
Autonomous and Semi-autonomous

Control of Agile Fixed-Wing

Unmanned Aerial Vehicles

Juan Carlos Hernández Ramı́rez

The Department of Mechanical Engineering

McGill University, Montreal

April 2022

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Doctor of Philosophy.

© Juan C. Hernández, 2022





Abstract

Unmanned aerial vehicles (UAVs) have been increasingly employed for a wide range of civil-

ian applications, including scientific and commercial endeavours. Striving for versatility,

novel UAV designs have been proposed which incorporate features from different aircraft

categories. The agile fixed-wing UAV is one such platform, which combines the fast and

efficient flight of conventional fixed-wing aircraft with the highly maneuverable hovering

capabilities of rotorcraft. These aircraft have enormous potential but are challenging to op-

erate, demonstrating the need for control systems capable of harnessing their maneuvering

capabilities.

The objective of this thesis is to develop a comprehensive control strategy for the agile

fixed-wing UAV, considering both autonomous, and pilot-assist, semi-autonomous operation.

The thesis begins by introducing the fixed-wing UAV model, including previously developed

aerodynamic and slipstream models needed for controller design and verification. Controller

design begins in the next chapter, where the core attitude control system is developed. We

propose several geometric control strategies which are then evaluated through simulations

and experiments.

The next chapter presents a nonlinear control strategy to enable UAV velocity and po-

sition control. This is a unified control architecture, where a single controller is valid for

steady and hover flight regimes. Rigorous stability analysis, together with simulations and

experimental flights demonstrate the capabilities of the proposed system. The following

chapter, we propose an additional control loop to enable path-following functionality, allow-

ing us to prioritize the task of reaching and following spatial paths. As part of this system,

a novel moving path frame is developed, specifically tailored for the task of motion control

in three-dimensional space.

Finally, a reference generator capable of translating limited pilot inputs into time-parametrized

trajectories or spatial paths is developed. This system is then integrated with the control

systems to achieve a semi-autonomous control solution. As demonstrated through experi-

mental flights, the proposed system enables a human pilot to safely operate the aircraft in

any regime without sacrificing its maneuverability.



Résumé

Les véhicules aériens sans pilote (UAV) sont de plus en plus suggérés pour plusieurs ap-

plications civiles, y compris des efforts scientifiques et commerciaux. En quête de versa-

tilité, de nouveaux modéles ont été proposées qui intègrent des caractéristiques de différentes

catégories d’aéronefs. L’aéronef agile à voilure fixe est l’une de ces plates-formes, qui com-

bine le vol rapide et efficace des aéronefs à voilure fixe conventionnels avec les capacités de

vol stationnaire hautement-maniables des giravions. Ces aéronefs ont un potentiel énorme

mais sont très difficiles à piloter, démontrant le besoin de systèmes de contrôle capables

d’exploiter leurs agilité.

L’objectif de cette thèse est de développer une stratégie de contrôle complète pour

l’aéronef agile à voilure fixe, en tenant compte à la fois du fonctionnement autonome et semi-

autonome d’assistance du pilote. La thèse commence par introduire le modèle d’àéronef agile,

incluant les modèles aérodynamiques et ce du systéme de propulsion développés précédemment,

nécessaires lors de la conception et de la vérification du contrôleur. Le développement du

contrôleur commence dans le chapitre suivant, où le système de contrôle d’orientation de

base est développé. Nous proposons plusieurs stratégies de contrôle géométrique qui sont

ensuite évaluées à travers des simulations et des vols expérimentaux.

Le chapitre suivant présente une stratégie de contrôle non linéaire pour permettre le

contrôle de la vélocité et de la position de l’aéronef. Il s’agit d’une architecture de contrôle

unifiée, valide pour les manoeuvres conventionnelles et pour les régimes de vol stationnaire.

Une analyse de stabilité rigoureuse, ainsi que des simulations et des vols expérimentaux

démontrent les capacités du système proposé. Dans le chapitre suivant, nous proposons un

système de contrôle de suivi-de-sentier. Ce contrôleur nous permet de prioriser l’objectif

d’atteindre et de suivre des courbes tridimensionelles. Pour permettre cette fonctionnalité,

un nouveau référentiel, attaché à la courbe, est développé, spécifiquement adapté pour

l’application du contrôle de mouvement dans l’espace tridimensionnel.

Enfin, une stratégie pour généer des références est développé, capable de traduire des

commandes du pilote en trajectoires paramétrées dans le temps ou en courbes en trois di-

mensions. Ce système est ensuite intégré aux systèmes de contrôle pour obtenir une solution

de contrôle semi-autonome. Nous montrons à travers des vols expérimentaux, que le système

proposé permet à un opérateur à distance de piloter l’aéronef en toute sécurité dans n’importe

quel régime sans sacrifier l’agilité de la plate-forme.
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Claims of Originality

The main contributions of this thesis are as follows:

• An in-depth study into geometric control techniques applied to the attitude control

problem of agile fixed-wing UAV is conducted. Stability analysis is used to estab-

lish controller properties which are then evaluated through extensive simulations and

experimental flights.

• A novel nonlinear control architecture, for position and velocity control of the agile

fixed-wing UAV platform is presented. This unified strategy is valid for all flight

regimes. Stability analysis, together with simulations and flight experiments are used

to verify the proposed control system.

• A novel path-moving reference frame, specifically tailored to describe curves used for

3D motion is proposed and its properties derived. The applications of this construct

apply to a wide range of vehicles and control and path planning applications, not only

limited to fixed-wing UAVs.

• A path following controller is developed, using the tacking control formulation together

with the proposed reference frame to enable the UAV to reach and follow spatial paths,

as opposed to instantaneous position targets. Simulations and experimental flights of

the path following solution show the improvement in performance when in outdoor

operation.

• A semi-autonomous control strategy is developed to enable pilot-assist functionality.

A reference generator is proposed to translate limited inputs from a remote operator

into reference trajectories and geometries for the corresponding control systems. The

methodology is tested with a human operator in both software-in-the-loop and in

experimental flights.
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Notation

Abbreviations

UAV Unmanned Aerial Vehicle

VTOL Vertical Take-Off and Landing

GPS Global Positioning System

IMU Inertial Measurement Unit

RC Radio Control

3D Three-Dimensional

DCM Direction Cosine Matrix

SO(3) Special Orthogonal Group of 3D rotations

NED North-East-Down

AML Aerospace Mechatronics Laboratory

DOF Degrees Of Freedom

MPC Model Predictive Control

LQR Linear Quadratic Regulator

PD Proportional-Derivative

PI Proportional-Integral

PID Proportional-Integral-Derivative

MEKF Multiplicative Extended Kalman Filter

RPM Revolutions Per Minute

ESC Electronic Speed Controller

FPV First Person View

LOS Line Of Sight

SITL Software In The Loop

QGC QGround Control

PF Path Following

ix
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Symbols

t Time.

F I Inertial (NED) frame.

FB Body frame.

FR Reference frame.

FG Moving path (gravity normal) frame.

m UAV mass.

g Gravity acceleration.

J UAV second moment of mass, resolved in FB.

δa, δe, δr Aileron, elevator, and rudder deflections.

T Motor thrust.

Cbi DCM from F I to FB.

Cri DCM from F I to FR.

r̂1, r̂2, r̂3 Basis vectors of FR resolved in F I .

k̂1, k̂2, k̂3 Basis vectors of F I resolved in F I .

Cgi DCM from F I to FG.

Cbr Error DCM from FR to FB.

ωb Angular velocity between FB and F I , resolved in FB.

ωr Angular velocity between FR and F I , resolved in FR.

ωg Angular velocity between FG and F I , resolved in FG.

pi UAV’s centre of mass position resolved in F I .

pr Reference position FR

vb UAV velocity with respect to FB, resolved in FB .

vi UAV velocity with respect to the F I , resolved in F I .

vr Reference velocity, resolved in F I

Ψa Attitude error function, a = 1, 2, 3.

ea Attitude error innovation term, a = 1, 2, 3.

eω Angular velocity error.

ep Position error.

epr Path-relative position error.

ev Velocity error.

ei Composite integrated position error.

evi Integrated velocity error.
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µ(σ) Curve in 3D space.

σ Path parametrizing variable.

T Path tangent vector resolved in F I .

H Path horizontal vector resolved in F I .

P Path projected vector resolved in F I .

Va Airspeed.

α Angle of attack.

χ Course angle.

γ Climb angle.

CL, CD, Cm Lift, drag, and moment coefficients.

Vδ, V̂δ Effective and estimated airflow over the control surfaces.

S Wing area.

b Wing span.

c̄ Wing mean aerodynamic chord.

Cδa , Cδe , Cδr Control coefficients for aileron, elevator, and rudder.

ϕ, θ, ψ Euler angles: roll, pitch, and yaw.

η, ϵ Principal axis and angle of rotation.

ST Throttle, or thrust, pilot input.

Sa, Se, Sr Pilot inputs of aileron, elevator, and rudder.

Fc Intermediate command (position control).

Fa Aerodynamic forces resolved in FB.

ka, Ka Proportional attitude control gains.

kω, Kω Derivative attitude control gains.

kp, Kp Proportional position control gains.

kv, Kv Derivative position control gains.

ki, Ki Integral position control gains.

ky, kϕp , kϕi Roll control gains.

ηl, ηu Upper and lower angle thresholds.

(·)T Transpose operator.

(·)× Skew-symmetric operator.

Pa(·) Skew-symmetric projection operator.

tr(·) Trace operator.

∥ · ∥ Euclidean norm.



Table of Contents

Abstract iii
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Chapter 1

Introduction

Originally developed for military applications, unmanned aerial vehicles (UAVs) have become

increasingly prevalent in civilian and commercial applications [1]. This shift in interests

has, in turn, prompted and increase in research and development, both in academia and

the industry. UAVs are appealing platforms: compared to conventional aircraft with on-

board pilots, they are lightweight, low-cost, multipurpose and, perhaps most importantly,

safe for a remote operator [2]. UAVs are now used for several commercial and scientific

endeavours including mapping, surveillance, experimental data gathering, search and rescue,

and transportation and delivery of goods, among other applications [3, 4, 5].

1.1 Motivation

UAVs are roughly classified in two large categories: rotorcraft and fixed-wing aircraft. Ro-

torcraft are equipped with multiple motors and propellers, allowing them to remain airborne

through thrust alone. They are highly maneuverable and capable of hovering in place, which

in turn allows them to perform vertical take-offs and landings. These platforms are suited for

applications that require precise, low-speed maneuvers or stopping mid flight. Fixed-wing

UAVs rely on lift generated through their lifting surfaces to remain airborne, while devot-

ing their available thrust to accelerate. They are much more energetically efficient than

rotorcraft, making them the platform of choice for tasks requiring large area coverage, high

velocity flight, and endurance.

The agile fixed-wing UAV is a modern class of aircraft designed to bridge the gap between

these two categories. While similar in appearance to a conventional fixed-wing aircraft, this

platform, like the one shown in Figure 1.1, possess special features that makes it highly

1
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maneuverable. Agile fixed-wing UAVs are characterized by a high thrust-to-weight ratio,

low aspect ratio wings, and large control surfaces capable of large deflections. Thrust is

generated by a powerful motor and propeller combination, and with a thrust-to-weight ratio

larger than one, the aircraft can remain airborne and accelerate through thrust alone. The

propulsion system serves another important purpose: it generates significant slipstream (or

propwash). The design of the aircraft’s control surfaces capitalizes on slipstream by using

this additional airflow to retain control authority regardless of the vehicle’s airspeed.

Figure 1.1: An agile fixed-wing UAV.

An agile fixed-wing can be flown in the conventional steady, level flight regime but it is

capable of a much wider range of maneuvers [6]. Since the control surfaces retain control

authority even at reduced airspeeds, the aircraft can hover in place and perform several

aerobatic maneuvers. Figure 1.2 shows an agile fixed-wing platform in two distinct flight

regimes. The outstanding maneuvering capabilities of these aircraft have been demonstrated

by expert pilots in the radio control (RC) community where impressive aerobatic maneuvers

are performed in events and competitions. There is great potential in the agility and ma-

neuverability of these platforms, but only expert pilots can operate them reliably since their

configuration is not inherently stable and aerobatic maneuvers require precise control inputs

on multiple channels simultaneously. The maneuverability, reliability, and, as a consequence,

the range of applications for this class of aircraft is ultimately dependent on pilot skill and

experience [7]. There is a clear need for an autonomous control solution that harnesses the

versatility and maneuverability of the aircraft. While the long-term goal is fully autonomous

flight, this will not happen in the near-term, especially due to the reservations of regulatory

agencies [8]. This fact underscores the need for safe, manual remote operation, which can

be achieved through a pilot-assisted, semi-autonomous control system specially tailored to

these platforms.
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Figure 1.2: An agile fixed-wing UAV in different flight regimes.

1.2 Objectives

This thesis focuses on the development of control strategies for agile fixed-wing UAVs, both

in fully autonomous operation, and in semi-autonomous, pilot-assist flight. The control

architecture must be valid for the complete range of operation of the aircraft so as to fully

exploit the extreme maneuverability of the platform. This includes conventional steady

flight, the hover regime, aerobatic maneuvers, and transitions between regimes.

The first objective is the development and verification of an attitude control system that

can drive the aircraft to any possible orientation. Since attitude does not naturally evolve

in Euclidean space, the design of a global or almost global control system requires special

care to avoid singularities, redundancy, and other phenomena. As the core component of the

overall UAV control system, it is important that the attitude controller be tested thoroughly.

Once the attitude controller is designed and tested, the focus shifts to the position control

system. We consider the problem of commanding an aircraft to follow references in three-

dimensional (3D) space without specific information of the flight regime needed to achieve

them. This is especially important for the semi-autonomous operation of the aircraft, where

pilot input is limited, and the prescribed motions do not easily conform to some specific,

precomputed maneuver. As such, the control system needs to be able to operate in different

flight regimes, determine if a transition is needed, and remain valid during these transitions.

Trajectory planning for autonomous operation is outside the scope of this work, and has

been studied previously [9]. However, several trajectories will need to be designed to test

the control system capabilities, both in simulations and experimental flights. In contrast,

the generation of trajectories for semi-autonomous operation is a fundamental task, since

this component serves as the translator between operator input and control system. This

component will determine how the aircraft is piloted. Due to this, there is an additional
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objective beyond the core control systems: the development of a reference generation strategy

that allows the pilot to intuitively prescribe a flight trajectory in each flight regime.

We envision a comprehensive flight control system for the agile fixed-wing UAV platform,

capable of operating in all flight regimes and performing aggressive maneuvers, while being

versatile enough to accommodate both fully autonomous and pilot-assisted operation, as

required, depending on the particular mission.

1.3 Literature review

As the main topic of this work, the literature review focuses on the 3D motion control of

UAVs. Agile fixed-wing UAVs are unique platforms which share properties with different

UAV categories; hence, the review does not focus solely on fixed-wing aircraft research and

explores the contributions in the control design of other relevant UAV classes.

The development of control systems is largely influenced by the characteristics of the

target platform. These properties are embedded in the system’s dynamic model and under-

standing them is an important step in identifying the considerations and limitations of the

designed control system. To highlight the special characteristics of the agile fixed-wing, this

review briefly discusses existing dynamic models of fixed-wing aircraft and their applicability

to the platform of interest.

1.3.1 Agile fixed-wing UAV models

Three-dimensional rigid body motion lies at the core of any UAV dynamic model. This topic

has been amply studied, and the equations of motion, both translational and rotational, of a

rigid body are well established [10, 11]. Of these, the attitude equations warrant special care,

since attitude does not evolve in R3, as position and velocity do. The natural representation

of attitude are the direction cosine matrices (DCMs) which belong to the special orthogonal

group of three-dimensional rotations (SO(3)). However, several attitude parametrizations

exist, and depending on the requirements and scope of each problem, different ones may be

used for the purposes of simulation, control design, and implementation [12].

While 3D motion is already a nonlinear problem, the main challenge in obtaining the

model of the UAV lies in determining the forces and moments that are applied to the rigid

body dynamics. This is particularly complex in the case of fixed-wing aircraft, where forces

and moments are generated through aerodynamics. Conventional fixed-wing UAV models

[2] are largely inherited from conventional manned aircraft models which have existed for



CHAPTER 1. INTRODUCTION 5

decades. These dynamic models are derived from the Euler angles parametrization which,

despite their non global and non unique nature, are well suited for analysis and control design

about the steady, level flight regime. This flight condition also justifies the use of simplified

models based on stability derivatives, which reduce the aerodynamic analysis complexity

[13]. While simplified, these models remain complex, as they are nonlinear and require the

use of several look-up tables. For this reason, it common to further simplify them through

linearization about specific operating conditions, particularly for control design [14]. Often,

several linearized models are required to account for different operational conditions [15].

The particular characteristics of agile fixed-wing UAVs, however, cannot be properly

represented with such models. Attitude dynamics require a non-singular representation such

as quaternions or DCMs, as is the norm for the more maneuverable rotorcraft platforms [16].

Conventional aerodynamic models are also ill-suited, since they do not account for large

angles of attack, the low aspect ratio surfaces, or the large control surfaces [17]. Slipstream,

a fundamental characteristic that has shaped the configuration of these platforms, has rarely

been studied. In [18], a model based on first principles for the agile fixed-wing UAV was

developed. This work serves as the basis of the agile fixed-wing UAV model used throughout

this work, and was previously developed and tested by past members of the Aerospace

Mechatronics Lab (AML). This model is complemented by a slipstream model [19] and a

thruster dynamic model better suited for aerobatic flight [20].

Based on first principles, these models can be applied to very different configurations of

aircraft. However, this work focuses on platforms with a specific input configuration, which

is that of a conventional fixed-wing aircraft. It is assumed the aircraft has the capability of

generating four independent inputs: one body fixed force, and three independent moments.

The control allocation problem, how these four forces (and moments) are generated by the

available inputs, is platform dependent. While this work focuses on the agile fixed-wing

platform shown in Figure 1.1, equipped with one motor and propeller and three independent

control surfaces, the results can be applied to any UAV with this input configuration.

1.3.2 UAV control systems

The motion control problem consists of designing a policy for the available inputs such that

the aircraft pose, consisting of attitude and position, is driven to some reference. Since 3D

motion constitutes a six degree of freedom (DOF) problem and the platform considered in this

work has only four inputs, the system is considered underactuated. While only four inputs

are available, their configuration is fundamental as it ensures the UAV remains controllable,
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since the three independent moments guarantee the controllability of the attitude dynamics

[21], and position can be controlled by pointing the body fixed force. For this reason,

several aerospace platforms share this input configuration, and research on control systems

is plentiful.

Control system architecture for UAV platforms can be roughly classified between sin-

gle, one-step controllers, and cascaded systems. The one-step architecture aims to control

position and attitude states simultaneously, often using linear control techniques. Such sys-

tems are more common in rotorcraft control, as in [22], where a Linear Quadratic Regulator

(LQR) state feedback control technique is used to drive a quadrotor onto a 3D path. De-

pending on the selected states and outputs, only part of the dynamics may be controlled

simultaneously, as in [23], where only the attitude and velocity direction of the quadrotor

are controlled through an LQR formulation. In contrast, a complete coupled position and

attitude reference may be commanded, as in [24], where a Model Predictive Control (MPC)

design is used to track some desired trajectory. As an underactuated system, the UAV is not

necessarily capable of following any arbitrary 6 DOF trajectory. Control systems that com-

mand such profiles need to account for the dynamic feasibility of the trajectory, or prioritize

certain coordinates through some cost function. Optimization based control systems such

as LQR and MPC lend themselves well to this. These control systems require the complete

UAV dynamics to be linearized about some specific equilibrium point. For this reason, they

are popular for multirotor platforms operating near the hover condition, as this avoids the

need for obtaining several linear approximations, but they are less common for fixed-wing

systems which often transition between different regimes. These schemes are also more rigid,

as they cannot be easily adapted to use additional or fewer states, for example, pure attitude

control.

By far the most popular control architecture for fixed-wing aircraft is a cascaded system,

where an inner loop controls the attitude dynamics and an outer loop achieves the task of

translating in space. This architecture lends itself better to the conventional fixed-wing input

configuration, since attitude can be directly controlled using the three available moments,

with limited interdependence with the translational states [25]. For fixed-wing aircraft, the

cascaded control idea serves as the basis for the commonly employed “autopilot assumption”,

where underlying attitude, and often airspeed, control systems which converge rapidly to the

commanded references are assumed to be in place, allowing the designer to develop position

control systems using a simple kinematic model of the aircraft, akin to those used for ground

vehicles [26]. This structure is not exclusive to fixed-wing vehicles, as it popular in multirotor
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control systems, which can be considered differentially flat, allowing for simple, dynamically

feasible trajectory generation when using a cascaded system [27].

A separate control scheme has additional advantages. First, it allows for more flexibility

in the controller design, both for the inner or outer systems. While linear control techniques

can be used, nonlinear control systems have been used for both the position and attitude

loops [28] or a combination of both [29]. There is also flexibility in the operation of the aircraft

itself, since inner loops can be used directly if, for example, a specific attitude maneuver is

needed without a specific spatial position profile [30]. Finally, a cascaded control design may

consider the underactuated nature of the system, limiting the available references that can

be provided at one time to ensure the prescribed trajectory is feasible.

While attitude and position controllers are commonly used together as part of a more

comprehensive system, the inner attitude control system imposes most of the limitations on

the allowable motions of the UAV. For this reason, it is useful to first study the state-of-the-

art of UAV attitude control techniques.

1.3.2.1 Attitude control systems

Attitude control considers the problem of driving the vehicle’s attitude towards a prescribed

attitude reference, either constant or time varying. The mathematical description of attitude,

its parametrizations, controller design have been amply studied for the more general problem

of a rigid body, with particular emphasis on spacecraft systems [31, 32]. Each application is

different, and some control techniques are more common with certain platforms.

As with dynamic models, Euler angles are the standard for the attitude control of fixed-

wing aircraft, both manned and unmanned. The simplest configuration consists of inde-

pendent proportional-integral-derivative (PID) controllers for the pitch and roll coordinates

[25], allowing for longitudinal and lateral control. Indeed, many commercial UAV autopi-

lot systems are based on this control solution [33, 34]; it is simple to implement, can be

swiftly adapted to different platforms via gain tuning, and provides good performance for

steady flight maneuvers. The main limitation of this scheme is due to the Euler angle

parametrization. Attitude cannot be measured directly, it is estimated from different sen-

sor measurements. While Euler angles can be estimated through Extended Kalman Filter

(EKF) techniques, modern autopilot systems commonly employ estimation algorithms based

on non-singular attitude parametrizations, such as a Multiplicative Extended Kalman Fil-

ter (MEKF) on quaternions [35], or a complementary filter [36]. These schemes generate

attitude and angular velocity estimates through measurements provided by an Inertial Mea-
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surement Unit (IMU) composed of a gyroscope, an accelerometer, and a magnetometer.

From the resulting attitude measurement, commonly a quaternion, Euler angles need to be

extracted to be used as feedback in the control law, and they become ill-defined at gymbal

lock, which occurs as the pitch approaches 90 degrees. This problem is compounded by the

kinematic singularity occurring at this attitude, which prevents the Euler angle rates from

being resolved from angular velocity measurements.

Angular velocity control, commonly referred to as rate control, is a control solution where

angular velocity references are prescribed instead of a time varying attitude configuration.

Rate control can be achieved solely with angular velocity feedback, thus avoiding the prob-

lems associated with the attitude parametrization [37]. Rough angular velocity estimates

can be obtained with only a gyroscope (although most modern estimation systems use a

magnetometer and an accelerometer to improve this estimate), and for this reason, this

mode of operation is referred to as “gyro” in the RC community. Rate control is sufficient

to drive the UAV position onto a reference trajectory [38], but it is often used as a first step

towards a precise attitude control system. This invariably requires attitude feedback which

reintroduces any flaws in the parametrization.

The agile fixed-wing UAV is expected to perform large angle maneuvers, which can pass

through the gymbal lock configuration. Of particular concern is the fact that one of the key

maneuvers the platform is meant to perform, hovering, occurs exactly at gymbal lock. One

solution is to define two sets of Euler angles, one for steady “horizontal” flight, and one for

hovering “vertical” flight, as in [39], where a dual Euler angle controller is designed for a

tailsitter UAV. Deciding when to transition between attitude descriptions can be problem-

atic, since the attitude and angular velocity measurements will be discontinuous. A better

solution is choosing an attitude description with no singularities, such as the unit quaternion.

Many modern quaternion-based attitude control systems for highly maneuverable UAVs can

trace their origins back to the satellite attitude control laws developed in [31, 40]. In [41, 42],

nonlinear Proportional-Derivative (PD) control laws on quaternions are studied for the reg-

ulation of a quadrotor platform, showing the effectiveness of the parametrization in driving

the vehicle to any arbitrary attitude reference. The problem of tracking, for time varying

attitude references, has also been studied with quaternions as in [43], where a passivity based

filter is additionally developed to avoid using angular velocity measurements. While more

popular with rotorcraft, quaternions have been successfully used in hover-capable fixed-wing

aircraft, such as tailsitters [44] and agile fixed-wing UAVs themselves [45, 46].

The quaternion representation, while non-singular, is non-unique and as a result suffers
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from the unwinding phenomenon, where the vehicle may take the longest path to reach a

reference attitude. This problem can be resolved with a discontinuous control law, but care

must be taken to avoid chattering due to sensor noise [47]. There is much discussion on the

true impact of this correction in implementation. However, it is true that using a different

representation of attitude can avoid this problem altogether. This is the main reason recent

UAV attitude control systems have opted instead for working directly on SO(3). In [30], the

attitude tracking control of a quadrotor platform is studied. The proposed control law consist

of feed-foward components and a feedback PD control law using a nonlinear attitude error

function designed for SO(3). This work serves as a specialized application of the geometric

control techniques developed in [48]. A modified SO(3) error function is used in [49] for the

problem of a tailsitter vehicle. This work emphasizes how a geometric formulation allows

a single controller to handle attitude control in all flight regimes: steady flight, hover, and

transitions in between.

The output of most of these attitude control systems are control moments, which need

to be mapped onto the available inputs. This mapping is the control allocation problem and

it is an added complexity in agile fixed-wing control. Control allocation is of little concern

for multirotor vehicles, since the control moments are generated through thrust commands.

While the propeller generated thrust is affected by airspeed, this and other aerodynamic

effects are negligible for the slower moving rotorcraft. However, agile fixed-wing vehicles

generate some, or all of their control moments through aerodynamics, since they depend on

control surface deflection. Their control authority is greatly dependent on airflow over the

control surfaces, so the control allocation problem is dependent on the translational states. In

[49], extensive wind-tunnel testing is performed to derive nonlinear mappings from control

surface deflection to moments. These functions are dependent on motor revolutions per

minute (RPM), forward speed, and UAV acceleration. The aerobatic control system in

[46] also creates a nonlinear mapping, but uses a much simpler function based on blade-

element momentum theory to obtain an estimate of slipstream. Experimental results show

a simplified model using no airspeed measurements can still achieve good performance. A

different approach is explored in [50], where different PID controllers are developed for

different airspeed conditions, and a gain scheduling system is used to switch between them

depending on airspeed measurements.
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1.3.2.2 Position control systems

The traditional control architecture for fixed-wing UAVs consists of nested controllers built

on top of the Euler-angle based attitude control system. Thrust and pitch are used to con-

trol the longitudinal modes of the aircraft, while roll is used to control the lateral motion

[2]. These controllers form the basis of the UAV autopilot system, which are used to steer

the UAV through a guidance algorithm developed about a kinematic model of the aircraft,

both linear [51] or nonlinear in nature [29, 52]. The tasks of guidance and control are deeply

intertwined in fixed-wing aircraft, since platform limitations such as minimum airspeed and

maximum angles of attack to avoid stall and limited turning capabilities dependent on max-

imum bank angles do not allow for any arbitrary trajectory to be prescribed.

Much like rotorcraft, agile fixed-wing UAVs are not bound by these constraints, and con-

ventional control techniques are not sufficient to fully harness their capabilities. The control

paradigm of rotorcraft UAVs is markedly different from that of conventional fixed-wing plat-

forms in that it focuses on the stricter problem of trajectory tracking. As detailed in [53, 54],

the problem of maneuvering in 3D space can be split between two tasks: the geometric task,

which requires the vehicle to converge to and remain within some geometric path, and the

dynamic task which additionally requires the vehicle to satisfy some time-parametrized be-

haviour. It is well understood that platform characteristics impose performance limitations

for the stricter dynamic task [55]. This is particularly relevant for conventional fixed-wing

aircraft, and explains why guidance algorithms, such as the popular L1 guidance [56], are

often used, as they focus on the geometric task through implicit path-following techniques.

Since the agile fixed-wing UAV is capable of both conventional steady flight and the more

maneuverable regime of rotorcraft, it is useful to review control strategies for both platforms.

Out of the additional capabilities of agile fixed-wing UAV, the hover flight regime has

been of special interest to the research community because it enables vertical take-off and

landings (VTOL), stopping in place, and slow, precise maneuvering. Initial developments

for fixed-wing platforms transitioning into a regime involving large angles of attack were

performed in [57, 58], where the indoor perching problem of a small glider vehicle was stud-

ied. An approximate optimal feedback control is designed for this task, where only the

longitudinal modes of the UAV and a constant heading are considered when generating

the reference trajectory . In [45], the transition into hover regime of an agile platform is

demonstrated through pure attitude control based on a quaternion parametrization, with

thrust kept constant to counter the aircraft’s weight. No position feedback is considered,

causing the platform to drift in the presence of uncertain thruster dynamics or external
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disturbances. Evidently, a controlled hover requires position feedback and an additional po-

sition control loop. Since the hover flight regime is comparable to the conventional operation

of rotorcraft, control design for this condition benefits greatly from the available rotorcraft

literature. In [59], a position control system is designed for a VTOL vehicle. The system

is a cascaded architecture built about an inner nonlinear, quaternion-based attitude control

system. The outer position control system generates a coordinated attitude reference and

thrust command, through an intermediate position control law. The reference attitude is

extracted to also minimize the total angle of rotation. The ideas from this work are modified

and adapted in [60] to operate directly in SO(3), avoiding complications arising from the

quaternion parametrization. The flexibility of completing a reference attitude is explored in

[61, 30], where the SO(3) reference is prescribed not to minimize the rotation, but to satisfy

an additional degree of freedom: the direction of the quadrotor forwards pointing vector,

which is particularly useful when a camera is affixed to the vehicle. Hover-capable fixed wing

platforms have adapted these thrust pointing algorithms to achieve controlled flight while in

hover, as in [62, 63], where tailsitter platforms are considered.

When compared to rotorcraft, an agile fixed-wing UAV is more versatile since it oper-

ates in the more efficient steady flight regime. Unfortunately, this versatility adds to the

complexity in control system development, since a control system developed for the hover

condition might not work in other regimes. It is not uncommon for different control strate-

gies to be used for different flight regimes. In [64], one of the first control systems for

tailsitters, separate LQR controllers are developed about the two fundamental flight regimes

and an additional switching algorithm is implemented to smooth the transitions between

them. Transition between regimes is the main challenge in these hybrid control schemes,

and several strategies have been proposed. The work in [65] focuses on designing empirical

transitional trajectories and prescribes a complete 6 DOF reference during them. A model-

based approach is used in [66], where attitude trajectories are calculated offline through an

optimization framework that uses the vehicle dynamics as constraints. Only attitude control

is considered, with the position control in both regimes left as an open problem. The alter-

native is designing unified control schemes that avoid the need for specialized transitional

systems, or nonlinear control systems whose region of validity overlaps, allowing for a safe

transition. The work on tailsitters presented in [62] focuses on extending the validity of the

hover regime controller to be also used for steady flight and transitions. The proposed system

requires a nonlinear, sequential convex programming optimization problem to be solved on-

line in order to jointly determine attitude references and thrust. This optimization problem
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requires precise knowledge of aircraft aerodynamics in all flight regimes. In addition to the

inherent uncertainty in the aerodynamic model, the computational costs are problematic,

and prevent the system from being completely tested in flight experiments. A different strat-

egy is employed in [63], where the outer position control system generates attitude references

from precomputed lookup tables. While less maneuvers are possible, no heavy optimization

procedure is performed online, which allows the system to be tested experimentally. The

work in [67] was specifically developed for agile fixed-wing UAVs, considering the possibil-

ity of aerobatic maneuvers. The unified control strategy uses a cascaded architecture with

a quaternion-based attitude control core modified from [45]. The control system requires

a complete 6 DOF reference, which allows for aerobatic maneuvers to be performed while

following a position trajectory. This system was verified together with a motion-planning

system based on a rapidly-exploring random (RRT) algorithmm where a library of optimized

trajectories was used to ensure dynamic feasibility [68].

1.3.2.3 UAV path-following

Agile fixed-wing UAVs are lightweight platforms and are susceptible to wind disturbances

when in outdoor operation. For high velocity maneuvers, the presence of wind causes nom-

inally feasible, time-parametrized trajectories to be beyond the operating limits of the air-

craft. Under these circumstances, the objective of path-following can be used to achieve some

geometric objective, even if a specific time-dependent objective cannot be met. Indeed, path-

following has been proven to improve performance under windy conditions [69, 70]. Conven-

tional path-following schemes for fixed-wing aircraft are based around the kinematic model

assumption and are thus limited to circles and straight lines, trajectories defined by the pop-

ular Dubins path model [71]. However, more comprehensive techniques exist that consider

the full aircraft dynamics and allow for a wider range of 3D motion, both for fixed-wing

UAVs and rotorocraft.

In [52], a backstepping control strategy is used to combine the L1 guidance algorithm

with a quaternion based attitude control system. While the selected L1 guidance algorithm

restricts the possible spatial curves the UAV can navigate, the underlying nonlinear design

raises the possibility of more general 3D paths. Indeed, a more general path-following system

is pursued in [72], where a specialized reference frame, the Frenet-Serret frame, is assigned

to the spatial curve to derive path dependent errors. Simulation results on an agile fixed-

wing model show the effectiveness of the system in driving the UAV onto the path while in

the presence of wind. However, the underlying LQR controller limits the available motions
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of the aircraft. Furthermore, the Frenet-Serret frame limits the possible paths that can be

prescribed. Originally used for 2D motion control, the flaws of the Frenet-Serret frame in 3D

applications are well known [73], and alternatives have been developed [74]. The alternative

parallel transport frame is used in [38] to develop a geometric path-following solution directly

on SO(3). While only simple paths are shown for the experimental results, the combination

of the selected path descriptor and the non-singular control formulation in theory allow for

a more general class of 3D paths the UAV can navigate.

1.3.3 Pilot-assist systems

The research discussed above is but a sample of the plentiful work that has been done in the

field of autonomous UAV control. In contrast, works on semi-autonomous control systems,

where the presence of a remote human operator is considered, are relatively scarce.

Conventional manual remote operation of fixed-wing UAVs is straightforward: an ex-

perienced pilot will command the thrust and control surfaces directly with no underlying

stabilizing controller on board. This mode of operation places all the control burden on the

pilot, from the bare minimum objective of stabilization, to more complex tasks like navi-

gation and disturbance rejection. While standard fixed-wing aircraft aim to have a stable

configuration, agile UAVs are marginally stable by design to enable aggressive maneuvering

[75], demanding more skill from the operator for the task of stabilization alone. Compound-

ing the difficulties in nominal operation, pilot feedback is limited to direct visual line of sight

(LOS) with the aircraft or, for longer distances, cameras installed on the frame providing a

first person view (FPV) [76]. While a remote pilot may be able to approximately determine

the aircraft’s pose, additional feedback available to pilots in manned aircraft, which might

enable the operator to estimate disturbance magnitude and direction, are lost. The role of

the vestibular system as a means for pilots to estimate the aircraft’s accelerations has for

many years been recognized as an important aspect of manned flight [77]. A key aspect

of remotely controlled aircraft is that the operator can only recognize and compensate for

disturbances after they have visibly altered the expected flight path or intended maneuver.

To assist the pilot, research in this area has focused on pilot feedback enhancement, as in

[78] or through warning system [79], but solutions through control architectures are limited.

Pilot-assisted flight through semi-autonomous control systems is best exemplified by the

stability augmentation systems used for conventional aircraft, such as the one presented in

[80] where linear control techniques are used to stabilize the longitudinal and lateral modes

of the fixed-wing dynamics linearized about the steady flight condition. These linear nested
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controllers are the basis for open source autopilots developed for smaller, unmanned vehicles

[34, 81]. The latter is especially notable, since it allows for pilot-assisted flight for tailsitters

in both steady and hover regimes. This is done through two different controllers which switch

as the UAV pitches up or down. The addition of altitude control is presented in [82], where

an H∞ controller is used to provide robustness against external disturbances.

While these semi-autonomous control systems can be used to control an agile fixed-wing

platform, they do not exploit the maneuverability of the aircraft. Research on aggressive,

pilot-assisted maneuvers is more prevalent in manned aircraft, as in [83] which studies the

enhancement of aerobatic longitudinal maneuvers for fighter aircraft through a control aug-

mentation system composed of nested PID control on pitch and airspeed. These schemes,

however, have not been adapted for smaller UAVs.

1.4 Thesis organization

The thesis is organized as follows. Preliminary concepts are discussed in Chapter 2, focusing

first on the dynamic model of the agile fixed-wing UAV which will serve as the basis for

controller design and analysis. The overall architecture of the proposed system is then briefly

discussed in order to introduce its main components and their interaction. These components

will be the focus of later chapters, as shown by the component distribution shown in Figure

1.3. Lastly, the simulation and experimental tools used to verify the proposed strategies

are presented in this chapter. The core verification tool is the specialized UAV dynamic

model developed by previous members of AML. As part of this work, this model has been

integrated into the Software in the Loop (SITL) environment, which serves as an intermediate

step before experimental flights. This section also introduces the experimental platform used

for experimental trials.

The attitude control system is the focus of Chapter 3. Different nonlinear attitude

control strategies are developed, which are then evaluated through numerical simulations

and experimental flight tests. Results are presented in this chapter as this component is

meant to be able to operate on its own when required, and because the correct operation of

the complete UAV control system hinges on the attitude control core.

Chapter 4 presents the position control system, built around a nonlinear vector-projection

algorithm which generates attitude references and thrust commands given some a virtual

acceleration command. This command can be generated through different linear or nonlin-

ear control strategies. In particular, two operating modes are presented, position tracking
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Figure 1.3: Chapter distribution of developed systems.

control, and velocity tracking control, which can be selected as required. To verify the ca-

pabilities of the control system in autonomous operation, representative time-parametrized

trajectories are designed, which are then given as references for the UAV to track in simula-

tions and flight experiments.

While the problem of tracking is the focus of the previous chapter, the geometric task is

explored in Chapter 5 as an alternative to UAV control. This chapter discusses the repre-

sentation of reference paths as 3D curves in space, and introduces the necessary differential

geometry tools needed to design a path-following solution. The main tool is the development

of a novel path frame for agile navigation in 3D which is used to define path-relative errors.

A closed-loop reference generation scheme, together with a path evolution policy is then

presented to adapt the tracking systems into a path-following solution. As with previous

chapters, simulation and experimental results are presented.

The work on the chapters outlined above focuses on the autonomous operation of the

agile fixed-wing UAV. Chapter 6 presents the additional components needed to augment

these results to achieve a semi-autonomous pilot-assist solution. These results span all three

control layers, starting with semi-autonomous attitude control, best suited to achieve specific

aerobatic maneuvers or for human operation where position feedback is unreliable. Tracking
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control is shown to be viable for all operating regimes of the aircraft but its use is empha-

sized for slow maneuvers requiring high precision, both in steady flight and hover flight. A

reference generator using pilot commands as input is developed for different flight conditions.

In contrast, the path-following solution is exploited for high velocity, semi-autonomous op-

eration, where the notion of spatial geometry is more intuitive to a human operator than

instantaneous position references. A path-stitching algorithm that translates pilot commands

into curves in space is then developed for its integration with the path-following controller.

Finally, an integration of these systems into a comprehensive semi-autonomous solution is

presented, where the control systems changes between tracking and path-following operation

smoothly depending on the pilot prescribed velocity reference. Complex experimental flights

are then presented to conclude the chapter.

Finally, Chapter 7 presents concluding remarks and a discussion of future research op-

portunities arising from the results of this work.



Chapter 2

Preliminaries

2.1 Agile fixed-wing UAV model

To evaluate the stability and performance of developed control solutions, a dynamic model

of the system of interest is required. There exist several models and simulators of fixed-

wing aircraft focused mostly on large, manned platforms, ranging from simplified kinematic

models, to dynamic models that do account for aerodynamic forces and moments. In recent

years, there has been a greater focus on smaller, unmanned aerial vehicles but most models

are still based around the concept of stability derivatives, and are not capable of describing

the complete three dimensional motion of agile fixed-wing UAVs [2].

To better capture the behaviour of the agile UAV in all flight regimes, this work uses

the agile fixed-wing UAV model developed in [84], but modified such that the attitude prop-

agation occurs directly in the special orthogonal group instead of the proposed quaternion

model. This model consists of four main components: a standard rigid body dynamic model,

an aerodynamics model based on a component breakdown approach, a thruster model, and a

slipstream model. The rigid body model is presented first, together with the necessary con-

cepts for attitude control analysis and design. The other three components, which compose

the high-fidelity model, are then briefly discussed.

2.1.1 Rigid body dynamics

To describe the three-dimensional motion of the aircraft, two reference frames are required.

As is common in UAVs, the North-East-Down (NED) convention is adopted such that the

î1, î2, î3 basis vectors of the inertial reference frame, F i, align with the North, East, and

Down directions, respectively. Similarly, the body reference frame, F b is affixed to aircraft

17
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centre of mass, and is selected such that the b̂1 basis vector points out of the aircraft nose,

the b̂2 vector points out of the starboard wing, and the b̂3 vector points out of the aircraft

belly. These reference frames are shown in Figure 2.1.

Figure 2.1: Inertial and body reference frames.

With these two frames, the dynamics of a rigid body can be properly stated. They are

described by two sets of differential equations which represent, respectively, the rotational

and translational motion of the aircraft.

2.1.1.1 Rotational dynamics

The rotational dynamics of a rigid body are given by [10]

Ċbi = −ω×
b Cbi, (2.1)

Jω̇b = (Jωb)
×ωb + M, (2.2)

where Cbi is the Direction Cosine Matrix (DCM) from body to inertial frame, a member of

the three-dimensional special orthonormal group given by the set

SO(3) =
{

C ∈ R3×3 |CTC = I3, det(C) = 1
}
, (2.3)

where In ∈ Rn×n refers to the n-dimensional identity matrix. The term ωb = ωbi
b denotes the

angular velocity between the body and inertial frames, resolved in body frame coordinates.

The elements of ωb are commonly defined as ωb = [p, q, r]T . The matrix J ∈ R3×3 is the

second moment of mass about the aircraft’s centre of mass, resolved in the inertial frame,

considered constant, and, by necessity, symmetric and positive definite. Finally M are the net

moments acting on the aircraft, mainly due to the effects of the propeller, and aerodynamics.

The skew symmetric operator (·)× : R3 → so(3) maps an element of R3 onto the set of three-

dimensional skew symmetric matrices, so(3) =
{

S ∈ R3×3 |ST + S = 0
}
, it is defined, for any
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u ∈ R3, as

u× =


0 −u3 u2

u3 0 −u1
−u2 u1 0

 . (2.4)

Equation (2.1) is known as Poisson’s equation, and represents the attitude kinematics.

It can also be written in terms of the DCM from body to inertial frame, Cib = CT
bi.

Attitude evolves naturally on SO(3): it is the only representation both unique and with-

out singularities. Other attitude parametrizations suffer from some deficiency, but other

properties make their use appealing for control and estimation solutions. While this work

focuses on control solutions directly on SO(3), notions of two other parametrizations will be

useful for analysis. First is the angle-axis parametrization, the direct consequence of Euler’s

rotation theorem, and related through Rodrigues’s rotation formula,

C(η, ϵ̂) = cos(η)I3 + (1− cos(η))ϵ̂ϵ̂T − sin(η)ϵ̂×, (2.5)

where η is the rotation angle around the unit vector ϵ̂. This parametrization, much like the

quaternion, possesses no singularities but is non unique, since C(η, ϵ̂) = C(−η,−ϵ̂). The

control system is not developed using this parametrization but it will useful to verify several

properties of the control system. In addition, the angle η is a good measure of total deviation,

since it condenses the total angular difference between two reference frames. This angle can

be easily calculated through the relation

tr(C) = 1 + 2 cos(η), (2.6)

where tr(·) is the standard trace operator defined for square matrices.

The second parametrization is the 3-2-1 Euler angle sequence which is often used in

control solutions for fixed-wing aircraft. This parametrization consists of the sequential

rotations around the three primary body axis. A DCM can be constructed with no ambiguity

from these three angles as

Cbi = C(ϕ, k̂1)C(θ, k̂2)C(ψ, k̂3)

=


1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)



cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)




cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 , (2.7)
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where k̂i is the unit vector with zeros in all but the ith component, which is equal to one, and

ϕ, θ, ψ are the roll, pitch, and yaw angles, respectively. This parametrization is ill suited for

the design of control systems for agile platforms, since it is susceptible to gimbal lock and a

kinematic singularity as the pitch angle approaches 90 degrees. In this work, Euler angles

will only be used to build, when appropriate, a reference attitude profile, and to show results

in a more intuitive way, when applicable. To enable the latter, the extraction algorithm

presented in [12] will be used, as it is common in several software packages.

The second rotational equation, (2.2), is known as Euler’s equation and it represents the

attitude dynamics proper. With few exceptions, it is always resolved in the body frame, for

two main reasons: the second moment of mass resolved in the body frame is constant, and

the angular velocity is always measured, or estimated, directly in body frame coordinates.

2.1.1.2 Translational dynamics

In contrast with the rotational dynamic equation, there is no preference on the reference

frame in which the translational equations are presented in the literature. In this work, the

following equations are used,

ṗi = CT
bivb, (2.8)

mv̇b, = −mω×
b vb +mgCbik̂3 + T k̂1 + Fa, (2.9)

where pi is the position of the aircraft centre of mass resolved in the inertial frame, or in NED

coordinates, vb is the aircraft velocity, resolved in body frame coordinates, m is the aircraft

mass, considered constant, g is the gravity constant, T is the aircraft thrust force, and Fa
are the aerodynamic forces acting on the aircraft. With the unit vectors k̂i as previously

defined.

The selection of pi is due to sensor measurements, which give the position in a fixed

inertial frame. The choice of (2.9) is common in fixed-wing control, since aerodynamic

forces are more easily resolved and applied in the body frame. The three elements of vb are
commonly defined as vb = [u, v, w]T .

2.1.2 High fidelity model

The methodology and model developed in [84] aims to represent through first principles the

dynamics of small agile UAVs for their complete flight envelope. It remains one of the most

detailed models for this category of aircraft and is capable of capturing behaviour for a ±180
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degree range of angle of attack and sideslip.

While several elements of this model can be generalized to represent different platforms,

this work uses for the purposes of simulation the specific model matching that of the ex-

perimental platform, the McFoamy aircraft by West Michigan Park Flyers, shown in Figure

2.2.

Figure 2.2: McFoamy platform.

Aerodynamic model

The aerodynamics model employs a component breakdown approach which first splits the

UAV’s main components into segments, and then proceeds to calculate the aerodynamics

forces and moments individually before finally adding together all the contributions [18].

The main aircraft components are the wing, the horizontal tail, the rudder, the horizontal

fuselage, and the vertical fuselage. These components can in turn be grouped into horizontal

and vertical surfaces. This segmentation is illustrated in Figure 2.3.

Figure 2.3: Component breakdown approach.

Each segment is capable of producing aerodynamic forces of lift and drag, Fseg and an

aerodynamic moment in a specific direction, contained in Mseg. Horizontal surfaces produce

forces in the direction of the b̂3 and b̂1 basis vectors, and a (pitching) moment about the

b̂2 vector. Vertical surfaces can generate forces in the b̂2 and b̂1 directions, and a moment
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about the b̂3 vector. The aerodynamic forces and moments are all a function of the incoming

airflow, concretely, the velocity at the aerodynamic center of each segment, calculated by

vseg = vb − vbw + ω×
b rseg + vs,seg (2.10)

where rseg is the vector from the aircraft’s centre of mass to the segment’s aerodynamic

center, resolved in body frame coordinates, vbw is the wind velocity resolved in the body

frame, and vs,seg = [Vs, 0, 0]
T is the slipstream velocity at the segment’s aerodynamic centre,

which only has an axial component. The total aerodynamic forces and moments are then

Faero =
∑

Fseg, (2.11)

Maero =
∑(

Mseg + r×segFseg
)
. (2.12)

2.1.2.1 Thruster model

Conventional thruster models only consider axial flow conditions, as this is sufficient for most

steady, level flight maneuvers. The model developed in [20] uses propeller geometry together

with incoming airflow and propeller rotational speed to predict the forces and moments in

the direction of the three body axes. The thuster model is based around blade element

momentum theory and accounts for all flow conditions: static, axial, oblique, and reverse

flow. In addition, the thruster gyroscopic effects are calculated and added to the thuster

moments.

2.1.2.2 Slipstream model

Slipstream, the additional airflow induced over the aircraft by the propeller, is a fundamental

characteristic of agile fixed-wing UAVs. This airflow not only adds to the effectiveness of

the control surfaces, but allows the aircraft to retain control authority at low airspeed. This

property allows the aircraft to remain controllable during hover or near hover maneuvers.

Agile fixed-wing are designed so that a large part of the control surfaces are immersed in

propeller slipstream, as shown in Figure 2.4.

The slipstream model developed in [19] accounts for both the the acceleration and dif-

fusion phenomena, and it is shown to accurately predict the axial component up to several

propeller diameters downstream of the propeller. The swirl component is used to adjust the

thruster reaction moment, as it is shown to induce a rolling moment on the aircraft.
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Figure 2.4: Propeller slipstream.

2.1.3 Dynamic model for control development

The high-fidelity model is an important tool for the development and implementation of

control architectures since it allows the designer to test the control design on a more com-

prehensive, realistic system. However, due to its structure and complexity, designing a

controller based on this model is a difficult task. It is a common practice, specially so for

fixed-wing aircraft, to employ a simplified model for control development, and a more com-

prehensive one for simulation and verification [2, 85]. For this work, a simple model based

on [2, 86] is used. Define the relative velocity with respect to the surrounding air as

va = vb − vbw =
[
ua va wa

]T
. (2.13)

Then the airspeed Va, the angle of attack α and the sideslip angle β are defined as

Va = ∥va, ∥ (2.14)

α = atan2(wa/ua), (2.15)

β = atan2(va/ua), (2.16)

where, unless specified otherwise, ∥x∥ = ∥x∥2 =
√

xTx is the Euclidean norm, defined for any

x ∈ Rn.

While every component of the UAV generates aerodynamic forces and moments, and

indeed this is how the high fidelity model functions, for the simplified model the main

interest is in regards to the largest lifting surface, the main wing, and the three control

surfaces, the ailerons, elevator, and rudder.
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2.1.3.1 Wing Aerodynamics

For the wing, we consider the forces of lift and drag, as well as a pitching moment, which at

pre-stall angles of attack can be approximated as

L =
1

2
ρ b c̄ V 2

a CL, (2.17)

D =
1

2
ρ b c̄ V 2

a CD, (2.18)

M =
1

2
ρ b c̄2 V 2

a CM , (2.19)

where ρ is the air density, b is the wing span, c̄ is the mean aerodynamic chord of the

wing, and CL, CD, and CM are the dimensionless aerodynamic coefficients of lift, drag, and

pitching moment, respectively. These can in turn be approximated as

CL = CLα(α− α0), (2.20)

CD = Cd0 +
C2
L

πkoAR
, (2.21)

CM = −const., (2.22)

where Cd0 is the drag coefficient due to skin friction, ko is Oswald’s efficiency factor, AR =

b2/S is the wing aspect ratio, with S as the surface area, α0 is the geometric zero-lift angle,

equal to zero for symmetric airfoils, the constant value of CM can be considered zero for thin

flat plates since the aerodynamic center and center of pressure are coincident, and, finally,

CLα is the lift-curve slope for a finite surface, approximated through a correction of the 2D

lift-curve slope to account for the small aspect ratio of the wing as

CLα = Clα
AR

AR+ 2(AR + 4)/(AR + 2)
(2.23)

where Clα ≈ 2π. These equations are a common approximation for steady level flight, which

is where these forces are most significant. Being proportional to the square of the velocity, the

aerodynamic forces are much diminished and considered negligible compared to the thruster

force in the near hover regime, which coincides with high angle of attack.

Finally, the forces in 2.9 are the aerodynamic forces resolved in the body frame through:
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Fa =


cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)



−D
0

−L

 = C(α, k̂2)


−D
0

−L

 (2.24)

2.1.3.2 Control surfaces

Agile fixed-wing UAVs, have large control surfaces capable of large deflections. As such, the

control mostly contribute moments around the body principal axes. By design, these surfaces

are partially or completely immersed in propeller slisptream which gives them additional

control authority. As such, it is important to account for this added airflow by defining the

effective airspeed over the control surfaces as

Vδ = ∥vb − vbw + vs∥ (2.25)

where vs = [vs 0 0]T is the slipstream velocity.

Based on [86], in the previous work of [67] the moments generated by the control surface

deflections are calculated as

Mδ =
1

2
V 2
δ S


bClδa 0 0

0 c̄ Cmδe 0

0 0 bCnδr



δa

δe

δr

 ≜ G(Vδ)δ, (2.26)

where Clδa , Cmδe , and Cnδr are the constant control derivative coefficients, determined

through experiments in [84], δ = [δa δe δr]
T are the control deflections of aileron, eleva-

tor, and rudder, respectively. In practice, the effective airspeed over the control surfaces, Vδ,

is approximated through V̂δ, calculated using momentum theory in the absence of wind as

V̂δ =

√
u2 +

2T

ρπR2
, (2.27)

where Rs is the radius of the slipstream far downstream.

Some assumptions are implied through this equations. First, each control surface is

directly mapped to a single body moment through the control allocation matrix G, meaning

there exists no secondary coupling. While the longitudinal mode associated with the elevator

is often considered decoupled, the lateral modes associated with yaw and roll are often

modeled with coupling control derivatives. These are often small compared to the primary
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ones, and indeed the large control surfaces capable of large deflections of the agile fixed-wing

results in negligible coupling coefficients.

Second, the control coefficients are assumed constant because the surfaces are immersed

in slipstream which only has a component in the first body axis. Slipstream not only increases

the total airflow, it also keeps the effective angle of attack over the control surfaces at low

values. Indeed, simulations in [84] lead to the conjecture that the total flow in slipstream

changes little with respect to the external flow, as an increase in external flow is balanced by

a decreased slipstream. This correlates to the the assumption represented in equation (2.27),

which assumes the airflow in the directions of the second and third body axis is negligible

compared to the axial flow. The final assumption is fundamental for attitude control design

and analysis and is given special emphasis.

Assumption 2.1 (Controllability of attitude dynamics ). The control allocation matrix

G(Vδ) remains full rank for all t > 0, regardless of the operating regime of the UAV. This

renders the attitude dynamics fully controllable for all t > 0.

It has been established that the attitude dynamics of a rigid body, as in (2.2), are fully

controllable if the input moments, in this case Mδ, are composed of at least three independent

control inputs [21, 32]. The control surface deflections, δ are composed of three independent

inputs, hence, controllability hinges on the control allocation matrix being full rank.

This is a common assumption in fixed-wing UAV control, and usually constrains the

airspeed and angle of attack between specific values, which define the flight envelope of

the aircraft. For the platform considered in this work, this limitation is relaxed due to the

dependence of G on the slipstream velocity, vs, itself dependent on the angular rotation of

the propeller, ωp. The elements in the allocation matrix will only vanish if the aircraft is still

and the motor is inactive, a condition that will never happen in the operation of the UAV.

Finally, the full rank condition, for some configurations of G(Vδ) only necessitates the

diagonal elements, or primary control coefficients, to be larger that the secondary coupling

terms. Since the design of the studied platform allows each control surface to generate a

large moment in its assigned direction, they are so dominant that the allocation matrix can

be considered diagonal, so the full rank assumption holds.
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2.1.3.3 Propeller

The thrust force and reaction force associated with the propeller and motor combination are

calculated according to standard definitions for propeller aerodynamic coefficients [86]:

T = CTρD
4
pn

2

Mp = CqρD
5
pn

2

where Dp is the propeller diameter, n is the propeller rotational speed in revolutions per

second, and CT and Cq are the force and reaction moment coefficients. For the platform

of interest, the reaction torque is found to be small enough in all flight modes that it can

be safely neglected. The thust force, however, is an important control input, precision is

required in order to determine the commanded motor angular velocity. In [67], the thrust

equations is first rewritten as

T = CTρD
4

(
1

60
ωp

)2

≜ ktω
2
p, (2.28)

where ωp is the propeller (motor) angular velocity in revolutions per minute (RPM). In the

literature, several kt is often considered constant, particularly in quadrotor control deriva-

tions. However, for the fixed-wing platform the coefficient is dependent on the axial flow as

well as the propeller angular velocity itself. These two elements are often condensed into the

nondimensional advance ratio

J =
u

Dp n
=

60u

Dpωp
. (2.29)

The relationship between J and kt needs to be obtained experimentally. Figure 2.5 shows

the results of the experiments performed in [87] for the McFoamy platform. A curve fit gives

the following function

kt = (−1.439J22− 2.212J + 2.245)× 10−7. (2.30)

The net moments in 2.2 are then

M =M k̂2 +Mpk̂1 + Mδ ≜ Ma + Mp + Mδ (2.31)
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Figure 2.5: Thrust coefficient vs. advance ratio.

2.2 Control system architecture

This work aims to develop a comprehensive control system for the agile fixed-wing UAV

platform. This system considers fully autonomous operation as well as pilot-assist, semiau-

tonomous flight. Different operating modes can be used to complete a specific mission, and

the control system needs to be flexible enough to enable this functionality while still relying

on a unified control theory to avoid switching between disparate control strategies.

The overall control systems assumes that the full pose of the aircraft is available, mean-

ing attitude, angular velocity, position, and velocity. Four independent control inputs are

assumed, one body fixed force and three moments. For the specific case of the McFoamy

platform this translates to the motor thrust and the three control surfaces of ailerons, ele-

vator and rudder. However, the algorithms developed in this work can be applied to other

platforms with different configurations, such as tailsitters and other VTOL capable aircraft.

2.2.1 Cascaded control structure

The control system uses a modular, cascaded structure, where individual control modules can

be enabled depending on the desired functionality. A diagram of the control architecture

is shown in Figure 2.6. Four main components make up the overall control system, the

core attitude controller, an outer position controller, a guidance component for reference

generation, and a state machine to manage the different control modes according to pilot

input, or mission parameters.

2.2.1.1 Attitude controller

The attitude controller has as its input a reference attitude profile and outputs the required

control deflections to drive the UAV attitude to the reference. As expected, this compo-
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Figure 2.6: Control architecture diagram.

nent takes in measurements of attitude, Cbi and angular velocity, ωb but in addition uses

translational velocity, vb to adjust for changes in the control allocation matrix, G.

The attitude controller is always active, as it is the core control component required for

autonomous or semiautonomous flight.

2.2.1.2 Position controller

The position controller is tasked with generating the required attitude reference and thrust

command required to drive the UAV position and velocity to the reference position pref and

ṗref and velocity it takes in as inputs. Depending on the nature of the reference, either a time

reference trajectory or a geometric path, the position controller enables trajectory tracking

and path following functionality, the latter being supported by the maneuver generator.

The position controller is not always active, since pure attitude control, either au-

tonomous or semiautonomous is also considered. In these cases, the thrust and attitude

reference is produced by the maneuver generator.

2.2.1.3 Maneuver generator

This component is capable of generating the necessary references for the various control sys-

tems to operate. Depending on the system state specified by the state machine, the maneuver

generator produces position references, geometric paths, or direct attitude references. Except

for very specific maneuvers, position and attitude references are never prescribed at the same

time by the maneuver generator; if position position control is enabled, then the attitude

reference is internally generated by the position controller. This avoids overparametrizing

the reference, since the system only has four independent actuators. Exceptions are reduced
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attitude commands around the thrust axis, which enable aerobatic maneuvers like inverted

flight, knife-edges, and rolling harriers.

Maneuver generation depends on the mode of operation. If autonomous, maneuvers

are assembled by joining together 3D geometric trajectories from a library, which includes

straight line segments, orbits, helices, etc. These trajectories can be time parametrized, but

may also use a path parameter that evolves in closed-loop with the system states, to enable

path following functionality. During semiautonomous operation, the reference trajectories

are a function of the pilot commands, usually the sticks of a standard four-channel RC

transmitter.

2.2.1.4 State machine

The state machine is a simple, if important component needed for implementation. Its

main purpose is managing controller status and flags when transitioning between modes of

operation. It monitors UAV states and either mission parameters or pilot commands to de-

termine when to switch between tracking and path following functionality. It then initializes

trajectories or geometric paths to ensure a smooth transition between both operating modes.

From a controller design perspective, the tasks this component performs are contained

independently in other systems, such as the position controller and the trajectory generator.

Its existence as a separate module is exclusive to the implementation firmware, as an inde-

pendent system manager that handles system flags and parameter initialization, as opposed

to independent modules, is considered good practice, for a variety of reasons. As such, this

component is not explicitly elaborated upon in this work, but the tasks it needs to perform

in implementation are indicated where appropriate.

2.2.2 Modes of operation

The proposed agile fixed-wing control system considers two operating schemes, fully au-

tonomous operation, and pilot-assist, semi-autonomous operation. Both of these options

can employ a combination of four different control strategies, as needed. These are:

• Attitude control. For autonomous operation, this enables 3D angular maneuvers, such

as explicit aerobatic commands. For semi-autonomous operation, this can be used

to perform aerobatics on command but is more importantly used as the basis for an

attitude stabilization mode. This is an important feature to have, as it can be defaulted

to in case of GPS signal loss to safely land the aircraft.
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• Position tracking control. Trajectory tracking is the choice for slower, precise ma-

neuvers. As such, it is better suited for hover controls, both autonomous or semi-

autonomous, or slower steady maneuvers, such as horizontal landings.

• Velocity control. A modification on position tracking, this control mode disregards

the precise position of the UAV and instead prioritizes velocity in the inertial or body

frames. At high velocities, this is a more intuitive operation that position tracking,

but the lack of position feedback will cause the aircraft to drift in the presence of

disturbances.

• Path-following control. Often, precise positioning with respect to time is not necessary,

but the UAV motion is still expected to remain contained withing some geometric

path. This functionality is achieved through path-following, and can be seen as a

relaxed trajectory tracking. For semi-autonomous operation, this functionality can be

considered a compromise between position and velocity control: the precise positioning

of the aircraft is not controlled, but the velocity reference is not prescribed in open

loop, as it is modified to guide the UAV onto a path.

2.3 Simulation and experimental tools

The control strategies developed in this work are tested and verified through a three step

process, starting with numerical simulations without regards to controller implementation

and culminating with flight tests with an experimental platform. Between these two steps,

an intermediate Software in the Loop (SITL) test phase is used.

2.3.1 Numerical simulation

All developed algorithms are first tested in a standard simulation environment using the

Simulink package of Matlab. The system consists of the rigid body model and the high

fidelity aerodynamic and thruster model, configured with the parameters of the experimental

platform, the Park Flyers McFoamy. The various geometric and inertial parameters, as well

as the specifications of the propeller and motor are given in Table 2.1, where the aircraft’s
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second moment of mass is given by

J =


Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz

 .
Attitude propagation is performed directly on SO(3), with a polar decomposition tech-

nique for orthogonalization of the DCM [88] to account for numeric errors. As stated pre-

viously, full knowledge of the states is assumed. While the high fidelity model drives the

simulated system, no knowledge of its internal values is used while testing the control laws,

instead, the various equations of simplified model for control development are used when

required.

Table 2.1: Aircraft properties

Parameter Value Units

mass (m) 0.45 kg
Ix 3.922×10−3 kg m2

Iy 1.594×10−2 kg m2

Iz 1.934×10−2 kg m2

Ixz 3.03×10−4 kg m2

Wing area (S) 0.143 m2

Wing span (b) 0.864 m
Maximum aileron deflection (δ̄a) 55 degrees
Maximum elevator deflection (δ̄e) 58 degrees
Maximum rudder deflection (δ̄r) 66 degrees
Maximum motor speed (ω̄m) 7700 RPM
Propeller radius (R) 0.127 m

2.3.2 Flight experiments

This work uses as an experimental platform the off-the-shelf radio control (RC) aircraft WM

Parkflyers McFoamy, upgraded with additional carbon fiber reinforcements and a custom

3D printed motor mount. This is considered an aerobatic airframe and as such is designed

to allow for aggressive maneuvering and hover.

Its lightweight EPP foam construction, weighting less that 0.2 kg, results in a take-off

weight of 0.45 kg when considering all the necessary equipment. The propulsion system con-

sists of a T-Motor AT2312, 1150 KV Brushless Motor paired with a 10x4.5 Master Airscrew
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MR Series propeller; static thrust tests show a maximum thrust of 10 N at the maximum 7700

RPM. These features demonstrate a thrust-to-weight greater that 2 ratio can be achieved.

The motor and electronics are powered by a 45C 3S 850mA Lipo battery, with an electronic

speed controller (ESC) to precisely adjust the motor’s phase voltage to control its rotational

speed. A EMAX ES09MD Digital Swash Servo is used to move each of control surfaces. A

radio RC receiver is the final component needed for the aircraft to be manually operated.

To enable autonomous and semiautonomous operation, the UAV is equipped with an

mRo Pixracer, an autopilot board of the Pixhawk family. This board is built around a

180 MHz ARM Cortex CPU and a 9-axis inertial measurement unit (IMU) composed of a

3-axis accelerometer, 3-axis gyroscope, and 3-axis magenetometer (compass). The Pixracer

runs the open source PX4 autopilot firmware. Out of the box, the firmware provides state

estimation of the attitude states and, when augmented with a global positioning system

(GPS) unit, enables estimation of the full aircraft pose. PX4 includes baseline autopilot

control algorithms, but custom control algorithms can be implemented on it, running at a

rate of up to 200 Hz. The components of the experimental platform are shown in Figure

2.7. Remote operation, to initialize autonomous maneuvers, or for pilot-assisted flight, is

achieved through FrsKy Taranis X9D transmitter. This radio transmitter has the standard

four channels typical of fixed-wing operation, and additional channels can be configured

through switches to achieve different tasks, such as arming and disarming, and switching

flight modes.

Figure 2.7: Experimental platform components.

Flight experiments were conducted outdoors, at two locations: the West Island Model

Aeronautics Club (WIMAC) and the Montreal Area Thermal Soarers Club (MATS).
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2.3.3 Software in the Loop

Software in the loop (SITL) is used as an intermediate step between numerical simulations

and experimental implementation. The main benefit of a SITL solution is that it allows

debugging of the controller code translated from the Simulink simulation to run on the

selected firmware. In addition, it further tests the compatibility of the controller with other

software routines, in particular, the stock state estimation functions. Finally, it tests the

control system running in a realistic, discrete implementation.

PX4 allows for SITL testing through the Gazebo physics engine. The dynamic equations

of rigid bodies are propagated by the physics engine itself, but all external forces and mo-

ments need to be built as separate functions. Stock PX4-SITL functionality is limited to

standard UAVs, and even the stock fixed-wing model employs a basic lift/drag function. To

enable its use for the type of aircraft studied in this work, the aerodynamics, thruster, and

slipstream models described in the high-fidelity model section were combined and ported

into a compliant C++ function, which was then interfaced with a Gazebo linkage represent-

ing the McFoamy airframe and its moving parts. The McFoamy CAD model was coupled

to the Gazebo linkage to provide visual feedback. Additional feedback is provided through

the companion software Gazebo interfaces with, QGround Control (QGC). The software

provides standard instrument panel readings, and UAV trajectory when GPS is enabled.

QGC can also be used during real flights if an additional telemetry module is added to the

aircraft. An example of the SITL simulation environment, together with the added interface

on QGround Control, is shown in Figure 2.8.

Figure 2.8: Gazebo SITL environment with QGC.

This particular SITL implementation also includes functions that simulate real sensor
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measurements, which the estimator uses to generate state estimates. This is an additional

test on the developed control system, which assumed perfect state knowledge.

This simulation environment was used to test the control implementation in a safe man-

ner, rather than risking damage to the physical platform at this precarious stage of devel-

opment. Further SITL tests were undertaken to further adjust the control gains, as needed.

Pilot-assist algorithms, in particular, greatly benefit from this implementation since the RC

transmitter used in experiments can connect seamlessly, and the visuals in Gazebo provide

visual feedback to a human operator.



Chapter 3

Attitude Control

The attitude controller is the core component of the UAV control system. The separation

between position and attitude control obeys the configuration of the system itself. While

the agile fixed-wing as a whole is underactuated, the attitude dynamics can be considered

fully actuated, and can be driven to any arbitrary configuration. The UAV’s position, in

turn, can be driven to a reference position through a combination of the body-fixed force

magnitude and direction, the latter being prescribed through the UAV attitude.

As such, controlling the UAV’s attitude is natural first step, and indeed many position

control systems start with the assumption of an underlying autopilot system that controls

aircraft attitude. In addition, the capability to control attitude independently is a very useful

stand-alone feature; for example, when performing certain aerobatic maneuvers.

3.1 The attitude control problem

Two reference frames are needed to prescribe a reference, or target, attitude. One frame is

the already-defined inertial frame, but a new frame, the reference frame F r, is required. In

principle, the definition of its basis vectors, r̂1, r̂2, r̂3 need only satisfy the right-hand rule,

since this frame is not necessarily aligned with any specific body. However, it is useful to

consider this frame is attached to a virtual aircraft in the same way the body frame basis

vectors are aligned with the real UAV. With the reference frame established, a DCM from

inertial to reference frame can be defined as Cri to represent the reference attitude. This

reference may be constant but is, in general, a time-varying attitude profile described by a

reference kinematic equation,

Ċri = −ω×
r Cri, (3.1)

36
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where ωr is the angular velocity of the reference frame with respect to the inertial frame,

resolved in reference frame coordinates.

The objectives of attitude regulation and attitude tracking can now be stated.

• Attitude regulation: Consider the UAV attitude dynamics given by (2.1) and (2.2).

Given a constant attitude Cri, design a control law for δ such that Cbi → Cri and

ωb → 0 as t→ ∞.

• Attitude tracking: Consider the UAV attitude dynamics given by (2.1) and (2.2).

Given a time varying attitude profile prescribed through the reference kinematic equa-

tion (3.1), design a control law for δ such that Cbi → Cri and ωb → ωb
r as t → ∞,

where ωb
r = CbiCT

riωr is the reference angular velocity resolved in the body frame.

Not stated in either objective is the range of initial conditions that guarantee convergence.

Depending on the attitude parametrization and control law, the result may be local or, if

smooth, continuous control laws are used, at most, almost global in nature [89]. We focus

on developing control laws that are valid for every attitude the UAV might be required to

operate at, as opposed to every initial condition. Where applicable, a region of attraction

estimate is provided. To enable these estimations, and indeed the overall stability analyses,

the following assumption is needed.

Assumption 3.1 (Boundedness of attitude reference). The reference angular velocity and

its first derivative that define the time-varying attitude reference profile 3.1 are assumed

uniformly bounded for all time. Explicitly,

∥ωr(t)∥2 ≤ ω̄, ∀t > 0, (3.2)

∥ω̇r(t)∥2 ≤ ᾱ, ∀t > 0. (3.3)

Imposing bounds on reference trajectories is a common assumption in control system

design and obeys the reasonable expectation that the reference to be followed is a well-

behaved signal. It also follows from the physical limitation of the platform; any reference

should be a feasible trajectory the aircraft can follow given actuator limitations, structural

considerations, etc.
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3.1.1 Attitude parametrization

As opposed to a conventional platform, the agile-fixed wing UAV can perform large angle

maneuvers, hence it is expected that any attitude reference could be requested. This ne-

cessitates that the attitude controller utilize a non-singular attitude parametrization. While

several attitude descriptors exist [90], by far the two most popular in UAV control are the

quaternion and the DCM itself, often through its Lie algebra [48].

Previous work in AML [67] demonstrated the quaternion parametrization can be used

to successfully control the attitude of the agile fixed-wing, and we employed a modified

version of this quaternion control law in [91] where a hybrid trajectory-tracking control

system was developed. The quaternion parametrization has one noteworthy advantage:

the state-estimation algorithms of many modern embedded autopilots, such as the now

widespread MEKF [92], provide the attitude estimate in quaternion form. This is true for

our implementation, based on Px4. Unwinding results when the control system attempts

to drive the attitude to q, when the other, identical attitude, −q is closer, resulting in a

full rotation before reaching the target. This is an undesirable situation, and may occur

depending on initial conditions. While the problem can be modified with a sign component

that allows the controller to choose the closer element, this constitutes a discontinuous

control law which necessitates different analysis tools and can potentially make the system

susceptible to measurement noise [32]. As an additional complication, several quaternion

conventions exist, which can lead to confusion and errors when integrating systems [93].

Developing the control law directly on SO(3) avoids these problems altogether. The

state-estimation advantage of the quaternion is negligible, since a DCM can be easily, and

uniquely, recovered from a quaternion through the Rodrigues formula for quaternions,

C(q) = (q20 − qTv qv)I3 + 2qv qTv − 2q0q×
v (3.4)

where q0 and qv are the scalar and vector part of the quaternion, respectively. Also, it is eas-

ier and less error-prone to change frames with DCM multiplication, essentially a conventional

matrix multiplication, than it is to use a dual, quaternion-specific operator. One final advan-

tage of the DCM is the construction of attitude references. When considering the attitude

controller as a standalone component, there is little difference between creating arbitrary

attitude references in the form of a quaternions or DCMs since a different parametrization

is often used to generate the references, such as Euler angles, or the axis-angle description.

However, when the attitude reference is generated by an outer control system and additional
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geometric properties need to be embedded, generating a DCM is the more intuitive option.

For this work, we opt for a geometric control system developed directly on SO(3), but

do analyze the benefits of a quaternion parametrization where appropriate.

3.1.2 SO(3) attitude error

The notion of an error, the deviation between two elements, is a fundamental construct in

control systems. It is common to use the difference between the target and actual state as

the error definition, which the controller then attempts to drive to zero. Indeed, we will

define the angular velocity, position, and velocity errors in this manner later.

However, SO(3) is not a vector space but a boundary-less compact manifold [94], and

this definition of error would be inadequate. This is made clear by the fact that (Cbi−Cri) /∈
SO(3). For SO(3), matrix multiplication is the binary operator and the error DCM is instead

defined as

Cbr = CbiCT
ri, (3.5)

which guarantees that Cbr ∈ SO(3). As a relative rotation, the error DCM also has a

useful interpretation: it is the DCM from reference to body frame. When both frames align,

implying the aircraft has reached the reference attitude, Cbr = I3.
We must now focus on measuring the error. For two elements x, y ∈ R3, the error,

e = x − y can be measured through the Euclidean norm, ∥e∥, a well defined metric in Rn.

For the relative attitude problem, obtaining a measure of deviation is not as straightforward.

A positive definite error function, Ψ : SO(3)×SO(3) → R is needed. Just as different metrics

are defined in Rn, different attitude error functions which depend only on the error DCM,

Cbr, have been developed, each with different properties. Before presenting them, it is useful

to first define the attitude error kinematics and, as a consequence, the angular velocity error.

3.1.2.1 Attitude error kinematics and angular velocity error

The error kinematics are obtained by differentiating (3.5), substituting the kinematics (2.1)

and reference kinematics (3.1). Then

Ċbr = ĊbiCT
ri + CbiĊT

ri = (−ω×
b Cbi)CT

ri − Cbi

(
ω×
r Cri

)T
= −ω×

b Cbr + Cbrω
×
r = −ω×

b Cbr +
(
Cbrω

×
r CT

br

)
Cbr

= −ω×
b Cbr + (Cbrωr)

× Cbr = − (ωb − Cbrωr)
× Cbr,
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where the property C x×CT = (Cx)× for all x ∈ R3, C ∈ SO(3) was used. This equation

gives a natural definition for the angular velocity error,

eω ≜ ωb − Cbrωr, (3.6)

where the DCM transforms the reference angular velocity from reference to body frame,

ensuring elements are properly resolved in the same frame before the difference is calculated.

Then, the error kinematics can be written as

Ċbr = −e×ωCbr, (3.7)

which has the same structure as (2.1). For the regulation problem, this equation simplifies

to Ċbr = −ω×
b Cbr.

With the error angular velocity defined, the different SO(3) attitude error functions and

their properties can now be introduced.

3.1.2.2 Attitude error functions

The choice of error function is a fundamental step in the development of the nonlinear control

strategy since a measure of the attitude error is needed for the control law. We consider

three possible error functions, with their corresponding innovation terms, or attitude errors.

First is the SO(3) error function developed in [48], which is based on the Frobenius norm,

Ψ1 =
1

2
tr (I3 − Cbr) , (3.8)

and its associated innovation term,

e1 = −Pa(Cbr)
∨ (3.9)

where tr(·) is the standard trace operator, Pa(·) is the skew symmetric projection operator

defined for square matrices, A ∈ Rn×n, as Pa(A) = 1
2
(A−AT ) and (·)∨ is the uncross operator

defined for skew-symmetric matrices of dimension 3, N ∈ so(3), such that, for any x ∈ R3,

(x×)∨ = x.
This is the standard SO(3) error function, and is by far the most commonly used in the

literature. As we developed the position controller, we made the transition from quaternions

to SO(3) for the attitude control component, as it allowed for better integration. This was

the error function we originally selected, however, during simulations and experiments, it
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was found that, for certain maneuvers, the standard quaternion control law outperformed

the SO(3) formulation. This motivated research on other attitude error functions, which are

presented next.

The second set of attitude error function and innovation term was presented in [95] and

is given by

Ψ2 = 2−
√

1 + tr(Cbr), (3.10)

e2 = − 1√
1 + tr(Cbr)

Pa(Cbr)
∨. (3.11)

The third set, developed in [96] for the purpose of observer design, is given by

Ψ3 = ln(2)− 1

2
ln(1 + tr(Cbr)), (3.12)

e3 = − 1

1 + tr(Cbr)
Pa(Cbr)

∨. (3.13)

Any of these functions can be used to construct attitude control laws, but certain prop-

erties need to be established first.

Lemma 3.2 (SO(3) error functions). Consider the sets

Ω = {Cbr ∈ SO(3) | tr(Cbr) > −1},

Ω1 = {Cbr ∈ SO(3) |Ψ1 < ψ1}, for 0 < ψ1 < 2,

Ω2 = {Cbr ∈ SO(3) |Ψ2 < ψ2}, for ψ2 = 2,

Ω3 = {Cbr ∈ SO(3) |Ψ3 < ψ3}, for 0 < ψ3 <∞,

then for each pair of error function Ψa and corresponding innovation term, ea, where a =

{1, 2, 3}, the following statements hold.

(i) The derivative of the error function is given by

Ψ̇a = eTωea (3.14)

(ii) Each error function Ψa is positive definite about Cbr = I3.

(iii) In the set Ω, each Ψa has only one critical point, which corresponds to Cbr = I3, and
ea = 0.
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(iv) Inside the corresponding set Ωa, each error function Ψa is lower and upper bounded

through

ba∥ea∥2 ≤ Ψa ≤ b̄a∥ea∥2, (3.15)

for some positive constants ba and b̄a specific to each error function.

(v) Inside the corresponding set Ωa, each attitude error function is bounded

∥ea∥ ≤ ēa (3.16)

for some positive ēa specific for each error function.

(vi) The derivative of each innovation term is affine with respect to the error angular ve-

locity,

ėa = Ea(Cbr)eω, (3.17)

furthermore, each matrix Ea is bounded such that the derivative of each innovation

term is upper bounded by the angular velocity error,

∥ėa∥ ≤ pa∥eω∥ (3.18)

for some positive constant pa specific for each error function.

Proof. The lemma condenses the properties of three different error functions and the proof

mostly follows the results presented in [48], [97] [95], and [96]. However, additional anal-

ysis was required where previous results were insufficient. The complete proof is given in

Appendix A.1.

There is a relationship between the innovation terms and the angle of the angle-axis

parametrization, which is exploited for the proof of Lemma 3.2. Define η, ϵ̂ that satisfy the

Rodrigues formula for the error DCM, Cbr = C(η, ϵ̂). Then

∥e1∥ = ∥ sin(η)ϵ̂∥ = | sin(η)|

∥e2∥ =

∥∥∥∥∥
√
2 sin(η)

2
√

1 + cos(η)
ϵ̂

∥∥∥∥∥ =
1

2

∣∣∣∣ sin(η)

cos(η/2)

∣∣∣∣ = | sin(η/2)|

∥e3∥ =

∥∥∥∥ sin(η)

2(1 + cos(η))
ϵ̂

∥∥∥∥ =
1

2
| tan(η/2)|.



CHAPTER 3. ATTITUDE CONTROL 43

For small angles, |η| ≤ η̄, these functions are proportional to each other: ∥e1∥ ≈ 2∥e2∥ ≈
4∥e3∥, but as η becomes larger, they behave differently. This behavior can be better appre-

ciated in Figure 3.1.
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Figure 3.1: Innovation term comparison.

The innovation term ∥e1∥ is most effective at |η| = 90◦ but as |η| approaches 180◦,

its magnitude approaches zero. Depending on the application, this can be a benefit or a

hindrance: it prevents a large control action at a large attitude error, but it can also limit

the agility of the attitude dynamics. Increasing the gain to improve the behavior results in

a larger amplification at small angular errors, which can lead to bad performance, actuator

chattering, or instability.

The second innovation term, e2, aims to correct this shortcoming, and is constructed such

that the ∥e2∥ increases with |η|. The function is nonlinear and tends to 1 as |η| tends to 180◦.
As such, the maximum efficiency of the error function is limited, but increasing the gain to

improve the performance at large attitude errors does not deteriorate the control action at

smaller angles. Indeed, from Figure 3.1, doubling the gains retains the same behavior at small

angles as the previous innovation term, while noticeably increasing the control effectiveness

at large angular errors. The fact that the control action is limited by the innovation term

can be beneficial, especially when considering actuator saturation.

Meanwhile, innovation term e3 is very aggressive at large attitude errors. The benefit is

that control action at smaller angular errors can be reduced without diminishing the control

action at large angular errors. This innovation term, however, is not upper bounded.

A useful analysis is the equivalency of the innovation terms with respect to quaternion

innovation terms. As stated previously, the quaternion consists of a scalar and a vector part,
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and each are closely related to the axis-angle parametrization:

q =

[
q0

qv

]
=

[
cos
(
η
2

)
sin
(
η
2

)
ϵ̂

]
.

In [40], several quaternion error functions are explored but, by far, the most common contin-

uous innovation term is the vector part of the quaternion itself: eq = qv. If one substitutes

the above equation, then

∥eq∥ =
∣∣∣sin(η

2

)∣∣∣ ,
which is the same relationship as e2. This is an important observation: the most common

SO(3) innovation term, e1, is not equivalent to the most common quaternion one; e2 is.

Should a control system be translated from a quaternion to an SO(3) implementation using

the most common innovation terms, the behavior will be different. Concretely, performance

for large initial angular errors will be greatly diminished. For the sake of completeness, e1
is analogous to eq = q0qv and e3 is analogous to eq = qv/q0, two other functions studied in

[40]. These equivalences may be shown using simple trigonometric identities.

3.1.3 Attitude error dynamics

As a final step before presenting the attitude control laws, it is necessary to derive the

attitude error dynamics. This is done by the following lemma.

Proposition 3.3. Consider the attitude dynamics described by (2.2), the time variant ref-

erence attitude profile given by (3.1), and the angular velocity error definition (3.6). Then

the attitude error dynamics are given by

Jėω = (Jeω +∆1)
× eω −∆2 + M, (3.19)

where, as in the previous section, J is the UAV’s second moment of mass resolved in body

frame coordinates, and M are the moments acting upon the aircraft, composed of propeller

and aerodynamic effects, and where

∆1 = (2J − tr(J)I3)Cbrωr, (3.20)

∆2 = JCbrω̇r + (Cbrωr)
×(JCbrωr), (3.21)

Proof. See Appendix A.2
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Note that both ∆1 and ∆2 are bounded by virtue of Assumption 3.1,

∆1 ≤

(
2λM(J)−

∑
a

λa(J)

)
ω̄ ≜ B1, (3.22)

∆2 ≤ λM(J)
(
ᾱ + ω̄2

)
≜ B2, (3.23)

where λ(J) refers to the eigenvalues of J and, λM(J) and λm(J) refer, respectively, to the

maximum and minimum eigenvalues of J.
With all the necessary tools and definitions, the attitude control laws can now be pre-

sented.

3.2 Attitude control laws

3.2.1 Proportional Derivative + Feed-forward controller

The first control law we analyze is the tracking control law developed in [30]. This control is

a modification to the one developed in [48], itself sharing the structure from passivity control

developments for robot manipulators [98]. The result presented here is a generalization for

all three attitude error functions, when using the same control law structure.

The following result is needed first.

Lemma 3.4 (Positively invariant sets). Consider the system given by (2.1) and (2.2), with

the net moments (2.31) and with initial conditions satisfying Ψa(Cbr(0) ∈ Ωa, and a reference

attitude profile (3.1).

Consider the control law that governs the control surface deflections

δ = G−1 (−Ma − Mp − kωeω − kaea +∆2) , (3.24)

where kω > 0, ka > 0, and ∆2 defined in (3.21), Ma, Mp, and G as defined in (2.31, 2.26).

Then, for each attitude error function, there exists an initial condition for the angular

velocity error, eω(0) such that Ωa is rendered a positively invariant set.

Proof. See Appendix A.3.

The first two elements inside the parenthesis on the right-hand side are meant to compen-

sate the moments arising from aircraft configuration and the propeller, both consider small
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compared to the control moments. The third and fourth terms constitute the proportional-

derivative feed-back component and the term ∆2 is a feed-forward component required by

the tracking control analysis.

The limitation on the initial condition of the angular velocity can be overcome by increas-

ing the proportional gain, ka. For the error function Ψ3, this is more easily circumvented,

since ψ3 can be arbitrarily large, depending on actuator characteristics.

Theorem 3.5 (PD + feed-forward attitude tracking control law). Consider the system

given by (2.1) and (2.2) with initial conditions satisfying Ψa(Cbr(0) ∈ Ωa and (A.1), and a

reference attitude profile satisfying (3.1) and Assumption 3.1.

The control law (3.24), with kω > 0, ka > 0, and ∆2 defined in (3.21), drives eω → 0
and ea → 0 exponentially as t → ∞. In turn, Cbi → Cri asymptotically (and ωb → ω̄r ),

achieving the attitude tracking objective.

Proof. See Appendix A.4

3.2.2 Proportional Derivative controller

The control law 3.24 includes the proportional-derivative feedback terms in addition to com-

pensation for the propeller and aerodynamic moments, and the term ∆2 (3.21). As stated in

the Preliminaries, the former moments are small compared to the moments generated by the

control surfaces, so a mismatch from their nominal value can be expected to have a reduced

effect. However, the same cannot be said about ∆2 which depends on the aircraft’s second

moment of mass and, more importantly, the reference angular velocity and acceleration. The

control moments need to be generated through the control allocation matrix (2.26) which

depends on aircraft aerodynamics and is not perfectly known in practice. As such, it is useful

to analyze the effects on the control law if the ∆2 term is not known precisely.

We opt to analyze the control law without this term altogether, effectively reducing

the attitude control system to a PD controller. The effectiveness of model-independent

PD control for regulation is well documented, less so, however, is its applicability for the

tracking problem. One such work is [31], which analyzes the trade-off between achievable

performance and controller complexity for quaternion-based attitude control systems. The

following theorem is, to our knowledge, the first equivalent analysis for an SO(3) controller,

and it is applicable for all three attitude error functions.
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Theorem 3.6 (PD attitude tracking controller). Consider the system and conditions of

Theorem 3.5, but with the simplified control law

δ = G−1 (−Ma − Mp − kωeω − kaea) . (3.25)

If in addition the reference trajectory satisfies

ρ(t) ≜
(
∥ω̇r∥+ ∥ωr∥2

)
∈ L2, (3.26)

then ea, eω → 0 as t→ ∞, and, as a result, Cbi → Cri asymptotically, achieving the attitude

tracking objective.

Proof. The proof requires notions derived in the proof of the previous theorem and will often

refer to results therein. The proof is given in Appendix A.5.

From the proof, two characteristics of the control system can be established. First, from

(A.8), if the desired attitude profile is selected such that the initial error is zero, then, using

Schwarz’s inequality,

V (t) ≤ kρ∥ρ(t)∥L2∥x∥L2 .

it can be shown that the first term on the right grows as the reference trajectory becomes

more aggressive but, since λm(W3) increases too, the second term diminishes, as seen from

(A.10). Both results are intuitive: as the trajectory becomes more aggressive, the tracking

performance will decrease, but this can be improved with larger gains, as they determine

the value of λm(W3). The first term is also dependent on J; then, as opposed to the control

law with feed-forward, for a given set of gains, the tracking performance will depend on the

inertial properties of the UAV. This is the main trade-off between performance and controller

complexity and prior system knowledge.

The second observation has to do with the additional constraint, (3.26). The control

system with feed-forward only requires the angular velocity and acceleration to be upper

bounded. In contrast, this control law necessitates a bound on the full behaviour over

time of the reference attitude. Depending on the type of operation, this can be difficult to

guarantee. However, for the special case of rest-to-rest maneuvers this is trivially satisfied

and this is the expected type of operation of the UAV, both when the attitude reference is

prescribed directly, or when generated by the position controller.

As a final remark, if the estimates of the aerodynamic and propeller moments, Ma and

Mp and the control allocation matrix, G are considered accurate enough, then the only
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perturbation to the nominal system is the non-compensated feed-forward term, ∆2. If a

rest-to-rest maneuver is considered, then, from (3.21), this term vanishes at the end of the

maneuver, and Lemma 9.1 from [99] can be used to show the exponential stability of the

origin is preserved. The analysis performed in Theorem 3.6 accounts for the more general

case when these conditions are not met.

3.2.3 Effective airflow uncertainty

The control moments are generated by deflecting the control surfaces, with the mapping

passing through the the control allocation matrix (2.26). This matrix depends on the airflow

over the control surfaces, itself a function of aircraft speed, propeller slipstream, and wind.

As such, control moment generation through control surface deflection is inherently less

precise when compared to other platforms, such as rotorcraft. We focus specifically on the

effective airspeed over the control surfaces, Vδ, when an approximation, V̄δ is used.

Consider the tracking control law (3.24), using an imperfect effective airspeed approxi-

mation. When substituted in the error dynamics (3.19) results in

Jėω = (Jeω +∆1)
× eω −∆2 + Ma + Mp +

V 2
δ

V̂ 2
δ

(−Ma − Mp +∆2 − kωeω − kaea) ,

= (Jeω +∆1)
× eω − (1− ρV )∆2 + (1− ρV ) (Ma + Mp)− ρV kωeω − ρV kaea,

where ρV =
(
Vδ/V̂δ

)2
is the squared ratio between the real and effective airspeed over the

control surfaces.

This mismatch has three main effects, on both the feed-forward and the feedback com-

ponents. First, it introduces the term (1− ρV )∆2, the effects of which can be incorporated

within the stability analysis of the PD only control law, (3.25). The second consequence

is the appearance of the disturbance term (1 − ρV ) (Ma + Mp) which, in reality, is already

present, since perfectly matching the aerodynamic torques generated by aircraft configura-

tion is not possible. These moments are comparatively smaller, but using a mismatched

airspeed estimate can amplify them enough to affect performance. An alternative to dealing

with this matched uncertainty is to add an integral error component, as in [97].

Finally, the imperfect estimate effectively modifies the proportional and derivative gains

and the effect on performance can be significant, since it is squared. If the estimate is much

greater than the real value, the surfaces will deflect less, and the UAV will lose control

authority, diminishing performance. If the approximation is much smaller, the controller
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will overcompensate, causing the UAV to oscillate. Prior experimental work [84, 87] on the

platform suggests the effective airspeed over the control surfaces does not vary significantly

during operation, both in steady and aerobatic maneuvers. One alternative is to simplify the

airspeed estimate to different constant values depending on UAV speed, propeller angular

velocity, and, if available, wind estimates. An even simpler approach is to keep this estimate

constant, at a value considered typical during operation, to minimize the magnitude of ρV .

The analysis in [84] regarding airflow over slipstream immersed surfaces during forward flight

provides a starting point. As can be seen from Figure 3.2, at stations located radially between

the center and half the propeller radius, the total airflow remains relatively unchanged. This

placement is true for the elevator and rudder, and most of the aileron surface.

Figure 3.2: Total airflow during forward flight, for a motor speed of 4970 RPM. Radial
position is given as a ratio between distance from propeller center and propeller radius.
From [84], Section 5.7.

Keeping these calculation constant has two benefits. First, less system knowledge makes

the system portable to different platforms. Second, it avoids introducing chattering due to

noise-contaminated measurements. The slipstream estimate (2.27) requires velocity mea-

surements and propeller velocity, which are bound to fluctuate when the position control

loop is incorporated. If this equation is used, filtering will be required. Using a simplified

Vδ estimate can be beneficial, but an integrator term could be required to compensate.
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3.3 Attitude control verification

3.3.1 Numerical Simulations

We first employ numerical simulations in Matlab to determine an initial set of gains. While

the results of the corresponding theorems serve as guidance, these results are often conserva-

tive and allow room for manual adjustment. Numeric simulations are also used to evaluate

the different attitude controller configurations, as all conditions within the simulation envi-

ronment can be specified with precision.

We first evaluate the effect of using different effective airflow approximations, as this will

have a direct effect on gain selection.

3.3.1.1 Effective airflow approximation

To study this effect, we choose the vertical loop maneuver, shown in Figure 3.3. Compared to

other aerobatic maneuvers showcased later, the vertical loop consists purely of longitudinal

motion. This makes it ideal to test the effect of different effective airflow approximations,

as sideslip during the maneuver is minimal. The attitude reference for the vertical loop is

constructed through the Euler angle parametrization (2.7), where ψ = ϕ = 0 and θ = 2π
tl
t,

where tl is the time to complete the maneuver, in seconds. Then, Cri = C(θ, k̂2) and, since all

motion occurs in a single axis, the matched angular velocity reference is constructed simply

by ωr = θ̇k̂2 =
2π
tl

k̂2.

Figure 3.3: 3D view of Vertical loop maneuver, tl = 2 seconds.

In [46], the approximated airflow is constrained to always be above the value correspond-
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ing to the thrust required to keep the aircraft in a hover,

V̂δ =

√
2mg

ρπR2
≈ 12 [m/s],

which is meant to avoid excessive control action at low velocities. In practice, this is found

to be a conservative lower bound, since the aircraft can still operate with a reduced effective

airflow. Still, it serves as a reasonable starting point for a constant approximation. The PD

control law (3.25), together with the more agile attitude innovation term (3.11) is used, and

controller gains are kept constant at kω = 0.1569N ms
rad

and ka = 4.393N m
rad

. These gains were

tuned by hand, and found to provide the best overall results in the simulation environment.

As expected, larger gains provide faster convergence but larger overshoot. The derivative

gain, kω, is more sensitive to external disturbances, and increasing it will produce oscillations

when in the presence of wind. Due to the nature of the first and second attitude innovation

terms, the proportional gain, ka can be increased to improve tracking performance (small

errors) without compromising convergence time for attitude setpoints with a large initial

angular error. Still, large values, such as 40% more than the selected gain, will result in a

high frequency control signal, or actuator chattering.

For this set of simulations, three slipstream approximations are used: a time variant

function of aircraft velocity and thrust (2.27), and two constant values, one at V̂ = 12 [m/s],

the hover value, and one at V̂ = 9 [m/s], a purposefully low value that will cause the control

surfaces to deflect more. The time to execute the loop maneuver is set at tl = 2 [s].

We first demonstrate the maneuver in ideal conditions, with the UAV operating at the

maximum motor RPM, providing maximum control authority, and with no wind. The

absolute value of the angle η, calculated from (2.6) is shown in Figure 3.4, where it can

be appreciated that the control law, with all the slipstream approximation strategies yields

good tracking results.

Plotting the angle η associated with the DCM Cbi (for each of the three simulations)

with the angle extracted from Cri serves an intuitive comparison. However, it should be

noted that the attitude controller is not attempting to drive the difference between these

two angles to zero, but rather, the innovation term ea. To compare the performances, it is

more useful to analyze the evolution of the innovation term, as in Figure 3.5. To properly

compare angular velocity in a single plot, the body angular velocity of each system is resolved

in the reference frame, which is shared for all three systems, through (ωb)r = CT
brωb. These

angular velocities are shown in Figure 3.6.
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Figure 3.4: Angle η for vertical loop maneuver at max. thrust and no wind.
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Figure 3.5: Innovation term ea for vertical loop maneuver at max. thrust and no wind.

The innovation terms and angular velocities more aptly show the difference in perfor-

mance between the three strategies. As expected, the smaller approximation of V̂δ = 9 m/s

translates into effective controller gains larger that those of V̂δ = 12 m/s, resulting in a faster

convergence. The approximation corresponding to (2.27) has the worst performance, which

can be explained by the calculated V̂δ, shown in Figure 3.7, which is always larger, thus

reducing the effectiveness of the control gains.

A different set of gains can be selected to better operate at the mean value of the ap-

proximated airflow, however, if the calculated airflow changes, these gains might no longer

be ideal. To show this, another set of simulations is performed, with the same conditions

and gains, except the trust is kept at 75% of its maximum value. The approximated airflow

using (2.27) is now close to the hover value of 12 m/s. This translates into performance that

is very close to the system using this constant value for the approximation, as shown in the

innovation terms in Figure 3.8.

The main problem with a variable approximation is a mismatch in the presence of wind.
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Figure 3.6: Angular velocity (ωb)r for vertical loop maneuver at max. thrust and no wind.
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Figure 3.7: Effective airflow approximation, V̂δ, for vertical loop maneuver, at max. thrust
and no wind.

Consider the same conditions and gains as the previous simulation, but with a tailwind of 5

m/s, considered a high wind condition for the platform. When commanded to perform the

loop maneuver, the UAV traces the path shown in Figure 3.9, where it can be appreciated

that the UAV has little to no translational velocity during most of the vertical segments.

During the initial and final parts of the maneuver, the controller overestimates the true

airflow. In contrast, during the loop itself, as the UAV forward velocity tends to zero, the

approximation underestimates the airflow as it believes the UAV’s airspeed is close to zero,

leading to actuator saturation during segments of the maneuver. The corresponding drop in

performance is showcased through the larger innovations terms, shown in Figure 3.10.

Even with the differing performances, all approximation strategies show good tracking

results. Overall, the lowest, most conservative approximation is consistently better, as it

results in the largest effective control gains. A less conservative approximation, such as the

one at the hover condition, leads to good results without experiencing excessive saturation.

The variable approximation is better when adjusting gains depending on motor velocity, but

requires a wind estimate to be more reliable. If this value is not available, using a constant

value that avoids oscillations is a good alternative. As a final note, if a constant airflow

approximation is used, the problem can be treated as simple gain selection, since for every
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Figure 3.8: Innovation term ea for vertical loop maneuver at 75% thrust and no wind.

Figure 3.9: 3D view of Vertical loop maneuver, tl = 2 seconds, 5 m/s tailwind.

constant V̂δ there exist ka and kω that result in the same effective gains.

3.3.1.2 Control law comparison

We evaluate the difference in performance between the PD plus feed-forward control law

(3.24) and the PD control law (3.25) through three different maneuvers. We start with the

aggressive turn-around maneuver, a very useful aerobatic maneuver that requires motion

around two different axes. We construct this maneuver in two steps, performed over the total

duration of the maneuver, ta. A pitching motion is commanded during the full maneuver,

θ = pi
ta
t, while a rolling motion is introduced during the second half of the maneuver to roll

the aircraft back into level flight, ϕ = 2pi
ta
(t − ta/2). Then Cri = C(ϕ, k̂1)C(θ, k̂2), which

implies ψ = 0 throughout. Angular velocity needs to be obtained from the Euler rates

through

ωr =


1 0 − sin(θ)

0 cos(ϕ) sin(ϕ) cos(θ)

0 − sin(ϕ) cos(ϕ) cos(θ)



ϕ̇

θ̇

ψ̇

 (3.27)
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Figure 3.10: Innovation term ea for vertical loop maneuver at 75% thrust and 5 m/s tailwind.

where ψ̇ = 0, θ̇ = pi/ta, and ϕ̇ = 2π/ta for t > ta/2, ϕ̇ = 0 otherwise. Gains are kept the

same as the previous simulations, and the approximated airflow is kept constant at V̂δ = 12

m/s. Wind is kept at zero, and thrust is set at 75% of its maximum value. The maneuver

time is set at ta = 2 seconds to avoid actuator saturation and facilitate the performance

comparison. Both systems use the second attitude innovation term (3.11). The 3D view of

the maneuver is shown in Figure 3.11.

Figure 3.11: The aggressive-turnaround maneuver, ta = 2 seconds.

To compare performance, we plot the innovation terms and the angular velocities; the

latter once again resolved in the reference frame, which is shared by both systems. These

are shown in Figures 3.12 and 3.13, respectively.

Both control laws result in comparable convergence rates, in particular in the angular ve-

locity states. The differences on the innovation terms, while more noticeable, are nonetheless

minor. For the selected control gains, thrust setting, and maneuver parameters, the control

surfaces are near saturation; a faster convergence, while possible in theory, is not feasible
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Figure 3.12: Innovation term ea for aggressive turnaround.
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Figure 3.13: Angular velocity (ωb)r for aggressive turnaround maneuver.

due to platform limitations.

While time-varying, the proposed attitude maneuver is discontinuous in ωr: ω̇r is ill

defined at at three distinct points. While a continuous maneuver could be constructed, the

previous simulation is valuable in showing the effectiveness of the control laws even when

the reference attitude profile is discontinuous. We instead consider a smooth trajectory in

the next maneuver.

So far, the sample maneuvers have been built through and Euler angle parametrization.

while many useful aerobatic maneuvers can be prescribed in this manner, we propose a

more complex maneuver. The slanted loop maneuver is achieved through a reference profile

constructed through the angle-axis parametrization (2.5), using a constant, but non-trivial

rotation axis, and a time-varying angle. To ensure a continuous profile with non-trivial

angular acceleration, the angle is prescribed through a fifth order polynomial.

Define ϵr = [2/3, 2/3, 1/3]T and ηr = k3t
3 + k4t

4 + k5t
5, where k3 = 20π

t3s
, k4 = −30π

2t4s
,

k5 = 12π
t5s
, where ts is the maneuver duration. The reference DCM is then Cri = C(ηr, ϵr),
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and the reference angular velocity is constructed through [100]:

ωr =
(
sin(ηr)− (1− cos(ηr)ϵ

×
r

)
ϵ̇r + η̇rϵr, (3.28)

for this specific maneuver, ϵ̇r = 0 and η̇r = 3k3t
2 + 4k4t

3 + 5k5t
4. The reference angular

acceleration is then ω̇r = η̈rϵr, where η̈r = 6k3t+ 12k4t
2 + 20k5t

3.

The simulation keeps the same conditions and gains as the previous one, but changes the

maneuver time to ts = 2.5 seconds, to account for the smooth, but slower ramp-up. The 3D

view of this maneuver is shown in Figure 3.14, and the innovation term and angular velocity

in Figures 3.15 and 3.16, respectively.

Figure 3.14: The slanted loop maneuver. ts = 2 seconds.
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Figure 3.15: Innovation term ea for slanted loop maneuver.

Comparing the two control laws, there is a more noticeable improvement on the conver-

gence of the innovation terms, as the error during the full maneuver is lower. Still, tracking
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Figure 3.16: Angular velocity (ωb)r for slanted loop maneuver.

is not perfect with the more complex control law, which can be attributed to the mismatch

in the feed-forward term due to the effective airflow approximation. Both control laws, while

exhibiting some delay, are capable of following the time-varying profile of such a complex

maneuver.

As a final comparison between the two control laws, and to further test the controller

capabilities, a rolling Harrier maneuver is tested. The rolling Harrier is not rest-to-rest, but

evolves perpetually unless commanded to stop. This maneuver is ideal to test the limitations

on the PD control system, since the additional condition of Theorem 3.6 is not trivially

satisfied. The maneuver is constructed through an Euler angle parametrization, where pitch

is held constant at θ = 10◦ to compensate for the loss of lift during the maneuver, and roll

evolves continuously through ϕ = ωrht, where ωrh is the rate of rotation. Reference angular

velocity is prescribed through (3.27), with ϕ̇ = ωrh.

Simulation conditions are kept the same as in previous simulations, and ωrh is set to 4.5

rad/s. The innovation terms and angular velocity of this maneuver are shown in Figures

3.17 and 3.18, respectively.

While tracking is not perfect, as can be seen from the non-zero innovation terms and the

second and third angular velocity components, the error is very small, even for such a fast

maneuver. Even though the maneuver evolves ad infinitum, the tracking errors do not grow

in magnitude for either control law.

Overall, both control laws achieve the attitude control objective with the PD plus feed-

forward providing marginally better performance. If computational power allows, using

this control law is theoretically the better choice, but any performance improvement will

be closely dependent on the accuracy of the system knowledge, particularly on the control

allocation mapping. The PD control law offers comparable performance,with the important
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Figure 3.17: Innovation term ea for rolling harrier maneuver.
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Figure 3.18: Angular velocity (ωb)r for rolling harrier maneuver.

benefit that it requires less system information. As such, it can be considered a good option

for the agile UAV platform.

3.3.1.3 Attitude error function comparison

The final maneuver is designed to compare the different innovation terms (3.9, 3.11, 3.13)

and corresponding attitude error functions. The gains used in the previous experiment are

kept as the baseline, but the proportional gain, ka, is scaled as shown in Figure 3.1. Since

the gains were determined for the second innovation term, the baseline ka is divided by

two when the first innovation term is used, and multiplied by two when the third one is

used. The three error definitions were tested with the previously shown maneuvers but no

difference in performance was noticed. This is expected: for continuous maneuvers, starting

at or close to zero initial attitude error, the three innovation terms, if scaled properly, have

equivalent behaviour. This choice will only impact performance when large initial errors are
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present. To test this, a large, discontinuous roll maneuver is prescribed, where θ = 10◦, and

roll is instantaneously commanded from zero to ϕ = 178◦, and then back to ϕ = 0◦ after

one second. The choice of 178◦ is meant to avoid the singularities encountered in (3.11) and

(3.13), which can be easily accounted for with the former, but not with the latter. Figure

3.19 shows the absolute value of the angle η associated with the body and reference rotation

matrices. It can be clearly seen that the innovation term (3.9) is very small when the error

is large, and the UAV is not capable of reaching the roll setpoint in time. The other two

innovation terms appear to have comparable performance.
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Figure 3.19: Angle η for sudden roll maneuver.

However, when observing the Euler angle parametrization in Figure 3.20, it is revealed

that the third innovation term (3.13) causes oscillations in the other two coordinates. The

cause can be determined from the control surface deflections, shown in Figure 3.21, which

saturate rapidly due to the aggressive nature of the attitude error function.
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Figure 3.20: Euler angles for sudden roll maneuver.

It should be noted that the innovation term (3.11) also causes the aileron to saturate,

thus limiting the performance during the maneuver. However, this saturation occurs due to
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Figure 3.21: Control surface deflections for sudden roll maneuver.

platform limitations and the demanding nature of the maneuver, not because of the attitude

error function.

If no sudden, large angle maneuvers are considered for the operation of the UAV, then all

three attitude error functions provide similar performance, and the original function (3.9) can

be chosen to add some degree of protection should the UAV experience a large disturbance.

However, if these maneuvers are considered, the control system will benefit from a more

agile error function. Special care must be taken with the more aggressive (3.13), however

(3.11) offers similar performance without risking chattering and large oscillations. Due to its

simplicity in implementation, and its benefits for large angle maneuvers, which are considered

during operation with the position control system, this is the innovation term that is used

going forward.

3.3.2 Flight experiments

To verify the functionality of the control system in real operating conditions, and to corrob-

orate the observations gathered from the numeric simulations, several experimental flights

are conducted. Gains needed to be adjusted from the simulation values. First, because it is

found that different gains for each control moment allow for more flexibility. As such, instead

of ka and kω, we substitute these values by diagonal matrices Ka and Kω. The second reason

is because the gains used in simulation, which did not account for state estimation, were

found to be too large. This is especially true for element associated with the aileron. As the

largest control surface in the aircraft, model mismatch in the control allocation impacts this

element the most.
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In all experiments, gains are kept constant at

Kω = diag(0.0706, 0.7576, 0.7736)

[
N ms

rad

]
Ka = diag(0.1656, 1.022, 0.6776)

[
N m

rad

]
,

and, since the aircraft is operating outdoors in varying wind conditions, the airflow approx-

imation is left constant at V̂δ = 6 m/s, although equivalent gains can be obtained for a

different value. Unless otherwise specified, the PD controller (3.25) and the second innova-

tion term (3.11) are used. For ease of operation, the reference maneuver is constructed with

an initial rotation around the third inertial axis equal to the vehicle estimated yaw at the

time the maneuver is commanded. If the same maneuver is commanded to evaluate different

conditions, this initial yaw is kept the same between experiments.

3.3.2.1 The vertical loop maneuver.

A vertical loop maneuver of two seconds of duration is performed in moderate winds (≈ 4

m/s), with the maneuver aligned so that most of the wind is headwind. We use this maneuver

to evaluate the drop in performance when the propeller thrust is reduced. The 3D view of

the maneuver, for the maximum thrust experiment is shown in Figure 3.22.

Figure 3.22: Experimental vertical loop maneuver, max. thrust.

The absolute value of the axis-angle parametrization is shown in Figure 3.23, and the

corresponding angular velocities are shown in Figure 3.24. As with simulations, all angular

velocities are resolved in the reference frame, which is the same for all trials.

As expected, the best tracking performance is achieved at maximum thrust, when the

slipstream gives additional authority to the control surfaces. However, the system remains

capable of performing the maneuver even at reduced motor speeds, even during portions

of the maneuver where wind is coming from the back (tailwind). This test provides a
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Figure 3.23: Angle η for experimental vertical loop maneuver at different thrust settings.
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Figure 3.24: Angular velocity for experimental vertical loop maneuver at different thrust
settings.

conservative estimate of the minimum thrust necessary to retain control authority, even if

performance is diminished. Angular velocity plots show the aircraft experiences oscillations,

especially around the first body axis. The control surface associated with this coordinate,

the ailerons, is the largest of them, and closest to the propeller. As such, the aircraft is more

sensitive to small aileron deflections. Performance can be improved by reducing the control

gains on this coordinate.

3.3.2.2 The slanted loop maneuver

Used to evaluate the differences between the two control laws, (3.24) and (3.25), this ma-

neuver was performed under high wind conditions (≈ 7 m/s), and both experiments were

conducted with an initial alignment that generates significant crosswind. Wind results in

the aircraft drifting, which can be appreciated in the 3D view in Figure 3.25. The aircraft

has considerable lateral motion, especially during the loop itself.

The absolute value of the angle η is shown in Figure 3.26, and the corresponding angular
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Figure 3.25: Experimental slanted loop maneuver.

velocities in Figure 3.27.
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Figure 3.26: Angle η for experimental slanted loop maneuver using different control laws.

The angle plot shows there is an improved performance when employing the more complex

PD plus feed-forward control law, but the baseline PD controller still provides comparable

results. Of note is the steady-state error before and after the maneuver when the aircraft is

tasked to keep a constant attitude. This error is larger than the one encountered during the

vertical loop maneuver, and can be attributed to the increase in wind disturbances. This

steady-state errors motivates the use of integral action, as in [97].

3.3.2.3 The rolling Harrier maneuver

A rolling Harrier maneuver, with angular rotation of 4.5 rad/s, is tested to verify the UAV

does not become unstable when an endlessly evolving maneuver is commanded. The 3D

view of the maneuver is shown in Figure 3.28.
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Figure 3.27: Angular velocity for experimental slanted loop maneuver using different control
laws.

Figure 3.28: Experimental rolling Harrier maneuver.

The condition of gimbal lock is not reached during the rolling Harrier maneuver, so the

Euler angle parametrization can be used to provide more descriptive information. The Euler

angles are shown in Figure 3.29, and the angular velocity in 3.30.
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Figure 3.29: Euler angles for experimental slanted loop maneuver using different control
laws.

The Euler angles plot shows both controllers are capable of following the reference maneu-

ver, even in the presence of wind. Both controllers demonstrate comparable performance,

with the feed-forward component providing better results, particularly in the ‘secondary’

coordinates, also appreciated in the angular velocity plots, where the second and third com-
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Figure 3.30: Angular velocity for experimental slanted loop maneuver using different control
laws.

ponents exhibit less oscillations.

3.3.2.4 Sudden large angle maneuver

Finally, the three attitude error functions are evaluated with this experiment, which shares

the parameters of the simulations, a sudden, large rotation around the first body axis,

represented by a roll from 0 to 178 degrees. In implementation, it is necessary to shield the

computations from numeric overflow. Since the third innovation term increases rapidly, it is

constrained to a large, but finite value. The main result is Figure 3.31, where the absolute

value of the angle η is shown.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

60

80

100

120

140

160

180

e1

e2

e3

Ref

Figure 3.31: Angle η for experimental large roll maneuver, using different innovation terms

As expected, the first innovation term (3.9) results in the worst performance and its slow

initial ramp-up can be appreciated. Surprisingly, the most aggressive innovation term (3.13)

does not provide the best performance, but this can be attributed to the additional checks

that had to be imposed to avoid numeric overflow, which may have the undesired effect of
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changing its properties. Reinforcing the observations from the simulations, for large angle

maneuvers the second innovation term (3.11) provides the best results.

3.3.3 Results discussion

Both simulations and experiments show the proposed attitude control systems enable the

agile-fixed wing to reach any target attitude. Several simulations and experiments for the

purposes of comparing different strategies were performed, which allow for a more detailed

analysis of the different attitude control strategies.

First, we can conclude that the control surfaces do indeed possess an enhanced control

authority due to propeller slipstream. The experiments show the control system remains

controllable even at reduced velocities, reduced propeller speed, and in the presence of wind.

While control authority is diminished and the control surfaces saturate faster, the aircraft is

still capable of completing a time-varying attitude maneuver.

Regarding slipstream, or rather, the effective airspeed over the control surfaces, it is

found that good performance can be achieved even when a simple estimate is used. Given

the difficulty in estimating this feature without additional sensors, using a constant, mean

value may provide better results than an inaccurate estimation. Still, a precise estimate can

improve performance, as it will adjust for an improved or diminished control authority of

the control surfaces, which motivates future research in this topic.

While the more complex PD with feed-forward control law does provide better results,

the simpler PD controller has an equivalent performance for most maneuvers. If the inertia

matrix is known, and the complete reference angular velocity and acceleration profile are

easily obtainable, the former control law should be used. Neither control law is capable of

reducing the tracking error to zero, both in simulation and experiments. While foreseeable

for the PD controller, the PD plus feed-forward control system is designed for a tracking

objective, and, in theory, should drive the error to zero. The shortcomings of this control

strategy are closely associated with the imperfect effective airspeed estimate, which prevents

the feed-forward terms from exactly cancelling their corresponding terms. As such, the

benefits of the PD plus feed-forward control system over the PD controller will largely depend

on an accurate estimate. If such an estimate is not available, the benefit of using the more

complex control law will diminish.

Finally, in regards to the attitude error functions and their corresponding innovation

terms, a straightforward recommendation can be made. Simulations and experiments show

little difference for well initialized, smoothly evolving trajectories. However, if large initial



CHAPTER 3. ATTITUDE CONTROL 68

attitude errors are considered, the second innovation term provides the best results. The

response of the first to large angular errors is significantly slower. In contrast, the third

innovation term is too aggressive, and can cause saturation and chattering in the actuators.

Going forwards, the second innovation term, together with the PD plus feed-forward

control law and a constant effective airspeed approximation will be used.



Chapter 4

Position Control

In the proposed nested control architecture, the position controller serves as the next loop,

tasked with generating attitude references and the thrust commands to enable the aircraft

to follow reference trajectories.

Traditionally, fixed-wing control systems aim to control velocity, not position, due to the

inherent limitations of conventional platforms. In order to avoid stall conditions, conven-

tional velocity control systems focus on regulating airspeed, rather than a ground-referenced

velocity. This is in stark contrast to typical multirotor control literature, where UAV posi-

tion with respect to a fixed point and the associated inertial velocity are common control

objectives. In this work, we aim to exploit the enhanced maneuverability of the agile-fixed

wing to meet these more demanding control objectives, while still allowing for more conven-

tional fixed-wing control when necessary. As such, the position control system uses notions

of multirotor controllers, but modified and adapted for the characteristics and configuration

of the agile fixed-wing UAV.

4.1 The position control problem

To define the position and velocity errors, the definitions for the position, and, in particular,

the velocity of the UAV given in Chapter 2 warrant more detail. The physical vector p−→
describes the relative position between the UAV’s centre of mass, c, and the fixed point o, an

arbitrary origin. When this vector is resolved in the inertial frame, we obtain the components

pi, which serve as the UAV’s position descriptor. Similarly, the physical vector pr−→ describes

the relative position between some reference point r, which can be considered the centre of

mass of some virtual aircraft, and o. When resolved in the inertial frame, we obtain the

69
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components pr, which we define as the reference, or desired position. It is worth noting that

the notion of the reference frame, used in the previous chapter, is not at all related to these

position definitions. Finally, the physical vector ep−→
completes the triad, defined such that

pr−→ + ep−→
= p−→. These vectors are shown in Figure 4.1. When ep−→

is resolved in the inertial

frame, we obtain our definition of position error:

ep = pi − pr. (4.1)

Figure 4.1: UAV position and reference vectors.

The time derivative of p−→ with respect to the body frame, resolved in body frame coordi-

nates, gives the components vb used in the dynamic equation (2.9). The derivative can also

be taken with respect to the inertial frame, using the frame transport theorem [100], and

then resolved in the inertial frame, resulting in the components vi which we use to describe

the UAV’s translational velocity in inertial frame coordinates. The dynamic equation (2.9)

can be rewritten in terms of vi as

mv̇i = mg k̂3 + TCT
brk̂1 + (Fa)i, (4.2)

where (Fa)i are the aerodynamic forces resolved in the inertial frame. The reference velocity

definition is simpler, as the only frame involved is the inertial frame. We define the reference

velocity, vr, as the components of the derivative of pr−→ with respect to the inertial frame,

resolved in inertial frame coordinates. The velocity error is then defined as

ev = vi − vr (4.3)
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which can be verified to be the time derivative of the position error (4.1). The control

objectives can now be stated with these definitions.

• Velocity control: Consider the UAV dynamics given by (4.2), and a reference velocity

profile given by vr(t). Then, design a control law for the thrust force, T, and a reference

attitude Cri, required by the core attitude controller, such that ev → 0 as t→ ∞.

• Position tracking: Consider the UAV dynamics given by (4.2), and a reference

inertial position profile given by ṗr(t) = vr(t). Then, design a control law for the

thrust force, T, and a reference attitude Cri, required by the core attitude controller,

such that ev → 0 and ep → 0 as t→ ∞.

The main focus is on the position tracking objective, but we consider the less strict ve-

locity control objective as well. This objective is closer to the conventional operation of

fixed-wing UAVs and a relaxed requirement can lead to better results under certain condi-

tions, as will be explored in the next chapter.

4.2 Control system

The proposed control system is a unified architecture, in the sense that the same controller

is valid throughout the operation of the UAV, as opposed to different, specialized controllers

for different flight regimes. This separate structure was first implemented in [101], using a

shared quaternion-based attitude controller core, but different position control systems for

steady flight and hover. Due to the overlapping attraction regions of both control systems,

stability was ensured during transitions, but the switching nature of the controller could

cause transient errors even when following smooth trajectories. Both control systems used

markedly different control strategies which made proper controller initialization a challenging

task. These challenges motivated the design of a unified architecture, to avoid discontinuous

switching behaviour and to simplify controller implementation by requiring fewer indepen-

dent components.

Thrust is the dominant force for agile fixed-wing UAV operation, especially so in near-

hover regimes where aerodynamic forces are largely diminished. The aim of the developed

control system is to extend the control theory used in other VTOL aircraft during hover

to the complete range of operation of the agile fixed-wing. As such, the proposed control

system falls under the category of thrust pointing algorithms, such as the ones developed in

[59, 97]. This strategy is made clearer by first studying the error dynamics.
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4.2.1 Error dynamics

Using the error definition (4.3), the error dynamics can be written as

ėv = v̇i − v̇r = g k̂3 +
T

m
CT
bik̂1 +

1

m
(Fa)i − v̇r. (4.4)

The direction of the thrust vector, resolved in the inertial frame, is given by b̂1 = CT
bik̂1,

which can be driven to some reference r̂1 = CT
rik̂1 through the inner attitude controller.

Hence, commanding a specific direction of thrust corresponds to prescribing a partial attitude

reference through r̂1.
The error dynamics (4.4) can be rewritten in terms of this partial target attitude, through

ėv = g k̂3 +
T

m
CT
rik̂1 +

1

m
(Fa)i − v̇r +

T

m
(Cbi − Cri)

T k̂1.

In this form, it is clear the second right-hand term can be freely prescribed through a

combination of thrust magnitude, T, and its desired direction, CT
rik̂1. This motivates the

definition of an intermediate command, Fc ∈ R3, which is prescribed by selecting [59]

r̂1 = CT
rik̂1 =

Fc
∥Fc∥

, (4.5)

T = m∥Fc∥. (4.6)

Finally, the error dynamics can be written in terms of the intermediate command,

ėv = g k̂3 + Fc +
1

m
(Fa)i − v̇r +

T

m
(Cbi − Cri)

T k̂1. (4.7)

This structure properly establishes the problem at hand: first, determine the intermediate

command, Fc, to satisfy some control law. The intermediate command will determine thrust

magnitude, T, and the partial reference attitude, r̂1, through (4.5, 4.6). Then, complete the

attitude reference by setting the other two basis vectors, r̂2 and r̂3 through some additional

criteria.

We first focus on determining the intermediate command itself, by presenting the position

and velocity control laws. We then proceed to completely determine the reference attitude,

through the vector-projection algorithm specialized for the agile fixed-wing UAV [91].
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4.2.2 Position tracking control law

In multirotor control development, a common simplification is to neglect aerodynamic forces.

Doing so enables a simple policy for the intermediate command, such as a proportional-

derivative feedback law with a feed-forward component meant to exactly linearize the er-

ror dynamics (4.7). Translating this procedure for a winged aircraft was first studied in

[62], where the focus was on a tailsitter platform. As determined there, the aerodynamic

forces (Fa)i depend on the UAV attitude, preventing a closed form solution from being ob-

tained. Their proposed solution is, given an aerodynamic model of the tailsitter, to employ

a sequential convex programming algorithm to obtain the reference attitude but the high

computational demand prevents its full implementation.

Instead, we propose a different methodology. By using prior attitude measurements, an

estimate for the aerodynamic forces (F̂a)i is obtained and used as part of the feed-forward

component. Acknowledging the imperfect estimate, an integral term, as in [97], is included,

and its effects are included in the stability analysis. Consider the aerodynamic force estimate

in the inertial frame,

(F̂a)i =
1

2
ρb c̄ V̂ 2

a CT
biC(α̂, k̂2)


−CD
0

−CL

 , (4.8)

where the velocity V̂a and α̂ are the approximated airspeed and angle of attack, calculated

as

V̂a = satVM

(√
u2 + w2

)
, (4.9)

α̂ = atan2(w, u), (4.10)

where the saturation value, VM is the maximum velocity the UAV platform can achieve.

The lift and drag coefficients, CL and CD are approximated through platform dependent

polynomial fit,

CL =


PLl(α) α ≤ αl

PLt(α) αl < α ≤ αh

PLh(α) α > αh

CD =


PDl(α) α ≤ αl

PDt(α) αl < α ≤ αh

PDh(α) α > αh

where αl and αh correspond to the low and high angle of attack regime thresholds, and

the three polynomials account for the three angle of attack regimes in [18]: the low alpha
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regime, the post-stall transition regime where coefficients are interpolated, and the high

angle of attack regime where flat plate theory is used.

For the McFoamy experimental platform, these coefficients are given by

CL(α) =


3.07α, α ≤ 0.271

−0.638α + 1.035, 0.271 < α ≤ 0.482

0.539α3 − 2.36α2 + 2.313α + 0.103, α > 0.482

(4.11)

CD(α) =


3.23α2 + 0.0173, α ≤ 0.271

0.621α + 0.0913, 0.271 < α ≤ 0.482

−0.188α3 − 0.0264α2 + 1.42α− 0.2712, α > 0.482

(4.12)

In Figure 4.2, these polynomial approximations are compared with the coefficients obtained

in simulation for the main wing segments. It can be appreciated that they capture the stall

phenomena at large angles of attack, but with smooth post-stall characteristics.
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Figure 4.2: Lift and drag coefficient approximations. Solid blue line corresponds to [18],
dashed red to the polynomial approximation (4.11), (4.12)

Due to lift and drag coefficients characteristics and the bounded airspeed estimate, the

estimated aerodynamic forces can be considered bounded, such that ∥(F̂a)i∥ ≤ Ba, for some

positive constant Ba.

The intermediate command can now be established through a position tracking control

law. Define the intermediate command as

Fc = −kvev − kpep − ki satk(ei)− gk̂3 + v̇r −
1

m
(F̂a)i, (4.13)

where the composite integral error is defined as

ei =
∫ t

0

(ev(τ) + cpep(τ)) dτ, (4.14)
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where satk(·) is an element-wise saturation function which limits each element to the range

{−k, k}, for k > 0, and forpositive gains kv, kp, kv, and cp.

Before stating the main stability result, the following assumptions are needed.

Assumption 4.1. Assume the intermediate command satisfies

∥Fc∥ ≠ 0, (4.15)

and

∥ − g k̂3 + v̇r − (F̂a)i/m∥ < Bp, (4.16)

for some positive constant Bp.

While the intermediate command itself has yet to be calculated, these conditions can be

satisfied by a well chosen reference profile. The first condition will always be satisfied if a

limit on a pure descent is established such that, if v̇r = [0, 0, v̇3], then v̇3 > g. The second

condition obeys a simple maximum reference acceleration, which is a standard requirement

in control applications. A conservative bound can be established by using the previously

established bound on the aerodynamic force estimate, Ba.

Assumption 4.2. The aerodynamic force estimate is sufficiently accurate, and some positive

constant Be exists such that

∥(Fa)i − (F̂a)i∥∞ ≤ mBe (4.17)

The assumption is reasonable if one considers that the aerodynamic forces are, by nature,

bounded by the maximum achievable velocity of the UAV, and by other factors such as stall

velocity and angle of attack. If wind is considered bounded, then the assumption will hold.

In practice, the UAV can only operate within reasonable wind conditions, usually represented

as a percentage of the UAV maximum velocity.

We can now state the main result. Due to the conclusions from the previous chapter,

we only consider the attitude control combination that yielded the best results, the PD plus

feed-forward law, together with the second innovation term, however, the analysis can be

adapted to consider other combinations.

Theorem 4.3. Consider the error dynamics given by (4.7), with initial conditions satisfying

Cbr ∈ L̄r = {Cbr ∈ SO(3) |Ψ(Cbr) < ψ < 0.25}, (4.18)
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∥ep(0)∥ ≤ eM , (4.19)

for some eM > 0, together with the attitude control law (3.24), with innovation term ea = e2
(3.11), and the position control law defined by (4.5), (4.6) and (4.13), (4.14). In addition,

for positive constants γ and cp, the control gains verify

ki k > Be, (4.20)

γ < min

{√
2λmka,

2λmkω
λm + 2λM

,
4kakωλ

2
m

(kω +B1)2λM + 2kaλ2m + 4λMkaλm

}
, (4.21)

cp < min

{√
kp,

4kpkv(1− 2
√
ψ)2

4kpkv(1− 2
√
ψ) + k2v(1 + 2

√
ψ)2

}
, (4.22)

and

4λmin(Wp)λmin(Wa) > ∥Wap∥2, (4.23)

where

Wa =

 γka
λM

−γ(kω+B1)
2λm

−γ(kω+B1)
2λm

kω − γ
(

1
2
+ λM

λm

) , (4.24)

Wp =

[
cpkp(1− 2

√
ψ) −1

2
cpkv(1 + 2

√
ψ)

−1
2
cpkv(1 + 2

√
ψ) kv(1− 2

√
ψ)− cp

]
, (4.25)

Wap =

[
2cp(

√
3kki +Bp) 0

2(kpeM +
√
3kki +Bp) 0

]
, (4.26)

where λm = λm(J) and λM = λM(J) are the smallest and largest eigenvalues of J, respectively.
Then the errors ep, ev, ea, and eω converge exponentially to zero, and ei is uniformly bounded,

verifying the position and attitude tracking objectives.

Proof. See Appendix B.1.

The combined choice of attitude innovation term (3.11) and the thrust magnitude and

direction as functions of the intermediate command (4.6, 4.5), result in a reduction of the

allowable initial conditions for attitude error, as shown by (4.18). This value, for the selected
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innovation term, corresponds to an initial error of η ≤ 60◦. This result may appear restrictive,

especially when compared to the results in [102], which use a different innovation term and a

different mapping between thrust and intermediate command, resulting in an allowed initial

angular error of η ≤ 90◦.

However, as established in [102], this reduced initial condition is not problematic; the

tracking objective will still be verified, albeit in steps. The attitude needs to converge to

the more limited initial error condition first. This is also true for the system presented here,

and the more aggressive innovation term, depending on the initial condition, can result in η

converging faster to the η < 60◦ than the aforementioned controller converging η < 90◦.

To verify this notion, consider the following. Due to the attitude controller, the attitude

errors will converge to zero asymptotically regardless of the translational dynamics. This

implies there exists some finite time tc where the UAV attitude will satisfy (4.18). Once

this condition is reached, Theorem 4.3 can be invoked. To ensure the system remains stable

before this moment, for t ∈ [0, tc], we must show the position error states remain bounded.

This is done through the following Lemma.

Lemma 4.4 (Boundedness of position errors). Consider the closed-loop control system sat-

isfying the conditions of Theorem 4.3, but with an initial attitude error verifying

Cbr ∈ L̄l = {Cbr ∈ SO(3) |Ψ(Cbr) < ψl < 2}.

In the time interval t ∈ [0, tc], after which Cbr ∈ L̄r, the position and velocity errors are

bounded.

Proof. See Appendix B.2.

With this result, the region of attraction of the control system is extended. For a smooth

reference trajectory, it is expected that any initial attitude error will be small. However, this

result will allow us to prescribe a discontinuous attitude reference without loss of stability in

operation, a feature that will be important when determining the complete attitude reference.

4.2.3 Velocity control law

It is useful to possess the capability for velocity control, as this functionality completes the

standard autopilot system commonly assumed for the development of guidance algorithms.

Indeed, the velocity controller will serve as the basis for the path-following system developed

in the next chapter.
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Striving for compatibility, the velocity control system is built using the same controller

structure as the position tracking control system, such that both functionalities can be

enabled or disabled without changing the overall control architecture. As such, the velocity

controller is a simple modification to the position tracking controller.

For velocity control, consider instead the following intermediate command

F̄c = −kvev − kpsatν(evi)− gk̂3 + v̇r −
1

m
(F̂a)i, (4.27)

where

evi =
∫ t

0

ev(τ)dτ., (4.28)

with the gains and saturation function as defined for the position controller. Different gains

may be selected, but keeping the gains equal between controllers facilitates transition between

the two: the integral term of the velocity controller can be substituted by the proportional

term of the tracking controller, with careful initialization of the position reference, to switch

between the two functionalities while retaining a smooth control law.

Theorem 4.5. Consider the error dynamics given by (4.7), with initial conditions satisfying

(4.18) in closed-loop with the attitude control law (3.24), using the second innovation term

(3.11), and the velocity control law (4.27), with the attitude controller gains verifying,

0 < γ < min

{√
2λmka,

2λmkω
λm + 2λM

,
4kakωλ

2
m

(kω +B1)2λM + 2kaλ2m + 4λMkaλm

}
, (4.29)

and velocity controller gains verifying

kpν > Be (4.30)

λmin(Wa) >
(2
√
3kpν +Bp)

2

4kv(1− 2
√

(ψ)
. (4.31)

Then the errors ev, ea, and eω converge exponentially to zero, and evi is uniformly bounded,

verifying the velocity control objective.

Proof. See Appendix B.3.

As with the position tracking controller, a large initial angular error outside the sublevel

(4.18) is not problematic; the overall stability will be preserved until the attitude subsystem

converges. This result is not shown, as it can be considered a special case of Lemma 4.4

where the position error, ep is not considered.
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The integral term of the velocity control law is almost equivalent to the proportional

term in the position controller. The key difference is the lack of true feedback on the UAV

position. Under ideal conditions, with no uncertainty or disturbances, both control systems

will behave similarly. In practice, the velocity controller on its own will not be able to

compensate any drift in position. In this sense, it is a less strict control system.

4.2.4 Vector-projection algorithm

Using either the position tracking control law (4.13) or the velocity control law (4.27) will

result in a intermediate command Fc. This command is then generated through a coordinated

selection of thrust magnitude and its direction, through (4.5, 4.6).

The control only determines a partial attitude in the form r̂1 ∈ S2, where S2 is the two-

sphere, defined as S2 = {x ∈ R3|xTx = 1}. Aligning the thrust axis is sufficient to achieve

the control objective, however, the core attitude controller requires a complete attitude

reference. We could disregard the rotation about the thrust axis, and control the reduced

attitude directly. Strategies designed on S2 have been used for quadrotor [103] and satellite

control [104], and a modified SO(3) error function is used in [38].

The alternative is to enforce some additional constraint to complete the attitude reference.

In [59], a reference quaternion is constructed to minimize the angle of rotation needed to

align with the required thrust vector, an idea that is adapted for a controller on SO(3) in

[62]. We employed this minimal rotation strategy as the basis for the hover regime controller

developed in [101], which produced good results for near-hover maneuvers. However, it could

not be used for a more general array of maneuvers because the minimal rotation will not

result in a useful flight configuration for a fixed-wing aircraft. For a fixed-wing aircraft,

the rotation about the thrust axis has a significant effect on the aerodynamic forces of the

aircraft and should be determined carefully.

In [61], a reference DCM is proposed such that the controlled quadrotor satisfies both

a thrust direction reference, and, as much as possible, a desired direction of its forward

facing vector. The vector-projection algorithm proposed in this work is based on this dual

objective idea, but the secondary objective is much different. The proposed solution instead

completes the attitude reference to achieve a useful fixed-wing UAV configuration while in

steady regime. The algorithm is as follows.

• The components of the first reference frame basis vector are calculated through (4.5),
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explicitly,

r̂1 = CT
rik̂1 =

Fc
∥Fc∥

.

• The second reference frame basis vector is given by

r̂2 =
k̂×
3 r̂1

∥k̂×
3 r̂1∥

. (4.32)

• The third reference frame basis vector is given by

r̂3 = r̂×1 r̂2. (4.33)

• The reference DCM, Cri is constructed as

Cri =
[
r̂1, r̂2, r̂3

]T
(4.34)

The algorithm, as its name implies, projects a vector onto a plane. Concretely, it projects

the inertial downwards pointing vector, i3−→, whose components in the inertial frame are

i3 = k̂3, onto the plane normal to r1−→, the desired direction of the thrust axis. This can be

seen from

r3−→ =
1∥∥∥ i3−→× r1−→

∥∥∥
(
r1−→×

(
i3−→× r1−→

))
=

1∥∥∥r1−→× ( i3−→× r1−→)
∥∥∥
(
r1−→×

(
i3−→× r1−→

))
,

since r1−→ is unit norm, and will be orthogonal to i3−→× r1−→. However,

r1−→×
(
i3−→× r1−→

)
=
(
r1−→ · r1−→

)
i3−→−

(
r1−→ · i3−→

)
r1−→ = i3−→− Projr1−→

i3−→,

where Projr1−→
i3−→ is the projection of i3−→ onto r1−→. By subtracting its projection in the direction

of r1−→ from itself, one obtains the projection of i3−→ onto the plane normal to r1−→. The vector

r3−→ is simply the normalized projection.

As a consequence of this projection, the second reference vector, r2−→, will always be

contained in the plane normal to i3−→. Due to the NED inertial frame definition, this means the

second reference basis vector will always be contained in the North-East (NE), or horizontal,
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plane. When the aircraft is aligned with the attitude reference specified by the vector-

projection algorithm, it verifies the thrust alignment required to generate the intermediate

command, Fc, while enforcing a neutral rotation about the thrust axis. This configuration

keeps the aircraft’s wing level, as may be appreciated in Figure 4.3.

Figure 4.3: Horizontal attitude reference.

In this configuration, when in steady flight regime, the generated lift will help sustain the

aircraft, reducing the required thrust force and increasing endurance. When slowing down,

as the UAV pitches up, the alignment of the wing will generate drag, helping a transition

into thrust-borne flight. While the algorithm commands a null rotation about the thrust

axis, in practice it creates a well behaved neutral configuration where an additional rotation

can be prescribed independently. In terms of Euler angles, the proposed algorithm effectively

decouples the roll coordinate, but this is achieved through a formulation strictly on SO(3).

As will be explored later, there are several options for an independent roll command,

including a closed-loop control law. When the reference attitude is augmented with this

additional rotation, the control system essentially operates as a set of standard longitudinal

and lateral autopilots while in a steady flight regime, but, notably, the same control system

is capable of thrust-borne flight and can perform complex aerobatic maneuvers. As such,

the vector-projection algorithm serves as an extension for thruster pointing algorithms, that

allows the agile-fixed wing to behave like fixed-wing aircraft when necessary, but retaining

the high maneuverability enabled by its large thrust-to-weight ratio.

4.2.4.1 Hover singularity

From the definition of the second reference basis vector (4.32), the vector-projection al-

gorithm encounters a singularity when the desired thrust direction, r1−→ becomes vertical.

Assumption 4.15 will prevent the aircraft from pointing straight down, but the singularity

will certainly be encountered when the aircraft transitions into a hover. This obeys a clear
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physical impediment: the aircraft cannot point its nose upwards while pointing its belly

downwards.

The singularity can be avoided by relaxing, or changing, the projection constraint when

the aircraft is sufficiently pitched upwards. When the aircraft reaches such a condition, the

angle of attack is so large that the wing has effectively stalled, the aircraft is thrust-borne,

and the control surfaces retain control authority mainly through propeller slipstream. In

this regime, constraining the wing to remain level is not necessary. Instead, we propose to

lock the wing in position once the aircraft reaches some attitude threshold, as follows.

When the aircraft surpasses a predetermined angle threshold, the projection of the third

reference vector onto the NE plane of the last valid step of the vector-projection algorithm,

r̂∗3, is calculated as

ĥ =

(
k̂T1 r̂∗3

)
k̂1 +

(
k̂T2 r̂∗3

)
k̂2∥∥∥(k̂T1 r̂∗3

)
k̂1 +

(
k̂T2 r̂∗3

)
k̂2

∥∥∥ (4.35)

In implementation, this is simply the normalized vector created from the first two components

of r̂∗3 while zeroing the third. This direction is, in principle, fixed throughout the operation

of the aircraft when at high angles of attack, but it can be modified to rotate the aircraft.

Once ĥ is set, the reference DCM is constructed using the same steps as the vector-

projection algorithm but with an alternate second basis vector,

r̂2 =
ĥ×r̂1
∥ĥ×r̂1∥

. (4.36)

The resulting reference attitude is shown in Figure 4.4, where it can be appreciated that the

second reference basis vector is not constrained to the NE plane anymore.

Figure 4.4: Vertical attitude reference.

Defining the fixed direction vector ĥ through (4.35) facilitates a smooth transition from
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the horizontal to the vertical configuration. It can be verified that, if r̂1 is kept constant

throughout these calculations, then the new r̂3 will be exactly equal to the previous value,

r̂∗3. In other words, if the intermediate command Fc is smooth, the reference attitude will be

continuous when switching from horizontal to vertical position.

The direction ĥ can be considered, with a slight abuse of notation, as the desired heading

of the aircraft. If a smooth transition is not considered, this basis vector could also be

constructed through

ĥ =
[
cos(ψr), sin(ψr), 0

]T
, (4.37)

where ψr is an arbitrary reference heading angle between the North coordinate (first inertial

axis), and the projection of the aircraft’s belly vector onto the NE plane. In this sense,

the alternate reference attitude is equivalent to the solution proposed in [61] for a quadrotor

(with a different body axes definition), which is fitting since the UAV behaves like a rotorcraft

while in a slow, near-hover regime.

4.2.4.2 Transition considerations

Thanks to the selection of ĥ, the transition from horizontal to vertical configuration is guar-

anteed to be continuous. However, this is not true for the opposite transition. The vector-

projection algorithm is stricter in the sense that the base constructor vector, k̂3 is always

fixed, as opposed to ĥ which can be selected to ensure continuity.

Discontinuous operation is, in general, undesirable, but this discontinuity is of less con-

cern. As opposed to hybrid control systems which use distinct control architectures, the

proposed control system remains the same in both configurations and thrust magnitude and

its direction remain continuous throughout. The only possible discontinuity is in the rota-

tion about the first body axis. Lemma 4.4 shows the system is robust against large initial

angular errors, and simulations and experiments show the chosen attitude innovation term,

(3.11), allows the attitude control system to rapidly converge to the target attitude from a

large initial error, especially in the roll coordinate.

We can use this discontinuous behavior to our advantage. One application is to induce

an aggressive turnaround maneuver through the specification of a rapidly changing reference

velocity, where the aircraft first enters the vertical configuration, locking the wing in place,

and then, as velocity increases in the opposite direction, it will rapidly roll to fly level and

non-inverted.

Still, it is desirable to avoid high frequency switching in the control system. To prevent

this, we use a simple transition logic with a lower, ξl, and upper threshold, ξu, where ξl < ξu.
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Using two thresholds produces a hysteresis-like effect on the operation, where the direction

of change matters. The variable used to compare with the thresholds is the angle between

the downwards pointing vector, k̂3, and the first basis vector of the reference, r̂1. This

angle, ξ ∈ [0◦, 90◦] can be calculated as an intermediate step within the vector-projection

algorithm, since

ξ = sin−1
(
∥k̂×

3 r̂1∥
)
. (4.38)

Consider the aircraft is using the horizontal attitude reference. If ξ > ξl, then the aircraft

motion does not risk approaching the geometric singularity and may continue operating as

is. If ξ < ξl, the UAV is close to the geometric singularity and must transition, smoothly,

into the vertical configuration, which uses the alternate attitude reference. In this regime,

if ξ < ξu the aircraft is still considered too pitched up to transition back without risking

oscillations, it then remains in the vertical configuration. This is true even if ξl < ξ < ξu;

indeed, the region ξ ∈ (ξl, ξu) serves as a buffer zone to avoid high frequency switching. If

the aircraft lowers its nose enough that ξ > ξu, then the aircraft may return to the horizontal

configuration. This simple logic is better understood from the diagram in the Figure 4.5.

Figure 4.5: Attitude reference transition logic.

With the base attitude determination algorithm established, we proceed to show how an

independent rotation about the thrust axis can be exploited to achieve additional objectives.

4.2.5 Rotation about the thrust axis

Although the vector-projection algorithm and its counterpart generate a reference attitude

with neutral rotation about the thrust axis, a rolling motion can still be specified indepen-
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dently, by augmenting the reference attitude through a sequential rotation.

Consider some reference rotation about the thrust axis, or reference roll, ϕr. Then the

augmented reference DCM, Cϕ
ri is given by

Cϕ
ri = C(ϕr, k̂1)Cri =


1 0 0

0 cos(ϕr) sin(ϕr)

0 − sin(ϕr) cos(ϕr)




r̂T1
r̂T2
r̂T3

 . (4.39)

Two options for this additional reference roll, ϕr are now discussed, in addition to the

special treatment given to the vertical attitude reference.

4.2.5.1 Closed loop roll command

The most intuitive application for a roll command is the banking motion employed by a

conventional fixed-wing aircraft to control its heading, itself used to steer the aircraft. This

serves as the basis for the lateral autopilot of a fixed-wing UAV [2].

While the UAV is capable of lateral motion without the need to bank, owing to its

large, slipstream-immersed rudder, doing so is not efficient. Instead, for steady maneuvers,

the aircraft should bank to point the lift generated by the main wing to produce lateral

acceleration.

Consider the position error resolved in the body frame,

(ep)b =
[
eb1 eb2 eb3

]T
= Cbiep. (4.40)

Then a course command, based on Line-of-Sight (LOS) guidance principles is given by

χc = χr + tan−1(−kyeb2), (4.41)

where ky > 0, and the reference course is

χr = tan−1

(
vr2
vr1

)
= atan2(vr2, vr1) (4.42)

In implementation, it is better to use instead tan−1(−kyeb2) = atan2(−eb2, dy), where dy =
1/ky is a look-ahead constant that determines the convergence characteristics.

In [52], this reference course is differentiated to solve for a reference roll through the

coordinated turn equation [2]. We propose instead a Proportional Integral (PI) control law
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for course, as is common in fixed-wing autopilot design. The closed loop reference roll is

given by

ϕr = kϕp(χ− χc) + kϕi

∫ t

0

(χ(τ)− χc(τ))dτ, (4.43)

where the aircraft course is calculated through its conventional definition as

χ = tan−1

(
vi2
vi1

)
= atan2(vi2, vi1). (4.44)

This closed loop control law will create a roll reference that attempts to reduce the

aircraft’s lateral error in the body frame. If the aircraft roll is significant, this second body

referenced error could also capture a vertical error quantity, or altitude error. Ideally, the

aircraft should only roll to compensate for a purely lateral error, not to adjust altitude. A

better solution requires the definition of a moving path frame and will be discussed in the

next chapter.

4.2.5.2 Aerobatics

The second application for a rotation about the thrust axis is unique to the agile fixed-wing

UAV. Since it has excess side-force authority, a roll command can be prescribed indepen-

dently to perform a series or aerobatic maneuvers while still achieving the control objectives.

This notion was originally suggested in [105], where a slow rolling Harrier and a knife-edge

are performed as the aircraft navigates a path. Thanks to the roll decoupling property of

the vector-projection algorithm, these maneuvers can be easily prescribed without the need

to adjust the underlying control structure, or to add an additional lateral controller. Three

common aerobatic maneuvers can be enabled straightforwardly:

• A Rolling Harrier can be achieved by setting ϕ̇r = ωrh, where ωrh is the rate of rotation

of the rolling motion, and ϕr can be obtained through basic numeric integration.

• A knife-edge is commanded by setting ϕr = ±π/2 [rad].

• Inverted flight is achieved through ϕr = π [rad].

While performing these maneuvers, some consideration are needed for the aerodynamic

force estimate. Since the aircraft has a symmetric (flat) airfoil, the aerodynamics during in-

verted flight will be very similar to those when the wing is level. For a knife-edge maneuver,

lift will be greatly reduced. In [67], where the aerodynamic estimate is necessary for the

thrust controller, the loss in lift is accounted for by reducing the estimate by an empirically
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obtained factor. In this work, we show that the feedback part of the position control system

can compensate even if a zero estimate is given. This is especially useful for the Rolling Har-

rier, which is not a steady-state maneuver, preventing our proposed aerodynamic estimate

from being used. Still, the thrust-based control system should be able to compensate for the

oscillating aerodynamic forces of the aircraft during this maneuver.

4.2.5.3 Hover maneuvers

Due to the structure of the vertical attitude reference, there is are two mechanisms to induce

a rotation about the thrust axis. Modifying roll is the simplest, as it can be prescribed by

augmenting the reference DCM through (4.39), as before. However, this can also be achieved

by rotating the constructor vector, ĥ.
This latter maneuver is the more intuitive option for a remote operator, since it allows

for a piloting scheme similar to that of a multirotor UAV. In conventional quadrotor control,

translational references for are specified with respect to aircraft geometry: one stick com-

mands motion from left to right, and the other commands motion forwards and backwards.

Vector ĥ doubles as a reference direction for these commands: forward and backward motion

is parallel to it, lateral motion is normal to it. Modifying ĥ automatically shifts this refer-

ence, but a rotation about the thrust axis created by a sequential rotation will not realign

ĥ. While a rotation about the thrust axis during a hover could be achieved through (4.39),

it is better to rotate the aircraft by increasing or decreasing the initial ĥ vector.

To achieve this, instead of using (4.35) to calculate the initial, ĥ, an initial equivalent

heading can be obtained through

ψ0 = sin−1

(
r∗32√

(r∗31)
2 + (r∗32)

2

)
, (4.45)

where r∗31 and r
∗
32

are the first and second components of r̂∗3. Then, if an additional rotation,

ψr is prescribed, calculate ĥ through

ĥ =
[
cos(ψ0 + ψr), sin(ψ0 + ψr), 0

]T
. (4.46)

This additional rotation, ψr, is a free parameter that can be specified by the pilot or an

autonomous reference generator.
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4.3 Position control verification

We first evaluate controller features through representative simulations, and then analyze

the results of experimental flights. This section focuses on the position tracking control

law (4.13), since the velocity controller (4.27) can be considered a less strict variant of it.

However, the velocity controller serves as the basis of the path-following algorithm presented

in the following chapter, as such, its functionality will be tested when testing the path-

following algorithm.

4.3.1 Numerical simulations

All Matlab simulations share the same controller gains and parameters, given in Table 4.1.

Both during simulations and experiments, it is found that selecting different values for the

gains associated with the third inertial coordinate yield better results. This is reflected in the

gains Kp, Kv, Ki being used instead of one shared constant. Parameters are divided between

attitude control, position control, closed-loop roll, and transition thresholds. Simulations

assume ideal, no wind conditions.

Table 4.1: Controller parameters for simulation.

Param. Value Units

ka 4.393 N m
rad

kω 0.1569 N ms
rad

V̂δ 12 m/s

Kp diag(1.08, 1.08, 3.6) 1/s2

Kd diag(0.672, 0.672, 0.336) 1/s
Ki diag(0.008, 0.008, 0.04) 1/s3

k 10 ms

ky 0.2 1
kϕp 4.32 1
kϕi 0.02 s

ξu 30 deg
ξl 15 deg

Similarly to the attitude control system, larger gains result in faster convergence at the

cost of performance. The system is found to be more sensitive in the third coordinate for the

derivative gains, a larger value results in noticeable oscillations. This can be attributed to the



CHAPTER 4. POSITION CONTROL 89

notion that large, sudden motions in the vertical direction directly affect the angle of attack,

and hence, the aerodynamic characteristics of the aircraft. However, this coordinate benefits

from larger proportional and integral gains to reduce the steady-state error, especially during

steady flight where the lift estimate can be inaccurate, resulting in an effective disturbance

on this axis.

The lower angle threshold, ξl, is an important parameter, since it will determine when

the transition from steady to hover flight occurs. This transition is more demanding than

its counterpart, because it requires the UAV to decelerate. In general, a larger value will

result in a smoother transition, since the wing will “lock in place” sooner and help the UAV

slow down. Since the other threshold, ξu, needs to be larger to avoid undesired switching

behaviour, the trade-off is determining a value for ξl that provides good performance while

still allowing the aircraft to quickly transition back to steady flight. In this work, the value

of ξl = 15◦ provides good results.

4.3.1.1 Longitudinal and hover maneuvers

The composite maneuver shown in Figure 4.6 allows us to test, and demonstrate, several con-

troller features, specifically, longitudinal steady performance, transitions to-and-from hover,

and hovering capabilities. A close-up of the hovering section of the flight, which includes

both transitions is shown in Figure 4.7. The inertial position and velocity of the UAV are

shown in Figures 4.8 and 4.9, respectively. For the 2D plots, vertical dash and dotted lines

indicate changes in the prescribed reference trajectory.

Figure 4.6: 3D view of composite maneuver.

The maneuver is best understood from the velocity plot in Figure 4.9. Initially, a velocity

of 10 m/s with zero heading is commanded. Between t = 3 and t = 6 s, the UAV is
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Figure 4.7: 3D close-up of hovering maneuvers.

commanded to slow down with constant deceleration until zero velocity is reached, forcing

the aircraft to hover in place. A key aspect of this maneuver is the transition between the

two attitude determination algorithms, which occurs at t = 4.72 s. The effects of locking the

wing can be seen in the oscillations in the velocity plot, but aircraft motions remains smooth

through the transition.

The UAV is commanded to hover in place for 3 seconds, then, at t = 9 s, a lateral velocity

reference of V = 2m/s is prescribed. This velocity is commanded perpendicular to ĥ, and
the UAV hovers by tilting sideways, as a multirotor would. This maneuver is notable since,

given the choice of body reference frame, it cannot be achieved with a single set of Euler

angles: it effectively requires a “fourth gimbal” to be prescribed. At t = 12 s, a velocity of

V = 2m/s, but this time in the direction of ĥ is prescribed. The UAV achieves this motion

by tilting forward, in contrast to the previous maneuver.

At t = 15 s, a strictly vertical climb at V = 2m/s is commanded. After 2 seconds

the velocity abruptly changes to zero, and the aircraft exhibits overshoot in the vertical

coordinate, which can be appreciated on all 2D plots. When slowing down in the NE plane,

the drag generated by the wing acting as a flat plate helps the UAV slow down, but this

mechanism is not available when performing purely vertical maneuvers, hence the overshoot.

Better performance can be obtained with a smooth reference, for example a third order

velocity profile. Between t = 18 and t = 21 s the reference velocity remains at zero, but a

change in heading is achieved by commanding ψ̇r = 2 [rad/s] through (4.46). This rotation
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Figure 4.8: Inertial position for composite maneuver. Dashed line corresponds to the refer-
ence trajectory.
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Figure 4.9: Inertial velocity for composite maneuver. Dashed line corresponds to the refer-
ence trajectory.

can be appreciated on the close-up figure.

Finally, at t = 2, s the aircraft increases its velocity with constant acceleration until

reaching V = 7m/s. The direction of this motion is in the opposite direction of ĥ and,

initially, the UAV achieves this motion by tilting backwards. As the reference velocity

increases, and the aircraft levels, it transitions back into the horizontal attitude reference.

This transition introduces a discontinuity in the form of a large angular error about the

thrust axis, since the reference commands the aircraft to switch from inverted flight. As seen

from the 2D position plots, a transient position error is introduced due to this motion, but

performance is not greatly impacted.

The simulation demonstrates that a single control structure with a single set of control

gains is capable of following such a complex maneuver. There are, however, steady state

errors present. During hover, these errors are small, but they increase as the reference
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velocity increases. Errors remain bounded, and the system remains stable throughout, but

the aircraft lags behind when the reference position evolves rapidly.

4.3.1.2 Contracting spiral

The next maneuver consists of an initial straight line at V = 10m/s, followed by a climbing,

contracting spiral maneuver. This maneuver can be generated through

pr =


(r0 + ṙ(t− t0)) cos

(
2π
tr
(t− t0)− π

2

)
(r0 + ṙ(t− t0)) sin

(
2π
tr
(t− t0)− π

2

)
+ r0

vz(t− t0)

+ pr0 ,

where r0 > 0 is the initial radius, ṙ is the constant radius contraction or expansion rate, tr is

the time needed to complete a rotation, and vz is an independent climb rate. This profile can

be differentiated to obtain smooth velocity and acceleration references. The profile shown

in Figure 4.10 is constructed by setting r0 = 15m, ṙ = −0.4286m/s, vz = −0.5m, and

tr = 10 s. The spiral is configured such that the radius contracts to zero after 35 seconds of

initiating the maneuver.

Figure 4.10: 3D view of contracting spiral maneuver.

Two controller features can be appreciated from the 3D view of the maneuver. First, the

aircraft banks towards the center of the trajectory, as expected for the normal operation of
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a fixed-wing. This due to the aircraft lagging behind the time-varying reference, as can be

better appreciated in the position plot shown in Figure 4.11, which results in the aircraft’s

heading being less than the reference heading, inducing a roll command.
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Figure 4.11: Inertial position for contracting spiral maneuver. Dashed line corresponds to
the reference trajectory.

The second feature is, again, the controller capability of transitioning from steady to

hover regimes, which occurs smoothly. The instant this transition is triggered is shown

with a vertical dot and dashed line in the position plot and the error plot, shown in Figure

4.12. Since the maneuver slows down gradually, the transition has little impact on tracking

performance.
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Figure 4.12: Position error for contracting spiral maneuver.

The error plot again shows there exist steady state tracking errors, which are larger

when the maneuver evolves faster. Even with these errors, system stability is maintained

throughout the maneuver. As the UAV transitions to a hover, the steady state errors tend

to zero.
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4.3.1.3 Position tracking with aerobatics

The final simulation tests the idea of commanding aerobatic maneuvers while following a tra-

jectory, through an independently prescribed rotation about the thrust axis. The simulation

commands the aircraft to transition from a straight line into a circular, constant altitude

reference evolving at V = 9.5m/s. As opposed to the previous maneuver, the aircraft is

commanded to rotate about the thrust axis at a rate of 3 rad/s. No aerodynamic force

estimate is given during this stage. Figure 4.13 shows a 3D view of the maneuver where,

for visual clarity, only the first rotation is shown. The maneuver, however, is performed for

several rotations, as can be seen from the position error plot shown in Figure 4.14.

Figure 4.13: 3D view of Rolling Harrier on a circle maneuver.
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Figure 4.14: Position error for Rolling Harrier on a circle maneuver.

The 3D view of the maneuver shows the aircraft is still able to follow the reference

trajectory, even when spinning at a fast rate. However, the unsteady aerodynamics caused

by this rotation introduce oscillations in the path traced by the UAV. When compared to

the start of the previous experiment, which initializes with the same radius, this maneuver

exhibits a larger error. This is a combination of the aircraft being unable to bank to improve

performance during a turn, and the rotation adding a significant disturbance to the system.
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Still, this simulation indicates a measure of robustness of the proposed control system to

disturbances created by aerodynamic effects. Most of the error comes from the aircraft

lagging behind the time reference trajectory, but its altitude error remains small and the

aircraft is never at risk of becoming unstable.

4.3.2 Flight experiments

Representative experimental flights were conducted over different days, at an outdoor field

with varying degrees of wind. Gains and other controller parameters are given in Table

4.2; these are kept constant throughout all maneuvers. The gains used in simulation had

to be adjusted for experiments; they initially proved too large and resulted in oscillations.

The largest change lies with the proportional gains, whose effect is dominant in the hover

regime where UAV inertial velocity is small. Still, the gains remain within the same order

of magnitude as those used in simulation and follow the same pattern, where the third

coordinate uses a smaller derivative gain but larger proportional and integral components.

The threshold ξl used in simulation proved to be too conservative in practice, and a lower

value of ξl = 10◦ was used which resulted in more agile transitions.

Table 4.2: Controller parameters for experiments.

Param. Value Units

Ka diag((0.1656, 1.022, 0.6776)) N m
rad

Kω diag( 0.0706,0.7576, 0.7736) N ms
rad

V̂δ 12 m/s

Kp diag(0.3982, 0.3982, 0.8479) 1/s2

Kd diag(0.3853, 0.3853, 0.1422) 1/s
Ki diag(0.003,0.003,0.0015) 1/s3

k 10 ms

ky 0.084 1
kϕp 0.756 1
kϕi 0.01 s

ξu 20 deg
ξl 10 deg
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4.3.2.1 Straight line descent

In conventional fixed-wing control, landing requires careful control of airspeed to avoid

stalling as the aircraft slows down for the approach. This clashes with a position tracking

objective, precluding precise position control from being used in this maneuver. In [106], we

proposed that an agile fixed-wing could perform a precise landing maneuver through the de-

veloped position tracking controller. We now demonstrate this through a time-parametrized

straight line descent. For this maneuver, the reference trajectory commands the aircraft

to descend at an angle of 35 degrees, at a reduced speed of 6 [m/s]. The maneuver was

performed in mild wind conditions, with mean winds between 2 and 4 [m/s]. Figure 4.15

shows the results of the 3D UAV path, and Figure 4.16 shows the inertial position of the

aircraft.

Figure 4.15: 3D view of straight line descent.
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Figure 4.16: Inertial position for straight line descent maneuver. Dashed line corresponds to
reference trajectory

With the proposed control system, the UAV is capable of following a time-parametrized

path effectively. The UAV follows the trajectory, which is a steep descent, at a velocity
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where a conventional fixed-wing would stall, and under the effects of wind disturbances.

While small, wind velocity is still a significant percentage of the commanded ground speed,

but the aircraft is still able to follow the strict time-parametrized trajectory without any

airspeed measurements, even if constant steady-state errors are present.

4.3.2.2 Transition into hover

We show the unified control strategy is capable of handling both conventional fixed-wing

flight and hover through a maneuver transitioning through both regimes. Indeed, transition

to and from hover has been one of the key challenges in hover capable fixed-wing aircraft.

Here, we achieve this transition through a simple slow-down maneuver, where the aircraft

is commanded to go from eight to zero m/s in two seconds. Once the velocity is zero,

the aircraft is commanded to hold position indefinitely. The UAV trajectory through this

maneuver is shown in Figure 4.17, and the position plots are shown in Figure 4.18.

Figure 4.17: 3D view of transition into hover.

The maneuver is conducted under moderate wind conditions with mean winds below

5 m/s. The effects of crosswind can be clearly seen in the steady state portion of the

maneuver, with an initial lateral error of about 4 m/s. This initial error, in addition to the

smaller altitude error can be attributed to an imperfect aerodynamic force estimate while in

the steady regime. This error can be diminished with an increased integral gain, and also

through better tuning of the roll control system. Still, the aircraft follows the trajectory

closely, and the transition into hover is remarkably smooth. As the difference between the

estimated lift decreases due to the reduced ground speed, the altitude error tends to zero.

During the hover, the aircraft is not perfectly vertical, as the position errors force it to

point into the wind. Its position oscillates in response to the wind, but it always remains
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Figure 4.18: Inertial position for transition into hover maneuver. Dashed line corresponds
to reference trajectory

stable and close to the target hovering position.

4.3.2.3 Loiter circle

A common steady regime maneuver is the circular loiter, where the UAV holds altitude

as it traces a circle. We use this maneuver to test the performance limitations of using a

trajectory tracking algorithm for high velocity, steady-state maneuvers under external wind

disturbances. We command a wide circle of 25 metres radius, at a constant velocity of 12

m/s. The experiment was conducted under moderate wind conditions, with mean wind of

approximately 5 m/s. A top view of the trajectory traced by the UAV is shown in Figure

4.19, and the position plots in Figure 4.20.

The 2D position plots show the control system does a good job at following a time-

parametrized target, but when observing the path the aircraft traces, it is clear it does not

trace the intended geometric path accurately. The UAV has no measure of wind, and due

to the wide circular path, the airspeed is different between segments of the manuever. This

can be seen from the third inertial component, which shows the aircraft has a small, but

periodic loss in altitude due to a mismatched estimate.

In addition to the wind, the UAV cannot perfectly trace the circular path because it

has no knowledge on the intended path; the control system is only tasked with chasing a

virtual target with instantaneous position and velocity. While performance can be improved

with different gain selection, this result motivates the research presented in the following

chapter, which addresses the notion of giving priority to the geometric path, as opposed to

an instantaneous position.
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Figure 4.19: Top view of loiter maneuver.
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Figure 4.20: Inertial position for loitering maneuver. Dashed line corresponds to reference
trajectory

4.3.2.4 Rolling Harrier on a circle

We show the proposed aerobatic capabilities through an experiment that mirrors the simu-

lation of the rolling Harrier while following a circle. A 15 metres radius circle is commanded,

at 10 m/s velocity. Simultaneously, a rotation about the thrust axis of ϕ̇r = 5 [rad/s] is

commanded. Wind conditions are similar to those of the previous experiment. The top and

side view of the maneuver are shown in Figure 4.21. Instead of the position comparison, the

position error is shown in Figure 4.22.

The diminished performance first observed in the equivalent simulation is more apparent.

The UAV lags behind the target position significantly, which causes the circle to be much

smaller that the intended one. Still, theses errors remain bounded, and the aircraft exhibits
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Figure 4.21: Top and side views of rolling Harrier on a circle.

stable operation throughout. The maneuver is exceedingly demanding, yet the aircraft holds

altitude remarkably well and is able to trace a circle as intended, albeit with a different in

radius.

4.3.3 Results discussion

Simulations and experiments show the proposed control system allows the agile fixed-wing to

follow time-parametrized inertial trajectories, ranging from traditional steady flight paths,

to maneuvers impossible for conventional aircraft. Remarkably, every maneuver is achieved

through a single, unified control architecture.

The presented maneuvers, both simulated and experimental, underscore an additional

advantage: the ease of trajectory generation. The control system is shown to perform well

with simple, stitched-together trajectories, in contrast to other proposed solutions which

require precise, optimized trajectories to perform. The control system requires only position

references, and one optional rotation, not a complete, matched attitude and position profile.

This is exemplified by the transition to hover, which is easily achieved by making the UAV

slow down. A better, optimized trajectory, accounting for system limitations, could yield

better results, and would be worth studying.
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Figure 4.22: Position error for transition rolling Harrier on a circle maneuver.

Finally, the steady-state maneuvers, show the controller struggles with high-velocity tra-

jectories. While it does not risk becoming unstable, the aircraft not tracing the correct

path can be unacceptable in some application. This problematic, which obeys well known

performance limitations for the tracking problem [55] is addressed in the following chapter.



Chapter 5

Path Following Control

This chapter addresses the problem of following a geometric, 3D path, as opposed to tracking

a time-parametrized trajectory. The motivation for this development is twofold. First is the

intuitiveness of operation for the envisioned pilot-assist, semi-autonomous system. When

piloting a fixed-wing UAV, the intent of the remote operator is typically spatial geometry,

as opposed to instantaneous position; a notion that will be further developed in the following

chapter. Second, the experiments show the limitations of the tracking control system for high

velocity references, where the aircraft lags behind the instantaneous position reference.

To illustrate this problem, we present the results of an outdoors flight experiment where

a combination of external disturbances, a strict trajectory, and poor initial conditions result

in undesirable performance. We command a circle of 15 metre radius, at a constant velocity

of 10 m/s. Mean wind velocity is approximately 4 m/s, roughly in the direction of true

North. As opposed to the experiment presented in the previous section, where the UAV

smoothly transitions into the commanded circle, here, the UAV is flying at its maximum

velocity of 14 m/s when the circle maneuver is suddenly commanded. Figure 5.1 shows the

top view of this experiment, where various positions of the real UAV and its corresponding

time-parametrized reference are given.

As can be seen from the first rotation, the UAV is off the path initially. As the aircraft

rotates following the reference, wind pushes it northward, away from the path. The position

reference continues evolving, and the UAV, displaced by the wind, eventually catches up to

it. This causes the UAV to reduce its velocity, increasing the effect of wind disturbance. As

can be seen from initial points of the second and third rotations, the reference then moves

ahead of the UAV, which accelerates in an effort to reach it. This behaviour repeats at every

rotation, eventually resulting in the aircraft tracing a circular path, but smaller, and shifted,

102
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Figure 5.1: Effects of tracking error. Vertical axes are North, horizontal axes are East, in
metres. a) First rotation. b) Second rotation. c) Third rotation d) UAV traced path.

from the one traced by the reference.

Staying on a path is something the control system, in its current form, cannot achieve: it

is unaware that a path exists to begin with. The controller is only concerned with instanta-

neous, position references, not shapes in space. A mechanism is needed to convey this path

information, and to enable the controller to prioritize being on this path instead of simply

reaching an instantaneous position target.

5.1 The geometric task

As presented in [53], the objective of motion control can be separated into two distinct tasks.

First is the geometric task, which consists of converging to a desired geometric path, and

following it thereafter. In contrast, the dynamic task requires the vehicle to satisfy a stricter

time-parametrized assignment, such a desired velocity along the path. The tracking problem

attempts to achieve both objectives simultaneously: if pi → pr(t) and vi → vr(t) then, surely,
the vehicle will have converged to the path while moving at the desired velocity along it.
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However, if the dynamic convergence is imperfect, the geometric task will be compromised.

The path following control paradigm decouples the two objectives, and focuses on achieving

the geometric task.

Two modifications are needed to enable path following functionality. First, the strict,

time-dependent evolution of the reference must be relaxed, since ṗr(t) = vr(t) can be consid-

ered an independent dynamic system that evolves in open loop. Then, a metric of distance

with respect to the path, as opposed to an instantaneous point, needs to be defined. The

former will be achieved by redefining the position reference a curve in 3D space and the

latter through the definition of a moving path frame attached to this curve.

5.1.1 Curves in space

A spatial curve, M(σ), is a collection of points in space, parametrized not by time, but by

the parameter σ. Each value of σ has a uniquely assigned point that belongs to M(σ). Let

µ−→(σ) be the physical vector pointing from some arbitrary origin, O, to the point in the

M(σ) at the corresponding value of σ. For convenience, this arbitrary origin is the same

origin as the one previously defined for the definition of pi. Consider the previously defined

inertial frame, F I . Then, we define the reference path as the components of µ−→(σ) resolved

in the inertial frame,

pr(σ) = µ(σ). (5.1)

With this new definition, the reference is a function of the parameter σ, whose evolution

with respect to time, σ̇ can be assigned independently, relaxing the time-dependence of the

reference.

The velocity of µ−→ with respect to the inertial frame is given by

d

dt
µ−→(σ) = σ̇

d

dσ
µ−→(σ) ≜ σ̇ µ−→

′(σ) ≜ σ̇ν(σ)T−→, (5.2)

where ν(σ) =
∥∥∥ µ−→′(σ)

∥∥∥ is the speed of the curve, and

T−→ =
µ−→

′(σ)∥∥∥ µ−→′(σ)
∥∥∥ (5.3)

is the tangent vector to the curve [73]. These vectors are shown in Figure 5.2. If the speed

of the curve is equal to one throughout, the curve is considered unit speed.
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Figure 5.2: Vector definitions for a curve in space.

The components of the tangent vector, resolved in the inertial frame, are given by

T = T(σ) =
µ′(σ)

∥µ′(σ)∥
=

µ′(σ)

ν(σ)
, (5.4)

where the explicit dependence on σ will be omitted when clear by the context.

5.2 The gravity normal frame

An important differential geometry concept [107], the construct of a moving coordinate frame

attached to a curve has often been used in motion control problems. In this work, we use it

to derive path-relative position errors, in a general manner that can apply to different paths.

Attaching a frame to path implies defining three basis vectors. Since the tangent vector is

well defined for any smooth curve, it is always the natural first component.

However, there is no natural way to determine a vector orthogonal to the tangent [108]

and, much like the attitude determination problem of the previous chapter, at least one ar-

bitrary assignation is needed to complete the frame. This is a fundamental decision that will

simultaneously endow the frame with specific properties and introduce limitations. Since the

path relative errors will be determined by these additional orthogonal vectors, this decision

will also determine the properties of the path-relative error metric.

In motion and navigation applications, the direction of an error is important. This is

especially true for UAVs, platforms with distinct longitudinal and lateral modes, where an

altitude error will require different compensation mechanisms than a lateral error. In terms

of describing a curve in space, its attitude with respect to an inertial frame is as important as

its shape. In view of this, we developed the gravity normal frame [109] to meet two criteria
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useful for the application of navigation and motion control in 3D.

• The definition of the path frame must be valid for most paths an autonomous vehicle

may encounter, regardless of curvature or torsion.

• The resulting path frame must naturally enforce a useful distinction between path-

relative errors, sensitive to the path’s attitude with respect to the inertial frame.

The applications of the proposed path frame extend beyond fixed-wing UAVs. Indeed,

the gravity normal frame is a useful tool that can be used for the general problems of 3D

motion control and path planning. As will be made clear through its properties, the proposed

frame is especially well suited for navigation tasks, where the orientation of a 3D curve with

respect to navigation frame is as important as its shape.

5.2.1 Basis vector definition

Consider a path defined by µ(σ), at least twice differentiable, and whose first derivative with

respect to σ, µ′(σ), is contained, ∀σ ∈ R, in the set

Bµ := {µ′(σ) ∈ R3; ∥µ′(σ)∥ ≠ 0; k×µ′(σ) ̸= 0}. (5.5)

The gravity normal reference frame attached to µ(σ) is FG = {T−→, H−→, P−→}, where

• The tangent vector, resolved in the inertial frame, T =
[
T1 T2 T3

]T
, is calculated

through (5.4).

• The horizontal vector, resolved in the inertial frame is given by

H =
1√

T 2
1 + T 2

2


−T2
T1

0

 (5.6)

• The projected vector, resolved in the inertial frame, given by

P =
1√

T 2
1 + T 2

2


−T1T3
−T2T3
T 2
1 + T 2

2

 (5.7)
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The gravity normal frame borrows the geometric properties of vector-projection algorithm

of the control system, as seen from the resulting basis vectors. The horizontal vector, H−→,

always lies on the horizontal, NE plane, regardless of the direction of the tangent. Meanwhile,

the projected vector, P−→, is the projection of the direction of gravity, g−→ = i3−→, onto the plane

normal to the tangent, Π. These vector relationships can be appreciated in Figure 5.3.

Figure 5.3: Basis vectors of the gravity normal frame.

5.2.2 Frame properties

The gravity normal frame is constructed completely through the tangent vector, it does not

require additional derivatives of the path, like the commonly employed Frenet-Serret frame

[107]. This dependence introduces two well-known limitations to the Frenet frame: it ill-

defined when curvature vanishes, for example, on a straight line path, and its second and

third vectors exhibit discontinuous jumps at inflection points, even if the curve is smooth.

While these problems can be circumvented in planar curves through a Darboux frame, no

solution exists for 3D curves or piece-wise continuous curves in different planes. In contrast,

the gravity normal frame remains well defined and continuous throughout. This behaviour

can be appreciated on the piece-wise continuous curve shown in Figure 5.4.

The curve in Figure 5.4 is composed of different planar paths stitched together. It can

be seen that, while the Frenet frame jumps discontinuously at each change in curvature,

the gravity normal frame remains well defined througout, and no additional correction steps

are needed. This Figure also shows a third problem with the Frenet frame, that obeys an

application consideration, as opposed to a mathematical singularity. The normal, N−→, and

binormal, B−→, vectors of the Frenet frame do not necessarily capture a distinct lateral and
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Figure 5.4: Comparison of the a) Frenet and b) Gravity Normal frames on a piece-wise
continuous curve.

longitudinal direction, as they flip according to the path. This problem is worse in curves

with non trivial torsion, since the normal and binormal vectors will each contain a combined

error quantity, that changes at every point. The gravity normal frame does not suffer from

this, as will be shown next.

The parallel transport frame, or Bishop frame, is another popular frame in the motion

control literature [74, 110]. Its orthogonal vectors evolve smoothly throughout the path

regardless of curvature, and can be arbitrarily initialized. A correctly initialized Bishop

frame will evolve as the gravity normal frame on the piece-wise curve shown previously. This

is because, for planar curves, the gravity normal frame is equivalent to a parallel transport

frame with specific initial conditions [109]. However, for curves with non trivial torsion,

the Bishop frame will add a “spin” about the tangent vector. This complicates stitching

together different curves, as the initial conditions need to be managed carefully to avoid

discontinuities. More importantly, it introduces the same implementation problem as the

Frenet frame: since the normal vectors spin at every point, errors defined in the normal

directions will lack any physical meaning. This behaviour, and its comparison with the

gravity normal frame, is shown in Figure 5.5 for a helix, a path with constant torsion.

As seen from Figure 5.5, the Bishop frame evolves smoothly throughout, but, unlike the

gravity normal frame, its normal vectors, N1−→ and N2−→ rotate about the tangent as the curve

evolves. This is not a problem for the task of describing the curve, but is detrimental for the

application of motion control. The argument can be made that both the Frenet and Bishop

frames (or hybrid combinations of both [108]) are strictly kinematic constructs and lack

meaning in regards to the physical space which autonomous vehicles need to navigate. In
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Figure 5.5: Comparison of the a) Bishop and b) Gravity Normal frames on a helix.

contrast, the gravity normal frame accounts for path orientation with respect to the inertial

frame, and embeds this information in the resulting basis vectors.

5.2.2.1 Limitations of the gravity normal frame

The trade-off of the gravity normal frame is that it cannot represent every curve in 3D space,

only curves that belong in the set Bµ. As opposed to a restriction on curvature, this obeys

the same geometric singularity of the vector-projection algorithm, and disallows any strictly

vertical tangent directions at any value of σ. While limiting, we consider it an acceptable

trade-off for the purposes of vehicle navigation, especially when compared to limitations on

curvature and torsion, since most conventional ground, aerial, and marine vehicles will not

be required to perform a maneuver involving a vertical tangent vector.

5.2.3 Path DCM and angular velocity

The basis vectors of the gravity normal frame, resolved in the inertial frame, can be used

as to construct the DCM corresponding to the relative attitude between the path frame FG

and the inertial frame F I . Define the DCM from inertial to path frame as

Cgi =
[
T H P

]T
. (5.8)

This DCM will allow us to express position errors in terms of path frame coordinates.
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Proposition 5.1. The angular velocity of the gravity normal frame, with respect to the

inertial frame, resolved in path frame coordinates is given by

ωg = ωgi
g = σ̇λ(σ) = σ̇


λ1(σ)

λ2(σ)

λ3(σ)

 = σ̇


(kT3 µ′)(kT (µ′×µ′′))

∥µ′∥∥k×µ′∥2
(k×µ′)T (µ′×µ′′)

∥µ′∥2∥k×
3 µ′∥

kT3 (µ′×µ′′)

∥µ′∥∥k×µ′∥

 (5.9)

Proof. See Appendix C.1

5.3 Path following controller

With the moving path frame defined, we can now properly state the path following control

objective, and design the control law to achieve it.

5.3.1 Path relative error definition

The path relative-errors, for a given value of σ, is defined as

epr =


es

ec

eh


T

= Cgi(pi − µ(σ)), (5.10)

where es is the on-track error, ec is the cross-track error, and eh is the altitude errors.

If we use the redefined position reference (5.1), then

epr(σ) = Cgi(pi − pr(σ)) = Cgiep(σ),

and, more importantly,

es = TT ep,

ec = HT ep,

eh = PT ep,

showing the clear relationship between the three path-relative errors and the basis vectors

of the gravity normal frame.
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5.3.2 Path following problem statement

Consider the UAV dynamics given by (4.2), and a reference path given by some µ ∈ Bµ.
Then, design a control law for the thrust force, T, a reference attitude Cri, required by the

core attitude controller, and a path evolution policy, σ̇(t) such that ec → 0 and eh → 0 as

t→ ∞.

For the path following problem, no objective is imposed on the convergence of the on-

track error, which in this problem formulation represents the UAV lagging behind a virtual

target while on the path.

5.3.3 Path following control law

To achieve the path following objective, we propose a control law using notions from [38],

but designed to be compatible with the control architecture derived in the previous chapters.

In this proposed framework, the path following functionality acts as an additional control

loop built on top of the velocity control system (4.27). This feedback system will translate

path relative errors into velocity references for the internal velocity control system and into

a path evolution policy.

The benefit of this structure is, once again, compatibility. As an additional feature built

on top of the velocity controller, path following functionality can be seamlessly activated

or deactivated, returning the control system to velocity control functionality. More impor-

tantly, since the velocity control system and the position tracking system are built using the

same structure, the UAV can easily transition between path following and position tracking

functionality, a feature that will be exploited in the following chapter.

The path following control law is given by the following theorem.

Theorem 5.2. Consider the UAV dynamics (4.7), the velocity controller (4.27), verifying

the conditions of Theorem 4.5, and a reference path defined by a unit speed curve µ(σ) ∈ Bµ.
Define an approach direction

νa = dlT − kcecH − khehP, (5.11)

with the path-relative errors defined in (5.10), and where kc, kh are positive gains and dl is a

strictly positive constant, akin to the look-ahead distance of guidance algorithms.

Consider a reference velocity given by

vr =
Vc
dl
νa, (5.12)
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where Vc > Vmin > 0 is a commanded desired speed along the path, lower bounded by a

minimum operative velocity Vmin, and a path evolution law calculated as

σ̇ = (VcT + ksepr)TT, (5.13)

for ks > 0.

If the gains satisfy

λmin(K) >
1

4kv(1−
√
ψ)
, (5.14)

for

Kp = diag{ks, Vc kc/dl, Vc kh/dl}, (5.15)

and

4λmin(WG)λmin(Wa) > ∥WGa∥2, (5.16)

where

WG =

[
λmin(Kp) −1/2

−1/2 kv(1−
√
ψ)

]
,

[
WGa =

[
0 0

2(kp
√
3ν +Bp) 0

]]
, (5.17)

then the system will verify Theorem 4.5 and, additionally, the cross-track and altitude errors

will converge exponentially to zero.

Proof. See Appendix C.2.

From the path evolution law (5.13), if, in addition to the cross-track and altitude errors,

the on-track error converges to zero, then the velocity on the path will converge to the

commanded velocity, Vc, effectively operating as a tracking control system. However, if this

is not verified, the vehicle can still converge to the path.

In practice, the path-following control law shapes the externally prescribed command

velocity to reach the path. The constant dl effectively modifies the aggressiveness of the

approach direction: at high values, the UAV will prioritize aligning itself to the path, instead

of converging to it, resulting in a smoother, but slower, convergence. The value of ks,

meanwhile, will modify the speed at which the path evolves, allowing it to slow down or

move ahead faster in closed loop with the UAV position. Small values will prioritize the

velocity on the path assignment, to the detriment of the geometric task.
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5.3.3.1 Rotation about the thrust axis

Since the path following controller is built around the velocity control system, which uses the

vector-projection algorithm for attitude determination, the rotation about the thrust axis

remains a free parameter. As before, one option is to prescribe a closed-loop roll command to

improve performance. Using the differential geometry tools developed for the path-following

solution, one small, but important modification to this command can be implemented to

improve lateral performance.

Calculate the course command

χc = χr + tan−1(−kyec), (5.18)

where ky > 0, and where ec is the cross-track error. In implementation, it is better to use

instead χc = χr + atan2(−ec, dy), where dy = 1/ky is a look-ahead constant that determines

the convergence characteristics.

Then, calculate the roll command through the PI control law (4.43), and the obtain the

roll augmented reference DCM, Cϕ
ri, through (4.39).

The difference is only on the lateral error used to calculate the course command, χc.

Where before this error was resolved in the body frame, as eb2, here the error is relative

to the path, through ec. Using the gravity normal frame, this error is guaranteed to only

contain a lateral deviation, which makes it a significantly more effective metric to command

the roll. In fact, even if the UAV is operating in position tracking mode, using the cross-track

error will give better results.

Alternatively, convergence to the path can be further prioritized by having the reference

roll depend only on the cross-track error, through

ϕr = kϕp tan
−1(−kyec) + kϕi

∫ t

0

tan−1(−kyec(τ))dτ. (5.19)

Of course, the option to prescribe an arbitrary aerobatic maneuver is retained, but the

UAV will instead follow a path while performing this maneuver, as opposed to tracking an

instantaneous position target. Since aerobatic maneuvers, such as the rolling Harrier and

the knife-edge, significantly modify the aerodynamic forces acting upon the aircraft, the

path-following option can lead to better results if the interest is for the UAV to follow a

geometry. This notion will be explored in the experiments section.
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5.4 Controller verification

5.4.1 Numerical simulations

For the following simulations, the previous controller gains from Table 4.1 are kept, with

additional gains for the path following control loop given in Table 5.1. The path following

gains are comparatively simpler to determine. Whereas the selection of gains for the atti-

tude and position/velocity control systems heavily depends on aircraft properties, the path

following gains obey the behaviour of the closed-loop system. This notion is the motivation

for the commonly used assumption of a kinematic model of the aircraft, which assumes the

presence of underlying autopilot systems.

Table 5.1: Path following control parameters for simulation.

Param. Value Units

dl 5 m/s
kc 2 1/s
kh 1 1/s
ks 2 1/s

The simulation consists of an initial straight line at constant altitude, followed by a

climbing helix of 15 metres radius, with a climb angle γ = 20◦, followed by another straight

line at constant altitude. The unit speed helix segment is built through

µ(σ) =


r sin

(
σ√
r2+c2

)
d r
(
1− cos

(
σ√
r2+c2

))
−c σ√

r2+c2

 , (5.20)

where r is the helix radius, c = r tan(γ) where γ is the climb angle, and d ∈ {−1, 1}
determines the turn direction.

The commanded velocity is prescribed as Vc = 10 m/s. To evaluate convergence to the

path, the UAV is initialized 5 metres behind (South) and 10 metres to the right (East) of

the initial point on the path. To test the path-following algorithm under ideal conditions,

this initial simulation has no wind disturbance. The 3D view of the reference path, and the

path traced by the UAV is shown in Figure 5.6. The path-relative errors are shown in Figure

5.7, and the evolution of the path parameter, σ̇ is shown in Figure 5.8.

The 3D view shows the UAV converges to the path and follows it closely, and this can be
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Figure 5.6: 3D view of path following simulation, no wind.

verified through the cross-track and altitude errors, given in Figure 5.7. On this figure, the

on-track is close to zero for the straight-line segments, but grows to a constant value during

the helix, showing the UAV lags behind the instantaneous position on the curve. However,

as seen in Figure 5.8, the path following controller accounts for this lag by reducing the rate

at which the path evolves, effectively slowing the maneuver to allow the UAV to remain

on the path, which is the main objective. In the straight line segments, σ̇ converges to the

commanded velocity of 10 m/s, showing that, when the on-track error is small, the UAV

verifies the dynamic task in addition to the geometric one.
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Figure 5.7: Path-relative errors for path following simulation, no wind.

If the gains kc, kh, ks are zeroed, the system reverts to pure velocity control. This, in turn,

allows for a simple transition to position tracking functionality. Not shown is an equivalent

experiment using the position tracking control system under the same, no wind conditions.

In this simulation, the UAV follows the path, but the strict time imposition introduces some

additional cross-track and altitude errors. The difference is not significant, and both the
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Figure 5.8: Path evolution law for path following simulation, no wind.

path following and trajectory tracking control strategies yield equivalent results. However,

this is not the case when wind is considered.

Figure 5.9 shows the results of a simulation using the tracking control system, attempting

to track the time-parametrized reference under a mean wind of 5 m/s in East direction.

Figure 5.9: 3D view of tracking simulation, 5 m/s wind.

The 3D view makes it clear that the tracking control system struggles to navigate the

path when in the presence of wind. While the error in the straight line segments is small,

the UAV cannot adequately track the helix segment. Wind pushes the vehicle eastward,

causing it to alternate between large and small tracking errors. This causes the UAV to

trace a smaller circle, shifted east from the reference path; a comparable behaviour to the

one observed in the experiment shown in Figure 5.1.

In contrast, consider a simulation with the same wind conditions, but with path following

functionality enabled. The 3D view of the reference path and the path traced by the UAV

during the simulation are shown in Figure 5.10.

It is clear from the 3D view that this strategy achieves better results than the tracking
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Figure 5.10: 3D view of path following simulation, 5 m/s wind.

control system, at least, in regards to reaching and following the reference path. Figure

5.11 shows the path-relative errors, and it can be appreciated that both the cross-track and

altitude errors are small, meaning the UAV is on the geometric path. The biggest change is

in the on-track error, which is allowed to increase during sections of the helix segment.
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Figure 5.11: Path-relative errors for path following simulation, 5 m/s wind.

The improved performance of the path following control system is better explained by

the path evolution law. Figure 5.12 shows σ̇ throughout the simulation, together with the

heading specified by the reference at every time step, calculated as χr = atan2(T2, T1).

For the straight line segments, σ̇ eventually converges to the commanded velocity Vc = 10

m/s, but the path moves slower at first, allowing the UAV to reach the path. This is contrast

to the tracking solution, where the virtual target evolves in open loop, regardless of aircraft

states. The key section of the maneuver is the helix, where, as before, the path following

controller determines the path needs to evolve slower in order for the UAV to stay close

to the curve. When the reference heading reaches χr = pi/2 [rad], the UAV experiences
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Figure 5.12: Path evolution law and reference heading for path following simulation, 5 m/s
wind.

tailwind, which would push it into the path in the tracking control formulation. However,

the path evolution compensates by slowing down the velocity reference, allowing the UAV to

remain close to the path. The opposite is true when the reference heading creates a headwind

condition.

The trade-off in performance during this maneuver is that the dynamic assignment is

not met throughout, resulting in the UAV completing the path in more time than the track-

ing formulation would. However, the geometric objective is not compromised, whereas the

tracking controller would alter the path. If the UAV is expected to follow a path, this is an

acceptable trade-off.

5.4.2 Flight experiments

Perhaps the most representative experimental result is a comparison with the flight experi-

ment that introduced this chapter.

Immediately after the conclusion of the original experiment which used the trajectory

tracking solution shown in Figure 5.1, an equivalent experiment was performed using the

path following control system. This was done to ensure, as much as possible, that wind

conditions were equivalent between the two flight experiments to allow for a fair comparison.

The experiment uses the control parameters given in Table 4.2 (which are the same ones used

by the position tracking experiment) together with the path following control parameters

shown in Table 5.2. Gains needed to be adjusted from simulation to implementation, but

remain in the same order of magnitude. The look-ahead distance, dl was increased, resulting

in a smoother convergence to the path. Since the gains of the velocity tracking controller

were reduced from those used in simulation, the reduction of the cross-track and altitude
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error gains is logical: the UAV cannot converge to the desired velocity as fast as in the ideal

simulation, hence the reference velocity should be less aggressive. The biggest reduction

lies with the on-track error gain. This gain is responsible for the UAV behaviour once it

has reached the path; as it increases, the path following control system behaves more like a

position tracking controller. During experiments, where wind is present, it was found that

the ideal simulation value was too strict, and the UAV started prioritizing the dynamic task,

instead of the geometric one, once it had converged to the path. By reducing this gain, the

controller is again able to prioritize following the path, regardless of the instantaneous value

of µ(σ) while in the presence of external disturbances.

Table 5.2: Path following control parameters for experiments.

Param. Value Units

dl 7 m/s
kc 1 1/s
kh 0.4 1/s
ks 0.4 1/s

Once again, the UAV does not enter the circle smoothly, since this maneuver is com-

manded abruptly when the UAV is flying at its maximum velocity. The top view of this

experiment, showing different positions of the real UAV and their corresponding reference

points on the path, is given in Figure 5.13. This experiment uses the original roll command

4.43 based on a body referenced position error.

Figure 5.13: Path following on a circle. Vertical axes are North, horizontal axes are East, in
metres. a) First rotation. b) Second rotation. c) Third rotation d) UAV Traced path.

This top view clearly shows that the path following strategy achieves better results when

operating under equivalent wind conditions. The UAV is never ahead from the instantaneous
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reference position on the path during this experiment, even when experiencing significant

side-slip on the left portion of the circle. It can also be appreciated that the path, as in

simulation, slows down from the commanded velocity to achieve better convergence to the

path.

The path-relative errors are shown in Figure 5.14. Both the cross-track error and the

altitude error are small once the UAV has converged to the path, their magnitude remaining

below 1.5 metres. The on-track error is larger, as the aircraft lags behind, however, this

does prevent the geometric objective from being satisfied. In fact, the same behaviour first

observed in simulation occurs in this experiment, where the on-track error increases and

decreases in relation to UAV position on the circle.
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Figure 5.14: Path-relative errors for experimental circle path following.

To show the effectiveness of a better constructed banking command, an additional exper-

iment is conducted. Since it is performed immediately after the previous test, it nominally

operates under the same wind conditions. This experiment uses the same controller parame-

ters and reference path as before, but uses the modified closed-loop roll command 5.19 based

on the crosstrack error. The top view of this experiment is shown in Figure 5.15, and the

path relative errors are shown in Figure 5.16.

Figure 5.15: Experimental circle path following using modified roll command. Vertical axes
are North, horizontal axes are East, in metres. a) First rotation. b) Second rotation. c)
Third rotation d) UAV Traced path.
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Figure 5.16: Path-relative errors for experimental circle path following.

Results show a the aircraft converges to the intended path more closely than the previous

experiment, which used the original roll function. Once the UAV converges to the path, the

altitude error remains below one metre, and the cross-track error shows an error of less that

0.5 metres, a remarkable feat considering the light-weight nature of the UAV, its susceptibility

to wind, and the lack of an airspeed estimate.

Next, an experimental flight using a 3D curve with non-trivial torsion is presented. We

build a descending helix for our reference path through (5.20), setting the radius to r = 10

metres, and the descent angle to γ = −20◦. Controller parameters are the same as those

from the previous experiments. Mean wind velocity is less than 4 m/s. Figure 5.17 shows

the top and 3D view of the reference curve, and the path traced by the UAV. Path-relative

errors are shown in Figure 5.18.

Figure 5.17: Descending helix path following experiment, 3D and top view.

The steep descent makes the maneuver more challenging than the planar circle, yet,
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Figure 5.18: Path-relative errors for descending helix path following experiment.

thanks to the path following strategy, the UAV is able to reach the path and stay close to

it. As seen from the path-relative errors plot, the cross-track error remains between one and

two metres once the UAV has reached the path. The magnitude of the altitude error, is less

than one metre throughout the operation.These errors are larger than the constant altitude

circle path, which is understandable given the more demanding maneuver.

The on-track error is, as expected, larger, which results in the UAV not evolving at

the requested Vc = 10 m/s. However, this error does not impede the geometric objective

from being acceptably satisfied. In the position tracking formulation, this failure to meet

the dynamic task, resulting in the UAV lagging behind the instantaneous trajectory would

compromise the geometric task as well.

Finally, two experiments are presented where the UAV is tasked with following a 3D path

while performing an arbitrary motion about the thrust axis. First, the UAV is commanded

to follow a path consisting of a straight line followed by a climbing helix of 20 metre radius

which exits onto a second straight segment, with a commanded velocity of 10 m/s throughout.

Simultaneously, the UAV is commanded to perform a rolling Harrier at a constant angular

rate of ϕ̇r = 4[rad/s]. The top and side views of this maneuver are shown in Figure 5.19,

and the cross-track and altitude errors are given in Figure 5.20.

The fast rolling motion causes oscillations about the lateral and vertical coordinates,

which translates into oscillating path-relative errors throughout the maneuver. However, the

control system manages to steer the UAV onto the commanded path during all segments, and

the path relative errors are contained within a 2 metre margin at all times. This is remarkable

given the extreme nature of the maneuver, the fact that no aerodynamic estimate is given

to the control systems, and due to the presence of significant wind.

A second experiment utilizes the same composite path with the same commanded velocity,

but instead demonstrates the UAV can perform a knife-edge maneuver while following the

path. This maneuver is achieved by simply commanding a constant ϕr = 90◦. Figure 5.21
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Figure 5.19: Top and side view of experimental rolling Harrier on a geometric path.
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Figure 5.20: Cross-track and altitude errors for experimental Rolling Harrier on a geometric
path.

shows the top and side views of this maneuver, and Figure 5.22 shows the corresponding

cross-track and altitude errors.

While the rolling Harrier is the more demanding, aggressive maneuver, it is during the

knife-edge where the larges drop in performance occurs. This might appear counter intuitive,

but it can be explained by the fact that the UAV is most vulnerable to wind during a knife-

edge, since it presents its largest surface to the incoming wind, generating significant drag.

Still, the control system manages to follow the path, and the cross-track error remains small.

The altitude error has increased when compared to the prior maneuver, but this can be
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Figure 5.21: Top and side view of experimental knife-edge on a geometric path.
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Figure 5.22: Cross-track and altitude errors for experimental knife-edge on a geometric path.

attributed to platform limitations: the motor is now tasked not only with keeping UAV

speed, it is now the sole mechanism keeping the UAV airborne and it must additionally

compensate for significant drag when the path tangent is perpendicular to the incoming

wind.

Both maneuvers show an improvement when compared to their position tracking counter-

parts, especially when the geometric objective is the main priority. This allows for on-path

aerobatic functionality, a difficult task which normally requires extensive system characteri-

zation. Indeed, the simplicity in achieving these maneuvers underscores the versatility of the

proposed control architecture. The controller was able to successfully perform these complex

motions with minimal information: only the arbitrary rotation about the thrust axis and the

desired path were prescribed. Unlike other schemes, there is no need for a combined attitude

and position reference to be computed a priori, the control system is capable of determining

the motions on its own.
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5.4.3 Results discussion

This chapter focused on two developments: the proposed moving path frame, constructed

specifically for the application of vehicle motion control in 3D, and its integration with a

path following control strategy compatible with the previously developed agile fixed-wing

UAV control framework.

This strategy was developed to improve controller performance, which was diminished in

the presence of wind disturbances. Simulations and experimental flight tests clearly demon-

strate the benefits of the proposed control strategy. If convergence to a special path is the

main objective, using the path following control system will allow the control system to

prioritize this geometric goal, without the need for a separate, distinct control architecture.

Indeed, this proposed system can be enabled or disabled at any point, which allows for a

combination of control strategies as required by mission parameters, or operator input, as

will be highlighted in the next chapter.



Chapter 6

Semi-autonomous Control

This chapter focuses on the problem of semi-autonomous control, wherein a human operator

issues commands remotely to fly the UAV. The greatest challenge lies in the task of translat-

ing pilot inputs into references that can be used by the previously developed control systems.

Regarding the control system, the pilot-assist solution requires a combined control strategy,

employing all the tools developed in previous chapters. For this reason, this chapter can be

regarded as the integration of all the elements of this thesis.

First, the conventional RC pilot inputs are presented, together with a brief discussion of

pilot intent, concretely, what the pilot is trying to convey to the system, and what the pilot

intuitively expects the UAV to do, when providing a specific input. These concepts form the

basis of the main focus of this chapter, the reference generator system for semi-autonomous

position control. We discuss how the different systems must be integrated to enable this

complex functionality.

Finally, we present the simpler semi-autonomous attitude control system as a mostly

stand-alone functionality.

6.1 Pilot input and pilot intent

We consider the remote operator utilizes a conventional RC transmitter (RC remote), like the

Taranis FrSky X9D shown in Figure 6.1, which uses two sticks capable of two independent

motions each. The two sticks map to the four traditional inputs of a fixed-wing aircraft:

thrust, ailerons, elevator, and rudder. We define this as ST , Sa, S3, and Sr, respectively,

their corresponding motion shown in Figure 6.1. Without loss of generality, we consider

these as normalized inputs, since they are treated as such by the stock PX4 firmware. Then,

126
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ST ∈ [0, 1] and Sa, Se, Sr ∈ [−1, 1], the distinction due to the impossibility of commanding

a negative thrust. The mapping between stick motion and these normalized values is in

principle linear, but is usually modified [106] to adjust the sensitivity.

Figure 6.1: Taranis X9D RC transmitter, and stick mapping.

Conventional operation RC operation consists of the pilot prescribing these control in-

puts in open-loop (with the exception of the ESC for the motor and servomotors for the

deflections). The most basic pilot-assist system allows the pilot to specify angular velocity

instead of controlling the deflections directly. However, easier and safer operation can be

achieved if the UAV levels itself (or to a trim position) when the control sticks are released.

In this common mode of operation, Se and Sa prescribe pitch and roll set points, respectively,

effectively a reduced attitude reference. A constant roll will induce a banking turn; hence

Sa indirectly specifies a heading rate. For this reason, Sr is mostly a redundant input in

this mode, often left connected directly to the rudder. This scheme will be the basis for the

semi-autonomous attitude control.

While the semi-autonomous position control problem is different and more complex,

considering these basic pilot motions when mapping the four available inputs into references

for the underlying control systems is fundamental to ensure an intuitive operation. In open-

loop, changing the thrust setpoint will cause the UAV to increase or reduce its speed. An

elevator command will cause the UAV to climb or descend. Finally, a roll command will

result in a bank, in turn inducing a heading rate. These three quantities correspond to the

inputs of the kinematic model [2], commonly assumed in autonomous vehicle control and

motion planning, and motivate its use for reference generation. An initial idea is then to

generate a velocity reference through
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vr(t) =


Vr cos(ψr) cos(γr)

Vr sin(ψr) cos(γr)

−Vr sin(γr)

 , (6.1)

where Vr is a reference velocity magnitude, given as a function of ST , γr is a reference climb

angle, given as a function of Se, and ψr is a reference heading, which is defined through

ψ̇r = δψr, (6.2)

where δψr is a reference heading rate, prescribed as a function of Sa.

6.1.1 Velocity vs. position references

The kinematic model (6.1) creates a time-parametrized veocity reference, but can be nu-

merically integrated to generate a matching position reference. Translating pilot commands

into constant position setpoints or slowly evolving time-parametrized inertial positions is a

common feature of multirotor control. In this scheme, the pilot is effectively prescribing the

position of a virtual target, which they can accurately envision at slower speeds. This can be

extended to some fixed-wing, steady flight maneuvers, such as in [106], where we proposed

a pilot-assist landing system.

However, there are two challenges to this strategy at high-velocities. The first corresponds

to pilot perception: a remote operator, limited to line-of-sight feedback cannot adequately

estimate instantaneous UAV position, but can estimate velocity magnitude and direction.

The second, and most relevant to the trajectory generation problem, is that a remote human

operator has no notion of a virtual target position in this regime. Concretely, when the pilot

commands some UAV motion, the expected UAV behaviour is not time-parametrized, but

geometric. For example, a pure roll command means the pilot intends the UAV to trace a

circle while holding altitude, not to be at a specific position in a circle at a precise instant.

If a time-parametrized behaviour is enforced in this regime, and the UAV lags behind

the virtual target, the remote operator will find the aircraft unresponsive, as he is unaware

of the exact position of the virtual reference. This is one of the motivators for developing

the path following strategy, which we use for the higher velocity regime as a mechanism to

shape pilot-prescribed velocity references to achieve a geometric, spatial objective.
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6.2 Reference generation

Three distinct reference generation strategies are proposed, based on the UAV speed pre-

scribed by the pilot. Figure 6.2 summarizes the different features of these flight regimes.

Figure 6.2: Semi-autonomous flight regimes.

At higher velocities, when the UAV behaves like a conventional fixed-wing, pilot input is

translated into desired geometric paths the aircraft should navigate. This is then achieved

using the path following control system described in Chapter 5.

As the UAV slows down, the semi-autonomous solution changes to the stricter position

tracking controller, to allow for more precise maneuvering. This regime is especially useful

for precise landings, such as the experimental autonomous landing approach in Figure 4.15.

Internally, the reference generator changes from geometric paths to time-parametrized tra-

jectories. However, from the pilot’s point of view, there is little to no change in the way

the aircraft is controlled, since the input mapping is retained: the UAV still handles like a

fixed-wing aircraft. We consider it is within this regime that the transition from horizontal

to vertical attitude generation occurs. As such, this can be considered a transitory regime

between pure fixed-wing handling and pure rotorcraft handling.

Finally, as the aircraft’s reference velocity approaches zero, the semi-autonomous solution

changes to the hover regime where the key difference are the pilot input mappings. As the

agile fixed-wing hovers, it behaves more like a rotorcraft, and the stick mapping reflects this.

Internally, there is no change in the control system itself.

We first determine the operator-prescribed speed, through the simple proportional rela-

tion

Vr = VM ST , (6.3)

where VM > 0 is the maximum allowed speed during pilot-assisted flight.
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6.2.1 High velocity regime

The high velocity regimes occurs when Vr > Vhv, where Vhv is the high velocity threshold.

This regime translates pilot input into references, where we consider two types of paths:

straight lines and helices.

The reference generator first checks the roll command, Sa, to determine if the user is

requesting a straight line or a circular motion. This is done by defining the desired turn

radius, rd, through

rd =
rm − rM
1− adz

|Sa|+
rM − adz rm

1− adz
, (6.4)

where rm is the minimum turn radius achieved at the maximum Sa command, and rM is

the maximum turn radius, achieved when Sa = adz, where adz ∈ (0, 1) is a deadzone value

for the aileron stick. The value of rm is limited by platform characteristics, but rM and adz

obey pilot sensitivity preferences.

If rd = 0, the system considers the pilot has zeroed the aileron stick, and is requesting a

straight line path, constructed through

µ(σ) =


(σ − σ0) cosψ0 cos γr

(σ − σ0) sinψ0 cos γr

−(σ − σ0) sin γr

+ pr0, (6.5)

where γr is the reference climb angle, prescribed by the pilot through

γr =

{
γMc Se Se ≥ 0

γMd Se Se < 0
, (6.6)

where γMc and γMd are the maximum climb (positive) and descent (negative) angles. This

distinction is made to allow for aggressive climbs but less steep descents, if preferred by the

operator. We use the parameters of initial heading, ψ0, initial reference position, pr0 and

initial path parameter, σ0, to enable the stitching together of different continuous paths. The

initial path parameter is particularly important, as it allows the path evolution law (5.13)

to be used throughout, without needing to reset its value.

If rd > 0, then the pilot commands a helical path, built through
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µ(σ) =


rd sin

(
σ−σ0√
r2d+c

2
d

)
cos(ψ0)− sgn(Sa)rd

(
1− cos

(
σ−σ0√
r2d+c

2
d

))
sin(ψ0)

rd sin

(
σ−σ0√
r2d+c

2
d

)
sin(ψ0) + sgn(Sa)rd

(
1− cos

(
σ−σ0√
r2d+c

2
d

))
cos(ψ0)

− cd(σ−σ0)√
r2d+c

2
d

+ pr0 , (6.7)

where cd is a desired climb (or descent) rate defined as

cd = rd tan(γr), (6.8)

with γr calculated from (6.6).

The above sets of equation guarantee any stitched-together path will be piece-wise con-

tinuous. In turn, the gravity normal frame will evolve smoothly throughout any path the

user may prescribe. Care must be taken only with the initial values which are transferred

when rd changes. In fact, the above paths correspond to a straight line with zero heading,

and a helix starting at the origin with zero heading, after an affine transformation consisting

of a ψ0 rotation about k̂3 and a displacement of pr0. The last value of σ before the rd changes

is stored as the constant σ0 for the next segment.

6.2.2 Low velocity regime

The low velocity regime encompasses the range 0 < Vr ≤ Vhv. To ensure continuity with

the preceding path following strategy, the time parametrized trajectories in this regime are

obtained by setting vr(t) = VrT for the straight line path and helix.

Then, for a straight line,

vr(t) = Vr


cos(ψ0) cos(γr)

sin(ψ0) cos(γr)

− sin(γr)

 , (6.9)

and, for a helix,

vr(t) =
Vr√
r2d + c2d


rd cos

(
ψ0 + sgn(Sa)

Vr t√
r2d+c

2
d

)
rd sin

(
ψ0 + sgn(Sa)

Vr t√
r2d+c

2
d

)
−cd t

 . (6.10)
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The matched reference position is then obtained through numeric integration, as

pr(t) =
∫ t

0

vr(τ)dτ + pr0. (6.11)

The input Sr has so far not been considered in either of these two regimes. It cannot be

used to control the rudder directly, since it is directed by the closed-loop attitude controller

in combination with the other control surfaces. However, this additional available input can

be re-purposed for specific tasks. For example, in [106] we proposed a modified trajectory

generation scheme during a landing approach, where Sa and Sr are used to prescribe two

distinct lateral motions. Consider the alternative velocity reference for a landing approach,

constructed from a modified kinematic model,

vr(t) =


(√

V 2
r − V 2

l cos(ψ0 + δψrt)− Vl sin(ψ0 + δψrt)
)
cos(γr)(√

V 2
r − V 2

l sin(ψ0 + δψrt) + Vl cos(ψ0 + δψrt)
)
cos(γr)

−Vr sin(γr)

 , (6.12)

where Vl < Vr is an added lateral velocity, prescribed as

Vl = VlM Sr, (6.13)

where VlM is a maximum lateral velocity (in practice, this is given as a percentage of the

total desired velocity, Vr), and

δψr = δψmax Sa, (6.14)

where δψmax is the maximum heading rate, left small for a landing maneuver.

The effect of this alternative trajectory generation is that the aileron command will cause

a standard circular motion, while the rudder command will “pull” the aircraft sideways while

retaining heading. During experiments, we found that, due to the remote perspective, it is

easier to correctly align the UAV heading with the landing path, but that lateral adjustments

were needed. This approach allows the pilot to first set the UAV heading, and then correct for

lateral deviation without modifying the heading approach. These different lateral motions are

better explained in Figure 6.3. Depending on pilot preference, Sa and Sr can be interchanged,

and, additionally the added roll can be disabled during a landing maneuver, which allows

for maneuverability while ensuring the aircraft touches down safely.
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Figure 6.3: Landing approach lateral maneuvers. a) Heading change through Sa. b) Lateral
shift through Sr.

6.2.3 Hover regime

When the pilot completely pulls back the throttle stick, ST , the reference velocity, Vr, be-

comes zero and, as shown in the position control experiments, the UAV slows down into a

hover. In this regime, we allow for an optional change of control input mapping, mirroring

the control paradigm of rotorcraft vehicles. To do so, we capitalize on the properties of the

vertical attitude determination algorithm, allowing the pilot to rotate the constructor vector

through (4.46), specifically

ĥ =
[
cos(ψ0 + δψrt), sin(ψ0 + δψrt), 0

]T
, (6.15)

where the heading rate is now specified by the rudder command, through

δψr = δψmax Sr. (6.16)

In true multirotor fashion, the rudder, or “yaw” stick will rotate the aircraft about the thrust

axis. This then allows the pilot to prescribe motion relative to the UAV’s main axes, through

the elevator and aileron sticks. The reference velocity can then be constructed through

vr(t) =


Vh(cosψr + ζ)

Vh(sinψr + ζ)

−Vv

 , (6.17)
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where ψr = atan2(h2, h1) = ψ0 + δψrt, Vh and ζ are created through a combination of a

forward-backward velocity, Vfb and a left-right velocity, Vlr, prescribed by the pilot,

Vfb = VfbMSe (6.18)

Vlr = VlrMSa, (6.19)

then Vh =
√
V 2
fb + V 2

lr and ζ = atan2(Vlr, Vfb). Finally, Vv is a vertical velocity, which needs

to be prescribed through some other input, as the remaining input, ST , is zeroed to enable

hovering maneuvers. Of course, the function of this stick can be modified while in this mode

through an additional Boolean channel (switch).

This control mapping results in an intuitive piloting scheme which mirrors that of a

standard quadrotor. If a new set of Euler angles were defined about the hover position, Se

would lead to a pitching motion, Sa to a rolling motion, and SR would cause the aircraft to

yaw. This can be seen from Figure 6.4

Figure 6.4: Semi-autonomous hover motions. a) Forward-backward motion through Se. b)
Left-right motion through Sa. c) Rotation motion through Sr.

6.2.4 Controller initialization

While the overall control structure is shared between the path following and position tracking

strategies, some values need to be properly initialized when transitioning between the two.

When controller gains kc and kh are zero, the reference velocity corresponds strictly to

the commanded velocity, Vr in the direction of the tangent, T . If the cross-track and altitude

errors are assumed small before a transition, then velocity reference for the tracking solution

can be initialized as

vr(t) = VrT. (6.20)

To initialize position, we consider that both the position tracking law (4.13) and the velocity

control law (4.27) use the same gains, kv and kp. When transitioning to the position tracking
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control, it is best to initialize the reference position, to align the “proportional” error terms.

This is simply done by setting

pr(0) = evi + pi. (6.21)

The integral term, ei, is set to zero when initializing tracking functionality. Initializing this

way may cause the UAV reference to jump ahead of the geometric path, but operation will

not be affected since the control law remains smooth, and the remote operator is unaware

of the precise position of the virtual target.

When transitioning from tracking to path following, should the pilot command the UAV

to increase its velocity past the threshold, then the integral velocity error is initialized at

evi = ep. (6.22)

6.3 Semi-autonomous attitude control

In situations where position feedback is not available, or in case of failure, it is useful to allow

the pilot to still control the UAV through the core attitude control system. As explained

at the beginning of this chapter, a stable, pilot-assist attitude control system is a common

functionality in RC platforms.

In this scheme, the throttle command, ST , is passed directly to the motor, and the

elevator and aileron commands are used to prescribe pitch and a roll, through

θr = θMSe, (6.23)

ϕr = ϕMSa, (6.24)

where θM and ϕM are the maximum allowed pitch and roll, respectively. In conventional,

Euler angle based attitude control, independent control laws can be constructed for the

coordinates of pitch and roll, while yaw is left free to evolve as dictated by the UAV dynamics.

As explored in the semi-autonomous position system, letting the UAV rotate through a bank

is the most intuitive operation and the Euler angle based control system is ideal in the sense

that it does not enforce a rotation about the third axis, allowing for this banked turn.

The challenge presented here, is that θr and ϕr only determine a reduced attitude but the

proposed attitude control system, developed on SO(3), requires a complete attitude reference
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in the form of a DCM. If such reference is constructed as

Cri = C(ϕr, k̂1)C(θr, k̂2),

it will implicitly command a zero reference yaw, ψr = 0, which will prevent the UAV from

turning.

One alternative is to work directly with the reduced attitude. This is a different problem

than that encountered in the attitude determination task in the position control system,

since the unspecified rotation is about the third inertial axis k̂3, not the last body (thrust)

axis. This problem, aimed specifically for a fixed-wing UAV platform, has been extensively

studied in [111]. One may use θr and ϕr to construct a reduced attitude reference, Γr ∈ S2

and then use a reduced attitude control law, with the option of adding damping to enforce

a coordinated turn with no sideslip.

In this work, we instead opt to keep the base SO(3) control system and complete the

attitude reference through the coordinated turn equation assuming no sideslip [2],

ψ̇coord =
g

Va
tan(ϕr), (6.25)

where, in the absence of airspeed measurements, the airspeed is approximated as Va ≈ ∥vi∥.
We then calculate the reference yaw as

ψr =

∫ t

0

(
ψ̇coord(τ) + δψadd(τ)

)
dτ, (6.26)

where the additional heading rate, δψadd is an optional, added rotation rate, prescribed by

the rudder command,

δψadd = δψMSr, (6.27)

where δψM is the maximum additional yaw rate. The rotation rate ψ̇coord obeys the coor-

dinated turn equation, and using it will result in a correctly banked turn tracing a circular

path. In contrast, δψadd, emulates a more aggressive turn maneuver, nominally achieved

in open-loop operation through a rudder command. In operation, the pilot can utilize this

command independently, to turn the aircraft without banking, or in combination with the

roll command to achieve tighter rotations more characteristic of the agile fixed-wing.
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6.4 Controller verification

We divide this section between the simpler, semi-autonomous attitude controller and the

more complex semi-autonomous position control system. We present SITL results instead

of numerical simulations performed in Matlab. The SITL environment is ideal for the pilot-

assist solutions, providing a visualization of the UAV for pilot feedback, and allowing for the

integration of the RC transmitter used in experiments.

All simulations and experiments use the control gains in Tables 4.2 and 5.2.

6.4.1 Pilot-assist attitude control

For SITL and experimental flights, the reference generator parameters given in Table 6.1 are

used.

Table 6.1: Parameters for semi-autonomous attitude control.

Param. Value Units

ϕM 45 deg
θM 45 deg
δψadd 1 rad/s

Figure 6.5 shows the top and side view of a SITL simulations, where the semi-autonomous

attitude solution is used to perform a maneuver, from take-off to landing.

Figure 6.5: Top and side view of SITL pilot-assist attitude.
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Attitude control, either autonomous or semi-autonomous, is safer alternative for take-off

maneuvers, especially when a take-off platform is used, since thrust is not part of the core

attitude controller, and can be prescribed independently. The normalized pilot inputs that

trace this maneuver are shown in Figure 6.6.

As seen from the top-view, the coordinated turn equation allows the pilot to trace a

helical path when banking, as expected. These banking maneuvers, and the corresponding

change in aircraft yaw, can be seen in Figure 6.7, where an Euler angle parametrization of

the reference attitude, traced by the operator, and that of the UAV is shown. Since the

reference attitude is constructed through Euler angles, these can be immediately correlated

with the pilot inputs.
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Figure 6.6: Pilot inputs for SITL pilot-assist attitude.
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Figure 6.7: Euler angles for SITL pilot-assist attitude.

We now use this semi-autonomous attitude solution in a flight experiment, starting with

a take-off maneuver from an angled platform, shown in Figure 6.8. The 3D path of this flight

can be seen in Figure 6.9. This flight experiment was performed under high-wind conditions,

with mean wind velocity greater that 5 m/s.
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Figure 6.8: Take-off platform for agile fixed-wing UAV.

Figure 6.9: 3D view of pilot-assist attitude control experiment.

The effects of the wind first can be observed in the shape of the banking maneuvers, cor-

responding to the aileron commands shown in Figure 6.10. These are not perfectly circular as

in the wind-free SITL simulation. Since there is no airspeed measurement, it is approximated

through the ground velocity. An airspeed estimate would yield better results. In addition,

the coordinated turn equation assumes no side-slip, yet, in this high wind conditions there

is significant side motion during the turns.

The second effect of wind is better observed in the Euler angle decomposition shown

in Figure 6.11. The roll coordinate presents noticeable oscillations, indicating the attitude

control gains of the first body axis, are too high in windy conditions. This is also a result of

wing flexibility, which, as the largest UAV surface, shows flapping behaviour in high winds.

Even in this challenging conditions, the core attitude control system allows the pilot to

fly the aircraft safely. The semi-autonomous system allows the operator to focus on the

navigation and disturbance rejection tasks, instead of struggling to keep the aircraft stable.
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Figure 6.10: Pilot inputs for pilot-assist attitude control experiment.
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Figure 6.11: Euler angles for pilot-assist attitude control experiment

Since no position feedback is available, the pilot acts as the position control loop in this

mode.

6.4.2 Pilot-assist position control

We present an extended experimental test to verify the properties of the integrated system.

During this flight, we retain the same control parameters from Tables 4.2 and 5.2 with

additional parameters required by the reference generator given in Table 6.2.

The following experiment is performed in moderate winds, with mean wind velocity ≈ 4

m/s. This is a longer flight, almost entirely flown in the pilot-assist position control model.

The path traced by the UAV, and the reference paths and trajectories are shown in two

views, an isometric 3D view in Figure 6.12 and a top view in Figure 6.13.

The maneuver is best understood together with the pilot inputs shown in Figure 6.14

and the UAV position and its reference, 6.15. The initial section of the maneuver is a pilot-

triggered autonomous take-off. Initially, the UAV is at rest on a take-off platform, but at

t = 4 s, the pilot raises the throttle stick to its maximum value, triggering an autonomous
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Table 6.2: Parameters for semi-autonomous position control.

Param. Value Units

Vhv 5 m/s
VM 10 m/s
rm 10 m
rM 30 m
γMc 60 deg
γMd 30 deg
δψmax 0.5 rad/s
VfbM 3 m/s
VlrM 3 m/s

Figure 6.12: 3D view of pilot-assist position control experiment.

take-off maneuver. The system achieves this through pure attitude control, maintaining the

initial UAV yaw and climbing at a 45 degree angle. This maneuver lasts until the UAV

reaches 30 m altitude, at this instant, around t = 7 s, the system cedes control back to the

operator.

The transition to position control is not completely smooth, since the UAV is abruptly

commanded to stop climbing. This causes an initial overshoot from the trajectory. As the

throttle stick is at its maximum value, the UAV is commanded to fly at the maximum

velocity, VM = 10 m/s. At this speed, the UAV is in the high velocity regime (Vr > Vhv = 5

m/s) and the controller internally operates in path following mode.

Two clockwise, minimum radius circles are commanded, followed by a partial circle for re-

positioning, and a larger radius counter-clockwise circle are commanded through the aileron
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Figure 6.13: Top view of pilot-assist position control experiment.
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Figure 6.14: Pilot inputs for pilot-assist position control experiment.

stick, Sa. It is worth noting that the pilot slows down the aircraft as it enters the last circle,

but the reference speed is still above the defined threshold. Throughout these maneuvers,

the path following control system does a good job at keeping the UAV close to the path

traced by the pilot.

As the UAV exits this last circle, the pilot slows down further and commands a half

rotation to align the UAV for a landing approach. The thrust stick value, ST , corresponds

to a commanded velocity of 4.6 m/s, which is below the high velocity threshold. Then, the

control system internally switches to position tracking, to allow for more precise maneuvering.

However, as the transition between modes ensures a continuous intermediate command, this

change is not noticeable by the remote operator.

The final section of the flight is a slow landing approach, where the operator only modifies

the descent angle through Se, until the UAV lands safely, as seen from the altitude coordinate
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Figure 6.15: UAV position and reference for pilot-assist position control experiment.

returning to the initial value of zero.

6.4.3 Results discussion

The experimental flight shows the proposed strategies can be used to achieve safe, while

flexible, operation of the UAV. First, the proposed reference generation strategy is shown to

effectively lead to a piece-wise continuous path, which together with the developed gravity

normal frame leads to smooth operation of the path-following control strategy.

In addition, the experimental flight showcases the successful transition between a high

velocity strategy that prioritizes geometry and a lower velocity scheme that strives for strict

time-constrained behaviour, even while operating under windy outdoor conditions.

Convergence to the path is not perfect, and the cross-track error increases when the path

changes. The proposed path-stitching strategy is simple for the sake of efficiency, but better

results can be obtained if other curves are employed, such as splines. In semi-autonomous

operation, the importance of this errors is diminished due to the limited operator perception.

During operation, without additional feedback, the remote pilot is not necessarily aware the

UAV has deviated slightly from the path. Still, if the proposed path generation strategy is

used, it is important to know the error bounds for a particular platform as a guideline for

the operator.

While not developed in this work, this experiment also demonstrates the viability of

combining autonomous and semi-autonomous functionality to accomplish specific missions.

This integration can be improved, for example, by implementing a smooth transition from

pure attitude control to semi-autonomous position in order to avoid the initial overshoot.

Finally, it is worth noting that both the semi-autonomous attitude and semi-autonomous
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position control systems have allowed me, the author, to safely operate the aircraft, including

the difficult task of landing of landing under windy conditions even considering that, as

inexperienced pilot, I do not have the necessary skill to fly such a challenging platform in

fully manual configuration.



Chapter 7

Conclusions

In this final chapter, we summarize the contributions made, and offer suggestions for future

work.

7.1 Summary of contributions

The core attitude control system was developed directly on SO(3) both to avoid known

issues arising from attitude parametrizations, and due to its compatibility with the proposed

position control system. While the core attitude control laws and the innovation terms have

been developed previously, attitude control strategies on SO(3) are uncommon in fixed-wing

aircraft and this chapter presents a comprehensive study of their applicability to the agile

fixed-wing platform.

Through a combination of stability analysis and extensive simulations and experiments,

we develop controller strategies that are well suited to different flight conditions and ref-

erence trajectory characteristics. We show the proposed attitude control strategy enables

the agile fixed-wing UAV to perform both steady and complex aerobatic maneuver, in both

autonomous and semi-autonomous operation. While controller design and analysis focuses

on agile fixed-wing UAVs, it is applicable to the wider range of vehicles that generate control

moments through deflection of airflow-immersed control surfaces.

Next, a nonlinear position control system was developed. The proposed system is built

around a nonlinear vector-projection algorithm for the reference attitude determination prob-

lem, which effectively extends the results of thrust-borne UAV control systems to the com-

plete range of operation of the agile fixed-wing platform. This results in a unified position

control system, capable steady flight, hover and aerobatic maneuvers, and regime transition.

145
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Through rigorous Lyapunov stability analysis we show the viability of the proposed system.

Several simulations and experiments then verify its applicability as well as its performance

limitations.

The proposed system allows for position tracking and velocity control, and the shared

structure enables straightforward transition between the two. In addition, the control system

requires only simple reference position, or velocity, trajectories as its input, highly simpli-

fying the trajectory generation problem, as seen from both autonomous operation, or when

operated by a human pilot. As opposed to other proposed schemes, there is no need for a

pre-computed maneuver library, nor is the system restricted to operate at specific velocities.

Finally, the built-in decoupling of roll further showcases the system’s flexibility, as shown

by the effortlessly achieved aerobatic maneuvers such as the rolling Harrier. This combined

attitude and position control system is not limited to the agile-fixed wing UAV; it is readily

applicable to other hover-capable platforms with different configurations, such as the popular

tailsitter UAV.

Path following functionality was developed next, both as a means to address the perceived

limitations of the position tracking system, and to allow for more intuitive operation for a

remote human pilot. In developing this additional control loop, a novel moving path frame

was developed. This contribution, the gravity normal frame, was proposed to address the

limitations of other commonly used frames, and is applicable to the much wider problem

of autonomous vehicle motion control and path planning in 3D space, it is not limited to

the fixed-wing UAV application used in this work. The frame has several useful properties:

it is straight-forward to compute from the curve definition, it is well-defined regardless of

path curvature or torsion, it evolves smoothly through piece-wise continuous curves without

additional compensation, and path relative errors calculated through it have a clear, and

consistent, physical meaning.

In both simulations and experiments, the proposed path following controller is shown to

significantly improve the performance of the agile-fixed wing aircraft during high-velocity,

steady flight maneuvers in the presence of wind. The developed strategy is designed to

be compatible with the previously developed control systems, allowing simple transition

between modes of operation without compromising stability.

Finally, the ease of integration of the developed control systems into the semi-autonomous,

pilot-assist system demonstrates the benefits of the cascaded, modular strategy. The com-

bined use of position tracking and path following results in intuitive operation in all flight

regimes. As demonstrated in SITL and experimental flights with a human operator, the pro-
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posed system is capable of performing conventional, steady flight maneuvers, transition into

hover regime, operate like a multirotor platform, and achieve precise landings, all through

limited pilot commands. Throughout the extensive experimental tests, the overall control

system has proven remarkably robust to wind disturbances, even if performance is dimin-

ished. This is notable given the extremely low weight of the aircraft, originally designed for

indoor use. Yet, with the proposed control strategy, it is able to perform complex aerobatic

maneuvers while in windy outdoor conditions.

7.2 Recommendations for future work

The research and experiments carried out in pursuit of the objectives of the thesis identified

various avenues of future research:

• Simulations and experiments show that the aerodynamic and slipstream models, while

representative of the agile fixed-wing platform, do not match the exact properties of

the aircraft. This is mostly observed from the need to adjust controller gains between

simulation and experiments, and from the improved performance of the control systems

in simulation when compared to experiments.

Improving these models, in particular in regards to propeller slipstream and wind

effects would allow for more accurate simulations, especially when devising robust

control strategies.

• In Chapter 3, the control allocation problem was studied, and simple methods were

proposed to estimate the effective airflow over the control surfaces. However, the

problem is more complex, and better performance can be obtained if a more precise

estimate is used. Two recommendations are suggested in this chapter, first, to employ

different, but constant, effective airflow estimates which can be selected according to

propeller angular velocity. This assumes most of the airflow comes from propeller

slipstream. Second, a more accurate value can be obtained if an estimate of wind

is available, but this necessitates additional hardware, and estimation algorithms. An

additional research avenue is to explore robust SO(3) attitude control laws, which could

be used to compensate for an imperfect estimate.

• The position control system proposed in Chapter 4 is composed of two elements, the

vector-projection algorithm for attitude determination, and the intermediate command

which determines thrust magnitude and direction. This work only proposes as PID
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plus feed-forward control law for the intermediate command, but many different control

techniques could be used without modifying the rest of the control structure. Some

examples worth studying include a linear quadratic regulator (LQR), a robust, sliding

mode formulation to better address the imperfect aerodynamic estimate, or a control

structure that accounts for actuator saturation.

• In relation to the feed-forward terms of the position control system, a more sophis-

ticated methodology could be used to determine this element, such as a disturbance

observer [112].

• The path-following control law and corresponding path evolution law presented in

Chapter 5 focus on the geometric task: the convergence of the cross-track and altitude

errors. Depending on the maneuver, the commanded velocity is not necessarily reached.

For this reason, it worthwhile to study other path following strategies that can achieve

the dynamic task after the vehicle has converged to the path, such as the ones studied

in [53].

• In Chapter 6, the attitude reference for the semi-autonomous attitude control system

is completed through the coordinated turn equation. While this gives good results

in practice, it over-parametrizes the attitude reference. Instead, a reduced attitude

control structure could be studied, such as the one presented in [111], to allow the

aircraft to evolve naturally. It is also worthwhile to study the effects of the rudder on

lateral motion, given its large control authority, and how a rudder command can be

better incorporated into an intuitive pilot-assist attitude control solution.

• One benefit of the developed system is the ease with which maneuvers can be pre-

scribed. However, incorporating dynamic feasibility constraints and other system in-

formation in the maneuver design could lead to improved performance, reducing over-

shoots and transient errors, and is worth considering.

• This work focuses on inertially referenced position and velocity, as an extension of mu-

tirotor control systems. However, airspeed control, as opposed to ground velocity, is the

norm in conventional fixed-wing control systems and implementing this functionality

could result in better performance, especially during high velocity, steady maneuvers.
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Appendix

A Attitude control proofs

A.1 Proof of Lemma 3.2

Function Ψ1(Cbr)

From simple derivation,

Ψ̇1 = −1

2
tr(Ċbr) =

1

2
tr(e×ωCbr) = −eTωPa(Cbr)

∨ = eTωe1,

where (3.7) and the property tr(x×A) = −2xTPa(A)∨, for any x ∈ R3, A ∈ R3×3 was used.

This verifying i) while also verifying that the critical points of Ψ1 satisfy e1 = 0.
The trace of any C ∈ SO(3) is bounded: −1 ≤ tr(C) ≤ 3. Since the trace is a linear

operator, 0 ≤ Ψ1 ≤ 2, where Ψ1 = 0 only at Cbr = I3 which shows ii).

Analyzing the critical points, from (3.9), e1 = 0 implies Cbr = CT
br. Using (2.5), this

translates to

cos(η)I3 + (1− cos(ϕ))ϵ̂ϵ̂T − sin(η)ϵ̂× = cos(η)I3 + (1− cos(ϕ))ϵ̂ϵ̂T + sin(η)ϵ̂×,

which results in sin(η) = − sin(η) ⇒ sin(η) = 0 ⇒ η = {0, ±nπ}, for odd values of n.

The first value, η = 0, corresponds to Cbr = Cri, while the second set of values, η = ±π
corresponds to an attitude of the body 180◦ opposed to the reference. The second set is not

desirable, but this solution is not in Ω: using this value of η in (2.5), and substituting it in

the definition (3.8) we obtain

Ψ1 =
1

2
tr
(
I3 − (cos(η)I3 + (1− cos(ϕ))ϵ̂ϵ̂T − sin(η)ϵ̂×)

)
=

1

2
tr
(
2I3 − 2ϵ̂ϵ̂T

)
= 3− 1 = 2,
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which is outside the set Ω1. This verifies iii).

In general, for any value of η, the above equation is

Ψ1 =
1

2
tr
(
I3 − (cos(η)I3 + (1− cos(ϕ))ϵ̂ϵ̂T − sin(η)ϵ̂×)

)
= 1− cos(η).

Similarly, the innovation term can also be written in terms of η and ϵ̂ through (2.5) as

e1 =
1

2
(2 sin(η))ϵ̂

∥e1∥2 = sin2(η).

which shows v) for ē1 = 1.

Now consider
∥e1∥2

Ψ1

=
sin2(η)

1− cos(η)
,

The function on the right is well defined for every value except η = 0 (and multiples of

2π which represent the same attitude condition), for which both bounds in iv) are trivially

satisfied. The limit, however, is well defined, such that for any other value,

0 ≤ sin2(η)

1− cos(η)
≤ 2.

This immediately shows the lower bound is satisfied by 1
2
∥e1∥2 ≤ Ψ1 (hence b1 = 1/2). The

reciprocal function is not defined η = 0, but again, the bound is trivially satisfied. Consider

a a positive constant 0 < ψ1 < 2. Then an upper bound can be determined through

Ψ

∥e1∥2
=

1− cos(η)

sin2(η)
≤ 1

2− ψ1

,

then the upper bound of iv) is verified with b̄1 =
1

2−ψ1
.

Finally, by differentiating e1,

ė1 = −1

2

(
Ċbr − ĊT

br

)∨
=

1

2

(
e×ωCbr + Cbre×ω

)∨
=

1

2
(tr(Cbr)I3 − Cbr) eω ≜ E1eω

where the properties x×A + ATx× = ((tr(A)I3 − A) x)×, for all x ∈ R3 and A ∈ R3×3, s.t.

A = AT , and (u×)
∨
= u, for all u ∈ R3, were used. Clearly, the matrix E1 is bounded, since

it depends only on elements of SO(3). A more precise, if conservative, bound can be found
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using the Frobenius norm

∥E1∥2F = tr(ET
1 E1)

=
1

4
tr
(
tr(Cbr)

2I3 − tr(Cbr)(Cbr + CT
br) + CbrCT

br

)
=

1

4

(
3 tr(Cbr)

2 − 2 tr(Cbr)
2 + 3

)
=

1

4

(
tr(Cbr)

2 + 3
)

≤ 1

4
(32 + 3),

then

∥E1∥F ≤
√
3.

Since ∥E1∥2 ≤ ∥E1∥F , then vi) is satisfied with p1 =
√
3.

Function Ψ2(Cbr)

Property i) is verified through simple derivation:

Ψ̇2 = −1

2

1√
1 + tr(Cbr)

tr(Ċbr) =
1

2

1√
1 + tr(Cbr)

tr(e×ωCbr)

= − 1√
1 + tr(Cbr)

eTωPa(Cbr)
∨ = eTωe2.

Again, the critical points of Ψ2 satisfy e2 = 0.
As shown previously, the term tr(Cbr) reaches its maximum value, 3, only when Cbr = I3.

Simple substitution verifies that Ψ2 = 0 at this value, and Ψ2 > 0 for any other value, which

shows ii).

Critical point analysis is identical to the previous function, with the exception that e2 is

undefined when tr(Cbr) = −1. As shown before, this corresponds to a relative rotation of

180◦ between body and reference frames, or a principal angle of η = nπ for odd values of n.

Again, this condition is outside the set Ω:

Ψ2 = 2−
√

1 + (−1) = 2,

showing iii).
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To obtain the bounds in iv), Rodrigues formula (2.5) is used

Ψ2 = 2−
√

1 + 1 + 2 cos(η) = 2−
√

2(1 + cos(η)) = 2− 2

√
1 + cos(η)

2

= 2− 2 cos
(η
2

)
= 4

(
1− cos(η/2)

2

)
= 4 sin2

(η
4

)
,

and

e2 =
sin(η)√

2(1 + cos(η))
ϵ̂,

then

∥e2∥2 =
sin2(η)

2(1 + cos(η))
=

1− cos2(η)

2(1 + cos(η))
=

(1− cos(η))(1 + cos(η))

2(1 + cos(η))

=
1− cos(η)

2
= sin2

(η
2

)
= 1− cos2

(η
2

)
= 4

(
1− cos(η/2)

2

)(
1 + cos(η/2)

2

)
= 4 sin2

(η
4

)
cos2

(η
4

)
.

which also shows v), for ē2 = 1. Consider

Ψ2

∥e2∥2
= cos2

(η
4

)
≤ 1

then ∥e2∥2 ≤ Ψ2 for any element in Ω, except when η = 0, for which the inequality is trivial.

On the other hand,
∥e2∥2

Ψ2

=
1

cos2
(
η
4

) =
2

1 + cos
(
η
2

) ≤ 2,

then Ψ2 ≤ 2∥e2∥2, which holds, again, for every element in Ω except the trivial solution.

This shows iv), with b2 = 1 and b̄2 = 2.
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Finally, the time derivative of the innovation term is

ė2 = −1

2

−1
2
tr(−e×ωCbr)

(1 + tr(Cbr))3/2
(Cbr − CT

br)
∨ +

1

2
√
1 + tr(Cbr)

(e×ωCbr + CT
bre

×
ω )

∨

= −1

2

tr(e×ωCbr)

(1 + tr(Cbr))
e2 +

1

2
√
1 + tr(Cbr)

(tr(Cbr)I3 − Cbr)eω

=
1

2

eTω(Cbr − CT
br)

∨

(1 + tr(Cbr))
e2 +

1

2
√

1 + tr(Cbr)
(tr(Cbr)I3 − Cbr)eω

= eTω

(
1√

1 + tr(Cbr)
e2

)
e2 −

1

2
√

1 + tr(Cbr)
(tr(Cbr)I3 − Cbr)eω

= − 1

2
√

1 + tr(Cbr)
(2e2eT2 + tr(Cbr)I3 − Cbr)eω

≜ E2eω.

Since E2 depends only on Cbr, it is, by necessity, bounded. More specifically, using (2.5) it

can be shown that

E2 =
1

2
√

2(1 + cos(η))

(
(1 + cos(η))I3 + sin(η)ϵ̂×

)
,

then

ET
2 E2 =

1

4

1

2(1 + cos(η))

(
(1 + cos(η))2I3 − sin2(η)ϵ̂×ϵ̂×

)
=

1

4

1

2(1 + cos(η))

(
(1 + cos(η))2I3 + sin2(η)I3 − sin2(η)ϵ̂ϵ̂T

)
=

1

4

1

2(1 + cos(η))

(
2(1 + cos(η))I3 − (1 + cos(η))(1− cos(η))ϵ̂ϵ̂T

)
=

1

4

(
I3 −

1

2
(1− cos(η))ϵ̂ϵ̂T

)
It can be verified that the eigenvalues of this matrix are {1/4, 1/4, 1/8(1+cos(η))}. The max-

imum eigenvalue is thus 1/4, hence the induced 2-norm of E2, ∥E2∥2 = max
(√

λ(ET
2 E2)

)
=

1/2. Then

∥ė2∥ ≤ 1

2
∥eω∥,

which shows vi), for p2 = 1/2.
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Function Ψ3(Cbr)

Again, property i) can be shown through derivation,

Ψ̇3 = −1

2

tr(Ċbr)

1 + tr(Cbr)
= −1

2

tr(−e×ωCbr)

1 + tr(Cbr)
= − eTωPa(Cbr)

1 + tr(Cbr)
= eTωe3.

This also verifies that the critical points of Ψ3 verify e3 = 0.
The function Ψ3 = 0 only when tr(Cbr) = 3, the highest possible value for this term.

As shown previously, this corresponds to Cbr = I3. Unlike the previous two functions, Ψ3 is

not upper bounded, as it tends to infinity at a relative rotation of nπ for odd n. regardless,

property ii) is verified, since an upper limit is not required for a function to be positive

definite.

When e3 = 0, the critical points, only occur at Cbr = I and Cbr = Cbr(η = nπ, ϵ̂ for odd

values of n. This second condition is not contained in the set Ω, which then shows iii).

Using (2.5), the error function can be written as

Ψ3 = ln

(
2√

1 + tr(Cbr

)
= ln

(
2√

2
√
1 + cos η

)
=

1

2
ln

(
2

1 + cos(η)

)
,

and the innovation term as

e3 =
sin(η)

2(1 + cos(η))
ϵ̂,

then

∥e3∥22 = eT3 e3 =
sin2(η)

4(1 + cos(η))2
.

Note that

2

1 + cos(η)
=

2 + 2 cos(η)

(1 + cos(η))2
=

(1 + 2 cos(η) + cos2(η)) + (1− cos2(η))

(1 + cos(η))2

= 1 +
sin2(η

(1 + cos(η))2
= 1 + 4∥e3∥2,

which results in

Ψ3 =
1

2
ln(1 + 4∥e3∥2),

then

∥e3∥2 =
e2Ψ3 − 1

4
.
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The function on the right is strictly increasing with respect to Ψ3, so for Ψ3 = ψ3 <∞,

∥e3∥2 ≤
e2ψ3 − 1

4
,

which verifies v) for ē3 =
1
2

√
e2ψ3 − 1.

Consider the function
Ψ3

∥e3∥2
=

4Ψ3

e2Ψ3 − 1
,

shown in Figure A.1. The function is well defined everywhere in Ω, and is strictly decreasing.

Inside Ω3, for any Ψ3 ≤ ψ3, then 4Ψ3/(e
2Ψ − 1) ≥ 4ψ/(e2ψ − 1), and 4Ψ3/(e

2Ψ3 − 1) ≤ 2.

Then

4ψ3

e2ψ3 − 1
≤ Ψ3

∥e3∥2
≤ 2

4ψ3

e2ψ3 − 1
∥e3∥2 ≤ Ψ3 ≤ 2∥e3∥2,

which shows iv) for b3 =
4ψ3

e2ψ3−1
and b̄3 = 2.
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Figure A.1: Upper and lower bounds of Ψ3.

To show v), the time derivative of e3 is required. This function is similar to the previous

innovation term, and using the same procedure and properties, it can be show that

ė3 =
1

2(1 + tr(Cbr))
(2(1 + tr(Cbr))e3eT3 + tr(Cbr)I3 − Cbr)eω ≜ E3eω.

Once again, E3 is bounded, since it depends only on Cbr, and using (2.5) and the same
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procedure as before it can be shown that

E3 =
1

16(1 + cos(η))2
(
(1 + cos(η))2I3 − sin2(η)ϵ̂×

)
,

then

ET
3 E3 =

1

8(1 + cos(η))

(
I3 −

1

2
(1− cos(η))ϵ̂ϵ̂T

)
The eigenvalues of ET

3 E3 are non zero in the set Ω, and are {1/8(1 + cos(η))−1 , 1/8(1 +

cos(η))−1 , 1/16}. Since

∥ė3∥ ≤ ∥E3∥2∥eω∥ = max

(√
λ(ET

2 E2)

)
∥eω∥,

then vi) is verified for p3 =
1
16
max{1, e2c}. Thus all properties of Lemma 3.2 are verified.

A.2 Proof of Proposition 3.3

The attitude error dynamics can be derived by substituting (2.2) and (3.1) in the angular

velocity error definition (3.6).

Jėω = J
(
ω̇b −

d

dt
(Cbrωr)

)
= Jω̇b − J

(
−e×ωCbrωr + Cbrω̇r

)
= (Jωb)

×ωb + M + Je×ωCbrωr − JCbrω̇r

= (J(eω + Cbrωr))
×(eω + Cbrωr)) + Je×ωCbrωr − JCbrω̇r + M

= (Jeω)×eω + (JCbrωr)
×eω + (Jeω)×Cbrωr + (JCbrωr)

×(Cbrωr)

+ Je×ωCbrωr − JCbrω̇r + M

= (Jeω)×eω +
[
(JCbrωr)

× − (Cbrωr)
×J − (Cbrωr)

×)J
]

eω

−
(
JCbrω̇r + (Cbrωr)

×(JCbrωr)
)
+ M

since

(Cbrωr)
×J + J(Cbrωr)

× = ((tr(J)I3 − J)Cbrωr)
×

then

Jėω = (Jeω)×eω + (2J − tr(J)I3)Cbrωr)
×eω −

(
JCbrω̇r + (Cbrωr)

×(JCbrωr)
)
+ M.
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Finally, substituting the definitions (3.20) and (3.21) arrives to the main result (3.19),

completing the proof.

A.3 Proof of Lemma 3.4

Substituting the control law (3.24) in the error dynamics (3.19) gives

Jėω = (Jeω +∆1)
× eω − kωeω − kaea.

Consider the Lyapunov candidate function

V̄ =
1

2
eTωJeω + kaΨa.

The function is positive definite for all three attitude error functions due to Lemma 3.2.

Since the inertia matrix is constant, its time derivative over the system trajectories is

˙̄V = eTωJėω + Ψ̇a = eTω (eω +∆1)
× eω − eTωkωeω − eTωkaea + eTωkaea

= −kωeTωeω = −kω∥eω∥2 ≤ 0

Since ˙̄V is negative semidefinite, then V̄ (t) ≤ V̄ (0) for all t > 0. From the definition of V̄

kaΨa(t) = V̄ (t)− 1

2
eTωJeω ≤ V̄ (t) + λM(J)∥eω∥2 ≤ V̄ (t)

and

V̄ (0) =
1

2
eTω(0)Jeω(0) + kaΨ(0) ≤ λM(J)

2
∥eω(0)∥2 + kaΨ(0)

if the initial condition for the angular error is given by

∥eω(0)∥2 <
2 ka
λM(J)

(ψa −Ψ(0)) , (A.1)

then

kaΨa(t) ≤ V̄ (t) ≤ V̄ (0) <
λM(J)

2

2 ka
λM(J)

(ψa −Ψ(0)) + kaΨ(0) = kaψa

which results in Ψa ≤ ψa, for all t > 0. All trajectories starting in Ωa stay in the set for

all time. This avoids the undefined conditions in the innovation terms e2 and e3, and the

undesirable equilibrium that occurs at Ψ1 = 2.
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A.4 Proof of Theorem 3.5

Consider the Lyapunov candidate function

V = V̄ + γ eTωea =
1

2
eTωJeω + kaΨa + γ eTωea, (A.2)

for some γ > 0 to be determined later. Owing to Lemma 3.2, V is positive definite and is

both upper and lower bounded. Indeed, since

λm(J)∥eω∥2 ≤ eTωJeω ≤ λM(J)∥eω∥2, (Quadratic form)

ba∥ea∥2 ≤ Ψa ≤ b̄a∥ea∥2, (Lemma 3.2 (iv))

−∥eω∥∥ea∥ ≤ eTωea ≤ ∥eω∥∥ea∥, (Cauchy-Schwarz)

then

λm(J)
2

∥eω∥2 + kaba∥ea∥2 − γ∥eω∥∥ea∥ ≤ V ≤ λM(J)
2

∥eω∥2 + kab̄a∥ea∥2 + γ∥eω∥∥ea∥

or, in matrix form,

xTW1x ≤ V ≤ xTW2x (A.3)

where x = [∥eω∥, ∥eω∥]T and

W1 =

[
kaba −1

2
γ

−1
2
γ 1

2
λm(J)

]
, W2 =

[
kab̄a

1
2
γ

1
2
γ 1

2
λM(J)

]
. (A.4)

For both W1 and W2 to be positive definite, then

2kabaλm(J)−
1

2
γ2 > 0 ⇒ γ2 < 4kabaλm(J),

2kab̄aλM(J)− 1

2
γ2 > 0 ⇒ γ2 < 4kab̄aλM(J),

both conditions are satisfied for γ2 < 4kabaλm(J), or γ < 2
√
kabaλm(J).
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The time derivative of V , along the system trajectories, is given by

V̇ = ˙̄V + γ ėTωea + γ eTω ėa

= −kωeTωeω + γ
[
J−1

(
(Jeω +∆1)

× eω − kωeω − kaea
)]T ea + γ eTωEaeω,

= −kωeTωeω + γ
(
J−1 (Jeω +∆1)

× eω
)T ea − γkω

(
J−1eω

)T ea

− γka
(
J−1ea

)T ea + γ eTωEaeω,

where property vi) of Lemma 3.2 was used.

The following equations and inequalites hold:

−kωeTωeω = −kω∥eω∥2,

eTωEaeω ≤ ∥eω∥∥Ea∥∥eω∥ ≤ pa∥eω∥2,

−
(
J−1eω

)T ea ≤ ∥J−1eω∥∥ea∥ ≤ ∥J−1∥∥eω∥∥ea∥ =
1

λm(J)
∥eω∥∥ea∥,(

J−1ea
)T ea = eTa J−1ea ≥ λm(J−1)∥ea∥2 =

1

λM(J)
∥ea∥2,

where property vi) of Lemma 3.2 was used. Note that the last inequality will flip sign when

multiplied by −1, as needed for substitution.

For the last element, using property v) of Lemma 3.2 together with the bound (3.22),

(
J−1 (Jeω +∆1)

× eω
)T ea ≤ ∥J−1 (Jeω +∆1)

× eω∥∥ea∥,

≤ λM(J)
λm(J)

∥eω∥2∥ea∥+
B1

λm(J)
∥eω∥∥ea∥,

≤ ēa
λM(J)
λm(J)

∥eω∥2 +
B1

λm(J)
∥eω∥∥ea∥.

Combining these results,

V̇ ≤ −kω∥eω∥2 + γ pa∥eω∥2 + γ ēa
λM(J)
λm(J)

∥eω∥2

+
γ B1

λm(J)
∥eω∥∥ea∥+

γ kω
λm(J)

∥eω∥∥ea∥ −
γ ka
λM(J)

∥ea∥2

= −
(
kω − γ pa − γ ēa

λM(J)
λm(J)

)
∥eω∥2 −

γ ka
λM(J)

∥ea∥2 +
γ(kω +B1)

λm(J)
∥eω∥∥ea∥,

or, in matrix form,

V̇ ≤ −xTW3x < 0
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with x as defined previously, and

W3 =

[
γ ka
λM (J) −γ(kω+B1)

2λm(J)

−γ(kω+B1)
2λm(J) kω − γ pa − γ ēa

λM (J)
λm(J)

]
. (A.5)

For W3 to be positive definite, two conditions need to be met. First

kω − γ pa − γ ēa
λM(J)
λm(J)

> 0,

γ pa + γ ēa
λM(J)
λm(J)

< kω,

γ <
kωλm(J)

paλm(J) + ēaλM(J)
,

and (
γ ka
λM(J)

)(
λm(J)kω − γpaλm(J)− γēaλM(J)

λm(J)

)
−
(
γ(kω +B1)

2λm(J)

)2

> 0,

γ

(
ka paλm(J) + ēa ka λM(J)

λM(J)λm(J)
+

(kω +B1)
2

4λ2m(J)

)
<

ka kωλm(J)
λM(J)λm(J)

,

γ

(
4λm(J)ka paλm(J) + 4λm(J)ēa ka λM(J) + λM(J)(kω +B1)

2

4λM(J)λ2m(J)

)
<

ka kω
λM(J)

which gives

γ <
4ka kωλ

2
m(J)

4λm(J) (ka pa + ēa ka λM(J)) + λM(J)(kω +B1)2

setting

γ < min

{
2
√
kabaλm(J),

kωλm(J)
paλm(J) + ēaλM(J)

,

,
4ka kωλ

2
m(J)

4λm(J) (ka pa + ēa ka λM(J)) + λM(J)(kω +B1)2

}
. (A.6)

The variable γ is an auxiliary construct to facilitate the proof, it can be chose arbitrarily

without impacting the controller. As such, the above inequality can always be satisfied.

The quadratic bounds on V and the final result for V̇ concludes, through Theorem 4.10

of [99], that

∥x(t)∥2 ≤ λm(W1)

λm(W1)
exp

(
−λm(W3)

λm(W2)
t

)
∥x(0)∥2
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therefore, ∥eω∥ and ∥ea∥ converge exponentially to zero. This immediately results in ωb

converging to ω̄r, and, through properties (ii) and (iii) of Lemma 3.2, this leads to Cbr

converging to I3, thus satisfying the tracking objective, and verifying the Theorem.

A.5 Proof of Theorem 3.6

Consider the same Lyapunov candidate function as in the previous theorem,

V = V̄ + γ eTωea =
1

2
eTωJeω + kaΨa + γ eTωea,

if γ satisfies (A.6), then V is positive definite and lower bounded through (A.3), (A.4).

The time derivative of V over the system trajectories, when substituting the control law

3.25, can be shown to be (same derivation as the previous theorem, with two additional

terms)

V̇ ≤ −
(
kω − γ pa − γ ēa

λM(J)
λm(J)

)
∥eω∥2 −

γ ka
λM(J)

∥ea∥2 +
γ(kω +B1)

λm(J)
∥eω∥∥ea∥

+ γ
λM(J)
λm(J)

∥ea∥ρ(t) + λM(J)∥eω∥ρ(t),

or, in matrix form,

V̇ ≤ −xTW3x + zTx,

where x = [∥eω∥, ∥eω∥]T , W3 as in (A.5), and z = λM(J)ρ(t)
[
γ/λm(J), 1

]T
. As in the

previous proof, W3 will be positive definite if γ satisfies (A.6). Then

V̇ ≤ λm(W3)∥x∥2 + kρρ(t)∥x∥, (A.7)

where

kρ = λM(J)

√
1 +

γ2

λ2m(J)
.

Integrating both sides of (A.7),

V (t)− V (0) ≤ −λm(W3)

∫ t

0

∥x(τ)∥2dτ + kρ

∫ t

0

∥x(τ)∥dτ (A.8)

then, since V (t) is positive definite,

V (0) ≥ λm(W3)

∫ t

0

∥x(τ)∥2dτ − kρ

∫ t

0

∥x(τ)∥dτ (A.9)
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rearranging,

V (0) + kρ

∫ t

0

∥x(τ)∥dτ ≥ λm(W3)

∫ t

0

∥x(τ)∥2dτ,

where the right-hand side term is equal to ∥x∥2L2
and the second left-hand side term is,

through the Schwartz inequality,

kρ

∫ t

0

∥x(τ)∥dτ ≤

√∫ t

0

ρ2(τ)dτ

∫ t

0

∥x(τ)∥2dτ = ∥ρ(t)∥L2∥x∥L2

where the condition 3.26 was used. Then

V0 ≥ λm(W3)∥x∥2L2
− kρ∥ρ(t)∥L2∥x∥L2 .

Completing the square on the right,

V0
λm(W3)

+
k2ρ∥ρ(t)∥2L2

4λ2m(W3)
≥ ∥x∥2L2

− kρ∥ρ(t)∥L2

λ2m(W3)
∥x∥L2 +

k2ρ∥ρ(t)∥2L2

4λ2m(W3)

=

(
∥x∥L2 −

kρ∥ρ(t)∥L2

2λm(W3)

)2

then

∥x∥L2 ≤

√
V0

λm(W3)
+
k2ρ∥ρ(t)∥2L2

4λ2m(W3)
+
kρ∥ρ(t)∥L2

2λm(W3)
(A.10)

which shows that x ∈ L2. The rest of the proof follows from [31]. Substituting (A.10) in

(A.7) shows that V is uniformly bounded along the system trajectories. Then from (3.7)

and (3.19), ẋ is uniformly bounded as well, and hence x is uniformly continuous. Invoking

Barbalat’s Lemma, it can be concluded that x → 0 as t→ ∞, implying that ea and eω → 0,
verifying the theorem.

B Position control proofs

B.1 Proof of Theorem 4.3

Substituting the value of the intermediate command (4.13) in the error dynamics (4.7) results

in

ėv = −kvev − kpep − ki satk(ei) +∆a +∆c
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where

∆a =
1

m

(
(Fa)i − (F̂a)i

)
, (B.11)

∆c =
T

m
(Cbi − Cri)

T k̂1. (B.12)

The first element appears due to the mismatched estimate of the aerodynamic forces, and the

second is a perturbation due to the UAV attitude not converging to the reference attitude

instantly.

Investigating the bound on (B.12),

∥∆c∥ ≤ ∥Fc∥∥ (Cbi − Cri)
T k̂1∥,

where the second right-hand term is the magnitude of the difference between b̂1 and r̂1.
Since both basis vectors are unit length, it follows that ∥ (Cbi − Cri)

T k̂1∥ ≤ 2. However,

a more useful bound can be found in terms of the innovation term (3.11). Using simple

trigonometry,

∥ (Cbi − Cri)
T k̂1∥ =

√
∥b̂1∥2 + ∥r̂1∥2 − 2∥b̂1∥∥b̂1∥r̂1∥ cos(µ),

=
√

2(1− cos(µ)) = 2| sin (µ/2) |,

where µ is the angle between b̂1 and r̂1. Defining η as the principal angle of the angle-axis

parametrization of Cbr, it clear that |µ| ≤ |η|, since η encodes the complete three dimensional

attitude deviation, whereas µ is blind to any rotation around the first axis. Within the set

La, |µ| ≤ |η| implies | sin(µ/2)| ≤ | sin(η/2)|. In Lemma 3.2 it is verified that

∥ea∥ =

∥∥∥∥∥
√
2 sin(η)

2
√

1 + cos(η)
ϵ̂

∥∥∥∥∥ =
1

2

∣∣∣∣ sin(η)

cos(η/2)

∣∣∣∣ = | sin(η/2)|.

In addition, from Lemma 3.4, and property iv) of Lemma 3.2, it can be shown that

∥ea∥ < 2
√
ψ.

Combining these results, together with the initial conditions of the theorem leads to

∥∆c∥ ≤ 2∥Fc∥∥ea∥ < 2
√
ψ∥Fc∥. (B.13)
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Define the Lyapunov candidate function for the coupled position and attitude system

V = Vc + Vp + Vi,

where

Vc =
1

2
eTωJeω + kaΨa + γ eTωea,

Vp =
1

2
eTv ev +

1

2
kpeTp ep + cpeTp ev,

Vi =

∫ ei

∆a
ki

(ki satk(τ)−∆a) dτ,

The rest of the proof is analogous to the analysis presented in [97], with the necessary

modifications to account for the different attitude innovation term and the different inter-

mediate command.

Using the results of Theorem 3.5, the Lyapunov candidate function can be shown to be

positive definite and upper and lower bounded, since the integral term is positive definite

about ei = Be
ki

thanks to condition (4.20). Define xp = [∥ep∥, ∥ev∥]T and xa = ∥[ea∥, ∥eω∥]T ,
then due to property iv) of Lemma 3.2,

1

2
xTp Mp1xp +

1

2
xTaMa1xa + Vi ≤ V ≤ 1

2
xTp Mp2xp +

1

2
xTaMa2xa + Vi

where

Mp1 =

[
kp −cp
−cp 1

]
, Mp2 =

[
kp cp

cp 1

]
,

Ma1 =

[
2ka −γ
−γ λm

]
, Ma2 =

[
4ka γ

γ λM

]
,

where λm = λm(J) and λM = λM(J) are the smallest and largest eigenvalues of J, respectively.
These four matrices are positive definite due to (4.21) and (4.22).
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The time derivative of V along the system trajectories is

V̇ = kpeTp ev + eTv (−kvev − kpep − ki satk(ei) +∆a +∆c)

+ cpeTv ev + cpeTp (−kvev − kpep − ki satk(ei) +∆a +∆c)

+ (ki satk(ei)−∆a)
T (ev + cpep)− kωeTωeω + γėTa eω

+ γeTa J−1
(
(Jeω +∆r1)

× eω − kpea − kωeω
)
,

= −(kv − cp)∥ev∥2 − cpkp∥ep∥2 +∆T
c (ev + cpep)− cpkveTp ev

− kω∥eω∥2 + γėTa eω + γeTa J−1
(
(Jeω +∆r1)

× eω − kpea − kωeω
)
.

Using the bound (3.22) and property v) of Lemma 3.2, it can be shown that

(
J−1 (Jeω +∆r1)

× eω
)T ea ≤

λM
λm

∥eω∥2 +
B1

λm
∥eω∥∥ea∥,

which together with property vi) of Lemma 3.2 results in

V̇ ≤ −(kv − cp)∥ev∥2 − cpkp∥ep∥2 + (∥ev∥+ cp∥ep∥) ∥∆c∥+ cp kv∥ep∥∥ev∥

− xTaWaxa.

Using (B.13), together with initial conditions (4.18) and (4.19), and the assumption on

the aerodynamic estimate (4.17), the bound on the cross-term of the position and attitude

errors can be written as

(∥ev∥+ cp∥ep∥) ∥∆c∥ < 2
√
ψkv∥ev∥2 + 2

√
ψcpkp∥ep∥2

+ 2(
√
3ki k +Bp) (∥ev∥+ cp∥ep∥) ∥ea∥

+ 2
√
ψcpkv∥ep∥∥ev∥+ 2 kp eM∥ea∥∥ev∥.

Then,

V̇ ≤ −xTaWaxa − xTp Wpxp + xTaWapxp

≤ −
[
∥xa∥∥xp∥

] [ λmin(Wa) −1
2
∥Wap∥2

−1
2
∥Wap∥2 λmin(Wp)

][
∥xa∥
∥xp∥

]
≤ 0

where (4.21) and (4.22), respectively, ensure Wa and Wp are positive definite, and (4.23)

results in the final matrix being positive definite. These results imply ea, eω ep, and ev
converge exponentially to zero, and the integral term is uniformly bounded.
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B.2 Proof of Lemma 4.4

The proof follows closely from [102]. Consider the positive definite function

V =
1

2
eTv ev +

1

2
eTp ep =

1

2
∥ep∥2 +

1

2
∥ev∥2.

It then holds that ∥ep∥ ≤
√
2V and ∥ev∥ ≤

√
2V . The time derivative V along the system

trajectories is given by

V̇ = eTp ev + eTv

(
g k̂3 +

1

m
fia − v̇r +

T

m
CT
bik̂1

)
.

Substituting the control law (4.13), it can be verified that

V̇ ≤ ∥ep∥∥ev∥+ ∥ev∥ (kp∥ep + kv∥ev∥+ (2Bg +Be + k ki)) (B.14)

where Bg ≤ Bp is the norm of the feed-forward term without the aerodynamic force estimate:

∥ − g k̂3 + v̇r∥ ≤ Bg,

this bound is guaranteed to exist due to assumption 4.16. Then,

V̇ ≤ (1 + kp)∥ep∥∥ev∥+ (2Bg +Be + k ki)∥ev∥+ kv∥ev∥2

≤ 2(1 + kp)V + 2 kvV +
√
2(2Bg +Be + k ki)

√
V = κ1V + κ2

√
V ,

where κ1 = 2(1 + kp + kv) and κ2 =
√
2(2Bg + Be + k ki). If, within some the interval

t ∈ [ta, tb] ∈ [0, tc], V < 1, then V might grow depending on the values of κ1 and κ2.

However, if at some time t ∈ [ta, tb], V grows such that V > 1, then V >
√
V and the above

inequality becomes

V̇ ≤ (κ1 + κ2)V.

Using the Comparison Lemma [99], then

V (t) ≤ V (ta)e
(κ1+κ2)(t−ta),

implying V is bounded for t ∈ [ta, tb]. Since an initial V < 1 will, at most, result in V > 1,

then V is bounded for t ∈ [0, tc] and so are the error states ∥ep∥ and ∥ev∥, completing the

proof.
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B.3 Proof of Theorem 4.5

The proof is modified from that of Theorem 4.3.

Consider the Lyapunov candidate function

Vν = Vatt +
1

2
eTv ev +

∫ evi

∆a
kp

(kpsatν(τ) +∆a)dτ, (B.15)

where

Vatt =
1

2
eTωJeω + kaΨa + γ eTωea.

Using the same procedure as Theorem 4.3, V is both upper and lower bounded, and its

time derivative along the system trajectories can be shown to satisfy

V̇v ≤ −kv(1− 2
√
ψ)∥ev∥2 + 2(kp

√
3ν +Bp)∥ev∥∥ea∥+ xTaWaxa,

with xa as defined in Theorem 4.3. Through the conditions of the Theorem, V̇ ≤ 0 which

implies the ∥ev∥, ∥ea∥, ∥eω∥ decrease exponentially to zero, while the integral term remains

uniformly bounded.

C Path following proofs

C.1 Proof of Proposition 5.1

The rate of change with respect to time of Cgi (5.8) is given by

Ċgi = −ω×
g Cgi,

then

ω×
g = CgiĊT

gi = σ̇
[
TT HT PT

]T [
T′ H′ P′

]
,
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where

T′ =
µ′′

∥µ′∥
− µ′Tµ′′

∥µ′∥3
µ′

H′ =
k×
3 µ

′′

∥k×
3 µ

′∥
− (k×

3 µ
′)T (k×

3 µ
′′)

∥k×
3 µ

′∥3
(k×

3 µ
′)

P′ = T×H′ + T′×H.

Simple substitution of these values verifies ω×
g is indeed skew symmetric, and that (5.9)

holds.

C.2 Proof of Theorem 5.2

Consider the Lyapunov candidate function

Vp =
1

2
(pi − µ(σ))T (pi − µ(σ)) =

1

2
∥ep(σ)∥2

that is positive definite about pi = µ(σ). Its time derivative, along the system trajectories,

substituting the reference velocity (5.11, 5.12), and path evolution law (5.13)

V̇p = (ep(σ))T ėp(σ) = eTp (vi − σ̇µ′(σ))

= eTp

(
VcT − Vckc

dl
ecH − Vckc

dl
P
)
−
(
(VcT + ksepr)TT

)
T + eTp ev

= −kse2s −
Vckc
dl

e2c −
Vckh
dl

e2h + eTp ev

≤ −λmin(Kp)∥ep∥+ ∥ep∥∥ev∥

The Lyapunov function for the system can then be taken as VG = Vp + Vν , where Vν is

defined in (B.15) and its time derivative can be shown to satisfy, for xG = [∥ep∥, ∥ev∥]T ,

V̇G = −eTGWGeG + eTGWGaev − xTaWaxa

where WG will be positive definite through (5.14) and V̇G ≤ 0 through (5.16), and the errors

will converge exponentially to zero, while the integral error will remain uniformly bounded.

Since Cgi is a DCM, then ∥ep∥ → 0 implies ∥epr∥ → 0, verifying the path following objective.
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