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ABSTRACT 


A literature review is presented of deformation and annealing textures; 
it is clearly shown that, when the deformation temperature is increased, the 
percentage of the so-called «'brass" component increases in torsion, rolling and 

tension. The latter is confirmed by a small-scale experimental investigation of 
the textures produced by the hot and cold swaging (extension) of aluminum. 

The possible mechanisms responsible for the differences observed in the 

deformation textures produced at low and at high temperatures are listed and 
modelled. The RW theory of the minimization of the work hardening rate is 

extended to the deformation of polycrystals. In this treatment, the extent of the 
ambiguities in the choice of active slip systems present in the Fe and RC 
models is specified. It is also shown that the RW predictions are in good 
agreement with intermediate temperature results for torsion and rolling but 

not for tension. 

Differences in the ease of cross-slip are simulated in three different ways: 
i) by employing the colinear slip selection criterion originally introduced by 

Chin; ii) by the introduction of suitable hardening laws; and iii) by introducing 
the activation of{110} <110> and {112} <110> cross-slip systems. All three 
models predict an increase in the brass component when compared to the 
classical models of texture prediction; this increase is, however, small when the 
first two methods are applied to torsion and rolling. 

The activation of {100} < 110> systems is also explored. The composite 
single crystal yield surface for dual slip on {Ill} and {lOO} planes is described. It 
is shown that the operation of these systems leads to texture components which 
are never observed at high temperatures. A new model is presented, developed 
to account for the occurrence of a high degree of recovery concurrently with 
deformation. It simulates the formation of the polygonized substructure which 
results from the minimization of the sub-boundary energy. The results obtained 

for torsion and rolling reproduce qualitatively the experimental deformation 

textures pertaining to these strain paths. Finally the different models proposed 
are compared and their validity and limitations are analyzed briefly. 
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RESUME 


Lors de l'etude bibliographique concernant les textures formees au cours 
d'une deformation ou d'un recuit dans les metaux cfc, il est clairement 

demontre que lorsque la temperature de deformation augmente, Ie pourcentage 

de Ia composante dite ~1aiton" augmente en torsion, laminage et traction 

axisymetrique. Ce dernier point est confirme par une etude experimentale 

succinte des textures produites dans des barres d'aluminium par martelage 

rotatif afroid et achaud. 

Les mecanismes pouvant etre responsables des differences observees entre 

les textures de deformation a froid et a chaud sont enumeres et modelises. La 
theorie de Renouard et Wintemberger, fondee sur la minimisation du taux 

d'ecrouissage, est etendue a la deformation des polycristaux. Lors de ce 

traitement, Ie degre de l'indetermination dans Ie choix des systemes de 

glissement actifs est precise pour les modeles FC (deformation complement 

imposee) et RC (deformation partiellement imposee). II apparait que les 

previsions RW sont en bon accord avec les resultats experimentaux obtenus aux 

temperatures intermediaires en laminage et torsion mais pas en traction. 

La possibilite d'un glissement devie a ete simule de trois manieres 

differentes: i) en utilisant Ie critere de selection de systemes colineaires, 

propose a l'origine par Chin; ii) en introduisant des lois d'ecrouissage 
simplifiees et iii) en permettant l'activation des systemes de glissement devie 
{100}<110> et {112}<110>. Les trois modeles prevoient une augmentation 
du pourcentage de la composante laiton par rapport aux modeles classiques; 
Toutefois, cet accroissement est relativement faible dans Ie cas des deux 
premiers modeles appliques ala torsion et au laminage. 

L'activation eventuelle des systemes {100}<110> est egalement envisagee. 

Le polyedre mixte assode aux deux familles de systemes {100}< 110 > et 

{111}< 110 > est tout d'abord decrit. II est ensuite demontre que la possibilite 

de glissement sur ces deux types de plans aboutit ala prevision de composantes 

de textures qui ne sont pas observees ahaute temperature. 



(iii) 

Nous proposons egalement un nouveau modele permettant de prendre en 
compte certains aspects de la restauration dynamique. La formation d'une sous­
structure equiaxe resultant de la minimisation de l'energie des sous-joints est 
ainsi decrite. Les resultats obtenus en laminage et torsion sont en bon accord 
avec l'experience. Finalement, les differents modeles proposes dans cette etude 
sont compares entre eux et leur validite et leurs limitations analysees 
brievement. 
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CHAPTER! 


INTRODUCTION 


The common metals of industrial practice are polycrystalline aggregates in 
which each of the individual grains has an orientation that differs from those of 
its neighbors. However, it is quite unusual for the grains in such metals to have 
completely random orientations, and the non-random distributions that occur 
are called preferred orientations or textures. These purely crystallographic 
characteristics should not be confused with the alignment of the grain 
boundaries or structure, or the oriented distribution of second phases, features 
which can be revealed by optical metallography. Equiaxed grain structures 
frequently exhibit texture and conversely it is possible, at least in principle, for 
an elongated grain structure to be randomly oriented [1]. 

Textures are developed at all stages of the manufacturing processes of 
metals, but the precise nature of the texture is a complex function of the 
preceding mechanical and thermal treatments, as well as of the material itself. 
The important processing factors which can contribute to the development of 
textures are: solidification, deformation, annealing, and phase 
transformations. In what follows, we are mainly concerned with deformation 
textures, but some experimental results concerning annealing textures and 
their interpretation will also be reviewed to help with the comprehension of 
mechanisms such as recovery and subgrain coarsening. The effects of 
solidification and phase transformation on texture development will be 
completely ignored. 

Deformation textures have their origin in the crystallographic nature of the 
two principal deformation processes of slip and twinning. Where large strains 

are involved, slip is usually the major factor, but twinning can also be highly 
significant in texture development because of the massive reorientations that 
result. These are not necessarily the· only possible active mechanisms, 
especially at high temperatures; the latter range is the main concern of this 
study, as will be seen below. During crystallographic glide, the restricted 
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number ofslip systems available (the 24 {111}<110> in the case of fcc metals) 
produces rotations towards a limited number of end-points and so a deformation 

texture is produced. It is clear that the resulting texture will depend on the 
imposed stress state or strain path, the extent of the deformation, and the 
operative deformation modes. The latter are themselves defined by the crystal 
structure and atomic bonding, and also reflect the symmetry of the forming 

operation. 

The annealing of cold or hot worked metals is usually discussed in terms of 
three generally consecutive, but sometimes overlapping processes: recovery, 

recrystallization and grain growth. In the first of these, most of the excess point 
defect are removed and the dislocations rearranged somewhat, but this process 
only leads to a small change of texture. During recrystallization, new grains 

are nucleated and grow at the expense of the deformed matrix by the migration 
of high angle grain boundaries. Locally, there are large changes in orientation 
and the texture as a whole is modified to become a primary recrystallization 

texture. Frequently but not always, some components of the texture are 
common to both the deformed and the recrystallized states. After 
recrystallization is complete, grain growth occurs, involving further grain 

boundary movement. If this process is normal and continuous, there is a 
gradual change in texture; if grain growth is abnormal or discontinuous, on the 
other hand, only a few grains grow and the change in texture can be very large. 
This latter process is referred to as secondary recrystallization and usually 
results from the presence (and later solution) of a dispersion of second phase 
particles in the structure [1]. 

In the past, the processes ofdeformation and annealing (especially recovery) 
have generally been treated separately. By constrast, in the present study, the 
possible effects of an interaction between straining and dynamic recovery, with 
particular application to the case of hot deformation, are investigated in some 

detail. 

Whatever their origin or type, preferred orientations have profound effects 

on the mechanical, thermal and electrical properties of materials. In this 
respect, a textured metal merely reflects the well known anisotropy of single 
crystals. In a strongly textured metal sheet, the yield stress varies with 
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direction in the plane of the sheet; as a result, non-unifonn flow occurs in 
fonning operations such as deep-drawing. Nevertheless preferred orientations 
are not always undesirable. The use ofstrongly textured steel sheet in the cores 
of power transfonners is well known, and there are many other examples 

where textured products have been especially developed for particular 
applications. For this reason, the control and comprehension of texture 
evolution has become a subject of increasing importance and a real necessity in 

certain cases. 

In 1966, the understanding of these questions could be summarized by the 

following quotation: 

''Polycrystalline textures are a matter of extreme complexity. Many details 
of the mechanism of deformation and the texture development in 

polycrystalline aggregates are still largely unknown. It is felt that at the 
present time new ideas and new facts will be most valuable for approaching 
one of the most complicated things of nature, the defonnation textures of 
metals." [2]. 

For those working in this subject area today, the above citation is no longer 
valid. Much progress has been made in the determination of experimental 

textures, in their interpretation and control, and also in their theoretical 
prediction. Experimentally, the use of the crystallite orientation distribution 
function (CODF) has become more and more common; it provides a more 

complete description of the texture than the traditional pole figure. These 
improved descriptions have proved very useful in two other ways. They have 
pennitted detailed theories of texture development to be tested in a highly 
rigorous and critical way. Furthermore, they have contributed greatly to 
increases in the understanding of the quantitative relationships between 
texture and the properties ofmaterials. 

The present work is concerned with a single aspect of the above problem, 

namely the prediction of high temperature deformation textures in fcc 
materials. It is divided into the following chapters: 
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In Chapter IT, some of the experimental deformation and annealing textures 
found in fcc materials are reviewed. Four deformation modes have been 
selected : tension, compression, rolling, and torsion and the effect of 
temperature on the deformation textures will be emphasized as much as 
possible. The various mechanisms involved (twinning, cross-slip, deformation 
faulting, latent hardening, recovery, recrystallization) will be defined and their 

possible influences discussed. 

In Chapter m, some of the theoretical models employed in the past to 

predict the evolution of deformation textures will be summarized. The oldest of 
these are the models developed by Sachs in 1928 [3] and Taylor in 1938 [4]. 
These two models, as well as some more recent ones, are described here, and the 
basic mathematical concepts necessary for the comprehension of the theories 
are defined. The domains of validity of the different models are discussed, as 
well as their respective advantages and drawbacks. 

In Chapter IV, an account is given of the experimental determination of the 
texture of aluminum rods swaged at different temperatures. As neither the 
mechanical tests nor the texture measurements were carried out at McGill, this 
part of the work is not covered in detail. 

In Chapter V, the theory of Renouard and Wintenberger [5] related to the 
minimization of the rate of work hardening is reviewed. This theory is 

reformulated in a more convenient way and is extended to the deformation of 
polycrystals. Although it appears to predict low temperature behavior as well, 
its application to high temperature deformation may be justified by the ease of 
thermal activation, which can permit dislocations to go back and forth and 
perhaps choose the "easiest pathn in this way. 

In Chapter VI, the influence of cross-slip is investigated by first modifying 
the theory initially developed by Chin [6] for single crystals deformed in 

tension and also by incorporating a suitable hardening law into the classical 

models described in Chapter m. Here the present treatments concern other 

deformation modes and are applied to polycrystals. 
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In Chapter VII, a further aspect of high. temperature deformation is 
explored, i.e. the activation of slip systems other than the usual {111}< 110 >. 
The most probable are the {100}< 110>, the {100} planes being the most close­
packed after the {Ill}, followed by the {110}<ll0> and {ll2}<110>, the 

latter two being usually defined as cross-slip systems. The construction ofa new 
single crystal yield surface for slip on the {Ill} and {100} planes is described in 
this chapter. 

A new model, developed to account for the occurrence of recovery 
concurrently with deformation is presented in Chapter VIII. This implies the 
splitting of grains into subgrains, and also involves the minimization of the 

sub-boundary energy. This energy depends on the misorientation between 
subgrains [7], and also takes low values at specific orientation relationships (for 
high angle boundaries). 

In each of the above four chapters, the theoretical predictions are compared 
with selected experimental results. All four of the deformation paths are not 
always included so as to keep the length of the text within reasonable limits. 

Finally, in Chapter IX, the general conclusions of the study are drawn and the 
validity of each model is also discussed. 



CHAPrERII 

REVIEW OF EXPERIMENTAL TEXTURE OBSERVATIONS 

11.1. DEFORMATION TEXTURES 

II.1.1. TENSION 

The investigation of deformation textures was first carried out for uniaxial 
geometries (such as wire drawing, extrusion, tension and compression), 
probably because the representation of the texture is relatively simple in this 
case. Since the material flow possesses axial symmetry, the orientation of each 
grain of the polycrystal is adequately described by the crystallographic 
direction <uvw> that is parallel to the strain axis [8], the other directions 
being distributed with equal probability around the wire axis. Such a texture is 
termed a < uvw > fibre texture. 

The early results of Hibbard [9,10] described the drawing texture ofCu, Ag, 
Au, Ni, Pb and Al as a < 111 > fibre texture and that of certain Cu alloys as a 
mixture of <111> and <100>. Calnan and co-workers [11,12] at the same 
time described the pure tensile texture of Al as a mixture of < 112> and 
< 111 > fibres. These initial studies led the authors to conclude that, for most 
fcc metals, the end texture is always the <111>, except in some rare cases 
which were left unexplained. Such results are not in complete agreement with 
what is known today and this may be due to one or more of the following 
reasons: 

-It is frequently difficult, as mentioned by Dillamore and Roberts [13], to 
obtain deformations high enough for pronounced preferred orientations to 
develop in tension because of the lack of mechanical constraints imposed on the 
specimen. 

-The starting orientations were never taken into account. It has been 
shown more recently by Grewen and Wassermann [14] that the former is of 
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overriding importance in the development of fibre textures and can lead to 
misinterpretations. In a more recent study, for example, Bunge [15] determined 
the texture of drawn Al wires having an initial texture defined by the < 111 > 
and < 100> fibres. After 84% ofdeformation, the texture was still a mixture of 
the two components, but after 99%, the <100> component had disappeared 
completely. He could only conclude that in pure AI, this last component is not 
stable, unlike the < 111 >. 

-The influence of the actual deformation mode was generally not 
considered in these investigations. Although Barrett and Levenson [16] had 
shown in 1939 that the textures produced in iron by drawing, swaging and 
elongating tension were similar, there are differences between forming 
operations because of the inhomogeneities that develop differently along the 
diameter of a specimen cross-section. Such inhomogeneities result from friction 
effects, and small values of the ratio of the dimensions of the tool and of the 
material give rise to a gradient of deformation in the radial direction. In 
extrusion, the layers at different depths from the surface deform by a strong 
shearing strain, the shear direction being parallel to the tensile axis. This 
shear strain, which is superimposed on the tensile strain, changes in 
magnitude continuously from the surface to the center of the rod, and so do the 
textures. Normally only the central regions display the texture that is typical 
for uniaxial tension, since here the superimposed shear must be zero by reason 
of symmetry [8J. 

The first systematic study of this problem was that of McHargue et al. [17], 
which established the temperature and strain rate dependence of the extrusion 
texture in 99.99% pure aluminum. Two extrusion speeds were used at each of 
24, 232, 343 and 454°C, the higher speed being 490 ftJmin at 24°C and 738 
ftlmin at 454°C and the lower speed 0.7 ftJmin at 24°C and 0.3 ftJmin at 454°C. 
A duplex <111> + <100> texture was observed at all temperatures for the 
slow speed and up to 232°C at the fast speed. But at the fast speed at 343°C, a 
< 115 > texture was found, and at 454°C the texture was < 118>. Some of their 
results are presented in Figure 2.1 as inverse pole figures. The contour lines 
show the frequency with which the various directions in the crystal coincide 

with the tensile axis of the specimen. Evidence was presented by the authors to 
show that the < 100> texture component was largely due to recrystallization 
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Figure 2.1. 	 Fibre-axis distribution charts for specimens taken from the 
middle sections of 99.994% aluminum after 91.8% R.A by 
extrusion at: a) 615 ftlmin at 232°C; b) 659 ftlmin at 343°C; c) 738 
ftlmin at 454°C [17]. 

(though this may not be the only explanation) and an additional sample 

extruded slowly at sub-zero temperature had a texture consisting of 92% 

< 111 > compared with 76% < 111 > at room temperature. It was concluded 
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that the main effect ofstrain rate was in the attendant temperature rise at high 
strain rates which led to the <115> or <118> nrecrystallization" texture. 
(This subject will be treated further in Section II.2.) 

Butt [18] working with commercial or superpure aluminum obtained results 
essentially similar to those of McHargue et al. [17] for the variation with 
temperature, and Roberts and Butt [19] have suggested that the < 100 > 
texture component arises from the < 115 > component by deformation 
subsequent to recrystallization. This differs from the interpretation of 
McHargue et al. [17], who invoked the possibility that the elastic stresses 
during deformation favour the formation of < 100> recrystallization nuclei. 
Both sets of workers demonstrated that the < 100 > component has a lower 
dislocation density than the < 111 >. Support for this view is obtained from the 
observation of Grewen and Wassermann [20] that the proportion of the <111> 
component in aluminum extrusions is greater the lower the purity and that 
chill-cast billets give less < 100> than continuously cast billets. They 
explained this as being due to the effect of the dissolved impurities in retarding 
recrystalliza tion. 

Finally, around 1965, clear evidence was presented that the deformation 
texture of fcc metals is a mixture of these two fibres (and not necessarily due to 
the occurrence of recrystallization). This evolved from the systematic study of 
English and Chin [21] as well as from the bibliographical work .of Barrett and 
Massalski [22] and Chin [6]. English and Chin [21] studied several fcc 
materials covering a wide range of stacking fault energy (SFE) with particular 
attention to some very low SFE alloys. They determined the percentage of each 
of the 2 fibres after a reduction by drawing of99% and plotted the percentage of 
the < 100 > component as a function of the SFE. Their results are presented in 
Figure 2.2. 

The most important conclusion from this figure is that the general trend' 

toward larger proportions of <100> with reduced SFE is reversed for the 
lowest values of y/Gb. This reversal is not easy to explain on the basis of any 
single mechanism, such as the influence of cross-slip proposed by Brown [23]. 
The figure suggests, instead, the presence of two or more superimposed factors, 
as will be explained below. 
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Figure 2.2. 	 Wire textures of various fcc metals and alloys as a function of the 
parameter y/Gb at room temperature. Stacking fault energy 
increases towards the right side of the figure. Both high and low 
SFE lead to sharp < 111 > textures [21]. 

All the more recent results found in the literature as well as those presented 

in the reviews quoted earlier [6,8,13,21,22] confirm the trend suggested by 

Figure 2.2. For example, Aernoudt et a1. [24] found a strong <100> fibre in 

drawn silver, Ahlborn [25] determined that the orientation of single crystals of 

eu was either < 100> or < 111 >, depending on the initial orientation, in 
proportions which are in good agreement with Figure 2.2. 
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Chin [6], Gil Sevillano et al. [26] and Mecking [8] considered all these 
observations and interpreted them in terms of several mechanisms, such as 
cross~slip, latent hardening, deformation faulting and twinning. The 
occurrence of one of these mechanisms was then justified either by 
experimental observation on a suitable material [8,26] or by comparison with 
some theoretical model which takes into account the proposed phenomenon [6]. 
Apparently, the last type of justification is not completely convincing since 
there is still considerable debate about what really happens in the material. 
These theoretical assessments will be treated in the next chapter. To 
summarize the above interpretations, Figure 2.2 has been divided into three 
parts, each corresponding to a different hypothetical mechanism: 

Part 1 corresponds to the high SFE materials such as aluminum or to 
high temperature deformation behavior; it is usually associated with the ease 
of cross-slip. There is ample evidence from single slip experiments that cross­
slip occurs more easily in high stacking fault energy metals and at high 
temperature, as described by Nabarro et al. [27] and illustrated in Figure 2.3. 
One is thus tempted to generalize this to the multiple slip situation in 
constrained deformation. In the case where all the slip systems harden equally, 
the <111> component involves the activation of 6 slip systems having 3 
different slip directions and 3 different slip planes, i.e. 3 pairs of colinear 
systems. By contrast, the < 100 > orientation involves the activation of 4 pairs 
of colinear systems. One may conclude that, as cross-slip is likely to favor the 
activity of colinear slip systems, its occurrence will favor in turn the presence of 
the<lll> component and the absence of the <100> one. Such cross-slip has 
been observed in aluminum [23,28,29] and the interpretation has been 
supported theoretically by Chin [6]. 

Part 2 of Figure 2.2, corresponds to intermediate SFE's and is usually 
associated with the occurrence of mechanical twinning. According to the 
definition by the mineralogist Dana [30], a lattice is twinned when "one or more 
parts, regularly arranged, are in reverse position with the other part or parts". 

This definition means that the twinned and untwinned parts of a crystal are 
mirror reflections of each other in a certain plane of the crystal. This mirror 
plane is called the "composition plane" (see Figure 2.4) [31]. The composition or 
twinning plane is usually given the symbol kl, the shear direction III and the 
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Figure 2.3. 	 Model of the cross-slip process after Nabarro et al. [27]. The 
dissociated dislocation must combine prior to movement into the 
cross-slip plane. Hence, cross-slip is easier for high SFE metals. 

Figure 2.4. Relation of sphere and twinned ellipsoid [31]. 

plane perpendicular to kl and containing III is the «plane of shear". For fcc 
materials, the twin systems are (111) for kl and [112] for Ill, the theoretical 
shear on such systems being equal to 1Iv'2. Twinning is observed when the 
critical resolved shear stress (eRSS) for this process is almost equal to the one 
associated with slip. This will happen in fcc materials when the SFE is low or if 
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the deformation temperature is very low. In such a case, after sufficient 
deformation, the flow stress will be high enough to produce mechanical twins, 
and orientations near < 111 > will twin first because the resolved shear stress 
for twinning is the highest for these. By twinning, the < 111 > orientation is 
transposed into a <115> orientation, which will rotate by slip towards 
< 100>. This can explain why the relative strength of the < 100> component 
increases with decreasing stacking fault energy, when twinning is made easier. 

A number of studies, including that of Aernoudt and co-workers [24], have 

established that fcc metals of low stacking fault energy do twin, especially 
when deformed at low temperatures and high strain rates. However, it is hard 
to explain why the < 100> component gradually disappears when the stacking 
fault energy falls below that of silver, conditions under which twinning is still 

very easy. This leads us to the interpretation of the third part of the diagram. 

Part 3 is the most difficult one to explain and several different 
interpretations have been proposed: 

- The < 100> fibre orientation loses its preferential role if twinning 
becomes so easy that all orientations form twins [8]. 

- Venables [32,33] has indicated that, as the SFE is reduced, twin 
propagation may become increasingly difficult although nucleation is made 

easier. One may therefore expect that the amount of twinning (and hence, the 
percentage of < 100 > ) will reach a maximum for some intermediate SFE, just 
as observed. 

-The increase in the <111> component in this range can also be 
attributed to latent hardening. Experiments have been performed in which 
pairs of slip systems have been tested [34-36]. These reveal that prior slip on 
one system hardens all other systems more than itself, except a coplanar 

system, where the hardening ratio is equal to one. Under these conditions, 

there is a tendency for the hardening on non-coplanar systems to increase with 

decreasing SFE. For AI, the increase is about 20% [35], for eu [36] and Ag [34], 

about 40%. These data were obtained by first activating one system, and then 
the other, and it is not obvious that they are applicable to the simultaneous 
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activation of both systems. It also remains to be seen why such hardening on 
non-coplanar systems should imply the increase of the < 111 > component. This 
has been investigated theoretically by Chin [6], who selected those 
combinations among the equivalent slip systems which maximize coplanar slip. 
"Somewhat surprisingly", in his own words, he found an increase in the 
<111> component and concluded that latent hardening (coplanar slip) also 
favors this component, in agreement with the results of Figure 2.2. 

-A further interpretation of part 3 of the diagram is again given by 
Chin [6] and implies the occurrence of deformation faulting. For energetic 
reasons, a (111)[011] dislocation is normally split into two Shockley partials of 
the {111}<112> type connected by a strip of stacking fault whose width is 
inversely proportional to the SFE of the material. Thus widely-spaced faults 
are common in cold-worked low SFE metals. Usually. the separated partials 
"zig-zag" in correlated sequential movement - first along [12r] and then along 
[112]. The result is then the same as for normal (111)[011] slip and there need 
be no alteration of the pattern of texture development except through the extra 
latent hardening on the non-coplanar systems, as described above. However, if 
the partials become widely separated, texture development may be altered 
because the effective slip direction now switches from < 110> to < 112 >. This 
is the mechanism proposed by Hu et aL [2] to account for the dominance of the 
< 111 > wire texture in low SFE metals. In their analysis, they considered the 
independent motion of the two partials equally likely. In effect, however, 
probably only the leading partial can do so. Chin [6J tested the validity of this 
model and of this last assumption and found that only the < 111 > component 
was stable. Thus he concluded that intrinsic faulting favors a strong < 111 > 
wire texture, reinforcing the effect ofcoplanar sli p for very low SFE alloys. 

These results can be summarized as follows: the predominance of the 
< 111 > component at very high values of SFE is due primarily to the ease of 
cross-slip (or of colinear slip). The same predominance at very low values of 
SFE is probably due to twinning in all the grains of the material or coplanar 

slip and intrinsic faulting. It has to be added at this point that, while Chin [6] 
proposed the last two interpretations, he also suggested that the decrease in the 
< 100> component in this range was perhaps not as large as shown in Figure 

2.2. The appreciable < 100 > peak near Ag can be accounted for by twinning, 
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chiefly after the orientations of the crystals have reached the <111> position 
via a slip process. It is also worth noting that there are two transitions as the 
SFE is increased. This differs from the situation in rolling, as will be seen later, 
where copper and brass have distinct rolling textures. The latter remark 
suggests that the results concerning part 3 of Figure 2.2 are partly wrong or at 
least inaccurate. This is a question to which we will return below, after 
presentation of the pertinent results obtained in this investigation. 

ll.1.2. COMPRESSION 

There are few results reported in the literature concerning compression. 

This may be due in part to the difficulty of achieving large strains in pure 
axisymmetric compression without shearing or barrelling of the samples; a 
further contribution arises from the fact that the most important conclusions 
about compression can be deduced from the tension ones. The forces imposed on 
a polycrystal being opposite in tension and compression, the rotations of the 
crystallographic planes can be expected to occur in opposite directions. This was 
verified experimentally by Barrett and Levenson [37], who reported that the 
compression texture of Al consists of a strong < 110> component with 
considerable spread to <311>, plus weak intensities scattered to <100> and 
with < 111 > relatively empty (Figure 2.5a ). This is also the type of texture 
expected from the Taylor model on the basis of {111}< 110> slip (see Chapter 
ill). Moreover, when the concept of colinear (cross) slip (presumably favored in 
AI) is introduced in this model as was done by Chin [6], it has the effect of 
sharpening this component.. 

Very recently, H. Naaman and co-workers [38] determined the compression 
texture of copper (99.999%) and also found a high intensity near the <110> 
component and in a band between the <110> and <115> positions. Some of 
their results are presented in Figures 2.5c to 2.5e. Unfortunately, quantitative 

experimental data for other materials are not available for comparison. Barrett 

and Levenson [37] also examined the compression texture of 70-30 brass 
(Figure 2.5b). Here the texture still consists of a strong < 110 > component 

with some spread to <311>, but now the <100> orientation is vacant and 

some intensity appears near <111>. The emptying of the < 100> region in 
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Aluminium 70-JOSrau 
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Figure 2.5. 	 Compression textures of AI, brass and Cu: a) Al and b) brass after 
97% R.A. [37]. W=weak, M=medium, S=strong. Texture of high 
purity Cu: c) before compression, d) after a strain of 1.36 and e) 
after a strain of2.9 (38]. 
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favor of the < 111 > is most likely to result from mechanical twinning. In 
compression, the < 100> (and near < 100 > ) vicinity twins most easily while 

the <111> is most reluctant to twin. At <100>, all four twin planes can 

operate, converting the compression axis to < 221>, which is only 15° from 

<111> on the <111> -<100> line. (Incidentally, while the <110> is also 
favored to twin, it transforms into itself (its negative, to be exact». If slip 

becomes favored after twinning, the occurrence of coplanar slip suggests that 

the < 111 > intensity of brass should decrease at still higher reductions. 

Similar conclusions can be reached if intrinsic faulting is important [6]. So, 

despite the lack of experimental results concerning different materials, the 

mechanisms described for tension are also assumed to be responsible for the 
variations observed in compression. 

Now that we have seen the axisymmetric textures of fcc materials, we can 

tum to the case of another mode of deformation, i.e. rolling or plane strain 

compression. 

II.1.3. ROLLING 

Investigations of texture evolution during rolling are very numerous in the 

literature and have been performed most extensively on Cu, a-brass (Cu-Zn 
alloys) and AI. This is because many forming operations are carried out on 

rolled materials and the forming capability ofdifferent metals depends strongly 
on theoir texture after rolling. Furthermore the use of crystallite orientation 
distribution functions (CODF) has been developed mostly for rolled materials 

where the symmetry of the process makes them relatively simple to derive. For 
this reason, this section will be divided into two parts: 

1) The first summarizes the "earlier work" in the area, in which only pole 
figures were determined and where the textures were interpreted only in terms 

of ideal orientations. 

2) The second consists of a synthesis of the more recent work, in which the 

use of CODF's leads to a more quantitative interpretation of the observed 
textures. In these two sections, some research carried out on rolled single 
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crystals will also be mentioned [2,8,39] because these studies have helped to 
clarify the basic deformation processes. 

1) Early work 

It has been long recognized that the rolling texture of a-brass is not the same 
as that of copper (or of many other fcc metals). In these two materials, two 
distinct types of texture develop, and the differences between them were first 
established by Hu, Sperry and Beck [40]. These are represented in Figure 2.6 in 
the form of < 111 > pole figures [41] generally referred to as the ~tCu_ type 
texture" and the ~rass-type texture". This distinction is somewhat arbitrary 
and, as will be seen below, the brass-type texture can be produced in Cu and 
vice versa, depending on the deformation temperature. It has also been found 
that the two types are characteristic of the rolling textures of most fcc metals 
[2,8,13,22,40,42,43]; for example, most fcc metals (except silver) are of the 
copper type, whereas silver and most fcc alloys are of the brass type. Aluminum 
alloys display a Cu texture and, depending on their composition, have a greater 
or lesser percentage of the brass component. 

RD RD 

lai 	 (bi 

Figure 2.6. 	 < 111 > pole figures for a) Cu and b) a-brass after rolling at room 
temperature. The symbols give the positions of the (111) poles of 
the main components; 0: {112}<111>, 0: {123}<634>. 
+:{110}<112>. X:{110}<100> [41]. 

The copper texture can be interpreted as the superposition of3 components: 
{112}<111> (Cu-component), {123}<634> (S-component) and {110}<112> 



-19 ­

(brass-component); by contrast, the brass texture involves the superposition of 
only two: the brass-component {110} < 112 > and the Goss-component 
{110}<100>. These are displayed in Figure 2.7 in the form of <111>, <110> 
and < 100> pole figures. Additionally, the locations of the < 111> poles of the 
ideal components are plotted on the experimental pole figures of Figure 2.6. In 
what follows, the term Cu-texture will be used for the complete set of ideal 
orientations, whereas the term Cu-component will refer only to the single ideal 
orientation. It should also be noted that only single orientations are 
represented in Figure 2.7; nevertheless, because of the symmetry ofthe process, 
the components which are symmetrical with respect to the rolling direction and 
to the rolling plane normal must also be included. 

11111 11101 11001 

0-0-0­
mill 111) (u - component 

0 .. 0"0"
U23H634) S-component 

0" 0"0" 
(110l(112) brass-component 

0" 0 .. 0 .. 
11101(100) (iou-component 

Figure 2.7. 	 Positions of the <111>, <110> and <100> poles of the main 
components of the rolling texture [8]. 

The early studies also showed that a transition from the brass to the copper 
texture can be affected by changing the alloy composition or the deformation 
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temperature. This transition was associated with changes in the SFE, as in the 
cases of tension and compression. 

Texture transition by alloy additions. The effect of solute addition on 
the deformation texture of a number of fcc metals was investigated extensively 
by Smallman [43,44]. Liu and Richman [45,46] also made a systematic study of 
the textural changes in copper as a function of alloy concentration for several 
solute elements. These authors showed that, for a given solute, a minimum 
amount is required to initiate the transition, and the degree of the transition 
increases with increasing solute concentration. For complete transition, a 
certain amount of the solute is required, which varies from solute to solute. 
These results were confirmed by other workers and a typical example is given 
in Figure 2.8, which shows the textural changes in a series of a·brasses as the 
concentration of zinc is increased [47]. 

',' 

(0) 3% Zn 	 (b) 6% Zn (C}IO% Zn 

Figure 2.8. 	 Texture transition in brass as a function of zinc content; a)3%, b) 6 
%, and c) 10% Zn. Rolling reduction 96% [47]. 

Texture transition by changing the deformation temperature. The 
effects of deformation temperature and of heat treatment prior to cold rolling 
were also investigated by Smallman [44]. The original idea was that, since the 
deformation characteristics of solid solutions could be affected by temperature 
and heat treatment, the resulting texture should also vary with temperature. 
Smallman showed that the rolling textures of aluminum alloys that were 
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slowly cooled and then rolled were somewhat different from those that were 
quenched, then rolled. More interesting is the effect of the deformation 
temperature. For brass containing 5% Zn, rolling at -183°C produced a brass 
texture (mainly a {110}<112> component), whereas rolling at 200°C produced 
a copper texture. To test the idea proposed by Brown [23] that the wire texture 
may depend on the SFE and ease of cross-slip, Hu and co-workers [41,48-50] 

conducted a series of investigations regarding the temperature dependence of 
the rolling texture transition in high-purity silver, electrolytic copper, and 

austenitic 18-8 stainless steel. Itwas shown that in all these metals, the copper­
type / brass-type transition can be affected by changing the temperature of 
deformation. With increasing temperature, the texture changes gradually from 
the brass-type to the copper-type; with decreasing temperature, a transition in 
the opposite direction occurs. Copper rolled at room temperature exhibits a Cu 
texture, whereas rolling below room temperature leads to the brass-type. 
Similarly, silver rolled at room temperature exhibits the brass-type, but when 
rolled at higher temperatures changes to the Cu-type [22]. 

In these early studies, no experiment was carried out on a high SFE 
material rolled at high temperatures. As will be seen below, this has been done ­
more recently to test whether there is a second transition from the one type to 

the other. However, no useful quantitative measure of the amount of the 
transition associated with a particular temperature could be deduced from 
these investigations and only the use of CODF's (as described in part 2) below) 
will be able to provide such an analysis. Figure 2.9 shows the texture of 
electrolytic copper rolled at -80, -140 and -196°C [41]. The striking 
resemblance between the textures produced by increasing the alloy content or 
by lowering the rolling temperature is evident when Figures 2.8 and 2.9 are 
compared. The temperature dependence of the texture transition was also 
found to depend on the impurity level [40,41]. 

The results just described indicated that there is a general correlation 

between the texture transition and the SFE of the material. This is partly in 

agreement with the results obtained in tension, where two transitions were 

observed when the SFE was increased, instead of only one as in the case of 
rolling. Generally speaking, it was concluded at this time that the development 
of the copper texture in high SFE materials can be attributed to the ease of 
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(0) -80C 	 (c) -196 C 

Figure 2.9. 	 Texture transition in copper as a function of deformation 
temperature; a) -80°C, b) -140°C, c) -196°C. Rolling reduction 
96.6% [41]. 

cross-slip, as in the case of tension; the development of the brass texture in low 

SFE materials can be attributed as before to the occurrence of twinning or 
deformation faulting. In addition, some new explanations appeared in which 

the possibility of non octahedral slip was discussed. The different points ofview 
that prevailed can be summarized under the headings that follow. 

1) Transition caused by cross-slip. The suggestion that extensive 

cross-slip is responsible for the formation of the copper rolling texture was 
made by Dillamore and Roberts [29] as well as by Smallman and Green [28]. 

The ideas of these authors are similar to those of Brown [23] for wire textures. 
The rate of cross-slip depends on the SFE of the metal and the temperature of 
deformation. Dillamore and Roberts [29] claimed that all fcc metals first 
develop the brass texture by normal slip. Then, for low SFE materials, where 
cross-slip is very difficult, plastic deformation occurs largely by normal slip and 
the final texture remains of the brass type. For high SFE metals, cross-slip 
occurs with ease. The normal slip texture, the brass component, undergoes 

further reorientation by cross-slip to transform into the copper texture. Since 

the SFE of materials decreases with increasing alloy addition, and since cross­

slip can be activated by thermal fluctuations, the cross-slip hypothesis appears 

to be consistent with both the composition and temperature dependence of the 

texture transition. There exist, however, some weak points in this proposition. 
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One of them is that abundant cross-slip is observed in brass [51], even at low 
deformations. Similarly, at high deformations in rolling, differences in the ease 
of cross-slip do not seem to be responsible for the texture differences. 

2) Transition caused by nonoctahedral slip. An alternative view was 

advanced by Haessner [52], who considered that normal octahedral slip leads to 
the brass texture whereas, when slip occurs on {100} planes along < 110 > 
directions, the copper texture is produced. In connection with the effect of SFE 

on texture, Haessner assumed that, for low SFE metals, cubic slip becomes 
more difficult as the separation of the partials in the {Ill} plane becomes 
greater. Some evidence that slip takes place on the {100} planes in aluminum 
has been reported [53]; its occurrence seems to depend strongly on the initial 
orientation of the crystal and on the temperature of deformation. Moreover, it 
appears to be difficult to differentiate this type of slip from cross-slip. 
Nevertheless, as the hypothesis was advanced for the case of rolling, and as this 
type of slip occurs more easily, if at all, at high temperatures, it is of interest to 
investigate the effect of {100} slip on texture formation. This was done in the 

present study, and the results obtained will constitute the subject of one of the 

chapters that follow. 

3) Transition due to mechanical twinning. If mechanical twinning of 

the {111}<112> type is considered as a mechanism of plastic deformation 
additional to normal slip, then the copper-component (112)[111] can be 
converted by twinning into the (552)[115], which is rotated into the (110)[001] 
(Goss-component) orientation by further slip. The (011)(211] texture (brass­
component), on the other hand, retains its orientation during deformation, 
because twinning would lead to shape changes that do not meet the strain 
requirements of the rolling process. The proposed mechanism is supported by 
evidence of the rolling textures developed in silver single crystals as well as by 
the observations of the temperature dependence of twinning in these crystals 

[54]. However, this interpretation requires the brass texture to be developed 

after the copper texture is formed. Evidence for this view has not been observed. 

Furthermore, as mentioned by Haessner [55J, there are alloys in which there 
was no mechanical twinning at the rolling temperature employed, yet the brass 

texture was still produced. 
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4) Transition due to deformation faulting. The initial work done in 
order to assess the effect of deformation faulting on the textures developed in 
fcc metals was carried out on single crystals having specific orientations. Hu, 
Cline and Goodman [2] studied the stability of (110)[112] and (112)[111] single 
crystals ofhigh-purity copper and ofan alloy containing 4%wt AI. Their results 
and interpretation can be summarized as follows: 

(110)[112] crystals (brass-component). The orientation of the Cu 
crystals remains stable, whereas the intensity of the brass orientation in the 
Cu-4%Al crystals decreases up to the point where the crystal splits into two 
symmetrical brass-oriented crystals. The explanation given was the following: 
for normal slip on the {111}<110> systems, the primary and conjugate slip 
systems, (111)[011] and (111)[101], are symmetrically oriented to receive a 
large shear stress. If slip occurs accidentally to a larger extent on one of these 
two systems. such as (111)[101], slip direction [101] rotates towards the rolling 
direction, and the [111] slip plane normal rotates in a similar manner towards 
the normal to the rolling plane. Such rotations result in a continuously 
decreasing resolved shear stress on the active slip system and a continuously 
increasing shear stress on the conjugate (111)[011]. Hence, at a certain point, 
the (111)[011] system is activated, and the crystal begins to rotate in the 
opposite direction. Thus, the change in orientation of the crystal during 
deformation by slip only on these two systems is self-correcting. That is what is 
considered to happen in the pure copper. crystals where the brass texture 
remains extremely sharp and this has been confirmed by slip-line examination. 

However, if deformation faulting or slip by partials can make a significant 
contribution to the deformation in addition to normal slip, the stability of the 
(110)[112] orientation will be impaired. Faulting will result in slip on the 
{111}<112> systems and for this special orientation, the (111)[211] and 
(111)[121] systems can operate alternately without net orientational changes. 
The other two systems, (111)[112] and (111)[112], however, do not possess a 
self-correcting feature for maintaining the crystal orientation. Hence, for a 
single crystal of silver, brass, or other fcc alloy of low SFE, the (110)[112] 

orientation is expected to be unstable, particularly at high deformations at 
which slip by partials makes a significant contribution to the plastic 
deformation. Hu and co-workers [2] observed that the texture of Cu-4%Al 
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crystals shows a rather large orientation spread, probably due to the addition of 

the complementary orientation. 

(112)[111] crystals (Cu-component). The behaviors of crystals of 

copper and Cu-4%AI having this orientation differ markedly, even at low 

deformations. While the copper crystal retains its initial orientation and shows 
a very sharp texture, the Cu-4%AI crystal develops a large orientation spread 

and a strong component of the (552)[115] twin orientation. In fact, both the 

matrix and twin orientations are displaced from their ideal positions by 

rotation around the transverse direction. In this case as well, the explanation 

given by the authors is similar to the one given previously. Slip on the 

(111)[110] and (111)[110] systems induces rotation of the crystal towards the 

rolling direction. While the resolved shear stress on these systems decreases 

continuously with crystal rotation, the other systems, (111)[101] and 

(111)[011], are subjected to increasingly higher resolved shear stresses. When a 

certain critical point is reached, the latter two slip systems begin to operate and 

cause the crystal to rotate in the opposite direction. Thus, these two pairs of 

systems are able to correct the orientation changes accidentally produced by 

one or the other and this results in the stability of the orientation ifonly normal 

slip occurs, as in pure copper. 

For the Cu-4%AI crystal, on the other hand, extensive faulting occurs on the 

(111)[112] system. As a consequence, a (552)[115] twin component develops, 

and with further deformation, the matrix rotates to the (111)[112] orientation, 

whereas the twin rotates towards (110)[001]. So again in this case, the copper 
crystals remain stable and only normal slip occurs, whereas the orientation of 
the Cu-4%AI crystals splits into 2 different orientations because of the 
deformation faulting. The assumption of deformation faulting (Le. slip by 

partials) has been extensively checked by the authors by means of electron 
microscopy. In two sets of Cu-4%AI single crystals, they observed the presence 

of stacking faults and microtwins, but no massive twinning. However, similar 

studies of single crystals of Cu and brass (and not Cu-4%Al) having these 

specific orientations were also carried out by Mecking [39] and Bauer [56]. 

These authors have given a different interpretation of their results, attributing 

the observed differences to mechanical twinning (the presence of which was 

confirmed by electron microscopy). They also found that a Cu single crystal of 
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the (112)[111] orientation rolled at room temperature was stable whereas, 
when it was rolled at a lower temperature, it split into 2 symmetrical brass­
oriented crystals. 

Similarly, in a brass single crystal of (112)[111] initial orientation, half the 
crystal had twinned towards (552)[115] after 50% of deformation. As in the eu 
crystals rolled below room temperature, the matrix and twin later behaved 
differently than if they were each present alone. This is because the (112)(111] 
and (552)[115] orientations have a special relationship between them; having a 
common (111) plane, dislocations prefer to slip on this plane to avoid 
compatibility stresses. As a result, the two orientations rotate towards two 
symmetrical eu components. Before these are reached, the scatter around them 
increases, and the final texture is composed of two brass components. 

Mecking (39] also studied the behavior of eu and brass single crystals of 
initial orientation (110)[112] (brass component). He found that the eu crystals 
were stable but that the brass crystals were stable only if the deformation was 
really unconstrained (Le. if the crystal is allowed to shear on the tranverse 
plane in a sense parallel to the rolling direction, which would be the case for 
perfectly lubricated rolling). However, if this shear is forbidden or restricted 
(because of friction produced by the rolls), twinning occurs, and the final 
texture is again composed of two brass orientations. 

From these studies on single crystals, two important remarks can be made: 

a) The results depend strongly on the experimental conditions such as 
lubrication. It is very hard to obtain really unconstrained deformation in 
rolling, but the degree of friction differs markedly from one experiment to 
another and it is rare to find this contribution quantified in the literature. The 
less friction there is, the less stable will the brass orientation be in a brass 
single crystal for example. These experimental conditions will affect the 
polycrystal texture in a different way by producing variations in the texture 

from the.center to the outer surface of the material [8J. At the surface, a shear· 
type of texture will develop, as has been shown very clearly by the experiments 
ofRegenet and Stuwe [57]. 
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b) The orientation instability of the brass and Cu-4%AI single crystals 
can be attributed to twinning and to microtwinning (due to deformation 
faulting). It is difficult at this point to decide which of these two mechanisms is 
the most active, but the choice does not make a great difference with respect to 
texture prediction. Since the crystallographic effects of the two are the same, 
i.e. they both imply the activation of the {111}< 112 > twinning or slip systems, 
the results obtained will be similar. Furthermore, both types of twins have been 
observed recently by Hatherly et al. in pure copper as well as in brass deformed 
by rolling at different temperatures [58]. 

Following this study of single crystals, extensive research was carried out 
on texture development in electrolytic copper and 70-30 brass to test the idea 
that deformation faulting is the primary factor in determining whether the 
texture is of the copper type (if deformation faulting or twinning is absent or 
limited) or of the brass type (if faulting or twinning contributes strongly to the 
deformation) [2]. Extreme care was taken in the preparation of the samples in 
order to start with a fine grained structure and a nearly random texture. It was 
found that, at up to 40% reduction, the two materials exhibit almost the same 
texture (see Figure 2.10); but, after 50% reduction, each of them has already 
developed its own characteristics. At about 90% reduction, the two types of 
texture are fully developed and there was no evidence that the copper developed 
the brass texture first which transformed later into the copper type, or that the 
brass developed a copper texture first, which transformed later into the brass 
type. There was ample evidence in this study of the development of a twin 
orientation of the copper component in the brass, and of further rotation of both 
the matrix and the twin. The results obtained after 90% reduction are similar 
to the ones shown in Figure 2.6 and can be taken as confirmation of the 
presence of deformation faulting or twinning in the brass. 

To conclude this review of the early studies of rolling textures, it can be said 
that there is evidence at this point of a transition from the brass to the copper 
type of texture with increasing SFE (for materials deformed at room 
temperature or below). This can he interpreted in terms of the following 
mechanisms: twinning and faulting on the brass side, new active slip systems 
and ease of cross-slip on the copper side. Again here, no single mechanism can 
be seen to be responsible for the transition and no experimental observation 
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Figure 2.10. Texture of a) copper and b) brass, rolled 40% at 25°C. Note that 
there is no appreciable difference in texture between copper 

. and brass at relatively low deformations [2]. 

definitely proves that one or the other happens. Only with the introduction of 
CODF's does the picture became clearer and it is time now to review the more 
recent studies of rolling texture development. 

2) Recent studies 

The recent investigations all make use of the orientation distribution 
function to represent the texture of a material. If we designate the 
crystallographic orientation of individual crystallites within a sample by g 

(which will be specified more precisely later), then the orientation distribution 
function (ODF) of the crystallites is defined by the volume fraction of 
crystallites that have the orientation g within a certain infinitesimal 
orientation element dg. The ODF is thus defined by 

dVIV=f(g).dg (2.1) 

The function f(g) is normalized in such a way that in the case of a random 
distribution, it is equal to 1 for every g. This normalization can be expressed by 
the relation 

http:dVIV=f(g).dg
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(2.2)}.tg).dg=l 

The orientation of a crystallite g in a sample is usually defined by the 

orientation of the crystal coordinate system (defined by the 3 < 100 > axes of 

the crystal) with respect to the sample coordinate system (in the case of rolled 

sheet, it is natural to choose the rolling RD, transverse TD, and normal ND 

directions for the coordinate axes). This is usually represented by three Euler 

angles in the following way: the crystal system is first assumed to coincide with 

the sample coordinate system. It is then rotated successively: 

1. about the crystal z' axis through 4>1 

2. about the crystal x' axis through CP 

3. about the crystal z' axis through 4>2 (see Figure 2.11) 

Thus, the angles 4>1, CP and 4>2 are the three Euler angles which describe the 
orientation of the crystal in the sample 

(2.3) 

This terminology corresponds to the one defined by Bunge [59]. A slightly 

different one also exists, due to Roe [60], but the latter will not be used here. All 

possible orientations can be obtained within the range 

0<4>1<20 (2.4) 

It is convenient to plot these parameters as cartesian coordinates in three­

dimensional space (Figure 2.12), which is called orientation space or, in the 
case of the Euler angles as orientation parameters, Euler space. Each crystal is 

then represented by several points in this space because of the symmetry of the 
crystal and the symmetry of the process. For fcc materials, a given orientation 
can be defined by 24 different sets of Euler angles (cubic symmetry) [6l.]. 
Furthermore, the orthorhombic symmetry of rolling implies that each point of 

Euler space is associated with 3 equally probable further ones. A given 

orientation can thus be described by as many as 96 different points in Euler 

space (for the case of cubic materials deformed in rolling); this allows us to 

represent the associated ODF in a reduced space. Usually, the ODF of rolled 

materials is plotted in a "cube" (i.e. each angle varies from 0 to 0/2, which is 

still more than the minimum necessary, but gives a clear picture). 
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Figure 2.11. Definition of the Euler angles [59]. 
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Figure 2.12. Definition of the Euler space [59]. 
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In such a space, the ODF is generally characterized by contour lines, in 
sections of constant <P2. The ODF's of Cu and brass obtained in this way after 
95% reduction, are shown in Figure 2.13 [62]. Similar results have been 
reported by Kallend and Davies [63] but are not reproduced here to avoid 
confusion as their results are plotted using the Roe definition of the Euler 
angles [60]. Bunge and Haessner [64] also determined the ODF of rolled pure 
copper and found essentially the same results as Hirsch. The appearance of 
these texture functions in Euler space is illustrated in Figure 2.14. All the 
texture components of the fcc metals lie on two "fibres" or "tubes", the !3 fibre 
extending from the Cu through the S to the brass component (this corresponds 
to the Cu texture). The a fibre in turn extends from the brass to the Goss 
position (and corresponds to the brass texture). In these two figures, all the 
texture components typical of the copper and brass textures can once again be 
found. The question therefore arises whether the introduction of ODF's brings 
something new to the analysis of texture development. But the advantages of 
this type of representation compared to pole figures are numerous: 

fmx< 21.0 FHA.. ".0 

LEVELS , lEVELS' 

1 3 1 I 2 S 

14 18 20 10 IS 17 

'1', :const. Cu 30"/.Zn 95% '4\ :const. 

Figure 2.13. ODF of rolling textures of fcc metals after 95% rolling reduction: 
a) pure copper, b) brass (Cu-30% Zn) (after Hirsch [62] ). 
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Three-dimensional representation of 
2 the main components of an fcc rolling 

texture in Euler space [62]. 

1) A pole figure is only a two dimensional plot of preferred orientations 

which are three dimensional. In this sense, the ODF, which is also 3 

dimensional, is more complete and more appropriate. 

2) If the value of the function f(g) is known exactly at every point in 

Euler space, we can know all the texture components which are present in the 

material, even very minor ones, with their exact intensities as well as the 

scatter around each orientation. 

3) From these data it is then possible to : (i) determine the elastic, 

magnetic and plastic properties of the material; (ii) study quantitatively the 

influence on texture of the composition, starting texture, temperature, grain 

size and shape, misorientation between neighboring grains, etc. 

4) The ODF permits us to follow precisely the evolution of texture with 

deformation. 



- 33­

5) It also enables the validity of texture development models to be tested 
more carefully (see Chapterm). 

Hirsch and co-workers [62,65-67], who have worked extensively in this area, 

have determined the texture of Cu-Zn and Cu-Ge alloys rolled at room 
temperature. They studied the evolution of texture with deformation, 

composition and temperature and found a transition from the Cu to the brass 

texture with decreasing SFE (see Figure 2.13). To follow this transition 

quantitatively, they made special cuts of the ODF in Euler space, one of which 

is the <1>1 = 90° and <1>2 =45° subspace, in which the Cu, Goss and twin Cu 

orientations are found. By plotting the variation oftrg) as a function ofthe third 

angle for different alloys and rolling reductions, it is possible to follow the 

development oftwinning for example. This is done in Figure 2.15 for the Cu-Zn 

alloys [65]. Along this cI»-line, the orientation change due to twinning of the Cu­
position and further slip can be readily demonstrated. In the low deformation 
range for the low Zn alloy, the Cu position intensity increases constantly with 

strain. In the 70/30 brass, by constrast, after a first increase up to around 50% 

rolling reduction, the Cu intensity starts to decrease and is replaced by 

intensities in the twin position. It is clearly visible that with further 

deformation the twin orientations shift from {552} < 115 > towards the 

{332}< 113 > position, whereas the Goss intensity remains almost constant. In 

the same deformation range, an increase in intensity along the whole <111> 

fibre can be detected in the low SFE alloys, with some concentration at 

{332}<113> and {111}<110>. It is interesting to also plot the variation off(g) 

along the two fibres of interest. This is done in Figure 2.16 for the pure copper 
and the 70/30 brass [62] and again the difference between the two materials is 

quite clear. 

Hirsch and co-workers (68] also investigated the influence of the starting 

texture. In aluminum rolled at room temperature, they found that they could 
get a brass texture if the starting texture was mainly composed of the Goss 

component. Conversely, they obtained a strong S-component if the starting 

material had a strong cube texture. If the initial Goss or cube texture was 

rotated around the compression axis by 45°, a strong copper texture was 

produced. What seems to happen in these materials is that the grains rotate 
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Figure 2.15. Plot of the experimental intensities f(g) versus cl> (4)1 =90° and 
4>2 =45°) of Cu-Zn alloys at different rolling reductions (n umbers 
indicate the degree of rolling) [65]. 
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Figure 2.16. 	Variations in the orientation distribution function along the a 
and ~ fibres in a) and b) pure copper, c) and d) 70/30 brass [62]. 

rather quickly at first towards the two fibres and then eventually rearrange 

themselves much more slowly within the fibres. 
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With the aid of these experimental results, it can be seen that there is 
apparently only one transition as the temperature or SFE is increased, and that 
is from the brass to the copper type of texture. But the effect of increasing 
temperature was only investigated below room temperature. Some more recent 
studies have demonstrated that when aluminum or copper is rolled at an 
intermediate temperature (before recrystallization takes place), the intensity of 
the brass-component once again increases at the expense of the copper one. 
Hatherly and co-workers [58], for example, determined the ODF's of pure 
copper rolled at increasing temperatures between room temperature and 550°C. 
The increase in the brass component from 20 to 275°C can be readily visualized 
by looking at the intensity along the pfibre in Figure 2.17 . 

.1"21 •.11231 • fO'" liT(111) (634) am • v 225 "C25' • RT 0 275 "C 
V 0 lSO"C225"(

fIg) 
0 275 "C .u5"C<> 
0 3SO"C C 475"C 

<> ~ 5SO"C425 "C 

a 475 "C 

~ 550'C 


60"
1S ~~-."'-.. t 

/j-
 SO· 


,,-~ 0 

IH/v //v 
_.111_,,:0 

S .­/:r- ­

_ ~=-~{j:::O:~-=~=-

Cu q:, 
 + RC 

50· 60· 70· 80· 90· 20" X Taylor
Cu192 

(a) '0" so- 60­ "P.70" 

(b) 

Figure 2.17. a) Intensity variation along the Pfibre in pure copper 

b) Position of the Pfibre in Euler space (58]. 
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These changes were attributed by Hatherly et al. to the occurrence of 
recrystallization between 225 and 275°C followed by superplastic defonnation 

so that the intensity along the fibre decreases. The increase in the brass 

component was accompanied by the appearance of other components which are 

typical of recrystallization textures, such as the cube texture (as will be seen 

later). However, a similar increase in the brass component was also found in 

aluminum [69,70], in which only recovery takes place (which has been 

assumed up to now to cause no textural change) and in which no other 

recrystallization component was found. This leads us to conclude that the 

increase in the brass component reported by Hatherly et al. [58] below 300°C 

may be due, not to recrystallization, but to recovery. 

In Figure 2.18, some further results concerning aluminum are presented in 

the fonn of pole figures, the ODF plots not being available [69]. These results 

are in good agreement with earlier texture measurements performed on 

aluminum defonned at different temperatures [71], and lead us to conclude that 

there really are two transitions in rolling as the temperature is increased: the 

first is from the brass to the copper type, and the second involves a return to the 

brass type. The second transition is harder to detect because of the small 

changes involved. It must also be noted that no explanation is given in the 

literature for the increase in the brass component during wann deformation. It 
is the purpose of this work to propose one. 

11.1.4. TORSION 

This is the last defonnation path that we are going to consider in this study. 
Dillamore and Roberts [13] and Cohen [72] have given excellent reviews of the 
defonnation textures of fcc metals defonned in torsion or simple shear. The 

textures were detennined either after torsion (measured at the outer surface of 

the sample) or simple shear experiments. Some textures were also determined 

at the surface of rolled specimens subjected to high degrees of friction. The 

results obtained by Backofen [73], Backofen and Mundy [74], Regenet and 

Stuwe [57] and Williams [75] are summarized in Table 2.1, which is reproduced 

from reference [13]. In this table, the ideal orientations are listed in order of 

increasing intensity and are identified as A, A, B, 13, Al*, A2* and C, labels 
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RD RD 

(a) (b) 

Figure 2.1S. {Ill} pole figures for pure Al rolled to a reduction ofSO% at 
a) T =150°C and b) T =20°C. V =S, • =brass and X =Cu [69]. 

Metal Texture 
Component Type ofTest Ref. 

Aluminum (100)[011] C Torsion or 57 
(111) lJ..9re 
(111)[112] Al* 
(111)[110] A 

Rolling 

Copper (100)[011] C 
(111)flbre 
(111)[112] Al* 
(111)[110] A 
(112)[1101 B 

Torsion 
Torsion 

Torsion or 
Simple shear 
Simple shear 

73,57,75 
57 

57,75 
57,75 

75 

Lead (100)[011] C Torsion or 
(111)ul>re 
(111)[112J Al* 

Rolling 57 

Silver (112)[110] B Torsion or 57 
Rolling 

70/30 brass (111)[112] Al* 
(100)[011] C 

Simple Shear 
Torsion,Shear 

75 
74,75 

(111)[110] A Torsion Tubes 74 
(112)[110] B id. 74 

Table 2.1. Shear textures observed in some fcc metals [13]. 



-39 ­

which will be used in what follows. The indices (hkl)[uvw] correspond to the 
shear plane nonnal and the shear direction, respectively. It is also specified 
whether these data were obtained from torsion, simple shear or rolling 
experiments. 

The locations ofthe {Ill} poles pertaining to each of these ideal orientations 
are shown in Figure 2.19. Due to the geometry of the torsion test [76,77], these 
orientations are either centro-symmetric or "self-symmetric" (such as At* ,A2* 

and C). This means that they obey the symmetry of the torsion test which 
requires the pole figures of Figure 2.19 to be symmetrical with respect to the 
center of the figure. The orientations that are not "self-symmetric" are present 
in the fonn of "twin-symmetric" sets of two orientations in centro-symmetry, 
such as AlA and BIB. 

Sense of shear A Z A 

i / {hkl}< 110> fibre 
I ,/ 

\ B ! B/"
\ ~ C 

--..) A2'" I A1* I --- ­{111}<uvw> fibre A-_- . ,--_ __...... ­A \ -----A..._____• --- ,I A 

'I 1a ____ : 9 
r------, I . +-----1 

I A1'" B A2'" I 


A t-------k1L--------i A
,.-"--, ,- ............ 

,,"'" I \ -.,. ........... 


II· a ! C \, 
/ I B , 

/ I , 

~ I " 

t 
 A ={111}<110> 

A ={111}<Ho> 

At* ={Hl}< 112> 

A2'" ={11i}< 112 >A A 
8 ={112}<110> 
B ={1'2}<110> 
C ={OO1}<110> -

Figure 2.19. Position of the {Ill} poles associated with each of the ideal 
orientations found in the torsion of fcc materials. 
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In the more qualitative early studies, there was no obvious difference 
between the behaviour of the brass and the copper. Backofen and Mundy [74] 
even concluded that there was absolutely no difference between the two 
materials: all the textures were composed of th~ ideal orientations AiA, BIB, 
AI* and e, with a partial fibre around a {Ill} axis parallel to the longitudinal 
axis ofthe specimen. ( see Figure 2.19.) 

More recently, Van Houtte and co-workers [26,78-81] performed torsion 
experiments at room temperature on pure copper, eu-Zn alloys containing 3%, 
6% and 30% Zn, and on eu-AI alloys with 1%,2%,3% and 4% AI. The textures 

of the outer layers of the specimens were then determined by the X-ray back 
reflection method. From these measurements, they were able to show clear 
evidence for two types of texture, depending again on the SFE and on the total 
strain; one was called the brass and the other the copper texture, in analogy 
with rolling. These two types are presented as {Ill} and {200} pole figures in 
Figure 2.20. The authors then selected one specimen of each type for ODF 
analysis. The selected copper-type specimen was pure copper, deformed at room 
temperature up to a shear strain of 5. The brass-type specimen was a eu-3%Zn 
alloy which was-deformed to fracture (y>8). The pole figures corresponding to 

these specimens are shown in Figure 2.20. The ODF's for the two samples are 
presented in Figures 2.21 and 2.22. Note that the domain of variation of the 3 
Euler angles is larger in torsion than in rolling due to the reduced symmetry of 
the process. The ODF's can be interpreted in terms of the 5 ideal orientations 
specified above whose measured intensities are listed in Table 2.2 (The original 
notation A-F used by the authors has been replaced by the notation used here in 
order to remain coherent with the rest of the text). 

From Figures 2.21 and 2.22, we can see that each of the ODF's is composed 
of two partial fibres. One is of the type {hkl} < 110>; it begins at (11i)[110] (A), 
goes to (112)[110] (B), passes through (010)[101] (e), continues to (211)(011] (B) 

and ends at (ITl)[rl0] (A). The other partial fibre is ofthe type {111}<uvw>; it 

begins at (111)[211] (AI*), moves to (111)[110] (A), jumps over to the 
orientation (111)[110] (A) and from there moves on to (111)[121] (A2*). Table 

2.2 shows that the most striking difference between the experimental copper 

and brass type textures is the sharp peak reached by the copper type at the C 
orientation. The density is much more evenly distributed for the brass type of 
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Figure 2.20. Recalculated pole figures of a) the copper-type texture and b) 
the brass-type texture [78]. 

texture. The B orientation has often been called the typical orientation of the 
brass torsion texture [79]. It can be seen from Table 2.2 that its relative 
importance is indeed greater in the brass texture, but it is nevertheless also 
present in the copper texture. It has to be noted that this is in agreement with 
what is found in rolling. Looking again at Figure 2.16, it can be seen that, 
whereas the copper component of rolling is nearly absent in brass, the brass 
component is present in both copper and brass rolled at room temperature 
(though stronger in the brass). Thus, Table 2.2 displays the components of the 
two extreme textures, the brass and copper types, the intermediate 

concentrations ofZn giving intermediate textures, just as in rolling. 

Cohen and co-workers (72,82] also determined torsion textures; they studied 

aluminum, copper, and a-iron deformed to different strains at various strain 

rates and temperatures. The results found at room temperature for aluminum 
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Figure 2.21. ODF of the measured Figure 2.22. ODF of the measured 
copper~type texture [78J. brass-type texture [78]. 

Measured Intensity 
Code Type 

Cu~type Brass-type 

AlA (111)[110] 3.4 3.4 

BIB (112)[110] 3 5.3 

C (100)[011] 14.1 6.7 

Al* (111)[211] 3.4 5.4 

A2* (111)[121] 2.9 -
Table 2.2. 	 Value of the ODF at various points of the 

skeleton line for the two types of torsion 
texture [78]. 

and copper are in full agreement with the previous ones and the evolution ofthe 

texture with deformation is presented in Figure 2.23 for the copper and in 

Figure 2.24 for the aluminum. In the case of the copper, the initial texture was 

nearly random as a result of the annealing treatment and again, the 
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orientations AlA, AI*, A2*, BIB and C are present. The A component decreases 
in intensity with increasing strain, while the C component increases. The 
authors also noted that these ideal orientations were slightly rotated about the 

R-axis of the specimens. They furthermore concluded that these slight 

departures from completely symmetric positions are connected to the senses of 

the axial forces present during fixed end torsion tests. This last point will not be 

developed any further in this paragraph, whose purpose is principally to review 

the observed textures, but this matter will be exploited further in the chapters 

dealing with theory that follow. The evolution of these axial forces in fact 

constitutes a good test of the validity of a new texture theory since it is very 

sensitive to the texture of the material. 

Z Z IZ 

a b c 

Figure 2.23. Development of the copper torsion texture at 20°C and 5.10-3 s-l; 
{Ill} pole figures; at a) e=0.84, b) e=2.8, c) e=4.7 [82]. 

It was observed moreover, that in the copper the A and C components were 
initially rotated in the sense opposite to that of the imposed shear. At larger 
strains, whereas the A component tended to disappear, the C component 

increased in intensity but was rotated in the same sense as the shear. With 
respect to the A * components, the Al* variety was stronger at low strains, 

whereas the A2* variant was more intense at large strains. (The components 

AI* and A2* do not both need to be present at the same time since each of them 

respects the symmetry of the process.) Finally, the B component gradually 

becomes more intense at large strains and appears to be rotated in the sense 

opposite to the shear. The case of the aluminum (Figure 2.24) is less clear 
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Sense of shear 

8 

a b 

dc 

Figure 2.24. Development of the aluminum torsion texture at 20°C and 7.10-3 
s-1; {Ill} pole figures; at a) initial state, b) £=0.62, c) e=2.18, 
d) £=4.98 [82]. 

because oftlle presence of an initial texture. Despite this perturbing factor, the 
Al textures are very similar to those of the copper. The A component present at 

small strains vanishes at larger strains, whereas the C component becomes 
stronger. Only the A2* component can also be detected. 

More interesting to us is the evolution of the "final" textures with 

temperature (Le. the textures observed just before fracture of the specimen or 

within the steady state region when the latter is reached). It constitutes in fact, 

the only study of this kind found in the literature and, because of the large 

strains involved, establishes clearly the differences between cold and warm 

deformation textures in fcc materials. Figure 2.25 shows the evolution of the 

final texture with temperature for aluminum. The A2* and C components 
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present at low temperatures are gradually replaced by the BIB component as 
the strain and temperature are increased. At 400°C, for a strain of 31, this 
component is the only one remaining and it is very sharp. Figure 2.26 
illustrates the case of copper. As in the aluminum, the A2* and C components 
disappear progressively with increasing temperature, and the BIB component 
becomes sharper, as in the case of AI. Concurrently, the AlA orientation 
develops, which is clearly present at 200°C (see Figure 2.26e). At higher 

temperatures (between 300 and 500°C), the AlA and BIB orientations are still 
present, but they appear to be more and more scattered. This is because the 
textures are increasingly affected by dynamic recrystallization, which tends to 

randomize the orientations. It should be noted, however, that the two parts of 
the B orientation are more resistant to recrystallization than is the A 
component. Furthermore, this orientation is very strong in Al at high 
temperatures and cannot be attributed to recrystallization in this case . 

.. 
Sense of shear Zz z 

a b c 

d e 

Figure 2.25. Dependence ofthe ~~final" aluminum textures on temperature; 
a) 20°C, £=4.97, b) 200°C, f=5.58, c) 300°C, f= 10.54, d) 350QC, 
£=31, e) 400°C, £=31 [82]. 

8 
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Figure 2.26. Dependence of the ttfinal" copper textures on temperature; 
a) 20°C, f=4.7, b) 100°C, f=4.65, c) 125°C, f=5.89, d) 150°C, 
f= 10.85, e) 200°C, f=31, f) 300°C, f=31, g) 400°C, f=31, 
h) 500°C, f=31 [82]. 

These hot torsion results are in good agreement with the only other 
reference found in the literature [83] which concerns copper deformed at 200°C. 

The latter results can be summarized as follows: 

i) At small strains and at room temperature, the A orientation is the first 
to appear in the case of Al ( in the presence of an initial texture) and both A and 
B appear in copper. 
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ii) At intermediate strains (i.e. prior to fracture), the C self-symmetric 
orientation is the principal component at room temperature. 

iii) As the temperature and the fracture strain increase, the C component 
is replaced by the BIB orientation, sometimes accompanied by the AIA 
component. 

It thus appears that there exists a smooth transition when the temperature 
is increased: AlA - C - B +C - B. It must be noted that the pole figure 
corresponding to the copper deformed at 150°C to a strain of 10 (Figure 2.26d) is 
similar to the brass type texture of Figure 2.20, whereas the pole figure 
corresponding to copper deformed at 20°C to a strain of 4.7 (Figure 2.26a) is 
similar to the copper type texture of Figure 2.20. Thus the brass-to-copper type 
of transition observed at room temperature by increasing the SFE is apparently 
inverted by an increase in temperature (or equivalently of SFE). This is in 
agreement with the situation found in rolling where the proportion of the brass 
component increases in aluminum with increasing temperature. Thus, in 
torsion, as in rolling, there is clear evidence for a "double" transition: brass-to­
copper-to-brass with increasing temperature. 

11.1.5. CONCLUSIONS REGARDING DEFORMATION TEXTURES 

We can thus define a brass type of texture and a copper type of texture for all 
the deformation modes investigated here. The conditions of SFE and 
temperature associated with each of these are represented schematically on a 
diagram analogous to Figure 2.2 in Figure 2.27. The brass texture corresponds 
to the < 100> fibre in tension, the a fibre in rolling and the B ( + some A and C) 
in torsion. The copper texture, on the other hand, corresponds to the < 111 > 
fibre in tension, the 13 fibre in rolling and the C component in torsion. This 
describes all the texture components which are expected to develop at high 
temperatures (in the range where no recrystallization takes place). It does not, 
however, provide any physical explanation for what really happens in the 

materiaL 
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Low SFE, room T 
High SFE, low T 

% Brass Low SFE, high T 
High SFE, room T 

High SFE, high T 

2 

1 3 

Bs Ag Cu Al 	 SFE atroomT 
orT 

Figure 2.27. Schematic representation of the variation in the deformation 
texture of fcc materials as a function of SFE and temperature. 
The brass type is described in the table below. 

Brass-Type Copper-Type 

Tension <100> fibre <111> fibre 

Rolling a fibre 13 fibre 

Torsion mostlyB mostlyC 

As in the case of Figure 2.2, we can define three different regions in Figure 

2.27. Region 1 is usually explained in terms of twinning, latent hardening and 

faulting. As the last 3 mechanisms are particularly associated with low 

temperatures or low SFE, they will not be considered further in the rest of this 

work. Region 2 is generally interpreted in terms of the relative ease of cross­

slip. Region 3, which is the domain of interest in this study, can be interpreted 

in terms of the ease ofcross-slip, the activation ofnew systems, and recovery. 
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In the review of the papers dealing with deformation textures, it was seen 
that none of the authors cited interpreted the warm deformation textures in 
terms of recovery. Only one such example was found, which was not cited here 
because it dealt with the cold, warm and hot rolling of bcc metals [84]. The 
author observed a modification of the cold rolling texture at intermediate 
temperatures (due to recovery) and a drastic change at high temperatures (due 
to recrystallization). He explained the development of high temperature 

deformation textures with the aid of the theories classically ascribed to 
annealing textures. These are generally interpreted in terms of 
recrystallization and grain growth. Although recrystallization is beyond the 

scope of the experimental part of this study, it will be useful at this point to 
describe briefly the annealing textures observed in fcc metals, as well as the 
theories developed to explain them. In this way, it will be possible to determine 
whether some of the mechanisms responsible for texture change during 
annealing can be responsible for some of the texture changes taking place 
during deformation. In the section that follows, emphasis will especially be put 
on recovery. 

11.2. ANNEALING TEXTURES 

This term is quite general and designates the texture produced in a material 
on annealing after deformation, whatever the softening processes involved. In 
general, an annealing texture is the result of a competition between recovery, 
recrystallization and grain growth (normal or abnormal), and sometimes the 
final result is influenced by more than one of these processes. On going through 
the literature, it becomes rapidly obvious that different terms are used for the 
same mechanism and sometimes the same term designates different processes. 
So before going further, it will be important to define the terms which are going 
to be used throughout this discussion. The definitions given below are the ones 
which have been found to be the most common. 

During annealing, recovery generally designates the softening process 
which precedes recrystallization, during which there are local annihilations of 

dislocations, accompanied by the formation of sub-boundaries (polygonization). 

There is usually no migration of grain boundaries, but the continuous growth of 
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subgrains takes place, leading to an increase in misorientation which can even 
produce high angle sub-boundaries [84]. Primary recrystallization is composed 
of the two processes: nucleation and normal growth of the nuclei (sometimes 
also called continuous grain growth or recrystallization) by the migration of 
high angle boundaries. Both nucleation and grain growth can be orientation 
dependent. Secondary recrystallization generally designates the discontinuous, 

abnormal or exaggerated grain growth which can follow the normal growth. It 
is only possible in a matrix stabilized against normal grain growth. Certain 
orientations cause matrix stabilization and thus actually initiate secondary 
recrystallization (or "discontinuous" grain growth). In this process, both the 
orientation dependence of the grain boundary mobility and of the surface 
energy must be taken into account [22]. Finally, tertiary recrystallization arises 
from orientation-dependent differences in the surface energy [80]. Whenever 
one of the basic processes is orientation dependent, the recrystallized grains of a 
deformed and annealed single crystal can possess only certain quite definite 

orientations. This is also true in the case of a deformed and textured polycrystal 
for which a rise in temperature leading to softening will cause a definite 
annealing texture to develop from the deformation one. 

During deformation, these terms can designate somewhat different 
mechanisms. Recovery can signify either the process defined above or, more 
exceptionally, continuous subgrain and grain growth, Le. a type of primary 
recrystallization without nucleation. In the latter case, the migration of high 
angle boundaries is made possible because of the high level of strain achieved 
during deformation; this can occur at intermediate and elevated temperatures. 
Under certain conditions [84], this process is followed by recrystallization, 
which in fact is what we have referred to above as secondary recrystallization, 

since it follows normal grain growth [84]. We will use here the term recovery to 
signify the absence of nucleation (whether there is high angle boundary 
migration or just subgrain growth) and the terms primary or secondary recrys­
tallization to signify continuous or discontinuous growth following nucleation. 

As these mechanisms and their influence on the texture have been 
investigated almost solely during annealing and not deformation, whereas it is 

the latter which is ofinterest in this investigation, it will be useful at this point 
to review the theories associated with the formation of annealing textures in 
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order to determine the extent to which these theories can be transposed to the 
case of dynamic recovery. In studies of annealing textures, much attention has 
been directed towards finding the nature, location, and orientation of the nuclei 
of the recrystallizing grains, and to the factors that govern their growth into 
the cold worked or recovered surrounding material and also their growth into 
other recrystallized grains if this occurs. With so many factors and their 
interactions being involved to different extents in different experiments, it is 
not surprising that alternative interpretations have been proposed throughout 
the history of research in this field, and that theories frequently rest on 
unproven or controversial assumptions, or seem to apply only under strictly 
limited conditions. 

Annealing textures have been most extensively studied after rolling 
because of the importance of this deformation mode in forming operations and 
the influence of texture on the directionality of properties in the finished 
products. In this section, only the annealing textures developed after rolling 
will be reviewed and the existing theories of the formation of recrystallization 
textures will be described. The annealing textures developed after 
axisymmetric deformation such as compression, extrusion or drawing will be 
ignored because few papers dealing with this subject were found and the results 
are rather dated and show little agreement. 

II.2.1. EXPERIMENTAL OBSERVATIONS 

Because of the importance ofrolling both industrially and in the development 
ofCODF's, many results concerning the recrystallization texture of aluminum, 
copper and nickel alloys can be found in the literature. The influence of 
annealing temperature and time, composition, and the presence of precipitates 
was studied but the interpretation of the results is rather complex and even 
contradictory. In particular, it is still impossible to predict with any degree of 
reliability the annealing texture that will result from a new deformation 
texture. The reason for this uncertainty lies in the lack of knowledge about 
important details of the deformed state and about recrystallization processes in 
general. Minor details of the deformed state - irrelevant for understanding the 
deformation behavior- can become important factors during recrystallization. 
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Inhomogeneities of deformation in small volume fractions, practically invisible 
in the deformation texture, can serve as nucleation sites for recrystallization. 

Accordingly, the choice of the experimental results reviewed here was based 

on the following two considerations: 

i) They should serve as examples to illustrate the different theories. 

ii) They should cover more or less the whole range of annealing textures 

found in fcc materials. 

The work covered can be grouped in three different categories: 

The 2 extreme cases of the annealing textures formed in brass and copper 


(which correspond to the extreme cases described above for the rolling 


textures). 

One example of the transition between the two, in Cu alloys. 


One example of the partial retention of a deformation texture in Al 


alloys. 


In Figure 2.28 [85], some typical textures measured after rolling and 

subsequent primary recrystallization are displayed for Cu and a Cu-5%Zn 
alloy: on annealing, the copper-type rolling texture is transformed into a strong 

cube texture, while the brass-type rolling texture transforms into one having 

{326}<835> as the main component. Intermediate rolling textures give 

intermediate recrystallization textures which do not necessarily lie between 
the two extreme cases. In other words, unlike the transition in the rolling 

textures, the transition here is not continuous. Similar results were reported by 
Eichelkraut and co-workers [67] for a series of Cu-Ge alloys. Their results are 
presented in Figure 2.29 in the form of ODF's and the volume fractions of the 
principal components as a function of the Ge content in Figure 2.30. The two 

extreme components, {100}<010> and {236}<385>, are associated with the 

lowest and highest concentrations of Ge, but the transition between the two 

appears to occur in several stages with different intermediate components so 

that a rather complex transition range is observed. The authors divided the 

concentration range of Ge investigated, 0 to 9%, into 4 subranges, in which the 

observed texture components are the following: 
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-.. 


Deformation Recrystallization 

Figure 2.28. {Ill} pole figures of rolling textures of Cu and Cu-Zn alloys 
before and after recrystallization. a), c) and e) subsequent to 
rolling with 95% thickness reduction of a) Cu and c) Cu-5%Zn at 
room temperature and e) Cu-5%Zn at 77 K. b), d) and f) show the 
corresponding textures after primary recrystallization [85]. 

1) Range 1 (pure copper): the recrystallization texture is characterized by 

the dominance of the cube texture. 

2) Range 2 (0.4 to 2% Ge): here there is a sharp reduction in the strength 
of the cube component and its first and second generation twins appear. They 
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Figure 2.29. Some typical recrystallization textures of Cu-Ge alloys (0.4, 2, 9 
wt%). ODF sections <P2=constant through Euler space [67]. 

have the orientations {122}<212> and {148}<841>, and {148}<474> and 

{447} < 184>, respectively. 

3) Range 3 (2 to 4% Ge): in this range, the rolling texture changes 

drastically, leading to a marked change in the recrystallization texture. The 

cube component and its twins disappear, and 3 new components are formed: 
{114}<221> as the principal component, {258}< 121 > and {236}<385 > (the 
brass-type recrystallization texture). 

4) Range 4 (6 to 9% Ge): all the components except {236} < 385 > 

disappear and this one becomes very sharp. 

These results for the Cu-Ge alloys are similar to the ones quoted previously 

for the Cu-Zn alloys. The situation, however, is different in the Al alloys, where 

two main components were found, i.e. the cube texture and a strong 

{123} < 634 > orientation, which has often been called the R (for 

recrystallization) component [86,87]. The latter is only found in aluminum 
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alloys and is close to the S rolling component which is very strong in Al alloys. 
This particular annealing texture is thus viewed as corresponding to the partial 
retention of the rolling texture. Note that here S designates the main rolling 
component found in Al alloys which is close to {123}<211>. This definition 

differs from the one given for copper where the S component is {123}<634> 
(and which is called R here). 

These different components have been interpreted in the literature in terms 
of the two main theories of recrystallization: the oriented nucleation and 
oriented growth mechanisms, which are now going to be reviewed in turn. 

II.2.2. THEORIES OF THE FORMATION OF ANNEALING TEXTURES 

The oriented nucleation theory, first proposed by Burgers and Louwerse[88], 
rested on the hypothesis that the orientation of the recrystallized grains is 
determined entirely by the orientation of the recrystallization nuclei. However, 
a general principle for predicting which orientations of the many that are 

present will act as nuclei has not been obvious either from theory or from 
experiment. The oriented growth theory, first proposed by Barrett [89], is based 

on the principle that certain orientations grow into the deformation-texture 

containing material more rapidly than others. This means that the shifting of 
atoms from the strained matrix to a recrystallized grain proceeds only slowly 
when the new grain has nearly the same orientation as the cold worked matrix, 
and much faster when its orientation differs in certain particular ways from the 
orientation of the matrix [22]. 

The oriented nucleation theory 

A great variety of mechanisms have been proposed for the oriented 
nucleation theory; these include the following [8]: 

a) Nucleation in the average structure of the matrix by growth of the 
subgrains with a statistical size advantage attained during recovery (e.g. by 

dissolution of certain sub-boundaries). The recrystallization texture and 
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deformation texture possess common components when this process plays an 
essential role. 

b) Preferred nucleation by subgrain relaxation in regions of strong 
orientation gradient, e.g. where sub grains are elongated and can pick up large 
orientation differences rapidly with respect to the environment. In this case, 
components of the recrystallization texture are expected to lie somewhere 
between the various components of the deformation texture. 

c) Creation of nuclei with new orientations by the inverse Rowland 
transformation. Rowland [90] proposed a twinning mechanism which leads 
from a single original fcc lattice to two new fcc lattices having a twin 

orientation relationship with respect to one another. The homogeneous shear 
necessary to accomplish this decreases the length of the [100] vector of the 
original lattice by a factor 1IV2, so that it becomes the 112[110] vector in both 
lattices. Similarly, the [001] vectOr of the original lattice, extended by the 

factor v'372, becomes [112]. Accordingly, the (010) plane of the original lattice 
becomes (111), which is parallel to the composition plane that the 'two twin­
related lattices have in common. According to Burgers and Verbraak [91], the 

mechanism whereby cube-oriented nuclei are formed in heavily deformed 
copper on annealing is the inverse of the above shear mechanism; it leads from 
two adjacent twin-related lattices having a common (111)-type composition 
plane to a single fcc crystal lattice of a different orientation. For example, 
adjacent twin-related lattice regions of two {112}<111> type crystals present 
in highly rolled polycrystalline copper undergo jointly the required inverse 
Rowland shear on annealing, forming a cube-oriented nucleus. This mechanism 
is assumed to be thermally-activated and does not require the presence of any 

cube-oriented regions in the cold rolled material prior to annealing. According 
to this mechanism, the deformation texture is transformed into the 
recrystallization texture by very particular orientation relations. Although the 
geometry of this model seems correct, it has not met general acceptance since it 

is difficult to determine what the driving force is for such a shear. 

d) Formation of annealing twins possibly as a result of growth accidents 

during the growth of normal nuclei. This process can accompany any of the 
above nucleation mechanisms and should occur predominantly in materials 
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with low SFE. It can provide practically any orientation and in this way 
promotes a randomization of the orientation distribution even if the 
deformation texture is very sharp. 

The oriented growth theory 

Nucleation is definitely an important factor in recrystallization, but it does 
not inevitably dominate the evolution of microstructure and texture. In fact, 
even orientations with very high nucleation rates can remain completely 
invisible in the final recrystallization texture if their growth rates are too 
small. Beck and Hu [92], who were strong supporters of the oriented growth 

theory, even claimed that none of the oriented-nucleation mechanisms 
satisfactorily explains the formation of the particular texture for which it was 
initially proposed. They argued that the oriented growth theory, on the other 

hand, was quite general and could explain most of the results obtained in all 
kinds of materials, except perhaps the single crystals in which there is a 
scarcity of nuclei in the orientations favorable for growth. 

It has long been recognized that grain boundary mobility is strongly 
orientation dependent. It was found, for example, that in both the primary and 
secondary recrystallization of aluminum, the fastest growing grains are those 
having a nearly 40° <111> rotational orientation relationship with the 
matrix. Boundary migration rates for recrystallized grains in deformed 

aluminum crystals as a function of the orientation difference across the 
boundary were measured by Liebmann and co-workers [93] and some of their 
results are presented in Figure '2.31. 0° and 60° correspond to positions of 
minimum grain boundary energy (60° being the twin position) and a strong 
maximum is observed around 40°. 

These observations can be interpreted using the concept of the coincidence 
site lattice first introduced by Kronberg and Wilson [94], which recognizes that 

at particular rotations a network of a specific fraction of lattice sites (1:) is 

continuous across the grain boundary_ It will be seen in Chapter VIII in more 
detail that the energy of such special boundaries is lower than for random 

boundaries and that the actual value of the GBE depends on the fraction of 
lattice sites which is continuous through the boundary. The migration rate 
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through the boundaries, however, not only depends on the orientation of the 
two adjacent crystals but also on the orientation of the GB itself. It is a 
maximum when: 

a) atom movements are possible through the boundary; and 
b) the movements required by an atom to diffuse from one crystal to the 

other are small. 

The first condition only concerns perfect coincidence sites. For these 
positions, if the grain boundary lies in the most densely packed planes of the 
coincidence lattice, diffusion will be impossible through the boundary and the 
migration rate will be zero (see Chapter VITI). This is probably the case of the 
twin boundary represented in Figure 2.31. The second condition is met for 
boundaries which: 

i) correspond exactly to a coincidence relationship, but where the GB does 

not lie in the most densely packed planes ofthe CSL or 
ii) approximate, but deviate somewhat from an ideal coincidence 

relationship (in general less than 3°) [95,96]. 
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In both these cases, boundary migration is eaSIer because of reduced atom 
movements, since certain atoms remain nearly in position while the remainder 

are only required to shuffie by small amounts (on the order of one-third of an 

interatomic movement). The second type is the most commonly observed; the 

reported high mobilities correspond to the following relationships: 40° < 111 > 
(coincidence site 38.3°, 1: =7), 20° < 111 > (coincidence site 27.8°, 1: =13), 35° 

< 100 > (coincidence site 36.9°, 1: =5),40° < 110> (coincidence site 38.9°, 1: =9) 
and 25° < 100 > (coincidence site 22.6°, 1: = 13). 

Many experimental observations seem to be in agreement with this theory 

[92]. Schnell and Grewe [97] determined the misorientations found in deformed 

and annealed copper samples. They found a large concentration of twin 

boundaries in highly deformed copper (Le. positions of minimum boundary 

energy) and a large concentration of high mobility boundaries in annealed 

copper (in particular the 40° < 111 > and 40° < 110 > orientation 

relationships). The above observation suggests that the CSL theory can also be 

used for the prediction of high temperature textures, but for a different reason 

than in the case of annealing textures. In the latter instance, the controlling 

factor is the migration rate, whereas in the former, the GBE seems to be more 

important. (Because of concurrent deformation, the migration of boundaries 

has no time to occur.) This will be explored in Chapter VIII of this thesis, in 
which a new model is developed to account for the effect of dynamic recovery on 

texture evolution at high temperature. It will be argued that polygonization 

leads to the development of an equiaxed substructure through the glide and 
climb of dislocations, and that the subgrains within a particular grain do not 
deform independently. As a result, whenever there is an ambiguity in the 
choice of active slip systems in a given subgrain, the ambiguity is suppressed by 
choosing the sets ofslip systems which minimize the GBE. 

There is in the literature much evidence for the theory of oriented growth. 

One of its advantages compared to the nucleation theory is that it is much 

easier to use. However, it is also easy to find arguments against this or the first 

theory. Most of these have been published by Beck and Hu [92] and some are 

listed below: 
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- The oriented nucleation theory assumes that specific orientations have 
a higher nucleation rate than others. These orientations can be present in the 
deformed state or be created by an inverse Rowland transformation, for 

example. However, few of the available rapidly nucleating orientations are 
found in recrystallized materials, and it is hard to know a priori which ones. 

-Similarly, the oriented growth theory assumes a high migration rate 

for some specific orientations. However. it predicts the formation of a texture 
consisting ofall the crystallographically equivalent orientations corresponding 
to maximum boundary mobility. But, in general, the complete set of equivalent 

orientations is not observed. The oriented growth theory is therefore obliged to 
rely on ad hoc assumptions regarding the orientations which will occur and for 
what reasons. 

-It has often been observed that similar rolling textures can lead to 
different recrystallization ones and that different rolling textures can lead to 
similar recrystallization ones. No simple explanation can be given for this 

generalization, especially on the basis of only one of the above theories. 

For these reasons, the actual explanation probably relies on a combination 

of the two theories, which means that the nucleation processes govern the 
range of orientations available, and that there is further selection from among 
these through the orientation dependence of the growth rate. With the aid of 
such an oriented nucleation/selective growth theory, it is then possible to provide 
an interpretation of the results reported above. 

II.2.3. INTERPRETATION OF THE EXPERIMENTAL RESULTS 

Brass and copper annealing textures 

The brass type of recrystallization texture, which issues from the brass type 
of rolling texture, Figure 2.28, is generally interpreted in terms of 40° < 111 > 

rotations. The two recrystallization components, {326} < 835 > and 

{013}<100>, are fast-growing orientations which can be deduced from two 
twin components of the {110}<112> part of the rolling texture. However, if 
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only oriented growth were important, we should find the {211}<011 > 
component as well, which can also be deduced from the {110}<112> 

orientations by a 40° < 111 > rotation, but which is never observed. This is 

evidence for the view that nucleation also plays a role in the development of 
this texture. It should be noted that the {013}<100> orientation is already 

present at the deformed stage and that suitable nuclei may be formed by 

ordinary subgrain growth (mechanism "a" of the nucleation theory). The same 

mechanism cannot, on the other hand, produce the {326} < 835 > orientation, 
which lies far outside the spread of the rolling texture. However, second 

generation twins of these orientations fall just midway between the two main 

rolling components {110}<112> and {110}<001>. So this orientation can be 

provided with suitable nuclei by subgrain rotation and relaxation in transient 

regions together with the formation of annealing twins (mechanisms "b" and 

"d" of the nucleation theory). By contrast, the {211}< 011> orientation, which 

is also a fast growing one, cannot be created by any of the above mechanisms. 

So, the brass recrystallization texture can be understood as evolving from the 

rolling texture by selected growth, but one in which not all fast-growing 

orientations are supplied with suitable nuclei. 

The cube texture is possibly one of the most important and certainly the 

most investigated texture in fcc metals. It has sometimes been accounted for on 
the basis of the concept of oriented growth [8]. However, since the main 

components of the rolling texture and the cube component are not related by 

known relationships for maximum growth rate, it has to be explained as a 
compromise texture with a fairly good growth rate being applied to several 
components of the rolling texture. It is assumed that this orientation is a good 
example of a case where oriented nucleation is the controlling mechanism. 
Whether the nuclei are present in the deformed state or are created by an 
inverse Rowland transformation (mechanism "Cff), cube nuclei have been 

observed to appear, polygonize and grow faster than any other orientation, so 

that they eventually consume the rest of the material. The principal controlling 

factor in this case is the nucleation rate. 
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Brass 4 to - copper texture transition 

The texture transition depicted in Figures 2.29 and 2.30 can be interpreted 
in terms ofthe superposition offour different influences: 

i) Rolling texture changes due to the decrease in SFE brought about by 
increasing the Ge content. 

ii) Changes in the microstructure of the deformed state, particularly the 

development of inhomogeneities such as mechanical twins and shear bands, 
which become more dominant with increasing Ge concentration. 

iii) The increase in the frequency of recrystallization twins with 

decreasing SFE (nucleation theory). 
iv) The change in mobility of the grain boundaries as boundary 

segregation increases with the Ge content (growth theory). 

The four ranges ofrecrystallization behaviour of the Cu-Ge alloys described 
in Section II.2.1 have been interpreted in the literature [67] as follows: 

1) The case of the pure copper, which exhibits the strong cube texture, is 
given the same interpretation as the one outlined above (compromise between 
oriented nucleation and oriented growth). 

2) Two points of view have been expressed regarding the preference of 
the twin to the cube position as the Ge concentration is increased. The first 
considers that the addition ofGe decreases the mobility of the cube boundaries. 

The second point of view is that the strong decrease in SFE increases the 
frequency of recrystallization twinning and thus favors the formation of higher 
generation twins (nucleation theory). It should be added that the second 
generation twins are favorably oriented for growth (growth theory) and that 
increasing the twinning frequency by increasing the Ge content has the effect 
of increasing their volume fraction, a trend which is observed experimentally. 

3) In this range, the three recrystallization components are twin related 

to the three major components of rolling. These orientations are apparently 

present in small quantities in the rolling texture and are the first to form 
nuclei. However, they have a low migration rate and the grains remain small 

unless recrystallization twinning occurs, which is assumed to be the controlling 
mechanism in this range. 
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4) The fourth range corresponds to the development of the brass 
recrystallization texture; it has already been interpreted on the basis of a mixed 
oriented nucleation / selective growth theory. 

Al alloys 

The last component that will be interpreted here is the R ideal orientation, 
found only in Al alloys, at a level that depends on the purity of the alloy. As this 
component is very close to one of the main rolling textures, namely the S 

component, this has often been interpreted as a partial retention of the rolling 
texture (R texture as retained rolling texture). Ito et al. [86] concluded that this 
is the case only if continuous grain growth (Le. what we have called recovery) 

occurs in the material. Due to the presence of impurities in the material, 

however, this component can also be formed by discontinuous recrystallization 
or grain growth, Le. by an oriented growth mechanism (since each of the 4 
symmetrically equivalent components of the S texture is oriented to the other 

three components by an approximate 40° < 111> rotation). Recently, Hirsch 
and Lucke [87] have shown that both mechanisms, i.e continuous and 
discontinuous grain growth, can occur in these alloys. The retention of the 

rolling texture in aluminum alloys has also been observed by others 
researchers [98]; these workers have established clearly that polygonization 
and subgrain coalescence occur, together with grain boundary migration, 
without the nucleation ofnewly oriented grains. 

II.2.4. CONCLUSIONS REGARDING ANNEALING TEXTURES 

We conclude this brief review of recrystallization textures with the 
following three comments: 

a) It is very difficult to predict and even to explain annealing textures on the 

basis of only one mechanism or theory. Both nucleation and growth are 

orientation dependent and the two must play significant roles. 
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b) The importance of oriented growth has been clearly demonstrated in both 
the recovery and recrystallization processes. It makes use of the coincidence 
site model which relies in turn on two recognized facts: 

i) For specific misorientations, the grain boundary energy is a minimum. 
This leads to very stable boundaries which also have a minimum migration 

rate. These boundaries are often observed in cold worked materials. 
ii) The migration rate of these boundaries depends strongly on the 

relative orientation of the adjacent grains. A grain boundary that is close to, 

but deviates slightly from the ideal position has the highest mobility. These 
fast migrating orientations are observed to be active during the operation of 

softening processes. 

c) The above principles apply to deformation as well as annealing, and to 

recovery (during which fast migrating boundaries can develop by subgrain 
formation) as well as recrystallization (during which the nucleation of new 
grains provides the special boundaries). It thus appears that the coincidence~ 
site theory might be useful in accounting for the influence of increasing 
temperature during metal processing. An attempt to do so has been made in the 
present investigation; the results of this endeavour are described in Chapter 

VIII below. 

11.3. OVERALL CONCLUSIONS 

At the end of Section n.l, we advanced the hypothesis that, in high SFE 
materials, an increase in the temperature produces an increase in what we call 
the brass component for any mode of deformation. We have seen that this 
generalization is well supported by experimental observations in the cases of 
rolling and torsion, but remains to be proved in detail for tension and 

compression. 

The accurate prediction of compression textures could constitute the subject 
of a thesis in itself since an unusual phenomenon is frequently observed in this 

deformation mode, Le. curling of the grains [8]. Thus, it was felt that this 
deformation mode is not suitable for a first study of the influence of 
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temperature since mechanisms such as grain curling could prevent the sole 
effect of temperature from being isolated. 

It was therefore decided to check the above hypothesis only in tension, or 
more precisely, in axisymmetric extension. Swaging was selected for this 
purpose, which allows high levels of deformation to be reached with the aim of 
comparing some cold and warm textures in aluminum. The description of this 
study constitutes the subject ofChapter IV. 

Another reason for reducing the extent of the experimental part of this work 
was that no detailed texture measurements could be performed at McGill 
during the course of this investigation. 

It has also been established in this chapter that the following mechanisms 
may be responsible for the aspects ofhigh temperature behaviors described: 

cross-slip, 

increases in rate sensitivity, 

activation of systems other than the {111}< 110> which operate at room 

temperature, 

development of a substructure through glide and climb and 

minimization of the sub-boundary energy. 


These mechanisms have been introduced in the past to interpret the 
deformation textures of high SFE metals deformed at room temperature. It was 
felt in the present study that they could be adequately modelled to account for 
the high temperature deformation behavior of the high SFE metals as well. 
This is done in Chapters V to VIII. 



CHAPTERll 

THEORIES OF THE DEVELOPMENT OF DEFORMATION 
TEXTURES 

111.1. GENERAL REQUIREMENTS 

Before reviewing the classical theories oftexture development, it is useful to 

define the different steps that must be followed in order to calculate the 
reorientation of the grains of a polycrystal following a particular deformation 

path. 

1) The basic assumption in all the models described below is that the only 
mechanism involved in plastic deformation is slip, supplemented in certain 
cases by twinning. This starting point has two consequences: 

i) The Schmid law [99] must be respected in each grain of the polycrystal. 
This law, first expressed in 1924 for the case of uniaxial tension, may be stated 

in a form that is applicable to any stress state [100]: "a single crystal yields on 
any particular slip system if the shear stress resolved on that slip plane and slip 
direction reaches a critical value which is "the yield strength" or "critical 

resolved shear stress" (CRSS) on that slip system". If we designate by a the 
.w 

stress state inside the crystal and by "tcs the eRSS on a given system s, this can 
be expressed as: 

(3.1) 

where mil is a geometric factor characteristic of slip system s, and defined by: 

(3.2) 

with nand b being respectively the slip plane normal and the slip direction. The 

Schmid law does not necessarily assume that"tc is the same for all slip systems 

and can even be generalized to the case of twinning. "t can never exceed the 
critical value "tc and the systems s for which equality holds in equation 3.1 are 

- 67 ­
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the ones which are potentially active. The mathematical expression of the 
Schmid law also implies that purely hydrostatic stresses are incapable of 
causing plastic deformation. In such a case, 1: will be zero for all slip systems. 
This reduces to 5 the number of independent components of the stress tensor. 
Similarly, the assumption that there is no change in volume during plastic 
deformation reduces to 5 the number of independent components of the strain 

rate tensor. 

ii) The assumption that the deformation is accommodated solely by slip 

according to the Schmid law (supplemented perhaps by twinning) has the 
further consequence that the components of the strain rate tensor eimposed on 

tV 

the grain (the microscopic strain rate tensor) can be expressed as: 

S'se. .. =L m .. y (3.3) 
V IJ 

S 

where the sum is carried out on all the active slip systems s (Le. those for which 

1: = 1:c ). 

We can see that equation 3.1 is a special form ofthe general yield cri terion 

f(o .. ) S C (3.4) 
IJ 

commonly used in the mathematical theory of plasticity. Similarly, equation 
3.3 follows from equation 3.1 by use of the associated flow rule 

• af . (3.5) 
e .. = -A. 

IJ 80 .. 
IJ 

which is another basic hypothesis of this theory. Equation 3.5 is equivalent to 
the statement that the function f in the yield criterion is also the plastic 
potential [100,101]. The available slip systems are of the type {111}< 110> (12 
of them) and the possible twinning systems are of the type {112} < 110> for fcc 

metals. 

2) Once the basic equations describing the mechanism of slip in a single 

crystal have been set up, the next step is to define the boundary conditions 

applied to the polycrystal, i.e. the macroscopic states of stress and strain rate 
described by two tensors called Sand E. Again here, because of the existence of 

N IV 

a plastic potential and ofan associated flow rule describing the plastic behavior 
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of a polycrystal, these two tensors are related, and only half of the ten 
independent components of the two tensors need to be prescribed. The different 
components of these tensors are usually known or assumed to be known. 

3) Some further assumptions have to be made in order to derive the states of 
stress and strain rate 0 and t in each grain of the polycrystal from the 

N tV 

macroscopic tensors. This is where the different theories diverge in the sense 
that each of them involves a different assumption leading from the macroscopic 
to the microscopic quantities. Here again, only halfof the stress and strain rate 
components need to be defined, the rest can be derived with the aid of equations 
3.1 and 3.3, as explained below. 

4) Once the microscopic strain rate tensor is known, it is possible to 
calculate the shear rate ys on each slip system in each grain with the aid of 
equation (3.3) and from there to calculate the rotation of the crystallographic 
axes of a given grain with respect to some external axes linked to the specimen. 
It is not obvious at first sight how given shears on specific systems produce a 
rotation of the crystallographic axes. This can be visualized with the aid of 
Figure 3.1 [102], which illustrates the case of a single crystal deformed in 
tension. The deformation is imagined to take place by single slip. During 
deformation, the blocks of crystal between the active slip planes, and thereby 
the crystal lattice, rotate in such a way as to align the slip direction with the 
tensile direction. Similarly, the lattice rotation in a compression experiment 
tends to align the slip-plane normal with the direction of compression. These 
rotations are produced by the boundary conditions imposed on the single crystal 
in the sense that the tension axis and compression plane are forced to remain 
fixed with respect to the laboratory reference system. 

In the case of a polycrystal, the situation is somewhat more complex and, 
apart from the stress and strain rate states in each grain, some further 
assumptions have to be made in order to assess the crystallographic rotation. 

For example, in tension, we will assume that the tensile axis remains fixed in 
all the grains of the polycrystal. Similarly, in rolling, we will assume that the 
rolling plane and rolling direction are fixed in each grain. These statements are 
equivalent to assuming that certain components of the displacement rate 
gradient tensor are zero while others are not. However, these assumptions have 



-70 ­

/' TENSILE DIRECTION ~ 

.----+w. ------------------------------------.,::::==~~ 
SLIP PLANE 

NORMAL 

... O~d ~ pew 

olN n~ 
SLIP 

DIRECTION 

BEFORE SLIP AFTER SLIP 

Figure 3.1. The lattice rotation produced by tensile deformation [102]. 

to be made explicitly when using complex theories, and this is rarely done in 

the papers dealing with this subject. We have chosen here to use the method 

originally developed by Kocks and Chandra [103] and also used by Canova 

[104] and Leffers [102] which is explained in detail in Appendix 1. 

These general requirements being valid for all the models of deformation 

texture development, we can now review individual theories and point out the 

differences between them. 
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111.2. THE TAYLOR THEORY (1938) 


Taylor [4] was interested in two different problems: i) first, the selection of 
the active slip systems in a deformed single crystal for which the 5 components 
of strain rate are known and the calculation of the subsequent shear rates and 
rotation of the crystallographic axes; and ii) the calculation of the shear rates 
and rotations in all the grains of a polycrystal for which only the macroscopic 
quantities are known. In the first part, he made use of what is often called the 

Taylor criterion and in the second part, he made use of what is known as the 
Taylor hypothesis. 

m.2.1. THE TAYLOR CRITERION 

When all five components of the strain rate tensor e are imposed on a 
i"J 

crystal, equation 3.3 constitutes a set of five equations in which the unknowns 
are the quantities ys. It seems convenient at this point to adopt a matrix and 

vector instead of a tensor notation. The one adopted in this thesis is described in 
Appendix 2 [108]. With this notation, equation 3.3 can be rewritten as 

(3.6) 

where ehas five rows and one column. Equation 3.6 can now be solved uniquely 
for the shears provided that it can be rearranged as 

. M- 1 ' (3.7)
Y = e 

which means mathematically that the matrix M must have five rows and five 
columns and has an inverse matrix. This implies that we must only consider 
five slip systems at a time and that these systems must be independent (for the 
determinant of the matrix M to be different from zero). Le. the individual 
shears on each of these systems cannot be decomposed into shears on the 
remaining systems [5]. 

Noting that for fcc metals there exist many ways of choosing 5 independent 
systems among the possible 12, Taylor considered which partiCUlar 

combinations will actually operate under a given state of strain rate and 

postulated that the preferred sets of slip systems will be the ones for which the 
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sum of the shears on all systems is a minimum. In his work, he took the eRSS 
to be the same for all slip systems, and consequently, the internal work rate can 

be written as 

(3.8) 
S 

Taylor in fact postulated that the internal work rate (and not the sum of the 

shears) had to be a minimum. This criterion is now known as the minimum 

internal work rate criterion and can be generalized to the situation where the 

eRSS has different values on different slip systems: 

(3.9)W. = "'" r,SyS =Min , L- c 
S 

In equation 3.9, the convention that"tc and ys have the same sign has been used 

so that "tc.Ys is always positive. It is well known that there are 384 combinations 

of 5 independent systems [5,110] so that Taylor had to invert equation 3.6 for 

each combination in order to find the solution. Nowadays, however, this can be 

solved very easily with the aid of linear programming techniques [111]. The 

most interesting result of Taylor's work is his discovery that, given a unique 
value of the eRSS, the solution is never unique and that the total number of 

possible slip systems is always 6 or 8. For this reason, he was obliged to 

calculate all the possible solutions and rotations for each grain and then take 

the average solution. Having thus more or less solved the problem of the single 

crystal, he then approached the problem of the polycrystal. 

ill.2.2. THE TAYLOR ASSUMPTION 

By looking at a micrograph of the cross-section of a drawn wire, Taylor 
noticed that all the grains were elongated in the direction of extension, and 
contracted in the two perpendicular directions. He concluded that each grain of 

a polycrystal suffers exactly the same strain as the surrounding bulk material. 

It is known nowadays that this is not exactly true, but the assumption has the 

advantage of assuring continuity of the strain rate through the grain 

boundaries so that no holes are created. This assumption can be written 
(3.10) 
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Taylor [4] investigated the axisymmetric extension of an aggregate constituted 
of 50 differently oriented grains and selected the active slip systems for each 
with the minimum internal work rate criterion. He then calculated the possible 
rotations of the grains after a given increment of strain. Obviously, different 
stresses are induced in differently oriented grains, so that equilibrium at the 
grain boundaries cannot be fulfilled. Taylor claimed that the stress' differences 
across the boundaries can be accommodated by elastic strains. His results are 
well known and will not be presented here. 

It is ofmore interest to compare some predictions based on the Taylor theory 
for large deformations with experimental results. This is done for the case of 
rolling in Figure 3.2a which is taken from the work of Mecking [39]. It can be 

seen that the agreement between theory and experiment is reasonable for the 
copper-type rolling texture. The main component predicted by the Taylor theory 
is very near the eu component but the S and brass components are absent. The 
Taylor predictions are better for tension and lead to a very strong A component 
for torsion, as will be seen later. All the results given by the Taylor theory are 
in good agreement with observations for intermediate strains. However, at 
large strains, the stress differences between grains are unlikely to still be 
accommodated by elastic stresses and the agreement deteriorates with 
increasing deformation. It will be seen later that the Taylor theory can be 
modified to produce a considerable improvement. Finally, some comments will 
be made about the stress state. Taylor was not especially interested in stresses 
in his early work and did not even assume that the shear stress on all the active 
slip systems was the same. He never referred to the Schmid law and did not 
even mention the dislocation! With the aid of equation 3.1, however, it is 
possible to calculate the stress components once the active slip systems are 
known. A still more direct method is to use the yield criterion developed by 
Bishop and Hill [101,112] which will now be described. 

111.3. THE BISHOP AND HILL THEORY (1951) 

Just as in Taylor, Bishop and Hill first considered the case of a single crystal 
and then applied their theory to the polycrystal, again using the Taylor 
assumption of uniform strain. They first demonstrated that the Taylor criterion 
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Figure 3.2. Theoretical {Ill} pole figures obtained for 80% rolling reduction 
predicted by: 

a) the Taylor model compared 
with an experimental copper 
texture [39J. 

1 
2--:~~ 
3 
5 

c) the modified Sachs model of 
Leff'ers. The state of stress is a 
combination of the Sachs stress 
state plus a random distribution. 
This is compared to a brass-type 
texture [102]. 

b) the Sachs model compared 
with an experimental brass 
texture (94% reduction) [102]. 

8 

d) the Leff'ers model which accounts 
for the effect of cross-slip. A 
combination of the Taylor strain 
rate and some random components 
was used. This is compared to a 
copper-type texture [102J. 
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was equivalent to the stress criterion for yielding expressed by the Schmid law. 
In other words, they proved that if the stress state in a given crystal (J is such 
that "t="tc on each active slip system and "t<"tc on the others, then the internal 
work rate expended on the active slip systems is a minimum. They postulated 
the single crystal yield surface (SCYS), which is the geometric representation 
of the yield criterion. Equation 3.1 can be rewritten with the vector notation of 

Appendix 2 as follows 

o .N~ - r,s so (3.11)
tiC 

Clearly, equation 3.11 defines a set of hyperplanes in a 5 dimensional space, 
the normal to each hyperplane being the vector NS. All the hyperplanes 
associated with the 24 possible slip systems (the 12 mentioned above plus their 

opposites) define a 5 dimensional polyhedron which has flat faces and sharp 
corners. When the CRSS has the same value for all systems, this polyhedron 
has 56 vertices, at each of which 6 or 8 hyperplanes intersect; this is called the 

single crystal yield surface (SCYS) and all the possible stress states for plastic 
deformation lie on this surface. Bishop and Hill observed that when 5 
independent slip systems are required, only the 56 vertices (28 plus their 

opposites) correspond to possible stress states; they postulated further that the 
state of stress associated with a given strain rate tensor is the one which 
maximizes the external work rate. This is known as the maximum external 

work rate principle and is expressed by 

. (3.12)W =o.e.. = a.e. =Max 
e U U I I 

A great advantage of this method is that, once the strain rate vector is 
specified, We can readily be calculated for the 28 vertices and the maximum 
value found in this way. This procedure is very rapid and the active slip 
systems are quickly found. In 1969, Chin and Mammel [113] proved that the 
principles of maximum external and minimum internal work rate are 
completely equivalent. Kocks [100], Van Houtte [114] and Renouard and 

Wintenberger [115] also came to the same conclusion. It should be added at this 

point that the two principles are convenient ways of finding the active slip 

systems and stress state and are both consequences of the Schmid law. 
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Once equations 3.1 and 3.3 are accepted, the following consequences are 
implied: 

i) Ifwe rewrite the Schmid law 

T.S (3.13)= o. N S 

C l' 

and equation (3.3) in vector form 

e. = N~yS (3.14), l 

the external work rate can be written as: . .
• 8·8 s·s 8·8W = o.e. = o.(N. y )= (o.N)y =1; y =W. (3.15) 

e " " " C , 

This means that the internal and external work rates are equal. 

ii) Suppose that we consider another stress state (1* together with the 
actual slip systems which are the solution to the problem. These slip systems 
cannot be activated under such a stress state because, for at least one system s 

of the group, we have: 

* S Sa.N. <T. (3.16)
! ! C 

which implies that 
... Ii • S ·8 .. S • S s· s • •

o.e.=a.(N.y )=(o.N.)y <T.y =a.e.=W (3.17) 
l' " " C I' e 

so that the external work rate We is a maximum for the solution. 

iii) Similarly, let us consider another set of slip systems characterized by 
the vectors NS' and compatible with the strain rate vector. These systems not 
corresponding to a solution, they are not at a critical state, so that 

(3.18)o. N S
' < l' for at least one s' 

" C 

With the aid of 

(3.19) 

we can write that 
, "st , .. s' st • $' • • •s (3.20)l y > (0. N S 

) y = o. (N y ) = a. e. = r. yB = w. 
c " I' II C , 

which means that the internal work rate Wi is minimum for the solution of the 
problem. 
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iv) It then follows that the principle of the maximum work rate is 
equivalent to saying that the SCYS is convex and that the strain rate vector t 
must be perpendicular to the yield surface or must lie inside the cone of normals 
of the vertex corresponding to the actual stress state. As W(3.12) represents the 
projection of t on at this product is necessarily a maximum for this condition 
(see Figure 3.3). 

Figure 3.3. Illustration of the normality rule on the SCYS. 
If the, pripciple of maximum work is verified, 
thenW > W* implies that t must lie in the cone of 
normals of the vertex a. 

The Taylor and Bishop and Hill theories being equivalent, they obviously 
produce the same answer. There are, however, two weaknesses associated with 
these theories: 

1) When the critical resolved shear stress is the same for all the systems, 
there are ambiguities in the choice of the active slip systems. This problem can, 
for example, be solved by taking the average value of all the possible rotations. 
Such an average has no physical meaning, except that it can represent the 
behavior of a grain divided into several regions which do not deform along 
exactly the same path, each of them selecting a different equivalent solution. 
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Other criteria can also be used: e.g., the use of the Renouard and Wintenberger 
criterion (Chapter V) or that of a rate-sensitive technique, and the selection of 
specific combinations in the case of cross-slip (Chapter VI). The extent of the 
ambiguity problem will be considered further in Chapter V. If, however, 

different values of the CRSS are introduced, when the twinning systems are 
added, for example, or to account for latent hardening, the ambiguities are 
reduced considerably and can even be completely suppressed (Chapter VI). 

2) The equilibrium of stresses is not satisfied and this has led 
investigators to develop other theories, such as ones that follow. 

111.4. THE SACHS MODEL 

m.4.1. THE ORIGINAL SACHS MODEL (1928) 

Soon after Schmid [99] discovered that crystals deform when a critical shear 

stress "tc is reached on a crystallographic slip system (1924), this criterion was 
applied to polycrystals by Sachs [3]. He assumed that the state of stress in each 
grain is proportional to the macroscopic stress in such a way that the CRSS "tc is 
achieved in all the grains for at least one slip system. If S designates the 
macroscopic stress vector, the microscopic stress vector (J in grain g is simply: 

(3.21)
0= A S 

g 

where Ag is a parameter which depends on orientation such that, for at least one 
system s in this particular grain, we have, according to the Schmid law: 

r! =0 N S (3.22) 
c g 

Here "tcs is the resolved shear stress on system sand Ntl is the 5 dimensional 
normal associated with system s. 

In his model, Sachs was not interested in texture development and there 
was no mention of strain rate vectors. He only wanted to calculate the stress 

state in the polycrystal and only the stress direction was imposed. In order to 

predict texture development with such a model, at least one component of 
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strain rate has to be imposed on the polycrystal and on the grains, using the 
Kochendorfer assumption, for example [116]. Kochendorfer wanted to calculate 
the strain rate in each grain in a uniaxial tensile test using the Sachs model. 
He assumed that each grain undergoes the same tensile strain as the 
polycrystal. In this way, both the stress and the strain rate components can be 
determined in each grain, and the rotation of the grains can also be calculated. 
The same can be done in rolling where, in addition to the conditions on the 
stresses, we can for example require all the grains to deform by the same 
amount in the compression direction. 

These assumptions imply that all the grains deform plastically 
simultaneously, usually by single slip, except in the case of very symmetrical 
orientations. Sachs tried to justify his assumptions by metallographic evidence 
of only one set of slip lines in some samples (which does not necessarily imply 
one kind of slip system). However, the Sachs approach violates the equilibrium 
condition for the stresses, which can be different from grain to grain. Sachs 
further suggested that this could be solved by inducing elastic stresses. More 
probably, this model should lead to material separation at the grain 
boundaries, which has never been observed [39]. Some results of a Sachs 
calculation were presented in Figure 3.2b for the case of rolling [102]. It can be 

seen that the texture obtained in this way is very sharp and mainly composed of 
the brass component. A few points can also be seen near the Goss position. 

m.4.2. THE LOWER BOUND THEORY 

In order to assure equilibrium of the stresses, an alternative is often 
proposed [104] which is also referred to as a Sachs theory. The assumption 
made is that the stress in each grain is the same and equal to the macroscopic 
one, in such a way that only one grain of the polycrystal is plastified (the 

"weakest point of the aggregate"). Usually only single slip takes place in the 
grain which is critically stressed. This theory is known as the lower bound 

theory in plasticity because it gives a lower limit to the "length" of the 

macroscopic stress vector. Similarly. the Taylor assumption of uniform strain 

rate produces an upper limit to the same quantity and by extension to the 
macroscopic work rate and in this way is referred to as the upper limit theory. 
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The validity of these limits is demonstrated in Appendix 3. Used together, they 
provide good estimates of the plastic properties of a polycrystal. While the 
Taylor and Sachs (with the addition of the assumption about one strain rate 

component) theories are widely used in texture calculations, the lower bound 
theory is not, since it deals only with the initiation of plastic deformation. 

It was stated at the beginning of this chapter that half the 10 components of 

the stress and strain rate vectors have to be imposed on a grain in order for the 

others to be assessed. One extreme is the Taylor model where the 5 components 

of the strain rate are imposed, and the other is the Kochendorfer model where 4 

stress directions are imposed together with one component of strain rate. In 

between these limits, there remains room for "intermediate" situations which 

will now be examined. These include the "modified Sachs model" employed by 

Leffers [102] as well as the relaxed constraint theory originally proposed by 
Honneffand Mecking [117]. 

I1L5. INTERMEDIATE MODELS 

Ill.5.l. THE MODIFIED SACHS MODEL (1975) 

Leffers [102] recently made the observation that the Taylor assumption was 

too strict and was only applicable to materials having high SFE's where, 

because of extensive cross slip, the deformation can be reasonably 
homogeneous. So he proposed a new model which he called a modified Sachs 

theory because, like Sachs, he first applied a stress state to the material and 
then considered that the active system in each grain is the one which is the 
most highly stressed. To calculate the rotation of the crystallographic axes, he 
simply allowed a shear increment of fixed length to take place in the grain. To 

account for differing microscopic mechanisms in different materials, he 

adjusted the stress state imposed on the grain. For example in rolling, the basic 

stress state imposed is composed of only 2 normal stress components (one in the 

compression direction and one in the transverse one). In this case, the grains 

are allowed to shear, which is very close to the Kochendorfer type of slip. 

Leffers claimed that this model should account for the texture development of 

low SFE materials in which single slip is observed in the interior of the grains 
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and pile ups of dislocations at the grain boundaries. Of course, neither the 
continuity of strain rate nor the equilibrium of stress is respected. Leffers 
suggested that these conditions can be satisfied by nalien slip" near the grain 
boundaries. In such a case, the central part of the grains is allowed to deform 
freely and also to constitute the major component of the texture. The 
deformation mode in the alien slip zones is not specified and their effect on the 
texture is considered to be part of the background or texture scatter rather than 
of the main texture. This is simulated by simply adding some random stresses 
to those that are imposed. 

For high SFE materials on the other hand, because of extensive cross-slip at 
the grain boundaries, the deformation is nearly homogeneous in the whole 
grain, as in the Taylor model. The variation in internal stress from grain to 
grain is simulated in this model by the addition of random stresses. Some of his 
results were presented in Figures 3.2c and d above, for the case of the basic 
stress system compared to a brass texture and for the case of the "statistical 
Taylor" model compared to a copper texture. His results are very close to the 
ones obtained with the strict Sachs and Taylor models, except that they are less 
sharp, which is in better agreement with experiment; nevertheless, no new 
texture component was found. The only objection to his model is that the 
stresses are simply added by a process of trial and error. the level adopted being 
the one that is consistent with the experimental results. His theory has the 
advantage of improving the Sachs model considerably by reducing the stress 
incompatibilities, a modification which also improves the calculated 
macroscopic mechanical properties. 

m.5.2. THE RELAXED CONSTRAINT THEORY 

Several of the observations reviewed above have led a number of 
researchers to propose a modified version of the Taylor model in which certain 
components of the strain rate tensor are not imposed on the grain. These are 
that: 
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1) Slip on less than 5 systems is often observed in polycrystals as well as 
single crystals when the boundary conditions are "mixed" (Le. half expressed in 
terms of the stresses and halfin terms of the strain rate components [103,118]). 

2) It appears that the grain shape in a polycrystal must be taken into 

account for accurate modelling. This is especially true at high deformations 

where the grains become heavily elongated or flattened. In such cases, it is 

evident that material continuity at the "short" grain boundaries can be 
maintained by local polyslip and does not require overall polyslip [119]. 

The RC model was first developed by Honneff and Mecking [117] for single 

crystals deformed under mixed boundary conditions and polycrystals deformed 
in rolling. It was then reformulated differently by Kocks and Chandra [103] for 

the case of single crystals. Later, the Kocks and Chandra model was adapted to 

the deformation of polycrystals using grain shape considerations, 
independently by Canova and co-workers [104,105,119] and by Van Houtte 

[114,120] using tvilo different methods. Let us first review the theory developed 

for single crystals. 

THE HONNEFF AND MECKING MODEL (1978) 

This model was proposed initially for the plane strain compression of single 

crystals when the strain rate tensor is not entirely known. The boundary 

conditions associated with such a test are presented in Figure 3.4a together 

with the allowed shear rates. It can be seen that only 3 out of the 5 components 
of the strain rate vector are known. To simulate such a test, the basic idea of 

Honneff and Mecking was the following: when the piston exerts an increasing 

compression stress, the flow stress will be reached first in that system which is 
the most favorably oriented with respect to the compression direction and slip 
will be activated. Generally, the corresponding strain rate tensor will have 

components in the transverse direction which are forbidden by the die. Reaction 

stresses will therefore build up, which suppress the activation of the initial 

system. In order to enforce further plastic deformation, the compression stress 

of the piston has to be increased, which in turn leads to an increase in the 

reaction stress. Due to the interrelation between the external force and the 

reaction stress, the net stress tensor changes until a second system is activated. 
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a) SINGLE CRYSTAL b) GRAIN IN A POLYCRYSTAL 
IN PLANE STRAIN DEFORMED IN ROLLING 
COMPRESSION 

3 =compression
axis 

1 

2=	elongation 
axis 

GRAIN SHAPE CONSIDERATIONS 
£12=0 
£13, £23 free, 0'13 = 0'23 = 0

BOUNDARYCONDfllONS 
£13=0 
£12,£23 free; 0'12 = 0'23 = 0 

. 	 ... .. ....... ~ ...... ~ ..... ..
· 	 .· 	 .· 	 .· 	 .· 	 . 

Figure 3.4. 	 Allowed shear rates according to the RC model 
a) for a sin~le crystal deformed in a channel die 
b) for a graIn in a polycrystal deformed in rolling. 
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If the second system is oriented so that it can compensate for the lateral strains 
of the first, the crystal can deform by means of these two systems alone. 
However, this is not usually the case, and a third or even fourth system has to 
be found in order to satisfy the external strain rate. 

Honneff and Mecking noted that their model was equivalent to the usual 
Taylor-Bishop and Hill model if they went up to five systems. They also stated 
that it was unlikely that the reaction stresses required for the activation of the 
fourth or fifth systems can be built up in the central part of the crystal when it 
becomes flat. They therefore found it reasonable to forbid the activation ofthese 
systems. They then applied the same model to a polycrystal deformed in rolling. 
In this case, the non-imposed strain rate components are described in Figure 
3.4b. 

THE KOCKS AND CHANDRA FORMULATION 

These authors [103] solved the same problem but used a different approach. 
They started from the boundary conditions described in Figure 3.4a and noted 
that in the case where 2 components of the stress are set equal to zero, the 
actual stress vector in the grain can be found on a three dimensional section of 
the SCYS, Le. one obtained by cutting the SCYS by the two hyperplanes 

0'12=0'23=0. They then determined the actual stress vector in that subspace by 
using the "generalized maximum work rate principle" introduced initially by 
Renouard and Wintenberger [121]. The demonstration of this principle as well 
as of the corresponding "generalized minimum work rate principle" and the 
calculation of the actual number of slip systems needed to accommodate such 
mixed boundary conditions were derived by Renouard and Wintenberger well 
before the existence of any RC model. Their treatment was reformulated in a 
more convenient notation by the present author [5] and the part concerning the 
validity of these principles is presented in Appendix 4. 

For the moment, it is sufficient to know that it is possible to derive a 3 

dimensional cross-section of the SCYS on which the stress state in a particular 
crystal can be found by application ofthe maximum work rate principle (Le. the 

work rate associated with the non-imposed stress components). This stress state 
corresponds to the activation of3 or 4 slip systems and, as only 3 components of 
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the strain rate tensor are known, 3 systems are sufficient to accommodate the 
deformation. Kocks and Chandra also demonstrated that their method is 
equivalent to the one developed by Honneff and Mecking. Driver and co­

workers [122-124] used the same approach as Kocks and Chandra to calculate 
the reorientation of single crystals deformed in plane strain compression. They, 

however, additionally employed the Renouard and Wintenberger criterion to 

solve for the rotation in the presence of the ambiguities. It will be seen in 

Chapter V that this does not change the results appreciably since the extent of 

the ambiguities is sharply reduced under relaxed constraints. In summary, the 

fact that only 3 systems are needed in channel die compression is imposed by 

the boundary conditions. For a polycrystal, the reasons are different and they 

will now be described. 

THE RC MODEL APPLIED TO POLYCRYSTALS 

Kocks and Canova [119] were the first to establish the number of slip 

systems needed to accommodate the deformation in a heavily deformed 

polycrystal in which the grains are flat or elongated during tension, 
compression and torsion. For the case of rolling, their basic arguments are 

similar to those of Honneff and Mecking [117]. When the grains become very 
flat, 2 shear rates are permitted to be ~~free" in the interior of the grain and the 

continuity of strain across the smaller grain boundaries is fulfilled within the 

limited volume fraction contiguous with these boundaries. The argument here 

is that the two nfree" shear rates lead to very small displacements, which is why 

they can be accommodated in the grain boundary regions (see Figure 3.4b). The 
third shear rate (Le. E12) leads to a large displacement and is thus set equal to 

zero in each grain of the polycrystal. In this way the grain is divided into 3 
different zones, as illustrated in Figure 3.5a, but it is first assumed that the 
central part contributes the most to the texture and therefore that all the 
polycrystal deforms according to the RC mode. In order to select the 3 sli p 

systems and the stress state in all the grains, two methods are available: (i) the 

use of sub-yield surfaces and the principle of maximum external work rate of 

the non-imposed stress components; or (ii) the use of the minimum internal 

work rate (see Appendix 4) together with the linear programming technique. 

The first was used by Canova et al. [104,105,119] and the second one was used 

by Van Houtte [114,120]. 
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3=ND 


a) ROLLING 

2=8 

b) TORSION 

Figure 3.5. 	 Number of active slip systems according to the RC theory in 
different parts of a grain deformed in a) rolling and b) torsion 
[125]. 

The use of "sub-surfaces" implies the calculation of the full yield surface in 

the reference system in which the zero stress components are imposed. In the 

case of rolling, for example, the conditions 013=023=0 are imposed in a 
reference system linked to the sample axes, whereas the SCYS is known in the 
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crystal axes. The matrix used to go from one system to the other is usually 
expressed in terms of the Euler angles characterizing the orientation of the 
grain under consideration. It is thus evident that we first have to express the 
coordinates of all the vertices of the SCYS in the sample reference system for 
each grain and each increment in order to calculate the cross-section of interest. 
This was the method used by Kocks and Chandra [103] as well as by Driver and 
co-workers [122-124] and Morris [126] in the case offcc and bee metals. 

This approach obviously involves long calculations and Canova [104] 
developed a method which reduces the computation time considerably. The full 
yield surface is characterized by 56 vertices, whose coordinates were calculated 
by Bishop and Hill and 24 facets, each associated with one of the 24 slip 
systems. However, the description is more complete if the edges of the surface 
are also taken into consideration. These edges are subspaces of dimension 1,2 
or 3 [127] in which 4, 3 or 2 independent systems, respectively, are activated. A 
fourth order edge is a one-dimensional subspace falling between 2 vertices in 
which at most 4 independent systems can be activated. A third order edge is a 
two-dimensional subspace extending between 3 or 4 vertices in which at most 3 
independent systems can be activated. A second order edge is a three­
dimensional subspace extending between 5, 6 or 8 vertices in which 2 
independent systems can be activated. Finally a vertex is a zero-dimensional 
space in which 5 independent systems can be activated and a facet is a four 
dimensional space delimited by 16 vertices in which only one system can be 
activated. 

Canova and co-workers [104,105] listed all' the edges together with the 
connecting vertices and associated slip systems and found 108 fourth order 
(plus opposites) and 135 third order (plus opposites) edges. In order to calculate 
the stress state in the case where only 3 or 4 components of strain rate are 
imposed on a given grain, the procedure is the following. In the case of rolling 
for example, two components of the stress are set equal to zero, which implies 
that only 3 independent systems are required. The actual stress state then lies 

on a third order edge. It is enough to consider each of the 135 edges, one by one, 
to determine if there is a point on this edge satisfying (J13 = (J23 = O. If not, the 
edge is excluded. Ifsuch a point is found, it constitutes one of the vertices of the 
3D yield surface; the operating one is then selected using the principle of 
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maximum external work. As the edges only need to be listed once, this 
calculation does not explicitly involve the calculation ofthe entire 3D surface. 

The above procedure is completely equivalent to the one used by Van Houtte 
(Le. using the principle of minimum work) and some results for rolling are 
presented in Figure 3.6 in terms of {Ill} pole figures. One obtained with the 
classical Taylor ("full constraint") calculation is shown as well. These results 
are taken from the work of Van Houtte [128J, and illustrate two different RC 
models. The first is called the "lath" model in which only one shear is allowed to 

be free in the grains (£23 relaxed); this seems appropriate for materials which 
have needlelike microstructures in which the thin cells or crystallites are much 
longer than they are wide. The lath model calls for the activation of 4 slip 
systems. The other is the "pancake" model, in which 2 shears are allowed to be 
free in the grains (£13 and £23 relaxed), which is appropriate when flat grains 
which are approximately as wide as they are long are produced. This calls for 
the activation of3 systems. 

When these results are compared with the experimental ones of Chapter IT 

for the case of the copper texture, it is evident that the agreement is better for 
the two RC than for the FC model. The best agreement is found with the 
"pancake" model, according to which both the Cu and S components are found. 
The brass component, however, is still absent. Detailed study of all these 
results reveals that, by relaxing one or two of the strain rate components, the 
agreement between the theoretical predictions and experimental observations 
of the copper type rolling texture improves from a qualitative to a quantitative 
level. In fact, almost all of the experimental ODF's of these textures can be 
described by suitably weighted mixtures of the three theoretical textures. A 
Taylor type texture can even be found experimentally in aluminum, which is 
very sensitive to the starting texture [128J. Exactly how the mixture is to be 
chosen is yet unclear; this seems to be related to the microstructure or the 
substructure of the metal. 

In this connection, Driver and co-workers [123J have suggested that, apart 

from grain shape considerations, an energetic criterion must also be included, 

Le. even a flat grain could choose to deform by the FC model if this is 
energetically more favorable. For the sake of completeness, we have included in 
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Figure 3.6. Theoretical {111} pole figures of rolling textures for 56% reductionby rolling [128] predicted by: 

a) the Taylor model 

b) the RC lath model 

c) the RC pancake model. 
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Figures 3.7 to 3.9 the CODF's calculated by Van Houtte [128] corresponding to 
the three pole figures of Figure 3.6. Since the result of a calculation is given in 

terms of the complete list of all the orientations present in the material, this 

representation is useful because it permits the textures to be compared in terms 

of the theoretical and experimental CODF's. 
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Figure 3.7. 	 ODF of a rolling texture predicted for an 86% reduction using the 
Taylor model; C =cube, B=brass, G=Goss, T =Taylor component 
(7° from Cu) [128]. 

It appears that up to now the Taylor (or FC) model better predicts texture 
development in equiaxed grains i.e. at the beginning of deformation, whereas 

the RC model better predicts texture development in previously deformed 
materials, i.e. at large deformations. It therefore seems legitimate to set up a 
transition between the two models as the deformation proceeds. This approach 
was developed by Tome and co-workers [125] on the argument that different 

numbers of slip systems are required in different parts of each grain, and that 

the volume fraction of each region changes as the strain is increased. This was 

illustrated in Figure 3.5 above for the cases of rolling and torsion, and similar 

arguments have been advanced for tension and compression as well. Tome et al. 

proposed that the volume fractions within individual grains in which 3, 4 or 5 

strain components are imposed be interpreted as fractions of all the grains in 
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Figure 3.8. 	 ODF ofa rolling texture predicted for an 86% reduction using the 

pancake version of the RC model; C = cube, B = brass, G = Goss, 
T = Taylor component (7° from Cu) [128]. 
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Figure 3.9. 	 ODF of a rolling texture predicted for an 86% reduction using the 
lath version of the RC model; C=cube, B=brass, G=Goss, 
T=Taylorcomponent(7° from Cu) [128]. 
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the population. In this way, a statistically smooth transition takes place during 
deformation: all the grains start to deform according to the FC model and, as 
the deformation is increased, the number of grains deforming according to the 

RC model increases. 

Some results calculated in this way for torsion are presented in Figure 3.10. 

They are compared with experimental pole figures determined on copper. It is 

evident that the agreement between the FC model and experiment is much 

better at small strains while the RC model agrees better with the results 

obtained at large strains. A calculation based on the FC-to-RC transition would 

predict a texture very close to the FC one at small strains and another very 

close to the RC one at large strains. Using the definitions introduced in Chapter 

II, it can also be seen that the FC calculation results in a mixture of the three 
components named A, A2* and C which are characteristic of low strain textures 

in aluminum and copper, whereas with the RC model, the components A andA* 

vanish to be replaced by a strong C component characteristic of large strains. 

The B component is absent from the results of FC and RC calculations just as 

the brass component was absent in rolling. Apart from the Sachs model or of an 

RC calculation performed with 3 shear rates relaxed instead of two (which is 

forbidden by grain shape considerations), the normal way ofobtaining the brass 

component in rolling or torsion is by the introduction of twinning in the 

classical FC and RC models. This has been done by Van Houtte [81] and 

Wierzbanoswki [129] and some of Van Houtte's results are reproduced in 

Figure 3.11 for the cases of rolling and torsion. In both cases, the presence of the 

brass component is very clear. 

Before leaving the section concerning the RC model. it must be added that a 
new approach called the CC model (continuous constraints) has been developed 
by Fortunier and Driver [130]; this also produces a smooth transition from the 
FC to the RC mode, but it takes place within each grain instead of in a 

statistical way. Up till now, this model has only been applied to the deformation 

of single grains but it seems to be a very promising one for the deformation of 

polycrystals. 

Up to this point, only models where the grains of the polycrystal are treated 

separately have been reviewed. A more recent approach consists of analyzing 
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Sense of shear zz 

IJ 

(a) (b) 

z% 

(c) (d) 

Figure 3.10. Torsion textures predicted by the FC and RC models and 
compared with experimental ones determined on copper: a) FC, 
y=3.25, b) RC, y=3.25, c) FC, y=8.1, d) RC, y=8.1. Note that 
the agreement with the Fe model is better at small strains and 
with the RC model at large strains [77]. 

the interactions between a given grain and its environment, a homogeneous 

matrix whose behavior is a priori unknown. This is the basis of the self­

consistent schemes which will now be reviewed. 
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Figure 3.11. Influence of twinning on rolling and torsion. Textures predicted 
with the Taylor model as a function of the parameter a=-cc(slip) / 
-cc(twinning). 86% reduction by rolling, a) a=<X), b) a= 1.1, c) 
a=O.8. Torsion, y=4, d) a=<X), e) a= 1.1,0 a=O.8 [81]. 



- 95­

111.6. SELF CONSISTENT MODELS 


The first self-consistent model was developed by Kroner [131] in 1958. He 
assumed that each grain of a polycrystal can be considered to be surrounded by 
an isotropic continuum. A stress S is applied to the entire sample, as a-consequence of which the material deforms. If a grain (assumed here to be 
ellipsoidal) is previously cut out of the material, surface tractions must be 
applied at the hole to produce the same stress in the surrounding matrix as if 
the hole were still filled with an "isotropic" piece of the material. Removal of 
the material has caused the hole to deform by an amount E of plastic strain. S is ..., "" 
now applied to the grain itself, producing a plastic strain £. Because of its 
anisotropy, it will not fit into the hole if a replacement is attempted. To achieve 
this, a distribution of internal stresses and elastic strains must be applied to the 
grain. If the grain is ellipsoidal, the internal stress will be uniform (as shown by 
Eshelby [132] ) and in the direction opposite to that of the difference between 
the plastic strains of the grain and the hole. If we designate by S and E the 

JU IV 

macroscopic quantities and by (J and e the microscopic ones, Kroner showed 
that the following relation applies between the two sets of quantities: 

(3.23)
0= S + 211(1-{3)(E - e) 
N .... .... "" 

Here p is the elastic shear modulus and 13 a parameter which depends upon the 
grain shape and the elastic properties of the matrix. 

This first self-consistent scheme was relatively straightforward due to the 
simplifying hypotheses involved. The general framework of self-consistent 
formulations adapted to elasto-plastic deformation was further developed by 
Hill in 1965 [133]. According to Hill, if Lg and Lm designate the instantaneous 
moduli for the grain and the matrix, their inverse compliances being Mg and 
Mm respectively, it is possible to write that: 

. . 
S=L E (3.24)
.. m" . . 

E= <e> 
"" Oil 

S=<0> 
N ,.; 
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where the brackets designate an average over all the grains. The solution is 
then given by: 

;, = s+ L* (E - e) (3.25)
,.,; N ,.,; N 

where L* is a fourth rank tensor called the "overall constraint tensor" by Hill; it 
again depends on grain shape and on Lm and can only be evaluated after 
complete resolution of the equations. From equations 3.24 and 3.25, one 
obtains: 

. . 
(L* + L )e = (L* + L )E (3.26) 

g,., m~ 

and 

o=L (L +L*)-1(L +L*)E (3.27)
N g g m,y 

It gives us for Lm. using 3.24 and 3.27: 

(3.28)L =<L(L +L*)-1(L +L*» 
m g g m 

This implicit equation is very hard to solve and its resolution has only been 
attempted for very small deformations by Hutchinson [134]. A simplified 
version was also proposed by Hill [133] as well as by Berveiller and Zaoui [135J, 
for the case of an isotropic matrix (Lm). L* can then be expressed as: 

L*=L (8- 1 _1) (3.29) 
m I'VE 

where SE is Eshelby's tensor in the case of an ellipsoidal inclusion [132].
N 

Equation 3.25 reduces in that case to 

a=s+ L (8 - 1 -1)eE - e) (3.30)
EIV N m,.. '" tV 

A further simplification introduced by Berveiller and Zaoui [135] allows us to 
rewrite this last expression as: 

(3.31)~ = S+ 2J:lQ (1 -13 )( E- ~)
tV N N 'V 

where a designates the plastic accommodation. 

An obvious limitation of this formulation is that, since it assumes the 
isotropy of the surrounding matrix, it cannot really treat the case of heavily 
textured materials. Zaoui [136] then showed that, using an expression similar 
to 3.31, it is possible to regroup all the existing models under the following 

equation 
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(3.32)
;, = S+ Kll(E - e)
I'V IV fW tV 

where K=co corresponds to the Taylor model, K=2(1-!3) is the value for the 

Kroner model, K =2a(1-p) holds for the Berveiller-Zaoui formulation and K =0 

is associated with the lower bound (static model). 

These self-consistent schemes appear to provide a quite general description 

of the plastic behavior of materials. Through the use of SE, the influence of 

grain shape can be modelled [137] and in this case, the results are close to the 

RC ones. There are however, two objections to these models: 

i) They are solvable only if the matrix is isotropic, and this can be valid only 


at the beginning of the deformation. 


ii) They involve very long and complex calculations: 


For these two reasons, they have only been used for the prediction of 

textures at low and intermediate strains. Examples are given in Figure 3.12 

[137] for the case of rolling. At this stage of the deformation, the copper and 

brass textures are not fully developed and are still similar (see Chapter II, 

Figure 2.10). The results presented in Figure 3.12 are in good agreement with 

experimental results both for brass and copper and thus nothing can be 

concluded about the validity of the self consistent model at this stage of 

development of the theory. 

111.7. OTHER CONSIDERATIONS 

Except for the self consistent results presented in the last figure, all the 

other models reviewed until now have only been used in the case of isotropic 

hardening. The basic argument for doing so is that the calculations are 

generally much simpler in such a case and that the variations in 'tcs in any 

event are quite small. Nevertheless it is possible to incorporate more realistic 

hardening laws to account for the latent hardening frequently observed in 

single crystals [34,138-142] and the effect of rate sensitivity [143,144] can be 

included as well. 
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(200) (200) 

a =0.01 a:O.1 

Figure 3.12. {200} pole figures calculated using the Berveiller and Zaoui self­
consistent model after 50% rolling reduction. The parameter a is a 
plastic accommodation parameter which takes into account the 
partial plastic relaxation of the deformation incompatibility at 
the grain boundaries. This parameter varies from 0.01 and 0.1 
[137]. 

Two rate sensitive models have been developed and adapted to polycrystal 
deformation. The first is the one proposed by Asaro and Needleman [143] which 

utilizes a rate sensitive hardening law in an elasto-plastic Taylor-type model. 

This leads to very long calculations which are similar in many ways to ordinary 

Taylor calculations. The improvement due to the addition of rate sensitivity is 

balanced by the fact that the Taylor assumption is not really valid for large 

deformations. The other rate sensitive model was developed by Canova and 

Kocks [144] in a very simple' manner: the effect of this model is that it 
suppresses the ambiguities completely by rounding off the vertices of the SCYS. 

The results obtained with such a model will be discussed briefly in Chapter V 
but are close to straight FC or RC predictions. One reason for this is that they 
include the rate sensitivity in their FC-RC model, in which the number of 
ambigui ties is already small. 

Two models have also been advanced to account for latent hardening by 

incorporating a suitable hardening law for single crystals. One was proposed by 

Franciosi [138,139], in which the latent hardening parameters are determined 

experimentally. The other was developed by Havner and Le [141,142], who 

were interested in rotation predictions for highly symmetrical orientations of 
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single crystals deformed in plane strain compression. In this case, ambiguities 
are present in a classical model because of the high symmetry of the orientation 
and their results are in good agreement with experimental results [122,123]. 

However, these models have not yet been adapted to polycrystal deformation 

and it is unlikely that they will lead to results which differ appreciably from the 

classical ones. Latent hardening appears to have only a minor effect on texture 

development (except when highly symmetrical orientations are involved). A 

more serious contender would be a model which describes the state of stress and 

strain within each grain with accuracy. A new theory which tries to incorporate 
the influence of neighboring grains (as individual grains and not as a uniform 

matrix) is the cluster model developed recently by Kocks and co-workers [145]. 

This model seems promising since it can predict different rolling components 

going from brass to copper for different types of matrices. It violates, however, 

the grain shape considerations discussed above. 

A last category of model is the one in which emphasis is placed on the 

problem of the ambiguities. These can include considerations of cross-slip, 

latent hardening, and rate sensitivity as well as the use of the Renouard and 

Wintenberger criterion. These different alternatives will be developed below 

and some of the results obtained in this way will also be presented. 

111.8. CONCLUSIONS 

The main purpose of this chapter was not to review all the existing models 
but to describe enough of them so that the rest of this work, as well as the choice 
of a starting model, would be put into context. The results reported here only 

concerned plastic deformation at room temperature. Some of the mechanisms 
present at higher temperatures, such as 'cross-slip or the activation of 
{100}< 110> systems have been incorporated in existing models only to 

account for the behavior of high SFE materials at room temperature. The 

behavior of these metals at high temperatures has never been investigated. 

All the major results reported to date as well as others of minor importance 

have been summarized in two tables. Table 3.1 lists all the observations 

concerning rolling and torsion, and Table 3.2 concerns tension and 
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compression. The reader will also find in these tables the corresponding 
references and some general remarks about the validity ofthe models involved. 

It was seen that two different approaches can be used to deduce the 

microscopic states of stress and strain rate from the macroscopic quantities. 

The first consists of assuming that some components of the (] and t are known a 

priori in all the grains, which can thus be treated individually. The second 

considers the surrounding matrix in an implicit form and, as all the grains have 

to be treated simultaneously, implies long and complex calculations. 

It was decided to base the present study on the first approach, which permits 

the high temperature deformation mechanisms listed in Section II.3. to be 

added without involving calculations which are longer and more complex than 

can readily be performed at McGill. The FC and RC models were thus selected 

as a starting point in the present simulations. The RW criterion, the ease of 

cross-slip (through the selection of colinear systems or the introduction of 

hardening laws), the activation of new slip or cross-slip systems and the 

influence of recovery (through modification of the grain shape arguments and 

the minimization of the GBE) can be added to these models in a relatively 

simple manner. 
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MODEL ROLLING TORSION REMARKS 

Taylor/BH 
averaging 

nearCu 
component

[128] 

A,A*,C 

[104] 

valid for small strains 
. high SFE metals 

Sachs brass 
component

[102] 

- very sharp 
low SFE metals 

Leflers 1 brass - low SFE metals 
Sachs + 
random 

component 
+ spread 

[102] 

improved SACHS 

Leflers 2 nearCu - small strains 
Taylor + 
random 

component 
+ spread 

[102] 

high SFE metals 
improved TA YLOR 

RCp=4 nearCu+ 
near S [128] 

C 
[104] 

lar~e strains 
high FE metals 

RCp=3 Cu+S 
components 

[128] 

not valid 
(grain shape) 

lar~e strains 
high FE metals 

better than RC p = 4 for 
rolling 

FC-RC Cu+S C all strains 
[144] [144] highSFE 

CC id. [146] id.[146] id. 

Asaro rate 
sensitive 

- A,A*, C 
[143] 

very comtlex 
likeTayor 

RS+FC-RC id.FC-RC 
[144] 

id. FC-RC 
[144J 

very similar to FC-RC 

Latent hard. more brass - limited data 
comp.[26,139] 

Cluster brass or Cu id. FC-RC limi ted data 
texture C more spread 

violation ofGS 
[145] [145] arguments for rolling 

Taylor + 
twinning 

brass texture 
[81] 

brass texture 
[81] 

small strains 
lowSFE 

Self 
consistent 

intermediate 
brass-Cu 

- complex 
intermediate strains 

textures[137] 

Table 3.1. Theoretical results obtained with different models in 
rolling and torsion. 
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MODEL TENSION COMPRESSION REMARKS 


Taylor + 70%<111> spread between high SFE metals 
averaging + <100>-<113> 

30%<100> [6] 
[6] 

Colinear slip 77%<111> - high SFE metals 

(FC) + roonltenlperature 


23%<100> cross-slip

[6] 

Coplanar slip ide - low SFE metals 

(FC) rOOnl T 


[6] 	 latent hardening 

Intrinsic 100% <111> - low SFE nletals 

faulting (FC) [6] roomT 


Twinning more <100> - low SFE nletals 
(FC) [6] 

RC+rate ide FC + aver. not good no improvement 
sensitive [144] [144] 	 on Taylor FC 

Latent nlore <100> - low SFE nletals 
hardening [26] 

Twinning 100% <100> - low SFE nletals 

{111}<112> [147] 


Hosford - strong <110> very good agreenlent 
curling 	 [148] high SFE nletals 

Self ide Taylor - very small strains 
consistent [149] high SFE nletals 

Table 3.2. 	 Theoretical results obtained with different nlodels in tension 
and compression. 



CHAPrERIV 

EXPERIMENTAL PROCEDURE AND RESULTS 

IV.!. EXPERIMENTAL MATERIAL 

The material investigated was Alcan IS aluminum received in the form of 
extruded rods 3.80 em in diameter. The chemical analysis performed at McGill 

revealed that the principal impurities present were iron (0.19%) and silicon 
(0.06%). 

Optical metallography showed that the as-received rods exhibited a fibrous, 
"cold-worked" microstructure, as shown in Figure 4.1a. The original grains of 
the samples were elongated in the direction of extrusion. The rods were then 
annealed at 550°C for one hour, a process which transformed the 

microstructure into a more or less equiaxed form, as seen in the transverse 
section shown in Figure 4.1b. 

IV.2. EXPERIMENTAL PROCEDURE 

The rods were remachined to a diameter of3.05 cm so as to be able to fit into 
the swaging machine of the Chalk River Nuclear Laboratories, where the tests 
were performed. Two deformation temperatures were employed: room 
temperature and 250°C. The latter temperature was selected according to two 
criteria: first, it had to be in the temperature range where no recrystallization 
takes place; second, it should not be too high, since in the swaging process the 
rods are forced into the dies by hand. 

The tests were performed in a series of passes, each corresponding to a 

different die. The cold rods were only deformed to a total strain of e = 0.8, which 

corresponds to 9 passes. After that, it became impossible to push them into the 

swaging machine because of strain hardening; this was in spite of the use of a 

lubricant to reduce the friction. The hot rods were given 20 passes of 
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Figure 4.1. Optical 
micrographs of 
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b) Al annealed at 
550°C for 1 hour. 
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deformation, the total strain being equal to e =2.16. Between two successive 
passes, the rods were held in an adjoining furnace at the constant test 
temperature of 250°C; they were remachined whenever they became too long to 

fit into the furnace. During deformation, the temperature of the rods varied 

since the reductions were not performed inside a furnace. The balance between 
cooling in air and heating due to the high degree of deformation and of friction 

was such that the temperature difference between the beginning and the end of 
the deformation was not more than 50°C. This temperature variation was 

considered to be small enough to have little influence on the texture. 

The process ofswaging results in the axisymmetric elongation of the central 

part of the rod, on which is superimposed a shear deformation at the surface of 

the rod because of friction. The samples were therefore remachined before the X 
ray measurements were made in order to remove the outer layer. The 

advantage of this process, compared to tension, is that the deformation in the 

center remains homogeneous up to the final strain of 2.16, which would not 

have been the case in tension because of the occurrence of necking. 

Iv.a. EXPERIMENTAL DETERMINATION OF THE TEXTURE 

The X ray measurements were performed at the CEMEF (Centre de Mise en 

Forme) ofthe Ecole des Mines de Paris at Sophia Antipolis in France. 

IV.3.!. PREPARATION OF THE SAMPLES 

As the final diameter of the hot swaged rods was 1.03 em, composite samples 
were prepared in order to have a sufficient surface area to investigate. The 
specimens were cut as illustrated in Figure 4.2; both transverse and 
longitudinal sections were prepared in this way, and mechanically polished. 

The diffraction measurements were carried out using the reflection method 

on a Philips PW 1078 goniometer. This goniometer is connected to a computer 

which performs the necessary corrections on the diffracted intensities step by 

step and then executes the pseudo-normalization of the pole figures over the 

angular domain associated with the reflection method, Le. between 0 and 70°. 
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(1) Cutting 
of slices 

(2) Polishing 
of flat faces 

(3) Assembling 
of the samples 

, , 

1/ 

a) Transverse section b) Longitudinal section 

Figure 4.2. Preparation of composite samples for texture measurement. 

IV.3.2. EXPERIMENTAL RESULTS 

The results are presented below as incomplete {Ill} pole figures for both the 

transverse and longitudinal sections. The combination of these two sections 
provides enough information regarding the texture to overcome the fact that 
the pole figures are incomplete. Although the texture was determined after 
each swaging pass, only a few of the results are presented here to illustrate the 

general trends observed. Figure 4.3 shows the initial texture of the material, 
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which was far from random even after annealing. On this figure, the positions 
of the {Ill} and {lOO} fibres are also indicated. In Figure 4.4 the textures 
obtained after a strain of e = 0.8 are compared for the cold and warm conditions 
and, in Figure 4.5, the texture obtained after a strain of 2.16 in the warm 

condition is illustrated. 

IV.4. DISCUSSION OF THE RESULTS 

The combination of the two incomplete pole figures provides the following 

information: 

i) On the transverse section, the intensity at the center indicates the 
percentage of the {Ill} fibre. Each grain of {Ill} orientation has a pole in the 
center. The other three poles are distributed along a circle located 70° from the 

center which cannot be seen here since it lies at the limit of the angular range 
for reflection. The presence of the {lOO} fibre is indicated by the circular ring 
located at around 55°. Each {lOO} grain has its four poles distributed around 
this circular region. 

ii) On the longitudinal section, both fibres are visible, although they are 
rather close. Furthermore, only a part is visible, because of the limitations of 
the reflection method, and the intensity is not constant along the fibre. An 

indication of the relative percentage of the two fibres can be gained from the 
position of the maximum intensity as well as from the spread around the two 
fibres. 

An examination of Figures 4.3 to 4.5 leads to the following conclusions. 
First, the initial texture was composed of a relatively strong mixture of the two 
fibres of interest; this resulted from extrusion followed by annealing. Moreover, 
the intensity of the {IOO} component is much larger than that of the {lll}, 

which is not what is expected if the deformation texture existing prior to the 

annealing treatment is retained. Usually, the extrusion texture of aluminum 

consists of a strong {Ill} and a weak {lOO} fibre (see Figure 2.2). The initial 

texture of the present specimens seems to have resulted from annealing; part of 

the extrusion texture was retained and a strong {100} component was formed 
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(a)Transverse 
section 

Imax ==7.40 

(b)Longitudinal 
section 

Imax ·S.4S 

Figure 4.3. {Ill} pole figures for the annealed material. 
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(b) ... 

lma)( =4.11 Imax= 5.22 

lmax =4.11 Imax= 5.98 

Figure 4.4. 	 {Ill} pole figures for: the cold deformed rod, a) transverse section 
and b) longitudinal section; the hot deformed rod, c) transverse 
section and d) longitudinal section; e= 0.8. 
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Figure 4.5. {Ill} role figures for the hot deformed rod swaged to 
atota strainofe=2.16. 
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during annealing by a process similar to the formation of the cube texture after 
rolling. Unfortunately. both components are stable during deformation and, as 
a result, only small variations can be expected during swaging; this is exactly 
what was observed. However, as the initial scatter around the {Ill} and {lOO} 

was quite large, the observed variations after deformation can be ascribed to 
different rearrangements of the orientations situated within the spread, which 
are not stable. A decrease in the intensity of the {Ill} can be noted in the first 
stages of deformation at the two temperatures, followed by a sharpening of the 
two components. This sharpening is not exactly the same in the two cases (Le. 
for cold and warm deformation), 

To obtain more quantitative information, three further parameters were 
investigated: the position of the maximum intensity; the spread around it in the 
longitudinal sections; and the variation in the average intensity of an annulus 
in the transverse sections as a function of the angle e. Comparing the 
longitudinal sections of Figure 4.4 first for the two temperatures investigated, 
it can be seen that there is some spread around both the {Ill} and {lOO} fibres, 
with the maximum intensity located on the {lOO} fibre and a relatively low 
intensity around the {Ill} fibre (between 1 and 2 times random), However, the 

maximum seems to be slightly higher in the hot deformed material, i.e, 5.98 
instead of 5.22. This indicates that, for a same amount of deformation, the 

percentage of the {IOO} component is higher for the hot deformed material than 
for the cold deformed one; although the difference is not great, this could 
confirm the hypothesis advanced in Chapter II regarding the effect of 
temperature. Such a conclusion can only be tentative for the following reasons. 

i) Only parts of the two fibres are visible on these sections. It is clear that 
the grains are not evenly distributed along the two fibres, as indicated by the 
intensity peaks, and there appears to be more spread on the outer part of the 
pole figure. 

ii) The plotting routine employed may not have been very accurate. This 

involves numerous interpolated values between the measured ones, which 

probably led to some errors. As a consequence, the intensities reported on the 

transverse and longitudinal sections are sometimes contradictory. That is why 
the average intensity within an annulus in the transverse section was plotted. 
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This average is calculated from the measured (and normalized) values only and 
is not comprised ofany interpolated values. 

iii) It is also possible that the differences are due to differences in the 

kinetics of rearrangement of the unstable orientations. These may reach stable 
positions faster at an elevated than at room temperature. 

It was therefore decided to examine the variation in the average intensity at 
a given radius in the transverse section as a function of the angle 9 going from 

0° at the center to 70° at the outer limit. These variations are presented in 
Figure 4.6 for the pole figures shown in Figures 4.3 to 4.5. The average 
intensity is plotted here as a function ofcos(9), which enables the proportions of 

the {100} and {Ill} fibres to be calculated in a constant volume in Euler space 
[17]. This was done as follows: first an area around each of the two fibres equal 
to 5% of the total area of the stereo graphic triangle was defined. This is shown 
in Figure 4.7 together with the corresponding areas in the {Ill} pole figure. The 
area was divided into two parts for the {Ill} component. One lies around the 
center and the other lies around a circle situated at 70° from the center. This 
last part is not considered here since it is out of the measured range. In a 
random texture, 5% of the total number of poles would be distributed in each of 
these areas, which would correspond in turn to 5% of the number of 
orientations. In a non random texture, the percentage of orientations located in 
5% of the total area around the {100} position will be equal to one quarter of the 
area below the curve in Figure 4.6 around the {100} (between the two vertical 

lines defining 5% of the total area). For the {Ill} fibre, since only the central 
part of the area under consideration is visible on the pole figures, the 
percentage of orientations located in 5% of the total area around {Ill} is exactly 
equal to the area (marked 5%) below the curve near the center. The calculation 
of the areas marked on Figure 4.6 thus indicates the variation in the 
percentage of orientations around the two fibres with respect to the random 
case (for which the percentages are equal to 5%). The choice of 5% was made so 

that the two areas considered do not overlap in the {Ill} pole figure. The way in 

which these percentages evolve with deformation and temperature will now be 

described. 



-113 ­

4 

5% around {Ill} 5% around {lOO} 
f, 

3 I 
I 
I 
I 

1(9) 
I 
I 

,I 
I 
I 

2 I, 
I 
I 
I I 
I ,I 
I 

I 

1 
I 	

: 
I 

RandomiIntensity, .t 

i--~----------~----~I I . 
I . I ~ 
I 
I 

I 
i 

I 
I 

I . I 
I , I 
1 I 

o I I 

1 .9 .8 .7 .6 .5 .4 .3 
cos (8) 

Figure4.6a. Intensity as a function of cos(8) for the annealed state. 
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Figure 4.6b. Intensity as a function of cos(8) for the cold deformed 
material; e =0.8. 
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Figure 4.7. Definition ofconstant area around the {Ill} and {lOOt fibres. 

Figure 4.6a corresponds to the initial texture. The calculated percentages 

near {Ill} and {lOa} are 2.9 and 11.3% (instead of 5% in the random case). 

There is a very narrow peak right in the center, as seen on the tranverse 

section, but this corresponds to a small percentage of poles in the volume 

considered. A large spread around {lOOt is also clearly visible on this figure. 

Turning now to the the cold deformed material (Figure 4.5b), the calculated 

percentages are 3.5 and 11.3%, respectively. The {lOOt intensity has not 

changed but the {Ill} intensity has increased slightly with strain. The spread 
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around {100} is still large. This indicates that some of the orientations near 
{100} rotate slowly towards {Ill} instead of going to the {100} position, a 
development which would have resulted in the sharpening of the latter 

component. 

In the hot deformed samples, by contrast (Figures 4.6c and 4.6d), a 

sharpening of the {lOO} is visible. The calculated percentages are 2.7% for the 

{Ill} fibre and 13.7% for the {lOO} fibre at e =0.8 and 2.8 and 14.6% at e =2.16. 

Most of the unstable orientations have rotated towards {100} in this case and 

the {Ill} intensity has remained almost constant. 

IV.5. CONCLUSIONS 

Three conclusions can be drawn from this brief description of the 

experimental work. 

i) Because ofthe presence of a relatively strong initial texture, due to the 

previous deformation (and despite recrystallization), only small variations of 

texture could be detected. These resulted from the reorientation of the initially 

unstable orientations, i.e the ones located in the spread around the stable 

positions. 

ii) The results indicate clearly that the hypothesis advanced in Chapter 

IT of a stronger {lOO} fibre at elevated temperatures is correct. This component 
was referred to as the t~rasstt component for tension, since it is also the one 

found in the low SFE metals deformed at room temperature, frequently 
attributed in the latter case to twinning. During cold deformation, the observed 
trend is a sharpening of the {Ill} component, while during warm deformation, 
there is an evident sharpening of the {100} fibre. 

iii) The results also suggest that the rotation of the grains towards stable 

positions takes place more quickly at higher temperatures. As a result, the 

amount of spread around the two fibres is greater at room temperature than at 

the higher temperature (compare Figures 4.6b and 4.6c). 



CHAPTER V 

THE THEORY OF RENOUARD AND WINTENBERGER 

Mer having generalized the principles of the maximum (external) and 
minimum (internal) work rates, Renouard and Wintenberger [150] introduced 

another criterion for the selection of the active slip systems in the presence of 
ambiguities. This criterion states that the actual set of active slip systems is 
the one, among the possible ones, which minimizes the work hardening rate. 
Before reviewing their theory and reformulating it in a more convenient 
notation, it is first useful to consider the extent ofthe ambiguities involved. 

V.I. EXTENT OF THE AMBIGUITIES PRESENT IN THE Fe AND RC 
THEORIES 

It was seen above that when 5, 4, or 3 strain rate components are imposed, 
the actual stress state in the crystal lies on a vertex or on a fourth or third order 

edge of the SCYS, respectively. It is also known that 6 or 8 slip systems are 
activated simultaneously at a vertex (where only 5 are needed). Similarly, the 
fourth order edges, at which a maximum of four independent slip systems can 
be found, are formed of 4, 5 or 6 hyperplanes and the third order edges, at which 
a maximum of three independent systems can be found, are associated with 
three or four systems [104,105]. Thus, even in the case of the RC theory, when a 
constant CRSS is taken for all the slip systems, some ambiguities are present in 
the choice of the latter. It is therefore of interest to consider the vertices and 
edges of the yield surface and to identify both the total number of systems, as 
well as the number ofcombinations of independent slip systems, associated with 

each. 

The number of slip systems pertaining to the positive vertices and edges of 
the yield surface have been listed by Kocks et al. [105] and are reproduced in 

Tables 5.1 to 5.4 [5], which correspond to the p = 5,4,3 and 2 cases, respectively_ 
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Number of Number of 
indep. 3 plane indep. 4 plane

Total no. of Number of comb. comb.Type of Number of comb.of5 comb.of5 Type (2,2,1,0) Type(2,1,1,1)
vertex and systems pervertices of indep.no. ofslip vertex, No. ofslip No. ofslipgiven type systems persystems (n) directions directions

5 vertexCn

3 4 5 3 4 5 

A(8) 3 56 32b 8 8 8 8 


B(6) 4 6 6b 6 


C(8) 3 56 32b 8 8 8 8 
.....D(6) 12 6 4b 4 I (Xl 

E(8) 6 56 36b 12 4 12 81 I 

Total No. 28a [105] 480a[104] 72 168 24 48 120 48 

Total No. 384[110,151, 48 144 24 24 96 48 

152] 
. pp 

bAmbiguities present 

Table 5.1. Classification of the combinations of five independent slip systems under pentaslip 
(p = 5) conditions. 
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Type of 
edge and 

no. of 
associated 

slip 
systems

(n) 

Type of 
connecting 

vertices 

Number of 
edges of 

given type 

Total 
number of 
comb.of4 
systems 
per edge 

Number of 
comb.of4 

independent 
systems 

No. ofslip 
directions 

2 3 4 

4A(4) A-C 6 1 1x6 6 

4B(6) A-E 12 15 12x12b 120 24 

4C(4) B-C 12 1 1x12 12 

4D(4) B-D 12 1 1x12 12 

4E(4) B-D 12 1 1x12 12 

4F(4) C-D 24 1 1x24 24 

40(4) C-E 6 1 1x6 6 

4H(5) D-E 24 5 4x24b 96 

Totals 108a 312a 12 168 132 
aPlus their 0 ppoSltes. 
bAmbiguities present. 

Table 5.2. Number of combinations offour independent sli p systems under 
tetraslip (p=4) conditions. 

(Here p refers to the number of strain rate components imposed or to the 
number of independent systems which are needed.t) To these, we have added: 

t 	 In Table 5.1, the vertices are classified in terms of the types of loading 
required for their activation. Type A is rendered operational by tension 
(or compression) along a cube direction « 100> tension), type B by 
tension (or compression) along a < III > direction, type C involves pure
shear in a cube direction along a cube face ({100}<100> shear), type D 
corresponds to a combined state of stress and involves both shear and 
tension (or compression) ({100}<011> shear + <100> compression), 
whereas type E involves shear along a noncrystallographic direction 
({100}<100> shear+{110}< 110> shear). These five groups include all 
the 56 vertices of BH, but the latter workers subdivided the vertices into 
different categories, which depend instead on the number of slip systems 
associated with each vertex. 
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Type of 
edge and 

no. of 
associated 

slip 
systems

(n) 

Type and 
number of 
connecting 

vertices 

Number of 
edges of 

given type 

Number of 
comb.of4 

independent 
systems 

No. ofslip 
directions 

3 2 

3A(3) A-C-D-E(4) 24 1x24 24 

3B(4) A-E-A-E(4) 3 4x3b 12 

3C(4) A-E-D-E(4) 12 4x12b 48 

3D(3) B-C-D(3) 24 1x24 24 

3E(3) B-C-D(3) 24 1x24 24 

3F(3) B-D-E-D(4) 24 1x24 24 

3G(3) C-D-E(3) 24 1x24 24 

Totals 135a 180a 120 60 
aplus t elroppoSltes. 
bAmbiguities present. 

Table 5.3. Number of combinations of three independent slip 
systems under trislip (p =3) conditions.. 

Typeofed~e Number of No. ofslipNumber of Number ofand no. 0 comb.of2 directionsconnecting edges ofassociated independent in onevertices given type sli p systems systems comb. 

2A(2) 8 12 1x12 2 

2B(2) 6 6 1x6 1 

2C(2) 8 12 1x12 2 

2D(2) 5 24 1x24 1 

2E(2) 8 12 1x12 2 

Totals 66a 66a 
aplus theIr 0 ppOSlteS. 

Table5.4. Number ofcombinations of two independent slip systems 
under bislip (p =2) conditions. 
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i) The number of combinations of p independent systems associated with 
each yield condition. These combinations were determined by the method of 
Kocks et al. [105] as follows: for each of the C58 =56 or C56 =6 possible 
combinations associated with Table 5.1, the transformation matrix for passage 
from the 5 dimensional space in which the stress and strain rate tensors are 
defined (see Appendix 2) to that associated with the set of 5 slip systems being 

considered is drawn up; then the 5x5 determinant of this matrix is calculated 
and only the combinations for which the determinant is different from zero are 

retained. This transformation matrix is expressed through equation A4.1 in 

terms of the mij coefficients. 
ii) The number of different slip directions in each set of 5, 4, 3 or 2 

independent systems. These numbers will be useful in the treatment of cross­

slip. 

In Table 5.1 are listed the number of combinations of5 slip systems (without 

regard to independence) that can be selected from the 6 or 8 available, as well 
as the number of combinations of 5 independent slip systems [104]. In this table, 
we distinguish, as did Taylor [4], between: i) those that involve 2, 2, 1 and 0 
systems on each of the 4 different slip planes; and ii) those that involve 2, 1, 1 
and 1 slip systems on each of the four planes. This distinction gives us the 
number of slip planes associated with each combination. The actual number of 
possible combinations is thus 4 or 6 in the case of the D and B vertices, 32 for 

the A and C types and 36 for the E vertices. Finally, the total number of 
independent combinations is 480. 

This result is at first sight surprising because Taylor [4] in 1938 found only 
216; Later, he modified this to 384 [110], a figure subsequently verified by 
Hershey [151J and others [152]. The reason for the difference is that the earlier 
workers considered only 12 systems instead of 24, allowing the appropriate ys 
shear rates to be negative when necessary. They then determined the total 
number of combinations of 5 systems C512 =792, from which they subtracted 

the combinations which are not independent, leaving 384. By contrast, by 

following the Bishop and Hill approach here, we only permit positive shearing 

on each slip system (y8 positive), and compensate by considering both the 
t(positive" and tfnegative" systems (Le. those which have the same n but 

opposite b vectors, or the same b and opposite n vectors, which is equivalent), 
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since a particular system and its opposite do not belong to the same vertex. The 
exact source of discrepancy lies in the way in which the vertices of class A (1,2 
and 3) and class C (8, 9 and 10) are related. Vertices 1 and 8 are composed of 

different facets in the Kocks et al. [105] notation, and therefore have different 
sets of slip systems associated with them. Similar remarks apply to vertices 2 
and 9, and 3 and 10. By contrast, when no account is taken of the direction of 
the vectors nand b (definitions of Taylor [4] and Hirth and Lothe [152] ), the 

same sets of slip systems are associated with vertices 1 and 8 (and in turn with 
vertices 2 and 9, and 3 and 10). Thus there are 96 different combinations of 
independent slip systems associated with the A set of vertices and a further 96 
with the C set. When no distinction is made between positive and negative 
shearing on a given slip plane [110,151,152], the A and C sets can no longer be 
distinguished, and the 96 combinations lost in this way reduce the total number 
apparently available from 480 to 384. 

The number of combinations of five independent systems listed in Table 5.1 
is actually an upper limit to the true number of possible combinations because 

of the need to respect the normality rule. The latter consideration requires the 
five dimensional strain rate vector t to lie inside the cone of normals 
corresponding to the five slip systems of the combination being evaluated (Le. 

within the reduced cone of normals associated with the smaller number of slip 
systems). Otherwise, negative values of the shear rates y8 are involved, which 
are not admissible. In the case of a vertex associated with 6 slip systems (B or D 
types), although there are 6 or 4 possible combinat~ons of 5 independent 
systems, for a given f:.ij, there are in fact only 2 possible combinations [153]. 
These two combinations will give in turn two "extreme" rotations, all the 
intermediate rotations being equally valid. For the A, C and E type vertices, 
the actual number of possible combinations cannot be given here since it 
depends on the specific orientation of the grain and varies from case to case. A 
possible maximum obtained from a statistical evaluation of all the cases 
treated would be approximately equal to half the total number of possible 

solutions. (Analogous considerations apply to the combinations of four and 
three independent systems described below). 

With regard to the p =4 case, it can be seen from Table 5.2 that ambiguities 
are present for 2 types (out of 8) of the fourth order edges. Again here, the 



-123 ­

independence of the four slip systems was tested by calculating all the 
determinants of the 4x4 submatrices of the 4x5 matrix (defined by equation 
A4.1) until one was found to be non-zero [104]. There are 312 different 
combinations of 4 independent slip systems under p=4 conditions (and their 
opposites); 240 of these are associated with edges where ambiguities are 

present. 

Turning now to the p=3 case, it can be seen from Table 5.3 that for 2 types 
of third order edges, among the 7 available, ambiguities are still present. 3 
combinations are associated with each 3B edge and 12 with each 3C edge. These 
ambiguities thus concern 60 out of 135 combinations of3 independent systems. 

The case p=2 (Table 5.4) does not involve any ambiguities and is included 
for completeness only. It involves a total of 66 edges and thus of 66 
combinations. 

In summary then it can be said that the selection of independent systems 
involves ambiguities at: i) all the vertices associated with the p = 5 case; ii) 36 of 
the 108 edges associated with the p=4 case; iii) 15 of the 135 edges associated 
with the p=3 case; and iv) none ofthe p=2 edges. 

These results indicate that the ambiguities present in the RC theory are far 
less numerous than in the FC theory. The problem of selection can thus be 
considered to be of minor importance since it was seen above that the RC theory 
applies especially well to the case of large. deformations. Moreover, it can be 
argued that the ambiguities have little physical meaning for a real material 
since they can be removed with the aid of one of the following assumptions: 

i) the introduction of rate sensitivity, 
ii) the use of a realistic hardening law. 

The rate sensitivity of the material can be thought of as a useful parameter 

to represent high temperature deformation. However, the introduction of this 
coefficient in a model does not generally produce new texture components; it 
only changes the rate offormation of these components [154]. Thus, it cannot by 
itself account for the differences observed between materials deformed at low 
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and at high temperatures. Furthermore, it will be seen below that the 
introduction of the RW criterion also influences the rate of formation of 
textures and can thus be seen as a kind of rate sensitive criterion, but one 
which is based on energetic considerations in this case. 

Using a realistic hardening law is certainly one of the physically most 
appropriate ways of improving existing models; unfortunately, this is a very 
complex alternative, and is sometimes almost impossible to carry out. Some 
very simple hardening laws, apart from the Taylor hardening law, will be 
examined in the chapters that follow, especially in the treatment of cross-slip. 
The use of a complex and more realistic law involves measurements of 
hardening parameters which must be very precise, and are always subject to 

reservation. Moreover, the values of these parameters change from sample to 
sample, depending on the previous deformation history of the material, and are 
thus very hard to determine with accuracy. Once the parameters have been 
determined, the introduction of the hardening law in a model can lead to 
computations so complex that simplifications are essential before any 

calculations can be performed at all and it then becomes difficult to determine if 
the model is still realistic. 

Thus, the introduction of a further criterion for the removal of ambiguities 
in a non rate sensitive model (in which the hardening ofthe systems is assumed 
to be isotropic) can be seen as a way of introducing a kind of complex hardening 
law in a simplified way. Minimizing the work hardening rate of the material 
can also be seen as a qualitative way of representing the rate sensitive response 
of a material. 

V.2. THE SECOND ORDER PLASTIC WORK CRITERION 

V.2.1. THE THEORY OF RENOUARD AND WINTENBERGER 

The removal of the ambiguities concerning slip system selection inherent in 
the power minimization and maximization methods described in Appendix 4 

involves a further optimization, which is summarized below in terms of the 
generalized Taylor and Bishop and Hill theories [118,150]. The second 
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operation consists of selecting one slip system combination from all those 
available to accommodate the prescribed strain rate as follows. Let the 
prescribed strain rate tensor operate during a time dt; for each set of slip 
systems, this leads to an infinitesimal crystal rotation. Denoting as WI and W2 
the work rates associated with the prescribed components of strain rate f:.ij 

before (state 1) and after (state 2) the rotation, respectively, the method consists 
of finding the slip system combination which minimizes W2, and therefore also 

minimizes W2- Wi =dW. 

In. terms of the present notation, the RW analysis can be described as 
follows. Assuming that the critical slip systems (Le. those for which 'ts ='t/) 

remain the same in state 1 and 2 (whether they are active, yS::;C 0, in both states, 
or not), the difference W2 - WI can be written as 

(5.1) 

with 

W1 = I (-.;~ ­ -.;~) .y8 (5.2) 
S 

and 

(5.3) 
s 

Here the summation is carried out over the critical systems, and thus involves 
the above assumption regarding the "continuity of criticality". In equation 5.3, 
lOs =a"ijmS ij (equation A4.4) is the prescribed component of the shear stress. In 
terms of the BH analysis for the p = 5 (FC) case, this means that no change of 
vertex is permitted, which is always possible by choosing a small enough strain 
increment. (Similarly, in the case of the RC theory, this means that no change 
of the stress state expressed in the crystal system is allowed.) 

An exception to the above generalization occurs when the strain rate vector 
is exactly at the edge of the cone of normals of the active vertex, i.e. it has 
moved to a fourth (p = 4) or lower (p 3) order edge. Under these conditions, two 

(or more) vertices are active simultaneously (see Tables 5.2-5.4). This exception 

does not need to be addressed here because, in such a case, only the slip systems 
common to the two or more vertices are active (i.e. the systems associated with 
the edge of the yield surface), There are always less than five independent slip 
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systems forming such edges, thus there is almost no ambiguity involved in this 
case. In equation 5.3, d-cc

s represents the change in the critical resolved shear 

stress -ccs due to work hardening on the operating systems during deformation 

from state 1 to 2, d-cos the change in the resolved shear stress acting on each slip 

system attributable to the prescribed stresses, and VS + dVs the values of the 
shear rates on the original set of slip systems after rotation of the crystal (state 

2). The latter change by amounts dVs because of the grain rotation produced by 

the shear rates VS associated with state 1. 

In a similar way, the prescribed strain rate components are given by 

's ·si. .. (1) = I y m S .. (p S 5 equations with y > 0) (5.4)
I] I] 

S 

and 

" - I .S • S S£ .. (2) - (y +dy ).(mS .. +dm.J (5.5)u u u 
S 

where dmsij refers to the changes in the components of the generalized Schmid 

factor brought about by the grain rotation taking place between states 1 and 2. 

We now evaluate dWby subtracting equation 5.2 from equation 5.3 

(5.6) 
s s 

Bearing in mind that the t'ij are the same for both states 1 and 2, equations 5.4 

and 5.5 can be combined to give 

I sId' 8 dO = Y.sdm .. + Y . ( mS.. + m8).. (5.7)
I] U I] 

S 8 

MUltiplying equation 5.7 by cr'ij and summing over i andj leads to 

(5.8) 

Equations 5.6 and 5.8 can now be combined and simplified, after recognizing 

that d-cos = cr"ij dmsij (the cr"ij , being prescribed, do not change between states 1 
and 2), so that 

(I) (IT) 

~~ 
8 '8 S's. I S 8 (5.9)dW= (dr; -a .. dm .. )y + " (dr; -a .. dm .. }dy
C I] U Lei] I] 

s 8 
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In this relation, the first term on the RHS (1) is composed of quantities that 
depend only on the characteristics of state 1, Le. on the actual combination of 
slip systems being considered. The second term (II) depends, through the values 

of dyS , on the characteristics of state 2. However, as it involves the products of 
increments, it will not be considered further here. The "real" solution can 
therefore be found by minimizing 

dW= " (d"ts-a .. dm~.)YS (5.10) 
.:::.. C I) IJ 
s 

If one assumes isotropic hardening, the only term which needs to be minimized 
(with respect to the alternative sets ofyS) is 

· L -a ·s (5.11)dW= .. dmS.. y
IJ I) 

S 

Renouard and Wintenberger performed this optimization in the following 
way. They expressed dW (equation 5.11) in terms of all the possible systems, n 

ys. In a similar manner, they expressed the constraints (equation 5.4) as a set of 

p equations. They then solved for dW and obtained a function of (n-p) yS terms. 
Finally, the minimum value of this expression, which is a function of 1, 2, or 3 
variables depending on the "order" (n-p) of the ambiguity, was found using for 
example the linear programming technique. For this purpose, the (Jij are 

determined from the coordinates of the edge or vertex activated in state 1, and 
the dmSij from the rotations produced by each of the slip system combinations 
that can operate between states 1 and 2. 

V.2.2. RW CRITERION EXPRESSED IN TERMS OF TAYLOR FACTOR 
M1NIMIZATION 

In the present investigation, we have used the RW criterion in a somewhat 
modified form by incorporating the following definition ofthe Taylor factor 

(5.12) 

In this expression,i is the von Mises equivalent strain rate and Wis the work 

rate associated with the active vertex (i.e. either the maximum value of 
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W=a'ii,'ij calculated for all the different vertices or the minimum value of 
~(LC-1:08)y8 calculated for all the possible combinations of slip systems). 

The basic computer programs used to simulate an FC or RC calculation were 
developed at McGill by Canova [104]. These programs are described briefly in 
Appendix 5; they dealt with ambiguities by taking the average of all possible 
combinations. In the present work, they were modified to incorporate the RW 
criterion as follows: we begin by selecting the active vertex in state 1 and its 
associated Taylor factor MI. To this vertex correspond N possible combinations 
ofp independent systems, as described above. The shear rates, ys, pertaining to 
the slip systems of each possible combination are calculated, from which both 
the grain rotation (according to the method presented in Appendix 1) as well as 
the new Taylor factor are deduced. This is done by calculating the new value of 
a'ij, and therefore of a'ijt'ij, where the yield surface has now been rotated 
slightly. Each of the N possible combinations is considered in this way and the 
corresponding new grain orientation and new Taylor factor M2 are evaluated in 
turn. The slip system combination which leads to the minimum value of M2 is 
then selected as the solution for state 1 of the deformation. 

As indicated above, this is equivalent to minimizing W2 = WI +dW for a 
finite number of alternative solutions, each of which is characterized by the 
same value of WI. The various "solutions" to be tested correspond to different 
locations of the active vertex in state 2, and WI and W2 can be expressed in 
terms of the respective Taylor factors for this situation. The Taylor factor 
minimization carried out as described above results in the choice of the lowest 
possible value for dM/d€, where d€ is the equivalent strain increment. Defining 
the work hardening rate do/de for a given grain as 

dO dT,c dM (5.13)-=M-+l;
de de Cae 

where 0 is the von Mises equivalent stress, and assuming that dtc / de is 
independent of the slip system combination selected, this is equivalent to 

selecting the combination that leads to the lowest possible rate of macroscopic 
work hardening. The lowest possible work hardening rate (positive or negative) 
signifies in turn that d2W / d€2 is a minimum, which is why Renouard and 
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Wintenberger referred to their theory as the minimization of the "second order 
term for the plastic work". 

One advantage of calculating all the possible rotations and selecting the one 
which gives the lowest value of M2 is that in the presence of any remaining 
ambiguities, the average can still be taken, whereas if linear programming is 
used, anyone of the possible solutions will simply be selected by the program. 
The advantage of the present procedure is that the validity of the RW 
hypothesis can be tested directly without having to worry about the random 
choices performed by a particular algorithm. 

Some predictions obtained with this method will now be presented for the 
cases of both fully and partially constrained deformation (of single crystals as 
well as polycrystals). They are compared to experimental results as well as to 
the predictions obtained from other models: i) the classical FC or RC model 
(with averaging on all possible rotations) and ii) the rate sensitive model 
developed by Canova and Kocks [144]. 

V.3. COMPARISON WITH EXPERIMENTAL RESULTS OF THE 
VARIOUS PREDICTIONS FOR THE CASE OF FULLY CONSTRAINED 
DEFORMATION 

Since the number of ambiguities is maximum in the p = 5 case, it is useful to 
test the validity of the RW criterion for this condition. Two different cases will 
be considered here: the fully constrained deformation of single crystals and the 
fully constrained deformation of poly crystals in the case of tension. 

V.3.1. PLANE STRAlN COMPRESSION OF SINGLE CRYSTALS 

The experimental work used for comparison was performed by Driver and 
co-workers [118,122,123,155]. It involved the channel die compression of 
tricrystals prepared in such a way that the central crystal was prevented from 

shearing by the two crystals enclosing it. Under these conditions, the central 
grain deforms in very nearly pure plane strain compression, i.e. the 
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deformation is completely prescribed, and only the two plane strain components 
of the strain rate tensor are non-zero. Driver and co-workers measured the 

orientation changes of the central grain in five such crystals at different stages 

during the deformation up to f = 1. They also performed calculations using the 

RW criterion [150], but they were based on the principle of minimum internal 

work rate, as described in Section V.2.1, and employed the linear programming 

technique. 

In our calculations, the measured initial orientations of the five crystals 

were employed, and simulations of grain rotation were performed using three 

different methods for resolving the problem of the ambiguities described above; 

I.e.: 
1) the classical Bishop and Hill theory applied to the calculation of grain 

rotations by averaging the rotations produced by the alternative sets of slip 

systems belonging to a particular ambiguity class; 
2) the RW criterion in the present modified form in which Taylor factor 

minimization is carried out; 

3) the rate sensitivity method, in the version developed by Canova and 

Kocks [144]. 

The results obtained in this way are presented in Figures 5.1 to 5.5 for the five 

tricrystals in the form of two inverse pole figures, the first showing the path 
followed by the compression axis X3, and the second that followed by the 

elongation axis X2. 

The first two grains (Figures 5.1 and 5.2) represent the case where there is 

little difference between the predictions of the three methods. This is because 

they concern the operation of 6-fold vertices of the B type, so that there is Iittle 
ambiguity during most of the experiment. In such cases, the Bishop and Hill 
theory would normally call for a 6-fold ambiguity of order n-p = 1 (Table 5.1); 

however, because of the restrictions imposed by the normality rule [153], this is 

reduced to a 2-fold ambiguity, to give only two different possible rotations. In 

the specific examples under consideration here, these two rotations were very 

close to each other [118]. Thus the averaging calculation led to a result which 

was near the one obtained by choosing that rotation (out of two) which 

minimized the Taylor factor after a small rotation (RW method) and by the rate 
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Figure 5.1. Predicted and 
experimen tally observed 
rotations of crystal TG during 
plane strain compression 
(f= 1). 

The following legend applies to 
Figures 5.1 to 5.5: 

a) motion of the X3 
(compression) axis, 

b) motion of the X2 
(elongation) axis. 

(1) p=5; averaging 
(2) p=5; RW 
(3) p=5; rate sensitivity. 

In Figures 5.1 to 5.5, the 
approximate Miller indices 
corresponding to the 
orientations of grains studied 
are also indicated. 

Figure 5.2. Predicted and 
experimen tally observed 
rotations of crystal TH during 
plane strain compression 
(f= 1). 
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sensitive method as well. All three predictions are therefore in good agreement 
with the experimental results in these two cases. 

In Figure 5.3, a slightly larger difference can be seen between the three 
predictions, which arises because this case involves the activation of 8-fold 
vertices (types A and E, Table 5.1, in alternation). According to the BH method, 
there is a maximum 32- or 36-fold ambiguity of order n - p= 3, so that the 
various possible rotations differ considerably from each other. The present 
averaging method, by taking the mean of the alternative rotations, reduces 
considerably the differences between the BH prediction and those of the other 
two methods. In this case, there is a detectable difference between the 
orientation changes called for by the RW method and those of the rate sensitive 
(RS) approach, indicating that these two techniques do not always select the 
same combination of slip systems. Nevertheless, as in the previous two 
examples, all three predictions are in good agreement with the experimental 
rotations. 

In Figures 5.4 and 5.5, two cases are illustrated in which the use of the RW 
criterion leads to distinctly better predictions than are obtained from either of 
the other two methods. Figure 5.4 concerns the activation first of 8 slip systems 
(vertex type C) and then, after £=0.3, of6 (vertex type B). The activation of 8 
slip systems frequently leads to large indeterminacies in the rotation; in the 
present case, this is considerably reduced because only four slip systems are 
actually active (Le. for which ys:;t: OJ. This is why the three predicted paths 
coincide at the beginning of the deformation. At larger strains, when a 6-fold 
vertex is' activated, although only two different rotations are possible, the 
differences between the three sets of predictions continue to increase. It is also 
evident from Figure 5.4 that both the averaging (BH) and rate sensitive (RS) 
models lead to rotations that are smaller than the experimental ones, the RS 
rotations diverging substantially from those reported (especially for the X2 

axis). By contrast, the RW predictions are in excellent agreement with the 
experimental observations. 

In Figure 5.5, once again, the averaging (BH) technique and the RS method 

lead to rotations that are smaller than those of the RW method. In this case, as 
before, we are first concerned with an 8-fold vertex (type C) and then with a 6­
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Figure 5.4. Predicted and 
experimentally observed 
rotations of crystal TE during 
plane strain compression (e = 1). 

Figure 5.5. Predicted and 
experimentally observed 
rotations ofcrystal TF during 
plane strain compression (e = 1). 
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fold vertex (type B). Unlike the case of Figure 5.4, the differences between the 
possible rotations are significant during the entire experiment and simple 
averaging leads to erroneous results. Moreover, the RS method seems to select 
active slip systems which differ from the observed ones over an appreciable 
range of the deformation. By contrast, as in the case of Figure 5.4, the RW 
simulation leads to orientation changes which are consistent with those 
observed. 

From these five examples, several tentative conclusions can be drawn 
regarding the effect of the indeterminacy in slip system selection and the 
validity of the three alternative methods: 

i) First, it is apparent that the magnitude of the uncertainty in the 
rotations does not depend solely on the order n - p= 3 or 1 of the indeterminacy 
(e.g. whether there are 32 or 36 possible combinations at an 8-fold vertex or 6 
possible combinations at a 6-fold vertex), but also on the detailed orientation of 
the grain. 

ii) Although the averaging method can sometimes compensate for the 
indeterminacy, particularly when the range of alternative rotations is small (as 
in Figure 5.3), it can also increase the error by restricting the extent of the 
orientation change (Figure 5.5). 

iii) In the cases where the indeterminacy is large and not substantially 
reduced by the averaging technique (Figures 5.4 and 5.5), only the RW 
treatment among those compared leads to results which are in satisfactory 
agreement with the observations. 

It should be added that a new version of the RS model has now been 
prepared by Canova [156]. He has stated that there was an error in the first 
version and that the second is improved and more likely to be correct. 
Unfortunately, the second version has not yet been published and so could not 
be tested here. Nevertheless, it can be expected to lead to results which differ 

from those presented in this work; such new predictions may indeed be in better 
agreement with the experimental results. 

This preliminary study allows us to conclude that the RW criterion gives 
good results in the case of high SFE materials deformed at room temperature. 
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The method also seems promising for the simulation of high temperature 

textures. One way of checking this possibility is to predict the fibre texture 

obtained in axisymmetric tension with a Taylor model and then to compare the 

theoretical results obtained with (i) the averaging technique and (ii) the RW 

criterion with experimental textures. 

V.3.2. THE FULLY CONSTRAINED DEFORMATION OF POLYCRYSTALS 

To test the validity of the RW criterion in a calculation for polycrystals, it 

was decided to apply some Taylor type calculations to axisymmetric tension. 

This choice was motivated by two reasons: i) it has recently been shown [157] 

that the grain shape arguments on which the RC theory is based prevent the 

relaxation ofany strain rate components in tension and thus imply that tension 

should only be treated with the FC model; and ii) it has also been shown [4] 

that, for a random distribution of grain orientations, the extent of the 

ambiguities is large in tension (see next chapter). 

The inverse pole figures obtained after strains ofe=0.5 and 1 are presented 

in Figure 5.6. The results for two different models are shown: those pertaining 

to a classical FC calculation in which the average is taken over all possible 

rotations (FC +A V), and an FC calculation in which the ambiguities are 

removed with the RW criterion (FC +RW). The corresponding {Ill} pole figures 

are illustrated in Figure 5.7 and the average densities of the {Ill} poles along a 

radius of the pole figures in Figure 5.8. 

The following remarks can be made regarding these results: 

i) It can be seen from Figures 5.6a and 5.6b, that the FC +A V calculation 

gives results which are in good agreement with experimental observations for 

intermediate to high SFE materials deformed at room temperature. If the 

numbers of grains in a constant volume around the {lOO} and {Ill} fibres (out of 

a total of 950) are calculated from Figure 5.8, the percentage of the {100} fibre 

obtained with the FC +AV calculation is seen to be approximately 22%. This 

value is intermediate between the ones found experimentally for copper and 

aluminum (see Figure 2.2). 
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Figure 5.6. 	 Inverse pole figures of the textures predicted for an initially
random polycrystal deformed in axisymmetric tension; a) £ = 0.5, 
FC+AV, b) £=1, FC+AV, c) c=0.5, FC+RW, and d) c=1, 
FC+RW. 

ii) Also of interest is the spread around these two fibres in the FC + A V 
calculation (see Figures 5.7a and 5.7b). It is apparent that the averaging 

procedure tends to reduce the rotation rates. 
iii) Turning now to the results obtained with FC + RW (Figures 5.6c and 

5.6d), it can be seen that the {IDO} fibre is completely absent and is replaced by 
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Figure 5.7. 	 {Ill} pole figures corresponding to the textures represented in 
Figure 5.6; a) £=0.5, FC+AV, b) £=1, FC+AV, c) t=0.5, 
FC+RW, and d) f=l, FC+RW. 
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Figure5.8a. Number of{ll1} poles as a function ofe at e=0.5 in an FC+AV 
calculation. 
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Figure5.8b. Number of {ll1} poles as a function ofe at e=l in an FC+AV 
calculation. 
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Figure 5.8c. 	Number of {111} poles as a function of e at £ =0.5 in an FC + RW 
calculation. 
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Figure 5.8d. Number of {111} poles as a function of e at £=1 in an FC+RW 
calculation. 
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another fibre not very far from {100}, but which corresponds to the minimum 
Taylor factor.The Taylor factor map calculated by Chin and Mammel [158] is 
reproduced in Figure 5.9 and the correlation between Figure 5.6d and Figure 

5.9 becomes quite clear. 
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Figure 5.9. 	 M contours obtained from computer solutions of the Taylor 
analysis for axisymmetric flow. Case of {111}<110> slip. Dashed 
boundaries delineate regions within which a specific type of 
vertex is selected [158]. 

iv) The texture obtained with RW is sharper than the one produced by 
A V. It can indeed be argued that the RW textures are much too sharp when 
compared with experimental pole figures. This is at least partly because no 
"splitting" of the grains (Le. subdivision into different deformations and 
rotations in different parts of the grains) was allowed. A good way to improve 

this situation and to represent realistic textures would be to introduce a scatter 
around each orientation, as observed in real crystals [108]. This was not done 

here since the u pure" influence of the RW criterion was sought. The results 
presented in Figures 5.6 to 5.8 also lead to the conclusion that the rotations of 
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the grains towards stable positions are faster with RW than with AV. As most 
of the stable orientations are local minima in terms of the Taylor factor (one 
exception being the {Ill} fibre), the use of the RW criterion forces the grains to 
rotate more quickly towards these stable positions. 

v) The calculated percentage around {100} is equal to 10% at a strain of1 

with FC + RW (compared to 22% with FC + A V). This value could correspond to 
the percentage obtained at room temperature on very high SFE materials. 

vi) Because the {100} fibre is replaced by a near {100} fibre, it appears 
that the RW criterion does not lead to any improvement with respect to the 
classical FC calculation. Furthermore, it does not seem to be suitable for the 
prediction of high temperature textures since it does not call for an increase in 
the {l00} component. 

Nevertheless, in order to confirm conclusions about the validity of the RW 
criterion, some further simulations were thought to be desirable. For this 
reason, it was introduced into an RC calculation, the results of which form the 
subject of the next section. 

VA. COMPARISON OF THE VARIOUS PREDICTIONS WITH 
EXPERIMENTAL RESULTS IN THE CASE OF DEFORMATION 
UNDER RELAXED CONSTRAINTS 

The validity of the RW criterion is tested below with respect to two different 
types of calculation: (i) an RC calculation in which some components of the 
strain rate are relaxed from the beginning to the end of the deformation; and 
(ii) an FC-RC calculation in which there is a statistical transition from FC to 
RC conditions, according to the model of Tome et al. [125] ). 

V.4.1. THE RW CRITERION IN AN RC MODEL 

Simulations were carried out of the grain rotations taking place during the 
rolling of the coarse grained aluminum sheets described by Driver et al. 
[123,124]. These sheets were initially 2 mm (sheet A) and 4 mm (sheet B) in 
thickness and contained grains 20-40 mm in diameter. Such crystals can be 
expected to deform according to the RC theory with p =3 (see Appendix 4), Le. 
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with the shear rates £23 and £13 in each grain free to differ from the 
corresponding macroscopic components (which are zero in the case ofroIling). 

Driver and co-workers also compared their experimental results to the 

predictions obtained with the RW+RC and RW+FC models. They found that 
most of the grain orientations followed the predictions of the conventional RC 
theory (p = 3). However, some of the grains deformed according to the FC theory 
as supplemented by the RW criterion. The latter were either smaller than the 

RC grains or the RC theory predicted unreasonably large values of the £23 and 

£13 shear rates. 

We carried out several types ofRW calculations (Le. FC and RC with p=3 
and 4) and compared them with the corresponding FC +A V or RC + A V 
calculations, An example of such a prediction is illustrated in Figure 5.10 in 
terms of an inverse pole figure showing the path followed by the compression 
axis X3 and the elongation axis X 2 , For this specific example, the two FC 
calculations are very close, whereas the RC ones are identical, so that only the 

RC +RW results are presented. Most of the results obtained for these coarse 
grains lead to similar conclusions: i.e. that i) the coarse and flat grains deform 
according to the RC theory; and ii) the introduction of the RW criterion does not 
significantly influence the results because of the small amount of ambiguity 

present. 

In this study of the behavior of the coarse grains deformed in rolling, some 

minor results were also found which are worth mentioning: 

i) Some small and nearly equiaxed grains were found to deform 
according to the FC model. Because of their small size, they were essentially 
fully constrained by their neighbors. For more details, see reference [5]. 

ii) The position of a grain inside the sheet was also shown to influence 
the deformation mode. Some grains located at the corners of the sheet were 

found to deform according to a different RC +RW type of calculation, Le. a p = 3 

case, in which the shear rates £23 and £12 were set free (instead of f:.23 and £13). 

iii) For nearly symmetrical orientations, both the RC and FC ( +RW and 

RS) theories predict much larger rotations than the experimental ones. By 
contrast, the FC theory using averaging, which is equivalent to considering 
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Figure 5.10. Predicted and experimentally observed rotations of grain 1A 
durin~ rolling (e = 1.67). The numbers 1 to 5 correspond to the 
folloWlngdeformation modes: (1) AV, p=5; (2) RW, p=5; (3) RW, 
p=4 (£23 free); (4) RW, p=4 (£13 free); and (5) RW, p=3 (£23 and 
£13 free). 

that 6 or 8 slip systems are active (ys:;C 0) concurrently, respects the symmetry 

of the orientation and is thus successful in predicting the small rotations 

observed experimentally. 

From this study. which is described in more detail in reference [5], it can be 

concluded that the RC model complemented with the RW criterion leads to 

results which are similar to those obtained from the RC +A V model. However. 

since the strict RC model is not the most suitable for predicting the evolution of 

the texture of a polycrystal (initially composed of equiaxed grains), it was 

decided to perform some calculations using the FC-RC model [125J as well, in 
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which the ambiguities present at each step are suppressed by the use of the RW 
cri terion under both FC and RC conditions. 

V.4.2. THE RW CRITERION IN AN FC-RC SIMULATION OF A 
POLY CRYSTALLINE TEXTURE 

The path selected here was torsion and the predictions of two models are 
compared below to experimental results: the FC-RC+AV and the FC-RC+RW 
models. For relatively small deformations, the results of the FC + A V and 
FC + RW models will also be presented. The results of the two FC type 
calculations corresponding to a strain of £= 2 are presented in Figure 5.11. It is 
clear from this figure that the FC + RW model leads to a sharper texture than 
the FC + A V calculation; i.e. the different grains of the polycrystal rotate more 
quickly towards the stable orientations. The B component (Le. the one present 
in hot deformed aluminum) is present in greater proportions with the FC +RW 
than with the FC + A V model. 

This can be explained by the fact that the B orientation corresponds to a 
local minimum in the Taylor factor (for the FC model). To illustrate this fact, 
the Taylor factor was calculated for the range of values of the Euler angles cp, 8 
and 00 and iso-M curves were plotted in Euler space. The angles cp and 8 were 
varied from 0 to 90° and the angle 00 from 0 to 180°. M was then plotted as a 
function of cp and 8 for constant oo. One of these sections (Le. for 00=90°) is 
shown in Figure 5.12. Th;e other sections are presented in Appendix 6. The 
section presented in Figure 5.12 is interesting since it includes the three 
orientations usually found in torsion, which are labelled A, B and C. It can be 
seen that all three orientations lie on the cp = 45° line, which is an axis of 
symmetry of the figure. All the points located on this line are local minima in 
terms of the Taylor factor and the absolute minimum is the A orientation 
(where there is activation of only one slip system and M = v3). 

Now in the case of large deformations, the FC theory is no longer adequate 
and has to be replaced by the FC-RC model. The interesting point here is that 
the orientation of each grain at the stage where the transition from FC to RC is 
made will in general be different with RW on the one hand and AVon the other; 
thus its subsequent evolution is expected to also be different under RC 
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Figure 5.11. Predicted torsion textures at e=2!. {Ill} pole figures; the open 
circles specify the position of the BIB component. 
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Figure 5.12. M contours in selected section of Euler space (cu=900) obtained 
from computer solutions of the Taylor analysis for torsion. This 
section contains the A, B and C orientations. 

conditions with the two different models, even though the number of 
ambiguities is almost reduced to zero. In Figure 5.13, the results obtained with 
the FC-RC +A V model are presented for strains of 4, 6, 8 and 10 and the results 

obtained with the FC-RC +RW model for the same strains are presented in 

Figure 5.14. Here again, it is evident that the texture is sharper with the RW 

model. Furthermore, some other differences between the two sets of figures can 

be noted. The FC-RC +RW theory predicts a partial {hkl} < 110> fibre 

(approximately between {100}<110> (C) and {112}<110> (B», whereas the 
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Figure 5.13. Torsion textures predicted using the FC-RC +A V model, {Ill} 
pole figures. a) £ =4, b) e=6, c) e=8, and d) e= 10. 
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Figure 5.14. Torsion textures predicted using the FC·RC +RW model, {111} 
pole figures. a) e=4, b) e=6, c) e=8, and d) e= 10. 
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FC-RC+AV model predicts instead a partial {lOO}<uvw> fibre, including a 
strong C component. Comparing these two sets of diagrams with Figures 2.26a 
and 2.26b, it appears that the FC-RC + A V predictions (see especially Figure 
5.13a) are in good agreement with the experimental texture ofcopper deformed 
at room temperature (Figure 2.26a), whereas the FC-RC + RW predictions 
(Figure 5.14a) seem to be in better agreement with the experimental texture of 
copper deformed at 100°C (Figure 2.26b). Nevertheless, the percentage of the B 

component is too low in both cases. 

V.5. CONCLUSIONS 

In this chapter, the RW criterion was added to some of the classical texture 
prediction theories: Le. the FC, RC and FC-RC models. These new approaches 
were used to simulate the reorientation of both single crystals and polycrystals 
and the results were compared with experimental observations as well as with 
the predictions obtained from the classical models. The following conclusions 
can be drawn from this work: 

i) The use of the RW criterion influences texture development under full 
constraint conditions, but not appreciably under relaxed constraint conditions. 
This is because, in the RC model, the extent of the ambiguities is rather small. 

ii) As a consequence, texture development in an FC-RC + RW calculation 
also differs from the one predicted by the FC-RC + A V model. 

iii) The FC + RW model applied to tension predicts some texture 
components which are not observed experimentally. 

iv) The FC-RC + RW approach produces a sharper texture than the FC­
RC + A V model. This is due to the faster rate of development of the texture 

when the RW criterion is used, when the reorientation towards stable positions 
is accelerated. This can be explained schematically with the aid of Figure 5.15. 
In this two dimensional example, positions 1 and 3 are stable positions; they 

correspond to crystallographically equivalent or symmetrical orientations and 
activate only one slip system. This is the case for the A component in torsion, 
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for example, which corresponds to a minimum in the Taylor factor. By contrast, 
the position labelled 2 is a metastable one which activates two slip systems 
equally and corresponds to a maximum (or local maximum) in the Taylor 
factor. The latter description applies to the C component in torsion. With the 
RW criterion, the rotation rate between 1 and 2 (during which the Taylor factor 
is constantly increasing) tends to be as slow as possible, whereas between 2 and 
3 ( when M is decreasing) the rotation rate tends to be as rapid as possible. 

1 Slow rate of rotation 
') M is increasing ImPOSed 

2 
sense of 
rotation 

\ \Fast rate of rotation rM is decreasing 
3 

1 and 3 = stable positions 
2 =metastable position 

Figure 5.15. Two dimensional illustration of the RW criterion. Between 
positions 1 and 2, the Taylor factor is increasing and the RW 
criterion selects the solution which reduces the rate of rotation. 
By contrast, between positions 2 and 3, M is decreasing and the 
use ofthe RW criterion results in a fast rotation rate. 

v) The texture obtained in torsion with the FC-RC +A V model is in 
rather good agreement with the one obtained experimentally for copper 
deformed at -room temperature. The texture obtained in torsion with the FC­
RC +RW model, on the other hand, agrees better with the results obtained with 
copper deformed at 100°C although it is still sharper than the experimental 
result. This is partly due to the small number of grains chosen for the 

calculation, but the effect could have been lessened by the superposition of 

gaussian orientation distributions on the theoretical results. 
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vi) At very large strains (Le. after e=8), the two models are very close and 
both sets of textures are very sharp. No increase in the B component is observed 
in torsion. This increase should have evolved from the FC-Re +RW model if the 
latter were truly adequate for the simulation of high temperature deformation. 
However, at such large strains, the exact deformation mode of each grain is 
unknown, as is the extent to which grain shape arguments, on which the RC 
theory is based, are still valid. This is a topic to which we return in Chapter 
VITI. 



CHAPTER VI 


THE INFLUENCE OF CROSS-SLIP 


Two different procedures were used to simulate the relative ease of cross­
slip in high stacking fault energy metals. The first is based on the method 
initially proposed by Chin [6], in which the activity of colinear systems is 

maximized (or alternatively minimized) in the presence of ambiguities in the 
choice ofslip systems. The second procedure consists ofincorporating a suitable 
hardening law into a classical FC or RC model. These two procedures are 

described below. 

VI.I. THE CHIN THEORY 

VI.l.!. REVIEW OF THE THEORY AND ORIGINAL RESULTS 

Chin incorporated into a classical FC model (using the minimum work rate 

criterion) some selection criteria in the presence of ambiguities to account for 
different mechanisms such as increased or decreased ease of cross-slip or 
various degrees oflatent hardening. In the case of cross-slip, he maximized the 
activity of colinear systems, i.e. those which have the same slip direction but 
different slip planes. He applied this selection criterion to the case of 
axisymmetric tension and found that. when cross-slip is favoured. an increase 
in the fraction of the <111 > component is produced at the expense of the 
< 100> component (after 5% of deformation). He concluded that these results 
are in good agreement with experimental results for high SFE materials 
deformed at room temperature (see Figure 2.2). The incorporation of this 
criterion was done with the aid of linear programming: once the activated slip 
systems are selected, the quantity to maximize is the sum of the shears on the 
colinear systems only (out of the 6 or 8 possible systems). 
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VI.1.2. REFORMULATION OF THE CHIN THEORY 


It was decided to use the same selection criterion here but in a Bishop and 

Hill type of calculation instead of the Taylor type performed by Chin. The 

reason for doing so is that the solution is not necessarily unique (even with the 
additional criterion) and the linear programming algorithm selects a random 

solution in such a case [26]. This can be avoided by employing the procedure 

described below so that the average rotation can be calculated in the presence 

of ambiguities. Another problem encountered in the Taylor approach is that the 

colinear systems selected are not always independent. For examplet systems It 

lOt 16 and 19 associated with vertex 23 (see Table 5.1) constitute two pairs of 

colinear systems which are not independent. If the total activity on these 
systems is maximized with the aid of linear programmingt since they cannott 

even with a supplementary system, accommodate the deformation, the actual 

solution will in most cases predict a large amount of shear on only one of the 4 

systems and some shears on other independent and non-colinear systems. In 

order to avoid these proplems t the colinear slip selection criterion was added to 

the basic FC or RC program described in Appendix 5 as follows: 

i) The number of slip directions associated with each combination of 5t 4 

or 3 independent systems was added to the data file. The problem of the 

dependence of the systems can thus be solved since the actual combination is 

always selected from the combinations of 5, 4 or 3 independent systems. 

ii) The active vertex is then selected using the principal of maximum 
work and all possible combinations of independent systems are listed. 

iii) The combinations associated with the minimum possible number of· 
slip directions are retained and the amount of shear on each system is 
calculated. 

iv) After having eliminated the ones for which some of the ys are 

negative t the sum of the shears on the colinear systems is calculated. In each 

combination, the number of colinear systems can be equal to 0, 2 or 4. 
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v) Finally, only the combination which gives the maximum value of the 
sum of the shears on the colinear systems is retained. In the case where several 
solutions lead to the same result, the average rotation is calculated. 

This procedure clearly respects the idea proposed by Chin [6], but eliminates 

two of the problems inherent in the use oflinear programming. 

The modified model was first applied to the case of tension because the 
extent of the ambiguities is the highest in this case. It has the further 
advantage that the present results can be compared to those reported by Chin. 
These observations are presented below. 

VI.1.3. APPLICATION TO AXISYMMETRIC TENSION 

First, some specific orientations associated with the greatest extent of the 
ambiguities were selected. It is known from the work of Taylor [4], for example, 
that for any orientation near < 110>, there is an ambiguity of 3600 in the 
rotation. These orientations activate a C-type vertex (see Figure 5.12), each of 
which is associated with 4 pairs of colinear systems. For these orientations, the 
rotations were calculated with four different models: i) the classical FC + A V 
model; ii) the Chin model of cross-slip (Le. using linear programming); iii) our 
modified version of the Chin model (Le. as described above) where the sum of 
the shears o~ colinear systems is maximized (FC +CS); and iv) the modified 
Chin model, but where the sum of the shears on colinear systems is minimized 

to simulate the situation where cross-slip is difficult. 

One example of such a calculation is presented in Figure 6.1 for a strain of4. 
The paths labelled 2 and 3, which are supposed to represent the same 
mechanism (ease of cross-slip) and same selection criterion, do not in fact lead 
to the same results. The small waves which can be seen on path 2 (Chin 
procedure) are typical of random choices made by the computer. Moreover, it is 

evident that our procedure leads to results which are in complete contradiction 
with the conclusions drawn by Chin. To determine whether the trends 
illustrated in Figure 6.1 apply to polycrystals, our cross-slip model was applied 
to the axisymmetric extension of a polycrystal (represented by 900 orientations 
distributed randomly in Euler space) and compared with the predictions of an 
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III 

e =4 

1. FC+AVmodel 
2. Chin model 
3. Corrected Chin model 
4. Corrected Chin model +min CS 
5. FC + HL model 
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Figure 6.1. 	 Predicted rotations for a grain deformed in axisymmetric

extension. Five different models were used: 1) FC +AV; 2) the 
Chin model (using linear programming); 3) the present version of 
the Chin model (FC + CS); 4) the FC + CS model modified to 
minimize the activity of colinear systems; and 5) the FC + HL 
model developed in section VI.2. 

FC-A V modeL In Figure 6.2, the inverse pole figures obtained with the FC + A V 
(a and b) and FC +CS (c and d) models are presented for strains of 1 and 2. The 
calculated densities along a radius of the pole figure are shown in Figure 6.3. 
Although a strain of 2 is greater than can normally be attained in tension. it 

allows us to determine the trends for each model. Instead of the increase in the 

<111 > component found by Chin, our model predicts an increase in the 
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Figure 6.2. 	 Predicted inverse pole figures for a polycrystal deformed in 
axisymmetric extension: a) FC+AV, £=1; b) FC+AV, £=2; c)
FC+CS, £=1; and d) FC+CS, £=2. 

< 100> component, which is in better agreement with the results obtained at 
elevated temperatures (see Chapters II and IV). Apart from the two problems 
already mentioned, another possible explanation for this apparent 

contradiction is that Chin performed his calculations up to the relatively small 
strain of 5% and the trend observed after such a limited deformation can be 
reversed at larger strains. (This was in fact observed for some orientations near 
<110>.) 
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Figure 6.3a. Number of{Ill} poles as a function of a at e = 1 in an FC +A V 
calculation. 
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Figure 6.3b. Number of{Ill} poles as a function ofa at e= 2 in an FC + AV 
calculation. 
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Figure 6.3c. Number of {Ill} poles as a function of 9 at e = 1 in an 
FC +CS calculation. 
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Figure 6.3d. Number of{Ill} poles as a function of 9 at e= 2 in an FC +CS 
calculation. 
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It is apparent from these results that our simulation of cross-slip reproduces 
the experimental results associated with high temperature deformation quite 
well in the case of extension. We now apply this model to the other deformation 
paths of interest here, namely rolling and torsion. 

VI.1.4. APPLICATION TO TORSION AND ROLLING 

For the cases of torsion and rolling, both the FC and FC-RC models were 
employed. The present selection criterion was introduced into these two models 
and the results of such simulations were compared with the FC + A V and FC­
RC +A V predictions. It appeared that the FC-CS simulations were similar to 
the FC-A V ones for torsion and rolling and so are not reproduced here. Similar 
remarks apply to the FC-RC model. Nevertheless, the FC-Re results for 
torsion to an equivalent strain of 5 are illustrated in Figure 6.4, in which the 
predictions of the FC-RC +CS (cross-slip) and FC-RC +A V models are 
compared. Although the results are again similar. a slight increase in the BIB 
component is produced by the CS model. It was shown by Tome and co-workers 
[125] that the average number of active slip systems in torsion is always less 
than the number of imposed strain rate components. This has the effect of 
reducing the extent of the ambiguities considerably, even in an FC model. 
Furthermore, when ambiguities are present, the cross-slip selection criterion 
does not always give a unique solution; as the average is taken in these cases, 
the two models considered here lead to similar results. The same remark 
applies to the case of rolling, and an example of the FC-RC +CS simulation 
applied to this strain path is presented in Figure 6.5. At a strain of 1, a good 
proportion of the grains still deform according to p = 5 and the result is again 
similar to the classical FC-RC + A V calculation. 

These observations lead us to the following conclusions: 

i) For the case of rolling and torsion; any model based on a selection 
criterion in the presence of ambiguities (Le. RW or CS) leads to results close to 
those of the classical calculations. 

ii) Some differences can be observed in tension (and compression, which 
has not been presented here). This is because the region of the inverse pole 
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Figure 6.4. Torsion textures predicted at a strain of f. = 2 using two different 
models a) Fe-Re +A V and b) Fe-Re +es. 
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Figure 6.5. 	 Roni~gtexture predicted for an equivalent strain of 1 with the 
FC-RC +CS model. 

figure located around < 110> involves many ambiguities and grains of such 
orientations comprise an important proportion of a random texture. 

iii) In the case of , tension, the CS model gives results which are in good 
agreement with experimental observations at elevated temperatures. But, as 
such a model cannot account for the differences observed between low and high 
temperatures for all the deformation paths, it does not seem suitable for 
adoption as a general model to represent the ease of cross-slip. 

For this reason, it was decided to simulate cross-slip by incorporating a 

suitable hardening law into the classical models. The results obtained in this 
way will now be reviewed. 



-162 ­

VI.2.INCORPORATIONOFHARDENINGLAWS 

VI.2.1. THEORETICAL BASIS 

The basic idea here is that the rate of change of the critical resolved shear 
stress 'tc is not the same for all slip systems. In latent hardening theories and 
experiments, for example, it has been determined that, when a given system is 
active, all the other slip systems harden more quickly than the active one 
(except for a coplanar one which has approximately the same CRSS as the 
active system). This is because a dislocation which wants to move on a 
previously inactive system will necessarily meet one from active systems on 
which the dislocation density is higher; it will thus be harder to cross an active 
slip system than an inactive one [139,140]. 

In order to simulate the ease of cross-slip and to favor the activity of the 
colinear slip systems, as in the Chin model, it can be assumed that the eRSS is 
different for the active, colinear and "unrelated" (Le. other than active or 
colinear) systems in the following way: all the inactive systems are considered 
to harden more than the active ones, except for the colinear ones, which have a 
hardening rate less than or equal to that of the active systems. This can be 
simulated by the incorporation of a hardening matrix Hij which relates the 
eRSS and the shear rates on the active slip systems as follows: 

T,i(t+dt)=T}(t)+ "" H .. yidt (6.1)
c c ~ V 

i 

Here 'tic(t+dt) represents the CRSS of system i after a time increment dt, tiert) 

is the eRSS ofsystem i at instant t and Hij takes the following values: 

Hii=1 
Hij= 1-a if i and} are colinear systems (6.2) 

Hij= 1+13 if i and} are not colinear systems 

where a and 13 are either positive or zero (isotropic hardening). In the case of 

interest here, the condition a=O and 13*0 means that slip on the active and 
colinear systems is equally easy (and easier than on the other systems), 
whereas the condition a* 0 means that slip on the colinear systems is even 
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easier than on the active ones, which may be less realistic than the previous 

cases. Both conditions were nevertheless investigated for different values of the 
a and ~ parameters. These hardening laws were incorporated into the FC and 

FC-RC models. The active slip systems were determined with the aid of the 

principle of minimum internal work rate (through the linear programming 

technique), since the shape of the SCYS constantly changes because of the 

variations in te. The CRSS's of the 24 slip systems were held constant during 

each time increment and were updated at the end of each increment. In the FC­

RC model, the transition from the FC to the RC mode was performed as in the 

previous calculation, i.e. on the basis of grain proportions. Calculations with 

the two models were carried out in tension, torsion and rolling and the results 

are presented below. 

VI.2.2. THEORETICAL RESULTS OBTAINED WITH THE FC MODEL 

First, the range of variation of the parameters a and ~ must be determined. 

In order to do so, we first estimate the variation in tc required by equation 6.1 

by rewri ting it as follows: 

l;~ (t +dt) = l;~ (t) + 2: yj dt + 2: CO, -a, (3) yj dt (6.3) 
j j 

In the FC model, "£.yJ is equal to the Taylor factor M and varies between 1.732 

(Y3) and 4.85 (2V'6). For an increment of time dt equal to 0.025, the second 
term involves an increase of7.5% (for an average value of3 for "£.yJ) which is the 

same for all slip systems. This is not a real increase but only arises from the use 
of the coefficients Hij as expressed by equation 6.2. This term does not produce 
any texture variation compared to the classical model when te is kept uniform 
(this corresponds to isotropic hardening). The third term, however, is different 

for every slip system because of the introduction of the coefficients a and p, and 
this term characterizes the differences between slip systems. If "£.yJ is equal to 3 
and dt to 0.025, a (or ~) equal to -0.13 (or 0.13) produces a relative decrease (or 

increase) of about 1%, which seems a reasonable value for the first steps of 

deformation. At large strains, the CRSS is assumed to remain constant. 

a and ~ were varied in this way between 0 and -0.5 or +0.5 in the first 20 

steps of deformation and were set equal to zero in the steps that follow. 
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A first result of such a simulation is that somewhat different values of the 
parameters give approximately the same results. Although specific 
orientations can be found which produce changed behaviors for different values 
of a and 13, for a polycrystal composed of 800 orientations (initially distributed 
randomly in Euler space), the deformation texture is about the same (on a 
statistical basis) for different values of the two parameters. This is true for all 
three deformation modes investigated. The results presented below are typical 
and correspond to the case where a is equal to zero and.l3 to -0.1. 

It was also checked that, after the first deformation step, the number of 
activated slip systems is nearly always 5, Le. the ambiguities disappear almost 
completely and the use of linear programming is thus justified. Except for the 
first increment, the algorithm never chooses a random solution. In other words, 

the extent of the ambiguities is less with this model than with the CS model 
presented in section VI.l. 

For the case of tension, the results obtained with this model are similar to 
the predictions of the modified Chin model (section VI.1.3) and consequently 
are not reproduced here. An increase in the {IOO} fibre (compared to the 
FC +A V model) is also predicted. We have simply added to Figure 6.1 the path 
corresponding to the present model for the orientation treated in that figure. 

The predicted torsion textures are presented in Figure 6.6 for equivalent 
strains of 1,3 and 5. In Figure 6.7, the FC +AV and FC +HL ( hardening law) 
models are compared for a strain of 3. In the last figure, two different 
representations of {Ill} pole figures are shown. In the first; the individual {Ill} 

poles associated with each grain are plotted, whereas in the second, density 
lines are drawn. To calculate the density at every point of the pole figure, the 
latter is divided into surface elements of equal area (in Euler space) and the 
density is taken as the number of{Ill} poles located in one element divided by 
the number found in a random texture (Le. the total number of poles divided by 

the total number of surface elements). Such a representation enables the 

proportions of the texture components to be determined (especially when the 

texture is very sharp and several poles are superimposed at the same place), 

and also leads to plots which are suitable for comparison with experimental 
pole figures. 
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Figure 6.7. 	 Comparison of the torsion textures predicted by the FC-A V and 
FC-HL models for a strain ofe=3, a) and b) FC-AV model, c) and 
d) FC-HL model. 
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Whereas the FC+AV model predicts a strong A*/A partial fibre and a 
partial {hkl} < 110> (with a strong A and a strong C component but no B), the 
FC+HL model predicts a strong A*/A partial fibre, and a complete 
{100}<uvw> fibre as well as a complete {hkl}<110> fibre (including AlA, BIB 
and C components) (see Figures 6.7a and c). The FC+HL prediction (Figure 
6.7d) would be comparable to the experimental texture of copper deformed at 
100°C (Figure 2.26b) if the AlA* present in the simulation were not so strong. 
This component is usually the major FC component and is not found at high 
strain levels. Thus the present result contradicts the theory advanced by 
LetTers [102] which states that when cross-slip takes place in a given material, 

the deformation is fairly homogeneous within each grain, and every grain 
deforms according to the FC mode. However, the results obtained with the 
FC + HL model are interesting because of the increase in the B component, 
which is characteristic of high temperature deformation. 

We turn now to the case of rolling. Again the FC + HL model was used and 
some simulated textures are presented in Figure 6.8 for an equivalent strain of 
3. Unlike the cases of tension and torsion, the results obtained with the 
FC + AV and FC + HL models are similar. In particular, it is impossible to 
determine whether the brass component is stronger in the FC + HL calculation 
or not. Looking carefully at Figures 6.8a and 6.8c, it can be seen that a small 

number of grains is located around the brass position with the FC +AV model. 
However, it is difficult to determine whether these grains are approaching or 
leaving the brass position. With the FC+HL model on the other hand, a very 
small number of grains is located exactly at the brass position. This proportion 
is too small to be seen on the iso-density lines of Figure 6.8d. It can be added, 
however, that the near brass oriented grains in the FC-A V simulation are 
typical of the spread due to the averaging technique. In the FC-HL simulation, 
some grains do rotate towards the brass position. So, the small proportion of the 
brass component observed in the two calculations is not thought to be due to the 
same mechanism. 
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Figure 6.8. Rolling textures predicted for a strain of e=3, a) and b) FC-AV 
model, c) and d) FC-HL model. 
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VI.2.3. THEORETICAL RESULTS OBTAINED WITH THE FC-RC MODEL 

The FC-RC + A V and FC-RC + HL models are compared in Figures 6.9 and 
6.10 for the case of torsion for strains off=3 and 6. In Figure 6.10, the values of 
the densities are plotted for the same strains. At the final strain of 6, the 
FC+RC+AV texture is composed ofa strong C component and a minor AlA 
component. A * has disappeared almost completely and B is nearly absent. The 
FC-RC + HL texture on the other hand, is still composed of a strong C 
component, but the AIAt A* and BIB components are more visible than in the 
other model. The FC texture seems to be retained to a larger deformation than 
with the FC-RC + A V model. The increase in the BIB component, although 
rather small, is again in good agreement with experimental observations. 
Looking at Figure 2.26, where the final torsion textures for copper deformed at 
different temperatures are displayed, it is apparent that the FC + HL texture 
represented with density lines (Figure 6.10) is not very far from the 
observations for a temperature around 100°C. The C component, however, is 
still too strong. 

Figure 6.11 illustrates the case of rolling for a strain of 3. The FC-RC + AV 
and FC-RC + HL results are compared and, somewhat surprisingly, a 
significant difference can be observed in this case (unlike with the FC model): 
the brass component develops with the FC-RC+HL model, whereas it is 
completely absent from the FC-RC + A V prediction. Again here it remains very 
weak. This could be due to the parameters selected or to the fact that the 
hardening law used remains very simple and approximate. Nevertheless, the 
FC-RC+HL model seems to be in better agreement with high temperature 
results than the FC-RC model. 

VI.a. DISCUSSION AND CONCLUSIONS 

Two different models have been used in this chapter to simulate the ease of 
cross-slip. In comparison with the results obtained from the classical FC and 
FC-RC theories, these models lead to little or no difference in the predicted 
textures. However, whenever a difference is observed, the predicted texture is 
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Sense of shear Z 

(a) 	 (b) 

(c) (d) 

Figure 6.9. 	 Torsion textures predicted at different strains, a) FC-RC + AV, 
e=3, b) FC-RC+AV, e=6, c) FC-RC+HL, f=3 and d) FC­
RC+HL, e=6. 
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Figure 6.10. The torsion textures of Figure 6.9 represented with density 
lines. a) FC-RC+AV, t=3, b) FC-RC+AV, t=6, c) FC­
RC + HL, e=3, and d) FC-RC +HL, e=6. Note the development 
of the B component with the FC-RC +HL model. 



-172 ­

RD 

Figure 6.11. 

Rolling textures predicted 

for a strain of3 with: 


(a) the FC-RC +A V model 

.. C • ..r_ 
os -­

RO 

TO (b) the FC-RC + HL model. 

in better agreement with the experimental observations associated with high 
temperature deformation. 

The first model (CS) leads to smaller differences than the second (HL). This 
is due to the larger number of ambiguities present and the effect of the 
averaging technique in such cases. However, the two models lead to the same 
predicted texture in the case of tension. 
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The two models are both related to the presence of ambiguities. This is clear 
for the first approach, in which a selection criterion operates. In the second, the 
allowance for differences in "tc has the effect of changing the shape of the SCYS 
in the following way: the 6 or 8~fold vertices are split into vertices associated 
with only 5 slip systems. This can be interpreted as an indirect way of selecting 
a single combination among the available ones. The edges are less affected by 
this procedure, because of the smaller number of planes intersecting an edge. 
Only the stress states are changed appreciably. 

Ambiguities are present in a large proportion of the grains in the case of 
tension. The region around <110> represented by dashed lines on Figure 6.1 
involves ambiguities. Thus, by introducing selection criteria, the texture can be 
modified. This is as true for the cross~slip criterion as for the RW procedure 
examined in Chapter V. However, in torsion and rolling, the extent of the 
ambiguities is reduced even in the FC model. This is why the two cross~slip 
models do not change the textures predicted in torsion and rolling by a 
significant amount. 

Although the number of ambiguities is reduced in the RC model, the 
remaining ones affect a small proportion of the grains in torsion and rolling 
and, consequently, some differences are observed between the predictions of the 
FC~RC+A V and FC-RC +HL models. The extent of the ambiguities is not only 
determined by the number of combinations displayed in Tables 5.1~5.4 and the 
orientations of the grains, but is also affected by the deformation path (Le. 
whether this is tension, rolling or torsion). 

The main conclusion of this chapter is that the observed differences, though 
small, are in good agreement with experimental results in tension, torsion and 
rolling. This is also what was expected from the introduction of the hardening 
parameters. It has already been pointed out by others that latent hardening 
also has only a secondary effect on texture prediction [139] and that different 
hardening laws lead in general to similar predictions [156]. 

Moreover, cross-slip is not expected to be the only reason for the differences 
observed between experimental observations at low and high temperatures. 
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The limited influence on the deformation textures predicted by our two models 
therefore seems reasonable. 

We turn now to another possible cause of difference: the activation of 
different slip systems. 



CHAPTER VII 

THE ACTIVATION OF OTHER THAN 
{111}< 110> SLIP SYSTEMS 

When the temperature is increased, the critical resolved shear stress of the 

{111}<110> systems decreases. It is also possible that the CRSS of other slip 

systems decreases sufficiently over the same interval that these become 

activated. The most probable ones in fcc materials are the {100}<110>, 

because the {lOO} planes are the most densely packed after the {Ill}. The 

activation of these systems has in fact been observed at elevated temperatures 

[152]. For this reason, it was decided to perform simulations using the classical 

FC and FC-RC models by adding the {100}<110> systems to the 24 

{111}<110>. For this purpose, a new SCYS was first derived. In this way, the 

extent of the ambiguities present in such a case was determined, and the 

average rotation calculated. It should be noted that, although linear 

programming could have been used to avoid having to construct the new 

polyhedron, nothing would then have been known about the ambiguities 

(Section VII.l). 

Slip on the {110} and {112} planes has also been reported in aluminium 

deformed above 0.35 Tm [159]. Slip on planes other than the {Ill} was 

interpreted in these cases in terms of cross-slip from a {Ill} to a {110} or {112} 
plane, especially in the instances where all the {Ill} planes were equally 

activated and where cross-slip from one {Ill} plane to another {Ill} plane was 

not favored (Section VII.2). This is the case for most of the stable experimental 

orientations in torsion and rolling, which is why the cross-slip models described 

previously lead to such small texture differences. {lOO}<llO> slip can also be 

interpreted in terms of cross-slip, in this case from a given {Ill} plane to 

another, resulting in apparent slip on a {100} plane. 

The incorporation of other slip systems than the usual ones can therefore be 

seen as another way of simulating differences in the ease of cross-slip in fcc 

materials, even if the activation of these systems seems in itself unrealistic. 

- 175­
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Such a way of simulating cross-slip is preferable to the models developed by 
Wierzbanowski [129] and Gangli and Arato [160], for example, in which only 

the {111}<110> systems were considered, but in which a certain amount of 

shear was added somewhat arbitrarily on a colinear system which was not 

otherwise activated (in other words, the Schmid law was not respected for these 

systems). 

VII.I. THE ACTIVATION OF {IOO}<110> SYSTEMS 

VII.!.!. CONSTRUCTION OF THE COMPOSITE {111}+{100} YIELD 

SURFACE 

The 6 {100}< 110 > systems are listed in Table 7.1, together with the 24 

{111}< 110 >. This table includes the coordinates of all the systems considered 

in terms of the notation described in Appendix 2. It should first be noted that 

the {100}<110> systems are not independent 5 by 5 (Le. their first two 

components are all equal to zero), which means that they cannot by themselves 

accommodate any imposed strain rate vector. In order to be able to perform a 
Bishop and Hill type of calculation (Le using the principle of maximum work), 

the possible stress states (the coordinates of the vertices of the yield surface) 

have to be known. The method used to calculate these will now be described. 

The characterization ofthe vertices ofthe 5 dimensional yield surface caz;t be 

done numerically by considering all the combinations of5 out of36 slip systems 
(defined by Ni) and determining if there exists a solution to the following linear 
problem: 

a.Ni = T,i for i = 1,5 (7.1)c 

a .N i 
S t

i for the others 
c 

Here a is normalized by the CRSS of the {111}<110> systems such that "tel = 1 

for the {111}<110> and "tc2=a for the {100}<110>. If the determinant of this 

set of equations differs from zero, then the systems under consideration are 

independent and it is possible to define a stress state that activates them. This 
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Slip Slip 	 Coordinates of NiSystem plane dir.no. i. n b ml m2 m3 ID.4 . m5 

1-13 III 011 1I2V3 ·112 0 1I2V3 1I2V3 

2-14 111 101 -1I2V3 ·112 1I2Y3 0 1I2Y3 
-3-15 111 110 -1Iv'3 0 1I2V3 -1I2Y3 0 

4-16 III 011 -1I2V3 112 0 -112V3 1I2-v'3 

v· ..... 111 101 ·1I2Y3 ·112 -1I2v3 0 ·112v'3 

6-18 111 110 -1IV3 0 -1I2V3 -1I2v3 0 

7-19 111 011 -1I2-v'3 112 0 112V3 112V3 

8-20 111 loT ·112V3 112 112-v'3 0 ·112V3 

9-21 111 110 -1Iv'3 0 1I2V3 1I2V3 0 

10-22 111 011 1I2V3 ·1/2 0 -1I2V3 1I2V3 

11-23 111 101 .1I2V3 ·112 .1/2v3 0 1I2-v'3 

12-24 III 110 .1IY3 0 -112v3 1I2v3 0 

25-31 100 011 0 0 0 112 112 

26-32 100 011 0 0 0 ·112 112 

27-33 010 101 0 0 112 0 112 

28-34 010 101 0 0 ·112 0 112 

29-35 001 110 0 0 112 112 0 

30-36 001 110 0 0 ·112 112 0 

Table 7.1. 	 Coordinates of the 36 slip systems associated with the 
composite yield surface (notation described in Appendix 2). 

implies a considerable amount of computing time and selection afterwards to 

determine all the different stress states. 

The computing time can be reduced if the method developed by Tome and 
Kocks (106] is used. They established a general procedure which takes into 

consideration the symmetries of the single crystal. They then derived the 
minimum number of slip systems and vertices required for a complete 
description of the yield surface. Once a vertex is found by the computer, it is 

automatically compared to the previously calculated vertices and, ifit coincides 
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with one of these (case in which more than 5 hyperplanes intersect at the same 

point), the new slip systems associated with the vertex are added to the 

previous ones. Once this numerical determination has been carried out, it is 

possible to calculate analytically the coordinates of one of the vertices in each 

symmetry group. This method is completely general, can be used for any 

structure, and is very efficient when nothing is known a priori about the yield 

surface. 

In the present case, we decided to use another method (based on that of 

Tome and Kocks) which takes advantage of the detailed knowledge available of 

the classical Bishop and Hill yield surface. This method is more elegant and 

still reduces the computing time. All the vertices, 4th, 3rd and 2nd order edges of 

the conventional BH yield surface were tabulated by Kocks et al. [105]. The 

notation they used is specified in Tables 5.1 to 5.4 but they also listed the 

activated systems and surrounding vertices associated with each edge. 

With all this information available, we are now ready to derive analytically 

the vertices of the new SCYS by determining where the planes associated with 

the new systems, Le. the {100}<110> ones, intersect the BH polyhedron. But 

first, let us define the range of variation of a. The latter coefficient represents 

lIV2times the distance of a given {100}<110> plane from the origin of the 

yield surface (when the stress states are normalized by tcz. the CRSS of the 

{111}<110> systems). If a is such that none of the vertices of the BH yield 

surface is eliminated by the addition of the new systems, the yield surface 

remains unchanged and the new slip systems are never activated. Thus, every 
stress state of the BH polyhedron which satisfies the relation: 

N j (7.2)
0BW > a 

for at least one of the 12 {100}< 110 > systems (indexed}), lies outside the new 

yield surface. The points of intersection can be located on the facets of this YS 

(where only one {111}< 110> system is activated), or 6n the edges (where 2 to 6 

are activated) or even at the vertices. They constitute new vertices if they 

activate at least 5 independent systems. The case of the facets is eliminated 

since it implies the activation of 4 {100}< 110> systems, which are not 

independent 4 by 4. 
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Let us now consider the vertices of the BH polyhedron. To determine 

whether or not these are retained by the cutting procedure, we calculated the 

product aiRJ for each of the 28 stress states ai of the BHYS and every NJ vector 

associated with each of the 6 (plus opposite) {100}< 110> systems. The results 

of this calculation are listed in Table 7.2. It can readily be seen that if a is 

greater than v'3, the new systems never intersect the BHYS. For a ranging 

from Va to v'3i2, some vertices are retained and others are eliminated by at 

least one new system. For a less than v'3/2, a completely new configuration 

exists. However, we are not interested in this case because it would signify that 

the {100}<110> systems are more easily activated than the {111}<110>, 

which is unrealistic. We will therefore examine only the case where 

V3/2 <0 < V3 (7.3) 

Looking at Table 7.2, it is evident that for this specific range of a, the type A 

and E vertices still lie on the "dual" yield surface, whereas those of types B, C 

and D are eliminated. Turning now to the .edges, it can readily be determined 

whether a particular edge is retained completely, only partly, or eliminated 

entirely when the surface is cut by new planes. In this procedure, it is sufficient 

to consider only one edge of each type because of the cubic symmetry. All the 

other edges of the same type (Le. 4A to 4H. 3A to 3G and 2A to 2E) can be 

deduced from the first by applying symmetry operations. Furthermore, if a new 

vertex is found on a particular edge, the vertices associated with the other 

edges ofthe same group can also be found by applying the symmetry operations 

to the first vertex. 

Let us consider, as an example, a 4th order edge of type 4C, number 19. This 

edge is defined by vertex numbers 4 and 8 (in the Kocks et al. notation). The 

points along this edge can be expressed as 

with 
(7.4) 

01 + 02 = 1 and ° 1,°2 ;::: 0 

Such points lie on the new YS if they satisfy the condition: 

a.Nj:s a (7.5) 

for each of the 12 {100}< 110> systems NJ. Furthermore, if a.Nj=a for at least 

one new system, this point constitutes a vertex of the new YS, since 4 systems 
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Vertex oi.Ni for the 28 vertices and ~ new systems 
no. i. (normalized by 3)

Group 
I

oi.N25 oi.N26 oi.N28 oi.N29 oi.N30 

A 	 1 0 0 0 0 0 0 
2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

B 	 4 1 0 1 0 1 0 
5 1 0 0 1 0 1 

6 0 1 1 0 0 -1 

7 0 -1 0 -1 1 0 

C 	 8 0 0 1 -1 1 -1 
9 1 -1 0 0 1 1 

10 1 1 1 1 0 0 

D 	 11 1 0 112 112 112 112 
12 -1 0 -112 -112 -112 -112 

13 0 -1 -112 -112 112 112 

14 0 1 112 112 -112 -112 

15 112 112 1 0 112 -112 

16 -1/2 -112 -1 0 -112 112 

17 112 112 0 1 -112 112 

18 -112 -112 0 -1 112 -1/2 

19 112 -112 112 -112 1 0 
20 -112 112 -112 112 -1 0 
21 -1/2 112 112 -112 0 -1 
22 1/2 -112 -112 112 0 1 

E 	 23 0 0 1/2 -112 112 -112 
24 0 0 -112 112 -112 112 

25 112 -112 0 0 112 112 

26 -112 112 0 0 -112 -1/2 

27 112 112 112 112 0 0 

28 -112 -112 -112 -112 0 0 

Table 7.2. Value of the product oi.Ni for the 28 vertices of the BH 
polyhedron and the 6 {100}<110> systems. 
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are already activated at this particular point (provided also that the 5 systems 
are independent). On the other hand, if a.Ni>a for at least one system, this 
stress state is eliminated from the yield surface. From Table 7.2, it is readily 
seen that the four scalar products a4.N27, a4.N29, a8.N27 and a8.N29 are greater 

than a, which means that the present two vertices are eliminated in the 
"cutting" procedure by the two new systems, numbers 27 and 29. For each state 
of stress lying on this edge, we can evaluate 

'J:T 4 'J:T 8 'J:T (7.6)
o.N =alo.N +a20.N >a 

which means that the entire edge, as well as all of the other edges of group 4C, 

are eliminated in the new YS. 

Repeating this procedure for all the different types of edges, we can say 
without any further calculation and simply by looking at Table 7.2 as well as 

the tables in reference [105], that the 4C, 4D, 4E, 4F, 3D, 3E and 2B edges do 
not belong to the new yield surface and only the remaining edges need be 
considered further. In this way, it can be shown that all of the type 4B and 3B 
edges are retained. The other ones are only partly retained. We will thus look at 
a representative example of each of the following groups: 4A, 4G, 4H, 3A, 3C, 
3F, 3G, 2A, 2C, 2D and 2E, and determine the new vertices which lie on these 

edges. 

To do so, we take advantage of another property of the BH yield surface, i.e. 
that each nth order edge is delimited by edges of higher order. For example, a 
4th order edge constitutes a one dimensional space and is delimited by 2 
vertices. (These are points in 5 dimensional space and thus have no dimension.) 
This is represented schematically in Figure 7.la. A 3rd order edge constitutes a 
two dimensional surface and is delimited by 3 or 4 vertices defining 3 or 44th 
order edges (see Figure 7.1b), Similarly, a 2nd order edge, surrounded by 5,6 or 
8 vertices, constitutes a 3 dimensional volume, whose faces are 3rd order edges 
and whose edges are 4th order edges (see Figure 7.lc). It is therefore possible to 

consider only the 2nd order edges (more specifically one of each type), since they 

include all the possible types of3rd and 4th order edges, and determine on these 

where the planes associated with the new systems intersect to create vertices. 



-182 ­

4A(1)
a) 4th order edge 
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c) 2nd order edge: 2D(31) 
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3G
3E 

0 4 4E 

Figure 7.1. 	 Examples of edges of different types 
(notation of Kocks et al. [105] ). 

The problem can in this way be reduced to the following. We consider a 
particular 2nd order edge of the BHYS, defined by its connecting vertices and 

edges, as well as its activated slip systems. We need to know which stress states 
included in the volume of this edge are part of the new YS, and which ones 
activate at least 5 independent slip systems so as to constitute a vertex? 
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If 3 planes associated with the {lOO}<110> systems intersect at a point 
within the volume defined by the edge, this point constitutes a vertex since 2 
{111}<110> systems are already activated at this point; this situation 

nevertheless requires that: 

1) the 5 systems be independent, and that 
2) the stress state considered satisfies the relation (J.N)< a for all the 

other {100}<110> systems. 

If 2 planes intersect at a point of a 3rd order edge (a facet of the 2nd order 

edge), this point is also a vertex, since 3 systems are already active at this point 
(provided that the above 2 conditions are again fulfilled). The same holds if a 
plane intersects a 4th order edge. The two conditions listed above have to be 

checked every time a new vertex is being tested. 

Let us now consider a specific example to describe the complete procedure. 
Second order edge number 31 of type 2D is delimited by vertices 4,8,15, 23 and 
48 in the notation of Kocks et al. [105] and is represented schematically in 
Figure 7.1c, together with the associated edges of3rd and 4th order. It is already 
known that, among these different edges, only the 4G, 4H, 3F, 3G and 2D are 
partly retained, the others being completely eliminated. We can thus examine 
these edges one by one and establish the actual intersection points. 

i) Edge 4G: This edge is delimited by vertices 8 and 23 and activates 
systems 2, 8, 18 and 24. Every stress state lying on this edge is covered by: 

(7.7) 
with 

a + a = 1 and a 1 , a ;::: 01 2 2 

Looking at Table 7.2, we can see that systems 27, 29, 34 and 36 intersect this 
edge. Calculating the product (J.N) for these 4 systems gives us: 

o.N'l:l = v'S(a +° /2)
1 2 

o.N29 =V3(a + a /2) (7.8)
1 2 

34 _ m-
o.N = v 3 (a

1 
+ a

2
/2 ) 

o.N36 = V3( a 1 + ° 2 /2) 
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Ifone ofthese products is equal to a, the corresponding stress state constitutes a 
vertex of the new yield surface (provided that the independence of the systems 

is satisfied). It is readily seen that for: 

(023 8o =0 8 + ~ - ( ) with P=2 (1 - alva) (7.9) 

the 4 systems are critical and this point constitutes a vertex of the yield surface 

associated with the 8 systems: 2, 18,8,24,27,29,34 and 36 (4 {111}< 110> and 

4 {100}<110> systems). This of course requires that a combination of 5 

independent systems can be found among the 8, a matter which will be checked 

later. 

ii) Edge 4H: This edge is defined by vertices 48 and 23 and is associated 

with the 5 slip systems I, 2, 8, 16, and 18. Repeating the above procedure, we 

find that the stress state: 

0= 048 + {3( 0 23 _ 0 48 ) with P=2 (1 - a/v'3) (7.10) 

activates the following 6 systems: 1,2,8,16, 18 and 35 (Le. 5 {111}< 110> +1 

{100}< 110 > systems). 

iii) Edge 3G: Edge number 113 is delimited by vertices 8, 15 and 23 and 

systems 2, 18 and 24. Every stress state lying on this edge can be represented 

by: 

(7.11) 
with 

a +a2 +aa= 1 and a 1 , a 2 , aa~O1 

We now calculate the product (J.N) for systems 27, 29, 34 and 36, since only 
these new systems intersect with edge 3G. The stress state (J constitutes a 
vertex if at least 2 of the 4 products are equal to a. The 4 inequalities involved 
(expressing the fact that (J lies on the yield surface) are 

o.N'l:! =V3(a
1 
+ a

2 
+ aa/2) S a 

a.N29 =V3(a + Q /2) S a (7.12)1 a

o.N34 =Y3(a + Q2/2+ a /2)s a1 3 

a.N36 =V3( a + a /2 + a /2) S Q
1 2 3 
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The only possible solution is a2 = 0, which means that the point lies on edge 4G 
and has already been found. Thus there is no new vertex within (and strictly 
within) the triangle defined by vertices 8, 15 and 23. 

iv) Edge 3F: This edge is defined by vertices 4, 15, 23 and 48 and 
associated with systems 1, 2 and 18. We now repeat the procedure employed 
above for edge 3G but carry it out twice for the two groups of vertices 4, 15,48 
and 4, 23, 48. In this case, we find a vertex fulfilling the condition: 

o=o4+~(o23_o4) with 13=2/v3CV3-a) (7.13) 
It activates 3 {111}<110> systems (1,2 and 18) and two {100}<110> systems 
(27 and 29). 

v) Edge 2D: To find the vertices located within edge 2D, we decompose 

this edge into 2 separate volumes: one is delimited by vertices 4, 8, 15 and 48 
and the other by vertices 8,15,23 and 48. Any stress state lying within the first 
volume is described by: 

(7.14) 

with 

a 1 +a2 +a3 +a4 =1 and al,a2,a3,a4~O 

Systems 25, 27, 34, 29 and 36 intersect with this volume. Three of these have to 

intersect at the same point to create a new vertex (since two systems are 
already active on edge 2D). The set of inequalities to be satisfied is: 

a 
1 

+ a
3

/2 + a
4 

/2 S a/v3 

a + a 2 + a 3 + a /2 S a/v3
1 4 

a 2 + a 4/2 S a/V3 (7.15) 

a
2 

+ a 
3

/2 S a/V3 

With the extra condition that ~ai= 1, this can be rewritten as: 

(1) 2 a 2 + a 3 + a 4 ~ 2 (1 - a/V3) 

(2) a
4 
~ 2 (1- a/v'3) 

(3) (7.16) 
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(4) 03 <?! 2 (1- 0/v3) 

(5) 2°2 + 03 S 2a1V3 

and can be solved geometrically, as shown in Figure 7.2. Only equations (7.16) 

have been represented on this figure and it is evident that a point can be found 

which satisfies at least 3 of these relations. This point does not, however, fulfill 
the condition Lai= 1 and therefore cannot be retained. As it was the only 

possible point, there is no solution to the problem expressed by equation 7.16 

and there is no new vertex in this volume. 

3 

2a1V3 

4 5 

2(I-alV'3) 
I 
I 
I 
I 

M 	 I 

I 
I 
I 
I 
I 

2 
I 

:2a1V3 
: 
I I 

" 2( l-alV3) 	 Q3 
I , 

________________ J2a1V3 	 :/ 

Figure 7.2. 	 Geometrical solution of the set of equations 7.16. The point 
M is the only one where at least 3 planes intersect. The bold 
numbers refer to the equation numbers. At point M, 
equations 2, 3, 4 and 5 are satisfied. 

The above procedure can be repeated for one of each second order edge of 

types 2A, 2C and 2E to enable all the vertices of the yield surface to be 

determined analytically. 
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VII.1.2. DESCRIPTION OF THE COMPOSITE {111}+{100} YIELD SURFACE 

The procedure described above leads to the determination of the stress 
states which activate at least 5 systems among the 36 available. It remains to 
check if, among the 5, 6 or 8 found, it is possible to find 5 which are 
independent. This has been done with the aid of a computer and it was thus 
found that the new yield surface is composed of 93 vertices divided into 8 
groups. These are defined in Table 7.3, which gives the vertices or edges of the 
BH yield surface on which these new vertices are located, the number of 
vertices in each group, as well as the number of combinations of 5 independent 
systems associated with each vertex. Also included are the coordinates of one 
representative of each group. The coordinates of the 93 vertices and the 
associated systems are listed completely in Appendix 7. 

It should be noted that for 21 vertices out of93, the extent of the ambiguities 
is expected to be large (32, 36 or 40 combinations are possible), whereas for the 
72 others, there is only one possible combination of 5 independent sli p systems. 

We can now derive the 4th order edges, so as to have an idea of the 
ambiguities present in an RC calculation. These edges were determined by the 
method ofKocks et al. [105], Le. by examining the connections between vertices 
and testing whether these pairs activate at least four common slip systems. The 
independence of the systems also has to be verified. A similar procedure was 
used to determine the 3rd order edges and the results are presented in Tables 
7.4 and 7.5. It can be seen that the composite YS comprises 288 4th order edges 
associated with 672 combinations of 4 independent systems and 310 3rd order 
edges associated with 364 combinations of 3 independent systems. The 
complete list of the edges (the connecting vertices and the associated systems) is 
also given in Appendix 7. The procedure described in this paragraph has also 
been applied with success to the construction of a mixed yield surface for bcc 
materials [127]. 



BH No. of Coordinates ofvertex oi as a function of0 
edge Types of sli p No. of Vertex comb. of NormType or planes vertices index, i 5 indep. of Oi 

vertex systems 01 02 03 04 05 

I 5A 8 {lll} 3 1 32x3b -va -1 0 0 0 2 


II 5E 8 {Ill} 6 4 36x6b V372 -3/2 V3 0 0 Vir 

ill 4A 4{111}+4 {100} 6 10 40x6b o-v'3 alva:1 20 0 0 2.17 


IV 40 4{111}+4 {100} 6 16 40x6b v3-0 oV3-3 20 0 0 2.48 

.... 

I 00V 4H 5{111}+ 1 {100} 24 22 4x24b 0-1.5v'3 0.5-alV3 0 20-v'3 V3 2.37 
I 00 

VI 3F 3{111}+2 {lOO} 24 46 Ix24 2(a-v3) 0 2a-V3 20-V3 va 2.30 I 

VII 2A 2{111}+3 {lOO} 12 70 1x12 a-va alV3-1 a -0 a 1.93 I 

VIII 2C 2{111}+3 {lOO} 12 82 lx12 Q-V3 alV3-1 a a Q 1.93 

93a 936a 
aplus t pp 
bAmbiguities present 

Table 7.3. Types ofvertices making up the composite yield surface. 
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Type of 
edge and 

no. of 
associated 

slip 
systems

(n) 

Types of slip 
planes 

Types of 
connecting 

vertices 

TotalNumber 
ofedges of number of 

comb.of4given systemstype per edge 

Number of 
comb.of4 

independent 
systems 

'4A(6) 6{111} I-II 12 15 12x12b 

4B(4) 4{111} I-ill 6 1 lx6 

4C(4) 4{111} II-IV 6 1 lx6 

4D(5) 5{111} II-V 24 5 4x24b 

4E(6) 2{111}+4{100} ill-IV 12 15 13x12b 

4F(4) 3{111}+ 1{100} ill-V 24 1 lx24 

4G(4) 2{111}+ 2{lOO} ill-VII 12 1 lx12 

4H(4) 2{111}+2{100} ill-Vill 12 1 lx12 

41(4) 3{111}+1{100} IV-V 24 1 lx24 

4J(4) 2{111}+2{lOO} IV-VI 24 1 lx24 

4K(5) 4{111}+1{100} V-V 12 5 4x12b 

4L(4) 3{111}+1{100} V-VI 48 1 lx48 

4M(4) 2{111}+2{lOO} VI-VII 24 1 lx24 

4N(4) 2{111}+ 2{lOO} VI-Vill 24 1 lx24 

40(4) 1{111}+3{100} VII-Vill 24 1 lx24 

Totals 288a 672a 
aPlus their 0 ppoSltes.. 
bAmbigui ties present. 

Table7.4. Number of combinations of four independent slip systems under 
tetraslip (p=4) conditions in the composite yield surface. 

VII.1.3. FC-RC PREDICTIONS FOR THE CASE OF DUPLEX SLIP 

It was first checked that the extent of the ambiguities in terms of rotations 

was very small in the case of torsion and rolling for both the FC and FC-RC 

models. Whenever there were several solutions, however, the average rotation 

was calculated. The influence of the parameter a was also investigated in the 
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Type of 
edge and 

no. of 
associated 

slip 
systems

(n) 

3A(3) 

3B(4) 

3C(4) 

3D(3) 

3E(3) 

3F(4) 

3G(3) 

3H(3) 

31(3) 

3J(3) 

3K(3) 

3L(3) 

3M(3) 

Totals 
aPIus their 0 

Types ofsli p 
planes 

3{111} 


4{111} 


4{111} 


3{111} 


3{111} 


4{lOO} 


2{111}+ l{IOO} 


1{111}+2{IOO} 


2{111}+ I{IOO} 


3{IDO} 


2{111}+ l{lOO} 


1{111}+ 2{lOO} 


2{111}+ l{lOO} 


pposites. 

Types of 
connecting 

vertices 

I-II-m-V 

I-II-I-II 

II-I-II-V-V 

II-V-V-VI 

II-IV-V 

m-m-IV-IV 

m-IV-V-V 

m-IV-VI-VII­
vm 

m-V-VI-VII 

VII-vm-VII­
vm-VII-vm 

V-V-VI-VI­
VII 

VI-VII-vm 

IV-V-VI 

Number 
ofedges of 

given 
type 

24 

3 

12 

24 

24 

3 

24 

48 

48 

4 

24 

24 

48 

310a 

Number of 
comb.of3 

independent 
systems 

Ix24 

4x3b 

4xl2b 

lx24 

lx24 

4x3b 

Ix24 

Ix48 

Ix48 
.. 

Ix4 

lx24 

lx24 

lx48 

364a 

bAmbiguities present. 

Table7.5. Number of combinations of three independent slip systems 
under trislip (p =3) conditions in the composite yield surface. 

FC-RC calculations. It is worth noting that the value of a has no influence on 
the FC predictions as long as a remains in the range defined above. Although it 
affects the stress state, the activated slip systems remain the same. This is 

illustrated in Figure 7.3, where a 2 dimensional section of a composite yield 

surface is shown. For two different values of a, the stress vector is different, but 

the active slip systems for a given strain rate vector £FC remain the same; 

consequently, the amount ofshear on these systems (and in turn the rotation) is 

the same. In an RC calculation, even if the vertices are associated with the 
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same systems for different values ofa, a plane 0'4 = 0 can cut the yield surface in 
different places for different values ofa, as also illustrated in Figure 7.3. So the 
value ofa do.es have an influence on FC-RC predictions. 

0'4=0 plane 

.,
eRe 

Figure 7.3. 	 A two dimensional section of a composite yield surface. 
Variation of a ='tcV'tcl does not affect the selection of the 
active slip systems in the FC mode (a::;t: 0" but eFe = t'Fd but 
can affect selection in the RC mode (eRe fRd. 

The FC-RC predictions obtained in torsion are presented in Figure 7.4 for 
a=1.5 and in Figure 7.Q for a=0.89. These two values are located at the two 
extremes of the allowable range. For a= 1.5, the {100}<110> systems cut the 
BHYS only slightly, so that the predictions are close to the classical FC-FC 
ones. The AlA, BIB and C components are present in the same proportions: C is 
the strongest at large strains, followed by AlA, whereas BIB is almost absent. 
For a=0.89, on the other hand, the {100}<110> systems have more influence 
in the calculations and a new texture component appears: the {100}<010> 

component, which activates equally two of the new systems. This component is 
the equivalent of the C orientation for the {111}< 110> systems. 

Unfortunately, it is not observed at high temperatures. Moreover, introduction 

of the {100}<110> systems does not lead to an increase in the BIB component, 
as can be seen from Figure 7.5. 
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Figure 7.4. Torsion textures predicted using the FC-RC model with 
{Ill}+{100}< 110 > slip. tc(100)/tc(11l) =1.5. 
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Figure 7.5. Torsion textures predicted using the FC-RC model with 
{111} +{100} < 110> slip. 'tc(lOQ)/tc(l1l) = 0.89. 
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Figure 7.6 illustrates the FC-RC predictions obtained for the case of rolling 
with a= 1 for strains of 1 and 3. Here again the {100}<010> component is 
present, together with the copper component. The results are very close to the 
usual FC-RC predictions, the difference being the addition of the {IOO} < 010> , 
which is not observed experimentally at high temperatures. The brass 

component is no stronger than before. 

From these figures, it can be seen that the introduction of {100}< 110 > slip 

does not lead to the observed high temperature deformation textures. It was 
thus decided to simulate the addition of the {110}<110> and {112}<110> 
systems as well, since cross-slip has also been observed on these planes. 

VII.2. ACTIVATION OF THE {110}+{112}< 110> SYSTEMS 

The incorporation of these systems is based on the experimental 
observations of Le Hazif et al. [161]. These authors reported that slip on the 
{110} and {112} planes is possible in fcc materials under some conditions. They 
compressed single crystals ofAg, AI, Au, Cu and Ni with a {100} axis parallel to 

the compression axis in each case. They then determined the temperatures Tl 
under which only the {Ill} planes were active and the temperatures T2 above 
which only the {IIO} planes were active. They also found that there was a 
nearly linear relationship between Tl (or T2) and lIy (the SFE). They 
interpreted their observations in terms of cross-slip from {Ill} to {110} planes 
and defined a critical resolved shear stress for cross-slip which is strongly 
dependent on the temperature, especially for the two types of slip plane quoted 
above. 

They proposed the following mechanism to account for their observations: 
for the particular orientation studied, deformation takes place, in the early 
stages, by an equal amount of slip on the 4 {Ill} planes. Since all the {Ill} are 

primary planes and dislocations are equally hindered on all of them, nothing 

would be gained by cross-slipping from one to another. The deformation can 

only be continued if the dislocations are able to escape onto {IIO} planes. Then, 

the glide may be stabilized on the latter by the creation ofstable stacking faults 

on these planes. Their Tl and T2 temperatures for aluminum were 77 and 
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Figure 7.6. Rolling textures predicted using the FC-RC model with 
{111}+ {100}< 110 > slip. t c(100)/tc(111) = 1. 
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267°C, respectively. It can be argued that these are unreasonably low, but it 
must be borne in mind that they were determined for very specific orientations. 
For an untextured material, the equivalent average temperatures for all 
possible orientations can be assumed to be higher. Cross-slip from the {Ill} to 
the {112} planes was also given the same interpretation [159]. 

It was thus decided to simulate such a cross-slip situation by simply adding 
the {110}<110> and {112}<110> systems to the classical {111}<110> ones. 
In terms of the model proposed above, this neglects the first stages of 
deformation, when slip only occurs on the {Ill} planes. There are 6 
{110}<IIO> systems (plus their opposites), but these systems have to be 
grouped into 3 pairs. For example, systems (110)[110] and (110)[110] constitute 
one pair, since any strain rate vector which can be accommodated by a given 

shear rate on one of them can also be accommodated by the same shear rate on 
the other. In other words, when the components of the vectors NS associated 
with each of the systems are written in the 5 dimensional notation described in 
Appendix 2, it is readily seen that the two vectors coincide, just as the 
{lll}<110> systems in fcc materials and the {IlO}<Ill> systems .in bee 
materials correspond to the same yield surface. Consequently, it is sufficient to 
consider only 3 {110}<II0> systems plus their opposites. However, the 
activation of one or the other of the two {110}<ll0> systems ofa given pair 

will not lead to the same lattice rotation 1162]; it was therefore assumed as a .. 
first approximation that the shear rate on each member of the pair is half the 
total shear rate on the pair. The other systems which were considered are the 
{112}< 110 > and there are 12 of these (plus their opposites). 

The new yield surface considered here corresponds to 3 families of slip 
systems, which have 3 different values of"tc."tel for the {Ill}, "tc2 for the {lIO}, 
and tc3 for the {112}. As the experimental observations described above do not 
allow us to differentiate between "tc2 and "te3t we first assume that these two 
quantities are equal but different from tel. Three extreme cases can be 

considered: 

i) tel = I and tc2=tc3= 10, which is the case when only {lll}< 110> slip 
is possible (below Tl). This ease has already been treated above. 
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ii) 'tel = 'te2='te3= 1, where the three types of systems are equally favored 
(Tl <T<T2), and 
iii) 'tel = 10, 'te2 = 'te3 = 1, where the cross-slip systems are favored over the 
conventional slip systems. This corresponds to the temperature range 

above T2. 

Cases (ii) and (iii) were tested in torsion and rolling with the FC-RC model 
using the linear programming technique. Figure 7.7 illustrates the extreme 
case where "tel = 10 and 'te2 ='te3 = 1 for torsion up to strains of 4 and 6 (case iii); 
Figure 7.8 illustrates the same conditions for rolling (for strains of 1 and 3). It 
can be seen from Figure 7.7 that the torsion textures at e= 4 and 6 are similar 
and that 2 main texture components can be identified: a strong C and a strong 
near BIB. The fact that the latter orientation is not exactly BIB may be due to 
the assumption made concerning the distribution of the shears on the 
{110}<110> systems. However, the textures obtained are in reasonably good 
agreement with high temperature results. 

Looking now at Figure 7.8, it can be seen that the main texture component 
at large strains is the brass orientation and there is also some spread around 
the Goss position. We obtain in this case something which is similar to the 
brass texture, which corresponds to the trends observed at high temperatures. 
Figures 7.9 and 7.10 illustrate the condition 'tel='te2='te3=1, which 
corresponds to the temperature range between TI and T2 (case ii). The textures 
obtained for torsion in this case are similar to the ones predicted by the classical 
model when only the {111}<110> systems are operating (Le. there is no BIB 
component). By contrast, in the rolling predictions, the brass component is still 
present, particularly at the larger strain. 

VII.3. CONCLUSIONS 

In this chapter, the possibility of having more slip systems than the usual 

{111}<110> systems was investigated. This was motivated by two different 
lines of reasoning: 
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Figure 7.7. 	 Torsion textures predicted using the FC-RC model with slip on the 
{111}+{110}+{112} planes. "tc(111) = 10, t:c(llO)="tc(112) = 1; a) f=4 
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Figure 7.8. Rolling textures predicted using the FC-RC model with slip on the 
{lll} +{llO} +{l12} planes. tc(111) = 10, tc(llO) =tc(1l2) = L 
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Figure 7.9. Torsion textures predicted using the FC-RC model with slip on the 
{Ill} +{110} + {112} planes. "tc(111) = "tc(llO) ="tc(112) = 1; £ =4. 
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Figure 7.10. Rolling textures predicted using the FC-RC model with slip on the 
{Ill} + {110} +{112} planes. tc(lll) =tc(llO) ='tc(1l2) = 1. 
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i) The first is that new systems can become active when the temperature 
is increased; the most probable ones are the {100}< 110 > systems. 

ii) The second is that extensive cross-slip on {110}<110> and 

{112}< 110> systems can take place in fcc metals at high temperatures. 

These two approaches, although motivated by different reasons, have been 

treated in the same way, i.e. by adding the new systems to the usual ones. The 

simulations were restricted to rolling and torsion. From these results the 

following conclusions can be drawn: 

i) The addition of {100}<110> systems does not reproduce the trends 

observed at high temperatures. This part of the work has allowed us, however, 
to develop a new method (based on the one proposed by Tome and Kocks [106]) 

to derive a composite YS from one which is already known. 

ii) The addition of the cross-slip systems, on the other hand, produces the 

trends observed for high temperature deformation. It should be noted, however, 

that the cross-slip systems were considered as ordinary slip systems in this 

chapter, which is only an approximation. A more suitable way of simulating 

such mechanisms would be to consider a hardening law which takes into 

account the cross-slip capabilities of these systems. Such an approach would, of 
course, require more experimental data than were available, which is why it 

was not investigated here. We turn now to the last parameter which can 

influence texture formation at high temperatures: the grain boundary energy. 



CHAPTER VIII 


THE INFLUENCE OF DYNAMIC RECOVERY 


In order to account for the influence of the temperature of deformation, we 
have so far added the following «mechanisms" to the classical prediction 
models: (i) the RW criterion of minimization of work hardening rate; (H) the 

simulation of cross-slip; and (iii) the activation of additional slip systems. All 
these expanded models were based on the same idea, Le. that an increase in the 
temperature modifies the microscopic hardening law of the material either by 
modifying the value of the critical resolved shear stress on different families of 
slip systems or by affecting the evolution of the CRSS with strain. But in all the 
previous chapters, the deformation mode (Le. FC or RC) was the same as for low 
temperature deformation and the transition from the FC to the RC mode was 
only based on grain shape arguments. We must now ask a further question: is 
the evolution of grain shape similar at low and high temperatures? If the 

. answer is no, we must then modify the ~~deformation mode" for the polycrystal 

deformed at high temperature. It is well known that the elevated temperature 
form of dynamic recovery produces an essentially equiaxed substructure; before 
describing the model conceived to account for this effect, we will first describe 
the main features of the dynamic recovery process. 

VIII.I. THE· BASIC MECHANISMS INVOLVED IN DYNAMIC 
RECOVERY 

VIII.1.1. DESCRIPTION OF RECOVERY 

Recovery is usually described as a process in which the density of atomic 

defects such as dislocations is gradually reduced. This reduction occurs locally 

by the annihilation ofpairs of dislocations and not on a massive scale, as during 

recrystallization. Such annihilation is rendered possible by the fact that 

dislocations can glide and climb to rearrange themselves into more stable 
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configurations. Climb is a thermally activated process and thus takes place 
during or after hot deformation. 

The process of rearrangement into stable configurations is often called 
polygonization and is generally observed in high SFE materials such as 
aluminum. To illustrate this mechanism, a single crystal is deformed by 
bending (the orientation is such that only one slip system is active), as shown in 
Figure S.la [163]. The first stage of recovery (Figure 8.lb) consists of the 
elimination of dislocations of opposite signs. After this stage, only dislocations 

of the same sign remain and are homogeneously distributed. In the second 
stage of recovery (e.g. at higher temperatures), these dislocations rearrange 
themselves into walls normal to the slip direction and slip plane (Figure S.lc); 
here the driving force is the minimization of the boundary energy. Finally, a 

third stage can also occur, in which the subgrain size increases by wall 
coalescence to further minimize the boundary energy (Figure 8.ld). 

When the deformation is accommodated by slip on several systems (which is 
usually the case), the situation is more complex, but similar mechanisms are 
involved, i.e. the climb of dislocations, rearrangement into walls and formation 
of an equiaxed substructure. During this process of polygonization, no high 
angle boundary migration is observed [163], whereas the migration of low 
angle boundaries can take place, although this possibility is not universally 
recognized. For example, Exell and Warrington [164] claim that the migration 

of low angle boundaries contributes significantly to the total strain, whereas 
McQueen and Jonas [165] attribute as little as 6% of the total strain to this 
phenomenon. 

An important consequence of the recovery process is the presence of an 
equiaxed substructure, even at very large deformations. For example, Wong et 
al. [166] observed such structures at extrusion strains of up to 2000% in 
aluminum. (Their material was the same as the one tested in the present work 

and described in Chapter IV.) Because of the simultaneous occurrence of 
polygonization and low angle boundary migration (or polygonization and 

boundary coalescence), the deformation substructure remains stable in size and 

shape, although the grains themselves follow the shape change of the sample as 
a whole. 
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Figure 8.1. 111ustration of steps in the polygonization process [163]. 

Another important aspect of recovery is that the rearrangement of 
dislocations takes place in order to minimize the sub-boundary energy. To 
better interpret this last observation, we now have to introduce the concept of 

coincidence sites. 
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VIII.1.2. THE COINCIDENCE SITE MODEL 


The free energy of a given boundary is generally assumed to depend on the 
misorientation across the boundary (i.e. on the orientation difference between 
the adjacent grains or subgrains) and on the orientation of the plane in which 
the boundary lies. This leads to a total of 5 orientation parameters which can 
affect the energy: 2 angles to specify the position of the rotation axis, one 

rotation angle (these 3 describe the rotation to go from the orientation of the 
first grain to that of the second), and two further angles which describe the 
orientation of the boundary plane itself. Generally, not all of these parameters 
are used to describe the free energy of the boundary. It is common, for example, 
to specify the rotation axis, to ignore the orientation of the boundary plane, and 
to represent the energy as a function of the rotation (or misorientation) angle 
only. 

Extensive experimental work on small and large angle boundaries has been 
carried out and the results of this research can be represented on the schematic 
diagram shown in Figure 8.2. The first part of the curve corresponds to low 
angle boundaries and extensive work in this area has been published by Read 
and Shockley [167]. The second part of the diagram is associated with high 
angle boundaries. For these boundaries, the energy is usually measured as 
being almost constant, except for special values of the angle of rotation where a 
cusp is seen on the curve. These special boundaries not only exhibit a lower 
energy but are often associated with high mobility and play an important role 
in the growth theory of annealing textures (see Chapter IT). 

The presence of special orientation relationships can be interpreted in terms 
of the coincidence site lattice (CSL) model due to Bollmann [168]. This model is 
based on the observation that, for specific axes and angles of misorientation, 
two grains separated by a boundary possess a number of lattice sites in 
common. The energy of such a boundary will depend on the reciprocal density of 
common lattice points in the two grains (denoted:E) as well as on the reciprocal 
density of common lattice points in the boundary itself (denoted 0). The 

simplest coincidence boundary is the twin boundary, for which :E is equal to 3; 
but coincidence boundaries exist for all odd values of :E. Any coincidence 
relationship can also be expressed by an axis-angle pair; in the cubic system, 
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Grain boundary 
free energy 1. low angle boundaries 
(arbitrary units) 2. high angle boundaries 

1 	 2 

27.8 38.2 	 46.8 60.0 e, angle ofrotation around < 111 > 
(1) 	 (13) (7) (19) (3) (~) 

Figure 8.2. 	 Schematic illustration ofthe dependence of grain boundary energy 
on angle of rotation around any < 111 > axis in cubic metals. 

there are 24 different axis-angle pairs, corresponding to the 24 symmetry 

elements of the cubic system [169,170]. 

Brandon et al. [169] listed all the coincidence sites found in cubic crystals 
(for ~ less than 19). Their results are reproduced in Table 8.1. The properties of 
such boundaries can be described as follows: 

i) the lower the !:, the lower the energy; 
H) if the boundary lies in the most densely packed planes of the 
coincidence lattice (Le. the lattice formed by the common sites only), the 
mobility of the boundary is the lowest. This applies, for example, to the 
coherent twin boundary [171]. At orientation differences slightly 

removed from coincidence, the mobility of the boundary can be very high, 

a property which is of importance in the growth theory of annealing 

texture formation, as already indicated above. 
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Coincidence Site 	 Coincidence Site 
Axis of 	 Axis of 
rotation 

I: 00(°) 
rotation 

I: 00(°) 

100 5 36.9 311 3 146.4 
13a 22.6 5 154.2 
17a 28.1 9 67.1 

110 3 70.5 11 180 
9 38.9 15 50.7 
11 50.5 15 117.9 
17b 86.6 320 7 149 
19a 26.5 11 100.5 

111 3 60 13a 180 
7 38.2 17b 121.9 

13b 27.8 19b 71.6 
19b 46.8 321 7 180 

210 3 131.8 9 123.7 
5 180 15 150.1 
7 73.4 322 9 152.7 
9 96.4 13a 107.9 
15 48.2 17b 180 

211 3 180 331 5 95.7 
5 101.6 7 110.9 
7 135.6 11 82.1 

11 63 17b 63.8 
15 78.5 19a 180 

221 5 143.2 410 9 152.7 
9 90 13b 107.9 
9 180 17a 180 

13b 112.6 411 9 180 
17b. 61.9 11 129.6 

310 5 180 17a 93.4 
7 115.4 19b 153.5 
11 141.9 
13b 76.7 
19a 93 

Table 8.1. 	 Coincidence site relationships for the cubic lattice and 
for I: less than 20, where I: is the reciprocal density of 
common points and (i) is the least angle of rotation. The 
indices a and b correspond to the same value of I: but to 
different most densely packed planes for the 
coincidence lattice. The italic numbers are the ones 
taken into account in our simulations [169]. 
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VIII.1.3. EXPERIMENTAL OBSERVATIONS 


It was mentioned above that polygonization occurs during annealing or 

deformation (at high temperatures). During annealing, the average 

misorientation between subgrains is generally low (1 or 2°) and remain 

approximately constant with annealing time. This results from the 

superimposition of two processes: (i) an increase due to glide and climb; and (ii) 

a decrease due to energy minimization [172,173]. However, during 

deformation, some relatively large polygonization angles (greater than 15°) 

have been observed, especially in pure metals [17 4-176J.1t is even possible that, 

once a given grain has been split into subgrains, the initially close orientations 

transform into distinctly different ones because of the imposed deformation (see 

Section VIII.4.3 below). The low angle boundaries are gradually transformed 

into high angle boundaries and the energy minimization process then tends to 
produce coincidence si tes. 

Of the coincidence site relationships listed in Table 8.1, not all are in fact 

observed in cubic materials. Some have been reported in annealed, as well as 

cold and hot worked metals. For example, Schnell and Gruwe [177] identified 

1:=3 boundaries in cold worked and annealed copper. Lim and Raj [178] 

deduced the presence of 1: = 3 and 1: = 11 boundaries in annealed and deformed 

aluminum and 1:=3,9 and 27 boundaries in nickel (these specific values are 

considered to be due to twinning). Finally, Dahms et al. [179] observed a high 

proportion of 1: = 3 boundaries in annealed AIMn alloys, which also had high 

mobility. In most cases though, no mention of the boundary orientation was 

given. 

The experimental observations reported here show that dynamic recovery 

not only leads to an equiaxed substructure, but also produces a large number of 

special boundaries. These can be of the low (due to recovery only) or high (due to 

recovery and deformation) angle types. We are now ready to describe in detail 

how these features of recovery can be modelled: i.e. the climb of dislocations, 

which produces an equiaxed substructure in order to minimize the sub­

boundary or grain boundary energy. 

http:4-176J.1t
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VIII.2. DESCRIPTION OF THE MODEL 

VIII.2.1. INTERPRETATION OF DYNAMIC RECOVERY 

The following steps will be considered in the present model: 

i) The smallest entity to be associated with a particular orientation is not 

the grain but the subgrain. These subgrains can be separated by low angle 
boundaries as well as by high angle boundaries (coincidence sites). In both 

cases, the misorientation can lead to very large stress discontinuities; these are 
inadmissible even in the framework of the FC model, where stress 

discontinuities are assumed to be accommodated by elastic stresses. 

ii) The stress discontinuities are assumed to be due to one of two different 

causes: 
-For a stable orientation, the strain rate vector generally lies at the 
edge of the cone of normals of several vertices. In this case, a small 

deviation from the stable position can produce two slightly different 

orientations, which will eventually activate two neighboring vertices 
and in this way give rise to high stress discontinuities. 

-For a stable high angle boundary (i.e. a coincidence site). some of the 

stress components are continuous across the boundary and some are not. 
This is the case for the BIB pair of orientations in torsion, which are 
separated by a 1:: = 3 boundary. For this orientation, the only one found in 

aluminum at high temperatures, the stress componentst calculated with 
the Fe model are: 

(0,0, -2,0, Y2)0B = 	 (8.1) 

a s = (0,0, -2,0, -v''2) 

t 	 The components are expressed in terms of the notation described in 
Appendix 2. The last 3 terms represent the~hear stresses: 
03=v2oez _ -2, 04=V2oRZ=0 and 05 =v"2oRe = +V2 (in units ofl:c). In 
the B and B cases, 6 vertices are activated simultaneously; accordingly. 
the stress state is ambiguous, and the vectors listed in relation 8.1 
represent the average values. 
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In the classical RC model for torsion, according to which 04=013=0, the stress 
vectors have exactly the same components. However, it can be seen that there is 
a very high 012 shear stress, almost as large as the torsion shear stress 023. It 
seems unrealistic then to assume that this pair of grains or subgrains deforms 
according to the FC or RC model used at low temperatures. It is more likely, 
instead, that the two orientations deform according to another RC model, i.e. 
one in which 012 is set equal to zero. In such a case, even with a large 
orientation difference between the two grains, the continuity of stress is 
respected. 

A consequence of assuming this special deformation mode is that it leads to 
a strain e12 which could produce large displacements and thus create voids in 
the material. We prefer to think here in terms of the cooperative deformation 
described by Van Houtte [128], in which neighboring grains are submitted to 
opposite shear strain rates, but in which the overall shear rate for the pair has a 
zero average value. Moreover, if such cooperative deformation takes place in an 
equiaxed substructure, it leads to smaller displacements than in an elongated 
structure. 

iii) In the first stages of deformation, a given grain corresponds to a 
single orientation. But very soon (i.e. once several slip systems become active, 
which corresponds to the end of the first increment in a purely plastic model), 
the climb of dislocations takes place, resulting in small misorientations in 
every grain. As a first approximation, each grain is simply divided into two 
subgrains, the rotation axis being taken as parallel to n X b, where nand bare 
the slip plane normal and slip direction of the most active slip system (see 
Figures 8.1 and 8.3). In the case where two systems are equally active, the 
rotation axis is the arithmetic average of the two n X b vectors. For most stable 
orientations (Le. at large strains), this results in the formation of sub­
boundaries perpendicular to the largest boundary of the initial grain. 
Consequently, compatibility is still satisfied accross this boundary on an 
average basis. This approximation (Le. the fact that each grain is split into just 
two orientations) is only employed for convenience here, but several other 

subgrains can be added, if necessary. This would, however, increase the 
computing time. The angle of misorientation ao is taken as a variable in the 
model and its magnitude is linked to the ease of climb in a given material. 
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Figure 8.3. 	 The effect of polygonization. Under the action ofclimb, 
a grain is split into two subgrains by a rotation around 
the axis n X b of the most active slip system. 

iv) Such pairs of orientations, although very close at the beginning of 
deformation, can rotate towards different orientations under the sole action of 
slip. This can, in turn, lead to high stress discontinuities, which is why it is 
necessary to treat the two subgrains simultaneously. For this purpose, two 
parameters have to be minimized: 

- some stress component differences; 


- the sub-boundary energy (in order to introduce the effect ofclimb). 
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Minimizing a stress difference means that, whenever this difference 
becomes higher than an acceptable limit, the corresponding strain rate 
component is relaxed in each of the two subgrains. 'rhen, once the deformation 
mode is set up, the shear rates are calculated in such a way that the grain 
boundary energy is minimized. It will be seen below that the change in grain 
boundary energy depends only on the shear rates. However, this energy can 
only be minimized in the presence of ambiguities. It is thus a second order 
effect, but it will be seen that its influence on texture development is not 

negligible. 

A choice now has to be made which concerns the stress components for 
which the differences are minimized. These depend on the deformation mode, 
just as the choice of the non-imposed strain rate components depends on the 
grain shape in the RC model. Some grain shape arguments have been used 
here, but in the present case, the subgrain is assumed to remain equiaxed. 
From the work of Tiem et al. [157], it can be seen that, for an equiaxed grain 
deformed in rolling, the lowest interaction coefficients are associated with the 

components £13, £23 and €i2. This means that, if these components are relaxed 
(Le. non-zero), the corresponding reaction stresses will not be too high. 
Moreover, whereas the three components do not have the same interaction 
coefficients in an elongated grain, they become equivalent in an equiaxed 

subgrain. By contrast, the normal components are not relaxed, but are 
constrained to remain equal to the macroscopic quantities. Similarly, in 
torsion, in order to assure partial stress continuity. two shear components are 
permitted to differ from the macroscopic ones. These strain rate components are 
the t12 and t13 shear rates. Note that in the RC model adapted for torsion, only 
tI3 is allowed to differ from its macroscopic equivalent. Again here, in an 
equiaxed substructure, the two shear rates have equal interaction coefficients. 

The last thing to consider before describing the simulation concerns the 
grain boundary energy. It was seen in the previous paragraph that not all the 

coincidence sites typical of cubic structures are observed in the cubic metals. 

We therefore decided to take into account only the ones found in pure 

aluminum and copper, i.e. the I: =1 (low angle) and I: =3 boundaries. The I: =11 

boundaries sometimes detected in aluminum, as well as other boundaries with 

higher values ofI:, could be added to the model, ifdesired, at a later stage. 
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vm.2.2. METHOD OF SIMULATION 

The different steps ofthe program that was devised are the following: 

i) Every grain (only one orientation at this stage) is given an Fe 
deformation step. Once the active slip systems are selected, the nxb vector 
associated with the most active system is determined and each grain is split 

10into two orientations (ao = for example), as illustrated in Figure 8.3. 

ii) For each further step of deformation, the stress vectors 0(1) and 0(2) 
associated with the two sub grains are calculated according to the Fe model. For 
the case of rolling, the following stress differences are evaluated 

aOa =103(1) - 0a(2)1 

ao, =10,(1) - 04(2)j (8.2) 

aos = 10s(1) - 0s(2)1 

and compared with 3 "tolerance" values, T3,T4 and T5 (Only T4 and T5, 
calculated in the grain axes, are considered in the case of torsion). Whenever 
one of these stress differences is higher than the corresponding admissible 
value, the associated strain rate component is relaxed in the two subgrains and 
the new stress states and activated slip systems are determined . 

. iii) In the presence of ambiguities, the shear rates are calculated from 
the minimization of the grain boundary energy, as described in Appendix 8. 

iv) At every step, the misorientation between adjacent subgrains is 
calculated; whenever it decreases below a given value, amin, (which means that 
the sub-boundary is disappearing), the grain is again split into two different 
subgrains, according to the rule employed in step i). 

In this model, different pairs of sub grains deform according to different 
modes (Fe or various types of RC). For example, a BIB pair of orientations in 
torsion deforms according to a p =4 mode (only the £12 component is relaxed in 
the two subgrains), whereas an AlA pair of orientations deforms according to 

the FC mode, since the stresses 0'12 and 0'13 are zero in this case. When a given 
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stress difference exceeds the set limit, the associated strain rate component is 
relaxed. In most cases (especially for stable orientations), the average strain 
rate component in the grain (Le. the average for the two subgrains) is small 

(zero in the case of BIB), and thus large discontinuities of displacement are 

avoided between grains. 

It should be noted that when grain boundary energy minimization is 

neglected, this model approaches the cluster model [156], i.e. the stress 
differences between neighboring grains are minimized. In the latter, however, 

instead ofusing only two orientations, twelve are considered (which can be very 

different, even at the beginning of deformation); also, whenever a stress 

component departs appreciably from the corresponding average pertaining to 

the twelve neighbors, the component is adjusted instead of being set equal to 

zero. This procedure avoids the appearance of large discontinuities in stress 

from one increment to the next, but leads to the same selection of systems, 

given the assumption that, the average stress state of the 12 grains is in most 

cases close to the macroscopic one (Le. the one for which the shear stress 

component of interest is zero). 

The parameters associated with this model will now be described. 

VIll.2.3. PARAMETERS EMPLOYED IN THE MODEL 

1) ao: This is the angle of splitting after the first step of deformation; its 

magnitude indicates the ease of climb in the material tested. Values higher 
than 3 degrees seem unrealistic. To account for differences in SFE and ease of 

climb, it is also possible to introduce the splitting of the grains at a later stage 
of deformation. We have treated here only the extreme case where climb plays a 
significant role at the beginning of deformation (Le. for very high SFE metals). 

For low SFE materials, the calculation could begin according to the classical 

FC-RC model; then, after a suitable amount of strain, the grains can be split 

and the stress continuity and GBE minimization criteria superimposed on the 

classical grain shape arguments. 

2) T~:r1::rQ: These are the tolerance values for the stress differences. In 

order to remain as faithful as possible to the room temperature RC model, these 
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limits are given the following values: in rolling, T3 =T4=0.2 (t3 and £4 are the 
two relaxed components in the RC model for room temperature), and T5:::::: 0.4> 
T3 and T4 (£5 is not relaxed at room temperature). In torsion, T4 is again 
assumed to be less than T5, and values similar to those listed above for rolling 

are assigned. 

3) amin: This is the limiting angle for the misorientation a between 
subgrains. Whenever a is smaller than amin, an increment of "climb" is 
performed. The introduction of this parameter permits the simulation of a 
continuous climb process without having to introduce new subgrains at each 
step. Omin is usually taken as equal to ao (i.e. between 1 and 3°). 

4) 1:: This refers to the type of coincidence site, which varies somewhat 
with the material. The choice involves two different considerations: 

- First, we have to decide if we will take into account both low and high 
angle boundaries, for example 1: = 1 and 3, or just the high angle boundaries, 

1: = 3. In the work described below, we have included both the low and the high 

angle boundaries. 

- Then, the selection (among the possible high angle coincidence sites) 

depends on the material; for aluminum and copper, we have only employed the 
1: = 3 boundaries, which are found more frequently. 

5) Another latitude inherent in the model is the option to consider only 
stress differences or whether the grain boundary energy is also minimized. 
Both options were studied, and will be presented below. 

Before examining the results of these simulations, a word of warning must 
be added: grain boundary energy minimization is only a first order calculation 
and is consequently very approximate. It nevertheless has the advantage of 

being readily solvable with the aid of linear programming, whereas a more 

exact calculation would involve the minimization of a complex quadratic 

function. 
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VIII.3. SIMULATED ROLLING AND TORSION TEXTURES 


The parameters ao, T3, T4 and T5 were varied systematically and found to 

have little influence on the results. This generalization does not apply to amin, 

the angle below which "resplitting" of the grains is performed. An interesting 
value for amin is 0, which means that climb takes place only at the very 
beginning of the calculation. We will therefore consider the cases amin = 0 and 

amin =1= 0 separately. 

VIlL3.!' CLIMB OF DISLOCATIONS AT THE BEGINNING OF 
DEFORMATION ONLY 

In this case, the interaction between grains is modelled in terms of the 
Taylor assumption, whereas the interaction between subgrains is always 
related to stress discontinuities and the grain boundary energy. The latter 
signifies that, if the misorientation remains small, the subgrains,· and 
consequently the grains, deform according to the Fe mode. At the beginning of 
deformation, as the grains are randomly oriented, and in general not near 
stable orientations, the small deviations due to climb rarely create strong stress 
discontinuities, and most of the grains simply deform according to the Fe mode. 
This is illustrated in Figure 8.4 for rolling (e = 2), where two different cases are 
considered: 

a) only stress continuity is taken into account (referred to as the se 
model); 

b) both stress continuity and GBE are taken into account (referred to as 
SC+GBE). 

The two textures illustrated are close to the Fe prediction, as expected; 
however, some odd components appear due to the GBE minimization. 
Moreover, the pole figures obtained do not fully respect the symmetry of the 
process (see Figure B.4b). This is due to the small number of subgrains 
considered, and.suggests that the misorientation produced by climb does not 
only depend on the active slip systems, but also on the imposed deformation 
mode. Although the textures predicted are not in particularly good agreement 
with experimental observations, they are different enough to indicate that the 
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(a) 	 (b) 

Figure 8.4. 	 Rolling textures at a strain of2 simulated with: 
a) the SC model (ao=3); 
b) the SC +GBE model (ao = 3 and 1: =1 and 3). 
In both cases, splitting of the grains because of climb only takes 
place at the beginning of the deformation. 

Figure 8.5. 
Rolling texture simulated with the 
SC model to a strain of 2. Splitting 
of the grains only takes place at 
the beginning of deformation 

~~~-------+-----""Ir""!"'""i TO (ao =1). 
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effect ofGBE minimization is not negligible. In particular, the proportion of the 
brass component is slightly higher than when only stress continuity is taken 
into consideration. The results presented in Figure 8.4 were obtained for 00=3. 
In Figure 8.5, the case where only the stress continuity is taken into account is 

presented for 00 = 1. The results are similar to those of the previous case. so, it 
was decided to use 00 = 1 in the subsequent calculations. This choice also leads 
to better agreement with experimental observations. 

VllI.3.2. CONTINUOUS CLIMB 

The parameters used in this case were the following: 00 = Omin = 1, :E = 1 and 
3, T3=T4=0.2 and T5 =0.4 in the case of rolling and T4=0.2 and T5=0.4 in the 
case of torsion. The results obtained for rolling to a strain of 2 are presented in 

Figure 8.6 for: (i) the condition where only the stress continuity is considered 
(8.6a); and (ii) where both the stress continuity and GBE minimization are 
taken into account (8.6b). The brass component is present in both cases, 
whereas it is absent from the .classical FC-RC calculation; note also that the 

brass orientation is more intense in the second case. These results are in good 
agreement with experimental observations (see Figure 2.18). The reason for the 
difference between the two calculations remains to be seen, however, and will 
be investigated in the next section. Before taking up this topic, we will look at 
the torsion textures predicted by these two models. These are presented in 
Figure 8.7 for an equivalent strain of 4, and in Figure 8.8 for an equivalent 
strain of 8. The results can be analyzed as follows: 

i) Figure 8.7a: At £=4, the first model (stress continuity only) produces a 
texture which is close to the FC-RC result. This indicates that the proportion of 
grains deforming according to the RC mode (because of stress differences) is 
approximately the same as that produced by the grain shape criterion. The 
small divergence between the present calculation and the usual FC-RC pole 
figure is due to the relaxation of the second strain rate component in the 

current case. 

ii) Figure 8.7b: When the GBE is taken into consideration with:E= 1 and 

3, the texture contains most of the FC features seen in the previous case. In the 
early stages of the deformation, small angles boundaries (:E = 1) are more 
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(a) 	 (b) 

Figure 8.6. 	 Rolling textures (f=2) simulated with: a) the SC+continuous 
climb model; b) the SC +GBE + continuous climb model. In both 
cases, ao =amin =1. 

numerous than large angle boundaries (E=3) and GBE minimization tends to 
keep the misorientations as close as possible to the E= 1 values (Le. close to 0 
degrees). Furthennore, as the grains have not yet reached stable positions 
(which are critical for stress continuity), the grains remain longer in the FC 
mode. It can also be seen that the BIB orientation begins to appear, although its 
proportion is very small. 

iii) Figure 8.8a: When stress continuity is employed to higher strains, 
the texture adopts a strong {lOO} fibre, and includes some components which 

are not usually observed. This may be due to the linear programming 

technique, which perfonns a random choice in the presence of ambiguities, 

although the extent of the ambiguities is known to be rather limited in this 

case. 
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Torsion textures (f=4) simulated with: a) the SC +continuous 
climb model; b) the SC +GBE + continuous climb modeL In both 
cases, 00 =Omin =1. 

z 

(a) 	 {b} 

Figure 8.8. 	 Torsion textures (t= 8) simulated with: a) the SC + continuous 
climb model; b) the SC +GBE + continuous climb model. In both 
cases, 00 = Omin = 1. 



- 222­

iv) Figure 8.8b: When GBE minimization is taken into account, it 
produces a strengthening of the BIB component at large strains. The C 
component also remains very strong, an orientation which is in good agreement 

with experimental results. 

VIII.4. VALIDITY OF THE MODEL 

VTII.4.1. SOURCES OF ERROR 

From the above results, it is evident that the new model described here 
(stress continuity + grain boundary energy minimization, SC +GBE) predicts 
textures which are in good agreement with experimental observations at high 
temperatures. However, the present model may seem somewhat arbitrary in 

the way ao, amin, T3, T4 and T5 are selected. The angles characterizing the ease 
of climb seem to have realistic values, but are known to vary with composition 
and the SFE of the material. Selection of a very small value for aoand 0 for amin 

is certainly an unreasonable choice, as it would lead to the formation of no 
subgrains at all, and the resulting elongated grains would be expected to 
deform mostly according to the RC mode. The "tolerance" values for the stress 
difference can also be modified, the problem here being to decide on an 

acceptable level for the stress discontinuity. 

We have also limited the possible low energy boundaries to the E=1 and 
E= 3 types. This is again an arbitrary choice, although it seems to be supported 
by experimental observations and also by the fact that the influence of 
boundaries of higher E decreases with increasing E. 

Another part of the simulation which can be questioned concerns the choice 
of the rotation axis for climb (Le. n x b of the most active slip system). In real 

grains, certainly more than one rotation axis is present and in any event this 

partiCUlar choice only corresponds to tilt boundaries. Finally, it should be noted 

that the first order calculation for GBE minimization prevents the stabilization 

of the orientations at an exact coincidence site; instead oscillations occur 

around it. 
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All these details can certainly be improved in the future, but at this stage of 
knowledge, it seems better to check first if the deformation conditions imposed 
on the grains and the predicted types of the coincidence sites are in good 
agreement with experimental observations. 

Vill.4.2. ADVANTAGES OF THE PRESENT MODEL 

The deformation conditions imposed on the different grains of the material 
permit the development of a cooperative mode of deformation, a phenomenon 
which has been reported several times in the past. The influence ofthe GBE has 
been shown to be non-negligible, although it appears to be a second order effect 
at the beginning of each simulation. Polygonization has also been observed by 
other workers [172,180,181] and certainly plays a role in high temperature 
recovery processes. The present model emphasizes the influence of the sub­
structure, and underlines the fact that a given grain is no longer described by a 
single orientation once deformation begins. This is' again in good agreement 
with the work of Schmitt [182]. 

Two supplementary results will now be given to further support the validity 

of the present model: i.e. the number of ~=1 and ~=3 boundaries and the 
predicted axial stresses in torsion. 

VillA.3. CALCULATED NUMBER OF STABLE BOUNDARIES 

The number of sub-boundariest close to ~=1 and ~=3 positions were 
calculated for torsion and rolling and are presented in Figure 8.9. The deviation 

from a 1:=3 boundary was taken as 10° because rearrangement into a stable 
position takes time, and the numbers obtained are still small after a 
deformation of 2 in rolling, for example. For both models, the number of ~=1 
positions decreases slightly with strain, whereas the number of 1: =3 positions 
increases. The trends obtained, particularly with the SC +GBE simulation, are 

t 	 Note that, whereas the ~= 1 boundaries between subgrains are low angle 
interfaces of the conventional type, the ~=3 boundaries referred to here 
were developed purely by deformation. Thus they refer to misorientations 
between subgrains of the original grains and not to misorientations 
between the grains themselves. 
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Figure 8.9a. Number of nearly stable boundaries in torsion at £=4 and £"=8 
for the SC and SC + GBE models. The deviation from the 
coincidence site is equal to 5° for ~ = 1 and to 10° for ~ = 3. 
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Figure 8.9b. Number of nearly stable boundaries in rolling ate = 1 and e = 2 
for the SC and SC + GBE models. The deviation from the 
coincidence site relationship is equal to 5° for ~ = 1 and to 10° 
for ~=3. 



- 225­

in good agreement with the basic philosophy of the model and the differences 
between the mechanisms are more pronounced in torsion, where the strain is 
considerably higher. The small differences obtained in rolling are consistent 

with the small differences in the textures apparent from the pole figures. 

Although the intensities vary as expected with the two models, the !!=3 

numbers seem rather small. This can be due to the choice of the rotation axis for 

splitting and the fact that only two subgrains are considered. Such an approach 
is certainly not very realistic for highly symmetric orientations. In this case, 
the crystallographic rotations as well as the rotations due to climb must respect 

the symmetry of the process [5]. However, the numbers of!!=3 sub-boundaries 
are in good agreement with experimental measurements, both in rolling [174] 

and torsion [176]. For the latter case, it was clearly demonstrated that some of 
the high angle boundaries found in Al were ffsub-boundaries formed by 

polygonization". As mentioned by Perdrix [176], it is often difficult to 
distinguish between the original grain boundaries and the ftsub·boundanes" 

formed by enhanced recovery during continuous recrystallization. The latter 
mechanism has also been reported to occur in steel (183,184]. It is possible to 
interpret the resulting equiaxed substructure with high misorientations as 
being due solely to dynamic recovery, as in the present model. 

VIll.4.4. AXIAL STRESSES IN TORSION 

It is known from the work of Cohen [72] and of Montheillet and co-workers 
[76,82] that the axial stress in fixed end torsion varies with the strain. This is 
mainly due to the development of texture. In copper, for example, the axial 
stress is first compressive; then it changes into tension as the deformation 
proceeds. The change from compression to tension takes place earlier (at lower 
strains) when the temperature is increased. The calculated axial stress is 
displayed in Figure 8.10 for the following two models: FC-RC and SC + GBE. 

The first reproduces the trend observed at room temperature prior to fracture, 
whereas the second predicts the decrease in the compressive stress followed by 

the development of tensile stresses, as observed experimentally at high 

temperatures. The calculated values are also lower at high (SC +GBE) than at 

room (FC-RC) temperature. At strains above about 6, the SC + GBE model 
predicts the return of the compressive force. Although present in Al at large 
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Figure 8.10. Dependence of the axial stress ozz in torsion on the equivalent 
strain Eeq for the FC-RC and for the new model based on stress 
continuity and minimization of grain boundary energy. 

strains, the axial stress in Cu remains tensile. The values of the parameters 

that are required to produce such a result have not yet been determined, but are 
under continuing investigation. 

It can be concluded that the number of stable boundaries, the predicted axial 
stresses as well as the actual textures all favor the SC + GBE simulation. It 
could even be argued that this calculation works so well, because of the way it 
relaxes certain stress components. Nevertheless the SC and SC +GBE models 
do not predict the same textures. Moreover, the two sets of textures are not 
really typical of a strict RC calculation. In Figure 8.11, the rolling texture 

predicted for a strain of 2 according to a strict RC mode (p =2) is presented. It 

can be seen that the relaxation of all 3 shear stresses leads effectively to the 

prediction of a strong brass component; thus the results produced by the SC and 

SC +GBE theories can be considered as due in part to the relaxation of these 

stresses. This is not, however, true in torsion. The predicted RC (p = 3) texture 
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Figure 8.11. Rolling texture (e=2) simulated with a strict RC calculation. 
All 3 shear rates, £12, £23 and t13 are relaxed in every grain. 

Sense of shear Z 

Figure 8.12. Torsion texture (e=4) simulated with a strict RC calculation. 
ERe and ERZ are allowed to differ in each grain from the 
macroscopic quantities. 
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pertaining to a strain of 4 is illustrated in Figure 8.12 and no BIB component is 
evident in this case, whereas only the SC +GBE model predicts it. 

Before concluding this chapter, it is now time to compare all the theories 
investigated in this work and to decide (if possible) which one best reproduces 

experimental observations at high temperature. 

VIII.S. COMPARISON OF THE DIFFERENT MODELS 

INVESTIGATED 

Four possible mechanisms for the formation of high temperature textures 

were investigated in this work. These were: 

1) the RW criterion of minimum work hardening rate; 


2) the increased ease of cross-slip; 

3) the activation ofnew slip (or cross-slip) systems; 

4) the increased ease of climb and grain boundary energy minimization. 


The first does not reproduce experimental observations, and is seen to be 
more suitable for room temperature deformation [5]. At high temperatures, 
other mechanisms take place which become more important. The last three, on 
the other hand, all predict the right trends, although in different proportions. 
This can be attributed to the limitations of the different models, as well as to 
the real effects of the different mechanisms. We will now review briefly the 
limitations ofeach model. 

Cross-slip is certainly one of the mechanisms of high temperature 
deformation. The HL model developed here, however, suffers from two 

approximations: 
- the hardening laws are very simple; 

- the change in "tc during an increment of deformation is neglected. In 
particular, the possibility that some systems may become "over-active" ("t 

greater than "tc) was not checked, as in the work of Havner and 
Chidambarrao [185] and of Berveiller and co-workers [135,149]. The 

absence of (faver-activity" is nevertheless probable for most of the grains. 
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The elimination of these two problems would, however, increase the computing 

time considerably and render the models much more complex. 

The activation ofnew slip systems has been observed experimentally in a few 

cases. The model developed here is as rigorous as the classical FC-RC theory. 

The only arbitrary assumption made was that the rotation rate on the 

{110}< 110 > systems is calculated on the basis that both systems of a given 

pair are equally active. 

The approximations which are part of the recovery model have been 

discussed above. 

It now remains to carry out experimental work to test the validity of the 

different theories and to decide the extent to which cross-slip, the activation of 

new systems, and recovery and climb are active in different fcc materials. This 
experimental work could include the following points: 

-Characterization of the active slip planes and directions for different 

temperatures and materials. This would help to determine the importance of 
cross-slip and of glide on new systems. 

-Determination of the structures and substructures developed during 

high temperature deformation so as to verify the validity of the recovery model. 

-Measurement of the misorientations between subgrains and 

determination of the rotation axes. 

-Measurement of the shears undergone by different grains of a material 
to verify the assumption of cooperative deformation. In particular, it would be 
of interest to study aluminum deformed in torsion at 400°C, which is 
characterized by the development of a strong BIB texture. 

VIII.6. CONCLUSIONS 

In this chapter, a model was proposed to account for the occurrence of climb, 

the formation of an equiaxed substructure and the influence of grain boundary 

energy. It was shown that this model correctly predicts the trends observed at 
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high temperatures in terms of the textures (see Figures 8.13 and 8.14) as well 

as the axial stresses developed in torsion. 

This model was compared to those developed in the earlier chapters and the 

limitations and possible sources of error of the different theories have been 

listed. Finally, more detailed experimental investigations are now seen to be 

necessary in order to decide about the validity and relative influence of the 

different mechanisms simulated here. The fact that the predicted textures are 

in good agreement with experimental ones is not enough; the mechanisms on 

which the different models are based must also be observed experimentally. 
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Figure 8.13. Comparison of some experimental and predicted rolling textures. 
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(a) FC-RC model (b) CS +GBE +continuous 
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(c) Copper, T=25°C [72] (d) Copper, T= 150°C [72] 

Figure 8.13. Comparison of some experimental and predicted torsion textures. 



CHAPrERIX 

CONCLUSIONS 


The aim of this work was the development of methods for the prediction of 
high temperature deformation textures. The various steps that were 

investigated during the progress ofthis research were the following: 

i) Experimental textures in which the high temperature components 
were clearly identified were reviewed and the possible mechanisms responsible 

for their development were listed. 

ii) The theoretical models for texture evolution were described and 

evaluated. An outcome of this analysis was the finding that there was no 
systematic investigation in the literature of the theories for texture 

development at high temperature. The models which could serve as the starting 

point for the present work were selected on the basis of the following two 
criteria: the model first had to be relatively simple; furthermore, it had to have 
the potential for adaptation to the conditions of high temperature deformation. 

The FC-RC model was selected for this purpose, to be used in conjunction with 
either the principle of maximum external work rate (yield surface 
examination) or the principle of minimum internal work rate (linear 

programming). The main assumptions in all the models developed later were 
that slip occurs on {111}< 110> systems and that the Schmid law is obeyed. 

iii) The extension textures developed in aluminum at high temperatures 
were determined experimentally; this was done in order to supply data which 
were missing from the literature review. 

iv) The mechanisms proposed in step one were incorporated into the 

models identified in step two. These were: (i) thermal activation, through 
minimization of the work hardening rate; (ii) the increased ease of cross-slip; 

(iii) the activation of new systems; and (iv) the effect of recovery through 

enhanced climb and polygonization. In the modelling of the first three 
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mechanisms, the grain shape arguments employed for large strains at room 
temperature were retained unchanged; in the last model, by contrast, the grain 
shape arguments were modified. 

v) The predicted textures were compared with the experimental ones and 
the validity of the various models was discussed. The theoretical results 

obtained with the different models developed in this thesis are summarized in 
Tables 9.1 to 9.3. The quality of the agreement with the experimental textures 
is also given, as well as the assumptions and mathematical simplifications 

inherent in each model. 

From this work, the following conclusions can be drawn: 

1) In the experimental review, it was clearly shown that, the percentage of 
the so-called ((brass" component increases, in both torsion and rolling, when the 

deformation temperature is increased. This component is usually found at room 
temperature in low SFE metals. It was thus proposed that the intensity of the 

brass component first decreases and then increases as the temperature is 
raised, and that this is a generalization which can be extended to any 

deformation mode, e.g. to tension, where the brass component is identified as 
the < 100> fibre (found at room T in low SFE metals). 

2) The experimental determination of the texture of aluminum deformed by 

swaging at room temperature and at 250°C confirmed the above hypothesis: the 
percentages of the <100> and <111> fibres were 13.3 and 2.7, respectively, 
in the hot deformed samples, compared to 11.3 and 3.5 in those that were cold 
deformed. Moreover, the larger spread around the room temperature fibres 
suggests that grain rotation toward stable positions takes place more quickly at 
higher temperatures. 

3) The RW theory of minimum work hardening rate can be modified so as to 

simplify its application and extended to cover polycrystal deformation. It was 

also shown that the rotation rate of individual orientations towards stable 

positions is faster with the RW criterion than with the AV technique. This 

observation correlates well with experimental data. 
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4) The Chin model simulation of the ease of cross-slip was modified in the 
framework of the maximum external work rate instead of the minimum 

internal work rate principle. This modification has the advantage of 

suppressing two problems inherent in the Chin theory: (i) random choice in the 

case of remaining ambiguities and (ii) uncertainty about the independence of 

slip systems. 

5) The RW and modified Chin models use selection criteria in the presence of 

ambiguities. A careful examination of the extent of these ambiguities confirms 

that they are more numerous in tension than in rolling and torsion and in the 

FC compared to the RC model. As a result, for the case of tension, which is 

usually treated according to the FC model, the textures predicted using the RW 

or modified Chin criteria differ appreciably from the ones obtained with the 

averaging technique. By contrast, in torsion and rolling, which are treated 

according to the FC-RC mode, the results are similar. This implies that any 

model based simply on a selection criterion is not really adequate for general 

purposes since it cannot account for the observed differences pertaining to all 

deformation modes. 

6) The two other models developed for cross-slip, HL (hardening law) and 

cross-slip on {110} and {112}< 110 > systems, predict the right trends, i.e. an 

increase in the brass component in tension, torsion and rolling. The influence of 

cross-slip is small with the first model and depends on the value of the CRSS of 
the cross-slip systems in the second case; nevertheless, they have two 

advantages compared to the previous ones: they are first simple, and second the 
Schmid law is respected for every active slip system. 

7) In the treatment of new active slip (or cross-slip) systems, it was 

demonstrated that different values of the CRSS for the various families of 
systems affect texture evolution in an RC model, even in the range where the 

number of vertices remains constant. 

8) The various models can be classified In order of agreement with 

experiment as follows: the simulation of recovery gives the best results for the 

three deformation modes investigated, followed by the activation of cross-slip 

systems, the HL model, the modified Chin theory, the RW model and the 
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activation of new slip systems. Nevertheless, the recovery model suffers from a 
number of approximations, which are listed in Tables 9.1 to 9.3. These can be 
defended in terms of the following considerations: 

The climb of dislocations observed at elevated temperature can be 
modelled by splitting the grains into subgrains. 
The occurrence of cooperative deformation at high temperatures can be 
taken to justify the assumption that less constraints need to be applied to 
each grain or subgrain under these conditions and that stress continuity 

becomes more important. 
Polygonization, which also occurs at elevated temperatures and is 

described as the rearrangement of dislocations into more stable 
configurations, justifies the use ofGBE minimization. 

Finally, it should be mentioned that all the mechanisms proposed in 
Chapter II were investigated in the' framework of the assumptions listed in 
Chapter m. This does not imply that the present study of high temperature 
deformation textures has been exhaustive with respect to the number of 
possible mechanisms or treatments of these mechanisms. In particular, rate 
sensitive effects were purposely neglected since they were thought to have only 
a small influence on texture development. Moreover, the models developed here 
do not have always the beauty of mechanical approaches such as the self­
consistent models (135,149] or the Havner theory [185]. This work must 
therefore be seen as only a first approach to the simulation of high temperature 

textures. 



AgreementPredicted Simulated Assumptions andModel with exper. texture mechanism mathematical simplifications(high T) 

FC-RW 10% near Not good Min. WH rate. FC mode based on GS 
<100> fibre Thermal considerations. "tc(t)=C 

activation First order calculation 

FC+ 30% <100> Very good Cross-slip FC mode based on as 
modified Chin fibre considerations. "tc(t) =C 

Special selection of ss 

FC+HL 30% <100> Very good Cross-slip Room T GS (FC mode) 
fibre Simplified hardening laws t-:) 

co 
~tc not considered 
I

FC + {100} slip 27% <100> Good "tc(T) FC mode based on as 
planes fibre considerations. "tc(t) =C 

Table 9.1. Summary of the results obtained with the different models for tension. 



Model 

FC-RC+RW 

FC-RC+ 
{110}+{l12} 

cross-slip 
planes 

no respli tting 

+ 
no respli tting 

+cont. 
climb 

+UH~+ 
cont. climb 

Predicted Agreement with Simulated 
texture exper. (high T) mechanism 

"tdT), 0 =1.5 
"te(T),0=0.89 

Not good 

trong ontInuous cHm 
C+B+A* Equiaxed subst. 

GBE minimization 

Assumptions and mathematical 
simplifications 

Dom T gram snape l\:)

"teet) = C C.I!I 
00 same yS on 2{l10} planes 
I 

Table 9.2. Summary of the results obtained wi th the different models for torsion. 

http:te(T),0=0.89


Predicted Agreement with Simulated Assumptions and mathematicalModel texture exper. (high T) mechanism simplifications 

FC-RC+ Same asFC- Not very good Cross-slip Room T grain shape 
modified Chin RCmodel 'teet) =C 

Special selection ofss 
FC-RC+HL Strong Cu + S, Good at interm. T Cross-slip Room T grain shape 

+weakBs Bs too weak Simplified hardening laws 
te not considered 

FC-RC + {100} same as FC-RC Not good 1;e(T), a = 1.5 Room T grain shape 
slip planes 1;e(t)=CsameasFC­

FC+cube Not good 1;c(T). a = 0.89 
FC-RC + {110} FC-RC+Bs Good Cross-slip & tc(T) Room T grain shape 
+{112} cross- with 1;cl =te2=te3 te(t)=C 

t-:Islip planes same ys on 2{110} planes c:.oBrass+ Goss Very good tel::: 10, tc2 tc3= 1 c:.o 
SC Close to FC Not good Climb (b1:inning) Partial SC between subgrains, I 

no respli tting Equiaxe substr. tC<t)=C 
Arbitrary selection ofvariables 

SC+GBE Close to FC Not good Climb (beginning) Partial SC between subgrains, 
no resplitting Equiaxed'subst. 'teet) =C 

GBE minimization Arbitrary selection ofvariables I 

1st order calculation ofGBE I 

SC+cont. Intermediate Very good Continuous climb Partial SC between subgrains, 
climb Bs+Cu Equiaxed subst. te(t)=C 

Arbitrary selection ofvariables 
SC+GBE+ Intermediate Very good Continuous climb Partial SC between subgrains, 
cont. climb Bs+Cu Equiaxed subst. -';c(t) = C 

GBE mipimization Arbitrary selection ofvariables 
1st order calculation ofGBE 

Table 9.3. Summary of the results obtained with the different models with rolling. 
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SUGGESTED TOPICS FOR FURTHER INVESTIGATION 

This work constitutes a first attempt at the understanding and simulation of 
the mechanisms responsible for the development of deformation textures at 
high temperatures. The continuation of this research could include the 
following steps: 

1) The occurrence of the simulated mechanisms could be experimentally 
verified; i.e. the ranges of temperature and stacking fault energy in which 
extensive cross-slip, the activation of new systems, extensive climb, recovery, 
and grain boundary minimization occur could be determined, by preference on 
single crystals tested in constrained deformation. 

2) One or several of the proposed models could be refined, depending on 
the experimental results obtained from 1) above. This would involve the 
introduction of more realistic hardening parameters, realistic values for the 
CRSS of different slip systems, statistics regarding the frequency of occurrence 
of various types of coincidence sites, and of misorientation angles and data 
regarding tolerance criteria. Some of the mathematical limitations (first order 
calculations) could also be eliminated in this way. 

3) The possible interaction of some of the proposed mechanisms could be 
investigated. For example, in the T and SFE range where both cross-slip and 
recovery are determined to be active. a combined model could be developed. 

4) The plastic properties of hot worked materials could be calculated. 
Once the mechanisms responsible for high temperature deformation have been 
identified and more or less well simulated, plastic properties can be readily 

deduced from these models. This would involve calculation of the strain rate 
ratio R in sheet and axial stresses in torsion. Because of the industrial 
importance of anisotropy, this must be the final aim ofany texture study. 
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STATEMENT OF ORIGINALITY AND CONTRIBUTION 

TO KNOWLEDGE 


1) This work, as one of the first to focus on the influence of deformation 

temperature on texture, provides clear and extensive evidence of the 

differences between low and high temperature deformation textures. This 

resulted from the literature review which centered on temperature effects and 

also from a complementary small-scale experimental investigation. 

2) The mechanisms which could be responsible for the above differences were 

tabulated and described. This list involves the effects of: thermal activation, 

cross-slip, the activation of new systems and recovery. All four mechanisms 
were simulated in a number of ways and the results of the various predictions 

compared to experimental data. 

3) The present treatment of the RW theory comprises as original contributions: 

a) clarification of the theory itself, i.e. the use of a more convenient 


notation; 


b) complete listing of the ambiguities present in the FC and RC models; 


and 


c) application of the theory to polycrystal deformation. 


4) The Chin theory for cross-slip was rewritten in terms of the maximum work 
principle; this innovation avoids two of the problems inherent in the original 
theory. The results of the Chin and modified Chin models are also compared. 

5) The increase ease of cross-slip was simulated by two further new models: i) 

the incorporation of simple hardening laws (usually introduced to simulate 

latent hardening); and ii) the introduction of cross-slip systems. 

6) Slip systems other than the {111}<110> have been employed in the past. 

However, their influence has only been treated in rolling; in the present work, a 
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more complete investigation of the activation of other systems was carried out, 
both in terms of deformation modes as well as possible slip planes. 

7) A new model was developed to simulate the recovery process; this was 
expressed in terms of climb, cooperative deformation and grain boundary 
energy minimization. This model constitutes the first introduction of these 
three elements concurrently. 

8) Most of the proposed models predict experimental trends reasonably well. 

Nevertheless, their limitations and the disagreements with experimental 
observations have been clearly identified, a task which eliminates the need to 

carry out certain unnecessary investigations and also focuses attention on the 
issues that remain to be settled. 



- 243­

REFERENCES 


1. 	 M. Hatherly and W.B. Hutchinson, "An Introduction to Textures in 

Metals", The Institution ofMetallurgists, Monograph no 5 (1979). 

2. 	 H. Hu, R.S. Cline and S.R. Goodman, "Recrystallization, Grain Growth 

and Textures i
" Chapter 8, ASM, Metals Park, Ohio (1966), p. 295. 

3. 	 G. Sachs, Z. Ver. dent. Ing., 72 (1928), p. 734. 

4. 	 G.L Taylor, J. Inst. Metals, 62(1938), p. 307. 

5. 	 B. Bacroix, J.J. Jonas, F.Montheillet and A. Skalli, Acta Metall., 

34(1986), p. 937. 

6. 	 G.Y. Chin in "Textures in Research and Practice", Proceedings of the Int. 

Symposium, Clausthal-Zellerfeld (1968), Springer-Verlag Co., Berlin 

(1969), p. 236. 

7. 	 H. Gleiter in "Physical Metallurgy", R.W. Cahn and P. Haasen editors, 

Elsevier Science Publishers, BV, 1983. 

8. 	 H. Mecking in "Preferred Orientation in Deformed Metals and Rocks: An 

Introduction to Modern Texture Analysis". H.R. Wenk editor, Academic 

Press Inc. (1985), p. 267. 

9. 	 W.R. Hibbard Jr., J. Inst. Metals, 77(1950), p. 581. 

10. 	 W.R. Hibbard Jr., Trans. AIME, 185(1949), p. 598. 

11. 	 E.A. Calnan, Acta Metal!., ~(1954), p. 865. 

12. 	 E.A. Calnan and B.E. Williams, Trans. AIME, 194(1952), p. 743. 

13. 	 LL. Dillamore and W.T.Roberts, Metallurgical Reviews, 10(1965), p. 271. 

14. 	 J. Grewen and G. Wassermann, Z. Metallkunde, 45(1954), p. 498. 

15. 	 H.J. Bunge, Mber. Dt. Akad. Wiss., §.(1963), p. 293. 

16. 	 C.S. Barrett and L.H. Levenson Jr., Trans. AIME, 135(1939), p. 327. 



- 244­

17. 	 C.J. McHargue, L.K. Jetter and J.C. Ogle, Trans. Met. Soc. AIME, 
215(1959), p. 831. 

18. 	 R.J. Butt, Ph. D. Thesis, University of Birmingham, 1962. 

19. 	 W.T. Roberts and R.J. Butt, unpublished work quoted in (13). 

20. 	 J. Grewen and G. Wassermann, Metall., 12(1958), p. 523. 

21. 	 A.T. English and G.Y. Chin, Acta Metall., 13(1965), p. 327. 

22. 	 C.S. Barrett and T.B. Massalski, "The Structure of Metals: 
Crystallographic Methods, Principles and Data", McGraw Hill Book 
Company, 3rdEdition (1966). 

23. 	 N. Brown, Trans. Met. Soc. AIME, 222(1961), p. 236. 

24. 	 E. Aernoudt, I. Kokubo and H.P. Stuwe, Z. Metallkunde, 57(1966), p. 216. 

25. 	 H. Ahlborn, Z. Metallkunde, 57(1966), p. 877. 

26. 	 J. Gil Sevillano, P. van Houtte and E. Aernoudt, Progress in Mat. 
Science, 25(1980). 

27. 	 F.R.N. NabarrQ, Z.S. Basinski and D.B. Holt, Adv. Physics, 13(1964), 

p.193. 

28. 	 R.E. Smallman and D. Green, Acta Metal!., 12(1964), p. 145. 

29. 	 LL. Dillamore and W.T. Roberts, Acta Metall., 12(1964), p. 281. 

30. 	 E.S. Dana, itA Text Book of Mineralogy", 3rd Edition, New York (1922). 

31. 	 E.O. Hall, "Twinning and Diffusionless Transformations in Metals", 
Butterworths, London (1954). 

32. 	 J. Venables, J. Phys. Chem. Solids, 25(1964), p. 685. 

33. 	 J. Venables, J. Phys. Chem. Solids, 25(1964), p. 693. 

34. 	 B. Ramaswami, U.F. Kocks and B. Chalmers, Trans. Met. Soc. AIME, 
233(1965), p. 927. 

35. 	 U.F. Kocks and T.J. Brown, Acta Metall., 14(1966), p. 87. 

36. 	 P.J. Jackson and Z.S. Basinski, Can. J. Phys., 45(1966), p. 707. 

37. 	 C.S. Barrett and L.H. Levenson, Trans. AIME, 137(1940), p. 112. 



- 245­

38. 	 H. Naaman, R. Talreja, D. Juul Jensen and N. Hansen, submitted to 

Textures and Microstructures. 

39. 	 H. Mecking, Proc. ICOTOM5, March 28-31 1978, Aachen, Germany, 

p.1573. 

40. 	 H. Hu, P.R. Sperry and P.A. Beck, Trans. AIME, 194(1952), p. 76. 

41. 	 H.Hu and S.R. Goodman, Trans. AIME, 227(1963), p. 627. 

42. 	 F. Haessner, Z. Metallkunde, 53(1962), p. 403. 

43. 	 R.E. Smallman, J. Inst. Metals, 83(1954-55), p. 408. 

44. 	 R.E. Smallman, J. Inst. Metals, 84(1955-56), p. 10. 

45. 	 Y.C. Liu and R.H. Richman, Trans. Met. Soc. AIME, 218(1960), p. 668. 

46. 	 R.H. Richman and Y.C. Liu, Trans. Met. Soc. AIME, 221(1961), p. 720. 

47. 	 A. Merlini andP.A Beck, Trans. AIME, 203(1955), p. 385. 

48. 	 H. Hu and R.S. Cline, J. Appl. Phys., 32(1961), p. 760. 

49. 	 H. Hu, R.S. Cline and S.R. Goodman, J. Appl. Phys. 32(1961), p. 1302. 

50. 	 S.R. Goodman and H. Hu, Trans. Met. Soc. AIME, 227(1963), p. 627. 

51. 	 R. Maddin, C.H. Mathewson and W.R. Hibbard Jr, Trans. AIME, 
185(1949), p. 527. 

52. 	 F. Haessner, Z. Metallkunde, 54(1963), p. 98. 

53. 	 C.J. Beevers and R.W.K. Honeycombe, Acta Metall., ~(1961), p. 513. 

54. 	 H. Ahlborn, J. Grewen and G. Wassermann, Z. Metallkunde, 55(1964), 
p.598. 

55. 	 F. Haessner in reference 2, p. 386. 

56. 	 R.E. Bauer, Ph.D. Thesis, Aachen (1970). 

57. 	 P.J. Regenet and H.P. Stuwe, Z. Metallkunde, 54(1963), p. 273. 

58. 	 M. Hatherly, A.S. Malin, C.M. Carmichael, F.J. Humphreys and 
J. Hirsch, Acta Metal!., 34(1986), p. 2247. 

59. 	 H.J. Bunge, ''Texture Analysis in Materials Science", Butterworths, 
1982. 



- 246­

60. 	 R.J. Roe, J. Applied Phys., 36(1965), p. 2024. 

61. 	 P. van Houtte and E. Aemoudt, Mat. Sci. and Eng., 23(1976), p. 11. 

62. 	 J. Hirsch, Ph.D. Thesis, Aachen (1984). 

63. 	 J.S. Kallend and G.J. Davies, J. Inst. Metals, 98(1970), p. 242. 

64. 	 H.J. Bunge and F. Haessner, J. of Appl. Physics, 39(1968), p. 5503. 

65. 	 J. Hirsch, K.H. Virnieh and K. Lucke in Proe. ICOTOM6 (edited by S. 
Nagashima), Tokyo, Japan, ISIJ (1981), p. 375. 

66. 	 M.Y. Huh, J. Hirsch and K. Lucke, Proc. ICOTOM7, Noordwijkerhaut, 
Holland, 1984, Eds. C.M. Brakman et aI., 1985, p. 651. 

67. 	 H. Eichelkraut, J. Hirsch and K. Lucke, Z. Metallkunde, 75(1984), p.113. 

68. 	 J. Hirsch, private communication. 

69. 	 M. Bull, private communication. 

70. 	 M.J. Bull and D.J. Lloyd, in "AI-Li Alloys m", Proc. Conf. Oxford, 1985, 
Eds. Baker et al., 1986. 

71. 	 J.R. Holland, Ph.D. Thesis, University of Kentucky (1962). 

72. 	 M. Cohen, These de Docteur-Ingenieur, Ecole des Mines de Paris (1983). 

73. 	 W.A. Backofen, Trans. Am. Inst. Min. Met. Eng., 188(1950), p. 1454. 

74. 	 W.A. Backofen and B.B. Mundy, ibid., 197(1953), p. 61. 

75. 	 P.O. Williams, Trans. Met. Soc. AIME, 224(1962), p. 129. 

76. 	 F. Montheillet. P. Gilormini and J.J. Jonas, Acta Metall., 33(1985), 
p.705. 

77. 	 G.R. Canova, U.F. Kocks andJ.J.Jonas, Acta Metall., 32(1984), p. 221. 

78. 	 P. van Houtte, E. Aemoudt and K. Sekine, Proc. ICOTOM 6 (see ref. 65), 
p.337. 

79. 	 J. Gil Sevillano, P. van Houtte and E. Aernoudt, Scripta Metall., 
11(1977), p. 581. 

80. 	 K. Sekine, P. van Houtte, J. Gil Sevillano and E. Aernoudt, Proe. 
ICOTOM6 (see ref. 65), p. 396. 

81. 	 P. van Houtte, Acta Metall., 26(1978), p. 591. 



- 247­

82. 	 F. Montheillet, M. Cohen andJ.J. Jonas, Acta Metall., 32(1984), p. 2077. 

83. 	 H.P. Stuwe, Iron and Steel lnst. Rep. 108 (1968), p. 1. 

84. 	 R.F. Lynch, Ph. D. Thesis, Lehigh University, 1971. 

85. 	 U. Schmidt and K. Lucke, Texture of Cry st. Solids, ~(1979), p. 85. 

86. 	 K. Ito, R. Musik and K. Lucke, Acta Metall., 31(1983), p. 2137. 

87. 	 J. Hirsch and K. Lucke, Acta Metall., 33(1985), p. 1927. 

88. 	 W. G. Burgers and P~C. Louwerse, Z. Physik, 61(1931), p. 605. 

89. 	 C. S. Barrett, Trans. AIME, 137(1940), p. 128. 

90. 	 P.R. Rowland, J. Inst. Met., 83(1954), p. 455. 

91. 	 W.G. Burgers and C.A. Verbraak, Acta Metall., §.(1957), p. 765. 

92. 	 P.A. Beck and H. Hu, reference 2, chapter 9, p. 393. 

93. 	 B. Liebmann, K. Lucke and G. Masing, Z. Metallkunde, 47(1956), p. 57. 

94. 	 M.L. Kronberg and F.H. Wilson, Trans. AIME, 185(1949), p. 501. 

95. 	 J.C.M. Li in "Recovery and Recrystallization of Metals", L. Himmel Ed., 
Interscience, New York, 1963, p. 160. 

96. 	 P. Gordon and R.A. Vandermeer, reference 2, chapter 6, p. 205. 

97. 	 C. Schnell and H.G. Grewe, Proc. ICOTOM5 (see ref. 39), p. 389. 

98. 	 J. Grewen and J. Huber, in "Recrystallization of Metallic Materials", 
F. Haessner ed., Dr. Riederer-Verlag GMBH, Stuttgart, 1978, p.111. 

99. 	 E. Schmid, Proc. Int. Con gr. Appl. Mech. Delft, 1924, p. 342. 

100. 	 U.F. Kocks, Metall. Trans. 1(1970), p.1121. 

101. 	 J.F.W. Bishop and R. Hill, Phil. Mag., 42(1951), p. 414. 

102. 	 T. Leffers, Ris~ Report No.184 (1968). 

103. 	 U.F. Kocks and H. Chandra, Acta Metall., 30(1982), p. 695. 

104. 	 G.R. Canova, Ph.D. Thesis, McGill University, Montreal,1982. 

105. 	 U.F. Kocks, G.R. Canova andJ.J. Jonas, Acta Metall., 31(1983), p.1243. 

106. 	 C.N. Tome and U.F. Kocks, Acta Metall., 33(1985), p. 603. 



- 248­

107. 	 G.R. Canova, U.F. Kocks, C.N. Tome and J.J. Jonas, J. Mech. Phys. 
Solids, 33(1985), p. 371. 

108. 	 Ph. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix and J.J. Jonas, to be 
published in Acta Metall .. 

109. 	 Ph. Lequeu, Ph.D. Thesis, McGill University, Montreal, Canada, 1986. 

110. 	 G.I. Taylor, in "Deformation and Flow of Solids", Proc. IUTAM Colloq. 
Madrid (R. Grammel ed.), Springer, Berlin, 1955, p. 3. 

111. 	 P. van Houtte andE. Aernoudt, Z. Metallkunde, 66(1975), p.4. 

112. 	 J.F.W. Bishop and R. Hill, Phil. Mag., 42(1951), p. 1298. 

113. 	 G.Y. Chin and W.L. Mammel, Trans. Met. Soc. AIME, 245(1969), p. 1211. 

114. 	 P. van Houtte, Proc. ICOTOM6 (see ref. 65), p. 428. 

115. 	 M. Renouard and M. Wintenberger, C.R. Acad. Sc. Paris, B283(1976), 
p.237. 

116. 	 A. Kochendorfer, Reine und angewandte Metallkunde, Springer Berlin, 
1941. 

117. 	 H. Honneff and H. Mecking, Proc. ICOTOM5 (see ref. 39), p. 265. 

118. 	 A. Skalli, These d'Etat, Ecole des Mines de Saint Etienne, France, 1982. 

119. 	 U.F. Kocks and G.R. Canova, Proc. 2nd Risji') Int. Symp.: "Deformation of 
Polycrystals: Mechanisms and Microstructures", Hansen et al. eds., 
1981, p. 35.. 

120. 	 P.van Houtte, Mem. Sci. Rev. Met., 82(1985), p.57. 

121. 	 M. Renouard and M. Wintenberger. C.R. Acad. Sc. Paris, B290(1980), 
p.403. 

122. 	 J.H. Driver, A. Skalli and M.Wintenberger, Mem. Sci. Rev. Met., 
80(1983), p. 293. 

123. 	 J.H. Driver, A. Skalli and M. Wintenberger, Phil. Mag., A49(1984), 

p.505. 

124. 	 A. Skalli, R. Fortunier, R. Fillit and J.H. Driver, Acta Metall., 33(1985), 
p.997. 



- 249­

125. 	 C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou and J.J. Jonas, 
Acta Metall., 32(1984), p. 1637. 

126. 	 P.R. Morris, TMS AIME Fall Meeting, Toronto, Oct. 1985. 

127. 	 B. Orlans-Joliet, B. Bacroix, F. Montheillet, J.H. Driver and J.J. Jonas, 

to be published. 

128. 	 P. van Houtte, Proc. ICSMA7, Montreal, 1985, vol.3, p.1701. 

129. 	 K. Wierzbanowski, Proc. ICOTOM5 (see ref. 39), p. 309. 

130. 	 R. Fortunier and J.H. Driver, to be published in Acta MetalL 

131. 	 E. Kroner, Acta Metall., ~(1961), p. 155. 

132. 	 J.D. Eshelby, Proc. Roy. Soc. London, A241(1957), p. 376. 

133. 	 R. Hill, J. Mech. Phys. Solids, 13(1965), p. 89. 

134. 	 J.W. Hutchinson, Proc. Roy. Soc. London, A319(1970), p. 247. 

135. 	 M. Berveiller and A. Zaoui, J. Mech. Phys. Solids, 26(1979), p. 325. 

136. 	 A. Zaoui, Advanced School, U dine (Italy) 1985. 

137. 	 K. Wierzbanowski, A. Hihi, M. Berveiller and A. Clement, Proc. 
ICOTOM7 (see ref. 66), p. 179. 

138. 	 P. Franciosi, M. Berveiller and A. Zaoui, Acta Metall., 28(1980), p. 273. 

139. 	 P. Franciosi and A. Zaoui, Acta. Metall., 30(1982), p. 1627. 

140. 	 U.F. Kocks, Trans. Met. Soc. AIME, 230(1964), p.1160. 

141. 	 K.S. Havner, Mech. Mat., 1(1982), p. 97. 

142. 	 N.T. Le and K.S. Havner, Mech. Mat., 1(1985), p. 33. 

143. 	 R.J. Asaro and A. Needleman, Acta Metall., 33( 1985), p. 923. 

144. 	 G.R. Canova and U.F. Kocks, Proe. ICOTOM7 (see ref. 66), p. 573. 

145. 	 U.F. Kocks, G.R. Canova and C.N. Tome, unpublished work. 

146. 	 R. Fortunier andJ.H. Driver, unpublished work. 

147. 	 P. van Houtte, unpublished work. 

148. 	 W.F. Hosford, Trans. Met. Soc. AIME, 230(1963), p. 12. 



- 250­

149. 	 M. Berveiller and A. Zaoui, Proc. ICOTOM5 (see ref. 39), p. 319. 

150. 	 M. Renouard and M. Wintenberger, C.R. Acad. Sci. Paris, B292(1981), 

p.385. 

151. 	 A.V. Hershey, J. Appl. Mech., 21(1954), p. 241. 

152. 	 J.P. Hirth and J. Lothe, ''Theory of Dislocations", McGraw Hill, New 
York (1968). 

153. 	 R. Fortunier, J.H. Driver and M. Wintenberger, C.R. Acad. Sci. Paris, 
Ser. II 301(1985), p. 69. 

154. 	 T.C. Lowe, unpublished work. 

155. 	 J.H. Driver andA. Skalli, Rev. Phys. Appl., 17(1982), p. 447. 

156. 	 G.C. Canova, These d'Etat, Universite de Metz, France, 1986. 

157. 	 S. Tiem, M. Berveiller and G.C. Canova, Acta Metall., 34(1986), p. 2139. 

158. 	 G.Y. Chin and W.L. Mammel, Trans. Met. Soc. AIME, 239(1967), p.1400. 

159. 	 G. Vanderschaeve and B. Escaig in "Dislocations et Deformation 
plastique", Ecole d'ete d'Yravals (1979), Les Editions de Physique, Paris. 

160. 	 P. Gangli and P. Arata, Acta Metall., 34(1976), p. 465. 

161. 	 R. Le Hazif, P. Dorizzi and J.P. Poirier, Acta Metall., 21(1973), p. 903. 

162. 	 G.Y. Chin and W.L. Mammel, Met. Trans.• ~(1973). p. 335. 

163. 	 J. Benard, A. Michel, J. Philibert and J. Talbot, n Metallurgie generale"., 
Masson ed., 1984. 

164. 	 S.F. Exell and D.H. Warrington, Phil. Mag., 26(1972), p. 112. 

165. 	 B.J. McQueen and J.J. Jonas, Treatise on Materials and Technology, 
Vol. 6, Academic Press, 1975. 

166. 	 W.A. Wong, H.J. McQueen and J.J. Jonas, J. Inst. Met., 95(1967), p.129. 

167. 	 W.T. Read and W. Shockley, Phys. Rev., 78(1950), p. 275. 

168. 	 W. Bollmann, "Crystal Defects and Crystalline Interfaces, Springer, 
Berlin, 1970. 

169. 	 D.G. Brandon, B. Ralph, S. Ranganathan and M.S. Wald, Acta Metall., 
12 (1984), p. 813. 



- 251­

170. 	 D.G. Brandon,Acta Metall., 14(1966), p.1479. 

171. 	 H. Gleiter, Phys. Stat. SoL, 45(1971), p. 9. 

172. 	 J. Flaquer and J. Gil Sevillano, J. Mat. Sci., 19(1984), p. 423. 

173. 	 N. Hansen, Metall. Trans., 16A(1985), p. 2167. 

174. 	 J. Gil Sevillano and F.J. Torrealdea, reference 119, p. 185. 

175. 	 B. Bay and N. Hansen, ibid., p. 137. 

176. 	 Ch. Perdrix, These Docteur-Ingenieur, Ecole des Mines de Paris, 1983. 

177. 	 C. Schnell and H.G. Gruwe, ICOTOM 5 (see ref. 39), p. 389. 

178. 	 L.C. Lim and R. Raj, Acta Metall., 32(1984), p.1177. 

179. 	 M. Dahms, P.I. Welch and H.J. Bunge, Scripta Metal!., 16(1982), p. 827. 

180. 	 D.C. Crites, R.K. Raghavan and B.L. Adams, submitted to Metall. 
Trans., February 1986. 

181. 	 J. Zhao, B.L. Adams and P.R. Morris, submitted to Textures and 
Microstructures, March 1986. 

182. 	 J.H. Schmitt, These d'Etat, Universite de Grenoble, France, 1986. 

183. 	 C. Donadille, C. Rossard and B.J. Thomas, Proc. 7th RisliS Int. Symp.: 
«Annealing Processes - Recovery, Recrystallization and Grain Growth", 
Hansen et al. eds., 1986, p. 285. 

184 	 R. Lombry, C. Rossard and B.J. Thomas, Revue de Metallurgie, CIT, 
12(1981), p. 975. 

185. 	 K.S. Havner and D. Chidambarrao, submitted for Aris Phillips Memorial 
Issue of Acta Mechanica, September 1986. 



- 252­

APPENDIX 1 

CALCULATION OF THE CRYSTALLOGRAPHIC 

ROTATION 


The orientation of a given grain in a polycrystal is specified by a 3x3 

rotation matrix which indicates the position of the three < 100> axes of the 

crystal with respect to 3 external reference axes. These axes are usually defined 

with respect to the test geometry. In the case of rolling, the axes usually 

selected are the transverse, rolling, and normal directions. In torsion, the axes 

are generally the radial, transverse and longitudinal axes of the specimen. To 

remain general here, we will specify the orientation of a given grain by a 

matrix A expressed in terms of 3 Euler angles <t>, Sand w. This can be written 

schematically as: 

(A1.1)cs~ss 
Thus, a vector Ve in the crystal system C8 will become Vs in the sample system 

88 as given by: 

(A1.2) 

with A being defined by: 

coswcos<t> - sinwcos8sin<t> coswsin<t> +sinwcos8coscp sinwsinS 

A = - sinwcos<t> - coswcosSsin<t> - sinwsin<t> + cos(UcosScoscp sin8cosw 

sinSsin<t> - sinScos<t> cosS 

(A1.3) 

The reference axes are called Vsl, Vs2 and Vs3 on the one hand and Vel, Ve2 

and Ve3 on the other. 

When slip takes place on several slip systems during an increment of time 

dt, a given vector V transforms into another V'according to the relation: 
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SV' :::: V + L ylS dt (V. n ) bS (Al.4) 
IS 

The above can be written using matrix notation as 
(A1.5) 

V'::::BV 

where the matrix B defines the displacement gradient tensor associated with 
simple shear on the s systems. 

1 + L 
S 

·s S S Y n 1 b i L ,? n~b~
S 

L 's S IS 
y n3 bl 

s 

B= L ySn~b~ 1 + L yS n~b; L ys n;b~ .dt (A1.B) 
IS IS S 

L ylSn~b;
S 

L'$nSbS 
y 2 3 

IS 

1 + L ys nS blS
3 3 

S 

Similarly, a normal N to a given plane specified by 

(A1.7) 

where Ul and U2 are two unit vectors belonging to the plane of interest 
tranforms into [104]: 

N::::BulXBu
Z 

(A1.B) 

We now calculate the new position of the sample axes with respect to the 
crystal axes by stating that certain planes and directions remain fixed in space. 
Let us first consider the two dimensional example illustrated in Figure A1.1. 
Under the action of the shear ydt, the vectors Vsl and Vs2 transform into V*sl 

and V*s2 according to (Figure A1.la) 

(A1.9) 
.. 

V =BV
s2 s2 

We first note that the vectors V*sl and V"s2 are not orthonormal. Now if the 
axis Vsl is required to remain fixed in space (for example, if this axis is the 
tensile axis of the specimen of Figure 3.1), the axes Vel and Vc2 will rotate 
through an angle a to transform into V~1 and V~2 (Figure A1.1b). The positions 

of these two vectors with respect to Vsl and Vs2 lead to the new value of the 
matrix A, i.e. A'. But Figure A1.l indicates that we can define a vector V~2, 
orthogonal to V*sl, which together with V'sl = V*sl/ V*sl also defines the new 
matrix A '(Figure A1.lc). Calculating the positions of Vsl and Vs2 with respect 

to V~l and V~2 is thus completely equivalent to calculating the positions of V~l 
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y.dt .. \a \
"...-. \ 

V*s2 V'c2 \ 
\ Vc2Vs2 V's2 

t.....r:~=::::~V'cl 7a 

Figure A1.1. Crystallographic rotation in a two-dimensional example. The axis 
881 is assumed to be fixed in space. 

and V~2 with respect to Vel and Vc2. The coordinates of the vectors V~l and 
V~2 are first calculated from Vsl and Vs2 as: 

(A1.10) 

V's2 = unit uector perpendicularro V'sl 

The first condition is the transcription of the fact that Vsl remains fixed in 
space. A matrix T having the two vectors V~l and V~2 as row vectors with 
respect to Vsl and Vs2 is defined in this way so that we can write that 

(A1.II)A'=TA 

Turning now to the three dimensional case, we assume, for example, that 
the axis labelled 2 and the normal to the plane labelled 3 in the sample system 

remain fixed in space. This corresponds to rolling, where the rolling plane and 
rolling direction are taken as fixed in each grain of the polycrystal as well as to 
torsion, where the shear direction and shear plane are taken as fixed in every 
grain. We now reconstruct the sample reference system (SS') as follows. As in 
the 2 dimensional case, instead of searching for the new position of the CS with 

respect to the 88, we look for the positions of the vectors V~l, V~2 and V~3 with 
respect to the old C8, from which we get the new orientation A I of the grain. 

The 3 base vectors of the S8 transform in to V* s l, V*82 and V*83 according to : 
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.. 
(A1.l2)Vs2 =B v s2 

.. 
vs3= BVs3 

Assuming that Vss2 remains fixed implies that: 

.. .. (A1.l3)
V's2 =vs2'IIVs211 =BVs2'IIBVs21' 

Similarly, assuming that plane 3 remains fixed implies that: 

,. ,.. ... . (A1.l4)vs3= Vsl xVs2/11vsl XVs2"=BVsl x BVs2/11BV51 x BV52" 

Since no particular condition is imposed on the 1 axis, the vector V~l is simply 

taken as orthogonal to V~2 and V~3, which gives: 

(A1.l5)V' 1 =V 2 XV 3
5 S S8 

This condition assures the orthonormality of the reference system 88'. If the 

matrix B is now expressed in the sample reference system, we can construct 

with V~l, V~2 and V~3 a matrix T 

VI V,2 v 3 
51 81 81 

T= (Al.16) 

VI V,2 v 3 
s3 s3 s3 

which has the V~ vectors as row vectors with respect to the Vs vectors, from 

which the new matrix A 'is given by 

(A1.l7)A'=TA 

We have thus defined a procedure which allows us to calculate the new 
orientation of a crystal step by step_ This procedure is equivalent to the one 

used by Kocks and Chandra and can be used in any kind of calculation (FC or 

RC). It is equivalent to saying that certain components of the displacement 

gradient tensor of the grain are allowed to differ from the macroscopic ones. 

Returning to Figure 3.4, we have seen that the RC theory allows the two shear 

rates £23 and £13 to be different from 0 in a grain of a polycrystal being 

deformed in rolling. Assuming now that the rolling direction and plane remain 

fixed in space implies that these two shear rates correspond to the displacement 

rates U2,3 and UI,3. The displacement rates U3,2 and U3,! are equal to O. 
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In tension, the calculation is performed by assuming that the tensile 
direction remains fixed. This single condition allows us to determine only the 
new position of the tensile axis and to plot inverse pole figures. Also, because of 
the axial symmetry t the other two base vectors can be taken, arbitrarily, as 
being orthogonal to the first ones, thus specifying matrix A' completely, This 
procedure allows us to plot the results on pole figures whenever this 
representation is desired for comparison purposes, and from there to calculate 
average pole densities (see Chapters IV and V). In compression, the calculation 
is similar. In this case, however, the single condition is that the compression 
plane is assumed to remain fixed. 
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APPENDIX 2 

DEFINITION OF A FIVE DIMENSIONAL 

VECTORIAL NOTATION 


It was seen in Chapter ill that only the deviator stress components are 

relevant, and because elastic dilatation is being neglected as well, it is simpler 

to write the deviatoric stress and strain rate tensors as five dimensional vectors 

of the form: 

(A2.1) 

The last three components are customarily defined as proportional to the off­

diagonal components [100,105-107] and any convenient convention for 

contracting the three diagonal tensor components into the first two vector 

components may be used, as long as the stress and strain rate are work 

conjugate, Le. as long as 

a .. eo. 
. =o. e. 

. (A2.2) 
I} I} " 

It was demonstrated by Canova et al. [107] that the normality rule holds in 

such a vector space ifit holds in the tensor space. 

One example ofsuch a notation is the following [108,109] : 

(A2.3) 

(e - e ) 
• 22 11 _;:::-;;::' _r::::" _~. _m' 
e = ( V2 ' v 3/2 £33' v 2 e23 , v 2 £31 ' v 2 e12 ) 

It can readily be shown that these two vectors are work-conjugate. The 

interesting point about this notation is that it corresponds to a single 

orthonormal five dimensional space in which both (J and e are defined [108]. 

This means that, starting from a nine dimensional space which is also taken to 

be orthonormal (Le. described by 9 orthogonal unit vectors) and in which the 
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nine components of the stress and strain rate tensors are defined, 5 orthogonal 
unit vectors can be found such that the 5 components of stress and strain rate 
have the form given in equation A2.3. These components are functions of the 9 
original ones. The same unit vectors (Le. the same space) are used for both (J 

and E, and this is quite unusual. Normally these vectors are defined in two 
different spaces which are known to be "conjugate" or "dual"; they can coincide 
only if they are orthonormal. As a result of the orthonormality, the norm of any 

vector (J expressed in this reference system is simply: 

II 0 II =y"(J."'(J. (A2.4) 
, I 

In this particular space, the requirement that a given strain rate is 

accommodated by slip can be written as: 

(A2.5) 

where NS has the components: 

(A2.6) 

V2 SS S8 V2 ss s· v'2· s ss( b + b) (b + b~) - (n S b +n b »)2"" n z 3 n3 2 ' 2"" n 1 3 n3 1 ' 2 1 2 2 1 

The parallel between equations A2.3 and A2.6 is immediate. The vector NS 

defines the normal to one facet of the single crystal yield surface proposed by 
Bishop and HilL Calculating the components of NS for each of the 12 
{111}< 110> systems gives the following result: 

(A2.7)IINS II = 1IV2 Vs 

which means that the NS vectors are not unit vectors. 

Going further, the Schmid law can be rewritten in this notation as: 

(A2.8) 

Ifwe now consider a combination of five independent sli p systems defined by 
five vectors, we can define a 5x5 matrix M from the Ni vectors (whose 

components are Nij with) = 1, 5): 
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N 3 N 4 N 5Nt N 2 
2 2 2 2 2 

M= Nt N 2 N 3 N 4 N 5 (A2.9)
3 333 3 

N l N 2 N 3 N 4 N 5 
4 4 4 4 4 

N~ N! N~ N! N: 

such that equation A2.5 can be rewritten as: 

(A2.10) 

where the vector y is simply: 

• • 1 • 2 • 3 • 4 '5 (A2.11)
y=(y ,Y ,y ,Y ,y) 

Similarly, the fact that the Schmid law is satisfied on one set of 5 
independent slip systems (defined by M) can be written in compact form as: 

't = tM 0 (A2.12) 
c 

with 

(A2.13) 

We can now examine how the transformation of a tensor from one reference 
system to another evolves in this 5 dimensional representation. A given tensor 
E 1 expressed in a reference system labelled 1 can be expressed in a reference 
I'V 

system labelled 2 as E2 according to the transformation rule: 
I'V 

(A2.14)
E = AE At
":.J ,J 

Here A is a matrix in which the rows represent the coordinates of the new base 
vectors expressed in the old base. With the aid of the present notation, equation 
A2.14 transforms into the following: 

(A2.15)
E2 =GEL 

El and E2 are the two vectors associated with the tensors ~1 and fJ and C is a 
5x5 matrix whose terms depend on the terms ofthe matrix A as follows: 
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(A2.16) 


= v'3A23AaaC32 

CM =Au A23 + A13 A 21 Coo =All A22 + A12A21 

The complete derivation of this matrix can be found in reference 109. It should 

be noted, however, that any other notation respecting equation A2.2 also leads 

to a matrix C. But the expression of C is not the same for the tensors (J and E 

defined in two non-orthonormal spaces [77]. 

So in all cases, the introduction of a vector notation leads to the reduction of 

computation time by replacing tensor transformations by vector ones. In the 

special case treated here, this reduction is still greater since only one matrix C 

has to be calculated. Before terminating this Appendix, it should be noted that 

the present notation differs from the one used by Canova and co-workers 

[104,105] in that it is defined in an orthonormal space which also simplifies the 

graphical representation of cross-sections of yield surfaces. On the other hand, 

Canova et al [105] selected a notation such that the norm of the strain rate 
vector defined by v'£'i£i is equal to the von Mises equivalent strain rate defined 
by: 

e =v'2/3LL (A2.17)
eq Lj !j 

In the case of the present notation, it is readily seen that there is a factor of 

v'2i3 between the two, since Eij Eij = Ei Ei. 
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APPENDIX 3 


DERIVATION OF THE LOWER AND UPPER BOUNDS OF 

THE MACROSCOPIC STRESS VECTOR 


This derivation issues from the work of Bishop and Hill [101] but is 
reformulated in the notation used in the present treatment. Also, unlike the 

original text of Bishop and Hill, the parallel between the lower bound and 

Sachs theories on the one hand and between the upper bound and Taylor 
theories on the other is made explicit. 

Bishop and Hill [101] have shown that, if slip is the only deformation 

mechanism, the principles of maximum external and minimum internal work 
rate hold for the macroscopic yield surface. (As a consequence, the normality 
principle also holds for this macroscopic yield function.) Consider now a 
polycrystalline aggregate in which the macroscopic quantities are described by 

S for the stress state and E for the strain rate state. The macroscopic yield 
function is then expressed by 

{(s.) s C (A3.1)
LJ 

The corresponding microscopic quantities are (}' and e. These quantities are 

unknown, and generally only the macroscopic stress direction or strain rate 
vector is known. The difficulty then is to calculate the unknown macroscopic 
quantities from the unknown microscopic ones. It will be demonstrated in this 
Appendix that it is possible to determine two scalars A* and p*. which satisfy 
the relation: 

(A3.2)A* s" S "s!l* 

The maximum external work rate principle for an aggregate has been 

expressed by Bishop and Hill [101J as follows: for any macroscopic stress S* 

corresponding to an equilibrium microscopic distribution (}'* not violating the 

Schmid law, we always have: 
. (AS.3)

(s - S*). E ;:;::= 0 
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Similarly, the minimum internal work rate principle for an aggregate says 

that for any microscopic shear rate distribution y* associated with the actual 

microscopic stress distribution a, we have 

(A3.4) 

where the signs 1: denote the average taken over the whole aggregate. y 
designates the actual shear rates associated with a and e, and y* designates the 

shear rates associated with a continuous displacement distribution, with zero 

divergence, and with the same values on the surface as the actual displacement 

distribution. 

1) EXISTENCE OF A LOWER BOUND 

Suppose that each grain of the polycrystal is subjected to the following 

uniform stress distribution: 

(A3.5)0* = A* r 

with r being a unit vector in the macroscopic stress direction: 

(A3.6)r = 8/118 II 

A* is defined such that the critical resolved shear stress corresponding to a* is 

attained in only one grain (the "weakest point") of the aggregate. It is thus 

certain that a* does not violate the Schmid law anywhere and that the 

polycrystal is in equilibrium, since it is constant everywhere through the 

aggregate. Also, the macroscopic quantity S* associated with a* is equal to a*. 

(A3.7)
8* = 0* 

As S* satisfies the conditions pertaining to equation A3.3, it follows that: 
. 


(8 - 8* ). E :2= 0 (A3.8) 

which can be rewritten as: 
. 

. (1 ­ A* I II 8 II) .8 E :2= 0 (A3.9) 

in which S.E is the macroscopic work rate, which is positive; consequently 

(A3.10)11811 :2= A * 

Hence, for each direction r in stress hyperspace, equation A3.9 supplies the 

lower limit to the actual "length" of the stress vector S. Such a limit is obtained 

by imposing the same stress direction on each grain of the polycrystal (this 
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direction is that of the macroscopic one) in such a way that only one grain is 

plastified. This is exactly what is described in Chapter ill as the lower bound 

model derived from the Sachs theory, which is sometimes called the static 

model. It is worth noting here that, for a given stress direction, we have found 

only one possible lower limit forllSI. This is because it is difficult to find a stress 

distribution other than the one defined above which is in equilibrium, and 

which does not violate the Schmid law at any point of the aggregate. 

2) EXISTENCE OF AN UPPER BOUND 

Now we subject each grain of the polycrystal to a uniform strain rate 

distribution 

(A3.II) 

such that 

(A3.I2)r. e* C1! 0 

where r is the unit vector defining the macroscopic stress direction. This 

condition can also represent a uniform strain rate distribution e* which is not 

"too far" from the actual macroscopic strain rate E on the macroscopic yield 

surface. In this way, an outward pointing normal can be taken so that the work 

rate is positive. To this microscopic strain rate distribution corresponds a 

microscopic stress distribution a* which can readily be calculated by applying 

the principal of maximum external work to the single crystal yield function. 

Since both microscopic stress states a* and a lie on the SCYS, the principle of 

maximum work rate implies that: 

(cr* - cr ) . e* C1! 0 (A3.13) 

and, by taking the average over all the grains in which e* is constant, that: 
. 

(S* - S ) . E* ~ 0 (A3.14) 

Here, S* is the average macroscopic stress corresponding to a*. We can now 

rewrite the norm of the stress vector S as: 
. . 

S.E* S.E* (A3.15)IISII=IISII·-· =-.
S.E* r.E* 

and, from equation A3.I4, deduce that 
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. 
S*.E* (A3.I6)liS II s -- -p*r.E* ­

All the terms on the right hand side of inequality A3.16 being known, we have 

thus found an upper limit p* to the value of liS II· Unlike the case of the lower 
bound, in this case any uniform strain rate distribution which satisfies 
equation A3.I2 provides an upper limit tollsll. It is probable that all the upper 
values found in this way will be different. However, there is no means at this 
point to classify them in order to find the lowest upper limit possible. Let us 
now consider two particular cases. 

i) Take first the case where E* is equal to the actual macroscopic strain . 
rate E. This particular strain rate distribution constitutes the Taylor 
assumption of uniform strain rate and obviously satisfies condition A3.12. 
Moreover, it is the strain rate distribution most often used to determine an 
upper bound (ifnot the only one). The value ofp* associated with this valu~ of 

E* thus constitutes an upper limit tollsll. It has been demonstrated in this way 
that the Taylor assumption leads to an upper limit to the norm of the stress 
vector, but it must be kept in mind that this is not the only one. 

ii) Consider now another possible strain rate distribution which also 
forms an upper limit: 

E* 
. 

= (A3.17)r 

Since r is a unit vector, 11* is simply equal to : 

(A3.IS)p* = S* E* = S* r 

where S* designates the average macroscopic stress vector associated with E*. 
In this case, the value ofp.* is equal to the work rate which would be done in the 
aggregate in which all the grains are separately subjected to the strain rate r. 

It is worth noting that, because of equation A3.14, any uniform strain rate 
distribution satisfying equation A3.12 also provides an upper limit to the . 
macroscopic work rate, W=S.E. This is .in particular true for the Taylor 

assumption and it is often with respect to W that the Taylor assumption is said 
to be an upper limit. However, we prefer here to refer to the norm of the 

macroscopic stress vector to remain consistent with the lower bound treatment. 
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In this way, the quantities 11* and A* define two extreme values for the same 

physical parameter, i.e. the norm of the macroscopic stress vector. This can also 
be interpreted as signifying that there are two limiting yield surfaces for the 

polycrystal, the real one falling between these two surfaces. 
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APPENDIX 4 


GENERALIZATION OF THE PRINCIPLES OF MAXIMUM 

EXTERNAL AND MINIMUM INTERNAL WORK RATE TO 


THE CASE OF RC DEFORMATION 


Renouard and Wintenberger have demonstrated that these two principles 
can be generalized so as to permit the selection of the active slip systems under 
mixed boundary conditions [115,121]. They developed their theory for a single 
crystal deformed in such a way that the components of the strain rate tensor are 
not entirely known and prescribed. In what follows, we extend their 
generalization to the case of a polycrystal for which the strain rate tensor is not 
fully prescribed due to grain shape considerations [119]. 

Let us first define the notation to be used. We first distinguish between the 
free and prescribed stress and strain rate components as follows: 

i) e'ij are the prescribed strain rate components, so that the associated 
stress components aij are free (Le. they are not prescribed in the case of the 
single crystal and are free to differ from the corresponding specimen 
components in the case of a grain in the polycrystal). Accordingly, the number 

p<5 of a'ijcomponents is equal by definition to the number ofe'ij components. 

ii) e"ij are the remaining (5-p) components of the strain rate tensor. 
These are not prescribed in the case of the single crystal, and are free to differ 
from the corresponding specimen components in the case of a grain in the 
polycrystal). Associated with each e"ij is the corresponding stress component 
a"ij, which is prescribed, Le. imposed on the single crystal, or prescribed to 
equal the corresponding specimen component in the polycrystal. 

In Figure A4.1, the stress and strain rate tensors for a single crystal 

deformed in plane strain compression are shown, as well as those pertaining to 
a polycrystal deformed in rolling. 
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Boundary Conditions for single crystal 

e13=0 

012=023=0 (no friction) 

., ." .,
e 11 e 12 e 13 0'11 0"12 0'13 

." ., ." e 21 e 22 e 23 0"21 0'22 0"23 

., ." ., 
e 31 e 32 e 33 0'31 0"32 0'33 

£'ij, a"ij = imposed 

a'ij, £"ij =free 

(a) 

Grain Shape Considerations for polycrystal 

£12=0 

., ., ."
ell e 12 e 13 0'11 0'12 0"13 

., ., ." 
e 21 e 22 e 23 0'21 0'22 0"23 

." ." ., " " ,e 31 e 32 e 33 o 31 0 32033 

£'ij, a"ij = imposed to be equal to the macroscopic components 

a'ij, e"ij =free to differ from the macroscopic componen ts 

(b) 

Figure A4.1. Stress and strain rate tensors (defined in the reference frame of 

the sample) applicable to: a) a single crystal deforming in a 

channel die; and b) a polycrystal deformed by flat rolling. The 

compressIOn and elongation axes are the 3 and 2 axes, 

respectively. 



- 268­

The microscopic shear rates yS on the activated slip systems are always 
related to the prescribed components of strain rate by 

r: .. = ~ m~. yB (A4.1)
IJ £... IJ 

s 

It is worth noting that once the active slip systems are known, the unprescribed 

components of the strain rate tensor can be calculated by a similar equation 

(A4.2) 

The Schmid law can now be written in a slightly different form than 

employed above, Le.: 

(A4.3) 

Note that the full tensor includes both the a'ij (free) and a"ij (prescribed) 
components. For convenience below, the prescribed component of the shear 
stress will be referred to as 

S n S
1;0 = a .. m .. (A4.4) 

L) LJ 

GENERALIZATION OF THE TAYLOR THEORY 

Renouard and Wintenberger have shown that both the minimum internal 
work rate and the maximum external work rate analyses can be generalized to 
cover deformation when the number of imposed strain components p < 5, Le. is 
less than the number associated with the classical one. Under these conditions, 
they showed that the power of interest is the internal work increment per unit 
volume and per unit time W done in response to the prescribed strain rate 
components and carried out by the free stresses. This is equal to : 

(A4.5) 

Here 1:';C.Y8 is the total internal work increment per unit time and 1:';0.Y8 is the 
component of this work performed by the prescribed stresses (which are 
generally zero). 

Equation A4.5 can be derived as follows. Suppose that a plastic strain rate 

eij occurs under a given state of stress aij. (Note that only the e'ij and (l'ij 

http:1:';0.Y8
http:1:';C.Y8
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components of these two tensors are known at this stage.) Now consider two 

alternative sets of n p slip systems which could be involved in producing the 

plastic strain: the P set, given the index s, corresponds to the real solution of the 

problem (which may not be unique), and the Qset, indexed k, does not. On each 

slip system ofthe P set we then have 

t'::; t 
c (A4.6) 

and on at least one of the slip systems k of the Q set we have 

i<t c (A4.7) 
The equivalent ofequation A4.1 for the Qset is now written as: 

e: .. ::; '" mk. ,? (A4.8)
LJ L lJ 

k 

Multiplying equation A4.6 by ys, summing over s, and employing equation 

A4.3, we obtain for the P set: 

I '(;' y8 = I l;c VS (A4.9) 
8 8 

or 

S
'" (a'. m~. + toB) V = '" t yB (A4.10)L V lJ L c 
s s 

so that, through the use ofe-quation (A4.1) 

, " _ ~ ( s) • s (A4.11)0 .. £ .. -/ t-toY 
I}!} - C 

S 

In a similar manner, multiplying equation A4.7 by yk and summing over k, we 

obtain for the Qset: 

I '(;k yk < I tc yk (A4.12) 
k k 

or 

k k'k 'kII (a'- -m .. + to) y < l;c Y (A4.13) 
L} !J 

k k 

and finally, from equation A4.8, 

a,',.. e .. < I( t -'(;0 Y 
I) t} 

k)'k (A4.14)c 
k 

Note that the same stress state aij and strain rate Eij pertain to the two possible 

sets of slip systems analyzed above, so that a'ij and e'ij are also identical for the 

two cases. Equations A4.11 and A4.14 can therefore be combined to give: 
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L (t - 1;~)yS < L (1;C - t~)? (A4.15) 
c 

s k 

where VB and 1:c are both positive, so that Vs.1:c >0. Equation A4.15 states that 
the real solution is obtained by minimizing the rate of internal (microscopic) 
work done with respect to alternative sets ofslip systems, as given by ('tc-1:0s )Vs. 
This corresponds to the rate of shear work done in response to the imposition of 
the prescribed strain rate components e'ijonly, and under the sole action of the 
developed (free) stresses a'ij. When all the strain rate components are 
prescribed, as in the classical model, the term 1:08 does not exist, the components 
a'ij and t'y are replaced by the full tensors aij and eij, respectively, and the RW 
and Taylor approaches coincide. 

GENERALIZATION OF THE BISHOP AND HILL THEORY 

The second method proposed by RW considers all the stress states which are 
compatible with the Schmid law, equation A4.1. For the real solution (the 
stress state P), we have t B =1:c on a certain set of slip systems. This can be 
written as 

(A4.16) 

For the hypothetical solution (the Q stress state), we have t 8 <1:c on at least one 

system of the same set ofslip systems (the ones activated in the real solution), as 
given by: 

? = o'"m~, + o".. m~, < 1; (A4.17) 
1} IJ I) I) C 

Here the prescribed components a"ij are the same for both t 8 and t S (1:os =toS 
), 

but the a'ij components are different. However, the strain rates eij, e'ij and e"ij, 

as they pertain to a single set of systems, are identical for the two cases. We now 
define the individual shear rates in terms ofe'ij: 

. Le' .. = m .. yS's 
(A4.18)t) I} 

S 

Combining equations A4.4 and A4.6, we can write for the P stress state that 

(A4.19) 

and then, by multiplying by VS , that 
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(A4.20) 


or that 

(A4.21) 
8 

In a parallel fashion, for the Q stress state, it is evident that: 

~ s s (A4.22)(] .. m .. + to < t
LJ LJ C 

that 

(A4.23) 

and finally that 

-,', L ( s) ·s 
(J .. e .. = t-toY (A4.24) 

I) t) C 
s 

In this case, equations A4.21 and A4.24 can be combined to give: 

0'" e'" (hypothetica{) < 0' .. e,. (real) (A4.25)V LJ U U 

Thus the real solution is the one which maximizes the rate of external work 
with respect to alternative permissible stress states. This is again associated, as 
in the Taylor analysis, solely with the free components of the stress and the 
prescribed components of the strain rate. As before, when all the strain rate 
components are prescribed, equation A4.25 corresponds to the classical BH 
criterion. 
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APPENDIX 5 

DESCRIPTION OF THE COMPUTER PROGRAM 
USED IN THE FC, RC AND FC-RC THEORIES 

(WITH THE AVERAGING TECHNIQUE) 

This appendix describes the basic computer programs developed by Canova 

[104]. The same program can be used with all three models, Fe, RC and FC-RC, 

and for the four principal deformation modes, tension, compression, rolling and 

torsion. The different steps to be employed are the following: 

1) Read the SCYS data: the 28 vertices and the associated 6 or 8 slip 

systems, the 4th and 3rd order edges with their corresponding connecting 

vertices (2 in the case of the 4th order edges and 3 or 4 in the case of the 3rd 

order edges) and associated slip systems (6,5 or 4 for the 4th order edges and 3 

or 4 for the 3rd order edges). Then read the 480 combinations of 5 independent 

slip systems, the 108 combinations of 4 independent slip systems and the 135 

combinations of3 independent slip systems. 

2) The test conditions are specified; these include: i) the deformation path: 

tension, compression, rolling or torsion; ii) for the case of torsion, whether the 

sample axes (in the case of FC) or the grain axes (in the case of RC) are to be 

employed; iii) the deformation mode: FC, RC or FC-RC; in the latter two cases, 
the components of strain rate which are relaxed are given. 

3) With the aid of these data, the calculation is carried out grain by grain. 

For each step, the procedure is the following: i) read the orientation of the 

grain; ii) calculate the proportion of grains deforming according to p = 5, 4 or 3 

in the FC-RC model; iii) determine the stress state and all the possible 

combinations of independent slip systems (after having performed the 

appropriate transformations from the crystal system to the sample or grain 

system); iv) calculate the average distortion matrix and the new orientation of 

the grain (this depends on the deformation mode); v) go back to step (i) to 

update the new proportions of grains and so on. 
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In the case where the RW criterion is to be included or some special selection 
of the possible combinations of slip systems is to be made, as in the case of the 
cross-slip model, steps (iii) and (iv) must be modified as described in Chapters V 
and VI. Ifother slip systems are to be incorporated, step (1) must be modified to 
read the data corresponding to the new SCYS. 
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APPENDIX 6 


DEPENDENCE OF THE TAYLOR FACTOR IN TORSION 

ON ORIENTATION OF THE CRYSTAL RELATIVE 


TO THE SAMPLE AXES 


4>, eand U) are the Euler angles defined in Appendix 1. 

Present Bunge 
Notation Notation (Section ll.1.3) 

4> - -4>2 
e - -<p" 

U) = -<PI 
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APPENDIX 7 


VERTICES, FOURTH AND THIRD ORDER EDGES OF 

THE COMPOSITE YIELD SURFACE FOR SLIP 


ON {Ill} AND {IOO} PLANES 


Notes: 1) 	 In Table A7.1 are listed the 93 vertices and the associated systems 
and coordinates (referred to in terms of the notation described in 
Appendix 2) for a = 1. Here the values are normalized by 'te(11!). 

2) 	 In Tables A7.2 and A7.3, a single representative example of each 
type of 4th and 3rd order edge is listed, with the corresponding 

connecting vertices and associated systems. The others can be 
deduced from this case by applying the 24 cubic symmetry 
operations. 
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TABLE A7.1 


The 93 vertices of the composite yield surface. 


Type No. Associated systems 	 Coordinates for 04=1 

I 	 1 2 3 5 6 9 8 11 12 -1. 732 -1.000 O. O. O. 
2 1 15 16 18 19 21 10 24 1.732 -1.000 O. O. O. 
1 13 14 4 17 7 20 22 23 O. 2.000 O. O. O. 

II 	 4 1 2 16 18 19 8 10 24 0.866 -1. 5lrO T.7--n- o. O. 
5 1 15 16 5 19 21 10 11 0.866 -1. 500 -1. 732 O. O. 
6 14 15 17 18 7 20 22 23 0.866 1.500 O. 1. 732 O. 
1 13 14 4 17 21 20 23 24 0.866 1.500 O. -1.132 O. 
8 2 3 4 6 1 9 11 12 -1.732 O. O. O. 1. 732 
9 13 3 5 6 9 8 22 12 -1.732 O. O. O. -1.732 

III 	 10 2 3 9 8 27 29 34 36 -0.732 -0.42"""! 2.000 o. O. 
11 5 6 11 12 28 30 33 35 -0.732 -0.423 -2.000 O. .. O. 
12 1 15 16 18 25 29 30 32 0.732 -0.423 O. 2.000 O. 
13 19 21 10 24 26 31 35 36 0.732 -0.423 O. -2.000 O. 
14 4 17 7 20 25 26 27 28 O. 0.845 O. O. 2.000 
15 13 14 22 23 31 32 33 34 O. 0.845 O. O. -2.000 

IV 	 16 2 18 8 24 27 29 34 36 0.732 -1.268 ~~. 000 O. O. 
17 3 17 9 23 27 29 34 36 -0.732 1.268 2.000 O. O. 
18 15 18 7 22 25 29 30 32 0.732 1. 268 O. 2.000 O. 
19 1 16 9 12 25 29 30 32 -0.732 -1. 268 O. 2.000 O. 
20 2 4 7 11 25 26 27 28 -1. 464 O. O. O. 2.000 
21 1 17 20 10 25 26 27 28 1.464 O. O. O. 2.000 

V 	 22 2 7 9 11 12 25 -1. 598 -0.077 O. 0.268 1.732 
23 1 2 9 11 12 25 -0.866 -1. 345 O. 1.732 0.268 
24 13 3 5 6 8 31 -1. 598 -0.077 O. -0.268 -1.732 
25 3 5 6 19 8 31 -0.866 -1. 345 O. -1.732 -0.268 
26 5 8 9 22 12 32 -1. 598 -0.077 O. 0.268 -1.732 
27 16 5 8 9 12 32 -0.866 -1. 345 O. 1. 732 -0.268 
28 2 3 4 6 11 26 -1. 598 -0. 077 O. -0.268 1.732 
29 2 3 6 10 11 26 -0.866 -1. 345 O. -1. 732 0.268 
30 1 2 18 10 24 27 0.866 -1.345 1.732 O. 0.268 
31 1 17 18 10 24 27 1.598 -0.071 0.268 O. 1. 732 
32 15 16 5 19 21 33 0.866 -1. 345 -1.732 O. -0.268 
33 14 15 16 19 21 33 1.598 -0.077 -0.268 O. -1.732 
34 1 15 21 11 10 28 0.866 -1.345 -1.732 O. 0.268 
35 1 15 20 21 10 28 1. 598 -0.077 -0.268 O. 1. 732 
36 16 18 19 8 24 34 0.866 -1. 345 1.132 O. -0.268 
37 16 18 19 23 24 34 1.598 -0.077 0.268 O. -1. 732 
38 17 18 7 22 23 29 0.732 1.423 0.268 1.732 O. 
39 17 7 9 22 23 29 -0.732 1.423 1.732 0.268 O. 
40 13 14 4 21 20 35 0.732 1.423 -0.268 -1.732 O. 
41 13 14 4 6 20 35 -0.732 1. 423 -1. 732 -0.268 O. 
42 13 4 17 24 23 36 0.732 1.423 0.268 -1.732 O. 
43 13 3 4 17 23 36 -0.732 1.423 1.732 -0.268 O. 
44 14 15 7 20 22 30 0.732 1.423 -0.268 1.732 O. 
45 14 7 20 12 22 30 -0.732 1.423 -1. 732 0.268 O. 
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Type No. Associated systems Coordinates for 0(.=1 

VI 46 2 7 9 25 27 -1. 464 O. 0.268 0.268 1.732 
47 1 2 9 25 29 -0.732 -1. 268 0.268 1. 732 0.268 
48 1 17 18 25 27 1.464 O. 0.268 0.268 1. 732 
49 1 2 18 27 29 0.732 -1. 268 1. 732 0.268 0.268 
50 17 18 7 25 29 0.732 1.268 0.268 1. 732 0.268 
51 17 7 9 27 29 -0.732 1. 268 1. 732 0.268 0;268 
52 1 11 12 25 28 -1.464 O. -0.268 0.268 1.132 
53 1 11 12 25 30 -0.732 -1. 268 -0.268 1.132 0.268 
54 1 15 20 25 28 1. 464 O. -0.268 0.268 1.732 
55 1 15 11 28 30 0.732 -1. 268 -1.132 0.268 0.268 
56 15 7 20 25 30 0.732 1.268 -0.268 1.132 0.268 
57 1 20 12 28 30 -0.132 1.268 -1.732 0.268 0.268 
58 2 3 4 26 21 -1.464 O. 0.268 -0.268 1.132 
59 2 3 10 26 36 -0.732 -1. 268 0.268 -1. 732 0.268 
60 11 10 24 26 21 1. 464 O. 0.268 -0.268 1.132 
61 2 10 24 27 36 0.732 -1. 268 1.132 -0.268 0.268 
62 3 4 11 21 36 -0.132 1. 268 1.732 -0.268 0.268 
63 4 11 24 26 36 0.732 1. 268 0.268 -1. 732 0.268 
64 8 9 22 32 34 -1.464 O. 0.268 0.268 -1.732 
65 16 8 9 29 32 -0.132 -1. 268 0.268 1.132 -0.268 
66 
61 

16 
16 

18 
18 

23 
8 

32 
29 

34 
34 

1.464 
0.732 

O. 
-1. 268 

0.268 
1.732 

0.268 
0.268" 

1-1 . 132 
-0.268 

68 18 22 23 29 32 0.732 1.268 0.268 1.132 -0.268 
69 9 22 23 29 34 -0.732 1.268 1.732 0.268 -0.268 

VII 70 2 3 26 21 36 -0.732 -0.423 LUaU -1.000 1.000 
11 9 8 29 32 34 -0.132 -0.423 1.000 1.000 -1.000 
12 11 12 25 28 30 -0.132 -0.423 -1. 000 1.000 1. 000 
73 5 6 31 33 35 -0.732 -0.423 -1. 000 -1.000 -1. 000 
74 16 18 29 32 34 0.732 -0.423 1. 000 1.000 -1. 000 
75 1 15 25 28 30 0.732 -0.423 -1.000 1.000 1. 000 
16 10 24 26 21 36 0.732 -0.423 1. 000 -1. 000 1. 000 
77 19 21 31 33 35 0.732 -0.423 -1. 000 -1.000 -1. 000 
78 7 20 25 28 30 O. 0.845 -1. 000 1. 000 1.000 
79 
80 

4 
22 

17 
23 

26 
29 

27 
32 

36 
34 

O. 
O. 

0.845 
0.845 

1.000 
1.000 

-1. 000 
1.000 

1. 000 I
-1. 000 

81 11 14 31 33 35 O. 0.845 -1. 000 -1. 000 -1.000 
VIII 82 2 9 25 27 29 -0.732 -0.423 1.000 1.000 1.000 

83 
84 

3 
6 

8 
11 

31 
26 

34 
28 

36 
35 

-0.732 
-0.732 

-0.423 
-0.423 

1.000 
-1. 000 

-1.000 
-1.000 

-1.000 
1.000 

85 5 12 30 32 33 .,.0.732 -0.423 -1. 000 1.000 -1. 000 
86 1 18 25 27 29 0.732 -0.423 1. 000 1.000 1.000 
87 15 16 30 32 33 0.732 -0.423 -1.000 1.000 -1. 000 
88 
89 

19 
21 

24 
10 

31 
26 

34 
28 

36 
35 

0.732 
0.732 

-0.423 
-0.423 

1.000 
-1. 000 

-1. 000 
-1.000 

-1. 000 
1.000 

90 
91 

17 
4 

1 
20 

25 
26 

27 
28 

29 
35 

O. 
O. 

0.845 
0.845 

1.000 
-1. 000 

1. 000 
-1.000 

1.000 
1. 000 

92 14 22 30 32 33 O. 0.845 -1.000 1. 000 -1. 000 
93 13 23 31 34 36 O. 0.845 1.000 -1. 000 -1. 000 
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TABLE A7.2 

Combinations of 4 independent slip systems. 

Type Ho. 	 Connecting Associated systems 
vertices 

4A 1 1 8 2 3 6 9 11 12 
48 13 1 10 2 3 9 8 
4C 19 4 16 2 8 18 24 
4D 25 8 22 2 7 9 11 12 
4E 49 10 16 2 8 27 29 34 36 
41' 61 10 126 2 3 9 27 
4G 85 10 70 2 3 27 36 
4B 97 13 76 10 24 26 36 
41 109 16 30 2 18 24 27 
4J 133 16 49 2 18 27 29 
4It 157 22 23 2 9 11 12 25 
4L 169 22 46 2 7 9 25 
4M 217 58 70 2 3 26 27 
4H 241 46 82 2 9 25 27 
40 265 70 180 3 26 27 36 

TABLE A7.3 

Combinations of 3 independent systems. 

Type No. 	 Connecting Associated 
vertices systems 

3A 1 1 8 10 126 2 3 9 
38 25 1 8 9 95 3 6 9 12 
3C 28 1 8 28 29 99 2 3 6 11 
3D 40 8 22 46 126 2 7 9 
3E 64 4 16 30 2 18 24 
31' 88 10 16 17 104 27 29 34 36 
3G 91 10 17 125 126 3 9 27 
38 115 10 16 61 70 185 2 27 36 
31 163 10 58 70 126 2 3 27 
3J 211 70 76 79 178 180 185 26 27 36 
3It 215 28 29 58 59 70 2 3 26 
3L 239 58 70 180 3 26 27 
3M 263 16 30 49 2 18 27 
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APPENDIXB 

MINIMIZATION OF THE GRAIN BOUNDARY ENERGY 

It must be recognized that, as a first approximation, the GBE only depends 
on the misorientation between two adjacent grains. If Al and A2 are the 

matrices associated with the two orientations, the misorientation a between the 
two can be calculated from: 

trace( tA2.A1 ) =1 + 2 cos a (AB.I) 
However, if Al is kept constant and A2 is replaced by the 24 equivalent 
matrices, equation AB.1 leads to 24 different values of a. To find the real 
misorientation, the 24 equivalent products all have to be calculated so that the 
minimum value of a can be found. 

In order to establish now the "closest" stable boundary (i.e. one 
corresponding to a coincidence site or to a low angle boundary with a equal to 

zero), the same procedure must be used. The trace of C = (tA2*.A 1) must be 
calculated, where A2* is the transform of A2 pertaining to all the coincidence 
rotations and all the symmetry transformations (see Figure AB.I for the 
definition of the different matrices). The closest stable boundary corresponds to 
the minimum value of a found in this procedure. 

The E =3 coincidence rotations can all be defined by the four matrices listed 
in Table AB.I; the t =1 coincidence rotation matrix, by contrast, is simply the 
identity matrix. Now, minimizing the GBE is equivalent to minimizing the 
angle a associated with the nearest stable boundary, or conversely, to 
maximizing the trace of the product (tA2*.Al). It will now be shown that the 

trace of this matrix can be expressed to a first order as a linear function of the 
shear rates on the active slip systems in the two subgrains. 

At a given instant t, before the increment of deformation, we have: 
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SS=sample system 

CS =crystal system 


cc' 

T=tAzAl 


C=tA2*.AI 

C,=tA'2*.A'1 


A'l =AI.tRc1 =RIAI 


A'2=A2.tRc2=RzA2 


A'2* =A2*.tRc2* =R2* A2* 


Rc2* =DRc2tD 


Figure AS.1. Significance of the different rotation matrices: 
AI, A2 original orientation matrices; 
AI', A2' orientation matrices after rotation; 
Re!. RC2 rotation matrices defined from R 1 and R2 (Appendix 2); 
D coincidence rotation (also takes into account the cubic symmetry); 
A2* transform ofA2 by this coincidence rotation; 
A2*' transform of A2* by the Rc2* rotation matrix. 

(AS.2) 

During the increment of deformation, the shear rates on the active slip systems 
are ys in grain 1 and Y's in grain 2. This results in a reorientation of each 

subgrain, the new matrices being AI' and A2 ~ as calculated in Appendix 2. In 

http:C=tA2*.AI
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2 -1 2 2 -2 -1 

DI=V3 2 2 -1 D3 = 113 1 2 -2 

-1 2 2 2 1 2 

2 2 1 	 2 1 - 2 

D2= 113 	 -1 2 -2 D4= 113 -2 2 -1 

-2 1 2 1 2 2 

Table AB.1. Rotation matrices corresponding to I: = 3 boundaries. 

the present calculation, we use a first order approximation of the matrices RI 
and R2 which link AI, A2 and AI', A2 ~ We can therefore write that: 

A'l = RIAl 

(AS.3)A'2 =R2A2 

A'* =R* A*222 

where RI and R2 are calculated from: 

(ABA) 

R2 D2 -G2 +1 

Here Dl and D2 are the displacement gradients acting on the two grains as seen 
from the sample system and 01 and 02 are the displacement gradients as seen 
from the crystal system. In Dl and D2, some terms are zero, depending on which 
planes and lines remain fixed in space. In the case of rolling, where 3 shear 
strains are relaxed, Drolling is equal to : 

dll 0 dI3 
Drolling = d21 d22 d23 (AS.5)o 0 d33 

whereas in fixed end torsion, where 2 shear rates are relaxed in the grain axes, 

Dtorsion is equal to 
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o 
o (AS.6)o 

In both rolling and torsion, the 2 axis and 3 plane are assumed to remain fixed. 

We also have: 

8 SG .. =L y 'S 
n. b.dt 	 (AS.7) 

u t J 
8 

which gives us for R: 

1 R12 -R31 
R = -R12 1 -R32 (AS.S)

R31 R32 1 

where R 12, R31 and R32 are equal to 

S 

(AS.9) 
S 

S 

in both cases of rolling and torsion. 


We can now consider the new matrix C'=(tA2'*.Al'), which is given by: 


C'=R*c2.C.tRc1 and calculate its trace so as to have the new value of the angle 

a', 


traceC' = traceCtA'* A' ) = trace (A' tA'* ) = trace(R A tA * tR ) (AS.I1)
21 12 1122 

with C*= A1.tA*2 

We find to a first order that: 
(AB.12)trace C' = 1 + 20080.' traceC - R'12) - - R'31) - - R'32)a (R12 - b (R31 c(R32 

with 	 a=C*12-C*21 

b=C*31- C*13 (AB.l3) 

C=C*32-C*23 

It is thus seen that the difference between trace(C') and trace(C) is a linear 
function ofthe ys and V's: 

traceC' - traceC = t(l ,y,s )=(L l yS - L d S y,S)dt (AS.14) 

s S 

where the coefficients, cs andc~ are equal to: 

(AS.15)
s s s 

http:C'=(tA2'*.Al
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cs = ""' a b's noS + ~ b b's n's + ""' c b's noS£.. 12 ~ 31 £.. 32 
S s s 

In order to minimize at it is necessary to minimize the function: 

g (ys ,y'S )=_ f( va, v's)/ dt (AS.16) 

with respect to yS and fS (this function represents the rate of change of trace of 

C). The problem can now be solved by means of the linear programming 
technique. It should be noted though that, when a is equal to 0, the function is 
zero for all values of yS and fS and the problem is indeterminate in this case 

(a=b=c=O). However, in an actual computation, when a approaches zero, the 
function g(yS, y'S) oscillates between two extreme solutions and a is never 

exactly zero. To solve the problem rigorously in this case, it would be necessary 

to calculate the function g to second order. This would, however, involve very 
lengthy calculations. 


