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Abstract

BERT achieved great success in Natural Language Processing (NLP). BERT models are

computationally expensive due to their model size with hundreds of millions of parameters

making them impractical to deploy to resource-constrained hardware platforms such as

mobile devices. One way to optimize these complex models is to utilize hardware-aware

neural architecture search (NAS). However, hardware-aware NAS needs to incorporate

hardware performance metrics, such as energy consumption. Although on-device

measurements provide accurate feedback, the overhead is huge. To address this problem,

we propose an energy modelling framework on the Hikey 970 ARM big.LITTLE CPU and

Mali GPU to predict the inference energy consumption of BERT models. We train energy

predictor models on BERT and MobileBERT design space. We evaluate our BERT energy

predictor’s ability to generalize to the DistilBERT and DynaBERT design space Combined

with the real accuracy values on the QNLI task, we evaluate our energy model’s ability to

predict Pareto-optimal front in the 2D accuracy-energy design space of DynaBERT models.

Our model correctly predicts 14 out of the 17 true Pareto-optimal models.
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Abrégé

BERT a obtenu un grand succès dans le traitement du langage naturel (NLP). Les modèles

BERT sont coûteux en calcul en raison de leur taille de modèle avec des centaines de

millions de paramètres, ce qui les rend peu pratiques à déployer sur des plates-formes

matérielles à ressources limitées telles que les appareils mobiles. Une façon d’optimiser ces

modèles complexes consiste à utiliser la recherche d’architecture neuronale (NAS) sensible

au matériel. Cependant, les NAS compatibles avec le matériel doivent intégrer des mesures

de performances matérielles, telles que la consommation d’énergie. Bien que les mesures

sur l’appareil fournissent des informations précises, les frais généraux sont énormes. Pour

résoudre ce problème, nous proposons un cadre de modélisation énergétique sur le

processeur Hikey 970 ARM big.LITTLE et le GPU Mali pour prédire la consommation

d’énergie d’inférence des modèles BERT. Nous formons des modèles de prédiction d’énergie

sur l’espace de conception BERT et MobileBERT. Nous évaluons la capacité de notre

prédicteur d’énergie BERT à se généraliser à l’espace de conception DistilBERT et

DynaBERT Combiné avec les valeurs de précision réelles sur la tâche QNLI, nous évaluons
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la capacité de notre modèle énergétique à prédire le front optimal de Pareto dans l’espace

de conception 2D précision-énergie des modèles DynaBERT. Notre modèle prédit

correctement 14 des 17 vrais modèles Pareto-optimaux.
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Chapter 1

Introduction

1.1 Deep Learning Models

Deep Neural Networks are now widely used to automate and solve complicated problems

in various tasks. More specifically, in the area of Natural Language Processing (NLP),

Transformers [4] have recently brought significant breakthroughs in many downstream tasks,

especially with the introduction of BERT [1]. BERT achieved state-of-the-art performance

on many common NLP tasks such as sentiment analysis and question and answering. In

addition, BERT has been integrated into the Google Search engine to better understand

queries.
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1.2 Deep Learning Models on Embedded Devices

In the era of Internet of Things (IoT), embedded systems can support various applications

in diverse domains: health, transportation, smart home, smart city, agriculture, education,

etc. [5]. Pushing machine learning applications from cloud-dependent towards local

processing provides many benefits: more reliability, lower latency, better privacy, and less

power consumption [6]. First, local processing is more reliable since it does not require an

Internet connection [7]. Second, locally generated data are not transmitted externally,

therefore preserving user privacy [8]. Since no data is being transmitted, the delay of

sending data to the cloud is avoided. Lastly, compared to cloud-based systems, algorithms

running on embedded systems consume lower power and energy, and therefore, cause lower

CO2 emission [9].

1.3 Challenges of Deploying BERT on Embedded

Devices

Despite the outstanding performance of Transformer-based models, such as BERT, the

explosive size and computation cost makes it impractical to deploy these models onto

resource-constrained devices, e.g., mobile devices. As an example, the BERT-base model

consists of 110M parameters while the BERT-Large consists of 340M parameters [1]. On

the other hand, embedded devices suffer from limited resources (energy, memory and
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low-processing power). A representative hardware platform of smartphones such as Hikey

970 has a RAM size of 6GB operating at 12V DC power. Deploying large language models

(BERT) in real-time applications on these battery-powered devices becomes a major

challenge.

1.4 Optimization Techniques for BERT on Embedded

Devices

There are outstanding research efforts proposed on optimizing and compressing BERT

models for deployment on resource-constrained devices. These techniques can be

categorized as : (1) pruning [10–14];(2) knowledge distillation [2, 15–20]; (3)

quantization [21–25];(4) efficient network design [26, 27]. Models proposed by these works

achieved competitive accuracy compared to the BERT-base model while significantly

improving its computation cost. However, given different hardware platforms and efficiency

constraints, designing specialized models to satisfy deployment constraints is

computationally expensive and time-consuming. The design process needs to be repeated

for each platform and hardware condition (battery condition, latency constraint), and the

designed model needs to be retrained. It becomes impractical to design BERT models for

each scenario [9].
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1.5 Hardware-aware NAS

Neural Architecture Search (NAS) [28] is an effective solution for finding a set of optimal

models. Taking into account hardware constraints (such as latency, power, energy, and

memory footprint) and using multi-objective optimization algorithms in the search process

gave rise to the sub-field of Hardware-aware NAS. A general NAS process contains 3 steps: (1)

define a search space; (2) use a search strategy to sample a candidate model from the search

space; (3) evaluate the candidate model and guide the search strategy based on the measured

performance. The last two steps repeat until convergence or until reaching specified search

steps. NAS has proven its ability to generate state-of-the-art models for Natural Language

Processing tasks [29]. However, NAS is very computationally expensive and time-consuming

due to the large design space and the training and evaluation of each candidate model.

Especially for large language models such as BERT, training from scratch can take many

GPU days. Therefore, it is important to find an efficient method to incorporate hardware

constraints into the search process. Prior works propose three ways to incorporate hardware

costs into NAS:

• Proxy Metrics [30, 31]: Use easy-to-obtain proxy metrics such as model size, and

FLOPs 1 to represent latency or energy consumption. However, proxy metrics cannot

guarantee a true representation. As an example, two models having the same number

of FLOPs do not necessarily have the same latency [32]. In addition, the number of
1Floating-point operations per second
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parameters or number of MACs are not good approximations for energy [33].

• On-device Measurement [34–37]: Use real-time measurements on the target device

during the evaluation of candidate models. This method provides accurate hardware

feedback, however, it significantly slows down the search process. The time required

for on-device measurements of a large design space is prohibitive [38]. As an example,

on-device energy measurement of a design space of 105 models would take 49 weeks on

the Hikey970 platform (i.e., a representative hardware platform for smartphones).

• Hardware Modeling [39–41]: Using prediction models eliminates the overhead of

real-time measurement. These methods are more efficient than on-device measurement

and more accurate than proxy metrics. However, prior works just target latency as

the hardware metric for BERT models. To the best of our knowledge, this is the first

work that targets energy consumption for BERT models on edge devices.

1.6 Energy Modeling

Energy consumption is a vital consideration for power-hungry BERT models executing on

edge devices. Mobile devices are battery-powered and therefore are constrained by finite

energy. Although there exist some research works on latency modelling or power modelling

techniques on edge devices [32, 39, 41–45], there’s limited work on energy modeling for

machine learning models. To the best of our knowledge, there’s no work proposed on
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energy modeling for BERT models on edge devices.

1.7 Thesis Statement

Hardware-aware NAS is a solution for finding a set of models that satisfies different hardware

constraints. However, as discussed above, taking energy consumption into consideration is

challenging due to the time cost of on-device measurement and accuracy. Building an energy

predictor model is the most feasible solution among the three. In this thesis, we focus on

the problem of building accurate energy predictor models for BERT inference on resource-

constrained devices.

We establish an energy measurement framework based on previous works and our

experiments. Our energy measurement framework takes 240s for obtaining measurement on

a candidate model. We develop DNN models to predict the inference energy consumption

of BERT models on the Hikey970 [46] CPU and GPU. We compare the mean absolute

percentage error (MAPE) of our predictor with other regression techniques. In addition,

since our predictor is designed to be used in Hardware-aware NAS, we compare the true

Pareto-optimal front and the predicted Pareto-optimal front based on the predicted energy

consumption and real accuracy data. We perform a case study on the DynaBERT design

space with 240 models, with an accuracy metric evaluated on the QNLI task from the

GLUE benchmark. We show that our model correctly predicts the models that are in the

true Pareto-optimal front line in the DynaBERT design space on CPU.
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1.8 Contribution

Our contributions are summarized in the following:

• Energy Measurement: We propose an energy measurement framework for obtaining

accurate and stable system-wide energy consumption of running BERT inference on

embedded devices such as Hikey970.

• Energy Predictor: We propose energy predictors for various configurations of

BERT-like models on the Hikey970 CPU and GPU. Prior works require 1800

measurements [32], our model uses 800 models to build the energy model, which is

55% less on-device measurements.

An extended abstract and poster based on this research have been accepted at the Edge

Intelligence Workshop 2022.

1.9 Thesis Organization

The thesis is organized as follows. We review past research efforts on energy modeling

techniques in Chapter 2. Chapter 3 covers the fundamental knowledge on BERT,

DistilBERT, and MobileBERT model architecture. In Chapter 4, we present our

methodology of energy measurement and modeling. Chapter 5 discusses our experiments

and results. In Chapter 6, we present a case study for NAS BERT (DynaBERT) [47].

Lastly, we discuss the future works in Chapter 7.
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Chapter 2

Related Work

Predicting energy consumption on CPU and GPU is challenging due to the complexity of

their hardware, memory hierarchies, and different parallelism schemes that they utilize. In

the following, we categorize past works on energy prediction based on the approaches. As

there’s limited work on energy consumption and due to the close relationship between energy

and power, we also review works focusing on power modeling. For each category of work,

we discuss the advantages, drawbacks, and limitations.

2.1 Proxy Metrics

Prior works use easy-to-obtain metrics to represent energy consumption in searching for

energy-efficient DNN models. Work by Song et al. [48] explores pruning for efficient

convolutional neural networks (CNN). Experiments are carried out on Nvidia TitanX and
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GTX980 GPUs. The evaluation of neural network energy consumption is done by using

proxy metrics such as the number of weights and the number of FLOPs. Work in [30] uses

the weighted sum of multiply-accumulate (MAC) operation cost and DRAM memory

access cost to represent energy consumption. Work in [31] proposes an approach to design

neural networks. They use a FLOP regularizer to prune the number of weights of a neural

network. They use the number of FLOPs and the number of weights to represent hardware

constraints: latency, and energy.

Disadvantages: Although these indirect metrics (MACs, FLOPs, number of weights)

are easier to measure compared to on-device energy consumption, proxy metrics cannot

guarantee a true representation of energy [33].

• Data movement has a greater impact on energy consumption than computation. As

an example, accessing DRAM may cost 200x more energy than a MAC computation

in an arithmetic logic unit (ALU) [49]. Therefore, the number of operations cannot

represent energy consumption.

• Memory hierarchy and dataflow have a large impact on energy consumption in data

movement. Energy consumption of the weights depends on their movement in

different memory hierarchies, therefore, the number of weights of a DNN is not a

good representation of energy.

How we address the limitations: We do not use proxy metrics to represent energy
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consumption. Our predictor model is trained on real measurements collected on the target

device.

2.2 On-device Measurement

Another category of work uses real-time measurements on target devices during the

evaluation of candidate models to provide accurate hardware feedback.

Work in [36] proposes an algorithm called NetAdapt that automatically prunes

pre-trained deep neural networks to satisfy given resource constraints on a mobile device.

Hardware costs such as latency and energy are measured on the target device during the

pruning process. The NetAdapt algorithm is guided by these direct measurements. They

conducted experiments on image classification tasks on the ImageNet dataset [50]. The

resulting network from adapting MobileNet [51] achieves 1.7x speedup and 0.3% accuracy

increase.

Work in [35] proposes a hardware-aware NAS algorithm with reinforcement learning

for energy-efficient CNNs. Their experiments are conducted on an Intel XEON E5-2620v4

processor equipped with GeForce GTX1080Ti GPU cards. They use the NVIDIA profiling

tool, nvprof, to measure peak power, average power, and energy consumption on the target

device. With 600 iterations in design space exploration, their algorithm demonstrates the

ability to discover novel architectures with higher accuracy and lower energy than the ones

designed by humans.
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Work in [52] proposes a mixed-precision quantization framework to compress and

accelerate DNNs inference. Instead of using indirect proxy metrics such as FLOPs or

model size, direct energy consumption feedback is incorporated into the framework. Their

framework effectively reduced latency by 1.4 − 1.95× and energy consumption by 1.9×

with negligible loss in accuracy.

Disadvantages: Real-time on-device measurement results in accurate energy

consumption, however, the overhead is huge. The overhead is caused by the following:

• (1) compilation: a model needs to be converted to a format that works on the target

device (e.g., Tensorflow Lite).

• (2) inference: to obtain stable and accurate measurements, warm-up cycles are

required. In addition, multiple runs of model inference are required to reduce the

inherent variations in performance.

• (3) cool-down: continuous measurement on the target device could cause an increase

in temperature, leading to incorrect measurements. Therefore, between each

measurement, cool-down time is needed to decrease the temperature of the target

device.

Previous works target DNN and CNN models that are significantly smaller and less

complex than BERT models, e.g., ResNet [53] with 1202 layers has 19.4M parameters and

BERT-base model contains 110M parameters [1]. The design space of BERT models is large
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and therefore requires significantly more time for on-device measurement. BERT model with

5 architectural parameters and each of them with 10 choices results in a design space of 105

models. The time required for taking energy measurements of BERT models is huge. Taking

energy measurement of a candidate model takes approximately 5 minutes. On-device energy

measurement of a design space of 105 models would take 49 weeks on the Hikey 970 platform.

The huge overhead of on-device measurement makes it impractical and prohibitive to employ

in hardware-aware NAS.

How we address the limitations: Instead of using real-time on-device measurements,

we develop energy predictor models that can be used in hardware-aware NAS. The design

space we used to train our predictors consists of at most 800 models, which is significantly

smaller than the design space of BERT models. We only measure energy consumption for

training our predictor instead of incorporating on-device measurement in NAS. Therefore,

to develop an energy predictor (our method), we require less time and computational power.

2.3 Operator-based Predictor

This type of work estimates energy consumption from the bottom up. The overall energy

consumption is estimated as the sum of the energy consumption of smaller modules. The

granularity of the modules may vary depending on the approach. Typically the cost of each

type of operation is measured and the overall energy consumption is the weighted sum of

operations and cost per operation.
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Work in [54] proposes McPAT, an integrated power, area and timing modeling framework

for multicore processors that provide estimations for dynamic power, static power and short-

circuit power dissipation. The key component of the framework contains an XML interface

which allows users to specify processor parameters and a performance simulator. McPAT

takes a hierarchical approach to decompose modules to the circuit level to model the dynamic

power, static power and leakage power. The framework is beneficial in terms of flexibility

due to its provided XML interface, however, McPAT also has significant error caused by

abstraction. In the work of Rethinagiri [55], compared with real board measurement on a

dual-core ARM Cortex-A9 processor, McPAT has an average error of 23%.

In 2016, Chen et al. propose Eyeriss, an accelerator for CNNs [56]. They examined

power breakdowns per layer. Results show that power consumption in ALU only accounts

for 10% of the per-layer power consumption, which confirms that data movement consumes

more than computation. Based on their observation, in 2017, Yang et al. proposed energy-

aware pruning algorithms for CNNs [57]. Their energy estimation methodology is based on

Eyeriss. Energy consumption is the sum of two parts: computation energy consumption

and data movement energy consumption. Data movement energy consumption is calculated

based on the number of memory accesses at each level of the memory hierarchy multiplied

by the energy number of memory access. Computation energy consumption is calculated

by counting the number of Multiply-and-Accumulate(MAC) operations multiplied by the

energy consumed by each MAC operation. The energy number of memory access and MAC
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operation are obtained from real measurements.

In 2017, Yoon et al. propose a practical and extensive power model for modern mobile

processors that consist of diverse subsystem components [58]. The total power consumption

is the sum of the power consumed by each component. The total power consumption is the

sum of the power consumed by each component. The multicore CPU power consumption is

the summation of the power consumption by the activated core and the uncore (base power

of the microprocessor). The CPU power is modelled as a coefficient multiplied by utilization

plus the base power consumption. The power model is evaluated on two types of experiments:

benchmark tests and real-world applications. The average TEE(total energy error) and the

average MAPE(mean absolute percentage error) of the real-world applications are 2.45%

and 5.09%. This type of utilization-based bottom-up methodology is easy to implement on

any type of device, however, the drawback is the accuracy because the power consumption

varies greatly even with the same utilization.

Work in [59] proposes a quantization method with dynamic bit-level

fusion/decomposition to accelerate DNNs. They developed a cycle-accurate simulator that

takes instructions for the given DNN and simulates the execution to calculate the cycle

counts as well as the number of accesses to on-chip buffers and off-chip memory. The

architecture-level energy consumption is calculated by aggregating the energy consumption

of each component in the system.

Work in [37] proposes a hardware-aware NAS algorithm with quantization to find energy-
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efficient DNNs. They used the simulator proposed in [59] to obtain hardware performance

metrics including energy consumption.

Marchisio et al. propose NAScaps [40], an automated framework for the

hardware-aware NAS of different types of DNNs, covering both traditional convolutional

DNNs and CapsNets. The hardware consumption such as energy and latency are modelled

by accumulating elementary operations’ cost (number of cycles, energy cost per layer). To

obtain the elementary operations’ cost, the hardware platform is described at the RTL

level. Latency, energy, and memory costs of elementary operations are measured using

VLSI CAD tools. The cost of each operation is then multiplied by the occurrences of the

operation in the DNN model to obtain the total cost. The energy consumption is

calculated based on memory accesses, the number of clock cycles, the number of weights

and latency. Since the objective of the work is to find efficient DNNs, the accuracy of the

hardware consumption modeling is not reported in the work, but the results of their NAS

algorithm show that they are able to find high-accuracy networks with less energy and

latency.

Disadvantages: In this category, typically, simulators are used to calculate cycle counts

and memory accesses. This type of method requires in-depth knowledge of the target device

hardware. In addition, parallelism in the hardware and complex memory hierarchies prevent

these types of methods to achieve high accuracy.

How we address the limitations: We do not use simulators to model energy
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consumption. All data are collected on the actual target device, therefore hardware

characteristics are captured more accurately.

2.4 Performance-counter-based Predictor

Different from bottom-up methods presented in the previous section, this category of works

estimates energy from the top-down. Usually, parameters such as performance counter values

are collected and used to train a regression model to predict energy consumption.

In 2013, Pricopi et al. uses the static program analysis method to model the performance

of individual cores and developed performance and power models across different cores for

the ARM big.LITTLE architecture [60]. This method overcomes the challenges of modelling

and estimation of two significantly different cores. They first developed the CPI(cycles per

instruction) stack-based performance model for each core, then used the CPI value along with

additional information, such as instruction mix, memory behaviour and so on, to estimate

the power behaviour. The power consumption is expressed as a linear regression model. This

method could derive power estimation of the second core based solely on the execution profile

of the first core, hence eliminating the cost of executing the application on the second core.

They evaluated the power model in terms of fitting error, intra-core validation and inter-

core validation. The average prediction error is 3.9% for inter-core validation. Although the

prediction error is low, the power model is built on top of the performance model, in addition

to this technique, requires conducting offline analysis on the target platform to determine
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the events to monitor. Another drawback is that the measured power across the training

benchmarks suggests that the minimum and maximum power consumption of the small core

is small, therefore the power consumption on the small core is not modeled. However, in our

experiments, we identify that the Hikey 970 CPU small cores are different from what they

observed.

In 2016, Walker et al. build an accurate and stable run-time power model using

performance monitoring counters (PMCs), CPU clock frequency and CPU voltage for

mobile and embedded device [61]. The platform used in this work is an ARM big-LITTLE

platform. This work shows that a set of PMC events should be carefully chosen to provide

the maximum amount of information and stability of power consumption. They used

statistical analysis on all the PMC events for each CPU cluster and provided an automated

PMC event selection methodology. Since the power consumption on CPU consists of static

power and dynamic power, they propose to calculate these power separately. The static

power is calculated based on the clock frequency and CPU voltage, whereas the dynamic

power, in addition, also depends on the PMC events. As a result, the power consumption is

modelled as a linear regression model and it achieves 3.8% and 2.8% average error on ARM

Cortex-A7 and Cortex-A15, respectively. The drawback of any power modeling technique

relying on hardware performance counters is the limitation of hardware architecture

dependency, as the hardware performance counters available for different hardware vary.

In 2017, Zhang et al. propose an idle-state-based CPU power modelling method to
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estimate the power of multi-core smartphones more accurately [62]. In fact, they stated that

idle states of CPUs and the duration that a task is running on a specific CPU affect the

power of the multi-core system in addition to workload and frequency. According to their

findings, larger computation duration will face a drop in power consumption with the fixed

frequency and latency, which is caused by deeper idle states. Therefore they have considered

both duration of idle states and the number of entries for idle states to generate a more

accurate power model of multi-core mobile systems. Their approach was able to achieve a

high average accuracy of 98% for various benchmarks, and 96% for real applications.

In 2017, Cai et al. propose NeuralPower, a polynomial regression model-based prediction

framework for layer-wise power consumption for CNNs running inference on GPU [63]. They

model layer-level power consumption as the sum of two components. The first component

is a polynomial term based on the architectural parameters of a layer such as a kernel size,

stride size and padding size. The second component is a polynomial term based on special

terms which are different from one layer type to another including the number of memory

access, the number of floating point operations. Similar to the power consumption model,

they also built a runtime model to predict layer-wise latency. Combining the two models,

the energy consumption is the scalar product of the power and runtime prediction vectors.

Experiments are conducted on the Nvidia GeForce GTX Titan X. As a result, their models

achieve an average accuracy of 88.24% in runtime, 88.34% in power, and 97.21% in energy.

In 2018, Rodrigues et al. build a performance counter-based prediction framework for
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modeling CNN per-layer energy consumption [64]. They used a simple multi-variate linear

regression model based on the number of SIMD instructions executed and the number of bus

accesses to estimate energy consumption. The embedded system chosen is conducted on an

NVIDIA Jetson Tegra X1 board on single-core ARM Core A57. Energy measurements are

obtained by using ARM streamline analyzer running various configurations of convolutional

layers. A subset of the obtained energy measurements are used as the training set, leaving

a small set for cross-validation. With both the SIMD instructions count and the number of

bus accesses, their prediction model achieves an average relative test error of approximately

8%.

Disadvantages: Using linear regression models inherently assumes a linear relationship

between input features and the output. However, the linearity between the performance

counters and the energy consumption is not proven. Aside from the regression model, using

performance counters have the following drawbacks and limitations:

• The limit on the number of simultaneously collected counters. As discussed in [65]

where they used 13 performance counters, the number of simultaneously monitored

counters is limited to 4, therefore it requires multiple runs to obtain a single training

sample.

• For GPU, the counters record values per streaming multiprocessor instead of the whole

GPU which is not a direct indication of the real values.
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• Some important performance counters are not available on all target devices such as

the DRAM data read counter.

How we address the limitations: To address the aforementioned limitations, we

choose DNN with architectural parameters as input features to predict energy consumption.

DNN better captures non-linearity between input features and the output. In addition, we

use only architectural parameters instead of performance counter data.
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Chapter 3

Background

Pre-trained language models such as BERT (Bidirectional Encoder Representations from

Transformers) [1] achieved great success in Natural Language Processing (NLP). BERT is

a Transformer-based model with the stacking of multiple bidirectional Transformer encoder

layers. Training of a BERT model requires two steps: pre-training and fine-tuning. BERT

is first pre-trained on unlabeled data with two tasks: Masked Language Modeling and Next

Sentence Prediction. It is then fine-tuned on labelled data for specific downstream tasks. The

BERT-base model contains over 110M parameters. Its heavy model size makes it impractical

to be deployed to resource-constrained platforms. Recent works [2, 16, 26, 27] are proposed

to build lightweight BERT-like models that suffer little from a drop in accuracy. In the

following, we discuss the architecture of the BERT-base model, and two light-weighted BERT

models: DistilBERT [16] and MobileBERT [2].
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3.1 BERT Model Architecture

Figure 3.1: BERT architecture

BERT [1] is based on the Transformer [4] model, consisting of a stack of transformer

encoders. Figure 3.1 shows the architecture of the BERT-base model. The BERT-base

model consists of an embedding layer and a stack of 12 transformer encoder layers. Input

data is fed into the embedding layer, and the output passes through each encoder layer
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sequentially. Each of the encoder layers consists of a Multi-Head Attention(MHA) block and

a Feed-Forward Network(FFN) block.

3.1.1 Embedding Layer

Figure 3.2: BERT input representation [1]

Figure 3.1 shows the embedding layer operations of BERT. The input sequence is padded

to a fixed sequence length S. Each word in an input sequence is embedded into a token using

WordPiece embeddings [66] with an embedding size denoted as H. For each input sequence,

a positional embedding is used to indicate the position of each token. A segment embedding

is also added to identify which sentence a token belongs to. As a result, the output of the

embedding layer is the summation of the three embeddings. Increasing S and H increases

the number of matrix addition options needed to perform in the embedding layer.
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Figure 3.3: Multi-Head Attention [1]

3.1.2 Multi-Head Attention

In the MHA block, each attention head mechanism consists of a set of Query, Key and Value

weight matrices. Attention head mechanism, as shown in Figure 3.3, allows the model to

determine how closely two words in a sequence relate to each other. This is achieved by

the following: First, multiplying the embedding vector with these three matrices generates a

query vector, a key vector and a value vector. Secondly, taking the dot product of each pair

of the key vector and query vector and normalizing it by taking softmax. Lastly, multiplying

the softmax score with each of the value vectors and sum up the weighted value vectors. With

multiple attention heads, since there’s no data dependency, the calculation can be done in

parallel as shown in Figure 3.3. Output from each attention mechanism is concatenated

linearly and then passed to the FFN block.

We denote the number of attention heads as A. With more attention heads, more
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query, key and value vector are added to the architecture and more matrix multiplications

operations are performed. However, since the attention calculations can be done in parallel,

the latency of the MHA block may not be affected by adding more attention heads.

3.1.3 Feed-Forward Network

The FFN block consists of 2 fully connected layers which perform 2 linear transformations

where the intermediate size is denoted as I. Increasing I results in an increase of the weight

matrix and more multiply and accumulation operations (MACs) in matrix multiplication.

Modifying I directly affects the latency of BERT inference.

In conclusion, BERT model architecture can be described with 5 parameters: embedding

size (H), sequence length (S), number of attention heads (A), number of layers (L), and

intermediate size of the FFN (I). Table 3.1 presents the architectural parameters and their

descriptions of the BERT-base model.

Table 3.1: BERT architecture parameter

Architectural parameter Description
H=768 The dimension of the embedding

layer/ the size of the embedding
vector.

S=512 The sequence length of the input.
L=12 The number of encoder layers.
A=12 The number of attention heads in

MHA block.
I=3072 The dimension of FFN.
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3.2 DistilBERT

The explosive size of BERT makes it impractical to deploy to resource-constrained devices.

DistilBERT [16] is proposed as a promising solution to reduce the size of the BERT model.

DistilBERT halves the depth of the BERT-base model by making it a stack of 6 encoder

layers instead of 12. By applying knowledge distillation techniques on BERT, DistilBERT

is trained to reproduce the behaviour of BERT model. DistilBERT consists of 40% fewer

parameters compared to BERT-base while retaining 95% of the performance. The score of

BERT-base on GLUE tasks is 78.0, and DistilBERT achieves a score of 75.2. In addition,

inference of DistilBERT is 60% faster than BERT-base.

3.3 MobileBERT

MobileBERT is a compact transformer-based model proposed to compress and accelerate

BERT model. The architecture of MobileBERT [2] model is deeper and narrower compared

to the BERT-base model. It consists of 24 encoder layers with just 25M parameters due to

the reduced size of each building block. The architecture of MobileBERT model is shown in

Figure 3.4.

MobileBERT architecture differs from BERT model in 2 main aspects. Firstly, it is

equipped with bottleneck structures which are two linear transformations added before

MHA block and after FFN block. The linear transformation before the MHA block
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Figure 3.4: (a) BERT architecture (b) Inverted-Bottleneck BERT (IB-BERT) (c)
MobileBERT architecture [2]

projects embedding from size 512 to size 128. Whereas the linear transformation after the

FFN block projects the input from size 128 to size 512.

Secondly, due to the addition of the bottleneck structures, the ratio of MHA size and

FFN size is not the same as in BERT-base model. The ratio of the MHA block and the FFN

block in BERT-base model is 1:2. However, the input to the MHA block is the output from

embedding layers which has a size of 512, while the input to the FFN block is the output

from the bottleneck transformation with a size of 128. Therefore the MHA block results in

more parameters than the FFN block. To address this problem, MobileBERT uses a stack

of 4 FFN blocks to re-balance the size of MHA and FFN. With the addition of more FFN

blocks, more matrix multiplications are performed in the computation.

To train the MobileBERT model, an Inverted-Bottleneck BERT model is first trained
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to be used as a teacher model. The IB-BERT model has the same architecture as

BERT-large with added inverted-bottleneck structure. MobileBERT is trained by applying

knowledge distillation to transfer knowledge from the teacher model. With the addition of

bottleneck layers in MobileBERT, three important architectural parameters are added to

the architecture. Table 3.2 shows the architectural parameters of MobileBERT.

Table 3.2: MobileBERT architecture parameter

Architectural parameter Description
H=512 The dimension of encoder layer.
S=512 The sequence length of the input.
L=24 The number of encoder layers.
A=4 The number of attention heads in

MHA block.
I=512 The dimension of FFN.
E=128 The size of the embedding vector.
B=128 The size of the bottleneck layer

output.
F=4 The number of FFNs.
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Chapter 4

Methodology

The goal of our work is to predict inference energy consumption of BERT models with

minimum amount of measurements. In order to model energy consumption, we need accurate

energy measurements. Based on previous research and experiments [67–70], we designed our

energy measurement framework that takes 240s to measure a candidate model. With a large

design space of models, the time required for energy measurement is huge. Therefore, we

need to carefully find the representative design space. In this regard, we examine the effect of

each architectural parameters on BERT inference energy consumption. We consider different

representative design spaces for different models and hardware (embedded CPU and GPU).

We compared different regression techniques for energy modeling where we find that DNN

achieves the best performances. Also, we explore the accuracy of our energy modeling in the

2D design space of latency and energy consumption. In terms of evaluation of predicting the
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POFs in this 2D design space, we use a fast non-dominated sorting algorithm (NSGA-II [71]).

Our approach differs from prior works [61, 64, 72] in two aspects: (1) we use DNN

instead of linear models, (2) we use BERT architectural parameters instead of Performance

Monitoring Counters (PMCs) data. Using a linear regression model inherently assumes a

linear relationship between input features and the output. However, this assumption is not

proven in energy modelling [73]. Some research works use DNN [73, 74] with PMCs data as

input features. Although these methods achieve higher accuracy in prediction, using PMCs

is inefficient and sometimes infeasible due to the limitation of hardware architecture

dependency, as the PMCs available for different hardware vary. Therefore, we choose DNN

with architectural parameters as input features to predict energy consumption.

4.1 Design Space Analysis

We first examine the effects of each BERT architectural parameter on the inference energy

consumption. With the knowledge of how each architectural parameter contributes to energy

consumption change, we can construct a representative design space with fewer models by

focusing more on parameters that have a larger effect on energy consumption, and eliminating

parameters that have little effect on energy consumption. Understanding the design space

allows us to limit the number of on-device measurements which turns in the reduction of

computation time.
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4.1.1 BERT Architectural Parameter Effects on Inference Energy

Consumption on CPU

BERT-base model can be defined with five architectural parameters: embedding size (H),

sequence length (S), number of attention heads (A), number of layers (L), and intermediate

size of the FFN (I). Figure 4.1 shows the relationship between energy and each

architectural parameter. For each of the sub-figures, we keep the other four architectural

parameters to a fixed value and vary the target architectural parameter to observe its effect

on energy consumption on CPU. As an example, in the first sub-figure with the x-axis

labelled as Embedding size (H), we vary the embedding size in the range

H = {128, 256, 384, 512, 640, 768}, and set the other parameters as the following:

S = 512, L = 4, A = 8, I = 512.

We find that each of the architectural parameters has different effects on the energy

consumption on CPU. First, sub-figure presents the effect of changing the embedding size

(H) in the range H = {128, 256, 384, 512, 640, 768}. We observe a linear or exponential trend

in energy consumption.

Changing the embedding size causes about an 80% change in energy consumption.

Embedding size directly affects the input sequence size. With an increase in the embedding

size, operations such as matrix multiplications in the embedding layer, MHA block and

FFN block increase due to the increase of input. Therefore, energy consumption is

significantly affected. In the second sub-figure, we observe that changing the number of
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Figure 4.1: Energy consumption on CPU vs. BERT architectural parameters

attention heads contributes to less than 5% change in energy consumption. Among the 5

architectural parameters, the number of attention heads has the least effect on energy

consumption. To further demonstrate this observation, we performed experiments with 3

different baseline models as presented in Figure 4.2. The configuration of the other 4

architectural parameters is presented in the figure. We conclude that under different
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Figure 4.2: Energy consumption on CPU vs. Number of Attention heads (A)

Figure 4.3: Energy consumption on CPU vs. Intermediate size (I)
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settings, the number of attention heads (A) contributes very little to the change of energy

consumption on CPU, which is at most 10%. We believe this is due the fact that the

attention computations can be done in parallel, and therefore, the change in system active

power is small. With the other architectural parameters set to the same value, the change

in latency is also small. Since energy consumption is a product between latency and power,

the change in energy consumption is small. To reduce the design space, we set the number

of attention heads (A) to a fixed value of 8 for all models.

In terms of Sequence length (S) and Number of layers (L), these two parameters have

similar effects on energy consumption. We vary the sequence length (S) in the range

S = {64, 128, 256, 512}. We can observe that changing the sequence length has a large

contribution to energy consumption on CPU. We vary the number of layers (L) in the

range L = {2, 4, 6, 8, 10, 12}. We observe a linear relationship between the number of layers

(L) and energy consumption.

Lastly, we experiment with different Intermediate sizes (I) in the range

I = {512, 1024, 1536, 2048, 2560, 3072}. The relationship between the energy consumption

and the intermediate size is more unpredictable compared to the other parameters. We

observe that the energy consumption with I = 2048 is the highest. To demonstrate that

this effect takes place in other baseline settings, we ran more experiments as presented in

Figure 4.3. As an example, the red dots in Figure 4.3 are models with

H = 128, L = 2, A = 8, S = 512 and different intermediate sizes (S). This observation



4. Methodology 35

demonstrates that the relationship between intermediate size and energy consumption on

CPU is non-linear. We believe using DNN as the energy predictor model better captures

this relationship.

4.1.2 BERT Architectural Parameter Selections on CPU

We define a design space of BERT models by varying four architectural parameter values

(H, S, L, and I) based on observations presented in section 4.1.1. In the literature, models

targeting edge devices [2, 16–18, 26, 27, 45, 75] are smaller than BERT-base due to limited

resources. Therefore, the upper bound of our design space is BERT-base (110M parameters)

[1]. The lower bound of our design space is BERT-tiny (4M parameters), the smallest

BERT model in the literature [18]. The candidate values of each architectural parameter are

presented in Table 4.1. In this selection,

• The minimum and maximum value of H is set by boundary models of our design

space. The values in between are chosen in accordance with the studies in [18] with

the addition of 384 and 640.

• The lower bound of S is set to 64 based on [1] and the upper bound is 1024.

• L is set in accordance with the studies in [18].

• A is set to 8 as H is constrained to be a multiple of A.

• In [1, 18], S is set to 4H. We allow S to take the values from 4 × 128 to 4 × 768.
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Models from the design space can take any combination of these 5 parameter values. The

resulting design space is composed of 1080 models.

Table 4.1: BERT design space on CPU

Architectural parameter Values
H 128,256,384,512,640,768
S 64,128,256,512,1024
L 2,4,6,8,10,12
A 8
I 512,1024,1536,2048,2560,3072

4.1.3 BERT Architectural Parameter Effects on Inference Energy

Consumption on GPU

We perform experiments on the Mali GPU [76] (an embedded ARM GPU) to understand the

effects of each architectural parameter on inference energy consumption shown in Figure 4.4.

Unlike what we have observed on CPU, all the architectural parameters contribute to the

change in energy consumption. Varying number of attention heads (A) from 2 to 12 results

in an increase of inference energy consumption from 0.048 to 0.073. As a result, we must

consider all of the architectural parameters in defining the design space.

4.1.4 BERT Architectural Parameter Selections on GPU

We define the design space of BERT models on GPU based on the observations presented in

section 4.1.3. Since all 5 architectural parameters (H, S, L, A, I) affects energy consumption,
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Figure 4.4: Energy consumption on GPU vs. BERT architectural parameters

Table 4.2: BERT design space on GPU

Architectural parameter Values
H 128,256,384,512
S 64,128,256
L 2,4,6,8,10,12
A 2,4,8
I 512,1024,2048,3072
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we reduce the selection on H, S, and I, and add more selections on A to avoid an explosion of

the design space. The resulting design space consists of 864 models as presented in Table 4.2.

4.1.5 DistilBERT Architectural Parameter Selections

DistilBERT [16] is a lightweight transformer-based model used for embedded devices

trained by applying knowledge distillation on BERT-base model. The general architecture

of DistilBERT is the same as BERT with H = 768, S = 512, L = 6, A = 12, I = 3072. In

addition to the BERT model design space, we add more data points around the

architecture of DistilBERT. Table 4.3 presents the additional parameter selections.

Table 4.3: DistilBERT design space

Architectural parameter Values
H 512,640,768, 896
S 512,1024
L 8,10,12,14,16
A 8
I 2560, 3072, 4096

4.1.6 MobileBERT Models

MobileBERT [2] has bottleneck structures in the encoder layers as shown in Figure 3.4 which

adds 3 more parameters (embedding size, bottleneck size, number of FFNs in an embedding

layer) in the design space. The bottleneck structure is a fully connected layer with fewer

neurons than the previous layer. With the addition of architectural parameters, we reduce
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Table 4.4: MobileBERT design space

Architectural parameter Values
H 256,512
S 512,1024
L 12,16,20,24
A H/64, H/32
I H × 2,H × 4
E 64,128,192
B 64,128,192
F 2,4,6

each parameter’s selection to reduce the number of data points in the design space. We

follow the design of the BERT-base model of setting the number of attention heads and

intermediate size based on the size of the embedding layer (e.g., I = 2 ∗ H ). With the

constraints shown in 4.4, the overall design space consists of 432 models.

4.2 Energy Measurement Framework

Taking accurate energy measurements is vital and many factors such as temperature may

cause variations in the measurement. Here we present our method of taking energy

measurements for each candidate model inference on the target device. For each model, we

profile the power consumption for a period of time that can be broken down into the

following:

• Idle time: the system stays idle for a period of time, in our case, we select 30 seconds

of idle time. The average power consumption for this period of time is the idle power
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which we will use in the energy calculation.

• Warm up time: system power is temperature-dependent [70]. 60 seconds of warm-up

inference is required to have stable measurements. We ran experiments that show the

temperature of the board stays consistent with 60 seconds of warm-up.

• Inference time: multiple inferences for each model are done on the target board to

get an accurate measurement. For each model, we continuously run approximately

120 seconds of inference. The actual inference time may vary as we run each inference

cycle completely from start to finish. We calculate the average inference latency for

this period and use it in the calculation of energy consumption.

• Cool down time: continuous inference on the target device may cause overheating

which leads to increased latency which results in inaccurate energy measurement [77].

We set the system to idle for 30 seconds in between each measurement to maintain the

temperature of the board.

We calculate the energy consumption based on the inference latency and the power

consumption.

Energy consumption per inference:

E =
∫ t1

t0
(Pactive(t) − Pidle(t)) dt



4. Methodology 41

where t0 and t1 represent the inference start and finish time, Pactive represents the power

consumption during inference and Pidle represents the power during system idle. Therefore,

taking the difference between the two power consumption indicates the power consumed

solely for inference.

4.3 Energy Prediction Framework

We use a DNN model to build an energy predictor for BERT inference on edge devices.

Prior works [61, 64, 72] used linear regression models with Performance Monitoring

Counters (PMCs) data to predict energy consumption. Using a linear regression model

inherently assumes a linear relationship between input features and the output. However,

this assumption is not proven in energy modelling [73]. Some research works use

DNN [73, 74] with PMCs data as input features. Although these methods achieve higher

accuracy in prediction, using PMCs is inefficient and sometimes infeasible due to the

limitation of hardware architecture dependency, as the PMCs available for different

hardware vary. Therefore, we choose DNN with architectural parameters as input features

to predict energy consumption.

The DNN model we use consists of 4 fully connected layers and 1 dropout layer to prevent

overfitting. Each layer consists of a different number of neurons listed as the following:

{2048,1024,512,128}. For each design space, we divide the dataset into 80% train set and

20% test set. Within the train set, we set aside 20% of data as the validation set. Our model
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is trained with 100 epochs and we keep the best set of parameters in history.

4.4 Fast Nondominated Sorting Genetic Algorithm

We use the fast nondominated sorting algorithm in NSGA-II [71] to find the POFs in a

multi-objective design space. Searching for POFs in a large design space using an exhaustive

approach is computationally expensive as the time complexity is O(MN3). Where M is

the number of objectives and N is the number of models in the design space. Work in [71]

provides a faster algorithm for finding POF with time complexity O(MN2). For each model

p in the design space, two values are calculated: (1) the domination count np: which is the

number of models that dominates p. (2) Sp: the set of models dominated by p. The first

POF is the set models that have np = 0. To find the second POF, the following step is

performed: for each model p in the first POF, visit each member in its Sp to reduce the np

by 1. The resulting model with np = 0 forms the second POF.

In the evaluation of our energy predictor, we utilize this algorithm to find POFs in terms

of accuracy and energy consumption. Finding different layers of POFs helps us gain a better

understanding of the design space and better quantifies the ability of our energy predictor.
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Chapter 5

Experiments and Results

In this chapter, we discuss the experimental setup for energy measurement and the evaluation

of our energy predictors in terms of Mean Absolute Percentage Error (MAPE) metrics.

We review experimental setups from previous works and discuss our energy measurement

framework in details including the hardware platforms, the software framework and so on.

We evaluate each energy predictor models in the design space of BERT models, DistilBERT

models and MobileBERT models on the Hikey 970 ARM big.LITTLE CPU. In addition, we

also evaluate the energy predictor model for BERT on the Mali GPU. We observe that DNN

models perform the best in terms of MAPE across different design space and platforms.
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5.1 Experimental setup

Obtaining accurate and stable power measurements is challenging since many factors

contribute to noise in power (temperature, sampling frequency, etc.). We review existing

power measurement setups from previous works on the Hikey 960 and Hikey 970

board [67, 78–81]. In the following, we break down the selection of measurement tools,

CPU frequency, sampling rate, profiling execution, and energy measurement extraction.

Based on these existing works, we established a working experimental setup for obtaining

accurate and stable energy measurement.

5.1.1 Target Platform

We use the Hikey 970 board featuring a heterogeneous big.LITTLE system on chip (SoC),

including four 2.36 GHz ARM Cortex-A73 high-performance cores and four 1.8 GHz ARM

Cortex-A53 energy-efficient cores. Figure 5.1 shows an abstract block diagram of the CPU

architecture of the Hikey 970. The Cortex-A73 core features a superscalar, variable length,

and out-of-order, pipeline, 64 KB L1 instruction cache and 64 KB L1 data cache. The Cortex-

A53 core features an in-order, pipeline, 32 KB L1 data cache, and 32 KB L1 instruction cache.

The big cluster shares a 2MB L2 cache where the LITTLE cluster shares a 1MB L2 cache.

Cache consistency within the two clusters is handled by the CCI-550, and interrupts are

handled by the GIC-400 [46].

The Hikey 970 board also comes with a built-in Mali-G72 MP12 GPU configured with



5. Experiments and Results 45

Figure 5.1: Hikey 970 CPU architecture abstract block diagram

two 512 KB L2 caches. Although dedicated accelerators such as GPU are proven to be

more efficient, GPUs on mobile devices often lack programming support. On embedded

devices, CPUs are the main platform for running Machine Learning algorithms [6]. In our

experiment, we target both the CPU and the GPU on the Hikey 970 board.

5.1.2 Measurement Tools

Embedded system energy consumption is hard to measure as such system consist of multiple

components. For some SoCs with ARM big.LITTLE architecture, power sensors on board



5. Experiments and Results 46

are able to capture energy consumption, however, this is not the case for the Hikey 960

and Hikey 970 boards. It is therefore impossible to distinguish the consumption of each

component. Therefore, system-level energy consumption is measured using various tools.

Previous works using the Hikey 960 or Hikey 970 conduct energy measurements on various

workloads. The type of workloads ranges from mobile applications such as Facebook to

more computation-heavy machine learning algorithms, and computer vision tasks. Among

those works, Monsoon Power Monitor is one of the most popular measurement tools used.

Examples include: [67,78–81]. Other tools used include the National Instruments’ DAQ unit

X-series 646 [82], or the Keysight B2900A Series Precision Source/Measure Unit [83].

For our experiments, we wish to capture not only the energy consumption, but also CPU

activities, hardware performance counters, and inference latency. Therefore we selected the

ARM Streamline Performance Analyzer [84] to capture the performance profile of running an

application on the Hikey 970 board. In support of capturing energy data, we use the ARM

Energy probe. It collects the voltage, current and power of the target and is easily deployable

with ARM Streamline. Figure 5.2 shows the energy measurement circuit. The operating

voltage of the Hikey 970 is 12V and its shunt resister is 500mΩ. Figure 5.3 presents the

overall setup. Energy consumption is calculated by taking the sum of instantaneous power

samples for the duration of one inference. To ensure consistent and stable measurements, for

each model, we run inference multiple times and take the average latency value to be used

in the calculation.
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Figure 5.2: Energy measurement circuit diagram

5.1.3 CPU Frequency

The cores on the Hikey 960, Hikey 970 board can operate at a variety of voltage and frequency

combinations. To avoid the impact of DVFS (Dynamic Voltage and Frequency Scaling) and

ensure repeatable experiments, many research works set the CPU to run at the highest

frequency [67]. In [82], they measure load time and energy consumption simultaneously on

the Cortex-A9 processor running at 1.2GHz which is also the highest frequency [78]. We

adopt the same strategy by setting both clusters to the highest frequencies. The big cluster of

4 ARM Cortex-A73 cores is set to 2.36GHz, whereas the little cluster of 4 ARM Cortex-A53

cores is set to 1.8GHz.
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Figure 5.3: Energy measurement setup

5.1.4 Sampling Rate

In measurements of continuous signals, in this case, power, we can adjust the sampling rate

so that the collected discrete measurements resemble the continuous signal. There’s no clear

way to determine the ground truth of energy consumption measurements. All measurements

are approximations of the true energy consumption. In previous works, the sampling rate

ranges from 3.48Hz to 5000Hz. In [68], the sampling rate is 3.48Hz. In [78], the authors

record the current at 50Hz. In [80] all benchmark models run at least 10 times, the sampling

frequency of the utilized power monitor is several magnitudes lower than the operating
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frequency of the device hardware. The average of the energy data is recorded as the energy

measurement. Their reported sampling rate is 5KHz. In [69], the sampling rate is also set

to 5KHz.

In our experiments, the ARM Energy Probe has a sampling rate of 10KHz. It is

significantly higher than other works. Since it’s an external device attached to the target,

it does not affect the overall performance of the target. However, target device activity is

monitored and transmitted to the host device with the ARM Streamline Performance

Analyzer. The data transmission process takes up CPU utilization and therefore affects the

performance of inference. We set the sampling rate according to the ARM Streamline

Performance Analyzer documentation to the standard value of 1KHz.

5.1.5 Thermal Control

The total power consumption of the CPU is the sum of dynamic power and static power.

Dynamic power is further broken down into short-circuit power and switching power.

Switching power is dissipated when charging or discharging internal capacitors.

Short-circuit power is the power dissipated by an instantaneous short-circuit connection

between the supply voltage and the ground at the time the logic gate switches state.

Leakage power is the result of leakage current flowing through the transistors. The total

CPU power:

PCP U = Pswitching + Pshort_circuit + Pleakage (5.1)
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The total CPU power is temperature-dependent. To ensure the repeatability of

accurate power measurement, it is important to control the thermal effects. In other words,

since power measurements can be different in different temperatures, it is important to

keep the temperature at a constant value to produce constant and stable readings of power

measurements.

The typically permissible operating temperature of a CPU is below 70 °C [70]. Cooling

systems such as heat sinks, and heat pipes, are commercially used in modern CPUs. The

Hikey 970 board does not come with a cooling system. We use a USB fan centers directly

to the board. To ensure that the temperature is maintained at a constant value, we conduct

experiments on the board. We run programs on the board which maximize the CPU activity

while simultaneously sampling CPU temperature with a sample rate of 5Hz. Results show

that with the USB fan, the temperature remains at around 40°C, whereas without the USB

fan, the temperature increases from 50°C all the way up to 75 °C. Therefore, we keep the

fan operating while collecting all the measurements.

5.1.6 Software Framework

With the increasing demand for deploying machine learning models on mobile devices, many

frameworks are designed and optimized for on-device machine learning such as Tensorflow

Lite [85] and Apache TVM [3]. We tested three frameworks for our experiments. The first

we experimented with was Tensorflow Lite. Its python runtime package is just a fraction
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of the size of the Tensorflow package offering the same ability to run Tensorflow models on

mobile devices as Tensorflow package. Although the Tensorflow Lite package offers a simple

installation process and supports the CPU platform, it does not support the Mali GPU on

the Hikey 970 board.

Apache TVM is an open-source end-to-end machine learning compiler framework for

CPUs and GPUs. It aims to enable machine learning on any hardware backend. The

optimization stack is able to transform from any machine learning framework to machine

code, providing portability across various backends. The overall pipeline is shown in Figure

5.4. Firstly, deep learning models from popular frameworks such as TensorFlow or PyTorch

can be imported into the pipeline. The imported model is translated to Relay, a high-level

language and intermediate representation (IR) for neural networks. Relay representations

are then converted to lower tensor expressions. A search is then performed to find the best

schedule based on cost models and on-device measurements. In the end, the lower-level

representations are compiled down to machine code based on the target platform compiler.

However, our experiments on GPU with TVM show that the performance on GPU is worse

than on CPU big cores. This result shows that TVM does not guarantee performance on

GPU. It also proves that software framework affects greatly the performance of running

machine learning models.

We then experimented with ARM Compute Library on GPU and the results

demonstrate faster inference than on CPU. Although ARM Compute Library shows better
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performance, the framework requires much more effort for deployment compared to the

other two frameworks. Different machine learning models require extensive refactoring to

be run with ARM Compute Library. As an example, GELU operation is not provided in

the ARM Compute Library. However, it is crucial for the software framework to provide

better performance. We choose to use ARM Compute Library on GPU and Apache TVM

on CPU.

Figure 5.4: TVM model transformation to machine code [3]

5.2 Results

We evaluate our framework for energy prediction models in the design space of BERT

models, DistilBERT models, and MobileBERT models. We compare various machine

learning algorithms (polynomial regression, decision tree, AdaBoost, and DNN) for

predicting energy consumption using the Mean Absolute Percentage Error (MAPE) metric

and the percentage of data in a given error band. An error band specifies a boundary

around the true value and it indicates the worst-case error.
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Table 5.1: BERT on CPU big cluster: The performance of predictor in terms of MAPE,
percentage of models that fit into 5%, 10%, and 20% error bands

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.4 11.1 27.0 45.0

Support Vector Machine 0.82 3.17 12.2 21.2
Decision Tree 0.27 34.9 63.5 77.8

AdaBoost 0.22 46.0 75.7 84.1
DNN 0.15 57.7 74.6 85.7

Table 5.2: BERT on CPU LITTLE cluster: The performance of predictor in terms of
MAPE, percentage of models that fit into 5%, 10%, and 20% error bands

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.57 8.74 21.3 40.4

Support Vector Machine 0.87 2.19 7.65 18.0
Decision Tree 0.24 16.4 38.3 66.1

AdaBoost 0.19 26.2 43.2 73.2
DNN 0.16 30.6 52.5 80.9

5.2.1 Energy prediction on BERT

In the BERT design space, we split the collected data to a train set and a test set with a

0.8/0.2 ratio. For the DNN model, to prevent overfitting, 20% of data is sampled from the

train set to form a validation set. In Table 5.1, we report the MAPE metric on the test

Table 5.3: BERT on GPU: The performance of predictor in terms of MAPE, percentage
of models in 5%, 10%, 20% error band

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 1.84 6.38 14.9 20.2

Support Vector Machine 1.36 5.32 6.38 14.9
Decision Tree 0.50 18.0 31.2 51.1

AdaBoost 0.52 16.0 23.4 40.4
DNN 0.16 67.0 76.6 83.0
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set for the CPU big cluster. We observe that the DNN model with a MAPE value of 0.15

performs better than the other regression models on the big cluster. We further examine

the performance of each model by reporting the percentage of predicted energy in a given

error-band. As an example, in Table 5.1 for error-band 20% and the DNN model, it means

that 85.7% of the predicted energy value has less than 20% error from the true energy value.

The results demonstrate that the DNN model achieves the best performance compared to

the other regression models.

We perform experiments on the Mali GPU and the results are shown in Table 5.3. The

DNN model performs significantly better than the other regression models with a MAPE

of 0.16 and 83.0% data within the 20% error band, whereas the second best model has a

MAPE of 0.16 and 51.1% data within the 20% error band.

5.2.2 Energy prediction on DistilBERT

Table 5.4: DistilBERT on CPU big cluster: The performance of predictor in terms of
MAPE, percentage of models in 5%, 10%, 20% error band

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.04 79.2 91.7 100

Support Vector Machine 0.65 0 8.3 25.0
Decision Tree 0.07 29.2 70.8 100

AdaBoost 0.107 33.3 70.8 100
DNN 0.06 70.8 95.8 100

DistilBERT models have the same general architecture as BERT models with less number

of layers. We use the energy predictor trained with the BERT design space and evaluate
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Table 5.5: DistilBERT on CPU LITTLE cluster: The performance of predictor in terms of
MAPE, percentage of models in 5%, 10%, 20% error band

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.11 25.0 54.2 83.3

Support Vector Machine 0.63 4.17 4.17 20.8
Decision Tree 0.13 16.7 37.5 83.3

AdaBoost 0.12 33.3 45.8 75.0
DNN 0.06 50.0 75.0 95.8

the predictor on the DistilBERT design space. Table 5.4 presents the performance of the

energy predictor on CPU big cluster. The polynomial Regression model achieves the best

performance in terms of MAPE. However, with the DNN model, 95.8% data falls into the

10% error band. On the CPU small cluster, the DNN model consistently performs the best

in all metrics with 95.8% data in 20% error band. We observe that models perform generally

better in this design space than in the BERT design space. This boost in performance is

caused by the number of data used for this design space. We use the BERT design space

data to train the energy predictor, whereas the predictor used in the previous section is

trained with 80% of the BERT design space.

5.2.3 Energy prediction on MobileBERT

Energy predictors for MobileBERT models are trained by a train set of 80% data of the

design space. The predictors are evaluated based on the rest 20% data. In Table 5.6 and

Table 5.7, we present the energy prediction results in the MobileBERT design space. In

terms of the MAPE metric, polynomial regression and DNN achieves the same performance
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Table 5.6: MobileBERT on CPU big cluster: The performance of predictor in terms of
MAPE, percentage of models in 5%, 10%, 20% error band

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.28 42.4 63.6 75.8

Support Vector Machine 1.8 6.06 6.06 9.09
Decision Tree 0.15 33.3 54.5 90.9

AdaBoost 0.13 45.5 69.7 87.9
DNN 0.09 48.5 69.7 93.9

Table 5.7: MobileBERT on CPU LITTLE cluster: The performance of predictor in terms
of MAPE, percentage of models in 5%, 10%, 20% error band

Regression Model MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.15 15.2 27.3 66.7

Support Vector Machine 0.60 6.06 9.09 24.2
Decision Tree 0.18 24.2 36.4 54.5

AdaBoost 0.16 18.2 27.3 66.7
DNN 0.15 15.2 33.3 69.7

of 0.15. To further identify the better-performing model, we examine the percentage of test

data in a given error band. We observe that DNN performs the best with 69.7% of test

data in the 20% error-band. However, the predictor’s performance on the LITTLE cluster

is significantly lower than on the other design space. This drop in performance is due to the

limited number of measurements collected. The BERT design space consists of 1080 models

whereas the MobileBERT design space consists of only 432 models.
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Chapter 6

Case Study on DynaBERT

We evaluate our BERT-base energy predictor model on DynaBERT [47] to examine its

generalization capability in a new design space and its ability to find POFs in a multi-

objective (accuracy and energy) problem. We select DynaBERT for two main reasons: (1)

training and fine-tuning BERT models is computationally expensive. However, it is not

the case for DynaBERT which is a kind of pre-trained supernet; (2) DynaBERT does not

require fine-tuning for downstream tasks, and therefore, obtaining accuracy metrics is easier

compared to other BERT-like models. Recall that BERT-base and DynaBERT supernet have

the same architecture. However, the training set models does not include any sub-network

models derived from DynaBERT. Therefore, training the energy predictor on BERT-base

models and evaluating it on models derived from DynaBERT supernet would be feasible.

In the following, we present the design space derived from DynaBERT. We demonstrate
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our energy predictor correctly predict 14 out of 17 models from the true POF.

6.1 Design Space

DynaBERT is a supernet with the same architecture as BERT-base. Sub-networks are

generated from this supernet by varying the width and depth multipliers. If width and depth

multipliers are set to one, the generated sub-network is BERT-base. The width parameter

directly controls two architectural parameters of BERT model: the number of attention heads

(A) and the intermediate size of FFN (I). The depth parameter controls the number of layers

(L). Detailed explanations on BERT parameter architectures are presented in section 3.1.

For a given width multiplier mw, the sub-network retains the leftmost bmwAc attention heads

and the leftmost bmwIc neurons in the FFN layer. Since the width parameter controls two

architectural parameters, a given A corresponds to a fixed I. For a given depth multiplier

bmdc, the sub-network retains the first bmwLc encoder layers of the supernet.

In this regard, we establish our DynaBERT design space by varying the width and depth

multipliers in DynaBERT from 0.05 to 1 with a step size of 0.05. This configuration results

in 240 models and the values are presented in Table 6.1.
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Table 6.1: DynaBERT design space

Architectural parameter Values
H 768
S 512
L 1,2,3,4,5,6,7,8,9,10,11,12
A 1,2,3,4,5,6,7,8,9,10,11,12
I 153,307,460,614,768,921,1075,1228,1382,1536,

1689,1843,1996,2150,2304,2457,2611,2764,2918,3072

Table 6.2: The performance of predictors in terms of ADRS, MAPE, percentage of models
in 5%, 10%, 20% error band

Regression Model ADRS MAPE 5% error band 10% error band 20% error band
Polynomial Regression 0.650 1.23 6.67 12.5 29.2

Support Vector Machine 0.499 0.47 12.5 23.75 45.0
Decision Tree 0.464 0.22 12.1 21.7 49.6

AdaBoost 0.464 0.20 10.0 24.2 50.4
DNN 0.002 0.14 22.5 43.8 81.2

6.2 Experiments and Results

Our DNN energy predictor trained with BERT base models achieves a MAPE of 0.14, which

is the best compared to the other regression techniques as shown in Table 6.2. Among the

240 models from the DynaBERT design space, 81.2% models are predicted to have errors

within 20% of the true energy value. In order to utilize our energy predictor model in

hardware-aware NAS, we need to examine the energy predictor’s ability to predict Pareto-

optimal Front (POF) in the DynaBERT design space. In hardware-aware NAS, the problem

is to find a set of models that are optimized for two objectives: performance and hardware
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cost. This set of models forms a boundary in the multi-objective design space and is called

Pareto-optimal solutions. The definition of POF is that there does not exist another solution

in the design space that is more optimal in one objective and does not sacrifice in another

objective [86]. We use Average Distance from Reference Set (ADRS) [87] to quantitatively

measure the closeness from the predicted POF to the true POF. Average Distance from

Reference Set (ADRS) is used to measure the distance between a reference Pareto-optimal

Front (R) and an approximation set A [88]:

ADRS(R, A) = 1
|R|

∑
xεR

(min
aεA

{d(x, a)})

The benefit of using ADRS metric is that it not only considers the distance but also measures

if the shape of the reference set is captured. If the ADRS between the true POF and the

predicted POF is close to zero, it indicates that the predicted POF resembles the true POF.

We create the multi-objective design space with two objectives: accuracy and energy.

We select the QNLI task from the GLUE benchmark to measure the accuracy metric. We

use the fast nondominated sorting algorithm [71] with a detailed explanation in Section 4.4

to find the true POF and predicted POF. The fast nondominated sorting algorithm sorts

layers of POFs in a design space, where the first layer is the POF of the original design space

and the second layer POF is the POF of the design space excluding the design points in

the first layer POF. We observe that although the error rate of the DNN predictor is high
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(just 81.2% of design points lie in the 20% error band), the relative distance between the

predicted POF set based on the DNN predictor and the real POF set is the lowest (0.002) in

terms of ADRS. In Figure 6.1, we plot the true POF and predicted POF. Note that for the

predicted POF, first, we use the predicted energy values to find POF, then, we substitute

the predicted energy values in the found POF set with the true energy consumption derived

from measurements (that is why in the bottom of the predicted POF, red line, it seems that

there is a non-dominated optimal solution). The true POF consists of 17 candidate models.

14 of those are in the predicted POF, while the other 3 are found in the second layer of the

predicted POF. These results show that our energy prediction framework is able to correctly

find POF in a large design space.
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Figure 6.1: True and predicted Pareto-optimal fronts of DynaBERT design space in a 2D
design space of error (1-accuracy) and energy.
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Chapter 7

Conclusion and Future Work

In this thesis, we introduced a BERT inference energy consumption modeling methodology

on ARM big.LITTLE architecture and Mali GPU. We established an energy measurement

framework for taking accurate and stable system energy measurements. Measurement data of

a candidate model can be obtained in 240 seconds with our energy measurement framework.

We studied the relationships between BERT architectural parameters and inference energy

consumption. We found that each architectural parameter has different effects on inference

energy consumption. We also found that the effects of architectural parameters are different

on different hardware platforms. The number of attention heads (A) contributes to less than

10% change in energy on CPU small clusters and big clusters, however, this phenomenon

is not shown on the GPU, where increasing the number of attention heads (A) results in a

larger impact on energy consumption.
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Based on our observations, we built representative design spaces for each model to reduce

the time for energy measurement. The design space of BERT model on the CPU consists of

1080 candidate models.

For each design space, we used 80% of the measured data as training data and trained 5

regression models (polynomial regression, support vector machine, DNN, etc.). Results show

that DNN models perform consistently better than other regression techniques since DNNs

are better at capturing non-linear relationships. The energy predictor of BERT models on

CPU big cluster has a MAPE of 0.15 and 85.7% of the test data fall in the 20% error-band.

We also performed a case study on DynaBERT to evaluate our predictor’s ability to

predict POFs in a multi-objective problem and the ability to generalize to a new design

space. In the experiment, we used the energy predictor trained with BERT base models.

The DynaBERT design space consists of 240 different models that none of the models are

present in the training set. We compared the true POF and predicted POF in terms of model

accuracy and energy consumption. Our predictor correctly identifies 82.4% of the models in

the true POF. In addition, 100% of the models in the true POF are identified within the

first and second layers of the predicted POF sets.

In this thesis, we demonstrated that our predictors which are trained with relatively few

on-device measurements perform well in a multi-objective problem and generalize to new

design spaces. Future work to improve upon our work includes:

1. We run model inference in a homogeneous computing setting. An improvement would
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be running models in a heterogeneous setting that utilizes CPU small cores, CPU big

cores and GPU for example.

2. Our methodology can be applied to efficient hardware-aware NAS. However, it is

computationally expensive and time-consuming to measure the accuracy of BERT

models which is required for NAS. It will be interesting to study the possibility of

building accuracy predictor models that serves the same purpose as our energy

predictor.
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