
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Implementing Attribute Metadata Operators to
Support Semistructured Data

Fan Guo

School of Computer Science, McGill University

Montréal, Québec, Canada

January 2005

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for

the degree of Master of Science

T. H. Merrett, Advisor

Copyright © Fan Guo 2005

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12459-8
Our file Notre référence
ISBN: 0-494-12459-8

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Contents

Abstract

Résumé

Acknowledgments

1 Introduction
1.1 Motivation.
1.2 Outline ...

2 Background and Related Work
2.1 Relational Model
2.2 Nested Relation ...
2.3 Aldat and jRelix ..
2.4 Semistructured Data

2.4.1 Semistructured Data and its Features .
2.4.2 Semistructured Data Examples
2.4.3 Semistructured Systems and Query Languages
2.4.4 Oracle XML DB
2.4.5 Schema

2.5 Database Query Language and DBPL .
2.5.1 Query Language
2.5.2 Database Programming Language.

2.6 Querying Semistructured Data in a Relational DBPL
2.6.1 Attribute Metadata Operators .
2.6.2 Related Work in jRelix

3 Overview of jRelix
3.1 Domain and Relation Declaration

3.1.1 Domain Declaration ...
3.1.2 Relation Declaration and Initialization

3.2 Assignments
3.3 Views

11

xi

xii

xiii

1
1
4

5
5
6
7
7
7
8

14
16
16
17
18
18
19
23
23

25
26
26
26
29
32

CONTENTS

3.4 Relational Algebra
3.4.1 Unary Operators
3.4.2 Binary Operators

3.5 Domain Algebra
3.5.1 Horizontal Operations
3.5.2 Vertical Operations ..

3.6 Update
3.7 Programming Language Constructs
3.8 Distributed Data Processing . . .

4 Metadata Operators User Manual
4.1 Type TYPE and the typeof Operator

4.1.1 Initialization of Type TYPE.
4.1.2 Syntax of the typeof Operator
4.1.3 Examples ..

4.2 The quote Operator .
4.2.1 Syntax...
4.2.2 Examples ..

4.3 The eval Operator
4.3.1 Syntax of the eval Operator
4.3.2 Examples

4.4 The self Operator
4.4.1 Syntax..
4.4.2 Examples

4.5 The Relation Operator
4.5.1 Syntax
4.5.2 Examples .. .

4.6 The Transpose Operator
4.6.1 Syntax......
4.6.2 Examples

4.7 Redefining Virtual Nested Relation
4.7.1 Redefining Keeping the Same Attributes
4.7.2 Redefining with Different Attributes ..

4.8 The Wildcard
4.8.1 The Wildcard Represents Top Level Relations
4.8.2 The Wildcard Represents Nested Relations.

4.9 Attribute Path and Schema Discovery.

5 Applications
5.1 Integrated Graphical Query Ability
5.2 Data Reorganizing
5.3 Partial Structure and Structual Differences Discovery

III

34
34
36
41
42
42
54
55
55

56
57
57
59
59
62
62
62
63
63
64
68
69
69
72

72

73
74
74
75
80
80
82
83
83
85
86

90
90
94
96

CONTENTS IV

6 Implementation of Attribute Metadata Operators 101
6.1 jRelix System Overview 101

6.1.1 Development Environment and Tools . . 101
6.1.2 System Architecture and Storage Format 102
6.1.3 Introduction of Related System Class . . 105

6.2 Implementation of Type TYPE and the type of Operator 109
6.2.1 Type TYPE. 109
6.2.2 The typeof Operator 109

6.3 Implementation of quote Operator . 111
6.4 Implementation of evalOperator . 112

6.4.1 Implementation of actualizing eval in Cell Method . 112
6.4.2 Implementation of eval in Left Rand Side of Declaration 113
6.4.3 Modifications Related to Set Operation. 115
6.4.4 Implementation of eval in Right Rand Side of Declaration 117

6.5 Implementation of self Operator 117
6.5.1 Implementation of self in Normal Expression 117
6.5.2 Implementation of self in Path Expression 119

6.6 Implementation of relation Operator . 119
6.7 Implementation of transpose Operator . 121
6.8 Redefining Nested Virtual Domain 122
6.9 The Wildcard 124
6.10 Recursive Virtual Nested Relations 127

7 Conclusion and Future Work 132
7.1 Thesis Summary 132
7.2 Future Work. 133

7.2.1 Links......... 133
7.2.2 One More Extension of the Wildcard 137
7.2.3 Integrate Attribute Metadata Operator into Update Operation 139

Bibliography 140

List of Figures

2.1 BibTex Schema for "book"
2.2 BibTex Schema for "conference"
2.3 Two BibTex File Entries
2.4 An HTML File
2.5 An XML file
2.6 An AceDB Schema for "?Paper"
2.7 An Instance of "?Paper"
2.8 Relation Books
2.9 Query for AlI Authors
2.10 Query for Book Authors

3.1 Examples of Domain Declaration
3.2 An Example: Relation Declaration and Initialization
3.3 Initialize a Relation in Semistructured Format
3.4 Print Form of Nested Relation Contacts
3.5 St orage of Nested Relation Contacts.
3.6 Recursive Nesting Declaration
3.7 Examples of Assignment Operations.
3.8 An Example of view
3.9 An Example of Projection
3.10 An Example of Selection Operation .
3.11 An Example of T-Selection Operation.
3.12 Relation Student and Course.
3.13 ijoin Operation .
3.14 djoin Operation
3.15 icomp Operation
3.16 Horn Clause: Known Preconditions and Conclusions.
3.17 Horn Clause: the Given Knowledge and the Conclusions
3.18 An Example of Reduction Operation
3.19 The Nested Relation: EmpName'
3.20 The Unnested Relation: EmpName
3.21 Using Syntactic Sugar in the Query

v

9

9

9
11
12
13
13
21
21
22

27
27
28

30
31
32
33
34
35
36
36
38
38
39
40
41
42
43
45
45
45

LIST OF FIGURES VI

3.22 An Example of Equivalence Reduction 46
3.23 An Example of Functional Mapping Operation. 47
3.24 Functional Mapping Applied to a Non-associative Operator . 47
3.25 An Example of Partial Function Mapping Operation 48
3.26 Relations for Set Operation 49
3.27 Examples of Set Operation in Equivalence Reduction and Partial Func-

tional Mapping 50
3.28 An Example of Set Operation in Projection 50
3.29 An Example of quote Operator 50
3.30 An Example of Static eval Operation. 51
3.31 Matrix A . 52
3.32 Matrix B. 52
3.33 Matrix C. 52
3.34 Relation Model of Matrix A and B 52
3.35 Relation C: The Production of A and B. 53
3.36 Relation triangle 54
3.37 Calculation of Area 54
3.38 An Example of update Operation in Flat Relation . 55

4.1 Domain and Relation Declaration 58
4.2 Initialization of Type TYPE 58
4.3 An Example of a Failed Initialization of Type TYPE 59
4.4 A Relation Contains Attribute of Type UNIVERS AL 59
4.5 An Example of typeof on a UNIVERSAL Type Attribute 60
4.6 Examples of typeof with Operand of Type ATTRIBUTE . 60
4.7 A Relation Contains Attribute of Type UNION . . . 61
4.8 An Example of typeof on a UNION Type Attribute 61
4.9 Examples of typeof Operator with Constant Result . 61
4.10 Examples of quote operator 63
4.11 Relation RD 64
4.12 eval in Relational Algebra . 64
4.13 Relation Ri 65
4.14 eval Declaration (in the left) . 66
4.15 An Example of eval Declaration Type Mismatch 66
4.16 Relation R2 67
4.17 eval Declaration (in the right) . 67
4.18 eval Declaration (in both side) 68
4.19 eval as an Operand of typeof . 68
4.20 Relation Products 70
4.21 self being Actualized in Actual Relations.
4.22 self being Actualized in an Virtual Relation
4.23 A Failed Operation of self

71
71
72

LIST OF FIGURES vu

4.24 An Example of relation Operator. 73
4.25 An Example of relation Operator Using Short Form 74
4.26 An Example of transpose Operator Result in Nested Relation. 75
4.27 transpose Defined on Attributes of Type ATTRIBUTE and TYPE 76
4.28 transpose Defined on Attributes of Type ATTRIBUTE 76
4.29 transpose Defined on Attributes of Type TYPE . 77
4.30 transpose Part of Attributes with cast Operator 77
4.31 transpose Part of Attributes with quote Operator . . . 78
4.32 transpose on Relations Resulted from Transpose Operation (1) 78
4.33 transpose on Relations Resulted from Transpose Operation (2) 79
4.34 A Simple Query for Finding Path . . . 79
4.35 Relation Rand Nested Relation. V . . 81
4.36 Redefined V with the Same Attributes 81
4.37 Redefined V With Different Attributes 82
4.38 Three Top Level Relations 84
4.39 The Wildcard Represents Top Level Relations 84
4.40 The Wildcard Represents Top Level Relations with Virtual Domain 84
4.41 Nested Relation Branch 85
4.42 The Wildcard Represents N ested Relations 86
4.43 Path Discovery . 87
4.44 The Display Form of Three Level Nested Relation 0 87
4.45 Schema Discovery 88
4.46 Display the Nested Relation Schema in Each Level 89

5.1 Relation Flights 92
5.2 Query Code for Finding Round Trip .. 92
5.3 Partial Result of the Transitive Closure . 93
5.4 The Round Trip. 93
5.5 Relation. Visit: Cities Visited . 93
5.6 Relation DB Initialization 94
5.7 Relation next 95
5.8 Relation Paperby Year . 96
5.9 Relation O. 98
5.10 Relation 0'
5.11 Paths that Containing Attribute C
5.12 Code for Schema that Contains Attribute C
5.13 The Difference of 0 from 0'

6.1 Process of Generating a Parser Using JJTree and JavaCC .
6.2 jRelix System Architecture .
6.3 A Syntax Tree.
6.4 typeof Transformation . . .

98
99
99

100

102

103

106

110

LIST OF FIGURES

6.5 Pseudo-code for act8trCellForTypeof()
6.6 quote Transformation
6.7 An Unsuccessful Set Operation ..
6.8 Parsing of self/ attri
6.9 Pseudo-code for evaluateRelation()
6.10 Transforming a Domain Node to Relation Operation
6.11 Pseudo-code for evaluateTmnspose() ...
6.12 Modifications in AddVirtDom2DomTable()
6.13 Modifications in new VirDomain() . . .
6.14 Pseudo-code for WildcardToRelations() ..
6.15 Wildcard in Projection
6.16 The Syntax Tree for Equivalent Operations in Figure 6.15
6.17 The Definition Tree of Domain schema_2
6.18 The Definition Tree of Domain schema_l
6.19 The Definition Tree of Domain schema_O
6.20 The Modification of the Top Level Nested Relation

7.1 St orage of Relation Company
7.2 Relation Company: Data Sharing
7.3 Relation Company: xML Representation
7.4 Relation Papers: Data Sharing
7.5 Relation Papers: xML representation
7.6 Relation Paperby Year'
7.7 Relation R lnvolving the "dc" Value
7.8 The Expected Result

viii

111
112
116
119
120
121
121
123
123
126
126
127
129
130
130
131

134
135
136
137
137
138
138
138

List of Tables

2.1 HTML tags
2.2 The Display form of Relation Books.
2.3 Reorganization of Data

10
20
22

3.1 The Display form of Nested Relation Contacts 29
3.2 IL-joins and Set Operators 37
3.3 Summary of cr-joins. 39
3.4 Horizontal Operation and Examples in Domain Algebra . 43
3.5 The Display form of Nested Relation EmpName' . 44

4.1 Valid Types in jRelix System 58
4.2 The Display form of Relation Products 70
4.3 The Cartesian Products of fmname in Relation products . 74
4.4 The Display Form of Relation R 80
4.5 The Display Form of Relation Branch . . 85
4.6 The Display Form of Nested Relation 0 88
4.7 The Display Form of Relation Schema 88

5.1 The Display Form of Relation DB . 95
5.2 The Display Form of Relation o. . 97
5.3 The Display Form of Relation 0' . 97
5.4 The Display Form of Result of Schema that Contains Attribute C 99

6.1 Relationship Between System Files on Disk and Their RAM Version. 104
6.2 RAM Version of Domain Table: dom Table 104
6.3 RAM Version of Relation Table: rel Table 104
6.4 Frequently Used Members and Methods of the SimpleNode Class . 105
6.5 Sorne Important methods in the Interpreter Class 107
6.6 Important Methods in the Actualizer Class 107
6.7 Type Code. 108
6.8 Operation Code. 108
6.9 Summary of Recursive Nested Relation Expansions in Relation 0 129

7.1 The Display Form of Relation Company 134

ix

LIST OF TABLES

7.2 The Display Form of Relation Suppliers: Using Links
7.3 The Display Form of Relation Papers
7.4 The Display Form of Relation Papers

x

135
136
136

Abstract

This thesis documents the design and implementation of nine new features for supporting

semistructured data in jRelix, induding the augmentation of attribute metadata, the

extension of the wildcard, and the expansion of recursive virtual nested relations.

The strategy for implementation of semistructured data in Aldat system is to aug­

ment the data type and operations in the programming language, jRelix. The function­

alities of attribute metadata operators (eval, quote, transpose) have been enhanced

and new operators (relation, typeof, self) have been added. The capacity of the wild­

card has been magnified; therefore, it can represent top-level relations or nested relations

in domain algebra and relational algebra depending on the context. The expansion of

recursive virtual nested relations has been implemented to support recursive nesting

structure. Applications of these operators also have been presented including attribute

path and schema discovery, data reorganization, and queries involving transitive dosure

on graphical structured data.

xi

Résumé

Ce mémoire documente l'élaboration et l'implémentation de neuves nouvelles caractéristiques

supportant les données semi-structurées en jRelix, incluant l'augmentation des métadonnées

attribut, l'extension du joker("wildcard") et l'extension des relations imbriquées virtuelles

récursives.

La stratégie pour l'implémentation de données semi-structurées dans le système Al­

dat consiste en l'augmentation du type de données et des opérations dans le langage

de programmation jRelix. Les fonctions des opérateurs de métadonnées attribut (eval,

quote, transpose) ont été améliorées et de nouveaux opérateurs (relation, typeof,

self) ont été ajoutés. La capacité du joker a été amplifiée et il peut dorénavant, selon le

contexte, représenter les relations du niveau supérieur ou les relations imbriquées dans

le domaine à la fois de l'algèbre et de l'algèbre relationnelle. L'extension des relations

imbriquées virtuelles récursives a été implémentatée afin de supporter la structure im­

briquées récursives. Les utilisations de ces opérateurs décrites dans ce mémoire sont :

le chemin d'accès attribut, la découverte de la schéma, la réorganisation des données et

les questions impliquant les fermetures transitives des données graphiques structurées.

Xll

Acknowledgments

The most special thanks are due to my supervisor Professor Tim Merrett for his invalu­

able advice, patient guidance, and constant encouragement throughout the development

of this study. l have benefited enormously not only from his valuable insights, mentor­

ing, and motivating, but also from his expertise as weU as erudition. l feel very fortunate

to conduct this thesis under his supervision. l would particularly like to thank him for

his generous financial support.

l am grateful to aU of my coUeagues in the Aldat labo Special thanks goes to Zhongyan

Wang who provided consultation and great help in my understanding of the Aldat system

and the lab-working environment. Yu Gu kindly supplied me with her related code so

that l had an environment to integrate and test my program.

l wish to thank the School of Computer Science for the graduate courses and the

research environment. l acknowledge aU the secretaries and system staff for their ad­

ministrative help and technical assistance.

Many thanks go to Brenda Anderson who proofread this thesis and Christophe

Chénier who translated the abstract into French.

Last but not least, l would like to express my appreciation to my husband, Hong Xu,

for his love, support, and encouragement during the time of my study.

Xlll

Chapter 1

Introduction

This thesis documents the enhancement of attribute metadata and the extension of

the wildcard, ".", in regular expression and domain algebra in jRelix for supporting

semistructured data. We augment the functionalities of the existing attribute metadata

and develop three new operators. In this chapter, we will first present the motivation

of our work in Section 1.1 and then introduce the outline of the thesis in Section 1.2.

1.1 Motivation

Many applications today contain semistructured data. Well known examples are those

data that are published on the World-Wide Web: journal papers, technical documents,

tutorials, news articles, etc. Other examples are scientific research databases, or com­

mercial databases. Most of these different kinds of data have irregular data structures,

partially defined schemas, or the structure of the data changes over time.

The emerging of semistructured data and its popular applications posed new require­

ments for the database research area. New database systems for managing semistruc­

tured data have been developed and the relational database system has been combined

with systems which manage semistructured data. Our work is to integrate the manage­

ment of semistructured data into the existing jRelix database programming language.

The relational data model introduced by E.F. Codd [Cod70] has been successfully

applied to a considerable number of applications. It has become the core technique of

most database management systems and is particularly suitable for business database

1

CHAPTER 1. INTRODUCTION 2

management where the structure of the data is relatively simple and can be represented

in table form. The relational database system provides a simple and flexible way for

application development and maintenance.

The database query language is one type of the languages to manipulate the structure

and data in a relational database. The purpose of a query language is to provide both

programmers and non-programmers with a tool to retrieve information from databases

in an easy way. Users focus only on the content of the information to be retrieved. The

implementation of a database management system with such language needs to translate

the user queries into logic query plans containing the operators and functions that can

be executed in the data engine. System query optimization is thus a critical issue under

this paradigm. SQL (Structural Query Language) is a standard database query language

for the relational database system and has been used in many commercial systems.

Relational query languages have limited expressional power in dealing with complex

data. As a result, they do not suit non-business applications involving numerical compu­

tation or complicated manipulation of data [AB87]. Extensions have been made to me et

the requirements of the continuing emergence of new applications. We describe them

in the next three paragraphs. They include the extension of data types, the extension

of structure from flat relations to nested relations, and the augmentation of the query

language.

Originally, only generally used data types for numbers and strings are available in a

database system. Along with new applications, a database system needs to support new

data types for text, images, abstract data types [SRG83, OFS84, OH86, St086, Zhe02],

and types that have more than one value (UNIVERSAL [MerOl, Roz02] and UNION

[ACC+97, Mer03, Gu05]).

To make nested relations is to allow the attributes of a relation to be able to hold

relational data instead of only simple (or scalar) data [Mak77, FG85, TF86, JS82].

In query languages such as SQL, operations have been extended from basic relational

algebra to more powerful operations such as aggregates, ordering, grouping, updates,

and built-in functions; simple query form "Select-From-Where" has been extended to

nested structures so that nested relations can be accessed.

Another direction for developing database management system languages is the de-

CHAPTER 1. INTRODUCTION 3

sign and implementation of database programming languages. The reason for database

programming language is the need for an integrated programming environment for

database systems to uniform the specifie data base systems developed for particular

applications. jRelix , developed at the Aldat Lab in the School of Computer Science

at Mc Gill University, is a high-level database programming language that subsumes the

database query language. It is designed and implemented based on the relational alge­

bra [Cod70] and domain algebra [Mer76, Mer84], and provides both the database query

language and mechanisms to application solutions in many fields, such as expert system,

numerical computation, and data mining.

The semistructured data management system has been an important research and

development field in the past decades. In addition to application oriented management

systems for individual applications, su ch as AceDB and XML, research has focused on

the development of general purpose semistructured database systems. These systems

include Lore [MAG+97] and its query language Lorel [AQM+97], and Lore's contem­

poraneous system UnQL [BDS95, BDHS96, BFSOO]. Both adopt a direct graph data

model, and were designed and implemented particularly for semistructured data. The

query languages are SQL-style combined with simple path expressions and general path

expressions. UnQL also provides mechanisms for restructuring a database graph while

traversing it. The architecture of these systems is more or less the same as that of a

traditional relational database system except that the semistructured query needs first

to be transformed into a SQL-like query.

Another strategy for managing semistructured data is to bind the data model and the

query language to an existing relational database system. Many database systems with

SQL-based query language, such as Oracle, adopt this tactic. Under this paradigm, the

database system has aIl the features for processing the relational data model. Further­

more, new data types are added to hold semistructured data. A second query language

accomplishes manipulation of the new types of data. Data is moved between two lan­

guages to fulfiIl the data exchange inside the system. Users must be bilingual who can

use both query languages.

At the Aldat database system, the management of semistructured data has been

integrated into jRelix and uniformly managed with other relations [Mer03]. The exist-

CHAPTER 1. INTRODUCTION 4

ing jRelix already has extensive ability in manipulating semistructured data. In order

to provide a full support for semistructured data, a new data type, TYPE, and new

operators to manipulate attributes are introduced. The purpose of this thesis is to aug­

ment attribute metadata operators into jRelix to support queries associated with the

structure of relations.

Note that the semistructured data in jRelix is a general purpose data form. Its syntax

is a "mark-up" representation called xML that has the characteristics of aIl the markup

notations originated from GML [Mer03]. Thus in xML, x represents G, RT, SG, and X

in GML, RTML, SGML, and XML, respectively.

1.2 Outline

This chapter introduces the motivation of this thesis. Chapter 2 reviews the liter­

ature on the relational data model, nested relations, database query languages and

database programming languages, semistructured data and its management systems,

and the strategy to integrate semistructured data management into jRelix. Chapter 3

introduces the use of the jRelix system and presents the power of jRelix as a database

programming language with examples and applications. Chapter 4 is the user manual of

new functionalities of attribute metadata operations. Chapter 5 exhibits the solutions

to sorne classical queries posed on semistructured data using new attribute metadata.

Chapter 6 describes the implementation of the attribute metadata. Chapter 7 concludes

the thesis with a summary and proposaIs for future work.

Chapter 2

Background and Related Work

Semistructured data is becoming more and more popular especially with the huge

amount of data published on the World Wide Web. Different from data that was pro­

cessed in the traditional relational database, semistructured data does not always have

predefined and fixed data structures or schema. The traditional database system alone

cannot manage and retrieve semistructured data. In this chapter, the general strategy

to manage semistructured data in the Aldat system will be presented, preceded by the

literature review of the relational data model and the nested relation, the features of

semistructured data, and the database query language and programming language.

2.1 Relational Model

E.F.Codd signaled the start of a new era of the database management system by propos­

ing the relational model in "A Relational Model for Large Shared Data Banks" [Cod70]

published in 1970. Before that time, database products were usually production ori­

ented, complex, and difficult to maintain and enhance. By following the abstract data

model, database products began to become more flexible and easier to maintain [CCS94].

The relational model has influenced the database products in different fields of appli­

cations thereafter. From the early prototype system Ingres [HSW75] and System R

[ABC+76] to nowadays most widely used products in large multi-user environments

including Oracle, Sybase, Ingres and DB2, the relational data model acts as their foun­

dation and principle.

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

The relational data model is described as independent of the physical representation

of data. In this model, data is thought of as two-dimensional tables, known as relation.

Columns of the table are labeled and the names of the column are called attributes. The

values of the attributes are called domains. A row in the table is called a tuple. The

model has the following properties:

1) AH tuples are different from each other

2) The order of tuples is not important

3) Each attribute has a different name, therefore, the order of attributes does not matter

4) The value in each tuple under an attribute is "simple"

A relation that satisfies the above properties also is known as a "fiat relation". "Sim­

ple" in the fourth property basically means that the value of an attribute should be of

basic types such as STRING, BOOLEAN, INTEGER, etc. This exclu des any possibility

that the value of an attribute is a relation.

2.2 Nested Relation

By removing the restrictions in fiat relation, which is "the value of an attribute in a

tuple should be atomic" , a relation may be designed to be a nested relation which might

have relations as values of an attribute. The possibility for a relation to have non-atomic

value was brought up along with the relational data model by Codd [Cod70] and the

idea of nested relation was first proposed formally [Mak77] to satisfy the need of non­

business database applications, such as hierarchical data bases. It is more natural to

model complex data like this in a nested relation. Fisher and Gucht [FG85] discussed

the one-Ievel nested relation which later was generalized by Thomas and Fischer [TF86]

to an arbitrary but fixed depth. Jaeschke and Schek[JS82] added two operators to

Makinouchi's [Mak77] model: nest and unnest, to do transformations between fiat

relations and nested relations.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

2.3 Aldat and jRelix

Aldat, which stands for the algebraic approach to data, is a project under development

at McGill. Aldat aims to integrate general purpose programming language into database

query language so that the language has the power to deal with different applications.

The foundation of the approach is the generalization of relational algebra that provides

operations over the relational model database, and the created domain algebra that

empowers the query language with arithmetic, logic, string processing, and much more.

jRelix, standing for a relational database programming language in Unix, written in

Java, is the query and programming language in Aldat. Relational algebra and Domain

algebra for fiat relation and nested relation are implemented [Ha098, Yua98 , KanOl,

Cha02, SunOO]. Computation [Bak98] and ADT (Abstract Data Type) [Zhe02] provide

mechanisms for procedural abstraction and data abstraction, respectively. Distributed

data processing in jRelix [Wan02] empowers jRelix with the ability to pro cess data across

the Internet. Attribute metadata [Roz02] was implemented to support operations over

attributes.

For more details on jRelix, please refer to Chapter 3.

2.4 Semistructured Data

2.4.1 Semistructured Data and its Features

While the traditional database system and query language play important roI es in differ­

ent fields, new applications have emerged and posed new requests to database systems.

Semistructured data which is available in many applications is one of them. Documents

on the Web and scientific research data are two representatives. Semistructured data

does not conform to the traditional relational data model. Compared with data under

the relational data model, which has predefined fixed structures, semistructured data

is not well structured. The data schema, which describes data types and attributes,

is implicitly specified together with the data. Therefore, semistructured data is self­

describing.

Semistructured data has the following features [Abi97]:

CHAPTER 2. BACKGROUND AND RELATED WORK 8

1) the structure is irregular: sorne of the data has missing attributes; sorne attributes

have different types of data; sorne attributes may have more than one value; in data

integration from an heterogeneous source, semantically related data may be represented

in different ways.

2) the data structure is implicit

3) the data structure is incomplete

4) data type is not strictly defined

5) the structure of data may be much larger than the data itself

6) the schema is dynamic and develops very fast

7) schema may be changed and queried as data

2.4.2 Semistructured Data Examples

Semistructured data has many applications and for each application there is a particular

database system which includes the data model and its query language. In the following

subsections, sorne examples of semistructured data and how these data are accessed are

investigated.

BibTex

BibTex [Jac96] is a program and file format designed for LaTex to create bibliographies.

A BibTex file contains many entries, each of which consists of standard entries with field

names and one or more values describing one aspect of the entry. The standard entries

have required fields and optional fields and vary according to the different types of entries

(a BibTex file may have as many as 14 types entries). Optional fields can be omitted

without causing any format problem, but the required fields are necessary and should

not be omitted. Figure 2.1 and Figure 2.2 show schemas for two different categories

of BibTex file, one is for book type, the other is for conference paper type. Fields in

square brackets "[" and "]" are optional. The field citation_key is the label used in the

citation in a LaTex document. Running the BibTex program with the BibTex database,

all entries for cited documents will be extracted from the database and reformatted into

the specified style. The newly-formed data is stored in a bibliographie file with each

CHAPTER 2. BACKGROUND AND RELATED WORK 9

entity having a label whieh corresponds to the one in the citation. A bibliographie list

can be printed out using corresponding commands in LaTex file with the specified style.

As long as users create a valid bibliographie database and cite correctly in the text,

the access of each entry of the database is accomplished automatieally by the BibTex

program and Latex. Users do not have to worry about it.

Figure 2.3 exhibits example entries for book and conference. Note that both examples

omit sorne of the optional entries. Therefore, in a BibTex database, every entry may

have a different data structure.

HTML

@book{citation_key,
author/editor, title, publisher, year
[,volume, series, address, edition, month, note, key]

}

Figure 2.1: BibTex Schema for "book"

@conference{citation_key,

}

author, title, booktitle, year
[, editor, pages, organization, publisher, address, month, note, key]

Figure 2.2: BibTex Schema for "conference"

@conference{Merrett88,
author={T. H. Merrett},

}

title={Experience with the Domain Algebra},
booktitle={Proceedings of the Third International Conference

on Data and Knowledge Bases: Improving Usability
and Responsiveness},

year={1988},
month={June},
editor={Catriel Beeri, Joachim W. Schmidt, Umeshwar Dayal},
pages={335-346}

@book{Merrett84,

}

author={T.H. Merrett},
title={Relational Information Systems},
pUblisher={Reston Publishing Co.},
year={1984},
address={Reston, VA}

Figure 2.3: Two BibTex File Entries

HTML (Hyper Text Markup Language) [RH98] is a language used to create documents

that can be displayed as a web page using a web browser. HTML uses tags to structure

CHAPTER 2. BACKGROUND AND RELATED WORK 10

text. The tags specify the display format of the page and most of them appear in pairs.

A HTML file consists of elements that are enclosed in start tags and end tags. In between

the tags are content of the elements (e.g. Semistructured data < lb> or <title>

Information System < Ititle». The tags are standard but not all of them may appear

in every page. A hyperlink is used to link the current file to another file (another HTML

file, an external image, a source file, etc.). Anchor tags « a > and < la» specify the

destination URL address and the corresponding keyword in the current document (e.g.

 McGill University < la». Navigations from the

current page to the destination file are performed by clicking the highlighted keyword

in the current page. Table 2.1 presents sorne of the frequently used tags. Figure 2.4

gives an example of an HTML file, which includes a small paragraph, a hyperlink and

a table.

start and end tags function
<html> ... </html> define an HTML document
<title> ... </title> define an title of document
<body> ... </body> define an HTML document body
<hi> ... </hi> the largest header
<h6> ... </h6> the smallest header
<pre> ... </pre> pre-formatted text
 ... <lb> bold font

 enforce a line break
 ... <la> hyperlink to "URL"

Table 2.1: HTML tags

Many query languages were proposed for web searching, such as WWWW [McB94],

Lycos [ML94], W3QL [KS95] , WebSQL [MMM97], and WebLog [LSS96]. They either

query information from inside an HTML file or retrieve HTML documents from the web.

WebSQL, on the other hand, is a SQL-like query language for the Web. HTML is

the basic query unit in the language and the information available in HTML (i.e., URL,

title, text, type, length, and the last modification date) are query attributes. WebQL

uses the virtual relation "Document [url, t i tle, text, type, length, modif]" to

query the HTML document content (the value of the attributes).

Queries related to hyperlink structures of the Web are performed based on another

virtual relation "Anchor [base, href, label]" together with different links that point

to documents inside the current file, documents in the same site, and documents in a

CHAPTER 2. BACKGROUND AND RELATED WORK

<html>
<title> Students Records </title>
<body>
<p> The following table records the information of students who take
the course
Database System
</p>

<table border=" 1 ">
<caption>Students Records</caption>
<tr>

<th>id</th> <th>name</th> <th>email</th>
</tr>
<tr>

<td>1325</td> <td>Joe</td> <td>Joe~cs.mcgill.ca</td>

</tr>
<tr>

<td>1386</td> <td>Ted </td> <td>Ted~cs.mcgill.ca</td>

</tr>
<tr>

<td> ... </td> <td> ... </td> <td> ... </td>
</tr>
</table>

</body>
</html>

Figure 2.4: An HTML File

11

remote site. In WebSQL, internaI structure of an HTML is not considered, therefore,

even if the structure is known, users cannot benefit from it.

WebLog is a declarative language for querying and restructuring HTML documents

[LSS96]. WebLog uses three types of predicates based on the internaI structure of

an HTML file for retrieving information. The built-in predicates are used to express

general relationships (e.g. substring(string, string)); the programming predicates are

used to express predicates which only exist in the context of a program (e.g. answer(Y));

predicate definitions are used to compose mappings from attributes to values. Attributes

include tags and two special strings, "occurs" and "hlink". Values are strings and

hyperlinks in HTML files. Tags and string "occurs" are mapped to string values (e.g.

title --t 'Students Records') and string "hlink" is mapped to a hyperlink (e.g. hlink

-* L, here L is a variable). Information is retrieved dynamically by navigating through

hyperlinks. In WebLog, an arbitrary navigation is performed via the traverse(L) function

together with a recursive query structure which terminates when the specified condition

is satisfied and usually the condition is a string or text that is expected. The traverse

function asserts the faet that the page specified by hyperlink L is traversed, and the

recursive structure allows the traverse to continue until a condition is satisfied.

The query mechanism that the WebLog provides is to retrieve information inside an

CHAPTER 2. BACKGROUND AND RELATED WORK 12

HTML document and other documents that are referenced to it via hyperlinks.

XML

XML (Extensible Markup Language) is another markup file type [BPSM+04] for data

exchange on the Web. An XML file, like HTML, also consists of elements that are

enclosed by a pair of tags, but the tags of XML are user defined and vary from case to

case. The tags specify the structure of the file. They act as the attribute name in a

relation. AlI tags in XML must appear in pairs, the start tag (e.g. <name» and the

end tag(e.g. < /name», and the tags in each pair must match. An element is quoted

by a st art tag and an end tag. The content between a pair of tags can be text or other

elements, or both. As a result, the structure of XML can be nested and have arbitrary

depth. Figure 2.5 shows an XML file of the Books.

<Books>
<title>Database System</title>
<authors>

<author> Larry </author>
</authors>
<year>

1990
</year>
<publisher>Course Technology </publisher>
<title>Distributed Systems</title>
<authors>

<author> Paul </author>
<author> Bill </author>

</authors>
<year>

1996
</year>
<publisher>Pearson Education </publisher>

</Books>

Figure 2.5: An XML file

Many query languages have been proposed for XML, such as XML_QL [DFF+98],

Quilt [RCFOO], XQuery[BCF+04], and XPath [CD99] to name a few. These languages

were all developed particularly for XML. XQuery shares the same data model, functions,

and syntax as Xpath 2.0, but provides additional functionalities. They are both used

for extracting data from XML documents but have no facilities to update an XML

database.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

AceDB

AceDB (A C. elegans Database) [TMD92] is a database originally designed for a specifie

biology organism (as the name indicates) by Jean Thierry-Mieg and Richard Durbin. It

has been used for many scientific research fields due to its ability to deal with incomplete

data.

Each AceDB database has a predefined schema, which can be thought of as an

edge-labeled tree. An instance of a database is composed of data and its schema which

conforms to the predefined schema or its subset. Figure 2.6 shows a schema of class "? Pa­

pd'. Title, Author, Page, Language, and Complete_Text are names of attributesjfields.

They are followed by types and restrictions of each attribute. An attribute's tag re­

stricted with UNIQUE indicate that the attribute can only have one value for each

instance. Otherwise multi-value is allowed. For example, an instance of Paper can have

only one title but may have more than one author. AceDB provides a way to specify a

regular schema, but it also allows attributes missing inside each class. Figure 2.7 shows

a data value of class "? Pape";' .

?Paper Title UNIQUE Text Int
Author Text
Year UNIQUE Int
Page Int UNIQUE Int
Language UNIQUE French

English
Complete_Text ?LongText

Figure 2.6: An AceDB Schema for "?Paper"

dbPaper Title "Information Management System"
Author IIThomas ll

,

IIEric"
Language English

Figure 2.7: An Instance of "?Paper"

AceDB has its own query language, AQL (Acedb Query Language). AQL retrieves

data in more or less the same way as SQL and OQL do, but it does not support database

modification. Data cannot be added to database and data in database cannot be changed

using AQL. The creation of an AceDB database as weIl as data updating is managed

by system administrators.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.4.3 Semistructured Systems and Query Languages

With the emerging of various applications of semistructured data and their special pur­

pose query language, researchers are working on general querying language for semistruc­

tured data. Data models that represent data with semistructured features and languages

for manipulating data upon these models have been proposed.

Lore and Lorel

Lore [MAG+97], developed in Stanford University, is a prototype database manage­

ment system especially for semistructured data. It provides a friendly user interface for

browsing the query results and a data guide for examining the structure of the database.

User queries are processed in the "query processor" before the operations for accessing

the database, such as obtaining an object from the database or comparing two objects,

are performed. In addition to the pro cess which most database query language system

adopts, such as parsing a query and executing the operations specified in the query,

Lore needs to translate the parser result into an OQL-like query before transforming it

into a logical query plan. The logic plan in Lore is a set of relational algebra operators

taking a number of arguments, some of which are specified in the Lorel query.

The data model of Lore is OEM (Object Exchange Model), originally designed for

the Tsimmis project [PGMW95] in Stanford University. Data under OEM are objects

and are organized as a directed graph. Nodes of the graph are objects of different types

and can be distinguished by unique object identifiers. The edges are labeled with the

name of the object to which it leads. Leaf nodes contain values of primitive types of data

and other nodes are objects which point to objects by object identifier. The structure

information is contained in those labeled edges and changes dynamically.

Lorel [AQM+97], an extension of OQL, is the query language of Lore. It provides

query as weIl as update functionality.

The main body of a Lorel query is a "select-from-where" form, where a simple path

expression or a general path expression can appear in each part of the three. The

"where" clause can be omitted depending on the context. The path expression is the

building block of Lore1. Simple path expression in Lorel allows the user to form a query

to retrieve a set of objects along the labeled edges starting from a named object in the

CHAPTER 2. BACKGROUND AND RELATED WORK 15

data model. General path expression consists of symbols representing a pattern of a

path, a label name, or an object name in a path expression. It gives the flexibility in

forming a query when users do not know the structure of the database precisely. Lorel

query language also supports path variables and a path function, path-ofO. This is

useful for queries such as "to get a set of paths that le ad to a particular label" or "get

all paths that lead to an object with a particular value".

For example, the following query:

Select distinct path-ofCP)
From Company.# @ P.manager

obtains the set of paths ending with manager in a database named Company.

Lorel ai ms to provide a query language which is simple to use. It neither supports

restructuring a tree to arbitrary depth nor recursive general path expression.

UnQL

Independent of OEM, [BDS95, BDHS96] proposed another data model similar to it. The

data model can be thought of as a tree. The leaves in the tree represent atomic values

and the non-Ieaf nodes represent objects. The data model is "value based". Objects do

not have identifiers and non-atomic values are represented as sets of label/value pairs.

UnQL (Unstructured Query Language), implemented in Standard ML [AM87], is a

semistructure query language for such data models [BDS95, BDHS96, BFSOO]. It has

the ability to query a relational database which is in graph representation. It also can

query data in a graph whose depth is unknown.

UnQL has the following characteristics. First, UnQL adopts patterns mat ching to­

gether with "select-where" form to define queries. User queries use a tree pattern to

form the "select" and "where" statement and a generator in the "where" statement will

organize aIl trees in a database that match the specified pattern. Second, UnQL ex­

presses the join operation similar to that in relational algebra with multiple patterns and

variable equality. Third, UnQL use structural recursion [BBW92, BLS+94, BNTW95]

into which user queries can be translated. Fourth, a wildcard and a repeated wildcard

are used in queries to support traversing a tree of arbitrary depth for a given input data

CHAPTER 2. BACKGROUND AND RELATED WORK

tree. For instance, the query

select {t}

where _* =? \1 =? _ +- Company, isstring(l)

16

is expected to return all string edges in a database named Company. However, UnQL

does not support recursive queries because the transitive closure is not expressible in

UnQL.

2.4.4 Oracle XML DB

Oracle [GSS04] supports XML management by extending the existing relational database

with XML DB, which offers features of importing, storing, querying, and generating

XML data.

Oracle provides a new data type, XMLType, for databases to contain attributes

or relations holding XML documents. The data is stored in CLOB (a data type in

Oracle that can hold up to 128 TBs characters in Oracle Database lOg) data type.

The data type can be used as any other data type in Oracle. A set of methods for

manipulating XMLType data is provided to extract information from XML documents,

update XML documents, check if an XML document contains a specified node, examine

the relationship of an XMLType and a known XML schema, or execute an XSL [Cla99]

transformation. Most of these methods (for querying, updating) apply XPath [CD99]

expressions to the XML document and do the corresponding operation. Users who query

XML data in Oracle need to have both knowledge of SQL and XPath query language.

2.4.5 Schema

Semistructured data has no predefined regular schema. Users are not able to form a

query with specific structure as they can do if the structure of the database is known.

For a system that supports a query language which needs to transform a user query

into a logical query plan, database schema facilitates the optimization of the logical

plan. Hence, schema discovery and presentation becomes one of the important topics in

semistructured data management research. Systems that manage semistructured data

have different methods of dealing with the schema issue.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

In the OEM model or directed graph, schema exists in the labels of the data graph.

Lore provides the data guide [GW97, NUWC97] to allow users to browse the dynami­

cally changing database structure and it also provides the system with this structure in

query plan optimization. The data guide is a dynamically generated OEM object that

summarizes the structure of database. It contains aIl those paths but only those paths

that appear in a database without repetition.

[N AM97] proposed an algorithm for inferring an approximate structure of a large set

of semistructured data. Under a graph data model such as OEM, the data is automat­

ically analyzed and classified. Each type of data is assigned a name which represents

the characteristic of the type. Attributes are extracted from the data of the type. The

preciseness of the classification depends on the threshold value which the user specified.

Therefore, the structure result derived from a given semistructured data varies according

to its different input threshold.

Oracle XML DB adopts XML Schema [FW04] to validate that an XML instant

conforms to an XML schema. An XML Schema specifies the structure, content, and

semantics of a set of XML documents and can be composed in any text editor. It must

be registered with a unique key to the XML DB before being referenced. Using this key,

an XML schema can be recognized and required operations can be performed on it.

2.5 Database Query Language and DBPL

The relational data model has been very successful in many traditional business applica­

tions since its introduction three decades ago. Commercial relational implementations,

however, show their limitations wh en applied to applications such as Computer-Aided

Design (CAD) or Computer-Aided Manufacturing (CAM) system, Very Large-Scale In­

tegration (VLSI) chip design system, or Geographical Information System (GIS) where

new requests including complex data and numerical computations, for database man­

agement systems are posed. To meet the new requests, a large amount of work has been

done and approaches were adopted for different types of database systems. There are

two directions in this field. One is based on the database system using query language

and the other is based on the database programming language (DBPL).

CHAPTER 2. BACKGROUND AND RELATED WORK 18

2.5.1 Query Language

The corn mon language for the relational database management system is SQL (Struc­

tural Query Language). Early research database systems such as System R [ABC+76]

and INGRES [HSW75] and many of today's commercial database such as Oracle, DB2,

Sybase, and Informix use SQL to access and manipulate data.

The query language provides syntax that focuses on the content to be retrieved. How

the information is retrieved is fulfilled in the translation from a user query to a set of

operations to be executed against the database. A query needs to be translated into

relational algebra for SQL, structural recursion for UnQL, and for Lorel firstly translated

into a OQL 1 type language and then further formulated into relational algebra. As the

logical query plan is formed automatically by the system program, query optimization

is required for an efficient processing. Therefore, the optimization result totally depends

on the functionality of the optimization.

A database management system that uses query language usually adopts add on

strategy to support new functionalities. For instance, in Oracle, OLAP Data Manipu­

lation Language (OLAP DML) is combined with the original system to support OLAP,

XML DB and a XPath-like language for XML, and data exchange is accomplished via

an interface between the two languages; users need to be bilingual to operate both lan­

guages. As us ers switch from one language to the other to do information retrieving,

the data involved in the process is transported between languages.

2.5.2 Database Programming Language

A language that has power in dealing with both traditional database management to­

gether with new requests such as flexible user defined data types, event manager, numer­

ical computation, has been a trend in database research. The purpose of this research

is to let the language have both the features of a database query language and that of a

programming language, for the programming language usually needs new structures to

deal with complex databases and a database query language usually lacks the power to

deal with numerical computations.

lObject Query Language, a query language similar to SQL for query object-oriented database

CHAPTER 2. BACKGROUND AND RELATED WORK 19

One approach is to embed database query language into a programming language.

The embedded language needs to be translated into the host language which has facilities

to invoke subroutines that interact with the corresponding database.

Another approach for database programming language is to add the data model and

data manipulating mechanisms to an existing programming language. Pascal/R [Sch77]

combines the relational model with Pascal programming language. PS-algol [ABC+83],

derived from S-algol [Mor79, CM82] is one of the programming languages achieving

uniform persistence.

jRelix is a high-level general-purpose database programming language based on the

relational algebra which abstracts over looping. It subsumes the functionality of a

typical database query language [MBC+02, Mer03], therefore, it has aIl the functions

that a query language does and can do much more. Database Programming Language

gives the programmer the fiexibility to compose queries in the relation al algebra and

domain algebra level (in jRelix). Optimization is left to the user who will compose an

efficient query based on logic and personal experiences.

For a database programming language, new functionalities are accompli shed via none

or minor extension to the original language. In jRelix, applications such as an expert

system can be accomplished without new extensions. Domain algebra in jRelix solved

the numerical computation in many applications. Examples will be shown in Chapter 3.

jRelix also has facilities to support procedure abstraction and data type abstraction.

[Zhe02] presented a data model and its related operation of map overlay in the field of

GIS.

2.6 Querying Semistructured Data in a Relational

DBPL

The common feature for semistructured data management systems previously discussed

is that they are aIl systems specificaIly for semistructured data. Using graph data

models, the query languages were developed from scratch. A query language specificaIly

designed for semistructured data is not very different from standard database query

language[ABSOO], therefore it is economic and elegant to enhance the database query

CHAPTER 2. BACKGROUND AND RELATED WORK 20

Books
(title authors year publisher)

(author)
Database System Larry 1990 Course Technology
Distributed Systems Paul 1996 Pearson Education

Bill

Table 2.2: The Display form of Relation Books

and programming language with functionalities which support semistructured data. On

the other hand, a query language that only supports semistructured data will loose

the benefits of structured data which provides the schema. Henee, a semistructured

language needs to be integrated with that for querying standard structured data. A

query language for semistructured data has the same functionality as that for relational

data in sense that both need the ability to extract part of the database and the ability

of updating the database. Also, as semistructured data may have embedded structure

or recursive structure, functionality for traversing these structures is neeessary. This is

also true for the relational data base extended with nested relations.

jRelix, a relation al database programming language, has been developed not only for

querying relational databases, but also for multi-applications. In addition to supporting

applications for expert system, numeric computation, and GIS, it also can deal with

queries posed in semistructured data. Take the data in Figure 2.5 in Section 2.4.2 as

an example. The XML file can be represented as a relation as shown in Figure 2.8.

Relation Books in its display form can be seen in Table 2.2. The queries can then be

made on the relation.

Query: Find an book authors.

Figure 2.9 shows the query code and the result.

Query: Find the set of book authors, retaining the distinction between books.

Figure 2.10 shows the query code and the result.

There are sorne other queries such as:

Query: Finding books including Bill as an author, and split into separate entries for

each author.

and

Query: Group books under their year of publication.

CHAPTER 2. BACKGROUND AND RELATED WORK

>domain title, author, publisher strg;
>domain year intg;
>domain authors(author);
>relation Books(title,authors,year, publisher) <-{

("Database System", {("Larry")}, 1990, "Course Technology"),
("Distributed Systems", {("Paul ,,) , ("Bill ")}, 1996, "Pearson Education")};

>pr Books;
+----------------------+----------------------+-------------+----------------------+
1 title 1 authors 1 year 1 publisher
+----------------------+----------------------+-------------+----------------------+
1 Database System 1 1 1 1990 1 Course Technology
1 Distributed Systems 1 2 1 1996 1 Pearson Education
+----------------------+----------------------+-------------+----------------------+
relation Books has 2 tuples
>pr authors;
+----------------------+----------------------+
1 .id 1 author
+----------------------+----------------------+
1 1 1 Larry
1 2 1 Bill
1 2 1 Paul
+----------------------+----------------------+
relation .authors has 3 tuples
>

Figure 2.8: Relation Books

>aIIAuthors<-Books/authors;
>pr allAuthors;
+----------------------+
1 author
+----------------------+

Bill
1 Larry
1 Paul
+----------------------+
relation allAuthors has 3 tuples
>

Figure 2.9: Query for AU Authors

21

CHAPTER 2. BACKGROUND AND RELATED WORK

>let bookauthors be [authors] in Books;
>BookAuthors<-Books/bookauthors;
>pr BookAuthors;
+----------------------+
1 authors
+----------------------+
1 1
1 2
+----------------------+
relation BookAuthors has 2 tuples
>pr authors;
+----------------------+----------------------+
1 .id 1 author 1

+----------------------+----------------------+
1 1 1 Larry 1

1 2 1 Bill 1

1 2 1 Paul 1

+----------------------+----------------------+
relation .authors has 3 tuples
>

Figure 2.10: Query for Book Authors

BooksbyYear
\1990
(title author publisher)
Database System Larry Course Technology

1996
(title
Distributed Systems
Paul

Table 2.3: Reorganization of Data

author
Bill

22

publisher
Pearson Education

These two queries cannot be solved. In the first query, it's easy to find books including

Bill as an author (a T -Select will do). But in order to separate the entries for each

author, new facility for grouping attribut es into a nested relation is needed.

The second query actuaIly requires a reorganization of the data and attributes: the

data of the attribute year will become attributes and the data for the new attributes

are data from the same tuple in the original relation. The expected result is shown in

Table 2.3. In order to turn the value of an attribute into attributes and assign data to

them, a mechanism is necessary to manipulate the value of attribute.

For those examples shown in Section 2.4.3, jRelix already has the facility of general

path expression to retrieve arbitrary depth of a relation. To get aIl the string attributes

of a relation, transpose and typeof operators, which will be developed in this work

to do the task, are needed. The other way to do it is to use grep operator. This is

discussed in [Gu05].

In addition, based upon the discussion ab ove , schema discovery is another important

issue. In order to get the schema or paths of a database, facilities to trace the parent

CHAPTER 2. BACKGROUND AND RELATED WORK 23

relation of an attribute and to get the attributes of a relation are needed.

2.6.1 Attribute Metadata Operators

We have discussed that it is necessary to have a language support semistructured data

as weU as relational data, and we also have seen that a language such as jRelix has the

ability to manipulate semistructured data with little effort through the operators for

attributes, i.e., attributes metadata.

GeneraUy speaking, metadata is data about data. The "table of contents" of a book

and the caU numbers of books in libraries are two examples. In the database system, a

special group of metadata is data that describes the relations, including the attributes

a relation has, the types of attributes, the relationship among nested relations, and so

on. It is the specifie data for attributes. We caU metadata for this purpose "Attribute

Metadata" to distinguish it from metadata in other fields.

Attribute metadata is not only demanded for semistructured data, but also in ap­

plications of data mining and GIS. Before the writing of this thesis, the jRelix system

already had support operators for attribute metadata. These operators include quote

and eval (please refer to Section 3.5.2 and Section 3.5.2 for detail). Due to the new

demands from semistructured data, the enhancement of the functionality of these oper­

ators is necessary.

To be able to manage semistructured data, a system should have the ability to

process schema information such as attributes as data. Therefore, the attribute of the

type ATTRIBUTE should be aUowed and operators applied to attributes should be

supported.

To trace the parent relation of an attribute and get the attributes of a relation which

are needed for schema discovery, the self operator will be introduced to get the name

of the parent relation. The scalar attributes of a relation can be obtained via operator

transpose.

2.6.2 Related Work in jRelix

Other work for supporting semistructured data in jRelix includes:

CHAPTER 2. BACKGROUND AND RELATED WORK 24

1) Recursive nesting declaration and general path expression in relational expression

[Yu04].

2) New data type UNION is allowed to let an attribute have different types of data,

and the grep operator extracts information without specifying the exact structure of

the database in the query [Gu05].

3) The grep operator extracts information from a text file and the integration of

text data source into jRelix [Xie04].

Chapter 3

Overview of jRelix

This chapter gives an overVlew of the jRelix system and exhibits its application in

different fields by giving related examples. The chapter also presents in detail most of the

operations of the system upon which our work is based. The content includes relational

and domain algebras, and the programming feature of the system. Section 3.1 describes

the declaration of domains and relations and the relation initialization. Section 3.2

presents the assignment operation. Section 3.3 is an introduction to views. Section 3.4

depicts the relational algebra followed by an application: Inference Engine. Section 3.5

delineates the domain algebra followed by two applications: Matrix Computation and

Finding Area. Section 3.6 summarizes the update operation. Section 3.7 examines the

programming language construct in jRelix, specifically computation, abstract data type,

and event handler. Section 3.8 describes the distributed data processing.

In this document, the bold font is used for keywords. The italic font enclosed in

angle brackets (i.e. <italic>) is used for nonterminals. (typewri ter)? or (typewri ter)*

is used for meta syntax. The italic font alone is used for the name of a relation or an

attribute in text and queries.

25

CHAPTER 3. OVERVIEW OF JRELIX

3.1 Domain and Relation Declaration

3.1.1 Domain Declaration

Domains in jRelix are declared with the keyword domain, as follows:

domain <IDList> <Type>;

where IDList is a list of attributes to be declared with the type specified by Type.

26

If a do main itself is a relation, it will construct a nested relation in the relation

containing this domain. The declaration will go with the following syntax:

domain <IDList> "(" <domList> ")";

where domList is a list of declared domains which the nested domains specified in IDList

contain. Figure 3.1 shows examples of domain declaration and the commands for display

of the information of the domains.

The syntax for domain declaration in semistructured data (xML in jRelix) is different,

as the semistructured data is self-describing, hence the declaration of a new domain

occurs wh en it first appears in the semistructured input of the relation initialization

[Yu04]. The syntax is as follows:

< domainName type = data_type> ... </ domainName>

where domainName in both angle brackets is the name of the new domain being declared.

The start tag is surrounded by angle brackets, and the end tag has the angle brackets

followed by a slash "/". The domainName in both tags should be the same. data_type is

the data type of the domain. It is optional, and the default value is STRING. Examples

will be shown together with examples of relation initialization in the next section.

3.1.2 Relation Declaration and Initialization

Relations are declared and initialized in the jRelix system in three ways. In each, a

relation is created according to the specified name and stored first in tuple-by-tuple and

then in attribute-by-attribute form if it is a fiat relation. Nested relations are stored

with several fiat relations linked together by surrogates. The remaining part of this

subsection will introduce the three methods of declaration and initialization and the

system forms of fiat relations and nested relations.

CHAPTER 3. OVERVIEW OF JRELIX

>domain family, name, website strg;
>domain Lscale bool;
>domain company(narne,website);
>sd;
------------------------------- Domain Entry ----------------------------
Narne Type NumRef IsState Dom_List

Lscale boolean 0 false
company idlist 0 false .id, name, website,
website string 1 false
farnily string 0 false
narne string 1 false

>sd farnily;
------------------------------- Domain Entry ----------------------------
Narne Type NumRef IsState Dom_List

farnily string o false

>

Figure 3.1: Examples of Domain Declaration

27

In the first way in jRelix, relations are declared by using the keyword relation with

the following syntax:

relation <IDList> "(" <IDList> ")" CInitialization)?;

where the first IDList denotes the list of relations being declared and the second IDList

denotes the attributes on which these relations are defined. The Initialization con­

sists of the content of these relations and is optional.

The initialization of relations uses the curly bracket syntax, under which a relation

st arts and ends with a pair of curly brackets "{" and"}" , while tuples start and end

with round brackets "(" and ")". Domains are separated with commas. Figure 3.2 gives

an example of relation declaration and initialization along with the command to display

a relation.

>relation products (farniIy, LscaIe)<-{("CPLD" ,true), ("FPGA" ,true), ("SPLD", faIse)};
>pr relation;
+----------------------+--------+
1 farnily 1 Lscale 1

+----------------------+--------+
1 CPLD 1 true
1 FPGA 1 true 1

1 SPLD 1 false 1

+----------------------+--------+
relation products has 3 tuples
>

Figure 3.2: An Example: Relation Declaration and Initialization

The second way jRelix puts data into a relation is by using the name of an existing

CHAPTER 3. OVERVIEW OF JRELIX 28

relation. This method is actually one of the assignment commands of jRelix, as we will

see later in Section 3.2.

The third way is for semi-structure data input:

relation <IDList> Initialization;

where IDList specifies the name of the relations being declared and the Ini tialization

is the angle bracket syntax in which the relation starts with the first brackets "<" and

ends with the last angle brackets ">". Since an input of the semistructured data contains

the information on the names of attributes in the relation, there is no specification for

attributes in the declaration of a relation. Figure 3.3 shows a simple example. More

details can be found in [Yu04].

>relation Ordered <- <Ordered>

>pr Ordered;

<company type = string> "Canon"</company>
<quantity type = intg>100</quantity>
<company> "Dell"</company>
<quantity>50</quantity>

</Ordered>;

+----------------------+-------------+
1 company 1 quantity
+----------------------+-------------+
l "Canon" 1 100 1

l "Dell" 1 50 1
+----------------------+-------------+
relation Ordered has 2 tuples
>

Figure 3.3: Initialize a Relation in Semistructured Format

The schema and the content of a relation also can be saved in a file, so the declaration

and initialization of a relation can use the following syntax:

relation <reLname> <- <II fi Le_path/fi Le_name ll >;

where reLname is the name of the relation to be declared and "file_path/file_name" is

the file path and file name where the content of declaration is.

Relations declared and initialized in Figure 3.2 and Figure 3.3 are both fiat relations.

The form in which they are stored in the system is tuple-by-tuple and then attribute­

by-attribute. A nested relation stores in the form of several fiat relations, with one top

level fiat relation and several other fiat relations holding the data of nested relations.

The linkages between the top level relation and sub-relations are surrogates, which are

used to replace values of the nested attributes in the relation. The actual values of the

CHAPTER 3. OVERVIEW OF JRELIX 29

Contacts
(dept employee)

(name contactinfo)
(phone)

Development Judy 7473865
9794876

Sam 3454657
7671234

Technical Support Tom 7450943

Table 3.1: The Display form of Nested Relation Contacts

nested attribute are stored in a separate fiat relation, a dot relation, with an additional

attribute . id, which contains the surrogates linking to the upper level relation. The name

of the dot relation is named after the nested attribute and prefixed with a period. For

instance, Table 3.1 shows a nested relation Contacts. Its declaration and initialization

is performed in Figure 3.4, together with the three fiat relations that constitute the

relation Contacts. Figure 3.5 depicts the relationship among these fiat relations.

Recursive Relation Declarations and Initializations

In recursive nesting, the name of a relation can be an attribute of the relation itself.

The declaration syntax is the same as that of nested relations, except that the name of

the nested attribute can also appear in the attributes list. For example, in Figure 3.6,

relation task is defined on nested relation subroutine, which is recursively defined on

itself. The null value, "de" [Yan03], is used to terminate the recursion in the initialization

of the recursive relation.

3.2 Assignments

jRelix provides two types of assignment operators: the assignment and the incremental

assignment. The syntax for assignment operations is:

<Identifier> C<- 1 <+) <Expression>;
1

<Identifier> Il [" <IDList> C <- 1 <+) <ExpressionList> "J Il <Expression>;

whereas in the second form, the attributes in the ExpressionList are renamed to the

attributes specified in the IDList.

CHAPTER 3. OVERVIEW OF JRELIX

>domain dept, name, phone strg;
>domain contactinfo(phone);
>domain employee (name, contactinfo);
>relation Contacts(dept, employee) <-
{("Technical Support", {("Sam" ,{("7671234"), ("3454657")}),

("Judy" ,{("7473865"), ("9794876")})}),
("Development", {("Tom", {("7450943")})})};

>pr Contacts;
+----------------------+----------------------+
1 dept 1 employee
+----------------------+----------------------+
1 Development 1 4
1 Technical Support 1 1
+----------------------+----------------------+
relation Contacts has 2 tuples
>pr .employee;
+----------------------+----------------------+----------------------+
1 .id 1 name 1 contactinfo
+----------------------+----------------------+----------------------+
1 1 1 Judy 1 3 1

1 1 1 Sam 1 2 1

1 4 1 Tom 1 5 1

+----------------------+----------------------+----------------------+
relation .employee has 3 tuples
>pr .contactinfo;
+----------------------+----------------------+
1 .id 1 phone
+----------------------+----------------------+

2
2
3
3
5

3454657
7671234
7473865
9794876
7450943

+----------------------+----------------------+
relation .contactinfo has 5 tuples
>

Figure 3.4: Print Form of Nested Relation Contacts

30

CHAPTER 3. OVERVIEW OF JRELIX

Contacts
+----------------------+----------------------+

1 dept 1 employee

+----------------------+--0-----------------+ 1 Development 1 l 1

1 Technical Support 1 4 1

+----------------------+---- ----------------+

.employee

+-------------- -------+----------------------+----------------------+

.contactinfo

3454657

7671234

7473865

9794876

7450943

----------------+----------------------+

Figure 3.5: Storage of Nested Relation Contacts

31

CHAPTER 3. OVERVIEW OF JRELIX 32

>domain routine strg;
>domain subroutine (routine , subroutine);
>relation task(routine, subroutine) <- {("A", {("Ai" ,{("A11", de)}),

("A2",{("A2l",dc)}) }),
("BII J de),
("C", {("Cl",dc)})};

>pr task;
+----------------------+----------------------+
1 routine 1 subroutine
+----------------------+----------------------+
1 A
1 B
1 C

1 9
1 de
1 12

+----------------------+----------------------+
relation task has 3 tuples
+----------------------+----------------------+----------------------+
1 .id 1 routine 1 subroutine
+----------------------+----------------------+----------------------+
1 9
1 9
1 10
1 11
1 12

1 Al
1 A2
1 Ali
1 A2l
1 Cl

1 10
111
1 de
1 de
1 de

+----------------------+----------------------+----------------------+
relation .subroutine (Compact Form) has 5 tuples
>

Figure 3.6: Recursive Nesting Declaration

The assignment «-) operator totally replaces the left-hand side relation, which is

specified in Identifier, with the right-hand side relational expression, Expression, no

matter whether the left-hand si de relation is previously defined or not. The attribut es

of the left-hand side relation do not need to be the same as the right hand side relation.

The incremental «+) operator adds the additional tuples generated by the right­

hand side relational expression to the left-hand side relation. The attributes of the

left-hand side relation must be the same as those of the right-hand side relation.

The attributes of the left-hand side relation under either assignment or incremen­

tal assignment operators also can be explicitly specified (but previously declared) and

matched to the attribut es on the right. Figure 3.7 shows examples of assignment oper­

ations.

3.3 Views

The view is a mechanism to define a relation according to an expression as in an assign­

ment operation. The difference is that in an assignment operation, the right-hand side

expression is evaluated and the value is assigned to the left-hand side relation, whereas

CHAPTER 3. OVERVIEW OF JRELIX

>domain category, article, items strg;
>domain revenue intg;
>relation R (category, article, revenue) <-{

("computer", "desktop" ,50000), ("computer", "notebook", 30000),
("TV", "LeD" ,80000), ("TV", "plasma" ,40000)};

>pr R;
+----------------------+----------------------+-------------+
1 category 1 article 1 revenue
+----------------------+----------------------+-------------+

TV LeD 80000
TV plasma 40000
computer desktop 50000
computer notebook 30000

+----------------------+----------------------+-------------+
relation R has 4 tuples
>Report [category, items, revenue <- category, article, revenue] R;
>pr Report;
+----------------------+----------------------+-------------+
1 category 1 items 1 revenue
+----------------------+----------------------+-------------+

TV
TV
computer
computer

LeD
plasma
desktop
notebook

80000
40000
50000
30000

+----------------------+----------------------+-------------+
relation Report has 4 tuples
>relation newReport(category, items, revenue) <­

{("telephone" ,"telephons" , 6000),
("telephone", "Fax machines", 10000)};

>Report <+ newReport;
>pr Report;
+----------------------+----------------------+-------------+
1 category 1 items 1 revenue
+----------------------+----------------------+-------------+

TV LeD 80000
TV plasma 40000
computer desktop 50000
computer notebook 30000
telephone Fax machines 10000
telephone telephons 6000

+----------------------+----------------------+-------------+
relation Report has 6 tuples
>

Figure 3.7: Examples of Assignment Operations

33

CHAPTER 3. OVERVIEW OF JRELIX 34

no evaluation, hence no value assignment, is performed in a view operation. The view

will be evaluated later when there is an assignment operation or other operations such

as pr where the view is involved. The syntax for view is as follows:

<Identifier> is <Expression>;

where Identifier is the name of the view and Expression specifies the content of the view.

Figure 3.8 shows an example of a view declaration and its evaluation.

3.4

>domain level intg;
>relation Accumulate (level) (- {(1)};
>pr Accumulate;
+-------------+
1 level
+-------------+
1 1
+-------------+
relation Accumulate has 1 tuple
>let level' be level +1;
>let level be level';
>Accumulate is Accumulate ujoin [level] in [level'] where level <3 in Accumulate;
>pr Accumulate;
+-------------+
1 level
+-------------+
1 1
1 2
1 3
+-------------+
expression has 3 tuples
>

Figure 3.8: An Example of view

Relational Aigebra

Relational algebra is essential to manipulate relations in a database system. It considers

the relation as an atomic unit. AlI operations are performed on relations and the

source relations are not affected by the operations. AIso, the production of operations

is relations. This allows the construction of complex expressions with a number of

relational operators. The operations are categorized into unary operations and binary

operations, and will be introduced in the following subsections.

3.4.1 U nary Operators

Unary Operators in jRelix include: projection, selection, T-selection, QT-selection,

eval, and quote.

CHAPTER 3. OVERVIEW OF JRELIX 35

Projection

Projection extracts a subset of a source relation according to a set of a specified domain,

which is called a projector. Duplicate tuples are removed from the result relation. If a

projector is nuIl, then the result relation contains only one attribute of type BOOLEAN

with the name ". boof'. The value would be true if the source relation contains at least

one tuple and false if the source relation is empty. The syntax for projection is as follows:

Il [II <IDList> Il] Il in <RelationalExpression>

where IDList is the actual attribute list of the new relation, which is, of course, the

attributes (actual or virtual) of the source relation: the RelationalExpression. The

example in Figure 3.9 gives the result of "aIl items and categories in Report."

Selection

>Merchandise <- [category, items] in Report;
>pr Merchandise;
+----------------------+----------------------+
1 category 1 items
+----------------------+----------------------+
1 TV 1 LeD
1 TV 1 plasma
1 computer 1 desktop
1 computer 1 notebook
1 telephone 1 Fax machines
1 telephone 1 telephons
+----------------------+----------------------+
relation Merchandise has 6 tuples
>

Figure 3.9: An Example of Projection

Selection extracts a subset of the source relation according to the condition specified in

the selection clause. The select condition must be evaluated to be true or false for each

tuple in the source relation and only those with condition being true are selected to be

tuples in the result relation. The attributes of the result relation are the same as those

in the source relation. The syntax is as foIlows:

where <SelectClause> in <Expression>

Figure 3.10 shows an example that retrieves "aIl tuples containing Computer in re­

lation Repore' .

CHAPTER 3. OVERVIEW OF JRELIX

T -Selection

>CompReport <- where category = "computer" in Report;
>pr CompReport;
+----------------------+----------------------+-------------+
1 category 1 items 1 revenue 1

+----------------------+----------------------+-------------+
1 computer 1 desktop 1 50000
1 computer 1 note book 1 30000
+----------------------+----------------------+-------------+
relation CompReport has 2 tuples
>

Figure 3.10: An Example of Selection Operation

36

T-selection is the combination of projection and selection. The production is a relation

that is the subset of the source relation. The syntax is as foIlows:

Il [" <IDList> "] Il where <SeLectCLause> in <Expression>

As the definition of T-selection shows, the operation selects the tuples according to

Selection Clause, while the attributes are specified in IDList.

If only the attribute item is required in the example in the previous subsection, the

result for "aIl items of computer in Report' will be the one shown in Figure 3.11.

3.4.2

>Computer <- [items] where category = "computer" in Report;
>pr Computer;
+----------------------+
1 items
+----------------------+
1 desktop 1
1 notebook 1

+----------------------+
relation Computer has 2 tuples
>

Figure 3.11: An Example of T-Selection Operation

Binary Operators

The binary operations on relations are extensions of the binary operations on sets

[Mer84]. jRelix provides two categories of binary operators, IL-joins that contains 7

operators and O"-joins that contains 12 operators. The results of IL-joins and O"-joins are

also relations. The syntax for these join operators are shown as foIlows:

<Expression> JoinOperator <Expression>
1

<Expression> Il [" <ExprList> : JoinOperator : <ExprList> "] Il <Expression>

CHAPTER 3. OVERVIEW OF JRELIX 37

In the first production, the two operands join on their cornrnon dornains. If no cornrnon

dornains exist in the two relations to be joined, dornains are explicitly specified as join

dornains by using the second production.

p,-joins

p,-joins corresponds to the set operations including union, intersection, difference, and

syrnrnetric difference of sets. Their relationship is shown in Table 3.2.

tL-join Operator Set Operator
natural join ijoin or natjoin n
union join ujoin U
left join Ijoin
right join rjoin
left difference join djoin or dljoin -
right difference join drjoin
symmetric difference join sjoin +

Table 3.2: p,-joins and Set Operators

Generally, p,-joins can be defined in three parts: the center, the right, and the left.

Given two relations R(X, Y) and S(Y,Z) sharing a cornrnon attribute set Y, the three

parts are defined as following:

center == {(x, y, z)l(x, y) ER /\ (y, z) E S}

left == {(x, y, de)l(x, y) E R /\ \:Iz, (y, z) rt. S}

right == {(de, y, z)l(y, z) E S /\ \:Ix, (x, y) rt. R}

If two relations R(W,X) and S(Y,Z) do not share a cornrnon set, the three parts are

defined as following:

center == {(w, x, y, z)l(w, x) E R /\ (y, z) ES /\ x = y}

left == {(w, x, y, de)l(w, x) E R /\ x = Y /\ \:Iz, (y, z) rt. S}

right == {(de, x, y, z)l(y, z) ES /\ x = y /\ \:Ix, (x, y) rt. R}

Note here the syrnbol de stands for one of the null values in jRelix. The other is dk.

Details of the null values can be found in [Mer84].

The p,-joins can then be defined as:

R ijoin S = center

CHAPTER 3. OVERVIEW OF JRELIX

R ujoin S = left U center U right

R djoin S = left

R drjoin S = right

R lrjoin S = left U center

R rjoin S = center U right

R sjoin S = left U right

38

Based on relations in Figure 3.12, one is a relation of students and their id numbers

and the other is a relation of students and the courses they selected, the following query

can be achieved.

>domain ID intg;
>domain name strg;
>relation Student (ID, name) <-{(121, "John"), (122, "Mary")};
>pr Student;
+-------------+----------------------+
1 ID 1 name
+-------------+----------------------+
1 121 1 John
1 122 1 Mary
+-------------+----------------------+
relation Student has 2 tuples
>domain course strg;
>relation Course(ID, course)<-{(121,"DB"), (135,"Algorithm")};
>pr Course;
+-------------+----------------------+
1 ID 1 course
+-------------+----------------------+
1 121 1 DB
1 135 1 Algori thm
+-------------+----------------------+
relation Course has 2 tuples
>

Figure 3.12: Relation Student and Course

Query: find the course a student selected and his/her id number.

Figure 3.13 exhibits the results.

>StudentCourse (- Student ijoin Course;
>pr StudentCourse;
+-------------+----------------------+----------------------+
1 ID 1 name 1 course
+-------------+----------------------+----------------------+
1 121 1 John 1 DB
+-------------+----------------------+----------------------+
relation StudentCourse has 1 tuple
>

Figure 3.13: ijoin Operation

CHAPTER 3. OVERVIEW OF JRELIX

Query: find aU students who do not select any course.

Figure 3.14 depicts the results.

Œ-jains

>StudentCourse <- Student djoin Course;
>pr StudentCourse;
+-------------+----------------------+
1 ID 1 name
+-------------+----------------------+
1 122 1 Mary
+-------------+----------------------+
relation StudentCourse has 1 tuple
>

Figure 3.14: djain Operation

39

The Œ-joins extends the truth-valued comparison operation on sets to relations by ap­

plying them to each set of values of the join attribute for each of the other values in

the two relations [Mer84]. The relationship between Œ-joins and the set operations are

shown in Table 3.3. The grouping facility Œ-joins makes it possible in applications such

as Inference Engine that the result operation should be determined by a set of tuples

grouped by the join attributes. An example of this will be shown at the end of this

subsection. Note that the attribut es of the result relation from a J-l-join operation are

the union of the attributes of the two source relations (except djain and drjain) and

that the attributes from a Œ-join operation are the symmetric difference of the attributes

from the two source relations.

sigma-join
natural composition
empty intersection join
equal join
not equal join
greater than or equal join
not greater than or equal join
greater than join
not greater than join
less than or equal join
not less than or equal join
less than join
not less than join

Operator
icomp or natcomp
!ejoin or sep
eqjoin
!eqjoin or not eqjoin
gejoin or sup or div
! gejoin
gtjoin
! gtjoin
lejoin or sub
! lejoin
ltjoin
! ltjoin

Table 3.3: Summary of Œ-joins

Set Operator

CHAPTER 3. OVERVIEW OF JRELIX 40

The <J-joins can be defined by using the following notation. In relations R(X, Y) and

S(Y,Z), Hw is the set of values of X associated by R with a given value, wof W, and

Sz is the set of values of Yassociated by S with a given value, z of Z. If Wand X are

disjoint sets of the attributes of R, and Y and Z are disjoint sets of the attributes of

S, the following definitions hold. (X and Y must be at least compatible attribute sets,

though they may be the same set of attributes.)

R icomp S == {(w, z)IRw n Sz i= 0}

R sep S == {(w, z)IRw n Sz = 0}

R eqjoin S == {(w, z)IRw = Sz}

R !eqjoin S == {(w, z)IRw i= Sz}

R sup S == {(w, z)IRw :2 Sz}

R !gejoin S == {(w, z)IRw ~ Sz}

R gtjoin S == {(w, z)IRw ~ Sz}

R !gtjoin S == {(w, z)IRw ÎJ Sz}

R lejoin S == {(w, z)IRw ç Sz}

R !lejoin S == {(w, z)IRw ~ Sz}

R Itjoin S == {(w, z)IRw c Sz}

R !ltjoin S == {(w, z)IRw ct. Sz}

The following example uses the relations defined in Figure 3.12.

Query: find the course selected by student and the student ID number.

Figure 3.15 shows the result.

>SIDCourse (- Student icomp Course;
>pr SIDCourse;
+-------------+----------------------+
1 ID 1 course
+-------------+----------------------+
1 121 1 DB
+-------------+----------------------+
relation SIDCourse has 1 tuple
>

Figure 3.15: icomp Operation

CHAPTER 3. OVERVIEW OF JRELIX 41

Application: Inference Engine

The fo11owing is an example of an inference engine using Horn Clauses. Figure 3.16

shows the set of conditions each of which implies a conclusion. The starting point

of the inference is given in relation Known in Figure 3.17. The recursive view gives

a11 conclusions inferred from the Horn Clause. This one-line inference engine can be

expanded into a more complex one for applications in an expert system, together with

the "expert system she11" [Mer91].

>domain rule intg;
>domain precond, conclusion strg;
>relation Horn(rule, precond, conclusion) <-{
Ci, "near the road" , "good location"), Ci, "have parking lot",
(2, "good location", "make profit"), (2, "good management team",
(3, "good neighborhood", "make profit"), (3, "good location",
(4, "make profit", "easy to sell"), (4, "good location",
>pr Horn;
+-------------+----------------------+----------------------+
1 rule 1 precond 1 conclusion
+-------------+----------------------+----------------------+

1 have parking lot good location
1 near the road good location
2 good location make profit
2 good management team make profit
3 good location make profit
3 good neighborhood make profit
4 good location easy to sell
4 make profit easy to sell

+-------------+----------------------+----------------------+
relation Horn has 8 tuples
>

"good location "),
"make profit"),
"make profit"),
"easy to sell")};

Figure 3.16: Horn Clause: Known Preconditions and Conclusions

3.5 Domain Aigebra

The domain algebra provides a set of operations applied to attributes[Mer77, Mer84].

It is used by the declaration of virtual attributes and their actualization in relations.

The domain algebra provides a way to do calculations that are not possible in relational

algebra but necessary in a programming language.

The result of the domain algebra is a virtual domain, as the operations on attributes

are not associated with any particular relation until they are actualized. In other words,

a domain algebra operation can be applied to any relation where the operation can work.

The syntax for virtual domain declaration is:

CHAPTER 3. OVERVIEW OF JRELIX

>relation Known(conclusion)<-{("near the road"), ("have parking lot"), ("good management team")};
>pr Known;
+----------------------+
1 conclusion
+----------------------+
1 good management team 1
1 have parking lot 1
1 near the road 1
+----------------------+
relation Known has 3 tuples
>relation Conclusion (conclusion);
>Conclusion is Known ujoin ([conclusion] in (Conclusion[conclusion:sup:precond]Horn));
>pr Conclusion;
+----------------------+
1 conclusion 1

+----------------------+
easy to sell
good location
good management team
have parking lot
make profit
near the road

+----------------------+
expression has 6 tuples
>

Figure 3.17: Horn Clause: the Given Knowledge and the Conclusions

let <Identifier> be <Expression> ;

42

where the identifier denoted the name of the virtual domain being declared, and the

Expression is the value of the virtual domain.

The do main algebra can be divided into two categories: the horizontal operations

and the vertical operations. Horizontal operations operate within tuples so they also

are called scalar operations and vertical operations work across the tuples and they also

are known as aggregate operations.

3.5.1 Horizontal Operations

Horizontal operations of domain algebra support arithmetic, logic, and string processing

on attributes that can be actualized. These operations include constant definition, re­

naming, arithmetic functions, conditional statements, and relational algebra. Table 3.4

presents sorne examples.

3.5.2 Vertical Operations

Vertical operations of domain algebra support reduction and functional mapping opera­

tion. Reduction includes operations of both simple reduction and equivalence reduction

CHAPTER 3. OVERVIEW OF JRELIX 43

1 functions 1 declarations 1 actualized value
constant definition let level he 1; 1
renaming let level he level"; same as level"
arithmetic function let level" he level + level'; sum of level and level'
conditional statement let X he if level = maxlevel truejfalse

then true el se false;
relational algebra let visit" he visit' ujoin visit; a relation resulting from

visit' ujoin visit

Table 3.4: Horizontal Operation and Examples in Domain Aigebra

while functional mapping includes operations of both functional mapping and partial

functional mapping.

Reduction

Simple reduction generates a single result for each tuple of the relation from all of the

tuples of a single attribute in the relation. The syntax is:

let <Identifier> be red <operator> of <expression>

where Identifier denotes the name of the virtual domain being declared and expres­

sion denotes the operand of the operator. The operator in the syntax must be both

commutative and associative. As the order of tuples in a relation doesn't matter, only

the commutative and associative operators that work on the value of an attribute will

produce the same value regardless of the order of the tuples. These operators include:

addition (+), multiplication (*), max and min for numeric operations, and and or for

Boolean operations, and ijoin, ujoin, and sjoin for relational operations etc. An exam­

pIe of the reduction operation with addition operator appears in Figure 3.18. Relation

Report can be found in Figure 3.7, the final result from incremental assignment.

>let TotRevenue be red + of revenue;
>TotRev <- [TotRevenue] in Report;
>pr TotRev;
+-------------+
1 TotRevenue 1
+-------------+
1 216000
+-------------+
relation TotRev has 1 tuple
>

Figure 3.18: An Example of Reduction Operation

CHAPTER 3. OVERVIEW OF JRELIX

EmpName'
(empname)

(name)
Judy
Sam
Tom

Table 3.5: The Display form of Nested Relation EmpName'

Level Lifting and U nnest

44

Nested relations aIlow relations as values of attributes. Operations on the nested relation

are nothing new except for the declaration for the nested relation as seen in Section 3.1.

AlI that is needed is to apply operations of relational algebra to the relational attributes.

Subsuming the relational algebra into domain algebra gives the nested relation for free 1
.

Consider the foIlowing example. Projection operations shown in Figure 3.19 achieve

"aIl the employees from the relation Contacts". Relation EmpName' is a nested relation

(it is clearer to see it in its display form as in Table 3.5) which is not convenient to

access. Without new operators, but only using reduction and anonymity, we can have

a fiat relation which is the result of level lifting. The code and the result is shown in

Figure 3.20.

The syntactic sugar for anonymous red ujoin ofin projection operation is introduced

in [Mer03]. In the above example,

EmpName <- [red ujoin of empnameJ in Contacts;

is equivalent to:

EmpName <- Contacts / empname;

More usages of this short form, or path expression, can be found in [Yu04]. Now the

query can be simplified to the one shown in Figure 3.21.

Equivalence Reduction

Equivalence reduction provides a grouping mechanism in reduction. These groups are

equivalent as they have the same value within the group in terms of the specified at-

1 A new operator for grouping attributes into a nested relation will be added in this thesis. This new

operator in jRelix is intended to support applications such as graph queries and semistructured data.

Please refer to Chapter 4 section 4.5 for details.

CHAPTER 3. OVERVIEW OF JRELIX

>let empname be [name] in employee;
>EmpName' <- [empname] in Contacts;
>pr EmpName';
+----------------------+
1 empname
+----------------------+
1 14
1 15
+----------------------+
relation EmpName' has 2 tuples
>pr .empname;
+----------------------+----------------------+
1 .id 1 name
+----------------------+----------------------+
1 14 1 Tom
1 15 1 Judy
1 15 1 Sam
+----------------------+----------------------+
relation .empname has 3 tuples
>

Figure 3.19: The Nested Relation: EmpName'

>let empname be [name] in employee;
>EmpName <-[red ujoin of empname] in Contacts;
>pr EmpName;
+----------------------+
1 name
+----------------------+
1 Judy
1 Sam
1 Tom
+----------------------+
relation EmpName has 3 tuples
>

Figure 3.20: The Unnested Relation: EmpName

>EmpName <-[name] in Contacts/empname
>pr EmpName;
+----------------------+
1 name
+----------------------+
1 Judy
1 Sam
1 Tom
+----------------------+
relation EmpName has 3 tuples
>

Figure 3.21: Using Syntactic Sugar in the Query

45

CHAPTER 3. OVERVIEW OF JRELIX

tribute list. The syntax for equivalence reduction is:

let <Identifier> be equiv <operator> of <expression> by

<expressionList>

46

the expressionList following the by keyword specifies the sort attributes, according to

which the reduction is performed. Figure 3.22 presents an example of the equivalence

reduction.

>let crev be equiv + of revenue by category;
>CRev <-[category, items, crev] in Report;
>pr CRev;
+----------------------+----------------------+-------------+
1 category 1 items 1 crev
+----------------------+----------------------+-------------+

TV 1 LCD 120000
TV 1 plasma 120000
computer 1 desktop 80000
computer 1 notebook 80000
telephone 1 Fax machines 16000
telephone 1 telephons 16000

+----------------------+----------------------+-------------+
relation CRev has 6 tuples
>

Figure 3.22: An Example of Equivalence Reduction

Functional Mapping

Functional mapping provides ways to perform operations which include non-commutative

and non-associative operators. By sorting on one or more attribut es in a relation, the or­

der of tuples is decided. Therefore, non-commutative and/or non-associative operations

are possible. Also calculations for cumulative su ms and other operations are supported

with the ordered attributes. Here is the syntax for function mapping:

let <Identifier> be fun <operator> of <expression> or der

<expressionList>

where fun is the keyword for function mapping syntax and the order of tuples is provided

by the expressionList followed by keyword order. Figure 3.23 presents an example of

functional mapping to "get the revenue rank in relation Repare'.

Figure 3.24 shows another example with the operator "cat", which is one of the

non-associative operators.

CHAPTER 3. OVERVIEW OF JRELIX

>let revRank be fun + of 1 order revenue;
>RevRank <- [category, items, revenue, revRank] in Report;
>pr RevRank;
+----------------------+----------------------+-------------+-------------+
1 category 1 items 1 revenue 1 revRank
+----------------------+----------------------+-------------+-------------+

TV LeD 80000 6 1
TV plasma 40000 4 1
computer desktop 50000 5 1

computer notebook 30000 3 1

telephone Fax machines 10000 2 1

telephone telephons 6000 1 1

+----------------------+----------------------+-------------+-------------+
relation RevRank has 6 tuples
>

Figure 3.23: An Example of Functional Mapping Operation

>domain num intg;
>domain word strg;
>relation Words(word, num)<-{("Morning ",2),("One", 4),("Good" l),("Every" 3)};
>pr Words;
+----------------------+-------------+
1 word 1 num
+----------------------+-------------+

Every 3
Good 1
Morning
One

2
4

+----------------------+-------------+
relation Words has 4 tuples
>let sentence be fun cat of word order num;
>Sentence <-[num, sentence] in Words;
>pr Sentence;
+-------------+------------------------+
1 num 1 sentence
+-------------+------------------------+

2
3
4

Good
Good Morning
Good Morning Every
Good Morning Every One

+-------------+------------------------+
relation Sentence has 4 tuples
>

Figure 3.24: Functional Mapping Applied to a Non-associative Operator

47

CHAPTER 3. OVERVIEW OF JRELIX 48

Partial Functional Mapping

Partial functional mapping adds a grouping facility to functional mapping in the same

way that equivalence reduction does to reduction. The syntax for partial functional

mapping follows:

let <Identifier> be fun <operator> of <expression> order

<expressionList> by <expressionList>

The group condition is specified in the expressionList followed keyword by in the above

syntax.

Figure 3.25 shows the use of partial functional mapping to calculate the pay rank

within each department.

>let catrevRank be par + of 1 order revenue by category;
>CatRevRank <- [category, items, revenue, catrevRankJ in Report;
>pr CatRevRank;
+----------------------+----------------------+-------------+-------------+
1 category 1 items 1 revenue 1 catrevRank 1

+----------------------+----------------------+-------------+-------------+
TV 1 LCD 80000 1 2
TV 1 plasma 40000 1 1
computer 1 desktop 50000 1 2
computer 1 notebook 30000 1 1
telephone 1 Fax machines 10000 1 2
telephone 1 telephons 6000 1 1

+----------------------+----------------------+-------------+-------------+
relation CatRevRank has 6 tuples
>

Figure 3.25: An Example of Partial Function Mapping Operation

Set Operation

In jRelix, the set operation [Roz02] transforms the value of a unary relation (i.e., a

relation that has only one attribute) to a set of attributes in the place where the attribute

list can appear. The unary relation should be defined to have an attribute of type

ATTRIBUTE. The projector list in a projection operation and the by list in equivalence

reduction and partial functional mapping are those sites that a set operation can take

place. Following are some examples.

Figure 3.26 shows relations that are used to demonstrate the set operation. Fig­

ure 3.27 presents a set operation performed in the by list in equivalence reduction and

CHAPTER 3. OVERVIEW OF JRELIX 49

partial functional mapping of queries. Figure 3.28 displays an example of set operation

in the projector list in projection operation.

Quote

>domain Attr attr;
>domain L,W,T intg;
>relation C(L,W,T)<-{(1,1,5),(1,1,10), (2,2,5), (3,4,20)};
>pr C;
+-------------+-------------+-------------+
1 L 1 W 1 T
+-------------+-------------+-------------+
1 1
1 1
1 2
1 3

1 1
1 1
1 2
1 4

1 5
1 10
1 5
1 20

+-------------+-------------+-------------+
relation Chas 4 tuples
>relation aLWT(Attr)<-{(L),(W),(T)};
>pr aLWT;
+----------------------+
1 Attr
+----------------------+
1 L
1 T
1 W
+----------------------+
relation aLWT has 3 tuples
>relation aT(Attr)<-{(T)};
>pr aT;
+----------------------+
1 Attr
+----------------------+
1 T

+----------------------+
relation aT has 1 tuple
>

Figure 3.26: Relations for Set Operation

The quote operator [Roz02] converts an attribute name to an attribute metadata. The

attribute following the quote operator will not be evaluated during the query evaluation.

The general syntax of quote is:

let <Identifier> be quote <Identifier>;

in which the first Identifieris the virtual domain being declared and the second Identifier

is a declared domain used as the value of the virtual domain. The virtual domain is

of the type ATTRIBUTE. Relation Ordered can be found in Figure 3.3. Figure 3.29

presents an example.

CHAPTER 3. OVERVIEW OF JRELIX

>let eqvT be equiv + of 1 by (aLWT djoin aT);
>Cl<-[L,W,T,eqvT] in C;
>pr Cl;
+-------------+-------------+-------------+-------------+
1 L 1 W 1 T 1 eqvT 1

+-------------+-------------+-------------+-------------+
1 1
1 1
1 2
1 3

1 1
1 1
1 2
1 4

1 5
1 10
1 5
1 20

1 2
1 2
1 1
1 1

+-------------+-------------+-------------+-------------+
relation Cl has 4 tuples
>let pfTW be par + of 1 order T by (aLWT djoin aT);
>C2<-[L,W,T,pfTW] in C;
>pr C2;
+-------------+-------------+-------------+-------------+
1 L 1 W 1 T 1 pfTW
+-------------+-------------+-------------+-------------+
1 1
1 1
1 2
1 3

1 1
1 1
1 2
1 4

5
10
5
20

1 1
1 2
1 1
1 1

+-------------+-------------+-------------+-------------+
relation C2 has 4 tuples
>

50

Figure 3.27: Examples of Set Operation in Equivalence Reduction and Partial Functional
Mapping

>reC<-[[Attr] in aLWT] in Cl;
>pr reC;
+-------------+-------------+-------------+
1 L 1 T 1 W
+-------------+-------------+-------------+
1 1
1 1
1 2
1 3

1 5
1 10
1 5
1 20

1

1 1
1 2
1 4

+-------------+-------------+-------------+
relation reC has 4 tuples
>

Figure 3.28: An Example of Set Operation in Projection

>let computer be quote desktop;
>QuoteTest <-[company, quantity, computer] in Ordered;
>pr QuoteTest;
+----------------------+-------------+----------------------+
1 company 1 quantity 1 computer
+----------------------+-------------+----------------------+
l "Canon" 1 100 1 desktop
l "Dell" 1 50 1 desktop
+----------------------+-------------+----------------------+
relation QuoteTest has 2 tuples
>

Figure 3.29: An Example of quote Operator

CHAPTER 3. OVERVIEW OF JRELIX 51

Eval

The eval operator [Roz02] evaluates the value of a unary relation which has an attribute

of the type ATTRIBUTE. The value to be assigned is a constant, therefore the operation

is a static evaluation. The general syntax of eval is:

let eval <relation> be <constant>;

where the relation is a unary relation. The type of the attribute of the relation lS

ATTRIBUTE. The constant is the value to be assigned to each attribute which is the

domain of the unary relation. Figure 3.30 shows an example. Note that the value to be

assigned does not have to be a constant. It can be any expression that results in a valid

value of an attribute. Functions of eval will be extended in this thesis. Please refer to

Section 4.3 for details.

>let eval aT be 0;
>LW<-[L,W,T] in [L,W] in C;
>pr LW;
+-------------+-------------+-------------+
1 L 1 W 1 T
+-------------+-------------+-------------+
1 1
1 2
1 3

1 1
1 2
1 4

1 0
1 0
1 0

+-------------+-------------+-------------+
relation LW has 3 tuples
>

Figure 3.30: An Example of Static eval Operation

Application: Matrix Computation

With relational algebra and domain algebra introduced, one of the applications is to

do matrix multiplication. For example, suppose there are two matrices as shown in

Figure 3.31 and Figure 3.32. The product of A and B is matrix C in Figure 3.33. The

matrices are modeled in relations and the relations for matrix A and B are shown in

Figure 3.34. To obtain the product of A and B, equivalence reduction is used to do the

math, as shown in Figure 3.35. Relation C in the figure corresponds to matrix C in

Figure 3.33.

CHAPTER 3. OVERVIEW OF JRELIX

ca2 ca3

o 2
2 3)

Figure 3.31: Matrix A

cb1

CbIC rb2 3
rb3 0

Figure 3.32:

cb2

4) 0
2

Matrix B

cb2

8
6)

Figure 3.33: Matrix C

>domain ra, ca, rb, cb intg;
>domain va, vb intg;
>relation A(ra, ca, va)<-{(1,1,1),(1,3,2),(2,2,2),(2,3,3)};
>pr A;
+-------------+-------------+-------------+
1 ra 1 ca 1 va
+-------------+-------------+-------------+
1 1 1 1 1 1
1 1 1 3 1 2
1 2 1 2 1 2
1 2 1 3 1 3
+-------------+-------------+-------------+
relation A has 4 tuples
>relation B(rb, cb, vb)<-{(1,1,1),(1,2,4),(2,1,3),(3,2,2)};
>pr B;
+-------------+-------------+-------------+
1 rb 1 cb 1 vb
+-------------+-------------+-------------+
1 1
1 1
1 2
1 3

1 1
1 2
1 1
1 2

1 1
1 4
1 3
1 2

+-------------+-------------+-------------+
relation B has 4 tuples
>

Figure 3.34: Relation Model of Matrix A and B

52

CHAPTER 3. OVERVIEW OF JRELIX

>let vab be equiv + of va*vb by ra, cb;
>C<-[ra, cb, vab] in CA [ca:ijoin:rb] B);
>pr C;
+-------------+-------------+-------------+
1 ra 1 cb 1 vab
+-------------+-------------+-------------+
1 1 1 1 1 1
1 1 1 2 1 8
1 2 1 1 1 6
1 2 1 2 1 6
+-------------+-------------+-------------+
relation Chas 4 tuples
>

Figure 3.35: Relation C: The Production of A and B

Application: Finding Area

53

Another application of do main algebra is finding the are a of a two dimensional polygon

which is represented by sequences of points [Mer88]. The calculation is based upon the

Stokes' theorem:

J J}~~ -~:)dxdy = f(PdX + Qdy)

If P = 0 and Q = x, the above formula gives the area, which is:

The simplest example is used to show how jRelix deals with this type of application.

Figure 3.36 shows a relation which models a triangle using three points together with

the sequence number. Figure 3.37 presents the jRelix code and result. For each tuple

in the relation triangle, virtual domain x' and y' give the coordinates of the next points

based on the sequence number. The next point of the point with the biggest sequence

number, 3, is the first point of the triangle. Rence, for each point of the triangle, both

the co-ordinates of the point and its next points are available. The virtual domain area

accumulates the value computed from each tuple according to the formula:

The final result is projected from the relation (By hand, the area of the triangle which

matches the programming result can be easily calculated).

CHAPTER 3. OVERVIEW OF JRELIX 54

>domain Seq intg;
>domain x,y realj
>relation triangle (Seq, x,y) <- {(i, -1, 0), (2, 1, 0), (3, 0, 2)};
>pr triangle;
+-------------+---------------+---------------+
1 Seq 1 x 1 y
+-------------+---------------+---------------+
1 1
1 2
1 3

1 -1.0
1 1.0
1 0.0

1 0.0
1 0.0
1 2.0

+-------------+---------------+---------------+
relation triangle has 3 tuples
>

3.6 Update

Figure 3.36: Relation triangle

>let x' be fun suee of x order Seq;
>let y' be fun suee of y order Seq;
>let area be red + of (x*y'-y*x')/2;
>Area <- [are a] in triangle;
>pr Area;
+---------------+
1 area
+---------------+
1 2.0
+---------------+
relation Area has 1 tuple
>

Figure 3.37: Calculation of Area

The content of a relation can be changed by applying update operations to it. Three

basic operations are provided in jRelix: add, delete, and change. The add operator

has the same function as incremental assignment, which appends additional tuples to

the target relation according to the given condition. The delete operation has the same

function as djoin in j1-joins, which removes some tuples from the target relations based

on the conditions specified in the statement. The change operation modifies the value

of specified attribut es given certain conditions. Detailed description of the operations

are available in [SunOO].

The syntax for update is as follows:

update Identifier (addldelete) Expression;

update Identifier change (st~tementList)? (UsingClause)?;

where Identifier is the name of the relation that to be updated. The optional Using­

Clause is defined as follows:

using JoinOperator Expression

CHAPTER 3. OVERVIEW OF JRELIX 55

The ijoin operator can be omitted in the UsingClause.

Figure 3.38 shows a simple example. Relation Course and Student can be found in

Figure 3.12.

>update Course change course <- "Advanced Database " using Student;
>pr Course;
+-------------+----------------------+
1 ID 1 course
+-------------+----------------------+
1 121 1 Advanced Database
1 135 1 Algori thm
+-------------+----------------------+
relation Course has 2 tuples
>

Figure 3.38: An Example of update Operation in Flat Relation

3.7 Programming Language Constructs

Many programming languages have been embedded with database facilities to enhance

the power of a programming language in manipulating databases. In fact, languages

for databases could provide not only query languages but also full programming facil­

ities [Mer99]. This is provided in the jRelix system by the existing functionalities of

Computation [Bak98], Event handler [SunOO], and Abstract data type [Zhe02], etc.

3.8 Distributed Data Processing

Processing remote data across the Internet is another capability of jRelix. Remote

relations, remote procedure call, and security management are accessed and executed

using URL-based name structure, which is the local element name prefixed with a site

identifier that is the host name plus path. Users utilize the same syntax when operations

are performed locally and use the equivalent URL-based name and functions wh en

operations are performed among different jRelix systems. Thorough discussion and

rich examples are available in [Wan02].

Chapter 4

Metadata Operators User Manual

This chapter describes how to use metadata operators in the jRelix system to perform

related que ries and programming. The syntax for operators: relation, typeof, and self

will be given and sorne points for attention in using these operators will be discussed

via examples. Three metadata operators, transpose, quote, and eval, which were first

introduced into a relational database system [MerOl] l, will be further discussed in this

chapter. A new syntax for operator transpose will be given, the syntax for eval will be

augmented, and the use of eval will be extended from domain expressions to relational

expressions. The wildcard was introduced in [Yu04] as part of the path expression in

relational algebra. In this chapter, more powerful functions of the wildcard will be

presented, especially wh en it combines with recursive virtual nested domains. FinaIly,

redefining virtual nested relations will be discussed.

The remainder of this chapter is organized as follows: Section 4.1 introduces a new

operator typeof as weIl as a new type TYPE. From Section 4.2 to Section 4.6, the

syntax and usages of operator quote, eval, self, relation, and transpose are exhibited.

Section 4.7 introduces the redefining of virtual nested relations. Section 4.8 shows the

usage of the wildcard and the actualization of recursive virtual nested relation. We will

end this chapter with two comprehensive examples on metadata operators, attribute

path and schema discovery.

loperators quote and eval date back as far as LISP, a high-level programming language.

56

CHAPTER 4. METADATA OPERATORS USER MANUAL 57

4.1 Type TYPE and the typeof Operator

To support the metadata operators, a new type TYPE is allowed for attributes. It is a

primitive type whose values are valid types in jRelix system. The typeof operator is a

utility to generate the string value of the type of an attribute or the type of a domain

expression. It extracts the type of an attribute of type UNIVERSAL for each tuple

in a relation, because an attribute of type UNIVERSAL may have different value (the

type:value pair) in each tuple in a relation. At the same time, typeof is also a handy

utility to help understand the construction of a relation, as it can sim ply give the type

of any attribute in a relation.

4.1.1 Initialization of Type TYPE

Declaring a do main to be of type TYPE is the same as declaring a domain of other types,

e.g., STRING, INTEGER. The value of type TYPE can be achieved via the operation

of operator typeof or transpose which will be discussed in the following sections. It

also can be input in the process of relation initialization. The data of attribute of type

TYPE are strings of valid types in the jRelix system.

Table 4.1 summarizes the valid types in the current system with sorne examples. Two

categories of type are available in jRelix: atomic or primitive, and complex. Atomic

type includes INTEGER, BOOLEAN, etc. Complex type includes COMPUTATION,

IDLIST (relation), and UNION. The UNION type includes names of declared attributes

or relations, or combinat ions of any types. (Details of UNION type are available in

[Gu05]).

Figure 4.1 presents the declaration of domain tp to be of type TYPE, as weIl as

declarations of sever al other attributes and a relation which will be used in this section.

Figure 4.2 shows examples of successful initialization of type TYPE. If the data of type

TYPE contains neither a valid type nor a declared domain name, then the initialization

will fail, as show in Figure 4.3.

Note that both the data of ATTRIBUTE and TYPE are strings without quotation

marks, " ", and both the complete form and short form of type are acceptable.

CHAPTER 4. METADATA OPERATORS USER MANUAL

Category Type Alias or short form Examples in jRelix
atomic boolean bool true, false

short 66,87
integer intg 10,99
long
float real 3.1415926
double
string strg "company"
text
expression expr
statement stmt
attribute attr name
universal univ, anytype string:name
type intg, bool
"(" IDList ")" (name, website)

complex computation "("IDList ")" comp comp(A,B,C)
relation Company(name,address)
union intglstrglA, Company

Table 4.1: Valid Types in jRelix System

>domain tp type;
>domain attri attribute;
>domain name, address string;
>domain forBusiness boolean;
>domain company(name,address);
>relation T(name, forBusiness, company)<-{("Visa Gold", true, {("BMO", "1234 university")})};
>

Figure 4.1: Domain and Relation Declaration

>relation TP1(attri, tp) <- {(name, string), (forBusiness, bool)};
>pr TP1;
+----------------------+----------------------+
1 attri 1 tp
+----------------------+----------------------+
1 forBusiness 1 bool
1 name 1 string
+----------------------+----------------------+
relation TP1 has 2 tuples
>relation TP2(tp) <-{(company) , (namelcompany)};
>pr TP2;
+----------------------+
1 tp
+----------------------+
1 company
1 name 1 company
+----------------------+
relation TP2 has 2 tuples
>

Figure 4.2: Initialization of Type TYPE

58

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>relation TP3(tp) <- {(randomtype)};
Tuple 1 of relation TP3 has invalid value for
attribute 1; message: invalid TYPE value 'randomtype'.
>

Figure 4.3: An Example of a Failed Initialization of Type TYPE

4.1.2 Syntax of the typeof Operator

The syntax for operator typeof is as follows

typeof <domain_expression>

59

the domain_expression could be a name of an attribute which has already been declared,

or a horizontal or vertical domain expression. Both actual and virtual attribute can be

the operand. If the operand is the name of an attribute, then the attribute must be

declared before reference. Otherwise, the operation will fail and error messages will be

given out. The result of the typeof operator is the complete form of a type in jRelix.

4.1.3 Examples

As mentioned before, the typeof operator is especially useful to extract the type from

an attribute of type UNIVERSAL so that the type information can be presented in­

dependently from its value in a relation. Figure 4.4 is relation U which contains an

attribute val of type UNIVERSAL.

>domain val univ;
>relation U(val) <-((boolean:true), (string: "Visa Gold")};
>pr U;
+----------------------+
1 val
+----------------------+
1 boolean:true
1 string:Visa Gold
+----------------------+
relation U has 2 tuples
>

Figure 4.4: A Relation Contains Attribute of Type UNIVERSAL

Query: Get aIl types appearing in attribute val in relation U.

The result is shown in Figure 4.5.

Similarly, when the type of typeof operand is ATTRIBUTE, the result is the type

of the attribute, which is the value of the operand. Figure 4.6 shows this case.

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>let tpof be typeof val;
>UTP<-[tpof] in U;
>pr UTP;
+----------------------+
1 tpof
+----------------------+
1 boolean
1 string
+----------------------+
relation UTP has 2 tuples
>

Figure 4.5: An Example of typeof on a UNIVERSAL Type Attribute

>let tpofatr be typeof attri;
>TTP (- [attri, tpofatr] in TP1;
>pr TTP;
+----------------------+----------------------+
1 attri 1 tpofatr
+----------------------+----------------------+
1 forBusiness 1 boolean
1 name 1 string
+----------------------+----------------------+
relation TTP has 2 tuples
>

Figure 4.6: Examples of typeof with Operand of Type ATTRIBUTE

60

Here is another example showing the type of an attribute of type UNION. Figure 4.7

includes relation UC which has attribute cust, a UNION type attribute. Figure 4.8

shows the result of typeof cust.

Operator typeof also can be performed on an attribute or an expression of other

types and the production is a constant, as shown in Figure 4.9.

In addition to the above discussion, operator typeof can also return the type of an

eval expression, e.g., let tpeval be eval A. Wh en the virtual domain tpeval is actualized,

it has the type of the attribute, which is the data of attribute A. An example will be

shown in Section 4.3.2, after the eval operator is introduced.

Note that, although the primitive types can be displayed in their short forms, such

as "strg" for "string" and "bool" for "boolean", the complete form is used as the result

of typeof. The reason is, as we discussed, that the names of attributes and relations

can also be types and they do not have short forms, so we uniformly use complete form

for all types.

CHAPTER 4. METADATA OPERATORS USER MANUAL

>domain name, address strg;
>domain company(name,address);
>domain cust namelcompany;
>relation UC(cust) <-((name: "Dell "),

(company: {("HD" ,"Milton 1000"), ("JJ", "peel 300")})};
>pr UC;
+----------------------+
1 cust
+----------------------+
1 company:1
1 name:Dell
+----------------------+
relation UC has 2 tuples
>pr . company;
+----------------------+----------------------+----------------------+
1 .id 1 name 1 address 1

+----------------------+----------------------+----------------------+
1 1 1 HD 1 Milton 1000
1 1 1 JJ 1 peel 300
+----------------------+----------------------+----------------------+
relation .company has 2 tuples
>

Figure 4.7: A Relation Contains Attribute of Type UNION

>let typeuc be typeof cust;
>UCTP <-[typeuc] in UC;
>pr UCTP;
+----------------------+
1 typeuc
+----------------------+
1 company
1 name
+----------------------+
relation UCTP has 2 tuples
>

Figure 4.8: An Example of typeof on a UNION Type Attribute

>let tpbusiness be typeof forBusiness;
>let tpcompany be typeof company;
>TPof1<-[tpbusiness,tpcompany] in T;
>pr TPof1;
+----------------------+----------------------+
1 tpbusiness 1 tpcompany
+----------------------+----------------------+
1 boolean 1 relation
+----------------------+----------------------+
relation TPof1 has 1 tuple
>
>let tpname be typeof name;
>let adr be [address] in company;
>let tpvdom be typeof red ujoin of adr;
>TPof2<-[tpname, tpvdom] in T;
>pr TPof2;
+----------------------+----------------------+
1 tpname 1 tpvdom
+----------------------+----------------------+
1 string 1 relation
+----------------------+----------------------+
relation TPof2 has 1 tuple
>

Figure 4.9: Examples of typeof Operator with Constant Result

61

CHAPTER 4. METADATA OPERATORS USER MANUAL 62

4.2 The quote Operator

The quote operator converts any attribute name to attribute metadata [Mer01]. It

suppresses the evaluation of an attribute in context where evaluation would ordinarily

take place[Mer03]. And it can appear in both domain algebra expressions and relational

algebra expressions. Details of syntax and examples of the quote operator in domain

algebra can be found in [Roz02]. In this section we review the syntax and give an

example showing the usage of the quote operator in relation al algebra expression.

4.2.1 Syntax

The syntax for operator quote is as follows:

quote < attribute_name>

attribute_name is the name of a declared attribute. It could be an actual domain or

a virtual domain of any type. The result of the quote operator is the name of the

attribute defined by attribute_name and the type of the result is ATTRIBUTE.

4.2.2 Examples

Query: Get attribute forBusiness and its type in relation TP1.

Relation TP1 can be found in Figure 4.2. Here we need to compare the value of

domain attri to a given condition forBusiness. Intuitively, a query would be written as:
where attri = forBusiness in TP1;

But forBusiness is a declared attribute, and it will be evaluated in each tuple in actu­

alization. To avoid the evaluation, the query needs to be modified to
where attri = quote forBusiness in TP1;

In the above query, with the quote operation, the right hand side of the comparison

has a constant value forBusiness in each tuple during the comparison process. 80 that

the tuples with data of forBusiness in attribute attri are selected to the target relation.

The query and the result are shown in Figure 4.10.

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>TpName (- where attri = quote forBusiness in TP1;
>pr TpName;
+----------------------+----------------------+
1 attri 1 tp
+----------------------+----------------------+
1 forBusiness 1 bool
+----------------------+----------------------+
relation TpName has 1 tuple
>

Figure 4.10: Examples of quote operator

4.3 The eval Operator

63

The eval is a unary operator used to evaluate the attribute whose name is the data

of the eval operand in the corresponding tuple in a relation. The operand of eval can

be a unary relation or an expression resulting in a unary relation. In both cases the

unary relation must have an attribute of type ATTRIBUTE [Roz02]. In this section,

the syntax of eval operator will be extended to allow the operand to be an attribute of

type ATTRIBUTE. In following subsections, we will show this new syntax and explore

its different usages.

4.3.1 Syntax of the evalOperator

The new syntax for operator eval is as follows:

eval <attribute_name>

or

eval Il (" attribute ") Il <attribute_name>

the attributcname is the name of a declared attribute of type ATTRIBUTE in the first

production, while it is a name of an attribute of any type in the second production.

The attribute in the second production is used to cast the attribute type to type

ATTRIBUTE. The result of eval operation are values of type UNIVERSAL, this is

because the type of the attribute is ATTRIBUTE, whose data type are variable.

CHAPTER 4. METADATA OPERA TORS USER MANUAL 64

4.3.2 Examples

eval in Relational Expression

In Figure 4.11, relation RD contains domains A, Y, and Z. Domain A is of type AT­

TRIBUTE, and domain Y and Z are of type INTEGER. The selection operation in

Figure 4.12 compares the data in domain Y and the result of eval A, which is a data

of an attribute that is a data itself of domain A in each tuple of relation RD. AlI those

tuples, which have the true value of the comparison, are selected to be the tuples in

result relation SD. Note that the type of Y is INTEGER, while the result of eval A is

of the type UNIVERSAL. So we need to do a cast to make the type of two comparison

operands equal. The result of eval operation is thus cast to INTEGER.

>domain A attr;
>domain X,Y,Z intg;
>relation RO(A,Y,Z) (-{(Y,l,l),(Y,2,2),(Z,l,l),(Z,l,2)};
>pr RO;
+----------------------+-------------+-------------+
1 A 1 y 1 Z
+----------------------+-------------+-------------+
1 y
1 y
1 Z
1 Z

1 1
1 2
1 1
1 1

1 1
1 2
1 1
1 2

+----------------------+-------------+-------------+
relation RO has 4 tuples
>

Figure 4.11: Relation RD

>SO (- where Y = (intg) eval A in RO;
>pr SO;
+----------------------+-------------+-------------+
1 A 1 y 1 Z
+----------------------+-------------+-------------+
1 y
1 y
1 Z

1 1
1 2
1 1

1 1
1 2
1 1

+----------------------+-------------+-------------+
relation SO has 3 tuples
>

Figure 4.12: eval in Relational Algebra

Let's take a close look at the process. For the first tuple in relation RD, the value

of the left hand side operand of comparison is domain Y 's value, which is 1. For the

right hand side, eval A is to evaluate the value of domain A in the first tuple, which

is Y, and the result of evaluation is 1. So the result of eval A is 1. As both sides of

CHAPTER 4. METADATA OPERATORS USER MANUAL 65

the comparison operation have value 1, the result of comparison is true. Therefore the

first tuple is selected as one of the tuples of result relation. The same evaluation goes

to the second tuple. For the third tuple, in the left hand side, the value of domain Y

is 1, while the value of domain A is Z. eval A in this case gets the value of domain Z

in the current tuple, which is also 1. So the result of comparison is true and the tuple

is selected. For the fourth tuple, the value of the left hand side is 1. In the right hand

side, the value of domain A is Z. As domain Z has the value 2 in the fourth tuple, the

result of eval A in this tuple is 2. So the two sides of the comparison are not equal and

the tuple is not selected.

In short, wh en we need a result from the eval operation to act as the operand of a

comparison, or a value to be assigned to another attribute as we will show in following

section, the result of the eval operator in each tuple in the relation is decided by the

value of the domain whose name is the value of the eval operand in the same tuple.

eval in Left Rand Side of Domain Declaration

We can also assign values to the attributes whose name is data of eval operand in

domain declaration. Under this circumstance, the attribute whose name is the data of

the eval operand in a tuple will be assigned the declared value. In Figure 4.14, the let

statement declares the attributes resulting from attribute B to be the sum of X, Y, and

Z(Relation Ri is defined in Figure 4.13).

>domain B attr;
>domain X',Y',Z' intg;
>relation Rl(A,B,X,Y,Z) <- { (X, X',1,2,3),(Y,Y',4,5,6),(Z,Z',7,B,9)};
>pr Ri;
+----------------------+----------------------+-------------+-------------+-------------+
lA lB lX IY IZ
+----------------------+----------------------+-------------+-------------+-------------+
1 X
1 y
1 Z

1 X'
1 Y'
1 Z'

1 1
1 4
1 7

1 2
1 5
1 B

1 3
1 6
1 9

+----------------------+----------------------+-------------+-------------+-------------+
relation Ri has 3 tuples
>

Figure 4.13: Relation Ri

Because the type of X, Y, and Z are INTEGER, note that the type of "X+ Y+Z'

is also INTEGER. So we should make sure that the type of aIl attribut es X', Y', and

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>let eval B be X+Y+Z;
>Sl<-[[B]in Rl] in Rl;
>pr Sl;
+-------------+-------------+-------------+
1 X' 1 Y' 1 Z'
+-------------+-------------+-------------+
1 de 1 de 1 24
1 de 1 15 1 de
1 6 1 de 1 de
+-------------+-------------+-------------+
relation Sl has 3 tuples
>

Figure 4.14: eval Declaration (in the left)

66

Z', is INTEGER. Otherwise the actualization of these attributes would fail during the

stage of type validation checking. Figure 4.15 shows an example of this case. GeneraIly,

users should ensure that the type of aIl those declared attributes which are data of the

attribute on the left hand side of let statement match the type of the definition on the

right hand side.

>domain X",Y",Z" univ;
>relation Rl'(A,B,X,Y,Z) <- { (X, X",1,2,3),(Y,Y",4,5,6),(Z,Z",7,8,9)};
>pr Rl';
+----------------------+----------------------+-------------+-------------+-------------+
lA lB lX IY IZ
+----------------------+----------------------+-------------+-------------+-------------+
1 X 1 X" 1 1 1 2 1 3
1 Y 1 Y" 1 4 1 5 1 6
1 Z 1 Z" 1 7 1 8 1 9
+----------------------+----------------------+-------------+-------------+-------------+
relation Rl' has 3 tuples>
>let ev al B be X+Y+Z;
>Sl' <-[[B] in Rl'] in Rl';
error: new type of 'X'" is 'integer', but the old type is 'universal'.
>

Figure 4.15: An Example of eval Declaration Type Mismatch

The projection "[B] in R1", which is the projector in the projection "[[B] in R1] in

R1 ", leads to a set of attributes in the result relation S1.

eval in Right Hand Side of Domain Declaration

The result of eval operation also can be used to define a virtual domain, as shown in

Figure 4. 17(Relation R2 is declared and initialized in Figure 4.16). Note that the virtual

domain Pis declared to be of type UNIVERSAL.

CHAPTER 4. METADATA OPERATORS USER MANUAL

>domain C attr;
>domain E strg;
>domain F bool;
>domain X",E",F" univ;
>relation R2 (A,C ,x ,E,F) <-{ (X, x' , ,1, "son" ,false) , (E,E' , ,4, "sun" ,false) , CF, F' , ,7, "song", true)};
>pr R2;
+----------------------+----------------------+-------------+----------------------+--------+
1 A 1 C 1 X 1 E 1 F
+----------------------+----------------------+-------------+----------------------+--------+
1 E E' , 1 4 sun false
1 F 1 F" 1 7 1 song 1 true
1 X 1 X" 1 1 1 son 1 f aIse
+----------------------+----------------------+-------------+----------------------+--------+
relation R2 has 3 tuples
>

Figure 4.16: Relation R2

>let P be eval A;
>S2 <- [P] in R2;
>pr S2;
+----------------------+
1 p
+----------------------+

boolean:true
1 integer:l
1 string:sun
+----------------------+
relation S2 has 3 tuples
>

Figure 4.17: eval Declaration (in the right)

67

CHAPTER 4. METADATA OPERATORS USER MANUAL 68

eval in Both Side of Domain Declaration

In the following example in Figure 4.18, the eval operator appears at both sides of the

declaration statement. The attributes on the data set of domain C should be of type

UNIVERS AL.

>let eval C be eval A;
>S3 <-[[C] in R2] in R2;
>pr S3;
+----------------------+----------------------+----------------------+
,1 E" 1 F" 1 X"
+----------------------+----------------------+----------------------+
1 de 1 boolean: true 1 de
1 de 1 de 1 integer:l
1 string:sun 1 de 1 de
+----------------------+----------------------+----------------------+
relation S3 has 3 tuples
>

Figure 4.18: eval Declaration (in both side)

eval as Operand of typeoj

As mentioned in Section 4.1.3, typeof can also apply to the eval operator. Here is

an example to demonstrate such a case. The query in Figure 4.19 gets types of aU

attributes of data set of domain A in relation R2.

>let tpeval be typeof ev al A;
>TpEval<-[tpeval] in R2;
>pr TpEval;
+----------------------+
1 tpeval
+----------------------+
1 boolean
1 integer
1 string
+----------------------+
relation TpEval has 3 tuples
>

Figure 4.19: eval as an Operand of typeof

4.4 The self Operator

The self operator returns the name of the relation in which it is actualized. It can

appear in both normal expressions and path expressions.

CHAPTER 4. METADATA OPERATORS USER MANUAL

4.4.1 Syntax

The syntax for operator self is as follows:

self

69

As self is a system reserved word, it is not supposed to be used as the name of a domain

or a relation. Otherwise, an error message will be displayed and any operation involved

will fail. If the relation in which self is actualized is an unnamed relation, then the

name of the next higher-Ievel named relation will be returned. But if self is actualized

in a top-Ievel relation which is not named, the system will give a warning and the self

will be assigned a "null" value.

4.4.2 Examples

An Example: A Relation of Products

This section describes an example, which will be used in the following sections. We will

give a brief introduction of the meaning of each attribute involved for the purpose of

understanding the design of the database. Details of these products is beyond the scope

of this thesis, but can be found in their website listed in Table 4.2.

This example is a product information database of hardware/ chip programming de­

vices, as shown in Table 4.2. It is a nested relation with three levels: the top-Ievel

relation has three attributes: attribute family which categories the product according

to their different usages is an attribute of type STRING. Attribute Lscale, which gives

the capacity of the family, is an attribute of type BOOLEAN. Types of these two at­

tributes are both scalar types. The third attribute, device, which tells the information

of specific devices in each family, however, is an attribute of type RELATION. It is de­

signed with two attributes giving the device name and the information of the company

which can provide the device. The nested relation company contains attributes of the

company name and website. Definition of domains and relation initialization are shown

in Figure 4.20.

CHAPTER 4. ME TA DATA OPERATORS USER MANUAL

products
(famiIy Lscale device)

(name company)
(name website)

CPLDs true EPM 3512A Altera www.aItera.com
MACH 4000C Lattice www.latticesemi.com

FPGA true XC3s 200 Xilinx www.xilinx.com
SPLD false GAL Lattice www.latticesemi.com

Atmel www.atmel.com

Table 4.2: The Display form of Relation Products

>domain family strg;
>domain Lscale bool;
>domain name J website strg;
>domain company (name, website);
>domain device(name, company);
>relation products(family, Lscale, device)<-

{("CPLD",true, {("EPM 3512A ",{("Altera","www.altera.com"n),
("MACH 4000C" ,{("Lattice", "w\J\J.latticesemi.com "n)}),

("FPGA",true, {("XC3s 200", {("Xilinx", "\J\J\J.xilinx.com")})}),
("SPLD" ,false,{("GAL", {("Lattice", "\J\Jw.latticesemi.com"),

("Atmel", "\J\J\J.atmel.com"nn)
};

>pr products;
+----------------------+--------+----------------------+
1 family 1 Lscale 1 device
+----------------------+--------+----------------------+
1 CPLD 1 true 1 1
1 FPGA 1 true 1 4
1 SPLD 1 false 1 6
+----------------------+--------+----------------------+
relation products has 3 tuples
>pr .device;
+----------------------+----------------------+----------------------+
1 .id 1 name 1 company
+----------------------+----------------------+----------------------+

1
4
6

EPM 3512A
MACH 4000C
XC3s 200
GAL

2
3
5
7

+----------------------+----------------------+----------------------+
relation .device has 4 tuples
>pr . company;
+----------------------+----------------------+----------------------+
1 .id 1 name 1 website
+----------------------+----------------------+----------------------+

2 Altera w\J\J.altera.com
3 Lattice wwv.latticesemi.com
5 Xilinx www.xilinx.com
7 Atmel w\J\J.atmel.com
7 Lattice w\J\J.latticesemi.com

+----------------------+----------------------+----------------------+
relation .company has 5 tuples
>

Figure 4.20: Relation Products

70

CHAPTER 4. METADATA OPERA TORS USER MANUAL 71

Query Examples

The self keyword can either be used directly acting as a virtual domain or used to

declare another virtual domain. In both cases it will be actualized to the name of the

relation it is actualized in. Figure 4.21, Figure 4.22, and Figure 4.23 give sorne examples

of the usage of self in normal expression. In Figure 4.21, self returns the name of top­

level relations and the name of nested relation. In Figure 4.22 self returns the name of

a virtual nested relation. Figure 4.23 shows the result if self is tried to actualize in a

top level unnamed relation.

>SRProducts <- [self, family] in products;
>pr SRProducts;
+----------------------+----------------------+
1 self 1 family
+----------------------+----------------------+
1 products 1 CPLD
1 products 1 FPGA
1 products 1 SPLD
+----------------------+----------------------+
relation SRProducts has 3 tuples
>let srel be self;
>let srdevice be [srel] in device;
>SRDevice <- [red ujoin of srdevice] in products;
>pr SRDevice;
+----------------------+
1 srel
+----------------------+
1 device
+----------------------+
relation SRDevice has 1 tuple
>

Figure 4.21: self being Actualized in Actual Relations

>let Dm be Ename] in device;
>let srvir be [self] in Dm;

>SRVir <- [red ujoin of srvir] in products;
>pr SRVir;
+----------------------+
1 self
+----------------------+
Inm
+----------------------+
relation SRVir has 1 tuple
>

Figure 4.22: self being Actualized in an Virtual Relation

As we mentioned, the self keyword can also be used in path expression. It is par­

ticularly useful in fin ding path queries. Examples will be shown in Section 4.6.2 and

Section 4.9, and applications will be available in the next chapter.

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>SRnull <-[self] in ([family] in products);
Warning: self can not be actualized on an unnamed top level relation.
>

Figure 4.23: A Failed Operation of self

4.5 The Relation Operator

72

The relation operator is used to group a set of attributes into a nested relation. It is an

operator in do main algebra and is similar to nested relation declaration to sorne extent.

For instance,
let X be relation (A, B);

can be compared with
domain X(A, B);

where X is the declared nested relation, and A and B are attributes of X. Although

both the relation operator and the relation declaration create nested relations, the

functionality of the former is more than the latter. The relation operator creates a

singleton relation (i.e., a relation that has only one tuple) for each tuple of the source

relation in which the operator actualized in. Its value depends on the value of the

attributes in the current tuple in the source relation, while the result of nested relation

declaration creates an arbitrary relation, whose value relies on the relation initialization.

AIso, while the domain declaration creates an actual domain, the relation operator

generates a virtual domain. Furthermore, the virtual domain can be named(e.g., X in

the above example) or unnamed (e.g., let NameAdr be relation(name) ijoin address;

where address is a nested relation), but the declaration of nested relation only creates a

named attribute.

4.5.1 Syntax

The syntax for relation operator is as follows:

relation Il (" <attribute_name> (, <attribute_name» * ") Il

where relation is the keyword followed by one or more attributes of this relation. The

attributes are delimited inside round parenthesis. Regardless whether actual or virtual,

these attribut es must be those that have already been declared and at least one attribute

must be specified. Otherwise the system will give out error messages.

CHAPTER 4. METADATA OPERA TORS USER MANUAL 73

Top level relation operation such as:

R <- relation(A) ujoin Q

is not valid, because attribute A has no source relation in the query, therefore no data

is available for the relation operation.

4.5.2 Examples

Query: Get product family and its device name in relation products.

The solution for the query is shown in Figure 4.24.

>let dname be Ename] in device;
>let fmname be relationCfamily) ijoin dname;
>FName <- products/fmname;
>pr FName;
+----------------------+----------------------+
1 family 1 name
+----------------------+----------------------+
1 CPLD 1 EPM 3512A 1

1 CPLD 1 MACH 4000C 1

1 FPGA 1 XC3s 200 1

1 SPLD 1 GAL 1

+----------------------+----------------------+
relation FName has 4 tuples
>

Figure 4.24: An Example of relation Operator

In the above query, relation (family) groups the attribute family into a nested rela­

tion. It is a singleton relation nested in relation products. The ijoin of the relation and

the nested relation dname:

let fmname be relation(famiLy) ijoin dname;

gives the Cartesian products in each tuple of the upper level relation, products, as

shown in Table 4.3, where aH three virtual nested relations, relation(family), dname,

and fmname are given. Suppose we give a name Rfto relation(family) and we hide the

data of nested relation company due to the limited space.

If the relation operator has only one domain, as in our example, then the keyword

relation can be omitted. The above query can be rewritten as in Figure 4.25.

CHAPTER 4. METADATA OPERATORS USER MANUAL

products
ttaml y Lscale ':1cvice

company)
R dnarnc fmnarnc

(name (family) (name) (family name)
()

UPLDs true EPM 3512A UPLDs ~~~J5i6~c C;PLDs ~A~J5i60'6c lVIXOH 4UUUC CPLDs
F'PGA true XU3s 200 FPGA AC;oS "UU FPGA XC3s 20e
;;PLD a se GAL ;;PLD :AL ;;PLD GAL

Table 4.3: The Cartesian Products of fmname in Relation products

>let dname be Ename] in device;
>let fmname be family ijoin dname;
>FName <- products/fmname;
>pr FName;
+----------------------+----------------------+
1 family 1 name
+----------------------+----------------------+
1 CPLD
1 CPLD
1 FPGA
1 SPLD

1 EPM 3512A
1 MACH 4000C
1 XC3s 200
1 GAL

+----------------------+----------------------+
relation FName has 4 tuples
>

Figure 4.25: An Example of relation Operator Using Short Form

4.6 The Transpose Operator

74

transpose is an operator creating a nested relation, which contains the data of at­

tributes in each tuple of a relation. The data includes the attributes' name, type, and

the value. The operator gives all scalar attributes and only scalar attributes. No nested

attribute will appear in the result.

4.6.1 Syntax

The syntax for the transpose operator is as follows:

transpose "(" <attribute_name> (,<attribute_name»* ")"

where transpose is the keyword, followed by the attributes of the result relation. The

attributes in the attribute list must have type ATTRIBUTE, TYPE, or UNIVER­

SALI ANYTYPE in any order. The values of attributes of type ATTRIBUTE are the

names of all scalar attributes; the values of attributes of type TYPE are any valid type

in the jRelix system (please refer to Section 6.2.1 for valid types), while the values of

attributes of type UNIVERSAL are "type: value" pairs in which the type is type of the

attribute and the value is the value of the attribute in the corresponding tuple. At least

CHAPTER 4. METADATA OPERATORS USER MANUAL 75

one attribute must be defined after the transpose operator and the maximum number

is three, representing no more than one of the three types, ATTRIBUTE, TYPE, and

UNIVERS AL/ ANYTYPE, respectively. The attributes used must be those that have

already been declared and are delimited inside round parenthesis. An error will be given

out if any of the above conditions is not satisfied.

4.6.2 Examples

A General Example

Figure 4.26 shows the result of the transpose operation on relation products (in Fig­

ure 4.20). As we can see, the transpose generates a nested relation trans and the

number of tuples of each relation corresponding to each tuple of the relation in which

it is actualized (products in this example) is determined by the number of the scalar

attributes of the relation products, which is two.

>domain attri attr;
>domain tp type;
>domain val univ;
>let trans be transposeCattri,tp,val);
>TransProj<-[family, trans] in products;
>pr TransProj;
+----------------------+----------------------+
1 family 1 trans
+----------------------+----------------------+
1 CPLD
1 FPGA
1 SPLD

1 13
1 15
117

+----------------------+----------------------+
relation TransProj has 3 tuples
>pr .trans;
+----------------------+----------------------+----------------------+----------------------+
1 .id 1 attri 1 tp 1 val
+----------------------+----------------------+----------------------+----------------------+

13 family string string:CPLD
13 Lscale boolean boolean:true
15 family string string:FPGA
15 Lscale boolean boolean:true
17 family string string:SPLD
17 Lscale boolean boolean:false

+----------------------+----------------------+----------------------+----------------------+
relation .trans has 6 tuples
>

Figure 4.26: An Example of transpose Operator Result in Nested Relation

CHAPTER 4. METADATA OPERATORS USER MANUAL 76

transpose Defined on Different Attributes

As we mentioned, the attributes of the relation resulting from the transpose operator

can be attributes of any of the three types, TYPE, ATTRIBUTE, and UNIVERSAL,

as long as no type appears more than once. In Figure 4.27, transpose is defined on

attributes attri and tp. AlI scalar attributes name and their types in relation products

are obtained. We use the levellifting technique, which was discussed in [Zhe02], in this

query to avoid the inconvenience of referring ta the dot relation of the virtual nested

relation.

>let tatp be transpose(attri, tp);
>TATP<-[red ujoin of tatpJ in products;
>pr TATP;
+----------------------+----------------------+
1 attri 1 tp
+----------------------+----------------------+
1 Lscale 1 boolean
1 family 1 string
+----------------------+----------------------+
relation TATP has 2 tuples
>

Figure 4.27: transpose Defined on Attributes of Type ATTRIBUTE and TYPE

Figure 4.28 and Figure 4.29 show examples of transpose defined on the attribute of

type ATTRIBUTE and TYPE, respectively. In Figure 4.29, we use the short form:

instead of

in the query.

TTP<- products / ttp;

TTP<- [red ujoin of ttpJ in products;

>let tattr be transpose(attri);
>TATTR <-[red ujoin of tattrJ in products;
>pr TATTR;
+----------------------+
1 attri
+----------------------+
1 Lscale
1 family
+----------------------+
relation TATTR has 2 tuples
>

Figure 4.28: transpose Defined on Attributes of Type ATTRIBUTE

CHAPTER 4. METADATA OPERATORS USER MANUAL

>let ttp be transpose(tp);
>TTP<- products/ttp;
>pr TTP;
+----------------------+
1 tp
+----------------------+
1 boolean
1 string
+----------------------+
relation TTP has 2 tuples
>

Figure 4.29: transpose Defined on Attributes of Type TYPE

transpose Selected Attributes

77

The transpose operation returns aU data of scalar attributes. If we need to transpose

only sorne particular attributes, we need to do a selection from the result of transpose.

In our example, we can select those tuples, which have the value of attribute attri that

equals the select value, say family. The input condition family should be a string, but

attri is the type of ATTRIBUTE, and we are not able to compare a string "family' to

the value of the do main attri. One solution is to perform a cast operation on the domain

attri to get a value of type STRING and then compare it with "family". Figure 4.30

depicts the solution. The other solution is to compare the value of the domain attri with

the attribute family using the quote operator to forbid the evaluation. Figure 4.31 shows

such a case. We can see that operator quote performed on the attribute name family

contributes one operand of the comparison operation and the value of the attribute attri

does the other, both of which are of the type ATTRIBUTE. Therefore, the tuple where

the value of the attribute attri is equal to the result of "quote family", which is family,

becomes the result of the query.

>let trans be transpose(attri,tp,val);
>TransSelCast<- where (string)attri = "family" in products/trans;
>pr TransSelCast;
+----------------------+----------------------+----------------------+
1 attri 1 tp 1 val
+----------------------+----------------------+----------------------+
1 family 1 string 1 string:CPLD
1 family 1 string 1 string:FPGA
1 family 1 string 1 string:SPLD
+----------------------+----------------------+----------------------+
relation TransSelCast has 3 tuples
>

Figure 4.30: transpose Part of Attributes with cast Operator

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>let trans be transpose(attri,tp,val);
>TransSelQuote<-where attri = quote family in products/trans;
>pr TransSelQuote;
+----------------------+----------------------+----------------------+
1 attri 1 tp 1 val
+----------------------+----------------------+----------------------+
1 family 1 string 1 string:CPLD
1 family 1 string 1 string:FPGA
1 family 1 string 1 string:SPLD
+----------------------+----------------------+----------------------+
relation TransSelQuote has 3 tuples
>

Figure 4.31: transpose Part of Attributes with quote Operator

transpose: More Examples

78

Furthermore, we can transpose aIl attributes on a relation that itself is the result

of a transpose operation. As in Figure 4.32, the relation TransTrans is the result of

transpose on relation Trans, the result of transpose on relation products. And relation

Trans Trans Trans is the result of transpose on Trans Trans.

>Trans<- products/trans;
>pr Trans;
+----------------------------+----------------------------+----------------------------+
1 attri 1 tp 1 val
+----------------------------+----------------------------+----------------------------+

Lscale boolean boolean:false
Lscale boolean boolean:true
family string string:CPLD
family string string: FPGA
family string string:SPLD

+----------------------------+----------------------------+----------------------------+
relation Trans has 5 tuples
>TransTrans<- Trans/trans;
>pr TransTrans;
+----------------------------+----------------------------+----------------------------+
1 attri 1 tp 1 val
+----------------------------+----------------------------+----------------------------+

attri attribute attribute:Lscale
attri attribute attribute:family
tp type type: boolean
tp type type: string
val univers al universal:boolean:false
val univers al universal:boolean:true
val univers al universal: string: CPLD
val univers al universal:string:FPGA
val univers al universal: string: SPLD

+----------------------------+----------------------------+----------------------------+
relation TransTrans has 9 tuples
>

Figure 4.32: transpose on Relations Resulted from Transpose Operation (1)

The transpose result of type UNIVERSAL results in form "universal:type:value",

for in the "type:value" pair of value of type UNIVERSAL, the type is UNIVERSAL,

CHAPTER 4. METADATA OPERATORS USER MANUAL 79

and the value is itself the "type:value" pair as in Figure 4.32 relation Trans Trans. But

the further transpose operation will not generate repetitive universal, The example in

Figure 4.33 demonstrates this case.

>TransTransTrans<- TransTrans/trans;
>pr TransTransTrans;
+----------------------------+----------------------------+----------------------------+
1 attri 1 tp 1 val
+----------------------------+----------------------------+----------------------------+

attri attribute attribute:attri
attri attribute attribute: tp
attri attribute attribute:val
tp type type: attribute
tp type type:type
tp type type: uni versaI
val univers al universal:attribute:Lscale
val univers al universal:attribute:family
val universal universal:boolean:false
val
val
val
val
val
val

univers al
univers al
universal
universal
univers al
univers al

universal:boolean:true
universal:string:CPLD
universal:string:FPGA
universal: string: SPLD
universal:type:boolean
universal:type:string

+----------------------------+----------------------------+----------------------------+
relation TransTransTrans has 15 tuples
>

Figure 4.33: transpose on Relations Resulted from Transpose Operation (2)

A Simple finding pa th Query

Figure 4.34 shows a simple query presenting the attribute path in relation products. The

transpose(attri) creates a nested relation defined on the domain attri and the values

of the relation is scalar attribute names in the relation products. The self in the virtual

domain pa th is actualized to be products, because the relation transpose(attri) has no

name, and so the name of upper level relation is obtained.

>domain attri attribute;
>let path be self/attri;
>PathProd<-([red ujoin of ([path] in transpose(attri))] in products);
>pr PathProd;
+----------------------+
1 path
+----------------------+
1 products/Lscale
1 products/family
+----------------------+
relation PathProd has 2 tuples
>

Figure 4.34: A Simple Query for Finding Path

CHAPTER 4. METADATA OPERATORS USER MANUAL 80

R
(A V)

B
1 x

-
y

2 z

Table 4.4: The Display Form of Relation R

So far, we have presented the syntax for metadata operators and their usages. Before

moving on to the next chapter, where applications of the metadata operators discussed

in this chapter will be presented, two new functions will be exhibited in the following

sections.

4.7 Redefining Virtual N ested Relation

Declaring a virtual nested relation will create a virtual domain, as weIl as a dot relation,

where the actualized data of the nested relation is stored. Redefinition of the virtual

nested relation willlead to two different results. In the following subsections, two such

cases will be examined.

4.7.1 Redefining Keeping the Same Attributes

If the redefined do main has the same attributes as it does before redefining, the data of

the new virtual relation is appended to the original dot relation. The following query

depicts the case.

Table 4.4 is the display form of relation R, which contains a nested relation V defined

on attribute B. Figure 4.35 shows the print form of R. The real data of nested relation

Vis stored in relation . V and is shown, as weIl. Figure 4.36 shows a source relation SO

and the redefinition of nested relation V. TO is a target relation where the virtual nested

relation Vis actualized. As V has the same attribute B as before, its actualized data is

appended to the relation. V, shown in Figure 4.36.

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>domain A intg;
>domain B strg;
>domain V(B);
>relation R(A, V) <-{ (1, {("x") , ("y")}) , (2, {("z")})};
>pr R;
+-------------+----------------------+
1 A 1 V
+-------------+----------------------+
1 1
1 2

1 101
1 102

+-------------+----------------------+
relation R has 2 tuples
>pr .V;
+----------------------+----------------------+
1 .id 1 B
+----------------------+----------------------+
1 101 1 x
1 101 1 y
1 102 1 z
+----------------------+----------------------+
relation .V has 3 tuples
>

Figure 4.35: Relation Rand Nested Relation. V

>relation SO(B) <-«"9")};
>pr sO;
+----------------------+
1 B
+----------------------+
1 9
+----------------------+
relation SO has 1 tuple
>let V be relation(B);
>TO<- [B,V] in SO;
>pr TO;
+----------------------+----------------------+
1 B 1 V
+----------------------+----------------------+
1 9 1 103
+----------------------+----------------------+
relation TO has 1 tuple
>pr . V;
+----------------------+----------------------+
1 .id 1 B
+----------------------+----------------------+
1 101
1 101
1 102
1 103

1 x
1 y
1 z
1 9

+----------------------+----------------------+
relation .V has 4 tuples
>

Figure 4.36: Redefined V with the Same Attributes

81

CHAPTER 4. METADATA OPERA TORS USER MANUAL 82

4.7.2 Redefining with Different Attributes

On the other hand, if the new defined nested relation has attribut es different from the

original one, a new domain as weIl as a new dot relation will be generated and aIl

references to the redefined domain will lead to the new domain. The new domain and

the dot relation will be named after the original one but suffixed with a number. The

number indicates the current available name for the same virtual domain. For instance,

if the virtual do main Vis redefined to relation(A), then a new domain v_a and a

new dot relation, . v_a will be created. Later when it is actualized in relation S 1, as

in Figure 4.37, the access to domain V refers to domain v_a and new actualized data

for domain V will be written to . V_O. This transformation is automatic and users can

simply use the original name (V, in this case) whenever declaring virtual domains or

doing queries in relational or domain algebra.

>relation Sl(A) <- {(3)};
>pr Sl;
+-------------+
1 A 1

+-------------+
1 3
+-------------+
relation Sl has 1 tuple
>let V be relation(A);
>Tl<-[A,V] in Sl;
>pr Tl;
+-------------+----------------------+
1 A
+-------------+----------------------+
1 3 1 104
+-------------+----------------------+
relation Tl has 1 tuple
>pr .V_O;
+----------------------+-------------+
1 .id 1 A
+----------------------+-------------+
1 104 1 3
+----------------------+-------------+
relation .V_O has 1 tuple
>pr .V;
+----------------------+----------------------+
1 .id 1 B
+----------------------+----------------------+
1 101
1 101
1 102
1 103

1 x
1 y
1 z
1 9

+----------------------+----------------------+
relation .V has 4 tuples
>

Figure 4.37: Redefined V With Different Attributes

The above examination of the attributes of a nested relation involves implementation

CHAPTER 4. METADATA OPERATORS USER MANUAL 83

consideration, but it is discussed here because the user must be aware of the suffixes

and why they may appear. It is helpful when the nested relation is to be printed using

a pr command as we did in Figure 4.37.

4.8 The Wildcard

In jRelix, the wildcard, ".", represents top-Ievel relations or nested relations in a partic­

ular relation. It is useful in case the names of relations are not known or the structure

of a relation is too complicated so that it is difficult to explicitly refer to the name of

its nested relations.

4.8.1 The Wildcard Represents Top Level Relations

If the wildcard appears in the top-Ievel query statement, it represents the top-Ievel

relations in the current system. Not aIl top-Ievel relations will be picked up. Only

those relations which satisfy two conditions, will be the relations which will replace the

wildcard and take part in the query. The first condition is that the relation contains aIl

actual domains involved in the query. The second condition is that aIl virtual domains

involved in the query can be actualized in the relation. The operations performed on

the wildcard are equivalent to operations performed on the relations the wildcard may

represent. If the wildcard may represent more than one relation, ujoin operations are

performed to combine the results of operations on each of the relation. For example,

assume there are a total of three top-Ievel relations in the system, Xl, X2, X3, as shown

in Figure 4.38, and we want to find out aIl relations that contain domain A and its

value. With the query in Figure 4.39, relation Xl and X3 are found. The wildcard in

this example represents both relation Xl and X3, for domain A is an actual domain and

relation X2 does not contain it. Therefore query
RA <- [self, A] in .,

is equivalent to
RA <- [self,A] in Xl ujoin [self,A] in X3;

In the example in Figure 4.40, domain Dis a virtual domain defined on do main C. It

can only be actualized in relation X2 and X3, so the wildcard in the query is replaced

by X2 and X3.

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>domain A,B,C strg;
>relation X1(A,B) <- {("ai", "bi")};
>relation X2(B,C) <- {("b2", "c2")};
>relation X3(A,C) <- {("a3", "c3")};
>pr Xi;
+----------------------+----------------------+
1 A 1 B
+----------------------+----------------------+
1 ai 1 bi
+----------------------+----------------------+
relation Xi has i tuple
>pr X2;
+----------------------+----------------------+
1 BIC 1

+----------------------+----------------------+
1 b2 1 c2
+----------------------+----------------------+
relation X2 has i tuple
>pr X3;
+----------------------+----------------------+
1 A 1 C
+----------------------+----------------------+
1 a3 1 c3
+----------------------+----------------------+
relation X3 has i tuple
>

Figure 4.38: Three Top Level Relations

>RA<- [self, A] in .;
>pr RA;
+----------------------+----------------------+
1 self 1 A 1

+----------------------+----------------------+
1 Xi 1 ai
1 X3 1 a3
+----------------------+----------------------+
relation RA has 2 tuples
>

Figure 4.39: The Wildcard Represents Top Level Relations

>let D be C;
>RC<-[self,D] in .,
>pr RC;
+----------------------+----------------------+
1 self 1 D
+----------------------+----------------------+
1 X2 1 c2
1 X3 1 c3
+----------------------+----------------------+
relation RC has 2 tuples
>

Figure 4.40: The Wildcard Represents Top Level Relations with Virtual Domain

84

CHAPTER 4. METADATA OPERA TORS USER MANUAL 85

Branch
(region subbranch dept)

(country manager salary) (name manager salary)

ASla China <.,l.ang 40000 MarketIng Ju y 4UUUU
Japan 'XIaZl 40000

North America Canada Roy 50000 IT George 54000
u::> tloO oouuu MarKetlng Joe oUuuu

Table 4.5: The Display Form of Relation Branch

4.8.2 The Wildcard Represents N ested Relations

Furthermore, the wildcard can also be used to represent aH available nested relations

one level down in a relation.

Query : Get a list of managers and their salaries in relation Branch.

Table 4.5 is a relation named Branch in display form and Figure 4.41 is the initial­

ization of the relation and the related domain declaration.

>domain region, country, name, manager strg;
>domain salary intg;
>domain subbranch(country, manager, salary);
>domain dept(name, manager, salary);
>relation Branch(region, subbranch, dept) (-
{("Asia", {("China", "Qiang" ,40000), ("Japan", "Xiazi" ,40000)}, {("Marketing", "July" , 40000)}),

("North America", ("Canada", "Roy", 50000), ("US", "Bob" ,55000)}, {("Marketing", "Joe" ,50000),
("IT", "George" ,54000)})

};
>pr Branch;
+----------------------+----------------------+----------------------+
1 region 1 subbranch 1 dept
+----------------------+----------------------+----------------------+
1 Asia 1 1 1 2
1 North America 1 3 1 4

+----------------------+----------------------+----------------------+
relation Branch has 2 tuples
>pr .subbranch;
+----------------------+----------------------+----------------------+-------------+
1 .id 1 country 1 manager 1 salary
+----------------------+----------------------+----------------------+-------------+

1
1
3
3

1 China
1 Japan
1 Canada
1 US

Qiang
Xiazi
Roy
Bob

40000
40000
50000
55000

+----------------------+----------------------+----------------------+-------------+
relation .subbranch has 4 tuples
>pr .dept;
+----------------------+----------------------+----------------------+-------------+
1 .id 1 name 1 manager 1 salary
+----------------------+----------------------+----------------------+-------------+
1 2 1 Marketing 1 July 1 40000
1 4 1 IT 1 George 1 54000
1 4 1 Marketing 1 Joe 1 50000
+----------------------+----------------------+----------------------+-------------+
relation .dept has 3 tuples
>

Figure 4.41: Nested Relation Branch

CHAPTER 4. METADATA OPERATORS USER MANUAL 86

Figure 4.42 shows the query and its result. Similar to the top-level case, the query

let ms be red ujoin of [manager, salaryJ in .;

is equivalent to:

let ms be Cred ujoin of [manager, salaryJ in subbranch)

ujoin Cred ujoin of [manager, salaryJ in dept);

>let ms be red ujoin of [manager, salary] in .;
>Manager <- Branch/ms;
>pr Manager;
+----------------------+-------------+
1 manager 1 salary 1

+----------------------+-------------+
1 Bob 1 55000
1 George 1 54000
1 Joe 1 50000
1 July 1 40000
1 Qiang 1 40000
1 Roy 1 50000
1 Xiazi 1 40000
+----------------------+-------------+
relation Manager has 7 tuples
>

Figure 4.42: The Wildcard Represents Nested Relations

4.9 Attribute Path and Schema Discovery

One of the most important applications of the transpose operator is to find the paths

in a nested relation [Mer03]. For example, with the general query code in [Mer03],

the paths in relation products in Figure 4.20 can be obtained as in Figure 4.43. The

query result refiects the structure of the relation, but is independent of data. Although

transpose does not evaluate nested attributes in a single invocation, note that the

recursive code for paths allows it to do so.

Another application is to find the schema of a relation. The pro cess is also data

independent. So we use a relation with simple data set to demonstrate the application.

Figure 4.44 shows the print form of a three level nested relation O. Table 4.6 is its display

form. The general code for finding schema is from [Mer03]. The virtual nested relation

schema is defined as a recursive one so that it can be actualized in alllevels of the top­

level relation. Figure 4.45 shows the query code and the target relation Schema, followed

CHAPTER 4. METADATA OPERA TORS USER MANUAL

>let path be self/attri;
>let path1 be self/path;
>let paths be relation(path);
>let paths be ([path] in(([path] in transpose(attri))
[path:ujoin:pathi] ([pathi] in ([red ujoin of paths] in .))));
>Paths<- products/paths;
>pr Paths;
+--------------------------------+
1 path
+--------------------------------+

products/Lscale
products/device/company/name

1 products/device/company/websitel
1 products/device/name 1
1 products/family 1

+--------------------------------+
relation Paths has 5 tuples
>

Figure 4.43: Path Discovery

87

by the compact form of the recursive nested relation, which provides the complete set of

data for a user to figure out the schema in each level. Table 4.7 shows the display form

of relation Schema. If we want to specifically check the recursive nested relation in each

level, then simply use the system command pr with the name of the nested relation as

shown in Figure 4.46.

>domain A,B,C strg;
>domain Q(C);
>domain P(B,Q);
>relation O(A,P) <-{("a", {("b",{("c")})})};
>pr 0;
+----------------------+----------------------+
1 A 1 p
+----------------------+----------------------+
1 a 1 1
+----------------------+----------------------+
relation 0 has 1 tuple
>pr .P;
+----------------------+----------------------+----------------------+
1 .id 1 B 1 Q
+----------------------+----------------------+----------------------+
1 lib 1 2
+----------------------+----------------------+----------------------+
relation .P has 1 tuple
>pr .Q;
+----------------------+----------------------+
1 .id 1 C
+----------------------+----------------------+
1 2 1 C

+----------------------+----------------------+
relation .Q has 1 tuple
>

Figure 4.44: The Display Form of Three Level N ested Relation 0

CHAPTER 4. METADATA OPERATORS USER MANUAL

Table 4.6: The Display Form of Nested Relation 0

>let sattri be self;
>domain schema(sattri,schema);
>let schema be transpose(sattri) ujoin ([sattri, schema] in .);
>Schema<-[schema] in 0;
>pr Schema;
+----------------------+
1 schema_O
+----------------------+
1 8
+----------------------+
relation Schema has 1 tuple
+----------------------+----------------------+----------------------+
1 .id 1 sattri 1 schema
+----------------------+----------------------+----------------------+
1 6 1 C dc
1 7 1 B 1 dc
1 7 1 Q 1 6
1 8 1 A 1 dc
1 8 1 p 1 7
+----------------------+----------------------+----------------------+
relation .schema_O (Compact Form) has 5 tuples
>

Figure 4.45: Schema Discovery

Schema
l sattri schema

schema ~ (sattri
(sattri)

A de
p B de

<.! CC

Table 4.7: The Display Form of Relation Schema

88

CHAPTER 4. METADATA OPERA TORS USER MANUAL

+----------------------+----------------------+----------------------+
1 .id 1 sattri
+----------------------+----------------------+----------------------+
1 8 1 A 1 de
1 8 1 p 1 7
+----------------------+----------------------+----------------------+
relation .schema_O has 2 tuples
>pr .sehema_l;
+----------------------+----------------------+----------------------+
1 .id 1 sattri 1 schema_2
+----------------------+----------------------+----------------------+
1 7 1 Bide
1 7 1 Q 1 6
+----------------------+----------------------+----------------------+
relation .sehema_l has 2 tuples
>pr .schema_2;
+----------------------+----------------------+
1 • id 1 sattri 1

+----------------------+----------------------+
1 6 1 c
+----------------------+----------------------+
relation .schema_2 has 1 tuple
>

Figure 4.46: Display the Nested Relation Schema in Each Level

89

Chapter 5

Applications

jRelix, the powerful high level database programming language based upon a relational

data model and nested relations, has more capacities in dealing with applications for

semistructured data by the implementation of attribute metadata. In this chapter, we

present some of the classical queries solved with jRelix. Section 5.1 gives an example of

querying a database with graphie characteristics. Section 5.2 presents the capacity of

the operator relation and eval in data reorganization. Section 5.3 exhibits the ability

of path expression in finding a specifie part of the structure of a relation and determining

the schema differences between two relations.

5.1 Integrated Graphical Query Ability

This application discusses the use of operator relation described in Section 4.5 and the

virtual nested relation definition in Section 4.7.

Some applications contain data that can be represented in form of graph structures

and queries posted on such data often involve transitive closure. In the early times, tra­

ditional relational query language could not solve those queries that contained transitive

closure [AU79]. Many proposaIs to solve queries like these include the graphical query

languages, G [CMW87], G+ [CMW88], and Graphlog [CM90]. G+ was the extension

of Gand Graphlog was evolved from G+. They were languages which were specially

designed for graph queries, therefore, they provides an efficient way to pose queries on a

graph including cyclic structure. They were complementaries to general purposes rela-

90

CHAPTER 5. APPLICATIONS 91

tional query language and queries that include both graphical data and relational data

would require knowledge of both.

In Aldat, with a litt le effort which enriches its query language with a group and nest

operator relation, queries for the same purpose as weIl as arithmetic functionality, if

required, can be fulfilled by writing a sm aIl paragraph of code that consists mainly of a

domain algebra and recursive view.

The following is an example based on the relation and a query in [CMW87]. The

query is to "find the first and last cities visited in aIl round trips from Toronto, in which

the first and last flights are with Air Canada and aIl other flights (if any) are with the

same airline". We do the query with jRelix and also give the flight distance of each

route which satisfies the query. The relation Flights, shown in Figure 5.1, which has

one more attribute Dist added for the purpose of calculating the distance of a route,

is from [Mer03]. The following code, presented in Figure 5.2, is from [Mer03] with a

minor modification to compute the distance. The main purpose of the code is to get aIl

possible trips provided and the airlines and distance of these trips. The recursive view

fulfills the task. The nested relation Visit is used to record aIl intermediate stops of each

trip. It is necessary to control the termination of the code under the circumstance that

the route is a loop, i.e., a cycle in graph representation. It also provides a by-product

of visited cities in a trip.

Figure 5.3 gives part of the results from the code of the transitive closure.

The next step is to get the trips that start and end with Toronto and the airline

is A G. The grep [Gu05] operator extracts the tuples that satisfy the condition from

the relation FLTVFlightsTG. Figure 5.4 shows aIl three round trips requested and their

distance.

The cities visited by the round trip can be examined in nested relation . Visit shown

in Figure 5.5. The values of the attribute node for each different id (780, 781, 782) in

. Visit correspond to all the cities that have been visited in each round trip (shown in

Figure 5.4). We did not show the sequence of these cities being visited in the round trip

in this example. We can give the order of the cities, in fact, if we add one more attribute,

say seq, in the attribute list of the nested relation Visit in the definition. What we also

need to do is to modify the code of the recursive view above (Figure 5.2) to make sure

CHAPTER 5. APPLICATIONS

>domain From, Line,To strg;
>domain Dist intg;
>relation Flights(From, Line, Dist, To)

<- { ("Tor ll
, "AC", 4200, "Van ll

), (IITor" J "AC II
, 880, "Bos") ,

("Tor ll
, lIAC ll , 690, uNY") , ("Van" J "AC", 4200, UTor ll

) J

(ULA It
, "ACII, 4700, "TorII), ("Tor" , IIAAII, 880, "Basil) J

(IIBos", IIAAlI, 380, IINY U) , ("NY" J "AA", 5000, IILA") ,
("LAU, "AA!!, 1000, "SF II) , ("SF" J "AA", 5200, "NY" n;

>pr Flights;
+----------------+----------------+-------------+----------------+
1 From 1 Line 1 Dist 1 To
+----------------+----------------+-------------+----------------+

Bos AA 380 NY
LA AA 1000 SF
LA AC 4700 Tor
NY AA 5000 LA
SF AA 5200 NY
Tor AA 880 Bos
Tor AC 690 NY
Tor AC 880 Bos
Tor AC 4200 Van
Van AC 4200 Tor

+----------------+----------------+-------------+----------------+
relation Flights has 10 tuples
>

Figure 5.1: Relation Flights

>let Node be To;
>let Visit be relation(Node);
>FLTVFlight <-[From, Line,Dist, To, Visit] in Flights;
>let Line' be Line;
> let Line" be Line cat Line';
>let Line be Line" ;
>let Dist' be Dist;
>let Dist' , be Dist + Dist' j

>let Dist be Dist";
>let Visit' be Visit;
>let Visit" be Visit ujoin Visit';
>let Visit be Visit";
>let From' be From;
>let To' be To;
>let To be To';
>relation FLTVFlightTC (From, Line, Dist, To, Visit);
>let St art be relation(From);
>FLTVFlightTC is FLTVFlight ujoin [From,Line,Dist,To,Visit] in [From,Line",Dist",To',Visit"]

where «Visit sep Visit') and «Start [From:sep:Node] Visit') or (From = To'»)
in (FLTVFlight [To: ijoin:From'] [From',Line',Dist',To', Visit'] where From!=To in FLTVFlightTC);

>pr FLTVFlightTC;
>

Figure 5.2: Query Code for Finding Round Trip

92

CHAPTER 5. APPLICATIONS

+----------------+--------------------+-------------+-------------------+----------------+
1 From 1 Line 1 Dist 1 To 1 Visit
+----------------+--------------------+-------------+-------------------+----------------+

SF AAAA 10200 LA 765
SF AAAAAA 11200 SF 766

Tor
Tor
Tor
Van
Van

ACAAAAAC
ACAAAC
ACAC
AC
ACAA

10960
10390
8400
4200
5080

Tor
Tor
Tor
Tor
Bos

780
781
782
10
783

+----------------+--------------------+-------------+-------------------+----------------+

Figure 5.3: Partial Result of the Transitive Closure

+----------------+--------------------+-------------+-------------------+----------------+
1 From 1 Line 1 Dist 1 To 1 Visi t 1

+----------------+--------------------+-------------+-------------------+----------------+
1 Tor 1 ACAAAAAC 1 10960 1 Tor 1 780
1 Tor 1 ACAAAC 1 10390 1 Tor 1 781
1 Tor 1 ACAC 1 8400 1 Tor 1 782
+----------------+--------------------+-------------+-------------------+----------------+

Figure 5.4: The Round Trip

93

that the recursion will terminate as if there were no attribute id in the relation Visit.

>pr .Visit;
+----------------------+----------------------+
1 .id 1 Node
+----------------------+----------------------+

780 Bos
780 LA
780 NY
780 Tor
781 LA
781 NY
781 Tor
782 Tor
782 Van

+----------------------+----------------------+

Figure 5.5: Relation. Visit: Cities Visited

The solution that is offered using the G query language is much more elegant than

the code we showed. But we argue that the relational database query language armed

with a little new concept could do more things than a specialized query language.

CHAPTER 5. APPLICATIONS 94

5.2 Data Reorganizing

This application discusses the use the operators eval in Section 4.3 and relation in

Section 4.5.

Using attribute metadata operators, we can also do que ries for the purpose of reorga­

nizing data. The following is an application from [ABSOO]. Without losing the features

of relation and eval operator we are presenting, we only use part of the data from

the database due to the restriction of space. Table 5.1 shows the relation DB contain­

ing only the paper part compared to the database in Chapter 4 in [ABSOO]. We also

add additional data to show how jRelix automatically eliminates the duplications after

aggregation. Figure 5.6 shows the initialization of relation DB.

Our task is to "group papers under their year of publication". This needs a transfor­

mation from values to attributes, i.e., values of the attribute year, 2000, 2001, become

attributes in the target relation. The value of each attribute is aIl papers published in

that year. Two steps are adopted to fulfill the task. Code for the query is from [Mer03],

with a minor modification as will be discussed.

First, a relation operation is used to form singleton relations defined on attributes

authors, title, and refersto and these relations are grouped according to the value of

year. Then the attribute year and the virtual attribute titles, which holds data of

papers published in the year, are projected out from the relation resulting from the

path expression "DBjbibliojpaper" shown in Figure 5.7. The projection operation will

eliminate the duplication of tuples.

>domain author, title strg;
>domain cite strg;
>domain year intg;
>domain authors(author);
>domain refersto(authors, cite);
>domain paper(authors,title, year, refersto);
>domain biblio(paper);
>relation DB(biblio) (- {({ ({
({("Suciu")}, "Semi-Databases" ,2001,{({("Roux"), ("Combalusier")}, "RC76"),

({ ("Smith")), "Sm77") , ({ ("Smith")}, "Sm99"), ({ ("Suciu")}, "SuOl ") }) ,
({ (" Jones")} , "Smith' s DB Work" , 2000, {({ ("Smith")}, "Sm77"), ({ ("Smith")}, "Sm99")}) ,
({ ("Suciu")}, "XML" ,2000, {({(" Jones ")}, "JoOO")}) })})};
>

Figure 5.6: Relation DB Initialization

Next the eval operator is used to assign the specified values, titles, to the data of the

CHAPTER 5. APPLICATIONS

DB

(biblio

(paper)

(authors title year refersto)

(author) (authors)

(author Cite)

Suciu Semi-Databases 2001 Roux RC76

Combalusier

Smith Sm77

Smith Sm99

Suciu SuOI

Jones Smith's DB Work 2000 Smith Sm77

Smith Sm99

Suciu XML 2000 Jones JoOO

Table 5.1: The Display Form of Relation DB

>let titles be equiv ujoin of relationCauthors,title,refersto) by year;
>next<-[year,titles] in DB/biblio/paper;
>pr next;
+-------------+--------------------+
1 year 1 titles
+-------------+--------------------+
1 2000 1 20
1 2001 1 21
+-------------+--------------------+
relation next has 2 tuples
>pr . ti tles;
+---------------+---------------+--------------------+---------------+
1 • id 1 authors 1 ti tle 1 refersto
+---------------+---------------+--------------------+---------------+
1 20 1 9 1 Smith's DB Work 1 10
1 20 1 13 1 XML 1 14
1 21 1 3 1 Semi-Databases 1 4
+---------------+---------------+--------------------+---------------+
relation .titles has 3 tuples
>

Figure 5.7: Relation next

95

)

CHAPTER 5. APPLICATIONS 96

attribute year. Here, the cast operation is applied to force the type of attribute year to

be changed to the type ATTRIBUTE on the fly so that the data of year can be treated

as attributes to be evaluated. A different line of code is used compared to the original

code in [Mer03]: the attribute year is casted first, then the eval operation is performed.

The set operation turns the value of attribute year to attributes as shown in Figure 5.8 1
.

The cast operation coerces the type transformation.

5.3

>let eval (attr) year be titles;
>PaperbyYear<-[(attr) ([year] in next)] in next;
>pr PaperbyYear;
+--------------------+--------------------+
1 2000 1 2001
+--------------------+--------------------+
1 de 1 23
1 22 1 de
+--------------------+--------------------+
relation PaperbyYear has 2 tuples
>pr .2000;
+---------------+---------------+--------------------+---------------+
1 . id 1 authors 1 ti tle 1 refersto
+---------------+---------------+--------------------+---------------+
1 22 1 9 1 Smith's DB Work 1 10
1 22 1 13 1 XML 1 14
+---------------+---------------+--------------------+---------------+
relation .2000 has 2 tuples
>pr .2001;
+---------------+---------------+--------------------+---------------+
1 .id 1 authors 1 title 1 refersto
+---------------+---------------+--------------------+---------------+
1 23 1 3 1 Semi-Databases 1 4
+---------------+---------------+--------------------+---------------+
relation .2001 has 1 tuple
>

Figure 5.8: Relation Paperby Year

Partial Structure and Structual Differences Dis-

covery

This application discusses the use of operators quote in Section 4.2, self in Section 4.4,

transpose in Section 4.6, and the wildcard in Section 4.8.

Many proposaIs have been made for general path expressions in order to provide

better tools for querying data documents stored in an object base [CACS94], or to obtain

1 It would be ni ce to get rid of the "dc" values in relation Paperby Year and turn the relation into a

singleton. But so far we do not have facilities to transform a sparse relation into a singleton. Please

refer to Section 7.2.2 for detailed discussion.

CHAPTER 5. APPLICATIONS

0
(A B Pl P2)

(B C Q) (C Q)
(C) (C)

a c bl c11 cl2 c21 c22

Table 5.2: The Display Form of Relation 0

0'
(C Pl

B

cl b3

)
(C Q)

(C)
c2 c3

Table 5.3: The Display Form of Relation 0'

97

structure information embedded in the data of object-oriented systems (e.g. XSQL)

[KKS92]; or to query semistructured data whose schema is irregular or incomplete (e.g.

LOREL) [QRS+95]. Operators self and transpose are used to fulfiU sorne queries

related to relation structure discovery. The result of the path expression depends on the

structure rather than the data of a relation. So relations 0 and 0' are used as shown in

Table 5.2 and Table 5.3 respectively to do the queries. Figure 5.9 and Figure 5.10 are

print forms of these two relations.

In Figure 4.43, the query for finding aU paths in a relation was showed. Here, another

query to find special paths leading to a defined attribute are presented.

Query: Find aH C in 0 and the paths they are on.

The code for the query cornes from [Mer03]. Figure 5.11 shows the query and the

result. The where clause is additional compared with the code in Figure 4.43 in order

to limit the resulting paths to those containing attribute C. The quote operation for­

bids the evaluation of C and, therefore, makes the comparison of two operands of type

ATTRIBUTE possible.

Similarly, by adding a where clause to the code for finding an entire schema of

a relation (please refer back to Figure 4.45 for detail), we can also program code for

querying parts of the schema with specified input as shown in Figure 5.12. This provides

the result in Table 5.4.

Another application is to find the schema difference between two relations. Here is

CHAPTER 5. APPLICATIONS

>domain A,B,C strg;
>domain Q(C);
>domain Pi(B,C,Q);
>domain P2(C,Q);
>domain attri attr;
>relation O(A,C,Pi,P2) <- {("a","c", {("bl","cl1",{("c12")})},{("c2l",{("c22")})})};
>pr 0;
+---------------+---------------+---------------+---------------+
1 A 1 C 1 Pi 1 P2
+---------------+---------------+---------------+---------------+
1 ale 1 i 1 3
+---------------+---------------+---------------+---------------+
relation 0 has i tuple
>pr .Pl;
+---------------+---------------+---------------+---------------+
1 .id 1 BIC 1 Q
+---------------+---------------+---------------+---------------+
1 i 1 bi 1 cil 1 2
+---------------+---------------+---------------+---------------+
relation .Pi has i tuple
>pr P2;
+---------------+---------------+---------------+
1 .id 1 C 1 Q
+---------------+---------------+---------------+
1 3 1 c2l 1 4
+---------------+---------------+---------------+
relation .P2 has i tuple
>pr .Q;
+---------------+---------------+
1 .id 1 C
+---------------+---------------+
1 2 1 c12 1
1 4 1 c22 1
+---------------+---------------+
relation .Q has 2 tuples
>

Figure 5.9: Relation 0

>relation D' (C,Pi) <- {("ci", {("b3", "c2" ,{("c3")})})};
>pr D';
+---------------+---------------+
1 C 1 Pi
+---------------+---------------+
1 ci 1 72
+---------------+---------------+
relation D' has 1 tuple
>pr Pl;
+---------------+---------------+---------------+---------------+
1 • id 1 BIC 1 Q
+---------------+---------------+---------------+---------------+
1 i 1 bi 1 cl1 1 2
1 72 1 b3 1 c2 1 73
+---------------+---------------+---------------+---------------+
relation .Pi has 2 tuples
>pr .Q;
+---------------+---------------+
1 • id 1 C
+---------------+---------------+
1 2 1 ci2
1 4 1 c22
1 73 1 c3
+---------------+---------------+
relation .Q has 3 tuples
>

Figure 5.10: Relation 0'

98

CHAPTER 5. APPLICATIONS 99

>domain attri attribute;
>let path be self/attri;
>let path' be self/path;
>let pathsC be relation(path);
>let pathsC be ([path] in «[path] where attri = quote C in transpose(attri»

[path:ujoin:path'] ([path'] in ([red ujoin of pathsC] in .»»;
>PathsC <- O/pathsC;
>pr PathsC;
+---------------+
1 path
+---------------+

O/C
1 O/Pi/C
1 O/P1!Q/C
1 O/P2/C
1 O/P2/Q/C
+---------------+
relation PathsC has 5 tuples
>

Figure 5.11: Paths that Containing Attribute C

>let sattri be self;
>domain schemaC(sattri,schemaC);
>let schemaC be ([sattri] where sattri = quote C in transpose(sattri» ujoin ([sattri,schemaC] in .);
>SchemaC<- O/schemaC;
>pr SchemaC;
+----------------------+----------------------+
1 sattri 1 schemaC_i
+----------------------+----------------------+
1 C 1 dc
1 Pi 1 43
1 P2 1 49
+----------------------+----------------------+
relation SchemaC has 3 tuples
+----------------------+----------------------+----------------------+
1 .id 1 sattri 1 schemaC
+----------------------+----------------------+----------------------+
1 42 1 C dc
1 43 1 C dc
1 43 1 Q 42
1 48 1 C dc
1 49 1 C dc
1 49 1 Q 48
+----------------------+----------------------+----------------------+
relation .schemaC_i (Compact Form) has 6 tuples
>

Figure 5.12: Code for Schema that Contains Attribute C

SehemaC
(sattri SehemaC)

(sattri SehemaC)
(sattri)

C de
Pl C de

Q C
P2 C de

Q C

Table 5.4: The Display Form of Result of Schema that Contains Attribute C

CHAPTER 5. APPLICATIONS 100

the query:

Query: Find the structural difference between relation 0 and relation 0 '.

The solution is shown in Figure 5.13. The nested relation paths in the code is for

finding aIl paths in a relation and is defined in Figure 4.43.

Firstly, we find the difference between the nested relations of the two relations. The

first two lines of code do this task.

Secondly, we find the difference between the top-Ievel scalar attributes of the two

relations. The next two lines of code and "O/top djoin O'/top" in the following line do

this task.

FinaIly, the two relations that hold the differences of the two source relations are

unioned together and produce the final result.

>let nesteP be [red ujoin of paths] in .,
>nestDif<-O/nesteP djoin O'/nesteP;
>let path be (strg) attri;
>let top be [path] in transpose(attri);
>OdifO'<- (O/top djoin O'/top) ujoin nestDif;
>pr OdifO';
+----------------------+
1 path
+----------------------+
1 A
1 P2/C
1 P2/Q/C
+----------------------+
relation OdifO' has 3 tuples
>

Figure 5.13: The Difference of 0 from 0'

Chapter 6

Implementation of Attribute

Metadata Operators

This chapter presents the implementation strategies of the new metadata operators

described in Chapter 4. Before plunging into the details of the metadata operators' im­

plementation, a brief overview of the system architecture and development environment

of the jRelix system will be given in Section 6.1. From Section 6.2 to Section 6.7, the

implementation tactics of six metadata operators: typeof, quote, eval, self, relation,

and transpose, will be discussed respectively. Section 6.8 will be about redefining vir­

tuaI nested relations. Section 6.9 and Section 6.10 will present the implementation of

the wildcard and the expansion of recursive virtual nested relations.

6.1 jRelix System Overview

This section is a background introduction for the implementation of new metadata

operators in the jRelix system, including the jRelix development environment, system

architecture, and associated classes.

6.1.1 Development Environment and Toois

The jRelix system is implemented in Java (which "j" in jRelix stands for), a platform

independent and object-oriented programming language. The system is composed of

101

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS102

classes which model the entities of the system, such as relation, domain, etc. These

class files are first compiled, then the system can run in Windows, Unix, or Linux with

the compatible version of the Java run-time environment being installed.

As we will see in Section 6.1.2, one of three portions of the jRelix system is a front-end

processor, part of whose functionalities is to parse the user input commando JavaCC and

JJTree are used to generate the parser. JavaCC (Java Compiler Complier), according

to [SDV03], "is a tool which reads a grammar specification and converts it into a Java

program that can recognize matches to the grammar". In jRelix, JavaCC reads in the

specified syntax file and converts it to a class file, Parser.java, and later during parsing,

any user input command will be checked against the specified syntax by this program.

JJTree is a utility used together with JavaCC to provide a parser tree. According

to [SDV03], JJTree "is a preprocessor for JavaCC [tm] utility that inserts parse tree

building actions at various places in the JavaCC source". In our system, jRelix syntax

is stored in the file Parser.jjt. Prior to system installation, the file is first input to JJTree

and its output, Parser.jj, then is fed into JavaCC. Figure 6.1 gives a clearer depiction

of their relationship.

JJtree source

e.g. Parser.jjt

JavaCC source

e.g. Parser.jj

Generated parser

e.g. Parser.java

Figure 6.1: Process of Generating a Parser Using JJTree and JavaCC

6.1.2 System Architecture and Storage Format

System Architecture

The jRelix System contains three parts: the front-end processor, the execution engine,

which is in charge of managing the database, and the database maintainer. The front­

end processor includes the user interface, the parser, and the interpreter. User command

input via user interface is intercepted first by the parser and syntax analysis is performed

on the spot. A command will not be executed further if it has syntax errors. A grammar

error free command is converted to a syntax tree and passed to the interpreter where

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS103

the tree is traversed. The semantic checking is performed, the command is analyzed

and the corresponding method in the execution engine is invoked for each function the

command involved during the traverse. Methods in the execution engine implement the

core function of the jRelix system, i.e., the relational algebra, the domain algebra, the

computation, event handlers, and so on. The final results in this stage, such as user

data, domains and relations, are stored to RAM or the disk in form of a system table

by the database maintainer. Figure 6.2 depicts the structure of this system.

Front-end processor

Relational algebra

Domain algebra

Nested relation

Computation

Events handler

Execution Engine

Database
System information

Database maintainer

Figure 6.2: jRelix System Architecture

System Table

Two system tables are used to store information about attributes, relations, views,

and computations of a database [Ha098]. They are stored in form of system relation

. dom, . rel, . rd and two files, . expr and . comp on hard disk. These files are loaded and

constructed into two system tables, relTable and dom Table, once the jRelix system starts

and written back to hard disk when the system exits. The relationship among the files

on disk and the tables in RAM are presented in Table 6.1. The RAM version of domain

table and relation table are maintained by DomTable.java and RelTable.java in the form

of objects containing fields as shown in Table 6.2 and Table 6.3.

Please note that jRelix is a RAM based system; any individual relation must fit into

primary memory.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS104

1 disk files 1 description 1 RAM version
.rel Information about relations relTable
.dom Information about attributes domTable
.rd Information links relations with the attributes relTable and dom Table

on which relations are defined
.expr Serialized syntax tree of views and Virtual domains to domTable

virtual attributes Views to relTable
.comp Serialized syntax tree of computations

Table 6.1: Relationship Between System Files on Disk and Their RAM Version

1 field 1 type 1 description
name string The name of the domain
type integer The type of the domain
tree simpleNode A syntax tree which is the definition for a virtual domain
numref integer The number of this domain being referenced
umon SimpleNode The compositions of types of type UNION

Table 6.2: RAM Version of Domain Table: dom Table

1 field 1 type 1 description

name string The name of the relation
rvc integer Type of the relation (relation, view, or computation)
numtuples integer The number of tuples in the relation
numattrs integer The number of attributes in the relation
tree SimpleNode Syntax tree for a view
domain Domain[] Array of domains
data Object[] Array of data

Table 6.3: RAM Version of Relation Table: rel Table

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS105

1 category 1 name 1 description
member name Name of the node if the no de is an IDENTIFIER

type Operator type
opcode Sub operator type

method jjtCreatNode Create and return a new SimpleNode
jjtGetChild Return a child node
jjtGetParent Return the parent node
jjtReplace Replace anode with the one input
jjtGetN um Children Return the number of the input node's children
jjtAddChild Add the input node as a child to the parent node

Table 6.4: Frequently Used Members and Methods of the SimpleNode Class

Storage Format of Flat Relations and Nested Relations

In jRelix, fiat relations are stored in a table format, first tuple-by-tuple and then

attribute-by-attribute. Their storage forms are the same as their display forms and

print forms, as we have seen in Chapter 3. Nested relations are stored as several fiat re­

lations, including one top level fiat relation and several other fiat relations which retain

the data of nested relations. Each of them can be displayed using a pr commando

6.1.3 Introduction of Related System Class

The Syntax Tree and the SimpleNode Class

Anode is the basic unit of a syntax tree generated by the parser from the user input

commando For example, the input

S<- [A] in R;

is parsed to a tree as shown in Figure 6.3. The tree is rooted at the node assignment, the

parent node of nodes Sand project. Node Sis the first or left child of node assignment,

and node project is the second or right child of assignment. Anode is encapsulated in the

SimpleNode class in the jRelix system. The most commonly used members in the class

are name, type, and opcode, while the most frequently referenced methods are jjtCre­

ateNode, jjtGetChild, jjeGetParent, jjtReplace, jjtGetNumChildren, and jjtAddChild. A

brief description of these members and methods are available in Table 6.4.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS106

Figure 6.3: A Syntax Tree

The Interpreter Class

The interpreter class receives the syntax tree passed from the parser and explains the

tree by traversing it starting from the root. Function caUs are made during the traverse

according to the type of the current processing node. When traversaI of a syntax tree

has completed, the functions of the query the tree portrayed are executed and the

modifications to the database have been applied.

Sorne of the most important methods of the interpreter class are presented in Ta­

ble 6.5. New methods for supporting the operator relation and transpose will be

added to the class in our implementation 1 .

The Actualizer Class

The actualizer class is responsible for the virtual do main actualization. It performs a

run-time validity check for a virtual domain and also expands a virtual domain tree to

an entire tree which the actualizing process can process. These functions are performed

lmethods for operator relation and transpose are marked with a '*' in the table.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS107

1 methods 1 comments
executeCommand Analyze a command and call corresponding method
traverseN ode Basic validation check of a tree
traverseType Type checking in virtual nested relation declaration
getIDList Get the do main list involved in virtual nested relation declaration
evaluateTLExpression Analyze an expression and call corresponding method
evaluatePro j ect Deal with a syntax tree for projection operation
evaluateSelect Deal with a syntax tree for selection operation
evaluateJoin Deal with a syntax tree for join operation
evaluateRelation * Deal with a syntax tree for relation operation
evaluateTranspose* Deal with a syntax tree for new version of transpose operation

Table 6.5: Sorne Important methods in the Interpreter Class

1 category 1 methods 1 description

buildtreeO performing run time validation check
actualizingO calculate virtual do main value

cell methods actIntCellO for INTEGER or SHORT type domain
actBoolCellO for BOOLEAN type domain
actLongCellO for LONG INTEGER type domain
actDoubleCellO for FLOAT or DOUBLE type domain
actStrCellO for STRING type domain
actRelCellO for IDLIST(relation) type do main

Table 6.6: Important Methods in the Actualizer Class

by the method buildtree() in the class. Another important method is actualizing(). It

is the method that calculates the values of virtual domains by invoking a different cell

method according to the type of the virtual domain. A virtual do main is actualized

in a tuple-by-tuple approach, where the value is calculated from the first tuple to the

last tuple based on the value of the actual domains of the corresponding tuple [Yua98].

Different cell-methods are used for different types of data and Table 6.6 is a summary

of important methods in the actualizer class. In our implementation, actStrCell() will

be augmented for supporting operator typeof, eval, and self. Aiso actBoolCell()

will be enhanced for accomplishing comparison of the two ATTRIBUTE type operands

which indirectly support the quote operator when it acts as one of the operands of the

comparison operation.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS108

1 Type code 1 Description
INTEGER = 2 Code for integer type
STRING = 7 Code for string type
ATTRIBUTE = 18 Code for attribute type
TYPE = 27* Code for type type
....

Table 6.7: Type Code

Operation code 1 Description
OP -DECLARATION = 140 Code for declaration operation
OP -DOMAIN = 143 Code for domain operation
OP -RELATION = 141** Code for relation operation
OP_EVAL = 404** Code for eval operation
OP _QUOTE = 406** Code for quote operation
OP_TRANSPOSE = 408 Code for transpose operation using first version of syntax
OP _TRANSPOSENEW = 409* Code for transpose operation using llew version of syntax
OP _TYPEOF = 415* Code for typeof operation
OP _SELF = 416* Code for self keyword
......

Table 6.8: Operation Code

The TypeConstants Class and the Constants Interface

In the jRelix system, aIl type constants are specified in TypeConstants.java, and aIl

operation type codes and sub-type codes are specified in Constants.java. Adding a new

type or operator to the system will need to augment the corresponding files. In Table 6.7

and Table 6.8, examples of code for types and operators are displayed as weIl as the

code for a new data type and operators added in this implantation2 .

2*: new added type the code or operator code; ** original operator code, new features augmented.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS109

6.2 Implementation of Type TYPE and the typeof

Operator

6.2.1 Type TYPE

A new data type, TYPE, is added to the jRelix system to store types in the system.

The inner system representation for the data is string type. The TYPE data type is

defined in file TypeConstants.java and can be referenced as a constant. (The code for

the constant is 27). The OP _TYPE, which was defined in file Constants.java and is

used as the operation type for aU types, was borrowed to represent the operation type

of TYPE. The input value of TYPE is an IDENTIFIER and need not be quoted by the

quotation marks. It is assigned to the relation data array in the relation initialization

process. This function is performed in method assignldentifier() in interpreter.java.

The method is also responsible for checking the validity of the data as a value of TYPE.

SpecificaUy, the input IDENTIFIER must be one of the system data types, the name of

a declared actual domain or a defined virtual domain, or the name of a declared relation.

6.2.2 The typeof Operator

As the value of type is stored in STRING format in the system, the actualization of

the typeof operator is performed in actStrCell() method. This is particularly true if

the operand is of the type ATTRIBUTE, UNIVERSAL, or UNION, for the values of

attributes of these types are usuaUy different for each tuple in a relation. However,

for attributes of other types, such as the type STRING or INTEGER, their type is a

constant in a relation and the type info can be determined at the system level. Different

steps, therefore, are taken to deal with the typeof operator in our implementation. The

method processTypeof() deals with the different situations.

The method processTypeof() is invoked by a buildTree() method with the current

node when the node is a typeof operator. Thus the input of the method is the node

typeof with the operand tree as its child. In this method, firstly, the type of the operand

is determined by recursively invoking the method buildTree() with the operand node. If

the type is ATTRIBUTE, UNIVERSAL or UNION, then the program simply returns

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORSllO

to the caller. The typeof tree is untouched and will be managed in the tuple-by-tuple

process. Otherwise, if the type is none of the three types, a new node of type LITERAL

which contains the type value will be created to replace the current node, the node of

operator typeof. Figure 6.4 depicts the transformation.

CtypeOf~
~ c=) GOf domnam0

~
a: Transform a typeofTree With a Domain Name to a New Node

typeof

vertical c==) G of the vertical e0

Identifier

b: Transform a typeofTree With a Vertical Domain Expression to a New Node

Figure 6.4: typeof Transformation

In the above discussion, the type result of the typeof of an attribute of type AT­

TRIBUTE, UNIVERSAL or UNION, remains undecided. It will be figured out in the

process of tuple-by-tuple actualization. The method actStrCellforTypeof() does the ac­

tualization. This method is called by actStrCell() when the current no de is a typeof

operator. The input of the method is the node of typeof with the operand tree as its

child.

Two cases are conducted in this method. The first is that the operand of typeof is

an eval operator followed by its operand. In this case the data of the eval operand is

first actualized by the recursively calling actStrCell() method. A domain then is looked

up from the dom Table using the obtained data as its name. Finally, the type of the

domain is obtained from the type field of the domain.

The second case is that the operand of typeof is an IDENTIFIER. In this case,

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORSlll

different steps are used to get the result of the operator according to the type of the

domain the IDENTIFIER stands for. Only three types, ATTRIBUTE, UNIVERSAL,

and UNION are possible here because other types already have been transformed to

constant nodes in the method processTypeof(). If the domain type is ATTRIBUTE,

then the value of the do main is fetched. A new domain will be looked up from the

dom Table using the value as the domain name and its type is grabbed from the type

field and returned. If the domain is of a type UNIVERSAL or UNIO~, then when the

value of the domain in the current tuple is fetched, the type part of the value will be

extracted from the value. Because the value may be in form of "universal:string:name"

for type UNIVERSAL as we have seen in Figure 4.33, we do extra steps to extract the

exact type. A while statement is used to trace the type part in the value until it is not

a type:value pair. The pro cess of getting the type of type UNION is the same as that

of the type UNIVERSAL. The pseudo code for the method is shown in Figure 6.5.

6.3

private String actStrCellForTypeof(SimpleNode node) {
Get the operand node

}

If the operand node is an ev al operator
Get the node of eval operand
Get the value of eval ope rand by calling actStrCel1 with ev al operand
Look up the domain of the value from the domain table
Get the type of the value domain
return the type

Else
Get the domain of the operand node
Get the value of the identifier by calling actStrCel1 with typeof operand
switch(domain's type)

case ATTRIBUTE:
Look up the domain of the value from domain table
Get the type of the value domain
return the type

case UNION:
case UNIVERSAL:

Extract type from the type:value pair
While the value is a type:value pair

Extract the value from the type:value pair
Extract type from the type:value pair
return the type

default: print "wrong type"

Figure 6.5: Pseudo-code for act8trCellForTypeof()

Implementation of quote Operator

The quote operator is used to transform an attribute name into an attribute metadata

[MerOl]. The quote operator in domain algebra has been implemented in [Roz02]. Here

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS112

we present the implementation of the operator when it participates in relational algebra.

As quote is used to suppress the evaluation of the attribute following it, the imple­

mentation is to transform the quote tree into a literaI node (type= OP .LITERAL, op­

code = OP _ATTRIBUTE). The transformation is performed in the process of buildtree()

in actualizer construction. For example, in the query

TpName <- where attri = quote forBusiness in TP1;

in figure 4.8, the quote forBusiness part in the syntax tree of the whole query is trans­

formed to forBusiness. Figure 6.6 depicts the idea.

quote

L...-_--.> "forBusiness"

Figure 6.6: quote Transformation

In addition to transforming the quote tree, one more thing should be done to make

the above query work. That is to augment the method actBoolCell() so that it can

support comparison of two operands of type ATTRIBUTE. Because the inner storage

of value of type ATTRIBUTE is string, the comparison is the same as that of two

STRING type operands. Therefore we simply add a line of code, "case ATTRIBUTE:",

to code where "case STRING:" is processed.

6.4 Implementation of eval Operator

6.4.1 Implementation of actualizing eval in Cell Method

The eval operator evaluates the value of each attribute in the data of eval operand

in the corresponding tuple. Apart from the evaluation of the attribute as it would be

evaluated in a normal situation, one more evaluation is specified by the eval operator

for the attribute.

As the type of the result of eval operator is UNIVERSAL, the actualization happens

in actStrCell(). In the tuple-by-tuple procedure, wh en the current node is of type

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORSl13

OP _EV AL , method actStrCellForEval() is invoked by actStrCell() method. The node

of eval operator is passed to the method at the same time. Method actStrCellForEval()

evaluates the attribute resulting from the eval operand in the current tuple, and returns

the value. Six steps are taken to accomplish the evaluation.

First, the operand of eval, which is the child node of eval node, is obtained. Two

cases could happen at this stage. The operand of eval could be an IDENTIFIER which

is the name of an attribute of type TYPE. It also could be a cast operator with two

children. One should be the no de containing the cast type, ATTRIBUTE, the other is

an attribute of any type. In any case, the proper node which is the name of an attribute

is obtained.

Second, the value of the operand is actualized by recursively invoking the method

actStrCell() with the obtained node.

Third, the domain of the value obtained in the second step is looked up from the

domain table.

Fourth, a singleton relation which contains aIl do mains of source relation and data

of the current tuple of source relation, is created.

Fifth, the domain obtained in the third step is actualized in the relation obtained in

the fourth step.

FinaIly, the type of the do main procured in the fifth step is attained from the type

field and the type value is returned.

6.4.2 Implementation of eval in Left Rand Side of Declaration

In [Roz02] the static evaluation of eval is fulfilled in the process of declaration. The

declaration

let eval UR be Il ANY" ;

would assign the constant "ANY' to aIl domains which are data of unary relation UR.

This is applicable when the value to be assigned is a constant. We have enhanced the

implementation as following: if the assigned value varies from tuple to tuple, a new

domain, named after the operand of eval and suffixed with "_evalerf', is generated and

put to the dom Table to record the eval of the operand. Take the query in Figure 4.14

as an example. The result of "X + Y +Z' is different in each tuple in the relation. So,

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS114

for the statement:

let eval B be X + Y + z;

we create a new domain named B_evaled, a domain marked as the evaled 3 domain of B,

and assign the definition tree X + Y + Z to the tree field of the domain. It is interpreted as

"the value of any attribute which is the value of domain Bis to be defined as X+ Y+Z in

the current tuple". This is accomplished in the pro cess of executing domain declaration.

The type of the evaled attribute is determined by its definition X+ y+z.

In the previous implementation, an attribute was examined at two levels in the

process of actualization. The first one is to test if it is an actual domain of the source

relation. This is performed by a method isDomainIn() in relation class. If the result is

true, then the attribute is one of the domains of the relation. If the result is false, then

the second level examination is performed. This test is aimed to find out if the domain

is a virtual domain by looking up the tree field of the domain. If the tree field is not

empty, then it is a virtual domain. To ensure that this virtual domain is a valid one,

its definition tree is recursively visited and aIl domains it is defined on are scrutinized

against the two level exams. If in each iteration aIl domains are val id , the domain is

actualized in the later process. Otherwise, the domain was invalid and the operation

involved fail.

Now, one more level of examination is added. That is, if the domain is a data of

another attribute, then the evaled attribute of that attribute is scrutinized. The domain

with the evaled name, the name of the attribute suffixed with _evaled, is looked up in

the domain table. If the evaled attribute exists, then the domain to be actualized is

redefined on the definition stored in the evaled attribute, the tree in the evaled attribute

tree field. If the evaled attribute does not exist, then it cornes to the conclusion that

the domain is invalid, an error message will be given, and aIl operations terminate. In

our example, do main X', Y', and Z' neither are aIl actual domains in relation Ri, nor

virtual domains. But they are data of attribute B projected in relation Ri. So the

evaled domain of B, B_evaled is looked up from the dom Table. Because it has been

declared previously, domain X', Y', and Z' then foIlow the definition of B_evaled, which

is X+ Y+Z.

3 "evaled" is used in this chapter to represent "evaluated"

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS115

Different from a normal declaration, in which we could declare domain X " Y', and

Z' to be

and

let X' he X+Y+Z;

let y' he X+Y+Z;

let Z' he X+Y+Z;

as the eval operator only has effect on the attribute which is the data of the eval operand

in the current tuple, the value of this particular attribute in other tuples should have

the value "dc" [Yan03]. We need, therefore to modify the declaration of attributes to:

and

let X' he if B = X' then X +Y +Z else de;

let Y' he if B = Y' then X +Y +Z else de;

let Z' he if B = Z' then X + Y +z else de;

The action of transforming anode to be evaled to a virtual domain defined on

"IFTHENELSE' expression is accomplished in method Eval2IFTHENELSE().

6.4.3 Modifications Related to Set Operation

We have two modifications associated with a Set Operation (Please refer to Section 3.4.2

for details of set operation). One is in the method AttribsRel2DomList() and the other

is in ExpressionListToDomains().

Originally, the method AttribsRel2DomList() was implemented to transform the data

of a unary relation defined on an attribute of the type ATTRIBUTE to a set of attributes,

and to turn aU domains of a non-unary relation to a set of attributes. In the first case,

as long as an attribute which was the value of the attribute on which the unary relation

defined has been declared, i.e., it could be looked up from the dom Table, it would be one

of the target attributes. If any of them was an actual attribute but not in the source

relation, then an error message would display in the stage of constructing an actualizer,

and the operations involved would fail. For instance, the original method led to an error

if we did the query shown in Figure 4.14. Figure 6.7 shows this case.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS116

>let ev al B be X+Y+Z;
>Si<-[[B]in Ri] in Ri;
domain 'X" is not in the domain list of relation 'Ri'.
>

Figure 6.7: An Unsuccessful Set Operation

Now, we give a general specification of the Set Operation in jRelix. That is, the Set

Operation intends to obtain a set of attributes from a relation resulting from a rela­

tional expression. To accommodate this definition, modifications are made to method

A ttribsRel2DomList().

First, we keep the portion that deals with non unary relations.

Second, the code that deals with unary relations defined on attribut es of type AT­

TRIBUTE is taken out and replaced with code capable of the following functionalities:

For each value of the attribute that the unary relation defined on:

1. If the domain with the value as its name is an actual domain in the source

relation, then it is taken to be one of the target attributes. The source relation is

obtained from the relation name table NRelName (to be discussed in Section 6.5.1 for

detail). Otherwise,

2. If the domain with the value as its name is a virtual domain, then it is taken to

be one of the target attributes. Otherwise,

3. Check if the attribute the unary relation defined on is evaled by looking it up in

the dom Table with name of the attribüte suffixed with "_evaled'. If the evaled domain

exists, then method Eval2IFTHENELSE() is invoked and the attribute being checked

is declared after the definition of the evaled domain.

If none of the above conditions are satisfied, an error message will be thrown out and

the pro gram terminated.

Third, when the unary relation is defined on an attribute of type other than AT­

TRIBUTE and the attribute is evaled, then new virtual domain for each of the values

of the attribute is generated following the definition of the evaled domain. The domain

is created by invoking the method Eval2IFTHENELSE(), the name of the domain is

obtained from the data array of the unary relation, and type casting is performed if

necessary (e.g., if the value of the attribute is an integer, say, 2000, it will be cast to a

string "2000").

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORSl17

In the method ExpressionListToDomains(), cast operation is now allowed to cast the

domain set resulting from method AttribsRel2DomList() to type ATTRIBUTE wh en the

expression is projection, selection, etc.

6.4.4 Implementation of eval in Right Rand Side of Declara­

tion

In the statement

let p be eval A;

the data of attribute Amay not be a constant, so the type of the domains which have

the name of the data may be different, hence, the type of Pis specified as UNIVERSAL.

This is dealt with in the process of declaration. In the tmverseType() method, the case

OP _EVAL is added and the type UNIVERSAL is returned. Later during actualization,

P will be actualized the same way as a normal virtual domain and the eval operator in

its definition will be processed in the way discussed in Section 6.4.1.

6.5 Implementation of self Operator

As shown in Chapter 4, the self operator can appear in both normal expressions and

path expressions where the name of a relation may be ".". In following sub-sections we

discuss the implementation of these two cases separately.

6.5.1 Implementation of self in Normal Expression

In a query in the form of a normal expression, the self is treated as a special virtual

domain which has no definition tree. During run time, the self domain is created and

saved to the dom Table the first time the self node is traversed. The type of self domain

is ATTRIBUTE, and the name of the do main is self The actualized value of the self

domain is the name of the current level relation.

Two variables are used in the actualizing of self. The first variable is a table named

NRelName. It is a vector of the type STRING, used to store the name of each relation

which is being traversed. Each time the program traverses to a relation, the name of

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS118

the relation is added to the table, and the name is deleted from the table when the

traverse of the current relation is finished. The second variable is an index, relLevel,

which traces the level of relations the current actualizing process is in. Each time the

program traverses to a relation, the index value is increased by one and it is decreased

by one wh en the traverse of the current relation is finished. The value of the index

indicates the position where the name of the current relation is in the relation table,

NRelName, hence, when there is a self keyword needed to be actualized, the name of

the relation can be retrieved from the relation name table according to the index. The

pro cesses of adding, deleting, and retrieving the name of a relation are performed by

the methods addRelName(), delRelName(), and getRelName(), respectively.

The actualizing of the self domain is implemented in the method actStrCellForSelf() ,

invoked by method actStrCell(). It obtains the relation name by calling the method ge­

tRelName(). It also sends warning information if self is to be actualized in an unnamed

top level relation. Take the query in Figure 4.22 as an example. Initially, the relation

name table is empty, and the index relLevel equals O. Wh en the command is started to

be executed, the first relation node which is traversed is products. 80 the first element

being added to the table is products and relLevel is increased by 1. In processing the

projector of the projection statement, the virtual domain srvir is defined to be a pro­

jection operation, then the second relation node encountered is nm. 80 that the second

element in the table is nm and the index now is equal to 2. The name device is added to

the vector and the index is increased to 3 when the program deals with the no de device,

the third relation node in the query. After the actualization of the projection "[name]

in device;" the name device is deleted from the vector, and the index is decreased to 2.

Then the program pro cesses the projection "[sel~ in mn;", in actualizing the domain

self, the relation name pointed by the index relLevel, which is nm, is obtained from the

table, and the value of domain self is nm. The element nm is deleted from the vector

and the index is decreased to 1 after the evaluation of the projection. Finally, when the

projection "[red ujoin of srvir] in products;" is fulfilled, the element products is deleted

from the table and the index is decreased to O.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS119

6.5.2 Implementation of self in Path Expression

The user input of self in path expression, such as self/ attri, will be parsed into a syntax

tree which represents

(STRING) self cat "/" cat (STRING) attri

as in Figure 6.8. New code is added in parser.jjt for this purpose. The self then is

actualized in run time in the same way it appears in the normal expression, as discussed

in Section 6.5.1.

self/attri

Figure 6.8: Parsing of self/attri

6.6 Implementation of relation Operator

The relation operator is a nest operator which groups one or more attributes into a

nested relation. Each instance of the nested relation corresponds to the value of the

attribute(s) of one tuple in the source relation. The result of the operator is a singleton

relation.

In the procedure of tuple-by-tuple actualization, if the current no de is a relation

operator, the value of the cell is obtained by evaluating the relation expression in the

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS120

source relation. This is performed by the method evaluateRelation(). Figure 6.9 is

the pseudo code for evaluateRelation() method. The returned singleton relation is then

Relation evaluateRelation(SimpleNode node, Hashtable htable, Environment env)
{

}

Get the source relation "srcR" in which the relation operator is actualized;
Get the domain list ("domList") on which the relation operator is defined;
Actualize the "domList') in the 'tsreR", the new relation is "tempR";
Decide the position of each domain of "domList" in tempR;
Create a relation "R" which defined on the "domList", number of tuple is one;
Construct a data array "Data" for the new created relation "R";

For each domain in "domList",
Get the data in "tempR" and assign it to the data array "Data",
according to different type of domain;
Assign the data array "Data" to the new relation "R";

return "R" j

Figure 6.9: Pseudo-code for evaluateRelation()

back to normal actualization and put into the dot relation, which has a system generated

name and is created the first time this relation operator is evaluated. A surrogate will

be generated which links the real data to the destination relation where the relation

expression is actualized.

In a join operation, if only one attribute is to be nested, the keyword relation can

be omitted. An example was shown in Figure 4.25. To allow this short form, we do

modifications in traverseType(). When the type of the left join operand and the right

operand is obtained, one more step is taken to check if it is a non IDLIST Identifier. If

it is a scalar domain and it has been declared, then the method ScalarDom2Relation()

is invoked and the node of the domain is transformed into a syntax tree rooted at the

node of a relation operator. Figure 6.10 depicts the idea by transforming the syntax

tree of "family" to that of "relation (family)" in query in Figure 4.25.

This short form is also applicable for reduction, equivalent, function mapping, and

partial function mapping operation. Particular examination is accomplished before do­

ing the transformation from an Identifier to relation operation, i.e., only if the sub­

operation type is of join operation will be the node of identifier to be transformed.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS121

C,elation~

mUST

CfamilY~

Figure 6.10: Transforming a Domain Node to Relation Operation

6.7 Implementation of transpose Operator

The function of the transpose operator is to get any of the type, attribute, and value of

the scalar attribut es in a relation and group them into a nested relation. Each instance

of the nested relation contains the data of aU scalar attributes in the corresponding

tuple in the source relation. 80 the number of tuples of a nested relation is equal to the

number of scalar attributes of the source relation.

In the process of tuple-by-tuple actualizing, if the current node is a transpose opera­

tor, the value of the cell is obtained by evaluating the transpose expression in the source

relation. This is performed by the method evaluateTmnspose(). Figure 6.11 shows the

pseudo code for this method.

Relation evaluateTranspose(SimpleNode node, Hashtable htable, Environment env)
{

}

Get the source relation "sreR" in whieh the relation operator aetualized;
Get the domain list ("domList") on whieh the transpose operator defined and check their validation;
Get the sealar domain list ("SealarDomL") in "sreR";
Decide the position of eaeh sealar domain in "sreR";
Create a relation "R" whieh defined on the "domList";
Construet a data array "Data" for the new ereated relation' 'R";

For each domain in "domList",
For eaeh domain if the domain in "SealarDomL",
Get the name/type/value of the domain and assign it to the data array,

Assign the data array "Data" to the new relation' 'R";
return (CR";

Figure 6.11: Pseudo-code for evaluateTmnspose()

In this method, first, the source relation on which the transpose operation is working

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS122

is obtained.

Second, the domains which will form the do main list of the new nested relation are

obtained and their numbers and types are detected. Each type of attribute of the three:

ATTRIBUTE, TYPE, and UNIVERSAL can at most appear once so that the total

number of domains should be less than four and there should be at least one domain

defined.

Third, as we mentioned, only scalar attributes of the source relation will be trans­

posed, so we need to get the scalar attributes of the source relation. This is performed

by the method getScalarAttributes(), a method defined in relation class. It checks each

attribute of the current relation, picks the scalar attributes, and stores them in a domain

array. After getting aIl the scalar domains, it returns the domain array to the method

called it.

Fourth, construct a relation with the domains in domList. The number of tuples of

the relation equals the number of scalar domains of the source relation.

Fifth, get the data of current tuple from the source relation to form the nested

relation. The value of the attribute of type ATTRUBUTE is a scalar attribute in

the source relation; the value of the attribute of type TYPE is the type of the scalar

attributes; the value of the attribute of type UNIVERSAL is a "type:value" pair: the

type part is the type of the attribute and the value part is the value of the current tuple

of the source relation.

FinaIly, the newly generated relation is returned.

The returned relation is then back to normal actualization and put into the dot

relation, which has a system-generated name and is created the first time this transpose

operator is evaluated. A surrogate will be generated and link the real data to the

destination relation where the relation expression is actualized.

6.8 Redefining Nested Virtual Domain

In the previous implementation, the declaration of a virtual nested relation will create

a domain as weIl a dot relation, where the actualized data of the domain is held. These

functions are fulfilled in AddVirtDom2DomTable(), which will invoke the new VirDomain

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS123

() to create the new domain. After the domain is actualized, the dot relation and

its data need to be kept as long as the domain is being referenced. This brings up

the consideration in implementation that when a virtual nested relation is redefined,

the domain and its related dot relation cannot be put into the system table again.

Otherwise, the actualized data in the dot relation will be wiped out. Modifications in

the two methods mentioned above are made to ensure that if the do main being declared

is of the type IDLIST and has already existed, the same domain and the dot relation are

not put into the system table. This is shown in Figure 6.12 and Figure 6.13. Original

code is commented out and replaced with modified code.

AddVirtDom2DomTableCSimpleNode node. Environment env) throws InterpretError
{

}
}

Domain newDom = newVirDomainCdomname. tempnode. env);
Relation rel_saved = env.lookupReIC +domname.true);

1*
env.putCnewDom);
if Crel_saved != null) env.putCrel_saved);
*1 Il original code being commented out

if CnewDom.type != IDLIST Il
CnewDom.type == IDLIST && env.lookupDomCnewDom.name.true) == null» { Il new code

env.putCnewDom);
if Crel_saved != null) env.putCrel_saved);

Figure 6.12: Modifications in AddVirtDom2DomTable()

Domain newVirDomainCString name. SimpleNode node. Environment env) throws InterpretError
{

}

if new domain is type of IDLIST
{

1*
Relation r = new Relation C + name. newDoms. RELATION. O. newDoms.length. O. null. env);
env.putCr);
*1 Il original code being commented out
doment = VirtualNestedRelationCreationCdoment. node. newDoms. env); Il new code
}
return dament;

Figure 6.13: Modifications in new VirDomain()

In the method new VirDomain(), in lieu of creating the dot relation for the new

declared domain and putting it into the relation table, the method VirtualN estedRela­

tionCreation() is invoked. The purpose of the method is to check whether or not the

nested relation has been defined the first time; if it has not, then check whether or

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS124

not the domains of the redefined nested relation are the same as the previous nested

relation. Different approaches are adopted to different cases.

In the first case, if the nested relation is a new one, the dot relation is created and

both the domain and the relation are stored in the system table. (This is basically what

the previous implementation does.)

In the second case, if the nested relation has been declared and its domains are

the same as the redefined one, then do nothing (and, the new actualized data will be

appended to the dot relation).

In the third case, if the nested relation has been declared, but is defined on different

domains than the old one, then a new domain and a dot relation are created and put

into the system tables. The name of the domain is the name of the original domain but

suffixed with a number. The number indicates the next available name for the domain.

For instance, as seen in Section 4.7.2, initially, domain Vis defined to be V(A). Later,

V is redefined to be V(B), then a new do main v_a and dot relation . v_a are created

and put into the system table. If domain Vis redefined again, to be V(C), then the

next available name for V is V_l, and. V_l for the dot relation, so on and so forth. The

process to find the name of a matched nested relation for a virtual nested relation is

performed in the method LookupDotRelation(). It takes the name of the virtual nested

relation and the domains on which the new virtual nested relation is defined, as its input

parameter, and creates or finds the name of the relation which has the same domains.

In the actualization of the redefined nested relation, the name of the virtual nested

relation which is used by us ers and has no suffix is examined by invoking the same

LookupDotRelation() method. The name of the matched domain whose dot relation

contains domains equal to the domains of the redefinition will be found and used in the

later process.

6.9 The Wildcard

The wildcard represents top level relations or nested relations of the current level rela­

tion. In both cases, each relation will be checked against the domains involved in the

query, and only those relations in which the domains can be actualized will be selected

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS125

as the relation which the wildcard represents. The wildcard is evaluated in the method

Wildcard To Relations ().

In this method, relations are selected by looking up the relation table, NRelName

(please refer to Section 6.5.1 for detail) to 0 btain the name of the current level rela­

. tion. The two possible results, get a nuIl value or get a relation name from the vector

correspond to the two different cases mentioned ab ove.

In one case, if the relation table is empty, aIl relations in the system table will be

looked up. Take the query in Figure 4.39 as an example. For each top level relation, Xl,

X2, and X3, the domains of the projection operation will be checked with the domains

of the relation. If the domains of the relation contain aIl projector domains, then the

relation will be added to a temporary relation table. If the projector domains contain

virtual domains, relations where the virtual domains can be actualized will be selected.

The functionality of checking whether or not a set of domains can be actualized in a

relation is performed in the method actualizablelnRel().

For the other case, if the relation table contains names of relations, then the name of

the current level relation is obtained according to the table index. The nested relations

of the relation are obtained by checking each of the domains of the relation. If the

domain is of the type IDLIST, then the dot relation is obtained and the domains of

the dot relation are compared against the domains of the projection operation. It is

the same as the implementation for the top level relation. By invoking the method

actualizablelnRel(), nested relations which may replace the wildcard are selected.

A node for each selected relation will be created and put to anode array and returned

to the routine invoking.

Figure 6.14 shows the pseudo code of the method.

Interpreting a wildcard in a projection operation in normal expression is accomplished

by the method WildcardlnProject(). It is invoked by the method evaluateProject() before

the expression of source relation is evaluated. In WildcardlnProject(), the input node

first is checked if it is a wildcard. No change occurs if the no de is not a wildcard. But

if the node is a wildcard, then the relations which the wildcard represents are selected

by invoking the method WildcardToRelations(). Upon receiving an array containing

relation which may represent the wildcard, if only one relation is in the relation table,

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS126

SimpleNode[] WildcardToRelationsCSimpleNode exprnode, SimpleNode node, Environment env)
{

}

relName = get the relation name from NRelName;
if CreIName==null) { Il "." represents top level relations

for each top level relation in system table,
if the projector domains are actualizable in the relation

add the relation to the temporary vector
}else { Il look up nested relations

}

get the relation name from the name vector and get the relation;
for each nested relation in the relation,

if the projector domains are actualizable in the relation
add the relation to the temporary vector

for each relation in the temporary vector {

}

create a no de of type IDENTIFIER, contains the name of the relation;
put it to anode array;

return the no de array;

Figure 6.14: Pseudo-code for WildcardToRelations()

then the wildcard is replaced by this relation. If there are more than one relation in

the table, then for each relation, a new tree of projection operation is created, with the

node of the relation name as the source node of the projection. These projection trees

are combined together by the ujoin operation node. Finally, a new tree containing the

ujoin of projection operations replaces the original projection tree which contains the

wildcard as the source node. Figure 6.15 shows the syntax tree for the original query

with wildcard and Figure 6.16 is the syntax tree for the equivalent ujoin query.

Figure 6.15: Wildcard in Projection

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS127

Figure 6.16: The Syntax Tree for Equivalent Operations in Figure 6.15

6.10 Recursive Virtual Nested Relations

A recursive virtual nested relation is a nested relation declared on attributes, one of

which is the nested relation itself. It is declared with a wildcard so that it can be

actualized in each nested relation of the upper level relation. A recursive virtual nested

relation node is expanded to a tree in run time wh en the recursive domain is actualized

in the first tuple of a relation. The expansion of the recursive node replaces the no de

in the definition expression with the recursive definition itself. For each nested relation

in each level, the replacement of the tree happens once. We use different names for the

recursive nested relation in different levels to embody the hierarchy information of the

source relation. The name is the name of the recursive nested relation suffixed with a

number, which indicates the level of the source relation in which it is actualized. The

process of expanding the tree is to use the lower level tree to define the current level

recursive nested relation. So we use a bottom-up strategy to do the expansion. The

following describes the expanding process.

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS128

Before doing the specifie expansion in each level, the total nested level of the source

relation is obtained by invoking the method getNestedLevel(). With the nested level

number, the process of expansion can be implemented in a loop. In each iteration of

the loop from the lowest level to the top level, the following five steps are taken:

First, the name of the recursive nested domain in the current level is obtained;

Second, a copy of the definition tree is made;

Third, the recursive node and the order number as a child node of its parent is

obtained;

Fourth, the node with the lower level definition tree is replaced. (This is how the tree

is expanded.) If this is the lowest level, then the recursive node in the tree is removed;

otherwise, anode is created with the name of the lower level recursive name and then

the recursive node in the tree with this no de is replaced;

Fifth, a domain with the name and the lower level definition tree is generated.

Take the query in Figure 4.45 as an example. The recursive nested domain schema

is expanded three times wh en it is actualized in relation 0, which has three level nested

relations. The level of the recursion is three corresponding to the relation 0, P, and

Q. We do not need to know the name of these relations at this moment and the wild­

card in the virtual nested relation definition tree will be left untouched. Figure 6.17

through Figure 6.20 show the expansion procedure. The arrow pointing to the node

of the wildcard with a node of a relation in Figures 6.17, 6.18, and 6.19 indicate the

relations that will replace the wildcard in the later process. Table 6.9 is a summary of

this expansion, which includes the expansion level, the new name of the virtual nested

relation used in that level, the source relation in which the virtual nested relation at the

level will be actualized later, the action in the defined tree in the current level, and the

corresponding reference figure which shows the process.

Note that the wildcard in the definition tree of the lowest level is kept, although the

node of the virtual nested relation in the tree is removed. The wildcard will be replaced

with a null value in the method dealing with a wildcard discussed in Section 6.9.

The top level virtual nested relation is generally defined to

dornain schemaCsattri, schema);

before the definition of the virtual nested relation. And it is redefined to

dornain schemaCsattri, schema_1);

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS129

1 level 1 domain name 1 relation 1 action in the definition tree 1 figure of definition tree

2 schema_2 Q remove the recursive node Figure 6.17
1 schema_l P replace the recursive node Figure 6.18

with node schema_2
0 schema_O 0 replace the recursive no de Figure 6.19

with node schema_1

Table 6.9: Summary of Recursive Nested Relation Expansions in Relation 0

in the first level expansion, as we have seen in Figure 6.19. Therefore, we need to rename

the virtual nested relation, as weIl as modify the query tree, as shown in Figure 6.20.

Figure 6.17: The Definition Tree of Domain schema_2

The expansion of the recursive nested relation is performed in the method Ex­

pandRecursiveN ode().

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE METADATA OPERATORS130

Figure 6.18: The Definition Tree of Domain schema_l

Figure 6.19: The Definition Tree of Domain schema_O

CHAPTER 6. IMPLEMENTATION OF ATTRIBUTE ME TA DATA OPERATORS131

\
G

Figure 6.20: The Modification of the Top Level Nested Relation

Chapter 7

Conclusion and Future Work

This chapter provides a summary of the work that has been accomplished, followed by

a discussion of future work.

7.1 Thesis Summary

This thesis presents the design and implementation of new features of attribute metadata

in jRelix to support semistructured data.

Operator quote suppresses the evaluation of an attribute. It has been augmented

to be applicable to relational expressions.

Operator eval evaluates the data of an attribute of type ATTRIBUTE. It has been

enhanced to be applied to both relational algebra and domain algebra. In the domain

algebra, the eval operator can be applied either to the virtual domain to be defined

or to the value that is to be assigned to a virtual domain. Wh en eval appears in the

left side of the virtual domain definition statement, the value that is assigned to the

attributes which it pro duces could be of any value that is valid for a domain.

The transpose operator generates data of aIl scalar attributes of a source relation.

It has been re-implemented with a new version of syntax, which focuses on the data

(attributes and their types and values) of the attribut es to be transposed. The selection

of attributes to be transposed is left to the selection operation of the relational algebra

and the newly developed quote operation is required in this situation.

The functionality of the wildcard has been enhanced and it can be part of a domain

132

CHAPTER 7. CONCLUSION AND FUTURE WORK 133

expression. A wildcard can represent top-level or nested relations in a particular relation.

One of the applications of the wildcard is in recursive virtual nested relations so that

the corresponding operations are performed on each level of nested relations.

The typeof operator is implemented to obtain the type of an attribute. This is

especially useful when the attribute is of type UNIVERSAL or UNION, whose data

type may vary from tuple to tuple. A new data type TYPE is allowed to support

metadata operators.

The relation operator is implemented to group attributes into a nested relation. The

functionality of the nested relation declaration has been augmented with the ability to

deal with redefining virtual nested relation and therefore this redefinition will not wipe

out the data of any previously defined nested relation.

The self operator is implemented to trace the parent relation of an attribute. Users

can now find the attributes as well as the parent relation of a nested relation by using

this operator. The self will return the first named parent of the relation if it is applied

to an unnamed relation.

By the combination of some of the above operators, together with the operations

from the original system, attribute path and schema discovery and data reorganization

can be done along with queries involving transitive closure on graphical structured data.

7.2 Future Work

7.2.1 Links

Our implementations so far are based upon the tree structure of data. Data is organized

in hierarchies and no data sharing is allowed under this structure. But in practice, data

sharing is important because it not only can save storage space but also can avoid

updating inconsistencies: several subtrees which have the same content of data may not

be updated simultaneously by accident. Using the link technique, which include labels

and pointers, the above problem can be solved. A label is used for the data that is to be

shared and pointers are used for pointing from other places where the data is needed.

A pointer is defined as an "attribute: label" pair. The possibility of implementing data

sharing relies on the fact that the implementation of nested relations in jRelix using a fiat

CHAPTER 7. CONCLUSION AND FUTURE WORK 134

Company
(name Supplier)

(product name Supplier)
(produet name Supplier)

Depeo pumps AGI rubber Kenko de
plastics PIAB de

wraps Unaflex de
AGI rubber Kenko de

plastics PIAB de

Table 7.1: The Display Form of Relation Company

relation does not pose restrictions on a directed cyclic graph (DAG) and cycles [Mer03].

In the following two subsections, examples of links, one for common sub expressions and

the other for cross-references, are investigate.

Example 1: Common Subexpressions

If the data is organized under a strict tree structure, then the following relation Com­

pany, which contains name of companies and their products' providers, will have re­

peated data for company AGI as shown in Table 7.1. The data for AGI has different

entry levels, one is as a company and the other is as a supplier of another company

Depco. The actual st orage taken for the relation also has repeated data represented by

different surrogates which link to the actual data as shown in Figure 7.1.

Company
(name Supplier)
Depeo 2
AGI 3

Supplier
(. id produet name Supplier)

2 pumps AGI 4
2 wraps Unaflex de
3 rubber Kenko de
3 plastics PIAB de
4 rubber Kenko de
4 plastics PIAB de

Figure 7.1: Storage of Relation Company

On the other hand, if the link is used, i.e., one of the AGI data entries is assigned

a label, and the data of attribute Supplier in the other entry is replaced with a pointer

which points to the label, as shown in Figure 7.2, then there will be no data repetition

in the relation.

CHAPTER 7. CONCLUSION AND FUTURE WORK 135

Company
(name Supplier)

(product name Supplier)
(product name Supplier)

Depco pumps AGI AGI: rubber Kenko dc
plastics PIAB dc

wraps Unaflex dc
AGI Supplier:AGI

Table 7.2: The Display Form of Relation Suppliers: Using Links

The implementation proceeds with the same idea: the entry for the same data uses the

same surrogates. The above relation then can be stored in the way shown in Table 7.2.

(By the way, Table 7.4 is an example of how to write the link the other way around.)

Company
(name Supplier)
Depeo 2
AGI 3

Supplier
(. id produet name Supplier)

2 pumps AGI 3
2 "raps Unaflex de
3 rubber Kenko de
3 plastics PIAB de

Figure 7.2: Relation Company: Data Sharing

In jRelix, such data that has labels can be represented as xML where the labels are

the attributes of xML documents and the pointers are "attribute : label" pairs (here

the attribute is in the sense of a relation). The relation Company then can be in form

of a file as in Figure 7.3. To avoid ambiguity that may be produced by omitted data,

the hidden <.tuple> and <j.tuple> pair is used to separate tuples.

Example 2: Cross-references

The above example exhibits the possibility for using links to deal with data sharing of

common subexpressions in a relation. Cyclic data also can use links. The following

example presents such a possibility. Table 7.3 shows the relation Papers without data

sharing. Table 7.4 presents the ideal representation.

The reference of papers are papers, therefore, the link in the reference refers back

CHAPTER 7. CONCLUSION AND FUTURE WORK

Papers
(title

<Company>
<.tuple>

<name> Depco </name>
<Supplier>

<.tuple>
<product> pumps </product>
<name> AGI </name>
<Supplier subex = "AGI">

<.tuple>
<product> rubber </product>
<name> Kenko </name>

</.tuple>
<.tuple>

<product> plastics </product>
<name> PIAB </name>

</.tuple>
</Supplier>

</.tuple>
<.tuple>

<product> wraps </product>
<name> Unaflex </name>

</.tuple>
</Supplier>

</.tuple>
<.tuple>

<name> Depco </name>
<Supplier: AGI/>

</.tuple>
</Company>

Figure 7.3: Relation Company: xML Representation

author reference
(title

Semistruetured Data System Semistructured Data Overview
Query XML Cole de
Semistructured Data Overview William de

Table 7.3: The Display Form of Relation Papers

Papers
Papers (title author reference

author
William

de Semistructured Data System Stone Papers: SDOverview
de Query XML Cole de
SDOverview: Semistruetured Data Overview William de

Table 7.4: The Display Form of Relation Papers

136

)
reference)
de

)

CHAPTER 7. CONCLUSION AND FUTURE WORK 137

to Papers. This example presents the cycle of schema. In fact, even the data cycle is

possible. [Mer03] gives detailed explanations with an example. This can be implemented

by extending the outer relation Papers with an attribute . id, which contains surrogates

for data entries that have to be shared. Figure 7.4 shows the storage form of the relation.

Papers
(.id title

de Semistruetured Data System
de Query XML
34 Semistruetured Data Overview

author referenee)
Stone 34
Cole de
William de

Figure 7.4: Relation Papers: Data Sharing

Figure 7.5 exhibits the file of relation Paper to be represented in xML form.

7.2.2

<Papers>
<.tuple>

<title> Semistruetured Data System </title>
<author> Stone </author>
<referenee:Papers:SDOverview>

</.tuple>
<.tuple>

<title> Query XML </title>
<author> Cole </author>

</.tuple>
<.tuple eoex=SDOverview>

<title> Semistruetured Data Dverview </title>
<author> Eric </author>

</.tuple>
</Papers>

Figure 7.5: Relation Papers: xML representation

One More Extension of the Wildcard

The wildcard implemented is for representation of top level relations or nested relations.

The relations that can be represented are those that contain aIl the actual attributes

in the query or those in which aIl virtual attributes can be actualized. One more func­

tionality of the wildcard could be that it represents aIl attributes in a relation if no

attribute is specified in the query. The result of a query involving a wildcard under

this circumstance is the ujoin of the relations resulting from the specified operations

applied on each attribute. Take the relation in Figure 5.8 as an example and consider

the following query:

PaperbyYear J <- [.]in PaperbyYear;

CHAPTER 7. CONCLUSION AND FUTURE WORK 138

This query is expected to transform the sparse relation into a singleton relation as

shown in Figure 7.6 (for nested relation .2000 and .2001, please refer back to Figure 5.8

in Section 5.2).

PaperbyYear'
+--------------------+--------------------+
1 2000 1 2001
+--------------------+--------------------+
1 22 1 23
+--------------------+--------------------+

Figure 7.6: Relation Paperby Year'

The wildcard in the above query represents both attributes 2000 and 2001. The

query is equivalent to:

PaperbyYear' <- ([2000J in PaperbyYear)

ujoin ([2001J in PaperbyYear);

This assumes that the projection operation will eliminate the "de" value in a unary

relation. For instance, if we have a relation R as shown in Figure 7.7, we expect that

the projection operation on the attribute A will disregard the "de" value and generate

a singleton relation as in Figure 7.8. A little modification of the null value behavior in

the current jRelix is needed.

>domain A,8 strg;
>relation R(A ,8) <-{ ("a" ,de) , (de, "b")};
>pr R;
+----------------------+----------------------+
1 A 1 8
+----------------------+----------------------+
1 de 1 b
1 a 1 de
+----------------------+----------------------+
relation R has 2 tuples
>

Figure 7.7: Relation R lnvolving the "de" Value

RA<-[A] in R;
RA
+----------------------+
1 A
+----------------------+
1 a
+----------------------+

Figure 7.8: The Expected Result

CHAPTER 7. CONCLUSION AND FUTURE WORK 139

7.2.3 Integrate Attribute Metadata Operator into Update Op­

eration

The operators for supporting semistructured data discussed and implemented have fo­

cused on data retrieval and schema discovery. One other aspect of data management

could be schema modifications. The existing jRelix system has mechanisms to perform

database modifications. Because the attribut es have been treated as data with extra

operators, we can integrate the attribute metadata operators into the update operator

syntax.

For example, we expect· to perform the following statement to add or remove the

attribute C from relation R.

update R add quote C;

or

update R delete quote C;

The first statement is usually followed by further operations such as the change oper­

ation in update to accomplish a complete update of a relation. The second statement

generates the same result as a projection operation except that it is performed on the

original relation. Accordingly, no new relation is generated and the attribute deleted is

permanently lost along with its data. Merrett discusses an alternative way for updating

relation schema. Readers can refer to [Mer03] for the detail.

Bibliography

[AB87] Malcolm P. Atkinson and O. Peter Buneman. Types and persistence in database
programming languages. ACM Comput. Surv., 19(2):105~170, 1987.

[ABC+76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray,
P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu,
1. L. Traiger, B. W. Wade, and V. Watson. System r: Relational approach to
database management. ACM Trans. Database Systems, 1(2):97~137, 1976.

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholmand, W. P. Cockshott, and R. Mor­
rision. Ps-algol: A language for persistent programming. In In In 10th A ustrian
National Computer conference, pages 70~79, Melbourne, Australia, 1983.

[Abi97]

[ABSOO]

Serge Abiteboul. Querying semi-structured data. In Proceedings of the 6th Inter­
national Conference on Database Theory, pages 1~18. Springer-Verlag, January
08-10 1997.

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the web: From re­
lations to semistructured data and XML. Morgan Kaufmann, San Francisco,
2000.

[ACC+97] Serge Abiteboul, Sophie Cluet, Vassilis Christophides, Tova Milo, Guido Mo­
erkotte, and Jme Simeon. Querying documents in object databases. Int. J. on
Digital Libraries, 1(1):5~19, 1997.

[AM87] Andrew W. Appel and David B. MacQueen. A standard ML compiler. In Pro­
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, volume 274, pages 301~324, Portland, Oregon, USA, September
14~16, 1987. Springer, Berlin.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.

[AU79]

Wiener. The Lorel query language for semistructured data. International Journal
on Digital Libraries, 1(1):68~88, 1997.

Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages.
In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 1l0~ 119, San Antonio, Texas, 1979. ACM Press.

140

BIBLIOGRAPHY 141

[Bak98] Patrick Baker. Design and implementation of database computations in Java.
Master's thesis, School of Computer Science, McGill University, Montreal,
Canada, 1998.

[BBW92] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query lan­
guages. In J. Biskup and R. Hull, editors, Proceedings of the 4th International
Conference on Database Theory (ICDT), volume 646, pages 140-154, Berlin, Ger­
many, October 1992. Springer-Verlag.

[BCF+04] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/, 2004.

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query
language and optimization techniques for unstructured data. In SIGMOD '96:
Proceedings of the 1996 ACM SIGMOD international conference on Management
of data, pages 505-516, Montreal, Quebec, Canada, June 04-06 1996. ACM Press.

[BDS95] Peter Buneman, Susan B. Davidson, and Dan Suciu. Programming constructs
for unstructured data. In Proceedings of the Fifth International Workshop on
Database Programming Languages, page 12, Gubbio, Umbria, ltaly, 6-8 Septem­
ber 1995. Springer-Verlag.

[BFSOO] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: a query language and
algebra for semistructured data based on structural recursion. VLDB Journal:
Very Large Data Bases, 9(1):76-110, 2000.

[BLS+94] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong.
Comprehension syntax. SIGMOD Record, 23(1):87-96, 1994.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles of
programming with complex objects and collection types. Theoretical Computer
Science, 149(1):3-48, 1995.

[BPSM+04] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Male, and
François Yergeau. Extensible markup language (XML) 1.0 (third edition).

http://www. w3. org/TR/REC-xml/, 2004.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu­
ments to novel query facilities. SIGMOD Rec, 23(2), 1994.

[CCS94] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (on-line analytical
processing) to user-analysts: An IT mandate. Technical report, E.F. Codd and
Associates, 1994.

[CD99] James Clark and Steve DeRose.
http://www.w3.org/TR/xpath, 1999.

XML path language XPath.

BIBLIOGRAPHY 142

[Cha02]

[Cla99]

[CM82]

Andy S. Chang. Implementation of sigma-joins in a nested relational algebra,
2002. Master's Report, School of Computer Science, McGill University, Montreal,
Canada.

James Clark. XSL transformations. http://www.w3.org/TR/xslt, 1999.

A. J. Cole and R. Morrison. An introduction to programming with s-algol. Cam­
bridge University Press, 1982.

[CM90] Mariano P. Consens and Alberto O. Mendelzon. Graphlog: a visual formalism for
reallife recursion. In Proc. of the A CM Symp. on Principles of Database Systems,
PODS'90, pages 406~416, 1990.

[CMW87] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query
language supporting recursion. In Proceedings of the 1987 ACM SIGMOD in­
ternational conference on Management of data, pages 323~330, San Francisco,
California, United States, 1987. ACM Press.

[CMW88] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. G+: Recursive queries
without recursion. In Expert Database Conf., pages 645~666, 1988.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Communi­
cations of the ACM, 13(6):377~387, June 1970.

[DFF+98] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu.

XML-QL: A query language for XML. http://www.w3.org/TR/1998/NOTE-xml­
ql-19980819/, 1998.

[FG85] Patrick C. Fischer and Dirk Van Gucht. Determining when a structure is a nested
relation. In Alain Pirotte and Yannis Vassiliou, editors, VLDB'85, Proceedings of
11th International Conference on Very Large Data Bases, pages 171~180, Stock­
holm, Sweden, August 21-23 1985. Morgan Kaufmann.

[FW04]

[GSS04]

[Gu05]

[GW97]

David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer second
edition. http://www.w3.org/TR/xmlschema-O/, 2004.

Rick Greenwald, Robert Stackowiak, and Jonathan Stern. Oracle essentials: Or­
acle database lOg. O'Reilly Media, Inc., 2004.

Yu Gu. Basic operators for semistructured data in a relational programming lan­
guage. Master's thesis, School of Computer Science, McGill University, Montreal,
Canada, 2005.

Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In Matthias Jarke, Michael J. Carey,
Klaus R. Dittrich, Frederick H. Lochovsky, Perides Loucopoulos, and Manfred A.
Jeusfeld, editors, VLDB'97, Proceedings of 23rd International Conference on Very
Large Data Bases, pages 436~445. Morgan Kaufmann, 1997.

BIBLIOGRAPHY 143

[Ha098]

[HSW75]

[Jac96]

[JS82]

[KanOl]

[KKS92]

[KS95]

Biao Hao. Implementation of the nested relational algebra in Java. Master's
thesis, School of Computer Science, McGill University, Montreal, Canada, 1998.

G. D. Held, M. R. Stonebraker, and E. Wong. INGRES: a relational database
system. In Proc. AFIPS National Computer Conference, pages 409 - 416. AFIPS
Press, 1975.

Dana Jacobsen. Bibtex. http://www.ecst.csuchico.edu/''jacobsd/bib/formats/
bibtex.html, December 1996.

G. Jaeschke and H. J. Schek. Remarks on the algebra of non-first-normal-form
relations. In Proceedings of the First ACM SIGACT/SIGMOD Symposium on
Principles of Database Systems, pages 124-138, Los Angeles, 1982.

Sungsoo Kang. Implementation of functional mapping in nested relation algebra,
2001. Master's Report, School of Computer Science, McGill University, Montreal,
Canada.

Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented
databases. In Proceedings of the 1992 ACM SIGMOD international conference on
Management of data, pages 393-402, San Diego, California, United States, 1992.
ACM Press.

David Konopnicki and Oded Shmueli. W3QS: A query system for the world wide
web. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio, edit ors , 21st
Conference on Very Large Databases, pages 54-65, Zrich, Switzerland, 1995.

[LSS96] Laks V. S. Lakshmanan, Fereidoon Sadri, and Iyer N. Subramanian. A declara­
tive language for querying and restructuring the WEB. In Proceedings of the 6th
International Workshop on Research Issues in Data Engineering (RIDE'96) In­
teroperability of Nontraditional Database Systems, pages 12-21. IEEE Computer
Society, 1996.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer
Widom. Lore: A database management system for semistructured data. SIGMOD
Record, 26(3):54-66, 1997.

[Mak77] A. Makinouchi. A consideration on normal form of not-necessarily-normalized
relation in the relational data model. In Proceedings of the 3rd International
Conference on Very Large Data Bases, pages 447 - 453, Tokyo, Japan, 1977.

[MBC+02] T. H. Merrett, Y. Bédard, D. J. Coleman, J. Han, B. Moulin, B. Nickerson,
and C. V. Tao. A tutorial on database technology for geospatial applications.
http://www.cs.mcgill.ca/rvtim/geodem/tutorial.ps.gz. May 27 2002.

[McB94] Oliver A. McBryan. Genvl and www: Tools for taming the web. In In Proc. lst
Intl. World Wide Web Conf, Geneva, Switzerland, May 1994.

[Mer76] T. H. Merrett. MRDS: An algebraic relational database system. In Canadian
Computer Conference, pages 102-124, Montreal, Canada, 1976.

BIBLIOGRAPHY 144

[Mer77]

[Mer84]

[Mer88]

[Mer91]

[MerOl]

[Mer03]

[ML94]

T. H. Merrett. Relations as programming language elements. Information Pro­
cessing Letters, 6(1):29-33, 1977.

T.H. Merrett. Relational Information Systems. Reston Publishing Co., Reston,
VA, 1984.

T. H. Merrett. Experience with the domain algebra. In Umeshwar Dayal
Catriel Beeri, Joachim W. Schmidt, editor, Proceedings of the Third International
Conference on Data and Knowledge Bases: Improving Usability and Responsive­
ness" pages 335-346, June 1988.

T. H. Merrett. Relixpert-an expert system she11 written in a database program­
ming language. Data Knowl. Eng., 6(2):151-158, 1991.

T. H. Merrett. Attribute metadata for relational OLAP and data mining. In
Proceedings of the Eighth Biennial W orkshop on Data Bases and Programming
Languages, pages 65-76, Monteporzio Catone, Roma, ltaly, September 2001.

T. H. Merrett. A nested relation implementation for semistructured data.
http://www.cs.mcgill.ca/ • .Jtim/semistruc/recnest.ps.gz. December 1 2003.

Michael L. Mauldin and John R. R. Leavitt. Web agent related research at the
center for machine translation. In SIGNIDR meeting, McLean, Virginia, August
1994.

[MMM97] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. Querying the world
wide web. Int. J. on Digital Libraries, 1(1):54-67, 1997.

[Mor79] R. Morrison. S-algollanguage reference manual. Technical report, Dept. of Com­
putational Science, Univ. of St Andrews, Scotland, 1979.

[NAM97] Svetlozer Nestorov, Serge Abiteboul, and Rajeev Motwani. Inferring structure in
semistructured data. SIGMOD Rec., 26(4):39-43, 1997.

[NUWC97] Svetlozar Nestorov, Jeffrey D. U11man, Janet L. Wiener, and Sudarshan S.
Chawathe. Representative objects: Concise representations of semistructured,
hierarchial data. In Proceedings of the Thirteenth International Conference on
Data Engineering, pages 79-90, 1997.

[OFS84] J. Ong, D. Fogg, and M. Stonebraker. Implementation of data abstraction in the
relational database system INGRES. SIGMOD Records, 14(1):1-14, March 1984.

[OH86] S. L. Osborn and T. E. Heaven. The design of a relational database system
with abstract data types for domains. A CM Transactions on Database Systems,
11(3):357-373, September 1986.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object
exchange across heterogeneous information sources. In P. S. Yu and A. L. P. Chen,
editors, llth Conference on Data Engineering, pages 251-260, Taipei, Taiwan,
1995. IEEE Computer Society.

BIBLIOGRAPHY 145

[QRS+95] Dallan Quass, Anand Rajaraman, Yehoshua Sagiv, Jeffrey D. Ullman, and Jen­
nifer Widom. Querying semistructured heterogeneous information. In DOOD
'95: Proceedings of the Fourth International Conference on Deductive and Object­
Oriented Databases, pages 319-344. Springer-Verlag, 1995.

[RCFOO]

[RH98]

[Roz02]

[Sch77]

[SDV03]

[SRG83]

[Sto86]

[SunOO]

[TF86]

[TMD92]

[Wan02]

[Xie04]

Jonathan Robie, Don Chamberlin, and Daniela Florescu. Quilt: an XML query
language. http://www.almaden.ibm.com/cs/people/ cham berlin/ quilLeuro. html,
2000.

Dave Raggett and Arnaud Le Hors.

http://www.w3.org/TR/WD-html40/, 1998.

HTML 4.0 specification.

Andrey Rozenberg. Implementation of attribute metadata with application to
data mining, 2002. Master's Report, School of Computer Science McGill Univer­
sity, Montreal, Canada.

Joachim W. Schmidt. Sorne high levellanguage constructs for data of type rela­
tion. ACM Trans. Database Syst., 2(3):247-261, 1977.

Sriram Sankar, Rob Duncan, and Sreenivasa Viswanadha.
piler Compiler (JavaCC)-The Java Parser Generator. JavaCC
www.webgain.comjproductsfjavaccjdocumentation.html, 2003.
contains documentation softwares for J avaCC and J JTree.

Java Com­
web site at:

The web site

M. Stonebraker, B. Rubenstein, and A. Guttman. Application of abstract data
types and abstract indices to CAD databases. In Proceedings of Database Week,
Engineering Design Applications, pages 107-114, San Jose, May 1983.

M. Stonebraker. Inclusion of new types in relational database systems. In Pro­
ceedings of the 2nd IEEE Data Engineering Conference, Los Angeles, 1986.

Weizhong Sun. Updates and events in a nested relational programming lan­
guage. Master's thesis, School of Computer Science, Mc Gill University, Montreal,
Canada, 2000.

S. J. Thomas and P. C. Fischer. Nested relational structures. In P. C. Kanellakis,
editor, Advances in Computing Research III, The Theory of Databases, pages
269-307. JAl Press, 1986.

Jean Thierry-Mieg and Richard Durbin. acedb
database syntactic definitions for the acedb data
http://www.acedb.org/Cornell/syntax.html, December 1992.

a c.elegans
base manager.

Zhongyan Wang. Implementation of distributed data processing in a database
programming language. Master's thesis, School of Computer Science McGill Uni­
versity, Montreal, Canada, 2002.

Jiantao Xie. Text operators in a relational programming language. Master's
thesis, School of Computer Science, McGill University, Montreal, Canada, 2004.

BIBLIOGRAPHY 146

[Yan03]

[Yu04]

[Yua98]

[Zhe02]

YiYi Yang. Casting and null values for numeric database types, 2003. Master's
Report, School of Computer Science, Mc Gill University, Montreal, Canada.

Zhan Yu. Implementation of recursively nested relation of jrelix, 2004. Master's
Report, School of Computer Science, McGill University, Montreal, Canada.

Zhongxia Yuan. Implementation of the do main algebra in Java. Master's thesis,
School of Computer Science, McGill University, Montreal, Canada, 1998.

Yi Zheng. Abstract data types and extended domain operations in a nested re­
lational algebra. Master's thesis, School of Computer Science, McGill University,
Montreal, Canada, 2002.

