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CHAPTER T

1. ' INTRODUCT ION

Thls thesis attempts to collect together the most
important results of pointulse ergodic theorys and to
prove them in the simplest and most illuminating manner
knoﬁna Alz0y The theory developed will be used in a
rather interesting application to the theory of martin-

gales.

Ergodic theory had its origin as a mathematical
attempt at Justification of the- famous ergodic hypotheslss
concisely phrased 9 equality of space averag@s,énd time
averages.? This hypothesis was first mede and uséd by
Liovville in the second half of the nineteenth century,
in the solution of an important problem of statistical
mechanice. A more detailled account of this problem can
be found in [11] o [18]s and [19] . Mathematically, the
ergodic hypothesisg involved the study of certaln measure-
preserving transformations of a measure space into itself.

Under certaln conditlons, it was verified by Go. D. Birkhoff



in 1951 [2] - His result, which has since been slightly
modifiedg end is known widely as ® The Ergodlc Theorem “,
is still today probably the most important ergodic result
as far as applications are concerned. Birkhoff recognized
the inclusion in the ergodic theorem of a much more general
result of which the actual theorem is é corollary. That
‘result is now called a maximal lemma. The so-called

@ classical © period continued,; with Khintéhine dropping
unnecessary assumptions made by Birkhoff, and with ﬁopf
extending his result. Then, in 1947, F. Riesz [18] fur-
nished a simple proof of the Birkhoff theorems and in the
process demonsﬁratéd further the importance of the maxi-
mal lemma. His proof of the ergodic theorem is the one

now given in most probability texts.

The modern period saw Hopf E:9ﬂ in 1954 abandon the
original settiﬁg.of ergodic theory, and by developing a
pertinent maximel lemma, extend the theory to the study of
certain linear operators on Banach spacess notably Ly the
space of all integrable functions. His results were extended
in 1956 by Dunford and Schwartz [6]) » and finally in 1960,
Chacon and Ornstein lf5j] developed a very general ergodic
theorem of which those of Hopf and Bilxkhoff are speciel

casesoe



We shall f;rst defivé a very powerful maximal lemma
due to A. Brunel [3] - This lemmas; as P. A. Meyer [12; 13]
has pointed outs belongs in the domein of potential theoxry.
We shall then proves in its fullest generalitys the
Chacon-Ornstein theorems using certain notions of poteh-
tial theory. This approach is due to Meyer..It will be
interesting in the remainder of chapter III to compare it
with an alternate method of proof of the Chacon-Ornstein
theorem. The Hopf and Birkhoff results wlill then follow
in chapter IV as cofollaries» and in chapter Vs, we shall
apply the former to a problem in martingale theory.
Flnally, we shall in chapter VI prove another maximal
lemmas and from it derive the Dunford-Schwartz ergodic
theorem. For the latters we shall need as a lemma the
famous mean ergodic theoreﬁ of von Neumanns and this will

also be proved in chapter VI.

The setting of this thesls belng probability, we
shall prove these results in a probability spaces; although
most can easily be extended to sigma-finite measure spaces.
The resulting simplifications; 1f anys; involves no loss in

generality.



CHAPTER ITI

THE MAXIMAL ERGODIC LEMMA OF BRUNEL

g

2. Sub=-Markovian Endomorphisms

Let (s A5 P ) be a probability space (v is a
setsfi a sigma-algebra of subsets of 4, s P a probabllity
on.;ﬂ ). Let us denote by L1 (es s A » P') ( or where the
context is clear, simply by L ) the Banach space of equi-
valence classes under P of 4 -measurable realivalued

functions f whose norm, defined by
el = pog

is finite. We shall denote by L® (W) s 4 s P ) ( or by L™ )
the dual Banach space of.équlvalence classes under P of
/l-measurable real valued functions g whose norms defined
by

llell., = ess sup [sli
s

is again finite.
An endomorphism T of L is a function T : L =1L

such that for every real number ¢ and £y g & Ly we have

T( cf ) = cTf
T( f+g5 ) = Tf + Tg

1



T is called positive if £ > 0 implies Tf > 0. The family
;? of all endomoxrphisms T of L 1s also a Baunach space
if we define |

il = sup_ e
0

fa
£ £
A positive endomorphism T on L such that {Tl] <1
1s called a sub-Markovian endomorphism. If [Tl = 1, T
is furthermore called Markovian. It is this type of endo-
merphism that we wish to study,; except in chapter VI,
where we shall drop the assumption of positivitys
The adjoint S of an endomorphism T on L is a certain
endomorphism of the dual space L™, defined as follows: the
image Sg of g by S is the unique element of L™ such that

ffeSg = [Tf-g

for every f in L. The norm of Sy defined again as

1Sgll o
MSM ) cgsgpr ﬂﬂgaﬁco

g £0

is equal to that of T. Furthermore, S is easily seen to be
positive if T is.

The following theorem furnishes us wlth a useful
criterion for determining whether a positive endomorphism

of L is sub-Markovian.
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Let T be a positive endomorphism of L. T is
sub=-Markovian iff S1 < 1.

Proof:
Assume T 1s sub-Markovian. Lettings for every
€> 0y
we have

0 (1+8P(Bg) < st@1 = ITXBGS fng-_- P( Bg ).

and therefore P( Bg ) = 0.

Conversely,; assume Sl < 1, and let hG¢ L™ withs say

[iall = ¢. Thenlh|< ¢ impliesSh)< Se = eS1 < ¢, and

therefore |[|Sfj , < 1. '
do.e.do

In the remalnder of this chapters and in chapter III,
we shall denote by T and S a sub-Maxkovian endomorphism
and its adjoint, respectively. We shall denote by L, ﬁhe
family of positive functions ( i.e; equiﬁalence classes )

of L.

Theorem 2.2

(a) If {fn:n > 1§ is en increasing sequence
in L, such that f = 1im fy ¢ Lo then Tf = lim Tfy.

(b) 1If {gn:n > 1} 1is an increasing sequence

in LY such that g = lim g, ¢ L3 then Sg = 1lim Sgy.



Proof :
(a) Since T is positives the sequence {Tfn:n > 1}
is increasing in L . If f¢Lys then '

PTE-Tru) £ fif=fp)j = J( £=fn ) =>0 as n<owo.
This implies that Tf = 1im Tfp.
(b) As aboves the sequence {Sgn:n > 1} is
increasing in LY . Paseing to the limit in the equality

fo°gn =3 ff°Sgn s f & L+9

we obtain
JTfeg = [felim Sg, s f ¢ L+9

and thus if g ¢ Lf_’s we have Sg = lim .Sgno

q‘oeed.o

Let @ +be the convex cone of equlvalence classes
under P of positive A—measurable functionss finite or
not. Theorem 2.3 below allows us to extend T and S to
@+ 9 at the same time conserving thelr dual relationships

and most of thelr properties.

Theorem 2.3

T can be extended to a positive endomorphism
Qf‘ @ + having the monotone continuity propexbty: if if‘n:n > 13
is an increasing sequence in B3, » and if f = lim fy, then
Tf = 1im Tfyp.

The analogous result holds foxr the adjoint S

of T. Moreovery, these extensions are such that

JTfg = [f-Sg

for every fs g in @, -



Proof :

Since every f in @, is the limit of an increasing
sequence of simple functiorié in Lﬁ s we can define for
fs9 g in @_ 9

Tf = lim Tfy

Sg = 1im Sgpn
where %fn:n > l} and {gn:n > 1% are sequences of
simple functions increasing to f and g respectively.
One fhen proves the properties of the extensions in the
same way thet one proves the properties of the extension
of the integral from simple functions to @+ °

There is also a less obvious approachsy based on the

Radon-Nikodym theorem. Every f in B, defines a positive

measure
Vel A ) = froSkp 0 AGA 5

defined on A . One easily shous that vy is absolutely
continuous with respect to P, and thuss; by the above
mentioned theorem there is a unique element T¥f in B +

such that

ve( A ) = fr%¢ 5 acd.
This shows that there exists a unique function T‘::':@_*‘Lma @_;
One easily verifies that T" is positive; lineary; and
coincides on L, with T. We shall drop the asterisk and
denote this extension simply by T. The monotone con-

tinuity property of T on@+ follows from the equality

flim Tfy = 1im [fyeSXA = [fSXp = [TF



which is valid for any increasing sequence {ifn: n > 1§
int® ,. The above procedure applies to the adjoint also.
Finallys we shall show that * [Tfeg = [fSg for fs g
1in @B ,+ For every such fs we have
JrfeX, =[f8X, » AGA.
The linearity and monotone continuity properties of S
and the integral then imply the desired result.
| go.@odo.

Coxollary _

It {fn’ n > 13} is a:sequence of functions in &0

then . s o
(a) T (R, ) = ZTf,
. n=1 n=1
b S ) f = Sf o
(b) (ngi’i 0 ) nf;z‘”i N
Proof: .

The sequence {Zf‘nzl\l > 1} is increasing in +

co
to Zf’n « The result follows by the linearity and mono-
n=1
tone continulty properties of T and S on @+.
l o Y od o

A function T: ® -:m{:: + having the property in the
above cérollary is called a pseudo-kernel on @ ) but we
shall not use this terminology. However, theorem 2. 3 has
shovm that a sub-Markovian endomorphism T of L can be
extended to a pseudo-kernel on g

Below,; we list some examples of positive endomor-
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phisms which will be of great importance in the sequel.
In examples 2y 3» and 4, N denotes an arbitrary posi-

tive endomorphisms defined on either L or L%,

1. The function J, defined on L ( or on L® ) for‘every

A in 4 by
JAf = f°XA

is a sub-Markovian endomorphism of L ( or L® ).

2. The function NAs defined on the domain of N for

overy A in A vy
| Np = NIy

is a positive endomorphism and is sub=Markovian if N is.

3. The function Gy, defined on & by
o0
Gyf= ZNPFf
we= 2
is a positive endomorphism of B -

4. The function B, defined on L for every A in A by

By = JpGTpe 9 A'=y= A
is a positive endomorphism of L. Denoting the adjoint of
By by Hys the equality
JfeHpg = [Baf-g = &( Ja + JAE%K?Ao)p)f‘E
= [(Jp * JAPZ:E(JAoT) Tpe)feg
= [fe(Ty + JAoGSAOSA)g
implies that Hy =Jdy + JAOGSAOSAO We shall show in theorem
3.1 that Hyl £ 1 and therefore that By 1s sub=Markovian.



5. Let éZ be any sigma-subalgeﬁra of AQ 9 and let

f @ L. The conditional expectation E°f of f with

respect to & is the unique element of L such thgt
[ofdP = fE®fap

for every c.in. & . One easily sees that the operator

E@%°) so defined is a Markovian endomorphism of L.

Jo Excessive Functions eand Eauilibrium Potentials

A function g in @3;18 called excessive if Sg < g»
and invarient on a set A in 4 if Sg = g on A. Simple
examples of excessive functions are ly and Ggf for any

f in @3+o

The following theorem will be referred to several

times in the ssquel.

Theorem 3.1

Let f be an excessive functions and let AGA
The family of all excessive functions majorizing £ on A
contains a smallest element; given by Hpfs which has the
following proﬁerties:

(a) Hf £°

(b) Hpf =f on A

(c) HAf is invariant on.?, - A under S.

11
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Prbof :‘

We_shali first show the validity of the inequality

I
3,8 +p§JAa(sAo)psAf <f (3.1)

for every k >

0. It is 'trivially true when k=0. Suppose
(3.1) is true for k. Letting S operate on each side of
(3.1)s we obtain

k1l P
Spf + p%(sAo) S,f < Sf (3.2)

Nexts applying JA" and adding JAI‘ to both sides of (3.2),

we have

K+ _
i p
Tpf +p_0JAo(sAq) Spf S Jpf + Jy08,F

ST+ 7T

At

=T

thus verifying (3.1) for every k > 0. Letting k=cw then
proves property (a). Property (b) is trivial, as Hy = J,
on A.

Nexts the equality
SHAT = 8pf + 5p0Gg ,Spf = (I + SAOGSAO)SAf

shows that SHAf‘ = HAf on b = Ay and so proves property (e).

The lnequality BSHpf < Sf < f = Hyf on Ay which follows



“from properties (a) and (b), shows in combination with
property (c) that Hpf is excessive.

To show that Hj,f is the smallest excessive function
majorizing f on As let g be any excessive function ma jor-
izing £ on A. Then Jpg > Jafs so that HyJ,& > HyJ,f.
Since HAJA = Hpo this implies Hpg > Hpf. Howevers by
property (a)s we have g > Hpgs and therefore g = Hpf.

| Go€odo

Since the function 1 is excessives theorem 3.1 shows
that Hyl < 1, and therefore that the endomorphism B, of L

in example & is sub-Markovian.

When f 1s.excessive9 the fuhction_HAf_is called the
reduction of f on A. The féductidn HAibof-l'on A 1s called
the equilibrium potential of A and for brevity is denoted

by er

Theoren 3.2 v .
Let {Anzn > 13 be an increasing sequence

of sets in 4 - end let A = 1im A . Then ey = lim e, .

An

Pfoof§
Suppose Cs DEA with ¢ & D. Now eD is ex-
cesslve and majorizes 1 on C. Hence ¢ < epe This shous

that eAné'and that en, < ey for every n 2 1.



1

On the othexr hand, S(l;m eAn) = 1lim SeAn < 1lim eAn

end 1lim ey majorizes 1 on A. This implies that '1lim

> e, and finishes the proof.

gee oo

4, The Maximal Lemma of Brunel

The following theorems due to A. Brunel [3] is a

typlcal example of a maximal ergodic lemma. It will be

eAn

used not only in the proof of the Chacon-Ornstein theorem

( theorem 5.1 ) but also in the identification of the
ergodic 1imit in that theorem ( theorems 7.1 and 7.3 ).

Theorem 4.1
Let £ ¢ L end let A ¢4 such that
oo B, '
A & Ep= EEO{X:gEE %gi f(x) > Q}
Then [ fceyq 2 0

Proof:

The proof of this theorem is quite long and
laborious. We shall divide it into five parts. First we
shall develop some tools of a theoretical nature, and

then apply these to the immediate problem.
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(a) . Let us form the product measursble space
(NXgls 2(N)x 4 ) where: N = §05192535 000§

Z(N) = family of all

subsets of N

Since for any AC NX 2 » we can write A = 220 {rf = Ap
uniquely where Ap 1s the sectlon of A at py 1t will
be useful to denote subsets A of NX ¢, in the form
A = (A09sA3sApsccocce)s Subsets A of NX b which are
Z(N)x A -measurable are then preclsely those whose
every section Ap is A -measurable. In the same ways
we can write every function g: NXubh==>R ( R the real
line ) as a sequence g = (80v879829 coos) Where gpo
P= 051929005 1s the section of g at p. Thusy every
Z(N)XA -measurable function is identified with a
sequence of A -measurable functions,; and converselys
every such sequenée determines a Z(N)x 4 -measurable
real-valued function. Finallys for every sequence
g = (802819829 +0) of A -measurable positive functionss
the expression vg(_l_&_) = ’p%o‘mlgp defines a positive
measure on Z(N)X 4 . This expression shows that, with
respect to the measure space ( NXuby Z(N)XA 5 vy )o
two 2(N)x A -measurable functions f and g are equal
a.e. Iff fp = gy a.c.(P) for every p in N.

Let us deflne the endomorphism S*¥ on the set
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of vy=equivalence classes of positive Z(N)Xﬁi -neasurable

functions by the following relation:

S%(809819g29 °°°) = (Sglﬁsgzs ooueo)

One then easily sees that

S*1 = 8% (Lolslsoes) < (Lololoes) = 1

us)

and thus that 1 is excessive under S%o Now let be ar

Z(N)x £ -measurable set of the form

B = (BpsB1sBoscooosBysPsfsfssccs) (&.1)
where

Bg®B; 2By D .02 By
and. let us denote by e = (bpsbysbos ses) the equilibrium
potential of B with regfect to‘s*° Furthermores let
eg - S%eg = (dpsdysdgoeee). For any integer 0 < k < ny

we are golng to show that

’ dr = 0 on Bk - Bk+l if r»r> Xk (402)

Now the function (bOVSbOabosblboooo) ( where V denotes

sup; 1.e; boVSbo = sup(bpsSby) ) majorizes 1 on Bs and

W%
1s S =excessivey as

S-::‘ (boVSb09b09b19 oo o) = (Sboprlg ooo)
< (Sbpsbgs byso o)
S (bOVSb09b09b19 ° o) °
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It therefore also majorizes gﬁ’s implying that bg > by 2
> bg Zeeeeso and therefore that Sby 2 Sby = Sby 2scccees
Let us now fix k and define the sets By = {r§ X(Bx - Byyj)
for 0_5 r £ n. Clearlys if r > ko then BABy = fs and by
theoren 3.1y eg is invariant on‘gre This implies the
truth of (4.2): If r £ ks then B D B,s implying that

=1 - Sby,, on By - Bgyl. We then have
do:l “SblSd.l l-sz <oooooe< dk 1“’Sb‘k+1

on By = Bp4ye

(b) Let us define by induction the following functions
on Jfhy : -
Qq(x) = inf § q: i%DTif(x) > 0}

or otherwise + «

= inf : STir(x) > 0
ey (x) = t0f ] a: é’(x).f:’f j

or otherwise + e
for every p = l. We notice immediately that if x € A
then Q) (x) 1s finite for every p > l. Conversely,
Qizm'l'if(x) > 0 for every m £ Q1(x) if Qp(x) is finite
( otherwise one contradicts the a°finltion of Qy(x) )o
Similarilys Qp(x) < e implies that EST f(x) >0

for every m < Qp(x)o
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(e) Let us fix n and p and teke for the sets Bjy»
i= Oslszsooosn of (40159 part (a)

By = A N§1 < Qp < nf

Then Bg 2 B3 2@ Bp D oeeeo D Bps and we note that
Bk - Bk+1 = AN {Qp-‘;ﬁ k} for 0 £k <n - 1. Now

ffo'bo o= ffO(d.o 3 Sdl 40000 o Snd.n)
- f(fdo + Tf°d1 docoo000 o0 o Tnf°dn)

Using the method of part (a)s, it is easy to show that
dp = d) = sooceco= d = 0 ondly~Bgs and therefore that
fedg + Tfedy Foooot Thfedy = 0 ond~By. On the other

hands this sum can be written on By = Byyq @s

fodo + Tfedl do0cco0o0o0 o ka°dk

X k
do ng‘if + (dl-do)i_ZlTif toooot

eonet (dyemdy_q)TF

>0

where we have used relations (4.2)s (4.3)s and the results

of part (b). This shows that
Jfbg 2 0 for every n= 0 and p 2> 1 (4.4)
(d.) Letting n? coo the set }_3_213 = (BOQBl:) oooanpﬂsﬂj.éoo)

increases to the set Ep = (Af\ghpzqg gAfmihpZ%g oooooae)e
Theorem 302 1mplies thab GBRS (08 Dc{ 968 ooooooe) o=
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= lim- egg s and thiss together with inequality (4.4)
implies that ffocg > 0 for every p > l. Nexts
letting p{ =s:we have QPQw on Ay énd the set QP in-
creases to the set A = (AsAsAsecscas)o Denoting the
equilibrium potential of A by ey = (agsajsanscece)s

we have similarily
[feag = O

(e) Finally we shall show that ag = e, . The func-
tion (eAgeAgeAsooo) is S%-excessive end majorizes 1 on
Ay ‘implying that ey =2 a3 9 + 2 0. On the other hand, the
two S° -excessive functions (agVSagsagsays <) and
(215835299 c00) majorize 1 on A and therefore also
(agsaysagscces). Honce ag = a3 = a8y = ccocosorlie have
further that Sap = Sa; < ajy » and since ag majorizes

1l on As we have finally e, Sap -

=
maximal lemma.

Hence e, = ay > completing the proof of Brunel®’s

q:.eod.e
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THE ngCON-ORNS‘l‘EIN ERGODIC THEOREM

5. The Chacon-Ornstein Theorem

Let f and g be two functions in L, and define

the ratio ﬁka

PR
k=0

Theorem 5.1 is the famous Chacon-Ornstein ergodic

theorem.

Theorem 5.1

Lim Dn(fg g) exists almost everyuwhere

on iGTg>O§ °

Proof: '
We shall first show that 1lim sup D,(fsg) < a.0.
on {{g > 0§ - Let

3

A= jg>0%n 11im sup D (fsg) = §

Then A € Ef—»eg for every constant ¢ > 0. By theorem
4.1 we have [(f-cg)ey > O for every ¢ > Oy and hence
jgoeA = 0. This lmplies that ey = 0 a.e. on A and
therefore that P(A) = 0.



Nexts let a and b be two rational numbers such

that 0 < a < b € w. Consider the set

A = ig > Ogﬂj EGTf =2 oog ﬂ{lim inf Dﬁ(f‘bg) <'a§
A {1in sup Dy(fsg) > bJ

We easily see that AL Ef-bgm Eag-f s and therefore
by theorem 4.1 that

[(f-bgley 2 0 » [(ag-fle, = O
Adding these two integralss, we have
[ (a=b)g-ey =2 0

whichs because of the hypotheses on ay by and Ay can

only be true if e, = 0 a.e. on A. Hence P(A) = 0y and

21

lim D,(f>g) exists a.e. on the set %zg > Ogﬁ Sz,G,I.f = oo§0

' Since trivially 1lim D,(fsg) exlsts on the set

gg > 0§ﬂ gGTf < oogs we deduce that 1lim D,(fsg) exlsts

2.0 On §g> 0§.

Repeating the above argument with Tg» ngp ete;

in place of g; we obtain the a.e. convergence of Dn(f‘o g)

on EGTg> Og °

q_oeod.o
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6. The Exrgodic Decompogition Theorem

The following theoremy; due to Chacon, enables us
to partition Uy into tiro parts on which the endomorphism
Gp has radically dlfferent properties.

Let us designate by y a function in L, with the
property {y > 0§ = ol and put ‘

Jopy < @} =D
fopy = =} =c

C end D thus form a partition of 4 . These two sets
are called, respectivelys, the conservative and dissl-

pative parts of ), with respect to T.

Theorem 6.1

Let f @ L,. Then: (a) Gpf < « a.e. on D
(b) Gpf = 0 or « a.e. on C

(¢c) The sets C and D are
independent of cholce

of yo

Proof':

(2) By théorem 5.15 the ratio Dh(foy) has
en a.e. finite limit ondd . Thus Gpf < © a.e. on the
set {GTy'<oo§= Do

(b) On the other hand, the ratio D,(ysf)
has an a.e. finite 1imit on the set ﬁGTf > O§ 9 SO
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that §6pf # 0 or ® } & {Gpy < =} = D. Thus Gpf = 0
or ®© 2.8 On Co

(¢) If £G L, such that §f > 0§ =uflss then
Gpf = © ase. on C and Gpf < ® a.e. on D by'parts (a)
and (b). This shows that the sets C and D are uniquely
determined ( up to eguivalence ).

qOGOd.c

Corollary 1 (2) Xy = 0 onD

(b} SXp = 0 onC

(a) We have =:Xg < Gpys which implies
+9eTXy = T(+wXsy) £ T(Gpy) £ Gpy and therefore T(Xg) = 0
on the set iGTy < “§ = Do |

(b) By definition of the adjoint Ss; we have
[cSXp = [pIXe = 0, which implies that SXp = 0 on C.

QQeod,o

Corollary.2  (a) Let £ ¢ @,. Then T(feXc) = 0 on D.

(b) Let gé®B .. Then S(gXp) = 0 on C.

il

(a) When f = Xp » F¢A > the corollary is
trivially true. The linearity and moﬁotone properties
of T then imply the desired result.

(b) follows similarily or by the definitlon

of the adjoint.
Qoeodo
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Theorem 6.2 .
Let h & @§+,be a finite=-valued function such
that Sh < h on C. Then Sh = h on C»

Proof:
e

a l+h
to L, 1s majorized by 1, end is such that ig > O§

Consider the function g = which beldngs

]
Q
L]

it
8

We have by theorem 6.1 and its corollary 2 that Gpg

on C and 0 on D. Thus for every n > 0

o,
J'(kZE)Tkg)(h—Sh) = [g(h-sPh) < [eh < 1s
and letting n {» ; we have fCGTg(h-Sh) < 1. This can
enly be true if Sh = h on C.

q:»eod.a

Let us denote by H the convex cone of finlte
members of L, which vanlish on D and are such that
Sh = h on C. Since S1 £ 1 on"C and SXp < X on Cs it
follows that X, is in H and hence that H is not empty.
H is closed under the operatlions sup and inf, for if
hy h® @ H; then S(inf(hsh®) £ inf(ShsSh®) on Cy, which
implies by theorem 602'that inf(hsh’) is in H. Since
inf(hoh®) + sup(hsh®) = h + h'; it follows that
sup(hoh’) is also in H. Purthermores one easily seces
that H is closed under monotone limits provided these

linlits are finite.
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Nexty let us define 4 = {Ag C:‘ XAé H§ o The
above properties of H imply that fﬁ is a sigma- subalge-
bra of subsets of C. The members of f{ are called the

invariant sets.

Theorem 6.3

Let h ¢ L, be finite-valued and vanish on D.
Then"hH iff h is f{ -measura‘b_le°

Proof:

If h @ Hy the formula

X =1lim inf ( 1 n(h—a)+ )
ih> aE N =< 00 ( ?

shows that X gh > o @ E and therefore that {h > af& .

for every constant a > 0. Hence h 1s-ff~measurableo
Conversely, Af h is ﬁ -measurable; then h

is the finite 1limit of an increasing sequence of sums

of characteristic functions in Hy and since H. 1s closed

under such limits, we have h € H.

g-© oo

The results of the following three theorems will

be of importance in section 7.

Theorem 6.4

Let A@Cs AGA . Then Sg; = e
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Proof:
ep is invariant onygy ~A under S, and therefore

Sey = ep onigflb-A. On the other hands e, 1s excessive

and hence Se, < e, onefls 1in particular on C. Theorem 6.2

then implies that Sep = ) on C. Combining these two

results, we have Sey = ey ondfls .

qoeede

Theorem 6.5
Let ‘A@ Cy AC«;A o Then HCeA= e o

Proof:

Hpoep 1s by theorem 3.1 an excessive function
majorizing e, on C and theréfore-on”A. Hceﬂsis thus
en excessive function majorizing 1 on A and hence
HceA 2 ep-

ConVerselyo by theorem 3.1 agains we have
HCGA _<_ eA -]

qoeodo

Theorem 6.6
Let A€ Co AcA . If & denotes the

smallest member of‘f{ contalning As then Xpe.e, = Xg.

Proof:
We have shown in corollary 2 to theorem 6.1

that S(fXp) = 0 on C for any £ G @B, ,. Thus the restilc-



tion of Sf to C depends only upon the restriction of
£ to C. We are then able to define the restrictlon S°
of S to Cy acting on all functions defined on C.

| Now every finite S?«excessive function f major-
izing 1 on A must alsoy, since it 1s'i§-measurables
mejorize 1 on &. X3 1s S?-excessives majorizes 1 on
&y and is zeré on C-& » end must therefore be the
equilibrium potential e& of A with respect to S%.

On the other hand,

0
Ca

i

0
Tpl + Jg.pGsy_,8°Ts2

5 X, J,1 4+ Xod_ _aGo  SJ,1
CA C% Ao%_A_A

= XCeA
Qoeodo

7o Identlfication of the Limit in the Chacon-

Ornstein Theorem

If the conservative part C of oy with respect
to T is equal to all of )y » then T 1s said to be
conservative. Furthermores it is easily seen, using
theorem 6.2, that if T is conservative, it 1s neces-

sarily Markovian. Though we shall use 1t to prove

27
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a more general results.the following theorem iden=-
tifies the 1limit in the Chacon-Ornstein theorem when

T is consgervative.

Theorem 7.1 v 4 N ‘
Let 5 g @ L, such that £ = 0 on D and
gg > 0 § = C. Then | |
gds
Efg

where Eﬁ&.) is the conditional expectation endomorQ_

lim Dn(fgg) = a.e. on C

phism taken with f§ considered as a sigmawsubalgébfaf”q
of A - |
Proof:

‘Let a5 b be two real numbers with 0 < a < b < s
and let A = {a < 1im Dy(fsg) < b} & C. Denote by
2 the smallest member of i{ containing A o

1f BG éf and B € 8 we shall first show that the
inequalities

fepqp(f-ag) 2 0 5 . IeAﬂB(bg-f)» >0 (7.1)
are valid. By theorem 4.1, we need only show that
A @ Ef_agﬂ Ebg_fo

First suppose that x ¢¥ Es o Then for some k > 0

-ag
we have sgﬁ EZfPi(r-ag)(x) < 0y and therefores; for

every n > ks
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n n ’é};
2rie(x) £ a ZTla(z) < a LZTla(x).

i=k i=k : i=o0
It follows that for every'n > ks
| k?.’;!;Tif(x)
(fss)(x) - 10 <a
ZTig(x)

and upon 1etting n ‘}w 9 thet X ‘ﬁ/ Ao Nexts suppose
xﬁ’Ebg £° As aboves we deduce that for some k > Os

ZT f‘(x)

0<b<g A=0. “for e’very'n > ko
ZTig(x)

j=lt

Letting n§ « 9 it results that b < lim D, (fog) (x)

and therefore that x f/Ae This shows the Validity of
the 1nequalities 1n (701)0 ‘

. Nexts We must have B = A??Bs for otherwise
B - AMB would be an 1nveriant set contalned in,ﬁ
end disjoint from A. This would further imply that
f - (B - AAB) is a smaller 1nvai'iant get than R »
but containing As thus contradicting the definition
of &.

Hence by theoren 6.6; we may write Xg = X A??B"

= Xgepap Be Since both £ and g vanish outside Cy we

may rewrite the inequalities in (7.1l) as
[p(f-ag) 2 0 » [ (bg-f) 2 0 (7.2)

for all B & % s BE& 8. By the definition of condition-
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al expectations these inequalities become
[N¢: g - aEng) >0 IB(bEﬁg‘- ES r) >0 (7.3)

for every BG& < » B& &. It follows from (7.3)s since

the integrands are -measurables that
E4r > aEdg on s BEFg > ESF on &

~ and therefore that
a < E4f < b on i

T Eds

According to our hypotheses on a and by this double
| "1nequa11ty shows that if x G C such that a < lim D n(fs8)(x)

< bg then a < _Eﬁi(_iﬁ) < b. This proves the theorem
F ' Eég(x)

when 1im Dn(fpg)(x) > 0.

Nexts let A" = {1im D, (fsg) < Db §. We have
Edr -
Ede

on A . This proves the theorem when 1imD, (fr8) (%) =

<b

shown that A" & B, _o and therefore that

q-eodo

Theorem 7.2
Let g G L, Then C A {Gpg > 0§ &G iGT(BCg) >0},

Proof:

We first note that Bpg vanlshes on Dy and
furthermore by corollary 2 to theorem 6.1 that Gp(Bgg) -
also vanishes on D. Hence gGT(BCg) > 0} @€ C.
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Nexts suppose xGCs but x g?ibT(BCg) > 0§ .
Then Gp(Bgg)(x) = 0. This implies TX(Bog)(x:) =
for every k > 0. It follows in particular that
e (x) =.O for every k > 0 and hence that Gpg(x) =
This proves the Theorem.

qoeodo

Theorem 2'3'° i R v e
R Let £ @ L . Then lim Dn(BCfaf) 1 aee.
7., on the set {ZuT(BCf) > o§ s R

:ﬁ i;f&:lVﬁ5ﬁ To prove this theorem9 1t 1s enough to show

' t that the sets

b A {[’rkwcf) > OM glm D ‘Bcf"’f) k a§

e B

k
{T (Bcf) > o§ﬂ {ilim Dn(BCfpf) < b§
: ”have measure zero for every k > 09 a > 19 and every
-;O < b < 1. The proof is similar to that of theorem

7 1 Treating A firsto We see that A.@;E f-af
Bg

and therefore by theorem 4.1,
feA"(BCf-af) Z Oo

Since by theorem 6.4, SkeA = eps the above inequality



becomes‘
e, (TE(Byf) - arkr) > 0 (7.4)

On the other hands; theorem 6.5 allows us to writes

since A& C»-
e, TE(Bcf) = fSkerBC;‘ = [ep°Bef
‘= chngf = feAgf
= jskerf = [erka

.'w§'¢an thérefqre rewrite inequality (7.4) as
(l-a)f e OTk(BCf) >— 0

j  and since a > 19 this 1mplies ey = 0 on A and thus

L 'that P (A) | |

t” “ Turning now to By we see that B«g EbféBCf as
. .in theorem 7.1. Again by theorem LY

'and since feB Tk(BCf) = feB°ka9 this 1nequa11ty

becomes .
(b=1)[ep~TE(Bef) 2 0, 0<Db< 1.

It follows from this that P(B) =

goCodoe

32



We shall now use the previous results of this
section to identify the limit in the Chacon-Ornstein
ergodic theorem in its fullest generality. The follow-
ing theorem effectively summarizes the results of the

preceding sections.

Theorem 7.4

Let T be a sub=Markovian endomorphism
defined on the space Ll(mwﬂ\,s P). For evéry fE&L .
and g G L_g_o the limit

1lim Dn(fsg)

exists a.e. on {{ Gpg > 0§ o Furthermore

33

Gpf
f T 8.@. ON D@{GTg> 0§
lim D (fog) =
§ Eﬁ((BCf) 8.8 On
‘E4(Bcs) ¢p {ope > of .

Proof:
Writing f = £T4-f~; we have fGL iff £+ and £~
G L+e By the linearity propertles of the sendomorphisms
T and E{{(a)s it is sufricient to prove this theorem in
the case where £ G L,.
The fact that lim D,(fyg) exists a.e. on
{EGTg > Og has already been proved in theorem 5.1l.
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By theorem 6.1y both Gpf and Gpg are finite on D, and

Gpf
. GTg

We have left only to show that 1im D,(fsg) =

this shows that lim Dn(fgg) = a.0. on D@EGTg > o§ .

£ 4 (Bor)
E ﬁ(BCg)
function in L+ such that iz > 0§ = C. Now lim Dn(ZQBCg)

a.8. on C @ {GTg > Og ° Let Z,bean_y P

exists a.e. on ﬁGT(Bcg) > 0§ » Thus 1lim D, (Bpgsz)
exists and ls non=-zeroc on Cﬁ]iGT(BCg) > OE = EGT(BCg) > Oﬁe
We may therefore write v

1lim Dy (Befs z)

lim Dn(BcfsBCg) = .
lim Dy (Begs z)

.o ON

‘iGT(Bcg) >0 } °

Howevers by theorem 7.ls we have

1lim Dn(BCfsz) = _.Eé__(B.Q.f) 8.8 on C
£ 9(z)
lim D, (Beegsz) = Eﬂ?@ﬁ a.e. on C
E &(z)
end therefore
lim D, (BefsBpg) = _Eé(i_ci) 2.8, on gGT(BCg) > Og.
E g (Beg)

Since by theorem 7.3,

lim Dn(BCgog) =1 a.c. on {GT(Bcg) > OZ‘},,
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we may therefore write

1im D, (Befsg) = 1im Dp(BcfsBpg) +1im Dy (Beess)

= m on gGT(Bcg) > Og .

E 4 (Bcg)
Again by theorem 7.5y
1im Dy(fsBef) = 1 a.e. on  {Gp(Bef) > 0§,
and therefore

1im Dy (fsg) = 1lim Dyu(fsBef)<1lim Dp(Befse)

£ 4(Bef)

— 2 ase. on § Gp(Baf) > 0§
E 4 (Bgs) Lone

N fer(Bce) > 0f

= _Féggf) a.e. on iGT(BCg) > 03
E 4 (Bgpg)
2 ¢ {epe > 0f
since E:_g_@_qf) = 0 a.e. on iGT(BCf) = OgﬂiGT(Bcg) > O§.
E 4 (Beg)

q_oeod.~

8. An Alternate Proof of the Chacon-Ornstein Theorem

As stated in the introduction, there are two

popular proofs of the Chacon-Ornstein theorem
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including identification of the limit. The one pre-
sented heresy depending heavily on the concept of the
equilibrium potentials and using the techniques of
potential theorys 1s due in large part to Meyer. The
other proofs which is given in Neveu [17]) s is some-
what more tedlouss but of about the same length. One
begins by proving a different maximal lemma, that of
E. Hopf. This is the analogue of theorem 4.1l presented
here. The ergodic decomposition theorem ( theorem 6.1
here ) can be proved’directly from this meximal lemma.
Theorems 6.2y 6.3y and 7.3 then follow in that order.
One then proves simultaneously theorems 5.1 and 7.1
which comprise the Chacon-Ornstein theorem and the
identification of the limit in the case where T is
conservatives; by an appeal to the Hahn-Banach theorem.
Finallys; theorem 7.4 1s proved similarily as we have done.
Other than the order of proofy; and the use of
the Hahn-Banach theorems; the proof in Neveu differs
from that of Meyer only in the maximal lemma used.
We state this important lemma below. Its proofy which
is very short and simples; can be found in E?? or El?] °

Maximal Lemma {( Hopf )

Let T be a sub-Markovian endomorphism of the

space Ll(mmnllo P)o and let £ & L. Let

n
Ko = ﬁﬁ?ﬁ i%”0'1'11* > o§

Then fo f > 0.
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CHAPTER IV

THE ERGODIC THEOREMS OF HOPF AND BIRKHOFF

9, The Hopf Ergodic Theorem

The following theorem was first proved by Hopf
91 in 1954. Although we shall prove it as a corol=-
lary of the Chacon-Ornsteln theoremy, it can be proved
easilys as by Hopfs appealing only to the Hopf maximal
ergodic theorem of section 8. We shall in turn use the
Hopf ergodic theorem to prove the famous Blrkhoff

ergodic theorem in section 10.

Theorem 9.1

Let T be a sub-Markovian endomorphism of
Ll(t_'ﬁboAs P) having an invariant element f = Tf in L,
such that {f > 0f =l .

(a) Then T is necessarily Markovian and

conservative.

(b) The following ergodic results hold:

1 n . \
(1) lim ZTkg = —f—:Eis.. a.eo if g@ L.
n+ 1l k=o Y
n
(11) 1im 2 Fskg = EL(fe) .. ir fgGL.

n+ 1 k=0 Eﬂf
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Proof:

. [+:e]
(a) Since Gpf = kZ:E‘ = o on b s T must be conser=-
' =0
vative by theorem 6.1 and hence Markovian.

(b)(1) By theorem 7.1l; we have for g & Ly
n k
y 2 7P
E(g) = 1lim a.e. &Ti{_%_ = 1lim a.e. _.:%”-;9.5__

E 4(f) ika (n+dl)f
k=0

(1i) The second ergodic result is more diffi-
cult to prove. Let us consider the conservatives Markovian

endomorphism T* defined on L by the relation
3% b
T P = f°S( 'i.- ) 9 p@Lo (901)

7" 1s well defineds for by theorem 2.3, S 1s defined
for all positive measurable functions and hence for %.
T 1s linear and positives and the equality ( where s¥
denotes the adjoint of T" )

% p
fp°S"*1 = fT P = ff°S( % ) = J‘Tf°}- = fp < o

which is valid for every p @ L shows that ™ 1g Markovian
and maps LI into L. Finally, T 15 conservative since
THf = fo

Now let fg% be the sigma-algebra of sSets invariant
under T, and suppose that AL§§§9 the sigma-algebra of
sets invariant under T. Since for every gGL, we have

fe-s"%y = ITexy = [£es(2)xy = [T(fXy)ee
f
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we conclude that S'::'X A= Ml . However the equality
f
effe,,-AT(f°XA) = JeeXxpe8% ) = IfXpXy 4= O

implies that 'I‘(f'XA) = 0 onyl, -A. Hence T(f°X,) < TfeX,
end we can write

s oX TreX
_ T(feXp) < —2A X,
£ r
Thus by theorem 6.2, A€ 4 = and 4 & B
Converselys assume Aéé'ﬁo Putting p = £oXp

. L] feX
in (9.1) we derive SXy = T ( A)
f

the above arguments; we see that AG ‘;f and hence g = ﬁ .,

and repeating

Now applying the result in (a)(i) to 75 we have

n ' .
1im = > 1¥Kp o fﬁﬁg) for pG L (9.2)
n+1 (=0 ES(r)

and setting p = fg in (9.2) finishes the proof of the
theorem.

qoeodo

10. The Ergodic Theory of Measure-Preserving Transfor-

mations

It is worthwhile here to digress somewhat and
dlscuss some “classical® results in the ergodic theory

of measure~-preserving transformations. In fact, until
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quite recentlys ergodic theory consisted of only these
resultsy as mentioned in the introduction.

The ergodic theory of measure-preserving trans-
formations is extremely important in its own right,
having many applications in information theory, stochastic
processess and even in number theory. Some of these
applications are discussed in 17 .

We shall describe some simple results regarding
measure~preserving transformationsy and then derive

the Birkhoff ergodic theorenm.

Let (& sA s P) be a probability space and let ©
be a transformation of oy into itself. © is called

measurable if for every A in /l s wWe have
9-1A = ix: 0x G AgéA

A measurable transformation 6 is called measure-preser-
ving if P( 0™%a ) = P(a) for every A in A . If F is
an algebra which generates A such that G'IFGA and
P(e"lF) = P(F) for every FG g o it vis easy to show
that 0 is measure-preserving on (/AL »s P)o

Let @ be a measurewpreserving transformation of
(@sA s P)o An A -measursble function g is sald to be
invariaent ( under 6 ) if g(0(x)) = g(x) for every x Gul .
A set A is called invariant if AG 4 and 0714 = A,

or what is equivalent, if 1ts characteristic function
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X, 1s invariant. The class ﬁg of sets invariant under
® is easily seen to be a sigma-subalgebra of 4 - If‘:{
contains oniy sets of measure zero or one, then 0 is
furthermore sald to be an ergodic ( or metrically
transitive ) transformation. One sees without too much
difficulty that an equivalent condition for © to be
ergodic is that eﬁery invariant function be almost
everywhere constant.

Given a measure-preserving transformation 9 on
(W sAs P)s there is a rather useful sufficiency con-
dition that © be ergodic. This is if © is mixing: in
other words, if for every As B & A

1im P(A A 6™PB) = P(A)P(B).

In turn, for O to be mixing.on (M A, P)y it is suf-

ficlient that © be mixing on an algebra generating A .

The following theorem 1is the Birkhoff ergodic
theoremy first proved in 1931. Although independent
proofs are readily avallables notably in [1] and

£87 s we shall derive its as in [17] » as a corol=

lary of theorem 9.1l

Theorem 10.1

Let 6 be a measure-preserving transformation



of (WsAs P) into itself, and let ﬂ be the sigme-
algebra of sets invariant under €. Then for every fG&L
we have

1im 1 ?z’;fek - e9¢
n+1 k=0 '

where Eﬁf is the conditional expectation of f taken
with ﬁ as a sigma~-subalgebra of /f{ o

The set function vg(F) ={9"1Fg 5 8€:Is
deflines a boundeds slgned measure on A s which is
absolutely continuous with respect to P. By the Radon-
Nikodyms we can write J‘F Tg =[ 9_1% for a unique
function Tg in L. The correspondence g =—> Tg
is tfivially linear and positives and the equality
JTe = [ g shows that T is a Markovian endomorphism
of L. Since

- “lp) . -
[l = [y} = PO = PR = [

e F

we see that Tl = 1.

Nexts; the definition of T and the customary
linearity and monotone continuity properties of the
integral imply that [Tgef = [ge(f0) for every fGL.
Using this equality, we see that Sf = B8y, and more
generally that ske - ro¥ for ¥ > 0. The relation
Sf = f® also shows that the sigma-algebra 4 of

b2



gets invariant under © coincides with the sigma-algebra
of sets invariant under T. Applying part (b)(ii) of

theorem 9.1y we then have

n : n
1im a.e. 216K = 1im a.e. 3. ske
ntl  k=o - n+l k=0
_ g (£1)
41

= Efgf

qe€odo

There are two very simple but useful corollaries

of the Bilrkhoff theorem.

Corollary 1

The 1limit function Eé’ff in the above theoren

is invariant under 0.

Proof:

E ﬂf is g -measurabie and hence invariant.

Q-Codo

Corollary 2

Ify in the above theorems; 0 is an ergodlc

n,
trensformationsthen 1im —L . P re¥ = fr.
nid+ 1 k=o
Proof:

k3

@ is ergodic and therefore Eigf, being Invariant,

is a.e. constant. E Jf must therefore equal JT.

Qoeodo



AN _APPLICATION OF ERGODIC THEORY TO MARTINGALES

11.”"The Decreesihgvmertiﬁgale Convergence Theorem

- In this chapters we shall show that one is eble
to deduces as a corollary of the Hopf ergodic theoremn
'-the decreasing martingele convergence theorem of DOObo
According to Neveu,§:l5] 9 results obtained

in pointwise ergodic theory and martingale theory

are so generale that one can deduce from them manys

 if not ‘most theorems in probability involving.point-

' wise convergenceo With this in mindg there is much B
current interest in either attempting to deduce the
results of martingale theory from those of ergodic
‘theory or vice-versao or to creete a theory from _
"bwhich cne can derive the results of both ergodic and.

- mart ingale theory .

Theorem _11.1 o »
| ,Let-{/ip:p > 1§ be a decreesing»sequence
of sigmansubalgebres of /ﬁ in.the probability space
(sAs P)o and let € > 0 be arbitrary. The operator
T defined on L by the formule

T = p}gi(ap - ap_l)EAlo (11.1)
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is then a sub-Markovian endomorphism leaving the func-
tion 1 invariants such that

EE %Tok.' gES & B (11.2)

p-l
where 0 = 8098]198398q9 keceooo 1s an increasing sequence
of real numbers in thc_a interval EOslj verifying the

inequality |

A

€/3 - (11.3)

and wheres; for every p‘_>_'19 n

D is the smallest integer

toj

\'
=

(1-ap..1) (l-ap) e

Prbvided'@< 1, the following 'séquence suffices:
. 3,=2p% }
{ap-: 1 - (Lit .é), :p>1

| Formule (11.1) obviously defines a linears
“positive operaﬁor_on L which ieavesb the function
1 invariants the last property following from the
fact that condition (11.3) forces lim a, = l.

b
We havey; in additiony for any f G Ly

oo ]
re] = Zlgap-ap_lggE Ape|



which implies that

yrel < Zla-a,_gl NEPell

< p%aap-ap-lu nell
o
= el p%aap-ap“_lﬂ
= lifil
and hence that T 1s sub-Markovlan. _
The equality EAQ = EAQE& P = EA’PEACI is
valld for conditional expectations when 1 < p < Qe

We therefore deduce through a rather laborious cal- V

culatilon 'that

1 [+~
S Ztm™ = L1 Tl -bvm)yr% s nz1
= o5 ' q

where, for each n > Lk, the sequence %:bc(in) : q > 0§

is an lncreasing sequence in [50913 given by

b(n) ] f’l-'_:._(.g‘.ﬂ_).n 9 q> Oo
Q n(l - a,) -
q
One then has
n=1 4
Y k P - 1 (n) _ (n)yAq
= k%oT EP = =TI+ L«(b bq_l)EA
- b(r%-i-b(n}_)E P
and thus
n=1 /
|2 Zo* - Erfl < 4 Z(b(n) b)) +
n k=0 q

Qr-P

46
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+ (l-bén)+b§E{)
S (,(n)_ 4, (n) (n) ;o (0)
= bf) + qg(bqn - bg-1) + (1=2by" +2bp"_‘1)
= 2-b{™4p{M)  stnoe 1w B{™ =1 (11.3)

Now using the Taylor series expansions one easily shows

that

a? = 1-n(1-a)+n§n—1)(l-a)2 - j% n(n-l%gn-Z)%n'3(a-t)2dt
. 2 »

for 0 < a<1and n> 0, and therefore that -
al x 1 - n(l=a) + ngn—lzgl—azz for n>0
2

eand 0 < a < 1l. We then easlly derive the double

inequality

l - (p=1)(Q=-a) < 1=-a% < 1
2 n(l-a) n(l-a)

valid for 211 0 £ a £ 1 and n > 0y, which in turn

inmplies the following inequalitiles:

1 - (n=2)(A=ap.y) < bé&i <
2

n(l-ap.y)
s w < 1+ (el (eap)
n(l-a;) 2

Applying these inequalities to (11l.3), we get

15 A
% = g%iTk - E PII < (n-l)(l-ap) + n(%_ap-l)
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If np is the integer determined by

- g
np_l < E(l"ap_l) (1"ap)] © < np 9:

then we have » " - - ' - L
z%?f - %sgs 5 frep ]2
- [(1-ap-1)|

and thereforeg

: gg_ . ZTK - pgg < 1 p .

which is what welwanted to prove.

To show that there exlsts a sequence {a tp > 0§
satisfying the conditions of the hypothesisa consider |
' 2
ga. =1 - (1+3) -2p : p > 1§ and a, = 00 Then

&
: - -zpz - 2p+1
['ap-]z [1+3/§.)-2(p-1)2} = (1+3/£:;)

and therefore

-an, ) 2
pg [%-_:8-. _1§ D

[ p= 1(1+3 e) ZPJ [1+3/a)]

(1+3Ag) ~2p+1

M

Is }L

i}
WM
i
jau}
*
W

provided & < 1.

qoeodo



ko

The following result 1s the decreasing martin-
gale theorem of Doob. Its proofs as well as that of the
previous theorems; is from [15 J

- Theorem ”1i>é - » E
Let {/ﬁ.p p > 1§ be a decreasing sequenco of -
"->sigma—subalgebras of/l. in~ (E@, /L 9 P) Let f C, L and

o put Aw”—ﬂﬂ.po Then ‘

1im EAPf = EA‘”f | .,}a}oe.

p-nbco

CProof: | _ o
R According to 1nequalit3r (11 2)9 the series
o0 . np=1

Z al 3;, ka - EA'PfE

1s convergent 1n L for every f‘ C Lo Since

P29 np k=0 | jP?q“np k=0

in L'as'Q@‘m‘é Wé'héﬁe>'.
lim l i ke g BB aes ()
'p-‘bwnp o Tp—ee= T TN

and also in the sense of‘ convergence in L. .

Howevers by theorem 1l.l; T is a sub-Markovian
endomorphism of L with Tl = 1. We then haves; by part

(b) (1) of the Hopf ergodic theorem of section 9

np -1

1im L p},'rkf = 1im 1 Z,ka - E9r a.c.
p === co Np k=0 Np ==>%Np K=o
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where ﬁ is the sigma~algebra of sets invariant under

T. Combining this result and (11 M)y we have
11m E%f E ‘{f a°e . | R

Finallyg we shall show that. % :':‘,A“’ e Now

11m EA’PI‘ 1s /4 p-measurable fo ‘ every p > 'I~ and there-----":”
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CHAPTER VI

THE_DUNFORD=SCHWARTZ ERGODIC THEOREM

12. 5A'MéiiﬁélZLéﬁmg‘fbr{the3Dﬁnf6rd;SchWaftz Thgprem

In this chapuers e snall drop the assumption
'”fothat our endomorphisms T are positive. We shall con- ':

| ffsider a probability space (mmafls P) and an endomorh _ _
 f‘;phism T defined on L(ﬁ&o/&s P) With norm‘ 19 which f :ﬁ

'”“ffwe shall call a contraction ‘of L. A sub~Markovian

” g: endomorph1Qm of L is therefere a positive contraction""

',ffuof L°1;;  ,,m_“~_, 

"V*feralization of the Hopf ergodic theorem to the case  ”"'“'" L
-offa contraction T on Lo .

‘ ;As in the proof of the Chacon-Ornstein»theoremg f;_J.~

'f cj L and for‘somefﬂy-measurablea finite valuedp

.’strictly positive function gy wWe have

ess sup |[Tf] < ess sup |£].
Ry g Uy g

The Dunford-Schwartz ergodic theorem is a gen- .- -
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Then for every £ ¢ L and for every real number ¢ > 0
we have

.{Afgﬂﬂ_fcs) 0

9

% 1 Zka'ﬂ >cg§

n+1 R—O -

o ' - m
ir A . =-U-
fo f’° _ neo
'.{Proof'<-: o ‘ _
— "We shall prove this theorem 1n three stagesg'.

eFirst 1et us take any bo 1n L Let ao be any h

»ef}@e-measurable function such that RE:! oﬂe < l We then |

5 "def1ne by induction the following functions-'iﬁe:ui‘ :f S

)

i

n+1

0 if T(b an)

o
H

n+l

o]

- One has bn_é L for every n z;éﬁén_ an

v‘_lénﬂ_ < l for every n = 0.

gmbnan)g B
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Py ctmemiss

sursble with =

'f(a) :We;shall show that f‘ bo >_O _if szs&ﬂi} > d} -

L n....o
_To this ends we first notice that the sequence

{b 1 g o§ s decreasing in L. Nexts the inequality
[y = J|T(03 an>ﬂ - b5 < fﬂb;anﬂ - Jo; = Ib,

implies that the sequence { Jo,: n 2,1} is also

decreasling, and therefore for every n > 1, we have
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vt >0y 4 Jby = [ (63 -bp7) 2 fg‘g; - 03’63 (12.1)

-On the other hend, since' gb"- n > 1} is decreasings we
have the 1nclusion gb > Og Q gbn = Og and. fur-‘

| ) ,thermore the double inclusion
¢f§b§3>'o§ c: {b > o§ c gb ’;_O§ o (12.2)
| By (12.1) and (12 2)9 we then obtain
uﬁbn?@j > 1 u@bm>03°"5 - 1 zb--03}°°
m<n ISR EE N
f b"' '- fgbn_qpo‘
a.nd. letting n?eo s We o'btain the result f be 2,_0;
_'(b.)" ‘ We next show that

m : o
er'_’%(pggg)_ ' }Z,bmam + chk {Zﬂbj_l~bj)a33§

'.f'or every ns O.‘-

For by def‘inition of the functions an and bno o
5 _we can vmite ' '

E T(bﬂiam) = b’;’ﬁq-lamﬂ + (bg = bpy1lansy
’for every m > 09 and using thiss eé.s'ily derive by

" induction

m
Tm(bgao) = b;am -+ J’Zﬁ_Tmnj E“(bjal"' b:-]-)aJ]

valid for m >0, Summing over ns we have
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%iTm(bgao) Zmeam + {ZiTm" L5 4-® )a3]§

m=0
valid for every n > 0. Another induction argument then
shows that |

n n-K
b {Zﬁ -3 [(b]3- b})a33}= kngg%l@ba—l“ ba)ajag |
for n > 0,

(e) We now use the results of (a)yand (b) to com-
plete the theorem. For any f & L and any c¢ > 0, let
us put by = Bfﬂ = cg and a, = B%u. We see immediate-
1y that by <

cg and that f = bgao + (cgn-b_;)ao° Then by
part (b) aboves_ N

ZTmf blen + ZTK {(cg-bg)ao + Ziﬂb'j'._l-’b:j)ajﬂg (12.3)
- : RS = | °
On the other hands putting ) | |

p-_-_- (cg-—b )ao %lf(bj_l bj)aj‘ﬂ

we see easily that Bpﬂ 5 cg. By the hypothesls

on Ty this implies that ess sup U_EB < ess: sup UEE < Cy

so that ﬂTpﬂ < ¢g. One shows 1n the same'wayvthat
[T¥p] < eg for every k > 0. Hence
n n n
[zmme] < ﬂZbﬁamﬂ + Z.Ir%p]
£ M=0 k=0

n
< UZmeamH + (n+l)eg (12.3)
m=0

Inequality (12.3) then implies the lnclusion
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% a%lZTmfg.; (n+l)cg§ c g %Z:bi'xiam # OE
m=o0

M==0

n n

and since trivially { Lvten £ 0§ (- Ugbm > 0§ o
m=0 m=0

we see finelly that Ap, o & B. Since also

gbo > Og = %ﬂfﬂ > °3§ & Ar,e0
the following double inclusion-results:
{vo > 0} € 47,0C B (12.4)
Part (a) together with (12.4) then imply that

b > 0
' I Ap,g0 =

since bo's 0 onkBéAf;e . This completes the proof .

>Qoeodo

'130 The Mean Ergodic Theorem of von Neumann

Theorem 13.1 below is the famoﬁs meaﬁ ergodic
theorems first proved in 1931 by von Neumann. This,
together with Birkhoff®s theorems; are the two most
wldely known results in ergodic theory. The mean
ergodic theorems; thowevers is not concerned with point-
wise ( almost everywhere ) convergence; but with
convergence in the norm of the space LZ2(D,s4 s P)o
This is the family of equlvalence classes under P

of square 1ntegrableslx-measurable real valued func-

\..‘ -
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tions onyl « With the norm [rfl, = [f f2:]%9 L2

is a Banach space . We shall use this completeness

property of L2 freqﬁently in this and the next section.
A sequence (Efn’ n > lg of elements of L2

is said to converge in the norm of L2, or simply

to converge in L2, %6 an element g in L2 if gﬁfn-gﬂEE#DO

as n—=> ©, A sequence ifn: n > 1§ in L? 1is said to

be a2 Cauchy sequence in L2 if annme2m=4>O as

my Ne=> o, We point out here that a necessary and

sufficient condition that a sequence {fn‘ n 2 1}

in 12 converge to an element of L2 is that this

sequence be Cauchy. This is due to the completeness

of L2,

If T is an endomorphism of L2, its norm is

defined as
EHTBEQ - SU.P2 gyl
Cra12 el
fF#£0

As usual, T is called a contraction of L2 if fizll, < 1.
The adjoint S of an endomorphism T of Lz is thé-unique 4

endomorphism of the dual space L2 satisfying
[ Tfeg = [ f-Sg

for gll f» g in L2,
Although the mean ergodic theorem is of great
importance in 1itself, it will play a critical part in *. .

the proof of the Dunford-Schwartz theoren.



57

Theorem 13.1

Let T be a contraction of LZ2. Then the sequence

n

% L 2 1f :n> O§ converges in norm in L? for
n+l1 k=0

every f in L2,

Proof:
‘The theorem is easily shown to be true for
functions of the following two types: | o ‘
(2) functions f in L2 such that Tf = To.
(b) functions T in L2 such that f = (T=-I)g -
| where g is in L2, | .

The flrst case is trivial. In the second céses we

have‘
1 & o | 1 |
| Z s 2= 2,0 T?‘+1g~-gllﬁ'2 S i (U el ally)

IA -

2)jells == 0 as n—=—=>w .

n+ 1

Let M denote the subspace of L2 generated by functions
of the above two types. It 1s easy to see that the
theorem holds for all f in M. We shall now show that
the theorem holds for all f in M; the closure of M in
L2. To this effects let £ € M and choose a sequence
{ry: 3 >1} € M such that -t 4l p==>0 as § =
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Now
2 Zose - 2 2o ]
Nl w-o m+l k-0 2
m
= |l nél kn‘lék(f‘-f‘j) - A go‘l'k(f-fj) TN ;Z_ﬁo ke
- % é%{ﬁ‘f BB
m+l p_o J
< 1 ;HBTk(f-f M, + 1 ﬁﬂﬂ'l‘k(f-f )1l
T on+l 5, JH2 n+ly—o 372
WIERS TR SN
n+l -o m+l oo 9002
n m
< 2 le-fyllp + Egn-}:l Lrery - L Zrke, I oo

k=0 m+l k=0

Taking 1im1ts as my n==">0 and then J ==r» coghows that
in%l I:éo'l‘k’f :n> OE is a Cauchy sequence in L, and
~hence converges in L2, The theorem is therefore true
for all f in M.

- For conveniences we shall refer to the argument
immediately above as the ¥ closure argument.®” It will
appear twice in the proof of the Dunford-Schwartz theoren.

Nexts we shall show that M = L29 thus completing
the proofs. According to the Hahn-Banach theorems; it 1is
sufficient to show there exists no element h #4 0 in L2
such that [gh = 0 for every g in M. For suppose there

exlsts such an element h. In particular, we would have



[he(Tg=-g) = 0 for every g in Lzo Hence ngnh = J[g°h
for every g in L2. This implies that Sh = h. Since

[(Th-h)2 = [(th)? - 2/Theh + [n?
< 2/n?2 - 2[ne-sh
< 2/n? - 2/n?’

0

we have Th = h and therefore h is in M. But this
would further imply that Jh2? = 0y so that h = O.

qe.@odo

14, The Dunford-Schuartz Theorem

Theorem 14.2 is the Dunford-Schwartz ergodic
theorem, first proved in 1956 £67] . It removes the
rather restrictive conditlion 1n Hopf's ergodic theorem
( theorem 9.1 (b)(1i) ) that T be positives although in
this case the ldentity of the ergodic 1limit is not
"known. The proof of this theorem presented here is due
to Neveu [16] .

Theorem 14.1 is a lemma which we shall need for

the proof of theorem 14.2.

59



Theorem 14.1

Let T be a contraction of L1(@,,4 » P) such that
for every f in Ll and for some -measurable, finite-
valued strictly positive function gy we have

ess sup [Bfl < ess sup Iff.
Y/ PR S g
Let %Igj j= 1§ be a sequence in Ll such that

[~}
T llsl <=

j=l
Then ‘? Xk
su = H » T gm> 0 a.2o 88 J ===,
np ol 4=2= 83 J
Préof:

For every J 2 1 and every real number ¢ > 0; put

Agjgc = {sgp nIl ﬂ Z;Tkgjﬂ > cg} ©(14.1)

60

By theorem 12.1ly; we have for every J =2 1 and every c¢ > 0y

[a. (lggl=cg) = 0 and therefore [ g < 1llls
AgJ°° J Agjsc c m J

Summing over Js we see that

: g < 1 2lgsll < e 9
z%if Agyoc c jglﬁg"j

and since g > 0 on fly » this can only be true if

P( 1lim sup A ) = 0 for every ¢ > 0. According to

(14.1), this implies the desired result.

q::ead.o

lI-
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Theoreﬁ 14,2

Let T be a contraction of LY(fsAs P) such
that
ess sup ITfl < ess sup Ifl (14.1)
e g efis g
for every f in Ll and for some A -measurables, finite
valued strictly positive function g. Then for every
f in L1,

n
1im - L 5 rke
n=px % N 4 1 k=0

exlsts both in the sense of almost everywhere conver-

gence and in the sense of convergence in norm in Ll

Proof':
The proof of this theorem closely parallels the
proof of the mean.ergbdic theorem.
The theorem is true in the sense of convergence
a.e. when f is one of the following two types:
(a) £ in L such that Tf = ¢
(b) £ in L} such that £ = (T-I)h where h<§L1

such that ess sup lhl < c < =,
o g

The first case is easy to show. In the second case, wWe

have
n
1 k 1 nd-1 J. n+-1
= 2 T fﬂ = -— T - h < L T n )
'ﬂrﬂd.ééi n+1 ﬂ h n = n+l( ! | + [n])

by (14.1) < £e2C emm=—=Cn 0 A8 N == P,
n+ 1

Let M be the subspace of 1 generated by functions



of these two types. One easlly sees that the theorem
is true 1ln the sense of a.e. convergence for all f in
M. We shall next show that the theorem is true in the
a.e. sense when f is in M, the closure of M in L1,
Béfore doing thls we note that if h & L1, then

(Z-I)h G M. To see thiss comsider the sequence

gh:} = hxiﬂhﬂ{:)@i} Pz 1§
It is easily verified that ess sup lhyl £ J» whence
(T-Iwhj is in M for every j» and als% that ﬁlh-hJW<>Os
whence M(T~I)(h-hj)W=mw$>0o Thus (TaI)hj couverges
to (T=I)h in L1, and (T=I)h must belong to .

Now let q G M and choose a sequence §qj tj > §

in M such that Z fla-a4l < = . We shall show that
J=1 '

{ Z:qu n > O} 1s a Cauchy sequence of measur-
n+l k=0

able functions and therefore converges. We have

k. _ k
ﬁrHJ.ZTT a m+1 EZH?
n m ' n
=} = a-qy) = = T(q~q)+-,Tq
m
1 5 .k ﬂ
- = T
m+1k§8 qj
n m
1 Kk ﬁ 1 X g
< + T - L -
= sup le Eo (q qj)ﬂ +osup | EOT (a~q;)
1 Sk 1 5k
+ H = P Mg, = = P 1¥q
n+l k=0 J m+1 k=0 J

Recalling theorem 14.1l, we have the desired result if

62
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we let my n=> @ and then j= . Thus the theorem is
true in the sense of a.e. convergence for ail f in M.
Now let W be the family of all f in L1 rfor
which the theorem holds in the sense of convergence in
norm. We are going to show that W = M. It is easy to
demonstrate that W contains all functions of either of
types (a) or (b)y and every linear combination of these.
W therefore contains M. One then shows by the © closure
argument © of‘ theorem 13.1 that convergence in norm holds
for all members of Ms and hence that N & W.
Converselyo suppose f G W. Then there is r 1n rl
such that

iEn+1 ka =rgﬂmo as n = ©,

Since one can show also that

n
Egnil Zka = Ty ﬂmoo as ne=> 0,

k=0

we have Tr = r so that » G M. Nexbts the functions

Z (TX¥-I)f are in the image of the endomorphism
=0

n+l
(T=I) end hence are in M. Also, they converge in norm
ﬁp r-fs whence r-f is in M. We then have f & M, and
therefore W = M.
Finallys; we shall show that W = i, This will

complete the proof.
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Let us consider the spaces LP(us4 sg°P)s p > 1,

where g+P is the measure on.fi defined by

gP(A) = [,8ap > AcGA.
For 1 < p <ws LP(sA sg°P) ( hereafter denoted LP(g-P))
1s the Banach space of equivalence classes under the
‘measure g-°P of A -measurable functions f such that the

normy defined by

el 5 = [;ufapgar] ok

is finite. For p= oy L®(g-P) is similarily defineds
except that
| Mf§§§°P = ess sup |ff
g°P

where the ess sup is taken with respect to the measure

g.P. The measure g-°P is finite and hence we will have

LP(g.P) 2 L9(gP) 2 L®(g-P)

Irtl1LpLqg<oeo.
Let us define the operator T° on the spaces

Lp(gap)9 l1<p<Lxjy by
T'f = 1 T(fg) » £ G LP(geP).
e
We immediately haves by the relations

Hooelt 8% = flrir] eap = [lT(fe)aP < [ifglap = Nell &°F
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and
BT“fﬁﬂf"P—: ess sup | T°f| = ess sup [T(ex)l
g°P P g
s ' iT)
< ess sup lfgl = ess sup Ie]
P g P
[ L)
=ess sup fl = [jrll §°P
g°P
0]

° oP
the result that EET”GE% 2.-:1 and EiT”Eﬂi < 1. This implies

that BBT“B[}%°PS 1 for @ll 1 < p < %

In particulary; thens we shall consider the con-
traction T? of Lz(goP) o According to the mean ergodic
theorem; the sequence gn%l ;gi:o'rka t:n>0 g con-
verges in the norm of L2(geP) for every f in L2(g-P).
Now if » G Ll(g"P)n we cans since Lz(goP) ig dense in
Ll(g°P), choose a sequence {er: j=> 1§ in L2(g°P)
such tha'b- il Terj i %°P==~—-':: 0 as J =>% We have thens
" by repeating the “ closure argument ® of theorem 13:1,
the convergence of the sequence %Z 11 kaon’kr :n > Og
in the norm of Ll(g-P) for every r in i (g*P) -

Finally, if f G L1, then f ¢ Ll(g°P) and the

&
sequence § i‘l‘"k(f) tn> 0§ converges in norm in
N4l k=0

Il(g-P). Since T'%(g) = T¥f , this implies that the
g g
£

sequence % Pt n 2> 0§ converges in norm

in Ll(g"P)g which is equivalent to the convergence in
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n
the norm of L} of the sequence n'-J?l e s n > 0}
N = .

We have:therefore shown'that W = L19 and the

proof l1ls complete.

g.8 Qo

That the Dunford-Schwartz theorem really does
generalize the Hopf theorem is easlly veriflied. If T
is a sub-Markovian endomorphism of Ll(ﬁ%sélg P), and
if &L such that Tg = ¢ end "‘ig > Og =ufly » We need

only show that ess sup [Tfl < ess sup [f] for all
- JUnD) g i) g

f in L. To this effect; suppose that ess sup fl = ¢ <=
' iy g :

Then =-cg < f £ +cgy and applying T to this lnequality,

we have =-cg < Tf < +c¢gy whence ess sup (Tf] < c.
LAY g

On the other hands if T is Markovian on Ll(Mbgllg P)
then theorem 14.2 is a special case of theorem 9.l.
For if there 1is a strictly positive»/l-measurables

finite valued function g in L such that ess sup [Tf]
’ i g

< ess sup [ff for 211 f in L, then g turns out to be
7Y g

1nvar1ant under To
Sémetimes the Dunford-~-Schuartz theorem is stated
with condition (14.1) replaced by the condition [Tl o< 1s

i1.eo that ess sup [Tf] < ess sup|f] for all f in L. This,
ol )

howevers 1s simply (14.l) with g = 1.
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CHAPTER VIT

15. CONCLUSTION

o This’ paper has been divided roughly into three A
h‘parts‘- chapters II to IV, whose high point is the Chacon-';"
anstein theorem, chapter V deallng with an appllication |

. of_the'theory developed beforehand%to martingeleeé'andu_~jhfih;;

4h°ﬁépter VIs.culminating in the Dunford~Schwartz:thebrem}ﬁffffj”"'

The motivation 1n chapters 11 to Iv was the proof

hvof the Chacon-Ornstein theorems 1n which are contained

-xtthe theorems of Hopf and Birkhoff. Although this 1s a ;i Jtif““:'“

tfvery general ergodic results it 1s not nearly as strong

e‘as elther the Brunel maximal lemma or the Hopf maximal

”5“1emmag from which it is derived. In facts Hopf @:9:5
rfnoted 1n the proof of his ergodic theorem in 1954 that

..his maximal lemma was sufficient to deseribe most ergodic

-;jresults at that time; implying that the real focal point

of interest in ergodic theory should be the role of the ;;f;
- maximal lemma. His point was emphasized later in the :
proofs of the Dunford-Schuartz and Chacon-Ornstein theorems
where again the appropriate maximal lemmas developed are
mathematically much further reaching: results.

All of these maximal lemmas are similaxr both in
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purpose and contento. They‘get us over a certain ¥ hump ¢
as we have seens beyond which the proof of the parti-
cular ergodic theorem is fairly stralghtforward. As an

examples we repeat the lemmas of Hopf and Brunel below:

Let T be & sub-Markovian endomorphism of LI(,sA 5 P)
end let f @ L. Define the sets |

s M
)
(1))
=1
o]
‘M;s
R
, ¥
’ H
Vv
o
(2PN

JMaiiﬁai Lémma ( Brﬁnel )

Let ,A.@ jﬂon ‘I'hen ;f_f___eA,_&; 0

f?iMaximal Lemma K Hopf )

J‘f XKf> o.,.':_'.

:a F!.Wr1tten thls weys the'. similarity of the tWO lemmas 13 evldent{fﬂff

It Would therefore be enlightening to determlne What

*'f'relationships exist among these maximal lemmaso In' partjcularsﬁ" 

”:1t is interesting to compare the above two 1emma89 those of

‘¥iwaopf and Brunel. Although similer as noteds they nevertheless ﬁff?*

appear on closer scrutiny to be 1ndependent This would
suggest the possible existence of a stronger result which ‘

would contain both lemmass
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In chapter V; the decreasing martingale theorem
of Doob was deduced from the Hopf ergodic theoremo demon-
strating a‘possible strong pelationship between ergodic
and martingale theory. The obvions question is whether
one can similarily prove the increasing martingale
‘convergence theorem as welle While this 1s an open
question9 1ﬁ 1s an interesting fact that both the in-

-creasing and decreasing martingale convergence theorems
"cen be deduced,from maximal lemmas virtually identical
with the Hopf lemma and theorem 12.1. The proof, which
closely parallels that of the Dunford-Schwartz theorems
”vcan be found 1n [El62ﬂ o Once againa this emphasizes the

“1'1mportance of the maximal lemma° |

' Finallyg in chapter V19 we proved the very strong
‘ Dunford=Schwartz theoremo Which holds for convergence in
”norm as well as convergence almost everywhere. Howevero
the identlty of the ergodic limit is not knowns except '
b’in the Weakest case When T 1s Markovian and the theorem
vreduces to the Hopf ergodic theorem. AlSOg by comparing
“tthe proofs of the Hopf maxlmal lemma and theorem 12.1,
n?‘which yield corresponding resultso 1t 1s apparent that
-dropping the assumption of positivlty of the endomor-
7f7fphism T leads to much greater complexity of proof.
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