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CHAPTER l 

1. INTRODUCTION 

This thesis attempts to collect together the most 

important results of pointtJ'ise ergodic theoryll and to 

prove them in the simplest and most illuminating manner 

known" Also\) the theory developed l'fill be used in a 

rather, interesting application .to .the theory of martin­

gales. 

l 

Ergodic theory had its origin as a mathematical 

attempt et justification of the-famous ergodichypothes1sll 

concisely phrased Cl equality of space averagesend time 

averageso tl This hypothesis \'las first made and used by 

Liouville in the second half of the nineteenth centurYIl 

in the solution of an important problem of statistical 

mechan1cs. A more deta1led account of this problem Can 

be found in [11] , {C18] li and [19] 0 MathematicallYIl the 

ergodic hypothesis involved the study of certain measure­

preser~1ng transformations of a measure space into itselfo 

Under certain condit1onsll 1t 't'J'as verified by Go Do Birkhoff 



in 1931 [2J • His result, which has since been sllghtly 

modified, and is kno~"n 't'lidel3-f' as Cl The Ergodic Theorem CI, 

is still today probably the most important ergodic result 

as fer as applications are concerned. Birkhoff recognized 

the inclusion in the ergodic theorem of a much more general 

r~sul t ot' l1hich the actual theorem is a corollary. That 

·result 18 no't'l called a maximal lemma. The so-called 

u clesslcal CJ period contlnuedp with Khintchine dropplng 

unnecessary assumptions made by Birkhoff\) and 't'Tith Hopf 

extending his resulto Then, in 1947, F. Riesz [18J fur­

nished a simple pro of of the Birkhoff theorem, and in the 

process demonstrated further the importance of the maxi­

mal lemma. His proof of the ergodic theorem is the one 

nOl'T given in most probability texts. 

The modern period Sa.l'T Hopf [9] in ·1954 . abandon the 

original setting of ergodic theorYD and by developing a 

pertin~nt maximal lemmal) extend the theory to the study of 

certain linear operators on Banach spacesl) notably L, the 

space of aIl integrable functionso His results 't'Tere extended 

in 1956 by Dunford and Schwartz [6] 1) and f1nally in 1960 11 

Chaoon and Ornstein [5] developed a very general ergodic 

theorem of which those of Hopf and Birlrhoff are specia.l 

cases. 
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:3 

't'Je shall first derive El very powerful maximal lemma. 

due to A. Brunel [31 '. This lemme, as P. A. Meyer [12, 13] 

has pointed out~ belongs in the domain of potentiel theory. 

We shall then prove9 in its fullest generelity, the 

Chacon-ornsteln theorem, using certain notions of poten-

tiel theory. This approach is due to Mayer. ,It t'J'ill be 

intel"esting in the remainder of chapter III to compare it 

l'J'ith an alternate method of pl"oof of the Chacon-ornstein 

theoremo The Hopf and Birkhoff results t'lill then follow 

in chaptel" IV as coro11aries9 and in chaptel" V 9 't'J'e shall 

apply the former to a problem in martingale theoryo 

FinBllYl> vre shall in chaptel" VI prove another maximal 

lemma, and from i t deri vs the Dunford-Scht'lartz ergodic 

theoremo For the latterp 't'le sha.ll need as a lemme the 

famous mean ergodic theorem of von Neumannl> and this tlill 

also be pl"oved in chaptel" VI. 

The setting of this thesis being probabilitySl ~le 

shall prove these results in a probability space, elthough 

most can easily be extended to sigma-finite measure speceso 

The resulting simplification, if anySl involves no loss in 

genera.lityo 



CHAPTER II 

THE MAXIMAL ERGODIC LEMMA OF BRUNEL 

20 Sub-Markovien Endomorphi sms 

Let (~,~, P ) be a probability space (~ is a 

set, A a sigma-algebra of subset s of el/&; , P a probabili ty 
1 

on A. ) 0 Let us denote by L (~5) Â 5) P ) ( or t'Jhere the 

context is clesr, simply by L ) the Banach space of equl­

valence classes under P of ~ -measurable rsal valued 

funct10ns f whose nor.m~ defined by 

ls fin1teo vIe shall denote by Loo (~ 5) A. 5) P ) ( or by Loo ) 

the dual Banach space of equlvalence classes under P of 

A -measure.ble real valued functlons g 't1hose norm9 deflned 

by 

ls agaln finlteo 

!!glloo = ess sup Igi 
~ 

An endomorphlsm T of L is a functlon T : L ~ L 

such that for every real number c and ftl g ~ LI> tle have 

T( cf ) :::: cTf 

T ( f+g ) :::: Tf -1- Tg 

4 



Tis called positive if f ~ 0 implies Tf ~ 00 The fami1y 

:J of al1 endomorphisms T of L ls a1so a Barlach space 

if we defil19 

tiTI! =: sup IRjFf} 
f CI L 
f ;!: 0 

A positlve endomorphism T on L suah the.t -iJ TU :s 1 

ls ca11ed a sub-Markovian endomorphismo If U TU == lSl T 

is furthermore èa11ed Markoviano It is th1s type of endo­

morphism that 't'le 't'11sh to studyp except in chapter VI$) 

't<1here. ~J'e. shall drop the a8sumptlon of positivityo 

The adjoint S of an endomorphism T on.L ls a certain 

endomorphism of the dual space Loo!) defined as fol10't1s: the 

image Sg of g by S is the unique e1ement of Loo such that 

!foSg :::: JTfog 

for every f in Lo The norm of Ssl defined again as 

ls equal to that of To FurthermoreSl S is easl1y seen to'be 

positive if Tiso 

The follm'11ng theorem furnishes us t'11th a usefu1 

criterion for determining 't'J'hether a positive endomorphism 

of L 18 sub-Markovlano 

5 



Theorem 2.,1 

Let T be a posltlve endomorphlsm of L .. T ls 

sub-:fIlarkovlan lff 81 :5 1. 

Proof: 

Assume T ls sub-I'larkovlan. Lett1ng9 for every 

't'le have 

6 

o ~ ( 1 + e)p ( B@ ) ::: ~l = fTXB ~ lXB = P ( Be ). 
~ 0 q; 

and therefore P( B~ ) = o. 
ConverselY9 assume SI S 1S) and let h (j, Loo 't'7ith!> say 

Ilh~~ 00 = C., Then Ih~ ~ 0 l~plies ~Sh~::: Sc = 081 ::: CS) and 

therefore ~~8 Il 00 ~ 10 

In the remalnder of this ohapterp and in chapter IIIS) 

't'le shall denote by T and 8 a sub-Markovle.n endomorphlsm 

and lts adjoint ll respectively. l'le she.ll denote by L+ the 

faml1y of posltive funotlons ( 1090 equlvalence classes) 

of La 

Theorem 2.2 

(a) If {fn:n 2=. Ij ls an increaslng sequenoe 

ln L+ such that f = I1m f n cr L+!> then Tf = lim Tfn .. 

(b) If [gn:n ~ 1] ls an lnoreasing sequence 

ln L~ 
+ suah that g = I1m gn G L~!l then Sg = I1m Sgn a 



Proof: 

(a) Since T is positive, the sequence {Tfn:n ~ 11 
is increasing i~ L+. If f Ci 14, then 

,n~f-œfnll ~ Ilf-fnli::: f ( f-fn ) ~ 0 as n~ooo 

This implles that Tf = llm Tfno 

(b) As above, the sequence {Sgn:n ~ lJ ls 

increasing in 1+ 0 Passing to the limit in the equality 

fTfogn Q ff oSgn , fca L+lI 

't'le obtain 
JTfog = Jfolim Sgn , f ~ L+lI 

and thus if gel L+, "Ç'J'e ha.ve Sg = lim Sgn o 

q"eodo 

Let lB+ be the convex cone of equivalence classes 

under P of positive ;t-measurable functions, finite or 

not 0 Theorem 20.3 ,belO't'l ello't'ls us to extend T and S to 

GB+9 at the sarne time conserving their dual relationship9 

and most of their properties. 

Theorem 202 

T can be extended to a positive endomorphism 

7. 

of <B + having the monotone cont inui ty property: if { f n : n ~ 1] 
is an increasing sequence in ~+ l> and if f = lim fnl> then 

Tf = lim Tfno 

The analogous result holds for the adjoint S 

of To IVIoreover, these extensions are such that 

JTfog = [foSg 

for every fll g in @+ 0 



Proof: 

Since ever.y f ln 0+ ls the limlt of an increaslng 

sequence of slmple functions in L+ ' we can define for 

f, g in ~ , 

Tf = lim Tfn 

Sg = lim Sgn 

where {fn:n ~ l} and '{gn:n 2:. l} are sequences of 

simple ~ctions increaslng to f and g respectivelyo 

One then proves the properties of the extensions in the 

seme way that one proves the properties of the extension 

of the Integral from simple ?unctions to @+ 0 

The~e is also a less obvious approach9 based on the 

Radon-Nikodym theoremo Every f in Sr defines a positive 

measure 
v f ( A ) = J f oSXA·\) A Ci A l) 

deflned on Â 0 One easily sho't,J's that Vf ls absolutely 

continuous 't'J'ith respect to PI) and thusS) by the above 

mentioned theorem there is a urJ.1que element Ti~f in @3 + 

such that 
v f ( A ) = ~T-!Ï' f \) A a Â. 0 

This shows that there exists a unique function T'li:{] c::::zCl ao 
-{l- + 

r. 
One easl1y verifies that T" is positive\) lineer" and 

coincides on L+ ii:rith T 0 tve shall drop the asterisk and 

denote this extension sj.mply by T 0 The monotone con­

tinuity property of T on @4 follo't'J'S from the equality 

8 



whlch ls valld for 8ny lncreas1ng sequence {f n: n ~ l} 
ln ~ +0 The above procedure applles to the adj01nt also 0 

F1na.l1YD we shall shm'1 that ' !Tfog = 1 foSg for f, g 

ln ~ 0 For every such fD we have 
+ 

1 Tf· X A c, 1 f 0 SX A $1 A CS A. 0 

The I1near1ty and monotone contlnu1ty propert1es of S 

and the",lntegral then imp1y the des1red result 0 

Corol1ar~ 

then 

Proof: 

00 

If ~ f n : n ~ 1] ls e.',,~sequence of functions ln (!@ +' 

00 co 

(a) T ( trfn ) ::: /b Tfn 
n=1 n=1 

00 co 

S (n~fn ) = ' ;'Sfn o . 

n= 
(b) 

N 
The sequence f /rfn:N 2:. 1 J ls increaslng ln @ + 

n=1 

to !. f n oThe result folloNs by the l1near1ty and mono­
n=1 

tone contlnuity propertles of T and S on ~ +. 

A functlon T: @ +=C> @+ havlng the property ln the 

above co:r.ollary ls called a pseudo-kernel on ({@ +1> but we 

sha1l not use th1 s termlnology 0 Hot'J'evero theorem 20 J ha.s 

shown that a sub-Markovla.n endomorphlsm T of L can be 

extended to a pseudo-Iternel on ~ +0 

Belot'J'D we llst some examples of positive endomor-

9 



phisms t'iThich t'Till be of great importanoe in the sequelo 

In exemples 29 3, and 4, N denotes an arbitrary posi­

tive endomorphism, defined on e1ther L or Loo. 

10 The funotion J A defined on L ( or on Loo ) for every 

A 1nA. by 
JAf = fOXA 

is a sub-Markovlan endomorphism of L ( or L~ }o 

20 The function NAD defined on the domain of N for 

every A in A by 
NA = NJA 

ls a positive endomorphlsm and ls sub-Markovlan if N Iso 

30 The functlon GNt defined on e by 
00 

GNf= &NPf 
p=O 

ls a positive endomorphism of ~ o 

40 The functloD BA deflned on L for every A in A by 

BA = J A GT A 0 1) A 0 = an.,.. A 

ls a positive endomorphism of Lo Denoting the adjoint of 

BA by HAD the eqùality 
co 

= JBAf 0g = J ( JA + JA '2,: (TA' 0 )p) f 0g 
00 ~::l ,,' 

:::: J(JA + JA2T (JAoT} JAo)fog 
p=l 

:::: ff ° (JA + J AoGSA oSA)g 

10 

imp1ies that HA = J A + JAoGSAOSA 0 toJe sh9.11 show in theorem 

301 that HAl ~ 1 and therefore that BA is sub-Ma~roviano 



50 Let th be any sigma-suba1gebra of 4. SI and let 

f ~ Lo The condittonal expectat10n Eef of f t'7ith 

respect to ~ ls the unique element of L such that 

fc fdP ~ :··JcE~fdP 
for every C in ~ 0 One easily sees that the operator 

E@(o) so defined is a Markovien endomorphism of Lo 

30 Excessive Functions end Eauilibhium Potentials 

A function g in ~+iS cal1ed excessive if Sg ~ gSl 

and invariant on a set Ain cA if Sg = g on A 0 Simple 

exemples of excessive functions are 11'1 and GSf for any 

f in ~+o 

The follo'trJing theorem will be referred to severa.! 

tlmes in the sequelo 

Theorem 30l. 

Il 

Let f be an excessive functionp and let AG A 0 

The family of all excessive functlons majorlzing f on A 

contains a smallest elementSl glven by HAf p "'G'Jhlch has the 

folloldng propel"'t ies : 

(a) HAf ~ f 

(b) HAf = f on A 

(c) HAf ls invariant on t.!& - A under S 0 



Proof: 

We shall first show the validity of the inequality 

-k 
JAf + "T'JAo (SA' )PSAf :s. f 

p:=Ô 

for every le ?:. O. It is triv"ially true l'lhen k=Oo Suppose 

(301) is t e for ko Letting S operate on each side of 

(301), we 

lr;t:l p 
~(SAo) SAf:s. Sf 

p=l 

12 

Next, appl ing J Ao and adding JAf to both sides of (3.2), 

't'le have 

k+l p 
+ IJAo (SA') SAf :s. JAf + JAoSAf 

p=O 
:s. JAf + JAof 

= f 

thus verifying (301) for every k ::=. 00 Letting k=c>co then 

proves property (a)o Property (b) is trivial, as HA = JA 

on AD 

Nen, the equality 

shows that SHAf = HAf ontff&- f!..' and so proves property (c)o 

The lnequa.li ty SHAf:s. Sf S f = HA f on At;) li'1hich follows 



from propel.--ties (a) and (b) SI sho't'ls in combinatiol'l t'lith 

property (c) that HAf 1s excessiveo 

13 

To ShOi'l that HAt is the sma11est excessive function 

majorizing f on A, let g be any excessive function major­

izing f on Ao Then JAg 2:. JAf, so that HAJAg 2:. RAJAf. 

Since HAJ A = HA' thls implles RAg 2:. HAf. However, by 

property (a) SI 't'le have g ::. HAg9 and therefore g :::. HA f .. 

Since the function 1 ls excessive, theorem 3 .. 1 shows 

that HAl ~ 19 and therefore that the endomorphism BA of L 

in example 4 is sub-Markoviano 

When f 18 excesslve'IJ the function HAfis cal1ed the 

reduction of f on Ao 'rhe reduction HAl of 1 on A i8 ca11ed 

the equil1brium potentiel of A and for brev1ty ls dsnoted 

by sAo 

Theorem )02 

Let fAu:n ~ IJ be an 1ncreas1ng sequence 

of sets in Â Il and let A = 1im An 0 Then eA = 11m e~ 0 

Proof: 

Suppose CI) D Œ A t'71th cc D 0 NO~l ~ is ex­

cessive and majorizes 1 on Co RGnce Sc :::. en? 'l'his show's 

that eAnt and that eAu :::. eA for every n 2:. 10 



· . 14· 

On the other handu Selim eAn) = 1im seAn~' I1m e~ 

and lim eAn majorizes 1 on A. This implies that 'lim eAn 

~ sAo and finishss the proof. 

40 The Ma.xime.l Lemme. of BruneI 

The follot'ling theoremll due to Ao BruneI (3] i8 a 

typical exemple of a. ma:lclmal ergodic lemmao It V'lill be 

used not only in the proof of the Cha.con-Ornsteiti theorem 

( theorem 501 ) but also in the identification of the 

ergodic limit in that theorem ( theorems 701 and 703 )0 

Theorem 401 

Let f d L and let A Œ A such that 

00 f. n n .lx: su.p l?:Tif(x) > oJ 
k=O n::t:.k i=k 

Then 

Proof: 

The proof of this theorem ls quite long and 

la.boriouso He shall divide it into five pa.rtso First "'le 

sha.ll develop sorne tools of a theoretical naturep and 

then apply these to the immediate" problemo 



(a) LIst us fom the product measurable space 

( NX tJ»., SI Z (N)X A ) t'J'hers: N = {Oglg2g:3g 00001 

zeN) = faml1y of all 

subsets of N 

Since for any AC: NX JA.D 9 we can t'n"lte A = U {pj x Ap - p=O 
uniquely l'J'here Ap is the section of A st PSI lt 1ilill 

be useful to denote subsets A of NX~ ln the form 

A = (AOgA19A2g 000000) 0 Subsets A of NX ~ which are 

Z (N)x Â -measurable are then preclsely those whose 

every section Ap is A. -measurable 0 In the sarne waYII 

we Ctm t'J'rite every function g: NX~ ===c:>R ( R the real 

line ) as· a sequence g = (gOllg19g2'.ooo) where gp9 

p = OSl1,2g oo o is the section of g at po ThuslI every 

Z(N)xA -measurable function is identlfied 't'7ith a 

sequence of A -measurable functionsg and converselYl1 

every such sequence determines a Z(N)xl! -measurab1e 

rea1-valued functiono Finally, for every sequence 

g = (gOgg19g2'ooo) of ~ -measurable positlve functions, 
co 

the expression Vg(A) =P~O!~p defines a positive 

measure on Z (N)X A 0 This expression shot'J's thatl) with 

respect to the measure space ( NX~, Z(N)xA 11 vl )1) 

tt'J'O Z(N)x A -measurable functions f and gare equal 

aoeo iff fp = gp aoeo(P) for every p in No 

Let us define the endomorphism S-::' on the set 

15 
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of vl-equ1valence classes of positiveS) Z(N)XA -measurable 

functions by the following relation: 

S*(g09gl,g2'OOO) = (Sgl,Sg2'ooooo) 

One then easily sees that 

~~ and thus that 1 ls excessive under S 0 Now let l2. be a~~ 

Z(N)X A -measurable set of the form 

't'J'here 

(401) 

and· let us denote by 6;s = (bO,bl,b2'ooo) the equilibrium 
-lI-potentiel of l2. with respect to S 0 Furthermore, let 

9J3 - SJ.!- 9J3 :: (dO' dl' d2, 000) 0 For any integer 0 ::: k <: n, 

't'J'e are going to show that 

dr ::: 0 on Bk - Bk+ l if r > k 

dr ~ dr+l on Bk - Bk+l if r < k 

Now the function (boVSbo9 bo,b1 ,onoo) (where V denotes 

sup; ioe; boVSbO ::: sup(bO,SbO) ) majorizes l on B, and 
..:t-is S -excessive, as 

S .. :· (bOVSb09 bO!) bl' 000) -. (SbO,Sbl9 000) 

< (Sbo9bO,bl ,oo) 

< (bOVSb09bO,bl' •• ) 0 



17 

It therefore also major1zes ~ 1) implying that bO 2:: bl 2:: 

~ b2 ~oooooo and therefore that SbO ~ SbI ~ Sb2 ~~oooooo 

Let us now fix kand define the sets ~r = {ri X(Bk -Bk+I) 

for o.~ r ~ n. C1early, if r > k, then BnBr = ~, and by 

theorem )01, ~ is invariant on·Bro This impIles the 

truth of (4.2)0 If r ~ k, then ~~ Br' 1mp1ying that 

dr = 1 - Sbr+1 on Bk - Bk+l o vIe then have 

(b) Let us define by 1nduct1on the following functions 

on Jlg 

Q10t> = inf l q: 1~?1f(X) ~ 0 J 
or otherwise + 00 

QP+l bd = inf {q: lcT1f(x) 2:: ol 
l:A~(X)+l 

or othenTi se + 00 0 

for every P.:::. 10 vie notice immediately that if x ~ A9 

~~~)Qp(X) is finite for every p 2:: 10 ConverselY9 

~Tif(X) ~ 0 for every m ~ Q1(x) if QI(X) ls flnlte 
l=m 

( othen~1se one contradlcts the defin1tion of QI(x) )0 
Q~~xi 

SimiIariIY9 Qp(X) < 00 lmp11es that ~T f(x) ~ 0 
i=m 



(c) Let us fix n and p and take for the sets Bi' 

i = Oll11l2lloo.olln of (401), part (a) 

Then BO;) Bl -'> B2:;) 00 .. 0 0 ~ Bnll and ~Te note that 

Bk - Bk+l = An {Qp".:= kJ for 0 .:S k .:S n - 10 Now 

1 f obO c: 1 f· (dO + Sdl + 0000 0+ Sn~) 

= 1 (fdO + Tfodl +00000000+ Tnf°dn) 

Using the method of part (a) Il it is easy to shot" that 

dO = dl = 00., 0 0 0 0= dn = 0 on~ -BOl> and therefore that 

fodO + Tfodl +000 0+ Tn~odn = 0 on~ -Boo On the other 

band Il this sum can be t'1ritten on Bk - Bk+l as 

fodO + Tfodl +0000000+ Tkfo.dR 

k k 
= dO ~~if + (dl-dO)i]iTif +000.+ 

000.+ (dk-dk_l)Tkf 

18 

l'J'he:,e t'le have used relations (402) Il (40,3) Il and the results 

of part (b) 0 Thi s Shot'Œ that 

IfobO ~ 0 for every n ~ 0 and p ~ 1 (404) 

(d) Letting n~ çoll the set ~ = (BOIlBl1) 0 0 o'JBnllfÔ!)fÔ~ o.) 

increase s to the set BP = (A lf\\ [Qp~ 0] !) A (il !Qp~lJ Il'' 0 0 0 0 .. ) .. 

Theorem .3 02 implies tha.t eBT:>.= (cE !) ci Il c~ Il 000000) = 
-,. 



= lim' 9nR ~ and this~ together t'11th 1nequa11ty (404) 

1mp11es that ffocB ~ 0 for every p ~ 1. Nextp 

lett1ng p<Ç- 009 ;~we have Qp'l'oo on Ag and the set BP in­

creases to the set A = {A9A,A9oooooo)o Denot1ng the 

equi11br1um potentiel of A by ea = (a09a19~29oooo)9 

W9 have similarily 

(e) Final1y we 'sha1l show that aO = 9A oThe func-

19 

~'. 

t10n (eA99AgeAPOoO) is S'-excess1ve and majorizes 1 on 

Ap 'implying that eA ~ ai ' i ~ 00 On the other hand, the 

two S ~:. -exoessi ve funct10ns (aOVSa09 a09 al Il 0 000) and 

(a1,a2,a3'ooo) majorize 1 on A and therefore also 

(a09al119.2' 0 ° 0') 0 Hence aO = al = a2 = .. 0 0 0 0 o .... t..Je have 

further that SaO = Sal S aO 9 and sinee aO majorizes 

l on A, we have finally eA ~ aO 0 

Renee eA = aO ' complet1ng the proof of Brunelos 

maximal lemma .. 



CHAPTER . III 

THE CHACON-oRNSTEIN ERGODIC THEOREM 

50 The. Chaoon-ornste1n Theorem 

Let f and g be t'V'lO funotlons in L+ and def1ne 

the ratio 

Theorem 501 ls the femous Chacon-Ornstein ergod1c 

theoremo 

Theorem 501 

Lim Dn (fI) g) exists almost everyt'lhere 

on {GTg > 0 J 0 

Proof: 

20 

t'le shall first ShOt'l that 1im sup Dn(f,g) < 00 aoeo 

on {g > ol 0 Let 

Then A~ Ef - cg for every constant c ~ 00 By theorem 

401 ~le have J (f-cg)eA 2:. 0 for every c 2:. 09 and hencs 

IgosA = 00 This implies that eA = 0 aoeo on A and 

therefore that P(A) = 00 



Next!l let a and b be tt'lO rational numbers sueh 

that 0 < a < b < ~o Consider the set 

A::: {g > oJn {GTf :::2 00 1 nf1im lnf D~(fDg) < aj 

f\ {1im sup Dn(f,g) > bJ 

We easl1y see that AC: Ef-bg" Eag-f SI and therefore 

by theorem 401 that 

Add'1r~g these tt10 lntegralsl) t'le have 
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t'lhichl) because of the hypotheses on a, bl) and AI) can 

on1y be true if eA = 0 a090 on Ao Hence P(A) = 01) and 

1im Dn (f p g) exists aoe 0 on the set {g > oglf'D { GTf = ~]o 
Since trlvia11y llm Dn(fpg) exlsts on the set 

{g > 0]1i1 {GTf < ooj~ t'le deduce that 1lm Dn(fDg) exists 

a 0 e 0 on 1 g > o} 0 

Repeating the above argument wlth Tgl) T2gl) etci 

ln pla.ce of gl) t'J'e obtaln the a. 0 e 0 convergence of Dn (f SI g) 

on {GTg > 01 0 
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60 The Ergodia Decomposition Theorem 

The follot1ing theorem, dùe to Chaconp enables us 

to partition ana into t't'lO parts on which the endomorphism 

GT has radically dlfferent propertieso 

Let us designate by y a functlon ln L+ wlth the 

property {y > o} = ~ and put 

{GTY < ro~ ::1 D 

{GTY = cog = C 

C and D thus form a partition of effl10 0 These two sets 

are cal1ed~ respectively~ the conservative and dissi­

pative parts of dû wlth respect to To 

Theorem 601 

Let f ~ L+o Then: (a) ~r < 00 aoeo on D 

(c) The sets C and D are 

independent of choice 

of yo 

Proof: 

(a) By theorem 501~ the ratio Dn(fpY) has 

an aoeo finite limit on~ 0 Thus GTf < co aoeo on the 

set {GTY < 00 j:::: D 0 

(b) On the other hand, the ratio Dn(y,r) 

has an a.eo finite limit on the set [GTf > o} , so 



or 00 aoeo, on C. 

(c) If f'i L+ auah that {f> OJ =.n,.,$\ then 

~f = 00 a'j:j,e. on C and GTf < co a.e. on D by parts (a) 

and (b). This shows that the sets C and D are un1quely 

determined ( up to equivalenoe )0 

Corolle.ry l (a) TXC ::: 0 on D 

(b) SXn = 0 on C 

Proof: 

(a) We have OO.XC =s GTYg ~~h1ch 1mp11es 
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+oooTXc = T(+oooXc ) ~ T(GTy) S GTY and therefore T(Xc ) = 0 

on the set [GTY < 00 j = D 0 

(b) By definition of the adjoint S~ l'le have 

fcsxi:> = fDTXC = Ol) 't'1hich implies that SXD = 0 on Co 

qoeodo 

CbI'011ar;V.2 (a) Let f <E (9+ 0 Then T( f oXC) = 0 on Do 

(0) Let g EtB+o Then S(goXD) ::: 0 on Co 

Proof: 

(a) t-lhen f = XF !) FŒ A ~ the oorollary is 

trivlally trueo The linearity and monotone propert1es 

of T then 1mply the desired result. 

(b) folloNS siml1arily or by the definit10n 

of the adjoint. 
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Theorem 602 

Let h (li ~ + be a flnl te-va1ued function such 

that Sh ~ h on C. Then Sh = h on Co 

Proof: 

Conslder the functlon g = Xc t'lhlch be10ngs 
1+h 

to L+, ls majorized by 1~ and is such that ~g > oj = Co 

We have by theorem 601 and its coro11a~ 2 that GTg = ~ 
on C and 0 on Do Thus ~or every n ~ o~ 

J(~Tkg)(h-Sh) = Jg(h-Snh) ~ Igh ~ l~ 
k=o 

and 1etting n 900 ~ 1'16 have J:cGTg(h-Sh) ~ 1 .. This can 

only be true ifSh = h on Co 

Let us denote by H the convex cone of finlte 

members of L+ t\Thieh vanlsh on D and are such that 

Sh = h on Co Sinee Sl ~ 1 on':C and SXD ~ XD on C~ it 

fol10ws that Xc is in H and hence that H i8 not emptyo 

H ls c10sed under the operations sup and inf~ for if 

h~ hO ~ Hl) then S(inf(h,hO ) ~ inf(ShIlShO) on Cg uhich 

imp1ies by theorem 602 thet inf(hllhO) ls in Ho Sinee 

inf(hllhO ) + sup(hllhO) = h+ h°l) it follot'1S that 

sup(hghO) is also in Ho Furthermorell one easily sees 

that H is closed under monotone limits provided these 

1imits are finiteo 
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Next9 let us define :5 = [AC C: XA <: H j 0 The 

above propertles of H lmply that.~ ls a slgma- subalge­

bra of subsets of Co The members of -1 are called the 

lnvarlant setso 

Theorem 6,,3 

Let h Œ L+ be flnlte-valued and vanlsh on Do 

Then'·hq H lff h ls ::{-measurableo 

Proof: 

If h ~ Hp the formula 

X·~h ! = I1m lnf ( 19 n(h-a)+ ) 
t > a.ll n-=c:> 00 

shot'ITs that X {h > aJ <a H and therefore that lh > al ~ 1 
for every constant a > 0 .. Hence h 18.1-measUrablGo 

ConverselYIl if h ls j -measurablell then h 

ls the flnlte 11mlt of an lncreaslng sequence of suros 

of characterlstlc functlons ln HI> and slnce H_ ls closed 

under such 11mltsl') t'Je have h ~ Ho 

The results of the follot\Tlng three theorems will 

be of lmportance ln section 70 

Theorem 604 

Let A «:: C Il A cr A. 0 Then S~J\. ::: eA 0 



Proof: 

eA ls lnvariant on~ -A under Bp and therefore 

BeA = aA on DJt -A. On the other hand, eA ls axaessl va 
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and hence BeA ~ eA oneA,t ln partlcular on c. Theorem 602 

then lmp11es that BeA = aA on C~ Combln1ng these two 

resultsD l'le have BeA = eA on~ 0 

Theorem 605 

Let A c: Cp A Go A 0 Than HCeA = eA 0 

Proof: 

HCeA 1s by theorem 301 an excess1ve functlon 

major1zing eA on Cand therefore on A. HCeA ls thus 

an excessive funct10n me.jorlz1ng 1 on A and hence 

HceA ::::. eAo 

ConverselYI) by theorem 3.1 againl) we have 

HC9A ~ eA 0 

Theorem 606 

Let A C Cp A ~ A 0 If li denotes the 

smallest member Of:( containing AI) then XCoeA = Xlio 

Proof: 

We have shot'fi ln corollary 2 to theorem 601 

that B(fXn) = 0 on C for any f ~ ~+o Thus therestric-



tion of Sf to Cdepends only upon therestr1ct1on of 

f to Co We are then able to deflne the restriction SO 

of S to C, acting on aIl functions deflned on Co 

Now every finite S'-excessive function f major­

iz1ng l on A must also, since it ls::f -measurablep 

majorize l on 1~ XÂ ls SO-excesslve, majorizes l on 

AS) and is zero on C,~1t 9 and must therefore be the 

equilibrlum potentiel el of A "Vlith respect to SO 0 

On the other hand, 

70 Identificat10n of the Limit in the Chacon-

Ornstein Theorem 

If the conservatlve part C of eff& t'11th respect 

to T is equal to all of~ ~ then T ls sald to be 

conservatlveo Furthermore, lt is easl1y seen, using 

theorem 602, that if T is conservat1ve9 lt ls neces-

sarl1y Marlrovlan 0 Though t'le shal1 use 1 t to prove 
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a more genera1 resu1t 9 the fol1o't'ling theorem iden­

tifies the limlt in the Chacon-Ornste!n theorem l'lhen 

T is oonservative. 

Theorem 701 

Let f9 g ~ L+, suah that f = 0 on D and 

{g > o} = C 0 Then 

Er;;[ f 

E~g 
aOe .. ' on C 

't'lhere E~(.) ls the condi tions1 expectation endomor-

phism taken with 11 considered as a sigllla-subal.gebra 

of A · 

Proof: 
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Let ail b be two 1"ea1 numbers wlth 0 ~ a ~ b < OCt>, 

and let A = [a. < 11m Dn (f9g) < b l C Co Denote by 

! the smal1est member of :f contalning A. 

If BG c;I and B C Ail Tlle shal1 flrst show that the 

inequalltles 

are valldo By theorem 4019 t'J'e need only shm'f that 

Flrst suppose that x Cf E"" ""gO Then for some k :::. 01/ 
, .L"'c;;o 

n 
t'le have sup ir T1 (f-ag) (x) :5 09 and thereforep for 

n2::,n: l=:k 
every n :::. k:> 



n n 
:5 a l!Tig(x) 

1=k 
.:S a LTig(x) 0 

1=0 

It foll0l1S that for every n 2:. k, 

kZT1f (x) 
Dn(f,g)(x) - 1=0 ~ a 

t\.. 
~Tig(x) 

ieo 

and upon letting n~co IIthat xp Ao Next, suppose 

x tyEbg- f 0 As aboveg we deduce that for some k ~ Ot> 

n .. 
~Tif(x) 

.1.=0 O<b~ -·for every n 2:. k ° 

Letting n 9 00 , it re~ults that b < lim Dn(f,lg) (x) 

and therefore that xflAo This shows the validity of 

the inequalities in (701)0 
~ 

Nexttl we must have B = A 6ll BSl for othen-lise 
~ . .. 

B - AU] B t10uld be an invariant set contained in A 

and disjoint from Ao This would further imply that 
~ 

A - (B - An B) is a smaller invariant set than .8. , 

but containing A, thus contradictlng the definitlon 

of Ao 

Renee by theorem 606, we may wrlte xB = Xl;:;--B= 
= XCeA/IîlBo Since both f and g vanlsh outside CD we 

may re~ll'ite the inequalities in (701) as 

for all B ~ 1 ' Be Ao By the deflnition of condition-
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al expeetation, these inequa1ities beeome 

for every Ba. ~ , Bel. It fo11ows from (7.:3), s1nee 

the 1ntegrands are ~ -measurab1e, that 

E~f ~ aE~g on 19 bE~g ~ E~f on 1 

and therefore that 

E~f 
E~g 

on !o 

Aeeording to our hypotheses on a and b, this double 
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inequa11ty shOt'J's that if x G C such that a < lim Dn(fSlg) (x) 

< b,then a < E 4 f(x) < b. This proves the theoz-em 
... - E~g(X)-

when 1im Dn(f,g)(x) > 00 

Nextll let Ai~ ~ [lim Dn(f,g) < b ~ 0 l'Je have 
H EQr" shown 'Chat A·· ~ Ebg_f and therefore that ~ b 

E;;1 g 
~'. 

on An 0 This proves the theorem uhen lim'::Dn (fI) g) (x) = 00 

Theorem 702 

Let g Œ L+ 0 Then C Oïl {GTg > 0~<6 [GT(BCg) > 0] 0 

Proof: 

We f1rst note that Bcg vanishes on D, and 

furthermore by eoro11ary 2 to theorem 601 that GT(Bcg) 

a1so vanishes on Do Hence [GT(BCg) > o} ~ Co 



Next, suppose xC3 Cil but x tt{GT'(Bcg} > 0 j 0 

Then GT(Bcg) (x) = 00 This implies Tk(BCg) (x) = 0 

for'every k 2:. O. It follows in particular that 

Tkg(xJ = 0 for every k 2:. 0 and hance that GTg(X) == 00, 

Thls proves the theoremo, 

Theorem 7 .. 3 

'Let f ~ L+o Then limDn(Bcfllf) = 1 aoeo 

on the set [GT(Bcf) >o~ .. 

Proof: 
.' '".., '. 
.' . , 
, ' 

To provethls theoremll lt,is enough to show 

that the s'ets' 

'. ." ' ...... : ..... " . '" 

, havemeasJ,1re zeroforevery k 2:. 0 11 a > 2, and every 

, ,0 <b <10 The proof ls slmilarto that of thsorem 

7010 Treatlng A firstll we see that A <b EBC f-af 

and therefore by theorem 401, 

Since by theorem 604,l slteA = eAIl the above lnequality 
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becomes 

(?04) 

On the other hand~ theorem 605 allows us to wrlte, 

ainee A (b, C, 

Weean therefore rstœite inequality (? 04) as 

andsineea> l, this implies sA Q 0 on A and thus 

..• that P (A): 00 . 
. . 

Turning now to Bp ~1e see that B ~ Ebf-BC f as 

in the6rem ? ~lf' Again by theorem 4 ol!l 

and sinee re:soTk{Bcf) = r~ oTkfp this Inequality 

becomes 

It follows from this that P{B) = 00 
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We shall nOt'J' use the previous results of this 

section to identify the limit in the Chacon-Drnstein 

ergodic theorem in its fullest generalityo The follow­

ing theorem effectively summarizes the results of the 

preceding sections. 

Theorem 704 

Let T be a sub-Markovlan endomorphism 

defined on the space LI (emb p A. Il P) 0 For every f ~ L 

and g ~ L"'ll the Iimit 

exists aoeo on {GTg > o~ 0 Furthermore 

f G·Tf 
on DO/) [GTg > o~ aoeo 

Iim Dn(fllg) 
GTg 

= 
E ~ (BCf) a.eo on 
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i E ;j(Bcg) cft) {GTg> oj 0 

Proof: 

Wri ting f' =. f+ +-:;f-ll t'J'e have f (j L iff f+ and f­

~ L+o By the linearity properties of the endomorphisms 

T and E~(O)ll it Is sufficient ta prove this theorem in 

the case l'Jhere f G L+ 0 

The fact that lim Dn(fllg) exists aoeo on 

[GTg > o~ has already been proved in theorem 5010 



By the'orem 601, both GTf and GTg are fini te on Do and 

thls Sh011S that 1im Dn(f,g) = GTf a .. e. on DI» {GTg > 01 . 
GTg 

We have 1eft only to show that I1m Dn(f,g) = 

E;1 (Bef) a.e. on e n {GTg> 0 J 0 Let z"be~àny 
E ~(Beg) , 

= 

funetion in L+ sueh that [z> oj= C. Not'J' 1imDn (ZSlBeg ) 

exists' a.eo on {GT(Beg ) > o~ 0 Thus 1im Dn{BegoZ) 

exists and is non-zero on efll {GT{Beg) > oj:::: [GT(Beg) > on. 
We may therefore t'œite 

HoweverSl by theorem 7.1Sl we have 

and therefore 

Sinee by theorem 70Jo 

E ~ (Bef) 

E ~ (BCg) 

aoeo on 

aoe .. on e 

a .. e. on e 



we may therefore ~n'1 te 

I1m Dn(Bef,g) = I1m Dn(Bef,Beg)·11m Dn (Beg9g) 

= E ~ (Bef) on {GT(Beg) > 0 J • 
E ~(Beg) 

Again by theorem 705, 

and there:fore 

= a.o.e. on ~ GT (Bef) > 0 ~ 
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n [GT(Beg ) > 0] 

= 

since 

E 4 (Bef) 

E tJ (Bcg) 
aoeo on {GT(Beg) > 0] 

d) e fi) {GTg > 0$ 

8. An Alternate Proof of the ehacon-Ornstein Theorem 

As stated in the introductionS! there a.re t't'lO 

popular proofs of the ehacon-Ornstein theorem 



inc1uding identification of the limite The one pre­

sented hers\) depending heavily on the çoncept of the 

equilibrium potential, and using the techniques of 

potentlal theory, ls due ln large part to Meyer. The 

other proof, whlch is glven in Neveu [1'7], ls some­

what more tedlous, but of about the same lengtho One 

beglns by provlng a different maximal 1 emma , that of 

Eo Hopf. This ls the analogue of theorem 401 presented 

here 0 The ergodlc d.ecomposi tion theorem ( theorem 601 

here ) can be proved directly ~rom this maximal lemmao 

Theorems 60211 60)9 and 70) then follot1 in that ordero 

One then proves simu1taneous1y theorems 501 and 701 

which comprise the Chacon-Grnstein theorem and the 

id.entification of the limit in the case where T is 

conservative9 by an appea1 to the Hahn-Banach theoremo 

Fina11YIJ theorem 704 is proved similari1y as 't'J'e have doneo 

Other than the order of proof9 and the use of 

the Hahn-Banach theorem, the proof in Neveu differs 

from that of Meyer only in the maximal lemme usedo 

We state this important lemme below. Its proof9 which 

is very short and simple1l can be found. in [7] or [17] 0 

Maximal Lemme. ( Hopf ) 

Let T be a sub-Harlt:ovian endomorphism of the 

Then o 0 
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CHArTER IV 

THE ERGODIC THEO REMS OF HOPF AND BIRKHOFF 

90 The Hopf Ergodlc Theorem 

The fo11oi'11ng theorem was first proved by Hopf 

[9 J in 1954 .. A1though t'le sha1l prove it as a corol-

lary of the Chacon-Drnstein theoremg it can be proved 

easilyg as by Hopfg appeeling only to the Hopf maximal 

ergodic theorem of section 80 t'le shall in turn use the 

Hopf ergodic theorem to prove the famous Birkhoff 

ergodic theorem in section 100 

Theorem 901 

Let T be a sub-Markovien endomorphism of 

Ll(~gl.Lg p) having an invariant element f = Tf in L+ 

such that {f > 0 j = a1ma 0 

(a) Then T is necessarily Markovian and 

conservative. 

(b) The follot'ring ergodic results hold: 

l n f oE o;1g (i) llm I,Tkg = a.eo if g ~ 
n + 1 k=o ·Ec;5Jf 

n 

Lo 

(ii) lim 1 I.Skg = 
E a(fg) aoeo if fgGLo 

n + l k=o E.;))f 



)8 

Proof: 
00 

(a) Slnee GTf = If = 00 on ~ Il Tmust be eonser ... 
. k=o 

vatlve by theorem 6.1 and henee Markovlan. 

(b)(l) 

E c;I (g) 

E ~(f) 
= 

By theorem 7.1\) we 

n 

l k~Tkg lm aoe. _~ 

t.Tk f 
k=o 

(11) The second ergodle result ls more dlffi-

cult to prove. Let us consider the eonservatlveg Markovlen 

endomorphlsm T'::- deflned on L by the re1atlon 

= l' foS( - ) 
f 

T';~ ls wel1 deflned9 for by theorem 2.)\) S 18 deflned 

for al1 posltlve measurab1e functlons and hencs for 1. 
Tol: ls linear and positiveS) and the equality ( t'J'here Soll-

.,,', 
denotes the adjoint of T" ) 

= = !foS( p ) 
f 

p 
= !Tfo_ = Ip < 00 

f 

whleh ls va11d for every p ca L shows that Toi:' ls Markovian 

and maps L lnto L. Flnallyg T'::- ls conservatlve slnce 

T-I!-f = f. 
Now' let ~-tl- be the sigma-algebra of sets lnvarlant 

under T-::' Il and suppose that A <Ji if!l the slgma-algebra of 

sets invaria.nt under T. Blnce for every gel LI) t'le ha.ve 

= = 
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= T(f"XA) D HOl'leVar the equa11ty 
f 

~_AT{fOXA) ~ If"XAoS~ ... A c: .rf·XAD~_A. = 0 

lmp11es that T{foXA) = 0 on~ -Ao· Hence T{foXA) :s TfDXA 

and 't'Te can tœi te 

T{foXA) 

f 

Thus by theorem 60211 A ~ 4 .;:. and 1 ~ :1 oit 0 

Converse1y, assume A Go 4:::
0 

.. Puttlng p ::: f oXA 
T~:' (f "XA) 

ln (901) t'le derl ve SX A ::: and repaa t 1ng 
f 

the above argument, t'le see that A ~ c::j and hence -:J = 1 ~: ... 

11m 

NOl'1 app1ylng the result ln (a) (1) to Tot
:- Il we have 

1 

n+1 
= for p cr L 

and setting p == fg ln (902) finlshes the pro of of the 

theorem .. 

10" The Ergodic Theory of Measure-Preserving Transfor­

mations 

It ls t1orthwhl1e here to digress somewhat and 

dlscuss some uc1asslca1°o resu1ts ln the ergodlc theory 

of measure-preservlng transformatlons .. In fact, untl1 



quite recently9 ergodic theory conslsted of only these 

results, as mentioned in the introductiono 

The ergodic theory of measure-preserving trans­

formations ls extremely important" in its own right, 
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having many applications in informatlon theory,stochastic 

processes, and even in number theoryo Some of these 

applications are discussed in fb l'] 0 

Ne shall describe some simple results regarding 

measure-preserving transformations, and then derlve 

the Birkhoff ergodlc theoremo 

Let (fi& pA., p) be a probability space and let e 

be a transformation of~ into itselfo 9 ls called 

measurable if for every A in )1 1) we have 

= 

A measurable transformation e is called measure-preser­

vlng if P( g-IA ) = P(A) for every A in Jl . If ~ is 

an algebra which generates A such that e-lF Ci A and 

p(e-lF) = l'(F) for every FG. ~ , lt ls easy to show 

that e is measure-preserving on (~9J1, p). 

Let 9 be a measure-preservlng transformation of 

(tff& Il Â 1) P) 0 An cA. -measurable function g 18 said to be 

invarlant ( under G ) if g( G(x» = g(x) for every x G~ 0 

A set A i8 called invariant if A ~ A and g-lA = As 

or what is equivalent, if lts characteristic function 



XA is invariant 0 Thec1ass 4 of sets·· inva.riant under 

e is easily seen to be a sigma-suba1gebra of Â. • If;/ 

contains only sets of measure zero or one, then e ls 

fUrthermore said to be an ergodic ( or metrica11y 

transitive ) transformation. One sees without too much 

difficulty that an equ1valent condition for G to be 

ergodic ls that every lnvariant functlon be a1most 

everywhere constant. 

Glven a measure-preservlng transformation 9 on 

(~9Jt9 p), there is a rather usefu1 sufflciency con­

dition that e be ergodico This is if e ls mixing; in 

other t'lords, if for every As B ~ A , 

In turn, for 9 to be mixing.on (eflb9Âl> p)1) it is suf­

ficient that Q be mixing on an algebra generating Â 

The fo11o't'ling theorem is the Birkhoff ergodic 

theorem9 first proved in 19310 Although independent 

proofs are readi1y avai1ab1e, notab1y in [1] and 

• 

li: 81 , t'Te sha11 deri ve i t, as in [17] Il as a corol~ 

1ary of theorem 901. 

Theorem 100! 

Let G be a measure-preserving transformation 
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of (e,@, PA. pP) into i tself p and let ~ be the sigma.­

algebra of sets invariant under @. Then for every f G. L 

we have 

lim 1 

n+l 

l'lhere E ~ f ls the condit~onal expectation of f taken 

wlth ;:I as a slgma.-subalgebra. of A · 

Proof: 

The set funct10n Vg(F) =1 1 g 6·· gé::~Lll e- F 
defines a bounded9 signed measure on Il , which ls 

absolutely continuous wlth respeot to Po By the Radon­

Nlkodym9 l'le can 't'1rlte IF Tg =1 19 for a unique 
@- F 

function Tg ln L 0 The correspondence g ===c> Tg 

ls trlvially 11near and positlve9 and the equa11ty 

ITg = l g sho't'J's that T ls a Markovian endomorphism 

of Lo Since 

W6 see that Tl ::: 10 

Next, the definition of T and the customary 

linearlty and monotone contlnuity properties of the 

lntegral imply that IT go f :::: l go ( fG)) for every f ~ L 0 

Using this equali ty, 't'le see tha.t Sf :::: fG, and more 

genera.lly that Skf :::: f@K for k ~ 00 The relation 

Sf :::: fG) also shows that the sigma .... algebra 1 of 
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sets invariant under 9 coincides 1'11 th the sigma-a1gebra 

of sets invariant under To Applying part (b)(ii) of 

theorem 9.19 we then have' 

1 n n 
lim a.e. Ifek lim a.e. l Iskf = 

n.tl k=:o n+l keO 

E ~ (fol) 
= 

E~l 

= 

There are two very simple but usefu1 coro1laries 

of the Birkhoff theorem. 

Corol1a.ry 1 

The limit function E ~f ln the above theorem 

i8 invariant under 9. 

E $If is ~ -measurable and hence invariant .. 

Corollary 2 

Ir~ in the above theoremp G is an ergodlc 
n-=> 

transformatlon~then lim --±- ~rGk = if. 
n:.} 1 k::lO 

Proof: 

Q ls ergodlc and therefore E ~ f, being invariant ll 

ls a.e. constant. E~r must therefore equa1 fr. 
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CHAPTER V 

AN APPLICATION OF ERGODIC THEORY TO MARTINGALES 

110 o· . The Decreaslmi Martingale Convergence Theorem 

In this chàpteru 't'le shal1 ShO't'1 that one ls able 

to deduce!l as a coro1lary of the Hopf ergodic theoremp. 
" ...... . 

the decreasing mt~irtinga.1e . convergence theorem of Doob 0 

According to Neveu~[15Jl) results obtalned 

in pointtoiTise ergodic theory and martingale the ory 

are sogeneral, that one can deduce from them manYn 

if not most theorems ln probability .involving point­

t'1fse convergence 0 With this in m~tld!lt}'H~re ls much 
. '. .. . ~ 

current interest ineitherattemptingto deduce the 

results of martingale theory from 'those of ergodic 

'theory orvice";versap or to creste a theoryfrom 

which one can der ive the resultsof both· ergodic and 

martingale theoryo 

Theorem 1101 

Let· {Ap:p ~ 1 jbe a decreasing sequence 

of sigma-subalgebras of A in the probabili ty space 

(tAnAn p)l) and let € > 0 be arbitraryo The operator 

T deflned on L by the formula 

(llol) 



i s then. a sub-r4arkovian endomorphl sm leavlng the func­

tlon 1 invarlant p such that 

00 z: 
p=1 

n -1 

~ ! l ~ - E-), il $ & 
p k=o . 

(1102) 

where 0 = ao,a1\)a2,a3,."·t;oooooolS én lncreaslng sequence 

of real numbers ln the lnterval [0,1'] verlfylng the 

inequallty 

~l f-~~J~ (110,3) 

and 't'1hers, for every p ~ 1, np 1 s the smellest lnteger 

> 

Provlded €. < 1, the following sequence suffices: 

Proof: 

Formula (1101) obvlously defines a linear, 

posltiveoperator on L l1hlch leaves the function 

1 lnvarlant1'l the last property followlng from the 

fact that condition (11.,3) forces llm a p = 10 

t'le havell ln additionll for any f Œ Lll 

'
Tf

1 ~ 
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which imp1ies that 

00 

~. p~ lap-ap_11 Il fil 

00 

:0 IIf Il I: 1 ap-ap_11 
p=1 

and hence that T is sub ... ~larkovian 0 

The equality EAq = E~~P :0 E4.P~q ia 

va1id for conditiona1 expectations when 1 S p S qo 

We therefore deduce through a rather 1aborious cal­

cu1ation that 

1 n-1 
- l. Tk = 
n It=o 

1 l + 
n 

't'lheres> for each n ~ 10 the sequence {b~n): q:::' 0 ~ 
Is an increasing sequence in [0s>1] given by 

q 2:. 00 

One then has 

l~~k E4 p - 2f.,T - = 
n It=o 

and thus 

II I ni:\k - E/.lP Il 
n k:oo 
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sinoelim b~n) = 1 

Now using the Taylor series expansion~ one easily shows 

that 

for 0 < a S 1 and n ~ Q, and therefore that 

an 5 1 - n(l-a) + n(n-1) (1-aL2 for n > 0 
2 

and 0 SaS 1. We then easily derive the double 

inequality 

1 - (n-l) Cl-a) 
2 

< 1 
n(l-a) 

va1id for alIOS a S 1 and n > 0, t'1hich in turn 

imp11es the fol1ot11ng lnequa11 ties: 

1 

-1 < 

App1ying these lnequali ties to (11.:3) 1) t'Te get 



If np 18 the lnteger determlned by 

-t 
np_1 < [(1-ap_1) (1-ap )] ~ np D 

then 'Ne have 

n -1 '. 
H 1 1: Tk _ EAPII ~ 
n np k=o 

t'1hlch ls. t'.rhat t'.re wanted to prove 0 
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< FE. 0 

To ShOt'l that there exlsts a sequence f ap:p ~ 0 j 
satlsfylng the condltlons of the hypothesls9 conslder 

.. 2 
[ap = 1 - (1+,3,) -2p : p :::. 1 J and ao = 00 Then 

[t:~_Jt = Œ, Ui!57~t=~~:-1)2] t = (1+3/e)-2p+l 

and therefore 

provlded Œ. < 1. 

= 
co z: (1+ J/e. ) -2p+1 

p=l 

= [i.: 1 2P] ~l+J/e.)] 
p=l (1+ J/œ. >. 

< ~/J 
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The follOl'1ing result is the decreasing martin­

gale theorem of Doobo Its proof, as weIl as that of the 

previous theorem, i s from r 15 JI • 
: ~ ;. . 

',-', .;" 

Thèorem Il.2'' ,. 

. L~t {Ap: 'p'> lj··· be' a:d.eèreElsirig sequence of 

.. sigma-:-subalgebrasof A '. in . (tfi, $1 A. li . P ) o.' Let f ~ Land; .... 
co 

put Il 00 =l) A po ~hen 
. . .•... p=l ..... ' ... 

. lim~Pf. =: ~f aoa. 

Proof: 

According to inequality (1102)9 the series 

~1 1 !pn!:Tkf_~Apf 1· 

isconvergentin L for every fd Lo Sinc.e 

. nt?;'l . 00·· nn-l . 
sup ~ ·1 . LTkf ;:,. .If1Pf ~ < 1: ~ l'/l:Tkf - EfPf 1 :,~, .. , 0 
~q ~np k=o . .' . p=q ij np k=o 

. in L as ql 00 . p . l'le have 

= 'lim' Ef-Pf 
p ~oo 

and also in the sense of convergence in Lo. 

(11.4) .... 

Howeverl) by theorem 11011) T is a sub-Markovian 

endomorphi sm of L 't'li th Tl =: 1 0 1-1 e then ha.ve Il by part 

(b)(i) of the Hopf ergodic theorem of section 9, 

.. ::' .. 



. "" 

.:' ': 

where .~ ls the slgma.-algebra of sets lnvariant under 

To Comblnlng thlsresult and (1104}9 we have. 

llm.br. =. a.e. OO

• 
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• .:_.. • '.' .;.: • .: ,". • • ". • : ~ • .: 1 :: ••• 

. '. . . . F i~l;.~E3~~al.i·~~O>lth~~ :::t.'~)L ~:~ ~t<, ..' · •• 
l1m Ef1pi 1'~ :Ii ~-me~surab:Le °fo; o~v~ry::~ ;;. :i9 and: thë~e- . 

;:::;U~:br~=-E~t!~iit:rT!~j1,~~1~~ji:::~i~~:~~;.;~~-' 
........ :.. . ..:', .... 

'" ' 
0' • r. ,::.,,:~ '\ 

'.: : 

:'",1 

" .:':;. " ... :,.'. : " .... , .. 

whlch .. i~R:~~oe~.:~.~:~t:i4~o:ft~::·o .. *~~~;.,ftlt~~~es the. proof 
of· the 0 

.<;'0. 

.. qcie;;do 

. "':,'. 



CHAPTER VI 

~HE DUNFORD-SCHWARTZ ERGODIC THEO REM 

... ' . ',' '". . . ~., . .:' . . 

··In·th1s "ohapt'e:r\l t'le shal1··d.rop· the. assUmpt10n : . 

. ' .' 'thett :·~ù:~ "~~dO~~~~~i'~~~::~: ~~~.:'.~:~'~~~:~~~~':' tJ~··:·Sh~'l~·.·~·on~ 
.• 'Sider~.p~ob';'bi;; ii·sp~~~;·(~.4.~ #) ';"<ia!le~~om~r:- . 

Ph1sm·T.·.:de-fl~ed'·:on·L·Ù~1l~··~:·A"~'.~·p) ,t.flth·: n6rrri < '11>'\7111611" 
",~ .. :. 1, ~.' " •• :' .' .' •• :', ':'. ,"... ' ••• :" .:.:' ,'~' . :' ._:. " •• ': 

. ··t,ieshali·cal1·.· ~:'. c6ntrac't'1onof L 0 A sub-rvla~ko1';:ia.n 
•••••• ' ': • 0" '. 

·· .. ·enQ.omorph1sm'o( L1stherefcre a posi.tive contraction 
.' ' .. ,; ';',' ". ',:', 

'ofLo 

. The Dunford-Schwartz ergod1c theorem 1s a gen­

··~~al1z~~tion:Of.th~ ijopfergod1ctheorem to the case 

Ofa contract1onT on L 0 

. ":'Âs in the proof of the Chacon-Drnstein.theoremp .. 
,'... '. . ',. . .. ', '. . ........ , "" . 
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. ;' ,',' 

'}ré:·:. ~he1i-t 1rstl,rove a m~x1mai ~r~~'aic.l~~~:~:::,~h~::\j~6()f.· . 
...•.. ··~~~~~~l~;:·~iiolf·.{,,·.·<iue· ·1;O·.·.~.eve~·;t~6J,.;.::·;:;.' .. ······· 

.. ":.' ... ', .~. . '.:/ .. :' : ....... :,.: ... , .. : .. ':- " .. ::';'.::':;"""}~' . :';:-:~::.:.''''~ .. 

,: ::::., ,,;,', .. ; ....•. ' :),.~~:~,:'\ <':'.: c:.>: /::'))::;'::::;//:' ·;)::'i;~~:::;,·, ,,;<.::.:.:: ::::.,. 

'. T:h'~'6'rem .. / ;~'~~' ;):r:·/:":,>:·':'·:··,· oc:,.;' .,/-.,;., :,::' .. :,;: ". " ':',:' " .. 

.. ..... .•. •.. iL~t,"~'.~~~;'~~d~kiri~:i;6~·"àf~ii1~chth~t forevery 
fŒ L~d::fbr s~meA·· ~lIle·~sllrable., fini te valuedll 

strictly' positive function gll ~J'9 have 

ess sup ~îf.] :s ess sup nf~o 
~ g dlJùo g 



Then for every f ~ L and for every real number c > 011 

we have 

if 

'Proof: 

~ Afll~lfl~.~~.). ~ 0 
00 -' .: ..' fi":"'" , .. 

=. :U'·· f. .. ' i:.. .IL Tk f 1> cg 
n~o l ,n+l· .' .k=o', .. ..' ....... ". ..... . 

'. ',We s~all ·prove:·this. theorem in .~~r~·~ ',s:~ag~~o . 

First let: us taire' 'a!lY ~b01n'.·L o-:L'~t ~o: ~~.::a~Y .. 
• '/1 '-~ea~u~a~le" f~~~"i'on·~:u~1l':'.~th~:~··::·'~~6·f ·:<· ... l:o .. W:è ,tJ;ien 

define by induction the fOli.~.~lÙi~.·i~·~.~.f.~n.s·,:· 

T(b~Sn) 

~T (bi1i%..>J· 

": ;,'" '.: . 

• ".o,' •• ' 

" . 
. . (.: .... ,.; .. ,.. .. 

One has bn ( L for every n ~·q:.an·ér ... àn:.Iiu~as~ra9ie.:·.·1r.fth 
1 SLnI S 1 for every n 2:. 0 ct:'!{:":':.:':·' :"i.,.:·.:,," < ,'.'.'.... ....... . . 

'. ~>:, ::,~",.::. 

(a)We shall show tbatf éô~o'yi~(ngJbn> ël 
T 0' thi s . end, 'l'~e fir!3t·. ~o~:t~é:.'t·hatth.e. ~eq~t3~ce 

:[b~ :'n>'() liS dl3~~easing in LoN e~tll the inequali ty 

Ibn+l ' :::: I ~T (biiBn)~ - lb;;' < J ~b+a ~ - n n - Ib~ n = Ibn 

implies that the sequence { Ibn: n::!. 1 J is a1so 

decreasing, and therefore for every n ::!. 19 l'le have 
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i b1; 2=. f bo + f· bn 2=. i (b~ - bn -) 2=. 1 ib~ ::: 0) b~ 

,On the other handp since {b~: n 2=.1} is decreasing~ l'le 

have the inclusion' ~ {bm ~ '0) C {b~ ::: 0) and fur-
. , ..' '.' . . 

,thermore the double inclusion" 

n " " 
{bb> 01 cU Ibm> ol C {b~ = oJ 

" lll=O 
(12~2) 

By '(12,.1)' and (12 o2b 't'le then obtain 

and letting n~co p l'J'e obtain the result fi3bo >o~ 

(b)Wenext showthat 

iTm(b6ao) = Îbitam +tTk:f·n~[tbj_l-bj)aj'il1 
, lllc:O" ,,'," ,,' ,m:o k:::ojc;a 

for ev.ery n :::0. ' 

'Forbydefinltlon,of thefunctions a.n and bn 1> 

1'1e cari write' 

for every m ~ Op and using this9 easily derive by 

induction 

valid for m ~.'~'o 0 Summing over np we have 
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valid for every n ~ O. Another induct10n argument then 

shows that 

(c) \.Je no~;r use' the results of (a) and (b) to com-

plete the theorem. For any f .~ L and any c > 0, let 

us put bo = ~ f 1 COD cg and So = f • We see 1mmed1ate­
,If 1 

ly that bo S cg and that f = b6ao + (cg-b~)ao. Then by 

part (b) abovep 

n 1l.. 'n n-lr 1 b Tmr ~ !;,btau.. + k"!;,Tk f (cg-bo)ao + j~l!b3-1-bj)aj]} (12·3) 

On the other handll putt1ng 

,n~ , "il 
P = (cg-b~)ao + kr(bj~l- bj)ajJl 

l'le see eas11y that ~ p ~ scg. By the hypothes1s 

on T, th1s 1mp11es that ass sup nîE~ S ess sup ~~~ S c, 
~ g ,d&.g 

so tha t 1 Tp ~ S cg. One sho't'~s in the sarne T,'fay that 

~ Tkp ~ S cg for every k :::. o. Hence 

< ~ l:bitElm~ 
Dl:::: 0 

n 
+ l:~Tkp~ 

l{=o 

~~bihSm~ 
m=o 

< + (n+l)cg 

Inequa1ity (12.3) then 1mplies the1nclus10n 
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{ It~md. > (n+l)cg 1 c { i!i!i"m (, 0 j 
and sinee trivially {Zbffiam 1: 0 j C CP Ibm> o} Il 

ID.=O Ill=0 

we see finally that AfllC ~ B. Sine~ also 

the following double inclusié>i12t results: 

(1204) 

Part (a) together with (1204) then imp1y that 

1 Af b o > 0 ,c 

since b o S 0 on B-Af,c • This completes the proof. 

130 The Mean Ergodic Theorem of von Neuma.nn 

Theorem 1301 below i8 the famous mean ergodlc 

theorem, first proved in 1931 by von Neumann. This, 

together wi·th Birkhoffo s theorem, are the two most 

l'1idely knol'm results in ergodic theoryo The mean 

ergodic theorem:;l Hl01'J'ever:;l is not concerned 'flJ'ith point­

wise ( almost everyt'lhere ) convergence, but 1'11th 

convergence in the norm of the space L2{c..~ ,A, p) a 

This ls the family of equivalence classes under P 

of square integrable,A-measurable real valued func-
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tions on~ 0 With the norm ~I f il 2 = [1 f2 ]i, L2 

18 a Banach space 0 We sha11 use thls comp1eteness 

property'of L2 frequent1y in this and the next sectiono 

A sequence If n: n :::. 1) of. e1ements of L 2 

ls said to converge .in the norm of L2, or slmp1y 

to converge in L2, t6 an e1ement g in L2 if Ufn-gU~O 

as n ~ co. A sequence {fn : n :::. 1 J in L2 is sald to 

be a Cauchy sequence in L2 if nfn-fmI12~O as 

m, nc:=:mz:{> 00. We point out here that a necessary and 

sufflcient condition that a sequence [f n: n 2::. ). } 

in L2 converge to an element of L2 is that this 

sequence be Cauchy. This ls due to the completeness 

of L2. 

If T is an endomo~phlsm of L2, its norm is 

defined as 

As usual, T is- called a contract1on of L2 lf nT~12 ~ lo 

The adjoint S of an endomorphlsm T of L2 is the unique 

endomorphism of the dual space L2 satisfylng 

Although the ,mean ergodic theorem is of great 

importance in itselt, it .. , tJ'ill play a criticsl part in .1 

the proof of the Dunford-Scht1artz theorem. 



Theorem IJ01 

Let T be a contraction of L2. Than the sequence 

n 

f 1 ï: Tkf 
n+l k:::o 

every f in L2. 

Proof: 

n 2: o} converges in norm. in L 2 for 

The theorem is easily sho~m to be true for 

functions of the follo't"11ng tt'lO types: 

(a) functlons f in L2 su ch that Tf = fo 

(b) functlons f in L2 ~uch that f = (T-I)g 

~lhere g ls in L2. 

The first case is tri vlal. In the second casep 't'le 

have 

~ 2~~gn2 c::=:==C=> 0 as n ~co • 

n + 1 

Let M denote the subspace of L2 generated by functlons 

of the above two typeso It is easy to see that the 

theorem holds for all f in Mo vJ e shall. nOt'1 show that 

the theorem holds for all f ln M!Ï the olosure of Ivl ln 

L2
0 To thls effects let f ~ M and choose a. sequence 
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[ f j: j > 1 j <b M suoh that ~~ f -f j ~~ 2 =Ç:> 0 as j ~ClOo 



+ 

m 
1 ~ k n 
- ~T f j U2 

m+1 k=o 

n 
~ 2 Il f-fj 11 2 + ~~ 11 I: Tkfj 

~~ n+ k=o 

Taking 1imits as mS) n-==e;:.oo and then j -=Çl> ooshows that 
n 

5) 1 Z Tkf 
l1n+l k=o 

hence converges 

for a11 f in Mo 

n :: 0] 1s a Cauchy sequence in L2 and 

in L2
0 The theorem is therefore true 
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For convenienceo we sha11 refer to the argument 

immediate1y above as the GJ c10sure argument oç~ It t'1i11 

appear tt'1ice in the proof of the. Dunford-Scht'lartz theoremo 

Next, t'J'e shall show that 'M = L2p thus completing 

the proof'o. 'Âccording to the Hahn-Banach theoreml> it is 

sufficient to show there exists no e1ement h ~ 0 in L2 

such that fgh = 0 for every g in Mo For suppose the~e 

exists such an e1ement ho In particu1arS) we wou1d have 



Ih o (Tg-g) ::: o for every g in L2
0 Renee ITgoh ::: Igoh 

for every g in L2 0 This implies that Sh ::: ho Since 

1(Th-h)2 ::: 1 (~h)2 - 21Th oh + Ih2 

~ 2Jh2 2Jh oSh 

~ 2Ih2 2Ih2 . 

::: 0 

we have Th ::: h and therefore h ls in Mo But this 

would further lmp1y that Ih2::: 09 so that h ::: 00 

14.~ The Dunford-Scht"lartz Theorem 

Theorem 14.2 ls the Dunford-Schwartz ergodic 

theorem9 first proved in 1956 lC 6] 0 It removes the 

rather restrictive condition in Hopfos ergodic theorem 

( theorem 901 (b)(i) ) that T be positive9 a1though in 

this case the identity of the ergodic 1imit is not 

kno~mo The proof of this theorem presented here is due 

to Neveu (16] 0 

Theorem 1401 is a 1emma ~lhich t'le sha11 need for 

the proof of theorem 1402. 
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Theorem 1401 

Let T be a contraction of L1 (Wib,t'l, p) such that 

for every f in L1 and for somef[ -measurab1e, f1n1te­

va1ued str1ct1y posit1ve funct10n g9 we have 

Then 

Proof: 

ess sup IT.fl 
eJi1,g 

< ess sup Dflo - ~ g 
j 2:. 1] be a sequence 1n L1 such that 

00 

1: ~Ig j~~ 
j=1 

<00 o 

sup l ~ iTkgj ~ ==-.:> 0 a.eo as j =Ç>OOo 

n n+1 1 k=o 

For every j 2:. 1 and every rea1 number c > 0 9 put 

Agj.e = [~p n!l ! ~~kgj 1 > eg J 
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By theorem 12011) t'le ha.ve for every j ::: land every c > 01> 

2:: 0 and therefore J A g:S 1 ~~ g j ~~o 
gjl>C C 

Summ1ng over j, we see that 

00 00 

Z. J A g ~ .1 ')j Il g j~1 
je1 gj 9 C C j~ 

< 00 

and since g > 0 on ~ SI this can only be true if 

P( 11m sup Ag c ) e 0 for every c > 00 According to 
j ~ 00 jSl 

(1401), this 1mp11es the des1red resu1to 



Theorem 1402 

Let T be a contraction of L1(~~Jtp p) such 

that 
ess sup OTfl 
~ g 

< ess sup Ifl (14.1) 
~ g 

for every f in L1 and for some j1 -measurab1e, finlte 

va1ued strict1y positive functlon g. Then for every 

f in Lll'I 
n 

11m 1 I. Tkf 
n-v 00 n + 1 k=o 

exists both in the sense of a1most everywhere conver­

gence and in the sense of convergence in norm in L1. 

Proof: 

The proof of this theorem c1ose1y para11e1s the 

proof of the mean ergodlc theorem. 

The theorem is true in the sense of Qonvergence 

a.e. t'Then f ls one of the fo11oV'11ng tt'm types: 

(a) f in Ll auch that Tf = f 
(b) f in L1 such that f = (T-I)h where h<1L1 

such that eas sup ~h~ :s. c < 00 0 
~ g 

The flrst case ls easy to shot'To In the second casel) 't'J'e 

have 

by (1401):s. gf5~ .. ~2Q.c~r:::::===:V" 0 as n =c;:;> 00 0 

n + 1 

Let M be the subspace of LI generated by functions 
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of these two types. One easl1y sees that the theorem 

ls true ln the sense of a.e. convergence for a11 f ln 

Mo We sha1l next show that the theorem ls true ln the 

aoe. sense when f ls in Mp the closure of M ln Llo 

Before doing thls we note that if h~ LIs then 

(~-I)h ~ M. To see thlSg consider the sequence 

It is easl1y verified that ess sup IhjO =S j~ 't'lhence 
. g 

(T-I~')hj ls in N for every j9 and also that Il h-h j !l<:>09 

whence ~HT-I)(h-hjHl~Oo Thus (T-I)hj converges 

-. to (T-I)h in Llg and (T-I)h must belong to :r.1 0 

Not'1 let q G M and choose a sequence {qj:j ::: 1] 
00 

ln M such that Il nq-qj!~ < 00 0 t'le shall shot'1 that 

n j=1 

{ 1 r Tkq: n ::: 0 J ls a Cauchy sequence of measur-
n+1 k=o 

able functions and therefore converges. l'le have 

Reca1l1ng theorem 14019 we have the desired result if 
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t'10 let m, n-=e> 00 and then j~ 000 Thus the theorem i8 

true in the sense of aoeo convergence for aIl f in Mo 

Now let W be the family of aIl f in LI for 

't"lhich the theorem holds in the sense of convergence in 

normo t'le are going to ShOt'l that W = M. It is easy to 

demonstrate that W contains all functions of either of 

types (a) or (b), and every linear combination of theseo 

\-1 therefore contains Mo One then shows by the n closure 

argument ~3 of theorem 1301 that convergence in norm holds 

for all members of M, and hence that M C W 0 

Conversely, suppose f ~ No Then there is r in LI 

auch that 

Since one can show also that 

1'1 

~~ n!1 L Tkf - T~ U -==> 0 as n-=c> 00, 

k=o 

l'le have Tr = r so that r G î<7o N ext, the functions 

n 
l ~ (Tk_I)f are in the image of the endomorphism 

n+l k=o 

(T-I) and hance are in Mo AlsOg they converge in l'lorm 

ta r-f Il whence r-f i s in M 0 l-J El then have f (! M 9 and 

therefore W :::1 Mo 

FinallY9 ~J'e shall ShOÙ'l that vI = Llo This li'li11 

complete the proofo 

.. 



Let us conslder the spaces LP(c.@,1lA.9g oP)" P ~ 1, 

where g.p ls the measur~ on)l deflned by 

tA Go A 0 

64 

For 1 ~ P < C!)ll LP(effngvA ,gop) ( hereafter denoted LP(goP» 

ls the Banach space of equlvalenoe classes under the 

messure goP of~ -measursble functlons f such that the 

norm, deflned by 

ls finlte. For P= c!), LC!)(goP) ls slml1arl1y deflned9 

except that 

~~fn ~.p = ess sup 1 f~ 
g.p 
~ 

where the ess sup ls taken 111th respect to the measure 

g oP 0 The measure g op i s fini te and hence 't'J'e ~'J'ill have 

lf 1 ~ P ~ q < 00 • 

Let us deflne the operator TO on the spsces 

LP(goP)9 1 ~ p ~ 00 , by 

TOf = 1 T(fg) p f ~ LP(goP)o 
g 

Vie immediately havep by the relations 



and 

OTo rUl goP:: ess sup 
00 

1 Til f 1 ::J SSS Sup 1ï1.f.g)1 
gop 
~ 

P g 
~ 

~ ess sup ILgI = ess Sup Ifl 
P g P 

t.!1l1o M'I1D 

= ess sup ~fB = n fU goP 
goP 00 

MfuJ 
gaP ngoP 

the resu1t that liTII~~1 !Ë:11 and f'Tolu
oo 
~ 10 This imp1ies 

that ~~TO~n~oP~ 1 for al1 l ~ p ~ 00 0 

In particularSl then9 t19 sha11 consider the con­

traction Ta of L2(goP)o According to the mean ergodic 
n 

theorem9 the sequence Ç) .1.
1 

J!: T 0 k f : n:::. 0 ~ con-
1L n+ k::o j) 

verges in the norm of L2(gop) for every f in L2(gop)0 

No~J' if r ~ L1(gop)SI we can9 since i 2 (gop) is dense in 

L1(gop)!) choose a sequence {rj: j 2:. 1] in L2(gop) 

such that' ~~ r-rj ~I fOP ='::> 0 as j ~~ We have then9 

by repeating the n c10sure argument G~ of theorem 13»19 
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n 
the convergence of the sequence <s 1 l: Tokr : n :::. 0 ~ 

.'Q. n+1 K=O ) 
in the norm of L1(gop) for every r in Ll(gop)o 

Final1ySl if f ~ L1 11 then 1:. ~ L1(gop) and the 

sequence ~ 1 l Tok(JJ : n ~ o~g converges in norm in 
~ 11+1 k=o g ~ 

L1(gop)o Binee TOk(f) = 
g 

Tkf SI this imp1ies that the 
g 

sequence ~ 1
1 

o!. t Tkf : n 2:. 0 ~ converges in norm 
~ n+ g lc=o )) 

in Ll(gop) SI l'J'hich is equiva1ent to the convergence in 



the norm of LI of the sequ91'lCe r 1 i Tkf :.; n ~ o~ 
. ~ n+l k=o ~ 

We have,::;therefore shown that W = Ll ll and the 

proof Is completeo 

That the Dunford-Schwartz theorem really doss 

genera11ze the Hopf theorem ls easily verlfiedo If T 

i s a sub-f4arkov1an endomorphi sm of Ll (c.@, Il il. l) p) Il and 

if g(i.L such that T~ = g ~"1d tg > o~ = ~ Il t-le need 

only show that ess sup ~TfO < ess sup ~fn for all 
& g Ilff& g 
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f in Lo To this effect, suppose that ess sup OL~ é c <~ 
M&? g 

Then -cg ~ f ~ +CgD and applylng T to this inequalitYII 

t'Ue have -cg ~ Tf ::: +cgP whence ess sup OTf.~ ~ co 
~ g 

On the other handll if T is Markovien on L1(~ptlll p) 

then theorem 1402 is a special case of theorem 901. 

For If there ls a strlctly p081tive\l~-measurable, 

finite valued function g in L such that ess sup UTfD 
~ g 

::: ess sup ~f~ for all f in LII then g turns out to be 
MM g 

invariant under To 

Sometimes the Dunford-Scht'lartz theorem is stated 

with condition (1401) rep1aced by the condition ~~ T~~~< 11> 

i.e1> that ess sup ~Tf~ ~ ess sup~f~ for all f in L. Thisl) 
c.@!J W'& 

however,l ls simply (1401) t'lith g = 10 



CHAPTER VII 

CONCLUSION 

Thi~paper has been divided roughly into three 

parts- chapters II to IVo whose high point' isthe Chacon­

Ornstein theorem: chapter V dealing 't'lith an application 

of the theory developed beforehand to martingales; a~d" , 

chaptel" VIl) cu1minating in the Dunford-Schtmrtz' theorem .. 

The motivation in chapters, II to IV l'TaS the proof 

'of the'ëhacon-Ornstein theorem', in l'lhich arecontàined. . . .'. . . - . ..' . 
•••• : • M ',', 

the' theorems of Hopf and Birkhoff 0 A1though this t's'a" 

verygenera1 ergodic result o' lt ls not neariy'as' strông, 

as'either the Brune1 maximal lemma or the ,Hopf maxi;mal 

, 1emmag: 'from 't'lhlch i t i s deri ved.. In fact Il Hopf' [9J·.·." 

.' noted in' th'è proof of his èrgodic' theorem in' 1954' that .. 
. -.,:" .... : " 

his maximal 1emma'was sufficient to describemost 'ergodic 

resu1ts at· that timell imp1ying that the rea1 focal, pôint,',·· 

of lnterest in ergodic theory shou1~ be the role of the 

maximal lemma 0 His point l'las emphasized 1e.ter in the 

proofs of the Dunford-Sch'li'Jartz and Chacon-Ornstein theorems 

lJhere again the appropriate maximal 1emmas developed are 

mathematical1y much further reachil,'lg.~ l"'0sùlts .. 

AIl of these maximal lemmas are similar both ln 

:-,;. " 



,"', : ..... 

......... 

purposeand contento They get uS'ovez- a certain n hump n 

as we have 8een~ beyond whlch the proof of the part1-

cular ergodlc theorem is fa1rly straightfon1ard. As an 

exemple, w~ repeat the lemmas of Hopf and Brunel below: 

Let T be a sub-Markovien endomorphism of Ll(~,jl9 ~) 

and let f ~ Lo Def1ne the sets 

'maximal Lemma ( BrUneI ,) 

{ sup tTif > 0 ~ CI 

~j i=j. 

. . '" 00 

L'et .,A. ~ ûî KSo .' Then.o: .Jf~~A.·. ;.:. O.' .... 
. : ....... j=o .. 

1 ~'.: ,;' • 

",: 
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" '. : .. : :'. Maxim~l' Lemma ( Hopf )" . .: .... ~ 
. ',' .. ~ ,'~'" . 

. , .. ' ',',. 

, " .... : ...... . "'. 
'" ... 

' ..... 

~ "; ',' . -:' \: :,'. . :. 1...r0'Xxf?.. 0 0 , 
, 0 '.,. :', 

. . . . , .. : 

. . ' . .';'..' .' '.:' ~ ' ... ;, '; . 

,.' Written"this'~laY;9 the',~lmilarii?Y ~f 'th~' tw~·i~mma.s.lsevidento· 
.", " . .. .• 

It i'lould therefC?re be enllghtening' ·to' det'a~~l'le·.·wh~t " 

. '. relationships exist among these maximal lemmas CI .' In' partlCl,ilar, . 

'" :'.it· 1s interestingto compare the' abov~ t't10 lemma,s~. :thosEi·of:· .. 

:' Hopf and Brunel. Although similar as noted; :they. nevertheless:' •. 

appear on closer scrutiny to be independen~ ° T~is t10uld, .... ,.' 
• .'~':. .: 1·.·· .. 

suggest the possible existence of a st ronger result l'Jhich 

would contain both lemmaso 



Inchapter Vp the decreaslng martlngale theorem 

of Doob was deduced from the Hopf ergodlc theoremp demon­

strating a. p,?sslble st.rong relationshlp between ergodlc 

and martlngale theory. The obvlous question ls t'lhether 

one can similarily prove the .1ncreasing martingale 

convergence theorem as t'lello t'1hlle thls ls an open 

questionp lt 1s an.interesting fact that both the in-

creas1ng and decreaslng martingale convergence theorems 

can be deduced ,from maxlmal lemmas vlrtually identlcal 

~lith the Hopf lemma and theorem 12.1. The proofD t'J"hlch 

closeiy'parallelsthat of the Dunford~Schwartz theoremll 

can,be foundln iC16],' ,0 ,Once againD this emphasizes the 

1mportance of the maxlmallemmao 

". " " . . ,' . 
. ',. '. ..'.' ... '. . ' .. ~ . . 

Finallyj,' ln chapter VII> "'le proved the very strong 
, " 

Dunford-Scht1artz theoremll whlch. holds for convergence in 

norm. aswell as convergence almost everyt"lhere 0 However\) 

the ldentity of the ergodic 11mlt is not knotrn.l>except 

in the t'1eakest casewhen T ls Markovien and the theorem 

reducesto the Hopf ergodlc theorem. Also\) by·comparlng 

the proofs' of the Hopf maxlmal le'mma and theorem 1201, 

't'lhlch yleld corre~pondlng resultsp lt is apparent that 

droppingthe assumptionof posltlvity of the endomor-

'. 'phism T leads to much 'greàter complexfty of proof 0 
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