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ABSTRACT

Data assimilation is used among other things to constrain the initial conditions of weather forecasting

models by fitting the model fields to observations made over a certain time interval. In particular, it tries to tie

incomplete data with model constraints to detect and correct for initial condition errors. This is possible only if

initial condition errors leave their signature on the data assimilated and if the model is capable of faithfully

reproducing such signatures. Using simulations of the evolution of convective storms in the Great Plains over

an active 6-day period, the propagation of initial condition errors to other variables as well as their effect on

the accuracy of the forecasts were investigated. Increasing the assimilation time window boosts the ability of

assimilation systems to detect a variety of initial condition errors; however, limits to the predictability of

convective events impose a maximum assimilation period that is a function of the type of measurements

assimilated as well as of the type of errors one tries to correct for. These findings are then used to suggest

changes in assimilation approaches to take into account the different predictability times of the model fields

constrained by assimilation.

1. Perspective, paradigm, and plan

‘‘There are too many types of data, too many new ones

appearing every year, and there are too few people to

work on their assimilation!’’ This outcry has been heard

many times from data assimilation researchers, in par-

ticular from those working at the mesoscale. And it

provided one of the initial impetuses for this work.

Could there be a way to prioritize data assimilation ef-

forts? On what basis? To approach this problem, one is

required to think about data assimilation in a more

conceptual way than usual. In particular, in this work,

a greater emphasis will be put on the nature and char-

acteristics of the data to be assimilated or of the model

fields to be constrained.

Data assimilation is explicitly designed to constrain

model variables with noisy measurements. But for data

assimilation to succeed, three additional conditions

must be met well enough. First, the difference between

the assumed atmospheric state x9 and the true atmo-

spheric state x must result in a measurable difference

between what the true observations y9 would be with an

atmospheric state x9 and the true observations y. In

the absence of an observational signal, data assimilation

will fail. Second, given an atmospheric state x, a model

can reproduce the true observations y and their time

evolution. If the model-generated observations H(x)

cannot faithfully replicate the measured fields y, pro-

viding correct observations to the assimilation system

will only lead to an inaccurate initialization of the

model. Failure to reproduce observations may come

from both an inability to predict the atmospheric state

and from an inaccurate observation operator. Third, the

data assimilation system can use the difference between
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the simulated observations H(x9) and the true observa-

tions y to adjust the model state from x9 to x. This is

a challenging undertaking given that the problem has

a very large number of dimensions, and the process re-

lies heavily on the ability of the data assimilation system

to adjust the model state x9 in the right direction in an

attempt to get to the true atmospheric state x. The

presence of a signal in data, an accurate model, and an

optimally functioning data assimilation system are all

required to make data assimilation succeed.

In response to the need to constrain the initial condi-

tions of forecasting models, several data assimilation

approaches were developed. Two somewhat different

situations can be distinguished. In one case, enough data

are available to constrain all variables more or less di-

rectly without having to rely on the time evolution of the

weather events to close the system. Assimilation methods

such as the three-dimensional variational data assimila-

tion (3D-Var; Kalnay 2003, and references therein), or

when one uses four-dimensional variational data assim-

ilation (4D-Var) mainly to constrain the model at the

precise time the observation was made, are based on this

paradigm. In the other case, data are available to con-

strain only some of the variables, and the remaining

ones are constrained using the model’s ability to sim-

ulate them to be compatible with the time evolution of

available observations. Methods such as 4D-Var (e.g.,

Talagrand 1997) are designed to handle such situations.

For mesoscale forecasting, the second scenario gener-

ally applies: balloon soundings and other measurements

of all model fields throughout the atmosphere are sparse

in space and time; one must hence rely on the remote

sensing of the time evolution of some of the fields to fill

the gaps. The discussion to follow assumes the latter,

with the emphasis being put on the forecasting of sum-

mertime convective weather.

If observations in a few variables are to gradually

constrain the initial conditions of all variables, there must

be ways to link the unobserved variables to the observed

ones. Specifically, a change or an error in any unob-

served variable must result in a mismatch between ob-

served variables and their simulated value; this must

occur within the duration of the assimilation interval

during which observations at two or more times are used

to constrain the model before a forecast is made. And

that mismatch must be large enough to exceed measure-

ment noise. This imposes a minimum assimilation in-

terval, one that may depend on the field to be constrained

through model dynamics. For example, some errors in

unobserved variables may rapidly transfer to observed

variables, while others may not. If a perturbation in, say,

humidity, propagates quickly to other variables such as

cloud and precipitation content, then its effect can be

detected by assimilating the data from a variety of in-

struments over a short period. However, if the pertur-

bation remains essentially in moisture form for a long

period, then unless very long data assimilation intervals

are used, it can only be detected by instruments that

actually measure a quantity directly related to moisture.

To complicate matters, the pace at which these errors

move from one field to another is also a function of

scale. Small-scale features evolve rapidly, while large-

scale patterns evolve slowly. For a forecast to be as

accurate as possible for a long time, large-scale patterns

must be well determined since they are the ones with

the longest time of predictability. Consequently, the

assimilation interval must be long enough to permit the

detection of the slowest-evolving errors of the largest

modeled patterns. If one optimistically assumes that

patterns larger than 500 km are well constrained by

upper-air synoptic observations, and that 500-km pat-

terns have a lifetime of about 12 h (e.g., Lorenz 1969;

Zhang et al. 2007), then one must assimilate data for

a significant fraction of that time to observe an evolu-

tion in 500-km-scale patterns sufficient to constrain

unobserved fields at that scale.

But for small-scale features, a long interval may be

inadequate. Much like the speed of evolution, the time

of predictability is also a function of scale as well as of

model accuracy. If the model is incapable of forecasting

the evolution of intense small-scale patterns over the

duration of the assimilation interval, trying to assimilate

such data over the assimilation interval is a counterpro-

ductive exercise. To illustrate this, let us assume that

M(x) is the current model state, and that M(x 1 Dx) is the

truth one seeks (Fig. 1). To minimize the mismatch be-

tween the model state at the beginning of the assimilation

interval and the information provided by observations,

one generally first tries to find in what direction should x

be pushed by computing ›M/›x. In the example of Fig. 1,

moving the modeled initial conditions from x toward

x 1 kDx, 0 , k , 1, improves the match with the true

initial conditions x 1 Dx. But beyond the time of predict-

ability, there will be many circumstances where such

a move will worsen the fit with observations; in Fig. 1,

these are illustrated as the contradictory regions. In

these regions, the assimilation system will actually find

it advantageous to move away from x 1 Dx in order to

improve the fit with observations. As time progresses

and k[M(x 1 Dx) 2 M(x)] and k[Dx ›M/›x], illustrated

here as [M(x 1 kDx) 2 M(x)], become completely de-

correlated, there will be a 50% chance that the assimila-

tion of new data moves the initial conditions away from

the correct solution.

It is not immediately clear if all model fields and

datasets are affected identically by these considerations.

JANUARY 2010 F A B R Y A N D S U N 243

Unauthenticated | Downloaded 06/19/23 04:52 PM UTC



Some fields such as cloud water evolve in more complex

ways, especially via the release of convective instabilities,

as a result of which nonlinearities build up faster at

convective scales than at synoptic scales (Hohenegger

and Schär 2007). More fundamentally, it has not been

quantified how easily and clearly one gets a signal of an

error in one field by observing other fields. For example,

the evolution of some fields such as winds and tempera-

ture are dynamically coupled, but no such coupling exists

for water vapor amounts. An additional confounding ef-

fect is the sometimes complex or indirect link between

observations and model fields. Finally, errors in some

fields may have greater impacts on forecast quality than

others. All these factors influence the performance of data

assimilation systems and should affect the choices of ap-

proaches and observed variables used in assimilation. Yet

at present, computing resource and data availability con-

siderations seem to be the main factors taken into account.

Additional factors to bear in mind should include: Based

on physical considerations, what data should be assimi-

lated, and for how long? Are there datasets that provide

more or better information or do they target fields or re-

gions in the atmosphere whose uncertainty has a greater

impact on the final forecasts? To answer these questions,

two broad topics must be investigated. One is related with

the propagation of initial condition errors from one vari-

able to the next: How well can one detect errors in one

field by observing the time evolution of another? How

does predictability affect the assimilation period to be used

for different fields? Is the resulting assimilation period

sufficient? And in any case, which initial condition error(s)

cause the worst forecasts and should be detected in pri-

ority? This paper will provide some answers to these

questions. The second set of issues deals with the ability of

instruments to extract the wanted signal. What are dif-

ferent instruments measuring and how well? How are their

data affected by the issues discussed above? Is the wanted

signal detectable amidst measurement noise? Part II

(Fabry 2010) will consider these questions.

The data assimilation community has certainly recog-

nized the problems of model error and atmospheric

predictability in general and dealt with them by designing

a data assimilation system suitable for specific applica-

tions. For example, a 6–12-h window was used for large-

scale data assimilation (Rabier et al. 2000; Zou and Kuo

1996) while a window as small as 12 min was used for the

assimilation of convective-scale data assimilation using

radar observations (Sun 2005). The incremental data as-

similation approach was introduced by Courtier et al.

(1994) to handle the issue of the nonlinear growth of

model errors. Various other approaches were proposed

to deal with model errors in data assimilation systems

(e.g., Derber 1989; Zupanski 1997; Bennett et al. 1996).

Finally, Trémolet (2006) proposed a weak-constraint

4D-Var in which subwindows were implemented and

the model was used as a strong constraint only in each

subwindow. In this paper, we do not intend to develop

a methodology to treat the model errors, but rather to

take a step back to examine how the forecast errors

propagate with time and from one variable to another,

with the motivation that the findings can provide guid-

ance for the design of future data assimilation systems

and the choice of observations to be assimilated.

The approach used in this work is as follows. First, the

impact of different initial condition errors is investigated.

Some types of errors may result in large forecast errors,

and are therefore more important to detect. Others may

cause limited forecasts errors, at least over some time

scales, and if they may not be ignored, they should be

deemphasized. Next, one must look at the properties

of the transfer of the errors from one variable to an-

other. These properties include the strength and speed

of the interactions between variables, as well as how

FIG. 1. Schematic illustration of the trajectory in phase space of

three model runs M starting with three different initial conditions: x

the original initial conditions, x 1 Dx the initial conditions that

would minimize the errors with respect to observations, and x 1

kDx. The latter represents initial conditions that an algorithm try-

ing to minimize the difference between M(x) and M(x 1 Dx) might

try in an attempt to evaluate whether moving the initial conditions

from x toward x 1 Dx improves the fit with observations. Three

regimes can be observed: 1) a linear regime, where M(x 1 kDx) is

k/(1 2 k) closer to M(x) than to M(x 1 Dx), such a regime makes it

easy for error minimization algorithms to adjust initial conditions

from x to x 1 Dx; 2) a nonlinear regime, where M(x 1 kDx) is not

k/(1 2 k) closer to M(x) than to M(x 1 Dx), such a regime makes

it harder for error minimization algorithms to adjust initial condi-

tions from x to x 1 Dx; 3) a contradictory regime, a special case of

the nonlinear regime, where changing initial conditions from x to

x 1 kDx, i.e., closer to the x 1 Dx that minimizes the difference with

observations, actually worsens the fit between M and M(x 1 Dx),

possibly misleading the minimization algorithm to go away from

the right answer.
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predictability issues affect our ability to use that infor-

mation in the context of data assimilation. This exercise

will allow us to determine which field(s) should be con-

strained in priority as well as provide some hints as how to

best assimilate data. Finally, we will reflect on the im-

plications of the results on data assimilation, especially at

the mesoscale. In this work, we chose to restrict the focus

on data assimilation considerations and not on storm

dynamics questions even though the questions asked and

approach used are conducive to both types of work.

2. Data generation

First, an appropriate dataset must be obtained to help

answer our questions. For this project, knowledge as

complete as possible of the entire system is needed. This

alone rules out using true but incomplete atmospheric

measurements and calls for a modeling-based experiment.

We hence resort to an identical twin experiment (Daley

1991). First, a series of plausible convective events is

simulated. These control runs will constitute ‘‘the truth.’’

Then, initial conditions are perturbed by plausible errors,

and these are used to generate ‘‘the forecasts’’ that will be

compared with the truth. These forecasts will have errors

whose magnitude can be evaluated as a function of the

type of errors in the initial conditions. These runs can then

also be used to study the transfer of initial condition errors,

as well as to simulate measurements by different sensors.

a. Model, domain, and period used

To perform this numerical experiment, a significant

number of plausible convective events needed to be

simulated. The tool used was the Advanced Research

Weather Research and Forecasting (WRF) model, ver-

sion 2.2 (Skamarock et al. 2005), with Thompson et al.

(2004) microphysics, the Yonsei University PBL, the ra-

diation scheme following Mlawer et al. (1997) for the

longwave and the approach used by Dudhia (1989) for

the shortwave radiation, and the Noah land surface

model (Chen and Dudhia 2001). The domain covered

a 1600 km 3 1600 km area centered on the Great Plains

similar to the one used by Xiao and Sun (2007). The

model runs have a 4-km resolution in the horizontal and

28 vertical levels. The choice of these parameters was

dictated by the need of having enough physically plau-

sible simulations to have statistical significance without

making the project too large to be completed.

To add to the realism, the runs were initialized using

analyses from actual events that occurred in the Great

Plains between 10 and 16 June 2002. This period was par-

ticularly rich in convective events: in the center of the do-

main, where the International H2O Project (IHOP_2002)

field experiment was taking place (Weckwerth et al.

2004), a large variety of squall lines and multicell storms

raged, having a variety of initiation mechanisms (Wilson

and Roberts 2006); in addition, the region was swept by

a large mesoscale convective system and more storms

were triggered outside of the IHOP_2002 domain next

to the Gulf Coast and near the foothills of Colorado and

New Mexico. The net result is that in a short period of

time, a microcosm of convective events was observed

and large amounts of precipitation were recorded in the

domain and simulated by the control runs. Note that the

rainfall amounts shown in Fig. 2 were accumulated over

the sixteen 12-h control runs described below.

b. The model runs

In total, 16 sets of runs were done in this work covering

the period between 10 and 16 June 2002, one every 9 h.

Each set of runs starts with a 3-h run initialized by the

analysis valid at T 2 3 h made by the National Centers

for Environmental Prediction (NCEP) for its Eta model

(Fig. 3). The goal of this run is to spin up the dynamics

and generate believable fields down to the model reso-

lution. The resulting fields produced at time T are then

used as initial conditions to start our 12-h control run that

will act as our truth. These initial conditions were then

perturbed to simulate 10 different types of initializa-

tion errors, and each set of these modified initial condi-

tions was used as a starting point to what will be referred

to as a perturbed run. Details on the nature of these

FIG. 2. Simulation domain and model rainfall accumulation of the

16 control runs used in this study.
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perturbations will follow in section 2c. Outputs from the

control and the perturbed runs are available every 15 min

up to T 1 90 min and every hour between T 1 2 h and

T 1 12 h. In addition, for each 12-h perturbed run, a 3-h

run was done with 1/8th of the perturbation size used in

the 12-h run. These reduced perturbation runs were used

to test the linearity and predictability of the forecast er-

rors from the perturbed runs.

c. Initial condition perturbations

There are many possible ways one can perturb initial

fields. In this work, we have chosen to perturb individual

fields to an extent that is comparable with the un-

certainty with which these fields are generally known.

Because our goal is to estimate the ability of different

sensors to detect reasonable initialization errors, per-

turbing initial fields in a way that is comparable to our lack

of knowledge of these fields seemed like a natural choice.

The choice of perturbing one field at a time was one of

convenience, but it also allowed us to evaluate the impact

of the uncertainty in each field on the quality of the

forecast. However, we could not investigate the effect of

possible interactions between fields, which can be impor-

tant especially if the errors between fields are correlated.

Five sets of fields were perturbed: winds, temperature,

humidity, condensates (i.e., clouds and precipitation),

and soil moisture as a proxy for surface properties. But

both the processes by which forecast uncertainties grow

and the ability of different instruments to measure at-

mospheric fields also depend on altitude. We then settled

on 10 different types of perturbations: low-level winds,

midlevel winds, high-level winds, low-level temperatures,

midlevel temperatures, high-level temperature, low-level

moisture, midlevel moisture, whole-atmosphere conden-

sates, and soil moisture at all depths.

A first challenge was to find estimates of the uncer-

tainties in our knowledge of these fields. This implied

not only determining the magnitude of the uncertainties,

but also the correlation structure of these fields in the

horizontal and the vertical. For many fields, at least one

reference was found on which to base our perturbations:

the spatial structure of mid- and high-level temperatures

and winds were well characterized by Nastrom and Gage

(1985); low-level temperature and humidity structure

were measured by Fabry (2006) and Lenschow and Sun

(2007), the latter also describing the scale-dependence

of low-level winds. But for several others, information is

extremely limited. For condensates, we used the spatial

structure data of drop size distribution uncertainty from

G.W. Lee (2006, personal communication). We however

failed to find useful information on the magnitude of

the uncertainty in low-level winds and on the spatial

properties of midlevel humidity and soil moisture. For

those, we had to make reasonable guesses. Each set of

perturbations was generated by filtering a Gaussian-

distributed noise to make its power spectra follow the

curves in Fig. 4; the result was then scaled in such a way

that the standard deviation s of the resulting perturba-

tion matched the values plotted on the same figure.

While information was found on the horizontal struc-

ture of different fields, we were less lucky with their ver-

tical structure. We expect the vertical correlation of the

small-scale structures in these fields to be high, but found

no quantitative information. The solution adopted was to

assume perfect correlation of the errors in the vertical, and

the perturbations obtained above were multiplied by

a shaping function f (h) such that

f (h) 5 cos2 p

.35
(1� h)

h i
, for .825 # h # 1, for low-level perturbations;

f (h) 5 cos2 p

.35
(.675� h)

h i
, for .5 # h # .85, for mid-level perturbations;

f (h) 5 cos2 p

.35
(.325� h)

h i
, for .15 # h # .5, for high-level perturbations; and

f (h) 5 1, for whole-atmosphere or whole-soil perturbations, (1)

FIG. 3. Timeline of the initialization and outputs of the 16 control

runs and the associated perturbed runs. Vertical lines represent

times for which a model output was obtained.
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where h is the Eta level in the WRF model defined by

h 5 (P 2 Ptop)/(Po 2 Ptop), with P being the pressure at

a given level, Po is the surface pressure in the same

column, and Ptop is the pressure at the top of the model,

set at 5 kPa. These shaping functions confine the low-

level perturbations to the bottom 1.5 km of the atmo-

sphere, the midlevel perturbations to the bottom half of

the free troposphere away from the boundary layer, and

the high-level perturbations to the top half of the free

troposphere.

Hence, for each of the perturbed runs, the field to be

perturbed was modified by adding the correlated noise

specified above and in Fig. 4, and weighted by the shaping

function in (1). This perturbation was made directly on

the model field itself without the use of the WRF data

assimilation system. This was done to eliminate any con-

straints and any possible modification that a data assi-

milation system might set. The WRF model reacted

reasonably well to these forced perturbations, except

for the temperature ones. For these, we adjusted the

spacing between geopotential levels to account for the

fractional change in temperature as well as modified

the surface pressure to minimize the acoustic waves

and Brunt–Väisälä oscillations that were triggered by

these perturbations.

3. Forecast errors with different perturbations

a. Defining a unified model error

Our next task was to define an error equation to char-

acterize model errors in winds, temperature, humidity,

and precipitation. Ideally, one would like to find some

reasonable equivalence between the magnitudes of the

errors from each field. A great starting point is provided

by Talagrand (1981) and Ehrendorfer and Errico (1995)

who studied the energy difference between two similar

model states, one at rest and one perturbed, and obtained:

E 5
1

2

ð
D

Du2 1 Dy2 1
c

p

T
r

DT2 1 RT
r

Dp
s

p
r

� �2
" #

dD, (2)

where the differences in zonal wind Du and meridional

wind Dy and the differences in temperature DT and in

surface pressure Dps are combined with the specific heat

at constant pressure cp, the gas constant R for dry air,

a reference temperature Tr, and a reference pressure pr,

integrated over the whole domain D, to yield the dif-

ference in the energy E between two model states.

Equation (2) is useful for two reasons. First, it offers

a common ‘‘currency,’’ energy, to gauge the equivalence

between errors. Second, it proposes a framework and

a method to compare the effect of differences in wind

and of differences in heat. With it, two error terms can

be defined, the kinetic energy difference (KED) and the

thermal energy difference (TED) between states:

KED 5
1

2

ð

D

(Du2 1 Dy2) dD (3)

and

TED 5
c

p

2T
r

ð
D

DT2 dD. (4)

Following Ehrendorfer and Errico (1995), Tr 5 270 K

was used. In subsequent work, Ehrendorfer et al. (1999)

also derived an error term for the latent energy differ-

ence (LED) that we also used:

LED 5
L2

2c
p
T

r

ð
D

Dr2
y dD, (5)

with L being the latent heat of vaporization and Dry

being the change in the vapor mixing ratio.

It proved difficult to find an energy equivalence for

differences in condensates that was compatible with the

framework established by Talagrand (1981). In the end,

we chose to use the potential energy of hydrometeors

as our metric, on the grounds that the drag caused by

falling raindrops would result in the transfer of the

potential energy of falling hydrometeors into kinetic

energy of air. Hence, the energy differences due to con-

densates (CED) was set to

FIG. 4. Power spectra and magnitude of the different perturbations

introduced in the initial conditions of the perturbed runs.
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CED 5 g

ð

D

hjDr
r
1 Dr

s
1 Dr

g
jdD, (6)

with g being the acceleration due to gravity, h being

height, and Drr, Drs, and Drg being the changes in the

mixing ratios of rain, snow, and graupel, respectively.

Note that since liquid and ice clouds do not fall signifi-

cantly, they were excluded from the calculation. The re-

sulting energy is probably overestimated compared to the

others, but no convincing rationale was found to reduce it.

Finally, most of the analysis of model errors will be done

using the sum of energy differences (SED), defined as

SED 5 KED 1 TED 1 LED 1 CED. (7)

The integration of model energy differences was limited

to the troposphere, and all results are presented in terms

of energy differences per unit mass of dry air.

b. Average model errors versus forecast time

The control and perturbed runs were first used to

quantify the forecast errors arising from the different

types of perturbations. Originally, we simply wanted to

use these errors to weigh the ability of different sensors to

detect a wrong forecast with the magnitude of the forecast

errors resulting from each given scenario. But a quick

look at forecast errors proved to be interesting per se.

Figure 5 shows the SED per unit mass of dry air as

a function of time for different types of perturbations.

There is much information in Fig. 5, but two points are

particularly relevant in the context of this work. First,

the uncertainty in midlevel humidity appears to be

dominating all other uncertainties, particularly at short

forecast times. Initially, the possibility that the humidity

perturbations used in our simulations were too large was

considered. To verify this hypothesis, we complemented

the long runs where a 620% uncertainty in humidity

(or a dewpoint uncertainty of nearly 38C over 500-km

scales) was assumed with an additional set of 1.5-h runs

where a 610% uncertainty in humidity (or 1.58C in dew-

points) was assumed. Even in this scenario, midlevel

humidity again proved to be the main source of error in

mesoscale forecasts.

A second point of interest from Fig. 5 is that it shows

that the relative magnitude of errors varies significantly

FIG. 5. SED averaged over all 16 runs between the perturbed and

the control runs as a function of the forecast time for the different

types of initial condition errors simulated. Note the unusual para-

bolic y axis. In the legend, LL stands for low-level, ML stands for

midlevel, and HL stands for high-level.

FIG. 6. Share of the SED among its different components [KED

(white), TED (black), LED (gray), and CED (stripes)] (top) 3 h

and (bottom) 15 min after the initial perturbations. Each bar

graph is for a different type of perturbations. (from left to right)

Low-level winds (LW), midlevel winds (MW), high-level winds

(HW), low-level temperatures (LT), midlevel temperatures

(MT), high-level temperatures (HT), low-level humidity (LH),

midlevel humidity (MH), condensates (C), and soil moisture

(SM) perturbations.
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with the forecast duration. At T 5 12 h, all but the runs

with the midlevel humidity perturbations yield compa-

rable SED. But for forecasts of a few hours, several

groups can be identified: at the top thrones the midlevel

humidity perturbation runs; a factor of 2–3 below, one

can find the low-level temperature, midlevel tempera-

ture, low-level humidity, and midlevel wind runs; an-

other factor of 2 below sit the condensates, low- and

high-level winds, and high-level temperature runs; an-

other factor of 5 below, the soil moisture runs closes the

march. Consequently, depending on the forecast hori-

zon of interest, the attention one should pay to different

fields ought to be different: while the uncertainty on all

model variables should be reduced nearly equally to

improve long mesoscale forecasts, a more targeted ap-

proach focusing on humidity and temperature at low and

midlevels as well as on midlevel winds should yield the

best dividends for shorter forecasts.

Figure 6 shows the share of energy differences among

the different terms listed in (7). By T 5 3 h, almost all

memory of the field perturbed is lost, and all runs show

similar proportions of errors in temperature, winds,

humidity, and precipitation. Since these proportions are

similar, selecting another measure of forecast error than

our SED would yield similar results as those shown in

Fig. 5 beyond 3 h.

As can be expected, there is considerable variability

in the magnitude of the perturbations (Fig. 7). Much of the

observed variability is correlated with precipitation, in line

with ideas suggesting that moist convective instability is

the main growth mechanism of errors initially (e.g., Zhang

et al. 2007). Some of the variability can also be explained

by contrasting daytime and nighttime runs (Fig. 8). But

FIG. 7. Sum of energy differences at T 5 3 h as a function of the

domain-averaged rainfall accumulation that occurred in the first

3 h of the run. Six of the 16 times were chosen for this plot to make

the figure less busy; runs were sorted by average rainfall, and every

third case is plotted beginning with the set of runs producing the

greatest average precipitation. The day (DD) in June 2002 and the

hour (HH) in local daylight time (LDT) when the runs started (T 5 0)

are shown next to each set of points using a DD_HH format.

FIG. 8. SED between the perturbed and the control runs as

a function of forecast time for runs starting during the (top) day and

(bottom) night. Although there are significant differences in the

magnitude of errors between daytime and nighttime runs, the rel-

ative magnitude of errors between the different types of initial

condition perturbations as well as the distribution of the forecast

errors among the four components considered (KED, TED, LED,

and CED) remain mostly unchanged.
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somewhat to our surprise, the pecking order of pertur-

bations was not changed significantly between day and

night, and only small relative enhancements were ob-

served during the day for boundary layer–based per-

turbations. This can also be observed on a run-by-run

basis (Fig. 7). Such a result gives us confidence that the

findings presented here have robustness and should

probably apply to other times and regions provided

that the atmospheric conditions are conducive to deep

convection.

Perturbations, especially the rapidly growing ones,

quickly propagate to other variables. For most pertur-

bations, already after 15 min (bottom of Fig. 6), a sig-

nificant share of the original perturbation has been

redistributed. This implies that if the assimilation period

is long enough, most types of instruments have an op-

portunity to observe a signal resulting from the pertur-

bations. But a few perturbations, like those in low-level

humidity, have slow starts, and they will be nearly im-

possible to detect using short assimilation periods by

instruments incapable of sensing the quantity perturbed.

In the case of low-level humidity perturbations, the slow

start in their transformation is associated with the time

required to advect them to higher levels where they will

then affect cloud and subsequently precipitation for-

mation. It is possible that this delayed transfer of the

low-level humidity perturbations was exacerbated by

the slow, fat updrafts generated by 4-km resolution

model runs; the extent to which the slow transformation

is physical and not dependent on model resolution

should be further studied.

In all cases, after a relatively short time, all pertur-

bations in one variable will provide measurable signals

on other variables, but how useful a signal?

4. Predictability of the response to perturbations

Many data assimilation systems work best if a pertur-

bation Dx to the model state xo results in a linear re-

sponse of the model:

M(x
o

1 Dx) ’ M(x
o
) 1 Dx

›M

›x

� �

x
o

, (8)

where M(x) represents the operations executed by the

weather prediction model on the initial model state x. If

(8) is true, then a perturbation that is a fraction k of the

original one should trigger a response k times as intense

from the model:

M(x
o

1 kDx)�M(x
o
) ’ k[M(x

o
1 Dx)�M(x

o
)]. (9)

This kind of behavior is expected in models for small

enough perturbations and is generally valid for a short

enough time much smaller than the time of pre-

dictability. This was illustrated in Fig. 1 as the ‘‘linear

regime.’’ Hence, for each variable y that is a subset of the

model state x, one can define a nonlinearity index (NLI)

such that

NLI(y, T, Dx) 5

ð

D

[y(x
o

1 kDx)� y(x
o
)]� k[y(x

o
1 Dx)� y(x

o
)]

�� ��dD
ð

D

y(x
o

1 kDx)� y(x
o
)

�� �� dD

. (10)

The NLI integrated over the domain D will depend on

the variable y considered, the time of integration T,

and the perturbations Dx introduced in the model initial

conditions. As long as the model is in its linear stage, the

two terms in the numerator should cancel each other

because of (9), and the NLI should be near 0. As the in-

tegration progresses, model evolution will become in-

creasingly nonlinear, and the two terms in the numerator

will fail to cancel each other, resulting in an increase in

the NLI. It also turns out that after a long enough time T,

the smaller perturbation has generally grown significantly

more than the larger one, and the second term of the

numerator becomes much smaller than the first as well as

decorrelated from it. As a result, the NLI tends to 1.

The NLI is hence a useful bulk quantity to measure

the nonlinearity in the response of the model to a per-

turbation after a certain time. It is tied with predict-

ability, but somewhat loosely. Of greater relevance to

this work is how good an indicator it is of the potential

performance of data assimilation. If NLI 5 0, the min-

imization of the cost function that measures the mis-

match between true observations and model-generated

observations can be done easily: adjoints and minimi-

zation routines can work efficiently, and observation

errors are the only difficulty that a minimization algo-

rithm encounters. As the NLI increases, even with perfect

observations, the ‘‘topography’’ of the cost function be-

comes more complicated: complex valleys and multiple
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minima start to appear, and minimizations can be done

less efficiently.

In terms of its effect on data assimilation, an easier

quantity to grasp than the NLI is the relative frequency

of the contradictory regions discussed in Fig. 1. Under

these circumstances, by attempting to minimize the dif-

ference between simulated and measured observations,

data assimilation systems will be lured away from the

correct answer instead of toward it. We can define

a contradictory information index (CII) that measures

the ratio of contradictory regions to that of noncon-

tradictory ones:

CII(y, T, Dx) 5

ð

D

sgn[y(x
o

1 kDx)� y(x
o
)]� sgn[y(x

o
1 Dx)� y(x

o
)]

�� �� dD
ð

D

sgn[y(x
o

1 kDx)� y(x
o
)] 1 sgn[y(x

o
1 Dx)� y(x

o
)]

�� �� dD

, (11)

where

sgn(x) 5

1: x . 0

0: x 5 0

�1: x , 0

8<
: . (12)

If CII is 0, all data for which there is a signal pushes

toward the correct answer. When there are as many

points pulling away from the correct answer than there

are pushing toward it, CII is 1.

As illustrated in Fig. 3, two sets of perturbed runs were

done: 12-h-long ones with the full perturbations that we

analyzed in section 3, and 3-h-long ones with perturba-

tions a fraction k 5 1/8 of the original ones. By using

these two sets of perturbed runs in conjunction with (10)

and (11), one can study the linearity, or lack of, of the

perturbations from each model variable for each type of

perturbation as well as the importance of contradictory

information. Here, we will focus on the NLI and the CII

of each variable as a function of time, but averaged for all

perturbation scenarios and with a weight proportional to

the amplitude of the change in y:

NLI(v, T) 5

�
AllDx

y(x
o

1 Dx)� y(x
o
)

�� ��NLI(v, T, Dx)

�
AllDx

y(x
o

1 Dx)� y(x
o
)

�� �� ,

(13)

for the NLI and a similar equation for the CII. Since all

perturbations were defined based on current un-

certainties in initialization, they should be equiprobable,

and (13) can be used as a representative measure of the

nonlinearity of the response of specific variables in the

model to typical initialization errors. Only a systematic

study will tell how much nonlinear behavior the data

assimilation systems can tolerate for each variable. Here,

we chose to use two thresholds as signposts, NLI 5 0.5

as a ‘‘best before’’ threshold, and NLI 5 0.9 as a ‘‘chal-

lenging beyond’’ threshold.

The top of Fig. 9 shows the nonlinearity and contra-

dictory indices of different model variables. Two fami-

lies of variables can be identified. A first family whose

perturbations evolve less nonlinearly includes horizon-

tal winds, temperature, and humidity. The perturbations

in these variables cross the NLI 5 0.5 threshold in 90 min.

Condensates form the second family. Their perturba-

tions become nonlinear more rapidly, and the NLI 5 0.5

threshold is crossed in between 15 and 40 min while the

NLI 5 0.9 threshold is passed after 1–2 h. This is a result

of both the fact that clouds and precipitation often form

as a result of convection, a highly nonlinear smaller-

scale process, as well as because cloud and precipitation

amounts vary nonlinearly with changes in other fields.

For example, as total water amount increases, cloud

amounts will remain zero until saturation is reached;

beyond that point, it will grow at a steady rate until

precipitation starts to remove cloud by coalescence. The

overall outcome of this test is that condensates should be

much more difficult to assimilate over long periods than

other variables, and their assimilation over periods be-

yond an hour may be very difficult. CII results show

similar patterns, though the CII have much smaller

values than the NLI. Still, a modest CII of 0.11 implies

that for 10% of the model grid points where a signal of

an initial condition error can be detected, most mini-

mization algorithms will tend to degrade the solution

instead of improving it, even with perfect data and

a well-functioning assimilation system.

Larger-scale patterns evolve more slowly and are more

predictable. Furthermore, linearization approximations

become inaccurate first at smaller scales (e.g., Tanguay

et al. 1995). Consequently, smoothed patterns are often

more predictable than unsmoothed ones (e.g., Bellon and

Zawadzki 1994; Germann et al. 2006). By the same token,

smoothing model perturbations should decrease their

nonlinear behavior, making smoothed variables easier to

assimilate over longer periods. We chose to test this idea

by smoothing the control and perturbed model outputs
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over 100 km 3 100 km areas. The NLI and CII of

smoothed variables are shown in the bottom of Fig. 9. As

expected, smoothing decreased both indices. For winds,

temperature, and humidity, the smoothing doubled the

time taken until the NLI 5 0.5 threshold is crossed to

nearly 3 h. Unexpectedly, the gains for condensates

proved to be much more limited, even in relative terms.

Only 5 min was gained for liquid clouds, and 10 min for

rain and ice clouds. Smoothing can only be done if fields

of the variables to be smoothed are measured; ironically,

there are many more sensors measuring fields of con-

densates such as radars and satellite imagers than there

are sensors measuring fields of other variables. One may

also want to consider the benefit of assimilating point

measurements smoothed in time; the limited time reso-

lution with which model outputs were archived prevented

us from testing this idea. Another interesting result is that

smoothing model variables had a much smaller effect on

the CII than on the NLI. In fact, for short forecasts,

smoothing slightly increased the fraction of contradictory

information: as a result of smoothing, a larger fraction of

data points were affected by isolated pockets of strong

and highly nonlinear response associated with convection.

5. Consequences on data assimilation

Let us consider the results discussed previously and

how their consequences impact data assimilation. First,

an obvious observation: Fitting data beyond their time of

predictability has a negative impact. If a significant frac-

tion of the data pulls away from the correct answer as

indicated by higher CII values, it prevents assimilation

from having the desired effect. If not understood prop-

erly, the resulting reduced performance of the assim-

ilation may then possibly be attributed to the poorness

or worthlessness of data, and not to the fact that their

information has become unusable beyond a certain

assimilation interval. And after noticing that data do

not properly correct the model state, one might mis-

takenly assign low weight to the information provided by

FIG. 9. (left) Mean nonlinearity and (right) contradictory information indices as defined in (13) as a function of the

time (top) since the initial condition error for different model variables at the full model resolution and (bottom)

when fields are smoothed over 100 km 3 100 km regions. NLI and CII values are computed at times when model

outputs are available (see Fig. 3), and interpolated in between. The crosses at the NLI 5 0.5 and NLI 5 0.9 threshold

levels are simply markers to ease readability.
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measurements for the whole assimilation period. The

solution to this issue is to limit the assimilation interval

to a period short enough for the data to be predictable.

For example, if one finds that in actual fact data with

a NLI above 0.5 are more detrimental than beneficial to

the assimilation process, one comes to the conclusion

that the optimum assimilation interval must be dataset

dependent. In this example, using Fig. 9 as a guide, one

would assimilate up to 3 h of smoothed winds, temper-

ature, and humidity; 90 min of high-resolution winds,

temperature, and humidity; 30–45 min of precipitation

data; and 15–30 min of cloud data. Note again that this

assessment assumes a perfect model and error-free data.

In practice, these times may well be shorter. And they

may well be too short to allow for a proper monitoring of

the evolution of intermediate and large-scale patterns,

limiting our ability to initialize them properly in data

assimilation systems.

How should the approach used to constrain models

with data be modified to take into account limits im-

posed by predictability? A common data assimilation

approach is to use a cost function that measures the

mismatch between all observations within an assimila-

tion interval and model-simulated observations. Until

now, one used a single cost function that included mea-

surement errors and sometimes model error (Trémolet

2006), but did not explicitly include any consideration

on the predictability of different initial condition errors

and how it affects different variables. An approach

based on a single cost function can still be used, but the

FIG. 10. (left) Illustration of four data assimilation approaches. Horizontal arrows illustrate the time period over which different

datasets are being assimilated. (right) Comments on the strengths or weaknesses of these different approaches for case reanalysis or real-

time uses.
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minimization of the cost function ought to be designed in

a way that dampens or nullifies all the information

coming from unpredictable data. For example, data that

gradually becomes unusable beyond a certain time could

be given progressively lower weights on the basis of

predictability limits, even though their accuracy remains

unquestioned. This approach would take into account

the issue raised by Fig. 9. Whether these weights could

be chosen dynamically based on the weather situation or

not is an interesting open question.

Other suggested changes to data assimilation are more

fundamental. Consider our proposal to assimilate up to

3 h of smoothed winds, temperature, and humidity;

90 min of high-resolution winds, temperature, and hu-

midity; 30–45 min of precipitation data; and 15–30 min

of cloud data. Under current 4D-Var formalism, data

assimilation adjusts the atmospheric conditions at the

beginning of the assimilation interval based on the data

collected during the whole period (Fig. 10). For rean-

alysis purposes, this is fine. It is more problematic for

real-time use. If one wants to assimilate 3 h of smoothed

wind data together with 15–30 min of cloud data, then

that cloud data would have to be nearly 3 h old: current

cloud data is more than 2.5 h after the initial-condition

time whose variables we try to constrain, and hence well

beyond predictability limits. A possible way out is to

rethink 4D-Var data assimilation by constraining the

data at the end time of the assimilation interval, though

the irreversibility of some processes such as diffusion

might make such a solution difficult to realize. But this

way, the latest data could be used for all datasets.

Colleagues have asked: ‘‘Why not assimilate the data

over short windows as time progresses; is that not the

same and simpler than a long window?’’ Not necessarily.

Consider a situation where winds aloft evolve with time

because of a propagating low-level cold outflow, and that

the cold air is not directly observed. If successive assimi-

lation windows are used, assimilation systems have the

choice of directly adjusting the wind or adjusting tem-

perature, among others. If the time required for the at-

mosphere to adjust to a temperature change is longer than

the assimilation window, changing temperatures will be

less favored by the minimization algorithm than a direct

change in the winds. In addition, the consistently changing

wind may be interpreted as unreliable data and given

lower weights as a result. In a one window situation, the

assimilation system must contend with the wind acceler-

ation and find a physically compatible cause for it; the

model will then be better constrained. This situation is less

likely at the synoptic scale where measurements are more

plentiful and most fields are better constrained together

via hydrostatic balance and geostrophic approximation.

This is not the case at the mesoscale where measurements

are very sparse for temperature and humidity in particu-

lar. In such situations, using long assimilation windows

will yield different, and hopefully better, results.

6. Review

Except for errors in low-level moisture and soil

properties, most initial condition errors in one variable

propagate rapidly to other variables, allowing them to

be detected by a variety of instruments and possibly to

be corrected by data assimilation. Different types of

errors will have different effects on forecast accuracy. In

parallel, the usability of the information from various

instruments for data assimilation purposes depends on

the strength of the signal caused by the initial condition

error and the linearity of the model’s response to that

error. Using initial condition errors compatible with

today’s accuracy in model initializations, it was found

that uncertainties in midlevel moisture caused the great-

est uncertainties in forecasts. For mesoscale forecasts

exceeding 6 h, the uncertainty in all other variables had

a comparable effect on forecast accuracy; for forecasts

of up to a few hours, uncertainties in low-level tem-

peratures, midlevel temperatures, low-level moisture,

and midlevel winds stood out as the greatest cause of

forecast uncertainty after midlevel moisture.

To constrain model variables with data, one would like

to assimilate data for a long enough interval to constrain

sluggish large-scale patterns while not reaching the pre-

dictability limits for small-scale patterns. At the 4-km

resolution of our simulation, it was found that pre-

dictability imposed limits on the assimilation interval that

are different for different model variables, condensates

being harder to assimilate than other variables for long

time periods. If one assumes a reasonable though debat-

able threshold based on the nonlinearity of the response

to perturbations (NLI 5 0.5), one finds that winds, tem-

perature, and humidity can be assimilated for 90 min, but

precipitation and cloud data are limited to 30–45 and 15–

30 min, respectively. An optimal assimilation must hence

be done over different assimilation intervals for different

datasets, and that requires adjusting the approach used

to fit model fields to observations. This includes dimin-

ishing the weight of unpredictable observations in the

cost function J, as well as reformulating 4D-Var to

constrain the model fields at the end of the assimilation

interval rather than at its beginning.

All the conclusions above are based on a well-

functioning data assimilation system, error-free infor-

mation on model variables, and a perfect model. The

numbers quoted in this paper are hence best-case esti-

mates. Real data with their measurement errors and

sometimes indirect link to model variables add another
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level of complications that are dealt in Part II (Fabry

2010).
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Trémolet, Y., 2006: Accounting for an imperfect model in 4D-Var.

Quart. J. Roy. Meteor. Soc., 132, 2483–2504.

Weckwerth, T. M., and Coauthors, 2004: An overview of the In-

ternational H2O Project (IHOP_2002) and some preliminary

highlights. Bull. Amer. Meteor. Soc., 85, 253–277.

Wilson, J. W., and R. D. Roberts, 2006: Summary of convective

storm initiation and evolution during IHOP: Observational

and modeling perspective. Mon. Wea. Rev., 134, 23–47.

Xiao, Q., and J. Sun, 2007: Multiple radar data assimilation and

short-range quantitative precipitation forecasting of a squall

line observed during IHOP_2002. Mon. Wea. Rev., 135,

3381–3404.

Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007:

Mesoscale predictability of moist baroclinic waves: Convection-

permitting experiments and multistage error growth dynamics.

J. Atmos. Sci., 64, 3579–3594.

Zou, X., and Y.-H. Kuo, 1996: Rainfall assimilation through an

optimal control of initial and boundary conditions in a limited-

area mesoscale model. Mon. Wea. Rev., 124, 2859–2882.

Zupanski, D., 1997: A general weak constraint applicable to op-

erational 4DVAR data assimilation systems. Mon. Wea. Rev.,

125, 2274–2292.

JANUARY 2010 F A B R Y A N D S U N 255

Unauthenticated | Downloaded 06/19/23 04:52 PM UTC


