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ABSTRACT

Data assimilation is used among other things to constrain the initial conditions of weather forecasting
models by fitting the model fields to observations made over a certain time interval. In particular, it tries to tie
incomplete data with model constraints to detect and correct for initial condition errors. This is possible only if
initial condition errors leave their signature on the data assimilated and if the model is capable of faithfully
reproducing such signatures. Using simulations of the evolution of convective storms in the Great Plains over
an active 6-day period, the propagation of initial condition errors to other variables as well as their effect on
the accuracy of the forecasts were investigated. Increasing the assimilation time window boosts the ability of
assimilation systems to detect a variety of initial condition errors; however, limits to the predictability of
convective events impose a maximum assimilation period that is a function of the type of measurements
assimilated as well as of the type of errors one tries to correct for. These findings are then used to suggest
changes in assimilation approaches to take into account the different predictability times of the model fields

constrained by assimilation.

1. Perspective, paradigm, and plan

“There are too many types of data, too many new ones
appearing every year, and there are too few people to
work on their assimilation!”” This outcry has been heard
many times from data assimilation researchers, in par-
ticular from those working at the mesoscale. And it
provided one of the initial impetuses for this work.
Could there be a way to prioritize data assimilation ef-
forts? On what basis? To approach this problem, one is
required to think about data assimilation in a more
conceptual way than usual. In particular, in this work,
a greater emphasis will be put on the nature and char-
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acteristics of the data to be assimilated or of the model
fields to be constrained.

Data assimilation is explicitly designed to constrain
model variables with noisy measurements. But for data
assimilation to succeed, three additional conditions
must be met well enough. First, the difference between
the assumed atmospheric state x’ and the true atmo-
spheric state x must result in a measurable difference
between what the true observations y’ would be with an
atmospheric state x’ and the true observations y. In
the absence of an observational signal, data assimilation
will fail. Second, given an atmospheric state x, a model
can reproduce the true observations y and their time
evolution. If the model-generated observations H(x)
cannot faithfully replicate the measured fields y, pro-
viding correct observations to the assimilation system
will only lead to an inaccurate initialization of the
model. Failure to reproduce observations may come
from both an inability to predict the atmospheric state
and from an inaccurate observation operator. Third, the
data assimilation system can use the difference between
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the simulated observations H(x') and the true observa-
tions y to adjust the model state from x’ to x. This is
a challenging undertaking given that the problem has
a very large number of dimensions, and the process re-
lies heavily on the ability of the data assimilation system
to adjust the model state x" in the right direction in an
attempt to get to the true atmospheric state x. The
presence of a signal in data, an accurate model, and an
optimally functioning data assimilation system are all
required to make data assimilation succeed.

In response to the need to constrain the initial condi-
tions of forecasting models, several data assimilation
approaches were developed. Two somewhat different
situations can be distinguished. In one case, enough data
are available to constrain all variables more or less di-
rectly without having to rely on the time evolution of the
weather events to close the system. Assimilation methods
such as the three-dimensional variational data assimila-
tion (3D-Var; Kalnay 2003, and references therein), or
when one uses four-dimensional variational data assim-
ilation (4D-Var) mainly to constrain the model at the
precise time the observation was made, are based on this
paradigm. In the other case, data are available to con-
strain only some of the variables, and the remaining
ones are constrained using the model’s ability to sim-
ulate them to be compatible with the time evolution of
available observations. Methods such as 4D-Var (e.g.,
Talagrand 1997) are designed to handle such situations.
For mesoscale forecasting, the second scenario gener-
ally applies: balloon soundings and other measurements
of all model fields throughout the atmosphere are sparse
in space and time; one must hence rely on the remote
sensing of the time evolution of some of the fields to fill
the gaps. The discussion to follow assumes the latter,
with the emphasis being put on the forecasting of sum-
mertime convective weather.

If observations in a few variables are to gradually
constrain the initial conditions of all variables, there must
be ways to link the unobserved variables to the observed
ones. Specifically, a change or an error in any unob-
served variable must result in a mismatch between ob-
served variables and their simulated value; this must
occur within the duration of the assimilation interval
during which observations at two or more times are used
to constrain the model before a forecast is made. And
that mismatch must be large enough to exceed measure-
ment noise. This imposes a minimum assimilation in-
terval, one that may depend on the field to be constrained
through model dynamics. For example, some errors in
unobserved variables may rapidly transfer to observed
variables, while others may not. If a perturbation in, say,
humidity, propagates quickly to other variables such as
cloud and precipitation content, then its effect can be
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detected by assimilating the data from a variety of in-
struments over a short period. However, if the pertur-
bation remains essentially in moisture form for a long
period, then unless very long data assimilation intervals
are used, it can only be detected by instruments that
actually measure a quantity directly related to moisture.

To complicate matters, the pace at which these errors
move from one field to another is also a function of
scale. Small-scale features evolve rapidly, while large-
scale patterns evolve slowly. For a forecast to be as
accurate as possible for a long time, large-scale patterns
must be well determined since they are the ones with
the longest time of predictability. Consequently, the
assimilation interval must be long enough to permit the
detection of the slowest-evolving errors of the largest
modeled patterns. If one optimistically assumes that
patterns larger than 500 km are well constrained by
upper-air synoptic observations, and that 500-km pat-
terns have a lifetime of about 12 h (e.g., Lorenz 1969;
Zhang et al. 2007), then one must assimilate data for
a significant fraction of that time to observe an evolu-
tion in 500-km-scale patterns sufficient to constrain
unobserved fields at that scale.

But for small-scale features, a long interval may be
inadequate. Much like the speed of evolution, the time
of predictability is also a function of scale as well as of
model accuracy. If the model is incapable of forecasting
the evolution of intense small-scale patterns over the
duration of the assimilation interval, trying to assimilate
such data over the assimilation interval is a counterpro-
ductive exercise. To illustrate this, let us assume that
M(x) is the current model state, and that M(x + Ax) is the
truth one seeks (Fig. 1). To minimize the mismatch be-
tween the model state at the beginning of the assimilation
interval and the information provided by observations,
one generally first tries to find in what direction should x
be pushed by computing dM/ox. In the example of Fig. 1,
moving the modeled initial conditions from x toward
x + kAx, 0 < k < 1, improves the match with the true
initial conditions x + Ax. But beyond the time of predict-
ability, there will be many circumstances where such
a move will worsen the fit with observations; in Fig. 1,
these are illustrated as the contradictory regions. In
these regions, the assimilation system will actually find
it advantageous to move away from x + Ax in order to
improve the fit with observations. As time progresses
and k[M(x + Ax) — M(x)] and k[Ax dM/ox], illustrated
here as [M(x + kAx) — M(x)], become completely de-
correlated, there will be a 50% chance that the assimila-
tion of new data moves the initial conditions away from
the correct solution.

It is not immediately clear if all model fields and
datasets are affected identically by these considerations.
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FIG. 1. Schematic illustration of the trajectory in phase space of
three model runs M starting with three different initial conditions: x
the original initial conditions, x + Ax the initial conditions that
would minimize the errors with respect to observations, and x +
kAx. The latter represents initial conditions that an algorithm try-
ing to minimize the difference between M(x) and M(x + Ax) might
try in an attempt to evaluate whether moving the initial conditions
from x toward x + Ax improves the fit with observations. Three
regimes can be observed: 1) a linear regime, where M(x + kAXx) is
k/(1 — k) closer to M(x) than to M(x + Ax), such a regime makes it
easy for error minimization algorithms to adjust initial conditions
from x to x + Ax; 2) a nonlinear regime, where M(x + kAx) is not
k/(1 — k) closer to M(x) than to M(x + Ax), such a regime makes
it harder for error minimization algorithms to adjust initial condi-
tions from x to x + Ax; 3) a contradictory regime, a special case of
the nonlinear regime, where changing initial conditions from x to
x + kAx, i.e., closer to the x + Ax that minimizes the difference with
observations, actually worsens the fit between M and M(x + Ax),
possibly misleading the minimization algorithm to go away from
the right answer.

Some fields such as cloud water evolve in more complex
ways, especially via the release of convective instabilities,
as a result of which nonlinearities build up faster at
convective scales than at synoptic scales (Hohenegger
and Schir 2007). More fundamentally, it has not been
quantified how easily and clearly one gets a signal of an
error in one field by observing other fields. For example,
the evolution of some fields such as winds and tempera-
ture are dynamically coupled, but no such coupling exists
for water vapor amounts. An additional confounding ef-
fect is the sometimes complex or indirect link between
observations and model fields. Finally, errors in some
fields may have greater impacts on forecast quality than
others. All these factors influence the performance of data
assimilation systems and should affect the choices of ap-
proaches and observed variables used in assimilation. Yet
at present, computing resource and data availability con-
siderations seem to be the main factors taken into account.

Additional factors to bear in mind should include: Based
on physical considerations, what data should be assimi-
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lated, and for how long? Are there datasets that provide
more or better information or do they target fields or re-
gions in the atmosphere whose uncertainty has a greater
impact on the final forecasts? To answer these questions,
two broad topics must be investigated. One is related with
the propagation of initial condition errors from one vari-
able to the next: How well can one detect errors in one
field by observing the time evolution of another? How
does predictability affect the assimilation period to be used
for different fields? Is the resulting assimilation period
sufficient? And in any case, which initial condition error(s)
cause the worst forecasts and should be detected in pri-
ority? This paper will provide some answers to these
questions. The second set of issues deals with the ability of
instruments to extract the wanted signal. What are dif-
ferent instruments measuring and how well? How are their
data affected by the issues discussed above? Is the wanted
signal detectable amidst measurement noise? Part II
(Fabry 2010) will consider these questions.

The data assimilation community has certainly recog-
nized the problems of model error and atmospheric
predictability in general and dealt with them by designing
a data assimilation system suitable for specific applica-
tions. For example, a 6-12-h window was used for large-
scale data assimilation (Rabier et al. 2000; Zou and Kuo
1996) while a window as small as 12 min was used for the
assimilation of convective-scale data assimilation using
radar observations (Sun 2005). The incremental data as-
similation approach was introduced by Courtier et al.
(1994) to handle the issue of the nonlinear growth of
model errors. Various other approaches were proposed
to deal with model errors in data assimilation systems
(e.g., Derber 1989; Zupanski 1997; Bennett et al. 1996).
Finally, Trémolet (2006) proposed a weak-constraint
4D-Var in which subwindows were implemented and
the model was used as a strong constraint only in each
subwindow. In this paper, we do not intend to develop
a methodology to treat the model errors, but rather to
take a step back to examine how the forecast errors
propagate with time and from one variable to another,
with the motivation that the findings can provide guid-
ance for the design of future data assimilation systems
and the choice of observations to be assimilated.

The approach used in this work is as follows. First, the
impact of different initial condition errors is investigated.
Some types of errors may result in large forecast errors,
and are therefore more important to detect. Others may
cause limited forecasts errors, at least over some time
scales, and if they may not be ignored, they should be
deemphasized. Next, one must look at the properties
of the transfer of the errors from one variable to an-
other. These properties include the strength and speed
of the interactions between variables, as well as how
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predictability issues affect our ability to use that infor-
mation in the context of data assimilation. This exercise
will allow us to determine which field(s) should be con-
strained in priority as well as provide some hints as how to
best assimilate data. Finally, we will reflect on the im-
plications of the results on data assimilation, especially at
the mesoscale. In this work, we chose to restrict the focus
on data assimilation considerations and not on storm
dynamics questions even though the questions asked and
approach used are conducive to both types of work.

2. Data generation

First, an appropriate dataset must be obtained to help
answer our questions. For this project, knowledge as
complete as possible of the entire system is needed. This
alone rules out using true but incomplete atmospheric
measurements and calls for a modeling-based experiment.
We hence resort to an identical twin experiment (Daley
1991). First, a series of plausible convective events is
simulated. These control runs will constitute “the truth.”
Then, initial conditions are perturbed by plausible errors,
and these are used to generate “‘the forecasts’ that will be
compared with the truth. These forecasts will have errors
whose magnitude can be evaluated as a function of the
type of errors in the initial conditions. These runs can then
also be used to study the transfer of initial condition errors,
as well as to simulate measurements by different sensors.

a. Model, domain, and period used

To perform this numerical experiment, a significant
number of plausible convective events needed to be
simulated. The tool used was the Advanced Research
Weather Research and Forecasting (WRF) model, ver-
sion 2.2 (Skamarock et al. 2005), with Thompson et al.
(2004) microphysics, the Yonsei University PBL, the ra-
diation scheme following Mlawer et al. (1997) for the
longwave and the approach used by Dudhia (1989) for
the shortwave radiation, and the Noah land surface
model (Chen and Dudhia 2001). The domain covered
a 1600 km X 1600 km area centered on the Great Plains
similar to the one used by Xiao and Sun (2007). The
model runs have a 4-km resolution in the horizontal and
28 vertical levels. The choice of these parameters was
dictated by the need of having enough physically plau-
sible simulations to have statistical significance without
making the project too large to be completed.

To add to the realism, the runs were initialized using
analyses from actual events that occurred in the Great
Plains between 10 and 16 June 2002. This period was par-
ticularly rich in convective events: in the center of the do-
main, where the International H,O Project (IHOP_2002)
field experiment was taking place (Weckwerth et al.
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FIG. 2. Simulation domain and model rainfall accumulation of the
16 control runs used in this study.

2004), a large variety of squall lines and multicell storms
raged, having a variety of initiation mechanisms (Wilson
and Roberts 2006); in addition, the region was swept by
a large mesoscale convective system and more storms
were triggered outside of the IHOP_2002 domain next
to the Gulf Coast and near the foothills of Colorado and
New Mexico. The net result is that in a short period of
time, a microcosm of convective events was observed
and large amounts of precipitation were recorded in the
domain and simulated by the control runs. Note that the
rainfall amounts shown in Fig. 2 were accumulated over
the sixteen 12-h control runs described below.

b. The model runs

In total, 16 sets of runs were done in this work covering
the period between 10 and 16 June 2002, one every 9 h.
Each set of runs starts with a 3-h run initialized by the
analysis valid at 7 — 3 h made by the National Centers
for Environmental Prediction (NCEP) for its Eta model
(Fig. 3). The goal of this run is to spin up the dynamics
and generate believable fields down to the model reso-
lution. The resulting fields produced at time 7 are then
used as initial conditions to start our 12-h control run that
will act as our truth. These initial conditions were then
perturbed to simulate 10 different types of initializa-
tion errors, and each set of these modified initial condi-
tions was used as a starting point to what will be referred
to as a perturbed run. Details on the nature of these
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FIG. 3. Timeline of the initialization and outputs of the 16 control
runs and the associated perturbed runs. Vertical lines represent
times for which a model output was obtained.

perturbations will follow in section 2c. Outputs from the
control and the perturbed runs are available every 15 min
up to 7 + 90 min and every hour between 7 + 2 h and
T + 12 h. In addition, for each 12-h perturbed run, a 3-h
run was done with Ysth of the perturbation size used in
the 12-h run. These reduced perturbation runs were used
to test the linearity and predictability of the forecast er-
rors from the perturbed runs.

c. Initial condition perturbations

There are many possible ways one can perturb initial
fields. In this work, we have chosen to perturb individual
fields to an extent that is comparable with the un-
certainty with which these fields are generally known.
Because our goal is to estimate the ability of different
sensors to detect reasonable initialization errors, per-
turbing initial fields in a way that is comparable to our lack
of knowledge of these fields seemed like a natural choice.
The choice of perturbing one field at a time was one of
convenience, but it also allowed us to evaluate the impact
of the uncertainty in each field on the quality of the
forecast. However, we could not investigate the effect of
possible interactions between fields, which can be impor-
tant especially if the errors between fields are correlated.

Five sets of fields were perturbed: winds, temperature,
humidity, condensates (i.e., clouds and precipitation),
and soil moisture as a proxy for surface properties. But
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both the processes by which forecast uncertainties grow
and the ability of different instruments to measure at-
mospheric fields also depend on altitude. We then settled
on 10 different types of perturbations: low-level winds,
midlevel winds, high-level winds, low-level temperatures,
midlevel temperatures, high-level temperature, low-level
moisture, midlevel moisture, whole-atmosphere conden-
sates, and soil moisture at all depths.

A first challenge was to find estimates of the uncer-
tainties in our knowledge of these fields. This implied
not only determining the magnitude of the uncertainties,
but also the correlation structure of these fields in the
horizontal and the vertical. For many fields, at least one
reference was found on which to base our perturbations:
the spatial structure of mid- and high-level temperatures
and winds were well characterized by Nastrom and Gage
(1985); low-level temperature and humidity structure
were measured by Fabry (2006) and Lenschow and Sun
(2007), the latter also describing the scale-dependence
of low-level winds. But for several others, information is
extremely limited. For condensates, we used the spatial
structure data of drop size distribution uncertainty from
G.W. Lee (2006, personal communication). We however
failed to find useful information on the magnitude of
the uncertainty in low-level winds and on the spatial
properties of midlevel humidity and soil moisture. For
those, we had to make reasonable guesses. Each set of
perturbations was generated by filtering a Gaussian-
distributed noise to make its power spectra follow the
curves in Fig. 4; the result was then scaled in such a way
that the standard deviation o of the resulting perturba-
tion matched the values plotted on the same figure.

While information was found on the horizontal struc-
ture of different fields, we were less lucky with their ver-
tical structure. We expect the vertical correlation of the
small-scale structures in these fields to be high, but found
no quantitative information. The solution adopted was to
assume perfect correlation of the errors in the vertical, and
the perturbations obtained above were multiplied by
a shaping function f(n) such that

f(n) = cos [ 3 5( - n)} , for 825 =7 =1, forlow-level perturbations;

f(n) = cos [ (675 — n)] for .5 =mn=.85, formid-level perturbations;

f(n) = cos’ [% (.325 - n)} , for .15 =% =.5 for high-level perturbations; and

f(n)=1, for whole-atmosphere or whole-soil perturbations, (1)
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where 7 is the Eta level in the WRF model defined by
1N = (P — Pyp)/(P, — Piop), With P being the pressure at
a given level, P, is the surface pressure in the same
column, and P, is the pressure at the top of the model,
set at 5 kPa. These shaping functions confine the low-
level perturbations to the bottom 1.5 km of the atmo-
sphere, the midlevel perturbations to the bottom half of
the free troposphere away from the boundary layer, and
the high-level perturbations to the top half of the free
troposphere.

Hence, for each of the perturbed runs, the field to be
perturbed was modified by adding the correlated noise
specified above and in Fig. 4, and weighted by the shaping
function in (1). This perturbation was made directly on
the model field itself without the use of the WRF data
assimilation system. This was done to eliminate any con-
straints and any possible modification that a data assi-
milation system might set. The WRF model reacted
reasonably well to these forced perturbations, except
for the temperature ones. For these, we adjusted the
spacing between geopotential levels to account for the
fractional change in temperature as well as modified
the surface pressure to minimize the acoustic waves
and Brunt-Viiséld oscillations that were triggered by
these perturbations.

3. Forecast errors with different perturbations
a. Defining a unified model error

Our next task was to define an error equation to char-
acterize model errors in winds, temperature, humidity,
and precipitation. Ideally, one would like to find some
reasonable equivalence between the magnitudes of the
errors from each field. A great starting point is provided
by Talagrand (1981) and Ehrendorfer and Errico (1995)
who studied the energy difference between two similar
model states, one at rest and one perturbed, and obtained:

2
E:EJ {Auz + AP+ L AT + RT <%) } dD, (2)
2 D Tr ' r
where the differences in zonal wind Au and meridional
wind Av and the differences in temperature AT and in
surface pressure Ap, are combined with the specific heat
at constant pressure ¢, the gas constant R for dry air,
areference temperature 7,, and a reference pressure p,,
integrated over the whole domain D, to yield the dif-
ference in the energy E between two model states.
Equation (2) is useful for two reasons. First, it offers
acommon ‘‘currency,” energy, to gauge the equivalence
between errors. Second, it proposes a framework and
a method to compare the effect of differences in wind
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FIG. 4. Power spectra and magnitude of the different perturbations
introduced in the initial conditions of the perturbed runs.

and of differences in heat. With it, two error terms can
be defined, the kinetic energy difference (KED) and the
thermal energy difference (TED) between states:

1
KED = 5[ (Au? + Av?)dD (3)
D
and
TED i AT?dD 4
- Z—Ter . ()

Following Ehrendorfer and Errico (1995), 7, = 270 K
was used. In subsequent work, Ehrendorfer et al. (1999)
also derived an error term for the latent energy differ-
ence (LED) that we also used:

2

2cp Tr

LED =

J Ar?aD, (5)
D

with L being the latent heat of vaporization and Ar,
being the change in the vapor mixing ratio.

It proved difficult to find an energy equivalence for
differences in condensates that was compatible with the
framework established by Talagrand (1981). In the end,
we chose to use the potential energy of hydrometeors
as our metric, on the grounds that the drag caused by
falling raindrops would result in the transfer of the
potential energy of falling hydrometeors into kinetic
energy of air. Hence, the energy differences due to con-
densates (CED) was set to
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CED = gJ HIAr, + Ar, + Ar D, ©)
D

with g being the acceleration due to gravity, & being
height, and Ar,, Ar,, and Ar, being the changes in the
mixing ratios of rain, snow, and graupel, respectively.
Note that since liquid and ice clouds do not fall signifi-
cantly, they were excluded from the calculation. The re-
sulting energy is probably overestimated compared to the
others, but no convincing rationale was found to reduce it.
Finally, most of the analysis of model errors will be done
using the sum of energy differences (SED), defined as

SED =KED + TED + LED + CED. (7

The integration of model energy differences was limited
to the troposphere, and all results are presented in terms
of energy differences per unit mass of dry air.

b. Average model errors versus forecast time

The control and perturbed runs were first used to
quantify the forecast errors arising from the different
types of perturbations. Originally, we simply wanted to
use these errors to weigh the ability of different sensors to
detect a wrong forecast with the magnitude of the forecast
errors resulting from each given scenario. But a quick
look at forecast errors proved to be interesting per se.

Figure 5 shows the SED per unit mass of dry air as
a function of time for different types of perturbations.
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FIG. 6. Share of the SED among its different components [KED
(white), TED (black), LED (gray), and CED (stripes)] (top) 3 h
and (bottom) 15 min after the initial perturbations. Each bar
graph is for a different type of perturbations. (from left to right)
Low-level winds (LW), midlevel winds (MW), high-level winds
(HW), low-level temperatures (LT), midlevel temperatures
(MT), high-level temperatures (HT), low-level humidity (LH),
midlevel humidity (MH), condensates (C), and soil moisture
(SM) perturbations.

There is much information in Fig. 5, but two points are
particularly relevant in the context of this work. First,
the uncertainty in midlevel humidity appears to be
dominating all other uncertainties, particularly at short
forecast times. Initially, the possibility that the humidity
perturbations used in our simulations were too large was
considered. To verify this hypothesis, we complemented
the long runs where a =20% uncertainty in humidity
(or a dewpoint uncertainty of nearly 3°C over 500-km
scales) was assumed with an additional set of 1.5-h runs
where a £10% uncertainty in humidity (or 1.5°C in dew-
points) was assumed. Even in this scenario, midlevel
humidity again proved to be the main source of error in
mesoscale forecasts.

A second point of interest from Fig. 5 is that it shows
that the relative magnitude of errors varies significantly
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the figure less busy; runs were sorted by average rainfall, and every
third case is plotted beginning with the set of runs producing the
greatest average precipitation. The day (DD) in June 2002 and the
hour (HH) in local daylight time (LDT) when the runs started (7" = 0)
are shown next to each set of points using a DD_HH format.

with the forecast duration. At 7' = 12 h, all but the runs
with the midlevel humidity perturbations yield compa-
rable SED. But for forecasts of a few hours, several
groups can be identified: at the top thrones the midlevel
humidity perturbation runs; a factor of 2-3 below, one
can find the low-level temperature, midlevel tempera-
ture, low-level humidity, and midlevel wind runs; an-
other factor of 2 below sit the condensates, low- and
high-level winds, and high-level temperature runs; an-
other factor of 5 below, the soil moisture runs closes the
march. Consequently, depending on the forecast hori-
zon of interest, the attention one should pay to different
fields ought to be different: while the uncertainty on all
model variables should be reduced nearly equally to
improve long mesoscale forecasts, a more targeted ap-
proach focusing on humidity and temperature at low and
midlevels as well as on midlevel winds should yield the
best dividends for shorter forecasts.

Figure 6 shows the share of energy differences among
the different terms listed in (7). By 7 = 3 h, almost all
memory of the field perturbed is lost, and all runs show
similar proportions of errors in temperature, winds,
humidity, and precipitation. Since these proportions are
similar, selecting another measure of forecast error than
our SED would yield similar results as those shown in
Fig. 5 beyond 3 h.
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FI1G. 8. SED between the perturbed and the control runs as
a function of forecast time for runs starting during the (top) day and
(bottom) night. Although there are significant differences in the
magnitude of errors between daytime and nighttime runs, the rel-
ative magnitude of errors between the different types of initial
condition perturbations as well as the distribution of the forecast
errors among the four components considered (KED, TED, LED,
and CED) remain mostly unchanged.

As can be expected, there is considerable variability
in the magnitude of the perturbations (Fig. 7). Much of the
observed variability is correlated with precipitation, in line
with ideas suggesting that moist convective instability is
the main growth mechanism of errors initially (e.g., Zhang
et al. 2007). Some of the variability can also be explained
by contrasting daytime and nighttime runs (Fig. 8). But
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somewhat to our surprise, the pecking order of pertur-
bations was not changed significantly between day and
night, and only small relative enhancements were ob-
served during the day for boundary layer-based per-
turbations. This can also be observed on a run-by-run
basis (Fig. 7). Such a result gives us confidence that the
findings presented here have robustness and should
probably apply to other times and regions provided
that the atmospheric conditions are conducive to deep
convection.

Perturbations, especially the rapidly growing ones,
quickly propagate to other variables. For most pertur-
bations, already after 15 min (bottom of Fig. 6), a sig-
nificant share of the original perturbation has been
redistributed. This implies that if the assimilation period
is long enough, most types of instruments have an op-
portunity to observe a signal resulting from the pertur-
bations. But a few perturbations, like those in low-level
humidity, have slow starts, and they will be nearly im-
possible to detect using short assimilation periods by
instruments incapable of sensing the quantity perturbed.
In the case of low-level humidity perturbations, the slow
start in their transformation is associated with the time
required to advect them to higher levels where they will
then affect cloud and subsequently precipitation for-
mation. It is possible that this delayed transfer of the
low-level humidity perturbations was exacerbated by
the slow, fat updrafts generated by 4-km resolution
model runs; the extent to which the slow transformation
is physical and not dependent on model resolution
should be further studied.

NLI(v, T, Ax) = j D
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In all cases, after a relatively short time, all pertur-
bations in one variable will provide measurable signals
on other variables, but how useful a signal?

4. Predictability of the response to perturbations

Many data assimilation systems work best if a pertur-
bation Ax to the model state x, results in a linear re-
sponse of the model:

ax

0

M(x, + Ax) ~ M(x,) + Ax (aM ) , ®)

where M(x) represents the operations executed by the
weather prediction model on the initial model state x. If
(8) is true, then a perturbation that is a fraction k of the
original one should trigger a response k times as intense
from the model:

M(x, +kAx) — M(x,)~k[M(x, + Ax) — M(x,))].  (9)

This kind of behavior is expected in models for small
enough perturbations and is generally valid for a short
enough time much smaller than the time of pre-
dictability. This was illustrated in Fig. 1 as the “linear
regime.” Hence, for each variable v that is a subset of the
model state x, one can define a nonlinearity index (NLI)
such that

’[v(xo + kAx) — v(xo)] — k[v(xo + Ax) — v(xo)]| dD

J ]v(xo + kAx) — v(xo)] dD
D

The NLI integrated over the domain D will depend on
the variable v considered, the time of integration 7,
and the perturbations Ax introduced in the model initial
conditions. As long as the model is in its linear stage, the
two terms in the numerator should cancel each other
because of (9), and the NLI should be near 0. As the in-
tegration progresses, model evolution will become in-
creasingly nonlinear, and the two terms in the numerator
will fail to cancel each other, resulting in an increase in
the NLI. It also turns out that after a long enough time 7,
the smaller perturbation has generally grown significantly
more than the larger one, and the second term of the
numerator becomes much smaller than the first as well as
decorrelated from it. As a result, the NLI tends to 1.

(10)

The NLI is hence a useful bulk quantity to measure
the nonlinearity in the response of the model to a per-
turbation after a certain time. It is tied with predict-
ability, but somewhat loosely. Of greater relevance to
this work is how good an indicator it is of the potential
performance of data assimilation. If NLI = 0, the min-
imization of the cost function that measures the mis-
match between true observations and model-generated
observations can be done easily: adjoints and minimi-
zation routines can work efficiently, and observation
errors are the only difficulty that a minimization algo-
rithm encounters. As the NLI increases, even with perfect
observations, the “‘topography” of the cost function be-
comes more complicated: complex valleys and multiple
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minima start to appear, and minimizations can be done
less efficiently.

In terms of its effect on data assimilation, an easier
quantity to grasp than the NLI is the relative frequency
of the contradictory regions discussed in Fig. 1. Under
these circumstances, by attempting to minimize the dif-
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ference between simulated and measured observations,
data assimilation systems will be lured away from the
correct answer instead of toward it. We can define
a contradictory information index (CII) that measures
the ratio of contradictory regions to that of noncon-
tradictory ones:

Cll(v, T, Ax) = =2
D
where
1. x>0
sgn(x)=4¢ 0: x=0. 12)
—1: x<0

If CII is O, all data for which there is a signal pushes
toward the correct answer. When there are as many
points pulling away from the correct answer than there
are pushing toward it, CII is 1.

As illustrated in Fig. 3, two sets of perturbed runs were
done: 12-h-long ones with the full perturbations that we
analyzed in section 3, and 3-h-long ones with perturba-
tions a fraction k = s of the original ones. By using
these two sets of perturbed runs in conjunction with (10)
and (11), one can study the linearity, or lack of, of the
perturbations from each model variable for each type of
perturbation as well as the importance of contradictory
information. Here, we will focus on the NLI and the CII
of each variable as a function of time, but averaged for all
perturbation scenarios and with a weight proportional to
the amplitude of the change in v:

D ulx, + Ax) — v(x,)|NLI(v, T, Ax)
NLI(v, T) = Al

5

D [u(x, + Ax) — v(x, )|

AllAx
(13)

for the NLI and a similar equation for the CII. Since all
perturbations were defined based on current un-
certainties in initialization, they should be equiprobable,
and (13) can be used as a representative measure of the
nonlinearity of the response of specific variables in the
model to typical initialization errors. Only a systematic
study will tell how much nonlinear behavior the data
assimilation systems can tolerate for each variable. Here,
we chose to use two thresholds as signposts, NLI = 0.5
as a “‘best before” threshold, and NLI = 0.9 as a ““chal-
lenging beyond” threshold.

J ’sgn[v(xa + kAX) — v(xo)] + sgn[v(xa + Ax) — v(xo)]’ dD ,

(11)

The top of Fig. 9 shows the nonlinearity and contra-
dictory indices of different model variables. Two fami-
lies of variables can be identified. A first family whose
perturbations evolve less nonlinearly includes horizon-
tal winds, temperature, and humidity. The perturbations
in these variables cross the NLI = 0.5 threshold in 90 min.
Condensates form the second family. Their perturba-
tions become nonlinear more rapidly, and the NLI = 0.5
threshold is crossed in between 15 and 40 min while the
NLI = 0.9 threshold is passed after 1-2 h. This is a result
of both the fact that clouds and precipitation often form
as a result of convection, a highly nonlinear smaller-
scale process, as well as because cloud and precipitation
amounts vary nonlinearly with changes in other fields.
For example, as total water amount increases, cloud
amounts will remain zero until saturation is reached;
beyond that point, it will grow at a steady rate until
precipitation starts to remove cloud by coalescence. The
overall outcome of this test is that condensates should be
much more difficult to assimilate over long periods than
other variables, and their assimilation over periods be-
yond an hour may be very difficult. CII results show
similar patterns, though the CII have much smaller
values than the NLI. Still, a modest CII of 0.11 implies
that for 10% of the model grid points where a signal of
an initial condition error can be detected, most mini-
mization algorithms will tend to degrade the solution
instead of improving it, even with perfect data and
a well-functioning assimilation system.

Larger-scale patterns evolve more slowly and are more
predictable. Furthermore, linearization approximations
become inaccurate first at smaller scales (e.g., Tanguay
et al. 1995). Consequently, smoothed patterns are often
more predictable than unsmoothed ones (e.g., Bellon and
Zawadzki 1994; Germann et al. 2006). By the same token,
smoothing model perturbations should decrease their
nonlinear behavior, making smoothed variables easier to
assimilate over longer periods. We chose to test this idea
by smoothing the control and perturbed model outputs
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F1G. 9. (left) Mean nonlinearity and (right) contradictory information indices as defined in (13) as a function of the
time (top) since the initial condition error for different model variables at the full model resolution and (bottom)
when fields are smoothed over 100 km X 100 km regions. NLI and CII values are computed at times when model
outputs are available (see Fig. 3), and interpolated in between. The crosses at the NLI = 0.5 and NLI = 0.9 threshold

levels are simply markers to ease readability.

over 100 km X 100 km areas. The NLI and CII of
smoothed variables are shown in the bottom of Fig. 9. As
expected, smoothing decreased both indices. For winds,
temperature, and humidity, the smoothing doubled the
time taken until the NLI = 0.5 threshold is crossed to
nearly 3 h. Unexpectedly, the gains for condensates
proved to be much more limited, even in relative terms.
Only 5 min was gained for liquid clouds, and 10 min for
rain and ice clouds. Smoothing can only be done if fields
of the variables to be smoothed are measured; ironically,
there are many more sensors measuring fields of con-
densates such as radars and satellite imagers than there
are sensors measuring fields of other variables. One may
also want to consider the benefit of assimilating point
measurements smoothed in time; the limited time reso-
lution with which model outputs were archived prevented
us from testing this idea. Another interesting result is that
smoothing model variables had a much smaller effect on
the CII than on the NLI. In fact, for short forecasts,
smoothing slightly increased the fraction of contradictory

information: as a result of smoothing, a larger fraction of
data points were affected by isolated pockets of strong
and highly nonlinear response associated with convection.

5. Consequences on data assimilation

Let us consider the results discussed previously and
how their consequences impact data assimilation. First,
an obvious observation: Fitting data beyond their time of
predictability has a negative impact. If a significant frac-
tion of the data pulls away from the correct answer as
indicated by higher CII values, it prevents assimilation
from having the desired effect. If not understood prop-
erly, the resulting reduced performance of the assim-
ilation may then possibly be attributed to the poorness
or worthlessness of data, and not to the fact that their
information has become unusable beyond a certain
assimilation interval. And after noticing that data do
not properly correct the model state, one might mis-
takenly assign low weight to the information provided by
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Assimilation of Data Over Different Durations for Different Data Sources:
Appropriateness of Some Approaches for Case Reanalysis and Real-Time Uses

Time of interest 3 hrs later

3 hrs of smoothed u, T, e data

'—> 1 hr of raw u, T, e data
~—> 30 min of rain data
—> 15 min of cloud data

Model time that 4D-Var
constrains with data
(3 hrs ago) Present time

3 hrs of smoothed u, T, e data

—> 1 hr of raw u, T, e data
~—> 30 min of rain data
—> 15 min of cloud data

Model time that 4D-Var
constrains with data

(3 hrs ago) Present time

3 hrs of smoothed u, T, e data

1 hr of raw u, T, e data —>
30 min of rain data ——>
15 min of cloud data —>

Present time and model time
constrained using an assimilation

3 hrs ago system to be determined

3 hrs of smoothed u, T, e data

1 hr of raw u, T, e data —>
30 min of rain data —>
15 min of cloud data —>

Scenario 1: Case reanalysis

No problems here: (1) The data to be assimilated are available
at and after the time of interest, and (2) the time of interest
corresponds to the model time constrained by the assimilation
system.

Scenario 2: Real-time processing, case-reanalysis style

Not ideal: Assimilation does not take advantage of the latest
data available. And assimilating 3 hrs of everything adds
hard-to-use "non-linear data" to usable "linear data" and may
hurt more than help.

Scenario 3: Real-time processing, 4D-Var using the latest data

Poor: Assimilation of most fields will fail because much of
the data are several "predictability times" away from 3 hrs
ago, the time at which the model parameters are being
constrained. For example, cloud data, that can be assimilated
easily only if they are within 15-30 min of the time used to
constrain the model, start instead 2 hr 45 min after that time.

Scenario 4: Real-time processing, new assimilation method
Ideal solution, but implementing it requires designing a data
assimilation approach that constrains the model at the end
time of the assimilation window, not at the beginning time as
traditional formulations of 4D-Var do. Possible?

FI1G. 10. (left) Illustration of four data assimilation approaches. Horizontal arrows illustrate the time period over which different
datasets are being assimilated. (right) Comments on the strengths or weaknesses of these different approaches for case reanalysis or real-

time uses.

measurements for the whole assimilation period. The
solution to this issue is to limit the assimilation interval
to a period short enough for the data to be predictable.
For example, if one finds that in actual fact data with
a NLI above 0.5 are more detrimental than beneficial to
the assimilation process, one comes to the conclusion
that the optimum assimilation interval must be dataset
dependent. In this example, using Fig. 9 as a guide, one
would assimilate up to 3 h of smoothed winds, temper-
ature, and humidity; 90 min of high-resolution winds,
temperature, and humidity; 30-45 min of precipitation
data; and 15-30 min of cloud data. Note again that this
assessment assumes a perfect model and error-free data.
In practice, these times may well be shorter. And they
may well be too short to allow for a proper monitoring of

the evolution of intermediate and large-scale patterns,
limiting our ability to initialize them properly in data
assimilation systems.

How should the approach used to constrain models
with data be modified to take into account limits im-
posed by predictability? A common data assimilation
approach is to use a cost function that measures the
mismatch between all observations within an assimila-
tion interval and model-simulated observations. Until
now, one used a single cost function that included mea-
surement errors and sometimes model error (Trémolet
2006), but did not explicitly include any consideration
on the predictability of different initial condition errors
and how it affects different variables. An approach
based on a single cost function can still be used, but the
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minimization of the cost function ought to be designed in
a way that dampens or nullifies all the information
coming from unpredictable data. For example, data that
gradually becomes unusable beyond a certain time could
be given progressively lower weights on the basis of
predictability limits, even though their accuracy remains
unquestioned. This approach would take into account
the issue raised by Fig. 9. Whether these weights could
be chosen dynamically based on the weather situation or
not is an interesting open question.

Other suggested changes to data assimilation are more
fundamental. Consider our proposal to assimilate up to
3 h of smoothed winds, temperature, and humidity;
90 min of high-resolution winds, temperature, and hu-
midity; 30-45 min of precipitation data; and 15-30 min
of cloud data. Under current 4D-Var formalism, data
assimilation adjusts the atmospheric conditions at the
beginning of the assimilation interval based on the data
collected during the whole period (Fig. 10). For rean-
alysis purposes, this is fine. It is more problematic for
real-time use. If one wants to assimilate 3 h of smoothed
wind data together with 15-30 min of cloud data, then
that cloud data would have to be nearly 3 h old: current
cloud data is more than 2.5 h after the initial-condition
time whose variables we try to constrain, and hence well
beyond predictability limits. A possible way out is to
rethink 4D-Var data assimilation by constraining the
data at the end time of the assimilation interval, though
the irreversibility of some processes such as diffusion
might make such a solution difficult to realize. But this
way, the latest data could be used for all datasets.

Colleagues have asked: “Why not assimilate the data
over short windows as time progresses; is that not the
same and simpler than a long window?”’ Not necessarily.
Consider a situation where winds aloft evolve with time
because of a propagating low-level cold outflow, and that
the cold air is not directly observed. If successive assimi-
lation windows are used, assimilation systems have the
choice of directly adjusting the wind or adjusting tem-
perature, among others. If the time required for the at-
mosphere to adjust to a temperature change is longer than
the assimilation window, changing temperatures will be
less favored by the minimization algorithm than a direct
change in the winds. In addition, the consistently changing
wind may be interpreted as unreliable data and given
lower weights as a result. In a one window situation, the
assimilation system must contend with the wind acceler-
ation and find a physically compatible cause for it; the
model will then be better constrained. This situation is less
likely at the synoptic scale where measurements are more
plentiful and most fields are better constrained together
via hydrostatic balance and geostrophic approximation.
This is not the case at the mesoscale where measurements
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are very sparse for temperature and humidity in particu-
lar. In such situations, using long assimilation windows
will yield different, and hopefully better, results.

6. Review

Except for errors in low-level moisture and soil
properties, most initial condition errors in one variable
propagate rapidly to other variables, allowing them to
be detected by a variety of instruments and possibly to
be corrected by data assimilation. Different types of
errors will have different effects on forecast accuracy. In
parallel, the usability of the information from various
instruments for data assimilation purposes depends on
the strength of the signal caused by the initial condition
error and the linearity of the model’s response to that
error. Using initial condition errors compatible with
today’s accuracy in model initializations, it was found
that uncertainties in midlevel moisture caused the great-
est uncertainties in forecasts. For mesoscale forecasts
exceeding 6 h, the uncertainty in all other variables had
a comparable effect on forecast accuracy; for forecasts
of up to a few hours, uncertainties in low-level tem-
peratures, midlevel temperatures, low-level moisture,
and midlevel winds stood out as the greatest cause of
forecast uncertainty after midlevel moisture.

To constrain model variables with data, one would like
to assimilate data for a long enough interval to constrain
sluggish large-scale patterns while not reaching the pre-
dictability limits for small-scale patterns. At the 4-km
resolution of our simulation, it was found that pre-
dictability imposed limits on the assimilation interval that
are different for different model variables, condensates
being harder to assimilate than other variables for long
time periods. If one assumes a reasonable though debat-
able threshold based on the nonlinearity of the response
to perturbations (NLI = 0.5), one finds that winds, tem-
perature, and humidity can be assimilated for 90 min, but
precipitation and cloud data are limited to 30-45 and 15—
30 min, respectively. An optimal assimilation must hence
be done over different assimilation intervals for different
datasets, and that requires adjusting the approach used
to fit model fields to observations. This includes dimin-
ishing the weight of unpredictable observations in the
cost function J, as well as reformulating 4D-Var to
constrain the model fields at the end of the assimilation
interval rather than at its beginning.

All the conclusions above are based on a well-
functioning data assimilation system, error-free infor-
mation on model variables, and a perfect model. The
numbers quoted in this paper are hence best-case esti-
mates. Real data with their measurement errors and
sometimes indirect link to model variables add another
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level of complications that are dealt in Part II (Fabry
2010).
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