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ABSTRACT

A literature review is presented of deformation and annealing textures;
it is clearly shown that, when the deformation temperature is increased, the
percentage of the so-called “brass” component increases in torsion, rolling and
tension. The latter is confirmed by a small-scale experimental investigation of
the textures produced by the hot and cold swaging (extension) of aluminum.

The possible mechanisms responsible for the differences observed in the
deformation textures produced at low and at high temperatures are listed and
modelled. The RW theory of the minimization of the work hardening rate is
extended to the deformation of polycrystals. In this treatment, the extent of the
ambiguities in the choice of active slip systems present in the FC and RC
models is specified. It is also shown that the RW predictions are in good
agreement with intermediate temperature results for torsion and rolling but
not for tension. '

Differences in the ease of cross-slip are simulated in three different ways:
i) by employing the colinear slip selection criterion originally introduced by
Chin; ii) by the introduction of suitable hardening laws; and iii) by introducing
the activation of {110} <110> and {112} <110> cross-slip systems. All three
models predict an increase in the brass component when compared to the
classical models of texture prediction; this increase is, however, small when the
first two methods are applied to torsion and rolling.

The activation of {100} <110> systems is also explored. The composite
~ single crystal yield surface for dual slipon {111} and {100} planes is described. It
is shown that the operation of these systems leads to texture components which
are never observed at high temperatures. A new model is presented, developed
to account for the occurrence of a high degree of recovery concurrently with
deformation. It simulates the formation of the polygonized substructure which
results from the minimization of the sub-boundary energy. The results obtained
for torsion and rolling reproduce qualitatively the experimental deformation
textures pertaining to these strain paths. Finally the different models proposed
are compared and their validity and limitations are analyzed briefly.
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RESUME

Lors de 1'étude bibliographique concernant les textures formées au cours
d'une déformation ou d'un recuit dans les métaux cfe, il est clairement
démontré que lorsque la température de déformation augmente, le pourcentage
de la composante dite “laiton” augmente en torsion, laminage et traction
axisymétrique. Ce dernier point est confirmé par une étude expérimentale
succinte des textures produites dans des barres d'aluminium par martelage
rotatif a froid et 4 chaud.

Les mécanismes pouvant étre responsables des différences observées entre
les textures de déformation a froid et & chaud sont énumérés et modélisés. La
théorie de Renouard et Wintemberger, fondée sur la minimisation du taux
d'écrouissage, est étendue a la déformation des polycristaux. Lors de ce
traitement, le degré de l'indétermination dans le choix des systémes de
glissement actifs est précisé pour les modéles FC (déformation complément
imposée) et RC (déformation partiellement imposée). Il apparait que les
prévisions RW sont en bon accord avec les résultats expérimentaux obtenus aux
températures intermédiaires en laminage et torsion mais pas en traction.

La possibilité d'un glissement dévié a été simulé de trois maniéres
différentes: i) en utilisant le critére de sélection de systémes colinéaires,
proposé a l'origine par Chin; ii) en introduisant des lois d'écrouissage
simplifiées et iii) en permettant l'activation des systémes de glissement dévié
{100}<110> et {112}<110>. Les trois modeles prévoient une augmentation
du pourcentage de la composante laiton par rapport aux modeéles classiques;
Toutefois, cet accroissement est relativement faible dans le cas des deux
premiers modéles appliqués a la torsion et au laminage.

L'activation éventuelle des systémes {100} <110 > est également envisagée.
Le polyédre mixte associé aux deux familles de systémes {100}<110> et
{111}<110> est tout d'abord décrit. Il est ensuite démontré que la possibilité
de glissement sur ces deux types de plans aboutit & la prévision de composantes
de textures qui ne sont pas observées a haute température.



Nous proposons également un nouveau modeéle permettant de prendre en
compte certains aspects de la restauration dynamique. La formation d'une sous-
structure équiaxe résultant de la minimisation de 1'énergie des sous-joints est
ainsi décrite. Les résultats obtenus en laminage et torsion sont en bon accord
avec l'expérience. Finalement, les différents modéles proposés dans cette étude
sont comparés entre eux et leur validité et leurs limitations analysées
briévement.
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CHAPTERI

INTRODUCTION

The common metals of industrial practice are polycrystalline aggregates in
which each of the individual grains has an orientation that differs from those of
its neighbors. However, it is quite unusual for the grains in such metals to have
completely random orientations, and the non-random distributions that occur
are called preferred orientations or textures. These purely crystallographic
characteristics should not be confused with the alignment of the grain
boundaries or structure, or the oriented distribution of second phases, features
which can be revealed by optical metallography. Equiaxed grain structures
frequently exhibit texture and conversely it is possible, at least in principle, for
an elongated grain structure to be randomly oriented [1].

Textures are developed at all stages of the manufacturing processes of
metals, but the precise nature of the texture is a complex function of the
preceding mechanical and thermal treatments, as well as of the material itself.
The important processing factors which can contribute to the development of
textures are: solidification, deformation, annealing, and phase
transformations. In what follows, we are mainly concerned with deformation
textures, but some experimental results concerning annealing textures and
their interpretation will also be reviewed to help with the comprehension of
mechanisms such as recovery and subgrain coarsening. The effects of
solidification and phase transformation on texture development will be
completely ignored.

Deformation textures have their origin in the crystallographic nature of the
two principal deformation processes of slip and twinning. Where large strains
are involved, slip is usually the major factor, but twinning can also be highly
significant in texture development because of the massive reorientations that
result. These are not necessarily the only possible active mechanisms,
especially at high temperatures; the latter range is the main concern of this
study, as will be seen below. During crystallographic glide, the restricted
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number of slip systems available (the 24 {111} <110> in the case of fcc metals)
produces rotations towards a limited number of end-points and so a deformation
texture is produced. It is clear that the resulting texture will depend on the
imposed stress state or strain path, the extent of the deformation, and the
operative deformation modes. The latter are themselves defined by the crystal
structure and atomic bonding, and also reflect the symmetry of the forming
operation.

The annealing of cold or hot worked metals is usually discussed in terms of
three generally consecutive, but sometimes overlapping processes: recovery,
recrystallization and grain growth. In the first of these, most of the excess point
defect are removed and the dislocations rearranged somewhat, but this process
only leads to a small change of texture. During recrystallization, new grains
are nucleated and grow at the expense of the deformed matrix by the migration
of high angle grain boundaries. Locally, there are large changes in orientation
and the texture as a whole is modified to become a primary recrystallization
texture. Frequently but not always, some components of the texture are
common to both the deformed and the recrystallized states. After
recrystallization is complete, grain growth occurs, involving further grain
boundary movement. If this process is normal and continuous, there is a
gradual change in texture; if grain growth is abnormal or discontinuous, on the
other hand, only a few grains grow and the change in texture can be very large.
This latter process is referred to as secondary recrystallization and usually
results from the presence (and later solution) of a dispersion of second phase
particles in the structure [1].

In the past, the processes of deformation and annealing (especially recovery)
have generally been treated separately. By constrast, in the present study, the
possible effects of an interaction between straining and dynamic recovery, with
particular application to the case of hot deformation, are investigated in some
detail.

Whatever their origin or type, preferred orientations have profound effects
on the mechanical, thermal and electrical properties of materials. In this
respect, a textured metal merely reflects the well known anisotropy of single
crystals. In a strongly textured metal sheet, the yield stress varies with



direction in the plane of the sheet; as a result, non-uniform flow occurs in
forming operations such as deep-drawing. Nevertheless preferred orientations
are not always undesirable. The use of strongly textured steel sheet in the cores
of power transformers is well known, and there are many other examples
where textured products have been especially developed for particular
applications. For this reason, the control and comprehension of texture
evolution has become a subject of increasing importance and a real necessity in
certain cases.

In 1966, the understanding of these questions could be summarized by the
following quotation:

"Polycrystalline textures are a matter of extreme complexity. Many details
of the mechanism of deformation and the texture development in
polycrystalline aggregates are still largely unknown. It is felt that at the
present time new ideas and new facts will be most valuable for approaching
one of the most complicated things of nature, the deformation textures of
metals." [2].

For those working in this subject area today, the above citation is no longer
valid. Much progress has been made in the determination of experimental
textures, in their interpretation and control, and also in their theoretical
prediction. Experimentally, the use of the crystallite orientation distribution
function (CODF) has become more and more common; it provides a more
complete description of the texture than the traditional pole figure. These
improved descriptions have proved very useful in two other ways. They have
permitted detailed theories of texture development to be tested in a highly
rigorous and critical way. Furthermore, they have contributed greatly to
increases in the understanding of the quantitative relationships between
texture and the properties of materials.

The present work is concerned with a single aspect of the above problem,
namely the prediction of high temperature deformation textures in fec
materials. It is divided into the following chapters:



In Chapter II, some of the experimental deformation and annealing textures
found in fcc materials are reviewed. Four deformation modes have been -
selected : tension, compression, rolling, and torsion and the effect of
temperature on the deformation textures will be emphasized as much as
possible. The various mechanisms involved (twinning, cross-slip, deformation
faulting, latent hardening, recovery, recrystallization) will be defined and their
possible influences discussed.

In Chapter III, some of the theoretical models employed in the past to
predict the evolution of deformation textures will be summarized. The oldest of
these are the models developed by Sachs in 1928 [3] and Taylor in 1938 [4].
These two models, as well as some more recent ones, are described here, and the
basic mathematical concepts necessary for the comprehension of the theories
are defined. The domains of validity of the different models are discussed, as
well as their respective advantages and drawbacks.

In Chapter IV, an account is given of the experimental determination of the
texture of aluminum rods swaged at different temperatures. As neither the
mechanical tests nor the texture measurements were carried out at McGill, this
part of the work is not covered in detail.

In Chapter V, the theory of Renouard and Wintenberger [5] related to the
minimization of the rate of work hardening is reviewed. This theory is
reformulated in a more convenient way and is extended to the deformation of
polycrystals. Although it appears to predict low temperature behavior as well,
its application to high temperature deformation may be justified by the ease of
thermal activation, which can permit dislocations to go back and forth and
perhaps choose the "easiest path" in this way.

In Chapter VI, the influence of cross-slip is investigated by first modifying
the theory initially developed by Chin [6] for single crystals deformed in
tension and also by incorporating a suitable hardening law into the classical
models described in Chapter III. Here the present treatments concern other
deformation modes and are applied to polycrystals.



In Chapter VII, a further aspect of high temperature deformation is
explored, i.e. the activation of slip systems other than the usual {111}<110>.
The most probable are the {100} <110>, the {100} planes being the most close-
packed after the {111}, followed by the {110}<110> and {112}<110>, the
latter two being usually defined as cross-slip systems. The construction of a new
single crystal yield surface for slip on the {111} and {100} planes is described in
this chapter.

A new model, developed to account for the occurrence of recovery
concurrently with deformation is presented in Chapter VIII. This implies the

splitting of grains into subgrains, and also involves the minimization of the
sub-boundary energy. This energy depends on the misorientation between
subgrains [7], and also takes low values at specific orientation relationships (for
high angle boundaries).

In each of the above four chapters, the theoretical predictions are compared
with selected experimental results. All four of the deformation paths are not
always included so as to keep the length of the text within reasonable limits.
Finally, in Chapter IX, the general conclusions of the study are drawn and the
validity of each model is also discussed.



CHAPTERII

REVIEW OF EXPERIMENTAL TEXTURE OBSERVATIONS

II.1. DEFORMATION TEXTURES
II.1.1. TENSION

The investigation of deformation textures was first carried out for uniaxial
geometries (such as wire drawing, extrusion, tension and compression),
probably because the representation of the texture is relatively simple in this
case. Since the material flow possesses axial symmetry, the orientation of each
grain of the polycrystal is adequately described by the crystallographic
direction <uvw> that is parallel to the strain axis [8], the other directions
being distributed with equal probability around the wire axis. Such a texture is
termed a <uvw> fibre texture.

The early results of Hibbard [9,10] described the drawing texture of Cu, Ag,
Auy, Ni, Pb and Al as a <111> fibre texture and that of certain Cu alloys as a
mixture of <111> and <100>. Calnan and co-workers [11,12] at the same
time described the pure tensile texture of Al as a mixture of <112> and
<111> fibres. These initial studies led the authors to conclude that, for most
fcc metals, the end texture is always the <111>, except in some rare cases
which were left unexplained. Such results are not in complete agreement with
what is known today and this may be due to one or more of the following
reasons:

—It is frequently difficult, as mentioned by Dillamore and Roberts [13], to
obtain deformations high enough for pronounced preferred orientations to
develop in tension because of the lack of mechanical constraints imposed on the
specimen.

—The starting orientations were never taken into account. It has been
shown more recently by Grewen and Wassermann [14] that the former is of
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overriding importance in the development of fibre textures and can lead to
misinterpretations. In a more recent study, for example, Bunge [15] determined
the texture of drawn Al wires having an initial texture defined by the <111>
and <100> fibres. After 84% of deformation, the texture was still a mixture of
the two components, but after 99%, the <100> component had disappeared
completely. He could only conclude that in pure Al, this last component is not
stable, unlike the <111>.

—The influence of the actual deformation mode was generally not
considered in these investigations. Although Barrett and Levenson [16] had
shown in 1939 that the textures produced in iron by drawing, swaging and
elongating tension were similar, there are differences between forming
operations because of the inhomogeneities that develop differently along the
diameter of a specimen cross-section. Such inhomogeneities result from friction
effects, and small values of the ratio of the dimensions of the tool and of the
material give rise to a gradient of deformation in the radial direction. In
extrusion, the layers at different depths from the surface deform by a strong
shearing strain, the shear direction being parallel to the tensile axis. This
shear strain, which is superimposed on the tensile strain, changes in
magnitude continuously from the surface to the center of the rod, and so do the
textures. Normally only the central regions display the texture that is typical
for uniaxial tension, since here the superimposed shear must be zero by reason

of symmetry [8].

The first systematic study of this problem was that of McHargue et al. [17],
which established the temperature and strain rate dependence of the extrusion
texture in 99.99% pure aluminum. Two extrusion speeds were used at each of
24, 232, 343 and 454°C, the higher speed being 490 ft/min at 24°C and 738
ft/min at 454°C and the lower speed 0.7 ft/min at 24°C and 0.3 ft/min at 454°C.
A duplex <111> + <100> texture was observed at all temperatures for the
slow speed and up to 232°C at the fast speed. But at the fast speed at 343°C, a
<115> texture was found, and at 454°C the texture was <118>. Some of their
results are presented in Figure 2.1 as inverse pole figures. The contour lines
show the frequency with which the various directions in the crystal coincide
with the tensile axis of the specimen. Evidence was presented by the authors to
show that the <100> texture component was largely due to recrystallization
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Figure 2.1. Fibre-axis distribution charts for specimens taken from the
middle sections of 99.994% aluminum after 91.8% R.A by

extrusion at: a) 615 ft/min at 232°C; b) 659 ft/min at 343°C; ¢) 738
ft/min at 454°C [17].

(though this may not be the only explanation) and an additional sample
extruded slowly at sub-zero temperature had a texture consisting of 92%
<111> compared with 76% <111> at room temperature. It was concluded



that the main effect of strain rate was in the attendant temperature rise at high
strain rates which led to the <115> or <118> “recrystallization” texture.
(This subject will be treated further in Section I1.2.)

Butt [18] working with commercial or superpure aluminum obtained results
essentially similar to those of McHargue et al. [17] for the variation with
temperature, and Roberts and Butt [19] have suggested that the <100>
texture component arises from the <115> component by deformation
subsequent to recrystallization. This differs from the interpretation of
McHargue et al. [17], who invoked the possibility that the elastic stresses
during deformation favour the formation of <100> recrystallization nuclei.
Both sets of workers demonstrated that the <100> component has a lower
dislocation density than the <111>. Support for this view is obtained from the
observation of Grewen and Wassermann [20] that the proportion of the <111>
component in aluminum extrusions is greater the lower the purity and that
chill-cast billets give less <100> than continuously cast billets. They
explained this as being due to the effect of the dissolved impurities in retarding
recrystallization.

Finally, around 1965, clear evidence was presented that the deformation
texture of fcc metals is a mixture of these two fibres (and not necessarily due to
the occurrence of recrystallization). This evolved from the systematic study of
English and Chin [21] as well as from the bibliographical work of Barrett and
Massalski [22] and Chin [6]. English and Chin [21] studied several fcc
materials covering a wide range of stacking fault energy (SFE) with particular
attention to some very low SFE alloys. They determined the percentage of each
of the 2 fibres after a reduction by drawing of 99% and plotted the percentage of
the <100> component as a function of the SFE. Their results are presented in
Figure 2.2.

The most important conclusion from this figure is that the general trend’
toward larger proportions of <100> with reduced SFE is reversed for the
lowest values of y/Gb. This reversal is not easy to explain on the basis of any
single mechanism, such as the influence of cross-slip proposed by Brown [23].
The figure suggests, instead, the presence of two or more superimposed factors,
as will be explained below.
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Figure 2.2. Wire textures of various fcc metals and alloys as a function of the
parameter y/Gb at room temperature. Stacking fault energy
increases towards the right side of the figure. Both high and low
SFE lead to sharp <111> textures [21].

All the more recent results found in the literature as well as those presented
in the reviews quoted earlier [6,8,13,21,22] confirm the trend suggested by
Figure 2.2. For example, Aernoudt et al. [24] found a strong <100> fibre in
drawn silver, Ahlborn [25] determined that the orientation of single crystals of
Cu was either <100> or <111>, depending on the initial orientation, in
proportions which are in good agreement with Figure 2.2.
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Chin [6], Gil Sevillano et al. [26] and Mecking [8] considered all these
observations and interpreted them in terms of several mechanisms, such as
cross-slip, latent hardening, deformation faulting and twinning. The
occurrence of one of these mechanisms was then justified either by
experimental observation on a suitable material [8,26] or by comparison with
some theoretical model which takes into account the proposed phenomenon [6].
Apparently, the last type of justification is not completely convincing since
there is still considerable debate about what really happens in the material.
These theoretical assessments will be treated in the next chapter. To
summarize the above interpretations, Figure 2.2 has been divided into three
parts, each corresponding to a different hypothetical mechanism:

Part 1 corresponds to the high SFE materials such as aluminum or to
high temperature deformation behavior; it is usually associated with the ease
of cross-slip. There is ample evidence from single slip experiments that cross-
slip occurs more easily in high stacking fault energy metals and at high
temperature, as described by Nabarro et al. [27] and illustrated in Figure 2.3.
One is thus tempted to generalize this to the multiple slip situation in
constrained deformation. In the case where all the slip systems harden equally,
the <111> component involves the activation of 6 slip systems having 3
different slip directions and 3 different slip planes, i.e. 3 pairs of colinear
systems. By contrast, the <100> orientation involves the activation of 4 pairs
of colinear systems. One may conclude that, as cross-slip is likely to favor the
activity of colinear slip systems, its occurrence will favor in turn the presence of
the<111> component and the absence of the <100> one. Such cross-slip has
been observed in aluminum [23,28,29] and the interpretation has been
supported theoretically by Chin [6].

Part 2 of Figure 2.2, corresponds to intermediate SFE’s and is usually
associated with the occurrence of mechanical twinning. According to the
definition by the mineralogist Dana [30], a lattice is twinned when "one or more
parts, regularly arranged, are in reverse position with the other part or parts".
This definition means that the twinned and untwinned parts of a crystal are
mirror reflections of each other in a certain plane of the crystal. This mirror
plane is called the "composition plane" (see Figure 2.4) [31]. The composition or
twinning plane is usually given the symbol ki, the shear direction n; and the
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Figure 2.3. Model of the cross-slip process after Nabarro et al. [27]. The
dissociated dislocation must combine prior to movement into the
cross-slip plane. Hence, cross-slip is easier for high SFE metals.

Figure 2.4. Relation of sphere and twinned ellipsoid [31].

plane perpendicular to k; and containing n; is the “plane of shear”. For fcc
materials, the twin systems are (111) for k1 and [112] for ni, the thearetical
shear on such systems being equal to 1/V2. Twinning is observed when the
critical resolved shear stress (CRSS) for this process is almost equal to the one
associated with slip. This will happen in fcc materials when the SFE is low or if
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the deformation temperature is very low. In such a case, after sufficient
deformation, the flow stress will be high enough to produce mechanical twins,
and orientations near <111> will twin first because the resolved shear stress
for twinning is the highest for these. By twinning, the <111> orientation is
transposed into a <115> orientation, which will rotate by slip towards
<100>. This can explain why the relative strength of the <100> component
increases with decreasing stacking fault energy, when twinning is made easier.

A number of studies, including that of Aernoudt and co-workers [24], have
established that fecc metals of low stacking fault energy do twin, especially
when deformed at low temperatures and high strain rates. However, it is hard
to explain why the <100> component gradually disappears when the stacking
fault energy falls below that of silver, conditions under which twinning is still
very easy. This leads us to the interpretation of the third part of the diagram.

Part 3 is the most difficult one to explain and several different
interpretations have been proposed:

—The <100> fibre orientation loses its preferential role if twinning
becomes so easy that all orientations form twins [8].

—~Venables [32,33] has indicated that, as the SFE is reduced, twin
propagation may become increasingly difficult although nucleation is made
easier. One may therefore expect that the amount of twinning (and hence, the
percentage of <100>) will reach a maximum for some intermediate SFE, just
as observed.

—The increase in the <111> component in this range can also be
attributed to latent hardening. Experiments have been performed in which
pairs of slip systems have been tested [34-36]. These reveal that prior slip on
one system hardens all other systems more than itself, except a coplanar
system, where the hardening ratio is equal to one. Under these conditions,
there is a tendency for the hardening on non-coplanar systems to increase with
decreasing SFE. For Al, the increase is about 20% [35], for Cu [36] and Ag [34],
about 40%. These data were obtained by first activating one system, and then
the other, and it is not obvious that they are applicable to the simultaneous
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activation of both systems. It also remains to be seen why such hardening on
non-coplanar systems should imply the increase of the <111> component. This
has been investigated theoretically by Chin [6], who selected those
combinations among the equivalent slip systems which maximize coplanar slip.
"Somewhat surprisingly"”, in his own words, he found an increase in the
<111> component and concluded that latent hardening (coplanar slip) also
favors this component, in agreement with the results of Figure 2.2.

—A further interpretation of part 3 of the diagram is again given by
Chin [6] and implies the occurrence of deformation faulting. For energetic
reasons, a (111)[011] dislocation is normally split into two Shockley partials of
the {111}<112> type connected by a strip of stacking fault whose width is
inversely proportional to the SFE of the material. Thus widely-spaced faults
are common in cold-worked low SFE metals. Usually, the separated partials
"zig-zag" in correlated sequential movement - first along [121] and then along
[112]. The result is then the same as for normal (111)[011] slip and there need
be no alteration of the pattern of texture development except through the extra
latent hardening on the non-coplanar systems, as described above. However, if
the partials become widely separated, texture development may be altered
because the effective slip direction now switches from <110> to <112>. This
is the mechanism proposed by Hu et al. [2] to account for the dominance of the
<111> wire texture in low SFE metals. In their analysis, they considered the
independent motion of the two partials equally likely. In effect, however,
probably only the leading partial can do so. Chin [6] tested the validity of this
model and of this last assumption and found that only the <111> component
was stable. Thus he concluded that intrinsic faulting favors a strong <111>
wire texture, reinforcing the effect of coplanar slip for very low SFE alloys. ‘

These results can be summarized as follows: the predominance of the
<111> component at very high values of SFE is due primarily to the ease of
cross-slip (or of colinear slip). The same predominance at very low values of
SFE is probably due to twinning in all the grains of the material or coplanar
slip and intrinsic faulting. It has to be added at this point that, while Chin [6]
proposed the last two interpretations, he also suggested that the decrease in the
<100> component in this range was perhaps not as large as shown in Figure
2.2. The appreciable <100> peak near Ag can be accounted for by twinning,
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chiefly after the orientations of the crystals have reached the <111> position
via a slip process. It is also worth noting that there are two transitions as the
SFE is increased. This differs from the situation in rolling, as will be seen later,
where copper and brass have distinct rolling textures. The latter remark
suggests that the results concerning part 3 of Figure 2.2 are partly wrong or at
least inaccurate. This is a question to which we will return below, after
presentation of the pertinent results obtained in this investigation.

II.1.2. COMPRESSION

‘There are few results reported in the literature concerning compression.
This may be due in part to the difficulty of achieving large strains in pure
axisymmetric compression without shearing or barrelling of the samples; a
further contribution arises from the fact that the most important conclusions
about compression can be deduced from the tension ones. The forces imposed on
a polycrystal being opposite in tension and compression, the rotations of the
crystallographic planes can be expected to occur in opposite directions. This was
verified experimentally by Barrett and Levenson [37], who reported that the
compression texture of Al consists of a strong <110> component with
considerable spread to <311>, plus weak intensities scattered to <100> and
with <111> relatively empty (Figure 2.5a ). This is also the type of texture
expected from the Taylor model on the basis of {111}<110> slip (see Chapter
III). Moreover, when the concept of colinear (cross) slip (presumably favored in
Al) is introduced in this model as was done by Chin [6], it has the effect of
sharpening this component.

Very recently, H. Naaman and co-workers [38] determined the compression
texture of copper (99.999%) and also found a high intensity near the <110>
component and in a band between the <110> and <115> positions. Some of
their results are presented in Figures 2.5¢ to 2.5e. Unfortunately, quantitative
experimental data for other materials are not available for comparison. Barrett
and Levenson [37] also examined the compression texture of 70-30 brass
(Figure 2.5b). Here the texture still consists of a strong <110> component
with some spread to <311>, but now the <100> orientation is vacant and
some intensity appears near <111>. The emptying of the <100> region in
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Figure 2.5. Compression textures of Al, brass and Cu: a) Al and b) brass after
97% R.A.[37]. W =weak, M=medium, S =strong. Texture of high
purity Cu: c) before compression, d) after a strain of 1.36 and e)
after a strain of 2.9 [38].
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favor of the <111> is most likely to result from mechanical twinning. In
compression, the <100> (and near <100>) vicinity twins most easily while
the <111> is most reluctant to twin. At <100>, all four twin planes can
operate, converting the compression axis to <221>, which is only 15° from
<111> on the <111> - <100> line. (Incidentally, while the <110> is also
favored to twin, it transforms into itself (its negative, to be exact)). If slip
becomes favored after twinning, the occurrence of coplanar slip suggests that
the <111> intensity of brass should decrease at still higher reductions.
Similar conclusions can be reached if intrinsic faulting is important [6]. So,
despite the lack of experimental results concerning different materials, the
mechanisms described for tension are also assumed to be responsible for the
variations observed in compression.

Now that we have seen the axisymmetric textures of fcc materials, we can
turn to the case of another mode of deformation, i.e. rolling or plane strain
compression.

I1.1.3. ROLLING

Investigations of texture evolution during rolling are very numerous in the
literature and have been performed most extensively on Cu, a-brass (Cu-Zn
alloys) and Al. This is because many forming operations are carried out on
rolled materials and the forming capability of different metals depends strongly
on their texture after rolling. Furthermore the use of crystallite orientation
distribution functions (CODF) has been developed mostly for rolled materials
where the symmetry of the process makes them relatively simple to derive. For
this reason, this section will be divided into two parts:

1) The first summarizes the "earlier work" in the area, in which only pole
figures were determined and where the textures were interpreted only in terms
of ideal orientations.

2) The second consists of a synthesis of the more recent work, in which the
use of CODF’s leads to a more quantitative interpretation of the observed
textures. In these two sections, some research carried out on rolled single
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crystals will also be mentioned [2,8,39] because these studies have helped to
clarify the basic deformation processes.

1) Early work

It has been long recognized that the rolling texture of a-brass is not the same
as that of copper (or of many other fcc metals). In these two materials, two
distinct types of texture develop, and the differences between them were first
established by Hu, Sperry and Beck [40]. These are represented in Figure 2.6 in
the form of <111> pole figures [41] generally referred to as the “Cu-type
texture” and the “brass-type texture”. This distinction is somewhat arbitrary
and, as will be seen below, the brass-type texture can be produced in Cu and
vice versa, depending on the deformation temperature. It has also been found
that the two types are characteristic of the rolling textures of most fcc metals
[2,8,13,22,40,42,43]; for example, most fcc metals (except silver) are of the
copper type, whereas silver and most fcc alloys are of the brass type. Aluminum
alloys display a Cu texture and, depending on their composition, have a greater
or lesser percentage of the brass component.

Figure 2.6. <111> pole figures for a) Cu and b) a-brass after rolling at room
temperature. The symbols give the positions of the (111) poles of
the main components ; o: {112}<111>, []: {123}<634>,
+:{110}<112>, X:{110}<100> [41].

The copper texture can be interpreted as the superposition of 3 components:
{112}<111> (Cu-component), {123} <634> (S-component) and {110}<112>
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(brass-component); by contrast, the brass texture involves the superposition of
only two: the brass-component {110}<112> and the Goss-component
{110}<100>. These are displayed in Figure 2.7 in the form of <111>, <110>
and <100> pole figures. Additionally, the locations of the <111> poles of the
ideal components are plotted on the experimental pole figures of Figure 2.6. In
what follows, the term Cu-texture will be used for the complete set of ideal
orientations, whereas the term Cu-component will refer only to the single ideal
orientation. It should also be noted that only single orientations are
represented in Figure 2.7; nevertheless, because of the symmetry of the process,
the components which are symmetrical with respect to the rolling direction and
to the rolling plane normal must also be included.

1 mo 1100}

GO0

{123K634) S-component
R0 R0 R0

oo
>O

{110}(112) brass-component
RO RD

T

{110)(100) Goss-component

Figure 2.7. Positions of the <111>, <110> and <100> poles of the main
components of the rolling texture [8].

The early studies also showed that a transition from the brass to the copper
texture can be affected by changing the alloy composition or the deformation
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temperature. This transition was associated with changes in the SFE, asin the
cases of tension and compression.

Texture transition by alloy additions. The effect of solute addition on
the deformation texture of a number of fcc metals was investigated extensively
by Smallman [43,44]. Liu and Richman [45,46] also made a systematic study of
the textural changes in copper as a function of alloy concentration for several
solute elements. These authors showed that, for a given solute, a minimum
amount is required to initiate the transition, and the degree of the transition
increases with increasing solute concentration. For complete transition, a
certain amount of the solute is required, which varies from solute to solute.
These results were confirmed by other workers and a typical example is given
in Figure 2.8, which shows the textural changes in a series of a-brasses as the
concentration of zinc is increased [47].

(a) 3% Zn (b) 6% Zn (c)10% Zn

Figure 2.8. Texture transition in brass as a function of zinc content; a)3%, b) 6
%, and c) 10% Zn. Rolling reduction 96% [47].

Texture transition by changing the deformation temperature. The
effects of deformation temperature and of heat treatment prior to cold rolling
were also investigated by Smallman [44]. The original idea was that, since the
deformation characteristics of solid solutions could be affected by temperature
and heat treatment, the resulting texture should also vary with temperature.
Smallman showed that the rolling textures of aluminum alloys that were
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slowly cooled and then rolled were somewhat different from those that were
quenched, then rolled. More interesting is the effect of the deformation
temperature. For brass containing 5% Zn, rolling at -183°C produced a brass
texture (mainly a {110} <112> component), whereas rolling at 200°C produced
a copper texture. To test the idea proposed by Brown [23] that the wire texture
may depend on the SFE and ease of cross-slip, Hu and co-workers [41,48-50]
conducted a series of investigations regarding the temperature dependence of
the rolling texture transition in high-purity silver, electrolytic copper, and
austenitic 18-8 stainless steel. It was shown that in all these metals, the copper-
type / brass-type transition can be affected by changing the temperature of
deformation. With increasing temperature, the texture changes gradually from
the brass-type to the copper-type; with decreasing temperature, a transition in
the opposite direction occurs. Copper rolled at room temperature exhibits a Cu
texture, whereas rolling below room temperature leads to the brass-type.
Similarly, silver rolled at room temperature exhibits the brass-type, but when
rolled at higher temperatures changes to the Cu-type [22].

In these early studies, no experiment was carried out on a high SFE
material rolled at high temperatures. As will be seen below, this has been done -
more recently to test whether there is a second transition from the one type to
the other. However, no useful quantitative measure of the amount of the
transition associated with a particular temperature could be deduced from
these investigations and only the use of CODF’s (as described in part 2) below)
will be able to provide such an analysis. Figure 2.9 shows the texture of
electrolytic copper rolled at —80, —140 and ~196°C [41]. The striking
resemblance between the textures produced by increasing the alloy content or
by lowering the rolling temperature is evident when Figures 2.8 and 2.9 are
compared. The temperature dependence of the texture transition was also
found to depend on the impurity level [40,41].

The results just described indicated that there is a general correlation
between the texture transition and the SFE of the material. This is partly in
agreement with the results obtained in tension, where two transitions were
observed when the SFE was increased, instead of only one as in the case of
rolling. Generally speaking, it was concluded at this time that the development
of the copper texture in high SFE materials can be attributed to the ease of
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(a) -80C - (c) —196C

Figure 2.9. Texture transition in copper as a function of deformation
temperatlire; a) —80°C, b) —140°C, ¢) —196°C. Rolling reduction
96.6% [41].

cross-slip, as in the case of tension; the development of the brass texture in low
SFE materials can be attributed as before to the occurrence of twinning or
deformation faulting. In addition, some new explanations appeared in which
the possibility of nonoctahedral slip was discussed. The different points of view
that prevailed can be summarized under the headings that follow.

1) Transition caused by cross-slip. The suggestion that extensive
cross-slip is responsible for the formation of the copper rolling texture was
made by Dillamore and Roberts [29] as well as by Smallman and Green [28].
The ideas of these authors are similar to those of Brown [23] for wire textures.
The rate of cross-slip depends on the SFE of the metal and the temperature of
deformation. Dillamore and Roberts [29] claimed that all fcc metals first
develop the brass texture by normal slip. Then, for low SFE materials, where
cross-slip is very difficult, plastic deformation occurs largely by normal slip and
the final texture remains of the brass type. For high SFE metals, cross-slip
occurs with ease. The normal slip texture, the brass component, undergoes
further reorientation by cross-slip to transform into the copper texture. Since
the SFE of materials decreases with increasing alloy addition, and since cross-
slip can be activated by thermal fluctuations, the cross-slip hypothesis appears
to be consistent with both the composition and temperature dependence of the
texture transition. There exist, however, some weak points in this proposition.
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One of them is that abundant cross-slip is observed in brass [51], even at low
deformations. Similarly, at high deformations in rolling, differences in the ease
of cross-slip do not seem to be responsible for the texture differences.

2) Transition caused by nonoctahedral slip. An alternative view was
advanced by Haessner [52], who considered that normal octahedral slip leads to
the brass texture whereas, when slip occurs on {100} planes along <110>
directions, the copper texture is produced. In connection with the effect of SFE
on texture, Haessner assumed that, for low SFE metals, cubic slip becomes
more difficult as the separation of the partials in the {111} plane becomes
greater. Some evidence that slip takes place on the {100} planes in aluminum
has been reported [53]; its occurrence seems to depend strongly on the initial
orientation of the crystal and on the temperature of deformation. Moreover, it
appears to be difficult to differentiate this type of slip from cross-slip.
Nevertheless, as the hypothesis was advanced for the case of rolling, and as this
type of slip occurs more easily, if at all, at high temperatures, it is of interest to
investigate the effect of {100} slip on texture formation. This was done in the
present study, and the results obtained will constitute the subject of one of the
chapters that follow.

3) Transition due to mechanical twinning. If mechanical twinning of
the {111}<112> type is considered as a mechanism of plastic deformation
additional to normal slip, then the copper-component (112)[111] can be
converted by twinning into the (552)[115], which is rotated into the (110)[001]
(Goss-component) orientation by further slip. The (011)[211] texture (brass-
component), on the other hand, retains its orientation during deformation,
because twinning would lead to shape changes that do not meet the strain
requirements of the rolling process. The proposed mechanism is supported by
evidence of the rolling textures developed in silver single crystals as well as by
the observations of the temperature dependence of twinning in these crystals
[54]. However, this interpretation requires the brass texture to be developed
after the copper texture is formed. Evidence for this view has not been observed.
Furthermore, as mentioned by Haessner [55], there are alloys in which there
was no mechanical twinning at the rolling temperature employed, yet the brass
texture was still produced.
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4) Transition due to deformation faulting. The initial work done in
order to assess the effect of deformation faulting on the textures developed in
fcc metals was carried out on single crystals having specific orientations. Hu,
Cline and Goodman [2] studied the stability of (110)[112] and (112)[111] single
crystals of high-purity copper and of an alloy containing 4%wt Al. Their results
and interpretation can be summarized as follows:

(110)[112] crystals (brass-component). The orientation of the Cu
crystals remains stable, whereas the intensity of the brass orientation in the
Cu-4%Al crystals decreases up to the point where the crystal splits into two
symmetrical brass-oriented crystals. The explanation given was the following:
for normal slip on the {111}<110> systems, the primary and conjugate slip
systems, (111)[011] and (111)[101], are symmetrically oriented to receive a
large shear stress. If slip occurs accidentally to a larger extent on one of these
two systems, such as (117)[101], slip direction [101] rotates towards the rolling
direction, and the [111] slip plane normal rotates in a similar manner towards
the normal to the rolling plane. Such rotations result in a continuously
decreasing resolved shear stress on the active slip system and a continuously
increasing shear stress on the conjugate (111)[01T]. Hence, at a certain point,
the (111)[011] system is activated, and the crystal begins to rotate in the
opposite direction. Thus, the change in orientation of the crystal during
deformation by slip only on these two systems is self-correcting. That is what is
considered to happen in the pure copper crystals where the brass texture
remains extremely sharp and this has been confirmed by slip-line examination.

However, if deformation faulting or slip by partials can make a significant
contribution to the deformation in addition to normal slip, the stability of the
(110)[112] orientation will be impaired. Faulting will result in slip on the
{111}<112> systems and for this special orientation, the (111)[211] and
(111)[121] systems can operate alternately without net orientational changes.
The other two systems, (111)[112] and (111)[112], however, do not possess a
self-correcting feature for maintaining the crystal orientation. Hence, for a
single crystal of silver, brass, or other fcc alloy of low SFE, the (110)[112]
orientation is expected to be unstable, particularly at high deformations at
which slip by partials makes a significant contribution to the plastic
deformation. Hu and co-workers [2] observed that the texture of Cu-4%Al
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crystals shows a rather large orientation spread, probably due to the addition of
the complementary orientation.

(112)[111] crystals (Cu-component). The behaviors of crystals of
copper and Cu-4%Al having this orientation differ markedly, even at low
deformations. While the copper crystal retains its initial orientation and shows
a very sharp texture, the Cu-4%Al crystal develops a large orientation spread
and a strong component of the (552)[115] twin orientation. In fact, both the
matrix and twin orientations are displaced from their ideal positions by
rotation around the transverse direction. In this case as well, the explanation
given by the authors is similar to the one given previously. Slip on the
(111)[110] and (111)[110] systems induces rotation of the crystal towards the
rolling direction. While the resolved shear stress on these systems decreases

continuously with crystal rotation, the other systems, (111)[101] and
(111)[011], are subjected to increasingly higher resolved shear stresses. When a
certain critical point is reached, the latter two slip systems begin to operate and
cause the crystal to rotate in the opposite direction. Thus, these two pairs of
systems are able to correct the orientation changes accidentally produced by
one or the other and this results in the stability of the orientation if only normal
slip occurs, as in pure copper.

For the Cu-4%Al crystal, on the other hand, extensive faulting occurs on the
(111)[112] system. As a consequence, a (552)[115] twin component develops,
and with further deformation, the matrix rotates to the (111)[112] orientation,
whereas the twin rotates towards (110)[001]. So again in this case, the copper
crystals remain stable and only normal slip occurs, whereas the orientation of
the Cu-4%Al crystals splits into 2 different orientations because of the
deformation faulting. The assumption of deformation faulting (i.e. slip by
partials) has been extensively checked by the authors by means of electron
microscopy. In two sets of Cu-4%Al single crystals, they observed the presence
of stacking faults and microtwins, but no massive twinning. However, similar
studies of single crystals of Cu and brass (and not Cu-4%Al) having these
specific orientations were also carried out by Mecking [39] and Bauer [56].
These authors have given a different interpretation of their results, attributing
the observed differences to mechanical twinning (the presence of which was
confirmed by electron microscopy). They also found that a Cu single crystal of
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the (112)[111] orientation rolled at room temperature was stable whereas,
when it was rolled at a lower temperature, it split into 2 symmetrical brass-
oriented crystals.

Similarly, in a brass single crystal of (112)[111] initial orientation, half the
crystal had twinned towards (552)[115] after 50% of deformation. As in the Cu
crystals rolled below room temperature, the matrix and twin later behaved
differently than if they were each present alone. This is because the (112)[117]
and (552)[115] orientations have a special relationship between them; having a
common (111) plane, dislocations prefer to slip on this plane to avoid
compatibility stresses. As a result, the two orientations rotate towards two
symmetrical Cu components. Before these are reached, the scatter around them
increases, and the final texture is composed of two brass components.

Mecking [39] also studied the behavior of Cu and brass single crystals of
initial orientation (110)[112] (brass component). He found that the Cu crystals
were stable but that the brass crystals were stable only if the deformation was
really unconstrained (i.e. if the crystal is allowed to shear on the tranverse
plane in a sense parallel to the rolling direction, which would be the case for
perfectly lubricated rolling). However, if this shear is forbidden or restricted
(because of friction produced by the rolls), twinning occurs, and the final
texture is again composed of two brass orientations.

From these studies on single crystals, two important remarks can be made:

a) The results depend strongly on the experimental conditions such as
lubrication. It is very hard to obtain really unconstrained deformation in
rolling, but the degree of friction differs markedly from one experiment to
another and it is rare to find this contribution quantified in the literature. The
less friction there is, the less stable will the brass orientation be in a brass
single crystal for example. These experimental conditions will affect the
polycrystal texture in a different way by producing variations in the texture
from the center to the outer surface of the material [8]. At the surface, a shear-
type of texture will develop, as has been shown very clearly by the experiments
of Regenet and Stiwe [57].
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b) The orientation instability of the brass and Cu-4%Al single crystals
can be attributed to twinning and to microtwinning (due to deformation
faulting). It is difficult at this point to decide which of these two mechanisms is
the most active, but the choice does not make a great difference with respect to
texture prediction. Since the crystallographic effects of the two are the same,
i.e. they both imply the activation of the {111} <112> twinning or slip systems,
the results obtained will be similar. Furthermore, both types of twins have been
observed recently by Hatherly et al. in pure copper as well as in brass deformed
by rolling at different temperatures [58].

Following this study of single crystals, extensive research was carried out
on texture development in electrolytic copper and 70-30 brass to test the idea
that deformation faulting is the primary factor in determining whether the
texture is of the copper type (if deformation faulting or twinning is absent or
limited) or of the brass type (if faulting or twinning contributes strongly to the
deformation) [2]. Extreme care was taken in the preparation of the samples in
order to start with a fine grained structure and a nearly random texture. It was
found that, at up to 40% reduction, the two materials exhibit almost the same
texture (see Figure 2.10); but, after 50% reduction, each of them has already
developed its own characteristics. At about 90% reduction, the two types of
texture are fully developed and there was no evidence that the copper developed
the brass texture first which transformed later into the copper type, or that the
brass developed a copper texture first, which transformed later into the brass
type. There was ample evidence in this study of the development of a twin
orientation of the copper component in the brass, and of further rotation of both
the matrix and the twin. The results obtained after 90% reduction are similar
to the ones shown in Figure 2.6 and can be taken as confirmation of the
presence of deformation faulting or twinning in the brass.

To conclude this review of the early studies of rolling textures, it can be said
that there is evidence at this point of a transition from the brass to the copper
type of texture with increasing SFE (for materials deformed at room
temperature or below). This can be interpreted in terms of the following
mechanisms: twinning and faulting on the brass side, new active slip systems
and ease of cross-slip on the copper side. Again here, no sirigle mechanism can
be seen to be responsible for the transition and no experimental observation
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Figure 2.10. Texture of a) copper and b) brass, rolled 40% at 25°C. Note that
there is no appreciable difference in texture between copper
and brass at relatively low deformations [2].

definitely proves that one or the other happens. Only with the introduction of
CODF’s does the picture became clearer and it is time now to review the more
recent studies of rolling texture development.

2) Recent studies

The recent investigations all make use of the orientation distribution
function to represent the texture of a material. If we designate the
crystallographic orientation of individual erystallites within a sample by g
(which will be specified more precisely later), then the orientation distribution
function (ODF) of the crystallites is defined by the volume fraction of
crystallites that have the orientation g within a certain infinitesimal
orientation element dg. The ODF is thus defined by

dV/V=flg).dg : (2.1)
The function flg) is normalized in such a way that in the case of a random

distribution, it is equal to 1 for every g. This normalization can be expressed by
the relation


http:dVIV=f(g).dg
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jﬁg).dg=1 (2.2)
g3

The orientation of a crystallite g in a sample is usually defined by the
orientation of the crystal coordinate system (defined by the 3 <100> axes of
the crystal) with respect to the sample coordinate system (in the case of rolled
sheet, it is natural to choose the rolling RD, transverse TD, and normal ND
directions for the coordinate axes). This is usually represented by three Euler
angles in the following way: the crystal system is first assumed to coincide with
the sample coordinate system. It is then rotated successively:

1. about the crystal z' axis through ¢1
2. about the crystal x' axis through &
3. about the crystal z' axis through ¢2 (see Figure 2.11)

Thus, the angles ¢1, @ and ¢2 are the three Euler angles which describe the
orientation of the crystal in the sample

g = {01, @, b2} (2.3)

This terminology corresponds to the one defined by Bunge [59]. A slightly
different one also exists, due to Roe [60], but the latter will not be used here. All
possible orientations can be obtained within the range

0=p1=2n 0=®d=n 0=¢2=2n (2.4)

It is convenient to plot these parameters as cartesian coordinates in three-
dimensional space (Figure 2.12), which is called orientation space or, in the
case of the Euler angles as orientation parameters; Euler space. Each crystal is
then represented by several points in this space because of the symmetry of the
crystal and the symmetry of the process. For fcc materials, a given orientation
can be defined by 24 different sets of Euler angles (cubic symmetry) [61].
Furthermore, the orthorhombic symmetry of rolling implies that each point of
Euler space is associated with 3 equally probable further ones. A given
orientation can thus be described by as many as 96 different points in Euler
space (for the case of cubic materials deformed in rolling); this allows us to
represent the associated ODF in a reduced space. Usually, the ODF of rolled
materials is plotted in a "cube" (i.e. each angle varies from 0 to n/2, which is
still more than the minimum necessary, but gives a clear picture).
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Figure 2.11. Definition of the Euler angles [59].
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Figure 2.12. Definition of the Euler space [59].
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In such a space, the ODF is generally characterized by contour lines, in
sections of constant ¢2. The ODF’s of Cu and brass obtained in this way after
95% reduction, are shown in Figure 2.13 [62]. Similar results have been
reported by Kallend and Davies [63] but are not reproduced here to avoid
confusion as their results are plotted using the Roe definition of the Euler
angles [60]. Bunge and Haessner [64] also determined the ODF of rolled pure
copper and found essentially the same results as Hirsch. The appearance of
these texture functions in Euler space is illustrated in Figure 2.14. All the
texture components of the fcc metals lie on two "fibres" or "tubes", the [ fibre
extending from the Cu through the S to the brass component (this corresponds
to the Cu texture). The a fibre in turn extends from the brass to the Goss
position (and corresponds to the brass texture). In these two figures, all the
texture components typical of the copper and brass textures can once again be
found. The question therefore arises whether the introduction of ODF’s brings
something new to the analysis of texture development. But the advantages of
this type of representation compared to pole figures are numerous:
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Figure 2.13. ODF of rolling textures of fcc metals after 95% rolling reduction:
a) pure copper, b) brass (Cu-30% Zn) (after Hirsch [62] ).
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Figure 2.14.
Three-dimensional representation of

the main components of an fec rolling
texture in Euler space [62].

1) A pole figure is only a two dimensional plot of preferred orientations
which are three dimensional. In this sense, the ODF, which is also 3
dimensional, is more complete and more appropriate.

2) If the value of the function flg) is known exactly at every point in
Euler space, we can know all the texture components which are present in the
material, even very minor ones, with their exact intensities as well as the
scatter around each orientation.

3) From these data it is then possible to : (i) determine the elastic,
magnetic and plastic properties of the material; (ii) study quantitatively the
influence on texture of the composition, starting texture, temperature, grain
size and shape, misorientation between neighboring grains, etc.

4) The ODF permits us to follow precisely the evolution of texture with
deformation.



- 383 ~

5) It also enables the validity of texture development models to be tested
more carefully (see Chapter III).

Hirsch and co-workers [62,65-67], who have worked extensively in this area,
have determined the texture of Cu-Zn and Cu-Ge alloys rolled at room
temperature. They studied the evolution of texture with deformation,
composition and temperature and found a transition from the Cu to the brass
texture with decreasing SFE (see Figure 2.13). To follow this transition
quantitatively, they made special cuts of the ODF in Euler space, one of which
is the ¢1=90° and ¢2=45° subspace, in which the Cu, Goss and twin Cu
orientations are found. By plotting the variation of f{g) as a function of the third
angle for different alloys and rolling reductions, it is possible to follow the
development of twinning for example. This is done in Figure 2.15 for the Cu-Zn
alloys [65]. Along this ®-line, the orientation change due to twinning of the Cu-
position and further slip can be readily demonstrated. In the low deformation
range for the low Zn alloy, the Cu position intensity increases constantly with
strain. In the 70/30 brass, by constrast, after a first increase up to around 50%
rolling reduction, the Cu intensity starts to decrease and is replaced by
intensities in the twin position. It is clearly visible that with further
deformation the twin orientations shift from {552}<115> towards the
{332} < 113> position, whereas the Goss intensity remains almost constant. In
the same deformation range, an increase in intensity along the whole <111>
fibre can be detected in the low SFE alloys, with some concentration at
{332}<113> and {111}<110>. Itis interesting to also plot the variation of f{g)
along the two fibres of interest. This is done in Figure 2.16 for the pure copper
and the 70/30 brass [62] and again the difference between the two materials is
quite clear.

Hirsch and co-workers [68] also investigated the influence of the starting
texture. In aluminum rolled at room temperature, they found that they could
get a brass texture if the starting texture was mainly composed of the Goss
component. Conversely, they obtained a strong S-component if the starting
material had a strong cube texture. If the initial Goss or cube texture was
rotated around the compression axis by 45°, a strong copper texture was
produced. What seems to happen in these materials is that the grains rotate
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rather quickly at first towards the two fibres and then eventually rearrange
themselves much more slowly within the fibres.
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With the aid of these experimental results, it can be seen that there is
apparently only one transition as the temperature or SFE is increased, and that
is from the brass to the copper type of texture. But the effect of increasing
temperature was only investigated below room temperature. Some more recent
studies have demonstrated that when aluminum or copper is rolled at an
intermediate temperature (before recrystallization takes place), the intensity of
the brass-component once again increases at the expense of the copper one.
Hatherly and co-workers [58], for example, determined the ODF’s of pure
copper rolled at increasing temperatures between room temperature and 550°C.
The increase in the brass component from 20 to 275°C can be readily visualized
by looking at the intensity along the p fibre in Figure 2.17.
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Figure 2.17. a) Intensity variation along the [ fibre in pure copper
b) Position of the { fibre in Euler space [58].
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These changes were attributed by Hatherly et al. to the occurrence of
recrystallization between 225 and 275°C followed by superplastic deformation
so that the intensity along the fibre decreases. The increase in the brass
component was accompanied by the appearance of other components which are
typical of recrystallization textures, such as the cube texture (as will be seen
later). However, a similar increase in the brass component was also found in
aluminum [69,70], in which only recovery takes place (which has been
assumed up to now to cause no textural change) and in which no other
recrystallization component was found. This leads us to conclude that the
increase in the brass component reported by Hatherly et al. [58] below 300°C
may be due, not to recrystallization, but to recovery.

In Figure 2.18, some further results concerning aluminum are presented in
the form of pole figures, the ODF plots not being available [69]. These results
are in good agreement with earlier texture measurements performed on
aluminum deformed at different temperatures [71], and lead us to conclude that
there really are two transitions in rolling as the temperature is increased: the
first is from the brass to the copper type, and the second involves a return to the
brass type. The second transition is harder to detect because of the small
changes involved. It must also be noted that no explanation is given in the
literature for the increase in the brass component during warm deformation. It
is the purpose of this work to propose one.

II.1.4. TORSION

This is the last deformation path that we are going to consider in this study.
Dillamore and Roberts [13] and Cohen [72] have given excellent reviews of the
deformation textures of fcc metals deformed in torsion or simple shear. The
textures were determined either after torsion (measured at the outer surface of
the sample) or simple shear experiments. Some textures were also determined
at the surface of rolled specimens subjected to high degrees of friction. The
results obtained by Backofen [73], Backofen and Mundy [74], Regenet and
Stiwe [57] and Williams [75] are summarized in Table 2.1, which is reproduced
from reference [13]. In this table, the ideal orientations are listed in order of
increasing intensity and are identified as A, A, B, B, A1*, Ag* and C, labels
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Figure 2.18. {111} pole figures for pure Al rolled to a reduction of 80% at
a) T=150°C and b) T=20°C.V=S, ®=brass and X =Cu [69].

Texture
Metal Component Type of Test Ref.
Aluminum (100)[(011] C Torsion or 57
(111) fibre Rolling
(111)[112] Aj»
(111)[110] A
Copper (100)[(011] C Torsion 73,57,75
(111)fibre Torsion 57
(111)[112] A1l* Torsion or 57,75
(111)[110] A Simple shear 57,75
(112)(110] B Simple shear 75
Lead (100)[(011] C Torsion or
(111)fibre Rolling 57
(111)(112] Aq*
Silver (112)[110] B Torsion or 57
Rolling
70/30 brass (111)(112] Ai* | Simple Shear 75
(100)[011] C Torsion,Shear 74,75
(111)(110] A Torsion Tubes 74
(112)[110] B id. 74

Table 2.1. Shear textures observed in some fcc metals [13].
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which will be used in what follows. The indices (hkl)[uvw] correspond to the
shear plane normal and the shear direction, respectively. It is also specified
whether these data were obtained from torsion, simple shear or rolling
experiments.

The locations of the {111} poles pertaining to each of these ideal orientations
are shown in Figure 2.19. Due to the geometry of the torsion test [76,77], these
orientations are either centro-symmetric or "self-symmetric" (such as A1* Az*
and C). This means that they obey the symmetry of the torsion test which
requires the pole figures of Figure 2.19 to be symmetrical with respect to the
center of the figure. The orientations that are not "self-symmetric"” are present
in the form of "twin-symmetric" sets of two orientations in centro-symmetry,
such as A/A and B/B.

AZ A Sense of shear

{111}<uvw_> fibre

A ={171}<110>
A ={T11}<TT0>
A ={1T1}<112>
A ={11T}<112>
B ={T12}<110>
8 ={112)}<ii0>
— C ={001}<110>

Figure 2.19. Position of the {111} poles associated with each of the ideal
orientations found in the torsion of fcc materials.
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In the more qualitative early studies, there was no obvious difference
between the behaviour of the brass and the copper. Backofen and Mundy [74]
even concluded that there was absolutely no difference between the two
materials: all the textures were composed of the ideal orientations A/A, B/B,
A;* and C, with a partial fibre around a {111} axis parallel to the longitudinal
axis of the specimen. ( see Figure 2.19.)

More recently, Van Houtte and co-workers [26,78-81] performed torsion
experiments at room temperature on pure copper, Cu-Zn alloys containing 3%,
6% and 30% Zn, and on Cu-Al alloys with 1%, 2%, 3% and 4% Al. The textures
of the outer layers of the specimens were then determined by the X-ray back
reflection method. From these measurements, they were able to show clear
evidence for two types of texture, depending again on the SFE and on the total
strain; one was called the brass and the other the copper texture, in analogy
with rolling. These two types are presented as {111} and {200} pole figures in
Figure 2.20. The authors then selected one specimen of each type for ODF
analysis. The selected copper-type specimen was pure copper, deformed at room
temperature up to a shear strain of 5. The brass-type specimen was a Cu-3%Zn
alloy which was deformed to fracture (y>8). The pole figures corresponding to
these specimens are shown in Figure 2.20. The ODF’s for the two samples are
presented in Figures 2.21 and 2.22. Note that the domain of variation of the 3
Euler angles is larger in torsion than in rolling due to the reduced symmetry of
the process. The ODF’s can be interpreted in terms of the 5 ideal orientations
specified above whose measured intensities are listed in Table 2.2 (The original
notation A-F used by the authors has been replaced by the notation used here in
order to remain coherent with the rest of the text).

From Figures 2.21 and 2.22, we can see that each of the ODF’s is composed
of two partial fibres. One is of the type {hkl}<110>; it begins at (111)[110] (A),
goes to (115)[1-1-0] (B), passes through (010)[101] (C), continues to (211)[011](B)
and ends at (I11)[T10] (A). The other partial fibre is of the type {111} <uvw>; it
begins at (111)[211] (A1*), moves to (111)[110] (A), jumps over to the
orientation (111){110] (A) and from there moves on to (111)[121] (A2*). Table
2.2 shows that the most striking difference between the experimental copper
and brass type textures is the sharp peak reached by the copper type at the C
orientation. The density is much more evenly distributed for the brass type of



(a)

(b)

Figure 2.20. Recalculated pole figures of a) the copper-type texture and b)
the brass-type texture [78].

texture. The B orientation has often been called the typical orientation of the
brass torsion texture [79]. It can be seen from Table 2.2 that its relative
importance is indeed greater in the brass texture, but it is nevertheless also
present in the copper texture. It has to be noted that this is in agreement with
what is found in rolling. Looking again at Figure 2.16, it can be seen that,
whereas the copper component of rolling is nearly absent in brass, the brass
component is present in both copper and brass rolled at room temperature
(though stronger in the brass). Thus, Table 2.2 displays the components of the
two extreme textures, the brass and copper types, the intermediate
concentrations of Zn giving intermediate textures, just asin rolling.

Cohen and co-workers [72,82] also determined torsion textures; they studied
aluminum, copper, and a-iron deformed to different strains at various strain
rates and temperatures. The results found at room temperature for aluminum
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Figure 2.21. ODF of the measured Figure 2.22. ODF of the measured
copper-type texture [78]. brass-type texture [78].

Measured Intensity

Code Type
Cu-type | Brass-type

A/A (111)[110] 3.4 3.4

B/B (112)[110] 3 5.3

C (100)[011] 14.1 6.7
Ap* (11D)[211] 3.4 5.4
Ag* (1T1)[T21] 2.9 -

Table 2.2. Value of the ODF at various points of the
skeleton line for the two types of torsion
texture [78].

and copper are in full agreement with the previous ones and the evolution of the
texture with deformation is presented in Figure 2.23 for the copper and in
Figure 2.24 for the aluminum. In the case of the copper, the initial texture was
nearly random as a result of the annealing treatment and again, the
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orientations A/A, A1*, Ag*, B/B and C are present. The A component decreases
in intensity with increasing strain, while the C component increases. The
authors also noted that these ideal orientations were slightly rotated about the
R-axis of the specimens. They furthermore concluded that these slight
departures from completely symmetric positions are connected to the senses of
the axial forces present during fixed end torsion tests. This last point will not be
developed any further in this paragraph, whose purpose is principally to review
the observed textures, but this matter will be exploited further in the chapters
dealing with theory that follow. The evolution of these axial forces in fact
constitutes a good test of the validity of a new texture theory since it is very
sensitive to the texture of the material.

Figure 2.23. Development of the copper torsion texture at 20°C and 5.10-3 s-1;
{111} pole figures; at a) £=0.84,b) £=2.8,¢) £=4.7[82].

It was observed moreover, that in the copper the A and C components were
initially rotated in the sense opposite to that of the imposed shear. At larger
strains, whereas the A component tended to disappear, the C component
increased in intensity but was rotated in the same sense as the shear. With
respect to the A* components, the Ai* variety was stronger at low strains,
whereas the Ag* variant was more intense at large strains. (The components
A1* and As* do not both need to be present at the same time since each of them
respects the symmetry of the process.) Finally, the B component gradually
becomes more intense at large strains and appears to be rotated in the sense
opposite to the shear. The case of the aluminum (Figure 2.24) is less clear
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Figure 2.24. Development of the aluminum torsion texture at 20°C and 7.10-3
s-1; {111} pole figures; at a) initial state, b) £=0.62, c) §=2.18,
d) §=4.98 [82].
because of the presence of an initial texture. Despite this perturbing factor, the
Al textures are very similar to those of the copper. The A component present at
small strains vanishes at larger strains, whereas the C component becomes
stronger. Only the As* component can also be detected.

More interesting to us is the evolution of the "final" textures with
temperature (i.e. the textures observed just before fracture of the specimen or
within the steady state region when the latter is reached). It constitutes in fact,
the only study of this kind found in the literature and, because of the large
strains involved, establishes clearly the differences between cold and warm
deformation textures in fcc materials. Figure 2.25 shows the evolution of the
final texture with temperature for aluminum. The Ag* and C components
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present at low temperatures are gradually replaced by the B/B component as
the strain and temperature are increased. At 400°C, for a strain of 31, this
component is the only one remaining and it is very sharp. Figure 2.26
illustrates the case of copper. As in the aluminum, the As* and C components
disappear progressively with increasing temperature, and the B/B component
becomes sharper, as in the case of Al. Concurrently, the A/A orientation
develops, which is clearly present at 200°C (see Figure 2.26e). At higher
temperatures (between 300 and 500°C), the A/A and B/B orientations are still
present, but they appear to be more and more scattered. This is because the
textures are increasingly affected by dynamic recrystallization, which tends to
randomize the orientations. It should be noted, however, that the two parts of
the B orientation are more resistant to recrystallization than is the A
component. Furthermore, this orientation is very strong in Al at high
temperatures and cannot be attributed to recrystallization in this case.

~—
Z Sense of shear

Figure 2.25. Dependence of the “final” aluminum textures on temperature;
a) 20°C, £€=4.97, b) 200°C, £=5.58, ¢) 300°C, £=10.54, d) 350°C,
£§=31, e) 400°C, £ =31 [82].
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Sense of shear

Figure 2.26. Dependence of the “final” copper textures on temperature;
a) 20°C, §=4.7, b) 100°C, £§=4.65, ¢) 125°C, £§=5.89, d) 150°C,
£=10.85, e) 200°C, £=31, f) 300°C, £ =31, g) 400°C, £ =31,
h) 500°C, £ =31 [82].

These hot torsion results are in good agreement with the only other
reference found in the literature [83] which concerns copper deformed at 200°C.
The latter results can be summarized as follows:

i) At small strains and at room temperature, the A orientation is the first
to appear in the case of Al (in the presence of an initial texture) and both A and
B appear in copper.
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ii) At intermediate strains (i.e. prior to fracture), the C self-symmetric
orientation is the principal component at room temperature.

iii) As the temperature and the fracture strain increase, the C component
is replaced by the B/B orientation, sometimes accompanied by the A/A
component.

It thus appears that there exists a smooth transition when the temperature
is increased: A/A — C — B+C — B. It must be noted that the pole figure
corresponding to the copper deformed at 150°C to a strain of 10 (Figure 2.26d) is
similar to the brass type texture of Figure 2.20, whereas the pole figure
corresponding to copper deformed at 20°C to a strain of 4.7 (Figure 2.26a) is
similar to the copper type texture of Figure 2.20. Thus the brass-to-copper type
of transition observed at room temperature by increasing the SFE is apparently
inverted by an increase in temperature (or equivalently of SFE). This is in
agreement with the situation found in rolling where the proportion of the brass
component increases in aluminum with increasing temperature. Thus, in
torsion, as in rolling, there is clear evidence for a "double" transition: brass-to-
copper-to-brass with increasing temperature.

I1.1.5. CONCLUSIONS REGARDING DEFORMATION TEXTURES

We can thus define a brass type of texture and a copper type of texture for all
the deformation modes investigated here. The conditions of SFE and
temperature associated with each of these are represented schematically on a
diagram analogous to Figure 2.2 in Figure 2.27. The brass texture corresponds
to the <100> fibre in tension, the a fibre in rolling and the B (+ some A and C)
in torsion. The copper texture, on the other hand, corresponds to the <111>
fibre in tension, the P fibre in rolling and the C component in torsion. This
describes all the texture components which are expected to develop at high
temperatures (in the range where no recrystallization takes place). It does not,
however, provide any physical explanation for what really happens in the
material.
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Low SFE, room T
High SFE, low T
%Brass A Low SFE, high T
High SFE, room T
High SFE, high T
2
1 3
| | | | >
Bs Ag Cu Al SFE at room T

orT

Figure 2.27. Schematic representation of the variation in the deformation
texture of fcc materials as a function of SFE and temperature.
The brass type is described in the table below.

Brass-Type | Copper-Type

Tension <100> fibre | <111> fibre
Rolling a fibre B fibre
Torsion mostly B mostly C

As in the case of Figure 2.2, we can define three different regions in Figure
2.27. Region 1 is usually explained in terms of twinning , latent hardening and
faulting. As the last 3 mechanisms are particularly associated with low
temperatures or low SFE, they will not be considered further in the rest of this
work. Region 2 is generally interpreted in terms of the relative ease of cross-
slip. Region 3, which is the domain of interest in this study, can be interpreted
in terms of the ease of cross-slip, the activation of new systems, and recovery.
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In the review of the papers dealing with deformation textures, it was seen
that none of the authors cited interpreted the warm deformation textures in
terms of recovery. Only one such example was found, which was not cited here
because it dealt with the cold, warm and hot rolling of bec metals [84]. The
author observed a modification of the cold rolling texture at intermediate
temperatures (due to recovery) and a drastic change at high temperatures (due
to recrystallization). He explained the development of high temperature
deformation textures with the aid of the theories classically ascribed to
annealing textures. These are gen}erally interpreted in terms of
recrystallization and grain growth. Although recrystallization is beyond the
scope of the experimental part of this study, it will be useful at this point to
describe briefly the annealing textures observed in fcc metals, as well as the
theories developed to explain them. In this way, it will be possible to determine
whether some of the mechanisms responsible for texture change during
annealing can be responsible for some of the texture changes taking place
during deformation. In the section that follows, emphasis will especially be put
on recovery.

I1.2. ANNEALING TEXTURES

This term is quite general and designates the texture produced in a material
on annealing after deformation, whatever the softening processes involved. In
general, an annealing texture is the result of a competition between recovery,
recrystallization and grain growth (normal or abnormal), and sometimes the
final result is influenced by more than one of these processes. On going through
the literature, it becomes rapidly obvious that different terms are used for the
same mechanism and sometimes the same term designates different processes.
So before going further, it will be important to define the terms which are going
to be used throughout this discussion. The definitions given below are the ones
which have been found to be the most common.

During annealing, recovery generally designates the softening process
which precedes recrystallization, during which there are local annihilations of
dislocations, accompanied by the formation of sub-boundaries (polygonization).
There is usually no migration of grain boundaries, but the continuous growth of
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subgrains takes place, leading to an increase in misorientation which can even
produce high angle sub-boundaries [84]. Primary recrystallization is composed
of the two processes : nucleation and normal growth of the nuclei (sometimes
also called continuous grain growth or recrystallization) by the migration of
high angle boundaries. Both nucleation and grain growth can be orientation
dependent. Secondary recrystallization generally designates the discontinuous,
abnormal or exaggerated grain growth which can follow the normal growth. It
is only possible in a matrix stabilized against normal grain growth. Certain
orientations cause matrix stabilization and thus actually initiate secondary
recrystallization (or "discontinuous" grain growth). In this process, both the
orientation dependence of the grain boundary mobility and of the surface
energy must be taken into account [22]. Finally, tertiary recrystallization arises
from orientation-dependent differences in the surface energy [80]. Whenever
one of the basic processes is orientation dependent, the recrystallized grains of a
deformed and annealed single crystal can possess only certain quite definite
orientations. This is also true in the case of a deformed and textured polycrystal
for which a rise in temperature leading to softening will cause a definite
annealing texture to develop from the deformation one.

During deformation, these terms can designate somewhat different
mechanisms. Recovery can signify either the process defined above or, more
exceptionally, continuous subgrain and grain growth, i.e. a type of primary
recrystallization without nucleation. In the latter case, the migration of high
angle boundaries is made possible because of the high level of strain achieved
during deformation; this can occur at intermediate and elevated temperatures.
Under certain conditions [84], this process is followed by recrystallization,
which in fact is what we have referred to above as secondary recrystallization,
since it follows normal grain growth [84]. We will use here the term recovery to
signify the absence of nucleation (whether there is high angle boundary
migration or just subgrain growth) and the terms primary or secondary recrys-
tallization to signify continuous or discontinuous growth following nucleation.

As these mechanisms and their influence on the texture have been
investigated almost solely during annealing and not deformation, whereas it is
the latter which is of interest in this investigation, it will be useful at this point
to review the theories associated with the formation of annealing textures in
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order to determine the extent to which these theories can be transposed to the
case of dynamic recovery. In studies of annealing textures, much attention has
been directed towards finding the nature, location, and orientation of the nuclei
of the recrystallizing grains, and to the factors that govern their growth into
the cold worked or recovered surrounding material and also their growth into
other recrystallized grains if this occurs. With so many factors and their
interactions being involved to different extents in different experiments, it is
not surprising that alternative interpretations have been proposed throughout
the history of research in this field, and that theories frequently rest on
unproven or controversial assumptions, or seem to apply only under strictly
limited conditions.

Annealing textures have been most extensively studied after rolling
because of the importance of this deformation mode in forming operations and
the influence of texture on the directionality of properties in the finished
products. In this section, only the annealing textures developed after rolling
will be reviewed and the existing theories of the formation of recrystallization
textures will be described. The annealing textures developed after
axisymmetric deformation such as compression, extrusion or drawing will be
ignored because few papers dealing with this subject were found and the results
are rather dated and show little agreement.

II.2.1. EXPERIMENTAL OBSERVATIONS

Because of the importance of rolling both industrially and in the development
of CODF’s, many results concerning the recrystallization texture of aluminum,
copper and nickel alloys can be found in the literature. The influence of
annealing temperature and time, composition, and the presence of precipitates
was studied but the interpretation of the results is rather complex and even
contradictory. In particular, it is still impossible to predict with any degree of
reliability the annealing texture that will result from a new deformation
texture. The reason for this uncertainty lies in the lack of knowledge about
important details of the deformed state and about recrystallization processes in
general. Minor details of the deformed state —irrelevant for understanding the
deformation behavior —~ can become important factors during recrystallization.
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Inhomogeneities of deformation in small volume fractions, practically invisible
in the deformation texture, can serve as nucleation sites for recrystallization.

Accordingly, the choice of the experimental results reviewed here was based
on the following two considerations:

i) They should serve as examples to illustrate the different theories.
ii) They should cover more or less the whole range of annealing textures
found in fec materials.

The work covered can be grouped in three different categories:

— The 2 extreme cases of the annealing textures formed in brass and copper
(which correspond to the extreme cases described above for the rolling
textures).

— One example of the transition between the two, in Cu alloys.

— One example of the partial retention of a deformation texture in Al
alloys.

In Figure 2.28 [85], some typical textures measured after rolling and
subsequent primary recrystallization are displayed for Cu and a Cu-5%Zn
alloy: on annealing, the copper-type rolling texture is transformed into a strong
cube texture, while the brass-type rolling texture transforms into one having
{326} <835> as the main component. Intermediate rolling textures give
intermediate recrystallization textures which do not necessarily lie between
the two extreme cases. In other words, unlike the transition in the rolling
textures, the transition here is not continuous. Similar results were reported by
Eichelkraut and co-workers [67] for a series of Cu-Ge alloys. Their results are
presented in Figure 2.29 in the form of ODF’s and the volume fractions of the
principal components as a function of the Ge content in Figure 2.30. The two
extreme components, {100}<010> and {236}<385>, are associated with the
lowest and highest concentrations of Ge, but the transition between the two
appears to occur in several stages with different intermediate components so
that a rather complex transition range is observed. The authors divided the
concentration range of Ge investigated, 0 to 9%, into 4 subranges, in which the
observed texture components are the following:
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Deformation Recrystallization

Figure 2.28. {111} pole figures of rolling textures of Cu and Cu-Zn alloys
before and after recrystallization. a), ¢) and e) subsequent to
rolling with 95% thickness reduction of a) Cu and ¢) Cu-5%Zn at
room temperature and e) Cu-5%Zn at 77 K. b), d) and f) show the
corresponding textures after primary recrystallization [85].

1) Range 1 (pure copper): the recrystallization texture is characterized by
the dominance of the cube texture.

2) Range 2 (0.4 to 2% Ge): here there is a sharp reduction in the strength
of the cube component and its first and second generation twins appear. They
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Figure 2.29. Some typical recrystallization textures of Cu-Ge alloys (0.4, 2, 9
wt%). ODF sections ¢2 =constant through Euler space [67].

have the orientations {122}<212> and {148}<841>, and {148}<474> and
{447} <184 >, respectively.

3) Range 3 (2 to 4% Ge): in this range, the rolling texture changes
drastically, leading to a marked change in the recrystallization texture. The
cube component and its twins disappear, and 3 new components are formed:
{114} < 221> as the principal component, {258}<121> and {236}<385> (the
brass-type recrystallization texture).

4) Range 4 (6 to 9% Ge): all the components except {236}<385>
disappear and this one becomes very sharp.

These results for the Cu-Ge alloys are similar to the ones quoted previously
for the Cu-Zn alloys. The situation, however, is different in the Al élloys, where
two main components were found, i.e. the cube texture and a strong
{123}<634> orientation, which has often been called the R (for
recrystallization) component [86,87]. The latter is only found in aluminum
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alloys and is close to the S rolling component which is very strong in Al alloys.
This particular annealing texture is thus viewed as corresponding to the partial
retention of the rolling texture. Note that here S designates the main rolling
component found in Al alloys which is close to {123}<211>. This definition
differs from the one given for copper where the S component is {123} <634>
(and which is called R here).

These different components have been interpreted in the literature in terms
of the two main theories of recrystallization: the oriented nucleation and
oriented growth mechanisms, which are now going to be reviewed in turn.

I1.2.2. THEORIES OF THE FORMATION OF ANNEALING TEXTURES

The oriented nucleation theory, first proposed by Burgers and Louwerse[88],
rested on the hypothesis that the orientation of the recrystallized grains is
determined entirely by the orientation of the recrystallization nuclei. However,
a general principle for predicting which orientations of the many that are
present will act as nuclei has not been obvious either from theory or from
experiment. The oriented growth theory, first proposed by Barrett [89], is based
on the principle that certain orientations grow into the deformation-texture
containing material more rapidly than others. This means that the shifting of
atoms from the strained matrix to a recrystallized grain proceeds only slowly
when the new grain has nearly the same orientation as the cold worked matrix,
and much faster when its orientation differs in certain particular ways from the
orientation of the matrix [22].

The oriented nucleation theory

A great variety of mechanisms have been proposed for the oriented
nucleation theory; these include the following [8]: '

a) Nucleation in the average structure of the matrix by growth of the
subgrains with a statistical size advantage attained during recovery (e.g. by
dissolution of certain sub-boundaries). The recrystallization texture and
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deformation texture possess common components when this process plays an
essential role.

b) Preferred nucleation by subgrain relaxation in regions of strong
orientation gradient, e.g. where subgrains are elongated and can pick up large
orientation differences rapidly with respect to the environment. In this case,
components of the recrystallization texture are expected to lie somewhere
between the various components of the deformation texture.

c) Creation of nuclei with new orientations by the inverse Rowland
transformation. Rowland [90] proposed a twinning mechanism which leads
from a single original fcc lattice to two new fec lattices having a twin
orientation relationship with respect to one another. The homogeneous shear
necessary to accomplish this decreases the length of the [100] vector of the
original lattice by a factor 1/V2, so that it becomes the 1/2[110] vector in both
lattices. Similarly, the [001] vector of the original lattice, extended by the
factor V3/2, becomes [112]. Accordingly, the (010) plane of the original lattice
becomes (111), which is parallel to the composition plane that the two twin-
related lattices have in common. According to Burgers and Verbraak [91], the
mechanism whereby cube-oriented nuclei are formed in heavily deformed
copper on annealing is the inverse of the above shear mechanism; it leads from
two adjacent twin-related lattices having a common (111)-type composition
plane to a single fcc crystal lattice of a different orientation. For example,
adjacent twin-related lattice regions of two {112}<111> type crystals present
in highly rolled polycrystalline copper undergo jointly the required inverse
Rowland shear on annealing, forming a cube-oriented nucleus. This mechanism
is assumed to be thermally-activated and does not require the presence of any
cube-oriented regions in the cold rolled material prior to annealing. According
to this mechanism, the deformation texture is transformed into the
recrystallization texture by very particular orientation relations. Although the
geometry of this model seems correct, it has not met general acceptance since it
is difficult to determine what the driving force is for such a shear.

d) Formation of annealing twins possibly as a result of growth accidents
during the growth of normal nuclei. This process can accompany any of the
above nucleation mechanisms and should occur predominantly in materials
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with low SFE. It can provide practically any orientation and in this way
promotes a randomization of the orientation distribution even if the
deformation texture is very sharp.

The oriented growth theory

Nucleation is definitely an important factor in recrystallization, but it does
not inevitably dominate the evolution of microstructure and texture. In fact,
even orientations with very high nucleation rates can remain completely
invisible in the final recrystallization texture if their growth rates are too
small. Beck and Hu [92], who were strong supporters of the oriented growth
theory, even claimed that none of the oriented-nucleation mechanisms
satisfactorily explains the formation of the particular texture for which it was
initially proposed. They argued that the oriented growth theory, on the other
hand, was quite general and could explain most of the results obtained in all
kinds of materials, except perhaps the single crystals in which there is a
scarcity of nuclei in the orientations favorable for growth.

It has long been recognized that grain boundary mobility is strongly
orientation dependent. It was found, for example, that in both the primary and
secondary recrystallization of aluminum, the fastest growing grains are those
having a nearly 40° <111> rotational orientation relationship with the
matrix. Boundary migration rates for recrystallized grains in deformed
aluminum crystals as a function of the orientation difference across the
boundary were measured by Liebmann and co-workers [93] and some of their
results are presented in Figure '2.31. 0° and 60° correspond to positions of
minimum grain boundary energy (60° being the twin position) and a strong
maximum is observed around 40°.

These observations can be interpreted using the concept of the coincidence
site lattice first introduced by Kronberg and Wilson [94], which recognizes that
at particular rotations a network of a specific fraction of lattice sites (Z) is
continuous across the grain boundary. It will be seen in Chapter VIII in more
detail that the energy of such special boundaries is lower than for random
boundaries and that the actual value of the GBE depends on the fraction of
lattice sites which is continuous through the boundary. The migration rate
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through the boundaries, however, not only depends on the orientation of the
two adjacent crystals but also on the orientation of the GB itself. It is a
maximum when:

a) atom movements are possible through the boundary; and

b) the movements required by an atom to diffuse from one crystal to the
other are small.

The first condition only concerns perfect coincidence sites. For these
positions, if the grain boundary lies in the most densely packed planes of the
coincidence lattice, diffusion will be impossible through the boundary and the
migration rate will be zero (see Chapter VIII). This is probably the case of the

twin boundary represented in Figure 2.31. The second condition is met for
boundaries which:

i) correspond exactly to a coincidence relationship, but where the GB does
not lie in the most densely packed planes of the CSL or

ii) approximate, but deviate somewhat from an ideal coincidence
relationship (in general less than 3°) [95,96].
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In both these cases, boundary migration is easier because of reduced atom
movements, since certain atoms remain nearly in position while the remainder
are only required to shuffle by small amounts (on the order of one-third of an
interatomic movement). The second type is the most commonly observed; the
reported high mobilities correspond to the following relationships: 40° <111>
(coincidence site 38.3°, £=17), 20° <111> (coincidence site 27.8°, £=13), 35°
< 100> (coincidence site 36.9°, Z=5), 40° <110> (coincidence site 38.9°, Z=9)
and 25° <100 > (coincidence site 22.6°, £ =13).

Many experimental observations seem to be in agreement with this theory
[92]. Schnell and Grewe [97] determined the misorientations found in deformed
and annealed copper samples. They found a large concentration of twin
boundaries in highly deformed copper (i.e. positions of minimum boundary
energy) and a large concentration of high mobility boundaries in annealed
copper (in particular the 40° <111> and 40° <110> orientation
relationships). The above observation suggests that the CSL theory can also be
used for the prediction of high temperature textures, but for a different reason
than in the case of annealing textures. In the latter instance, the controlling
factor is the migration rate, whereas in the former, the GBE seems to be more
important. (Because of concurrent deformation, the migration of boundaries
has no time to occur.) This will be explored in Chapter VIII of this thesis, in
which a new model is developed to account for the effect of dynamic recovery on
texture evolution at high temperature. It will be argued that polygonization
leads to the development of an equiaxed substructure through the glide and
climb of dislocations, and that the subgrains within a particular grain do not
deform independently. As a result, whenever there is an ambiguity in the
choice of active slip systems in a given subgrain, the ambiguity is suppressed by
choosing the sets of slip systems which minimize the GBE.

There is in the literature much evidence for the theory of oriented growth.
One of its advantages compared to the nucleation theory is that it is much
easier to use. However, it is also easy to find arguments against this or the first
theory. Most of these have been published by Beck and Hu [92] and some are
listed below:
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—The oriented nucleation theory assumes that specific orientations have
a higher nucleation rate than others. These orientations can be present in the
deformed state or be created by an inverse Rowland transformation, for
example. However, few of the available rapidly nucleating orientations are
found in recrystallized materials, and it is hard to know a priori which ones.

—Similarly, the oriented growth theory assumes a high migration rate
for some specific orientations. However, it predicts the formation of a texture
consisting of all the crystallographically equivalent orientations corresponding
to maximum boundary mobility. But, in general, the complete set of equivalent
orientations is not observed. The oriented growth theory is therefore obliged to
rely on ad hoc assumptions regarding the orientations which will occur and for
what reasons.

—It has often been observed that similar rolling textures can lead to
different recrystallization ones and that different rolling textures can lead to
similar recrystallization ones. No simple explanation can be given for this
generalization, especially on the basis of only one of the above theories.

For these reasons, the actual explanation probably relies on a combination
of the two theories, which means that the nucleation processes govern the
range of orientations available, and that there is further selection from among
these through the orientation dependence of the growth rate. With the aid of
such an oriented nucleation/selective growth theory, it is then possible to provide
an interpretation of the results reported above.

I1.2.3. INTERPRETATION OF THE EXPERIMENTAL RESULTS

Brass and copper annealing textures

The brass type of recrystallization texture, which issues from the brass type
of rolling texture, Figure 2.28, is generally interpreted in terms of 40° <111>
rotations. The two recrystallization components, {326}<835> and
{013}<100>, are fast-growing orientations which can be deduced from two
twin components of the {110}<112> part of the rolling texture. However, if
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only oriented growth were important, we should find the {211}<011>
component as well, which can also be deduced from the {110}<112>
orientations by a 40° <111> rotation, but which is never observed. This is
evidence for the view that nucleation also plays a role in the development of
this texture. It should be noted that the {013} <100> orientation is already
present at the deformed stage and that suitable nuclei may be formed by
ordinary subgrain growth (mechanism "a" of the nucleation theory). The same
mechanism cannot, on the other hand, produce the {326} <835> orientation,
which lies far outside the spread of the rolling texture. However, second
generation twins of these orientations fall just midway between the two main
rolling components {110} <112> and {110}<001>. So this orientation can be
provided with suitable nuclei by subgrain rotation and relaxation in transient
regions together with the formation of annealing twins (mechanisms "b" and
"d" of the nucleation theory). By contrast, the {211}<011> orientation, which
is also a fast growing one, cannot be created by any of the above mechanisms.
So, the brass recrystallization texture can be understood as evolving from the
rolling texture by selected growth, but one in which not all fast-growing
orientations are supplied with suitable nuclei.

The cube texture is possibly one of the most important and certainly the
most investigated texture in fce metals. It has sometimes been accounted for on
the basis of the concept of oriented growth [8]. However, since the main
components of the rolling texture and the cube component are not related by
known relationships for maximum growth rate, it has to be explained as a
compromise texture with a fairly good growth rate being applied to several
coniponents of the rolling texture. It is assumed that this orientation is a good
example of a case where oriented nucleation is the controlling mechanism.
Whether the nuclei are present in the deformed state or are created by an
inverse Rowland transformation (mechanism "c"), cube nuclei have been
observed to appear, polygonize and grow faster than any other orientation, so
that they eventually consume the rest of the material. The principal controlling
factor in this case is the nucleation rate.



- 63 —

Brass - to - copper texture transition

The texture transition depicted in Figures 2.29 and 2.30 can be interpreted
in terms of the superposition of four different influences:

i) Rolling texture changes due to the decrease in SFE brought about by
increasing the Ge content.

ii) Changes in the microstructure of the deformed state, particularly the
development of inhomogeneities such as mechanical twins and shear bands,
which become more dominant with increasing Ge concentration.

iii) The increase in the frequency of recrystallization twins with
decreasing SFE (nucleation theory).

iv) The change in mobility of the grain boundaries as boundary
segregation increases with the Ge content (growth theory).

The four ranges of recrystallization behaviour of the Cu-Ge alloys described
in Section I1.2.1 have been interpreted in the literature [67] as follows:

1) The case of the pure copper, which exhibits the strong cube texture, is
given the same interpretation as the one outlined above (compromise between
oriented nucleation and oriented growth).

2) Two points of view have been expressed regarding the preference of
the twin to the cube position as the Ge concentration is increased. The first
considers that the addition of Ge decreases the mobility of the cube boundaries.
The second point of view is that the strong decrease in SFE increases the
frequency of recrystallization twinning and thus favors the formation of higher
generation twins (nucleation theory). It should be added that the second
generation twins are favorably oriented for growth (growth theory) and that
increasing the twinning frequency by increasing the Ge content has the effect
of increasing their volume fraction, a trend which is observed experimentally.

3) In this range, the three recrystallization components are twin related
to the three major components of rolling. These orientations are apparently
present in small quantities in the rolling texture and are the first to form
nuclei. However, they have a low migration rate and the grains remain small
unless recrystallization twinning occurs, which is assumed to be the controlling
mechanism in this range.



— 64 —

4) The fourth range corresponds to the development of the brass
recrystallization texture; it has already been interpreted on the basis of a mixed
oriented nucleation / selective growth theory.

Alalloys

The last component that will be interpreted here is the R ideal orientation,
found only in Al alloys, at a level that depends on the purity of the alloy. As this
component is very close to one of the main rolling textures, namely the S
component, this has often been interpreted as a partial retention of the rolling
texture (R texture as retained rolling texture). Ito et al. [86] concluded that this
is the case only if continuous grain growth (i.e. what we have called recovery)
occurs in the material. Due to the presence of impurities in the material,
however, this component can also be formed by discontinuous recrystallization
or grain growth, i.e. by an oriented growth mechanism (since each of the 4
symmetrically equivalent components of the S texture is oriented to the other
three components by an approximate 40° <111> rotation). Recently, Hirsch
and Licke [87] have shown that both mechanisms, i.e continuous and
discontinuous grain growth, can occur in these alloys. The retention of the
rolling texture in aluminum alloys has also been observed by others
researchers [98]; these workers have established clearly that polygonization
and subgrain coalescence occur, together with grain boundary migration,
without the nucleation of newly oriented grains.

I.2.4. CONCLUSIONS REGARDING ANNEALING TEXTURES

We conclude this brief review of recrystallization textures with the
following three comments:

a) It is very difficult to predict and even to explain annealing textures on the
basis of only one mechanism or theory. Both nucleation and growth are
orientation dependent and the two must play significant roles.
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b) The importance of oriented growth has been clearly demonstrated in both
the recovery and recrystallization processes. It makes use of the coincidence
site model which relies in turn on two recognized facts:

i) For specific misorientations, the grain boundary energy is a minimum.
This leads to very stable boundaries which also have a minimum migration
rate. These boundaries are often observed in cold worked materials.

ii) The migration rate of these boundaries depends strongly on the
relative orientation of the adjacent grains. A grain boundary that is close to,
but deviates slightly from the ideal position has the highest mobility. These
fast migrating orientations are observed to be active during the operation of
softening processes.

¢) The above principles apply to deformation as well as annealing, and to
recovery (during which fast migrating boundaries can develop by subgrain
formation) as well as recrystallization (during which the nucleation of new
grains provides the special boundaries). It thus appears that the coincidence-
site theory might be useful in accounting for the influence of increasing
temperature during metal processing. An attempt to do so has been made in the
present investigation; the results of this endeavour are described in Chapter
VIII below.

I1.3. OVERALL CONCLUSIONS

At the end of Section II.1, we advanced the hypothesis that, in high SFE
materials, an increase in the temperature produces an increase in what we call
the brass component for any mode of deformation. We have seen that this
generalization is well supported by experimental observations in the cases of
rolling and torsion, but remains to be proved in detail for tension and
compression.

The accurate prediction of compression textures could constitute the subject
of a thesis in itself since an unusual phenomenon is frequently observed in this
deformation mode, i.e. curling of the grains [8]. Thus, it was felt that this
deformation mode is not suitable for a first study of the influence of
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temperature since mechanisms such as grain curling could prevent the sole
effect of temperature from being isolated.

It was therefore decided to check the above hypothesis only in tension, or
more precisely, in axisymmetric extension. Swaging was selected for this
purpose, which allows high levels of deformation to be reached with the aim of
comparing some cold and warm textures in aluminum. The description of this
study constitutes the subject of Chapter IV.

Another reason for reducing the extent of the experimental part of this work
was that no detailed texture measurements could be performed at McGill
during the course of this investigation.

It has also been established in this chapter that the following mechanisms
may be responsible for the aspects of high temperature behaviors described:

— cross-slip,

— increases in rate sensitivity,

— activation of systems other than the {111}<110> which operate at room
temperature,

— development of a substructure through glide and climb and
minimization of the sub-boundary energy.

These mechanisms have been introduced in the past to interpret the
deformation textures of high SFE metals deformed at room temperature. It was
felt in the present study that they could be adequately modelled to account for
the high temperature deformation behavior of the high SFE metals as well.
This is done in Chapters V to VIIIL.



CHAPTERII

THEORIES OF THE DEVELOPMENT OF DEFORMATION
TEXTURES

II1.1. GENERAL REQUIREMENTS

Before reviewing the classical theories of texture development, it is useful to
define the different steps that must be followed in order to calculate the
reorientation of the grains of a polycrystal following a particular deformation
path.

1) The basic assumption in all the models described below is that the only
mechanism involved in plastic deformation is slip, supplemented in certain
cases by twinning. This starting point has two consequences:

i) The Schmid law [99] must be respected in each grain of the polycrystal.
This law, first expressed in 1924 for the case of uniaxial tension, may be stated
in a form that is applicable to any stress state [100]: "a single crystal yields on
any particular slip system if the shear stress resolved on that slip plane and slip
direction reaches a critical value which is "the yield strength" or "critical
resolved shear stress” (CRSS) on that slip system". If we designate by g the
stress state inside the crystal and by T.% the CRSS on a given system s, this can
be expressed as:

s s s (31)
m..

where m;;® is a geometric factor characteristic of slip system s, and defined by:
m$ = = (b4 3.2
with n and b being respectively the slip plane normal and the slip direction. The
Schmid law does not necessarily assume that T, is the same for all slip systems
and can even be generalized to the case of twinning. T can never exceed the
critical value T, and the systems s for which equality holds in equation 3.1 are

-67 -



-68-

the ones which are potentially active. The mathematical expression of the
Schmid law also implies that purely hydrostatic stresses are incapable of
causing plastic deformation. In such a case, T will be zero for all slip systems.
This reduces to 5 the number of independent components of the stress tensor.
Similarly, the assumption that there is no change in volume during plastic
deformation reduces to 5 the number of independent components of the strain
rate tensor.

ii) The assumption that the deformation is accommodated solely by slip
according to the Schmid law (supplemented perhaps by twinning) has the
further consequence that the components of the strain rate tensor 5 imposed on
the grain (the microscopic strain rate tensor) can be expressed as:

f= S mt i (3.3)

where the sum is carried out on all the active slip systems s (i.e. those for which
T=T¢).

We can see that equation 3.1 is a special form of the general yield criterion
flo )sc (3.4)

commonly used in the mathematical theory of plasticity. Similarly, equation
3.3 follows from equation 3.1 by use of the associated flow rule

af - (3.5)

= —A
¥ 40,
Yy

which is another basic hypothesis of this theory. Equation 3.5 is equivalent to
the statement that the function f in the yield criterion is also the plastic
potential [100,101]. The available slip systems are of the type {111}<110> (12
of them) and the possible twinning systems are of the type {112} <110> for fcc
metals.

2) Once the basic equations describing the mechanism of slip in a single
crystal have been set up, the next step is to define the boundary conditions
applied to the polycrystal, i.e. the macroscopic states of stress and strain rate
described by two tensors called S and g] . Again here, because of the existence of
a plastic potential and of an associated flow rule describing the plastic behavior
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of a polycrystal, these two tensors are related, and only half of the ten
independent components of the two tensors need to be prescribed. The different
components of these tensors are usually known or assumed to be known.

3) Some further assumptions have to be made in order to derive the states of
stress and strain rate g and ¢ in each grain of the polycrystal from the
macroscopic tensors. This is where the different theories diverge in the sense
that each of them involves a different assumption leading from the macroscopic
to the microscopic quantities. Here again, only half of the stress and strain rate
cdmponents need to be defined, the rest can be derived with the aid of equations
3.1 and 3.3, as explained below.

4) Once the microscopic strain rate tensor is known, it is possible to
calculate the shear rate ys on each slip system in each grain with the aid of
equation (3.3) and from there to calculate the rotation of the crystallographic
axes of a given grain with respect to some external axes linked to the specimen.
It is not obvious at first sight how given shears on specific systems produce a
rotation of the crystallographic axes. This can be visualized with the aid of
Figure 3.1 [102], which illustrates the case of a single crystal deformed in
tension. The deformation is imagined to take place by single slip. During
deformation, the blocks of crystal between the active slip planes, and thereby
the crystal lattice, rotate in such a way as to align the slip direction with the
tensile direction. Similarly, the lattice rotation in a compression experiment
tends to align the slip-plane normal with the direction of compression. These
rotations are produced by the boundary conditions imposed on the single crystal
in the sense that the tension axis and compression plane are forced to remain
fixed with respect to the laboratory reference system.

In the case of a polycrystal, the situation is somewhat more complex and,
apart from the stress and strain rate states in each grain, some further
assumptions have to be made in order to assess the crystallographic rotation.
For example, in tension, we will assume that the tensile axis remains fixed in
all the grains of the polycrystal. Similarly, in rolling, we will assume that the
rolling plane and rolling direction are fixed in each grain. These statements are
equivalent to assuming that certain components of the displacement rate
gradient tensor are zero while others are not. However, these assumptions have
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Figure 3.1. The lattice rotation produced by tensile deformation [102].

to be made explicitly when using complex theories, and this is rarely done in
the papers dealing with this subject. We have chosen here to use the method
originally developed by Kocks and Chandra [103] and also used by Canova
[104] and Leffers [102] which is explained in detail in Appendix 1.

These general requirements being valid for all the models of deformation
texture development, we can now review individual theories and point out the
differences between them.
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I11.2. THE TAYLOR THEORY (1938)

Taylor [4] was interested in two different problems: i) first, the selection of
the active slip systems in a deformed single crystal for which the 5 components
of strain rate are known and the calculation of the subsequent shear rates and
rotation of the crystallographic axes; and ii) the calculation of the shear rates
and rotations in all the grains of a polycrystal for which only the macroscopic
quantities are known. In the first part, he made use of what is often called the
Taylor criterion and in the second part, he made use of what is known as the
Taylor hypothesis.

I1.2.1. THE TAYLOR CRITERION

When all five components of the strain rate tensor ¢ are imposed on a
crystal, equation 3.3 constitutes a set of five equations in which the unknowns
are the quantities ys. It seems convenient at this point to adopt a matrix and
vector instead of a tensor notation. The one adopted in this thesis is described in
Appendix 2 [108]. With this notation, equation 3.3 can be rewritten as

e= My (3.6)

where € has five rows and one column. Equation 3.6 can now be solved uniquely
for the shears provided that it can be rearranged as

y = M-z (3.7)

which means mathematically that the matrix M must have five rows and five
columns and has an inverse matrix. This implies that we must only consider
five slip systems at a time and that these systems must be independent (for the
determinant of the matrix M to be different from zero), i.e. the individual
shears on each of these systems cannot be decomposed into shears on the
remaining systems [5].

Noting that for fcc metals there exist many ways of choosing 5 independent
systems among the possible 12, Taylor considered which particular
combinations will actually operate under a given state of strain rate and
postulated that the preferred sets of slip systems will be the ones for which the
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sum of the shears on all systems is a minimum. In his work, he took the CRSS
to be the same for all slip systems, and consequently, the internal work rate can
be written as

vi,i = tc z |\'[|s (3.8)

Taylor in fact postulated that the internal work rate (and not the sum of the
shears) had to be a minimum. This criterion is now known as the minimum
internal work rate criterion and can be generalized to the situation where the
CRSS has different values on different slip systems:

W= ¢y = Min (3.9)

In equation 3.9, the convention that T, and ys have the same sign has been used
so that T..ys is always positive. It is well known that there are 384 combinations
of 5 independent systems [5,110] so that Taylor had to invert equation 3.6 for
each combination in order to find the solution. Nowadays, however, this can be
solved very easily with the aid of linear programming techniques [111]. The
most interesting result of Taylor's work is his discovery that, given a unique
value of the CRSS, the solution is never unique and that the total number of
possible slip systems is always 6 or 8. For this reason, he was obliged to
calculate all the possible solutions and rotations for each grain and then take
the average solution. Having thus more or less solved the problem of the single
crystal, he then approached the problem of the polycrystal.

II1.2.2. THE TAYLOR ASSUMPTION

By looking at a micrograph of the cross-section of a drawn wire, Taylor
noticed that all the grains were elongated in the direction of extension, and
contracted in the two perpendicular directions. He concluded that each grain of
a polycrystal suffers exactly the same strain as the surrounding bulk material.
It is known nowadays that this is not exactly true, but the assumption has the
advantage of assuring continuity of the strain rate through the grain

boundaries so that no holes are created. This assumption can be written
i= B (3.10)
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Taylor [4] investigated the axisymmetric extension of an aggregate constituted
of 50 differently oriented grains and selected the active slip systems for each
with the minimum internal work rate criterion. He then calculated the possible
rotations of the grains after a given increment of strain. Obviously, different
stresses are induced in differently oriented grains, so that equilibrium at the
grain boundaries cannot be fulfilled. Taylor claimed that the stress'differences
across the boundaries can be accommodated by elastic strains. His results are
well known and will not be presented here.

It is of more interest to compare some predictions based on the Taylor theory
for large deformations with experimental results. This is done for the case of
rolling in Figure 3.2a which is taken from the work of Mecking [39]. It can be
seen that the agreement between theory and experiment is reasonable for the
copper-type rolling texture. The main component predicted by the Taylor theory
is very near the Cu component but the S and brass components are absent. The
Taylor predictions are better for tension and lead to a very strong A component
for torsion, as will be seen later. All the results given by the Taylor theory are
in good agreement with observations for intermediate strains. However, at
large strains, the stress differences between grains are unlikely to still be
accommodated by elastic stresses and the agreement deteriorates with
increasing deformation. It will be seen later that the Taylor theory can be
modified to produce a considerable improvement. Finally, some comments will
be made about the stress state. Taylor was not especially interested in stresses
in his early work and did not even assume that the shear stress on all the active
slip systems was the same. He never referred to the Schmid law and did not
even mention the dislocation! With the aid of equation 3.1, however, it is
possible to calculate the stress components once the active slip systems are
known. A still more direct method is to use the yield criterion developed by
Bishop and Hill [101,112] which will now be described.

I11.3. THE BISHOP AND HILL THEORY (1951)

Just as in Taylor, Bishop and Hill first considered the case of a single crystal
and then applied their theory to the polycrystal, again using the Taylor
assumption of uniform strain. They first demonstrated that the Taylor criterion
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Figure 3.2. Theoretical {111} pole figures obtained for 80% rolling reduction
predicted by:
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a) the Taylor model compared b) the Sachs model compared
with an experimental copper with an experimental brass
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¢) the modified Sachs model of d) the Leffers model which accounts

Leffers. The state of stress is a for the effect of cross-slip. A
combination of the Sachs stress combination of the Taylor strain
state plus a random distribution. rate and some random components
This is compared to a brass-type was used. This is compared to a

texture [102]. copper-type texture [102].
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was equivalent to the stress criterion for yielding expressed by the Schmid law.
In other words, they proved that if the stress state in a given crystal o is such
that T=T; on each active slip system and T <7, on the others, then the internal
work rate expended on the active slip systems is a minimum. They postulated
the single crystal yield surface (SCYS), which is the geometric representation
of the yield criterion. Equation 3.1 can be rewritten with the vector notation of
Appendix 2 as follows

0N~ ¥ <0 (3.11)

Clearly, equation 3.11 defines a set of hyperplanes in a 5 dimensional space,
the normal to each hyperplane being the vector N5. All the hyperplanes
associated with the 24 possible slip systems (the 12 mentioned above plus their
opposites) define a 5 dimensional polyhedron which has flat faces and sharp
corners. When the CRSS has the same value for all systems, this polyhedron
has 56 vertices, at each of which 6 or 8 hyperplanes intersect; this is called the
single crystal yield surface (SCYS) and all the possible stress states for plastic
deformation lie on this surface. Bishop and Hill observed that when 5
independent slip systems are required, only the 56 vertices (28 plus their
opposites) correspond to possible stress states; they postulated further that the
state of stress associated with a given strain rate tensor is the one which
maximizes the external work rate. This is known as the maximum external
work rate principle and is expressed by

W =0 6 =06 =Max (3.12)
e gy [

A great advantage of this method is that, once the strain rate vector is
specified, W, can readily be calculated for the 28 vertices and the maximum
value found in this way. This procedure is very rapid and the active slip
systems are quickly found. In 1969, Chin and Mammel [113] proved that the
principles of maximum external and minimum internal work rate are
completely equivalent. Kocks [100], Van Houtte [114] and Renouard and
Wintenberger [115] also came to the same conclusion. It should be added at this
point that the two principles are convenient ways of finding the active slip
systems and stress state and are both consequences of the Schmid law.
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Once equations 3.1 and 3.3 are accepted, the following consequences are
implied:

i) If we rewrite the Schmid law
=0 N? (3.13)
c 3 13
and equation (3.3) in vector form

=Ny (3.14)

t
the external work rate can be written as:

W =0t =0, (N'y)= (0, NIV =y =W, (3.15)

This means that the internal and external work rates are equal.

ii) Suppose that we consider another stress state o* together with the
actual slip systems which are the solution to the problem. These slip systems
cannot be activated under such a stress state because, for at least one system s
of the group, we have: '

o:Nf < (3.16)
which implies that
08 =0 (N} ) =0, N <¢y =06 =W (3.17)
4
so that the external work rate W, is a maximum for the solution.

iii) Similarly, let us consider another set of slip systems characterized by
the vectors N5" and compatible with the strain rate vector. These systems not
corresponding to a solution, they are not at a critical state, so that

o, Nf' < I:i, for at least ones’ (3.18)
With the aid of |
e =NSy¥ (3.19)
11 i
we can write that
&P > (0N =0 (NP =0 d = =W, (3.20)

which means that the internal work rate W; is minimum for the solution of the
problem.
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iv) It then follows that the principle of the maximum work rate is
equivalent to saying that the SCYS is convex and that the strain rate vector ¢
must be perpendicular to the yield surface or must lie inside the cone of normals
of the vertex corresponding to the actual stress state. As W (3.12) represents the
projection of ¢ on o, this product is necessarily a maximum for this condition
(see Figure 3.3).

Figure 3.3. Illustration of the normality rule on the SCYS.
If the principle of maximum work is verified,
thenW >W#* implies that ¢ must lie in the cone of
normals of the vertex g.

The Taylor and Bishop and Hill theories being equivalent, they obviously
produce the same answer. There are, however, two weaknesses associated with
these theories:

1) When the critical resolved shear stress is the same for all the systems,
there are ambiguities in the choice of the active slip systems. This problem can,
for example, be solved by taking the average value of all the possible rotations.
Such an average has no physical meaning, except that it can represent the
behavior of a grain divided into several regions which do not deform along
exactly the same path, each of them selecting a different equivalent solution.
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Other criteria can also be used : e.g., the use of the Renouard and Wintenberger
criterion (Chapter V) or that of a rate-sensitive technique, and the selection of
specific combinations in the case of cross-slip (Chapter VI). The extent of the
ambiguity problem will be considered further in Chapter V. If, however,
different values of the CRSS are introduced, when the twinning systems are
added, for example, or to account for latent hardening, the ambiguities are
reduced considerably and can even be completely suppressed (Chapter VI).

2) The equilibrium of stresses is not satisfied and this has led
investigators to develop other theories, such as ones that follow.

II1.4. THE SACHS MODEL
III.4.1. THE ORIGINAL SACHS MODEL (1928)

Soon after Schmid [99] discovered that crystals deform when a critical shear
stress T is reached on a crystallographic slip system (1924), this criterion was
applied to polycrystals by Sachs [3]. He assumed that the state of stress in each
grain is proportional to the macroscopic stress in such a way that the CRSS 1. is
achieved in all the grains for at least one slip system. If S designates the
macroscopic stress vector, the microscopic stress vector o in grain g is simply:

s S (3.21)
g

where Agis a parameter which depends on orientation such that, for at least one
system s in this particular grain, we have, according to the Schmid law:

5o N* (3.22)
c g

Here T° is the resolved shear stress on system s and Ng° is the 5 dimensional
normal associated with system s.

In his model, Sachs was not interested in texture development and there
was no mention of strain rate vectors. He only wanted to calculate the stress
state in the polycrystal and only the stress direction was imposed. In order to
predict texture development with such a model, at least one component of
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strain rate has to be imposed on the polycrystal and on the grains, using the
Kochendoérfer assumption, for example [116]. Kochendorfer wanted to calculate
the strain rate in each grain in a uniaxial tensile test using the Sachs model.
He assumed that each grain undergoes the same tensile strain as the
polycrystal. In this way, both the stress and the strain rate components can be
determined in each grain, and the rotation of the grains can also be calculated.
The same can be done in rolling where, in addition to the conditions on the
stresses, we can for example require all the grains to deform by the same
amount in the compression direction.

These assumptions imply that all the grains deform plastically
simultaneously, usually by single slip, except in the case of very symmetrical
orientations. Sachs tried to justify his assumptions by metallographic evidence
of only one set of slip lines in some samples (which does not necessarily imply
one kind of slip system). However, the Sachs approach violates the equilibrium
condition for the stresses, which can be different from grain to grain. Sachs
further suggested that this could be solved by inducing elastic stresses. More
probably, this model should lead to material separation at the grain
boundaries, which has never been observed [39]. Some results of a Sachs
calculation were presented in Figure 3.2b for the case of rolling [102]. It can be
seen that the texture obtained in this way is very sharp and mainly composed of
the brass component. A few points can also be seen near the Goss position.

I1.4.2. THE LOWER BOUND THEORY

In order to assure equilibrium of the stresses, an alternative is often
proposed [104] which is also referred to as a Sachs theory. The assumption
made is that the stress in each grain is the same and equal to the macroscopic
one, in such a way that only one grain of the polycrystal is plastified (the
"weakest point of the aggregate"). Usually only single slip takes place in the
grain which is critically stressed. This theory is known as the lower bound
theory in plasticity because it gives a lower limit to the "length" of the
macroscopic stress vector. Similarly, the Taylor assumption of uniform strain
rate produces an upper limit to the same quantity and by extension to the
macroscopic work rate and in this way is referred to as the upper limit theory.
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The validity of these limits is demonstrated in Appendix 3. Used together, they
provide good estimates of the plastic properties of a polycrystal. While the
Taylor and Sachs (with the addition of the assumption about one strain rate
component) theories are widely used in texture calculations, the lower bound
theory is not, since it deals only with the initiation of plastic deformation.

It was stated at the beginning of this chapter that half the 10 components of
the stress and strain rate vectors have to be imposed on a grain in order for the
others to be assessed. One extreme is the Taylor model where the 5 components
of the strain rate are imposed, and the other is the Kochendérfer model where 4
stress directions are imposed together with one component of strain rate. In
between these limits, there remains room for "intermediate" situations which
will now be examined. These include the "modified Sachs model” employed by
Leffers [102] as well as the relaxed constraint theory originally proposed by
Honneff and Mecking [117].

IIL.5. INTERMEDIATE MODELS
II1.5.1. THE MODIFIED SACHS MODEL (1975)

Leffers [102] recently made the observation that the Taylor assumption was
too strict and was only applicable to materials having high SFE’s where,
because of extensive cross slip, the deformation can be reasonably
homogeneous. So he proposed a new model which he called a modified Sachs
theory because, like Sachs, he first applied a stress state to the material and
then considered that the active system in each grain is the one which is the
most highly stressed. To calculate the rotation of the crystallographic axes, he
simply allowed a shear increment of fixed length to take place in the grain. To
account for differing microscopic mechanisms in different materials, he
adjusted the stress state imposed on the grain. For example in rolling, the basic
stress state imposed is composed of only 2 normal stress components (one in the
compression direction and one in the transverse one). In this case, the grains
are allowed to shear, which is very close to the Kochendéorfer type of slip.
Leffers claimed that this model should account for the texture development of
low SFE materials in which single slip is observed in the interior of the grains
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and pile ups of dislocations at the grain boundaries. Of course, neither the
continuity of strain rate nor the equilibrium of stress is respected. Leffers
suggested that these conditions can be satisfied by “alien slip” near the grain
boundaries. In such a case, the central part of the grains is allowed to deform
freely and also to constitute the major component of the texture. The
deformation mode in the alien slip zones is not specified and their effect on the
texture is considered to be part of the background or texture scatter rather than
of the main texture. This is simulated by simply adding some random stresses
to those that are imposed.

For high SFE materials on the other hand, because of extensive cross-slip at
the grain boundaries, the deformation is nearly homogeneous in the whole
grain, as in the Taylor model. The variation in internal stress from grain to
grain is simulated in this model by the addition of random stresses. Some of his
results were presented in Figures 3.2c and d above, for the case of the basic
stress system compared to a brass texture and for the case of the "statistical
Taylor" model compared to a copper texture. His results are very close to the
ones obtained with the strict Sachs and Taylor models, except that they are less
sharp, which is in better agreement with experiment; nevertheless, no new
texture component was found. The only objection to his model is that the
stresses are simply added by a process of trial and error, the level adopted being
the one that is consistent with the experimental results. His theory has the
advantage of improving the Sachs model considerably by reducing the stress
incompatibilities, a modification which also improves the calculated
macroscopic mechanical properties.

I11.5.2. THE RELAXED CONSTRAINT THEORY

Several of the observations reviewed above have led a number of
researchers to propose a modified version of the Taylor model in which certain
components of the strain rate tensor are not imposed on the grain. These are
that:
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1) Slip on less than 5 systems is often observed in polycrystals as well as
single crystals when the boundary conditions are "mixed" (i.e. half expressed in
terms of the stresses and half in terms of the strain rate components [103,118]).

2) It appears that the grain shape in a polycrystal must be taken into
account for accurate modelling. This is especially true at high deformations
where the grains become heavily elongated or flattened. In such cases, it is
evident that material continuity at the "short" grain boundaries can be
maintained by local polyslip and does not require overall polyslip [119].

The RC model was first developed by Honneff and Mecking [117] for single
crystals deformed under mixed boundary conditions and polycrystals deformed
in rolling. It was then reformulated differently by Kocks and Chandra [103] for
the case of single crystals. Later, the Kocks and Chandra model was adapted to
the deformation of polycrystals using grain shape considerations,
independently by Canova and co-workers [104,105,119] and by Van Houtte
[114,120] using two different methods. Let us first review the theory developed
for single crystals.

THE HONNEFF AND MECKING MODEL (1978)

This model was proposed initially for the plane strain compression of single
crystals when the strain rate tensor is not entirely known. The boundary
conditions associated with such a test are presented in Figure 3.4a together
with the allowed shear rates. It can be seen that only 3 out of the 5 components
of the strain rate vector are known. To simulate such a test, the basic idea of
Honneff and Mecking was the following: when the piston exerts an increasing
compression stress, the flow stress will be reached first in that system which is
the most favorably oriented with respect to the compression direction and slip
will be activated. Generally, the corresponding strain rate tensor will have
components in the transverse direction which are forbidden by the die. Reaction
stresses will therefore build up, which suppress the activation of the initial
system. In order to enforce further plastic deformation, the compression stress
of the piston has to be increased, which in turn leads to an increase in the
reaction stress. Due to the interrelation between the external force and the
reaction stress, the net stress tensor changes until a second system is activated.
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a) SINGLE CRYSTAL b) GRAIN IN A POLYCRYSTAL
IN PLANE STRAIN DEFORMED IN ROLLING
COMPRESSION
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Figure 3.4. Allowed shear rates according to the RC model
a) for a single crystal deformed in a channel die
b) for a grain in a polycrystal deformed in rolling.
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If the second system is oriented so that it can compensate for the lateral strains
of the first, the crystal can deform by means of these two systems alone.
However, this is not usually the case, and a third or even fourth system has to
be found in order to satisfy the external strain rate.

Honneff and Mecking noted that their model was equivalent to the usual
Taylor-Bishop and Hill model if they went up to five systems. They also stated
that it was unlikely that the reaction stresses required for the activation of the
fourth or fifth systems can be built up in the central part of the crystal when it
becomes flat. They therefore found it reasonable to forbid the activation of these
systems. They then applied the same model to a polycrystal deformed in rolling.
In this case, the non-imposed strain rate components are described in Figure
3.4b.

THE KOCKS AND CHANDRA FORMULATION

These authors [103] solved the same problem but used a different approach.
They started from the boundary conditions described in Figure 3.4a and noted
that in the case where 2 components of the stress are set equal to zero, the
actual stress vector in the grain can be found on a three dimensional section of
the SCYS, i.e. one obtained by cutting the SCYS by the two hyperplanes
012=023=0. They then determined the actual stress vector in that subspace by
using the "generalized maximum work rate principle"” introduced initially by
Renouard and Wintenberger [121]. The demonstration of this principle as well
as of the corresponding "generalized minimum work rate principle" and the
calculation of the actual number of slip systems needed to accommodate such
mixed boundary conditions were derived by Renouard and Wintenberger well
before the existence of any RC model. Their treatment was reformulated in a
more convenient notation by the present author [5] and the part concerning the
validity of these principlesis presented in Appendix 4.

For the moment, it is sufficient to know that it is possible to derive a 3
dimensional cross-section of the SCYS on which the stress state in a particular
crystal can be found by application of the maximum work rate principle (i.e. the
work rate associated with the non-imposed stress components). This stress state
corresponds to the activation of 3 or 4 slip systems and, as only 3 components of
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the strain rate tensor are known, 3 systems are sufficient to accommodate the
deformation. Kocks and Chandra also demonstrated that their method is
equivalent to the one developed by Honneff and Mecking. Driver and co-
workers [122-124] used the same approach as Kocks and Chandra to calculate
the reorientation of single crystals deformed in plane strain compression. They,
however, additionally employed the Renouard and Wintenberger criterion to
solve for the rotation in the presence of the ambiguities. It will be seen in
Chapter V that this does not change the results appreciably since the extent of
the ambiguities is sharply reduced under relaxed constraints. In summary, the
fact that only 3 systems are needed in channel die compression is imposed by
the boundary conditions. For a polycrystal, the reasons are different and they
will now be described.

THE RC MODEL APPLIED TO POLYCRYSTALS

Kocks and Canova [119] were the first to establish the number of slip
systems needed to accommodate the deformation in a heavily deformed
polycrystal in which the grains are flat or elongated during tension,
compression and torsion. For the case of rolling, their basic arguments are
similar to those of Honneff and Mecking [117]. When the grains become very
flat, 2 shear rates are permitted to be “free” in the interior of the grain and the
continuity of strain across the smaller grain boundaries is fulfilled within the
limited volume fraction contiguous with these boundaries. The argument here
is that the two “free” shear rates lead to very small displacements, which is why
they can be accommodated in the grain boundary regions (see Figure 3.4b). The
third shear rate (i.e. €72) leads to a large displacement and is thus set equal to
zero in each grain of the polycrystal. In this way the grain is divided into 3
different zones, as illustrated in Figure 3.5a, but it is first assumed that the
central part contributes the most to the texture and therefore that all the
polycrystal deforms according to the RC mode. In order to select the 3 slip
systems and the stress state in all the grains, two methods are available: (i) the
use of sub-yield surfaces and the principle of maximum external work rate of
the non-imposed stress components; or (ii) the use of the minimum internal
work rate (see Appendix 4) together with the linear programming technique.
The first was used by Canova et al. [104,105,119] and the second one was used
by Van Houtte [114,120].



-86-

a) ROLLING

3
5 4 5 ——
Lo
/\ / Xg2
2=0
3=27
Xg3
b) TORSION

Ly

Figure 3.5. Number of active slip systems according to the RC theory in
different parts of a grain deformed in a) rolling and b) torsion
[125].

The use of "sub-surfaces" implies the calculation of the full yield surface in
the reference system in which the zero stress components are imposed. In the
case of rolling, for example, the conditions 0;3=023=0 are imposed in a
reference system linked to the sample axes, whereas the SCYS is known in the
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crystal axes. The matrix used to go from one system to the other is usually
expressed in terms of the Euler angles characterizing the orientation of the
grain under consideration. It is thus evident that we first have to express the
coordinates of all the vertices of the SCYS in the sample reference system for
each grain and each increment in order to calculate the cross-section of interest.
This was the method used by Kocks and Chandra [103] as well as by Driver and
co-workers [122-124] and Morris [126] in the case of fcc and bee metals.

This approach obviously involves long calculations and Canova [104]
developed a method which reduces the computation time considerably. The full
yield surface is characterized by 56 vertices, whose coordinates were calculated
by Bishop and Hill and 24 facets, each associated with one of the 24 slip
systems. However, the description is more complete if the edges of the surface
are also taken into consideration. These edges are subspaces of dimension 1, 2
or 3[127] in which 4, 3 or 2 independent systems, respectively, are activated. A
fourth order edge is a one-dimensional subspace falling between 2 vertices in
which at most 4 independent systems can be activated. A third order edge is a
two-dimensional subspace extending between 3 or 4 vertices in which at most 3
independent systems can be activated. A second order edge is a three-
dimensional subspace extending between 5, 6 or 8 vertices in which 2
independent systems can be activated. Finally a vertex is a zero-dimensional
space in which 5 independent systems can be activated and a facet is a four
dimensional space delimited by 16 vertices in which only one system can be
activated.

Canova and co-workers [104,105] listed all the edges together with the
connecting vertices and associated slip systems and found 108 fourth order
(plus opposites) and 135 third order (plus opposites) edges. In order to calculate
the stress state in the case where only 3 or 4 components of strain rate are
imposed on a given grain, the procedure is the following. In the case of rolling
for example, two components of the stress are set equal to zero, which implies
that only 3 independent systems are required. The actual stress state then lies
on a third order edge. It is enough to consider each of the 135 edges, one by one,
to determine if there is a point on this edge satisfying g73=023=0. If not, the
edge is excluded. If such a point is found, it constitutes one of the vertices of the
3D yield surface; the operating one is then selected using the principle of
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maximum external work. As the edges only need to be listed once, this
calculation does not explicitly involve the calculation of the entire 3D surface.

The above procedure is completely equivalent to the one used by Van Houtte
(i.e. using the principle of minimum work) and some results for rolling are
presented in Figure 3.6 in terms of {111} pole figures. One obtained with the
classical Taylor ("full constraint") calculation is shown as well. These results
are taken from the work of Van Houtte [128], and illustrate two different RC
models. The first is called the "lath" model in which only one shear is allowed to
be free in the grains (€23 relaxed); this seems appropriate for materials which
have needlelike microstructures in which the thin cells or crystallites are much
longer than they are wide. The lath model calls for the activation of 4 slip
systems. The other is the "pancake" model, in which 2 shears are allowed to be
free in the grains (€73 and €23 relaxed), which is appropriate when flat grains
which are approximately as wide as they are long are produced. This calls for
the activation of 3 systems.

When these results are compared with the experimental ones of Chapter II
for the case of the copper texture, it is evident that the agreement is better for
the two RC than for the FC model. The best agreement is found with the
"pancake" model, according to which both the Cu and S components are found.
The brass component, however, is still absent. Detailed study of all these
results reveals that, by relaxing one or two of the strain rate components, the
agreement between the theoretical predictions and experimental observations
of the copper type rolling texture improves from a qualitative to a quantitative
level. In fact, almost all of the experimental ODF’s of these textures can be
described by suitably weighted mixtures of the three theoretical textures. A
Taylor type texture can even be found experimentally in aluminum, which is
very sensitive to the starting texture [128]. Exactly how the mixture is to be
chosen is yet unclear; this seems to be related to the microstructure or the
substructure of the metal.

In this connection, Driver and co-workers [123] have suggested that, apart
from grain shape considerations, an energetic criterion must also be included,
i.e. even a flat grain could choose to deform by the FC model if this is
energetically more favorable. For the sake of completeness, we have included in
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Figure 3.6. Theoretical {111} pole figures of rolling textures for 56% reduction
by rolling [128] predicted by:

a) the Taylor model
b) the RC lath model
VAO)YPNGS)
1§ @}
c) the RC pancake model. \ ) ég )
D F &

) ==
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Figures 3.7 to 3.9 the CODF’s calculated by Van Houtte [128] corresponding to
the three pole figures of Figure 3.6. Since the result of a calculation is given in
terms of the complete list of all the orientations present in the material, this
representation is useful because it permits the textures to be compared in terms
of the theoretical and experimental CODF’s.

0.80 1.30 2.00 3.20 S.00 8.00 13.0 20.0 32.0 S0.0 ¥
9 ss o0 0 P . 0 ! g

g

Y-

o

Q

\

D OO
| w
]
$
)

]
PHI2 O

El

1]

]

]

1

L]

[}

!

PHIZ. &

PHIZ. 10
l 1

4

:

()

1]

[}

(]

]

R

RHIZ 18

o
o
A
v
1
)
]
1
1
1
[)
)
]
t
'
[
]
1
PiHiZ. 20
4
'
1
1
‘
[
1
)
L
]
'
'
[
'
'
PHI2 25
PHIZ 30
T
]
)
1
1
)
'
+
)
[l
[
]
:
) @
PHIZ 3§

-

PHI2 40

(=]

[+ -
PHI2 456

PHI2 60
PHI2 5%

PHIZ 60

PHI2 65
PHI2 70
PHI2 75

=3 Iﬂc (=]
e L as
| 50| B0

Figure 3.7. ODF of a rolling texture predicted for an 86% reduction using the
Taylor model; C=cube, B=brass, G = Goss, T =Taylor component
(7° from Cu) [128].

It appears that up to now the Taylor (or FC) model better predicts texture
development in equiaxed grains i.e. at the beginning of deformation, whereas
the RC model better predicts texture development in previously deformed
materials, i.e. at large deformations. It therefore seems legitimate to set up a
transition between the two models as the deformation proceeds. This approach
was developed by Tomé and co-workers [125] on the argument that different
numbers of slip systems are required in different parts of each grain, and that
the volume fraction of each region changes as the strain is increased. This was
illustrated in Figure 3.5 above for the cases of rolling and torsion, and similar
arguments have been advanced for tension and compression as well. Tomé et al.
proposed that the volume fractions within individual grains in which 3,4 or 5
strain components are imposed be interpreted as fractions of all the grains in
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Figure 3.8. ODF of a rolling texture predicted for an 86% reduction using the
pancake version of the RC model; C=cube, B=brass, G=Goss,

T =Taylor component (7° from Cu) [128].
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Figure 3.9. ODF of a rolling texture predicted for an 86% reduction using the
lath version of the RC model; C=cube, B=brass, G=Goss,

T =Taylor component (7° from Cu) [128].




-92.-

the population. In this way, a statistically smooth transition takes place during
deformation: all the grains start to deform according to the FC model and, as
the deformation is increased, the number of grains deforming according to the
RC model increases.

Some results calculated in this way for torsion are presented in Figure 3.10.
They are compared with experimental pole figures determined on copper. It is
evident that the agreement between the FC model and experiment is much
better at small strains while the RC model agrees better with the results
obtained at large strains. A calculation based on the FC-to-RC transition would
predict a texture very close to the FC one at small strains and another very
close to the RC one at large strains. Using the definitions introduced in Chapter
II, it can also be seen that the FC calculation results in a mixture of the three
components named A, Ao* and C which are characteristic of low strain textures
in aluminum and copper, whereas with the RC model, the components A and A*
vanish to be replaced by a strong C component characteristic of large strains.
The B component is absent from the results of FC and RC calculations just as
the brass component was absent in rolling. Apart from the Sachs model or of an
RC calculation performed with 3 shear rates relaxed instead of two (which is
forbidden by grain shape considerations), the normal way of obtaining the brass
component in rolling or torsion is by the introduction of twinning in the
classical FC and RC models. This has been done by Van Houtte [81] and
Wierzbanoswki [129] and some of Van Houtte’s results are reproduced in
Figure 3.11 for the cases of rolling and torsion. In both cases, the presence of the
brass component is very clear.

Before leaving the section concerning the RC model, it must be added that a
new approach called the CC model (continuous constraints) has been developed
by Fortunier and Driver [130]; this also produces a smooth transition from the
FC to the RC mode, but it takes place within each grain instead of in a
statistical way. Up till now, this model has only been applied to the deformation
of single grains but it seems to be a very promising one for the deformation of
polycrystals.

Up to this point, only models where the grains of the polycrystal are treated
separately have been reviewed. A more recent approach consists of analyzing
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—
Sense of shear z

Figure 3.10. Torsion textures predicted by the FC and RC models and
compared with experimental ones determined on copper: a) FC,
y=3.25, b) RC, y=3.25, ¢) FC, y=8.1, d) RC, y=8.1. Note that
the agreement with the FC model is better at small strains and
with the RC model at large strains [77].

the interactions between a given grain and its environment, a homogeneous
matrix whose behavior is a priori unknown. This is the basis of the self-
consistent schemes which will now be reviewed .
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Figure 3.11. Influence of twinning on rolling and torsion. Textures predicted
with the Taylor model as a function of the parameter a =<(slip) /
t(twinning). 86% reduction by rolling, a) a=w=, b) a=1.1, ¢)
a=0.8. Torsion,y=4,d)a=x,e)a=1.1,f) a=0.8[81].
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IT1.6. SELF CONSISTENT MODELS

The first self-consistent model was developed by Kroner [131] in 1958. He
assumed that each grain of a polycrystal can be considered to be surrounded by
an isotropic continuum. A stress S is applied to the entire sample, as a
consequence of which the material deforms. If a grain (assumed here to be
ellipsoidal) is previously cut out of the material, surface tractions must be
applied at the hole to produce the same stress in the surrounding matrix as if
the hole were still filled with an "isotropic" piece of the material. Removal of
the material has caused the hole to deform by an amount E of plastic strain. § is
now applied to the grain itself, producing a plastic strain €. Because of its
anisotropy, it will not fit into the hole if a replacement is attempted. To achieve
this, a distribution of internal stresses and elastic strains must be applied to the
grain. If the grain is ellipsoidal, the internal stress will be uniform (as shown by
Eshelby [132] ) and in the direction opposite to that of the difference between
the plastic strains of the grain and the hole. If we designate by S and E the
macroscopic quantities and by ¢ and € the microscopic ones, Kroner showed
that the following relation applies between the two sets of quantities:

g=S+2(1-p(E~g) (3.23)

Here p is the elastic shear modulus and B a parameter which depends upon the
grain shape and the elastic properties of the matrix.

This first self-consistent scheme was relatively straightforward due to the
simplifying hypotheses involved. The general framework of self-consistent
formulations adapted to elasto-plastic deformation was further developed by
Hill in 1965 [133]. According to Hill, if Lg and L, designate the instantaneous
moduli for the grain and the matrix, their inverse compliances being M and
M, respectively, it is possible to write that:

o=L ¢

~ g~

S=L E (3.24)
~ m~

§=<3>

S=<5>

~ ~
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where the brackets designate an average over all the grains. The solution is
then given by:

§,=§+L*(§—E) (3.25)
where L* is a fourth rank tensor called the "overall constraint tensor" by Hill; it
again depends on grain shape and on L, and can only be evaluated after

complete resolution of the equations. From equations 3.24 and 3.25, one
obtains:

@L* +Lg)é=(L*+Lm)§' (3.26)
and
o=L (L +L*)"Y(L +L*)E (3.27)
~ g g m ~
It gives us for L, using 3.24 and 3.27:
L = <Lg(Lg+L*)"1(Lm+L*)> (3.28)

This implicit equation is very hard to solve and its resolution has only been
attempted for very small deformations by Hutchinson [134]. A simplified
version was also proposed by Hill [133] as well as by Berveiller and Zaoui [135],
for the case of an isotropic matrix (L,). L* can then be expressed as:

L*=Lm(S£1—I) (3.29)

where Sg is Eshelby's tensor in the case of an ellipsoidal inclusion [132].
Equation 3.25 reduces in that case to

s=S+L (S-'—I(E-¢) (3.30)
~ oW m " E PV
A further simplification introduced by Berveiller and Zaoui [135] allows us to

rewrite this last expression as:

g=8+2ma(1-p)(E ) (3.31)

where a designates the plastic accommodation.

An obvious limitation of this formulation is that, since it assumes the
isotropy of the surrounding matrix, it cannot really treat the case of heavily
textured materials. Zaoui [136] then showed that, using an expression similar
to 3.31, it is possible to regroup all the existing models under the following
equation
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=8+ Ru(E— (3.32)

where K== corresponds to the Taylor model, K=2(1-B) is the value for the
Kroner model, K =2a(1-p) holds for the Berveiller-Zaoui formulation and K=0
is associated with the lower bound (static model).

These self-consistent schemes appear to provide a quite general description
of the plastic behavior of materials. Through the use of Sg, the influence of
grain shape can be modelled [137] and in this case, the results are close to the
RC ones. There are however, two objections to these models:

i) They are solvable only if the matrix is isotropic, and this can be valid only
at the beginning of the deformation. '
ii) They involve very long and complex calculations.

For these two reasons, they have only been used for the prediction of
textures at low and intermediate strains. Examples are given in Figure 3.12
[137] for the case of rolling. At this stage of the deformation, the copper and
brass textures are not fully developed and are still similar (see Chapter II,
Figure 2.10). The results presented in Figure 3.12 are in good agreement with
experimental results both for brass and copper and thus nothing can be
concluded about the validity of the self consistent model at this stage of
development of the theory.

II1.7. OTHER CONSIDERATIONS

Except for the self consistent results presented in the last figure, all the
other models reviewed until now have only been used in the case of isotropic
hardening. The basic argument for doing so is that the calculations are
generally much simpler in such a case and that the variations in 1.5 in any
event are quite small. Nevertheless it is possible to incorporate more realistic
hardening laws to account for the latent hardening frequently observed in
single crystals [34,138-142] and the effect of rate sensitivity [143,144] can be
included as well.
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(200) (200)

a=0.01

Figure 3.12. {200} pole figures calculated using the Berveiller and Zaoui self-
consistent model after 50% rolling reduction. The parameteraisa
plastic accommodation parameter which takes into account the
partial plastic relaxation of the deformation incompatibility at
E;h; %'rain boundaries. This parameter varies from 0.01 and 0.1

137].

Two rate sensitive models have been developed and adapted to polycrystal
deformation. The first is the one proposed by Asaro and Needleman [143] which
utilizes a rate sensitive hardening law in an elasto-plastic Taylor-type model.
This leads to very long calculations which are similar in many ways to ordinary
Taylor calculations. The improvement due to the addition of rate sensitivity is
balanced by the fact that the Taylor assumption is not really valid for large
deformations. The other rate sensitive model was developed by Canova and
Kocks [144] in a very simple manner: the effect of this model is that it
suppresses the ambiguities completely by rounding off the vertices of the SCYS.
The results obtained with such a model will be discussed briefly in Chapter V
but are close to straight FC or RC predictions. One reason for this is that they
include the rate sensitivity in their FC-RC model, in which the number of
ambiguities is already small.

Two models have also been advanced to account for latent hardening by
incorporating a suitable hardening law for single crystals. One was proposed by
Franciosi [138,139], in which the latent hardening parameters are determined
experimentally. The other was developed by Havner and Le [141,142], who
were interested in rotation predictions for highly symmetrical orientations of
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single crystals deformed in plane strain compression. In this case, ambiguities
are present in a classical model because of the high symmetry of the orientation
and their results are in good agreement with experimental results [122,123].
However, these models have not yet been adapted to polycrystal deformation
and it is unlikely that they will lead to results which differ appreciably from the
classical ones. Latent hardening appears to have only a minor effect on texture
development (except when highly symmetrical orientations are involved). A
more serious contender would be a model which describes the state of stress and
strain within each grain with accuracy. A new theory which tries to incorporate
the influence of neighboring grains (as individual grains and not as a uniform
matrix) is the cluster model developed recently by Kocks and co-workers [145].
This model seems promising since it can predict different rolling components
going from brass to copper for different types of matrices. It violates, however,
the grain shape considerations discussed above.

A last category of model is the one in which eémphasis is placed on the
problem of the ambiguities. These can include considerations of cross-slip,
latent hardening, and rate sensitivity as well as the use of the Renouard and
Wintenberger criterion. These different alternatives will be developed below
and some of the results obtained in this way will also be presented.

IT1.8. CONCLUSIONS

The main purpose of this chapter was not to review all the ex'isting models
but to describe enough of them so that the rest of this work, as well as the choice
of a starting model, would be put into context. The results reported here only
concerned plastic deformation at room temperature. Some of the mechanisms
present at higher temperatures, such as cross-slip or the activation of
{100} <110> systems have been incorporated in existing models only to
account for the behavior of high SFE materials at room temperature. The
behavior of these metals at high temperatures has never been investigated.

All the major results reported to date as well as others of minor importance
have been summarized in two tables. Table 3.1 lists all the observations
concerning rolling and torsion, and Table 3.2 concerns tension and
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compression. The reader will also find in these tables the corresponding
references and some general remarks about the validity of the modelsinvolved.

It was seen that two different approaches can be used to deduce the
microscopic states of stress and strain rate from the macroscopic quantities.
The first consists of assuming that some components of the ¢ and ¢ are known a
priori in all the grains, which can thus be treated individually. The second
considers the surrounding matrix in an implicit form and, as all the grains have
to be treated simultaneously, implies long and complex calculations.

It was decided to base the present study on the first approach, which permits
the high temperature deformation mechanisms listed in Section I1.3. to be
added without involving calculations which are longer and more complex than
can readily be performed at McGill. The FC and RC models were thus selected
as a starting point in the present simulations. The RW criterion, the ease of
cross-slip (through the selection of colinear systems or the introduction of
hardening laws), the activation of new slip or cross-slip systems and the
influence of recovery (through modification of the grain shape arguments and
the minimization of the GBE) can be added to these models in a relatively
simple manner.
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MODEL ROLLING TORSION REMARKS
Taylor/ BH near Cu A A*C valid for small strains
averaging component ~high SFE metals
[128] [104]
Sachs brass - very sharp
component low SFE metals
[102]
Leffers 1 brass - low SFE metals
Sachs + component improved SACHS
random + spread
[102]
Leffers 2 near Cu - small strains
Taylor + component high SFE metals
random + spread improved TAYLOR
[102]
RCp=4 near Cu+ C large strains
near S[128] [104] high SFE metals
RCp=3 Cu+S not valid large strains
components | (grain shape) high SFE metals
better than RC p=4 for
[128] rolling
FC-RC Cu+S C all strains
[144] [144] high SFE
CC id. [146] id.[146] id.
Asarorate - A A* C very complex
sensitive [143] like Taylor
RS+FC-RC id. FC-RC id. FC-RC very similar to FC-RC
[144] [144] \
Latent hard. | more brass - limited data
comp.[26,139]
Cluster brass or Cu id. FC-RC limited data
texture C more spread
violation of GS
[145] [145] arguments for rolling
Taylor + brass texture | brass texture small strains
twinning [81] (81] low SFE
Self intermediate - complex
consistent brass-Cu intermediate strains
textures[137]
Table 3.1. Theoretical results obtained with different models in

rolling and torsion.




-102-

MODEL TENSION | COMPRESSION REMARKS
Taylor + 70%<111> | spread between high SFE metals
averaging + <100>-<113>
30%<100> (6]
[6]
Colinearslip | 77%<111> - high SFE metals
(FC) + room temperature
23%<100> cross-slip
[6]
Coplanar slip id. - low SFE metals
(FOC) room T
(6] latent hardening
Intrinsic 100% <111> - low SFE metals
faulting (FC) (6] room T
Twinning |more <100> - low SFE metals
(FC) (6]
RC +rate id. FC +aver. not good no improvement
sensitive [144] [144] on Taylor FC
Latent more <100> - low SFE metals
hardening [26]
Twinning |100% <100> - low SFE metals
{111}<112> [147]
Hosford - strong <110> very good agreement
curling [148] high SFE metals
Self id. Taylor - very small strains
consistent [149] high SFE metals
Table 3.2. Theoretical results obtained with different models in tension

and compression.




CHAPTERIV

EXPERIMENTAL PROCEDURE AND RESULTS

IV.1. EXPERIMENTAL MATERIAL

The material investigated was Alcan 1S aluminum received in the form of
extruded rods 3.80 cm in diameter. The chemical analysis performed at McGill
revealed that the principal impurities present were iron (0.19%) and silicon
(0.06%).

Optical metallography showed that the as-received rods exhibited a fibrous,
"cold-worked" microstructure, as shown in Figure 4.1a. The original grains of
the samples were elongated in the direction of extrusion. The rods were then
annealed at 550°C for one hour, a process which transformed the
microstructure into a more or less equiaxed form, as seen in the transverse
section shown in Figure 4.1b.

IV.2.EXPERIMENTAL PROCEDURE

The rods were remachined to a diameter of 3.05 cm so as to be able to fit into
the swaging machine of the Chalk River Nuclear Laboratories, where the tests
were performed. Two deformation temperatures were employed: room
temperature and 250°C. The latter temperature was selected according to two
criteria: first, it had to be in the temperature range where no recrystallization
takes place; second, it should not be too high, since in the swaging process the
rods are forced into the dies by hand.

The tests were performed in a series of passes, each corresponding to a
different die. The cold rods were only deformed to a total strain of € =0.8, which
corresponds to 9 passes. After that, it became impossible to push them into the
swaging machine because of strain hardening; this was in spite of the use of a
lubricant to reduce the friction. The hot rods were given 20 passes of
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Extrusion axis

Figure 4.1. Optical
micrographs of

a) as received
aluminum

Extrusion axis /

b) Al annealed at
550°C for 1 hour.

Magnification X 70
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deformation, the total strain being equal to £€=2.16. Between two successive
passes, the rods were held in an adjoining furnace at the constant test
temperature of 250°C; they were remachined whenever they became too long to
fit into the furnace. During deformation, the temperature of the rods varied
since the reductions were not performed inside a furnace. The balance between
cooling in air and heating due to the high degree of deformation and of friction
was such that the temperature difference between the beginning and the end of
the deformation was not more than 50°C. This temperature variation was
considered to be small enough to have little influence on the texture.

The process of swaging results in the axisymmetric elongation of the central
part of the rod, on which is superimposed a shear deformation at the surface of
the rod because of friction. The samples were therefore remachined before the X
ray measurements were made in order to remove the outer layer. The
advantage of this process, compared to tension, is that the deformation in the
center remains homogeneous up to the final strain of 2.16, which would not
have been the case in tension because of the occurrence of necking.

IV.3. EXPERIMENTAL DETERMINATION OF THE TEXTURE

The X ray measurements were performed at the CEMEF (Centre de Mise en
Forme) of the Ecole des Mines de Paris at Sophia Antipolisin France.

IV.3.1. PREPARATION OF THE SAMPLES

As the final diameter of the hot swaged rods was 1.03 cm, composite samples
were prepared in order to have a sufficient surface area to investigate. The
specimens were cut as illustrated in Figure 4.2; both transverse and
longitudinal sections were prepared in this way, and mechanically polished.

The diffraction measurements were carried out using the reflection method
on a Philips PW 1078 goniometer. This goniometer is connected to a computer
which performs the necessary corrections on the diffracted intensities step by
step and then executes the pseudo-normalization of the pole figures over the
angular domain associated with the reflection method, i.e. between 0 and 70°.
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(1) Cutting
of slices

(2) Polishing
of flat faces

(3) Assembling
of the samples

a) Transverse section b) Longitudinal section

Figure 4.2. Preparation of composite samples for texture measurement.

IV.3.2. EXPERIMENTAL RESULTS

The results are presented below as incomplete {111} pole figures for both the
transverse and longitudinal sections. The combination of these two sections
provides enough information regarding the texture to overcome the fact that
the pole figures are incomplete. Although the texture was determined after
each swaging pass, only a few of the results are presented here to illustrate the
general trends observed. Figure 4.3 shows the initial texture of the material,
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which was far from random even after annealing. On this figure, the positions
of the {111} and {100} fibres are also indicated. In Figure 4.4 the textures
obtained after a strain of € =0.8 are compared for the cold and warm conditions
and, in Figure 4.5, the texture obtained after a strain of 2.16 in the warm
condition is illustrated.

IV.4. DISCUSSION OF THE RESULTS

The combination of the two incomplete pole figures provides the following
information:

i) On the transverse section, the intensity at the center indicates the
percentage of the {111} fibre. Each grain of {111} orientation has a pole in the
center. The other three poles are distributed along a circle located 70° from the
center which cannot be seen here since it lies at the limit of the angular range
for reflection. The presence of the {100} fibre is indicated by the circular ring
located at around 55°. Each {100} grain has its four poles distributed around
this circular region.

ii) On the longitudinal section, both fibres are visible, although they are
rather close. Furthermore, only a part is visible, because of the limitations of
the reflection method, and the intensity is not constant along the fibre. An
indication of the relative percentage of the two fibres can be gained from the

position of the maximum intensity as well as from the spread around the two
fibres.

An examination of Figures 4.3 to 4.5 leads to the following conclusions.
First, the initial texture was composed of a relatively strong mixture of the two
fibres of interest; this resulted from extrusion followed by annealing. Moreover,
the intensity of the {100} component is much larger than that of the {111},
which is not what is expected if the deformation texture existing prior to the
annealing treatment is retained. Usually, the extrusion texture of aluminum
consists of a strong {111} and a weak {100} fibre (see Figure 2.2). The initial
texture of the present specimens seems to have resulted from annealing; part of
the extrusion texture was retained and a strong {100} component was formed
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(a)Transverse
section

(b)Longitudinal
section

|max =5.45

Figure 4.3. {111} pole figures for the annealed material.
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Figure 4.4. {111} pole figures for: the cold deformed rod, a) transverse section
and b) longitudinal section; the hot deformed rod, c¢) transverse
section and d) longitudinal section; € =0.8.
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(a)Tranverse
s section

Imax = 4.19

(b)Longitudinal
section

Imax = 6.60

Figure 4.5. {111} pole figures for the hot deformed rod swaged to
a total strain of € =2.16.
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during annealing by a process similar to the formation of the cube texture after
rolling. Unfortunately, both components are stable during deformation and, as
a result, only small variations can be expected during swaging; this is exactly
what was observed. However, as the initial scatter around the {111} and {100}
was quite large, the observed variations after deformation can be ascribed to
different rearrangements of the orientations situated within the spread, which
are not stable. A decrease in the intensity of the {111} can be noted in the first
stages of deformation at the two temperatures, followed by a sharpening of the
two components. This sharpening is not exactly the same in the two cases (i.e.
for cold and warm deformation).

To obtain more quantitative information, three further parameters were
investigated: the position of the maximum intensity; the spread around it in the
longitudinal sections; and the variation in the average intensity of an annulus
in the transverse sections as a function of the angle 6. Comparing the
longitudinal sections of Figure 4.4 first for the two temperatures investigated,
it can be seen that there is some spread around both the {111} and {100} fibres,
with the maximum intensity located on the {100} fibre and a relatively low
intensity around the {111} fibre (between 1 and 2 times random). However, the
maximum seems to be slightly higher in the hot deformed material, i.e. 5.98
instead of 5.22. This indicates that, for a same amount of deformation, the
percentage of the {100} component is higher for the hot deformed material than
for the cold deformed one; although the difference is not great, this could
confirm the hypothesis advanced in Chapter II regarding the effect of
temperature. Such a conclusion can only be tentative for the following reasons.

i) Only parts of the two fibres are visible on these sections. It is clear that
the grains are not evenly distributed along the two fibres, as indicated by the
intensity peaks, and there appears to be more spread on the outer part of the
pole figure.

ii) The plotting routine employed may not have been very accurate. This
involves numerous interpolated values between the measured ones, which
probably led to some errors. As a consequence, the intensities reported on the
transverse and longitudinal sections are sometimes contradictory. That is why
the average intensity within an annulus in the transverse section was plotted.
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This average is calculated from the measured (and normalized) values only and
is not comprised of any interpolated values.

iii) It is also possible that the differences are due to differences in the
kinetics of rearrangement of the unstable orientations. These may reach stable
positions faster at an elevated than at room temperature.

It was therefore decided to examine the variation in the average intensity at
a given radius in the transverse section as a function of the angle 6 going from
0° at the center to 70° at the outer limit. These variations are presented in
Figure 4.6 for the pole figures shown in Figures 4.3 to 4.5. The average
intensity is plotted here as a function of cos(8), which enables the proportions of
the {100} and {111} fibres to be calculated in a constant volume in Euler space
[17]. This was done as follows: first an area around each of the two fibres equal
to 5% of the total area of the stereographic triangle was defined. This is shown
in Figure 4.7 together with the corresponding areas in the {111} pole figure. The
area was divided into two parts for the {111} component. One lies around the
center and the other lies around a circle situated at 70° from the center. This
last part is not considered here since it is out of the measured range. In a
random texture, 5% of the total number of poles would be distributed in each of
these areas, which would correspond in turn to 5% of the number of
orientations. In a non random texture, the percentage of orientations located in
5% of the total area around the {100} position will be equal to one quarter of the
area below the curve in Figure 4.6 around the {100} (between the two vertical
lines defining 5% of the total area). For the {111} fibre, since only the central
part of the area under consideration is visible on the pole figures, the
percentage of orientations located in 5% of the total area around {111} is exactly
equal to the area (marked 5%) below the curve near the center. The calculation
of the areas marked on Figure 4.6 thus indicates the variation in the
percentage of orientations around the two fibres with respect to the random
case (for which the percentages are equal to 5%). The choice of 5% was made so
that the two areas considered do not overlap in the {111} pole figure. The way in
which these percentages evolve with deformation and temperature will now be
described.
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Figure 4.6a corresponds to the initial texture. The calculated percentages
near {111} and {100} are 2.9 and 11.3% (instead of 5% in the random case).
There is a very narrow peak right in the center, as seen on the tranverse
section, but this corresponds to a small percentage of poles in the volume
considered. A large spread around {100} is also clearly visible on this figure.

Turning now to the the cold deformed material (Figure 4.5b), the calculated
percentages are 3.5 and 11.3%, respectively. The {100} intensity has not
changed but the {111} intensity has increased slightly with strain. The spread
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around {100} is still large. This indicates that some of the orientations near
{100} rotate slowly towards {111} instead of going to the {100} position, a
development which would have resulted in the sharpening of the latter
component.

In the hot deformed samples, by contrast (Figures 4.6¢c and 4.6d), a
sharpening of the {100} is visible. The calculated percentages are 2.7% for the
{111} fibre and 13.7% for the {100} fibre at € =0.8 and 2.8 and 14.6% at € =2.16.
Most of the unstable orientations have rotated towards {100} in this case and
the {111} intensity has remained almost constant.

IV.5. CONCLUSIONS

Three conclusions can be drawn from this brief description of the
experimental work.

i) Because of the presence of a relatively strong initial texture, due to the
previous deformation (and despite recrystallization), only small variations of
texture could be detected. These resulted from the reorientation of the initially
unstable orientations, l.e the ones located in the spread around the stable
positions.

ii) The results indicate clearly that the hypothesis advanced in Chapter
II of a stronger {100} fibre at elevated temperatures is correct. This component
was referred to as the “brass” component for tension, since it is also the one
found in the low SFE metals deformed at room temperature, frequently
attributed in the latter case to twinning. During cold deformation, the observed
trend is a sharpening of the {111} component, while during warm deformation,
there is an evident sharpening of the {100} fibre.

iii) The results also suggest that the rotation of the grains towards stable
positions takes place more quickly at higher temperatures. As a result, the
amount of spread around the two fibres is greater at room temperature than at
the higher temperature (compare Figures 4.6b and 4.6c¢).



CHAPTERV

THE THEORY OF RENOUARD AND WINTENBERGER

After having generalized the principles of the maximum (external) and
minimum (internal) work rates, Renouard and Wintenberger [150] introduced
another criterion for the selection of the active slip systems in the presence of
ambiguities. This criterion states that the actual set of active slip systems is
the one, among the possible ones, which minimizes the work hardening rate.
Before reviewing their theory and reformulating it in a more convenient
notation, it is first useful to consider the extent of the ambiguities involved.

V.1. EXTENT OF THE AMBIGUITIES PRESENT IN THE FC AND RC
THEORIES

It was seen above that when 5, 4, or 3 strain rate components are imposed,
the actual stress state in the crystal lies on a vertex or on a fourth or third order
edge of the SCYS, respectively. It is also known that 6 or 8 slip systems are
activated simultaneously at a vertex (where only 5 are needed). Similarly, the
fourth order edges, at which a maximum of four independent slip systems can
be found, are formed of 4, 5 or 6 hyperplanes and the third order edges, at which
a maximum of three independent systems can be found, are associated with
three or four systems [104,105]. Thus, even in the case of the RC theory, when a
constant CRSS is taken for all the slip systems, some ambiguities are present in
the choice of the latter. It is therefore of interest to consider the vertices and
edges of the yield surface and to identify both the total number of systems, as
well as the number of combinations of independent slip systems, associated with

each.
The number of slip systems pertaining to the positive vertices and edges of

the yield surface have been listed by Kocks et al. [105] and are reproduced in
Tables 5.1 to 5.4 [5], which correspond to the p=5, 4, 3 and 2 cases, respectively.
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Number of Number of
indep. 3 plane |indep. 4 plane
T ¢ Totalno.of | Number of comb. comb.
vertexand | Numberof | comb.ofS | “comb.of5 |Type(2.2,1,0) | Type(2,1,1,1)
. i f ystems per indep. . .
no. of slip vertices o vertex P No. of slip No. of slip
’ tems per . R . .
systems (n) given type Sys P directions directions
y Cn5 vertex
3|]4)5)13]41]5
A(8) 3 56 32b 8 | 8 8 1] 8
B(6) 4 6 6b 6
C(8) 3 56 32b 8 8 1] 8
D(6) 12 6 4b
E(8) 6 56 36b 12 ] 4 121 8
Total No. 28a[105] 4802[104] 72 1168 24 | 48 |120] 48
Total No. 384{110,151, | 48 |144] 24 | 24 | 96 | 48
152]
aPlus their opposites
bAmbiguities present

Table 5.1. Classification of the combinations of five independent slip systems under pentaslip
(p=>5) conditions.

- g1l -
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Type of .
No. of sli
edge and Total 9. 01 S11p
no. of Typeof |Number of | number of lj(:lrﬁ)b%?if directions
associated | connecting| edgesof | comb.of 4 independent
slip vertices | giventype | systems S gt ems
systems per edge y
(n) 2138 |4
4A(4) A-C 6 1 1x6 6
4B(6) A-E 12 15 12x12b 120] 24
4C(4) B-C 12 1 1x12 12
4D(4) B-D 12 1 1x12 12
4E(4) B-D 12 1 1x12 12
4F(4) C-D 24 1 1x24 24
4G(4) C-E 6 1 1x6 6
4H(5) D-E 24 5 4x24b 96
Totals 108a 312a 12 | 168|132
aPlus thelr opposites.
bAmbiguities present.

Table 5.2. Number of combinations of four independent slip systems under
tetraslip (p =4) conditions.

(Here p refers to the number of strain rate components imposed or to the

number of independent systems which are needed.t) To these, we have added:

t In Table 5.1, the vertices are classified in terms of the types of loading
required for their activation. Type A is rendered operational by tension
(or compression) along a cube direction (<100> tension), type B by
tension (or compression) along a <111> direction, type C involves pure
shear in a cube direction along a cube face ({100} <100> shear), type D
corresponds to a combined state of stress and involves both shear and
tension (or compression) ({100}<011> shear + <100> compression),
whereas type E involves shear along a noncrystallographic direction
({100} <100> shear+{110}<110> shear). These five groups include all
the 56 vertices of BH, but the latter workers subdivided the vertices into
different categories, which depend instead on the number of slip systems
associated with each vertex.
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Type of .
No. of slip
edng: ao?d Typ % andf Numberof | N uni)bex;‘zf directions
r numbper o combp. o
asso¢l:i1 ated connecting ?355 i of e independent
sy:t eI:ns vertices | &' My systems 3 o
(n)
3A(3) |A-C-D-E4) 24 1x24 24
3B(4) A-E-A-E(4) 3 4x3b 12
3C(4) A-E-D-E(4) 12 4x12b 48
3D(3) B-C-D(3) 24 1x24 24
3E(3) B-C-D(3) 24 1x24 24
3F(3) B-D-E-D(4) 24 1x24 24
3G(3) C-D-E(3) 24 1x24 24
Totals 135a 180a 120 | 60
aPlus their opposites.
bAmbiguities present.

Table 5.3. Number of combinations of three independent slip

systems under trislip (p=3) conditions. -

TYBLOTed8e | Numberof | Numberor | Numberof | No.ofsli
associg.ted connecting | edges of inde e.ndent in one
. vertices | given type P
slip systems systems comb.
2A(2) 8 12 1x12 2
2B(2) 6 6 1x6 1
2C(2) 8 12 1x12 2
2D(2) 5 24 1x24 1
2E(2) 8 12 1x12 2
Totals 662 66a
aPlus their opposites.

Table5.4. Number of combinations of two independent slip systems
under bislip (p =2) conditions.
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i) The number of combinations of p independent systems associated with
each yield condition. These combinations were determined by the method of
Kocks et al. [105] as follows: for each of the C°g=56 or C°s=6 possible
combinations associated with Table 5.1, the transformation matrix for passage
from the 5 dimensional space in which the stress and strain rate tensors are
defined (see Appendix 2) to that associated with the set of 5 slip systems being
considered is drawn up; then the 5x5 determinant of this matrix is calculated
and only the combinations for which the determinant is different from zero are
retained. This transformation matrix is expressed through equation A4.1 in
terms of the mj; coefficients.

ii) The number of different slip directions in each set of 5, 4, 3 or 2
independent systems. These numbers will be useful in the treatment of cross-
slip.

In Table 5.1 are listed the number of combinations of 5 slip systems (without
regard to independence) that can be selected from the 6 or 8 available, as well
as the number of combinations of 5 independent slip systems [104]. In this table,
we distinguish, as did Taylor [4], between: i) those that involve 2, 2, 1 and 0
systems on each of the 4 different slip planes; and ii) those that involve 2,1, 1
and 1 slip systems on each of the four planes. This distinction gives us the
number of slip planes associated with each combination. The actual number of
possible combinations is thus 4 or 6 in the case of the D and B vertices, 32 for
the A and C types and 36 for the E vertices. Finally, the total number of
independent combinations is 480.

This result is at first sight surprising because Taylor [4] in 1938 found only
216; Later, he modified this to 384 [110], a figure subsequently verified by
Hershey [151] and others [152]. The reason for the difference is that the earlier
workers considered only 12 systems instead of 24, allowing the appropriate ys
shear rates to be negative when necessary. They then determined the total
number of combinations of 5 systems C%;2 =792, from which they subtracted
the combinations which are not independent, leaving 384. By contrast, by
following the Bishop and Hill approach here, we only permit positive shearing
on each slip system (ys positive), and compensate by considering both the
“positive” and “negative” systems (i.e. those which have the same n but
opposite b vectors, or the same b and opposite n vectors, which is equivalent),
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since a particular system and its opposite do not belong to the same vertex. The
exact source of discrepancy lies in the way in which the vertices of class A (1,2
and 3) and class C (8, 9 and 10) are related. Vertices 1 and 8 are composed of
different facets in the Kocks et al. [105] notation, and therefore have different
sets of slip systems associated with them. Similar remarks apply to vertices 2
and 9, and 3 and 10. By contrast, when no account is taken of the direction of
the vectors n and b (definitions of Taylor [4] and Hirth and Lothe [152] ), the
same sets of slip systems are associated with vertices 1 and 8 (and in turn with
vertices 2 and 9, and 3 and 10). Thus there are 96 different combinations of
indépendent slip systems associated with the A set of vertices and a further 96
with the C set. When no distinction is made between positive and negative
shearing on a given slip plane [110,151,152], the A and C sets can no longer be
distinguished, and the 96 combinations lost in this way reduce the total number
apparently available from 480 to 384.

The number of combinations of five independent systems listed in Table 5.1
is actually an upper limit to the true number of possible combinations because
of the need to respect the normality rule. The latter consideration requires the
five dimensional strain rate vector ¢ to lie inside the cone of normals
corresponding to the five slip systems of the combination being evaluated (i.e.
within the reduced cone of normals associated with the smaller number of slip
systems). Otherwise, negative values of the shear rates ys are involved, which
are not admissible. In the case of a vertex associated with 6 slip systems (Bor D
types), although there are 6 or 4 possible combinations of 5 independent
systems, for a given &;;, there are in fact only 2 possible combinations [153].
These two combinations will give in turn two "extreme" rotations, all the
intermediate rotations being equally valid. For the A, C and E type vertices,
the actual number of possible combinations cannot be given here since it
depends on the specific orientation of the grain and varies from case to case. A
possible maximum obtained from a statistical evaluation of all the cases
treated would be approximately equal to half the total number of possible
solutions. (Analogous considerations apply to the combinations of four and
three independent systems described below).

With regard to the p=4 case, it can be seen from Table 5.2 that ambiguities
are present for 2 types (out of 8) of the fourth order edges. Again here, the
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independence of the four slip systems was tested by calculating all the
determinants of the 4x4 submatrices of the 4x5 matrix (defined by equation
A4.1) until one was found to be non-zero [104]. There are 312 different
combinations of 4 independent slip systems under p=4 conditions (and their
opposites); 240 of these are associated with edges where ambiguities are
present.

Turning now to the p=3 case, it can be seen from Table 5.3 that for 2 types
of third order edges, among the 7 available, ambiguities are still present. 3
combinations are associated with each 3B edge and 12 with each 3C edge. These
ambiguities thus concern 60 out of 135 combinations of 3 independent systems.

The case p=2 (Table 5.4) does not involve any ambiguities and is included
for completeness only. It involves a total of 66 edges and thus of 66
combinations.

In summary then it can be said that the selection of independent systems
involves ambiguities at: i) all the vertices associated with the p=>5 case; ii) 36 of
the 108 edges associated with the p=4 case; iii) 15 of the 135 edges associated
with the p=3 case; and iv) none of the p=2 edges.

These results indicate that the ambiguities present in the RC theory are far
less numerous than in the FC theory. The problem of selection can thus be
considered to be of minor importance since it was seen above that the RC theory
applies especially well to the case of large deformations. Moreover, it can be
argued that the ambiguities have little physical meaning for a real material
since they can be removed with the aid of one of the following assumptions:

i) the introduction of rate sensitivity,
ii) the use of a realistic hardening law.

The rate sensitivity of the material can be thought of as a useful parameter
to represent high temperature deformation. However, the introduction of this
coefficient in a model does not generally produce new texture components; it
only changes the rate of formation of these components [154]. Thus, it cannot by
itself account for the differences observed between materials deformed at low
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and at high temperatures. Furthermore, it will be seen below that the
introduction of the RW criterion also influences the rate of formation of
textures and can thus be seen as a kind of rate sensitive criterion, but one
which is based on energetic considerations in this case.

Using a realistic hardening law is certainly one of the physically most
appropriate ways of improving existing models; unfortunately, this is a very
complex alternative, and is sometimes almost impossible to carry out. Some
very simple hardening laws, apart from the Taylor hardening law, will be
examined in the chapters that follow, especially in the treatment of cross-slip.
The use of a complex and more realistic law involves measurements of
hardening parameters which must be very precise, and are always subject to
reservation. Moreover, the values of these parameters change from sample to
sample, depending on the previous deformation history of the material, and are
thus very hard to determine with accuracy. Once the parameters have been
determined, the introduction of the hardening law in a model can lead to
computations so complex that simplifications are essential before any
calculations can be performed at all and it then becomes difficult to determine if
the model is still realistic.

Thus, the introduction of a further criterion for the removal of ambiguities
in a non rate sensitive model (in which the hardening of the systems is assumed
to be isotropic) can be seen as a way of introducing a kind of complex hardening
law in a simplified way. Minimizing the work hardening rate of the material
can also be seen as a qualitative way of representing the rate sensitive response
of a material.

V.2. THE SECOND ORDER PLASTIC WORK CRITERION

V.2.1. THE THEORY OF RENOUARD AND WINTENBERGER

The removal of the ambiguities concerning slip system selection inherent in
the power minimization and maximization methods described in Appendix 4
involves a further optimization, which is summarized below in terms of the
generalized Taylor and Bishop and Hill theories [118,150]. The second
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operation consists of selecting one slip system combination from all those
available to accommodate the prescribed strain rate as follows. Let the
prescribed strain rate tensor operate during a time dt; for each set of slip
systems, this leads to an infinitesimal crystal rotation. Denoting as W; and Wy
the work rates associated with the prescribed components of strain rate &;
before (state 1) and after (state 2) the rotation, respectively, the method consists
of finding the slip system combination which minimizes Wy, and therefore also
minimizes Wo —W; =dW.

In terms of the present notation, the RW analysis can be described as
follows. Assuming that the critical slip systems (i.e. those for which ¥ =1.5)
remain the same in state 1 and 2 (whether they are active, y°# 0, in both states,
or not), the difference Wa — W can be written as

¥, - W, = dn 1
W,— W, =dW (5.1)
with
W1= Z (tz—t(s)).y'[s (5.2)
8
and
W= S (P4 di — ¢ - ded). (" + dy) (5.3)

§

Here the summation is carried out over the critical systems, and thus involves
the above assumption regarding the "continuity of criticality". In equation 5.3,
10° =0";jm%;j (equation A4.4) is the prescribed component of the shear stress. In
terms of the BH analysis for the p=5 (FC) case, this means that no change of
vertex is permitted, which is always possible by choosing a small enough strain
increment. (Similarly, in the case of the RC theory, this means that no change
of the stress state expressed in the crystal system is allowed.)

An exception to the above generalization occurs when the strain rate vector
is exactly at the edge of the cone of normals of the active vertex, i.e. it has
moved to a fourth (p=4) or lower (p= 3) order edge. Under these conditions, two
(or more) vertices are active simultaneously (see Tables 5.2-5.4). This exception
does not need to be addressed here because, in such a case, only the slip systems
common to the two or more vertices are active (i.e. the systems associated with
the edge of the yield surface). There are always less than five independent slip
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systems forming such edges, thus there is almost no ambiguity involved in this
case. In equation 5.3, dt.® represents the change in the critical resolved shear
stress t.° due to work hardening on the operating systems during deformation
from state 1 to 2, dto® the change in the resolved shear stress acting on each slip
system attributable to the prescribed stresses, and ys+dys the values of the
shear rates on the original set of slip systems after rotation of the crystal (state
2). The latter change by amounts dys because of the grain rotation produced by
the shear rates ys associated with state 1.

In a similar way, the prescribed strain rate components are given by

é’ij = > {ﬁmjj (p < 5 equations withy* > 0) (5.4)
and
¢,@ =2 §°+dy").(m], +dm}) (5.5)

8§
where dm?;j refers to the changes in the components of the generalized Schmid

factor brought about by the grain rotation taking place between states 1 and 2.

We now evaluate dW by subtracting equation 5.2 from equation 5.3
dwW = Z (dti—dtg) v+ Z (ti+ dt:-— tg— dt(s)) dy’ (5.6)

Bearing in mind that the £’jj are the same for both states 1 and 2, equations 5.4
and 5.5 can be combined to give
0= y'dm + > dy’.(m, +dm}) (5.7)
§ s

Multiplying equation 5.7 by ¢’;j and summing over i and j leads to
> @-dyt= - o’ dm? (1 + dy") (5.8)
§ s

Equations 5.6 and 5.8 can now be combined and simplified, after recognizing
that dvg®=0";; dm®j; (the 0”;; , being prescribed, do not change between states 1
and 2), so that
(D (IT)
PR S /__/\__\

dW= 2 (d o, dm$){*+ > (dif—o0, dm?)dy’ (5.9)
s s
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In this relation, the first term on the RHS (I) is composed of quantities that
depend only on the characteristics of state 1, i.e. on the actual combination of
slip systems being considered. The second term (II) depends, through the values.
of dy®, on the characteristics of state 2. However, as it involves the products of
increments, it will not be considered further here. The "real" solution can
therefore be found by minimizing
dW= 3 (d—0, dm’){’ (5.10)
s
If one assumes isotropic hardening, the only term which needs to be minimized
(with respect to the alternative sets of y°) is
dW= Y -o dm! y’ (5.11)
S
Renouard and Wintenberger performed this optimization in the following
way. They expressed dW (equation 5.11) in terms of all the possible systems, n
y®.In a similar manner, they expressed the constraints (equation 5.4) as a set of
p equations. They then solved for dW and obtained a function of (n-p) y° terms. |
Finally, the minimum value of this expression, which is a function of 1, 2, or 3
variables depending on the "order" (n-p) of the ambiguity, was found using for
example the linear programming technique. For this purpose, the o;; are
determined from the coordinates of the edge or vertex activated in state 1, and
the dm®j; from the rotations produced by each of the slip system combinations
that can operate between states 1 and 2.

V.2.2. RW CRITERION EXPRESSED IN TERMS OF TAYLOR FACTOR
MINIMIZATION

In the present investigation, we have used the RW criterion in a somewhat
modified form by incorporating the following definition of the Taylor factor

y % Z(tc_ng)is .
9% s w (5.12)

M=

T T T e T E
c [ c

In this expression, is the von Mises equivalent strain rate and W is the work
rate associated with the active vertex (i.e. either the maximum value of
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W= o’ijé’ij calculated for all the different vertices or the minimum value of
Z(t¢ —1,°)ys calculated for all the possible combinations of slip systems).

The basic computer programs used to simulate an FC or RC calculation were
developed at McGill by Canova [104]. These programs are described briefly in
Appendix 5; they dealt with ambiguities by taking the average of all possible
combinations. In the present work, they were modified to incorporate the RW
criterion as follows: we begin by selecting the active vertex in state 1 and its
associated Taylor factor M;. To this vertex correspond N possible combinations
of p independent systems, as described above. The shear rates, ys, pertaining to
the slip systems of each possible combination are calculated, from which both
the grain rotation (according to the method presented in Appendix 1) as well as
the new Taylor factor are deduced. This is done by calculating the new value of
0’ij, and therefore of ¢’;j¢’;j, where the yield surface has now been rotated
slightly. Each of the N possible combinations is considered in this way and the
corresponding new grain orientation and new Taylor factor M2 are evaluated in
turn. The slip system combination which leads to the minimum value of M2 is
then selected as the solution for state 1 of the deformation.

As indicated above, this is equivalent to minimizing Wo=W; +dW for a
finite number of alternative solutions, each of which is characterized by the
same value of W;. The various "solutions" to be tested correspond to different
locations of the active vertex in state 2, and W; and W2 can be expressed in
terms of the respective Taylor factors for this situation. The Taylor factor
minimization carried out as described above results in the choice of the lowest
possible value for dM/d¢, where df is the equivalent strain increment. Defining
the work hardening rate d6/dé for a given grain as

@ _ P o d (5.13)

where 6 is the von Mises equivalent stress, and assuming that di. / dé is
independent of the slip system combination selected, this is equivalent to
selecting the combination that leads to the lowest possible rate of macroscopic
work hardening. The lowest possible work hardening rate (positive or negative)
signifies in turn that d?W / d¢? is a minimum, which is why Renouard and
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Wintenberger referred to their theory as the minimization of the "second order
term for the plastic work".

One advantage of calculating all the possible rotations and selecting the one
which gives the lowest value of M3 is that in the presence of any remaining
ambiguities, the average can still be taken, whereas if linear programming is
used, any one of the possible solutions will simply be selected by the program.
The advantage of the present procedure is that the validity of the RW
hypothesis can be tested directly without having to worry about the random
choices performed by a particular algorithm.

Some predictions obtained with this method will now be presented for the
cases of both fully and partially constrained deformation (of single crystals as
well as polycrystals). They are compared to experimental results as well as to
the predictions obtained from other models: i) the classical FC or RC model
(with averaging on all possible rotations) and ii) the rate sensitive model
developed by Canova and Kocks [144].

V.3. COMPARISON WITH EXPERIMENTAL RESULTS OF THE
VARIOUS PREDICTIONS FOR THE CASE OF FULLY CONSTRAINED
DEFORMATION

Since the number of ambiguities is maximum in the p=5 case, it is useful to
test the validity of the RW criterion for this condition. Two different cases will
be considered here: the fully constrained deformation of single crystals and the
fully constrained deformation of polycrystals in the case of tension.

V.3.1. PLANE STRAIN COMPRESSION OF SINGLE CRYSTALS

The experimental work used for comparison was performed by Driver and
co-workers [118,122,123,155]. It involved the channel die compression of
tricrystals prepared in such a way that the central crystal was prevented from
shearing by the two crystals enclosing it. Under these conditions, the central
grain deforms in very nearly pure plane strain compression, i.e. the
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deformation is completely prescribed, and only the two plane strain components
of the strain rate tensor are non-zero. Driver and co-workers measured the
orientation changes of the central grain in five such crystals at different stages
during the deformation up to ¢ =1. They also performed calculations using the
RW criterion [150], but they were based on the principle of minimum internal
work rate, as described in Section V.2.1, and employed the linear programming
technique.

In our calculations, the measured initial orientations of the five crystals
were employed, and simulations of grain rotation were performed using three
different methods for resolving the problem of the ambiguities described above;
i.e.

1) the classical Bishop and Hill theory applied to the calculation of grain

rotations by averaging the rotations produced by the alternative sets of slip

systems belonging to a particular ambiguity class;

2) the RW criterion in the present modified form in which Taylor factor

minimization is carried out;

3) the rate sensitivity method, in the version developed by Canova and

Kocks [144].

The results obtained in this way are presented in Figures 5.1 to 5.5 for the five
tricrystals in the form of two inverse pole figures, the first showing the path
followed by the compression axis X3, and the second that followed by the
elongation axis Xo.

The first two grains (Figures 5.1 and 5.2) represent the case where there is
little difference between the predictions of the three methods. This is because
they concern the operation of 6-fold vertices of the B type, so that there is little
ambiguity during most of the experiment. In such cases, the Bishop and Hill
theory would normally call for a 6-fold ambiguity of order n-p=1 (Table 5.1);
however, because of the restrictions imposed by the normality rule [153], this is
reduced to a 2-fold ambiguity, to give only two different possible rotations. In
the specific examples under consideration here, these two rotations were very
close to each other [118]. Thus the averaging calculation led to a result which
was near the one obtained by choosing that rotation (out of two) which
minimized the Taylor factor after a small rotation (RW method) and by the rate
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Figure 5.1. Predicted and
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rotations of crystal TG during
plane strain compression
(E=1).

The following legend applies to
Figures 5.1 to 5.5:

a) motion of the X3
(compression) axis,

b) motion of the X2
(elongation) axis.

(1) p=5; averaging
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In Figures 5.1 to 5.5, the
approximate Miller indices
corresponding to the
orientations of grains studied
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Figure 5.2. Predicted and
experimentally observed
rotations of crystal TH during
plane strain compression
(g=1).



- 132 -

sensitive method as well. All three predictions are therefore in good agreement
with the experimental results in these two cases.

In Figure 5.3, a slightly larger difference can be seen between the three
predictions, which arises because this case involves the activation of 8-fold
vertices (types A and E, Table 5.1, in alternation). According to the BH method,
there is a maximum 32- or 36-fold ambiguity of order n—-p=3, so that the
various possible rotations differ considerably from each other. The present
averaging method, by taking the mean of the alternative rotations, reduces
considerably the differences between the BH prediction and those of the other
two methods. In this case, there is a detectable difference between the
orientation changes called for by the RW method and those of the rate sensitive
(RS) approach, indicating that these two techniques do not always select the
same combination of slip systems. Nevertheless, as in the previous two
examples, all three predictions are in good agreement with the experimental
rotations.

In Figures 5.4 and 5.5, two cases are illustrated in which the use of the RW
criterion leads to distinctly better predictions than are obtained from either of
the other two methods. Figure 5.4 concerns the activation first of 8 slip systems
(vertex type C) and then, after £§=0.3, of 6 (vertex type B). The activation of 8
slip systems frequently leads to large indeterminacies in the rotation; in the
present case, this is considerably reduced because only four slip systems are
actually active (i.e. for which ys#*0). This is why the three predicted paths
coincide at the beginning of the deformation. At larger strains, when a 6-fold
vertex is activated, although only two different rotations are possible, the
differences between the three sets of predictions continue to increase. It is also
evident from Figure 5.4 that both the averaging (BH) and rate sensitive (RS)
models lead to rotations that are smaller than the experimental ones, the RS
rotations diverging substantially from those reported (especially for the Xo
axis). By contrast, the RW predictions are in excellent agreement with the
experimental observations.

In Figure 5.5, once again, the averaging (BH) technique and the RS method
lead to rotations that are smaller than those of the RW method. In this case, as
before, we are first concerned with an 8-fold vertex (type C) and then with a 6-
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fold vertex (type B). Unlike the case of Figure 5.4, the differences between the
possible rotations are significant during the entire experiment and simple
averaging leads to erroneous results. Moreover, the RS method seems to select
active slip systems which differ from the observed ones over an appreciable
range of the deformation. By contrast, as in the case of Figure 5.4, the RW
simulation leads to orientation changes which are consistent with those
observed.

From these five examples, several tentative conclusions can be drawn
regarding the effect of the indeterminacy in slip system selection and the
validity of the three alternative methods:

i) First, it is apparent that the magnitude of the uncertainty in the
rotations does not depend solely on the order n —p=3 or 1 of the indeterminacy
(e.g. whether there are 32 or 36 possible combinations at an 8-fold vertex or 6
possible combinations at a 6-fold vertex), but also on the detailed orientation of
the grain.

ii) Although the averaging method can sometimes compensate for the
indeterminacy, particularly when the range of alternative rotations is small (as
in Figure 5.3), it can also increase the error by restricting the extent of the
orientation change (Figure 5.5).

iii) In the cases where the indeterminacy is large and not substantially
reduced by the averaging technique (Figures 5.4 and 5.5), only the RW
treatment among those compared leads to results which are in satisfactory
agreement with the observations.

It should be added that a new version of the RS model has now been
prepared by Canova [156]. He has stated that there was an error in the first
version and that the second is improved and more likely to be correct.
Unfortunately, the second version has not yet been published and so could not
be tested here. Nevertheless, it can be expected to lead to results which differ
from those presented in this work; such new predictions may indeed be in better
agreement with the experimental results.

This preliminary study allows us to conclude that the RW criterion gives
good results in the case of high SFE materials deformed at room temperature.
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The method also seems promising for the simulation of high temperature
textures. One way of checking this possibility is to predict the fibre texture
obtained in axisymmetric tension with a Taylor model and then to compare the
theoretical results obtained with (i) the averaging technique and (ii) the RW
criterion with experimental textures.

V.3.2. THE FULLY CONSTRAINED DEFORMATION OF POLYCRYSTALS

To test the validity of the RW criterion in a calculation for polycrystals, it
was decided to apply some Taylor type calculations to axisymmetric tension.
This choice was motivated by two reasons: i) it has recently been shown [157]
that the grain shape arguments on which the RC theory is based prevent the
relaxation of any strain rate components in tension and thus imply that tension
should only be treated with the FC model; and ii) it has also been shown [4]
that, for a random distribution of grain orientations, the extent of the
ambiguities is large in tension (see next chapter).

The inverse pole figures obtained after strains of §=0.5 and 1 are presented
in Figure 5.6. The results for two different models are shown: those pertaining
to a classical FC calculation in which the average is taken over all possible
rotations (FC+AYV), and an FC calculation in which the ambiguities are
removed with the RW criterion (FC + RW). The corresponding {111} pole figures
are illustrated in Figure 5.7 and the average densities of the {111} poles along a
radius of the pole figuresin Figure 5.8.

The following remarks can be made regarding these results:

i) It can be seen from Figures 5.6a and 5.6b, that the FC + AV calculation
gives results which are in good agreement with experimental observations for
intermediate to high SFE materials deformed at room temperature. If the
numbers of grains in a constant volume around the {100} and {111} fibres (out of
a total of 950) are calculated from Figure 5.8, the percentage of the {100} fibre
obtained with the FC+ AV calculation is seen to be approximately 22%. This
value is intermediate between the ones found experimentally for copper and
aluminum (see Figure 2.2).
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110

Figure 5.6. Inverse pole figures of the textures predicted for an initially
random polycrystal deformed in axisymmetric tension; a) £€=0.5,
FC+AV, b) é=1, FC+AV, ¢) £€=0.5, FC+RW, and d) §=1,
FC+RW.

ii) Also of interest is the spread around these two fibres in the FC+AV
calculation (see Figures 5.7a and 5.7b). It is apparent that the averaging
procedure tends to reduce the rotation rates.

iii) Turning now to the results obtained with FC + RW (Figures 5.6¢ and

5.6d), it can be seen that the {100} fibre is completely absent and is replaced by
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3 =tensile axis

Figure 5.7. {111} pole figures corresponding to the textures represented in
Figure 5.6; a) §=0.5, FC+AV, b) é=1, FC+AV, ¢) £¢=0.5,
FC+RW,andd)é=1,FC+RW.
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another fibre not very far from {100}, but which corresponds to the minimum
Taylor factor.The Taylor factor map calculated by Chin and Mammel [158] is
reproduced in Figure 5.9 and the correlation between Figure 5.6d and Figure
5.9 becomes quite clear.
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Figure 5.9. M contours obtained from computer solutions of the Taylor
analysis for axisymmetric flow. Case of {111} <110> slip. Dashed
boundaries delineate regions within which a specific type of
vertex is selected [158].

iv) The texture obtained with RW is sharper than the one produced by
AV. It can indeed be argued that the RW textures are much too sharp when
compared with experimental pole figures. This is at least partly because no
"splitting” of the grains (i.e. subdivision into different deformations and
rotations in different parts of the grains) was allowed. A good way to improve
this situation and to represent realistic textures would be to introduce a scatter
around each orientation, as observed in real crystals [108]. This was not done
here since the “pure” influence of the RW criterion was sought. The results
presented in Figures 5.6 to 5.8 also lead to the conclusion that the rotations of
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the grains towards stable positions are faster with RW than with AV. As most
of the stable orientations are local minima in terms of the Taylor factor (one
exception being the {111} fibre), the use of the RW criterion forces the grains to
rotate more quickly towards these stable positions.

v) The calculated percentage around {100} is equal to 10% at a strain of 1
with FC + RW (compared to 22% with FC + AV). This value could correspond to
the percentage obtained at room temperature on very high SFE materials.

vi) Because the {100} fibre is replaced by a near {100} fibre, it appears
that the RW criterion does not lead to any improvement with respect to the
classical FC calculation. Furthermore, it does not seem to be suitable for the
prediction of high temperature textures since it does not call for an increase in
the {100} component.

Nevertheless, in order to confirm conclusions about the validity of the RW
criterion, some further simulations were thought to be desirable. For this
reason, it was introduced into an RC calculation, the results of which form the
subject of the next section.

V.4. COMPARISON OF THE VARIOUS PREDICTIONS WITH
EXPERIMENTAL RESULTS IN THE CASE OF DEFORMATION
UNDER RELAXED CONSTRAINTS

The validity of the RW criterion is tested below with respect to two different
types of calculation: (i) an RC calculation in which some components of the
strain rate are relaxed from the beginning to the end of the deformation; and
(i) an FC-RC calculation in which there is a statistical transition from FC to
RC conditions, according to the model of Tomé et al. [125] ).

V.4.1. THE RW CRITERION IN AN RC MODEL

Simulations were carried out of the grain rotations taking place during the
rolling of the coarse grained aluminum sheets described by Driver et al.
[123,124]. These sheets were initially 2 mm (sheet A) and 4 mm (sheet B) in
thickness and contained grains 20-40 mm in diameter. Such crystals can be
expected to deform according to the RC theory with p=3 (see Appendix 4), i.e.
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with the shear rates ¢23 and ¢£;3 in each grain free to differ from the
corresponding macroscopic components (which are zero in the case of rolling).

Driver and co-workers also compared their experimental results to the
predictions obtained with the RW +RC and RW + FC models. They found that
most of the grain orientations followed the predictions of the conventional RC
theory (p=3). However, some of the grains deformed according to the FC theory
as supplemented by the RW criterion. The latter were either smaller than the
RC grains or the RC theory predicted unreasonably large values of the ¢23 and
£ j3 shear rates.

We carried out several types of RW calculations (i.e. FC and RC with p=3
and 4) and compared them with the corresponding FC+AV or RC+AV
calculations. An example of such a prediction is illustrated in Figure 5.10 in
terms of an inverse pole figure showing the path followed by the compression
axis X, and the elongation axis X,. For this specific example, the two FC
calculations are very close, whereas the RC ones are identical, so that only the
RC+RW results are presented. Most of the results obtained for these coarse
grains lead to similar conclusions: i.e. that i) the coarse and flat grains deform
according to the RC theory; and ii) the introduction of the RW criterion does not
significantly influence the results because of the small amount of ambiguity
present.

In this study of the behavior of the coarse grains deformed in rolling, some
minor results were also found which are worth mentioning:

i) Some small and nearly equiaxed grains were found to deform
according to the FC model. Because of their small size, they were essentially
fully constrained by their neighbors. For more details, see reference [5].

ii) The position of a grain inside the sheet was also shown to influence
the deformation mode. Some grains located at the corners of the sheet were
found to deform according to a different RC + RW type of calculation,i.e.a p=3
case, in which the shear rates £23 and ¢72 were set free (instead of 93 and ¢;3).

iii) For nearly symmetrical orientations, both the RC and FC (+ RW and
RS) theories predict much larger rotations than the experimental ones. By
contrast, the FC theory using averaging, which is equivalent to considering
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Figure 5.10. Predicted and experimentally observed rotations of grain 1A
during rolling (€=1.67). The numbers 1 to 5 correspond to the
following deformation modes: (1) AV, p=5; (2) RW, p=5; (3) RW,
p=? (é2)3 free); (4) RW, p=4 (¢;3 free); and (5) RW, p=3 (¢23 and
£13 1iree).

that 6 or 8 slip systems are active (ys# 0) concurrently, respects the symmetry
of the orientation and is thus successful in predicting the small rotations
observed experimentally.

From this study, which is described in more detail in reference [5], it can be
concluded that the RC model complemented with the RW criterion leads to
results which are similar to those obtained from the RC + AV model. However,
since the strict RC model is not the most suitable for predicting the evolution of
the texture of a polycrystal (initially composed of equiaxed grains), it was
decided to perform some calculations using the FC-RC model [125] as well, in
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which the ambiguities present at each step are suppressed by the use of the RW
criterion under both FC and RC conditions.

V.4.2. THE RW CRITERION IN AN FC-RC SIMULATION OF A
POLYCRYSTALLINE TEXTURE

The path selected here was torsion and the predictions of two models are
compared below to experimental results: the FC-RC + AV and the FC-RC+RW
models. For relatively small deformations, the results of the FC+AV and
FC +RW models will also be presented. The results of the two FC type
calculations corresponding to a strain of £=2 are presented in Figure 5.11. It is
clear from this figure that the FC + RW model leads to a sharper texture than
the FC + AV calculation; i.e. the different grains of the polycrystal rotate more
quickly towards the stable orientations. The B component (i.e. the one present
in hot deformed aluminum) is present in greater proportions with the FC+RW
than with the FC + AV model.

This can be explained by the fact that the B orientation corresponds to a
local minimum in the Taylor factor (for the FC model). To illustrate this fact,
the Taylor factor was calculated for the range of values of the Euler angles ¢, 6
and w and iso-M curves were plotted in Euler space. The angles ¢ and 6 were
varied from 0 to 90° and the angle o from 0 to 180°. M was then plotted as a
function of ¢ and 0 for constant . One of these sections (i.e. for w=90°) is
shown in Figure 5.12. The other sections are presented in Appendix 6. The
section presented in Figure 5.12 is interesting since it includes the three
orientations usually found in torsion, which are labelled A, B and C. It can be
seen that all three orientations lie on the $ =45° line, which is an axis of
symmetry of the figure. All the points located on this line are local minima in
terms of the Taylor factor and the absolute minimum is the A orientation
(where there is activation of only one slip system and M = V3).

Now in the case of large deformations, the FC theory is no longer adequate
and has to be replaced by the FC-RC model. The interesting point here is that
the orientation of each grain at the stage where the transition from FC to RC is
made will in general be different with RW on the one hand and AV on the other;
thus its subsequent evolution is expected to also be different under RC
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Figure 5.11. Predicted torsion textures at §=2, {111} pole figures; the open
circles specify the position of the B/B component.
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Figure 5.12. M contours in selected section of Euler space (0w =90°) obtained
from computer solutions of the Taylor analysis for torsion. This
section contains the A, B and C orientations.

conditions with the two different models, even though the number of
ambiguities is almost reduced to zero. In Figure 5.13, the results obtained with
the FC-RC + AV model are presented for strains of 4, 6, 8 and 10 and the results
obtained with the FC-RC +RW model for the same strains are presented in
Figure 5.14. Here again, it is evident that the texture is sharper with the RW
model. Furthermore, some other differences between the two sets of figures can
be noted. The FC-RC+RW theory predicts a partial {hkl}<110> fibre
(approximately between {100}<110> (C) and {112}<110> (B)), whereas the
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Figure 5.13. Torsion textures predicted using the FC-RC + AV model, {111}
pole figures. a) §=4,b)£=6,c)£=8,and d) £=10.
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Figure 5.14. Torsion textures predicted using the FC-RC +RW model, {111}
pole figures. a) §=4,b)§=6,c) €=8,and d) €=10.
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FC-RC + AV model predicts instead a partial {100} <uvw> fibre, including a
strong C component. Comparing these two sets of diagrams with Figures 2.26a
and 2.26b, it appears that the FC-RC + AV predictions (see especially Figure
5.13a) are in good agreement with the experimental texture of copper deformed
at room temperature (Figure 2.26a), whereas the FC-RC +RW predictions
(Figure 5.14a) seem to be in better agreement with the experimental texture of
copper deformed at 100°C (Figure 2.26b). Nevertheless, the percentage of the B
component is too low in both cases.

V.5. CONCLUSIONS

In this chapter, the RW criterion was added to some of the classical texture
prediction theories: i.e. the FC, RC and FC-RC models. These new approaches
were used to simulate the reorientation of both single crystals and polycrystals
and the results were compared with experimental observations as well as with
the predictions obtained from the classical models. The following conclusions
can be drawn from this work:

i) The use of the RW criterion influences texture development under full
constraint conditions, but not appreciably under relaxed constraint conditions.
This is because, in the RC model, the extent of the ambiguities is rather small.

ii) As a consequence, texture development in an FC-RC +RW calculation
also differs from the one predicted by the FC-RC + AV model.

iii) The FC+RW model applied to tension predicts some texture
components which are not observed experimentally. '

iv) The FC-RC +RW approach produces a sharper texture than the FC-
RC +AV model. This is due to the faster rate of development of the texture
when the RW criterion is used, when the reorientation towards stable positions
is accelerated. This can be explained schematically with the aid of Figure 5.15.
In this two dimensional example, positions 1 and 3 are stable positions; they
correspond to crystallographically equivalent or symmetrical orientations and
activate only one slip system. This is the case for the A component in torsion,
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for example, which corresponds to a minimum in the Taylor factor. By contrast,
the position labelled 2 is a metastable one which activates two slip systems
equally and corresponds to a maximum (or local maximum) in the Taylor
factor. The latter description applies to the C component in torsion. With the
RW criterion, the rotation rate between 1 and 2 (during which the Taylor factor
is constantly increasing) tends to be as slow as possible, whereas between 2 and
3 (when M is decreasing) the rotation rate tends to be as rapid as possible.

1 Slow rate of rotation

Misincreasing Imposed
2 sense of
rotation

Fast rate of rotation
M is decreasing

3

1 and 3 = stable positions
2 = metastable position

Figure 5.15. Two dimensional illustration of the RW criterion. Between
positions 1 and 2, the Taylor factor is increasing and the RW
criterion selects the solution which reduces the rate of rotation.
By contrast, between positions 2 and 3, M is decreasing and the
use of the RW criterion results in a fast rotation rate.

v) The texture obtained in torsion with the FC-RC + AV model is in
rather good agreement with the one obtained experimentally for copper
deformed at room temperature. The texture obtained in torsion with the FC-
RC +RW model, on the other hand, agrees better with the results obtained with
copper deformed at 100°C although it is still sharper than the experimental
result. This is partly due to the small number of grains chosen for the
calculation, but the effect could have been lessened by the superposition of
gaussian orientation distributions on the theoretical results.



- 151 -

vi) At very large strains (i.e. after £=8), the two models are very close and
both sets of textures are very sharp. No increase in the B component is observed
in torsion. This increase should have evolved from the FC-RC + RW model if the
latter were truly adequate for the simulation of high temperature deformation.
However, at such large strains, the exact deformation mode of each grain is
unknown, as is the extent to which grain shape arguments, on which the RC
theory is based, are still valid. This is a topic to which we return in Chapter
VIII.



CHAPTER VI
THE INFLUENCE OF CROSS-SLIP

Two different procedures were used to simulate the relative ease of cross-
slip in high stacking fault energy metals. The first is based on the method
initially proposed by Chin [6], in which the activity of colinear systems is
maximized (or alternatively minimized) in the presence of ambiguities in the
choice of slip systems. The second procedure consists of incorporating a suitable
hardening law into a classical FC or RC model. These two procedures are
described below.

VI.1. THE CHIN THEORY
VL.1.1. REVIEW OF THE THEORY AND ORIGINAL RESULTS

Chin incorporated into a classical FC model (using the minimum work rate
criterion) some selection criteria in the presence of ambiguities to account for
different mechanisms such as increased or decreased ease of cross-slip or
various degrees of latent hardening. In the case of cross-slip, he maximized the
activity of colinear systems, i.e. those which have the same slip direction but
different slip planes. He applied this selection criterion to the case of
axisymmetric tension and found that, when cross-slip is favoured, an increase
in the fraction of the <111> component is produced at the expense of the
<100> component (after 5% of deformation). He concluded that these results
are in good agreement with experimental results for high SFE materials
deformed at room temperature (see Figure 2.2). The incorporation of this
criterion was done with the aid of linear programming: once the activated slip
systems are selected, the quantity to maximize is the sum of the shears on the
colinear systems only (out of the 6 or 8 possible systems).
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V1.1.2. REFORMULATION OF THE CHIN THEORY

It was decided to use the same selection criterion here but in a Bishop and
Hill type of calculation instead of the Taylor type performed by Chin. The
reason for doing so is that the solution is not necessarily unique (even with the
additional criterion) and the linear programming algorithm selects a random
solution in such a case [26]. This can be avoided by employing the procedure
described below so that the average rotation can be calculated in the presence
of ambiguities. Another problem encountered in the Taylor approach is that the
colinear systems selected are not always independent. For example, systems 1,
10, 16 and 19 associated with vertex 23 (see Table 5.1) constitute two pairs of
colinear systems which are not independent. If the total activity on these
systems is maximized with the aid of linear programming, since they cannot,
even with a supplementary system, accommodate the deformation, the actual
solution will in most cases predict a large amount of shear on only one of the 4
systems and some shears on other independent and non-colinear systems. In
order to avoid these problems, the colinear slip selection criterion was added to
the basic FC or RC program described in Appendix 5 as follows:

i) The number of slip directions associated with each combination of 5, 4
or 3 independent systems was added to the data file. The problem of the
dependence of the systems can thus be solved since the actual combination is
always selected from the combinations of 5, 4 or 3 independent systems.

ii) The active vertex is then selected using the principal of maximum
work and all possible combinations of independent systems are listed.

iii) The combinations associated with the minimum possible number of
slip directions are retained and the amount of shear on each system is
calculated.

iv) After having eliminated the ones for which some of the ys are
negative, the sum of the shears on the colinear systems is calculated. In each
combination, the number of colinear systems can be equal to 0, 2 or 4.
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v) Finally, only the combination which gives the maximum value of the
sum of the shears on the colinear systems is retained. In the case where several
solutions lead to the same result, the average rotation is calculated.

This procedure clearly respects the idea proposed by Chin [6], but eliminates
two of the problems inherent in the use of linear programming.

The modified model was first applied to the case of tension because the
extent of the ambiguities is the highest in this case. It has the further
advantage that the present results can be compared to those reported by Chin.
These observations are presented below.

VI.1.3. APPLICATION TO AXISYMMETRIC TENSION

First, some specific orientations associated with the greatest extent of the
ambiguities were selected. It is known from the work of Taylor [4], for example,
that for any orientation near <110>, there is an ambiguity of 360° in the
rotation. These orientations activate a C-type vertex (see Figure 5.12), each of
which is associated with 4 pairs of colinear systems. For these orientations, the
rotations were calculated with four different models: i) the classical FC+AV
model; ii) the Chin model of cross-slip (i.e. using linear programming); iii) our
modified version of the Chin model (i.e. as described above) where the sum of
the shears on colinear systems is maximized (FC+CS); and iv) the modified
Chin model, but where the sum of the shears on colinear systems is minimized
to simulate the situation where cross-slip is difficult.

One example of such a calculation is presented in Figure 6.1 for a strain of 4.
The paths labelled 2 and 3, which are supposed to represent the same
mechanism (ease of cross-slip) and same selection criterion, do not in fact lead
to the same results. The small waves which can be seen on path 2 (Chin
procedure) are typical of random choices made by the computer. Moreover, it is
evident that our procedure leads to results which are in complete contradiction
with the conclusions drawn by Chin. To determine whether the trends
illustrated in Figure 6.1 apply to polycrystals, our cross-slip model was applied
to the axisymmetric extension of a polycrystal (represented by 900 orientations
distributed randomly in Euler space) and compared with the predictions of an
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1. FC+ AV model

2. Chin model

3. Corrected Chin model

4. Corrected Chin model + min CS
5. FC+HL model

100 110

Figure 6.1. Predicted rotations for a grain deformed in axisymmetric
extension. Five different models were used: 1) FC+AV; 2) the
Chin model (using linear rogrammin%); 3) the present version of
the Chin model (FC+C§); 4) the FC+CS model modified to
minimize the activity of colinear systems; and 5) the FC+HL
model developed in section VI.2.

FC-AV model. In Figure 6.2, the inverse pole figures obtained with the FC+ AV
(a and b) and FC +CS (c and d) models are presented for strains of 1 and 2. The
calculated densities along a radius of the pole figure are shown in Figure 6.3.
Although a strain of 2 is greater than can normally be attained in tension, it
allows us to determine the trends for each model. Instead of the increase in the
<111> component found by Chin, our model predicts an increase in the
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Figure 6.2. Predicted inverse pole figures for a polycrystal deformed in

axisymmetric extension: a) FC+ AV, é=1;b) FC+AV,£=2; ¢)
FC+CS,e=1;andd) FC+CS,&e=2.

<100> component, which is in better agreement with the results obtained at
elevated temperatures (see Chapters II and IV). Apart from the two problems
already mentioned, another possible explanation for this apparent
contradiction is that Chin performed his calculations up to the relatively small
strain of 5% and the trend observed after such a limited deformation can be

reversed at larger strains. (This was in fact observed for some orientations near
<110>.)
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Figure 6.3a. Number of {111} poles as a function of 6 at €=1 in an FC+AV
calculation.

1,300 1 ¥ 1 L] 1 ‘ 1 I L Ll 1 ' T 1 1 1

{111}

N(®)

L I I T T S —
1

0 | 30 0 60 90

Figure 6.3b. Number of {111} poles as a function of 8ate=2in an FC+AV
calculation.
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Figure 6.3c. Number of {111} poles as a function of 6 at €=1 in an
FC +CS calculation.
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Figure 6.3d. Number of {111} poles és a function of 8 at €=2 in an FC+CS
calculation.
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It is apparent from these results that our simulation of cross-slip reproduces
the experimental results associated with high temperature deformation quite
well in the case of extension. We now apply this model to the other deformation
paths of interest here, namely rolling and torsion.

VI.1.4. APPLICATION TO TORSION AND ROLLING

For the cases of torsion and rolling, both the FC and FC-RC models were
employed. The present selection criterion was introduced into these two models
and the results of such simulations were compared with the FC+ AV and FC-
RC+ AV predictions. It appeared that the FC-CS simulations were similar to
the FC-AV ones for torsion and rolling and so are not reproduced here. Similar
remarks apply to the FC-RC model. Nevertheless, the FC-RC results for
torsion to an equivalent strain of 5 are illustrated in Figure 6.4, in which the
predictions of the FC-RC +CS (cross-slip) and FC-RC+ AV models are
compared. Although the results are again similar, a slight increase in the B/B
component is produced by the CS model. It was shown by Tomé and co-workers
[125] that the average number of active slip systems in torsion is always less
than the number of imposed strain rate components. This has the effect of
reducing the extent of the ambiguities considerably, even in an FC model.
Furthermore, when ambiguities are present, the cross-slip selection criterion
does not always give a unique solution; as the average is taken in these cases,
the two models considered here lead to similar results. The same remark
applies to the case of rolling, and an example of the FC-RC +CS simulation
applied to this strain path is presented in Figure 6.5. At a strain of 1, a good
proportion of the grains still deform according to p=5 and the result is again
similar to the classical FC-RC + AV calculation.

These observations lead us to the following conclusions:
1) For the case of rolling and torsion, any model based on a selection
criterion in the presence of ambiguities (i.e. RW or CS) leads to results close to

those of the classical calculations.

ii) Some differences can be observed in tension (and compression, which
has not been presented here). This is because the region of the inverse pole
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Figure 6.4. Torsion textures predicted at a strain of £ =2 using two different
models a) FC-RC + AV and b) FC-RC+CS.
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Figure 6.5. Rolling texture predicted for an equivalent strain of 1 with the
FC-RC +CS model.

figure located around <110> involves many ambiguities and grains of such
orientations comprise an important proportion of a random texture.

iii) In the case of tension, the CS model gives results which are in good
agreement with experimental observations at elevated temperatures. But, as
such a model cannot account for the differences observed between low and high
temperatures for all the deformation paths, it does not seem suitable for
adoption as a general model to represent the ease of cross-slip.

For this reason, it was decided to simulate cross-slip by incorporating a
suitable hardening law into the classical models. The results obtained in this
way will now be reviewed.
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VI.2.INCORPORATION OF HARDENING LAWS
V1.2.1. THEORETICAL BASIS

The basic idea here is that the rate of change of the critical resolved shear
stress 1. is not the same for all slip systems. In latent hardening theories and
experiments, for example, it has been determined that, when a given system is
active, all the other slip systems harden more quickly than the active one
(except for a coplanar one which has approximately the same CRSS as the
active system). This is because a dislocation which wants to move on a
previously inactive system will necessarily meet one from active systems on
which the dislocation density is higher; it will thus be harder to cross an active
slip system than an inactive one [139,140].

In order to simulate the ease of cross-slip and to favor the activity of the
colinear slip systems, as in the Chin model, it can be assumed that the CRSS is
different for the active, colinear and "unrelated" (i.e. other than active or
colinear) systems in the following way: all the inactive systems are considered
to harden more than the active ones, except for the colinear ones, which have a
hardening rate less than or equal to that of the active systems. This can be
simulated by the incorporation of a hardening matrix H;; which relates the
CRSS and the shear rates on the active slip systems as follows:

C(trd) =T O+ D H, v dt (6.1)
J
Here tic(t +dt) represents the CRSS of system i after a time increment dt, tix(t)

is the CRSS of system i at instant t and H;j takes the following values:

Hii=1
Hij=1-a if i andj are colinear systems (6.2)
Hij=1+8 if iandjare notcolinear systems

where a and § are either positive or zero (isotropic hardening). In the case of
interest here, the condition a=0 and B#0 means that slip on the active and
colinear systems is equally easy (and easier than on the other systems),
whereas the condition a# 0 means that slip on the colinear systems is even
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easier than on the active ones, which may be less realistic than the previous
cases. Both conditions were nevertheless investigated for different values of the
a and P parameters. These hardening laws were incorporated into the FC and
FC-RC models. The active slip systems were determined with the aid of the
principle of minimum internal work rate (through the linear programming
technique), since the shape of the SCYS constantly changes because of the
variations in t.. The CRSS’s of the 24 slip systems were held constant during
each time increment and were updated at the end of each increment. In the FC-
RC model, the transition from the FC to the RC mode was performed as in the
previous calculation, i.e. on the basis of grain proportions. Calculations with
the two models were carried out in tension, torsion and rolling and the results
are presented below.

V1.2.2. THEORETICAL RESULTS OBTAINED WITH THE FC MODEL

First, the range of variation of the parameters a and § must be determined.
In order to do so, we first estimate the variation in 1, required by equation 6.1
by rewriting it as follows:

CE+dy=c @+ D> ydt+ D 0, —a,B)y de (6.3)
J J

In the FC model, Iy is equal to the Taylor factor M and varies between 1.732
(V'3) and 4.85 (2V6). For an increment of time dt equal to 0.025, the second
term involves an increase of 7.5% (for an average value of 3 for £y/) which is the
same for all slip systems. This is not a real increase but only arises from the use
of the coefficients Hj; as expressed by equation 6.2. This term does not produce
any texture variation compared to the classical model when v, is kept uniform
(this corresponds to isotropic hardening). The third term, however, is different
for every slip system because of the introduction of the coefficients a and §, and
this term characterizes the differences between slip systems. If i/ is equal to 3
and dt to 0.025, a (or B) equal to -0.13 (or 0.13) produces a relative decrease (or
increase) of about 1%, which seems a reasonable value for the first steps of
deformation. At large strains, the CRSS is assumed to remain constant.

a and  were varied in this way between 0 and -0.5 or +0.5 in the first 20
steps of deformation and were set equal to zero in the steps that follow.
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A first result of such a simulation is that somewhat different values of the
parameters give approximately the same results. Although specific
orientations can be found which produce changed behaviors for different values
of a and B, for a polycrystal composed of 800 orientations (initially distributed
randomly in Euler space), the deformation texture is about the same (on a
statistical basis) for different values of the two parameters. This is true for all
three deformation modes investigated. The results presented below are typical
and correspond to the case where a is equal to zero and p to -0.1.

It was also checked that, after the first deformation step, the number of
activated slip systems is nearly always 5, i.e. the ambiguities disappear almost
completely and the use of linear programming is thus justified. Except for the
first increment, the algorithm never chooses a random solution. In other words,
the extent of the ambiguities is less with this model than with the CS model
presented in section VI.1.

For the case of tension, the results obtained with this model are similar to
the predictions of the modified Chin model (section VI.1.3) and consequently
are not reproduced here. An increase in the {100} fibre (compared to the
FC+ AV model) is also predicted. We have simply added to Figure 6.1 the path
corresponding to the present model for the orientation treated in that figure.

The predicted torsion textures are presented in Figure 6.6 for equivalent
strains of 1, 3 and 5. In Figure 6.7, the FC+ AV and FC +HL ( hardening law)
models are compared for a strain of 3. In the last figure, two different
representations of {111} pole figures are shown. In the first, the individual {111}
poles associated with each grain are plotted, whereas in the second, density
lines are drawn. To calculate the density at every point of the pole figure, the
latter is divided into surface elements of equal area (in Euler space) and the
density is taken as the number of {111} poles located in one element divided by
the number found in a random texture (i.e. the total number of poles divided by
the total number of surface elements). Such a representation enables the
proportions of the texture components to be determined (especially when the
texture is very sharp and several poles are superimposed at the same place),
and also leads to plots which are suitable for comparison with experimental
pole figures.
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Torsion textures predicted
with the FC-HL model.
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Figure 6.7. Comparison of the torsion textures predicted by the FC-AV and
FC-HL models for a strain of £=3, a) and b) FC-AV model, ¢) and
d) FC-HL model.
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Whereas the FC + AV model predicts a strong A*/A partial fibre and a
partial {hkl}<110> (with a strong A and a strong C component but no B), the
FC+HL model predicts a strong A*/A partial fibre, and a complete
{100} <uvw> fibre as well as a complete {hkl}<110> fibre (including A/A, B/B
and C components) (see Figures 6.7a and c¢). The FC +HL prediction (Figure
6.7d) would be comparable to the experimental texture of copper deformed at
100°C (Figure 2.26b) if the A/A* present in the simulation were not so strong.
This component is usually the major FC component and is not found at high
strain levels. Thus the present result contradicts the theory advanced by
Leffers [(102] which states that when cross-slip takes place in a given material,
the deformation is fairly homogeneous within each grain, and every grain
deforms according to the FC mode. However, the results obtained with the
FC+HL model are interesting because of the increase in the B component,
which is characteristic of high temperature deformation.

We turn now to the case of rolling. Again the FC + HL model was used and
some simulated textures are presented in Figure 6.8 for an equivalent strain of
3. Unlike the cases of tension and torsion, the results obtained with the
FC+AV and FC+HL models are similar. In particular, it is impossible to
determine whether the brass component is stronger in the FC + HL calculation
or not. Looking carefully at Figures 6.8a and 6.8¢, it can be seen that a small
number of grains is located around the brass position with the FC + AV model.
However, it is difficult to determine whether these grains are approaching or
leaving the brass position. With the FC + HL model on the other hand, a very
small number of grains is located exactly at the brass position. This proportion
is too small to be seen on the iso-density lines of Figure 6.8d. It can be added,
however, that the near brass oriented grains in the FC-AV simulation are
typical of the spread due to the averaging technique. In the FC-HL simulation,
some grains do rotate towards the brass position. So, the small proportion of the
brass component observed in the two calculations is not thought to be due to the
same mechanism.



Figure 6.8. Rolling textures predicted for a strain of §=3, a) and b) FC-AV
model, ¢) and d) FC-HL model.
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VI1.2.3. THEORETICAL RESULTS OBTAINED WITH THE FC-RC MODEL

The FC-RC + AV and FC-RC + HL models are compared in Figures 6.9 and
6.10 for the case of torsion for strains of £=3 and 6. In Figure 6.10, the values of
the densities are plotted for the same strains. At the final strain of 6, the
FC+RC+AV texture is composed of a strong C component and a minor A/A
component. A* has disappeared almost completely and B is nearly absent. The
FC-RC +HL texture on the other hand, is still composed of a strong C
component, but the A/A, A* and B/B components are more visible than in the
other model. The FC texture seems to be retained to a larger deformation than
with the FC-RC+AV model. The increase in the B/B component, although
rather small, is again in good agreement with experimental observations.
Looking at Figure 2.26, where the final torsion textures for copper deformed at
different temperatures are displayed, it is apparent that the FC + HL texture
represented with density lines (Figure 6.10) is not very far from the
observations for a temperature around 100°C. The C component, however, is
still too strong.

Figure 6.11 illustrates the case of rolling for a strain of 3. The FC-RC+AV
and FC-RC+HL results are compared and, somewhat surprisingly, a
significant difference can be observed in this case (unlike with the FC model):
the brass component develops with the FC-RC +HL model, whereas it is
completely absent from the FC-RC + AV prediction. Again here it remains very
weak. This could be due to the parameters selected or to the fact that the
hardening law used remains very simple and approximate. Nevertheless, the
FC-RC+HL model seems to be in better agreement with high temperature
results than the FC-RC model.

V1.3. DISCUSSION AND CONCLUSIONS

Two different models have been used in this chapter to simulate the ease of
cross-slip. In comparison with the results obtained from the classical FC and
FC-RC theories, these models lead to little or no difference in the predicted
textures. However, whenever a difference is observed, the predicted texture is
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Figure 6.9. Torsion textures predicted at different strains, a) FC-RC+ AV,
ERE& b) FC-RC+AV, £§=6, ¢) FC-RC+HL, §=3 and d) FC-
+HL, £=6.
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Figure 6.10. The torsion textures of Figure 6.9 represented with density
lines. a) FC-RC+AV, §=3, b) FC-RC+AV, §=6, ¢) FC-
RC+HL, £=3,and d) FC-RC + HL, £=6. Note the development
of the B component with the FC-RC + HL model.
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Figure 6.11.
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in better agreement with the experimental observations associated with high
temperature deformation.

The first model (CS) leads to smaller differences than the second (HL). This

is due to the larger number of ambiguities present and the effect of the
averaging technique in such cases. However, the two models lead to the same

predicted texture in the case of tension.
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The two models are both related to the presence of ambiguities. This is clear
for the first approach, in which a selection criterion operates. In the second, the
allowance for differences in t. has the effect of changing the shape of the SCYS
in the following way: the 6 or 8-fold vertices are split into vertices associated
with only 5 slip systems. This can be interpretéd as an indirect way of selecting
a single combination among the available ones. The edges are less affected by
this procedure, because of the smaller number of planes intersecting an edge.
Only the stress states are changed appreciably.

Ambiguities are present in a large proportion of the grains in the case of
tension. The region around <110> represented by dashed lines on Figure 6.1
involves ambiguities. Thus, by introducing selection criteria, the texture can be
modified. This is as true for the cross-slip criterion as for the RW procedure
examined in Chapter V. However, in torsion and rolling, the extent of the
ambiguities is reduced even in the FC model. This is why the two cross-slip
models do not change the textures predicted in torsion and rolling by a
significant amount.

Although the number of ambiguities is reduced in the RC model, the
remaining ones affect a small proportion of the grains in torsion and rolling
and, consequently, some differences are observed between the predictions of the
FC-RC+ AV and FC-RC + HL models. The extent of the ambiguities is not only
determined by the number of combinations displayed in Tables 5.1-5.4 and the
orientations of the grains, but is also affected by the deformation path (i.e.
whether this is tension, rolling or torsion).

The main conclusion of this chapter is that the observed differences, though
small, are in good agreement with experimental results in tension, torsion and
rolling. This is also what was expected from the introduction of the hardening
parameters. It has already been pointed out by others that latent hardening
also has only a secondary effect on texture prediction [139] and that different
hardening laws lead in general to similar predictions [156].

Moreover, cross-slip is not expected to be the only reason for the differences
observed between experimental observations at low and high temperatures.
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The limited influence on the deformation textures predicted by our two models
therefore seems reasonable.

We turn now to another possible cause of difference: the activation of
different slip systems.



CHAPTER VII

THE ACTIVATION OF OTHER THAN
{111}<110> SLIP SYSTEMS

When the temperature is increased, the critical resolved shear stress of the
{111}<110> systems decreases. It is also possible that the CRSS of other slip
systems decreases sufficiently over the same interval that these become
activated. The most probable ones in fcc materials are the {100} <110>,
because the {100} planes are the most densely packed after the {111}. The
activation of these systems has in fact been observed at elevated temperatures
[152]. For this reason, it was decided to perform simulations using the classical
FC and FC-RC models by adding the {100}<110> systems to the 24
{111}<110>. For this purpose, a new SCYS was first derived. In this way, the
extent of the ambiguities present in such a case was determined, and the
average rotation calculated. It should be noted that, although linear
programming could have been used to avoid having to construct the new
polyhedron, nothing would then have been known about the ambiguities
(Section VII.1).

Slip on the {110} and {112} planes has also been reported in aluminium
deformed above 0.35 T, [159]. Slip on. planes other than the {111} was
interpreted in these cases in terms of cross-slip from a {111} to a {110} or {112}
plane, especially in the instances where all the {111} planes were equally
activated and where cross-slip from one {111} plane to another {111} plane was
not favored (Section VII.2). This is the case for most of the stable experimental
orientations in torsion and rolling, which is why the cross-slip models described
previously lead to such small texture differences. {100} <110> slip can also be
interpreted in terms of cross-slip, in this case from a given {111} plane to
another, resulting in apparent slip on a {100} plane.

The incorporation of other slip systems than the usual ones can therefore be

seen as another way of simulating differences in the ease of cross-slip in fcc
materials, even if the activation of these systems seems in itself unrealistic.
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Such a way of simulating cross-slip is preferable to the models developed by
Wierzbanowski [129] and Gangli and Arato [160], for example, in which only
the {111}<110> systems were considered, but in which a certain amount of
shear was added somewhat arbitrarily on a colinear system which was not
otherwise activated (in other words, the Schmid law was not respected for these
systems).

VIIL.1. THE ACTIVATION OF {100}<110> SYSTEMS

VIL.1.1. CONSTRUCTION OF THE COMPOSITE {111}+{100} YIELD
SURFACE

The 6 {100}<110> systems are listed in Table 7.1, together with the 24
{111}<110>. This table includes the coordinates of all the systems considered
in terms of the notation described in Appendix 2. It should first be noted that
the {100}<110> systems are not independent 5 by 5 (i.e. their first two
components are all equal to zero), which means that they cannot by themselves
accommodate any imposed strain rate vector. In order to be able to perform a
Bishop and Hill type of calculation (i.e using the principle of maximum work),
the possible stress states (the coordinates of the vertices of the yield surface)
have to be known. The method used to calculate these will now be described.

The characterization of the vertices of the 5 dimensional yield surface can be
done numerically by considering all the combinations of 5 out of 36 slip systems
(defined by Ni) and determining if there exists a solution to the following linear
problem:

o.Ni=1:: fori=1,5 (7.1)

o.N'< ti for theothers
Here o is normalized by the CRSS of the {111} <110> systems such that t;; =1
for the {111}<110> and 1.y =a for the {100} <110>. If the determinant of this

set of equations differs from zero, then the systems under consideration are
independent and it is possible to define a stress state that activates them. This
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ng,tﬁ-m pﬂ;pe ?ﬁlrp Coordinates of Nt
"] m b m; my m3 my | ms
113 | 111 | 011 | 12V3 | -12 0 | U2V3 | 12V3 |
214 | 111 | 101 |-12V3| -12 |12V3| 0 |12V3|
315 | 111 | 110 |-UV3 ]| o0 |12Vv3|-12V3| o0
4-16 111 011 |-1/2V3| 1/2 0 |-1/2V3| 12V3
5-17 111 101 |-1/2V3| -1/2 [-12V3| o0 [-1/2V3
6-18 | 111 | 110 |-1V3 ]| o0 [-1/2V3|-12V3| 0O
7-19 111 011 |-1/2V3| 1/2 0 1/2V3 | 1/2V3
8-20 111 101 |-17/2vV3| 12 |12Vv3| 0 |[-112V3
9-21 111 110 | -1/V3| 0 1/2V3 | 1/2V3| 0
10-22 111 01T | 1/2V3| -1/2 0 |-1/2V3| 1/2V3
11-23 111 101 |-1/2v3| -1/2 |-1/2V3| 0 1/2V3
12-24 111 170 | -1vV3| o0 [-12V3[12V3| 0
25-31 100 011 0 0 0 1/2 1/2
26-32 100 011 0 0 0 -1/2 1/2
27-33 010 101 0 0 1/2 0 1/2
28-34 010 10T 0 0 -1/2 0 1/2
29-35 001 110 0 0 1/2 1/2 0
30-36 001 110 0 0 -1/2 1/2 0
Table 7.1. Coordinates of the 36 slip systems associated with the

composite yield surface (notation described in Appendix 2).

implies a considerable amount of computing time and selection afterwards to
determine all the different stress states.

The computing time can be reduced if the method developed by Tomé and
Kocks [106] is used. They established a general procedure which takes into
consideration the symmetries of the single crystal. They then derived the
minimum number of slip systems and vertices required for a complete
description of the yield surface. Once a vertex is found by the computer, it is
automatically compared to the previously calculated vertices and, if it coincides
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with one of these (case in which more than 5 hyperplanes intersect at the same
point), the new slip systems associated with the vertex are added to the
previous ones. Once this numerical determination has been carried out, it is
possible to calculate analytically the coordinates of one of the vertices in each
symmetry group. This method is completely general, can be used for any
structure, and is very efficient when nothing is known a priori about the yield
surface.

In the present case, we decided to use another method (based on that of
Tomé and Kocks) which takes advantage of the detailed knowledge available of
the classical Bishop and Hill yield surface. This method is more elegant and
still reduces the computing time. All the vertices, 4th, 3rd and 2nd order edges of
the conventional BH yield surface were tabulated by Kocks et al. [105]. The
notation they used is specified in Tables 5.1 to 5.4 but they also listed the
activated systems and surrounding vertices associated with each edge.

With all this information available, we are now ready to derive analytically
the vertices of the new SCYS by determining where the planes associated with
the new systems, i.e. the {100} <110> ones, intersect the BH polyhedron. But
first, let us define the range of variation of a. The latter coefficient represents
1/V2 times the distance of a given {100}<110> plane from the origin of the
yield surface (when the stress states are normalized by t.;, the CRSS of the
{111}<110> systems). If a is such that none of the vertices of the BH yield
surface is eliminated by the addition of the new systems, the yield surface
remains unchanged and the new slip systems are never activated. Thus, every
stress state of the BH polyhedron which satisfies the relation:

Opy N/ >aq (7.2)
for at least one of the 12 {100} <110> systems (indexed j), lies outside the new
yield surface. The points of intersection can be located on the facets of this YS
(where only one {111} <110 > system is activated), or 6n the edges (where 2 to 6
are activated) or even at the vertices. They constitute new vertices if they
activate at least 5 independent systems. The case of the facets is eliminated
since it implies the activation of 4 {100}<110> systems, which are not

independent 4 by 4.
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Let us now consider the vertices of the BH polyhedron. To determine
whether or not these are retained by the cutting procedure, we calculated the
product oi. N for each of the 28 stress states oi of the BHYS and every NV vector
associated with each of the 6 (plus opposite) {100} <110> systems. The results
of this calculation are listed in Table 7.2. It can readily be seen that if a is
greater than V3, the new systems never intersect the BHYS. For a ranging
from V3 to V/3/2, some vertices are retained and others are eliminated by at
least one new system. For a less than V3/2, a completely new configuration
exists. However, we are not interested in this case because it would signify that
the {100}<110> systems are more easily activated than the {111}<110>,
which is unrealistic. We will therefore examine only the case where

V32 <a<V3 (7.3)

Looking at Table 7.2, it is evident that for this specific range of a, the type A
and E vertices still lie on the "dual” yield surface, whereas those of types B, C
and D are eliminated. Turning now to the edges, it can readily be determined
whether a particular edge is retained completely, only partly, or eliminated
entirely when the surface is cut by new planes. In this procedure, it is sufficient
to consider only one edge of each type because of the cubic symmetry. All the
other edges of the same type (i.e. 4A to 4H, 3A to 3G and 2A to 2E) can be
deduced from the first by applying symmetry operations. Furthermore, if a new
vertex is found on a particular edge, the vertices associated with the other
edges of the same group can also be found by applying the symmetry operations
to the first vertex.

Let us consider, as an example, a 4th order edge of type 4C, number 19. This
edge is defined by vertex numbers 4 and 8 (in the Kocks et al. notation). The
points along this edge can be expressed as

o= a104 + a208 (7.4)

with
°‘1+°2=1 and al,a220
Such points lie on the new YS if they satisfy the condition:

0.N' =« (7.5)

for each of the 12 {100} < 110> systems N/. Furthermore, if 0.N/ = a for at least
one new system, this point constitutes a vertex of the new YS, since 4 systems
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polyhedron and the 6 {100} <110> systems.

Vertex oi.Njfor the 28 vertices and the 6 new systems
no. i. (normalized by V3)
Group
oi.N25 | gi.N26 | gi.N27 | gi.N28 | gi.N29 | oi.N30
A 1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
B 4 1 0 1 0 1 0
5 1 0 0 1 0 1
6 0 1 1 0 0 -1
7 0 -1 0 -1 1 0
C 8 0 0 1 -1 1 -1
9 1 -1 0 0 1 1
10 1 1 1 1 0 0
D 11 1 0 1/2 1/2 1/2 1/2
12 -1 0 -1/2 -1/2 -1/2 -1/2
13 0 -1 -1/2 -1/2 1/2 1/2
14 0 1 1/2 1/2 -1/2 -1/2
15 1/2 1/2 1 0 1/2 -1/2
16 -1/2 -1/2 -1 0 -1/2 1/2
17 1/2 1/2 0 1 -1/2 1/2
18 -1/2 -1/2 0 -1 1/2 -1/2
19 1/2 ~1/2 1/2 -1/2 1 0
20 -1/2 1/2 -1/2 1/2 -1 0
21 | -1/2 2 | 12 | -12 0 -1
22 172 | =12 | -1/2 1/2 0 1
E 23 0 0 1/2 —-1/2 1/2 —-1/2
24 0 0 -1/2 1/2 -1/2 1/2
25 1/2 -1/2 0 0 1/2 1/2
26 -1/2 1/2 0 0 -1/2 -1/2
27 1/2 1/2 1/2 1/2 0 0
28 -1/2 -1/2 -1/2 -1/2 0 0
Table 7.2. Value of the product 0i.NJ for the 28 vertices of the BH
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are already activated at this particular point (provided also that the 5 systems
are independent). On the other hand, if 0.NV>a for at least one system, this
stress state is eliminated from the yield surface. From Table 7.2, it is readily
seen that the four scalar products 04 N27 o4 N29 o8 N27 and 08 N29 are greater
than a, which means that the present two vertices are eliminated in the
"cutting"” procedure by the two new systems, numbers 27 and 29. For each state

of stress lying on this edge, we can evaluate
(7.6)

o.NT = <1104.N2'7 + czzog.Nz'7 >a
which means that the entire edge, as well as all of the other edges of group 4C,
are eliminated in the new YS.

Repeating this procedure for all the different types of edges, we can say
without any further calculation and simply by looking at Table 7.2 as well as
the tables in reference [105], that the 4C, 4D, 4E, 4F, 3D, 3E and 2B edges do
not belong to the new yield surface and only the remaining edges need be
considered further. In this way, it can be shown that all of the type 4B and 3B
edges are retained. The other ones are only partly retained. We will thus look at
a representative example of each of the following groups: 4A, 4G, 4H, 3A, 3C,
3F, 3G, 2A, 2C, 2D and 2E, and determine the new vertices which lie on these
edges.

To do so, we take advantage of another property of the BH yield surface, i.e.
that each nth order edge is delimited by edges of higher order. For example, a
4th order edge constitutes a one dimensional space and is delimited by 2
vertices. (These are points in 5 dimensional space and thus have no dimension.)
This is represented schematically in Figure 7.1a. A 3rd order edge constitutes a
two dimensional surface and is delimited by 3 or 4 vertices defining 3 or 4 4th
order edges (see Figure 7.1b). Similarly, a 2nd order edge, surrounded by 5, 6 or
8 vertices, constitutes a 3 dimensional volume, whose faces are 3rd order edges
and whose edges are 4th order edges (see Figure 7.1¢). It is therefore possible to
consider only the 2nd order edges (more specifically one of each type), since they
include all the possible types of 3rd and 4th order edges, and determine on these
where the planes associated with the new systems intersect to create vertices.
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4A(1)
a) 4th order edge
ol a8
a8
g8
b) 3rd order edges 4A AF
4C
ol 44
9 4F
4B 4H o4
027 4C ol5
3A(1) 3D(40)
g8
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c) 2nd order edge : 2D(31)
o023

3E

o4 4E 048

Figure 7.1. Examples of edges of different types
(notation of Kocks et al. [1057).

The problem can in this way be reduced to the following. We consider a
particular 2nd order edge of the BHYS, defined by its connecting vertices and
edges, as well as its activated slip systems. We need to know which stress states
included in the volume of this edge are part of the new YS, and which ones
activate at least 5 independent slip systems so as to constitute a vertex?
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If 3 planes associated with the {100}<110> systems intersect at a point
within the volume defined by the edge, this point constitutes a vertex since 2
{111}<110> systems are already activated at this point; this situation
nevertheless requires that:

1) the 5 systems be independent, and that
2) the stress state considered satisfies the relation o.N/=a for all the
other {100}<110> systems.

If 2 planes intersect at a point of a 3rd order edge (a facet of the 2nd order
edge), this point is also a vertex, since 3 systems are already active at this point
(provided that the above 2 conditions are again fulfilled). The same holds if a
plane intersects a 4th order edge. The two conditions listed above have to be
checked every time a new vertex is being tested.

Let us now consider a specific example to describe the complete procedure.
Second order edge number 31 of type 2D is delimited by vertices 4, 8, 15, 23 and
48 in the notation of Kocks et al. [105] and is represented schematically in
Figure 7.1c, together with the associated edges of 3rd and 4th order. It is already
known that, among these different edges, only the 4G, 4H, 3F, 3G and 2D are
partly retained, the others being completely eliminated. We can thus examine
these edges one by one and establish the actual intersection points.

i) Edge 4G: This edge is delimited by vertices 8 and 23 and activates
systems 2, 8, 18 and 24. Every stress state lying on this edge is covered by:

o= cxlo8 + 02023 ' (7-7)
with

= =
a, +a, 1 and al,a2_0

Looking at Table 7.2, we can see that systems 27, 29, 34 and 36 intersect this
edge. Calculating the product 6.NJ for these 4 systems gives us:

0.N27 = \/3_(c11 + 02/2)
o N® = V3(a, +a,/2) (7.8)
o.N3 = \/-5-((11 + a2/2)

o.N36 = V3(a, +a,/2)
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If one of these products is equal to q, the corresponding stress state constitutes a
vertex of the new yield surface (provided that the independence of the systems
is satisfied). It is readily seen that for:

o=0"+B(0® -0 with p=2(1-a/V3) (7.9)
the 4 systems are critical and this point constitutes a vertex of the yield surface
associated with the 8 systems: 2, 18, 8, 24, 27,29, 34 and 36 (4 {111}<110> and
4 {100}<110> systems). This of course requires that a combination of 5
independent systems can be found among the 8, a matter which will be checked
later.

ii) Edge 4H: This edge is defined by vertices 48 and 23 and is associated
with the 5 slip systems 1, 2, 8, 16, and 18. Repeating the above procedure, we
find that the stress state:

o=o48+B(023-—o48) with p=2(1 —a/V3) (7.10)
activates the following 6 systems: 1, 2, 8, 16, 18 and 35 (i.e. 5 {111}<110> +1
{100}<110> systems).

iii) Edge 3G: Edge number 113 is delimited by vertices 8, 15 and 23 and
systems 2, 18 and 24. Every stress state lying on this edge can be represented
by:

o =0108+a2015+03023 (7.11)
with
al+a2+a3=1 and al,a2,<1320
We now calculate the product 0.N/ for systems 27, 29, 34 and 36, since only
these new systems intersect with edge 3G. The stress state o constitutes a
vertex if at least 2 of the 4 products are equal to a. The 4 inequalities involved
(expressing the fact that o lies on the yield surface) are

o.N2'7 = \/-3_(0.l +a, + 03/2) =a
o N® = \/3_(c11 +az/2)<a (7.12)
o.N¥ = \/33_(0.1 + a2/2+ a3/2)s a

o.N36 = \/33-(01 + a2/2+ a3/2) <aq
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The only possible solution is ag =0, which means that the point lies on edge 4G
and has already been found. Thus there is no new vertex within (and strictly
within) the triangle defined by vertices 8, 15 and 23.

iv) Edge 3F: This edge is defined by vertices 4, 15, 23 and 48 and
associated with systems 1, 2 and 18. We now repeat the procedure employed
above for edge 3G but carry it out twice for the two groups of vertices 4, 15, 48
and 4, 23, 48. In this case, we find a vertex fulfilling the condition:

o=0*+B(c® -0*) with p=2/V3(V3-a) (7.13)
It activates 3 {111}<110> systems (1, 2 and 18) and two {100}<110> systems
(27 and 29).

v) Edge 2D: To find the vertices located within edge 2D, we decompose
this edge into 2 separate volumes: one is delimited by vertices 4, 8, 15 and 48
and the other by vertices 8, 15, 23 and 48. Any stress state lying within the first
volume is described by:

o =a104+0208+a3015+ a3048 (7-14)
with

= >
a,+a,+a;+a, 1 and al,a2,03,a4_0

Systems 25, 27, 34, 29 and 36 intersect with this volume. Three of these have to
intersect at the same point to create a new vertex (since two systems are
already active on edge 2D). The set of inequalities to be satisfied is:

a, +a,/2+a,/2=< a/V3

al+<12+ a, +a4/2 <= a/Vv3

a, +a,/2sa/V3 (7.15)
al+o.2+ 03/2+c14 <a/V3

a,+a,/2 <a/V3
With the extra condition that Za; =1, this can be rewritten as:

1) 2a2+a +a422(1—a/\/1-3-)

3

b)) a, =2(1-a/V3)

(3) 2a, +a, < 20/V3 (7.16)
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(4) a322(1_a/\/'3')

5 2 a,+a; = 2a/V3

and can be solved geometrically, as shown in Figure 7.2. Only equations (7.16)
have been represented on this figure and it is evident that a point can be found
which satisfies at least 3 of these relations. This point does not, however, fulfill
the condition Za;=1 and therefore cannot be retained. As it was the only
possible point, there is no solution to the problem expressed by equation 7.16
and there is no new vertex in this volume.

A 4
3
e V4 I I —
4 5
2(1-/V3) f--mmmmmeeae |
N
0 - 20V
: //,2(1'(1/.\/?3_) 0,3
2av3,/ Py
ag

Figure 7.2. Geometrical solution of the set of equations 7.16. The point
M is the only one where at least 3 planes intersect. The bold
numbers refer to the equation numbers. At point M,
equations 2, 3, 4 and 5 are satisfied.

The above procedure can be repeated for one of each second order edge of
types 2A, 2C and 2E to enable all the vertices of the yield surface to be
determined analytically.
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VII.1.2. DESCRIPTION OF THE COMPOSITE {111} +{100} YIELD SURFACE

The procedure described above leads to the determination of the stress
states which activate at least 5 systems among the 36 available. It remains to
check if, among the 5, 6 or 8 found, it is possible to find 5 which are
independent. This has been done with the aid of a computer and it was thus
found that the new yield surface is composed of 93 vertices divided into 8
groups. These are defined in Table 7.3, which gives the vertices or edges of the

BH yield surface on which these new vertices are located, the number of
vertices in each group, as well as the number of combinations of 5 independent
systems associated with each vertex. Also included are the coordinates of one
representative of each group. The coordinates of the 93 vertices and the
associated systems are listed completely in Appendix 7.

It should be noted that for 21 vertices out of 93, the extent of the ambiguities
is expected to be large (32, 36 or 40 combinations are possible), whereas for the
72 others, there is only one possible combination of 5 independent slip systems.

We can now derive the 4th order edges, so as to have an idea of the
ambiguities present in an RC calculation. These edges were determined by the
method of Kocks et al. [105], i.e. by examining the connections between vertices
and testing whether these pairs activate at least four common slip systems. The
independence of the systems also has to be verified. A similar procedure was
used to determine the 3rd order edges and the results are presented in Tables
7.4 and 7.5. It can be seen that the composite YS comprises 288 4th order edges
associated with 672 combinations of 4 independent systems and 310 3rd order
edges associated with 364 combinations of 3 independent systems. The
complete list of the edges (the connecting vertices and the associated systems) is
also given in Appendix 7. The procedure described in this paragraph has also
been applied with success to the construction of a mixed yield surface for bec
materials [127].



BH No. of Coordinates of vertex gi as a function of a
Tvpe edge Types of slip No. of | Vertex | comb. of Norm
yP or planes vertices | index, i | 5 indep. of oi
vertex systems 01 g2 03 04 05
I 5A 8 {111} 3 32x3b -V3 -1 0 0 0 2
II 5E 8{111} 6 4 36x6b | V372 —3/2 V3 0 0 V6
m | 4A [4{111}+4{100}] 6 10 | 40x6b | aV3 | wV31 | 2a 0 0o | 217
IV | 4G [|4{111}+4{100}] 6 16 40x6b 3a | aVv33 2a 0 0 2.48
Vv 4H |5{111}+1{100}] 24 22 4x24b |[a-1.5V3|05-0/V3| 0 2a-V3 | V3 | 2.37
VI 3F |3{111}+2{100}| 24 46 1x24 | 2(a-V3) 0 20-V3 | 2a-V3 | V3 | 2.30
VII | 2A [2{(111}+3{100}| 12 70 1x12 a-V3 | aV31 a -a a 1.93
VIII | 2C |2{111}+3{100}] 12 82 1x12 a-V3 | a/Vv3-1 a a a 1.93
93a 936a
aPlus their opposites

bAmbiguities present

Table 7.3. Types of vertices making up the composite yield surface.

— 88T —
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o and Total

edge an ota

no. of . Types of Number |, mberof | Number of

A Types of slip .| of edges of comb. of 4
associated connecting . comb. of 4 | .
h planes h given independent
slip vertices tvpe systems systems
systems M per edge
(n)

4A(6) 6{111} I-I 12 15 12x12b
4B(4) 4{111} I-I0 6 1 1x6
4C(4) 4{111} o-Iv 6 1 1x6
4D(5) 5{111} I-v 24 5 4x24b
4E(6) 2{111}+4{100} | II-IV 12 15 13x12b
4F(4) 3{111}+1{100} m-v 24 1 1x24
4G(4) 2{111}+2{100} | II-vII 12 1 1x12
4H(4) 2{111}+2{100} | II-vIO 12 1 1x12
41(4) | 3{111}+1{100} IV-V 24 1 1x24
4J(4) 2{111}+2{100} | IV-VI 24 1 1x24
4K(5) 4{111}+1{100} V-v 12 5 4x12b
41.(4) 3{111}+1{100} V-VI 48 1 1x48
4M(4) | 2{111}+2{100} | VI-VIO 24 1 1x24
4AN(4) |2{111}+2{100} | VI-VII 24 1 1x24
40(4) | 1{111}+3{100} | vI-vio 24 1 1x24
Totals 288a 672a

aPlus their opposites. -

bAmbiguities present.

Table7.4. Number of combinations of four independent slip systems under
tetraslip (p=4) conditions in the composite yield surface.

VI.1.3. FC-RC PREDICTIONS FOR THE CASE OF DUPLEX SLIP

It was first checked that the extent of the ambiguities in terms of rotations
was very small in the case of torsion and rolling for both the FC and FC-RC
models. Whenever there were several solutions, however, the average rotation
was calculated. The influence of the parameter a was also investigated in the
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e,
edge an Number | Number of
ssoistod| TVESSSESD | comieciing |of dezmof somb ot?,
systems type systems
(n)
3A(3) 3{111} -I-III-V 24 1x24
3B(4) 4{111} [-II-1-0 3 4x3b
3C(4) 4{111} O-I-0I-V-V 12 4x12b
3D(3) 3{111} I-v-v-Vl 24 1x24
3E(3) 3{111} o-Iv-v 24 1x24
3F(4) 4{100} m-m-Iv-1v 3 4x3b
3G(3) 2{111}+1{100} | OI-IV-V-V 24 1x24
3H(3) | 1{111}+2{100} | OI-IV-VI-VII 48 1x48
Vi
31(3) 2{111}+1{100} | III-V-VI-VII 48 1x48
3J(3) 3{100} VII-VIII-VII- 4 1x4
VII-VII-VIII
3K(3) 2{111}+1{100} | V-V-VI-VI- 24 1x24
vl
3L(3) | 1{111}+2{100} | VI-vI-vIO 24 1x24
3M(3) 2{111}+1{100} IV-V-VI 48 1x48
Totals 310a 364a
aPlus their opposites.
bAmbiguities present.

Table7.5. Number of combinations of three independent slip systems
under trislip (p=3) conditions in the composite yield surface.

FC-RC calculations. It is worth noting that the value of a has no influence on
the FC predictions as long as a remains in the range defined above. Although it
affects the stress state, the activated slip systems remain the same. This is
illustrated in Figure 7.3, where a 2 dimensional section of a composite yield
surface is shown. For two different values of a, the stress vector is different, but
the active slip systems for a given strain rate vector épc remain the same;
consequently, the amount of shear on these systems (and in turn the rotation) is
the same. In an RC calculation, even if the vertices are associated with the



- 191 -

same systems for different values of a, a plane 04 =0 can cut the yield surface in
different places for different values of g, as also illustrated in Figure 7.3. So the
value of a does have an influence on FC-RC predictions.

g4=0 plane

Figure 7.3. A two dimensional section of a composite yield surface.
Variation of a=rt.9/t.1 does not affect the selection of the
active slip systems in the FC mode (0% ¢’ but épc =2&’pc) but
can affect selection in the RC mode (¢g¢c # £'rc).

The FC-RC predictions obtained in torsion are presented in Figure 7.4 for
a=1.5 and in Figure 7.5 for a=0.89. These two values are located at the two
extremes of the allowable range. For a=1.5, the {100}<110> systems cut the
BHYS only slightly, so that the predictions are close to the classical FC-FC
ones. The A/A, B/B and C components are present in the same proportions: C is
the strongest at large strains, followed by A/A, whereas B/B is almost absent.
For a=0.89, on the other hand, the {100} <110> systems have more influence
in the calculations and a new texture component appears: the {100}<010>
component, which activates equally two of the new systems. This component is
the equivalent of the C orientation for the {111}<110> systems.
Unfortunately, it is not observed at high temperatures. Moreover, introduction
of the {100}< 110> systems does not lead to an increase in the B/B component,
as can be seen from Figure 7.5.
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Figure 7.4. Torsion textures predicted using the FC-RC model with
{111}+{100}<110> slip. te(100y/Te(111)=1.5.
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Figure 7.5. Torsion textures predicted using the FC-RC model with
{111} +{100}<110> slip. te(100)/Te(111) =0.89.
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Figure 7.6 illustrates the FC-RC predictions obtained for the case of rolling
with a=1 for strains of 1 and 3. Here again the {100}<010> component is
present, together with the copper component. The results are very close to the
usual FC-RC predictions, the difference being the addition of the {100}<010>,
which is not observed experimentally at high temperatures. The brass
component is no stronger than before.

From these figures, it can be seen that the introduction of {100} <110> slip
does not lead to the observed high temperature deformation textures. It was
thus decided to simulate the addition of the {110}<110> and {112}<110>
systems as well, since cross-slip has also been observed on these planes.

VIL2. ACTIVATION OF THE {110} +{112}<110> SYSTEMS

The incorporation of these systems is based on the experimental
observations of Le Hazif et al. [161]. These authors reported that slip on the
{110} and {112} planes is possible in fcc materials under some conditions. They
compressed single crystals of Ag, Al, Au, Cu and Ni with a {100} axis parallel to
the compression axis in each case. They then determined the temperatures T
under which only the {111} planes were active and the temperatures T above
which only the {110} planes were active. They also found that there was a
nearly linear relationship between Ti (or Tg) and 1/y (the SFE). They
interpreted their observations in terms of cross-slip from {111} to {110} planes
and defined a critical resolved shear stress for cross-slip which is strongly
dependent on the temperature, especially for the two types of slip plane quoted
above.

They proposed the following mechanism to account for their observations:
for the particular orientation studied, deformation takes place, in the early
stages, by an equal amount of slip on the 4 {111} planes. Since all the {111} are
primary planes and dislocations are equally hindered on all of them, nothing
would be gained by cross-slipping from one to another. The deformation can
only be continued if the dislocations are able to escape onto {110} planes. Then,
the glide may be stabilized on the latter by the creation of stable stacking faults
on these planes. Their T1 and Tg temperatures for aluminum were 77 and
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Figure 7.6. Rolling textures predicted using the FC-RC model with
{111} +{100}<110> slip. te(100)/Tc(111)=1.
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267°C, respectively. It can be argued that these are unreasonably low, but it
must be borne in mind that they were determined for very specific orientations.
For an untextured material, the equivalent average temperatures for all
possible orientations can be assumed to be higher. Cross-slip from the {111} to
the {112} planes was also given the same interpretation [159].

It was thus decided to simulate such a cross-slip situation by simply adding
the {110}<110> and {112} <110> systems to the classical {111}<110> ones.
In terms of the model proposed above, this neglects the first stages of
deformation, when slip only occurs on the {111} planes. There are 6
{110}<110> systems (plus their opposites), but these systems have to be
grouped into 3 pairs. For example, systems (110)[110] and (110)[110] constitute
one pair, since any strain rate vector which can be accommodated by a given
shear rate on one of them can also be accommodated by the same shear rate on
the other. In other words, when the components of the vectors N°® associated
with each of the systems are written in the 5 dimensional notation described in
Appendix 2, it is readily seen that the two vectors coincide, just as the
{111}<110> systems in fcc materials and the {110}<111> systems in bcc
materials correspond to the same yield surface. Consequently, it is sufficient to
consider only 3 {110}<110> systems plus their opposites. However, the
activation of one or the other of the two {110}<110> systems of a given pair
will not lead to the same lattice rotation [162]; it was therefore assumed as a
first approximation that the shear rate on each member of the pair is half the
total shear rate on the pair. The other systems which were considered are the
{112}<110> and there are 12 of these (plus their opposites).

The new yield surface considered here corresponds to 3 families of slip
systems, which have 3 different values of <, t¢1 for the {111}, T2 for the {110},
and 1.3 for the {112}. As the experimental observations described above do not
allow us to differentiate between tc2 and t.3, we first assume that these two
quantities are equal but different from t.;. Three extreme cases can be
considered:

i) tc1 =1 and te2 =13 =10, which is the case when only {111}<110> slip
is possible (below T1). This case has already been treated above.
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ii) te1 =Te2=Tc3=1, where the three types of systems are equally favored
(T1<T<Tyg), and

iii) 1.1 =10, T2 =13 =1, where the cross-slip systems are favored over the
conventional slip systems. This corresponds to the temperature range
above Ta.

Cases (ii) and (iii) were tested in torsion and rolling with the FC-RC model
using the linear programming technique. Figure 7.7 illustrates the extreme
case where t.1 =10 and t.2 =13 =1 for torsion up to strains of 4 and 6 (case iii);
Figure 7.8 illustrates the same conditions for rolling (for strains of 1 and 3). It
can be seen from Figure 7.7 that the torsion textures at €=4 and 6 are similar
and that 2 main texture components can be identified: a strong C and a strong
near B/B. The fact that the latter orientation is not exactly B/B may be due to
the assumption made concerning the distribution of the shears on the
{110}<110> systems. However, the textures obtained are in reasonably good
agreement with high temperature results. ' '

Looking now at Figure 7.8, it can be seen that the main texture component
at large strains is the brass orientation and there is also some spread around
the Goss position. We obtain in this case something which is similar to the
brass texture, which corresponds to the trends observed at high temperatures.
Figures 7.9 and 7.10 illustrate the condition t¢; =tc2=tc3=1, which
corresponds to the temperature range between T1 and T (case ii). The textures
obtained for torsion in this case are similar to the ones predicted by the classical
model when only the {111}<110> systems are operating (i.e. there is no B/B
component). By contrast, in the rolling predictions, the brass component is still
present, particularly at the larger strain,

VIL.3. CONCLUSIONS

In this chapter, the possibility of having more slip systems than the usual
{111}<110> systems was investigated. This was motivated by two different
lines of reasoning:
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Figure 7.10. Rolling textures predicted using the FC-RC model with slip on the
{111} +{110} + {112} planes. T¢(111) =Te(110) = Te(112) = 1.
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i) The first is that new systems can become active when the temperature
is increased; the most probable ones are the {100} <110> systems.

ii) The second is that extensive cross-slip on {110}<110> and
{112} <110> systems can take place in fcc metals at high temperatures.

These two approaches, although motivated by different reasons, have been
treated in the same way, i.e. by adding the new systems to the usual ones. The
simulations were restricted to rolling and torsion. From these results the
following conclusions can be drawn:

i) The addition of {100}<110> systems does not reproduce the trends
observed at high temperatures. This part of the work has allowed us, however,
to develop a new method (based on the one proposed by Tomé and Kocks [106])
to derive a composite YS from one which is already known.

ii) The addition of the cross-slip systems, on the other hand, produces the
trends observed for high temperature deformation. It should be noted, however,
that the cross-slip systems were considered as ordinary slip systems in this
chapter, which is only an approximation. A more suitable way of simulating
such mechanisms would be to consider a hardening law which takes into
account the cross-slip capabilities of these systems. Such an approach would, of
course, require more experimental data than were available, which is why it
was not investigated here. We turn now to the last parameter which can
influence texture formation at high temperatures: the grain boundary energy.



CHAPTER VIII

THE INFLUENCE OF DYNAMIC RECOVERY

In order to account for the influence of the temperature of deformation, we
have so far added the following “mechanisms” to the classical prediction
models: (i) the RW criterion of minimization of work hardening rate; (ii) the
simulation of cross-slip; and (iii) the activation of additional slip systems. All
these expanded models were based on the same idea, i.e. that an increase in the
temperature modifies the microscopic hardening law of the material either by
modifying the value of the critical resolved shear stress on different families of
slip systems or by affecting the evolution of the CRSS with strain. But in all the
previous chapters, the deformation mode (i.e. FC or RC) was the same as for low
temperature deformation and the transition from the FC to the RC mode was
only based on grain shape arguments. We must now ask a further question: is
the evolution of grain shape similar at low and high temperatures? If the
"~ answer is no, we must then modify the “deformation mode” for the polycrystal
deformed at high temperature. It is well known that the elevated temperature
form of dynamic recovery produces an essentially equiaxed substructure; before
describing the model conceived to account for this effect, we will first describe
the main features of the dynamic recovery process.

VIII.1. THE BASIC MECHANISMS INVOLVED IN DYNAMIC
RECOVERY

VII.1.1. DESCRIPTION OF RECOVERY

Recovery is usually described as a process in which the density of atomic
defects such as dislocations is gradually reduced. This reduction occurs locally
by the annihilation of pairs of dislocations and not on a massive scale, as during
recrystallization. Such annihilation is rendered possible by the fact that
dislocations can glide and climb to rearrange themselves into more stable
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configurations. Climb is a thermally activated process and thus takes place
during or after hot deformation.

The process of rearrangement into stable configurations is often called
polygonization and is generally observed in high SFE materials such as
aluminum. To illustrate this mechanism, a single crystal is deformed by
bending (the orientation is such that only one slip system is active), as shown in
Figure 8.1a [163]. The first stage of recovery (Figure 8.1b) consists of the
elimination of dislocations of opposite signs. After this stage, only dislocations
of the same sign remain and are homogeneously distributed. In the second
stage of recovery (e.g. at higher temperatures), these dislocations rearrange
themselves into walls normal to the slip direction and slip plane (Figure 8.1¢);
here the driving force is the minimization of the boundary energy. Finally, a
third stage can also occur, in which the subgrain size increases by wall
coalescence to further minimize the boundary energy (Figure 8.1d).

When the deformation is accommodated by slip on several systems (which is
usually the case), the situation is more complex, but similar mechanisms are
involved, i.e. the climb of dislocations, rearrangement into walls and formation
of an equiaxed substructure. During this process of polygonization, no high
angle boundary migration is observed [163], whereas the migration of low
angle boundaries can take place, although this possibility is not universally
recognized. For example, Exell and Warrington [164] claim that the migration
of low angle boundaries contributes significantly to the total strain, whereas
McQueen and Jonas [165] attribute as little as 6% of the total strain to this
phenomenon.

An important consequence of the recovery process is the presence of an
equiaxed substructure, even at very large deformations. For example, Wong et
al. [166] observed such structures at extrusion strains of up to 2000% in
aluminum. (Their material was the same as the one tested in the present work
and described in Chapter IV.) Because of the simultaneous occurrence of
polygonization and low angle boundary migration (or polygonization and
boundary coalescence), the deformation substructure remains stable in size and
shape, although the grains themselves follow the shape change of the sample as
a whole.
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Figure 8.1. Illustration of steps in the polygonization process [163].

Another important aspect of recovery is that the rearrangement of
dislocations takes place in order to minimize the sub-boundary energy. To
better interpret this last observation, we now have to introduce the concept of
coincidence sites.
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VIIL.1.2. THE COINCIDENCE SITE MODEL

The free energy of a given boundary is generally assumed to depend on the
misorientation across the boundary (i.e. on the orientation difference between
the adjacent grains or subgrains) and on the orientation of the plane in which
the boundary lies. This leads to a total of 5 orientation parameters which can
affect the energy: 2 angles to specify the position of the rotation axis, one
rotation angle (these 3 describe the rotation to go from the orientation of the
first grain to that of the second), and two further angles which describe the
orientation of the boundary plane itself. Generally, not all of these parameters
are used to describe the free energy of the boundary. It is common, for example,
to specify the rotation axis, to ignore the orientation of the boundary plane, and
to represent the energy as a function of the rotation (or misorientation) angle
only.

Extensive experimental work on small and large angle boundaries has been
carried out and the results of this research can be represented on the schematic
diagram shown in Figure 8.2. The first part of the curve corresponds to low
angle boundaries and extensive work in this area has been published by Read
and Shockley [167]. The second part of the diagram is associated with high
angle boundaries. For these boundaries, the energy is usually measured as
being almost constant, except for special values of the angle of rotation where a
cusp is seen on the curve. These special boundaries not only exhibit a lower
energy but are often associated with high mobility and play an important role
in the growth theory of annealing textures (see Chapter II).

The presence of special orientation relationships can be interpreted in terms
of the coincidence site lattice (CSL) model due to Bollmann [168]. This model is
based on the observation that, for specific axes and angles of misorientation,
two grains separated by a boundary possess a number of lattice sites in
common. The energy of such a boundary will depend on the reciprocal density of
common lattice points in the two grains (denoted Z) as well as on the reciprocal
density of common lattice points in the boundary itself (denoted o). The
simplest coincidence boundary is the twin boundary, for which Z is equal to 3;
but coincidence boundaries exist for all odd values of £. Any coincidence
relationship can also be expressed by an axis-angle pair; in the cubic system,



- 207 -

AGrain boundary

free energy 1. low angle boundaries
(arbitrary units) 2. high angle boundaries
1 2

>
27.8 382 46.8 60.0 0,angleofrotation around <111>

(1) 13 (M a9 @) (2)

Figure 8.2. Schematicillustration of the dependence of grain boundary energy
on angle of rotation around any <111> axis in cubic metals.

there are 24 different axis-angle pairs, corresponding to the 24 symmetry
elements of the cubic system [169,170].

Brandon et al. [169] listed all the coincidence sites found in cubic crystals
(for Z less than 19). Their results are reproduced in Table 8.1. The properties of
such boundaries can be described as follows:

i) the lower the Z, the lower the energy;

ii) if the boundary lies in the most densely packed planes of the
coincidence lattice (i.e. the lattice formed by the common sites only), the
mobility of the boundary is the lowest. This applies, for example, to the
coherent twin boundary [171]. At orientation differences slightly
removed from coincidence, the mobility of the boundary can be very high,
a property which is of importance in the growth theory of annealing
texture formation, as already indicated above.
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Axis of Coincidence Site Axis of Coincidence Site
rotation > o) rotation 5 )
100 5 36.9 311 3 1464
13a 22.6 : 5 154.2
17a | 28.1 9 67.1
110 3 70.5 11 180
9 38.9 15 50.7
11 50.5 15 117.9
17b 86.6 320 7 149
19a 26.5 11 100.5
111 3 60 13a 180
7 38.2 17b 121.9
13b 27.8 19b 71.6
19b 46.8 321 7 180
210 3 131.8 9 123.7
5 180 15 150.1
7 73.4 322 9 152.7
9 96.4 13a 107.9
15 48.2 17b 180
211 3 180 331 5 95.7
5 101.6 7 110.9
7 135.6 11 82.1
11 63 17b 63.8
15 78.5 ' 19a 180
221 5 143.2 410 9 152.7
9 90 13b 107.9
9 180 17a 180
13b | 112.6 411 9 180
17b . 61.9 11 129.6
310 5 180 17a 93.4
7 115.4 19b 153.5
11 141.9
13b 76.7
19a | 93
Table 8.1. Coincidence site relationships for the cubic lattice and

for T less than 20, where I is the reciprocal density of
common points and w is the least angle of rotation. The
indices a and b correspond to the same value of Z but to
different most densely packed planes for the
coincidence lattice. The italic numbers are the ones
taken into account in our simulations [169].
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VII.1.3. EXPERIMENTAL OBSERVATIONS

It was mentioned above that polygonization occurs during annealing or
deformation (at high temperatures). During annealing, the average
misorientation between subgrains is generally low (1 or 2°) and remain
approximately constant with annealing time. This results from the
superimposition of two processes: (i) an increase due to glide and climb; and (ii)
a decrease due to energy minimization [172,173]. However, during
deformation, some relatively large polygonization angles (greater than 15°)
have been observed, especially in pure metals [174-176]. It is even possible that,
once a given grain has been split into subgrains, the initially close orientations
transform into distinctly different ones because of the imposed deformation (see
Section VIII.4.3 below). The low angle boundaries are gradually transformed
into high angle boundaries and the energy minimization process then tends to
produce coincidence sites.

Of the coincidence site relationships listed in Table 8.1, not all are in fact
observed in cubic materials. Some have been reported in annealed, as well as
cold and hot worked metals. For example, Schnell and Griwe [177] identified
£ =3 boundaries in cold worked and annealed copper. Lim and Raj [178]
deduced the presence of £=3 and £=11 boundaries in annealed and deformed
aluminum and £=3, 9 and 27 boundaries in nickel (these specific values are
considered to be due to twinning). Finally, Dahms et al. [179] observed a high
proportion of £ =3 boundaries in annealed AIMn alloys, which also had high
mobility. In most cases though, no mention of the boundary orientation was
given.

The experimental observations reported here show that dynamic recovery
not only leads to an equiaxed substructure, but also produces a large number of
special boundaries. These can be of the low (due to recovery only) or high (due to
recovery and deformation) angle types. We are now ready to describe in detail
how these features of recovery can be modelled: i.e. the climb of dislocations,
which produces an equiaxed substructure in order to minimize the sub-
boundary or grain boundary energy.
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VIII.2. DESCRIPTION OF THE MODEL
VIII.2.1. INTERPRETATION OF DYNAMIC RECOVERY
The following steps will be considered in the present model:

i) The smallest entity to be associated with a particular orientation is not
the grain but the subgrain. These subgrains can be separated by low angle
boundaries as well as by high angle boundaries (coincidence sites). In both
cases, the misorientation can lead to very large stress discontinuities; these are
inadmissible even in the framework of the FC model, where stress
discontinuities are assumed to be accommodated by elastic stresses.

ii) The stress discontinuities are assumed to be due to one of two different
causes:

- —For a stable orientation, the strain rate vector generally lies at the

edge of the cone of normals of several vertices. In this case, a small
deviation from the stable position can produce two slightly different
orientations, which will eventually activate two neighboring vertices
and in this way give rise to high stress discontinuities.
—For a stable high angle boundary (i.e. a coincidence site), some of the
stress components are continuous across the boundary and some are not.
This is the case for the B/B pair of orientations in torsion, which are
separated by a £Z=3 boundary. For this orientation, the only one found in
aluminum at high temperatures, the stress components’ calculated with
the FC model are:

oB=(Q,0,—2,O,\f2—) (8.1)

0§= (0; 01 _2’ 0; —\/-2-)

+ The components are expressed in terms of the notation described in

Appendix 2. The last 3 terms represent the shear stresses:
03=V20gz=—2, 04=V20grz=0 and 05=V 20rg= £ V2 (in units of t¢). In
the B and B cases, 6 vertices are activated simultaneously; accordingly,
the stress state is ambiguous, and the vectors listed in relation 8.1
represent the average values.
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In the classical RC model for torsion, according to which o4=013=0, the stress
vectors have exactly the same components. However, it can be seen that there is
a very high 019 shear stress, almost as large as the torsion shear stress o23. It
seems unrealistic then to assume that this pair of grains or subgrains deforms
according to the FC or RC model used at low temperatures. It is more likely,
instead, that the two orientations deform according to another RC model, i.e.
one in which 012 is set equal to zero. In such a case, even with a large
orientation difference between the two grains, the continuity of stress is
respected.

A consequence of assuming this special deformation mode is that it leads to
a strain 12 which could produce large displacements and thus create voids in
the material. We prefer to think here in terms of the cooperative deformation
described by Van Houtte [128], in which neighboring grains are submitted to
opposite shear strain rates, but in which the overall shear rate for the pair has a
zero average value. Moreover, if such cooperative deformation takes placeinan
equiaxed substructure, it leads to smaller displacements than in an elongated

structure.

iii) In the first stages of deformation, a given grain corresponds to a
single orientation. But very soon (i.e. once several slip systems become active,
which corresponds to the end of the first increment in a purely plastic model),
the climb of dislocations takes place, resulting in small misorientations in
every grain. As a first approximation, each grain is simply divided into two
subgrains, the rotation axis being taken as parallel ton X b, where n and b are
the slip plane normal and slip direction of the most active slip system (see
Figures 8.1 and 8.3). In the case where two systems are equally active, the
rotation axis is the arithmetic average of the two n Xb vectors. For most stable
orientations (i.e. at large strains), this results in the formation of sub-
boundaries perpendicular to the largest boundary of the initial grain.
Consequently, compatibility is still satisfied accross this boundary on an
average basis. This approximation (i.e. the fact that each grain is split into just
two orientations) is only employed for convenience here, but several other
- subgrains can be added, if necessary. This would, however, increase the
computing time. The angle of misorientation ag is taken as a variable in the
model and its magnitude is linked to the ease of climb in a given material.



- 212 —

>

—
n
. . -ag +agp . .
OrientationI Orientation IT
-
b
axXp®

= ~

T 2%\(\ ® nxb
%f%/
_l/

-
-
-

I I I I

Figure 8.3. The effect of polygonization. Under the action of climb,
a grain is split into two subgrains by a rotation around
the axis n Xb of the most active slip system.

iv) Such pairs of orientations, although very close at the beginning of
deformation, can rotate towards different orientations under the sole action of
slip. This can, in turn, lead to high stress discontinuities, which is why it is
necessary to treat the two subgrains simultaneously. For this purpose, two
parameters have to be minimized:

— some stress component differences;
— the sub-boundary energy (in order to introduce the effect of climb).
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Minimizing a stress difference means that, whenever this difference
becomes higher than an acceptable limit, the corresponding strain rate
component is relaxed in each of the two subgrains. Then, once the deformation
mode is set up, the shear rates are calculated in such a way that the grain
boundary energy is minimized. It will be seen below that the change in grain
boundary energy depends only on the shear rates. However, this energy can
only be minimized in the presence of ambiguities. It is thus a second order
effect, but it will be seen that its influence on texture development is not
negligible.

A choice now has to be made which concerns the stress components for
which the differences are minimized. These depend on the deformation mode,
just as the choice of the non-imposed strain rate components depends on the
grain shape in the RC model. Some grain shape arguments have been used
here, but in the present case, the subgrain is assumed to remain equiaxed.
From the work of Tiem et al. [157], it can be seen that, for an equiaxed grain
deformed in rolling, the lowest interaction coefficients are associated with the
components £13, €23 and €12. This means that, if these components are relaxed
(i.e. non-zero), the corresponding reaction stresses will not be too high.
Moreover, whereas the three components do not have the same interaction
coefficients in an elongated grain, they become equivalent in an equiaxed
subgrain. By contrast, the normal components are not relaxed, but are
constrained to remain equal to the macroscopic quantities. Similarly, in
torsion, in order to assure partial stress continuity, two shear components are
permitted to differ from the macroscopic ones. These strain rate components are
the £12 and €13 shear rates. Note that in the RC model adapted for torsion, only
¢13 is allowed to differ from its macroscopic equivalent. Again here, in an
equiaxed substructure, the two shear rates have equal interaction coefficients.

The last thing to consider before describing the simulation concerns the
grain boundary energy. It was seen in the previous paragraph that not all the
coincidence sites typical of cubic structures are observed in the cubic metals.
We therefore decided to take into account only the ones found in pure
aluminum and copper, i.e. the £ =1 (low angle) and £ =3 boundaries. The £=11
boundaries sometimes detected in aluminum, as well as other boundaries with
higher values of Z, could be added to the model, if desired, at a later stage.
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VIII.2.2. METHOD OF SIMULATION
The different steps of the program that was devised are the following:

i) Every grain (only one orientation at this stage) is given an FC
deformation step. Once the active slip systems are selected, the nXb vector
associated with the most active system is determined and each grain is split
into two orientations (ag=1° for example), as illustrated in Figure 8.3.

ii) For each further step of deformation, the stress vectors o(1) and o(2)
associated with the two subgrains are calculated according to the FC model. For
the case of rolling, the following stress differences are evaluated

Ao, = |03(1) - 03(2)|
o, =lo,(1) - 0,(2)] (8.2)

Ao, =0, (1) - 0,(2)]
and compared with 3 "tolerance" values, T3,T4 and T5 (Only T4 and Ts,
calculated in the grain axes, are considered in the case of torsion). Whenever
one of these stress differences is higher than the corresponding admissible
value, the associated strain rate component is relaxed in the two subgrains and
the new stress states and activated slip systems are determined.

* iii) In the presence of ambiguities, the shear rates are calculated from
the minimization of the grain boundary energy, as described in Appendix 8.

iv) At every step, the misorientation between adjacent subgrains is
calculated; whenever it decreases below a given value, ap;n, (Which means that
the sub-boundary is disappearing), the grain is again split into two different
subgrains, according to the rule employed in step i).

In this model, different pairs of subgrains deform according to different
modes (FC or various types of RC). For example, a B/B pair of orientations in
torsion deforms according to a p=4 mode (only the £12 component is relaxed in
the two subgrains), whereas an A/A pair of orientations deforms according to
the FC mode, since the stresses 012 and 033 are zero in this case. When a given
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stress difference exceeds the set limit, the associated strain rate component is
relaxed. In most cases (especially for stable orientations), the average strain
rate component in the grain (i.e. the average for the two subgrains) is small
(zero in the case of B/B), and thus large discontinuities of displacement are
avoided between grains.

It should be noted that when grain boundary energy minimization is
neglected, this model approaches the cluster model [156], i.e. the stress
differences between neighboring grains are minimized. In the latter, however,
instead of using only two orientations, twelve are considered (which can be very
different, even at the beginning of deformation); also, whenever a stress
component departs appreciably from the corresponding average pertaining to
the twelve neighbors, the component is adjusted instead of being set equal to
zero. This procedure avoids the appearance of large discontinuities in stress
from one increment to the next, but leads to the same selection of systems,
given the assumption that, the average stress state of the 12 grains is in most
cases close to the macroscopic one (i.e. the one for which the shear stress

component of interest is zero).
The parameters associated with this model will now be described.
VII1.2.3. PARAMETERS EMPLOYED IN THE MODEL

1) ag: This is the angle of splitting after the first step of deformation; its
magnitude indicates the ease of climb in the material tested. Values higher
than 3 degrees seem unrealistic. To account for differences in SFE and ease of
climb, it is also possible to introduce the splitting of the grains at a later stage
of deformation. We have treated here only the extreme case where climb plays a
significant role at the beginning of deformation (i.e. for very high SFE metals).
For low SFE materials, the calculation could begin according to the classical
FC-RC model; then, after a suitable amount of strain, the grains can be split
and the stress continuity and GBE minimization criteria superimposed on the
classical grain shape arguments.

2) T3,T4,T5: These are the tolerance values for the stress differences. In
order to remain as faithful as possible to the room temperature RC model, these
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limits are given the following values: in rolling, T3=T4=0.2 (¢3 and &4 are the
two relaxed components in the RC model for room temperature), and T5=0.4>
T3 and T4 (85 is not relaxed at room temperature). In torsion, T4 is again
assumed to be less than T5, and values similar to those listed above for rolling
are assigned.

3) amin: This is the limiting angle for the misorientation a between
subgrains. Whenever a is smaller than an;s, an increment of "climb" is
performed. The introduction of this parameter permits the simulation of a
continuous climb process without having to introduce new subgrains at each
step. amin is usually taken as equal to ag (i.e. between 1 and 3°).

4) Z: This refers to the type of coincidence site, which varies somewhat
with the material. The choice involves two different considerations:

- First, we have to decide if we will take into account both low and high
angle boundaries, for example £=1 and 3, or just the high angle boundaries,
£=3. In the work described below, we have included both the low and the high
angle boundaries.

- Then, the selection (among the possible high angle coincidence sites)
depends on the material; for aluminum and copper, we have only employed the
£ =3 boundaries, which are found more frequently.

5) Another latitude inherent in the model is the option to consider only
stress differences or whether the grain boundary energy is also minimized.
Both options were studied, and will be presented below.

Before examining the results of these simulations, a word of warning must
be added: grain boundary energy minimization is only a first order calculation
and is consequently very approximate. It nevertheless has the advantage of
being readily solvable with the aid of linear programming, whereas a more
exact calculation would involve the minimization of a complex quadratic
function.
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VIIL3. SIMULATED ROLLING AND TORSION TEXTURES

The parameters ag, T3, T4 and T5 were varied systematically and found to
have little influence on the results. This generalization does not apply to a;in,
the angle below which "resplitting" of the grains is performed. An interesting
value for amin is 0, which means that climb takes place only at the very
beginning of the calculation. We will therefore consider the cases a.,;, =0 and
amin* Oseparately.

VIII.3.1. CLIMB OF DISLOCATIONS AT THE BEGINNING OF
DEFORMATION ONLY

In this case, the interaction between grains is modelled in terms of the
Taylor assumption, whereas the interaction between subgrains is always
related to stress discontinuities and the grain boundary energy. The latter
signifies that, if the misorientation remains small, the subgrains, and
consequently the grains, deform according to the FC mode. At the beginning of
deformation, as the grains are randomly oriented, and in general not near
stable orientations, the small deviations due to climb rarely create strong stress
discontinuities, and most of the grains simply deform according to the FC mode.
This is illustrated in Figure 8.4 for rolling (¢ =2), where two different cases are
considered:

a) only stress continuity is taken into account (referred to as the SC
model);

b) both stress continuity and GBE are taken into account (referred to as
SC +GBE).

The two textures illustrated are close to theé FC prediction, as expected;
however, some odd components appear due to the GBE minimization.
Moreover, the pole figures obtained do not fully respect the symmetry of the
process (see Figure 8.4b). This is due to the small number of subgrains
considered, and suggests that the misorientation produced by climb does not
only depend on the active slip systems, but also on the imposed deformation
mode. Although the textures predicted are not in particularly good agreement
with experimental observations, they are different enough to indicate that the
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Figure 8.4. Rolling textures at a strain of 2 simulated with:
a) the SC model (ag=3);
b) the SC + GBE model (ag=3 and Z=1 and 3).
In both cases, splitting of the grains because of climb only takes
place at the beginning of the deformation.

Figure 8.5.

Rolling texture simulated with the
SC model to a strain of 2. Splitting
of the grains only takes place at
E.he beginning of deformation
ap=1).
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effect of GBE minimization is not negligible. In particular, the proportion of the
brass component is slightly higher than when only stress continuity is taken
into consideration. The results presented in Figure 8.4 were obtained for ap=3.
In Figure 8.5, the case where only the stress continuity is taken into account is
presented for agp=1. The results are similar to those of the previous case, so, it
was decided to use ag=1 in the subsequent calculations. This choice also leads
to better agreement with experimental observations.

VHI.3.2. CONTINUOUS CLIMB

The parameters used in this case were the following: ap=anir=1,Z=1and
3,T3=T4=0.2 and T5=0.4 in the case of rolling and T4=0.2 and T5=0.4 in the
case of torsion. The results obtained for rolling to a strain of 2 are presented in
Figure 8.6 for: (i) the condition where only the stress continuity is considered
(8.6a); and (ii) where both the stress continuity and GBE minimization are
taken into account (8.6b). The brass component is present in both cases,
whereas it is absent from the classical FC-RC calculation; note also that the
brass orientation is more intense in the second case. These results are in good
agreement with experimental observations (see Figure 2.18). The reason for the
difference between the two calculations remains to be seen, however, and will
be investigated in the next section. Before taking up this topic, we will look at
the torsion textures predicted by these two models. These are presented in
Figure 8.7 for an equivalent strain of 4, and in Figure 8.8 for an equivalent
strain of 8. The results can be analyzed as follows:

i) Figure 8.7a: At £ =4, the first model (stress continuity only) produces a
texture which is close to the FC-RC result. This indicates that the proportion of
grains deforming according to the RC mode (because of stress differences) is
approximately the same as that produced by the grain shape criterion. The
small divergence between the present calculation and the usual FC-RC pole
figure is due to the relaxation of the second strain rate component in the

current case.

ii) Figure 8.7b: When the GBE is taken into consideration with £=1 and
3, the texture contains most of the FC features seen in the previous case. In the
early stages of the deformation, small angles boundaries (£X=1) are more
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Figure 8.6. Rolling textures (¢ =2) simulated with : a) the SC + continuous
climb model; b) the SC + GBE + continuous climb model. In both
cases, ag=amin=1.

numerous than large angle boundaries (£ =3) and GBE minimization tends to
keep the misorientations as close as possible to the Z=1 values (i.e. close to 0
degrees). Furthermore, as the grains have not yet reached stable positions

(which are critical for stress continuity), the grains remain longer in the FC

mode. It can also be seen that the B/B orientation begins to appear, although its
proportion is very small.

iii) Figure 8.8a: When stress continuity is employed to higher strains,
the texture adopts a strong {100} fibre, and includes some components which
are not usually observed. This may be due to the linear programming
technique, which performs a random choice in the presence of ambiguities,
although the extent of the ambiguities is known to be rather limited in this
case.
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s
Sense of shear

Figure 8.7. Torsion textures (€ =4) simulated with: a) the SC +continuous
climb model; b) the SC+ GBE + continuous climb model. In both
cases, ag=amin=1. .

Figure 8.8. Torsion textures (§=8) simulated with: a) the SC +continuous
climb model; b) the SC+ GBE + continuous climb model. In both
cases, a0=amin=1.
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iv) Figure 8.8b: When GBE minimization is taken into account, it
produces a strengthening of the B/B component at large strains. The C
component also remains very strong, an orientation which is in good agreement
with experimental results.

VII1.4. VALIDITY OF THE MODEL
VII.4.1. SOURCES OF ERROR

From the above results, it is evident that the new model described here
(stress continuity + grain boundary energy minimization, SC + GBE) predicts
textures which are in good agreement with experimental observations at high
temperatures. However, the present model may seem somewhat arbitrary in
the way ag, Amin, T3, T4 and T5 are selected. The angles characterizing the ease
of climb seem to have realistic values, but are known to vary with composition
and the SFE of the material. Selection of a very small value for ag and O for a,,in
is certainly an unreasonable choice, as it would lead to the formation of no
subgrains at all, and the resulting elongated grains would be expected to
deform mostly according to the RC mode. The "tolerance" values for the stress
difference can also be modified, the problem here being to decide on an
acceptable level for the stress discontinuity.

We have also limited the possible low energy boundaries to the £Z=1 and
Z =3 types. This is again an arbitrary choice, although it seems to be supported
by experimental observations and also by the fact that the influence of
boundaries of higher Z decreases with increasing Z.

Another part of the simulation which can be questioned concerns the choice
of the rotation axis for climb (i.e. n x b of the most active slip system). In real
grains, certainly more than one rotation axis is present and in any evént this
particular choice only corresponds to tilt boundaries. Finally, it should be noted
that the first order calculation for GBE minimization prevents the stabilization
of the orientations at an exact coincidence site; instead oscillations occur
around it.
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All these details can certainly be improved in the future, but at this stage of
knowledge, it seems better to check first if the deformation conditions imposed
on the grains and the predicted types of the coincidence sites are in good
agreement with experimental observations.

VIII.4.2. ADVANTAGES OF THE PRESENT MODEL

The deformation conditions imposed on the different grains of the material
permit the development of a cooperative mode of deformation, a phenomenon
which has been reported several times in the past. The influence of the GBE has
been shown to be non-negligible, although it appears to be a second order effect
at the beginning of each simulation. Polygonization has also been observed by
other workers [172,180,181] and certainly plays a role in high temperature
recovery processes. The present model emphasizes the influence of the sub-
structure, and underlines the fact that a given grain is no longer described by a
single orientation once deformation begins. This is again in good agreement
with the work of Schmitt [182].

Two supplementary results will now be given to further support the validity
of the present model: i.e. the numbér of £=1 and £=3 boundaries and the
predicted axial stresses in torsion.

VIII.4.3. CALCULATED NUMBER OF STABLE BOUNDARIES

The number of sub-boundaries’ close to Z=1 and =3 positions were
calculated for torsion and rolling and are presented in Figure 8.9. The deviation
from a £=3 boundary was taken as 10° because rearrangement into a stable
position takes time, and the numbers obtained are still small after a
deformation of 2 in rolling, for example. For both models, the number of Z=1
positions decreases slightly with strain, whereas the number of £ =3 positions
increases. The trends obtained, particularly with the SC + GBE simulation, are

T Note that, whereas the £ =1 boundaries between subgrains are low angle
interfaces of the conventional type, the £Z=3 boundaries referred to here
were developed purely by deformation. Thus they refer to misorientations
between subgrains of the original grains and not to misorientations
between the grains themselves.



- 224 -

200 — E=4 ! £=8
i (1)=SC
— (2) E (2)=SC +GBE
Number i
of nearly stable !
boundaries :
100 i
1 1 3 3 1 1 3 3 5
Figure 8.9a. Number of nearly stable boundaries in torsion at §=4 and £=8
for the SC and SC+GBE models. The deviation from the
coincidence site is equal to 5° for £=1 and to 10°for Z=3.
300 —  €=1 § €=2
Number B :
— (2) 5 (1)=SC
choeary sable | (D g2y 10 o) &Z5C+cEs
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100 !
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Figure 8.9b. Number of nearly stable boundaries in rolling at §=1 and £§=2

for the SC and SC+GBE models. The deviation from the
coincidence site relationship is equal to 5° for £=1 and to 10°
for £=3.
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in good agreement with the basic philosophy of the model and the differences
between the mechanisms are more pronounced in torsion, where the strain is
considerably higher. The small differences obtained in rolling are consistent
with the small differences in the textures apparent from the pole figures.

Although the intensities vary as expected with the two models, the =3
numbers seem rather small. This can be due to the choice of the rotation axis for
splitting and the fact that only two subgrains are considered. Such an approach
is certainly not very realistic for highly symmetric orientations. In this case,
the crystallographic rotations as well as the rotations due to climb must respect
the symmetry of the process [5]. However, the numbers of £=3 sub-boundaries
are in good agreement with experimental measurements, both in rolling [174]
and torsion [176]. For the latter case, it was clearly demonstrated that some of
the high angle boundaries found in Al were “sub-boundaries formed by
polygonization”. As mentioned by Perdrix [176], it is often difficult to
distinguish between the original grain boundaries and the “sub-boundaries” -
formed by enhanced recovery during continuous recrystallization. The latter
mechanism has also been reported to occur in steel [183,184]. It is possible to
interpret the resulting equiaxed substructure with high misorientations as
being due solely to dynamic recovery, as in the present model.

VIII.4.4. AXTAL STRESSES IN TORSION

It is known from the work of Cohen [72] and of Montheillet and co-workers
[76,82] that the axial stress in fixed end torsion varies with the strain. This is
mainly due to the development of texture. In copper, for example, the axial
stress is first compressive; then it changes into tension as the deformation
proceeds. The change from compression to tension takes place earlier (at lower
strains) when the temperature is increased. The calculated axial stress is
displayed in Figure 8.10 for the following two models: FC-RC and SC + GBE.
The first reproduces the trend observed at room temperature prior to fracture,
whereas the second predicts the decrease in the compressive stress followed by
the development of tensile stresses, as observed experimentally at high
temperatures. The calculated values are also lower at high (SC + GBE) than at
room (FC-RC) temperature. At strains above about 6, the SC+GBE model
predicts the return of the compressive force. Although present in Al at large
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Figure 8.10. Dependence of the axial stress 0;; in torsion on the equivalent
strain €eq for the FC-RC and for the new model based on stress
continuity and minimization of grain boundary energy.

strains, the axial stress in Cu remains tensile. The values of the parameters
that are required to produce such a result have not yet been determined, but are
under continuing investigation.

It can be concluded that the number of stable boundaries, the predicted axial
stresses as well as the actual textures all favor the SC + GBE simulation. It
could even be argued that this calculation works so well, because of the way it
relaxes certain stress components. Nevertheless the SC and SC + GBE models
do not predict the same textures. Moreover, the two sets of textures are not
really typical of a strict RC calculation. In Figure 8.11, the rolling texture
predicted for a strain of 2 according to a strict RC mode (p=2) is presented. It
can be seen that the relaxation of all 3 shear stresses leads effectively to the
prediction of a strong brass component; thus the results produced by the SC and
SC + GBE theories can be considered as due in part to the relaxation of these
stresses. This is not, however, true in torsion. The predicted RC (p=3) texture
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Figure 8.11. Rolling texture (§=2) simulated with a strict RC calculation.
All 3 shear rates, £19, £¢23 and £13 are relaxed in every grain.
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Figure 8.12. Torsion texture (§=4) simulated with a strict RC calculation.
¢Re and £Rrz are allowed to differ in each grain from the
macroscopic quantities.
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pertaining to a strain of 4 is illustrated in Figure 8.12 and no B/B component is
evident in this case, whereas only the SC + GBE model predicts it.

Before concluding this chapter, it is now time to compare all the theories
investigated in this work and to decide (if possible) which one best reproduces
experimental observations at high temperature.

VIII.5. COMPARISON OF THE DIFFERENT MODELS
INVESTIGATED

Four possible mechanisms for the formation of high temperature textures
were investigated in this work. These were:

1) the RW criterion of minimum work hardening rate;

2) the increased ease of cross-slip;

3) the activation of new slip (or cross-slip) systems;

4) the increased ease of climb and grain boundary energy minimization.

The first does not reproduce experimental observations, and is seen to be
more suitable for room temperature deformation [5]. At high temperatures,
other mechanisms take place which become more important. The last three, on
the other hand, all predict the right trends, although in different proportions.
This can be attributed to the limitations of the different models, as well as to
the real effects of the different mechanisms. We will now review briefly the
limitations of each model.

Cross-slip is certainly one of the mechanisms of high temperature
deformation. The HL model developed here, however, suffers from two
approximations:

—the hardening laws are very simple;

—the change in t. during an increment of deformation is neglected. In
particular, the possibility that some systems may become "over-active" (z
greater than t.) was not checked, as in the work of Havner and
Chidambarrao [185] and of Berveiller and co-workers [135,149]. The
absence of “over-activity” is nevertheless probable for most of the grains.
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The elimination of these two problems would, however, increase the computing
time considerably and render the models much more complex.

The activation of new slip systems has been observed experimentally in a few
cases. The model developed here is as rigorous as the classical FC-RC theory.
The only arbitrary assumption made was that the rotation rate on the
{110}< 110> systems is calculated on the basis that both systems of a given
pair are equally active.

The approximations which are part of the recovery model have been
discussed above.

It now remains to carry out experimental work to test the validity of the
different theories and to decide the extent to which cross-slip, the activation of
new systems, and recovery and climb are active in different fecc materials. This
experimental work could include the following points: o

-Characterization of the active slip planes and directions for different
temperatures and materials. This would help to determine the importance of
cross-slip and of glide on new systems.

-Determination of the structures and substructures developed during
high temperature deformation so as to verify the validity of the recovery model.

-Measurement of the misorientations between subgrains and
determination of the rotation axes.

-Measurement of the shears undergone by different grains of a material
to verify the assumption of cooperative deformation. In particular, it would be
of interest to study aluminum deformed in torsion at 400°C, which is
characterized by the development of a strong B/B texture.

VIIL.6. CONCLUSIONS

In this chapter, a model was proposed to account for the occurrence of climb,
the formation of an equiaxed substructure and the influence of grain boundary
energy. It was shown that this model correctly predicts the trends observed at
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high temperatures in terms of the textures (see Figures 8.13 and 8.14) as well
as the axial stresses developed in torsion.

This model was compared to those developed in the earlier chapters and the
limitations and possible sources of error of the different theories have been
listed. Finally, more detailed experimental investigations are now seen to be
necessary in order to decide about the validity and relative influence of the
different mechanisms simulated here. The fact that the predicted textures are
in good agreement with experimental ones is not enough; the mechanisms on
which the different models are based must also be observed experimentally.
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(b) CS+GBE +continuous

climb model

(c) Copper, T=25°C [72] (d) Copper, T=150°C [72]

Figure 8.13. Comparison of some experimental and predicted rolling textures.
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CHAPTERIX

CONCLUSIONS

The aim of this work was the development of methods for the prediction of
high temperature deformation textures. The various steps that were
investigated during the progress of this research were the following:

i) Experimental textures in which the high temperature components
were clearly identified were reviewed and the possible mechanisms responsible
for their development were listed.

ii) The theoretical models for texture evolution were described and
evaluated. An outcome of this analysis was the finding that there was no
systematic investigation in the literature of the theories for texture
development at high temperature. The models which could serve as the starting
point for the present work were selected on the basis of the following two
criteria: the model first had to be relatively simple; furthermore, it had to have
the potential for adaptation to the conditions of high temperature deformation.
The FC-RC model was selected for this purpose, to be used in conjunction with
either the principle of maximum external work rate (yield surface
examination) or the principle of minimum internal work rate (linear
programming). The main assumptions in all the models developed later were
that slip occurs on {111}< 110> systems and that the Schmid law is obeyed.

iii) The extension textures developed in aluminum at high temperatures
were determined experimentally; this was done in order to supply data which
were missing from the literature review.

iv) The mechanisms proposed in step one were incorporated into the
models identified in step two. These were: (i) thermal activation, through
minimization of the work hardening rate; (ii) the increased ease of cross-slip;
(iii) the activation of new systems; and (iv) the effect of recovery through
enhanced climb and polygonization. In the modelling of the first three
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mechanisms, the grain shape arguments employed for large strains at room
temperature were retained unchanged; in the last model, by contrast, the grain
shape arguments were modified.

v) The predicted textures were compared with the experimental ones and
the validity of the various models was discussed. The theoretical results
obtained with the different models developed in this thesis are summarized in
Tables 9.1 to 9.3. The quality of the agreement with the experimental textures
is also given, as well as the assumptions and mathematical simplifications
inherent in each model.

From this work, the following conclusions can be drawn:

1) In the experimental review, it was clearly shown that, the percentage of
the so-called “brass” component increases, in both torsion and rolling, when the
deformation temperature is increased. This component is usually found at room
temperature in low SFE metals. It was thus proposed that the intensity of the
brass component first decreases and then increases as the temperature is
raised, and that this is a generalization which can be extended to any
deformation mode, e.g. to tension, where the brass component is identified as
the <100> fibre (found at room T in low SFE metals).

2) The experimental determination of the texture of aluminum deformed by
swaging at room temperature and at 250°C confirmed the above hypothesis: the
percentages of the <100> and <111> fibres were 13.3 and 2.7, respectively,
in the hot deformed samples, compared to 11.3 and 3.5 in those that were cold
deformed. Moreover, the larger spread around the room temperature fibres
suggests that grain rotation toward stable positions takes place more quickly at
higher temperatures.

3) The RW theory of minimum work hardening rate can be modified so as to
simplify its application and extended to cover polycrystal deformation. It was
also shown that the rotation rate of individual orientations towards stable
positions is faster with the RW criterion than with the AV technique. This
observation correlates well with experimental data.
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4) The Chin model simulation of the ease of cross-slip was modified in the
framework of the maximum external work rate instead of the minimum
internal work rate principle. This modification has the advantage of
suppressing two problems inherent in the Chin theory: (i) random choice in the
case of remaining ambiguities and (ii) uncertainty about the independence of
slip systems.

5) The RW and modified Chin models use selection criteria in the presence of
ambiguities. A careful examination of the extent of these ambiguities confirms
that they are more numerous in tension than in rolling and torsion and in the
FC compared to the RC model. As a result, for the case of tension, which is
usually treated according to the FC model, the textures predicted using the RW
or modified Chin criteria differ appreciably from the ones obtained with the
averaging technique. By contrast, in torsion and rolling, which are treated
according to the FC-RC mode, the results are similar. This implies that any
model based simply on a selection criterion is not really adequate for general
purposes since it cannot account for the observed differences pertaining to all
deformation modes.

6) The two other models developed for cross-slip, HL (hardening law) and
cross-slip on {110} and {112}<110>systems, predict the right trends, i.e. an
increase in the brass component in tension, torsion and rolling. The influence of
cross-slip is small with the first model and depends on the value of the CRSS of
the cross-slip systems in the second case; nevertheless, they have two
advantages compared to the previous ones: they are first simple, and second the
Schmid law is respected for every active slip system.

7) In the treatment of new active slip (or cross-slip) systems, it was
demonstrated that different values of the CRSS for the various families of
systems affect texture evolution in an RC model, even in the range where the
number of vertices remains constant.

8) The various models can be classified in order of agreement with
experiment as follows: the simulation of recovery gives the best results for the
three deformation modes investigated, followed by the activation of cross-slip
systems, the HL. model, the modified Chin theory, the RW model and the
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activation of new slip systems. Nevertheless, the recovery model suffers from a
number of approximations, which are listed in Tables 9.1 to 9.3. These can be
defended in terms of the following considerations:

— The climb of dislocations observed at elevated temperature can be
modelled by splitting the grainsinto subgrains.

— The occurrence of cooperative deformation at high temperatures can be
taken to justify the assumption that less constraints need to be applied to
each grain or subgrain under these conditions and that stress continuity
becomes more important.

— Polygonization, which also occurs at elevated temperatures and is
described as the rearrangement of dislocations into more stable
configurations, justifies the use of GBE minimization.

Finally, it should be mentioned that all the mechanisms proposed in
Chapter II were investigated in the framework of the assumptions listed in
Chapter III. This does not imply that the present study of high temperature
deformation textures has been exhaustive with respect to the number of
possible mechanisms or treatments of these mechanisms. In particular, rate
sensitive effects were purposely neglected since they were thought to have only
a small influence on texture development. Moreover, the models developed here
do not have always the beauty of mechanical approaches such as the self-
consistent models [135,149] or the Havner theory [185]. This work must
therefore be seen as only a first approach to the simulation of high temperature
textures.



. Agreement . .
Predicted : Simulated Assumptions and
Model texture with exper. mechanism mathematical simplifications
(high T)
FC-RW 10% near Not good | Min. WH rate. FC mode based on GS
<100> fibre Thermal considerations. to(t)=C
activation First order calculation
FC+ 30% <100> | Very good Cross-slip FC mode based on GS
modified Chin fibre considerations. t(t)=C
Special selection of ss
FC+HL 30% <100> | Very good Cross-slip Room T GS (FC mode)
fibre Simplified hardening laws
tc not considered
FC+{100}slip | 27% <100> Good t(T) FC mode based on GS
planes fibre considerations. t.(t)=C
Table 9.1. Summary of the results obtained with the different models for tension.
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Model Predicted Agreement with Simulated Assumptions and mathematical
ode texture exper. (high T) mechanism simplifications
kl}<110> | Good at interm.T Min. WH rate. Room T grain shape
FC-RC+RW ibre between Too shar Thermal (t)=C
BandC B too wea activation First order calculation
FC-RC+ Same as FC- Not very good Cross-slip Room T grain shape
modified Chin RC model () =C
Special selection of ss
FC-RC+HL Strong C+ A, | Good at interm. T Cross-slip Room T Erain shape
A*and B Simplified hardening laws
_ i, not considere
FC-RC+ {100} | same as FC-RC Not good t(T),a=1.5 Room T grain shape
slip planes strong cube + 1(T), a=0.89 w(t)=C
A A*
FC-RC+ same as FC-RC Not good Cross-slip & t(T) Room T grain shape
{110} +{112} with 11 =1c0=1c3 te(t)=C
cross-slip strong C + near Good Te1=10, Te2=Tc3=1 same ys on 2{110} planes
planes ‘ B
SC Close to FC Not good Climb (beginning) Partial SC between subgrains,
no resplitting Equiaxed substr. . T(t)=C )
Arbitrary selection of variables
SC+GBE Close to FC Climb (beginning) Partial SC between subgrains,
no resplitting Not good Equiaxed subst. te(t)=C )
GBE minimization Arbitrary selection of variables
1st order calculation of GBE
SC + cont. Near FC-RC Not good Continuous climb Partial SC between subgrains,
climb Equiaxed subst. . T:(t)=C )
' Arbitrary selection of variables
SC+GBE + Strong Very good Continuous clim Partial SC between subgrains,
cont. climb C+B+A* Equiaxed subst. . T(t)=C ]
GBE minimization Arbitrary selection of variables
- 1st order calculati

Table 9.2. Summary of the results obtained with fhe different models for torsion.
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http:te(T),0=0.89

Model Predicted Agreement with Simulated Assumptions and mathematical
texture exper. (high T) mechanism simplifications
FC-RC+ Same as FC- Not very good Cross-slip Room T grain shape
modified Chin RC model te(t)=C
Special selection of ss
FC-RC+HL | Strong Cu+S, | Good atinterm. T Cross-slip Room T grain shape
+weak Bs Bs too weak Simplified hardening laws
i. not considered
FC-RC+ {100} | same as FC-RC Not good w(T),a=1.5 Room T grain shape
slip planes same as FO- t(t)=C
FC +cube Not good (T), a=0.89
FC-RC + {110} | FC-RC+Bs Good Cross-slip & tc(T) Room T grain shape
+{112} cross- with te1=1c2=1c3 CTe(t) =C
slip planes Brass + Goss Very good te1=10, T2 =Te3— 1 same ys on 2{110} planes
SC Close to FC Not good Climb (beginning) | Partial SC between subgrains,
no resplitting Equiaxed substr. te(t)=C
Arbitrary selection of variables
SC +GBE Close to FC Not good Climb (beginning) | Partial SC between subgrains,
no resplitting Equiaxed subst. te(t)=C
GBE minimization | Arbitrary selection of variables
: 1st order calculation of GBE
SC +cont. Intermediate Very good Continuous climb | Partial SC between subgrains,
climb Bs+Cu Equiaxed subst. 1(t)=C
Arbitrary selection of variables
SC+GBE+ Intermediate Very good Continuous climb | Partial SC between subgrains,
cont. climb Bs+Cu Equiaxed subst. t(t)=C

GBE minimization

Arbitrary selection of variables
1st order calculation of GBE

Table 9.3. Summary of the results obtained with the different models with rolling.
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SUGGESTED TOPICS FOR FURTHER INVESTIGATION

This work constitutes a first attempt at the understanding and simulation of
the mechanisms responsible for the development of deformation textures at
high temperatures. The continuation of this research could include the
following steps:

1) The occurrence of the simulated mechanisms could be experimentally
verified; i.e. the ranges of temperature and stacking fault energy in which
extensive cross-slip, the activation of new systems, extensive climb, recovery,
and grain boundary minimization occur could be determined, by preference on
single crystals tested in constrained deformation.

2) One or several of the proposed models could be refined, depending on
the experimental results obtained from 1) above. This would involve the
introduction of more realistic hardening parameters, realistic values for the
CRSS of different slip systems, statistics regarding the frequency of occurrence
of various types of coincidence sites, and of misorientation angles and data
regarding tolerance criteria. Some of the mathematical limitations (first order
calculations) could also be eliminated in this way.

3) The possible interaction of some of the proposed mechanisms could be
investigated. For example, in the T and SFE range where both cross-slip and
recovery are determined to be active, a combined model could be developed.

4) The plastic properties of hot worked materials could be calculated.
Once the mechanisms responsible for high temperature deformation have been
identified and more or less well simulated, plastic properties can be readily
deduced from these models. This would involve calculation of the strain rate
ratio R in sheet and axial stresses in torsion. Because of the industrial
importance of anisotropy, this must be the final aim of any texture study.



— 241 -

STATEMENT OF ORIGINALITY AND CONTRIBUTION
TO KNOWLEDGE

1) This work, as one of the first to focus on the influence of deformation
temperature on texture, provides clear and extensive evidence of the
differences between low and high temperature deformation textures. This
resulted from the literature review which centered on temperature effects and
also from a complementary small-scale experimental investigation.

2) The mechanisms which could be responsible for the above differences were
tabulated and described. This list involves the effects of: thermal activation,
cross-slip, the activation of new systems and recovery. All four mechanisms
were simulated in a number of ways and the results of the various predictions
compared to experimental data.

3) The present treatment of the RW theory comprises as original contributions:

a) clarification of the theory itself, i.e. the use of a more convenient
notation;

b) complete listing of the ambiguities present in the FC and RC models;
and

¢) application of the theory to polycrystal deformation.

4) The Chin theory for cross-slip was rewritten in terms of the maximum work
principle; this innovation avoids two of the problems inherent in the original
theory. The results of the Chin and modified Chin models are also compared.

5) The increase ease of cross-slip was simulated by two further new models: i)
the incorporation of simple hardening laws (usually introduced to simulate
latent hardening); and ii) the introduction of cross-slip systems.

6) Slip systems other than the {111}<110> have been employed in the past.
However, their influence has only been treated in rolling; in the present work, a



— 242 —

more complete investigation of the activation of other systems was carried out,
both in terms of deformation modes as well as possible slip planes.

7) A new model was developed to simulate the recovery process; this was
expressed in terms of climb, cooperative deformation and grain boundary
energy minimization. This model constitutes the first introduction of these
three elements concurrently.

8) Most of the proposed models predict experimental trends reasonably well.
Nevertheless, their limitations and the disagreements with experimental
observations have been clearly identified, a task which eliminates the need to
carry out certain unnecessary investigations and also focuses attention on the
issues that remain to be settled.
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APPENDIX 1

CALCULATION OF THE CRYSTALLOGRAPHIC
ROTATION

The orientation of a given grain in a polycrystal is specified by a 3x3
rotation matrix which indicates the position of the three <100> axes of the
crystal with respect to 3 external reference axes. These axes are usually defined
with respect to the test geometry. In the case of rolling, the axes usually
selected are the transverse, rolling, and normal directions. In torsion, the axes
are generally the radial, transverse and longitudinal axes of the specimen. To
remain general here, we will specify the orientation of a given grain by a
matrix A expressed in terms of 3 Euler angles ¢, 8 and . This can be written

schematically as:
CS -éb 88 (ALD)
Thus, a vector V. in the crystal system CS will become Vin the sample system
SS as given by:
Ve = AV, (Al.2)
with A being defined by:
coswcosd — sinwcosBsind coswsind +sinwcosBcosdp  sinwsind
A =| —sinwcosp —coswcosOsing —sinwsind +coswcosOcosd sinbcosw
sinBsind —sinBcosd cos6
(Al1.3)

The reference axes are called Vi1, V9 and V3 on the one hand and V.1, Ve
and V.3 on the other.

When slip takes place on several slip systems during an increment of time
dt, a given vector V transforms into another V'according to the relation:
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V=V+ > y'dt (V.n%)b° (Al.4)

s

The above can be written using matrix notation as

(A1.5)
V=BV

where the matrix B defines the displacement gradient tensor associated with
simple shear on the s systems.

1+ > y°nb8 > ¥t nlbS D ¥nb
s s s
B= ts 58 ‘5§58 ‘5§13 Al.6
zy n162 1+zy n2b2 Zy n3b2 .dt ( )
8§ 8 s
Z&'snib; Z{[sn;b; 1+Z{(sn;b§
s 8 s

Similarly, a normal N to a given plane specified by

N=u Xu (AL7)

2

where u; and ug are two unit vectors belonging to the plane of interest
tranforms into [1041]:

N =Bu XBu, : (A1.8)

We now calculate the new position of the sample axes with respect to the
crystal axes by stating that certain planes and directions remain fixed in space.
Let us first consider the two dimensional example illustrated in Figure Al.1.
Under the action of the shear ydt, the vectors V51 and Vo transform into V™5
and V*sg according to (Figure Al.1a)

*

Va=BV, (A1.9)
Vs2 =B Vs2

We first note that the vectors V*;; and V*59 are not orthonormal. Now if the
axis V1 is required to remain fixed in space (for example, if this axis is the
tensile axis of the specimen of Figure 3.1), the axes V. and V.2 will rotate
through an angle a to transform into V1 and V ¢2 (Figure Al.1b). The positions
of these two vectors with respect to V51 and V9 lead to the new value of the
matrix A, i.e. A’. But Figure Al.1 indicates that we can define a vector Vg,
orthogonal to V*;1, which together with V’5; =V*¢;/ V*¢; also defines the new
matrix A'(Figure Al.1c). Calculating the positions of V1 and V2 with respect
to V.1 and Vg is thus completely equivalent to calculating the positions of V'
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Figure Al.1.Crystallographic rotation in a two-dimensional example. The axis
SS; is assumed to be fixed in space.

and V' with respect to V.1 and V2. The coordinates of the vectors V%; and
%2 are first calculated from V1 and V49 as: o

V., ,=BV_ /IBV I (A1.10)

V’s2 = unit vector perpendicular to V’sl

The first condition is the transcription of the fact that V5 remains fixed in
space. A matrix T having the two vectors V5 and V2 as row vectors with
respect to V1 and Vg is defined in this way so that we can write that

A =TA (AL1.11)

Turning now to the three dimensional case, we assume, for example, that
the axis labelled 2 and the normal to the plane labelled 3 in the sample system
remain fixed in space. This corresponds to rolling, where the rolling plane and
rolling direction are taken as fixed in each grain of the polycrystal as well as to
torsion, where the shear direction and shear plane are taken as fixed in every
grain. We now reconstruct the sample reference system (SS'’) as follows. As in
the 2 dimensional case, instead of searching for the new position of the CS with
respect to the SS, we look for the positions of the vectors V1, V2 and V'3 with
respect to the old CS, from which we get the new orientation A’of the grain.
The 3 base vectors of the SS transform into V*51, V*52 and V*¢3 according to :

slzBVsl
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£y

Va=BV, A (A1.12)

Via=BVg

Assuming that Vo remains fixed implies that:

- v * = (A1.13)
V= Vi IVl = BV, 1BVl
Similarly, assuming that plane 3 remains fixed implies that:
_ * * »* - _ Al‘l
V=V XV /IV XV =BV XBV_,/|BV XBV_| ( 4)

Since no particular condition is imposed on the 1 axis, the vector V% is simply
taken as orthogonal to V52 and V'3, which gives:

o | A1l
Vsl - V’s2 X V’ss3 ( 5)

This condition assures the orthonormality of the reference system SS’. If the
matrix B is now expressed in the sample reference system, we can construct
with V%1, Vi2and Vigamatrix T B

1 ,2 3
V,sl Vsl V’sl

T= )1 )2 .3 : Al.16
Vs2 Vs? Vs2 ( )

1 s 2 3
V’s3 4 s3 V,S3

which has the V5 vectors as row vectors with respect to the V vectors, from
which the new matrix A 'is given by

A'=TA (A1.17)

We have thus defined a procedure which allows us to calculate the new
orientation of a crystal step by step. This procedure is equivalent to the one
used by Kocks and Chandra and can be used in any kind of calculation (FC or
RC). It is equivalent to saying that certain components of the displacement
gradient tensor of the grain are allowed to differ from the macroscopic ones.
Returning to Figure 3.4, we have seen that the RC theory allows the two shear
rates €23 and €13 to be different from 0 in a grain of a polycrystal being
deformed in rolling. Assuming now that the rolling direction and plane remain
fixed in space implies that these two shear rates correspond to the displacement
rates iz 3 and U1 3. The displacement rates u3 2 and i3 ; are equal to 0.
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In tension, the calculation is performed by assuming that the tensile
direction remains fixed. This single condition allows us to determine only the
new position of the tensile axis and to plot inverse pole figures. Also, because of
the axial symmetry, the other two base vectors can be taken, arbitrarily, as
being orthogonal to the first ones, thus specifying matrix A’ completely. This
procedure allows us to plot the results on pole figures whenever this
representation is desired for comparison purposes, and from there to calculate
average pole densities (see Chapters IV and V). In compression, the calculation
is similar. In this case, however, the single condition is that the compression
plane is assumed to remain fixed.
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APPENDIX 2

DEFINITION OF A FIVE DIMENSIONAL
VECTORIAL NOTATION

It was seen in Chapter III that only the deviator stress components are
relevant, and because elastic dilatation is being neglected as well, it is simpler
to write the deviatoric stress and strain rate tensors as five dimensional vectors
of the form:

o=(01,o2,o3,04,05) (A2.1)
e= (8 ,8,,8,8,,8)
The last three components are customarily defined as proportional to the off-
diagonal components [100,105-107] and any convenient convention for
contracting the three diagonal tensor components into the first two vector

components may be used, as long as the stress and strain rate are work
conjugate, i.e. as long as

e =0 ¢ (A2.2)

0..£.=0.¢.
gy oy il

It was demonstrated by Canova et al. [107] that the normality rule holds in
such a vector space if it holds in the tensor space.

One example of such a notation is the following [108,109] :

(022-011)
o= ——\—/—.2_:'—— ,V3/2 033,\/5—023,\/5031,\/5-012) (A2.3)
. (ézz‘éu) — . . .
&= —F ,\/3/2333,\/§e23,\/§sm,\/§el2)

It can readily be shown that these two vectors are work-conjugate. The
interesting point about this notation is that it corresponds to a single
orthonormal five dimensional space in which both ¢ and € are defined [108].
This means that, starting from a nine dimensional space which is also taken to
be orthonormal (i.e. described by 9 orthogonal unit vectors) and in which the
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nine components of the stress and strain rate tensors are defined, 5 orthogonal
unit vectors can be found such that the 5 components of stress and strain rate
have the form given in equation A2.3. These components are functions of the 9
original ones. The same unit vectors (i.e. the same space) are used for both o
and €, and this is quite unusual. Normally these vectors are defined in two
different spaces which are known to be "conjugate" or "dual”; they can coincide
only if they are orthonormal. As a result of the orthonormality, the norm of any
vector o expressed in this reference system is simply:

lol=Vea, o, (A2.4)
In this particular space, the requirement that a given strain rate is

accommodated by slip can be written as:

.o . . s s A2.

g = Z m?jys & &= zysN (A2.5)
8 §

where N3 has the components:

(n;b; -nfb%)

171 s s
Nh , V3/2n b,

No=( (A2.6)

2 5. S ;s V2 $ .3 s ;s V2 s s s .8
T(n2b3+n3 b2), —2—(n1b3+n3 b1 ), T(nlb2+n2 bl))

The parallel between equations A2.3 and A2.6 is immediate. The vector N°®
defines the normal to one facet of the single crystal yield surface proposed by
Bishop and Hill. Calculating the components of N’ for each of the 12
{111} < 110> systems gives the following result:

IN*l=1/VE Vs | (A2.7)

which means that the NS vectors are not unit vectors.

Going further, the Schmid law can be rewritten in this notation as:
©v=0.N°'= t: (A2.8)

If we now consider a combination of five independent slip systems defined by
five vectors , we can define a 5x5 matrix M from the N? vectors (whose
components are Nij with j=1, 5):



~ 259 —

M= Nl N2 N3 N4 NS (A2.9)

such that equation A2.5 can be rewritten as:

P = M‘E (A2.10)

where the vector y is simply:
e ey eg s3 eg . (A2.11)
v=GLvE v )
Similarly, the fact that the Schmid law is satisfied on one set of 5
independent slip systems (defined by M) can be written in compact form as:
‘Mo (A2.12)

T =
C

with
tc=(tcl,tf,tz,t:,tf) (A2.13)
We can now examine how the transformation of a tensor from one reference
system to another evolves in this 5 dimensional representation. A given tensor
{JJ 1 expressed in a reference system labelled 1 can be expressed in a reference
system labelled 2 as E2 according to the transformation rule:
(a%
(A2.14)
E,=AE, A
A
Here A is a matrix in which the rows represent the coordinates of the new base
vectors expressed in the old base. With the aid of the present notation, equation
A2 .14 transforms into the following:
E =CE (A2.15)
2 1
E1 and E9 are the two vectors associated with the tensors %‘ 7 and %2 and Cisa
5x5 matrix whose terms depend on the terms of the matrix A as follows:

_ 1 2 92 2 2 _ 3 2 2 _
= §(A11+A22"A12"A21) Cip = 7(A23-A13) Cig™ Agfps—ApAy
Cla=Aydn—4, 4y Cis = A=A 4y



— 260 —

Cy = ?(A;‘Agﬂ Cp = %(2A§3"Af3"A§3) Cpy= V3A,AL,
=V3aAy =V3A,Ay (A2.16)
= ApfAg—Ag Ay Cp= ﬁAzsAas Cy3= ApAggtAniy
Cou™ AgAptaniy Cos = AghgytAniy
Ca= AfAn—Anay = V34,4, Cia= At aiy
Cu= ApAgptagdy Cis= Apfgptagdy
Co = Aghp—A 4y Cop = V3A A, Co3= Ay tApiy
C —A A ~i-A13A21 C —A A -i-Ale21

The complete derivation of thls matrix can be found in reference 109. It should
be noted, however, that any other notation respecting equation A2.2 also leads
to a matrix C. But the expression of C is not the same for the tensors o and £
defined in two non-orthonormal spaces [77].

So in all cases, the introduction of a vector notation leads to the reduction of
computation time by replacing tensor transformations by vector ones. In the
special case treated here, this reduction is still greater since only one matrix C
has to be calculated. Before terminating this Appendix, it should be noted that
the present notation differs from the one used by Canova and co-workers
[104,105] in that it is defined in an orthonormal space which also simplifies the
graphical representation of cross-sections of yield surfaces. On the other hand,
Canova et al [105] selected a notation such that the norm of the strain rate
vector defined by V'£;€; is equal to the von Mises equivalent strain rate defined
by:

éeq = \/Tfisu_eu (A2.17)
In the case of the present notation, it is readily seen that there is a factor of
1V/2/3 between the two, since €ij€ij = €; &,
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APPENDIX 3

DERIVATION OF THE LOWER AND UPPER BOUNDS OF
THE MACROSCOPIC STRESS VECTOR

This derivation issues from the work of Bishop and Hill [101] but is
reformulated in the notation used in the present treatment. Also, unlike the
original text of Bishop and Hill, the parallel between the lower bound and
Sachs theories on the one hand and between the upper bound and Taylor
theories on the other is made explicit.

Bishop and Hill [101] have shown that, if slip is the only deformation
mechanism, the principles of maximum external and minimum internal work
rate hold for the macroscopic yield surface. (As a consequence, the normality
principle also holds for this macroscopic yield function.) Consider now a
polycrystalline aggregate in which the macroscopic quantities are described by
S for the stress state and E for the strain rate state. The macroscopic yield
function is then expressed by

f(SU) =C (A3.1)

The corresponding microscopic quantities are o and €. These quantities are
unknown, and generally only the macroscopic stress direction or strain rate
vector is known. The difficulty then is to calculate the unknown macroscopic
quantities from the unknown microscopic ones. It will be demonstrated in this
Appendix that it is possible to determine two scalars A* and p*, which satisfy
the relation:

At<|S|<p* (A3.2)

The maximum external work rate principle for an aggregate has been
expressed by Bishop and Hill [101] as follows: for any macroscopic stress S*
corresponding to an equilibrium microscopic distribution ¢* not violating the
Schmid law, we always have:

(S~S*).E =0 (A3.3)
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Similarly, the minimum internal work rate principle for an aggregate says
that for any microscopic shear rate distribution y* associated with the actual
microscopic stress distribution g, we have

Z tc\} < 2 tc 9* (A3.4)

where the signs £ denote the average taken over the whole aggregate. y
designates the actual shear rates associated with o and €, and y* designates the
shear rates associated with a continuous displacement distribution, with zero
divergence, and with the same values on the surface as the actual displacement
distribution.

1) EXISTENCE OF ALOWER BOUND

Suppose that each grain of the polycrystal is subjected to the following
uniform stress distribution:

o* = A*r (A3.5) |
with rbeing a unit vector in the macroscopic stress direction:
r=8/|8| (A3.6)

A* is defined such that the critical resolved shear stress corresponding to o* is
attained in only one grain (the "weakest point") of the aggregate. It is thus
certain that o* does not violate the Schmid law anywhere and that the
polycrystal is in equilibrium, since it is constant everywhere through the
aggregate. Also, the macroscopic quantity S* associated with o* is equal to o*.

S* = g* (A3.7)
As S* satisfies the conditions pertaining toequation A3.3, it follows that:
(S=8*).E =0 (A3.8)
which can be rewritten as:
(1-A*/|S]).SE =0 (A3.9)

in which S.E is the macroscopic work rate, which is positive; consequently
IS| =A* (A3.10)

Hence, for each direction r in stress hyperspace, equation A3.9 supplies the
lower limit to the actual "length" of the stress vector S. Such a limit is obtained
by imposing the same stress direction on each grain of the polycrystal (this



— 263 —

direction is that of the macroscopic one) in such a way that only one grain is
plastified. This is exactly what is described in Chapter III as the lower bound
model derived from the Sachs theory, which is sometimes called the static
model. It is worth noting here that, for a given stress direction, we have found
only one possible lower limit for"S u . This is because it is difficult to find a stress
distribution other than the one defined above which is in equilibrium, and
which does not violate the Schmid law at any point of the aggregate.

2) EXISTENCE OF AN UPPER BOUND

Now we subject each grain of the polycrystal to a uniform strain rate
distribution
o = f* (A3.11)
such that
re* >0 (A3.12)

where r is the unit vector defining the macroscopic stress direction. This
condition can also represent a uniform strain rate distribution €¢* which is not
"too far" from the actual macroscopic strain rate E on the macroscopic yield
surface. In this way, an outward pointing normal can be taken so that the work
rate is positive. To this microscopic strain rate distribution corresponds a
microscopic stress distribution ¢* which can readily be calculated by applying
the principal of maximum external work to the single crystal yield function.
Since both microscopic stress states 0* and o lie on the SCYS, the principle of
maximum work rate implies that:

(0*~0).8* =20 (A3.13)
and, by taking the average over all the grains in which €* is constant, that:

(§* = S).E* 20 (A3.14)

Here, S* is the average macroscopic stress corresponding to ¢*. We can now
rewrite the norm of the stress vector S as:

.

is|=sp. 2L - SE (A3.15)

S.E*  rE*

and, from equation A3.14, deduce that
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S*.E*
IS1 < - = (A3.16)

All the terms on the right hand side of inequality A3.16 being known, we have
thus found an upper limit p* to the value of ||S|| Unlike the case of the lower
bound, in this case any uniform strain rate distribution which satisfies
equation A3.12 provides an upper limit tol|SII. It is probable that all the upper
values found in this way will be different. However, there is no means at this
point to classify them in order to find the lowest upper limit possible. Let us
now consider two particular cases.

i) Take first the case where E* is equal to the actual macroscopic strain
rate E. This particular strain rate distribution constitutes the Taylor
assumption of uniform strain rate and obviously satisfies condition A3.12.
Moreover, it is the strain rate distribution most often used to determine an
upper bound (if not the only one). The value of p* associated with this value of
E* thus constitutes an upper limit to “S “ It has been demonstrated in this way
that the Taylor assumption leads to an upper limit to the norm of the stress
vector, but it must be kept in mind that this is not the only one.

ii) Consider now another possible strain rate distribution which also

forms an upper limit:

E*=r (A3.17)
Since ris a unit vector, p* is simply equal to :
ut = S* E* = S*r (A3.18)

where S* designates the average macroscopic stress vector associated with E*.
In this case, the value of p* is equal to the work rate which would be done in the
aggregate in which all the grains are separately subjected to the strain rate r.

It is worth noting that, because of equation A3.14, any uniform strain rate
distribution satisfying equation A3.12 also provides an upper limit to the
macroscopic work rate, W=S.E. This is in particular true for the Taylor
assumption and it is often with respect to W that the Taylor assumption is said
to be an upper limit. However, we prefer here to refer to the norm of the
macroscopic stress vector to remain consistent with the lower bound treatment.
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In this way, the quantities p* and A* define two extreme values for the same
physical parameter, i.e. the norm of the macroscopic stress vector. This can also
be interpreted as signifying that there are two limiting yield surfaces for the
polycrystal, the real one falling between these two surfaces.
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APPENDIX 4

GENERALIZATION OF THE PRINCIPLES OF MAXIMUM
EXTERNAL AND MINIMUM INTERNAL WORK RATE TO
THE CASE OF RC DEFORMATION

Renouard and Wintenberger have demonstrated that these two principles
can be generalized so as to permit the selection of the active slip systems under
mixed boundary conditions [115,121]. They developed their theory for a single
crystal deformed in such a way that the components of the strain rate tensor are
not entirely known and prescribed. In what follows, we extend their
generalization to the case of a polycrystal for which the strain rate tensor is not
fully prescribed due to grain shape considerations [119].

Let us first define the notation to be used. We first distinguish between the
free and prescribed stress and strain rate components as follows:

i) €;j are the prescribed strain rate components, so that the associated
stress components oj;j are free (i.e. they are not prescribed in the case of the
single crystal and are free to differ from the corresponding specimen
components in the case of a grain in the polycrystal). Accordingly, the number
p<5 of ¢’jj components is equal by definition to the number of £’;; components.

ii) £”;; are the remaining (5-p) components of the strain rate tensor.
These are not prescribed in the case of the single crystal, and are free to differ
from the corresponding specimen components in the case of a grain in the
polycrystal). Associated with each £”; is the corresponding stress component
a”;j, which is prescribed, i.e. imposed on the single crystal, or prescribed to
equal the corresponding specimen component in the polycrystal.

In Figure A4.1, the stress and strain rate tensors for a single crystal
deformed in plane strain compression are shown, as well as those pertaining to
a polycrystal deformed in rolling.
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Boundary Conditions for single crystal

£13=0

£19, €23 free

&11 €712 €13 0’11 0”12 0’13
£791 €92 €793 0”21 0’22 0723
-9 * 99 .9 0731 0”32 0_’33

€31 €32 £33

012=023=0 (no friction)

i B

£'ij, 0”ij = imposed

a’ij, &7 = free

(a)

Grain Shape Considerations for polycrystal

£12=0

£13, e23 free

—

013=023=0 usually

9 .9 L34 0711 0,12 0”13
L34 L34 0_’21 0’22 0”23

0”31 0”32 0’33

- —

€731 €732 €33

&';j, 0”ij = imposed to be equal to the macroscopic components

@’jj, £”jj = free to differ from the macroscopic components

(b)

re A4.1.Stress and strain rate tensors (defined in the reference frame of

Figu

the sample) applicable to: a) a single crystal deforming in a
channel die; and b) a polycrystal deformed by flat rolling. The
compression and elongation axes are the 3 and 2 axes,

respectively.



— 268 —

The microscopic shear rates yS on the activated slip systems are always
related to the prescribed components of strain rate by

R s 8
g, = % me Y (A4.1)

It is worth noting that once the active slip systems are known, the unprescribed
components of the strain rate tensor can be calculated by a similar equation

go= D m (A4.2)
L

The Schmid law can now be written in a slightly different form than
employed above,i.e.:

“=0.m’ =0.m’ +0"..m’ (Ad.3)

i hij ij ij ij i

Note that the full tensor includes both the ¢’j; (free) and ¢”j; (prescribed)
components. For convenience below, the prescribed component of the shear

stress will be referred to as

© =0".m (A4.4)

GENERALIZATION OF THE TAYLOR THEORY

Renouard and Wintenberger have shown that both the minimum internal
work rate and the maximum external work rate analyses can be generalized to
cover deformation when the number of imposed strain components p<5, i.e. is
less than the number associated with the classical one. Under these conditions,
they showed that the power of interest is the internal work increment per unit
volume and per unit time W done in response to the prescribed strain rate
components and carried out by the free stresses. This is equal to :

W= (o -y (A4.5)
$

Here Zt..ys is the total internal work increment per unit time and Ztg.ys is the

component of this work performed by the prescribed stresses (which are

generally zero).

Equation A4.5 can be derived as follows. Suppose that a plastic strain rate
g;j occurs under a given state of stress o;;. (Note that only the €’;; and o”;


http:1:';0.Y8
http:1:';C.Y8
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components of these two tensors are known at this stage.) Now consider two
alternative sets of n= p slip systems which could be involved in producing the
plastic strain: the P set, given the index s, corresponds to the real solution of the
problem (which may not be unique), and the Q set, indexed &, does not. On each
slip system of the P set we then have

s

T=ET (A4.6)
and on at least one of the slip systems & of the Q set we have
<y (A4.7)
The equivalent of equation A4.1 for the Q set is now written as:
=> mz, v (A4.8)
k

Multiplying equation A4.6 by ys, summing over s, and employing equation
A4.3, we obtain for the P set:

2= v (A4.9)
3 s oo 5
or
Z (o’ij mfj + cf)) v'= Z T v’ (A4.10)

S
so that, through the use of equation (A4.1)
= ? (v, — )y’ (A4.11)

lJ U

In a similar manner, multiplying equatlon A4.7 by yk and summing over &, we
obtain for the Q set:

Z *yF < Z T v (A4.12)
k k-
or
% (o, mfj + Eg) < Z T, Y (A4.13)
k

and finally, from equation A4.8,
o€y Z (t, —-t e (A4.14)

Note that the same stress state ojj and stram rate €;j pertain to the two possible
sets of slip systems analyzed above, so that ¢’jj and £’;; are also identical for the
two cases. Equations A4.11 and A4.14 can therefore be combined to give:
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Z (tc —t(s))\}s < Z (1:c —tﬁ)%k (A4.15)
s k

where ys and 1. are both positive, so that ys.t, >0. Equation A4.15 states that
the real solution is obtained by minimizing the rate of internal (microscopic)
work done with respect to alternative sets of slip systems, as given by (tc —1o°)ys.
This corresponds to the rate of shear work done in response to the imposition of
the prescribed strain rate components £’;; only, and under the sole action of the
developed (free) stresses ¢’;j. When all the strain rate components are
prescribed, as in the classical model, the term t¢° does not exist, the components
o’;j and €’;j are replaced by the full tensors oj and €ij, respectively, and the RW
and Taylor approaches coincide.

GENERALIZATION OF THE BISHOP AND HILL THEORY

The second method proposed by RW considers all the stress states which are
compatible with the Schmid law, equation A4.1. For the real solution (the
stress state P), we have t=t, on a certain set of slip systems. This can be
written as

T=0.m +0". m = (A4.16)
oy iy c

For the hypothetical solution (the Q stress state), we have ©° <t on at least one

system of the same set of slip systems (the ones activated in the real solution), as

given by:

T=9..m +0". mf << (A4.17)
y oy y ooy c

Here the prescribed components ¢”;j are the same for both t° and ©° (v¢°=1%),
but the o’;j components are different. However, the strain rates €;;, £’;; and €”;;,
as they pertain to a single set of systems, are identical for the two cases. We now
define the individual shear rates in terms of £';;:

g,= 2 mpy’ (A4.18)
Combining equations A4.4 and A4.6, we can write for the P stress state that

S

0~ % (A4.19)

o..m’ +7
TRT

and then, by multiplying by ys, that
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Z (o’ij mfj + tg) vi= Z T v (A4.20)
s 8
or that
o, é’l.j => (v, - $)Y° (A4.21)
8
In a parallel fashion, for the Q stress state, it is evident that:
o.m’+7 <3 (A4.22)
gy 0 c
that
2 @ m+ ) v'= D oy’ (A4.23)
8 S
and finally that
?ij é,ij = Z (tc - tg)is (A4.24)

In this case, equations A4.21 and A4.24 can be combined to give:
‘a,ij é’ij (hypothetical) < o’ij é’zj (real) (A4.25)

Thus the real solution is the one which maximizes the rate of external work
with respect to alternative permissible stress states. This is again associated, as
in the Taylor analysis, solely with the free components of the stress and the
prescribed components of the strain rate. As before, when all the strain rate
components are prescribed, equation A4.25 corresponds to the classical BH
criterion.
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APPENDIX 5

DESCRIPTION OF THE COMPUTER PROGRAM
USED IN THE FC, RC AND FC-RC THEORIES
(WITH THE AVERAGING TECHNIQUE)

This appendix describes the basic computer programs developed by Canova
[104]. The same program can be used with all three models, FC, RC and FC-RC,
and for the four principal deformation modes, tension, compression, rolling and
torsion. The different steps to be employed are the following:

1) Read the SCYS data: the 28 vertices and the associated 6 or 8 slip
systems, the 4th and 3rd order edges with their corresponding connecting
vertices (2 in the case of the 4th order edges and 3 or 4 in the case of the 3rd
order edges) and associated slip systems (6, 5 or 4 for the 4th order edges and 3
or 4 for the 3rd order edges). Then read the 480 combinations of 5 independent
slip systems, the 108 combinations of 4 independent slip systems and the 135
combinations of 3 independent slip systems.

2) The test conditions are specified; these include: i) the deformation path:
tension, compression, rolling or torsion; ii) for the case of torsion, whether the
sample axes (in the case of FC) or the grain axes (in the case of RC) are to be
employed; iii) the deformation mode: FC, RC or FC-RC; in the latter two cases,
the components of strain rate which are relaxed are given. ‘

3) With the aid of these data, the calculation is carried out grain by grain.
For each step, the procedure is the following: i) read the orientation of the
grain; ii) calculate the proportion of grains deforming according to p=5, 4 or 3
in the FC-RC model; iii) determine the stress state and all the possible
combinations of independent slip systems (after having performed the
appropriate transformations from the crystal system to the sample or grain
system); iv) calculate the average distortion matrix and the new orientation of
the grain (this depends on the deformation mode); v) go back to step (i) to
update the new proportions of grains and so on.
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In the case where the RW criterion is to be included or some special selection
of the possible combinations of slip systems is to be made, as in the case of the
cross-slip model, steps (iii) and (iv) must be modified as described in Chapters V
and VI. If other slip systems are to be incorporated, step (1) must be modified to
read the data corresponding to the new SCYS.
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APPENDIX 6
DEPENDENCE OF THE TAYLOR FACTOR IN TORSION

ON ORIENTATION OF THE CRYSTAL RELATIVE
TO THE SAMPLE AXES

®, 6 and w are the Euler angles defined in Appendix 1.

Present Bunge

Notation Notation (Section I1.1.3)
d = —d2
8 = b

w = -
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APPENDIX 7

VERTICES, FOURTH AND THIRD ORDER EDGES OF
THE COMPOSITE YIELD SURFACE FOR SLIP
ON {111} AND {100} PLANES

Notes: 1) InTable A7.1 are listed the 93 vertices and the associated systems
and coordinates (referred to in terms of the notation described in
Appendix 2) for a=1. Here the values are normalized by t¢(111).

2) In Tables A7.2 and A7.3, a single representative example of each
type of 4th and 3rd order edge is listed, with the corresponding
connecting vertices and associated systems. The others can be
deduced from this case by applying the 24 cubic symmetry
operations.
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TABLE A7.1

The 93 vertices of the composite yield surface.

Type [No. Associated systems Coordinates for oL=1
I 1 2 3 5 6 9 8 11 12 (-1.732| -1.000 0. 0. 0.
2 1 15 16 18 19 21 10 24 1,732 | -1.000 0. 0. 0.
3113 14 4 17 7 _20 22 23 0. 2.000 0. 0. 0.
II 4 1 2 16 18 19 8 10 24 0.866 | -1.500 1.732°] 0. 0.
5 1 15 16 5 19 21 10 11 0.866 | -1.500 | -1.732 0. 0.
6|14 15 17 18 7 20 22 23 0.866 1.500 0. 1.732 0.
7|13 14 4 17 21 20 23 24 0.866 1.500 0. -1.732 0.
8 2 3 4 6 7 9 11 12 (-1.732 0. 0. 0. 1.732
913 3 5 6 9 8 22 12 | -1.732 0. 0. 0. -1.732
IIT| 10 2 3 9 8 27 29 34 36 |-0.732] -0.423 2,000 0. 0.
11 5 6 11 12 28 30 33 35 |-0.732 | ~0.423 | -2.000 0. 0.
12 1 15 16 18 25 29 30 32 0.732 | -0.423 0. 2.000 0.
13 (19 21 10 24 26 31 35 36 0.732 | -0.423 0. -2.000 0.
14 4 17 7 20 25 26 27 28 0. 0.845 0. 0. 2.000
15 (13 14 22 23 31 32 33 34 0. 0.845 0. 0. -2.000
v | 16 2 18 8 24 27 29 34 36 0.732 [ -1.268 2.000 0. 0.
17 3 17 9 23 27 29 34 36 |-0.732 1.268 2.000 a. 0.
18 |15 18 7 22 25 29 30 32 0.732 1.268 0. 2.000 0.
19 1 16 9 12 25 29 30 32 | -0.732 | -1.268 0. 2.000 0.
20 2 4 7 11 25 26 27 28 | -1.464 0. 0. 0. 2,000
21 1l 17 20 10 25 26 27 28 1.464 0. 0. Q. 2.000
v | 22 2 7 9 11 12 25 -1.598 | -0.077 0. 0.268 1.732
23 1 2 9 11 12 25 -0.866 | -1.345 0. 1.732 0.268
24 | 13 3 5 6 8 31 -1.598 | -0.077 0. -0.268 | -1.732
25 3 5 6 19 8 31 ~0.866 | -1.345 0. -1.732 | -0.268
26 5 8 9 22 12 32 -1.598 | -0.077 0. 0.268 | -1.732
27 | 16 5 8 9 12 32 -0.866 | -1.345 0. 1.732 | -0.268
28 2 3 4 6 11 26 -1.598 | -0.077 0. -0.268 1.732
29 2 3 6 10 11 26 -0.866 | -1.345 0. -1.732 0.268
30 1 2 18 10 24 27 0.866 | -1.345 1.732 0. 0.268
31 1 17 18 10 24 27 1.598 | -0.077 0.268 0. 1.732
32 (15 16 5 19 21 33 0.866 [ ~1.345 | -1.732 0. -0.268
33 /14 15 16 19 21 33 1.598 | -0.077 | -0.268 0. -1.732
34 1 15 21 11 10 28 0.866 | -1.345 | -1.732 0. 0.268
35 1 15 20 21 10 28 1.598 | -0.077 | -0.268 0. 1.732
36 |16 18 19 8 24 34 0.866 | -1.345 1.732 0. -0.268
37 |16 18 19 23 24 34 1.598 | -0.077 0.268 0. -1.732
38 |17 18 7 22 23 29 0.732 1.423 0.268 1.732 0.
39 [ 17 7 9 22 23 29 -0.732 1.423 1.732 0.268 0.
40 | 13 14 4 21 20 35 0.732 1.423 | -0.268 | -1.732 0.
41 (13 14 4 6 20 35 -0.732 1.423 [ -1.732 | -0.268 0.
42 | 13 4 17 24 23 36 0.732 1.423 0.268 [ -1.732 0.
43 | 13 3 4 17 23 36 ~0.732 1.423 1.732 | -0.268 0.
44 (14 15 7 20 22 30 0.732 1.423 | -0.268 1,732 0.
45 114 7 20 12 22 30 -0.732 1.423 | -1.732 0.268 0.
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Type |No. Associated systems Coordinates for o&=1
VI | 46 2 7 9 25 27 ~1.464 0. 0.268 0.268 1.732
47 1 2 9 25 29 ~0.732 | -1.268 0.268 1.732 0.268
43 1 17 18 25 27 l1.464 0. 0.268 0.268 1.732
49 1 2 18 27 29 0.732 | -1.268 1.732 0.268 0.268
S0 |17 18 7 25 29 0.732 1.268 0.268 1.732 0.268
S1 |17 7 9 27 29 -0.732 1.268 1.732 0.268 0.268
52 7 11 12 25 28 ~1.464 0. -0.268 0.268 1.732
53 1 11 12 25 30 ~0.732 | -1.268 | -0.268 1.732 0.2€68
54 1 15 20 25 28 1.464 a. -0.268 0.268 1.732
55 1 15 11 28 30 0.732 | -1.268 | -1.732 0.268 0.268
56 | 15 7 20 25 30 0.732 1.268 | -0.268 1.732 0.268
57 7 20 12 28 30 ~0.732 1.268 | -1.732 0.268 0.268
58 2 3 4 26 27 ~1.464 0. 0.268 | -0.268 1.732
59 2 3 10 26 36 -0.732 | -1.268 0.268 | -1.732 0.268
60 (17 10 24 26 27 1.464 o. 0.268 | -0.268 1.732
61 2 10 24 27 3e 0.732 | -1.268 1.732 ]| -0.2868 0.268
62 3 4 17 27 36 -0.732 1.268 1.732 | -0.268 0.268
63 4 17 24 26 36 0.732 1.268 0.268 | -1.732 0.268
64 8 9 22 32 34 -1.464 0. 0.268 0.268 | -1.732
65 | 16 8 9 29 32 -0.732 | -1.268 0.268 1.732 | -0.268
66 |16 18 23 32 34 1.464 | 0. 0.268 | 0.268 | -1.732
67 |16 18 8 29 34 0.732 | -1.268 1.732 0.268 | -0.268
68 | 18 22 23 29 32 0.732 1.268 0.268 1.732 | -0.268
69 9 22 23 29 _ 34 ~0.732 1.268 1.732 0.268 | -0.268
VII| 70 2 3 26 27 36 -0.732 | -0.423 1.000 [ -1.000 1.000
71 9 8 29 32 34 -0.732 | -0.423 1.000 1.000 | -1.000
72 |11 12 25 28 30 -0.732 | -0.423 | -1.000 1.000 1.000
73 5 6 31 33 35 ~0.732 | -0.423 | -1.000 | -1.000 | -1.000
74 |16 18 29 32 34 0.732 | -0.423 1.000 1.000 | -1.000
75 1 15 25 28 30 0.732 | -0.423 | -1.000 1.000 1.000
76 | 10 24 26 27 36 0.732 | -0.423 1.000 | -1.000 1.000
77 119 21 31 33 35 0.732 | -0.423 | -1.000 | -1.000 | -1.000
78 7 20 25 28 30 0. 0.845 | -1.000 1.000 1.000
79 4 17 26 27 36 a. 0.845 1.000 | -1.000 1.000
80 (22 23 29 32 34 0. 0.845 1.000 1.000 | -1.000
8L 113 14 31 33 35 0. 0.845 [ -1.000 | -1.000 | -1.000
VIII| 82 2 9 25 27 29 ~0.732 | -0.423 1.000 1.000 1.000
83 3 8 31 34 38 ~0.732 | -0.423 1.000 | -1.000 | -1.000
84 6 11 26 28 35 ~0.732 [ -0.423 | -1.000 | -1.000 1.000
85 5 12 30 32 33 =0.732 | -0.423 | -1.000 1.000 | -1.000
86| 1 18 25 27 29 0.732 | -0.423 | 1.000| 1.000 | 1.000
87 |15 16 30 32 33 6.732 ( -0.423 | -1.000| 1.000 | -1.000
88 (19 24 31 34 36 0.732 | -0.423 1.000 | -1.000 | -1.000
89 |21 10 26 28 35 0.732 | -0.423 | -1.000 | -1.000 l1.000
90 | 17 7 25 27 29 g. 0.845 1.000 1.000 1.000
91 4 20 26 28 35 0. 0.845 ( -1.000 | -1.000 1.000
92 |14 22 30 32 33 a. 0.845 | -1.000 1.000 | -1.c00
93 |13 23 31 34 36 g. 0.845 1.000 | -1.000 | -1.000
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TABLE A7.2

Combinations of 4 independent slip systems.

Type No. | Connecting Associated systems
vertices
4A 1 1 8 2 3 6 9 11 12
4B 13 1 10 2 3 9 8
aC 19 4 16 2 8 18 24
4D 25 8 22 2 7 9 11 12
AE 49 10 16 2 8 27 29 34 36
4F 61 10 126 2 3 9 27
4G 85 10 70 2 3 27 36
4H 97 13 76 10 24 26 36
41 | 109 16 30 2 18 24 27
47 (133 le 49 2 18 27 29
4K | 157 22 23 2 9 11 12 25
4L | 169 22 46 2 7 9 25
4M | 217 58 70 2 3 26 27
4N | 241 46 82 2 g 25 27
40 | 265 70 180 3 26 27 136
TABLE A7.3
Combinations of 3 independent systems.
Type No. Connecting ‘ Associated
vertices systems
3a 1 1 8 10 1286 2 3 9
3B 25 1 8 9 95 3 6 9 12
3c 28 1 8 28 29 99 2 3 6 11
3D 40 8 22 46 126 2 7 9
3E 64 4 16 30 2 18 24
3F 88 10 16 17 104 27 29 34 36
3G 91 10 17 125 126 3 9 27
3 (115 10 16 61 70 185 2 27 36
31 |[163 10 58 70 126 2 3 27
33 211 70 76 79 178 180 185 | 26 27 36
3K (215 28 29 58 59 70 2 3 26
3L |239 58 70 180 3 26 27
3M |263 16 30 49 2 18 27
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APPENDIX 8

MINIMIZATION OF THE GRAIN BOUNDARY ENERGY

It must be recognized that, as a first approximation, the GBE only depends
on the misorientation between two adjacent grains. If A1 and Ag are the
matrices associated with the two orientations, the misorientation a between the
two can be calculated from:

trace(‘A,.A ) =1+ 2cosa (A8.1)
However, if A1 is kept constant and Ag is replaced by the 24 equivalent
matrices, equation A8.1 leads to 24 different values of a. To find the real
misorientation, the 24 equivalent products all have to be calculated so that the
minimum value of a can be found.

In order to establish now the "closest" stable boundary (i.e. one
corresponding to a coincidence site or to a low angle boundary with a equal to
zero), the same procedure must be used. The trace of C=(A2*. A1) must be
calculated, where Ag* is the transform of Az pertaining to all the coincidence
rotations and all the symmetry transformations (see Figure A8.1 for the
definition of the different matrices). The closest stable boundary corresponds to
the minimum value of a found in this procedure.

The £ =3 coincidence rotations can all be defined by the four matrices listed
in Table A8.1; the Z=1 coincidence rotation matrix, by contrast, is simply the
identity matrix. Now, minimizing the GBE is equivalent to minimizing the
angle a associated with the nearest stable boundary, or conversely, to
maximizing the trace of the product (‘Ag*.A}). It will now be shown that the
trace of this matrix can be expressed to a first order as a linear function of the
shear rates on the active slip systems in the two subgrains.

At a given instant ¢, before the increment of deformation, we have:
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SS =sample system CS;
CS=crystal system A

C’ C

T=tA2A,

C=tA9* Ay

C'=tA9* A"y
A'1=A1R.1=R14A1
A'3=A3.'Rea=R2A

A'9* = Ag* (R o* =Ro*Ag*
Reo*=DRy9'D

Figure A8.1.Significance of the different rotation matrices:
A1, Agoriginal orientation matrices;
Ay’, A9’ orientation matrices after rotation;
Rc1, Ro rotation matrices defined from R and R9 (Appendix 2);
D coincidence rotation (also takes into account the cubic symmetry);
Ao* transform of Ag by this coincidence rotation;
Ag* transform of Ag* by the R 2* rotation matrix.

trace(tA*2.A1) = traceC = 1 + 2cosa = trace(A, .tA*z) (A8.2)

During the increment of deformation, the shear rates on the active slip systems
are ys in grain 1 and y’s in grain 2. This results in a reorientation of each
subgrain, the new matrices being Ay’and A’ as calculated in Appendix 2. In


http:C=tA2*.AI
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2 -1 2 2 -2 -1
D1=1/3 2 2 -1 D3=1/3 1 2 -2
12 2 2 1 2
L _ | _
— — -
r 2 2 1 2 1 -2
Do=1/3| -1 2 -2 Dy4=1/3| -2 2 -1
21 2 1 2 2

Table A8.1. Rotation matrices corresponding to £ =3 boundaries.

the present calculation, we use a first order approximation of the matrices R
and Rg which link A1, A2 and A1’ A2’ We can therefore write that:

A’1 = R1A1
A’y =R,A, (A8.3)
A* =R* A%

where R1 and Rg are calculated from:

R =D, -G +1 (A8.4)
R,=D,~-G,+1
Here D1 and D3 are the displacement gradients acting on the two grains as seen
from the sample system and G and Gy are the displacement gradients as seen
from the crystal system. In D; and D2, some terms are zero, depending on which
planes and lines remain fixed in space. In the case of rolling, where 3 shear
strains are relaxed, Dolling is equal to :

din O di13
321 dog da3

Dyolling = d
33

(A8.5)

whereas in fixed end torsion, where 2 shear rates are relaxed in the grain axes,
Dtorsion iS equal tO
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0 0 dis
do1 0 d23 =y
0 0 0

D¢orsion =

(A8.6)

In both rolling and torsion, the 2 axis and 3 plane are assumed to remain fixed.
We also have:

— ‘8 818
G, = Es Y n;bldt (A8.7)
which gives us for R:

1 Ri12 —R31

—-R12 1 —R32
Ra; Rsz i (A8.8)

where R12, R31 and R32 are equal to

R,=- 2 y*binidt
§

Ry = - D> Y binidt (A8.9)
8

— S8 _ 8
R32 = - Z Y b3n2dt
8§
in both cases of rolling and torsion.

We can now consider the new matrix C'=(fAg'*.A1"), which is given by:
C'=R*:9.C.tR 1 and calculate its trace so as to have the new value of the angle

a.

_ fare Av Y — » Eare y — Eay t (A8.11)
traceC’ = trace( A"‘2 A 1) = trt;tce(A1 A*2) = trace(l'iflAl A"‘2 Rz)

with C*= A1lA%
We find to a first order that:

traceC’ =1 + 2cosa’ = traceC - a (R12 - R’lz) - b (R31 - R’31) - c(R32 - R’32) (A8.12)
with a=C*19—-C*91
b=C*31~C*13 (A8.13)

c=C*33—-C*23
It is thus seen that the difference between trace(C') and trace(C) is a linear
function of the ys and y’s:

traceC’ — traceC = f(°*,Y* )= (D v = D ¢S y¥)dt (A8.14)
where the coefficients, cs and ¢ are equal to:

s s s $_§ $
¢=Dabini+ > bbint+ > cbind (A8.15)
s s §
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c,s = Za b,s n18 + S-‘ b b,s nas Z b:S ,s
§

s

In order to minimize q, it is necessary to minimize the function:

gy V)= = F(Y°, Y/ dt (A8.16)

with respect to y° and y’S (this function represents the rate of change of trace of
C). The problem can now be solved by means of the linear programming
technique. It should be noted though that, when a is equal to 0, the function is
zero for all values of y* and ¥’ and the problem is indeterminate in this case
(a=b=c=0). However, in an actual computation, when a approaches zero, the
function g(y°%, y'S) oscillates between two extreme solutions and a is never
exactly zero. To solve the problem rigorously in this case, it would be necessary
to calculate the function g to second order. This would, however, involve very

lengthy calculations.



