x :::; L. Thus, effectively, it is assumed that flow

perturbations vanish for x ;:::: L', where L' > L.

The functiona! form of Rm(x) constitutes what has been referred to as an "out-
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fiow" model; such models were first proposed by Shayo and Ellen (1978) and later

elaborated further by Païdoussis, Luu and Laithier (1986). The procedure of how the

optimum L' is selected is discussed in Section 2.4.4.2 while the description of such models

and the corresponding functiona! forms of Rm(x) may be found in Appendix B.

Equating the coefficients of cos nO on the two sides of (2.38) and of (2.39) leads to

co

= i (0 - Uoa) I: Cm [<li;',. (a) +R;',.(a)],
m=l

(2.40)

co

i (0 - Uoa) I: Fm [<li;',. (a) + R;',.(a)] ,
m=l

(2.41)

from which Cio and C20 are found to be

i(O - Uaa) ~ { -K~(ab)Cm+ K~(aa)Fm } [<li' () R' ( )]
a ;;:1 I~(ab)K~(aa) - I~(aa)K~(ab) m a + ma,

i(O - Uoa) ~ { in(ab)Cm - Î,,(aa)Fm } [<li' () R' ( )1
Ct ;;:1 I~("b)K~(aa) - I~("a)K~(ab) m a + m" .

As a result of (2.42) and (2.43), Equation (2.37) may be rewritten as

where

(2.42)

(2.43)

(2.44)

I~(ab)Kn(ar) - In("r)K~(ab)
-

I~("b)K~(aa) - I~(aa)K~(ab)'

In(ar)K~(aa) - I~(aa)Kn(ar).

I~(ab)K~(aa) - I~(aa)K~(ab)'

(2.45)

(2.46)

in these expressions Cm and Fm have been defined in Equations (2.31) and (2.32),

respective!Yi primes denote dilferentiation with respect to the argument of Bessel's

modified functions. To obtain ji~, Equations (2.33) are substituted into (2.30), and then

the Fourier transform of the resultant equation is taken with 4>~(a, T) rep!aced by its

value in (2.44) and, finally, the coefficients of cos nO on the two sides of the equation are

equated, giving

f
(2.47)
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2.3.2.2 InternaI Flow

With the same procedure as was carried out for the annular flow, 4>;(a, r) of the internai

flow is also found to be governed by a modified Bessel equation, similar to Equation

(2.36),
824>~ 18if>~ (2 n2

)_--' +--' - Ct +- </>~=o.
8r2 r 8r r2 '

which admits solutions of the form

(2.48)

(2.49)

Here, it should be recalled that lim.~oKn(x) = 00. Hence, for 4>; to be finite as r

approaches 0, Cu must be set to zero (C2i =0). Meanwhile, CH is determined from the

boundary condition (2.26). Substituting (2.31) and (2.33) into (2.26), taking the Fourier

transform of the resulting equation and making use of (2.49), and finally equating the

coefficients of cos nO on the two sides of the equation yields

00

[CtJ~(Cta)] CH = i(l1- UiCt) L Cm [q,;"(Ct) +R;"(Ct)] ,
m=l

or equivalently,
i(11 - UiCt) ~ Cm r • () • ( )1

CH = LJ J' ( ) q,m Ct + Rm Ct .
0: m=l n oa

With CH given by (2.51) and C2i = 0, Equation (2.49) becomes

;;;~( ) _ i(l1- U;Ct) ~ Jn(Ctr)c r.... () R' ( )].
'f'J Q, r - L.- J' ( ) m 'J:"m 0: + m 0: ,

0: m=l n et:a

(2.50)

(2.51)

(2.52)

thus, pi(a, r) can now be obtained from (2.30). Proceeding in the same manner as was

done for p;(a,r) results in

-~( ) _ Pi(l1- Ui Ct )2 ~ Jn(Ctr) Cr...•() R' ( )]
p, a, r - L- J' ( ) m ':l"m 0: + rn Q •

Q m=l!'1. et:a

2.3.2.3 Nondimensionalization and Generalized Forces

(2.53)

As it is more convenient to deal with dimensionless quantities, Equations (2.1)-(2.6) will

be nondimensionalized prior to being solved. For this purpose, the following reference

velocities and forces per unit area are defined:

[
E- ] 1/2u· - •

• - Poi(1 - Ill) [
E. ]1/2u. = 2

po.(1 - Il.)
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(2.54)

_ p,;h;L Eih;L p,ohoL _ EohoL
qi =~ = a2(1 _ vi)' go = 10 - b2(1 - v;;)'

from which the following dimensionless parameters are introduced:

r a
e= -, éi =-,

L L

- U;
Ui =-,

U;
- UoUo =-,

Uo

- na
Oj=-,

Ui
- Ob
0 0 =-,

Uo

fi.:: OI.L,

n _ n; _ aUo
r - no - bUi'

'" L'
ç= L' 2= L' (2.55)

- Bm
Bm=T'

Thus, in terms of (2.54) and (2.55), the perturbation pressures evaluated in (2.47) and

(2.53) may be written as

p;(fi,s) =
2{- }2 00 (_ )p;U; n; _ U-..'< '" 1" OI.S C- {"" (-) + R' (-)}_ ,.... L-I'(-) m':l'm\Q'. ma: 1

0: f:j m=l n O:E:i
(2.56)

(
w.'J.ere

PoU~ {ni __ }2 ~ { _ _ 1_ _}= -_- ---;:;- - UoOl. LJ W1,,(OI.,s)Cm+W2"\,;,,e)Fm
0: éour m=l

X {iJ1;"(fi) + R;"(fi)} , (2.57)

= t,,(fieo)K,,(fis) - I,,(fis)K~(fiso)
Wln(fi,s) I~(fiso)K~(iis;) _ I~(&si)K~(aso)' (2.58)

I,,(as)K~{as;) - I~(as;)K,,(as)
W2,,(a,s) = '( )' )' 'r (2.59)1" aso K,,(as; - I,,(as;)K,,(aso

Finally, the terms g; and go in Equations (2.3) and (2.6), respectively, are given by

q; = (p; - Poli '
r=a

(2.60)

where the quiescent fluid surrounding the outer shell has been assumed to have a neg­

ligibly small inertial effect on the dynamics of the system (e.g., if the fluid is air), or

P. = 0; Pi and Po are obtainable from (2.56) and (2.57), respectively, after inverse Fourier

transformation and utilization of (2.33). The following analysis will be devoted to the

evaluation of the generalized forces associated with perturbation pressures in the fiows.

For the inner shell, if gi is taken to have the form
( 00 00

q;(ç,O,t) = L L Qm,,(Ç)cosnOemt ,
n=1 m=l

(2.61)
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then substituting (2.33) and (2.61) into the first of (2.60), taking its Fourier transform

and utilizing (2.56) and (2.57), then taking the inverse transform and equating the

coefficients of cos nO on the two sides of the resulting equation will give

Qmn(Ç) = PiUlëm f"" ~ {l'ii - Üiii}2 {I~~~ôi~} {<l!;"(ii) +R;"(ii)} e-i6e dii
2". _"" C< ôi In C<ôi

PaU~ /"" 1 {l'ii _}2 { _ _}- - -:: -0 - Uaii Wln(ii,ôi)Cm+W2n(ii,ôi)Fm27r -00 ct é o r

X{<l!;"(ii) + R;"(ii)} e-i6e dii. (2.62)

In the process of soIving the equations of motion by the extended Galerkin rnethod

(Section 2.3.4), ail the terms are made to have the same common factor L. It is noted

that the resulting term 'Yig;f(p,ihiL) from Equation (2.3) is simply g;jiii' with iii having

been defined in (2.54). Thus, for later convenience, Qmn(€) needs to be nondimen­

sionalized with respect to iii. In the present method of solution, Qmn(€) is eventual\y

multiplied by !Pk(€) and integrated over the domain [0,11 of €. Hence, the dimensionless

generalized force may be written as

(2.63)

(2.65)

(2.66)

-,:~ ~~:,

-<*'

The substitution of (2.62) into (2.63) Ieads to

C:1kmn = PiUl~m f"" ~ {l'ii -Üia}2 {I~(~Ôi)} {Hkm(ii) + Nkm(ii)} da
271'"Qi -00 ct ei In(a:ei)

PaU~ /00 1 {l'ii __}2 { _ _ _ _}
- -_. -:: -0 - Uac< W1n(c<,ôi)Cm+W2n(c<,ôi)Fm27rq, -00 a é o r

X {Hkm(a) + Nkm(a)} dii, (2.64)

where Hkm(ëi<) and Nkm(&) are defined as

Hkm(&) - {f <l!k(Ç) e-i6e dE} {f <l!m(Ç) é6e dE},

Nkm(ii) = {f <l!k(Ç) e-i6e dE}{f Rm(E) ei6e dE},

bath of which can be determined analytically. The evaluation of Hkm(a) and Nkm(ii) is

presented in Appendices A and B, respectively. Qkmn may also he expressed explicitly

as a quadratic function of ni,
(2.67)
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where

with the value of j being 1, 2 or 3.

SimHarly, for the outer shen, qo may be written as

00 00

qo(ç,O, t) = I: I: Smn(ç) cos nO .iOt;
n=l m=l

(2.68)

using the same procedure as was carried out for the generalized force on the inner shen

results in

(2.69)

( where

To recap, what has been done in the foregoing ana!ysis is the derivation of the

unsteady fluid-dynamic forces exerted on two coaxial cylindrical flexible shells due to

the internai and annular flows. For the system with a flexible shell concentrically inside

a rigid cylinder, the force on the outer cylinder [Equation (2.ô9)] is of no practical

interest while the one on the inner shen, Equation (2.67), reduces to

(2.70)

(2.71)
(

where the qi%n are the same as those defined for Equation (2.67).

For the reason to be discussed next, attention is now focussed on W1n(a, E:i), which

appeared in the second integrand of qi%n and can be obtained directly from (2.58),

W1n(a,E:i) = ~(~E:o)K~(~E:i) - I~(~E:i)K;(~E:o).
In(aœo)Kn(O<E:i) - In(O<E:i)Kn(o<·o)
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It is seen that as the radius of the outer cylinder becomes very large, é o -> 00, the

inner shell becomes simultaneously subjected to internai and externat axial fiows, a

configuration similar to that analyzed by Hannoyer and Pa:idoussis (1978) with beam

theory. The present theory is sufliciently general to handle such a problemj ail that

needs to be done here is to evaluate lim••_ oo Wln(lii, é;), because Wln ( lii, é;), given by

(2.71), has the form 00/00 as é u approaches 00. From the limiting values of the modified

Bessel functions,

and from their recurrence relationships,

it may be seen that

Hm J~(x) = 00,'_00 Hm K~(x) = o.'_00 (2.72)

As a result of (2.72), the limiting value of (2.71) is found to be

. (-) l' J~(liiéo)Kn(liiô;) Kn(aô;)
hm WIn "',ô; = lm J' (- )K' (- ) = K' (- )'eo-oo eo-oo n aeo n aei n aei

(2.73)

::71;,
...:.:,.;,..

With Equation (2.73), the present theory becomes particularly useful in solving

problerns involving cantilevered cylindrical shells (thin-walled cylinder) containing inner

flowing fluid and surrounded by stationary or axially moving, externally unconfined fluid

(Section 2.4).

2.3.3 Steady Viscosity-Related Stress Resultants

As explained earlier, the viscous nature of the fluid re8ults in both steady and unsteady

viscosity-related loads being exerted on the shells, the latter of which will be the subject

of investigation of Chapter 5. The steady loads have already been derived. (Païdoussis,

Misra and Chan 1985) from the time-mean Navier-Stokes equations for the case of

clamped-clamped shells. The same procedure will be followed herein to calculate such

loads acting on the clamped-free shells. Since details of the derivation have been given



(2.76)

<:

(
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by Paidoussis et al. (1985), they will not be repeated here; however, the final results

with ail the assumptions involved will be presented.

The steady loads are evaluated under the assumption of a fully-developed tur­

bulent, incompressible flow. The fluid pressure and the surface frictional force inside a

circular cylinder and in the annulus between two coaxial cylinders are derived by further

assuming that the cylinders arc rigid.

Figure 2.1 is referred ~o once more in this section. The flow velocity components

in the cylindrical coordinates X, 0 and rare V. + V~, Vu' and V:, respectivelYi V. is the

mean velocity in the axial direction while V~, V; and V: are the fluctuating velocity

components of the turbulent flow. (Here, Vu = V, = O.) For a flow velocity V. and static

pressure P, the time-mean Navier-Stokes equations may be written as (Laufer 1953):

~ BP = _~~ {rV'V'} + ~ ~ {r dV.} (2.74)
P Bx r d,t ., • d. d. '

18P = _~~ {,(V'J2} + (V;J2 (2.75)
P B. •d.' .'

a = ~ [V'V'} + 2 V:V;
dr l r e r )

where n denotes the time mean of ( )i P and /J are the density and the kinematic

viscosity of the fluid, respectively; these equations apply to both internaI and annular

flows.

After lengthy mathematical manipulations, the solutions of the above equations

for the internaI and annular fluid regions are obtained. The results of interest are given

below.

• For the internal flow,

( ) _ (Pi) U2 -(')2 /.' (V;J2 - (VJ2d ()Pi x,, - -2 -; rix - Pi Vri + Pi a • • + P; 0, a ,

with Uri, the so-called stress velocity, being given by

Uri = { -IIid;;i1,=J/2

= r;t 2

0= U/;ult 2

,

(2.77)

(2.78)

where Ui is the mean axial velocity of the internal fluid, r.,i is the fluid frictional

force per unit area on the interior surface of the inner shell, Pi (x, r) is the time­

averaged pressure of the internal fluid, and Pi (0, a) is the internal-fluid pressure

at the position x = 0, r = a.
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• For the annular fiow,

() {
2b } 2 -(')2 f' (v:J2 -~ ()Po x,r = - b2 _ r;" POUTOOX - Po V'O +Po J

a
r dr + Po D,a, (2.79)

with UTO; and UTOO being the stress veloeities on the outer surface of the inner shell

and the inner surf3.ce of the outer shell, respectively,

(2.80)

(2.81)

here Uo is the mean axial veloeity of the annular fiuid, Twoi and Twoo are the fluid

frictional forces per unit area on the exterior surface of the inner shell and on

the interior surface of the outer shell, respectively, Po(x, r) is the annular time­

averaged pressure, Po(O, a) is the annular-fiuid pressure at the position x = 0 and

r = a, and Tm is the raJius at which the mean veloeity V.o is maximum.

In Equations (2.79)-(2.81), Tm cannot be evaluated analyticallYi it is herein deter­

mined from a multi-linear representation of Brighton and Jones' (1964) expcrimental

measurements. Nevertheless, these measurements showed that if a/b ~ 0.8 then rm can

be approximated by its counterpart in the case of laminar fiowj in other words,

(2.82)

-~,

;.~ ~l,

'''-'';00-

The friction factor j, appearing b. Equations (2.78), (2.80) and (2.81), is a function

of the Reynolds number R.e, and ot' the relative roughncss of the cylinder k/d, where k

is the average height of surface protrusions and d is the diameter of the cylinder. The

friction factor may be found graphic.ally from a Moody diagram, which is a plot of f

versus R.e for different values of k/d. Alternatively, it may be determined from a number

of empiricalformulas. A cOIDmon practice is to use the Colebrook equation (Murdock

1976) ,
1 rk/d 2.51}·

..jJ = -210g1D ), 3.7 + Re..jJ . (2.83)

To avoid solving the above implieit Colebrook equation, Moody hirnself derived the

following approximation, which matches Equation (2.83) within ±5% for k/d ~ 0.Q15



(2.84)
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fa = 0.0055 {1 + [20000 (S) + ~:r3}.
The accuracy of fa can be significantly improved if fa is substituted back into Equation

(2.83), namely
1 {k/d 2.51}v7 = -210g10 3.7 + Re..JT. ; (2.85)

the value of f so obtained is then within ±0.7% for k/d ~ 0.05 and Re ~ 108 from that

of Equation (2.83).

Equations (2.84) and (2.85) are valid for both internaI and annular flows. For

internai flow, di is the diameter of the inner cylinder, 2a, and Rei = Uid;/vi = 2aU;/vi'

For annular flow, do is equal to the equivalent hydraulic diameter dh = 2(b - a), and

Reo = Uodolvo = 2(b - a)Uolvo.

With the fluid pressures determined, the basic loads on the shells can now be

evaluated. The steady radial differential pressure on the inner shell is given by FrIi =

Pi (x, a) - Po(x, a) which, in terms of (2.77) and (2.79), may be written as

- {2b 2 2Pi 2} () ()PrIi = b2 _ r;",PoU",oo - -;;U1'i x+ ~ D,a - Po D,a, (2.86)

(2.87)

where l stands for initial or steady-state, and use has been made of the condition that

at the surfaces of the inner shell,

Pi(O, a) and Po(O, a) may be determined from Equations (2.77) and (2.79), respectively,

if the static pressures of the two flows at either end of the shell are known. Since the

shell is cantilevered, the exit pressures of the two flows are essentially the same; as a

result,
_ () () _ 2Pi 2 2b 2tlP; - Pi 0, a - Po 0, a - ~UriL - b2 _ r 2 PoUrooL.

m

The corresponding surface traction in the axial direction on the inner shell is Foli =
'wi + 'woi, or in terms of the corresponding stress velocities defined in Equations (2.78)

and (2.80),

( (2.88)
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Similarly, with the presumption that the outer shell is surrounded by quiescent

fluid at pressure P" the steady radial differential pressure on the outer shell is round

from PrIa = Po(x, b) - P" or

(2.89)

where the faet that (V:o)2lr=b = a has been utilized, and

(2.90)

The quantities in the integral correspond to the mean-squared tangentia! and radial

flow velocities in the annular flowj the value of this integra! is quoted from Païdoussis

et al. (1985),

l b (li:' )2 - (li:' )2S = 80 ra dr
a r

= {0.7864 _ 0.56rm+ [0.56r;" _ 0.5064 rm] ln (~)} U2
b - Tm (b - Tm )2 b - Tm Tm 1'00

{a 0.56rm [0.56r;" 0.5064rm]! (rm)} 2- .7864+ - ( )2 + n - UTO"
Tm - a Tm. - a Tm - a a

(2.91)

and has been found to be numerically rather insignificant, as compared to the other

terms on the right-hand sicle of Equation (2.89). Finally, the corresponding traction

load on the outer shell is given by

(2.92)

It is noted that, for both internai and annular flows, Equations (2.88) and (2.92)

as weil as (2.86) and (2.89) may be expressed in the functiona! forms

Prl = -(Cx+D), (2.93)

......,.
} fi:
..:..;.-

where

Bi = PlU;. + poU;oi' Ba = PoU;oo

Ci
2Pi 2 2b 2

Co
2b 2 (2.94)= -;:UTi - b2 _ r2 POUTOO = b2 2 POUTOO

m - rm

Di = -6.~ Do = - (paS + 6.Po)

with 6.Pi , 6.Po and S being deflned in (2.87), (2.90) and (2.91), respectively.
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Now that the pressures and shear stressE>S acting on the shells have been fully

determined. they will be transformed into the termll qli to q3i in Equations (2.1)-(2.3)

and qlo to q30 in Equations (2.4)-(2.6). By balancing forces on an infinitesimal shell

element in the X-, (J- and r-direction, the stress resultants may be determined and are

found to be

Ner = PrIT. (2.95)

where NOl and Nol are the hoop and axial stress resultants, respectively, while N.BI is the

shear stress resultantj T is equal to a for the inner shelI and b for the outer one. In (2.95),

the first equation shows that Ner is independent of (J, or 8Ner/ 8(J = 0; hence, the second

equation becomes N.BI = ft((J) , and the third simplifies to 8N.I/8x = -Pol - tf~((J)

or Nol = -Ex + f2((J). However, since the shells are axisymmetric, N.BI and Nû must

be functionally independent of (Ji in other words,

(2.96)

( where Cl and Cz may be determined from the end boundary conditions. At x = 0,

N.Ol = 0 or Cl = 0; at x = L, N.I = 0 or Cz = EL. Thus, with the substitution of

these values into (2.96) and PrI from (2.93) into (2.95), the following relationships are

obtained:

Nol =-E(x - L), Ner = -'(Cx + D), N.BI =O. (2.97)

Finally, the terms ql to q3 may be calculated from the following relationships

(Païdoussis, Misra and Chan 1985):

{
1- II

Z
}q3= ~ Ner. (2.98)

where subscripts i or 0 may be added as necessary, with f = a or b, respectively. It is

noted that ql, qz and q3 as given by (2.98) are dimensionless and may be expressed in

the following functional forms:

qz = ÊJz. (2.99)

. {l -11
2

}A3= - Eh CLf,

(
where ç is a nondimensionalized length variable defined in (2.55), and

. {l-IIZ}AI=- Eh BL:



33

(2.100)

• {1 - 11
2

} • {1 - 11
2

} • {1 - 11
2

}BI = ~ BL, B 2 = 'Eh Br, Bs = 'Eh Dr,

are al! dimensionless constants, resulting from the substitution of (2.93) and (2.97) into

(2.98).

Thus, Equations (2.99), together with (2.87), (2.90), (2.91) and (2.94), fully specify

these dimensionless steady-viscous forces acting on the shells.

2.3.4 Solution to the Governing Equations of Motion

With the unsteady generalized fluid forces and steady viscous loads acting on the shells

completely determined, the solution for the governing equations of motion (2.1)-(2.6)

subject to the free-end boundary conditions (2.9)-(2.16) can now be carried out using

the extended form of Galerkin's method (see, for example, Anderson 1972) which, for

the present system, is expressed by the fol1owing variationa! statement

with

oE = oEi + oEo = 0, (2.101)

(2.103)

(2.102)

OEi = r
21r

{ f)i rI [LliOUi + L2iovi - LSiOW;J dçJo ei Jo

- f)i[RliOUi + C~lIi) R2iOVi +ki(RsiOW; +R4iOWi)L=JdO,

oEo = r
21r

{ f)o rI [Lloouo+ L 20 ovo - LsoOWol dçJo go Jo

f)o [RIOOUO +C~ 11
0

) R200Vo+ ko(Rsoow: + R40 owo)L=JdO,

where Di = Eih;f(1-vl) and Vo = Eoho/(l-v;)i w; = éi8wi/8ç and w~ = é0 8wo/8çj L's

were defined in (2.1)-(2.6) and R's in (2.9)-(2.16), and subscripts i and 0 are associated

with the inner and outer shells, respectively. The minus sign associated with the term

L3iOWi in (2.102) is necessary as L3i represents the negative of the load per unit surface

(unit l~ngth and unit radian). As a matter of fact, in the original expression of LSi

that Flügge derived, most of the terms were preceded by minus signsj for convenience
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in writing, Flügge himself switched the sign of the expression. The same explanation

can be given to - Lsoowo in (2.103).

Since OEi and oEo are generally independent, the implication of Equation (2.101)

is that both OEi and oEo must individually vanish, or

OEi '= 0, oEo '= 0, (2.104)

(2.105)

and hence these two equations must be solved simultaneously. Each of the variational

statements (2.104) may be derived from an extended form of the princip!e of virtial

work (Altman and De Oliveira 1988) or from Hamilton's principle. It should be men­

tioned here that the clamped-end boundary conditions (2.7) and (2.8) are automatically

satisfied by the admissible funetions chosen for u, v and w [Equations (2.31) and (2.32)].

As the procedure to solve the first equation of (2.104) is exactly identical to that

of the second one, only the former will be presented in full, whereas the final results

from the second equation will be given in Appendix C.

The variations in u;, Vi and Wi are simply derived from (2.31). Expressed in terms

of dimensionless parameters as were defined in (2.55), these variations may be written

as follows

J::: ) '= L~ ~ JoAk :~:os~::/aç) )<Pk(Ç) eint.

l OWi l OCk cos 10

In the above expressions, for the purpose of evaluating (2.102), different indices have

been used for the two su=ations-k and 1 denote the axial and circumferential wave

numbers, respeetively.

Each of the terms in (2.102) will now be considered individually. Substituting

(2.31) into (2.9)-(2.12), multiplying the resulting R's by the appropriate variations in

(2.105), and then evaluating such products at ç=1 gives

00 00

RliOUil '= L LcosIOcosnOhR(n), (2.106)
€=1 1=1 "=1

00 00

R2iOlli 1 '= L LsinIOsinnOhR(n), (2.107)
€=1 1=1 n=1

(: 00 00

RSiOWil '= L LcosIOcosnOfsR(n), (2.108)
€=1 J=1 n=1



where

00 00

= L LcosIOcosnOf4R(n),
l=l n=l
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(2.109)

hR(n) = L2e2in ,~ fI o}h{ [lIine;iJ?~(1)iJ?m(1)]Ëm + [lIie;iJ?~(l)iJ?m(1)]ëm}, (2.110)

f2R(n) = L2e2in'~ fI oËk{ - [ne;iJ?k(I)iJ?~(l)]Am + [(1 + 3k;)e;iJ?k(1)iJ?~(1)]Ëm

+[3nkieiiJ?k(I)iJ?~(I)]ëm}, (2.111)

faR(n) = L2e2in'~ floëk {(~2 (1 - lIi)e;iJ?k(I)iJ?~(1)]Am

+[~(3 -lIi)eiiJ?k(I)iJ?~(I)]Bm+ [n2(2 -lIi)eiiJ?k(I)iJ?~(1)]ëm}, (2.112)

and the fact that, for a cantilevered beam,

"~.".", t,

'"'""

has been taken into consideration in the evaluation of (2.106)-(2.109).

Similarly, substituting (2.31) and (2.61) into Equations (2.1)-(2.3) and multiplying

the resulting L's by the appropriate variations in (2.105) yields the follow!'1g products

00 00

LliOUi - L LcosIOcosnOf1L(n), (2.114)
l=l n=l

00 00

L2i OVi - L L sin 10 sin nOf2L (n), (2.115)
1=1 n=1

00 00

L3iOWi - L LcosIOcosnOf3L(n), (2.116)
l=l n=l

where

hL(n) = L2e2int f: f: oAk {((n~ -~2 (1 + ki)(l- IIi) - q3in2) e~iJ?~(ç)iJ?~(ç)
k=l m=l

+ (1 + qli)etiJ?~(ç)iJ?:W]Am + (%(1 + lIi)eliJ?~(ç)iJ?~W + q2ine;iJ?~(ç)iJ?m(ç)]Ëm



(
[ (

n2 ki ) 2" 4' II'+ Vi - -2-(1 - Vi) - qSi 0i cI>k(Ç)cI>mW - kioi cI>k(Ç)cI>mW

+ q2ioicI>~(ç) cI>m (ç)] ëm},
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(2.117)

if 1= n,

if 1 f n,

c

f2L(n) = L 2e2iOt~ fI OBk{ - [~(1+ Vi)olcI>k(Ç)cI>:;'W] Am

+ [(l'il- n2 (1+ qSi)) cI>k(Ç)cI>mW + G(1+ 3ki)(1 - Vi) + qli) olcI>k(Ç)cI>:;'W] B.n

+ [n:i (3 - vi)olcI>k(Ç)cI>:;'W - n(1 + qSi)cI>k(ç)cI>mW] ë m}, (2.118)

fsL(n) = L 2e2iOt~ fI 01'\ {[(Vi - n:k
i (1- Vi) - qSi) o~cI>k(Ç)cI>:;'(ç)

- kiot>.:,.cI>k( ç)cI>mW] Am + [n(1+ qSi) cI>k (ç)cI>m(Ç) - n:
i (3 - vi)olcI>k (ç)cI>:;'W] Bm

+ [(1+ kiot>.:,. + kitn2 - 1)2 + n2qSi - l'in cI>k(Ç)cI>mW - (2kin2+ qli)olcI>k(ç)cI>:;'W

-:i cI>k(ç)QmnW]ëm}, (2.119)

where ),m are the roots of the transcendental equation cosh),m cos ),m + 1 = 0; further

details on ),m may be found in Appendix A.

Before further analysis is made, it is useful to recall the orthogonality property of

the sine and cosine functionsj for any two integers 1 and n,

fa2

"cos 10 cos nO dO = fa21rsin 10 sin nO dO = { ~

which lead to

{21r {OO 00 } 00 00 {{21r } 00
Jo ~ ~cosIOcosnOf,(n) dO= ~ ~ Jo coslOcosnOdO f,(n) = ~"'f,(n), (2.120)

r1r {OO 00 } 00 00 {{21r } 00
Jo ~ ~sinIOsinnOf.(n) dO=~ ~ Jo sinlO sin nO dO f.(n)=~"'f.(n), (2.121)

where f,(n) and f.(n) are sorne particular functions of n. In effect, Equations (2.120)

and (2.121) show how the terms coslOcosnO and sinlOsinnO in Equations (2.106)­

(2.109) and (2.114)-(2.116) are de;;oupled once the extended Galerkin method is applied

via Equation (2.101).
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Now, if ail the terms qH, q2i and qSi in Equations (2.117)-(2.119) are replaced by

their functional forms in (2.99), then substituting (2.106)-(2.109) and (2.114)-(2.116)

into (2.102) and performing (i) the integration over the domain [0,211"1 of 0 with (2.120)

and (2.121) taken into account and (ii) the integration over the domain 1°,1) of ç will

lead to

(n) 00 M2 2iOt Vi - - -
lI'L e ei E f;{Wlkn6Ak+W2kn6Bk+WSkn6Ck} =0,

and because 1I"L2 e2iOt(D;jei) # °for ail t,

00 M
I: I: {Wlkn 6...h +W2kn 6Bk +WSkn 6ëk} = O.
n=l k=l

(2.122)

In Equation (2.122), M is the number of admissible functions taken for the analysis,

thus replacing the upper limits of the summations of the axial wave numbers in (2.31)

and (2.105), Le. 1 S; k S; M and 1 S; m S; Mj the coefficients W lkn , W2kn, WSkn are

functions of Am, Ë m, ë m being associated with the inner shell,

Wlkn = fi {[ (0; -~2 [(1 + ki)(l-lIi) + 2ÊSi]) e; f 'l>~W 'l>;"W dE

-n2e;Âsif E'l>~(Ç)'l>;"(E)dÇ+ (1+ ÊH) etf 'l>~(E)'l>:(E)dE

+ etÂH f E'l>~ (E) 'l>:;:(E) dElA:m + [% (1 + lIi)e; f 'l>~(E) 'l>;"(E) dE

+ neiÊ2if 'l>~(Ç) 'l>m(E)dE -lIine;'l>~(1)'l>m(I)]Bm

+ [(IIi - n:ki (1 - IIi) - ESi) e; f 'l>~(E) 'l>;"(E) dE - e; Âs;f E'l>~(E) 'l>~, (E) dE

- kiet f 'l>~(Ç) 'l>:;:W dE + eiE2if 'l>~(Ç) 'l>m(Ç) dE - lIie;'l>~(1)'l>m(l)] ëm}, (2.123)

M {[ lai 2 ]
n Il ne· ,-

= fi -2"(1+ lIi)e; 0 'l>k(E) 'l>m(E) dE + --f(1 - lIi)'l>k(l)'l>m{1) Am

+ [[0; - n2(1 + ÊSi )] f 'l>kW 'l>mW dE - n2ÂSi f E'l>k(E) 'l>mW dE

(
1 • ) 2 r " 2' ri "+ 2"(1+ 3ki)(I-"i)+BH ei10 'l>k(E)'l>mWd(E)+eiAH10 E'l>k(E)'l>mWdE

- et (1- Il;)(1 +3k;)'l>k(I)'l>;"{1)]Bm + [n~i (3 - lIi)e; f 'l>k(Ç) 'l>:W dE
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(2.124)

(2.125)

where Âli , ••. , ÊSi were defined in Equations (2.100).

Because 6.ih, 6Ëk and 6àk are totally arbitrary, Equation (2.122) is equivalent to

00

I:Wlkn =0,
n=::'

00

I: W 2kn=0,
n=l

00

I:Wlkn=O.
n=l

(2.126)

(

As may be seen from Equations (2.123)-(2.125), each term of any of the above three

series is a function of n and is independent of other terms in the same series. Equations

(2.126) thus imply that individual W1kn , W2kn and WSkn must be equal to zero, namely

M
"{ 1,1 - 1,2 - 1,S - 1,4 - 1,5 - 1,6 - }_

Wlkn = L..- JkmnAm+JkmnBm+JkmnCm+JkmnDm+JkmnEm+JkmnFm -0,
m=l

(2.127)

Similarly, with the foregoing analysis carried out for the second equation of (2.104), the
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foilowing equations will be obtained
M

W4kn = "" {J4,1 A + J4,2 13 + J4,3 C + J4,4 jj + J4,5 il: + f,6 F } - 0L.- kmn m kmn m kmn m kmn m kmn m kmn nt - J

m=l

(2.128)

M
m "" {J6 1 - J6 2 - J6 3 - 6 4 - 6 5 - 6 6 - }
YY6kn = L.- k:nnAm+ k~nBm+ k:nnCm+Jk~nDTII.+Jk:nnEm+Jk;nnFm=0,

m=l

Thus, Equation (2.101) is in effect equivalent to a set of 6M equations, Equations

(2.127)-(2.128) inclusive, in which Am, Ë m, ... , Fm are the unknowns to be solved for.

Equations (2.127) and (2.128) may be grouped together and put in the matrix

form

It should be emphasized here that [M], [C) and [KI in Equation (2.129) are not the

traditional mass, damping and stiffness matrices but are proportionai to them. [MI, [C]

and [K] are the coefficient matrices of ni, n~ and fi?, respectively. The clements of [MI,

[C], [K] and {X} are given in Appendix C.

So far, energy dissipated internaily in the material of the shells has been neglected.

If dissipation is considered to be a hysteretic effect (structural damping), it may be

taken into account by replacing Young's modulus E by E(l + n%t) in Equations

(2.1)-(2.6), where J.L is called the structural damping factor. Alternatively, dissipation

may be considered to be a viscoelastic effect (viscoelastic damping), in which case E

is replaced by E (1 + X%t)' where X is the viscoelastic damping coefficient. In general,

E is replaced by E{ 1 + (ft + X) ft} with the understanding that either J.L or Xwill

be zero for a given system. As a reminder of the notation used in Equations (2.1)­

(2.6), E{1+ (fY+ X) ft} is to be written with the subscript i for Equationb (2.1)-(2.3),

namely E;{1+ ('H- +Xi) %t}' and with the subscript 0 for Equations (2.4)-(2.6), namely

E o{l+(rr+ Xo)Rt}·
To give a simple illustration of changes Equation (2.129) may be subject to when

internai damping is included, it is assumed that both inner and outer shells are made

of the same material and hence neither subscript i nor 0 is required for J.L and X (and

other material properties). Equation (2.129) then becomes:1;..,.

([M]n; + [C]ni + [K]) {X} = {O}.

([M]n; + [C]ni + [1 + i(J.L + Xfl)][K]){X} = {O}.

(2.129)

(2.130)



,-
ri'\. ...

40

Since

Equation (2_130) may be rearranged and rewritten as

([M']O; + [0']0; +[K']){X} = {a}, (2.131)

where

[M'] = [M], [0'] = [Cl + (i.xU;)[K],
e; L

[K'] = (1+ l'i)[K]- (2.132)

If a new vector {Y} is introduced and defined as

{Y} = { _{X} },
Il;{X}

(2.133)

Equation (2.129) [or Equation (2.131) if internai dissipation is to be accounted for] can

be simplified to

([P] +O;[q]){y} = {a}, (2.134)

where(

(

[PI = [[0] [1]), [QI = [[-1] [0]),
[K] [Cl [OJ [M]

with [1] being the identity matrix of the same size as [MI, [Cl and [K]. Equation (2.134)

represents a standard eigenvalue problem and can readily be solved by any available

computer subroutines such as those of IMSL (International Mathematical and Scientific

Libraries), giving the eigenfrequencies of the system.

2.3.5 Summary

Section 2.3 has presented in detail (il the evaluation of the unsteady generalized fluid

forces acting on the shells by means of the Fourier transform technique and (ii) the

procedure of solving the governing equations of motion using the extended Galerkin

method. It has also given ail final, important results for the steady viscous forces

appearing in the governing equations of motion.
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2.4.1 Introduction

Before the theory presented earlier in this chapter was actually applied to the system

under consideration (Section 2.5), a series of preliminary calculations were conducted

to examine different aspects of the theory.

Firstly, natural frequencies of a cylindrical shell in vacuo were calculated (Section

2.4.2). The aim of these calculations was to assess how well the extended Galerkin

method works through Equation (2.101) in solving the equations of motion [(2.1)-(2.6)1

subject to the free-end boundary conditions [(2.9)-(2.14)1, and hence to validate certain

segments of the computer program developed for Section 2.5.

Secondly, as the solution for the unsteady fiuid forces is obtained by the Fourier

transform method, numerical integration is required and was performed in the present

analysis using a composite formula based on the two-point Gaussian quadrature. For

computational economy, it is thus necessary to determine the optimum values of such

important parameters involved as the integration stepsize fla, the domain of integration

(-z,z), and the number of admissible functions M taken for the analysis. The selection

of these values was based on the calculations of the critical fiow veloeity of a cârüilevered

cylinder conveying fiuid (Section 2.4.3).

Finally, different out-fiow models, the concept of which has been introduced earlier

in the Fourier transform method, were examined (Section 2.4.4) with regard to (i) their

essence in the theory, (ii) the most suitable distance beyond the free end of the shells for

fiow perturbations to die out, and (iii) the best of the models considered for specifying

the downstream fiow perturbation behaviour.

It should be noted that the results to be presented below were obtained without

steady viscous effeets (Section 2.3.4) inc1uded. There were two reasons for doing so:

(i) ail the above-mentioned aspects are part of the inviscid theory only, and (ii) the

present results could be compared with previous theoretical ones which did not involve

any viscous effects.
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2.4.2 Natural Frequencies of a Cylinder in the Absence of Flow

Natural frequencies of a cantilevered cylindrical shell were calculated, in the absence of

Ruid flow (Ui = Ua = 0) and for the following parameters:

a = 0.0635 m, hi = 0.0016 m, tJ.i and Xi are zero.

These parameters are the same as those in Gill's (1972) "xperiments and in Sharma's

(1974) theoretical calculations, to which the present results are compared, in Figure 2.2

and Table 2.l.

In Figure 2.2, the results obtained with six admissible functions (M = 6) are

compared with Gill's measurements and with Sharma's sextic approximation. It is seen

that the agreement is quite good and, in fact, the present results are closer ta the

experimental values than Sharma's. The agreement improves further, if only slightly,

when the calculations are carried out with a larger M, since the natural frequencies

then become smaller, especially as the axial wave number, m, increases-thus, bringing

the present results closer to the measured natural frequencies.

In general, the theoretical results are c10sest to the experimental ones for higher

n, the circumferential wave number, and lower m, and vice versa. Since the effect of M

on the natura! frequencies is not overwhelming, especially for low m (= 1,2), quite a

number of the calculations that follow have been conducted with M = 6, or even 4, to

reduce the computing time required.

2.4.3 Convergence Study
.

The optimum values of the parameters involved in numerical in,qration were judged

on the convergence rate of the solution. In this study, the critical dimcnsionless flow

velocity of the cantilevered cylindrical shell conveying fluid in Païdou~sis and Denise's
/

(1972) problem was calculated. The same physical properties and 6"ometricaCdata of

the shell were used:

Ei = 89.57 X 104 N/m\ Vi = 0.5, P'i = 0.85 X lOS kg/mS, a = 7.85 X 10-s m, R. = 3.0,
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Lla.~ 12.9, hi = 0.178 x 10-3 m, Pair = 1.1564kg/m3 [(alhi)(Pairlp.,;) = 0.061.

For comparative purposes, the present results will be tabulated together with those

obtained by Paidoussis and Denise (1972) using a different theory; in the tables ta be

presented, the latter results are shawn merely as a reference, not as a mean'3 1.0 mea­

sure how accurate the present results are, or how fast the solution under consideration

converges.

2.4.3.1 Integration Stepsize

When the integration stepsize was being examined, the following parameters were held

fixed:

(-z,z) = (-200,200), M=4.

The results obtained for three different flow models2 arc presented m Table 2.2.

As may be seen, there is a large difference between D.li. = 4.0 and D.li. = 2.0 in terms

of the critical (dimensionless) flow velocity, (Ji" For n = 1, for instance, the relative

discrepancies are 2.26% with Model 1, 11.76% with Madel 2, and 9.39% with Madel

3. It is obvious that D.li. = 4.0 is tao large. On the other ha.nr!, there is very little

differènce between D.li. = 2.0 and D.li. = 1.0, especially with Models 1 and 3 in which

the predictions for (Ji' are identical up 1.0 the l'ourth significant digit for n = 1 and up ta

the sixth one for n = 2 and n = 3. The foreguing comparison has shown that D.t' = 2.0

is perfectly adequate for the present numerical integration procedure.

2.4.3.2 Domain of Integration

When the domain of integration was varied, the following parameters were held fixed:

D.li. = 4, M=4.

Table 2.3 shows how the domain of integration chosen affects the critical flow

velocity (Ji" With Models 1 and 3, the relative difference between two successive values

of (Ji' reduces almost by one hall' as the domain of integration is increased by 100,

2Further discussions on these models are given in Section 2.4.4.
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starting from (-150, 150). With Model 2, the convergence of Üic is not obvious because

the relative difference remains almost unchanged for the four domains considered. In aIl

cases, however, discrepancies are found to be very small. Thus, a domain of integration

as small as (-150,150) may be considered to be sufficient as far as the lowest three

circumferential wave numbers are concerned. Nevertheless, (-200,200) wiil be adopted

for aIl subsequent calculations.

2.4.3.3 Number of Admissible Functions

In this case, the fol!owing values were taken for the other two parameters:

èJ.ô = 2.0, (-z,z) = (-200,200).

The effect of the number of admissible functions M on Üic is shown in Table 2.4,

where M is incremented by 2 from 4 to 10. For n = l, the relative differences in Üic

corresponding to any two successive chosen values of Mare (0.58%,0.25%,0.13%) with

Model l, (1.02%,0.41%,0.21%) with Modlll 2, and (0.93%,0.37%,0.19%) with Model 3.

The same trend is also observed for n = 2. Here, it is important to mention that, for

n = 1 and 2, the critical flow velocities are associated with m = 2. For n = 3, instability

occurs in m = 3 with Model1 for aIl four values of M consideredj with Models 2 and 3,

insta.bility also occurs in m = 3 but ouly for M = 4 and 6, and then in m = 2 for M = 8

and 10. As a result, Üic converges monotonically with Model! [(0.25%,0.08%,0.03%)1,

but not with t"iodel 2 [(0.31%,0.21%,0.30%)1 or Model 3 [(0.83%,0.19%,0.28%)] due

the change in the critical axial mode m (from 3 to 2). Nevertheless, insofar as the lowest

critical flow velocity is concerned, which is associated with n = 2, it may be seen that

M = 6 is sufficiently large to be used in future calculations (Section 2.5).

2.4.4 Out-Flow Models

In what follows, four different flow models are evaluated (as a note, the words "out­

flow" and "flow" are used interchangeably throughout the thesis): Models 0 to 3. For

interested readers, the physical and mathematical descriptions of these models are given

in Appendix B, and may also be found in Faidoussis, Luu and Laithier (1986). The
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same test problem as was considered in Section 2.4.3 is utilized here to examine various

aspects of the fiow models. In addition, the following parameters were taken for the

calculations of Ü j ,:

(-z,z) = (-200,200),

2.4.4.1 Effect of Having No Model

.6.ii = 4.0, M=4.

Having no model in thè theory is basically the same as applying Model O. Indeed, Model

owas the first one used to calculate the critical fiow ve!ocity, Üj ,. Table 2.5 shows the

values of Ü;, obtained with Models 0 to 3. It is seen that the results with no mode! are

abnormal, in the sense that the dynamical behaviour predicted for a cantilevered shell

is the same as that of a shell with both ends supported: the shell loses stability first by

divergence, and then by coupled-mode fiutter. In fact, Model 0 is physica\ly unrealistic

and hence so are the results. Thi~ will be discussed below.

Clearly, it is mathematically essential to model the fiow perturbation behavlaur

beyond ç = 1 and not to impose any artificial discontinuities in that behaviour. In

other words, the inclusion of an out-fiow model in the present theory is a necessity, not

a refinement as may have thought (Shayr.and Ellen 1978). Moreover, such a flow modc1

may also be necessary for shells wich the downstream end pinned because, as shown

in Appendix B, the functional form of a fiow model is generally a function of both the

lateral displacement and the slope of the shell at its downstream end; in this case, the

pinned end has no displacement, but it has a non-zero slope. It is further noted that the

values of Ü;, according to Models 2 and 3, which have the least amount of discontinuity,

are rather close and reasonable.

2.4.4.2 Selection of e

Calculatic!ls have been performed with different values of e, and the esults are given in

Table 2.6. It should be reiterated that fiow perturbations completely die out at ç = e.
Ideally, the solution should converge as eapproaches 00. However, as seen from Table

2.6, there is generally no convergence in the solution obtained with any of the three
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models (1-3), although Appendix B shows that, as l approaches 00, the solution does

converge with Mode! i, but not with Models 2 and 3.

The convergence problem associated with Models 2 and 3 was identified as being

related to the expression for Nkm(a) in Equation (2.64). Although Nkm(a) is finite for

any value of l, nevertheless in the limit, liml_co Nkm(a) ceases to exist (Appendix B);

hence, in the numerical calculations, when l becomes very large, the overall problem

becomes ill-behaved (a similar example pertains to lcos lj for any large l, lcos lis finite,

but liml_oo lcos l does not exist). For Model1, the zigzag pattern of Üi " corresponding

to the values of l considered in Table 2.6, may weB be due to the fluctuations of the

harmonic term ei6l in Equation (B.S)o

Another observation of Table 2.6 is that, for l = 3, the results obtained with

Models 1-3 are of the same order of magnitude; on the other hand, for l < 3 or l ~ 3,

the results (particularly, the ones denoted by *) obtained with one of the models could

be very different from (i) those obtained with other models, and (ii) those obtained with

the same model but for l = 3. Attempts have been made to account for this observation,

but no satisfactory explanation is found; the intriguing nature of l = 3 remains to be

studied in future work, Such a phenomenon was also reported, though not elaborated

upon, in Païdoussis, Luu and Laithier (1986), where l = 2.8 was adopted. Since l = 3

is the largest value obtained without any numerical problem in the solution, it will be

adopted for ail subsequent calculations.

2.4.4.3 Selection of Most Suitable Model

Presented in Table 2.7 are numerical results for Üic as a function of n and LIa with

Models 1 to 3. Qualitatively, the variations according to the three models are similar.

Quantitatively, it may be observed that the results with Models 2 and 3 are very close,

stemming from the fact that these two models only differ for large ç, far away from the

free end of the shell (Figure 2.3). Thus, for the same case, the relative difference in

Üic obtained with Models 2 and 3 is about 0.6%, while the values of Üic obtained with

Model 1, on the one hand, and Model 2 or 3, on the other, differ by about 10%.

The results of this table make either Model 2 or 3 more acceptable than Model
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1; the choice of Mode! 3 as the most suitab!e, to be utilized in subsequent calculations,

was made on physica! grounds as being most realistic for prescribing the smoothest

decay, characterizetl by the second and fourth boundary conditions of (B.20), of flow

perturbations.

Some fürther physica! observations may be made frolil the results of Table 2.7. Tt

is seen that for 10 ::; LIa ::; 20 the critica! circumferential mode is n = 2, while for

LIa = 5 it is n = 3. Moreover, for a given n, the axial mode associated with instabiPty,

namely the one that undergoes a Hopf bifurcation is not always m = 2; higher m may

be involved, especially as Lia is increased (e.g., for Lia ~ 15, n = 3).

Finally, the results obtained with Model 3 with l'v! = 6 are compared with Paï­

doussis and Denise's (1972) theoretical and exper:mental results in Figure 2.4. As may

be seen, the results for Ui, by the two theories are almost identical for n = 1, but larger

differences are evident for n = 2 and 3. Here, it shou!d be remarked that in the method

of solution utilized by Paidoussis and Denise, the question of specifying fluid flow be­

haviour beyond ç = 1 did not arise; hence, the differences in Figure 2.4 are Iikely due

to the two different methods of solution. Significantly, however, the present theoretical

results are doser to the experimental ones for small LIa, as is reasonable, because the

effect of the fluid beyond the free end of the shell, not taken into account by the earlier

theory, becomes more significant for short shells.

2.4.5 Summary

Section 2.4 ha.. presented the results of preliminary calculations conducted to verify

some important aspects of the present theory.

• As a means to check the extended Galerkin method, nat.lraI frequencies of a

cantilevered shell in the absence of fluid flow were calculated and found to be in

excellent agreement with available experirnental and analytica! results.

• Concerning the numerical Integration procedure employed in the Fourier transforrn

method, the optimum values of the Integration stepsize t>a:, the Integration domain

(-z,z), and the number of ililmissible functions M were desired. The selection
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of these values was based on the critîcal flow velocity Üic of a cantilevered shell

conveying fluid flow. Such optimum v,,-lues were found to be

boa = 2.0, (-z,z) = (-200,200), M = 6.

• Different out-flow models were examined and compared. It was found that (i) the

presence of a flow model in the theory is a necessity, (ii) the opti;num value of l

at which (ç = l) tJ.ow perturbations vanish is about 3.0, and (iii) Moclel 3 appears

to be the best in prescribing the downstream flow perturbation behavbur.

2.5 Theoretical Results

2.5.1 Introduction

Although the theory given in Sections 2.2 and 2.3 was developed for the general case

of two coaxial flexible shells, nevertheless for the calculations to be performed here,

the outer one is replaced by a rigid conduit. This is done partly to achieve sorne

computational economy, but also because most physîcal problems of interest are like

thatj another reason is that, at least for shells with both ends supported, the dynamical

behaviour of such systems is qualitatively the same whether one or both shells are

flexible (Paidoussis et al. 1984,1985), the main effect of an outer flexible conduit being

to diminish the critical flow velocities.

The calculations were condueted for shells with the same geometries and properties

as those in the earlier studies of clamped-clamped shells (Paidoussis et al. 1984,1985),

namely:

b = 100mm, a = (lO/ll)b for the so-called 1/1O-gap system,

a = (100/101)b for the 1/10o-gap system, .L, = 1.00 m, hi = 0.5mmj

thus, Ui = 5308m/s and Pia/(p,ihi) = 23.30.
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Although the present results are specific to this system, they have nevertheless been

found to be qualitatively valid, in terms of the general dynamical behaviour of the

system, over considerable ranges of dimensionless parameters relating shell and fluid

properties and geometric factors.

It is known (Evensen 1974, Evensen and Oison 1968) that shells are subject to

important softening-type nonlinearities. Since the theory is linear, the results generated

are expected to be physically correct only for sufficiently smal\-amj;!itude perturbations;

thus, the intricate behaviour of the system beyond the first loss of stability a.s predicted

by the present theory may not be reliable. However, the results are still of academic

interest and are therefore presented.

Three different cases of flows will be considered and discussed in the following

order: (i) internai flow alone, Üo = 0 (Section 2.5.2), (ii) annular flow alone, Üi = 0

(Section 2.5.3), and (iii) both internai and annular flows together (Section 2.5.4).

2.5.2 InternaI Flow Alone

2.5.2.1 General Dynamics of the System

Typical results are shown in Figure 2.5, involving internai flow only, while the annular

fluid is quiescent (Üo = 0). Calculations were carried out using inviscid theory, with or

without steady viscous effects taken into account.

Figure 2.5 is in the form of an Argand diagram, in which the real and imaginary

parts of the eigenfrequencies of the system ni, for n = 2 and m = 1,2,3, are plotted

against each other, with the flow velocity Üi as the parameter. Clearly, if Im(n i ) ::; 0

the system is unstable, the stability having been lost when Im(ni) = 0 by flutter, if

Re(n;} f 0 and by divergence if Re(ni) = O. In Figure 2.5, it is seen that single-mode

flutter occurs in the second axial mode, m = 2, at Üic = 0.0311 with no steady viscous

effects, a:-.d at a slightly higher flow, Üic = 0.0326, when such effects are included.

More extensive results in which n was varied are shown in Table 2.8. lt is seen that

ail modes are slightly stabilized by the inclusion of steady viscous terms, even (albeit

very slightly) the n = 1 mode, which corresponds to beam-like motiol's of the shell; it is
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recalled that, according to beam theory applicable to thicker cylinders conveying fluid,

the net effect of viscous forces is exactly zero (Païdoussis 1987). It is aIse> seen in Table

2.8 that stability according to inviscid theory is lost in the fourth circumferential mode,

n = 4, whilst in the third circumferential mode, n = 3, with the steady viscous forces

taken into account; thus, the critical flow velocities depicted by Figure 2.5 for n = 2 are

not the overall (lowest) critical ones. From Table 2.8, the overall stabilizing effect due

to the viscous terrns is calculated to be 15% on Ü;c'

The physical explanation for this stabilizing influence of viscous effects is the same

as for clamped-clamped shells (Païdoussis, Misra and Chan 1985): the steady loads due

to viscosity induce a tensile hoop stress and a tensile axial load, the latter of which is

largest at e= 0 and vanishes at e= 1. Both the hoop stress and the axial tension

effectively render the shell stiffer, thus raising Üic • However, this effect is not very

pronounced, since for this shell Lia = 11 only; calculations for larger Lia will be

presented in Section 2.5.2.3.

A final point of interest in the results of Table 2.8 is associated with the fact that

the n = 6-8 modes lose stability by divergence according to inviscid theory, followed at

slightly higher flow by restabilization and then by single-mode Hutter at Ü, = 0.03115

for n = 6, and by coupled-mode flutter3 at Ü,c = 0.03895 for n = 7 and at Ü,c = 0.05185

for n = 8.

2.5.2.2 Effect of Annular Gap

The effect of narrowing the annular gap on stability of the system was investigated by

rneans of inviscid theory only. Although the annulus is filled with quiescent fluid, this

fluid nevertheless does participate in the dyn2.'Ilics of the system inertiallYi examination

of the generalized fluid forces [Equation (2.64)1 on the inner shell shows that setting

Üo = 0 does not totally eliminate the forces associated with the annular fluid. The

results for the critica! flow velocity, Üic , corresponding to n = 1-9 arc shown numerically

3 In this analysis, no differentiation is made in the notation "coupled-mode flutter" between (i) cases
where the two modes involved are of the same mode number (m) but one is from the right-hand plane
of 0, (Figure 2.5) and the other from the left-hand side plane (not shawn), and (ii) cases where different
modes m are involved.
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in Table 2.9 and graphica!!y in Figure 2.6.

It is seen that there is a very substantial reduction in Ü" in every mode n as

the annular gap size is diminishedj a tenfold diminution in the annular gap leads to

a maximum of 44% reduction in Üi, in the n = 3 mode. The physical reason for this

destabilizing effect of the stagnant annular fluid is associated with the correspondingly

large increase in virtual or added mass. Thus, although the stilfness of the system is

not affeeted by the annular gap size, the increase in added mass may be thought as an

effective reduction in stiffness, hence causing a reduction in a!! Üi" as wc!! as in the

overa/l critical flow velocity Üi" namely Üi~' This effect is weakest for n = 1, as seen in

Figure 2.6.

Fina!!y, it should be pointed out that similarly to Table 2.8, sorne of the results

in Table 2.9 correspond to loss of stability by divergence, namely those associated with

n = 6-9 for the l/lO-gap system and n = 8,9 for the 1/100-gap system. In each

case, fiutter of the coupled-mode variety fo!!ows at higher Üij for instance, for n = 7 in

the l/lO-gap system, divergence occurs at Üi = 0.03427 and coupled-mode f1utter at

Üi = 0.03895, in the m = 1 mode(s) in both cases.

2.5.2.3 Effect of Length of the SheIl

The results for the overa!! critical fiow velocity Üi: and the associated circumferential

wave number n are presented in Table 2.10 and Figure 2.7 for diifcrent length-to­

radius ratios of the shell, L/aj the radius a was fixed at (10/11) x 100 mm as Iisted in

Section 2.5.1.

According to inviscid-fiow theory, Üi: is diminished monotonica!!y with increasing

L/a. Furthermore, as previously found (Païdoussis and Denise 1972), the value of n

associatcd with loss of stability becomes larger as L/a is reduced. The situation is

slightly more complicated when steady viscous effects are taken into account. Firstly,

as L/a is increased sufficiently, there is a stabilizing eifect, with Üi: becoming slightly

larger (Üi~ = 0.02717 for L/a = 25, and 0.02841 for L/a = 30); the physical reason for

this phenomenon is that the stabilizing effect of the steady viscous forces of the internai

fiow, which increases with L/a due to the higher pressurization and traction eifects,
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overc0mes the destabilizing effect of increased Lia due to the inviscid forces. Here, it

should be recalled that the dimensionless Üi does not involve lengthj thus, variations of

Üi: with LIa correspond to similar variations of the critical dimensional flow velocities,

Ui:. Secondly, the progression to higher n as Lia is decreased is net as smooth as in

the case of purely inviscid flow.

Perhaps, the most important point that emerges from Table 2.10 is that the relative

difference in Üi: between inviscid and viscous versions of the theory increases with Lia:

for Lia = 5, this difference is 10% (based on the inviscid result) whereas it becomes

52% for LIa = 30. It is quite obvious that steady viscous effeets are hardly negligible

for long shells.

2.5.3 Annular Flow Alone

2.5.3.1 General Dynamics of the System

In the present case, the flow is purely annular while the fluid filling the inside of the inner

shell is stagnant. Results were again obtained with both inviscid and viscous versions

of the theory, so that steady viscous effects of the annular flow could be assessed.

Shown in Figure 2.8 is a typical Argand diagram for n = 2 of the 1/1O-gap system,

where "llk-gap system" means that the ratio of (annular gap)la = llk. It is seen that,

according to inviscid-flow theory, the system loses stability in its second axial mode by

single-mode flutter (Hopf bifurcation) at Üo "" 34 X 10-3• The first mode is not plotted

beyond Üo = 7 X 10-3, but suffice to say that it remains stable. Thus, the behaviour of

the system as predicted by inviscid theory is similar to the case with internai flow.

However, unlike for internai flow, steady viscous effects due to the annular flow

on the stability of the system are profound. Figure 2.8 shows that the system now

loses stability by divergence at a flow velocity approximately ten times smaller (Üoc ""

3.4 x 10-3, m = 1), followed by coupled-mode flutter at a considerably higher flow

velocity (Üoc "" 15 X 10-3) (involving the two branches of the sème mode, m = 1, from

the left- and right-hand sides of the complex Oi-plane).

The results of Figure 2.8 are for n = 2. The values of Üoc for different n are shown
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in Table 2.11, in which the results on the far right (lJ.i '1 0) of the table should be ignored

for the moment. It is observed that, for n ~ 2, Üo, according to the viscous theory is

one order of magnitude less than that ùbtained via the inviscid theory. On the other

hand, for n = 1, Üo, are sensibly the same (still, the system is slightly destabilized).

Both theories nevertheless predict a local minimum of Üo, at n = 3. With steady viscous

effects taken into account, Üo, becomes smaller and smaller with increasing n (n ~ 5),

at least up to n = 8.

MathematicaIly, such a steady drop in Üo, may be identilied with the destabilizing

effect of the viscous force Q3i, which is the dominant pressurization term [Equation

(2.98)]. It is seen from Equations (2.2) and (2.3) that Q3i is associated with the lirst and

second derivatives of Vi and Wi with respect to e, thus leading 1.0 terms proportional 1.0

n and n2
; hence, the destabilizing effect of the steady viscous forces increases with n

without Iimit. However, this result is physically unreasanable since it implies that with

sufficient!y large n the system is unstable for Üo, > €, € -t O. The resolution of this

question is discussed in the immediately following section.

2.5.3.2 Effect of Dissipation

The key to this paradox lies in the fact that ail dissipative terms, both structural and

fluid unsteady viscous dissipation, have not been accounted for in the results presented

so far. Both mechanisms are expected to give rise 1.0 increased damping as n is increased.

Because the treatment of unsteady viscous forces is beyand the scope of the present

theory, it was decided to take into account a.Il dissipative terms as if they were of the

structural (hysteretic) typé. Accordingly, calculations have been conducted, where

Young's modulus Ei in Equations (2.1)-(2.3) [in the present calculations, only the inner

shell is flexible] was replaced by Ei (l+ 'H:-Bt), presuming shell motions to be oscillatory

and lightly damped (Bishop and Johnson 1960); thus, this model is suitable for the

prediction of the effect of dissipation at the onset of flutter, where overall damping is

evanescent. On the other hand, for divergence, which is of course non-oscillatory and

hence independent of damping, the results obtained for lJ.i = 0 should be adequate.

4Viscoelastic, rather than structural, damping could have been used instead.
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Calculations were conducted with J1.i = 5 X 10-3 , 5 X 10-2 and 5 x 10-1
, where the

first value would be of the right order of magnitude for steel shells if only structural

damping is consideredj the higher values of J1.i were considered to see what the effect of

increased damping due to iiuid unsteady viscous effects might be, at least qualitatively.

The results for J1.i = 5 X 10-3 are shown in the rightmost columns of Table 2.11, while

those for J1.i = 5 X 10-2 and 5 X 10-1 are plotted in Figure 2.9; the values of Üoc for

J1.i = 5 X 10-3 and 5 X 10-2 differ by less than 4% for n 2': 2 and less than 1% for

n 2': 5, being larger for the larger J1.i. Interestingly, for n = 1 dissipation destabilizes the

system, as is known to be possible for nonconservative systems (Paidoussis 1987).

With the exception of n = 1, it is seen from Figure 2.9 that flutter is more prevalent

than when dissipative terms were neglected. Furthermore, in terms of overall stability

of the system, there exists a divergence instability for low values of n, and flutter is

associated with a higher but finite values of nj in these results, n = 5 for J1.i = 5 X 10-3

and 5 X 10-2, and n = 4 for J1.i = 5 X 10-1•

Thus, inclusion of dissipation corrects the physically strange findings obtained

without it when steady viscous effects are taken into account. It should be remarked

here that, although the results calculated with J1.i = 5 X 10-1 are ail associated with

flutter (Figure 2.9), the dissipative model for such high values is unreliable for rii '" 0 and

hence cannot predict divergencej divergence should be presumed to occur nonetheless,

as obtained with J1.i = 0,5 X 10-3 , and 5 x 10-2 (at sensibly the same value of Üoc ).

In summary, the predicted dynamical behaviour with steady viscous forces taken

into account is that, except for n = 1, the system loses stability by divergence first,

followed by c();:pled-mode flutter at higher Üo, similarly to predictions by the inviscid

theory, but with the following important differences: (i) critical velocitles are much

smaller, (li) the flow velocity gap between divergence and flutter is much greater, and

(Hi) flutter in the case of viscous theory is of the coupled-mode variety as opposed to

the single-mode type.
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2.5.3.3 Effect of Steady Viscous Forces on Stability

Here it should be noted that the destabilizing effect of sorne of the steady viscous forces

on the inner shell, specifically qSi as seen in Equations (2.1)-(2.3), depends not only on

the circumferentia! wave number n as was mentioned in the foregoing discussion, but

also on the gap size of the system. Thus, the trend of the magnitudes of the cri tical

flow velocities for various n encountered in the IlIa-gap system may not necessarily be

the same for systems with much wider gaps.

The influence of the annular gap size on stability of the system via the steady

viscous forces may be qualitative!y predicted by examining the expressions of qli, qu

and qSi. With the stress velocities replaced by their expressions in (2.78), (2.80) and

(2.81), the constants Bi, Ci and Di given earlier by (2.94) may be rewritten as

Di =
.......

Bi = pdi U.2 + Poloi r;" - a
2

U2
8' 8 a(b - a) 0>

Ci = pdi U~ _ Pofoo U2
4a' 4(b - a) 0>

Pof"L U2 _ pdi L U~
4(b - a) a 4a •.

(2.135)

(2.136)

(2.137)

(2.138)

Substituting (2.93) and (2.97) into (2.98) and then making use of (2.135) leads to

qli = _ (1- Ill) {Pdi u~ + Pofoi r;, - a
2u2} (x _ L)

Eihi 8' 8 a(b - a) a ,

q2i = a (1-111) {PdiU~ + Po foi r;" - a
2

U2}
Eih i 8' 8 a(b - a) a ,

qSi = a(1-1I1) { paf" U;-PdiUl}(x-L).
Eihi 4(b - a) 4a

In the absence of the interna! flow (Üi = 0), it is seen from Equations (2.136)-(2.138)

that

(2.139)

i1;t:.....

consequently. the associated forces as qli. q2i and qSi enter Equations (2.1)-(2.3) have
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the form

FI;(ql;) ~ {:h~:~} Ü;f(n),

Fu(qu) ~ {:h~ :;}Ü; t(n),

(2.140)

(2.141)

{
L l -2 ( 2)-b- (U0 9 n,n,
- a)

(2.142)

".
".,.....

where f(n), g(n, n 2 ) denote functions cf n and of n as weil as n2
, respectively.

It has been pointed out (Païdoussis, Misra and Chan 1985) that qI; and qu are

associated with surface traction, c?using axial tension in the shell, and hence can be

identified as stabilizing steady viscous forces. On the other hand, qSi represents the

compressive loads, acting radially inward, tending to buckle the shellj therefore, they

are identified as destabilizing forces. The expressions in (2.139) show that ail qI;, qu and

qSi are dependent on the gap size, (b - a). However, the factor {(r;" - a2)/a(b - al) "" 1

for any gap size; thus, as far as stability is concerned, qIi and qu depend on (b - a)

only implicitly, through Ü;, since it has been found that Ü•• becomes larger as (b - a)

is increased (Section 2.5.3.4). On the other hand, insofar as qSi is concerned, this effect

is moderated by division by (b - a), as seen in the second equation of (2.139). The

overall result is that for low values of n [where the effect of g(n, n 2
) does not become

important], the destabilizing effect of FSi(qsi) is overwhelmingly strong for narrow-gap

systems; however, it may be overtaken by the stabilizing effect of FI;(qI;) and Fu(qu)

relatively stronger in wider-gap systems·.

Sorne results with n = 1 are shown in Table 2.12 for the 1/10- and 1/2-gap

system~. As may be seen for the 1/la-gap system, the steady viscous forces have a

destabilizing effect on the critical flow velocity which drops by a.2% with J.Li = a and by

2.4% with J.Li = 5 X lO-s. On the contrary, the steady viscous forces tend to stabilize the

1/2-gap system, raising the critica! flow velocity by 1.7% with J.Li = a and by 1.5% with

J.Li = 5 X lO-s. In both systems, structural damping (included in the calculations) has

a destabilizing effect only. The fact that the steady viscous forces can possibly stabilize

SThis, by the way, applies equally to the stability of shells with other boundary cunditions than those
considered here.
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a system subjected to the annular f10w is an important finding of this study and has

never been reported heretofore.

As a further remark to the foregoing discussion, if overall stability is lost in a

sufficient!y high circumferential mode, or if Land n are sufficiently large, the clrect

of F3i (q3i) will be dominant [as se~n from Equation (2.142)1 and viscous rorces will

destabilize the system; for the cases presented in Table 2.11, the destabili~ing nature or

steady viscous forces prevail for aIl n :::: 1.

2.5.3.4 Effect of Lia

The effect ofvarying Lia on stability, according to both inviscid and ViSCOllS (with l', =

5 X 10-3) theories is shown in Figure 2.10; for the viscous theory, both the divergence

and f1utter boundaries are shown. As expeeted, the values of Ü;, becomejJrogressively

smaIler as LIa is increased, whieh is reasonable on physical grounds.

The results by inviscid theory in aIl cases are associated with loss or stability

by f1utter, except those for Lia = 20 and 30, whieh are associated with divergence;

nevertheless, f1utter in these two cases foIlows at slightly higher flow (3% and 10%

higher, respectiveJy). The viscous results, on the other hand, indieate that thc initial

Joss of stability in aIl cases is by divergence, foIlowed by flutter, with an apprcciablc flow

velocity gap between the two. In both sets of resuJts, the circumfcrcntial mode number

associated with Joss of stability becomes progressively smaller as Lia becolnes larger,

an exception being the case of LIa = 10 in the inviscid results.

2.5.3.5 Effect of Annular Gap

The critieaJ f10w veJocities Üo, predicted by inviscid theory for difrerent n and gap

sizes are shown in Figure 2.11. It is seen that, for any given n, the value of Üo, keeps

diminishing as the gap becomes narrower. In addition, for aIl gap sizes of this particular

system, the overaIl critieaJ f10w veJocity Ü;, is associated with n = 6 (and rn = 1). For

the wider gaps (IlS, 1/10), stability is lost by single-mode f1utter in the n = 1-5 modes;

however, for n :::: 6, Joss of stability is by divergence, foIlowed by restabili~ation and then

by coupJed-mode flutter in the same mode (rn = 1) at slightly higher f1ows. Similarly,
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for the narrower gaps (1/20, 1/100), instability is found to be singJe-mode flutter for

n = 1-6, or divergence followed by coupJcd-mode flutter for n <:: 7 (m = 1).

It is worthwh.:e to mention that the axial mode number m associated with each

Ùoc (though, not shown in Figure 2.11) does not generally vary systematieally as n is

varied, except thatfor n <:: 6 it is always m = 1; for example, in the 1/10-gap system,

for n = 1-5, the axial wave number associated with Ùoc is, respectively, m = 4,3,3,4,3

as seen in Table 2.11 (J.!j = 0).

2.5.4 InternaI and Annular Flows Together

It has been shown t~,at each flow by itself, whether internal or annular, is capable of

leading to instability of the system; nevertheless, if one of the two flows is present and

the system is stable, the addition of the second flow does not necessarily bring it closer to

instability, as may be seen in Figure 2.12, specifically for n = 3. Conversely, the addition

of the second flow may render a system stable that woutd be unstable if one of the two

flows were present alone. For instance, in a system subjected to a constant internat flow,

Ùj = 0.010, the system becomes unstable (in this partieular circumferential mode) if the

annular flow is sufficiently high, namely Ùoc = 0.032. However, if Ùj had been zero, the

instability due to the annular flow would have occurred earlier, at Ùoc = 0.025. Hence,

in this particular example, the effect of having Ùj 'f 0 has been stabilizing rather than

destabilizing. A different effect is obtained for Ùj = 0.030 and Ùo = 0, at which point

the system is unstable by virtue of internai flow aJonc; however, if Ùo is incremented,

the system is first restabilized, and then at higher Ùo flutter ensues once again.

The reason for this intrieate behaviour of the system in the presence of both flows

together may be found in the Argand diagrarns of Figures 2.5 and 2.8. It is seen that,

as each of the flows is increased, the flow-induced damping, Im(l1i) > 0, also increases,

subsequently reaching a maximum and then becoming smaller again with local non­

monotonie variations, before turning negative. Thus, in general terms, there is a middle

range of one flow that causes maximum stabilization ,.hen the other flow is being varied.

Some of these observations are qualitatively similar to those by Hannoyer and Païdoussis

(1978) for cantilevered tubular beams sim~ltaneouslysubjected to internat and external
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axial flows, although the dynamical behaviour of the latter system was not as intricatc

as that of Figure 2.12 here, notably the fact that there are ranges of one flow for which

stability can only be achieved provided that the other llow is neither too low nor too

high.

Thus, the effect on stability of the two flows simultaneously present is not as

simple as in the case of sheIls clamped at both ends, where the two llows aeted purely

additively. The difference lies in the latter system being inherently conservative, whereas

the cantilevered system is Inherently nonconservative (Païdoussis 1987).

The foregoing calculations were for inviscid flow. Similar results are expeeted to

be obtained when viscous effects are taken into account, th0 only difference being that

the system is much more sensitive to changes in the annulaI' flow, since the transition

from stability to instability occurs in a range of Ü. one order of magnitude smaller than

had been the case for inviscid flow. Nevertheless, the equivalent of Figure 2.12 with t.he

viscous flow model has not been generated because of the elaborate procedure involved

and the large amount of computing time required.

2.5.5 Summary

Section 2.5 has presented the results for the dynamical behaviour of the system of

cantilevered coaxial cylindrical sheHs, with the outer "shell" being rigid while the inner

one remains flexible. The system was subjected to internai llow and/or annulaI' flow.

Investigated were the effects of varying annular gap, of varying length of the shell, and

of steady viscous loads on stability of the system.

It was found that, whether the system is conveying internai flow or annulaI' flow,

reducing the annulaI' gap diminishes the critical flow velocities in aIl circumferential

modes, nj longer shells are generally associated with smaller criticai flow velocities. In

the case of internai flow, steady viscous effects are stabilizing in aIl circumferential

modes, n. Such effects become destabilizing in the case of annulaI' flow, but only

for narrow gaps; for wider gaps, however, they could be stabilizing if n is sufficiently

low. As far as overall critical flow velocities are concerned, internai dissipation plays

an important role in recHfying the strange finding that the critical velodty keeps on
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decreasing with increasing n as steady viscous effects are taken into account. When

both flows are simultaneously present, the effect of one flow on the system could be

stabilizing or destabilizing, depending on the current value of the other flow.

2.6 Conclusion

In Chapter 2, an analytical model was introduced to predict the dynamical behaviour of

the system of cantilevered coaxial cylindrical shells subjected to internai and/or annular

flow. In this model, potential-flow theory was used to formulate the unsteady fluid­

dynamic forces acting on the shells, the solution of which was subsequently obtaine,]

by th.. Fourier transform method. ShelI motions were described by Flügge's equations,

modified by Paidoussis, Misra and Chan (1985) to take into account steady viscous loads

that give rise to pressurization and traction effects on the shells. Due to the complexity

of the boundary conditions at the free end of the shells, the equations were solved by the

extended Galerkin method. Before the theory was actually applied to give theoretical

results for the system under consideration, sorne important aspects of the theory were

verified as a number of classical problems were solved and the results generated were

then compared with previously obtained experimental and analytical ones.
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Chapter 3

Flexible Shell in a Coaxial Conduit:

Effect of System Parameters

3.1 Introduction

The aim of this chapter is to complete sorne important items that had not bcen treated

in previous studies concerning ~he system of clamped-clamped or cantilevered coaxial

cylindrical shells within the scope of the theory developed in Chapter 2. A brief re­

view of the previous, related work is considered, which will be particularly useful in

understanding what will be covered in this Chapter.

For the system of clamped-clamped shells, although the elfeet of seme system

parameters on the critical fiow velocity associated with a specifie circurnferential mode

of the shells has been investigated in the past by Païdoussis et al. (1984,1985) and El

Chebair et al. (1989,1990), the infiuence of these parameters on the overall (i.e. lowest)

critical fiow velocity, which is in fact the most important from a practical viewpoint, has

never heretofore been reported. Furthermore, it is also of interest to study the stiibiii~y

of the system when subjected to counter-current fiows, since so far only the case of

co-current fiows has been undertaken.

For the system of cantilevered shells, results in Chapter 2 (also Païdoussis, Nguyen

and Misra 1991) showed that steady viscous forces strongly destabilize the system, and

the overall critical fiow velocity is greatly dependent on the amount of internaI damping

61
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present in the shell material, assumed to be purely hysteretic. However, only limited

calculations into the effect of system parameters have been conducted; for instance,

investigations into how such an important parameter as the annular width affects the

stability of the system have up until now been carried out by means of inviscid theory

only.

This chapter ;s concerned with the system of a flexible clamped-clamped or can­

tilevered cylindrical shell in a rigid coaxial conduit conveying internaI and/or annular

incompressible, viscous flow. Attention is first given to the influence of such system

parameters as wall-thickness and length of the shell, and annular width on the over­

all critical flow veloeity. Steady viscous effects are then examined when the system is

subjected to counter-current, as opposed to co-current, flows in the case of a clamped­

clamped shell and to co-current flows in the case of a cantilevered shell.

Since the theory introduced in Chapter 2 is used in the present analysis, many

of the final results will be quoted or inferred from those of the previous chapter, thus

avoiding the repetition of the derivations. In addition, new results will be presented,

particularly those pertaining to the case of counter-current flows. It is also felt necessary

to reformulate the problem and reiterate the solution procedure. Finally, the notation

employed in this chapter is the same as that of Chapter 2; thus, no confusion is expected

to arise.

3.2 Solution Procedure

3.2.1 Formulation of the Problem

Fig". <: 3.1 shows the system of coaxial cylinders under consideration; it is almost iden­

tical to that considered in Chapter 2, except that, here, the outer cylinder is rigid. A

portion of the inner cylinder is flexible and thin enough to be considered as a shellj at

its upstream end, :z: = 0, the shell is assumed to be connected (clamped) to a semi­

infinite rigid cylinder of the same inrrer or outer radii as the shell, for internaI or annular

flow, respectivelyj at the downstream end, :z: = L, the shell is either clamped onto an­

other semi-infinite rigid cylinder (damped-clamped shell) or unsupported (cantilevered
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shell) .

Shen motions are described by Flügge's modified equations, Equations (2.1)-(2.3),

which take into account the stress resultants due to steady viscous elfects. These equa­

tions are subject to the end boundary conditions of the shell: (i) if the shell is clamped­

c1amped, the equations of motion must satisfy the boundary conditions (2.7) at both

x = 0 and x = L; (ii) if the shell is clamped-free (cantilevered), the equations of motion

must satisfy the boundary conditions (2.7) at x = 0 and (2.9)-(2.12) at x = L.

The perturbation pressures, giving rise to the unsteady radial forces acting on the

shell, are formulated by means of potential-flow theory, Le. via BernouIli's equatioll

for unstead:i flow. The perturbation pressure Pi associated with the interna! f10w is

determined by

{
8q,i 8q,i}

Pi = -Pi aï + U, 8x ' (3.1 )

where the perturbation velocity potential ,pi is governed by the Laplace equation (2.25)

subject to the impermeability boundary conditions (2.26).

Similuly, Po associated with the annular flow is given by

(3.2)

where,po is determined from the equation set (2.22)-(2.24), in which Uo is to be replaced

by AUo ; A = 1 if the annular fluid flows in the posith'e x-direction, and A = -1 if the

annular fluid flows in the negative x-direction. It is important to point out that, in the

case of counter-current flows, it makes no difference whatsoever as to which of the two

fluids flows in the negative x-direction if both ends of the shen are clamped. As far as

the cantilevered shen system is concerned, A=1 is taken always for the sake of physical

realism; Le., both internai and annular flows are co-current.

3.2.2 Unsteady Radial Forces

The functional forros (2.31) and (2.33) are taken for the shen displacements and for the

perturbation pressures and velocity potentials. Once Equations (2.22) and (2.25) are

solved by means of the Fourier transform method, the perturbation pressures, Pi and
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Po, are determined [rom Equations (3.1) and (3.2), respectively. The unsteady radial

force exerted on the shen is then given by q; = (Pi - Po) Ir=.·
Using the functional form (2.61) for qi and defining the dimensionless general­

ized force Qkmn according to (2.63) leads to the following expression, for the case of a

clamped-clamped shen,

Qkmn = U:~m foo ~ {PiZln(ii, ôi) (0 _Üiii) 2
2'lrqi -00 cr Si

- PoZ2n(Ü,ôi) (~ -.>.üoüf} Hkm(ü)dii, (3.3)

which may be inferred from Equation (2.64) by eliminating the ';erms associated with

F'rn. (for the outer shell); in essence, Üo is replaced by AÜo, and Nkm(a) is eliminated

since no out-fiow model is required for a clamped-clamped shen. Similarly, for the case

of a cantilevered shen,

= U:~m foo ~ {PiZln(ii, ôi) (0 _Üiii) 2
2'1rqi -00 a éi

_ PoZ2n(ii,ôi) (fi - üoii)2} {Hkm(Ü) +Nkm(ii)} dii.
, \ ô;

In Equations (3.3)-(3.4), Zln(a, ô;) and Z2n(a, ô;) are defined as

(3.4)

Hkm(a) and Nkm(a) were defined in (2.65) and (2.66), respectivelYi other dimensional

and nondimensional parameters were defined in (2.55).

3.2.3 Steady Viscosity-Related Stress Resultants

The viscous nature of the Iluid results in both steady (time-independent) and unsteady

(timr:-dependent) viscosity-related loadsbeing exerted on the shen, the latter of which

is the subject of investigation of Chapter S. The steady viscous loads have already been

evaluated from the time-mean Navier-Stokes equations (Laufer 1953) for both systems

of clamped-clamped shens (Paidoussis, Misra and Chan 1985) and clamped-free shells

as in Chapter 2 (also Paidoussis, Nguyen and Misra 1991).
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In the case of co-current fiows, the steady radial and axial viscous loads on 1hc

shell are found to be [Equations (2.86) and (2.88)]

{
2b 2 2Pi 2}PrIi = b2 _ r;"PoUroo - ~Ur; x+ P;(O, a) - Po(O,a),

(3.6)

In the case of counter-current Flows, which is hcrein considcred for thc system of

a clarnped-clarnped shell only, the same procedure as in Chapter 2 is used to dctcrrninc

the steady viscous loads, giving

(3.7)

(3.8)

(3.9)

._-~

where Po(L, a) is the entrance pressure of the annular flow. The minus sign in Equation

(3.8) stems from the fact that the annular flow shears thc shell in the ncgative x­

direction.

The determination of the differential pressures t:;.p = Pi(O, a) -PolO, al in Equation

(3.5) and t:;.p = Pi (0, a) - Po(L, a) in Equation (3.7) requires that the static pressurcs

of both fiows at either end of the shell be known. In the case of a cantilevered shell,

where the inner and annular fiuids flow co-currently and merge into each other at the

free end of the shelI, the exit pressures of the two flows are essentially the sarne. In

the case of a clamped-clamped shelI, where the two flows can be either co-current or

counter-current and are separated throughout, it is assumed that the exit prcssures

of the flows are aiso equa!. This assumption by no means changes the nature of the

system; the only advantage resulting thereby is that the radial differential pressure Pd;

depends only on the pressure drops of the two flows along the she!!. For both types of

fiows, the foregoing reasoning effectively leads to

_ 2Pi 2 2b 2
tlP - -UriL - b2 2 PoUrooL.

a - Tm

3.2.4 Extended Galerkin Method

In the case of a cantilevered shelI, the extended Galerkin method is required to solve

the governing equations of motion subject to the free-end boundary conditions, since
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functional forms of the shell displacements satisfying simultaneously these two sets of

equations are not known to exist. For the present system, with only the inner shell

being flexible, the method is expressed by the first equation of (2.104). In the absence

of the free-end boundary condition~, as is the case of a clamped-clamped shell, the

extended Galerkin method gives the same results as does the usual form of Galerkin's

method (Païdoussis et al. 1984,1985). Interested readers should consult Section 2.3.4.

3.3 Theoretical Results

3.3.1 Introduction

Section 3.3 presents the results concerning the effect of varying length L, shell wall

thickness hi, ;md annular gap (b - a) Oll the stability of both clamped-clamped and

cantilevered shell systems. In most cases to be considered, the internai fluid is stagnant

(Üi = 0). The analysis also covers the stability of a clamped-clamped shell subjected

to counter-current flows and that of a cantilevered shell conveying co-current flows.

Calculations were conducted with the series in Equation (2.31) truncated at m = 3

for the case of a clamped-clamped shell (as was the case in Païdoussis, Chan and Misra

1984) and m = 6 for the case of a cantilevered shell (as was the case in Chapter 2). For

convenience, the material properties (steel shells and water as the working fluid) and the

geometric dimensions of the cylinders are the same as had been taken in previous studies

(Païdoussis et al. 1984,1985). In addition, the shells were considered to be subject to

internaI dissipation which couId be approximated by a hysteretic model as was used in

Chapter 2. However, here, an equivalent viscoelastic model l will be utilized instead,

whereby Ei , appearing through "Yi in Equations (2.1)-(2.3), is replaced by Ei (1 +x,ft)
with Xi determined from J.l.i for each 11. Thus, calculations were performed with the

following set of parameters:

2 3 J.l.iEi = 2.0 X 1011 N/m, Vi = 0.3, P.i = 7.8 x 103 kg/m, J.l.i = 5 X 10-3
, Xi = 0'

,
l!t is worthwhile to point out that this mode! has the advantage, over the hysteretic one, that it does

not increase the stiffness of the system and does not destroy t"e self-adjoint character of the problem.
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a = 11 m, b ~ 10 m, hi = 0.5 x 10- m, L = l.Om, Pi = Po = 10 kg/m ;

in studying the effect of system parameters, a was held fixed, while b, hi or L could be

varied.

The system of a clamped-clamped shell will be considered first, followed by the

system of a cantilevered shell. However, before any results arc presented, one important

remark, similar to that already given in Section 2.5.1, should be made here. Since the

theory is linear, the results generated are expected to be physically cOl'I'ect only for

sufficiently small-amplitude perturbations; henee, the intricate behavioUl' of the system

beyond the first loss of stability as predicted by the present theory may not be l'diable.

3.3.2 Stability of the System of a Clamped-Clamped Shell

3.3.2.1 Effect of Shell Length

Shown in Figure 3.2 are the results for U;, as a function of the ratio L/a in a Ta-gap

system [i.e., (b - a)/a = 1/10]. It should be reiterated here that U;, denotes the overall

(lowest) critical flow velocity, whereas Uo, refers to the critical flow velocity associated

with sorne particular n. Two variants of the theory have been used to calculatc U;,;

in the inviscid variant, the fluid is assumed to be purely inviscid while, in the viscous

variant, steady viscous effects of the flow(s) are taken into account.

The values of U;, predicted by the viscous variant of the theory is of the order

of three to six times smaller than that by the inviscid counterpart as L/a is varied

from 5 to 20. This destabilizing effect of the steady viscous forces with increasing L/a

is not surprising since, as was already pointed out in Chapter 2 (Section 2.5.3.:,), the

destabiliz:,ng effect of the crushing compressive load q3 appearing in Equations (2.1)­

(2.3) is in fact proportional to L; thus, these results quantify the influence of L/a on

stability.

L'1 gen~r",l, as L/a is increascd, U;, decreases and so does the circumferential mode

associated with U;,. Consequently, if L is large enough, the shell will eventually lose

its stability by divergence in the n = 1 (beam) mode. This observation is similar to

that made earlier by Paidoussis and Denise (1972) for the system of an unconfined
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c1amped-c1amped shell conveying internai flow.

3.3.2.2 Effect of Shell Thickness

The variation of Ü;, with shell thickness, expressed nondimensionally as h;/a, is plotted

in Figure 3.3. Again, the steady viscous forces have a destabilizing effect on the system.

As may be seen from the figure, Ü;, increases with hi/a, whereas the circumferentia!

mode n associated with Ü;, decreases. The effect of h;/a on Ü;, and n may be understood

by r.c,nsidering the strain energies resulting from circumferential bending and stretching

of the shel!.

For shells with both ends supported, if the strain energies are plotted against

the circumferentia! wave number n, it will be observed that the bending energy Eh

increases with n while the stretching energy E. varies in the reverse manner, resulting

in a curve for the total strain energy Et (i.e. Et = El + E.) of quasi-parabolic form

(Arnold and Warburton 1949). The approximate value of n at which Et is minimum

may be determined when El = Et. Considering an element of the shell, so small as

to be approximated as a plate of thickness hi, it has been shown (Timoshenko and

Woinowsky-Krieger 1959) that for such a plate El is proportional to h; while E. is

proportional .to hi. The national relationships between Eh, E. and hi are thus

C.
E. = -hi,

n

where Ch and C. are sorne proportionality constants. Hence, equating Eh = Et leads to

which implies that, as far as (Et)min is concerned, n decreases with increasing hi.

On the other hand, the energy El required to overcome Et, and hence to collapse the

shell, cornes from the centrifugai tluid-dynamic force, which is known to be proportiona!

to U2 according to inviscid theory. Implicitly, El is also proportional to U2,

El = U2f(n),

where f(n) is sorne function of the circumferential wave number n. It is apparent that
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the system loses stability when

which implies that Ü;, will become higher if there is an increase in (ê,)mill due to

increasing hi.

3.3.2.3 Effect of Annular Gap

Figure 3.4 shows how Ü;, varies with the annular gap, expressed in the dimensionkss

form (b - al/a. As might be expected, for both cases of inviscid and viscous nows, the

system becomes unstable at lower f10w velocities as the annular gap gets narrower. This

phenomenon has been weIl explained in the previous studies.

Firstly, the reduction in ,the annular gap results in a corresponding increase in the

virtual or added mass of the annular f1uid; the increase in the added mass is assoeiated

with higher f1uid dynamic forces and hence causes an effective reduction in the stiffness

of the sheIl and a diminution of Cr;,. Secondly, in the case of a viscous fluid, a higher

upstream pressure is required to push the f1uid through a narrower annular gap, thus

resulting in a larger pressure drop along the sheIl and a stronger destabilizing effect duc

to pressurization. Once again, however, these effects are here quantined explicitly, and

the effect on the overa/l stability is given. Another observation from Figure 3.4 is that,

for the range of gap sizes considered, the circumferentia! mode n associated with Û;,
remains unchanged, at least for the parameters being studied.

It should be reiterated here that the results presented in Figures 3.2-3.4 wcre

obtained for a system with annular f10w and a stagnant inner fluid (Ûi = 0).

3.3.2.4 System with Counter-Current Flows

Figure 3.5 compares the results for Üo, as a funetion of ni obtained with the viscous

variant of the theory for two types of f1ows: co- and counter-current f1ows. ln both

cases, the internai f10w velocity was constant and taken to be Ûi = 0.010. lt may be

seen from this figure that the system subjeeted to counter-current nows loses stability

at slightly lower f10w velocities than when subjected to co-current flows. The difference
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between the two types of flows in terms of [Jo, ranges from virtually 0% (with respect

to [JO' :or co-current flows) at n = 1 to a maximum of 11.6% at n = 5. As far as

the overall critical flow velocity [J;, is concerned, which happens to be associated with

n = 4, the difference is 8.3%.

The above results are specific to the value of LIa and of other geometrical param­

eters chosen for the calculations, and also to the assumption made earlier that the exit

pressures of the two flows are equal. Under these conditions, it was found that, in the

case of co-current flows, the static pressure of the annular flow is higher than that of the

inner fiowj consequently, the entire shell is subjected to a radially-inward compressive

load, decreasing linearly from sorne certain value at x = 0 to zero at x = L. In the

case of counter-current flows, about !'wo-thirds of the shell from the downstream end

(x = L) are under circumferential compression, and the last one-third is under circum­

ferential tension because the entrance pressure of the inner flow is higher than the exi t

pressure of the annular flow. The maximum value of the compressive load in the latter

case is about 1.5 times that in the former casej this may explain the .ed ûctions in [f"

for the range of n considered, despite the fact that a small portion of the shell is under

tension.

3.3.3 Stability of the System of a Cantilevered Shell

3.3.3.1 System with Co-Current Flows

Figure 3.6 presents the results obtained for [Joc as a function of n for two cases of nows,

[Ji = 0 and [Ji = [Jo> for which only the viscous variant of the theory VIas used. In

ail circumferential modes considered, except n = 1, flutte.. of coupled-mode type (solid

curves) is preceded by divergence (broken curves, essentially coincident) at a much lower

flow velocity.

As far as the first 1055 of stability (divergence) is concerned, the system hecomes

unstable at a slightly higher flow velocity when [Ji = [Jo (Ü;, = 0.00331, n = 4) than

when Üi = 0 (Ü;, = 0.00321, n = 4), although in the scale of the figure the two broken

curves are essentially coincident. The stabilizing effect as a result of Üi = Üo may he
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attributed to the fact that the steady viscous forces due to the internai flow increase the

axial tension in the shell and reduce the compressive hoop stress in the shell wall ~aused

by the annular flow, thus resulting in an increase in the stiffness of the shell, thereby

stabilizing the system. Furthermore, the inviscid results obtained in Section 2.5.4 [or

by Païdoussis, Nguyen and Misra (1991)] also showed a similar effect when Üi = Ü•.

There is no doubt that the presence of internai flow in the present case would give rise

to an increase in Ü;" albeit small. It may be expected that a stronger stabilizing effect

would have resulted if Ü; had been taken to be larger, say Üi > Ü. (provided, of course,

Ü; remained smaller than the critical value for instability by the internai flow alone).

Another observation from Figure 3.6 that should be touched upon here is that the

internai flow has a post-divergence destabilizing effect on the system. Nevertheless, as

has been mentioned earlier, any predictions beyond first loss of stability by the present

!inear theory are questionable, in the sense that they may not occur in realityj hence,

physical explanations for such post-divergence behaviour of the system may not be too

meaningfuè and are not attempted. Still, the results in Figure 3.6 nevertheless are of

academic interest and are therefore presented (here and in subsequent figures of Chapter

3).

3.3.3.2 Effects of Shell Thickness, Length, and Annular Width

Figure 3.7 shows the results for Ü;, as a function of the shell thickness h;fa for two

different lengths of the shell, LIa = 5 and LIa = 10. Although the type of instability is

flutter preceded by divergence, the stability of the system is affected by the parameters

pretty much in the same way as in the case of clamped-clamped shells considered

earlier. In other words, Ü;, increases and the circumferential mode n associated with

Ü;, decreases with increasing h;faj furthermore, for a given thickness of the shell, both

Ü;, and its associated n decrease as LIa goes up.

Figure 3.8 is similar to Figure 3.7 in the sense that it shows the variation of Ü;,
with h;fa, but now for two dilferent annular widths. Again, similarly to what was

observed for the system of a clamped-clamped shell, the smaller the annular width,

the lower the overall critical flow velocity Ü;,j in addition, the circumferential mode n
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associated with Ü;, remains almost unchanged as the annular width is varied. It may

be worth reiterating once more that the results presented in Figures 3.7 and 3.8 (unlike

some in Figure 3.6) were obtained for the system with annular flow and a stagnant inncr

fluid.

3.3.4 Summary

Section 3.3 has presented the results concerning the effect of length and wall-thickness of

the shell and annular width on the stability of both clamped-clamped and cantilevcrcd

shell systems. Further investigation was made on the steady viscous effccts whcn the

clamped-clamped shell system is subjected to co- and counter-current flows, or whcn

the cantilevered shell system is subjected to co-current flows.

It was found that the overall critical flow velocity is diminished when (i) the length

of the shell is increased, or (ii) the annular gap or the shell wall thickness is reduced.

Due to steady viscous forces, (i) the system of a clamped-clamped shell when convcying

counter-current flows loses stability earlier than when conveying co-current nows, and

(ii) the system of a cantilevered shell subjected to co-current nows becomes stabilized

more with larger Ü;.

3.4 Conclusion

In Chapter 3, the theory in Chapter 2 was used to investigate some important aspects

concerning the stability of a flexible cylindrical shell within a rigid coaxial conduit.

Some new results of the unsteady fluid forces and of the steady viscous loads on the

shell were also presented for the case of counter-current flows. This chapter covered the

effect of wall-thickness and length of the shell, and of annular width on the stability of

the clamped-clamped or cantilevered shell system. Finally, steady viscous effects were

studied when the clamped-clamped shell system was subjected to counter-current flows

and when the cantilevered shell system was subjected to co-current flows.
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Chapter 4

Experimental Verification

4.1 Introduction

There is little doubt that experimental verification is desirable in the development of any

new analytical mode!. The goal of the present experimental work was to validate-to the

fullest possible extent-(i) the theory presented in Chapter 2, and (ii) a new theory to be

developed in Chapter 5, for the study of instabilities of -:antilevered coaxial cylindrical

shells subjected to internaI and/or annular incompre~sible viscous flow.

In the tests conducted, measurements were made of the critical flow velocity of

a cantilevered cylindrical flexible shell, confined within " concentric rigid cylinder and

subjected to either internaI flow or annular flow. In certain selected cases, frequencies

of oscillation of the shell were also recorded for various flow velocities.

This chapter is devoted to (i) describing the apparatus used in the tests, (ii)

exp!aining the testing procedure, and (iii) comparing experimental results with their

analytical counterparts obtained with the theory in Chapter 2.

4.2 Description of the Apparatus and Procedure

4.2.1 Apparatus

Figure 4.1 shows a schematic vertical cross section of the exp erimental setup for the

tests involving annular flow. In the upper half of the setup (above the horizontal surface

73
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marked "table"), a cylindrical shell made of silicone l"'~lber is positioned coaxially within

a bigger cylinder made of transparent plexiglas; the free end of the shell is at least 19 mm

(3/4 inches) lower than that of the outer cylinder. The lower ha.lf consists mainly of an

axisymmetric hollow body with contrac.ting sections near lts top and bottom. Mounted

inside this body are a honeycomb and three screens, the role of ail of which is to break

up large turbulent eddies and enhance mixing (hence uniforrnity) of the air flow that

cornes in from a reservoir, pressurized and maintained by an air compressor(s). The

air flow, leaving the hollow body and entering the annular region, is further rendered

uniform and straight by a long solid cylinder with an ogival, streamlined lower end.

The annular region is ultimately bounded by the rubber shell and the plexiglas cylinderj

plexiglas cylinders of different inner radii give different widths of the annular gap. For

convenience, the same notation as was used in Chapter 2 (or Figure 2.1) is adopted

here. Shells and cylinders associated with annular flow had the following dimensions:

hi = 1.37 mm, a = 24.84=, b = 28.02mm (l/lO-gap),

b = 32.63 mm (1/4-gap), b = 38.1mm (1/2-gap),

where the g/a-gap refers to the experimental setup with g/a = [b - (a + h;/2)Jla. The

value of g/a in the term "g/a-gap" is based on the designed width of the gap. However,

the actual values of g/a, which are determined from the test measurements and will he

used in aU theoretical calculations, may he somewhat different: 0.100 for the l/lO-gap,

0.286 for the 1/4-l;;ap, and 0.506 for the 1/2-gap.

Figure 4.2 is the setup for the tests involving internai fiow. It is very similar

to the setup for annular flow, the only difference heing that an adaptor of gradually

decreasing inner radim, is used to guide smoothly the air flow from the hollow body into

the sheU. In the case of internai flow, only one annular gap (filled with quiescent lluid)

was considered with the foUowing dimensions:

hi = 1.37=, a = 24.79=, b = 63.35= (3/2-gap).

The above-mentioned rubber shells were cast in a special mould. Liquid Sïlastic

E-RTV silicone rubher was first mixed with a catalyst, caUed "curing agent" , and then
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injected into the mouId. Such a mixture remained workable for 2 hours and reached

full physical strength in about 72 hours. Th" material properties of the rubber were

determined from measurements of the first-mode frequency of oscillation and logarith­

mie decrements for a vertically hanging cantilever (solid rubber tube cast from the

same batch of silicone rubber as the shells) at various lengths (Paidoussis and des Trois

Maisons 1969). For the particular batch of silicone rubber used in the present study, it

was found that

Ei = 2.8246 x 1Q5N/m2
, P'i = 1158.8 kg/ms, Vi = 0.47, /Li = 0.01948.

Here, it is recalled that Ei is Young's modulus; P,i is the densityj Vi is Poison's ratio,

and /L; is the hysteretic damping coefficient.

4.2.2 Measuring Instruments

The flow velocity in the annulus or within the shell was det~rmined from the fiow rate

measured by a rotameter (tapered-tube-and-fioat type) for low fiows, or by an orifice

plate for high fiowz. Both devices were located upstream of the apparatus. With the

rotamc:er, the readings taken were air temperature, out/et pressure of the rotameter,

and percentage of the calibrated fiow rate under prescribed conditions; the fiow rate

was then calculated according to the manufacturer's instructions. With the orifice, the

readings of air temperature, inlet pressure and difJerential head (pressure drop) across

the orifice were recordedj the ASME-rf,commended procedure (for instance, Bean 1971)

was then employed to calculate the fiow rate. Orifice plates having holes of various sizes

were available to accommodate a wide range of fiow rates.

To detect small-amplitude vibrations of the shell induced by the fiow, two fibre­

optic sensors (MT! KD-100 "Fotonic" sensors) were mounted 90· azimuthally apart

and 25 mm (1 inch) above the clamped end of the shell. The side and top views of such

a setup are shown in the photographs of Figure 4.3. The signais produced by these

sensors were fed into and processed by a dual-char "lewlett-Packard 5420A Digital

Signal Analyzer, which appears as three separate decks in the left half of the photograph

labelled Figure 4.4. The two V-tubes (grey and red) near the centre of this photograph
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are manometers of different sensitivities, giving different ranges of differential heads

across the orifice. Cross Spectral Densities (CSDs), generated by the analyzer, revealed

the dominant frequencies of the shell excited by the flow. The corresponding phase plots,

showing the phase differences of the shell displacements monitored by the two sensors,

helped (to a certain extent) identify the modes associated with such frequencies. The

onset of instability of the shell was assessed visually.

4.2.3 Testing Procedure

Tests, involving either annular or internai flow, were ail conducted with great care and

with the same preparatory steps. The testing procedure to be sequentially described

below applies to annular flow. Variations, if any, for experiments with internai flow will

be pointed out later.

1. First of ail, the critica! flow velocity was obtained for the rubber shell with length­

to-radius ratio Lia (5 :::; L/a:::; 8). The experiment was repeated at least 6 (and

at most 16) times, so that as many values of the critical flow velocity were taken,

and hence the average value and the uncertainty involved could be calculated.

2. The fibre-optic sensors were then set up and calibratedin such a way that the

vibration signais given by these sensors were in the linear range.

3. The flow velocity was incremented up to (but not inc1uding) the critical !imit

obtained in Step 1, to avoid damage to the fibre-optic sensors. For each new flow

velocity, a CSD was obtained after averaging 30 time records to eliminate noise.

Step 3 was repeated at least once.

4. Steps 1-3 were carried out for y/a = 1/10 and y/a = 1/4 by using the appropriate

plexiglas cylinders. For y/a = 1/2, only Step 1 was conducted while Steps 2 and

3 were skipped due to the difficulty in maintaining steady flow; it should be notd

that tests with y/a = 1/2 involved very high flows, and the pressure(s) of the air

reservoir was not high enough to keep such high flows steady or quasi-steady for

a long period of time.
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5. Steps 1-4 were repeated as the length of the shell was gradually reduced from

Lia = 8 to Lia = 6 in steps of approximately 0.5. Step 1 continued to be

repeated as Lia was further reduced from 6 to 5.

6. To ensure the repetition of the above-recorded results, Steps 1-5 were repeated

with another nominally identical shell.

For experiments with internaI flow, the same procedure was followed, except that

Step 4 was skipped since only one annular gap was considered (g1a = 1.5); nevertheless,

the effect of quiescent annular fluid on the critical flow velocity was also investigated.

4.3 Experimental Results-Annular Flow

4.3.1 Observations

In general, instabilities are associated with very large displacements of the the shell(s).

Both types of instabilities-divergence and flutter-were encountered in certain tests

involving annular flow, but fiutter occurred in ail the tests conducted. With g1a = 1/10,

divergence and flutter were both observed, but only for LIa = 8 which was the length

of any newly moulded shell. At such a length, when the flow velocity was s\,fficiently

high, the free-end cross section of the shell became oval and remained stationary, sig­

nalling divergence in the second circumferential mode (n = :l). As the flow velocity was

further increased, the oval cross section started oscillating with its major and minor

axes exchanging their places; this is flutter with n = 2, and a photograph of the cross

section in motion is shown in Figure 4.5. In one test run with the first nominal shell,

divergence was observed at the flow velocity of 24.08 mis, and flutter at 25.35m/s. For

Lia::; 7.5 (the shell was shortened by t>.(Lla) = 0.5 each time) , divergence was hardly

noticeable before the shell fluttered.

With gla = 1/4 and 1/2, only flutter was observed but it VI/as short-lived. When

the flow velocity was large enough, the cross section of the shell became aval and then

oscillated for abo'lt 3 cycles; subsequently, the cross section became fiattened by the

flow-the inner surface of the shell near the free end touched the opposite side (Le., the
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shell became closed at the top). After that, the shell started f1apping violently against

the inner wall of the plexiglas c' -Iinder.

It is worthwhile to reiterate here that instabilities discussed so far were assoeiated

with n ,: 2. Flutter with n = 3 also took place; however, it was observed only once

when the first nominal shell was tested with y/a = 1/10 and L/a = 5.5.

4.3.2 Frequencies of Oscillation

....
. ~-.

Figure 4.6 shows a typical cross spectral density (CSD) and its corresponding phase

plot, for which y/a = 1/4, L/a = 8, and Uo = 33.0m/s. The dominant frequencies,

given by the abscissae of the peaks of the three "mountains" in the CSD, and their

assoeiated phase angles are (13.3 Hz,-136.6°), (21.1 Hz,-177.9°), and (49.6 Hz,-178.10).

Such peaks are identified 1:0' the centres of the three broken circles as seen in Figure

4.6(a)j their relative heights indicate that the second peak, which corresponds to 21.1 Hz,

represents the most dominant frequ~ncy. For the reasons to be discussed in the coming

footnote, (33.0m/s,13.3Hz) is plotted in Figure 4.8(a), while (33.0m/s,21.1 Hz) and

(33.0m/s,49.5Hz) are plotted in Figure 4.8(b).

The analytical results (by the theory in Chapter 2) and the measured dominant

frequencies1 (from the CSDs) are presented in Figures 4.7 and 4.8 for y/a = 1/10 and

IThe way these measurements were plotted in Figures 4.7 and 4.8 was based on a. numbcr of importa.nt
observations, which will be discussed below using the case of y/a =1/4 as an example.

Firstly, preliminary caicu!ations presented earlier in Chapter 2 (Section 2.4.2) showed that predicted
frequencies of a cantilevered shell in vacua were very close to test measurements by Gill (1972). Moreover,
theoreticai results as weU as experimental data obtained herein showed that frequencies of the shell
(subjected to annular flow) in aU modes varied very slawly with flaw velocity. Fram these two observations,
it can be inferred that a data point (1l.5m/s,10.9Hz) with a phase angle of approximately 180·, for
instance, should be put in Figure 4.8(a) (n = 1) rather than Figure 4.8(b) (n = 2). in whieh the lowest
frequency (m = 1) corresponding to U. = 12 mis is of the order of 16 Hz. For data points with their
frequencies ranging from about 20 Hz to 26 Hz, there was no difficulty in deciding that such points ,hould
be plotted in Figure 4.8(b) since (i) they are closest to the frequency curve associated with n = 2 and
m = 2, and (H) they are too far away from any other curve associated with either n i 2 or m i 2.

Secondly, due to the fact that the two fotonic sensors were positioned 90· azimuthally apart, the
phase angle corresponding to a frequency excited in n = 1 or n = 3 could vary from 0° to 180· (after
tirne-record averaging)J depending on where the sensors happened ta he relative ta the oscillating cross
section of the sheU (Figure 4.9); for n = 2, the phase angle is aiways 180·, at least in principle. As can
be seen from Figure 4.8, not only are the (n = 2,m = 3) and (n = 3,m = 3) frequency curves nearly
coincident, they are aiso equaUy close to the data points having their frequencies between 47 Hz and 52 Hz .
Thus, such points may be put in either Figure 4.8(b) or Figure 4.8(c). Ali the points (li.5 Hz to 52 Hz)
plotted in Figure 4.8(b) are associated with phase angles of the order of 180·; of course, some of them,
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g/a = 1/4, respectively. In both cases, L/a = 8 and the experimental results were

obtained for flow velocities ranging from the smallest measurable value up to (but no!

including) the critical one. As seen from the figures, the agreement between theory and

experiment is general!y good-even excellent for n = 2.

In the case of g/a = 1/10, on/y the second circumferential mode (n = 2) was

excitedj as an illustration, Figure 4.7(a) gives the analytical results for n = 1 without

experimental counterparts. For n = 2, the measured frequencies decrease slightly with

f10w velocity and are seen to be associated with the lowest three axial modes (m = 1-3).

With g/a = 1/4, al! thrt'e lowest circumferential modes (n = 1-3) were excited, with

n = 2 being the main one, since the dominant frequencies in this mode appeared in al!

the CSDs recorded. Here, too, the frequencies of n = 2, and of n = 3, vary the same

way as those in the case of g/a = 1/10 (n = 2). What is different here is the slight

increase in the measured frequency of n = 1, followed by a relatively quick drop when

the flow velocity is near the critical value (41.4 m/s).

In general, reductions in the frequencies associated with n = 2 can be attributed

to the flow pressurization that tends to compress the shell, thereby reducing the effective

stiffness of the system. On the other hand, increases in the n = 1 frequencies are likely

due to the axial tension in the shell resulting from the shearing forces exerted by the

annular flow on the (outer) shel! surface.

A close look at ail the CSDs of g/a = 1/4 (not shown here) indicates that the

frequencies of n = 1 were most dominant for U. ~ 22.3m/s; they then subsided, while

those of n = 2 became stronger as U. was increased furtherj the latter were found

to be most dominant when U. ~ 25.5m/s. Consequently, the dominant mode, as the

particularly those between 47 Hz and 52 Hz, could have been in Figure 4.8(c), while the ones presently
appearing in this figure have their phase angles much less than 180°. On the other hand, although the
point (33.0m/s,13.3Hz) and those in its neighbourhood are closer ta the (n ~ 2,m = 1) curve than the
(n = 1,m = 1) curve, they are plotted in Figure 4.8(a), instead of Figure 4.8(b), because their phase
angles are of the arder of 130·.

As a final note, for y/a = 1/4 and L/a S 8, the lowest predicted frequencies associated with n ~ 4 for
any subcritical flow velocity were greater than 80 Hz, and no fr.cquencies of 5uch a magnitude or greater
were found in any of the CSDs recorded. Tilese findings imply that frequencies in n ~ 4 were never
e"cited ta a sufficiently sizable amplitude by the f10w for the above-mentioned values of y/a and Lia;
consequentlYI this casts sorne doubt on the experime~·.talresults-frequencies and critical flow velocities
associated with n =4-reported previously by El Chebair et al. (1989) for a similar clamped-free shell.
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flow veloeity approaches the critical value, if, also the one in which the shell becomes

unstable. A simila- pattern was also found in the CSDs of gla = 1/10, where the

dominant frequeneies were assoeiated m = 1 at low flows and with m = 2 at higher

flows (these frequeneies were assoeiated with the same n = 2 mode).

4.3.3 Effects of L/a and g/a

The results for the overall critical flow veloeity Ua", as a function of Lia are shawn in

Figure 4.1O(a) for glfi. = 1/10, in Figure 4.10(b) for gla == 1/4, and in Figure 4.1O(c)

for gla = 1/2. In these figures, pairs of small black circies plotted for certain values of

LIa represcnt measurements obtained from two nominally identical shells.

Qualitatively, theory and experiment agree very weil in terms of (i) the critical

circumferential mode n associated with Ua: (here, n = 2) and (ii) variations of U;,

with Lia and gla; Ua", generally becomes larger as Lia is reduced or gla is increased.

Quantitatively, the degree of agreement varies not only with Lia, but also with gla:

• In Figure 4.10(a), for which gla = 1/10, there is very good agreement between

theory and experiment for Lia?: 6.Sj the discrepancy (based on the larger test

value) at Lia = 6.5 is calculated to be 11.7%. For Lia < 6.5, measurements

for Ua", start to level off, hence widening the gap between theory and experiment.

This could be attributed to imperfections of the apparatus usedj specifically, the

shell and the cylinder were not perfectly concentric. Thus, for a narrow annular

passage as in the present case, even a small non-alignment of the two axes couId

result in relatively considerable non-uniformity of the annular region.

• In Figure 4.1O(b), for which gla = 1/4, good agreement is aiso found between

theory and experiment. As seen from the figure, the veloeity gap between the

solid curve and the data points plotted is rather uniformj nevertheless, in terms

of percentage, the difference calculated varies from 25.4% at Lia = 8 to 12.1% at

Lia =5.

• Of the three, Figure 4.1O(c) with g1a = 1/2 shows the best agreement between

theory and experiment; the discrepancy is of the order of 4% for Lia S; 7. 1t



81

becomes larger for Lia> 7; however, unlike the case of gla = 1/10, the wider

velocity gap between the results for such a range of Lia seems to be due to sorne

peculiarity (to be explained ne:ll:t) in the theoretical resuHs.

It is seen from Figure 4.10 that each of the solid curves plotted cxhibits a "bump", which

seems to grow more pronounced with g1ai it signaIs a switch from the divergence- to

flutter-type instability as Lia is further reduced. The type of instability predicted by

different parts of the curves is indicated either by a "D" for divergence, or by an "F"

for (single-mode) flutter, as shown in the figure. In general, theoretical predictions for

U:c are ail highp.! than their experimental counterparts. In addition to the above-stated

reasons, discrepancies between theory and experiment may also be due to the fact that

unsteady viscous effects have been ignored by the theory in Chapter 2; they are treated

in Chapter 5, and then further comparison will be presented.

4.4 Experimental Results-Internal Flow

(

4.4.1 Observations

There were certain similarities and differences between clamped-free systems subjected

to annular flow and those subjected to internaI fiow regarding their dynamical behaviour.

In the case of internaI fiow, the only type of instability observed was fiutter, which was

always associated with n = 2. Flutter was found to be quite violent and remained so

even if the fiow was slightly reduced. It might be of interest to mention that the first

shell tested for instabiliiy was torn apart because of the intensity of the fiutter and high

stresses in the shell. One<'. flutter had occurr<:!d, the free-end cross section of the shell

becarne oval to such an extent that one side of the inner wall of the shell touched the

opposite one; the cross section appeared to have the shape of two bows with their main

axes of symmetry being perpendicular to each other.

Although only one annular gap was considered in the case of interna! fiow, the

effect of the quiescent annular fiuid (air) on the stability of the shell could easily be

examined quantitatively by removing the plexiglas cylinder, thus making g/a -> 00.
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Table 4.1 shows experimental results of the critical flow velocity Ui~ with and without

the plexiglas cylinder installed; these results were obtained from tests on one shell.

For three different lengths of the shell tested, there were hardly any changes in Ui~ as

g/a was increased from 1.5 to 00. Indeed, this observation was expected; it may be

accounted for by two main factors. Firstly, the air dcnsity is relatively low, and hence

the corresponding inertial effect is also small. Secondly, the inertial effect of the annular

fluid changes dramatically with g/a only when g/a is very small; it then levels off when

g/a is sufliciently large; however, the violence and amplitude of the flutter precluded

using very small g/a (e.g., g/a = 1/10).

4.4.2 Frequencies of Oscillation

Figure 4.11 shows the analytical and experimental results for the frequencies of the

shell (L/a = 8) at various flow velocities. The CSDs and their corresponding phase

plots indicate that the dominant frequencies excited are mostly associated with n = 2.

In general, ·the measured frequencies slightly increase with flow velocityj this is mainly

due to the flow pressurization that tends to expand the shell radially, hence rendering

it stiffer. On the other hand, there are slight reductions in the predicted frequencies

associated with all m'f 1 (except the lowest two frequencies of n = 3), at least for the

values of n considered. In spite of this opposite trend, theory and experiment are still in

fairly good agreement; for a typical case of n = 2 and m = 2, the discrepancy between

theory and experiment varies from about 8% at Uj = 29 m/s to 24% a't Ui = 64 m/s.

4.4.3 Effect of Lia

The effect of L/a on the stab ility of the system is presented in Figure 4.12, where Ui;

is plotted against L/a. Both theory and experiment agree that (i) U;~ increases as L/a

is reduced, and (ii) the only type of instability incurred by the shell is flutter, which is

associated with n = 2 for the range of L/a considered. Quantitatively, the agreement

is considered to be fairly good, and its extent appears to he a function of L/a. It

becomes better as L/ais increasedj predictions for Ui~ differ from the test results by an
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amount varying from 27.0% (based on the smaller test value) at L/ '" = 5 to 3.5% at

L/a = 7.9. It is also noted that the theoretical results obtained herein are lower than

their corresponding experimental counterpartsj this is opposite to the case of annular

flow.

4.5 Conclusion

Chapter 4 covered the experimental work conducted to complement and validate (to the

extent possible) the analytical model given in Chapter 2 for the study of the stability

of cantilevered coaxial shells subjected to internai and/or annular viscous flow. For

the analytical model developed in Chapter 5, further comparison between theory and

experiment will be made in Section 5.4.2. Presented in this chapter were (i) the detailed

description of the apparatus employed in the tests and of the testing procedure, and (ii)

test measurements as well as analytical results for frequencies and critica! flow velocities

of shells under various flow and geometric conditions. The following main findings were

obtained:

• In the case of annular flow, dominant frequencies v: the shell, appearing in the

CSDs (Cross Spectral Densities), slightly decreased (n f 1) with increasing flow

velocity and agreed very weil with analytical results. As far as the overall (lowest)

critical flow velocities U:. are concerned, theoretical predictions were somewhat

higher than experimental resultsj nevertheless, theory and experiment were gener­

ally in good agreement, although the extent of the agreement varied with annular

gap width and length of the shell.

• In the case of internai flow, dominant frequencies of the shell slightly increased

with flow velocity and verified the analytical results best at low flow velocities.

Furthermore, predictions for U;~ were lower than, but in fairly good agreement

with the test measurements.
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Chapter 5

Viscous Theory

5.1 Introduction

As was mentioned in previous chapters, the viscous nature of the fluid flows gives rise

to both steady and unsteady viscosity-related forces acting on the shells. While the

steady viscous forces were evaluated in Chapter 2 for the system of c1amped-free coaxial

cylindrical shells and by Païdoussis et al. (1985) for the system of c1amped-c1amped

shells, the unsteady viscous forces have heretofore been substituted by their inviscid

counterparts formulated by potential flow theory, as no theoretically sound model has

ever been proposed for the determination of these forces. Thus, the unsteady viscous

effeet, if any, on the stability of the system still remains to be investigated.

The flrst attempt to evaiuate the unsteady viscous forces exerted on coaxial cylin­

drical shells conveying fluid was made by El Chebair et al. (1990). Nevertheless, the

problem did not seem to be properly formulated in the sense that such forces should

have been determined from the solution of the momentum (Navier-Stokes) equationsj in

fact, a full solution of these equations was never achieved in that study. It is well-known

that any viscous flow field is governed by the Navier-Stokes equations, which must be

solvèd in order to obtain information about the flow field.

This chapter is devoted to the development of a new analytical model to study the

unsteady viscous effect on the stability of the system under consideration. The chapter

consists mainly of four parts: (i) formulation of the problem, (ii) procedure to solve

84
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the equations governing the shell motions, (iii) procedure to solve the Navier-Stokes

equations and determine the unsteady viscous forces therefrom, and (iv) comparison

of the results given by the new model with those obtained by the theory in Chapter

2 and experimental data presented in Chapter 4. Because of the enormous amount of

computing time r"quired in the solution process, the analysis is carried out only for the

system involving a cantilevered flexible cylindrieal shell concentrically located inside a

rigid cylinder, with incompressible fluid flowing in the annular region and with stagnant

fluid within the flexible shell; even so, because calculations had to be done outside McGill

University (and thanks to generously donated but limited computing time by CRAY

Research Inc.), calculations could only be performed for a limited number of cases.

5.2 Formulation of the Analytical Model

5.2.1 System Definition and Assumptions

Shown in Figure 5.1 is a system of coaxial cylinders. The outer cylinder is rigid and is

assumed to be infinitely long. A portion, of length L, of the inner cylinder is flexible and

thin enough to be considered as a shell; at its upstream end, x = 0, the shen is assumed

to be conneeted (clamped) to a semi-infinite rigid cylinder of the same outer radius as

the shell; at the downstream end, x = L, the shen is unsupported (cantilevered shell).

The basic notation is reiterated here for the reader's convenience. The inner shen

has mean radius a, and the outer cylinder has inner radius b. The shen has thickness

h such that h/a ~ 1, and is assumed to be elastic and isotropie with Young's modulus

E, density p" and Poisson's ratio /1. In general, incompressible fluid of density p is

flowing in the annulus with mean flow velocity U. Shen motions are considered to be

small enough so that a linear shen theory may be utilized and the shen-motion-induced

perturbations to the flow may be derived from linearized theory. These perturbations,

which lead to unsteady viscous forces acting on the shen, will be determined by solving

the linearized Navier-Stokes equations, considering the entire flow field to be viscous.

The steady viscous loads resulting from pressure drops and traction effeets on the shen

have already been given in Chapter 2, and they can readily be incorporated into the gov-
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erning equations of motion. Finally, flow perturbations are assumed to vanish upstrcam

and far downstream of the flexible shell.

5.2.2 Governing Equations of Motion

Like the theory presented in Chapter 2, shell motions are herein described by Flüggc's

(1960) linear shell equations, Equations (2.1)-(2.3) [the subscript i in these equations

will be omitted herein since it is no longer necessary], as modified by Païdoussis, Misra

and Chan (1985) to take into account the stress resultants due to steady viscous cffcds.

As internai dissipation in the shell is modelled by viscoelastic damping, Young's

modulus E, present in"t [defined for Equations (2.1)-(2.3)1 and in qb q2 and qs [Er;ua­

tions (2.98)1, needs to be replaced by E(1 + xgt ), where X is the viscoe!astic damping

coefficient. Hence, Equations (2.1)-(2.3) take on the new form

(5.1)

( a){ 1. [1 ,.. '" 1 ... 4 ..]}1+ x at lIiu + v + w + k 2;(1 - lIi)U - U - 2"(3 - Il)v + V' w + 2w + w

[ .. ,... ] (a 2
w qr )

- qlW +qs(u-v +w) +"1 at2 -p,h =0,

where

(5.2)

(5.3)

(;;nj~
~:

u(x, 0, t), v(x, 0, t) and w(x, 0, t) are the axial, circumferential and radial displa.cements

of the middle surface of the undeformed shell; ql, q2 and qs denote the nondimensiona!

forces associated with steady viscous efi'eds (Section 2.3.3); q., qs and qr n'present

the unsteady viscous forces acting on the shell in the axial, circumferential and radial

directions, respectively (Section 5.2.3).
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Shell motions must satisfy the following boundary conditions (Flügge 1960), as

already described in Section 2.2.2,

(i) at x = 0,

'U = V = w= 0, aw -O.ax - , (5.4)

(ii) at x = L,

, .+ IIW- kw" 0,u + 1111 =

., , 1.

U + Il + 3k(Il - w ) = 0,

" •• • ,
0,w + IIW - 1111 -u =

(5.5)

(5.6)

(5.7)

'" ( ) ,.. (3 -Il)'' (1 -Il)'' "- W - 2 - Il W + -2- Il - -2- u + u = O. (5.8)

Section 5.3.2 will present details of how Equations (5.1)-(5.3) subject to boundary

conditions (5.4)-(5.8) may be solved.

5.2.3 Unsteady Viscous Forces

(5.9)= 0,

Unsteady viscous forces on the shell are due to shell-motion-induced perturbations in

the viscous flow field. These perturbations are assumed to be small and thus may be

considered to be the solution of the linearized, time-dependent Navier-Stokes equations.

This section will be focussed on the derivation of the appropriate form of the Navier­

Stokes equations, from which linearization may be carried out.

The flow in the annulus is assumed to be either fully-developed laminar or fully­

developed turbulent; in addition, the fluid is assumed to be incompressible and also

isentropic. It is worthwhile to reiterate here that the fluid within the inner flexible shell

is quiescent. If the flow is turbulent, the flow field will be described by the following

continuity and momentum equations

av;
ax;

(5.10)= ! ap +~ (llm av; _V.'V.') ,
pax; ax; ax; "

where i and i may be l, 2 or 3; Vi is the ith component of the mean-flow velocity in

Cartesian coordinates; V/ is the ith component of the turbulent fiuctuating velocitYi
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P is the mean-flow static pressure, and Il,,, is the molecular kinematic viscosity of the

fluid, which is a fluid property and is constant. It should be noted that Equation (5.10)

still holds good if the flow is laminar, since in that case viVi = o.
To evaluate the terms viVi in Equation (5.10), a turbulence model will be required.

Boussinesq's (1877) eddy viscosity concept assumes that, in analogy to the viscous

stresses in laminar flows, the turbulent stresses are proportional to the mean-velocity

gradients:
-,-, (av; av;) 2- Vi v; = Vt ax. + ax. - sKo;;, (5.11), ,

where lit is the eddy (or turbulent) kinematic viscosity which, in contrast to the molec­

ular kinematic viscosity Il,,,, is not a fluid property but depends strongly on the state of

turbulence; lit may vary significantly from one point to another and also from flow to

fiowj K is the kinetic energy of the fluctuating motion, given by

(5.12)

and Oi; is the Kronecker delta, having the following values

.~ Oit = { 1
o

if i = j,

if ii-j.

The distribution of lit is determined by the particular turbulence model employed in the

analysis. In this theory, the so-called mixing-length model suggested by Prandtl (1925)

will be used. This is the simplest possible model for dealing with the turbulent (or

Reynolds) stresses. In view of the computational difficulties that will become evident

in due course, its use is justifiable. Details of the evaluation of lit using this turbulence

model are presented in Appendix E.

With the substitution of (5.11) into Equation (5.10), the following equation is

obtained

or

av; v av;
at + ; ax;

1ap a {av; (av; av;) 2 }- --- + - v",-+Vt -+ - - -Koi ; ,
p aXi ax; ax; ax; aXi 3

(5.13)

(5.14)

...,.,.
Jr

av; v av; 1 apt ( )a2v; aVt (av; av;)-+ '- = ---+ v",+v, --+- -+- ,at ' ax; p aXi a2",; aXi ax; aXi
where Pt = P + (2/3)pK represents the total pressure in the fiow, and the fact that

a (av.) a (av.)Vt- -' = Vt- -' = 0ax; aXi aXi ax;
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by virtue of Equation (5.9) has been taken into account.

Equation (5.13) may also be rewritten in vector form as

av 1- + (V· V)V = --VPt + (llm + IIt)V2V + (VIII' V)V + (VV)· Vlltat p

or
avat + (V.V)V = (5.15)

v = IIm + Vt, and hence Vv = VVt since Vm is a constant, as mentioned earlier. It is

further noted that, in most turbulent flow regions, Vt is much larger than Vm and thus

the latter may be neglected if desired.

Because the flow is axisymmetric, it is convenient to express Equation (5.15) in

cylindrical coordinates. Part (a) of Equation (5.15) can easily be found in most text

books of Fluid Mechanics [for example, Schlichting (1968)], while Part (b) will be eval­

uated below. In cylindrical coordinates,

V = e'(:r) + eeG :0) + e.(:x) ,
V = e.V. + eeVe + e.V.,
Il = IIm + IIt(r) = lI(r) ,

where v = v(r) results from the axisy=etric nature of the flow and from the assump­

tion made earlier that the fiow is fully-developedj the distribution of v(,) in the annulus

is given in Appendix E. Since

(VII' V)V = {(e. ~~)+'(:r) + eeG:0) +e.(:x)]} (e.V. + eeVe + e.V.)
(av. dll) (aVedll) (av. dll)= e. ar dr + ee ar dr + e. ar dr '

and

(~~}.e. + (~-)e.ee + (~)e.e.

(VV). VII = + (1 av.) + (} alee)eeee + (}~)eee. . [e. ~~]r:7ff eeer

+ (~)e.e. + (~)e.ee + (~)e.e.
(

(av. dll) Cav. dll) (av. dll)= e. ar dr + ee ;: ao dr +e. ax dr '
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90

it follows that

( ) () (dv){ ('aVr) (aVe 1aVr) (av. avr) }Vv ' v v + VV ,Vv = d, 2 ar er + ar +;: ao ee + .a;: + ax e. .

Equation (5.15) is in fact Equivalent to three independent equations corresponding to

the T-, 0- and x-direction, namely

{
aVr +VraVr+ Ve aVr _ vl +V. aVr} _ 2dvaVr 1 apt

at ar r ao r ax - dr ar - p ar

{
la ( avr) Vr 1 a2vr a2vr 2 aVe}

+ v ;: ar r ar - r2 + r2 a02 + ax2 - r2 ao '

Equations (5.16)-(5.19), describing the mean flow characterized by the velocity V

and the total pressure Pt> provide the basis for the derivation of the equations governing

the flow perturbations associated with shell motions. It is important to mention here

that, in the flow under consideration, there are two types of disturbances. The first

type of disturbances is due to turbulent eddies, whereas the other is induced by shell

motions. The combination of these two types of disturbances is often referred to as

"unsteady turbulence." The word "mean" that has been used since the beginning of

this chapter is intended to be associated with the first type of disturbances only.

Each component of V as well as Pt may be regarded as consisting of a steady part

and a small shell-motion-induced perturbation, namely-.
",1;,'.

~

{aVe+VraVe+VeaVe+VrVe+V. aVe} = dv(aVe+ ~ aVr) _.!- apt

at ao r ao r ax dr r r ao pr ao

{
la ( ave) Ve 1 a2ve a2vo 2 avr}+v -- r- --+---+--+--
r ar ar r2 r2 a02 ax2 r2 ao '

The continuity equation in cylindrical coordinates has the form

1 a ( ) 1 aVe av.
;: ar rVr +;: ao + ax = o.

Vr= Vr> Ve= Ve, V. = U(r) +v., Pt!p = F+ p,

(5.17)

(5.18)

(5.19)

(5.20)
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where U(r) and P denote the steady parts of V. and Pt / p, respectively, while the steady

parts of Vr an'~ Vo are zero, since the flow is axisymmetricj Vr> Vo, v., and pare flow

perturbations associated with the components of V and Pt!p.

With the substitution of (5.20) into Equations (5.16)-(5.19) and with the assump­

tions that (i) the steady flow also satisfies the continuity and Navier-Stokes equations

and (ii) ail quadratic terms in the flow perturbations are negligible with respect to the

linear terms, the following equations are obtained

{avr +U(r)avr} = 2dll ( avr) _ ap
at ax dr ar ar

+ {1 a ( aVr) Vr 1a2vr a2vr 2 avo }
Il ~ ar r ar - r2 + r2 a02 + ax2 - r2 ao '

{avo+ U(r) avo } = dll (avo+ ~ aVr) _ ~ ap
at ax dr ar r ao r ao

+ {1 a ( avo) vo 1a2vo a2vo 2 aVr}
Il ~ ar r ar - r2 + r2 a02 + ax2 + r2 ao '

<: rv• U( )av. dU } = dll Cv. + avr) _ ap
at + r ax + dr vr dr ar ax ax

+ {1 a ( av.) 1 a2v. a2v.}
Il ~ ar r ar + r2 a02 + ax2 '

and

(5.21)

(5.22)

(5.23)

(5.25)

(5.24)

at the

aw
aï'Ur =

1 a 1 avo av.
~ ar (rvr) + -;: ao + ax = 0,

which are subject to the no-slip condition at the interfaces with the cylinders:

outer surface of the flexible shell, r = a + h/2,
aV. av

v. = at' Vo = at'

where IL, V and w are the axial, circumferential and radial displacements of the shell,

respectivelYi at the inner surface of the rigid cylinder, r = b,

li: = 1)6 = Vr = o. (5.26)

(5.27)

It is seen that Vr> Vo, V. and pare fully specified by Equations (5.21)-(5.24) and,

in principle, can be solved for. Once these perturbations are determined, the unsteady

viscous forces (or stresses) on the shell are given by (Sclùichting 1968):

{ aVr av.}1q. = CTr. = pli ax + ar '..



{ a("B) 1a"r}1gB = UrB = pli r ar -; +;: ao '..
gr = Urr = {-(pp) + 2pll aa"; }l '..
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(5.28)

(5.29)

where pp is the perturbation pressure, as defined in (5.20); the notation "ss" stands for

the condition that the expression(s) be evaluated at the shell surface.

The procedure to solve Equations (5.21)-(5.24) for the flow perturbations and

hence to evaluate (5.27)-(5.29) will be given in Section 5.3.3.

5.2.4 Summary

Section 5.2 has formulated the problem involving a cantilevered, flexible cylindrical shell

confined inside a coaxial rigid cylinder and subjeeted to an incompressible viscous lluid

flow in the annular region. In the formulation, the shell displacements were described

by Flügge's shell equations, and the unsteady viscous forces acting on the shell were

calculated from the fiow velocity and pressure perturbations governed by the unsteady

linearized Navier-Stokes equations.

5.3 Method of Solution

5.3.1 Introduction

The method of solution to be presented covers two different, but interrelated procedures:

one for solving Flügge's shell equations (Section 5.3.2) and the other for solving the

linearized Navier-Stokes equations (Section 5.3.3).

Since a closed-form solution for the Navier-Stokes equations Is not possible due

ta their complexity, a numerical solution will be obtained instead, with the aid of a

special technique developed by Soh and Goodrich (1988) and originaIly intended to give

an unsteady solution for the incompressible Navier-Stokes equations. This technique is

based on the popular finite-difference method, and is for the first time applied to solve a

fiuid-shell coupling problem. (A similar, fiuid-cylinder coupling problem has also been
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considered by Mateescu et al. 1991a.) In the solution process, as the output (solution)

of one set of equations is the input for the other and vice versa, Flügge's shell equations

will have to be solved numerically, also by the finite-difference method.

5.3.2 Solution to the Governing Equations of Motion

For the purposes of solving Equations (5.1)-(5.3), the shell displacements u, v, and w

are expressed in the following functional forros

1
u(x,O,t) 1 1ü(x,t)cosnO 1
II(X,O,t) = Ë iJ(x,t) sin nO ,

w(x, 0, t) üi(x, t) cos nO

(5.30)

(5.32)

(5.31)

(5.33)

where n is the circumferential wave number. Similarly, the solutions for q.. qe, and qr

are taken to be

1
q.(x, e, t)1 1q.(x, t) cos nO1
qe(x,O,t) = Ë qe(x,t)sinnO .

qr(X, 0, t) qr(X, t) cos nO

Thus, in terms of (5.30) and (5.31), Equations (5.1)-(5.3) may be rewritten as

co [( a){ a2
ü n

2
n aiJ éJsüiI: l+X- a2---(k+1)(l-v)ü+-(l+v)a--kaS-

n=\ at ax2 2 2 ax axs

(
kn2 ) aüi} { 2a2ü ( 2 aüi)}+ v-T(l-v) aBx + qla Bx2+qdniJ+üi)-qS nü+a ax .

{
a2ü q.}]-"1 --- cosnO=O
at2 p,h '

~ [( a){ n( ) aü 1( )( 2a2iJ 2 kn 2a2üi }L...J l+X- --1+va-+-3k+11-v)a--niJ+-(3-v)a--nüi
n=l at 2 ax 2 ax2 2 ax2

{
a2 - } { a2

- -}]2 Il 2 Il qe .
+ qla ax2 -qs(n iJ+nüi) -"1 at2 - p,h smnO=O,

'" [( a){ asü (kn
2

) aü kn a
2

iJ a
4
üiI: 1 + x- _kas_ + v - -(1 - v) a- - -(3 - v)a2- + niJ + ka4 -

n=l at ax" 2 ax 2 ax2 . ax4

2 2a
2

üi ( (2 )2)} { 2a
2
üi ( aü 2 )}- 2kn a - + 1 + k n -1 üi - qla - + qs a- - niJ - n üi

ax2 ax2 ax

{
a2 - -}]+ "1 at~ - pq:h cos nO = 0, (5.34)
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which are su1:>ject to the fol1owing boundary conditions: at the clamped end, x = 0,
00 <>.)

L ü cos n(J = L vsinn8 =
n=l n=l

00

L wcosrr.8
n=l

00 a-
= L a: cos nO = 0;

n;;;l
(5.35)

and at the unsupported end, x = L,

00 { a- a2 - }tL _ 2 W _ 1)_
~ aax + nvv - ka ax2 + vw cos n. - 0,

00 { av aw} .
~ -nü+(1+3k)aax +3kna ax smnO=O,

(5.36)

(5.37)

(5.38)

00 { a2ü n2 n av a3w aw}L ·_a2_ - -(1- v)ü - -(3 - v)a- + a3_ - (2 - v)n2a- cos nO = O. (5.39)
n=l ax2 2 . 2 ax ax3 ax

It is noted that Equations (5.32)-(5.39) have the unit of length; hence, they will

be rendered dimensionless if divided by L, the length of the flexible shell. For the

purpose of nondimensionalization, in this section and the subsequent ones, the following

dimensionless parameters are defined:

x rab
e= L' TI = L'ô; = L' Ôo = L'

• ü
u= -,

L

_ V

1) = L'
_ w
w= L'

(5.40)

(5.41)

Another observation that should be made here is that since sin nO and cos nO are not

general1y equal to zero and the series in (5.32)-(5.39) are infinite, the coefficients of sin nO

and cos nO in these series must vanish. Thus, Equations (5.32)-(5.39) are effectively

equivalent to

[
a] { a

2
û n

2
n aii a

3
ÛJ [kn

2
] DÛ;}l+X- ô~---(k+1)(1-v)û+-(1+v)ô·--kô~-+v--(l-v) ô'-

at • ae 2 '2' ae • ae3 2 • ae

{
a2- (a -)} {a

2
- }2 U ...... 2... WU ...

+ qlô; ae2 + q2 (nv + w) - q3 n u + ô; ae - 1 at2 - q. = 0,

[ a]{ n( ) aû 1( )( ) 2a2ii 2- kn 2a2Û;_}I+X- --I+vô'-+-3k+l I-vô·--nv+-(3-v)ô·--nwat 2 •ae 2 • ae2 2 • ae2

{
a2- } {a

2
- }2 v 2- _ v_+ qlô; ae - q3(n v +nw) - 1 at2 - qO = 0,

[
a] { a

3
û [kn

2
] aû kn a

2
ii a

4
û;I+X- -kô~-+ v--(I-v) ô'---(3-v)ô~-+nii+kô~­

at • ae3 2 •ae 2 • ae2 • 8e4

(5.42)



f :>2 • } { a2
• (a· )}l!ID 22 .. 2 W U .. 2 ...

- 2kn2o; ae2+ [1+k(n -1)]W - qloi ae2+qS oi ae - nv-n W

{ a2
• }+ 'Y at~ - qr = 0,

subject to the boundary conditions:

• at ç = 0,

95

(5.43)

ÔÛJ
= 0;ae

(5.44)

• at ç = 1,

aû • k 2a2ÛJ •
0i ae + nllv - a ae2+ IIW - 0,

• ( k) av 3' aÛJ 0- nu + 1 +3 0i ae + lenoia[ - ,

ÔÛ • 2 a2 ÛJ 2.
- ci ae - IInv +0i ae2 - n IIW = 0,

2a2û n2 • n( ) av sasÛJ ) 2 aill
- 0i ae2- T(I - Il)U - 2" 3 - Il 0i ae +ei aes - (2 - Il n Oia[ = O.

(5.45)

(5.46)

(5.47)

(5.48)

It may be seen that the only independent spatial variable in Equations (5.41)­

(5.48) is ç, the nondimensionalized axial variable defined in (5.40). To solve these

equations using the finite-difference method requires that the sheU be represented by

(N + 1) nodal points, aU evenly spaced in the axial direction; nôde 0 is at ç = 0, the

clamped end of the sheU, and node N is at ç = 1, the unsupported end. Ea~h node

i is associated with three unknowns !Li, vi and wi representing, respective!y, the axial,

circumferentia! an':: radial displacements of the sheU at ç = Çh with the subscript i

denoting the number of the node under consideration. Equations (5.41)-(5.43) will

then be written for aU nodes i, such that 1 ::; i ::; N, with nodes 1 and N given more

attention because these are the locations where the boundary conditions are taken into

account.

At node 0, the boundary conditions (5.44) could be rewritten as

(' ûo = vo = ÛJo = 0, (5.49)
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and if the first derivative of ÛI with respect to { is replaced by the O[(tJ.{)2]-accurate

central difference representation, then

or (5.50)

(5.51)

(5.52)

~,'~
:.c:;;"

where node -1 is fictitious and is symmetrical with node 1 about node 0; tJ.{ being the

spacing between any two successive nodes is determined by

At node N, the boundary conditions (5.45)-(5.48) are imposed, thereby increasing

the number of equations to (3N + 4), whereas there are only 3N unknowns associated

with N nodal points. To increase the number of unknowns, another fictitious node

(N + 1) beyond the free end of the shel1 is introduced, thus increasing the number of

unknowns to (3N + 3); nevertheless, the number of equations is still one higher than

that of unknowns. This difliculty may be resolved by realizing that, for node N (and for

node N aione), it is possible to combine Equation (5.43) and the boundary condition

(5.48) to yield one single equatlon, hence reducing the total number of equations by one

and making it equal to the number of unknowns.

What has just been discussed above involves differentiating Equation (5.48) with

respect to { and multiplying the resulting equation by kôi; after some rearrangements,

the fol1owing equation is obtained

383û kn2( ) aû kn( ) 282tÎ 4a4Û1 2282Û1 22a2Û1
- kSi 8{3 -""2 1-11 Si a{ -"2 3 -II Si a{2 + kSi a{4 - 2kn Si 8{2 = -klln Si 8{2 .

It is seen that the terms on the left-hand side of (5.51) are ail present in the first pair

of braces in Equation (5.43); substituting the right-hand side of (5.51) for these terms

simplifies Equation (5.43) to

(1+X:t){IISi:~+ntÎ - klln2s1~2{~ + [l+k(n2 -1)2]ÛI}

-{qlSl~~~+q3(Si:~-ntÎ-n2Û1)}+{7~2t~-qr} = O.

Thus, discretized about node N are the six equations: (5.41), (5.42), (5.52), and (5.45)­

(5.47).
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In the present analysis, a Jully impiicit scheme is adopted to carry out numerical

time intp.grationj ail equations involved are evaluated at the new time level (n+1) where

ûi+1, vi+1 and wj+1 are nodal unknowns to be solved for. Consequently, ail first and

second time derivatives are approximated by the o[(b.t)2]-accurate backward difference

representations, namely

(5.53)

(5.54)

where f denotes a nodal unknown, and b.t is the time step taken for the numerical time

integration.

On the other hand, for inner nodes i such that 2 ~ i ~ (N -1), ail spatial deriva­

tives are approximated by the o[(b.ç)2]-accurate central difference representations:

(~Di = 2~Ç [Ji+1 - /;-1] + 0 [(~ç)2], (5.55)

r (a
2/

) = (~1ç)2 [/i+1 - 2/; + /;-1] + O[(~ç)2], (5.56)ae .,

(a
3/

) = 2(~ç)3 [/i+2 - 2/;+1 + 2/;-1 - /;-2] + O[(~çn (5.57)
aÇ3 .,

(a
(/

) = (~lç)4 [/i+2 - 41i+1 + 6/; - 4/;-1 + 1,-2] + O[(~ç)2]. (5.58)aç4 •,

For node i = 1, the approximations (5.55) and (5.55) can still be applied, because

ûa, Va and wa as r'c'luired for these approximations are given by the first three of the

clamped-end boundary conditions, Equations (5.49). Howeyer, the approximations

(5.57) and (5.58) further involve L 1, V-1 and W-b only the last of which is known

and prescribed by the fourth clamped-end boundary condition, Equation (5.50). Thus,

as far as w is concerned, (5.57) and (5.58) do not pose any diificulty. However, for

û and V, which happen not to have any fourth derivative, the third derivatives are

approximated by the following forward difference representation, which still takes ûa

and Va into account but does not make use of Û-1 and V-l,

f (5.59)
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Similarly, for node i = N, the approximations (5.55) and (5.56) still hold; expres­

sion (5.58) is of no concern because none of Û, uand whas any fourth derivativej but

the approximation (5.57) requires ÛN+2, UN+2 and WN+2' which are new unknowns and

cannot be accounted for. This obstacle can be bypassed by using the fol1owing backward

difference representation for third spatial derivatives

(5.60)(
aSt) 1
aÇs ; = 2(Aç)S [3tHl - ID/; + 12/;-1 - 6/;-2 + /;-s]

It should be recalled here that although ÛN+!, uN+! and WN+! are also new unknowns

2e· 2
dg = (AÈ)2' dg = n 1/,

(5.61)
~sket _ 2~skn2

Cl = a4, C2 = as, Cs = b4, C4 = bs, Cs = (Aç)4' Cs - (Aç)2'

_ [ 2 2] _ ~sl/e; _ ~skl/n2e; _ e;
C7 - ~s 1 + k(n - 1) ,Cg -- 2Aç' Cg - (Aç)2 , dl - 2AÇ'

ke~ e;(l + 3k) 3kne;
ds = (A€)2' d4 = 1/, ds = n, ds = 2Aç ,d7 = 2Aç ,

[through expressions (5.55), (5.56) and (5.60)1, they are in principle determinable by

three additional equations given by the first three free-end boundary conditions [Equa­

tions (5.45)-(5.47)]. The derivation of (5.59) and (5.60) is presented in Appendix F.

For the sake of convenience and simplicity in writing the equations of motion for

each nodal point in finite difference form, the following group of constants are defined:

(At)2 X ç e~ ç n2

~l =-,-, ~2 = 2At' ~s =~dl+ 3~2)' al = (~çi2' a2 = -\-(k + 1)(1 - 1/),

~sein ( ~ske~ ~se; [kn
2

)]
as = 4Aç 1+1/), a4 = 2(Aç)S' as = 2Aç "- 2(1-1/ ,

~se; ( )() 2 ~skne; ( )bl = as, b2 = 2(Aç)2 3k + 1 1 - 1/, bs = ~sn , b4 = 2(Aç)2 3 - 1/., bs = ~sn,

as well as a group of functions of ç, implicit via qlo q2 or qs:

A; _ ~lqle; A; _ ,. 2 A; _ ,. A; _ ~lqSe; A; _ ,.
al - (Aç)2' a2 - ~lqsn , as - ~lq2n, a4 - 2Aç' as - >1q2,

Ab; A; Ab; A; bA;,. A; A; A; bA; A; A; .; .;
1 = al' 2 = az , 3 = ~lq3nj Cl = a4) Cz = 3) Cs = al' ':4 = a2)

(5.62)

where the superscript i is the number of the node for which the function is evaluated.

After al1 time and spatial derivatives in Equations (5.41)-(5.43), (5.45)-(5.47), and

(5.52) are appropriately substituted by the difference approximations given in (5.53)­

(5.60), the resulting equations will be re'!.rranged and rewritten in such a form that all
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nodal unknowns [corresponding to time level (n +1)] are on the left-hand side of the

equation and all known quantities [associated with time levels n, (n -1), and (n - 2)j

are on the right-hand side.

For node 1,

-10ClÛî+l + (ê~ + 2C3 + c4)ûî+l + (2 + 2ê~ + ê~ + 7cs + 2C6 + c7)wî+l + (12cl - êl + C2)Û~+l

- c3ii2'+l- (ê~+4cs+C6)w2'+l-6clÛ3+1 + CSW3+l +ClÛ~+l =!:"l (<ir)î+l+ J(Wl)
4"
'-:;-

= !:"l (<io)~+l + J(Ûl) +!:"2 {(2b2+ b3)l(iir) + (2b4+ bs)l(wr) + bll(Û2)

- b2l(ii2) - b4l(W2)} ,

+ !:"2 {-10cll(Ûl) + (2C3+ c4)l(iil) + (7cs + 2C6 + C7)l(Wl) + (12cl + c2)l(Û2)

- c3l(ii2) - (4cs + c6)l(W2) - 6Cll(Û3) + CSl(W3) + crl(Û4)},

where.T( ) and .c( ) will be defined by Equations (5.75).

For node i such that 2 < i < (N -1),

(5.63)

(5.64)

(5.65)

= Çl (<i.)i+l + J("i) +!:"2 {-a4l(wi-2) - all(ûi-l) + a3l(vi-l) + (2a4 + a6)l(wi-l)

+ (2al + a2)l(ûi) - all(ûi+l) - a3l(ûi+l) - (2a4 + as)l(wi+l) + a4l(wi+2)} , (5.66)

- bl Ûi.:"ll - (bi + b2)iii_"il - b4Wi_V + (2 + 2bi + 2b2+ b~ + b3)iii+l + (&; + 2b4+ bs)wi+!

+ blÛi.:l- (bl + b2)ûi':11 - b4Wi':l = !:"l (<io)i+! + J(Vi) +!:"2 {-bll(Ûi-r)- b2l(Vi-r)
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- c3L:(Vi-il- (4cs + CS)L:(Wi_1) + (2C3 + C.)L:(Vi) + (6cs + 2cs + C7)L:(Wi)

+ (2C1 + C2)L:(Ûi+tl- C3L:(Vi+l) - (4cs + CS)L:(Wi+l) - C1L:(Û'+2) + cSL:(Wi+2)}' (5.68)

For node N,

- a31ÎiV't11 + (3a. + âf - as)wiV't\ = ~1 (q.)~+l + J(ÛN) + ~2 {a.L:(wN_3) - 6a.L:(wN_2)

- a1L:(ûN-tl + a3L:(~N-1) + (12a. + as)L:(wN-1) + (2a1 + a2)L:(ûN) - 10a.L:(wN)

(5.69)

-blûN-J::l1 - (hf + b2)1ÎiV":.\ - b.wiV":.ll + (2 +2bf + 2b2+ b~ + b3)viV+1+ (bf + 2b. + bS)W;:'+l

+ b1ÛN:;:-1 - (bf + b2) 1ÎiV't\ - b.W;:''t11 = ~1 (qe);V+l + J(VN) + ~2 {-b1L:(ÛN-il

- b2L:(VN-1) - b.L:(WN-1) + (2b2+ b3)L:(VN) + (2b. + bS)L:(WN)

+ blL:(ÛN+l) - b2L:(VN+l) - b.L:(WN+lH,

(-N )-n+l (-N ) -n+l .. (- )n+l + J( - ) + .. { "(- )- cl - Ca uN+l - c3 + Cg wN+l = >1 gr N WN >2 -Ca .... UN-1

(5.70)

(5.71)

there are also the following equations resulting from the free-end boundary conditions:

d -n+l d -n+l + d -n+l + (2d + d ) -n+l + d -n+l d -Ml = 0, (5.72)- 1UN_1 - 3WN_1 2VN 3 4 WN 1UN+l - 3WN+l

d -n+1 d -n+l d -n+l + d -n+l + d -n+l = 0, (5.73)- SVN_l - 7WN-l - SUN SVN+l 7WN+l

d -n+l + d -n+l d -n+l (2d + d ) -n+l d -n+l + d -n+l = O. (5.74)SUN-l aWN_l - 2VN - a g wN - sUN+l aWN+l

In the foregoing, Equations (5.63)-(5.71), T( ) and .t( ) are two short-hand notations,

and they are defined as

(,~~
"',i .•'"

~~ (5.75)
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Equations (5.G3)-(5.74) are subsequently assembled into the global rnaLrix equa­

tion of the form

or equivalently,

(5.76)

where [A] is a constant coefficient matrix of size 3(N +1) by 3(N +1); as a result, IAJ-l
will be calculated only once in the first time step and then reused over and over in ail

subsequent time steps; {X'+l} is a vector of size 3(N + 1), containing unknown nodal

displacements at the time level (n + 1), that is

{ 1
.~~+l lÎ~+l w"~+l 1 }• . • ....s SI' ••. .... .

at Dode i

for 1 ~ i ~ (N + 1) .

c.
Initially, the displacements at node (N + 1) which is beyond the free end of the shell

are not known at t = 0, -6.t and -2(6.t); here, they are linearly extrapolated from

those at nodes N and (N - 1) (the reason for doing this will become 0 bvious in the

next pal'agraph). {Rn+l} is a vector of size 3(N +1) and is a function of {Q'+l}, {xn},

{xn-l} and {X'-2}, where

{Q '+l}T __ { ... I.(q"_)n•. +l (" ).+1 (" )'+11 10 0 O}- q6 i q, i •••
'-:.:...._,;......;.;.--;"..,:.:......,.,. ---------

at n~de i at node (N + 1)

for 1 ~ i ~ N.

The elements of {Qn+l} will be determined in Section 5.3.4.

As may be expected, the present time integration procedure is not self--startingj

for the first time step (n = 0), the vectors {XC}, {X-l} and {X-2}, corresponding to

t = 0, -6.t and -2(6.t), respectively, are needed in order to determine {Xl} according

to Equation (5.76). These vectors will be evaluated below using the theory presented

in Chapter 2j from the functional forms (2.31) taken for the shell displacements, it is

seen that

where {XO} corresponds to the initial conditions.

It should be pointed out that the theory in Chapter 2 gave frequencies of oscillation

and mode shapes of the shell, but not the actual displacements. Thus, the magnitudes
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of the elements of {XO} for the present analysis have to be arbitrarily imposed; after

calculation from (2.31), normalized {XO} is scaled down by a factor of 1/100 of the

annular gap width, i.e.

(5.78)

5.3.3 Solution to the Linearized Navier-Stokes Equations

The solution of the linearized Navier-Btokes equations is much more complex than that

of the shell equations, principally because it is not possible in this case to reduce the

problem to one involving only one spatial independent variable, as will be seen in the

following.

5.3.3.1 Numerical Formulation

For purposes of solving the linearized Navier-Stokes and continuity equations [Equations

(5.21)-(5.24)], v" vo, v. and pare taken to be of the form

v.(x,O,r,t) 'Ür(x, r, t) cos nO

vo(x,O,r,t) 00 vo(x,r,t) sin nO
= L (5.79)

v.(x, 0, r, t) n=1 iiz(X, T, t) cos nO

p(x, 0, r, t) p(x,r,t) cos nO

which are then substituted into Equations (5.21)-(5.24), yielding

= 0, (5.80)

00 {avo _ _ _ _} .
; -at+Go(v"vo,v.,p) smnO = 0,

00

LGv(v"vo,v.)cosnO = 0,
n=1

where

(5.81)

(5.82)

(5.83)

= U(r) av. + ap _ 2dv av.
ax ar dr ar
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[

U( ) av. U'()- ap dv (av. avr )= r-+ rvr +--- --+-ax ax dr ar ax

_v{a2v. + !~(rav.) _ n2 v.} ,ax2 rar ar x2

1 a n av.--(rvr ) + -vs +-.rar r ax

(5.85)

(5.84)

Gv(v) = 0,

As sin nO and cos nO are generally not zero, their coefficients in the infinite series

(5.80)-(5.83) must vanish, or equivalently

av8t + G(v,p) = 0,

where v = (V., vs, v.), and G(v,p) = [Gr(v,p), Gs(v,p),G.(v,p)]j Equation (5.84) thus

represents three equations corresponding to the T-, 0- and x-eoordinate.

As was mentioned in Section 5.3.1, the numerical method developed by Soh and

Goodrich (1988) will be adopted in this study to solve Equation (5.84) with the velocity

components satisfying the constraint (5.85). Since the background of the method was

fully discussed by the authors, it will not be repeated herej nevertheless, every step of

the solution procedure will be explained below in detai!.

To be consistent with the fully implicit scheme employed in Section 5.3.2 for time

derivatives, the two-point backward difference approximation is now used to discretize

Equation (5.84) in physical time

c

(5.86)

(:
which has first-order accuracy in time. Since the continuity equation (5.85) should be

satisfied in every time step,

(5.87)
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It is noted that, by means of the new notations

... n+1 -n+1 -n
V = V -v, P

'n+l -n+l -n= p -p, (5.88)

Equations (5.86) and (5.87) may be rewritten as

(5.89)

(5.90)

(5.91)

since G( ) and Gv ( ) are linear operators.

For the solution of Equation (5.89) satisfying the divergence-free constraint (5.90)

on the perturbation velocity, a continuous auxiliary system in pseudo-time and involving

an artificial compressibility is introduced

avar + v + bot G (v,p) = -bot G (yn,pn),

fJ~: + Gv (v) = 0, (5.92)

(5.93)

where r is a pseudo-time which should be distinguished from the physical time t, f3

is the artificial compressibility coefficient, and V = y' - yn, p = fi' - fini here, the

asterisk denotes a transient value in p.,eudo-time. It is seen from Equations (5.91)

and (5.92) that, as the steady state is rE.ached in pseudo-time, av/ar and aPiar are

both virtually zero; hence, V and p become yn+l and pnH, respectively. Evidently,

the solution of the set (5.89) and (5.90) in each physical time step is practically the

same as the steady solution of the set (5.91) and (5.92) in pseudo-time. Equations

(5.91) and (5.92) therefore have no physical meaning until reaching the steady state in

pseudo-time.

Equations (5.91) and (5.92) may be written in a more compact form as

ailar + (Ar + A. +Ao)Il = R,

where R is kept constant at its value at the physical-time level n, and

Ûr -aGr(yn,pn)

Il=
Ûo

R=
-aGo(Y",pn)

a = bot,~.
';~ t~i Û. -aG.(Y",pn);u.;'

p 0



Equation (5.93) may be integrated in pseudo-time through two intermediate steps

denoted by , and ":

II'' - IIk
f:;.r + ArII' + A.II" + AoIIk = R,

IIk+l IIk
f:;.~ + ArII' + A.II" + AoIIk+l = R.

Briley and McDonald (1980) introduced a compact forro of the above equations, which

is called the "delta form" ,

(1+f:;.rAr)ft = f:;.r[R- (Ar+AdAo)IIk],

(1 + f:;.rA.)fI = ft,

(1 + f:;.rAo)f:;.II = fI,

(5.94)

(5.95)

(5.96)

where Ii = n' - IIk , :fI =n" - n k , Ll.n = nk+l - n k , 1 is the identity matrix of size

4 x 4, and k denotes a certain pseudo-tiroe step. The method of solution represented
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by Equations (5.94)-(5.96) is commonly referred to as the ADI (Alternating Direction

Implicit) scheme, and is carried out on a staggered grid (further discussion on the

staggered grid is given in Appendix H). Equations (5.94), (5.95) and (5.9G) are called

the r-, x- and O-sweep, respectively. In the staggered grid, vr is coupied with the

pressure fi during the r-sweep. Similar1y, v% and Vs are coupied with fi in the x- and

O-sweep, respectively.

5.3.3.2 Initial and BOlindary Conditions

Since the physical-time system (5.89)-(5.90) and the pseudo-time system (5.91)-(5.92)

are both initial boundary value problems, initial and boundary conditions must be

specified to complete these systems. For the problem under consideration, the initial

flow variables for the systems (5.89)-(5.90) and (5.91)-(5.92) are taken tü be zero:

v = fi = 0 at t =0, v = fi = 0 at r =O. (5.97)

At the inlet (1; = 0), the flow is assumed to be undisturbedj in essence, flow

perturbations are zero, or equivalently

v = v = fi = fi = 0 at ç = O. (5.98)

At the exit (1; = 1), flow perturbations must tend to die out according to any of the

realistic outflow models described in Chapter 2. Explanations on how tü impose this

boundary condition will be given when the x-sweep is considered (Section 5.3.3.3).

Because the staggered grid is being used, the pressure boundary conditions are

not needed at the physical boundaries, which are a rigid wall and a flexible (moving)

wall in the present problem; this is a great advantage of this method. In the following

analysis, TI is the nondimensionalized radial variable, TI = r/ L, as defined in Equations

(5.40). Thus, at TI = Co (rigid wall), the velocity boundary conditions are

~

>': W',
~.

ii = v = 0,

while at TI = Ci (moving wall),

-n (aü)n _ L ("n-2 4"n-1 +3"n)v = - - -li - li liat 2t>.t

(5.99)

(5.100)
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where û = (û, il, ÛI) is a vector whose components are the shell displacemen .s, and

(5.101)

(

nevertheless, yn+l is not known at the beginning of the physical-time step (n +1), and

hence an iterative procedure has to be cmployed here. First of ail, the right-hand side

of Equation (5.101) is approximated from.\he known quantities in previous time steps:

yn-2, yn-1 and yn. This can be achieved by expandin3 Equation (5.101) in a Taylor

series about n,

fn+l = {yn + ~t (~:r + (~;j2 (~::r + 0 [(~t)31} - yn

= ~t(~:r + (~;)2 (~:r + O[(~t)3)

= ~t{ yn-'2 - ~::1 + 3yn} + (~;)2 { yn-2 _(:;~1 +yn} + 0 [(~t)31,

or

(5.102)

Then, from the approximation (5.102), ûn+l is obtained [through the solution of Eqûa­

tion (5.76)], thus allowing yn+1 and fn+1 to be recalculated according ta Equations

(5.100) and (5.101), respectively. A new value of ûn+l is again obtained, and the same

procedure is repeated until the change in ûn+l between any two successive iterations is

negligibly small. Numerically, this condition is considered to be achieved when, between

any two successive iterations,

(5.103)

(5.104)

c

where il, i 2 and i 3 are integers, representing the numbers of sorne nodes on the shell

such that 1 ::; il> i 2, i3 ::; (N + 1).

For n = 0, Equations (5.100) and (5.102) becorne

-0 L (,-2 4'-1 +3'0)v = -u - u u
2~t

and

(5.105)
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here, according to Equation (5.100), V1 is given by

-1 L ("-1 4"°+ 3 "1)v=-u-u U
2t>t

(5.106)

/,1)
',...;f"

in Equations (5.104) and (5.106), û-2 , ••• , û 1 were given in Equations (5.77).

5.3.3.3 Evaluation of the r, x, and 0 Sweeps

Equations (5.94)-(5.96) show that the r- and x-sweep represent two sets of difTerential

equations which indeeè have to be treated differently, whereas the O-sweep is simply a

set of linear algebraic equations. During the r-sweep, the values of each intermediate

flow variable at aIl the grid points aligned in the r-direction for a given i are solved for

simultaneously, as i is incremented (by one) from its smaIlest value to its largest one.

Similarly, the x-sweep involves solving simultaneously for the values of each intermediate

flow variable at ail the grid points aligned in the x-direction for a given j, as j is

incremented. The range in which i or j is incremented may vary slightly from one flow

variable to another, since the flow variables are not defined at the same location in the

staggered mesh. In this section, the r, x and 0 sweeps will be considered in the same

order as indicated by Equations (5.94)-(5.96).

r-Sweep

If the right-hand side of Equation (5.94) is denoted by S = {Sr Se S. S'il}T, then

the r-sweep can be written in full as

{ at>r [ dv a v a ( a)])_ at>r ap
S., (5.107)(1+ M) - - 2-- + -- '1- tir + ---- =

L2 d'l a'l '1 a'l a'l L a'l
{ aM [dV a v a ( a)])_ Se, (5.108)1 - L2 d'l a'l + ;j a'l '1 a'l tle =

{ at>r [dV a v a ( a)])_ S., (5.109)1 - L2 d'l a'l +;j a'l '1 a'l tI.
=

t>r 1 a ( _) _
S'il, (5.110)--- '1 t1r + P =

LfJ '1 a'l
where '1 is defined as r/ Lj the difference expressions for S., Se, S. and S'il are given in

Appendix G. In this r-sweep, the solution is carried out first for Equation (5.108), then

for Equation (5.109), and finally for Equations (5.107) and (5.110) together.
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(
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With the substitution of the appropriate difference expressions in Appendix H for

the partial derivatives in Equation (5.108), it is found that

for 3 ~ i ~ (M - 2),

Â~i {(:~» -d~j) - ~;~~; } (VO);,;-l

{
L2 1 [V" (r r) (d )"]}i TJ; TJj-l :l::Z: li (_)

+ a.ÂT + Â~i ~i Â~i+l + Â~i - (1 - d~; - dHl) d~; "0 ;,;

- Â~i{d~i+l(:~X + ~i1~L}(VO);,i+l = (a.~T}SO);.i;
for i = 2,

{
L2 1 - d~~ (dV)" "(b 1- d~~)}(_ )-- - - - v2 F + "0 . 2a.ÂT Â~; d~ 2 ~~Â~;"

-{~~~ (:~x + V~(CF + ~:1~J }(VO);,S = (a.~T }SO);'2i (5.112)

and for i = i* = (M -1),

{
1- d~i. (dV)" "( 1- d~i.)} _
~ r: d. - lIr an - .; 6. ': (tJO)i,j--l

~,. ~ ,. ~,. ~,.

+ {a.~T + ~~. (~~l- Vi. (bR - ~i~2~i.)}(vok;- = (a.~T )(SO);,;-. (5.113)

For the above equations as weil as for subsequent equations, M denotes the total number

of (vok; grid point. for a given i, including the two [(VO);,l and (vo);,Ml outside the

computational domain (Figure 5.2). In the derivation of Equations (5.112)-(5.113),

attention has been given to the fact that the values of Vo at the two physical boundaries

are prescribed and remain unchanged during the pseudo-time integrationi as a result,

~vo = vo = Vo = 0 at the physical boundaries. Equations (5.111)-(5.113) constitute a

tridiagonal system of linear algebraic equations, which are solved for each i, such that

2 ~ i ~ (N + 1) as depicted by Figure 5.2. It is worthwhile to mention here that a

rapid solver (Anderson et al. 1984) is used to solve ail the tridiagonal systems of linear

algebraic equations in the present work.

8ince (i) Equations (5.108) and (5.109) are of the same form and (ii) (iiok; and

(ii")i,; have the same 7)-coordinate in the staggered mesh, the difference representations

of Equation (5.109) for 1 ~ i ~ N may be obtained from Equations (5.111)-(5.113) by

replacing the subscript 0 by Xi thus,



for 3 ~ j ~ (M - 2),

1{(d J
• • r }V z vjYJj_l _

ll'li d'l P-d'lj) - 'Iill'li (v.);,j_l

{
L

2 1[•(r r) (d J']}li; 1]; '1;-1 :c:z: LI _

+ OI.llr + ll'li 'Ii ll'li+l + ll'li - (1 - d'lj - dj+l) d'l j (v');,j

1 { (d J' Il'!''I~} ( L
2

)- ll'li d'li+l d~ j + 'Ii~'IJ+I (V');,j+l = OI.llr (S.);,j;

110

(5,114)

(5.115)

(5.116)

(~"..,.

for j = 2,

{
L2 1 - d'l~ (dll)' .( 1- d'l~)} _

OI.llr - ll'l~ d'l 2 - v2 bp + 'I~ ll'l~ (V.);,2

{
d'l~ (dIl

J
'.( d'l~ )}_

- ll'l~ d'l 2+ 112 cp + 'I~ ll'l~ (11.);,3 =

and for j = P = (M -1),

{1~ d:i· (ddIlJ' _ vi.(aR _ 1:~'I!')}(V');';-_l
'Ij' '1 ;- '1;- '1;-

+ { OI.~r + ~~: (:~):. - vi' (bR - 'Ii~~~i')} (v.);,j' = (OI.~r )tS');,j" (5.117)

The determination of lir and fi is somewhat more involved, as these two variables

are coupled in Equations (5.107) and (5.110), the difference representations of which

are found to be

{
2(1-.d'li) (dV)r _ r v~'Ii. } (vr);,j-l + {~(1 + llr) _ 2(1- d'li.- d'li+Il (dll)r

ll'lj+l d'l j 'Ijll'ljll'lj+l OI.llr ll'lj+1 d'l j

+ IIi ('Ii+l + 'Ii )}(_) { 2d'li+l (dV)r + vj'li }(_)
rAZ ~ A r Ur id - A:Z: -d :z: A rAZ Ur 1,;+1

'Ij'-"'Ij+l '-"'Ij+l '-"'Ij '-"'Ij+l '1 j 'Ij+l '-"'Ij+1 '-"'Ij+1

+ ll~+J(P);,j+l - (p);,;] = (OI.~r )tSr);,j (5.118)

and

'l'!'~'I~ (~;)['Ij(vr);,j- 'Ii-dvr);,j-l] + (P);,j = (SV);,j, (5.119)
J J

respectively, after ail the derivatives in the two equations have been replaced by their

difference expressions in Appendix H. Subtracting Equation (5.119) for j = j from the

same equation for j = j + 1 and then multiplying the resulting equation by (LI ll'li+1l

yields

llr {'Ii - l (_) r[ 1 1 ](_) 'Ii+l (_) }
{3 A' ~ Vr ;,j-l - 'Ij • A r + • A r Vr ;,; + • A r IIr ;,j+1

'-"'Ij+l 'Ij '-"'Ij 'Ij+l '-"'Ij+l 'Ij '-"'Ij 'Ij+1 '-"'Ij+1



(5.120)

(5.122)

f

(
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+ A ~ [(P)i,;+1-(P};,;] = 1::. ~ [(Sv);,m-(SV)i,;],
'-"'7;+1 '7,+1

which is then subtracted from Equation (5.118), giving

{ 2(1 - d'7j) (:~X- ~~~j - ~r ['7;~~j]} (vr)i,;-l + { a~r (1 + I::.r )1::.'7}+1

_ 2(1- d'7j _ d'7i+tl(dd
V » V~ [A'7}~l + A'7}~] + '7j~r [ ~ ~ ~ + ~~ ~]}(Vr)i';
'7, '7, '-"'7,+1 '-"'7, ,., '7,+1 '7,+1 '7, '7,

{

r (dv)r Vi'7}+1 I::.r[ '7i+1 ]}(_
- 2d'7;+1 -d + rI::. r + Iii" • A r IIr)i,H1

'7; '7; '7;+1 ,., '7;+1'-"'7;+1

= l::.'7t+1 ( a~r ) (Sr};,; - L [(Sv);,m - (SV )i';]' (5.121)

Equation (5.121) can now be solved for (Vr)i,;, for 2 ~ i ~ (M - 2) with i incremented

such that 2 ~ i ~ (N +1), using the tridiagonal matrix: solver, and (fi)i,; is subsequently

obtained from Equation [5.119) for 2 ~ i ~ (M - 1) and 2 ~ i ~ (N + 1),

(Pli'; = (SV)i';- '7~~'7~(~;)H(Vr)i';-'7f-1(Vr)i,i-l]', ,
x-Sweep

The x-sweep, characterized by Equation (5.95), involves the following equations

{ al::.r [ a a2]} u a!::.T env) u iir , (5.123)1 + V LU('7) ae - vae2 IIr + V -;j2 Ile =

{ a!::.T [ a a2]} u iie, (5.124)1 + V LU(,,) re - vae2 Ile =

{ al::.r [ a a2]} u al::.r (dl') aVr (al::.r) ap iiz , (5.125)(1 +!::.T) +V LU('7) ae - vae2 Il. - V d'7 ae + L ae =

( !::.T) av. u P, (5.126)Lf3 ae + P =

where v" ve, v. and fi have all been ë.<:termined in the r-sweep. Here, the sequence

in which Equations (5.123)-(5.126) are solved is quite obvious: the only equation that

can possibly be solved first is (5.124), then Equation (5.123) for vr since ve is already

known, and then Equations (5.125) and (5.126) together since V. and pare not only

coupled in these equations but also dependent on vr' In the x-sweep, the diffusion terms

(Le. a2jat;2) are approximated by the three-point central difference expression whereas

the two-point backward difference representation is used for the convective terms (Le.
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a/aE). It should also be reiterated that Equations 1':.123)-(5.126) are approximatcd at

the locations of (Vr)i,;, (ve);,;, (V.)i.; and (p);,;, respertively, in the staggered mcsh.

Accordingly, for 3 :0::; i :0::; N, Equation (5.124) is represented by

[
LU('7") Il'']- 1::./ + (I::.E)2 (Ve)H,; +

(5.127)

which can be simplified for i = 2,

[a~r + L~;j) + (:b2}veh,; - [(:~)2 }veh,; = C'~r )tveh,;, (5.128)

because (veh.; = 0 is imposed at the inlet of the flow (Section 5.3.3.2); for i = N + 1,

Equation (5.127) becomes

(5.129)

Here, the value of (V,')N+2,; represents the boundary condition at the exit of the flow,

and must be such thc.t ve would vanish somewh~re downstream [i.e. Vo = 0 at E= e,
e> 1] as prescribed by any of the realistic flow models discussed in Chapter 2. It may

be shown that

(Ve)N+2,; = A(Ve)N,; - B(Ve)N+l,;, (5.130)

where the constants A and B depend on the particular flow model adopted and are

given in App:mdix B. With the boundary condition (5.130) imposed, Equation (5.129)

turns out to be

(5.131)

It is seen that Equations (5.127), (5.128), and (5.131) form another tlidiagonal system,

which is then solved for 2:0::; i:O::; (N + 1) with j incremented such that 2 :0::; j :0::; (M -1).

The above procedure is also applied to Equation (5.123) with 2 :0::; j :0::; (M - 2),

resulting in the following equations:
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for 3 :Ç i :Ç N,

[
LU(,n Il;] u [ L2 LU (7]j) 211;] u

- !:.e' + (!:.ç)2 (V')'-l,; + a!:.r + !:.ç + (!:.ç)2 (v,).,; -

= (a~r) (vr ).,; - [~;n~] [d7]f+l(VO)',i+l + (1- d7]f+l) (VO).,;] ;

for i = 2

(5.132)

[
L2 LU(7]j) 211j ] u [ Il; ] u

aM + !:.ç + (!:.ç)2 (vrh,; - !:.ç2 (vrh;

- U;n~) [d7]f+l(voh,Hr+ (1- d7]f+l)(voh,;]; (5.133)

(

for i = (N +1),

[
LU(7]j) Il; ] u [L2 LU(7]j) 211; ] u

- !:.ç +(1+A)(!:.ç)2 (Vr)N,; + a!:.r + !:.ç +(2+B)(!:.ç)2 (Vr)N+l,;

= (a~r ) (Vr)N+l,; - [~:nq [d7]f+l(VO)N+l,;+l + (1 - d7]f+l) (VO)N+l,;] . (5.134)

The solution of Equations (5.125) and (5.126) involves the decoupling of V. and p.
First of ail, the discretization of Equation (5.125) gives

[ LU(7]~) IIJ ] u [ L2 LU(7Jj) 211f ] u

- !:.e' + (!:.ç)2 (V%)._l,j + a!:.r(l +!:.r) + !:.ç + (!:.ç)2 (V.)i';

- [(:~)2](V%)i+l'; + ~ç[(P)i+l,;-(P)',;] = (a~r)(V')";

+ ;ç (~~):{d7]j [(Vr)i+l,; - (vr).,;] + (1 - d7]j)[(Vr )i+l,;-1 - (vr).,;-I]} , (5.135)

white it follows from Equation (5.126) that

;ç(~;)[(v,),,;- (V%).-I,;] + (p).,; = (P)i,;. (5.136)

Subtraeting Equation (5.136) for i = i from the same equation for i = i + 1 and then

multiplying the resulting equation by (LI t:.E) gives

f3(~~)2 [(v.)i-l,j - 2(V%)i,; + (1I.)i+l,;] + ~ç [(P)i+l,j - (pk;] = ~ç [(P)i+l,; - (P)i,;] , (5.137)

-
which is then subtracted from Equation (5.135), yielding the following relationship for

2 ~ i ~ (N -1),

{
LU(7]j) 1 [% !:.r]} u { L

2
2 [% !:.r]

- !:.ç + (!:.ç)2 Il; +"li (V.)i-l,; + a!:.r (1 +M) + (!:.ç)2 Il; +"li
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+ L~~il } (v.);,; - (c,lç)2 [II; + ~r](V');+1,i = C.~r )cV.);,; - (~ç) [(p);+l,; - (p);,;]

+ ;ç(~~):{dl];[(Vr)i+1,; - (Vr );,;] + (1- dl].il[(Vr)i+1,;-1 - (vr );,;-l]}. (5.138)

Similarly, it is found that, for i = 1,

{
L2 (' Il) 1 [2' c,r] LU(l]j) }(V ) 1 [. c,r](V)

aM - + r + (c,ç)2 IIi + /3 + c,ç v. 1'; - (c,ç)2 Il; + /3 v. 2,;

= (a~r)cii.h,; - (~ç)(ph,; + ;ç(~~): [dl]j(vrh,; + (1- dl]j)(vrh,i.I]' (5.139)

and for i = N,

{
LU(l]j) (l+A)[. !:lr]} v {L

2 (2+B)[. c,r]
- c,ç + (c,ç)2 Il; + /3 (V.)N-I'; + aM + (!:lç)2 Il; + /3

LU(l]j) }(V ) L
2

(_ ) L [(A) (_)]+ c,ç v. N,; = ac'r v. N,; - c,ç P N+l,; - P N,;

+ ;ç (~~):{dl]} [(Vr)N+1';- (Vr)N,;] + (1- dl]j) [(vr)N+l,;-1 - (Vr)N,Hl) , (5.140)

where the boundary conditions (v.)o,i = 0 and (V.)N+l'; = A(V.)N_I'; - B(V.)N,; have

been imposed. Here, Equations (5.138)-(5.140) also form a tridiagonal system with j

incremented from 2 to (M -1). For the same range of j, the pressure jJ is calculated

subsequently from Equation (5.136): for 2 :::; i :::; N,

(P);,i = (fi);,; - ;ç (~;)[(v.);,;- (V');_l,;] ,

and for i = (N + 1),

(P)N+1,; = (P)N+l,; - ;ç(~;)[A(V')N-1';- (l+B)(V')N,;]'

(5.141)

(5.142)

O-Sweep

The O-sweep, characterized by Equation (5.96), covers the following equations

{1+ a~r [11(1; n
2

) ]}c,vr = il., (5.143)

Cl.c'r (~) [dll + 211] c,vr+ {(1 + M) + aM [11(1 + n
2
)]}c,vI _ Cl.c'r (::)!:lf; = VI, (5.14~)

L2 l] dl] l] P l]2 L l]

Cl.c'r (dU) A •

L dl] '-'V r + {1 + CI.~r (1Il]~2) }c,v. = v., (5.145)

C,r (n) A • A •LI3 ~ ,-,VI + ,-,p = p, (5.146)



(5.147)
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(
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where V" vo, vo, and j5 have been determined in the x-sweep. In the 8-sweep, !luo is

coupled with !lfj, and the sequence in which Equations (5.143)-(5.146) are solved is still

selective: (5.143), then (5.145), and finally (5.144) and (5.146) together; nevertheless,

no tridiagonal systems of linear algebraic equations are generated.

For 2 ::; i ::; (N + 1) and 2 ::; j ::; (M - 2), Equation (5.143) is represented by

{1 + a~r [Vi~~~;2)]}(!lV,);,; = (v.);.;.

Similarly, for 1 ::; i ::; N and 2 ::; j ::; (M -1), Equation (5.145) becomes

{1+ :'t~[~!i~:]}(!lVo);,; = (vo);.; - a2~r (~~);{d'li[(!lv.);,;+ (t.V');+1';]

+ (1 - d'li) [(!lv. );,;-1+ (t.V. )Hl';-l]} . (5.148)

Equations (5.147) and (5.148) can both be solved directly for (!lu.);.; and (!lvo);';,

respectively. On the other hand, the difference expression of Equation (5.144) contains

(!lvo);,; and (!lfj);,;

a~r(;i)[ (~~X + 2:l] [d'lj(t.V.);,;+(I- d'lj)(!lv');';_l]

+ {(1 + !lr) + a~r [vi~~~2n2)]}(!lVo);,; _ a~r (:;}A/Î);'; = (vo);';' (5.149)

As expected, the elimination of (!lp);,; from the above equation requires the difference

expression of Equation (5.146),

Ar (-.!:)(AV')" + (Ap·).. - (,,) ..
L{3 'li • >,' '" - "'",

which is multiplied by (a!lr/L)(n/T/j) and then subtracted from Equation (5.149), giving

for 2 ::; i ::; (N +1) and 2 ::; j ::; (M - 1). The pressure !lp is calculated subsequently

from Equation (5.150) for the same ranges of i and j as for !luo,

(5.152)
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Once (t.V')i,;, (t.ve);,;, (t.V.)i,;, and (t.jl)i,; have been determined and so have

(ii:H)i,j, (ii;H)i,j, (ii;+l)i,;, and (jlk+l)i,j according to nk+l = n k + t.n as defincd

in Equation (5.96), the next pseudo-time step is advanced. In principle, this process

continues until

(:;.153)

at which time the steady solution in pseudo-time has been obtained. The next physical­

time step can then be advanced after ynH and rH have been updated a':cording to

Equation (5.88). In the actual numerical calculations to be conducted, the condition

(5.153) is considered to be achieved when

M {
(AV')i";' (Ave);,,;, (Av.)i,,;, (AP)i,';,} < 10-3 (5.154)

ax ('k+l) '('k+l) , ('k+l) '('k+l).. - ,
tJr il,;! 1)8 i 21 Ï2 Vz i 3.ia P '4,14

where il> il> ... , i4, i4 may take on any (integer) value as long as the location of the

corresponding flow variable is within the computational domain considered.

5.3.4 Determination of the Unsteady Viscous Forces

If (i) the functional forms taken for the unsteady viscous forces, Equation (5.31), and for

the fiow perturbations, Equation (5.79), are substituted into the relationships between

these forces and perturbations, Equations (5.27)-(5.29), and (ii) the coefficients of sin nO

or cos nO in the series on the two sides of each of the resulting identities are equated,

then the fo1lowing equations will be obtained

ii. = (5.155)

(5.156)

(5.157)

(5.159)

(5.158)

For the convenience of solving the she1l equations of motion, Equations (5.155)-(5.157)

are now nondimensionalized according to Equation (5.40), thus producing

if. = Gg;;; + ~;;·}I '
~ Tl ""

ife - G{ry:ry(~) - %ü,}I,;
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(5.160)

(5.161)

(5.162)

(5.163)

(

where G = (-ypv)/(p,hL2) with V = V m at the shell surface.

The difference representations of Equations (5.158)-(5.160) can be obtained by

replacing a/at; by the two-point central difference approximation and vr and V. by the

difference expressions derived in Appendix F. According to the numbering of the nodes

on the sheil and of the locations of the f10w variables in the staggered mesh, the following

expressions are obtained:

(q~+l)i = 2~ç {(V~+1)i+2'F - (V~+1)i'F} + ~ {a [(V~+1)i.F+ (V~+1)i+l,F]

+ b[(V~+1)i.2 + (v~+1)i+l.2] + c[(v~+1ks + (V~+1)i+1,3] },

(q.no+1),. G{« 1) (-n+1) + Y(-n+1) + "(-n+1) n (-n+1) }= u - '71 Vs i+l,F 0 110 i+l,2 C V8 i+l,3 - Tli Ur i+l,F l

(q~+l)i = -G(~){(l+ :'7~)pi:l~2- :'7~Pi:l~3}

+ 2G{1i(ii~+l)i+l,F + ii(V~+1)i+l,2 + ë(ii~+1)i+l'3}'

where a, a, ... , cand ë are constants given in Appendix F.

5.3.5 Remarks on the Moving Boundary

8ince shen motions are assumed to be sufficiently small, the width of the annular gap

may be considered to vary neither with ç (uniform gap) nor with time t; nondimension­

ally, it is taken to be (E. - Ei) for which the shell is motionless. (This, as wi!.l shortly he

seen, is unsatisfactory, but its consideration is instructive.) Hence, Tli could be calcu­

lated from Equation (H.l), and the resulting staggered mesh becomes fixed throughout

the physical-time integration. Thus, when the shell is in motion, the f10w velocities

U(TI) at sorne of the grid points that were initially in contact with the undeformed shen

surface may no longer he zero due to a rapid increase in U(TI) in the vicinity of the shen

wall.

In earlier stages of developing the theory, the use of this fixed grid had led to

the results that were virtually identical, both qualitatively and quantitatlvely, to those
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obtained with the theory in Chapter 2 but without the unsteady f1uid forces included.

As such, the only type of instability obtained was divergence, which is evidently due to

the f10w pressurization required to push the fluid through the annular gap. Furtherrnore,

the discrepancy between the predictions of Ü: given by thetwo theories was found to

he 3.9% (based on Ü: = 33rn/s by the theory of Chapter 2) for g/a = 1/10, 1.1%

(Ü: = 90rn/s) for g/a = 1/4, and 0.8% (Ü: = 141rn/s) for g/a = 1. (With the

unsteady fluid forces included, the results for Ü,· were much lower, as will be seen later

in Figure 5.6.) The foregoing comparison has shown thdt the unsteady viscous forces

were cornpletely missing when the fixed grid was used.

The actual grid, on the other hand, continuously deforms with the moving shell,

such that they always remain in contact; this requires the continuaI recalculation of (i)

the coordinates of, and (ii) U(YJ) at, ail spatial locations of the fiow variables, as the time

integration progresses. Renee, ail the coefficients of the tridiagonal systems of linear

algebraic equations presented earlier (Section 5.3.3.3) would need to be reevaluated at

the beginning of ail iterations (see Section 5.3.3.2) within every physical-time step, for

a large number of time steps. Consequently, the amount of computing time associated

with the use of the actua! grid is prohibitively enormous, considering the very lirnited

funding and resources available for this research. It might be of interest to mention that

the prograrnming effort involved in such a procedure would also be equally suhstantial.

The calculations to be presented in Section 5.4.2 adopted what may be considered

as an approximation to the actual gridj Section 5.4.1 will briefiy discuss the computing

cost associated with this approximate scheme. The approximation involves the use of

the fixed gridj nevertheless, at the beginning of every iteration within each physical­

time step, the flow velocities U(YJ) at ail the grid points that were initially in contact

with the motionless shell-wall are updated. For a given Ei, U(YJ) is determined from the

velocity profile defined on [ôi+Wi,ôoJ, where Wi is the instantaneous radial displacement

of the shell at E= Ei' This approximation was found to recover the unsteady viscous

forces, which were missing when the purely fixed grid was used.
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5.3.6 Summary

Section 5.3 has presented in detail (i) the numerical solution of Flügge's shell equations

and of the unsteady linearized Navier-Stokes equations, and (ii) the evaluation of the

time-dependent viscous forces acting on the shell. The finite-difference method was

applied to discretize Flügge's equations into linear algebraic equations. Similarly, a

factored ADI (Alternating Direction Implicit) finite-difference method was used to solve

the linearized Navier-Stokes equations with the fiow field represented by a staggered

mesh of fiow variables; the divergence-free velocity constraint was satisfied at each

physical-time step by means of a time-marching method in pseudo-time with artificial

compressibility.

5.4 N umerical Results

5.4.1 Numerical Procedure

The purpose of this section is to explain the procedure involved in running the computer

program encoding the theory presented earlier in this chapter.

First of a!!, the initial displacements of the she!! have to be provided as input; it is

reca!!ed that the she!! mode shape is characterized by the axial wave number m and the

circumferential wave number n. Once m and n have been chosen, the theory in Chapter

2 is used to obtain the corresponding eigenfrequency and eigenvector (for Ü. = cl. from

which the displacements of the she!! in early physical-time steps (t = -2Ât, Ât, 0, M)

can be calculated.

Next, the pseudo-time step Â r and the artificial compressibility coefficient {3 have

to be selected. For simple 2-D infiow-outf!ow problems, optimum values of Âr and

{3 may be approximated analytica!!y (Soh and Goodrich 1988). However, given the

complex nature of the ftuid-shell coupling problem here under consideration, no rela­

tionship is known to exist which would suggest proper values for Âr and {3. As far as

the present analysis was concerned, for a particular configuration of the system and for

a given average fiow velocity U., the optimum values of Âr and {3 were determined via
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series of numerical experiments: firstly, sorne good guesses were made for 6.r and /3 (the

very first good guesses were found accidentally!); secondly, /3 was kept unchanged while

the computer program was run for various values of 6.r until convergence (the steady

solution) was obtained with the lowest number of pseudo-time stepsj in turn, with the

newly found optimum value of 6.r fixed, the program was again run for various values

of /3 until convergence was obtained with the lowest nurnber of pseudo-time steps. If

the nurnber of pseudo-time steps required for convergence were plotted versus 6.r (for

a given /3) or /3 (for a given 6.r), then the curve would be found to be quasi-parabolic.

In general, the optimum values of 6.r and /3 vary from one physical-time step to

anotherj nevertheless, it is not feasible to determine them for every single time step.

What was actually done was that the optimum values of 6.r and /3 found for the first

time step, in which the program had been run on the McGill IBM mainframe computer,

were used for ail subsequent time steps, in wl:ich the prograrn was run on the CRAY

X-MP 2/8 computer. As a result, convergence was achieved with as few as 35 pseudo­

time steps in the first physical-time step but with as many as 150 pseudo-time steps in

subsequent physical-time steps.

For each configuration of the system considered, the program was run for a total of

401;, or 960 physical-time steps with 6.t = 1;,/24, where 1;, is the period of oscillation of

the shell at time t = 0 (for given m and n). Here, although the time interva! OVer which

numerical time integration is performed is selected arbitrarily, it must be long enough

to ensure that a conclusion regarding stability of the system at a given average flow

velocity Ua can be drawn from a displacement-time plot generated from the computer

run. For systems having their parameters listed in Section 5.4.2, each run on the CRAY

computer was found to take from 1600 to 2400 CPU seconds.

5.4.2 Numerical Results

Due to a tremendous amount of computing time required for each computer run in

searching for the optimum values of tu and /3 and especially in carrying out the time

integration for a large number of time steps, it was not feasible for the present analysis

to cover ail the cases as were presented in Chapter 2 or 3. (Besides, since the financial
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support for this research was limited, the use of the CRAY computer was restricted to

time donated by the CRAY Research Inc.; once the computer left Montréal, no more i'ree

computing time was available.) Instead, numerical results were obtained for a limited

number of geometries, with attention being paid to ·the unsteady viscous effects of the

annular fiow on the stability of a system having a narrow annular gap; hence, for the

same length of the flexible shell, considered were systems of various annular gap widths,

for more than half of which the corresponding experimental results had been obtained.

For comparative purposes, the present analysis was conducted for systems with

the same materia! properties and geometries as those tested in Chapter 4, namely

E = 2.8246 X 106 N/m2
, v = 0.47, p, = 1.1588 X lOs kg/ms, J.I. = 0.01948,

U = 55.934m/s; for air at 21.1°C (70°F): Pair = 1.205kg/ms,

Vm = 15.178 X 1O-6 m2/s; a = 2.1 "4=, h.= 1.37=, L/a = 8,

b = 28.02 mm (1/10-gap), b = 32.63= (1/4-gap), (5.164)

b = 38.1mm (1/2-gap), b = 44.45 mm (3/4-gap), b = 50.93= (l/l-gap);

non-uniform staggered mesh: "l, = 4, N = 30, M = 20 for the 1/10- and

1/4-gap, M = 30 for the l/'J.-, 3/4- and l/l-gap.

For c1arity, it should be recalled that v is Poisson's ratio; J.I. is the structural damping

coefficient; the term "g / a-gap" refers to the system with annular gap width g/ a =

lb - (a + h/2)Jla; "l, is the parameter that controls how much the staggered mesh is

stretched in the 7)-direction; M and N determine how finely the flow field is discretized

in the 7)- and ç-direction, respectively; U == lE / p(1-v 2)11/
2 is the reference flow velocity,

from which a nondimensionalized average flow velocity Ü can be defined, Ü = Ua/U.

Section 5.2 indicated that internai dissipation within the shell was taken to be

represented by viscoelastic dampingj the viscoelastic damping coefficient X was found

by equating the energy dissipated by the viscoelastic damping to that of the structural

damping characterized by J.I., which is constant and frequency-independent. The value

of J.I. shown in (5.164) was measured as part of the experimental work presented in

Chapter 4.
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With the same procedure of analysis as adopted in Chapter 2, sorne preliminary

calculations were first carried out to check sorne important part of the computer pro­

gram developed herein. Theoretically, in the absence of internai dissipation, the present

method of solution and that in Chapter 2 should give similar predictions for the fre­

quency of oscillation of the shell in vacuo for a certain mode shape (Le. for a certain

combination of m and n). In Figure 5.3, the nondimensionalized radial shell displace­

ment ÛJ at E= 1 is plotted against the number of time steps for (a) 6.t = Tc/24 and (b)

6.t = Tc/48. In both cases, the shell was excited in m = 2 and n = 2. It is found that (i)

f = 27.7Hz (between tl = 1606.t and t 2 = 8016.t) for 6.t = Tc/24, (ii) f = 28,4 Hz (be­

tween t1 = 3136.t and t2 = 1608.6.t) for 6.t = Tc/48, and (iii) f = 26.5 Hz by the theory

of Chapter 2. The smallness of the discrepancies between these calculated values of f

may be considered to validate the segment of the computer program. The damping-like

effect, clearly seen in Figure 5.3(a) and characterized by a reduction in the amplitude

of ÛJ, is due to the discrete time integration currently used. A comparison of Figures

5.3(a) and 5.3(b) indicates that such an effect becomes diminished as 6.t is reduced.

There is little doubt that 6.t = Tc/48 is sufficiently small; nevertheless, the use of this

time stepsize would have significantly increased the number of time steps required for

each computer run. For this reason, 6.t = Tc/24 was used for ail subsequent calculations

as mentioned in Section 5.4.1.

Regardless of how the shell was excited initially, if the average flow velocity were

below sorne critical value, shell motions would die out with time due to the presence

of material damping and fluid damping. However, if the flow velocity were greater

than a critical value, shell motions would become continually larger, signifying a loss

of stability. In the present work, both types of instabilities were observed: divergence

(static instability), as illustrated in Figure 5.4 for the l/lO-gap system, and flutter

(oscillatory instability), as in Figure 5.5 for the 1/2-gap system. Again, plotted in these

figures is the nondimensionalized radial shell displacement at E= 1 versus the number

of time stepsj the shell was excited in m = 2 and n = 2 in the case of Figure 5,4 and in

m = 1 and n = 2 in the case of Figure 5.5. It is seen from Figures 5.4(a) and 5.4(b) that

when Ü is 0.35 or 0.40, the displacement becomes rapidly diminished after about 400
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time steps; on the contrary, when Ü is 0.45 as in Figure 5.4(c), the displacement sharply

increases without any limit (i.e. divergence) after about 320 time steps. A similar trend

is aiso found in Figures 5.5(a) and 5.5(b), for which Ü is 0.90 and 0.95, respectively­

the displacement exhibits a harmonie pattern with a diminishing amplitude; however,

with Ü incremented to 1.00, the displacement still retains its harmonie nature, but

the amplitude keeps on increasing with time (i.e. flutter). Needless to say, the critical

flow velocities depicted by Figures 5.4 and 5.5 are within (0.40,0.45) and (0.95,1.00),

respectively.

For a particular annular gap, the overaU critical flow velocity Ü,' of the system

is the lowest of those obtained for di!ferent combinations of m and nj i.e., Ü,' is the

value of Ü at which the system first loses stability either by divergence or by !lutter.

The significance of unsteady viscous e!fects on the stability of a system can then be

revealed by plotting Ü,' for various annular gap widths g1a. Presented in Figure 5.6

are available experimental measurements and the analytical results given by the present

theory, shown as the cross-hatched curve, and by the theory in Chapter 2, the solid

curve. The thickness of the cross-hatched curve represents the range in which the

predicted value of Ü,' feU, since computer runs were made with Ü incremented by 0.05

until instability was encountered. In general, with the chosen mesh size of the staggered

grid (prescribed by the listed '1" M and N), there is excellent agreement between the

numerical results and experiment, at least for 0.1 ~ gla ~ 0.5. A comparison between

the cross-hatched curve and the solid one shows that, for gla ~ 0.8, the unsteady viscous

forces have a destabilizing e!fect on the system, lowering the value of Ü,' predicted by the

previous theory (potential theory with steady viscous e!fects taken into account)j the

widest gap between the two curves appears to be at g1a = 0.5. As g1a becomes smaller,

the predictions of Ü; given by the two theories are seen to approach each other, thus

narrowing down their discrepancy. This observation therefore implies that the unsteady

viscous e!fects tend to be diminished and become less important with decreasing g1a.

The e!fects are in fact more significant with moderate gla, which is of the order of 0.5

for the present system parameters.

With the nwnerical results obtained so far, the present theory has proved to be
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quite promising; nevertheless, it should be borne in mind that the foregoing analysis

has been based on the results for LIa = 8. In the light of the fact that the degree of

agreement between the previous theory and experiment varied not only with 91a but

also with Lia (Chapter 4), it is certainly desired to investigate such variations, if any, of

the present theory by performing the same type of calculations as in Figure 5.6 for a wide

range of LIaj the numerical aspect of the analysis also needs to be undertaken, namely

the convergence study of Üc' as each of ",/" M and N is varied. These suggested studies

should be carried out whenever the necessary computing resources become available.

5.5 Conclusion

A new analytical model has been introduced for the study of instabilities of the system

involving a cantilevered flexible cylindrical shell confined in a coaxial rigid cylinder and

subjected to an incompressible viscous flow in the annular region. This model took into

account both steady and unsteady types of viscosity-related fluid forces exerted on the

shell. The main aim of the analysis conducted was to examine the unsteady viscous

effects on the stability of the system, especially when the annular gap was relatively

smal!.

In the new model, shell motions were also described by Flügge's modified shel1

equations (Paidoussis, Misra and Chan 1985), which were solved numerical1y by the

finite-difference method. The unsteady viscous forces, acting as forcing functions in

the shell equations, were determined from the velocity and pressure perturbations in

the flow. These perturbations were governed by the linearized, unsteady Navier-Stokes

equations, the solution of which was obtained using a time-marching finite-difference

method with artificial compressibility on a staggered grid. This method involves (i)

introducing a pseudo time between two physical time steps and (H) using a factored

ADI (Alternating Direction Implicit) scheme to solve for the flow variables in the grid.

In the analysis, the actual grid changing continuously to remain in contact with the

moving physical boundary was approximated by a fixed grid, in which the mean axial

flow velocities at ail spatial locations on the boundary grid line were updated in every
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iteration within each physical time step.

It was found that numerical results obtained for a particular set of system param­

eters are in excellent agreement with experimentj the unstèady viscous effects tend to

be diminished with diminishing annular gap width, provid.ed that the gap is sufficiently

small (g/a < 0.5, approximately). Nevertheless, effects of a number of important system

parameters still remain to be explored in future work.
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Chapter 6

Conclusion

6.1 Contributions of the Thesis

This thesis presented two new analytical models for the study of the stability of clamped­

free coaxiai cylindrical shells subjected to internaI and/or annular incomr-ressible viscous

fluid flow. A substantial amount of experimental work was also conducted to vedfy the

analytical results obtained and hence validate ~,uch models.

In the first model, Flügge's shell equations were used tû describe the shell motions;

the complexity of the free-end boundary conditions orthe shells was dealt with by the

extended form of the Galerkin roethod in solving the governing equations of motion. The

unsteady fluid-dynamic forces in these equations were formulated from potential flow

theory: the perturbation pressures on the shells were determined from the perturbation

velocity potentials via the unsteady Bernoulli equationj those velocity potentials were

governed by the Laplace equation, which was solved by the Fourier transform method.

A. the downstream end of the shells was unsupported, different so-called outflow models

were examined in modelling the decay of flow perturbations beyond the free end. Also

incorporated into the equations of motion were the time-independent viscosity-related

effects, which result from (i) flow pressurization necessary to keep the fluid flowing

and (H) shear stress on the shell due to surface traction. Such steady viscous effects

were evaluated for cantilevered shells using the same procedure previously proposed by

Paidoussis, Misra and Chan (1985) for the system of clamped-clamped shells .

'26
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The theory was first used to solve ·~est problems involving cantilevered cylindrical

shells: (i) the natural frequencies of a shell in vacuo and (H) the critical flow velocity

of another shell conveying fluid. In both problems, predictions were found to be in

excellent agreement with experimental results available in the literature. The theory

was then applied to investigate the dynamical behaviour of a cantilevered steel shell

located coaxially inside a rigid cylinder; the system had water flowing within the shell

and/or in the annular region. The following main findings were obtained:

• In the case of internaI flow, only in beam-like motions of the shell (n = 1) are

steady viscous effeets truly negligible; for shell-type motions (n ;::: 2), flow pres­

surization and skin friction stabilize the shell by a considerable amount, especially

if the shell is long. The presence of the quiescent annular fluid lowers the natura!

frequencies by increasing the effective inertia of the system. A reduction in (he

annular gap destabilizes the system by increasing the virtual mass of the annular

fluid and hence reducing the effective stiffness of the system. With the system

parameters taken for the analysis, loss of stability is not always by flutter. For

some large n, divergence occurs first, followed by single- or coupl~d-modeflutter;

nevertheless, 10ss of stability is always by single-mode flutter in the most critical

mode, Le. the mode associated with the lowest critical flow velocity, U;~. In con­

nection with the Fourier transform method employed in the theory, the utilization

of an outflow mode! IS nat only desirable, but essentia1.

• In the case of annular flow, the system may lose stability either by flutter directly,

or by divergence, followed by flutter at a higher flow. Vnless the annular gap is

relatively wide and n is very low, the principal effect of the steady viscous forces

is to severely destabilize the system. This is due to the fact that pressurization of

the annular flow results in inward-directed, crushing compressive 10ads acting on

the shen. The inclusion of internaI dissipation in the analysis rectifies the physical

paradox that the critical flow velocity, Ua" becomes progressively smaller with

increasing n in the absence of dissipative forces. As the annular gap is reduced,

U;, becomes smaller since inviscid and pressurization forces become larger; this
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trend is expected to level off or even become reversed once unsteady viscous effects

are taken into account. The value of U.', is decreased as length of the shell, L,

is increased or its thickness, hi, is reducedj this finding also holds for the case of

i.lternal flow and for systems with other end boundary conditions (for instance,

clamped-clamped) .

• Each flow by itself, whether internaI or annular, is capable of leading to instability

of the system. However, if one of the two flows is present and the system is stable,

the addition of the second flow does not necessarily bring it closer to instability.

Furthermore, there are certain ranges of one flow for which stability can only be

achieved provided that the other flow is neither too low nor too high. This intricate

dynamical behaviour stems from the nonconservative nature of the cantilevered

system. With a shell clamped at both ends, the system loses stability more easily

when conveying counter-current flows than when conveying co-current flows.

The theory was generally weil supported by the experimental part of the thesis, at least

for the results of natural frequencies and of overaIl critical fiow velocities of the system

under various flow and geometric conditions. Both types of instability, divergence and

flutter, predicted by theory were also observed experimentally.

In the second analytical model, much attention was given to the unsteady viscous

effects of the annular fiow on the stability of the system with narrow annular gaps. Such

effects, which had been neglected in previous studies, were evaluated in a formai manner

for the first time. Although the model also used Flügge's shell equations to describe

the shell motions, it formulated the unsteady fluid-dynamic forces on the shell from

the flow perturbations governed by the linearized, unsteady Navier-Stokes equations

subject to the divergence-free velocity constraint. Such flow perturbations, namely the

perturbed pressure and components of the perturbed flow velocity, were shell-motion

inducedj they were determined by solving the linearized Navier-Stokes equations with a

time-marching, factored ADI (Alternating Direction Implicit) finite-difference method

on a staggered grid (Soh and Goodrich 1988). This method involves introducing a

pseudo-time between two physical-time levels. The momentum equations are first dis-
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then rewrittcn in a continuous pseudo-time derivative form. The continuity equation i.

preconditioned with a pseudo-time derivative of the pressure multiplied by an "artificial

compressibility" coefficient. The actual solution at the advanced physical-time level is

the same as the steady solution of the preconditioned equations in the pseudo-time. For

the problem under consideration, the choice of the artificial compressibility coefficient

and of the pseudo-time stepsize played a crucial role in determining how fast the steady

stat~ in pseudo-time was reached in each physical-time step. Optimum values ofthe two

parameters had to be found through many numerical experiments. For compatibility

between the methods of solution, the finite-difference method was aiso used to solve

Flügge's shell equations, modified to take into account fiow pressurization and basic

loads pre-stressing the shell. Thus, the second model in effect treated both steady and

unsteady types of viscous forces due to the annular fiow.

The new theory agreed quite weil with experiment in terms of the overall critical

flow velocities for various annular gaps of the systemj the shell had the same length in ail

cases considered. For sufficiently small widths of the annular gap, the unsteady viscous

effects of the annular fiow were found to be destabilizingj they became diminished as

the gap was reduced. This observation by no means ruleo out the 1Jossibility that the

unsteady viscous forces stabilize the system with a very nar~ow annular passage. This

can only be confirmed with further calculations and analysis.

6.2 Suggestions for Future Work

In the development of the first analytical mode!, it was shown that the use of an outfiow

model in the Fourier transform method is very essential, and that a realistic outfiow

mode! depends not only on the displacement, but also on the slope of the downstream

end of the shell(s). Therefore, the stability of the system of pinned-pinned coaxial cylin­

drical shells conveying fiuid should be re-examinedj it was previously studied without

the inclusion of any outflow mode!.

With the second mode!, only a limited set of calculations was presented: the effect

of varying annular gap on the overall stability of the system for a certain length of the
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of varying annular gap on the overall stability of the system for a certain length of the

shell. Once computing resources are available, it is important to study such an effect

for a wide range of shell lengthsj in addition, the possibility that the unsteady viscous

effects are stabilizing for the system with an extremely narrow annular passage should

also be investigated. There is an important numerical aspect of the model, which should

be considered in future work as weil. This is particularly concerned with the compu­

tational domain of the annular region: the effect of varying the parameter controlling

the concentration of nodes in the vicinity of large gradients (physical walls), of varying

the number of nodes in the radial direction, and of varying the number of nodes in the

axial direction. Furthermore, ail calculations in Chapter 5 were carried out with a fixed

mesh, in which the coordinates of the nodes (i.e. locations of flow variables) remains

unchanged even if the shell is in motion. In order to use a more realistic mesh, which

continuously deforms with the moving shell, further research needs to be done on how

to re-evaluate the coefficients of the flow variables in the tridiagonal systems of linear

equations (in the factored AD! method) without substantially increasing the amollnt

of computing time required. Once the model is completely validated and possibly irn­

proved, it is worthwhile to undertake similar studies of the unsteady viscous effects on

systems of coaxial shells with other boundary conditions, such as clamped-clamped and

pinned-pinned.
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Table 2.1

Comparison between natura! frequencies of a cantilevered shell, as measured by Gill

(1972) and as calculated by Sharma's (1974) sextic approximation and by this theory

with different numbers of admissible functiom; M, for different circumferential and axial

mode nwnbers, n and m, respectively.

n Experiments or Natural Frequencies (Hz)

Theory m= 1 m=2 m=3 m=4

Gill (1972) 293.0 827.0 1894.8 -
Sharma (1974) 318.0 1006.4 2356.5 3882.3

2 M=4 312.4 953.3 2246.7 3818.3

Present M=6 312.0 946.3 2225.8 3734.7

Theory M=8 311.8 942.9 2214.7 3701.7

M = 10 311.6 940.9 Z207.9 3683.4

Gill (1972) 760.0 886.0 1371.0 2155.0

Sharma (1974) 769.7 927.7 1504.2 2403.6

3 M=4 755.5 906.5 1461.7 2361.9

Present M=6 755.4 905.0 1454.9 2331.6

Theory M= 8 755.4 904.3 1451.2 2318.2

M= 10 755.4 903.8 1449.0 2310.6

Gill (1972) 1451.0 1503.0 1673.0 2045.0

Sharma (1974) 1465.3 1523.3 1726.1 2148.5

4 M=4 1438.3 1494.6 1693.1 2116.5

Present M=6 1438.3 1494.1 1690.9 2103.8

Theory M=8 1438.2 1493.8 1689.7 2098.4

M= 10 1438.2 1493.7 1688.9 2095.4
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Table 2.2

Comparison between critical flow ve!ocities Üie of a cantilevered shell, as calculated

by Paidoussis and Denise (1972) and by the present theory with different integration

stepsizes Doa, for different circumferential mode numbers n and three different flow

modelsj the axial mode number m shown in each case is associated with instability.

Critical Flow Velocity, Üie

n Model Present Theory Païdoussis &

Doa = 4.0 m Doa = 2.0 m D.a = 1.0 m Denise (1977.)

1 0.911096 2 0.890955 2 0.890971 2

1 2 1.095842 2 0.980529 2 0.980665 2 0.959

3 1.066014 2 0.974488 2 0.974496 2

1 0.374694 2 0.367785 2 0.367785 2

2 2 0.475056 2 0.420881 2 0.420882 2 0.452

3 0.456199 2 0.418705 2 0.418705 2

1 0.405467 3 0.406670 3 0.406670 3

3 2 0.423276 3 0.466205 3 0.466203 3 0.524

3 0.453574 3 0.467168 3 0.467168 3
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Table 2.3

Comparison between critica! flow velocities Ü" of a cantilevered shen, as caIculated

by Pa'idoussis and Denise (1972) and by the present theory with different Integration

domains (-z, z), for different circumferential mode numbers n and three different flow

modelsj the axial mode number m shown in each case is associated with instability.

Critical Flow Velocity, Üi, -
n Model Present Theory Païdoussis &

(-150,150) m (-200,200) m (-250,250) m (-300,300) m Denise (1972)

1 0.890971 2 0.890955 2 0.890948 2 0.890945 2

1 2 0.980526 2 0.980529 2 0.980534 2 0.980539 2 0.959

3 0.974459 2 0.974488 2 0.974502 2 0.974509 2

1 0.367808 2 0.367785 2 0.367774 2 0.367769 2

2 2 0.420876 2 0.420881 2 0.420888 2 0.420894 2 0.452

3 0.418670 2 0.418705 2 0.418721 2 0.';~8730 2

1 0.406738 3 0.40f,670 3 0.406639 3 0.406622 3.-
3 2 0.466193 3 0.466205 3 0.466218 3 0.466230 ~ ii 0.524

3 0.467105 3 0.467168 3 0.467198 3 0.467214 3 .-
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Table 2,4

Comparison between critical flow velocities Üi , of a cant.ilevered shell, as calculated

by Païdoussis and Denise (1972) and by the present theory with different number of

admissible functions M, for different circumferential mode numbers n and three different

flow modelsj the axial mode number m shown in each case is associated with instability.

Critical Flow Velocity, Ü;,

Model Present Theory I p "cl . &n aI 0':':)518

M=4 m M=6 m 1'.1=8 m M=lO m Denise (1972)._-
1 0.890955 2 0.885828 2 0.883633 2 0.882477 2

,-
1 2 0.980529 2 0.970659 2 0.96672g 2 0.964672 2 0.959

3 0.974488 2 0.965498 2 0.961962 2 0.960117 2
-

1 0.367785 2 0.366099 2 0.3652JO 2 0.364690 2

2 2 0,420881 2 0.419166 2 0,418412 2 0.418124 2 0.452

3 0.418705 2 0.417027 2 0.416304 2 0.416019 2

i 1 0.406670 3 0.405667 3 0.405351 3 0.405209 3

3 2 0.466205 3 0.464739 3 0.465733 2 0.467141 2 0.524

3 0.467168 3 0.463316 3 0.464220 2 0.465516 2



141

Table 2.5

The effect of the Dut-flow model used in the calculations on Üi'; the calculations were

conducted for n = 2, with boa = 4.0, (-z, z) = (-200,200), M = 4, l = 3.

-'-'
Madel Ùic Type of Instability

0 0.1311 Divergence

0.9505 Coupled-mede flutter

1 0.3747 Single-mode flutter

2 0.4751 Single-mode flutter

3 0.4562 Single-mode flutter
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Table 2.6

The effect of length f. on the critical flow velocity, Ü,,, for different circumferentir.1 moùe

numbers n and three different flow models; here, ~a = 4.0, (-z,z) = (-200,200),

M = 4. An asterisk signifies that ai' < 0.1.

1

n Madel Critical Flow Velocity, Üi ,

f. = 2.0 f. = 3.0 f. = 4.0 e= 102

1 0.8530 0.9111 0.8623 0.8911

1 2 0.8966 1.0958 • 0.6570

3 0.8996 1.0660 0.8992 1.0134

1 0.3505 1.3747 0.3618 0.3642
.~

2 2 0.3737 0.4751 • 0.2090

3 0.3847 0.4565 0.4452 0.3853
-

1 0.4164 0.4054 0.4082 0.4189

3 2 0.4927 0.4233 • •
3 0.4726 0.4536 0.4197 •
1 0.4445 0.4526 0.4752 •

4 2 • 0.5484 • •
3 0.4774 0.5273 1.0221 •
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Tahle 2.7

The effect of varying the length-to-radius rati,) of a cantilevered shell on the critical

flow velocity, Ü;c> for different circumferential mode numbers n and three different flow

modelsj the axial mode number m shown in each case is associated with instability. The

calculations were conducted with ~ii, (-z, z) = (-200,200), M = 4 and R. = 3.0.

n Lia Critical Flow Velocity, Üic

Model1 m Model2 m Model3 m

5 1.552088 2 1.605623 2 1.608831 2

1 10 1.060300 2 1.145292 2 1.139270 2

15 0.794790 2 0.882841 2 0.877991 2

20 0.625826 2 0.705826 2 0.702593 2

5 0.765242 2 0.827623 2 0.823093 2

2 10 0.452692 2 0.510982 2 0.508065 2

15 0.327084 2 0.378561 2 0.376519 2

20 0.286602 2 0.345992 2 0.344017 2

5 0.493430 2 0.551185 2 0.547451 2

3 10 0.506881 2 0.519440 2 0.519359 2

15 0.365939 3 0.432463 2 0.430596 3

20 0.400745 4 0.459856 3 0.459928 3
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Table 2.8

The critical flow velocities, Üic> with n = 1-8 for the 1/10-gap systèm subjected to

interna! flow according to the inviscid and viscous (i.e., including steady viscous effects)

versions of the theory, with the axial ffi'lde number m involved in each case. Cases in

which stability is first lost by divergence, for a particular n, are marked by 1.

n Critical Flow Velocity, Üio

Inviscid Theory m Viscous Theory m

1 0.06899 2 0.06904 2

2 0.03107 2 0.03261 2

3 0.02772 3 0.03117 3

4 0.02705 4 0.03356 4

5 0.02990 5 0.03488 4

6 0.029111 1 0.04808 4

0.03115 1

7 0.034271 1 0.11065 4

0.03895 1

8 0.043591 1 0.41368 3

0.05185 1
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Table 2.9

The critical lIow velocities, Ü j " associated with n = 1-9 for the 1/10- and 1/HiO-gap

systems subjected to internaI lIow according to inviscid theory, with the axial mode

number m involved in each case. Cases in which stability is first lost by divergence, for

a particular n, are marb.;d liy t.

n Critical Flow Velocity, Üi,

.!.-Gap m l~O-Gap m10

1 0.06899 2 0.06439 2

2 0.03107 2 0.02657 1

3 0.02772 3 0.01565 1

4 0.02705 4 0.01739 2

5 0.02990 5 0.01881 3

6 0.02911\ 1 0.02093 4

0.03115 1

7 0.03427\ 1 0.02316 5

0.03895 1

8 0.04359\ 1 0.036621 1

0.05185 1 0.04423 1,2

9 0.05634\ 1 0.04645\ 1

0.06839 1 0.05855 1,2
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Table 2.10

The effect of varying the length-to-radius ratio on the overall critical flow velocity, Ü;~,

fOl the 1/10-gap system subjected to internal fiow, according to the inviscid and viscous

(Le., induding steady viscous effects) versions of the theory; the circumferential mode

number n associated with Üi~ is shown in each case.

Lia Critical Flow Velocity, Üi~

Inviseid Theory n Viscous Theory n

5 0.03484 5 0.03842 4

10 0.02827 4 0.03241 3

15 0.02242 3 0.02741 2

20 0.01956 2 0.02838 3

25 0.01895 2 " 0.02717 3

30 0.01869 2 0.02841 2
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Table 2.11

Critical annular flow velocities, Üoe , with different n for the l/lO-gap system, according

to the inviscid and viscous versions of the theoryj "8" stands for single-mode flutter,

"c" for coupled-mode flutter, and "D" for divergence. The identification of the mode

number m at instability for sorne of the results with dissipation (!Li #- 0) was not clear­

eutj henee, no value of m is given.

Inviscid Theory Viscous Theory Viscous Theory

(!Li = 0) (!Li = 0) (!Li = 5 X 10-3 )

n Instability Instability Instability

Üoe Type m Üoe Type m Ü" Type m

, 0.06672 8 4 0.06656 8 4 0.06508 8 4~

2 0.03429 8 3 0.00361 D 1 0.00361 D 1

0.0151 C 1 0.0151 C 1

3 0.02461 8 3 0.00288 D 1 0.00284 D 1

0.0102 C 2 0.0102 C 1

4 0.02534 8 4 0.00294 D 1 0.0086 C -

0.0108 C 1

5 0.02559 8 3 0.00306 C 1 0.0080 C -
6 0.02130 D 1 0.00208 C 1 0.0087 C -

0.02284 C 1

7 0.02650 D 1 0.00140 C 1 0.00173 C -

0.03000 C 1

8 0.03526 D 1 0.00107 C 1 > 0.1 C -
0.04179 C 1
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Table 2.12

The effect of steady viscous forces and structural damping on stability with n = l,

showing that they can be either stabilizing or destabilizing, depending on the gap size.

Gap Size, Critical Flow Velocity, Üo,

(b-a)/a Inviscid ViRCOUS (J.Li = 0) Viscous (J.Li = 5 X 10-3)

1/10 0.06672 0.06656 0.06508

1/2 0.10099 0.10272 0.10253
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Table 4.1

The effeet of annular fiuid on the critical internaI fiow velocity, Üi~' for different lengths

of a cantilevered silicone rubber sheIJ. The fiuid is air.

(b-a)la Critica! Flow Velocity, Üi~ (mis)

Lia = 8 Lia = 7 Lia = 6

1.5 63.71 ± 2.66% 70.30 ± 1.17% 78.03 ± 0.60%

00
1

63.25 ± 1.71% 70.11 ± 0.99% 78.08 ± 0.47%
'-----..
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Figure 2.2: C~roparison of the in vacuo natural frequencies calculated by this theory

with Gill's (1972) measurements and Sharma's (1974) sextic-approximationcalculationsj

the shen parameters are given in Section 2.4.2. (a) n = 2; (b) n = 3; (c) n = 4.
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perturbations beyond the free end of the shellsj Model 0 effective!y corresponds to no

mode! at ail. ç == xlL = 1 corresponds to the free end of the shell; ç = l(== L'1L) is

the point where perturbations are assumed to vanish.
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Figure 2.5: Typical Argand diagram illvolving the real, Re(f1i), and imaginary, Im(f1i}'

parts of the dimensionless eigenfrequencies of the so-called l/lG-gap system, consisting

of a cantilevered steel shell surrounded by quiescent annular f1uid (water) while con­

veying internai water f1ow, e.:: the dimcnsionless f10w velocity Vi is variedj the system

p :.rameters are given in Section 2.5.1. These ca1culations were carried out for n = 2,

m =1,2,3; - - - - , inviscid theoryj __ , with steady viscous terms taken into account.
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Figure 2.6: The dimensionless critical flow velocity Üic of a cantilevered steel shell,

surrounded by quiescent annular fluid (water) while conveying internaI water flow, as a

function of n for two different annular gaps; the system parameters are given in Section

2.5.1. These calculations were done with the inviscid theoryj __ , f1.utter boundaryj

- - - - ,divergence boundary (for the modes in which stability is first lost by divergence).

Note: "l/k-gap" system means OM where (annular gap) / (inner-shell radius) = l/k.
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Figure 2.7: The e!fect of L/a on the overall (Iowest) critical dimensionless Dow velocity,

Üi~' for the l/lG-gap system conveying internai water Dow and quiescent annular Duid

(water); the circumferential mode number, n, associated with first loss of stability is

shown in the figure. 0, inviscid Dow; 6., with steady viscous e!fects taken into account.
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Figure 2.8: Typical Argand diagram for the dimensionless eigenfrequencies ni of the
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the dimensionless f10w velocity Ü. is varied; the system parameters are given in Section

2.5.1. These calculations were carried out for n = 2, m = 1,2, 3i - - - - , inviscid theoryi

-- , with steady VisCOUB effects t~en into account.
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Figure 2.9: The effect of structural damping (variable l'i) on stability of the l/lQ-gap

system with annular water flow aècordillg to the viscous version of the theory, ehowing

the eIli<::ge:;;ce of a minimum Ü•• for flutter, at n = 5 when Pi i Oi - - - • , di'lergence
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Figure 2.10: The effe<:t of LIa on the overal1 (lowest) critical dimensionless llow velocity,

V:c' for the I/1D-gap system conveying annular water llow and quiescent internal11uid

(water)i the circumferential mode number, n, associated with first loss of stability is

shown for each value of LIa for which calculations were conducted. - - - - , divergence

boundarYi -- , llutter boundary. The viscous results were obtained with /li =5 x 10-3•
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Figure 2.11: The effect of annular gap size on the critical annular flow velocity Üa,

according to the inviscid theory as n is varied. In cases where divergence precedes

flutter. the divergence boundaries ( - - - - ) are also shown.
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to interna! and annu!ar llows according ta the inviscid theory.
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3

Figure 3.2: The overall (Iowest) critical dimensionless annula.! flow velocity, Ü:c ' in the

fo-gap system as a function of the dimensionless length of the shell Lia, with the

circumferential mode, n, associated with first loss of stability indicated in the figure;

O. inviscid flowj 6., with steady viscous e!fects taken into account. The shell is clamped

at both ends and the inner fluid is stagnant.
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Figure 3.3: The overall critical dimensionless annular f10w velocity, Ü;" in the la-gap

system as a function of the dimensionless wall-thickness of the shell ho/a, with the

circumferentia! mode, n, associated with first loss of stability indicated in the figure;

0, inviscid f10Wj f:>, with steady viscous effects taken into account. The shell is clampcd

at both ends and the inner f1uid is stagnant.
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Figure 3.4: The ovenU critical dimensionless annular f10w velocity, 0:., as a function of

the dimensionless annular gap (b - a}/a, with the circurnferential mode, n, associated

with first loss of stability marked in the figurej 0, inviscid f10Wj 6, with steady viscous

effeets taken into account. The shen is c1amped at both ends and the inner fluid is

stagnant.
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Figure 3.5: The critical dimensionless annular flow velocity, V.c, in the w-gap system

as a function of the circumferential mode. nj -- , flows in the same directionj - - - '. ,

flows in opposite directions. The shell is clamped at both ends and the inner flow

velocity is constant (Vi = 0.01).



169

8

o U - 01-

6

2

" u = U1 0

~~~
e. -e --e--e _-e. -e· -e __A

o
o 2 4, 6 8 10

Circumferential mode, n

Figure 3.6: The critical dimensionless annular flow velocity, Üoc> in the fa-gap system

as a. function of the circumferential mode, n, for two different inner flow velocitiesi

0, Üi = 0; l:!., Üi = Üoi - - - - , divergence boundaryj -- , flutter boundary. The

divergence boundaries for the two values of Üi are generally coincident. The shell is

cantilevered.
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Figure 3.7: The overall critica1 dimension1ess annular flow velocity, Ü;" in the 1~­

gap system as a function of h;/a for two different shell 1engths, with the circumfer­

entia1 mode, n, associated with first 1055 of stability marked in the figurej O,Lla =

5; l:::., LIa = lOi - - - -, divergence boundaryj -- , flutter boundary. The shell is

cantilevered and the inner fluid is stagnant.
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Figure 3.8: The overall critica! dimensionless annular How velocity, Ü;" as a function of

hi/a for two different annularwidths (L/a = 10), with the circumferential mode, n, asso­

ciated with first loss ofstability marked in the figure; 0, (b-a)/a =1/5; 6, (b-a)/a =

l/lOi - - - - , divergence boundarYi -- , Hutter boundary. The shell is cantilcycrcd

and the inner fluid is stagnant.
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(a)

(b)

Figure 4.3: Photographs of a silicone rubber shell inside a plexiglas eylinder with two

mounted fotonie sensors: (a) side view, (b) top view.
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Figure 4.4: Photograph of the entire experimental setup.
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Figure 4.5: Photograph of the free-end cross section of the shell fiuttering in n = 2.
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Figure 4.9: Cross section of the shell vibrating in (a) n = l, (b) n = 2, (c) n = 3, and

(d) n = 4.
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Appendix A

Expression for H km (Œ)

Hkm(ii) was defined in Equation (2.65) as

where k and m are indices such that 1 ::; k, m ::; M, and

r .Hi(ii) = Jo 'l>i(Ç) .,"e dç.

In the above integral, 'Pi(Ç) are beam eigenfunctions, which have a general form

'l>i(Ç) = (coshAiÇ - cos AiÇ) - O"i(sinhAiç - sin AiÇ),

and satisfy the equation

"" 4'l>j (ç) = Ai'l>i(Ç),

(A.i)

(A.2)

(A.3)

(A.4)

(A.5)

where primes denote differentiation with respect to the argument of the function, ç; for

a cantilevered beam, the constants O"i are

. _ cosh Ai + cos Ai
0", - • hA' A 'sm i+ sm i

and the eigenvalues Ài are the roots of the transcendental equation

:~.,
.;,;i;:

cosh Ai cos Ai + 1 = O.

By successive integration by parts, it is found that
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(A.6)

(A.7)
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and using the boundary conditions of a cantilevered beam, Le. ,

!l?j(O) = 0, !l?j(l) = 2(-1)j+1,

!I?~(O) = 0, !I?~(1) = 2À'0"'(-1);+1J J ,

!I?~ (0) = 2ÀJ, !I?~ (1) = 0,

!I?~' (0) = 2ÀJO"j, !I?~' (1) = 0,

gives the following expression for Hj(œ):

Hj(ô) = À1 ~ ô 4 [ô2e'~(iô - ÀjO"j)( _l)j+1 + Àj(iô + ÀjO"j)] . (A.8)
J

Tt is noted that Hj(œ) becomes undefined when

- -'-±' ±.,
Q = Ct = "',-, SA;' (A.9)

(A.10)

because the right-hand side of (A.8) has the form a/ai in such cases, applying L'HôpitaI's

mIe to Equation (A.8) yields

Hj(ô') = 2(~')3 {e'~o [(ô')3 + i(>'jO"j - 3)(ô')2 + 2ÀjO"jôo
] (_1);+1 - iÀn.



Appendix B

Out-Flo"v Models: Description

As a note, the analyses in Sections B.1 and B.2 are related to the Fourier transform

method in Chapter 2 and to the finite-difference method in Chapter 5, respectively.

B.l In the Fourier Transforrn Method

B.l.! Introduction

These "models" effectively prescribe the manner in which flow perturbations beyond

the free end of the shells decay to naught, by dissipation and diffusion. Another in­

terpretation of these flow models is to imagine that beyond the free end there exists a

"collector pipe" (Shayo and Ellen 1978), which at its upstream end generally moves in

synchronism with the shell free end so as to "colleet" the fluid and quieten it down over

a certain distance. However, the first interpretation is considered to be the correct one.

The functional form of each model is given by Rm(ç), defined over 1 ::; ç ::; e,
where e is the location at which flow perturbations vanish. Rm(ç) may be considered

as an extension of the beam eigenfunctions (the admissible functions), <pm(E), beyond

ç = 1. In the process of obtaining the generalized fluid forces acting on the shells

(Chapter 2), another function Nkm(ii) closely related to Rm(E) was defined [Equation

(2.66)],

J"'g;:
.t.;i."

(B.l)
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where

Hk(-ii) = f ~k(Ç) e-i6e d{, Nm(ii) = t RmW e'6ede· (B.2)

ft should be recalled that Hk(-a) was completely determined in Appendix A; thus,

what still remains to be done in this appendix is to evaluate N m ( a) corresponding to

each flow mode\.

B.1.2 Model 0: No Model

This is a trivial mode! in which flow perturbations are assumed to go to zero immediately

upon exit From the shell (Figure 2.3); Le., Rm(Ç") = 0 and hence Nm(a) = o.

B.1.3 Model 1: Straight Decay Model

• In this model, first introduced by Shayo and Ellen (1978), flow perturbations are

considered to decay Iinearly between 1 and t. The model was originally visual­

ized as a collector pipe, unconnected to the shell, yet following its motion. The

characteristic function of this model thus must satisfy the boundary conditions:

Rmwl = ~m(l),e=! Rmwl = 0,e=1 (B.3)

From which Rm(Ç") takes the form

{
~m(l)(e - {)/(e - 1)

RmW=
o

for 1 ~ {~e,

for ç > e.
(BA)

=

• Nm(a), defined in (B.2), can easily be found by integration by parts

Nm(ii) = ~"'-(~~ t (e - {) e'6ede,

~m(l~ {ei6 [l+iii(e-l)]- e'61}.
(e -1),,2

For ii = 0, L'Hôpital's rule gives

1
Nm(O) = 2~m(I)(e - 1).

(B.5)

(B.6)

Since the value of lis artificially imposed, it is of interest to evaluate Nm ( a) as l

approaches 00,

l~~Nm(ii) = l~~ ~~~1) {e
i6

[te ~ 1) + iii] - (ee:
1

1)} = ~m(I)(~)ei"j (B.7)
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in !inding limt_oo Nm «i), attention has been given to the fact that the term é,t

is a harmonie function, related to trigonometric functions by Euler's identity,

ei~t = cos Qi + i sin &l,

and hence le,otl = 1.

B.l.4 Model 2: Curved Decay Model

(B.S)

(B. ID)

(B.U)

• In Model 1 there exists a discontinuity in the slope of the fluid flow at E = 1.

To improve this, Païdoussis, Luu and Laithier (1986) have refined matters by

requiring that fiow perturbations have the same slope across E= 1. Thus, three

boundary conditions need be imposed on Rm{E):

Rm(ô) [ = ifim(I), R;"(ô)! = ifi;"(1), Rm(ô)1 =o. (B.9),=1 ,=1 ,=t

Using a quadratic polynomial fit, Rm{E) is found to be given by

RmW = ifim (I){I- ~~=:?:}+ifi;"(I){(E-l)-\~-=-~n
for 1 ::; E::; l and, as before, Rm(E) = 0 for E> l .

• For the evaluation of Nm(li) , it is convenient to define the following functions

No(ô) = l e'o, dE

Nl(Ô) = l(E-l)e'O'dt; = ~2 {[I-iô(l-l))e'°t - e'''} , (B.12)

N2(ô) = l(t;-1)2 e'O'dE= ~3 {[2i+2ô(l-1)-iô2 (l-I)2]e,ot-2ieiO
}. (B.13)

For li = 0, applying L'Hôpita!'s rule to (B.1l)-(B.13) yields

No (0) = (l- 1), (B.14)

NI (0) - ~(l- 1)2, (B.15)

N2(0) = !{l- 1)3. (B.16)
3

Substituting (B.I0) into the second equation of (B.2) and taking (B.1l)-(B.13)

into account results in

(B.17)
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The limiting value of Nm(a) as l approaches 00 is given by

l~~ Nm(a) = 'l'm(l) l~~{No(a) - (:~(~~2 } + 'l'~(1) l~~ {N1(a) - ~~~))}

()( i) i" 1 ( )' {. () N2(a)}= ''l'm 1 -=- e + 'l'm 1 hm NI a - ( )'
Cl< 1_00 P. - 1

From Euler's identity in (B.8), it is seen that

(B.1S)

(B.23)

(B.25)

(

c

Hm (P. - l)ei"l = Hm (P. - 1) cos aP. + i lim (P. - 1) sin aP. (B.19)
l_oo l-+oo l_oo

does not exist, thus leading to the non-existence of the limit on the right-hand

side of (B.18), which in turn gives rise to the non-existence of liml_oo Nm(a). The

resolution of this will be discussed in Section B.1.6.

B.l.5 Model 3: Refined Curved Model

• This is a refinement to Model 2, by requiring further that the slope of the per­

turbation curve also vanish at e= l, thus imposing a total of four boundary

conditions on Rm(e),

Rm(e)1 = 'l'm(1), R~wl = é1i~(1), Rmwl = 0, R~wl = O. (B.20),=1 ,=1 ,=1 ,=1

Renee, with a cubic polynomial fit, Rm(e) is obtained, Rm(e) = 0 for e> land

Rm(e) = (~:(:?3 {2e - 3(l+ 1W + 6p.e +i.2 (P' - 3)}

+ (~:(:?2 {e - (2P.+ ne +P.(P.+ 2)e - p'
2

} for 1 :5 e:5 P.. (B.21)

• As done for Model 2, the fol1owing functions are defined

No(a) = {i'" de = i~ {eili1
- eili } , (B.22)

N1(a) = {e eili , de = ~2 {eilil(l_ iaP.) - i"(l - ia)} ,

N2(a) = {e eili ' de = ~3 {eilil [2(i + aP.) - ia2
p'

2
] - eili [2(i +a) - ia2

]} , (B.24)

N3(a) = {e i'" de = ~4 {eilil [a2p'2(3 - iaP.) + 6(iaP. - 1)]

- eili [a2(3 - ia) +6(ia - 1)]},
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(B.31)

201
~.".,.

and for a = 0, L'Hôpital's rule gives
"~~..

No(O) = (e-1), (B.26)

Nl(O) = ~(e - 1), (B.27)

Nz(O) 1 3
(B.28)= :l(e - 1),

N3(0) = !(e4
- 1) (B.29)4 .

Final\y, Nm(a) for Model 3 is determined from (B.2), togethcr with (B.2l) and

(B.22)-(B.25),

Nm(a) = (~:(N3 {2N3(a) - 3(e+ l)Nz(ii) + BeNl(ii) + eZ(e - 3)No(ii)}

qi' (1) { • • • Z • }
+ (e: 1)2 N3(a) - (2t+ l)Nz(ii) H(e+ 2)Nl(ii) - e No(ii) .

The limiting value of Nm(a) is found the same way as was donc in Equation

(B.18), namely

Jim Nm(a) = qim(l)(~)eili
l-oo a

",' () l' {N3(ii)-(2e+1)NZ(ii)Hlt+2)Nl(a)-eZNo(ii)}
h'm 1 l':'~ (e - 1)2 ,

which does not cxist due to the non-existence of liml~oo eeilil. Further discussion

on this matter will be given in the immediately fol\owing section.

B.1.6 Remarks

A comparison of Equations (B.7), (B.18) and (B.3l) shows that the non-existence of

liml~oo Nm(a) in Models 2 and 3 is attributed to the presence of the term(s) associated

with CP:"(l). Since it is the dependence on CP:"(l) that makes Models 2 and 3 more

realistic than Modell, eshould be taken to be finit. so as to produce physically reason­

able results. Further discussion on the magnitude of ewas given in Chapter 2 (Section

2.4.4.2).
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B,2 In the Finite-Difference Method

The aim of this Section is to flnd the expressions represented by the constants A and B

in Equation (5.130) [Chapter 51. Here, for practical purposes, only Models 1-3 will be

considered.

It is noted that the characteristic functions Rm(ç) of fiow models as were found

in Section B.1 could ail be expressed in the following general form

(B.32)

where Rm(ç) generally has a non-zero value for 1::; ç ::; land,

• for Model 1,

• for Model 2,

t- ç
t- l'

Cl(ç,l) = 0; (B.33)

• for Model 3,

= {(ç _ 1) _ (ç - 1)2}.
(l - 1) , (B.34)

Cl(ç,t) = (l! 1)3{2e-3(l+1)e+6lç+t2(t- 3)},

C2(ç,t) = (l:1)2{e-(2l+1)e+t(l+2)ç-t2}.

(B.35)

If V (ç) stands for a component of the perturbation velocity, then V (ç) can also

be written in the form of Equation (B.32) for 1 ::; ç ::; l,

V(ç) - Cl(ç,t)V(l) + C2(ç,l)V'(l)

- Cl(Ç,t)Vi',i + C2(ç,l) [Vi"; ~t-l';]

= _ [C2(ç,t)]V" . + [c (e t)+ C2(Ç,t)]v., .6ç • -1,1 1 " 6ç' ,1> (B.36)

where V (1) has been replaced by Vi',i, and II' (1) by the two-point backward difference

approximation, with i' denoting the last spatial location of V in the computational

domain for a given i; thus, i' = N for V == V., and i' = (N +1) for V == Vr or Vo• Since
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the grid is uniform in the ç-direction, the ç-coordinate of 11,0+1,; heing just outside the

domain (Figure 5.2) would he ç = e = (1 + D.ç). According to Equation (B.36),

or

where

'V,o+1,; = A'V.o_1,; - B'V.o,;, (B.37)

(B.38)
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Appendix C

Definition of [M], [C] and [K]

The following are the elements of [M], [Cl and [K].

Matrix [MI

M I,I 2b M 2,2 < MS's < + (1) MS,6 (1)
km = éi km; km = fJk:mi km = ukm qkmi km = fkmi

The remaining elements are zeros.

Matrix [e]

e S,S = 2q(2), e S,6 = 2r(2), e6,s - 2 (2), e6,6 - 2t(2)
km kml km km' km - Skm' km - km"

The remaining elements are zeros.

Matrix [K]: [K] = [KIl + [K2] + [Ksi

Each constituent part of [KI has a different physical basis. Matrix [KI] results

from the strain energy associated with the standard Flûgge's shell theory; matrix [K2)

accounts for the free-end boundary conditions, whereas matrix [Ks] represents a change

in the effective stifi'ness of the system due to steady viscous efi'ects of the Rowing Ruid.

The elements of [KI] are:

K:i~ = -!n(l + ki)(l- Il;)e;hm + etdkmi K:i:" = !n(l + lIi)e;bkmi

K:i::" = {IIi - !n2ki(l-II;)} e;bkm - kietdkmi K~i~ = -!n2 (1 + lIi)e;Ckmi

K~i:" = -n20km + Hl + 3ki)(l - lIi)e;Ckm; K;~ = !nki (3 - lIi)e;Ckm - nOkm;

K~i~ = {!n2ki(l- IIi) - IIi} e;Ckm + kief>':"Okmi K~i:" = K;i::"
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K:i.~ = -[ki(n2 - 1)2 + kiét )..~, + 1]8km + 2k;n2é;Ckm + qi~; K:i.: = ri~,;

Kti.~ = -!n2(1 + ko)(l - vo)é;bkm + é~dkm; Kti.t;" = !n(1 + vo)é;bkm ;

Kti.s", = {Vo - !n2ko(1- Vo)} é;b - koé~dkm; K~i.~ = -~n(1 + Vo)é;Ckm;

K~k~ = -n28km + ~(1 + 3ko)(1 - lIo)é~Ckm; K~k~ = !nko(3 - lIo)é~Ckrn - n8krn;

K6,3 _ (3). K6,4 _ {l 2k (1 _ ) _ } 2 + k 4,4 < • K6,5 }(5,6
lkm - Skm1 lkm - 2'n 0 lIo lIo éoCkm oéo .... kmUkml lkm = lkm;

The remaining elements are zeros.

The elements of [K2] are:

KI ,2 _ 2. KI •3 _ 2 . K2,1 - ln 2(1 )12km - -lIinéiekm.I 2km - - lIié i ekml 2km - 2' Ci -IIi km;

Kii.~ = -!é;(l + 3ki )(1- v;)/km; Kii.~ = -~nkiéHl - Vi)/km;

K:i.;" = -!n2é;ki(1- Vi)/km; K:i.;' = nk;é; [Viekm - H3 - Vi)/km];

K3 ,3 2k 2 [ (2)1 l' K4,5 2 K4,6 22km = n iCi lIiekm - - IIi km 1 2km = -von€oekmi 2km = -vo€oekmi

K;i.s", = -ïnkoé;(1- Vo)lkm; K;i.~ = -~n2é;ko(1- Vo)/km;

K;i.t;" = nkoé; [Voekm - H3 - Vo)/km]; K;i.s", = n2koé; [Voekm - (2 - vo)/km].

The remaining elements are zeros.

The elements of matrix [K31are:
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56 ["" • ] 64 2["" " ]K3km = -n A30akm + B308km ; K3km = ~o ASoCkm + B30Ckm j

6,5 _ 5,6. 6,6 _ 2 ["" " ] 2 ["" " ]K 3km - K 3km , K3km - 00 AloCkm + B10Ckm - n A30Ukm + B305km .

The remaining elements are zeros.

In the above matrix elements, Â's and Ê's are constants defined in (2.100), while

t' t ç 'l?k(Ç) 'l?m(Ç) dç,ukm = o 'l?k(Ç) 'l?mW dç, âkm, =

bkm = t <I>~(ç) 'l?;"W dç, bkm = f ç <I>~(Ç) <I>;"(Ç) dç,

Ckm = f 'l?k(Ç) 'l?:;'W dç, êkm = f ç'l?k(ç)'l?:;'(ç)dç,

dkm = f 'l?~(ç) 'l?:W dç, â.km = f ç'l?~(Ç)'l?:(Ç)de,

<:

al! of which are evaluated in Appendix D, and

f 'l?k(Ç) 'l?m(Ç) de = {
o if kt- m,

1 if k = m,

c

where !km has been used to denote emk for the sake of c1arity, and 91 m (ç) are the

eigenfunctions of a cantilevered beam,

with

e= x/L, cosh ÀmCOsÀm+1 = 0, <Tm = (coshÀm+cOsÀm)/(sinhÀm+sin Àm).

In the above expressions, primes denote differentiation with respect to the argument of

the function, ç.
Yector {X}

It should be noted that, since k and m are indices such that 1 ::; k, m ::; M, each

element of [M], [CI, or [K] is in effect an M x M submatrix of scalars, and each element

of {X} is a subvector of M (scalar) elements.



Appendix D

IntegraIs Involving Bearn

Eigenfunctions

A number of definite integrals involving beam eigenfunctions were encountered in Chap­

ter 2 (Section 2.3.4), as the extended Galerkin method was utilized to solve the equations

of motion. Such integrals were denoted by the following constants in Appendix C:

akm = t d<l?k <l? d'; âkm = { .; <l?k <l?m d';,o d'; m ,

bkm = { d<l?k d<l?m d'; hm = { .; d<l?k d<l?m d';
o d'; d'; , o d'; d'; ,

t <l? d
2

<l?m d'; êkm
inl d

2
<l?m

Ckm = o k d';2 ' = o Ç<l?k7 d';,

dkm = inl d<l?k d
3

<l?m d'; dkm = { .; d<l?k d
3

<l?m d';
o d'; d';3 ' o d'; d';3 '

where ç= xlLis a dimensionless length variable, delined in (2.55).

The above integra!s will be evaluated using the same procedure as introduced by

Gregory and Paidoussis (1966a)j nevertheless, Sharma's (1978) notation will be adopted

here. Consideration is now given to two eigenfunctions 'h(>'kÇ) and 'Itm(amç), satisfying

the relationship

(D.I)

where primes denote differentiation with respect to the arguments of the functions.

Here, it should be pointed out that, although the delinition of primes in this appendix
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is the same as that in the previous appendices, the current arguments of the functions

if>m and Wm are different: ÀkE for if>m and ClmE for Wm (in the previous appendices, E

was the argument of if>m). By integration by parts, it follows that

{
3 ',T.'" , 2;F..",T." ,2 ;r..1II.T.' ,3;r.. ,Tt }i l

= c>miJ?k"'m - "kC>m"'k"'m + "kC>m"'k "'m - "k"'k"'m 0'

{
3 m' ,T." \ 2 m",T,' \ 2 ;F.III .T. \ 3m 'T.//I} Il= C>m"'k"'m - "kC>m"'k"'m + "kC>m"'k "'m - "k"'k"'m 0'

(D.2)

(D.3)

(DA)

(D.S)

(D.6)

(D.7)

(D.S)

(D.9)

When Wk is replaced by if>k, both sides of Equations (D.2-D.9) identically vanish

and hence the values of the integrals cannot be calculated from these equations. For

such a case, the limiting procedure outlin<'d by H.ayleigh (1945) will he usedj the idea

here is that by letting Clk = Àk + oÀk then as oÀk approaches zero, Wk approaches if>k.

In this procedure, Wk and its derivatives are anproximated as

(D.lO)



209

(D.12)

(D.Il)

(D.13)

(D.14)

1It~ == 1It~(>'k + 5>'k) '" i1i~ + (~~:) 5>'k,

1It~ == 1It~(>'d 5>'k) '" i1i~ + (~~:~ 5>'k,

1It~' == 1It~' (>'k + 5>'k) '" i1i~' + (~~:) 8>'k,

where terms of higher powers of 8À k than unity are neglected.

Substituting the above approximations into Equations (D.2)-(D.8) and evaluating

the resulting equations as 8Àk approaches zero gives

ri 2 {I/I 2 1 //1 '" Il 2}l l

4>'k Jo i1ikdç = 3i1ikilik + Ç>'kilik - 2ç>'k ilikilik - i1ikilik + Ç>'k(i1ik) 0'

{' {2i1i~iJ?~' - (iJ?~)2}1:, (D.15)2>'k 0 iJ?kiJ?kdÇ -

f " Il" '2 11/2 ' 111114Àk 0 qik qik dç - {2ç>'kiJ?kiJ?k - Ç>'k(iJ?k) - Ç>'k(iJ?k) + iJ?kiJ?k + iJ?kiJ?k} 0' (D.16)

101 , ", r ,,,, " 2 2'''''' }II (D.17)4>'k 0 iJ?k iJ?k dç = t 2Ç>'kiJ?kqik - Ç>'k(iJ?k) - Ç>'kiJ?k + CJ!kiJ?k + iJ?k iJ?k 0'.,...

"""
8>'% t ç iJ?% dç { [ ", '''] 2 2 [2 ")2 '''']= 2Ç>'k 3iJ?kqik - iJ?kiJ?k + ç >'k iJ?k + (iJ?k- 2iJ?kiJ?k

Il1 2 " (D.18)+ 4(CJ!k) - 6qikiJ?k} 0'

8>'~ t ç (qi~)2 dç { [' ""'] 2 2 [ '2 ("')2 "]= 2ÇÀk 3iJ?"iJ?k - iJ?kiJ?k + ç >'k (iJ?kl + iJ?k - 2iJ?kiJ?k
'0

[1Il 2 1 lit (D.19)+4(iJ?k) - 6iJ?kiJ?k } 0'

f " { [ , ""'] 2 2 [ " '2 "')2]8.\~ 0 ÇilikiJ?kdÇ = 2çÀk iJ?kiJ?k + iJ?kqik + ç >'k 2iJ?kiJ?k - (iJ?k) - (<Pk

Il, 1/1 2 ./1 2 (0.20)+ 16qikiJ?k - 9iJ?k - 9('l.>k) } 0'

8À~t ç iJ?~ iJ?~' dç = {2ç>'k [qi~iJ?~ + i1i:;'qik] + ç2>.~ [2qi~qi~' _ (qi~)2 - qi%]

Il" '2 11/2 (0.21)+ 16'!>kiJ?k - 9(qik) - 9(qik) } o'

.""" For a cantilevered beam, the eigenfunctions are known to be
" 'i,
.QI>

qim(Àmç) = (cosh>'mç - cos>'mç) - um(sinh>'mç - sin>'mç), (0.22)
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where the constants <Tm are defined as

cash >'m + cos >'m
lTm = sinhAm+sin Am '

and the eigenvalues >'m are the roots of the transcendental equation

cash Am cos Am + 1 = O.

With the boundary conditions of a cantilevered beam,

<lim(Amç) 1<=0 = 0, <lim(>'mç) 1<=1 = 2(-l)m+l,

<li;" (Amç) 1<=0 = 0, <li;"(Amç)1 = :2Jm(-l)m+1,
. <=1

<li:;' (Amç)1<=0 = 2, <li:;' (Amç)1<=1 = 0,

<li;;; (Amç)1<=0 = -2um) <li;;;(Amç) 1<=1 = 0,

(D.23)

(D.24)

(
the integrals in (D.2)-(D.9) and (D.14)-(D.21) may now be evaluated. Finally, the

integrals denoted by akm, ... , dkm and âkm , ... , dkm in the beginning of this appendix

can be inferred from the above-determined integrais and are found to be

__ {( l)k+m:(~m/~k)' if k # m,
akm

2 if k = mi

bkm {tt':~! [(AilTm -lTk>'~)(-l)k+m + (Ak>';'lTm -lTk>'~>'m)] if k# m,
=

>'mlTm(2 +AmlTm) if k= mi

{ 4(>'kO'k-).mO'm,) ~ if k # m,
Ckm = (~k/~mp-( l)k+m

AmlTm(2 - AmlTm) if k= mi

dkm
{ ~>.~

if k# m,
=

if k= mi

{
8~k~makam (_l)k+m + 16~k~::'akam [A2 (_l)k+m _ >.2] if k# m,

âkm = >.:_>.~ (>.: >,~)2 m Je

f 2,{' (>';' +4lT;') if k = mi
m
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if k = m;

if k i- m,

if k i- fil,

ifk=m;

if k = m.

if k i- m,

....ill....... [\2 + \2 (\ \ 3)( l)k+m] + 16~:;' [\2 \2 ( l)k+m]
>.:_>.~ AJ: Am AkUJ: - AmUm - - (>':_>'~,):Z Ak - Am -

~(2- >'mO"m)

{

.ilidm. [(>,30" _ 0" >.3 )(_l)k+m _ 2>' >. ] + 16~P~ [>.2 (_l)k+m _ >.2]
À:-.\~ J: m k m k m (>.:_>.~):Z k m

!>'mO"m(6 +>'mO"m) - 2

{

{

êkm =

bkm =
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Appendix E

Velocity Profiles and Turbulent

Viscosity in Annuli

E.l Velocity Profiles in annuli

When the flow in an annulus is laminar, the velocity profile therein can be determined

analytically and is found to be

U(r) _ U. [b2
- r2

- 2r;"ln(b/r)]
-2 a 2 2 )

a +b - 2r;'
(E.l)

where Ua is the average flow velocity, defined as the ratio of the volume ilow rate to the

cross-sectional area of the annulus; Tm, denoting the radius at which U(Tm) is maximum,

is given by

{
b2 2 }1/2

Tm = 2In(bla) (E.2)

Details of the derivation of (E.l) and (E.2) may be found in most text books of Fluid

Mechanics (for example, Knudsen and Katz 1958).

On the contrary, when the flow is turbulent, the determination of U(T) and Tm by

analytical means is out of the question. With the turbulent velocity profiles obtained

from a number of experiments, Knudsen and Katz (1958) showed that

( 1
[r - a ] 0.102

1.14U..a rm - a
U(r) -

- [ b - r ] 0.1421.14Ua y-­
0- rm

212

for a:::; r :::; rm,

for rm :::; r :::; b;
(E.3)
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nevertheless, they did not present any results on the variation of Tm with alb, eIthcr

implicitly or explicitly. A subsequently study by Brighton and Jones (1963), who devised

a new method for measuring accurately Tm, gave extensive experimental measurements

on Tm in addition to other quantities of their interest. For the present analysis, the

relationships (E.3) are adopted with Tm determined from the multilinear representation

of the experimental results reported by Brighton and Jones (1963).

Although there are indications that Equations (E.3) are not valid for Reynolds

numbers below 10\ these equations are currently believed to be the best approxima­

tions available to the velocity distributions in annuli with 2.3 x 103 ::; Re ::; 10"; more­

over, since the main parameter of interest herein is the critical flow velocity with its

corresponding Reynolds number ranging from 7.3 X 103 to 2.7 X 105, Equations (E.3)

are perfectly adequate for most of the cases to be tested.

E.2 Turbulent Viscosity in Annuli

(EA)

The distribution of the turbulent kinematic viscosity Il, in a flow may be evaluated by

a number of turbulence models currently known in the literature. A brief description of

these models and their applications have been given by Rodi (1980). Since the velocity

profile in an annulus is already given empirically [Equations (E.3)], a simple turbulence

model like the mixing-Iength hypothesis proposed by Prandtl (1925) is deemed to be

the most appropriate for the present theory.

It should be recalled that Prandtl's mixing-length hypothesis leads to

Ilt = {21 ~~ l'
where 1 is known as Prandtl's mixing length and y is the coordinate measured from the

wall, along which the Ruid passes in turbulent motion.

For the case of smooth pipes, exp eriments carried out by Nikuradse showed that

the variation of 1 with y / R can be represented by the empirical relation (Schlichting

1968)

~ = 0.14 - 0.08(1- ~y -0.06(1- ~y (E.S)

where R is the radius of the pipe.
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Because of the absence of such a relation for annuli in the literature, Equation

(E.5) will have to be adapted to annular fiows. As U(rm ) in an annulus corresponds to

U(O) in a pipe, Equation (E.5) will take on the following new forms for the fiow in an

annulus

Tm - a
= 0.14 _ 0.08[1 _ r - a]2 _ 0.06[1 _ _r_-_a_] 4

Tm - a Tm - a
(E.6)

and

b- r m
[

br ]2 [ b r]4= 0.14 - 0.08 1 - b _ r
m

- 0.06 1 - b _ r
m

for rm :5 r ::5 b. (E.7)

As a comparison between the fiow in a pipe and that in an annulus, the fiuid-structure

interface at the pipe surface is similar to that at the outer surface (r = b), but not at

the inner surface (r = a), of the annulusj hence, the actual mixing length in the annular

fiow is closer to the approximation given by Equation (E.7) for Tm :::; r :::; b than that

given by Equation (E.6) for a :::; r :::; rm'

The evaluation of dUIdy in Equation (EA) is rather straightforward with

(E.8)
for rm:5 r :5 b,

for a::5 r :5 rm,
dU = 1d(~~ al = 9Jf
dy dU dU

d(b rl =-<Ir

where dUIdr is obtained by directly difi"erentiating Equations (E.3) with respect to T.

It is noted that, for the velocity distribution given by (E.3), dU1dy is always

positive because dUIdr is positive for a :::; r :::; r m and negative for rm :::; r :::; bj thus,

the absolute signs in Equation (EA) may be removed and the turbulent viscosity Vt can

now be rewritten in terms of (E.6)-(E.8) as

(:

for a:5 r:5 rm,
(E.9)

for r m :5 r :5 b.

Finally, it should be recalled that the total viscosity in the fiow is the sum of the

molecular and turbulent viscosities, namely

( lI(r) = IIm + IIt(r). (E.10)
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Appendix F

Finite-Difference Expressions for

Derivatives

F.l In a Uniform Grid

For a function f(x) which is analytic in the neighbourhood of a point x, the forward

Taylor series expansion about x gives

which is the basis for deriving difference approximations of any order of accuracy for

derivatives of f(x). Here, h is a small increment in x.

In this Appendix, it is desired to express l" (x) in the following form

hS1'" (x) = >'d(x - h) +>'21(x) +>'s/(x +h) +>'4/(x +2h) +>'5/(x +3h), (F .2)

where }.1' ••• , }.5 are constants to be determined.

Now, expanding the right-hand side of Equation (F.2) in the form of (F.l) gives

hS/'" (x) [ ( ) '() h
2

"() h
S"'() h

4
iu( ) ( 5)]= >'1 1 x - hl x +21 x - 61 x + 241 x + 0 h

+ >'21(x)

[
, h

2
" h

S
'" h

4
• 5 ]+ >.s I(x)+ hl (x) +21 (x) +61 (x) + 24/'U(x) +O(h)

[
, 2 " 4h

s '" 2h4
• ]+ >'4 l(x)+2hl(x)+2h 1 (x) +"31 (x)+"'3I'"(x) +O(h5)
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[
• 9h2

.. 9h3
'" 27h4

• 5 ]+ >'5 /(X) + 3hl (X) + 2""1 (X) + 2""1 (X) + -S-I'"(X) + 0 (h). (F.3)

It should be noted that Equation (F.3) is an identity; thus, the coefficients of f(x),

J'(x), ... , fiU(x) on the right-hand of (F.3) m'Ist identically equal the corresponding

ones on the left-hand side, namely

>'1 + >'2 + >'s + >'4 + >'5 = 0, (FA)

->'1 + >'3 + 2>'4 + 3>'5 = 0, (F .5)

1 1 9
(F .6)2>'1 + 2>'3 + 2>'4 + 2>'5 = 0,

1 1 4 9
(F.7)-->'1 + ->'s + ->'4 + ->'5 = 1,

6 6 3 2

1 1 2 27
(F.S)->'1 + ->'3 + ->'4 + ->'5 = O.

24 24 3 S

Equation (F.4)-(F.5) are live Iinear equations with live unknowns; the solution of these

equations is found to be

3
>'1 = -ï' >'2 = 5, >'3 = -6, >'4 = 3,

Thus, Equation (F .2) may be rewritten as

1
>'5 = --.

2
(F.9)

3'" 3 1 5hl (x) = -ïl (x-h)+5/(x)-6f(x+h)+3/(x+2h)-ï l (x+Sh) +O(h), (F.1D)

or

(F.12)

(~:;)i = 2~3 [-1i+3 +6/i+2 - 12/i+1 + lOf; - 3f;-1] +0 (h
2
). (F .11)

This is the forward difference representation introduced in (5.59). The backward differ­

ence representation in (5.60) can also be obtained from Equation (F .10) by replacing h

by -h:

F.2 In a Non-Uniform Grid

F.2.1 Near a Flexible Wall

Figure 5.2 shows the local area near a flexible wall in the staggered grid. The aim of

this section is to express (aa~at as a Iinear function of ('Ve)i,F which is the value of lie
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at the wall, ('V8).,2' and (118).,3; in other words,

(F.13)

where aF, bF, and CF are constants which will be determined in the same way as was

done in Section F.1. Therefore, ail the terms on the right-hand side of Equation (F .13)

are first expanded in Taylor series about 7/i, giving

(8
2

118) aF { (118).,2 _ t>.ij( 8118) + (t>.ij)2 (8
2

118) + o[(t>.ij)3j }
8'T/2 .,2 = 8'T/ . 2 2 8'12 .

" t,2

+ bF(1I8).,2

+ { ('V). + t>. .(8118) + (t>.'T/~)2 ( 8
2

118 ) + 0 1(t>.'1nsJ } . (F .14)CF 8 ',2 '13 8. 2 a 2
7] ',2 Tl i2,

where Âi) = 7/i - 'T/~ and Â'T/i = 7/i - 7/i· Next, the coefficients of (Vob and of its

derivatives on one side of the identity (F .14) are equated to those on the other side,

resulting in

aF + bF + CF = 0, (F .15)

-(t>.ij)aF + (t>.'1i)CF = 0, (F .16)

[(t>.ij)2] [(t>.'1~)2] 1, (F .17)-2- aF+ 2 CF =

which constitute a system of three linear equations with three unknowns. The solution

of (F.15)-(F.17) is found to be

2 2
bF - - ----;;"':---=- A-A"u'1u '13

2
(F .18)

F.2.2 Near a Rigid Wall

Figure 5.2 also shows the local area near a rigid wall in the staggered grid. Here, it is

desired to express

where i* = (M -1); (V8).,R is the value of V8 at the wall; aR, bR, and CR are constants to

be determined in the remainder of this section. The right-hand side of Equation (F .19)

...;;j;;

(F.19)
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)

+ O[(A'Ij.)31j( ~2'1~)' '. =
0,'

is now expanded in Taylor series about Tlj. with j' = (l'vI - 1), namely

{
• (8'Ve) (A'Ij.)2 (82'Ve)

aR ('Vo);,;' - A'I;' a ". + Z 82, ,
1] '" 17 ',1.

+ bR('Ve);,;-

+ CR {('Ve);,;. + Ari(8'Ve) + (Aij)2 (82~0) + o[(Aij)S]} , (F,ZO)
8'1 i ," Z 8'1, '.

1 1,3

where Aij = TI;. - Tlj. and A'Ij. = Tlj. - Tlj'-l' Equating the corresponding coefficients

of "Vo and of its derivatives on the two sides of the identity (F.20) leads to

aR +bR +CR = 0, (F.21)

-(A'Ij. JaR + (Aij)CR = 0, (F.22)

[(A'Ij.)2] [(Aij)2] 1, (F.23)2 aR+ -Z- CR =

<::
which are three linear equations with three unknowns, hence admitting the solution

Z 2 2
aR = A'Ij.(Aij+A'Ij.)' bR= AijA'Ij.' CR= Aij(Aij+A'Ij.)' (F.24)

It is noted that since ("VO);,R = 0 at the rigid wall, Equation (F.19) may be rewritten as

( ~'1~), '. = aR('Ve);,;--l + bR('Ve);,;- + o[(A'Ij.)S, (Aij)S]. (F.25)
0,'

F.2.3 At tb.e Flexible Wall

A difference expression for the gradient of "Vo may be obtained in the same manner as

was done in the last two sections, that is

(~'V'I0). = a('VO)i,F + ~('Ve)i,2 + 1:('Ve);,s,
_,F

(F.26)

where the subscript F denotes the value of"Voat the flexible wall; a, b, and care constants

to be determined below. If the right-hand side of the above equation ls expanded in

Taylor series about TI~ (here, TI~ = êi),

c
(F.27)
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with Âij = 1/i - Til and Âfj = Tli - Til, then

èi+b+c =. 0,

(Aij)b + (A~)c =. 1,

[(A;)2]b + [(A;)2]c =. O.

The solution of the above equations is found to be

(F .28)

(F .29)

(F .30)

v Aij + A~
a=.- AijAij ,

b A~ v Aij
=. Aij(Aij - Aij)' c =. - Aij(Aij - Aij)' (1<.31)

Similarly, for the gradient of V"

(
avr ) _ - _a. =. a(Vr)'.F + b(Vr).,2 + c(Vr).,3,

Tl ',F
(F .32)

where the constants a, ii, and ë are also found by expanding the right-hand side of

Equation (F.32) in Taylor series about 1/1' It turns out that

Ci =. 601/ + AI)~ b=. 601/
AI/A1/~ , AI)HAI/ - AI)~)'

with Â1/~ = 1/2 - 1/1 and Âi) = 1/; - 1/1'

=. (F .33)
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Appendix G

In this appendix, the components of S = {Sr 8o S. Sv}T representing the right-hand

side of Equations (5.107)-(5.110) will be evaluated. In ail cases, only the final results

will be presented with a detailed description of how they could be obtained, as their

derivation is rather straightforward but very cumbersome. As Sr> SB, SOl and Sv are

associated with the r-, fJ-, :z;-momentum equations, and the continuity equation, their

expressions will be approximated about the points at which vr> vo, V., and fi, respectively,

are defined in the staggered grid. These components will be considered individually in

the foregoing-listed order. Tt is recalled that

where Gr> Go, G. and Gv were already defined in conjunction with Equations (5.80)­

(5.83).

Thus, Sr may be written in full as

(G.!)

(~i In the present numerical procedure, in addition to the use of fully implicit schemes for

the time derivatives, the backward differencing is applied to the convective terms (first

220
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derivatives with respect to e) and the central differencing to the diffusion terms (second

derivatives with respect to E) in the momentum equationsj the reason for doing so is to

ensure numerical stability in the solution obtained. Since the grid is non-uniform in the

77-direction with a finer grid near the walls (further discussions on the non-uniformity

of the grid are given in Appendix H), derivatives of fiow variables (V., Ve, v. and pl with

respect to 77 require a special treatment which is presented in Appendix H. Once al!

the derivatives in Equation (G.l) have been substituted by appropriate finite-diiference

representations, it is found that, for 2 ~ i ~ (N + 1) and 2 ~ j ~ (M - 2),

(8) ("k) Cl.AT { 1 [ lIil)f ( d ') (dV)']("k ' -n),.; = -AT v, ',j + -L2 ~......,-;;--;:- 2 1 - 'I; -d v, "1' v, ',j-1
'-"1);+1 1);'-"1); 1) ;

+ [2(1- dl)i - dl)i"l) (dV)' _ vi (l)f+1 + I)f ) _ 2l1i _ LU(I);)
Al)f+1 dl); l)iAl)f+1 Al)i+1 Al)i Aç2 Aç

lIi(l+n2)]("k -n) 1 [ ,(dll)' lIil)f+1 ]("k -n)
- (l)i)2 v, + v, ',j + Al)i+1 2dl)j+1 dl) ; - l)iAl)i+1 v, + v, .,;+1

[
lI~ LU(I)~)] lI~ 2nll~, 3"'}; -n , .. }; -n ':J: .. }; -n+ (Aç)2 + Ae (v, + V,)._l'; + AÇ2(v, +V,)i+1,; - (1);j2[dl);+l(Ve +VO);,;+1

+ (1- dl)i+1)(;;; + ii~);,;] + A ~ [(pk + pn);,; - (pk + pn)'';+l]} ,
'-"1);+1

where (iJ;).,M-1 = 0 for ail pseudo-time levels k and (ii~)'.M-1 = 0 for al! physicaHime

levels n because the outer wall is rigid. It should be mentioned here that, in the above

equation as weil as in the subsequent equations, the following short-hand notation is

used

(G.2)(
dll)' dlll
dl) ; == dl) q=o' .

J

8e =

lIi == lI(I);), lIi == lI(l)j) , (dll)' == dll l '
dl); dl) q=o'

J

Similarly, the expression for Se has the form

A"k CI.!::>.T{LU( )a(;;; +ii~) Ln(~k -n) (dll)[a(;;~ +ii~) n("k -n)]-'-"TVe - -- 1) +-\J' +p - - - - 11 +VL2 aç 1) dl) a77 1)"

[
a

2
(;;; +ii~) 1 a (a(;;;+ii~)) l+n

2
("k -n) 2n("k -n)]} (G.3)

- li at2 + --a 1) a - --2- Ve +Ve - 2" v, +11, ., 1)1) 1) 1) 1)

Due to the relative location of (ve )''; in the grid, the discretized form of Se is diiferent

for different values of j, although it remains the same for ail i in the computationa!

domain, namely 2 ~ i ~ (N + 1). Thus,
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Like Se, S. does not vary with i in the computationai domain, here 1 ::; i ::; N. Thus,

for 3 ::; j::; (M - 2),

() _ A (O') ",AT { 1 [lIilJi-1 ( d') (dll)·](o. -R)8. ;,; - - T V. ;,; +V AlJj IJjAlJj - 1- IJ; dlJ; v. + V. i,;-l

+ [1- dlJi - dlJj+1 (dll)' _ --!L(-.!!L + lJi-1) _ 2IJj _L[j(IJ'il
AlJi dlJ; IJjAlJj AlJj+1 AlJi (Aç)2 ,c\ç

-~!i~: ](ii~ +V~);,; + A~i [dlJi+1 (:~X + lJ;l~L](ii~ +v~kH1

[

1I~ LU(IJ~)] 1I~
3 3 ("k -n) 3 ("Ir. ".n)+ (Aç)2 + Aç v.• + v. ;-1'; + (Aç)2 v. + .'. i+1,;

[
1 (dll)' LldU)'][d r(o' ..n) ( d r)(o' -R) ]- Aç dlJ ; +2\ "IJ; IJ; Vr +Vr ;,; + 1 - IJ; Vr +Vr i,i-1

+ [;ç(:~): - H~~):][(l- dlJi)(ii; + V~)H1,;-1 +dlJj(ii; +ii~)H1,i]

+ :ç [(p' + pR)ir (p' H R )H1'i]};

for J' = 2,

(8.)i,2 = -AT(ii~)i,2 + atT([IIi("F - IJ~~IJ~) - ~~~ (:~X] (ii~ +V~)i,,,,

[
1- dlJ~ (dll)" .( 1- dlJ~) 211~ LU(lJn 1I2n21(o. -R

+ AIJ~ dlJ 2.J- 112 bF + IJ~A:j~ - (Aç)2 - Aç - (1J~)2 J v. +V.)i,2

[ dlJ~ (dll)".( dlJ~ )] (O' -n) [,,: LUClJn](o' -R)+ AIJ~ dlJ 2+ 112 CF + IJ~AIJ2 v. + v" i,3 + (Aç)2 + t. ç v" +V. ;-1,2

+ (:~)2 (ii~ + V~)H1,2 - [;ç (~~):+ ~ (~~X][dIJ2(ii~ + V~)i,2 +(1 - dIJ2)(ii; + V~)i,,,,]

[
1 (dll)" L(dU)'] [(1 d r)(o' -n) d r(o' -n) ]+ Aç dlJ 2- 2 dlJ 2 - 1J2 Vr + Vr Hl,'" + 1J2 Vr +Vr ;+1,2

+ :ç [(p' +pn)i,2 - (p' +pn)H1'2]};

for j = P = (M - 1),
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Finally, the expression for Sv has the form

/:"r {1 a (Ak) (n)'k aii~}Sv = - L(3 ; a'1 '1 Vr + ; Ve + aÇ . (G.5)

{

c

For 2 ::; i::; (N + 1) and 2 ::; j ::; (M - 1),

(Sv);,; = - ~; {'1j~'1i ['1i(ii~);,; - '1i-l(ii~ki-l] + (;j }ii~);.; + ;ç [(ii;);,; - (ii;);_l,;]} .



Appendix H

Evaluation of Derivatives in a

Non-Uniform Staggered Grid

H.! Generation of a Staggered Grid

As was mentioned in Section 5.2.1, the problem under consideration involves an axisym­

metric viscous flow inside the annular region bounded by an outer rigid cylinder and an

inner flexible cylindrical shen as shown in Figure 5.1. As a result of the viscous effect

of the fluid, flow variables would undergo rapid variations near the physical boundaries

(cylinder walIs)j thus, to capture such variations in the analysis requires a larger number

of grid points in the vicinity of the boundaries. An obvious choice here is to employa

two-sided stretching function to generate the grid points in the !J-direction. Although

quite a few functions may be used for this purpose, the hyperbolic tangent function

has been demonstrated to be the best one based on a number of important numerical

criteria (Vinokur 1983) j therefore, it will be adopted in the present work.

If M denotes the number of unequal intervab into which the nondimensionalized

annular gap (e. - el) is discretized and !Jj is the nondimensionalized radial coordinate

of a grid point j such that 0 :=; j :=; M, then the hyperbolic tangent stretching function

gives
. _ . (ô. -ÔI) { tanh b, U/M _. 1/2)1}

'l, - ô. + 2 1+ tanh (7,/2) • (H.l)

where "l, is a parameter that controls the amount of stretchingj the grid becomes uniform
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as '1. approaches zero. It is seen from Equation (H.l) that Tlo and TlM are the coordinates

of the grid points on the outer surface of the shell and on the inner surface of the rigid

cy!inder, respectively.

H.2 Flow Variables in the Staggered Grid

(

The staggered grid was first used by Harlow and Welch (1965) and has proved to have

significant advantages over the conventional grid (Patankar 1980).

The id~a here is to define a different grid point for each velocity component. For

2-D fiow problems, the two velocity components are located either midway between the

pressure points if the grid is uniform, or s!ightly off the midpoint if the grid is non­

uniform. For the axisymmetric fiow being considered, only two independent variables

are neededj nevertheless, there is now a third circumferential velocity component 'Vo in

addition to 'V. and ')i" which may be regarded as being equivalent to the horizontal and

vertical velocity components, respectively, in the 2-D problem (the calligraphie letter

'V here stands for either V or ii used in Chapter 5; a similar interpretation should also

be made for P). One convenient way is to locate 'Vu at the pressure point; as shown in

Figure 5.2. Binee the fiow variables are defined at different locations, the designation

(i,J') in fact identifies a cluster of three distinct spatial locations as indicated by the

L-shaped enclosure in Figure 5.2. In this particular staggered grid, ('V. li"~ is located

above (P)i,; while ('V:);,; is to the right of (P)i,;.

H.3 Evaluation of Derivatives in a Stretched Grid

H.3.1 General Remarks

It is important to mention that the mesh in Figure 5.2 is uniforril in the ç-direction but

stretched in the 7)-direction, although the mCRh was drawn uniform in both directions for

the sake of clarity and simplicity. Binee finite-difference representations of derivatives

for a uniform grid have been well estab!ished, the following sections are concerned only

with derivatives of dependent variables in a non-uniform grid (7)-direction).
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In the staggered grid, the T-, 0-, and x-momentum equaLions are approximated

about the points at which 11" 11o, and 11., respectively, are defined, whereas the continuity

equation is approximated about the point at which P is defined. One traditional method

of evaluating derivatives in a non-uniform grid is to map the grid onto a uniform one

and then, by means of the chain rule, substitute centra! difference expressions for the

resulting derivatives; for instance, if 1 is a dependent variable in a stretched grid with

the coordinate 7), and ~ is the coordinate of a new uniform grid, then (BI/BTJ) will be

approximated as follows

(
al) (al/ail); (lm - 1;-1)/2l::.iJ f;+1 - 1;-1
aTJ ;"= (aTJ/aiJ); = (TJi+1 - TJ;-l)/2l::.iJ = T/i+1 - 1/;-1'

In the staggered grid, a better approximation than (H.2) can be made for (BI/Brl),

namely

(
al) Ii+! - I;_!

- 2 2 (1-1.3)
a1/ ; - 1/i+~ - 1/;_~'

where Ii+~ and I;_~ are the values of 1 at the two spatial locations adjacent to the one

at which f; is defined. Equation (H.3) is the basis for all derivations in the following

sections.

H.3.2 Grid Points far from Physical Boundaries

H.3.2.1 Location of (11,),,;

Appearing in the T-momentum equation are derivatives of V, and of P (with respect to

7)), which are approximated at the location of (V,).,; in the staggered grid. Based on

Equation (H.3),

(av ) (V,)" "+1 - (V,)" "_1 (V,)" '+1 - (V,)" "_1r ',] :2 111 :2 l,] :2 l,] 2a= r r = 2::C)
1/ ',; 1/i+t - 1/;_! 1/;+1 - 1/;

(HA)

where (V')',i+! and (lI,).,;_! àre the values of 11, at the locations of (P)',H1 and (P).,;,

respectivelYi 7)i and 7); denote the 7)-coordinates of (11,).,; and (V., Vs, Pl,,;, respectively.

(11,), ,"_1 is interpolated between (V,).,;-l and (11,).,; as follows
, 2

(V) (") (V,),.1 - (11,).,;-1 (. ')
r ij_l = Vr i 1i-l + r r 71; - '7,.-1 .

, 2 1/; - 1/;-1
(11.5)
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Here, it is convenient to introduce the following short-hand writing notation

(H.6)

in terms of which Equation (H.S) may be rewritten as

(H.7)

(H.8)

(H.lO)

(

The expression for CV')',H~ can be either derived in the same manner or obtained from

Equation (H.S) by rep!acing the subscript ;" by ;" + 1, namely

(V, ),.;+~ = d'1i+l (V, )',H1 + (1 - d'1i+d ('V, l,,;·

The results in (H.7) and (H.8) are no\;' substituted into Equation (H.4), yielding

( 88
V
,), . = A 1, [d'1i+l(V,),,;+1 + (1- d'1i - d'1i+l)(V,),,; - (1- d'1i){V')',H] . (H.9)

'1 l,' '->'1,+l

Similarly, for the second derivative of V" Equation (H.3) gives

_ 1 {, (V, ).,;+1 - (V,),,; _ ,(V,),,; - (V, ),,;-1 }
-:z: :t '7,+1 r r '7, r r

1/i+1 - 'J,. '1i+l - 1/i 1/i - 1/i-1

1 {'1i+l [ 1/i+1 1/i ] 1/i }= A.- ..--;:-(V,).,;+l - ..--;:- + A , (V,)"" + A ,(V')'';-l .
'->1/i+l '->1/i+l '->1/i+1 '->'1i '->1/i

The last derivative to be approximated at the (V, k,. grid point is that of P,

(
8P) = (Pk;+l - (~);,i 1 [ ]= A.- (P)'';+l - (P);,; . (H.l1)
81/ ',; '1i+l - 1/; '->1/i+l

H.3.2.2 Location of (Ve),,;

In the 6-momentum equation, only Ve has derivatives which are approximated at the

(Ve};,; grid point. With the same procedure as was carried out in the !ast section, it is

found that

c
( ~Ve). . = t.

1
~ [d1/i+1(Ve);,i+l + (1- d'1i - d1/i+l) (Ve)',i - (1 - d.;j)(Ve);,i-l] ,

1/ ',' 1/,

and

[ a (aVe\] _ 1 {1/i (11) ['1i 1/i - 1]( ) '1i-1() }
a'1 1/ 8'1) .. - t.1/~ t.1/' e ',i+l - t.", + t.", Ve.,; + t.,,'! 'Ve ',i-1 .

'.' J 1+1 ",+1", ",

(H.12)

(H.13)
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H.3.2.3 Location of CV.)i,;

SimÜar to the case of (1Iu);,;, only 11. has derivatives with respect to 1/ in the x­

momentum equation. They are approximated at the (1I')i,; grid point and have the

same forros as those of 1Iu since (1I.)i,; and (1IU)i'; have the same 1/-coordinate.

(H.14)

and

(B.15)

H.3.2.4 Location of (P);,;

The continuity equation has only one derivative, of 11" which is approximated at the

(P li,; grid point,

'_lo>

[.!..-( li)] = 1/1(1I,)i'; - 1/1-1 (1I,)i,;-1 = _1_[ ~(lJ)" _ ~ (lJ)" ]a Tl r r r 6. r t], rI,' '1],-1 r 1,,-1 .
1/ i,; 1/; - 1/;-1 TJ;

H.3.2.5 Applicability of the Approximations

(B.16)

In the present staggered grid, the locations of (1I')i,1 are chosen to be on the flexible

physical boundary (Figure 5.2); hence, (1I')i,1 are shell-motion dependent, generally hav­

ing non-zero values and theoretically remaining unchanged throughout the pseudo-time

integration [more detaiis on (1I')i,1> (1IU)i,1 and (1I')i,1 were given in Section 5.3.3.21. On

the other hand, the locations of (1I')i,M-l are on the rigid physical boundarYi (1I,).,M-I

are zero foiall i. With the locations of (11,).,; so arranged, Equations (H.9)-(H.11)

are applicable to ail the (11,).,; grid points within the computationa! domain, namely

2 ::; J' ::; (M - 2); likewise, Equation (H.16) holds for all the (,0);,; grid points with

2 ::; j ::; (M - 1). Here, for a given i, M denotes the total number of (P)i,; grid points

inc1uding the two [(P)i,1 and (P)i,MI outside the domain as shown in Figure 5.2.

On the contrary, difficulty arises when Equations (H.12)-(H.15) are used at the

boundary grid points of CVu);,; and (11.)•.;, specifically with j =2 or j = (M -1), because

these approximations require the value of the dependent variable outside the domain.

To overcome this difficulty and also to take into account the boundary conditions at the
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physical boundaries, a different treatment for the derivatives of (Vo);,; and (V.);,; at the

boundary grid points is needed and will be covered in the coming sections.

H.3.3 Grid Points near the Flexible Physical Boundary

H.3.3.1 Location of (VO);,2

For the O-momentum equation, the first derivative of Vowith respect to Ti is evaluated

at the (Vo);,2 grid point in the usual way,

(H.17)

(

where (Vo);,t = (VO);,F' representing the value of Vo at the surface of the flexible shell,

is in principle known and prescribed by the history of the shel1 circumferential motions;

(Vo);,t' being the value of Voat the location of (V,);,2' is interpolated between (V.);,2 and

(VO);,3' that is

from which Equation (H.17) becomes

(H.1B)

The second derivative of Vo, in the form that has been considered in this appendix,

is first rewritten as

[ 8 ( 8110)] (8110) .(8
2

110 )
8'1 '1 8'1 i,2 = 8'1 ;,2 + '12 8'1 2 i,2 j

(H.19)

the first term of the right-hand side of this expression was just given in (H.lS) while

the derivative in the second term has the fol1owing form

(H.20)

where

(H.21)

The derivation of Equation (H.20) was given in Appendix F.
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H.3.3.2 Location of ('V.).,2

Since (V.).,2 has the same 1] coordinate as does (VO).,2' the difference expressions for the

derivatives of V. at the (V.).,2 grid point may be obtained from Equations (H.18)-(H.20)

by simply replacing the subscript 9 by x, namely

where (V.);,F denotes the value of V. at the surface of the flexible shell, and

[a( av.)] (av.) .(a2v.)a'1 '1 a'1 ',2 = a'1 ',2 + '12 a'12 .,2'

where

(a
2v.)ii2 = aF(V.).,F + bF(V.).,2 + CF(V')',3.
'1 '2

"

H.3.4 Grid Points near the Rigid Physical Boundary

H.3.4.1 Location of (110).,M-l

(H.23)

(H.24)

The evaluation of the derivatives of 110 at the (Vo)"j' grid point with j' = (M - 1) is

carried out in the same way as was done in Section H.3.3.1. For the first derivative,

(
aVO) = (Vo)',i'+i - (Vo)',j·-t = (VoJ..i'+~ - (Voki'-t
a rr Ar 1'1 ',j" '1;" - '1i'-1 U'1;"

where (110)"j'+~ = 0 is the value of Vo at the rigid physical boundary, and

hence,

For the second derivative,

= (avo) + '1i"(a2~) ,a'1 ',j" a'1 "j'

where

(H.26)
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in the above expression, aR and bR were derived in Appendix F and had the fol1owing

values:
2

Hence,

2
(H.27)

(H.28)

H.3.4.2 Location of CV')',M-l

Similarly, the dilference representations for the derivatives of Il. at the (11')',j' grid point

li' = (M - 1)] may be obtained from Equations (H.25) and (H.28) by replacing the

subscript 0 by Xi thus, for the first derivative,

(H.29)

for the second derivative,

(H.30)



Appendix 1

Computer Listing

The purpose of Appendix l is not to show every single computer program ever written

in the course of the thesis. Rather, the appendix describes the programming technique

(style, to be exact!) adopted by the author in developing his computer codes; for this

reason, only one computer listing will be given and discussed. Nevertheless, interested

readers may obtain other listings, related to different parts of the thesis, from the author.

Following is a listing of the computer program developed for Section 2.5. This

program was written in FORTRAN 77 (Standard FORTRAN), Tt has the following

characteristics:

• It runs on IBM AT compatible microcomputers with the DOS operating system.

• Most variables used in the program have the same physical meanings as those in

the theory.

• AlI SUBROUTINE and FUNCTION subprograms appear in an alphabeticaI order

according to their names,

• AlI multi-dimensional arrays have the so-called pseudo dimensions, which change

automatically according to the data provided.

• AlI physical data are read in by the programj Le. ail changes in the data are made

in the data file, not in the computer program.
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ALLoYEo STORAGE EXCEEoEo ,

C
C
C
C
C

MA 1N PROGRAM
CLAMPEo'FREE SHELLS USING INVISClo THEoRY CYITH DR YITHOUT
STEAoy VISCOUS FORCES)
INNER SHELL : FLEXIBLE, OUTER SHELL : RIGlo
LAST EoITEo: oECEMBER < 1991
IMPLICIT COMPLEX*16CA-HI, REAL'BCO-Zl
COMMoN/CONST/PI RGAMA IÔe1,IOPZ
COMMON/TAPES6JI~,JOUT:JS1,JS2,JS3.JS4,JS5
COMMON AC3Z Dl
g~~~ 1jb~tF~~[E~~~r~R~~~~I,
OPEN IJS11~llE=ISCR1.FILE"ACCESS='DIRECT"RECL=64)
OPEN JS2 FllE='SCR2.FJLE',AcceSS='DIRECT' RECL=64)
OPEN JS3~FILE=ISCR3.FILEI,ACCESS=IOIReCT':RECL=64)
REYINo CJ.l 1
NMAX: 3Z00 OF COMPLEX'16: MAXIMUM ALLOYEo BY MICROSOFT FORTRAN
NMAX: 3Z00
REAo CJIN

l
l000) INFO

YRITE C0
6

000) INFO
~WNf~~Tr3(NTl
NS= 3*NT
NX= 6*NT
LO: 1
L1= La + NS**2
l2= L1 + NS**2
L3= L2 + 2*NR
L4: L3 + NR
N1= La + 2*NR
NZ: N1 + NR
N3= N2 + NX**2
N4: N3 + NX
N5= N4 + NX**2
N6= N5 + 2*NX

NoIF: MAXO(L4,N6l - NMAX
ZO l~ 1~g~bl ~g,tg,~go
40 CALL CLEAR CAfLO\,LZ-LO~

g~tt ~E~R~~(~~ILS\~lIL~):~~~NSl
CALL FORCES (ACLZ),ACL3l,NT,ll
GO TO 400

60 CALL FORCES (ACLOl
t
ACNll,NT,Zl

REAo (JIN
t
l00oj N IMES

DO ZOO liME: NTIMES
CALL FORCES CA([03,A~N1l,NT,3l

lZ0 tÀLfI8L~ÂR l~~~~lILl-~o~
140 g~tt ~~~~g~ 1~1~1,'~I~~"A(N3' NT NS NXl

CALL EIGCC (ACNZll~x,NXI61A(N3I,A!N41,Nx,ACN5),IER)
CALL OUTPUT (A(N3 ,A\NS , E~,NXJ

ZOO CONTINUE
GO TO 400

~gg ~~6~~ ~j?~1,ZOOOl NolF
CLOSE ~JOUTJ
CLOSE IJS1!CLOSE JSZ
CLOSE JS3
STOP

1000 FORMAT (l5l
ZOOO FORMAT (53H ' " PROGRAM STOPPEO

1 10HBY NoIF :,15)
END

C
COMPLEX'16 FUIICTION CIN CA Nl
IMPLICIT COMPLEX'16CA'Hl, R~AL'BCO'Zl
DOUBLE PRECISION CoABSéUREAL,oIMAG
COMMoN/CONST/PI,RGAMA,I Pl,IOeZ
IF CCoABS~Al.GE.ZO.oOI GD TO 140
M: 0.500 A
X= 0
CIN: CO.oO 0.00)

100 CNEY: AA'*!Z*K)/RFACCKl/RFAC(N + Xl
CIN: CIN + CNEY
IF CCoABSCCNEYl.LT.l.o·10) GO TO lZ0
X= K+ 1
GO TO 100

120 tlN= CIN*AA**N
RETURN

140 CI= (000 1.00)
CN1: c4.06'N*'Z - 1.o0l/CB.00'A)
CNZ= CN1'(4.DO'N"Z • 9.o0l/C16 oO'A)
CN3: CNZ'(4.o0'N"Z • Z5.o0)/CZ4.o0*A)
CNA= CoEXP(A)/COSORTrZ.OO'PI'A)
CNB: CNA'CoEXPC-Z.oO'Al
IF CoIMAGCA» 160 ZOO,lBO

160 ClN: CNA'Cl.00·CN1~CNZ-CN3)+(·')"(N+l)'CI'CNB*(1.o0+CN1+CN2+CN3)
RETURN

180 CIN= CNA*(1.DO-CN1+CN2-CN3)+(-1)**N*CI*CNS*(1.DO+CN1+CN2+CN3)
RETURN

ZOO IF CoREALCA» 220,Z40,240

C

C

C



CLFR.FOR Monday, Decetnber 2, 1991 Page 235

C

C

..,..
\ '-

220 ClN= (-1)**N*Cl*CN8*(1.00 + eNl + CNZ + eN3)
RETURN

Z40 CIN= CNA*Cl.00 - CNl + CNZ - CN3)
RETURN
END

C
COMPLEX*16 FUNCTION CXN CA N)
IMPLICIT COMPLEX*16CA-H)6 RéAL*sco-Z)
OOUSLE PRECISION COABSOREALLOIMAG
COMMON/CONST/PI,RGAMA,I Pl,IOeZ
IF CCOABSrA).GE.15.00, GO TO ZOO
AA= 0.500*A
B= So.OO 0_00)g bN_EO:O) GO TO 150

100 SNEW= C-l)**X*RFACCN-X-l)/CRFACCX)*AA**CN-Z*X»
B= B + BNEW
IF CN-l-X) 140,140,lZ0

lZ0 X= X + 1
GO TO 100

140 B= 0.500*B
150 X= 0

CXN= CO.OO 0.00)
160 CNEW= CAA*'CZ*X)/RFACCX)/RFACCN + X»*CO_500*CRFICX) + RFICN + X»

1 - CCDLDGCAA) + RGAMA»CXN= CXN +CNEW
IF CCDABSCCNEW).LT.l.D-10) GD TD 1S0
X= X + 1
GO TO 160

180 CKN= CKN*(-AA)**N + B
RETURN

ZOO CN1= C4.00*N**Z - 1.00)/CS.00*A)
CNZ= CN1*14.OO*N**Z - 9.DO~/\16.00*Al

g~i~ g~~~pt:~~:~~;~RTc6~5gnlp!7iiDO* )
CKN= CNA*S,.DO + eNl + CN2 +CN3)

ZZD l~ 19~~~~(~ll ~~g:~~g:~âg
Z40 RE TU RN
Z60 S= -A

CNA= CDEXPC-Bl*CDSORTCO.500*PI/B)
CKN= CKN + C- )**N*CNA*(l.DO • eNl + CNZ - eN3)
RETURN
END

~~~~~rtN~OM~[~~~1b~~!~l
DIMENSION CF(1)
DO ZO 1=1 N

ZO CFfl)= co.60,o.00)
RE URN
END

~~~~?grtN~OM~[~~~~61~~~IC1X~é~['~~3-z)
COMMON/TAPES/JIN JOUT JS JSZ Js3 JS4 JSs
COMMON/COAX(RLAC10),RAOC10),oAR

I
RINT,hINT,N

COMMON/ISHE L/DHI Oyl 01 RE SX PSI
COMMON/OSHELL/OHO:DVO~OO;RE01'SXO~PSO
DIMENSION CXMCNS,l),cXX,NS, ),A.C3,3)
REWINO CJSZ)
DO 200 M=l, NT
DO ZOO X=l NT
CALL CLEAR (AX,9)
UZ= RE1(X,M,Zl
U3= RE1(K,M,3
Wl= N
WZ= Wl**Z

C ••• CALCULATE ELEMENTS OF THE MATRIX J1B
AK(2 'l= O.5DO*Yl*(1.DO· PSI)*REl**2*U3
AXC3'l = -0.500*WZ*SXI*r1.00 - PSI)*REI**Z*U3
AX!1'Z)= -PSI*W1*REI**Z*UZ
AK 2'2)= -O.SOO*ll.DO + 3.00*5KI)*(1.00 • PSI)*REl**2*U3
AX 3'Zl= Wl*SXI*REI**Z*CPSI*UZ - 0.5DO*C3.DO - PSI )*U3)
AK "3 = -PSI*REI**2*U2
AXCZ'3)= -1.s00*Wl*SXI*rl.00 - PSI)*REI**Z*U3
AK(3'3)= W2*SKI*REI**2l (PSI*U2 - (2.00 • PSl)*U3)
DO 100 J=1 3
JJ= M+ NT*{J - 1)
DO 100 1=1 3
11= X+ NT*{I - 1l

100 CXXfll,JJ)= CXXCI ,JJ) + AXCI,J)
ZOO CON INuE

DO 300 J=1, NS
DO 300 1=1 NS

300 WRITE CJSZ): CXMCI,J),CXXCi,J)
RETURN

C END
COMPLEX*16 FUNCTION CN CRA M)
IMPLICIT COMPLEX*16CA-H), RéAL*SCO-Z)
DOUBLE PRECISION OABS OMDO
COMMON/CONST/PI RGAMA 10Pl 10PZ
COMMON/COAX/RLA(10)(RAoC10I,OMR,RINT,NINT,N
COMMON/CLFR/RL,MOOE
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C

C

(

CN= (0.00,0.00)
IF CMOOELJ 20,20,40

20 RETURN
40 RB= RLACM)*RHOCM)

RO= RL - 1.00
RS= (-l)**CM + 1)
Rl= RA*~L
R2= 2.00*PI
CI= ,0 00 1.00)
CJ= OI*OM60cRl,R2)
CA= C:*R.~

CB= CA*RL
Co= COEXP~CAICE= COEX? CJ
GO Ta (12 2 0 420 420) MooEL

C ••• MoOEL=l : 'STRÂIGHt CoLlECToR PIPE MoOEL
120 IF COABSCRA).LT.l.0-16) GD To 140

FF1= (ce - '1.00 + CA*RD)*CD)/RA**2
GO Ta 200

140 FF1= -0.500*RO**2
200 CN= -2.00*RS*FF1/RO

RETURR
C •.. MoOEL=2: CURVEO PIPE MooEL

220 IF (oABSCRA).LT.l.0-16) GD Ta 240
FFO= lCE - COl/CA
FF1= 1,.00. CA*RD)*ce • CD'/RA**2
FFZ= 2.DO*(CI+RA*RD)-CA*RA*RD**Z>*ce-Z.OO*CI*CD)/RA**3
GD To 00

240 HO= RD
FFl= RD**212.DO
H2= Ro**3/3.00

300 CN= 2.00*RS*CFFO + RB*FFl - (1.00/RO**2 + RB/RO)*FF2)
RETURN

C .,. MOOEL=3 ARO MOOEL=4
420 IF (OABS(RA).LT.l.0-16) GD TO 460

FFO= lCE - Co)6CA
FF1= CE'Cl.O - C8) - CO'Cl.00 - CA) )/RA'*2
FFZ= ce-C2.DO·CCt + RA*RL) • CB**2/CI~

1 - CD*(2.00*(Cl + RA) • CA-RA) /RA**3
H3= C CE'«RA*RLI"2*(3.o0 - CB) + 6.0 *(CB - 1,DOl)

1 - CD*(RA *2*(3.00 • CA) + 6.DO*(CA • 1.tJO) )/RA**4
GO To 500

460 FFO= RD
FF1= lRL"2 - 1.00l/2_00
FF2= RL"3 - 1.00 /3.00
FF3= RL"4 - 1.00/4.00

C .•• MOOEL=3: CURVEo PIPE MoOEL YI TH ZERO SLOPE AT ZI=RL
500 A= 2.QO*FF3-3.00*(RL+l.001*FF2+6.00*RL*FF1+RL**2*(RL-3.00)*FFD

B= FF3 • (2.00*RL + l.DOlwFF2 + RL*(RL + 2.00)*FFl - RL**2*FfD
eN= 2.DO*RS*(A/RD + RB*B /RD**2
RETURN
END

C
BLOCK DATA

C ••• DATA FOR CLAMPEO-FREE BEAMS
IMPLICIT REAL*BCo-Z)
COMMoR/CoNST/PI RGAMA 10Pl IOP2
CoMMOR/TAPES/JI~lJoUT~JS10lS2,JS3IJS4,JS5
CoMMoR/COAX/RLAC 0) RnO(l ) OnR R RT NINT N
CoMMoR/SVFOR/SAL(11\,S8T(11\,ROI.ROO:RGI.~GO,VISIÔVISA.SL
OATA PII3.141592653,89793001 RuAMAI0.5,72"6649 1532000/
DATA JIN/5/, JOUT/l0/. JS1/1~, JS2/26' JS3/3/

1
JS4/4/, JS5/5/

DATA RLA/ 1.875104068,1196100 4.694 ,1132974 7500
1 7.B5475743823761300: 10_99554073487547"0:
~ ~3:l~~1~~~~1gz~~~g: ~~:~~~~~Z~~tg~~f~gg:
4 26.7035375555183000 29.8451302091028200 /
5 .HO/ 0.73409551375B912700, 1.01B46731875921900,'
6 0.999224496517428300, 1.00003355325171300,
7 0.999998550108650000, 1.00000006265562800,
8 0.999999997292405100, 1.00000000011700600,
9 0.999999999994943700 1.00000000000021800 /

DATA ~AI./ G.0641100, O. 100, O.~OO, 0.300, 0.400, 0.500. 0.600,
1 0.700 0.800 0.900 1.0006 SBTI 0.5630800
2 0.6392500: 0.729b400, 0:789900 : 0.B396400, 0.BB33000,
3 0.9231600, 0.9514300, 0.9718300, 0.9891900, 1.000 /

ERO

~~~~~1}~EuN~~~~6~ i~~I~~I~T~Ô~~ES
IMPLICIT CoMPLEX*16(A-H). REAL*8(0-Z)
DOUBLE PRECISION OABS OKEAL
CoMMoN/IFLUIO/RHOI,UI,ÔIR
COMMON/AFLUIO/RHOA UA ,:,'~
COMMON/ISHElL/OH[,6vl:Q~~REJ,SKt,PSI
COMMOR/OSHELL/OHO.OVO,QO.RE0

6
SXO,PSO

COMMoR/CONST/PI RuAMA,lo.l,1 P2
COMMOR/TAPES/ J l~. JOUT r, JS1

0
JS2,. JS3

1
JS4" Js5 "

COMMOR/CoAX/RLAC ,0) Rnofl ) OnR R NT NINT N
COMMoN{SVFoR/SALC11S 1SB (11\,ROI\ROo~RGI,~GO v:, •. ,'" CL
OIME"S OR FRCNT RT ) CQCNt RT ) Xu(2) YGTt2) Yi ,21 '
DATA XG/-0.5773S02b911l962606,0:57t35026~lB962600" '!JTI1.00,1 .00/
FN= N
GD TO C20,360,420), 10

ZO 00 100 J=1,2
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C

C

100 ~GCJ)= 0.500*RINT*~GT(J)
RlIH= O.5DO~RINT*NINT
MT= 6*NT*NT
CALL CLEAR (FRtHT)
00 300 1=1 NIN
RLO~= RINT*/l - 1) - RLIH
RHI= RLO~ + RINT
00 300 J=1,2
~T= ~GCJ)
RA= O.5DO*(RLOW + RHI + RINT*XG(J»
AEI= RA*REI
RALFA= RA*REO
AEO= RALFA
Bl= CIN\AEI N)
B2= CIN AEI'N+l)
CON1= B /cBI*FN/AEI + B2)
Cl= CKN~AEI N)C2= CKN AEI'N+l)
IF (OAB (RA(FA).GT.72.00) GO TO 120
B3= CINIAEO N)84= eIN AEO:N+l)
C3= CKN AEO N)
C4= CKN AEO'N+l)
CON= (B *FNJAEO+B4>*CC1*FN/AEt-C2).CB1*FN/AEI+B2l*CC3*FN(AEO-C4)
CON2: ( (B3*FN/AEO + 84)*Cl - Bl*(C3*FN/AEO • c4 )/CREA (CON)
GO TO 140

120 CON= (Cl*FN/AEI - C2)
CON2= C1/0REALCCON)

14000200 IT=1,3
RB= RA**CIT - 2)
00 200 H=1, NT
00 200 K=1 NT
HN= GH(RA K'M 2)
FRCK M IT\='F~(K MIT) + YT~RB*HN*DREAL(CON1)

200 FR(K'IM~3+iT)= FRtK:M j 3+IT) + WT*RB*HN*DREALCfON2)
300 CONT NuE

00 320 1T=1,,6
00 320 H=1 NT
DO 320 K=l' NT

320 ~RITE (JS1)' FR(K,H,IT)
RETURN

C ••• REAO IN VALUES OF INTEGRALS IN EXPRESSIONS OF FLUIO FORCES
360 00 3BO 1T=1,,6

00 3BO M=1 NT
00 3BO K=1' NT

380 REAO (JS1) 'FRCK,M,IT)
RETURN

C , •. REAO DATA FOR THE INTERNAL AND ANNULAR FLUIOS
.20 REAO 6JIN,1000l VISI,RHOI,UIR

REAO JIN
t
1000 VISA,RHOA,UAR

00 60 1 =1 3
IF (IT - 2) '440460480

440 al= RHOl*UI**2It2.o6~Pl*QI*REJ**2)
R2= -RHOA*UA**2/è2.00*PI*QI*(REO*OMR)**Z)
GO TO 500

460 R1= -RHOI*UI**2*UIR/CPI*DI*REI~
R2= RHOA*UA**2*UAR/CPI*QI*RED OMR)
GO TD 500

480 Rl= RHOI*UI**Z*UIR**2/(2.DO*PI*QI)
R2= -RHOA*UA**2*UAR**2/(2.00*PI*CI)

500 00 600 M=1,NT
00 600 K=1 NT

600 CC(K t M,IT)='R1*FR(K,H,IT) + R2*FR(K,H,3+IT)
RETU,N

1000 FORMAT (3015.6)
END

C
COMPLEX*16 FUNCTION GH (RA K H 10)

C ••• FUNCTIONS GKM AND HKM FOR tLÂM~EO-FREE BEAMS
IHPLICIT COMPLEX*16(A'H), REAL*8(0-Z)
CI= CO.00,1.00)
CA= CI*RA

C ... 10=1 FOR GKM
O

10=2 FOR HKM
GO TO (100 2 01 10

100 GK= 2.DO*(!1)* tK+1)*CDEXP(-CA) + CA*HH(RA,K,-1)
GH= GK*(HH(RA,M,l) + CN(RA,M»
RETURN

200 GH= HHCRA,K,-1)*CHHCRA,M,l) + CNCRA,M»
RETURN
END

COMPLEX*16 FUNCTION HH (RA M 1)
FUNCTIONS HK AND HM FOR CLÂM~EO-FREE BEAM5
IMPLICIT COMPLEX*16CA-H), REAL*8(0-Z)
DOUBLE PRECISION OABS
COMMON/COAX/RLA(10)ORHOC10),OMR,RINT,NINT,N

C .,. 1=-1 FOR HK, 1=+1 t R HM
CI= CO.00,1.00)
CA= CI*RAwl
RB= RLA(M)*RHOCM)
ROIF= OABSCRA) - RLACM)
IF (OABS(ROIF).LT.1.0-16' GO TO 50
HH= (2.)O/(RLA(M)**4·RA*~4»*( C-1)**1H+1)*RA**2*CDEXP(CA)*(CA-RB)

1 + RLACM) *2*CCA + RB) )
RETURN
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C

C

C

C

50 A= O.SOD/RA**3
B= RA**3 + (RB· 3.DO)*CA*RA + Z.OO*RB·RA
HH= A~\ C-l)·*{M+1)*COEXPCCA)*B • (CA/RA)*RlACM)·*2
RETURN
END
SUBROUTINE INPUT (NTË~~S)
IMPllCIT CDMPlCX'16eA-H), REAl'BCO-Z)
CDMMON/IFlUIO/RHOI UI UIN
rOMMON/AFLUID/RHOA'UA'UAR
fùMMON/ISHElL/OHI,6VJ:OI,REI,SKI,PSI
~ùMMON/OSHElL(DHO ove 00 REa SKO PSO
COMMON/COAX/R Ael0)[R~0(10),OMR,AINT,NINT,MODE
CDMMON/ClFR/RL MDDE
COMMON/CONST/P! RGAMA IOPl IOP2
CDMMON/TAPES/JI~ JOUT' Jsl lS2 JS3 Js4 Js5
CDMMON/SVFOR/SAllll),!ST(\1)6~01,~00,~GI,RGO,VISI,VISA,Sl

C ••• READ DATA FOR TH~ INNER AND UTEN SHdlS
READ (JIN,100D) YNI,PSI,SOENI, THIKI,RDI,RGI,SHI,SVI
READ eJIN 1000) YNO PSO SOENO THIKO ROO RGO SHO SVO
WRITE IJOOT,1000L Y~I,P!I,SOE~I,THltl,ROI,ROI,S~I,SVI
WRITE JOUT,1000 YNO,PSO,SOENO,THIKOAROO,RGO,SHO,SVO
READ Il RIOU. PAR ETER. FON THE cOMPUT TION
REAO (JIN 1100) Sl Rl RINT NINT MOOEl MODE NTERMS 10Pl IOP2
WRITE fJOOT,1100) !lAAl6RI~TtNI~T,MOO~l,M06E,NTER~S,IOP1,IOP2
GENERA E SPeCIFIC OAT F R lA ER U.E
SKI= (THIKI/ROI)"2/12.00
SKO= (THIKO/ROO)"2/12.00
REI= ROI/Sl
REO= ROO/Sl
cI= YNI*lHIKI*SL/CRDI**2*(1.DO • PSI--2»
00= YHO*THIKO*SL/CRDO**2*C1.DO - PSO**2»
ut= DSQRT(YNI/(~~eNI*(l.DO• PSI-*2>l)
UA= DSQRTCYNO/lSDENO*C1.00 - Pso**2) )
OM~~ RDJ*UA/{RDO*UI)
CI= (li-~~lJ -1.00)
DHI= 1.00'+ SHt*CI .
OHO= 1.00 + SHO*CI
OVI= SVl*UI*CI/ROI
OVO= SVO*UA*CI/ROO
RETURN

1000 FORMAT e30Z0.12/30Z0.12/3020.12)
1100 FORMAT (3015.6,515,12)

END
C

SUS ROUTINE INVSE eA N)
IMPllCIT COMPlEX'16eA-H), REAl'B(n-z)
DOUBLE PRECISION COABS .
COMMON/TAPES/JIN

I
JOUT,JS1,JS2,JS3,JS4,JS5

DIMENSiON A(N,l
NN= N*N
NX= N + 1
NY= 2*N
CAll ClEAR eACl,NX),NN)
DO 20 1=1 N

20 A(I\N+I)= (1.00,0.00)
l=

40 K= l + 1
USE A PIVOT STRATEGY TO AVOlD AN ACCIOENTAl 2ERO PIVOT
RSIG. COABS(A(l,l»
IBIG= l
DO 60 I=l N
SHAll= COAés(Ae] L»
IF (RBIG.GT.SMAl() GO TO 60
RBIG= SMAll
ISIG= 1

60 CONTINUE
IF (IBIG - l) 120,120,BO

BD DO 100 J=l,NY

~~~=éJt~lAtlB'G,J)
100 ACI IG J) = CON
120 IF CRBIG - 1.0-0B) 300,300,140
140 COF= A(l,ll

DO 160 ,=l NY
160 Ael\J)= Ael:J)/COF

IF L.EO.NI GO TO ZOO
DO BD I=K N
COF= AU l)'
DO 180 ~=L NY

180 A(I[J)= A(I:J) - ACl,J)'COF
L= + 1
IF (l - N) 40,40,200

200 l= N
220 lZ= l - 1

DO Z40 K=1, LZ
1= l - K

g8FZ4su l;1 NY
240 A(I[J)= Ael:J) - A(l,J)'COF

l= - 1
260 ~~T6~N- 1) 260,260,220
300 WRITE (JOUT,2000)

STOP

if~ ...
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C

C

C

2000 FORMAT (51H' •• PROGRAM STOPPED ••. DUE TO ENCOUNTERING A
1 54H SINGULAR MATRIX. ITS INVERSE MATRIX DOES NOT EXISt ! JEND

C

fM~~~ItN~oM~E~xif~~A~~~,N~~~[lB(o.ZJ
COMMON/COAX/RLA(10J,RHO(10J

j
OMR

1
RINT,NINT,N

COMMON/JSHELl/DHI,Ovl,CI,RE ,SK ,PSI
COMMON/OSHELL/OHO,DVO 00 REO SKO PSO
OIMENSION CXM(NS,1J,txK/Ns, \J,AM(3,3J,AK(3,3J
00 200 M=1, NT
00 200 K=l NT
CALL CLEAR IAM,9l
CALL CLEAR lAK,9
Ul= RE1CK,M,1)
VZ= REZ!K,M,ZjV3= REZ K,H,3
V4= REZ K,M,4
Wl= N
\012= \011**2
CALCULATE ELEMENTS OF THE MASS MATRIX M
AMel,l)= REI**2*V2
AM(2 2)= U1
AM(3'3)= Ul
CALC6LATE ELEMENTS OF THE STIFFNESS MATRIX K
AK(1,')= -O.SDO*\.J2*Çl.00 + SKIl*'1.00 - PSI)*REI**2*V2 + ,t{EI**4"'V4
AKCZ,1)= -0.500*W1*1"00 + PSI *REJ**2*V3
AK(3,l)= ( 0.5DO*\.I2 SKl*(l.DO - PSI) • PSI )*REI**Z*V3

1 + SKI*(REI*RLACM»**4*Ul
AK(l 2)= 0.500*\011*'1.00 + PSI)*REI**2*V2
AK(2:2)= -Y2*Ul + 0.5DO*cl.00 + 3.00*51(1)*(1.00 - PSI)*REI**2*V3
AK(3 2j= \011*( -Ul + 0.5DO*5KI*(3.00 - pSn*REI**2*V3 )
AK(l'3 :; (PSI-O.5DO·W2*SKI*(1.DO-PSI)*RE1**2*V2 - SKl*REI**4*V4
AK(2'3 = W1*( O.500*SKI*(3.DO - PSI)-REI**2*V3 • Ul 1
AKC3:3)= ·CSKI*(C~2 • 1.00)**2 ~ (REI*RLACM»**4) + .OO)*U1

1 + 2.DO*SKI*CW1*REI )**2*V3
00 100 J=l 3
JJ= M+ NT*/J - lJ
00 100 1=1 3
11= K + NT*/I - 1)

100 g~~!ll~jjl~ ~~!l:jl
200 CONT 1NuE

RETURN
END

fM~~~ItN~OM~~~~~l6!~:~\~p~~1[~é~~~ZJ
COMMON/CONST/PI RGAMA 10"1 IOP2
COMMON/TAPES/JI~ JOUT' JSl lsz Js3 JS4 JS5
COMMON/SVFOR/SAL/l1JléBT(11),~0I,~00,~GI,RGO,VISI,VISA,SL
COMMON/IFLUIO/RHOI U UIR
COMMON/AFLUID/RHOA:UA:UAR
DIMENSION EIG(l)
~RITE (JOUT,2000) UIR,UAR
WRITE fJOUT 2020J 1ER APX

C ••• PROPOR 10NAliTY CONSTA~T TO GIVE FREOUENCIES IN CYCLES/SECONO
CONST= UI/(2.DO'PI*RDI)

C ••• PROPORTIONALITY CONSTANT TO GIVE FREOUENCIES IN RAO/SECOND
C CONST= UI/RDI

00 100 1=1 NX
100 EIG(I)= -CO~ST'EIG(I)

CALL SORT IEIG,NX)
00 200 1= NX

200 WRITE (JOUT:2040) I,EIG(I)
RETURN

'000 FORMAT (/53H * •• VALUES OF NON-OIMENSIONALIZED FLOW VELOCITIES,
1 1120X 5HUIR = 015.6 10X 5HUAR = 015.6/l

20Z0 FORMAT (41H'· •• ~ESULTé FR6M THE ItERATIVE METHOO,
1 IIZOX 5HIER = 1511
2 ZOX:22HPERFORMANCE INOEX = (LZ012.4LZH)/1
3 40H ••• RESULTS FOR THE FRtOUENCltS (HZ)/l

2040 FORMAT (4H 1 =,I5,5X,BHOM = (,Z024.16,2H JJ
C END

SUBROUTINE REOUCE (CO,AP,AOANT.NS,NX)
IMPLICIT COMPLEX'16(A-n) RE L*oCO-Z)
COMMON/TAPES/JIN

j
JOUT,JS1 LJS2LJS3LJS4,JS5

COMMON/ISHELL/OH LOVI,OILnEI6.KI,"SI
COMMON/CONST/PI RoAMA 10"1 1 PZ
OIMENSION CO(Nt,NT, lS,AP(~X,l),AO(NX, lJ
REWINO (JS2)
MX= NX*~X
CV, (0.00 0.00)
rALL CLEA~ (AP,MX)
CALL CLEAR (AO,MX)
00 20 1=I,NS
AP(I,NS+I)= (1.00,O.00J

20 t~(llb~;l(-14g04g.~23
40 IF (IOP2 100'60'100

C ••• WITHOUT STRUCT6RA( ANO VISCOUS DAMPING INCLUDED
C ••• NO STEADY VISCOUS EFFECTS INCLUOEO

6000 BO J=I,NS
00 BO l=l,NS
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C

C

,1',"~
.~

.,'.~

REAo (JS21 CM,CK
80 ~~~~~:I;~~:J~~ CM

GO TO 2..0
C ••• ~ITH STRUCTURAL AND VISCOUS oAMPING INCLUoEo
C ••• ND STEAoy VISCOUS EFFECTS INCLUoEo

100 DO 120 J=',NS
DO 120 1=1 NS
REAo (JS2l 'CM CK
AP(NS+I,J = DHf*CK
~PÇNS+I,N +J)= DVI·Cte:

120 AD,NS+I,NS+J)= CM
GO le 2..0

140 RE~INo ~JS3~

C .• 0 ~;T~b8~-~TRUg~6J*e,~~g VISCoUS oAMPING INCLUoEo
C ••• ~ITH STEADY VISCOUS EFFECTS INCLUoEo

160 00 lBO J=l,NS
DO lBO 1=1 NS
REAo (JS2j 'CM,CK
REAo (Js3 CV
APCNS+I,J = cte: + CV

lBO AD(NS+I,NS+J)= CM
GD TO 2..0

C o•• ~ITH STRUCTURAL AND VISCOUS oAMPING INCLUoEO
C •• 0 ~ITH STEAoy VISCOUS EFFECTS INCLUoEO

200 DO 220 J=1,NS
DO 220 1=1 NS
REAo (JS2l 'CM,CK
REAO (Js3 CV
APCNS+I,J = DHI·CK + CV
APCNS+I,NS+J)= DVI·CK

220 AQ'NS+I NS+J)= CM
C .00 Aoo TO ÂP AND AD THE UHSTEAOY IHVISClo FORCES

240 DO 260 M=l,NT
J= M + 2*NT
DO 260 K=l,NT
1= te: + 2*NT
AP(NS+I,J)= APCNS+I J) + CoCK,M 3)
AP(NS+I,NS+J~= AP5H§+I,HS+J~ + tOCK,M,2l

260 AQ(NS+1 NS+J = AC NS+l N3+J + caCK M1
C •• 0 STORE A~ ON APE S3 T6 SAV STORAGÉ to FINO INVERSE OF AO

RE~INo (JS3)
DO 2BO J=l, NX
DO 2BO 1=1 NX
~RITE (JS3)' AP(I,J)

2BO AP(I J)= AO(I J)
C 000 FINo'THE INVE~SE OF MATRIX AO (VALUES STOREo IN AP)

CALL INVSE (AP HX)
C 000 RETRIEVE AP FROM Js3

RE~IHo (JS3)
DO 300 J=',NX
DO 300 1=1 NX

300 REAo (JS3) 'APCI J)
C 0.0 PRE-MULTIPLY AP éy THE INVERSE OF AO AND STORE THE PROoUCT ON Js3

RE~INo (JS3)
DO 340 J=" NX
DO 340 J=l,NX
ASUM= (0.00,0000)
DO 320 K=l NX

320 ASUM= ASUM ~ APCI,NX+K)*AP(K,J)
340 ~RITE (JS3) ASUM

C 000 RETRIEVE THE PRODucr FROM JS3 AND STORE IN OH AP
RE~INo (JS3)
DO 360 J=1 ,NX
DO 360 1=1 NX

360 REAo (JS3) 'AP(I,J)
RETURN
END

C
DOUBLE PRECISIO~ FUNCTION REl (K M,ID)

C 0.0 INTEGRALS INVOLVING FUNCTIONS OF tL-FR AND CL-CL BEAMS
IMPLICIT REAL*8!O-Z)
COMMON/COAX/RlA 10),RHO(10),OMR,RJNT,NINT,N
GO TO (100 200 00) ID

100 IF (K.EOoMI G6 TO 120
RE1= 0.00
RETURN

120 RE1= 1.00
RETURH

C •• 0 FOR CLAMPEo-FREE BEAMS ONLY.
200 REl= 4.DO*RLA(K)*RHO(K)*(-1)**(K+M)

RETURN
300 RE1= 4000*RLACM)*RHO(M)*(-1)**(K+Ml

RETURN
END

DOUBLE PRECISION FUNCTION RE2 (K MIO)
INTEGRALS INVOLVING CHARACo FUNCTlo~s OF CLAMPEo-FREE BEAMS
IMPLICIT REAL*B(O-Z)
COMMON/COAX/RLA(10),RHO(10),OMR,RINT,NINT,N
RK= RLA(KIRM= RLA(M
SK= RHO(K
SM= RHO(M
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C

C

C

IF CK.EQ.M) GO TO 100
GO To (ZO 40 60 BD) ID

ZO RE2= 4.DO>C(:1)"(K~M) + (RM/RK)'*Z)
RETURN

40 TM= (-1)**CK+M)*CSM*RK**3 - SK*RM**3) + SM*RK*RM**2 ~ SK*RM*RK**2
RE2= 4.00*RK*RH*lM/CRK**4 ~ RM**4)
RETURN

60 REZ= 4.DO*CRK*SK - RM*SM)/«RK/RM)**Z - (-l)**CK+M»
RETURN

BO REZ= 0.00
RETURN

100 GO TD (1Z0,140,160,lBO), ID
1Z0 REZ= Z.OO

RETURN
140 REZ= RM*SM*(Z.OO + RM*SM)

RETURN
160 REZ= RM*SM*(Z.DO - RM*SM)

RETURN
lBO REZ= -RM*'4

RETURN
END

C
DOUBLE PRECISION FUNCTION RE3 CK MID)

C ••• INTEGRALS INVOLVING CHARAC. FUNCTlo~s OF CLAMPED-FREE BEAMS
IMPLICIT REAL'B(O-Z)
COMMON/COAX/RLA(10),RHOC1U),OMR,RINT,NINT,N
RK= RLA(K)
RM= RLA!MlSK= RHO K
SM= RHO M
IF CK.EQ.M) GO TO 100
GO TO (ZO 40 60 BD) ID

20 TM1= RK'RA*st*sA/tRt**4 - RM**4)
TM2= 16.DO*TM1*RM**2*CC-1)**CK+M)*RM**2 - RK**2)/CRK**4 - RM**4)
RE3= 8.DO*TM1*C-l)**(K+M) + 1M2
RETURN

40 TM1= 4.00*RK'RM/tRK**4 - RM**4)
TM2= CRM*TH1l**2*CC~11**CK+M)*RK**2 - RH**2)
R~3= lH1*CC- )**CK+H)*CSH*RK**3 ~ SK*RM**3) - 2.DO*RK*RH) + 1M2
RETURN

60 TM1= 4.00*RM**2/tRK**4 ~ RM**4),
TM2= CRM*1M11**2*CRK**2 - RM**2*C-ll**CK+H» " ".
RE3= lM1*CRK**2 + RM**2*C-l)**CK+M)*CRK*SK - RH*SM • 3.:. t· 1M2
RETURN '

80 TM1= 4.00*RK*RM**3*SK*SM/CRK**4 • RM**41
TM2= 4.00*1M1*RM**4*CRK**2 - RM**2*C·1) *CK+M»/CRK**4 - RH**4)
RE3= TM1*CRK**2 - 3.DO*RM**2*C-1)**CK+M» + TM2
RETURN

100 GO TO (1Z0,140,160,1BO)" ID
120 RE3= 0.500 + 2.00*\SH/RM)**2

RETURN
140 RE3= 0.500*(RM*SM*(6.00 + RM*SM) • 4.00)

RETURN
160 RE3= 0.500*RM*SM*C2.00 • RM'SM)

RETURN
lBO RE3= -0.500*RM**4

RETURN
END

DOUBLE PRECISION FUNCTION RFAC (N)
IMPLICIT REAL'BCO-Z)
RFAC= 1.00
IF (N.LE.l) RETURN
X= 2.00
DO ZO I=Z N
RFAC= RFAC'X

ZO X= X + 1.00
RETURN
END

DOUBLE PRECISION FUNCTION RFI (N)
IMPLIClï REAL'B(O-Z)
RFI= 0.00
IF CN.EQ.O) RETURN
X= 1.00
DO ZO 1=1 N
RFI= RFI +'1.00/X

ZO X= X+ 1.00
RETURN
END
SUBROUTINE SORT (DT NX)
IMPLICIT COMPLEX'16CÂ-H)
DOUBLE PRECISION OREAL
DIMENSION OT(1)
NMIN= NX • 1

100 IFLAG= 0
DO ZOO l=l,NMIN
C1= OTP)
f~=cgk~lLl~1).GE.OREALCCZ» GO TO 200
OT(I)= CZ
OT(I+1)= Cl
1FLAG= 1

ZOO CONTINUE
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(

C

C

C
C

IF (IFLAG.EQ.l) GO TO '00
RETURN
ENO

SUBROUTINE VISFOR CCXV NT NS)
CALCULATE STEADY VISCOU~ F6RCES FOR CLAMPED-FREE SHELLS
IMPLICIT COMPLEX*16(A·H), REAL-eCO-Z)
OOUBLE PRECISION DLOG10.DSORT
COMMON/IFLUID/RHOI,UI,UIK
COMMON/AFLUIO/RHOA UA UAR
COMMON/ISHELL/DHI,6vl;CI,REI,SKI,PSI

é~~g~1~~~~~~~?U01~~~~~~16Rj~~~~~~Plî~4,JS5
COMMON/COAX/RLA( 0l RMOf1 1ONR R NT,NINT N
COMMON/SVFOR/SAL(l ~,SB (1 ~,RDI,ROO,RGI.~GO,VlSI,VISA,Sl
DIMENSION CXVCNS.').CV(3,3)
R13= 0.3333333333,33,300
DETERMINE THE LOCATION OF THE MAXIMUM VELOCITY USING A MULTILINEAR
REPRESENTATION Of THE CURVE BY BRIGHTON &JONES \'9~3)
RAB= RO 1IRDO
005 1=1,'1

5 ~bNHe3::· s:.~:!) 1~,5,5

10 SBET<= SBTCI-1)+CRAB-SALfl-'l)*CSBTC!)·SBTCI·1)/(SALCI)-SALC1-1»)
P'~;'= RDO*(RAB + O.5DD*SBE A-( .00 - RAB»
IF CUIR) 40 40 20

20 RNI= 2.DO*cuIR'61)*RDI/VISI
IJFAI= O.on55DO*(1.DO + (2.D+04*RGt + 1.0+066RN1 )·.RB)
YFI= ·0.5LD/OLOG10CRGI/3.700 + 2.5100/CRNI* SORTCYFAI»)
UTI= UI*UIR*WFI/DSQRT(8.00)
GO TO 60

40 UT!= O.DO
60 IF CUAR) 100 100 80
80 RNA= 2.DO*(UA~'UA\'(ROO - ROI)/VISA

IJFAOI= 0.005500*(1.00 + (2.0+04*RGI + 1.D+06/RNA)**R13)
UFAOO= 0.0055DO*(1.00 + C2.D+D4*RGO + 1.0+066RNA)**R13)
YFOI= -0.500/0LOG10CRGI/3.700 + 2.5100/CRNA* SORtSYFAOlljj
tl~g?~ ü~*G~~'e1g?lg~~~?i~R~~22+_2R~1~2~~5~a:g~2~~I~t~gg)- ROI)))
UToo= UA*UAR*WFOO*OSCRT«RDO**2 - RM**()/(8.00*ROO*(ROO - ROI»)
GO TC 120

100 UTOI= 0.00
UTOO= 0.00

120 WBI= RHOI*UTJ**2 + RHOA*UTOI**2
wel= 2.00*(RHOI*UTI**2/RDI - RDO*RHOA*UTOO**2/(ROO**2 - RM**2»
\JOI= -SL*WCI
RCONI= 1.00/COI*REI**2)
AlI= -RCONI*YBI
BlI= 'AlI
B21= RCONI*WBI*REI
A31= -RCONI*WCI*RDI
B31= -RCONI*WDI*REI
EN= N
DO 300 K=1, NT
DO 300 M=1 NT
CALL CLEAR Icv 9)
CV(1,1)= REi**~*c All*RE3(K.M.4) + B1I*RE2CK.M,4) )

1 - (EN*RE1)**2*( A31*x.E.)(K M2) + B3J*/(E~(K M2) )
CV(3, 1)= RE 1**2*( A31*RE3(K, M(3) 1+ 1 B3I*RE2(K,M,3)' )'
CVCl 2j= B21*EN*REl'RE2CK M 1,
CVC2:2 = REI**2*( All*RE3IK~M\3) + Bll*RE2CK,M

1
3) )

1 • EN**2*( A31*RE3(K M ) + B31*RE1CK M »
CV(3,2)= -EN*C A31'RE3CK M'11 + 831*RE1CK M'1l )
CV!1,3j= REI*CB21*RE2CK,~,I)-REI'CA31*RE3lK:M,2)+B31*RE2(K,M,2»)
CV 2,3 = CVC3,2j
CV 3

6
3 = CV(2,2

DO 2 0 J=1 3
JJ= M+ NT*/J • 1)
DO 200 1=1 3
11= K + NT'II • 1)

200 CXVCII,JJ)= CVCI,J)
300 CONTI NUE

REYINO CJS3)
DO 400 J=l,NS
DO 400 1=1 NS

400 YRITE (JS3)' CXVCI,J)
RETURN
END

.2824600000000+07 .4700000000000+00 •115B800000000+04

.137000000DOOO-02 .24B4000000000-01 .0000000000000+00

1 16

1.15B800+03
0.0000+00

1.15BBOO+03
0.0000+00

200 3 2

lTH

0.470+00
0.02484000000+00

5.795000-05
0.470+00

0.03263000000+00
5.795000-05

3.000+00 2.0000+~0

1.2049080+00 0.0000000+00
1.2049080+00 0.5000000+00

2.82460+06
1.37000-03
0.00000+00
2.82460+06
1.37000-03
0.00000+00

1203.200-03
15.17820-06
IS.17B20-06c
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.0000000000000+00 .5795000000000'04

.2824600000000+07 .4700000000000+00 .1158800000000+04

.1370000000000'02 .3263000000000-01 .0000000000000+00

.0000000000000+00 .5795000000000-04
.2032000+00 .3000000+01 .2000000+01 20G 3 2 6 1 1

• • • VALUES OF NON'OIMENSIONALIZEO FLOY VELOCITIES
UIR = .0000000+00 UAR = .5000000+00

• •• RESULTS FROH TNE ITERATIVE METHOO

1ER = 0

PERFORMANCE INOEX = ( - .58030+00 - .58030+00 )
• • • RESULTS FOR THE FREQUENCIES (HZ)
1 = 1 OH = ( .10482959079860130+04 .20798126697930470+03 )1 = 2 OH = ! .96873709793338500+03 .17658450067988840+03 l1 = 3 OM = .8983542g224408960+03 .15117606311102370+031 = 4 OM = .8504934 8 9664790+03 .13519549330881710+031 = 5 OM = .81423968374873050+03 .12373383250318280+03 )1 = 6 OM = ! .79717333674368650+03 .1183860~707442510+03 )1 = 7 OM = .65509763078769880+03 .7935024 589097010+02 l1 = 8 OH = .53046438411593770+03 .51762348113438340+021 = 9 OH = .47964195643291920+03 .42260711386824010+021 = 10 OM = ! .43062122772742910+03 .34040577360962480+02 11 = 11 OM = .39271182273439790+03 .28346581048764890+021 = 12 OM = .37000607740173850+03 .25240603651521390+021 = 13 OH = .15593125208165640+03 .50338499945970420+011 = 14 OM = ! .11974431379495270+03 .3037408~539252370+01 l1 = 15 0f0I = .84610742332068700+02 .1745PJ5 127432820+011 = 16 OH = .49995078021611320+02 .9272 3852044401g0+001 = 17 OH = .22685617896675300+02 .644620786483972 0+00 )1 = 18 OH = ! .14080675469891290+02 .64886972457872430+00 )1 = 19 OH = -.14080677931374410+02 .64887263247610720+00 l1 = 20 OM = '.22685619364800040+02 .64461621737318940+001 = 21 OM = -.49995084144925990+02 .92727722797763730+001 = 22 0f0I = ! -.84610745964846170+02 .17457293877429280+01 )1 = 23 OM = '.11974432184647530+03 .30374340171543290+01 l1 = 24 OM = '.15593126671269230+03 .50338560074323870+01..,.. 1 = 25 OM = -.37000608005565620+03 .25240604372239720+021 = 26 OM =

1
-.39271182427706980+03 .28346581966444720+02 )

4- 1 = 27 OM = -.43062122875442040+03 .340405775977~1150+02 l1 = 28 OH = -.47964195684059380+03 .422607217828 3120+021 = 29 OM = -.53046438437340560+03 .517623 8311678180+021 = ~~ OH =
1

-.65509763052040570+03 .79350245591723610+02 11 = OH = -.79717333722127240+03 .11838602716580740+031 =
~~ OM = -.81423968524959570+03 .12373383271814870+031 = OH = -.85049346017724660+03 .13519549393552810+031 = 34 DM = ! -.89835422336199410+03 .15117606338069540+03 l1 = 35 OH = - 96873709868957330+03 .17658450117902820+031 = 36 OM = -:10482959082564650+04 .20798126702736560+03

.,:':'to,

.. f.tl)


