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Abstract

The gut microbiome is an ecosystem of microorganisms that are susceptible to changes

in the presence of a disturbance, for instance diseases such as intestinal colitis. Through

longitudinal studies, we can follow the effect of a perturbation to understand the micro-

biome’s response and how the levels of bacteria and their physiologies change. The bacterial

physiologies can be measured as proportions or standardized counts and thus modelled using

generalized linear regression models. However, a natural dependence arises in the experi-

mental design wherein several mice are kept in the same cage and repeated measures are

taken from each mouse. Therefore, we propose using a generalized linear mixed model with

random effects to model correlation between observations within the same cage and obser-

vations from the same mouse. We study the time dependence of the bacterial counts and

whether there is a relationship between a biological disease state and the abundances of the

physiologies. Using various GLMMs, we can show that the gut microbiome is highly dynamic

and characterize some of the changes that occur over the course of disease.
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Résumé

Le microbiome intestinal est un écosystème de micro-organismes qui est susceptible de

changer en présence d’une perturbation, par exemple la maladie inflammatoire intestinale

telle que la colite ulcéreuse. Grâce aux études longitudinales, nous pouvons comprendre

l’influence de l’effet d’une perturbation sur le microbiome et l’évolution des niveaux de bac-

téries et leur physiologie. Puisque les physiologies bactériennes peuvent être mesurées comme

des proportions ou des comptes standardisés, les modèles linéaires généralisés peuvent être

utilisés. Cependant en gardant plusieurs souris dans la même cage et les mesures répétées

sont prises pour chaque souris, la conception expérimentale entraîne une dépendance natu-

relle. Ainsi nous proposons d’utiliser des modèles linéaires mixtes généralisés avec les effets

aléatoires pour capturer la corrélation entre les observations provenant de la même cage et

les observations de la même souris. Nous examinons la dépendance temporelle des comptes

bactériens ainsi que l’existence d’une relation entre l’état de la maladie biologique et les abon-

dances des physiologies. En utilisant les GLMMs, nous pouvons montrer que le microbiome

intestinal est très dynamique et caractériser certains des changements qui se prouduisent.
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Chapter 1

Introduction

1.1 Background for the application

Constantly inside of an animal’s organs, an ecosystem of microorganisms must coexist peace-

fully at the appropriate levels in order to maintain healthy functioning. These microbes may

be symbiotic or pathogenic, but so long as they maintain balance, they may coexist without

problems, making up the microbiome [11]. However, diseases such as intestinal colitis, which

can cause inflammation or ulcers in the digestive tract [20], are linked to disturbances in the

gut microbiome [23].

The data being analysed in this project are provided by PhD candidate Mariia Taguer

from Corinne Maurice’s lab in the Department of Biology at McGill University. Using mice,

they are mimicking intestinal colitis using the drug dextran-sodium sulfate (or DSS) and

seeing how this affects the microbiome in the gut [25]. Their interest is in how a chemical

perturbation, i.e. chemically altering the function of a biological system, affects bacterial

physiology.

By sampling the microbiome, the researchers are able to determine the cell types in which
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bacteria from the gut microbiome are abundant. Four different cell types are measured in

this experiment: HNA, LNA, PI+, and BONCAT+. HNA and LNA are cells with high

and low nucleic acid content, respectively. PI+ is characteristic of dead or highly-damaged

bacteria, while BONCAT+ is characteristic of protein-producing bacteria.

2% DSS is introduced on Day 1 of the experiment for 5 days. Beginning on Day 6, the

drug is flushed out with water for 5 days until the mice recover. Daily fecal samples were

taken from each mouse with the days grouped into ‘Disease States’ as described in Table

1.1. These disease states were determined through previous biological evidence, and so their

groupings won’t be changed when trying to observe patterns over time for the different

physiologies.

Disease State Corresponding Days

Baseline -3-0

Pre-symptoms 1-3

Symptoms 4-6

Recovery 7-12

W1 (Follow-up) 17

W2 (Follow-up) 24

Table 1.1: Disease state groupings, based on previous biological evidence. Follow-up mea-

surements were taken one week after the ten experimental days (W1) and then again another

week later (W2, two weeks after ten days).

2
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This experiment was performed 3 times with 5 mice each time. All mice are kept in the

same cage during each experiment, allowing us to equate one experiment with one cage. All

mice per experiment are of the same sex: all mice are female in experiment 2 and the rest

of the mice are male.

Two datasets were collected for this experiment. The first was general cell presence data

for each mouse, which were proportions of each cell physiology seen in the samples, and the

second was 16S sequencing data, which provided specific cell levels for each type of bacteria.

Both of these datasets are explained in further detail in chapters 4 and 5.

1.2 Biological research questions

From these experiments, the researchers wish to understand how the bacteria’s physiological

makeup changes over time. For instance, if we use the disease state groupings, could we

determine whether there is an association between the levels of the different cell types and

the disease state? Most relevant might be to focus on the ‘symptoms’ disease state, and

assess if there is a relationship between this period and abundances for each cell type.

Another method of describing a bacteria’s physiology is through its dominant cell type.

Over time, does a specific bacteria change its dominant cell type? Are there general trends

in how bacteria switch between cell types?

We can compare trends at different taxonomic levels. The data provided from the 16S

sequencing includes classification of the bacteria up to their genus. Thus, we might wish

to aggregate by the phylum or family level to make a more general statement rather than

3
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look at a unique bacteria. At the phylum level, if a bacteria is abundant in HNA in the

beginning, would it ever become abundant in LNA or would it stay abundant in HNA

the whole time? How is the physiology of Firmicutes bacteria changing compared to the

physiology of Bacteroidetes bacteria?

To try to answer these questions, we will be using generalized linear mixed models, with

the distribution chosen according to each dataset. The rest of the paper will be structured

as followed. In chapter 2, we begin with a literature review going over existing methods

of looking at microbiome data, for which we consider two foci: profiling and modelling. In

chapter 3, we introduce generalized linear mixed models (GLMMs) as well as explain Markov

chain Monte Carlo sampling (MCMC), which will be used in the Bayesian analysis of our

GLMMs. We also perform simulation studies of hierarchical data using GLMMs to explain

some of the challenges that come with this model. Chapter 4 covers the application of a

logistic GLMM using the first proportions dataset. In chapter 5, we look at the second 16S

sequencing dataset in two ways: first with a univariate gamma GLMM to look at each cell

type separately, then using a multinomial GLMM to consider the abundant cell type. In

chapter 6, we discuss overall findings as they pertain to the research question, as well as

possible directions that could still be studied. Conclusions follow in chapter 7.

4



Chapter 2

Literature review

2.1 The nature of microbiome data

The microbiome, coined in 2001 by Lederberg and McCray, signifies “the ecological commu-

nity of commensal, symbiotic, and pathogenic microorganisms that literally share our body

space” [16]. The study of microbiome alterations looks at the changes in the composition

of the microbial taxa whether over time or between a disease group and control group. Re-

searchers are often interested in linking these changes between specific taxa to a phenotype of

interest. In the case of the biological research question in the application, we are looking for

links between the taxa abundances and the enterotype, which is the classification based on

the composition of the gut microbia [1]. For 16S rRNA sequencing, operational taxonomic

units (OTUs) are used as the analysis unit to identify sequences [28]; in the research done

by Taguer and Maurice, they can be considered equivalent to species. This equivalence is

dependent on the taxonomic rank chosen by the researchers; in practice, we will often see

OTU used interchangeably with bacteria species or taxon. Figure 2.1 shows the major taxo-

nomic ranks and their ordering from largest to smallest, with the taxonomic classification of

5
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E. coli provided as example. Kingdom, which falls between domain and phylum, is omitted

as it was also not in the sequencing data provided.

Figure 2.1: Taxonomic classification of E. coli bacteria.

Per Xia et al. (2008), there are 4 main features of microbiome data that can provide

challenges in analysis [28]. Firstly, next-generation sequencing (NGS), such as the 16S se-

quencing data seen in Section 5, will often produce uneven total sequence counts of different

samples; these counts must be normalized in the overall dataset which in turn generates

relative abundances. This creates compositional data such that the increase in abundance

of one taxon decreases the relative abundance of the other taxa. This can lead to misinter-

pretations of the microbiome structure when using traditional statistical methods, such as

high false discovery rates and spurious associations [15].

6
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The data are also high-dimensional from high numbers of OTUs and underdetermined,

as the number of OTUs is often much larger than the number of samples; this problem is

more relevant when we wish to model the data. This can be handled by looking at taxa

individually, such as in by Chen and Li (2016) [4], or jointly modelling several taxa of interest

[18].

The remaining two features are that the data tend to be over-dispersed and sparse with

many zeroes. It is often the case we get sampling or count zeroes when the true population

of an OTU is too low to be detected in the sequencing sample [24] or in compositional data

as a result of insufficient sequencing depth or sample size [19].

When looking at microbiome data, we consider two foci: profiling and modelling.

2.2 Profiling

Data profiling, i.e. examining data through descriptive statistics and informative summaries

[17], can be useful in identifying microbial taxa that are affected by an intervention or a

disease state [9].

The technique of Quantitative Microbiome Profiling (QMP) is introduced by Vandeputte

et al. (2017) [26] in order to quantify microbial abundances and link variation in the micro-

bial loads to the enterotype associated with Crohn’s disease. QMP generates an absolute

abundance; this is in contrast to Relative Microbiome Profiling (RMP) which are limited in

their ability to reveal possible interaction between microbiota and host health. Since there

are currently no statistical methods that exist to deduce absolute abundances from com-
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positional data, methods need to be developed to extract these abundances to form a data

profile that can be analysed. Thus, in Vandeputte et al., cell counts are used to “transform

sequencing data into an absolute microbiome abundance matrix that allowed quantitative

microbiome profiling”.

QMP is also used by Vieira-Silva et al. (2019) to look at primary sclerosing cholangitis

(PSC) and irritable bowel disease (IBD), whereby the quantitative analyses allowed them to

identify a pattern between a Fusobacterium and the Veillonella genera, with Fusobacterium

being detected only in patients with Crohn’s disease [27]. In the QMP, they look at micro-

biome alterations within inflammation-associated taxa, so that they could be differentiated

and reveal markers for similar phenotypes that might present quantitative patterns.

Jian et al. (2020) consider quantitative PCR-based profiling to estimate absolute taxon

abundances from the NGS data, as opposed to the cell-based method used by Vandeputte

[12]. Galazzo et al. (2020) compared RMP with three different QMP methods and found

that the resultant profiles are indeed affected by which microbial quantification technique is

used [9].

After a QMP matrix is generated, there are a variety of statistical techniques that can

be used to detect microbial alterations. In Vandeputte et al., they use QMP to refer to

the quantitative genus abundance. In their analysis comparing Crohn’s patients to their

control group, they use the Wilcoxon rank-sum test to test differences in microbial load (cell

counts per gram of faeces) and Kruskal-Wallis test for the differences in QMP [26]. The

Mann-Whitney U-test can also be used to test for differences in bacterial loads between

8
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enterotypes, as was done in Galazzo et al. (2020) [9]. Spearman’s correlation coefficient is

often used to link taxa abundance to physiological markers and quantify their associations

([26], [27], [12]).

2.3 Modelling

Beyond data profiling and acquiring the abundances, statistical tests are required to under-

stand the interplay between the microbiome and physiology. As abundances are effectively

the bacteria counts, the data can be treated as such in statistical modelling.

When modelling, there is the issue of high-dimensionality and the compositional structure

that must be considered. There are high numbers of OTUs in the sample and it is often of

interest to compare how they relate to each other, especially over time or in the presence

of a physiological contrast. The method of jointly modelling the taxa is appealing since it

can represent an overall community with a single model. However, we would often want to

consider many OTUs in order to best represent the microbial diversity as well as achieve a

good model fit [18]. Since the relative abundances are proportions that sum to 1, a Dirichlet-

multinomial regression might be used to fit the data such as in Chen and Li (2013) [5]. While

hierarchical models can be used to constrain the number of parameters (e.g. La Rosa et al.

(2012) [21], Chen and Li (2013) [5], Sankaran and Holmes (2018) [22]), fewer parameters can

lead to challenges in modelling the variance structure [22]. Furthermore, it is often difficult

to account for the zero-inflated nature of the data in the joint models [18].

A common approach for modelling the relative abundance data is to use the beta distribu-
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tion since we are handling a proportion. As mentioned, a challenging feature of microbiome

data is how sparse it tends to be. Chen and Li (2016) proposed a zero-inflated Beta re-

gression model with random effects (ZIBR) [4]. As this is a univariate model, they must

consider each taxon separately. Martin et al. (2020) modelled microbial abundances using

beta-binomial regression [18].

Nonparametric methods have been considered by White et al. (2009) and Segata et al.

(2011), also for relative abundances. Morgan et al. (2012) proposed a Gaussian model for

transformed observed relative abundances.

However, looking at a single taxon with the beta distribution does not completely cover

the scope of the data’s compositional nature; recall an increase in the abundance of one

OTU will lead to the decrease in abundance of another. Thus, statistical modelling of the

absolute abundances, such as those acquired from QMP, is another method. These can also

be extended for zero-inflated data often without the problems that befall joint modelling.

For absolute abundances, Robinson et al. (2010) use a negative binomial regression. Jiang

et al. (2019) [13] propose a Bayesian zero-inflated negative binomial integrative model that

“jointly identifies differentially abundant taxa among multiple groups and simultaneously

quantifies the taxon covariate associations”.

The negative binomial model for absolute abundances could also be further extended to

include random effects to account for correlation as a result of repeated measurements or

longitudinal correlations within an individual. This is done in Zhang et al. (2017) who used a

negative binomial mixed model to detect association between host environmental or clinical
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factors and the mouse gut microbiome [29]. Fang et al. (2016) proposed a zero-inflated

negative binomial mixed model to account for the sparsity of the data, with application in

oesophagitis [7].

For a more comprehensive look into the different models developed for handling micro-

biome data, see Xia et al. (2018) [28].
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Chapter 3

Generalized linear mixed models

3.1 Introduction

In this longitudinal experiment, a natural grouping arises since multiple observations are

taken from the same mouse over time. Rather than assuming independence of all observa-

tions, we would wish to induce some dependence structure between observations that come

from the same individual.

A method of handling the structural dependence is through using a mixed model that

includes a random effect for each group level. While fixed effects are common to all units in

the population, the random effect will be specific to its group.

The general structure for the models will be to use a mixed effect model with the predictor

being the categorical disease state and random effects for mouse and cage, as they are

appropriate. This will be done by modelling the response using a generalized linear mixed

model that consists of two components: random and systematic.

Our response will be denoted as Ycijk where c = 1, 2, 3, 4 represents the different cell

types, i = 1, 2, 3 represents the different cages/experiments, j = 1, 2, ..., 5 represents the
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mouse, and k = 1, 2, ..., Ki represents the experimental day. In the random component, Ycijk

are conditionally i.i.d. observations from an exponential family distribution, as conditioned

on the necessary parameters for the family. In the systematic component,

g(E[Ycijk|Xijk]) = µc + ui + vij + XT
ijkβ

g(x) is the link function that will be used for the appropriate generalized linear model (i.e.

the Normal in chapter 4, Gamma in 5.2, and multinomial in 5.3). µc is a mean value for cell

type, ui is the random effect associated with cage and vij is the random effect associated

with mouse.

Looking at the correlation from this model, we induce a dependence between mice in the

same cage, and between observations for a single mouse that are taken over the time span of

the experiment. Specific covariance calculations will be stated for each specific model used

for each of the applications in chapters 4 and 5. Thus, our sources of variation arise from

between the different cages, the different mice, and each daily observation.

In the Bayesian framework, we consider the vector of unknown parameters θ = (β, σ)

where β is the vector of fixed regression parameters and σ is the vector of variances/covari-

ances in the correlation model. This provides our distributional model f(y|θ) for observed

data y. Our assumption is that θ is randomly sampled from a prior distribution π(θ|λ)

where we will specify our vector of hyperparameters λ. We can specify our model so that

λ is known and will generally be chosen to be fairly non-informative, so we thus perform

inference for θ using the posterior distribution:
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p(θ|y,λ) = p(y,θ|λ)
p(y|λ) = f(y|λ)π(θ|λ)∫

f(y|λ)π(θ|λ)dθ

Of course, λ is not known in practice; we could specify a hyperprior h(λ) and integrate

over dλ as well, which leads to three levels of distributional specification. Alternatively,

maximizing the marginal p(y|λ) would provide an estimate of λ̂, which could be used in

inference based on the estimated posterior distribution, leading to empirical Bayes analysis

[2]. However, in this paper, we will fix λ based on prior opinion about the dataset and so

that our prior distribution is quite flat.

3.2 Markov chain Monte Carlo sampling

The computational challenge in the Bayesian method is that the posterior distribution is

not generally tractable in closed form and hence requires numerical approximation. Markov

chain Monte Carlo (MCMC) methods are the most widely used for this context and function

by sampling θ(g), g = 1, ..., G from the posterior distribution. MCMC algorithms create

iterative draws from a Markov chain whose stationary distribution is the same as the posterior

so that the samples are correlated. We typically use thousands of samples in order for the

Markov chain to converge to the correct stationary distribution, as well as for the draws

to be reasonably uncorrelated. Since the samples are not themselves i.i.d. draws from the

posterior distribution, thinning methods might be used to reduce autocorrelation.

Two of the most popular MCMC algorithms are the Gibbs sampler and the Metropolis-

Hastings algorithm.
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The Gibbs sampler is advantageous in its clarity and ease of implementation, but it

requires readily sampling from each of the full conditional distribution p(θi,θj ̸=i, y), where

we denote the unknown parameters as θ = (θ1, ..., θr). This can be done directly if they are

in a familiar form (normal or Gamma distributions) or using a rejection sampling approach.

Then, the samples are generated in an iterative fashion, updating each following θ
(t)
i using

p(θi|θ(t)
1 , ..., θ

(t)
i−1, θt−1

i+1 , ..., θ(t−1)
r , y).

However, the full conditionals are often not expressible in closed form, particularly when

the prior distribution p(θ) and the likelihood f(y|θ) are not conjugate pairs. The Metropolis-

Hastings algorithm handles the situation by rejecting or accepting θ
(t)
i based on the ratio of

the joint posterior likelihood using the proposed draw θ∗ over the joint posterior with θ
(t−1)
i .

Under mild conditions, both samplers are expected to converge to the true posterior.

These samplers can also be combined, particularly if some of the full conditionals are known

in closed form.

For the MCMC, we will be using the software Stan [3], available in the package rstan

for use with R.

3.3 Simulated data

To test the performance of the models, we simulate hierarchical data. We begin with a

Normal set-up, generating the first level response

Yijk ∼ Normal(ui + vij + XT
ijkβ, σ2),
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with the second level ui ∼ Normal(0, σ2
u) and vij ∼ Normal(0, σ2

v), and third level σ2
u ∼

Gamma(1, 1), σ2
v ∼ Gamma(1, 2) and σ2 ∼ Gamma(1, 0.5). These were chosen since we

expect most variation to be between mouse and least within mouse. (We will see that in the

real data, the greatest source of variation will turn out to be between days, i.e. within-mouse

variation is the highest.)

In the simulations, we run tests with fixed variances σ = (σ2
u, σ2

v , σ2) and changing σ

to test overall performance of the model. When fixing variances, 4 different sets of σ were

considered as follows:

σu (Cage) σv (Mouse) σ (Individual)

1.23 2.36 0.066

0.26 2.77 0.17

1.13 1.13 0.19

2.36 1.23 0.17

Table 3.1: Fixed σ sets used in simulation study.

For simplicity, we considered only a binary treatment variable with a true negative effect

of β1 = −1.

To compare the effects of experimental design on estimation of the variance parameter,

we consider two different set-ups: one with three cages, as in the application, and one with

six cages. In both set-ups, we generate n = 150 observations with 5 mice in each cage, so

that the first set up had 10 ‘days’ of data and the second had 5.
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3.3.1 Results

Four chains are run with 2000 iterations, burning the first 1000 as warm-up for a total of

4000 draws.

Results for the fixed σ analysis are provided in Table 3.2. We can notice that the mean

estimated cage standard deviation is generally lower than the true value, with the exception

being when σu = 0.26. Changing the set-up to six cages brings the estimated value closer to

the true value in all levels (cage, mouse, and individual). The treatment effect is also quite

well estimated, with not much of a difference between the three cage vs. six cage set-up.

In Figure 3.1, we plot all the estimated β̂1 from the four different sets of fixed σ along

with their 95% credible intervals. In Figures 3.2 and 3.3, we plot the random effect estimates

and their 95% credible intervals, alongside the true random effect.

Results for the varying σ analysis are provided in Tables 3.3 and 3.4. We can note that

the mean percent error does not change much for mouse variation when increasing to six

cages; however, it drops by at least tenfold in cage and individual variation.

3.3.2 Discussion

Through the simulations, we can see that there is difficulty estimating the variance param-

eters for the group effect when there are fewer groups, as would be expected. In particular,

there is a tendency to underestimate the cage effect. When there are more cages, we are

better able to accurately predict the cage effect, which is to be expected as we have more
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3 cages 6 cages

Mean Std. deviation Mean Std. Deviation

σu = 1.23 0.91 0.92 1.1 0.7

σv = 2.36 2.3 0.48 2.31 0.32

σ = 0.066 0.065 0.004 0.065 0.004

β = −1 -1.00 0.011 - 1.01 0.011

σu = 0.26 0.40 0.62 0.39 0.52

σv = 2.77 2.65 0.52 2.67 0.37

σ = 0.17 0.17 0.01 0.17 0.011

β = −1 -1.00 0.031 -0.97 0.027

σu = 1.13 0.91 0.62 1.05 0.43

σv = 1.13 1.09 0.22 1.12 0.16

σ = 0.19 0.19 0.012 0.19 0.012

β = −1 -0.96 0.032 -0.96 0.033

σv = 1.23 1.19 0.24 1.22 0.18

σ = 0.17 0.168 0.01 0.168 0.01

β = −1 -1.00 0.029 -1.02 0.031

Table 3.2: Simulation results for fixed σ.
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σv (Mouse) σu (Cage) σ (Individual) β1 (Treatment)

Mean 1.98 0.93 0.52 −0.96

Standard deviation 0.60 1.41 0.019 0.051

Mean percent error 0.035 69.6 0.0006 2.4 × 7.5−5

Mean ESS 591 317 1415 1958

Table 3.3: Results for σ estimation in the 3 cages set-up over 500 datasets where σ is

generated from Gamma distributions described in the third level specifications. ESS stands

for ‘effective sample size’; note that 4000 samples are generated in each dataset.

available data to estimate σu. We see that the standard deviation for the variance parame-

ters decreases as we go from three cages to six, as does our mean percent error. We can also

see in Figures 3.6 and 3.7 that the width of the credible intervals for the variance parameters

decreased as we considered more cages, hence we are getting more precise results with more

cages. Again, this aligns with the intuition that more cages/mice provide more information

to estimate the variance.

However, estimating the random effects themselves proved to be rather difficult for the

model, as we can see in Figures 3.2 and 3.3. In general, it seems that the model tends

to underestimate the random effects. This is more egregious for the mouse random effect,

where the true effect tends to be larger because σv is also larger in the first set of variance

parameters. Often times, the true random effect will fall outside the 95% credible interval.
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σv (Mouse) σu (Cage) σ (Individual) β1 (Treatment)

Mean 2 1.05 0.56 −1.01

Standard deviation 0.27 0.58 0.04 0.11

Mean percent error 0.04 5.8 2.4 × 10−5 2.0 × 10−5

Mean ESS 965 799 2572 3653

Table 3.4: Results for σ estimation in the 6 cages set-up over 500 datasets where σ is

generated from Gamma distributions described in the third level specifications. ESS stands

for ‘effective sample size’; note that 4000 samples are generated in each dataset.

The random effect is often not the focus of real data applications, but this pitfall of the

model should be kept in mind as we are using it. It is likely that the random effect is being

folded into β̂0, as the treatment effect does not appear to be greatly affected.

The true fixed effect of β1 = −1 was generally very well estimated. Unlike the variance

parameters, there isn’t much of a difference in estimating the fixed effect in the three cage

vs. six cage set-up. From Figure 3.1, the true β1 value is always captured in the 95% credible

interval; this is also true in the varying σ simulations. The estimate in the simulations with

three cages are slightly closer to the true value, but the differences are too small to be much

use in practice.

Our focus in the simulations was the model’s accuracy in capturing the true variation,

and how that accuracy may be affected by the experimental design. It might be worth going
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Figure 3.1: Treatment effect (β1) estimates and 95% credible intervals for each of the fixed

σ sets described in Table 3.1, in both the three cage and six cage set-up. True value of

β1 = −1, shown in the grey line.

back and running simulations with varying fixed effects.

All the sample distributions for the estimated parameters seem to have converged; we

can see in Figure 3.4 that the chains for the treatment effect β1 and σ have mixed quite well.

There is slightly more autocorrelation seen in the random effect variances σu (cage) and σv

(mouse); in particular, chains 3 and 4 for the cage variance displayed quite a few distinct

excursions away from the general mean. However, the overall mixing still looks reasonable

considering all chains.

The autocorrelation plots are included in Figure 3.5. In agreement with what we could

observe visually in the trace plots, the autocorrelation is the smallest for β1 followed by

σ. Meanwhile, the variance parameters for the random effects have decent amounts of

21



Alicia Ter-Cheam

autocorrelation for at least five lags. Note that the trace and autocorrelation plots were only

included for our first σ set as described in Table 3.1. These general patterns showed up for

the other three sets of σ.

A final consideration for the convergence of the sampling distribution would be the effec-

tive sample size (ESS), i.e. the sample size of an equivalent random sample. Since we had 4

chains with 2000 draws, the first half being warm-up, this gives us a sample of 4000 for each

parameter. The ESS is highest for the fixed effect β1, followed by individual variance σ. It

is much lower for the random effect variances. These effective sample sizes all increase when

we consider 6 cages, even for β1. Though lower for σu and σv, they are still large enough for

general inference on their samples.
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Figure 3.2: Random effect estimates and 95% credible intervals for the three cage set-up

when σu = 1.234 (cage) and σv = 2.66 (mouse). The true random effect value is in red.

−2.5

0.0

1 2 3 4 5 6

Cage

C
ag

e 
ef

fe
ct

a

−5

0

5

0 10 20 30

Mouse

M
ou

se
 e

ffe
ct

b

Figure 3.3: Random effect estimates and 95% credible intervals for the six cage set-up when

σu = 1.234 (cage) and σv = 2.66 (mouse). The true random effect value is in red.
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Figure 3.4: Trace plots for (a) σ = 0.066 individual error, (b) σu = 1.234 cage standard

deviation, (c) σv = 2.66 mouse standard deviation, and (d) β1 = −1 treatment effect.
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Figure 3.5: Autocorrelation plots for (a) σ = 0.066 individual error, (b) σu = 1.234 cage

standard deviation, (c) σv = 2.66 mouse standard deviation, and (d) β1 = −1 treatment

effect.
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Figure 3.6: Confidence intervals for mouse effect; (a) three cages; (b) six cages
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Figure 3.7: Confidence intervals for cage effect; (a) three cages; (b) six cages
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Chapter 4

Application: Cell proportions data

4.1 Introduction

The first set of data was proportion data, which was available only for HNA, BONCAT+,

and PI+; LNA proportions were not included in the provided dataset. This data measured

the proportion of the sample in which each cell type was present. These measurements are

available for all fifteen mice who were split evenly among three experiments (cages).

4.2 Methodology

As the data are in proportions, we use a logistic transformation

Ycijk = log
(

pcijk

1 − pcijk

)

where pcijk is the relative abundance of cell type c for mouse j in experiment i on day k.

Therefore Ycikj ∈ R.

In the model, we include two random effects: ui, the cage effect and vij, the mouse

effect. Xijk is the covariate; since the perturbation is carried out on all mice, this will be the
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day-based disease state. Thus, β is an estimated fixed effect. Note that these may also be

specific to each cell-type; in Section 4.3, each cell type is modelled separately and thus we

would more specifically index these as uci, vcij, and βc.

For the model, we will initially assume that ui ∼ N(0, σ2
u) and vij ∼ N(0, σ2

v). In the

analysis of variance, we will also assume incidental error, εcijk ∼ N(0, σ2). This assumes the

variance of one value or one measurement is the sum of the variances of the cage effect, the

mouse effect, and the error. Further, the correlation between measurements of the same cell

type c taken on the same mouse is

Cor(Ycijk, Ycijk′) = Cov(Ycijk, Ycijk′)√
Var(Ycijk)

√
Var(Ycijk′)

= σ2
u + σ2

v

σ2
u + σ2

v + σ2 , k ̸= k′

and the correlation between two mice in the same cage is

Cor(Yijk, Ycij′k′) = Cov(Ycijk, Ycij′k′)√
Var(Ycijk)

√
Var(Ycij′k′)

= σ2
u

σ2
u + σ2

v + σ2 , j ̸= j′, k = k′ or k ̸= k′.

We note that cage 1 has fewer observations than cage 2 and 3; there is only one observed

day in the pre-symptoms disease state and there are no data points for the baseline disease

state. Experiment 1 was performed first, with experiments 2 and 3 running concurrently.

Hence why the observations days vary between cage 1 compared to cages 2 and 3.

Using the BD FACSCantoII for flow cytometry, there were three daily HNA and PI+

measurements taken per mouse. BONCAT+ measurements came from using FACS Aria II,

and thus there could only be one daily measurement per mouse. There are some equipment

discrepancies in the HNA measurements for cage 1, where some were taken using Aria,

resulting in only one daily measurement. This overall structure is described in Table 4.1.
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Number of available observations

HNA PI+ BONCAT+

Disease State\Cage 1 2 3 1 2 3 1 2 3

Baseline 0 60 36 0 30 60 0 14 14

Pre-symptoms 25 43 45 15 45 42 15 5 5

Symptoms 25 44 44 45 45 43 13 15 15

Recovery 50 60 57 75 57 59 25 10 10

Table 4.1: Data structure for cell proportions dataset. ‘Baseline’ includes experimental days

-3 to 0, ‘pre-symptoms’ includes days 1 to 3, ‘symptoms’ includes days 4 to 6, and ‘recovery’

covers days 7 to 12.

We won’t be imposing any method for handling these missing data points, as we have

no reason to assume a specific non-random missingness structure. As it is on the outcome

and missingness depends only on observed data, the missingness model can be ignored in

the Bayesian paradigm. Furthermore, we focus on disease state as predictor rather than the

specific day, so we ignore missing days so long as there are a reasonable number of data

points for each disease state.

In the Bayesian setting, we set priors for the variance parameters according to Gelman
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et al (2008) [10], i.e.

σ2
u, σ2

v , σ2 ∼ Half-Cauchy(0, 2.5ξ)

Here, ξ is the standard deviation of the residuals for the corresponding linear model (usually

around 1). For β, we use an improper uniform prior, i.e. the whole real line is considered

with equal probability, following Faraway (2016) [8].

We use MCMC sampling to get draws of our posterior samples for the fixed and random

effects, as well as the estimated variance parameters. We use the Bayesian model to avoid

the problem of ‘boundary fits’, where the point estimate for mixed effect variance (often σ2
u,

the top level in the hierarchical model) is estimated to be 0. This can often be a problem

when i, the number of subjects at that level, is low, as is in our case with i = 3.

4.3 Research findings

4.3.1 Exploratory data analysis

For the proportions data, we focus on the first four disease states (baseline, pre-symptoms,

symptoms, recovery).

We look at the mean abundance over time for each cage in Figures 4.1, 4.2, and 4.3. In

the figures, the red line corresponds to cage 1, the green to cage 2 (female mice), and blue

to cage 3. The different disease states are split with vertical lines. We also provide these

means in Table 4.2.
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Mean value (logit scale)

HNA PI+ BONCAT+

Disease State\Cage 1 2 3 1 2 3 1 2 3

Baseline - -0.17 -0.18 - 1.68 1.11 - -2.12 -2.47

Pre-Symptoms 0.054 0.091 0.0073 -0.14 2.09 1.71 -1.54 -1.48 -3.39

Symptoms -0.30 -0.21 -0.34 -0.85 0.62 1.40 -2.28 -2.06 -3.77

Recovery 0.39 -0.0018 0.073 -0.28 2.19 2.10 -2.30 -1.90 -2.69

Table 4.2: Mean proportions for each cell type by disease state, given on the logit scale.

The trends for the abundance do not show much similarity between physiologies. How-

ever, there does to appear to be an upward trend from symptoms state to recovery state

in most cases. We also see a common downward trend from ‘pre-symptoms’ to ‘symptoms’,

then a rebound back up to ‘recovery’. There is also clear cage variation, where cage 1 (in

red) has much lower BONCAT+ values than the other two cages. For PI+, we see that cage

3 has lower values that the other two.

Since there doesn’t appear to be a linear trend over time, there will be two main models

under consideration: using the disease state as a covariate and dichotomizing the disease

states into ‘symptoms’ and non-‘symptoms’. This dichotomization will allow us to see if the

‘symptoms’ state does correspond to lower levels of HNA bacteria. We refer to the model with

all four disease states as the Disease State model and the model with this dichotomization
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Figure 4.1: Plot of mean HNA abundance for each cage over time.
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Figure 4.2: Plot of mean PI+ abundance for each cage over time.

31



Alicia Ter-Cheam

−2 0 2 4 6 8 10

−
4

−
2

0
2

4

All Mice

Days

S
ta

nd
ar

di
ze

d 
V

al
ue

s

Figure 4.3: Plot of mean BONCAT+ abundance for each cage over time.

Figure 4.4: Histograms of the outcome (BONCAT+) before and after logit transformation
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as the Symptoms model.

Assessing the overall distribution of each cell type using a histogram shows that normality

seems to be obtained using the logit transformation, see Figure 4.4 which shows the case for

BONCAT+ (similar for the other two cell types).

Variability in the dataset is visualized in box plots of the data. These are available in

the Additional Figures section of the Appendix. It is difficult to visually discern whether

there exists a difference in the proportions between each disease state, since values within a

disease state can be quite varied.

Finally, we might want to assess correlation within the data and how that might inform

the type of model we want to use. We’ve assumed correlation between mice in the same

cage, as well as within the measurements taken from the same mouse. Table 4.3 shows

the correlations between pre-symptoms, symptoms, and recovery for the three different cell

types; baseline was not available for cage 1. In Figure 4.5, these correlations are calculated

for all four disease states but only for cages 2 and 3. Because there are uneven observations

in each disease state (see Table 4.1), there is no obvious way to measure correlations in the

raw data and thus we aggregate by using the mouse/cage means.

For both PI+ and BONCAT+, there is high correlation between the different states

but this could feasibly be linked to a within-mouse or within-cage correlation, which are

accounted for in the random effects vj and ui, respectively. Interestingly, the correlations are

much weaker for HNA; this may be because overall variation is smaller for HNA proportions.
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HNA PI+ BONCAT+

(Mouse) Symptoms Recovery Symptoms Recovery Symptoms Recovery

Pre-symptoms 0.068 -0.148 0.859 0.822 0.706 0.832

Symptoms - 0.046 - 0.737 - 0.692

(Cage) Symptoms Recovery Symptoms Recovery Symptoms Recovery

Pre-symptoms 0.961 -0.109 0.996 0.867 0.898 0.990

Symptoms - -0.378 - 0.908 - 0.950

Table 4.3: Correlations between mean disease state values, averages aggregated by mouse

(top) and then by cage (bottom).

Figure 4.5: Correlations between mean disease state values for the latter two experiments,

averages aggregated by mouse. From left to right, correlations are for proportions of HNA,

PI+, and BONCAT+.
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4.3.2 Results from the model

For all three cell types, a simple linear model was fitted first as reference. For all cell types,

there is evidence of a relationship between predictor of ’Disease State’ (in both the four

category predictor and using the dichotomization). However, the linear model appears to be

a poor fit based on the F -statistic and adjusted R-squared values.

Tables 4.4 and 4.5 provide estimates for the two linear models for HNA. Relative to the

‘baseline’ state, only ‘recovery’ is significant; this aligns with ‘baseline’ levels being similar

to ‘symptoms’ and an increase in HNA levels during the ‘recovery’ state. In the ‘Symptoms’

model, we see that there is a significant drop during the ‘symptoms’ state. For PI+ and

BONCAT+, we will also see a drop during the symptoms state. However, since we use

‘baseline’ as our reference in the disease state predictor, there isn’t a consistent change

between all cell types for the Disease State model.

Posterior results for HNA are provided in Tables 4.6 and 4.7. Again, we see similar values

for the fixed effect estimates: when ‘baseline’ state is treated as the baseline, ‘pre-symptom’

and recovery states have slightly higher levels of HNA. ‘Symptoms’ has a slightly lower level,

but not entirely non-zero for the 90% credible interval. Meanwhile, ‘symptoms’ is definitely

linked to lower HNA abundance in the ‘Symptoms’ model.

Looking at the variance estimates, they are quite similar between both models. We find

the cage and mouse variation to be very similar in value (around 0.3); however the cage

variance itself has much greater variation. Again, day by day variation is still larger than

between mouse or between cage variation. Trace plots show reasonable mixing, but we run
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Estimate Std. Error Lower C.I. Upper C.I. p-value

Intercept -0.158 0.10 -0.355 0.040 0.117

Pre-symptoms 0.266 0.14 -0.003 0.535 0.053

Recovery 0.357 0.13 0.109 0.604 0.005

Symptoms -0.111 0.14 -0.379 0.158 0.418

Table 4.4: Estimates for the Disease State linear model for HNA. Confidence interval esti-

mates correspond to the 95% confidence interval. ‘Baseline’ is used as the baseline covariate

value for disease state. Significant coefficients are bolded.

Estimate Std. Error Lower C.I. Upper C.I. p-value

Intercept 0.081 0.05 -0.020 0.181 0.115

Symptoms -0.349 0.11 -0.557 -0.140 0.001

Table 4.5: Estimates for the Symptoms linear model for HNA. Confidence interval estimates

correspond to the 95% confidence interval. Significant coefficients are bolded.

into more autocorrelation in σu, the cage variation, as reflected in its much lower effective

sample sizes. We also have non-zero mass at σu = 0, from divergent transitions.

To get better effective sample sizes and reduce autocorrelation, we performed the MCMC

again with thinning, i.e. keeping only 1/5 of the draws. Thus, for four chains, we had 10,000

iterations with a burn-in of 5000. This still leaves us with 4000 total MCMC draws. This
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thinning increased our effective sample size and did help reduce autocorrelation. That being

said, the posterior estimates themselves were largely the same as in the un-thinned sampling.

Mean SD 5th percentile 95th percentile ESS Rhat

Intercept -0.085 0.23 -0.476 0.278 283 1.02

Pre-symptom 0.207 0.14 0.023 0.422 662 1.01

Recovery 0.265 0.12 0.058 0.471 626 1.01

Symptoms -0.177 0.13 -0.401 0.038 857 1

σu (Cage) 0.303 0.3 0.019 1.028 271 1.01

σv (Mouse) 0.38 0.1 0.246 0.557 1033 1

σ (Residual) 0.93 0.03 0.881 0.982 1346 1

Table 4.6: Posterior estimates for the Disease State linear mixed model for HNA, along with

90% credible interval, effect sample size, and Rhat (to indicate convergence). Non-zero fixed

effects estimates are bolded.

Posterior summaries for PI+ are provided in Tables 4.8 and 4.9. Similar to the HNA data,

the ‘symptoms’ state is associated with lower levels of PI+. Note that the log transformation

causes the intercept to be positive, so all other disease states are negative relative to the

‘baseline’ state. However, symptoms is most negative of all states.

Unlike in HNA, the cage variation is much greater than mouse variation and residual

variation. Effective sample size is very low for σu with high autocorrelation. Residual/day

37



Alicia Ter-Cheam

Mean SD 5th percentile 95th percentile ESS Rhat

Intercept 0.1165 0.23 -0.265 0.51 1062 1.01

Symptoms -0.357 0.10 -0.512 -0.194 3631 1

σu (Cage) 0.32 0.32 0.021 0.928 795 1.01

σv (Mouse) 0.391 0.1 0.251 0.587 1051 1.01

σ (Residual) 0.932 0.03 0.886 0.982 2657 1

Table 4.7: Posterior estimates for the Symptoms linear mixed model for HNA, along with

90% credible interval, effect sample size, and Rhat (to indicate convergence). Non-zero fixed

effects estimates are bolded.

by day variation remains larger than between mouse variation. Note that the values of

the estimates cannot be directly compared since the log was taken of the PI+ proportions.

Thinning could be performed to improve chain mixing and reduce autocorrelation, but it

still appears convergence was reached for the parameters.

Posterior summaries for BONCAT+ from the Bayesian analysis are provided in Tables

4.10 and 4.11. Similar to what we previously found, the ‘symptoms’ state is associated with

reduced levels of the cell type. Like with the HNA data, ‘pre-symptoms’ and ‘recovery’

states have higher levels than the baseline, which is why the credible interval for ‘symptoms’

is mostly negative, but not entirely nonzero.

As expected from the exploratory analysis is Section 2.1, there is a fair bit of cage
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Mean SD 5th percentile 95th percentile ESS Rhat

Intercept 2.29 0.88 0.9 3.325 41 1

Pre-symptom -0.223 0.09 -0.371 -0.077 2326 1

Recovery -0.247 0.09 -0.391 -0.111 407 1.01

Symptoms -0.620 0.09 -0.763 -0.475 1914 1

σu (Cage) 0.993 0.63 0.322 2.348 129 1.02

σv (Mouse) 0.33 0.09 0.215 0.495 970 1

σ (Residual) 0.64 0.02 0.606 0.67 2072 1

Table 4.8: Posterior estimates for the Disease State linear mixed model for PI+, along with

90% credible interval, effect sample size, and Rhat (to indicate convergence). Non-zero fixed

effects estimates are bolded.

variation. As with the PI+ data, it appears that between cage variation is the largest source

of variation. Between mouse variation is estimated to be very low for the BONCAT+ data.

In the HNA data, σu was given a boundary fit in the likelihood-based setting, while we saw

that in the Bayesian setting, it was estimated similarly to σv but with greater uncertainty.

Now, σv has a boundary fit, but we now see a Bayesian posterior that is very close to 0.
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Mean SD 5th percentile 95th percentile ESS Rhat

Intercept 2.198 0.57 1.130 3.120 1002 1

Symptoms -0.430 0.06 -0.538 -0.328 1184 1

σu (Cage) 0.97 0.65 0.319 0.487 284 1.01

σv (Mouse) 0.329 0.09 0.217 0.487 1102 1

σ (Residual) 0.642 0.02 0.609 0.676 3756 1

Table 4.9: Posterior estimates for the Symptoms linear mixed model for PI+, along with

90% credible interval, effect sample size, and Rhat (to indicate convergence). Non-zero fixed

effects estimates are bolded.

4.3.3 Discussion

We can compare the estimated ‘Symptoms’ effect across the different cell types in Table 4.12.

In all cases, the symptoms disease state is associated with lower levels of the cell type. All

abundance values are taken on the logistic scale, log( x
1−x

), where x is between 0 and 1.

In the ‘Disease State’ model, the ‘symptoms’ state is also associated with lower levels of

the cell type, but the ‘baseline’ state in the HNA and BONCAT+ data leads to the credible

intervals overlapping slightly with 0.

We must mention the clear time ordering that exists between the disease states. Most

importantly, the ‘symptoms’ state follows the ‘pre-symptoms’ state and precedes the ‘recov-

ery’ state. We could consider disease state to be an ordinal covariate; however, it wouldn’t
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Mean SD 5th percentile 95th percentile ESS Rhat

Intercept -0.121 0.86 -1.569 1.253 1005 1

Pre-symptom 0.389 0.20 0.051 0.721 2318 1

Recovery 0.382 0.18 0.084 0.680 2041 1

Symptoms -0.246 0.17 -0.535 0.038 2423 1

σu (Cage) 1.445 0.80 0.569 3.15 1064 1

σv (Mouse) 0.088 0.07 0.006 0.221 2161 1

σ (Residual) 0.688 0.04 0.62 0.766 4022 1

Table 4.10: Posterior estimates for the Disease State linear mixed model for BONCAT+,

along with 90% credible interval, effect sample size, and Rhat (to indicate convergence).

Non-zero fixed effects estimates are bolded.

be fully accurate to describe the states as having any sort of rank despite the time order.

The descriptive statistics also didn’t support a linear trend in time and therefore neither in

disease state. Indeed, we expect cell counts to rebound after the ‘symptoms’ state, which

would contradict any direct linear relation.

The first disease state ‘baseline’, which covers experimental days -3 to 0, was chosen as the

baseline for the categorical predictor. While this seemed fitting, it did make it more difficult

to obtain a significant effect for the ‘symptoms’ state as those cell counts tended to be closer

to the ones in the ‘baseline’ state. If ‘pre-symptoms’ were to be chosen as a baseline, we
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Mean SD 5th percentile 95th percentile ESS Rhat

Intercept 0.233 0.85 -1.159 1.689 814 1

Symptoms -0.502 0.13 -0.712 -0.293 4783 1

σu (Cage) 1.444 0.84 0.552 3.109 1196 1

σv (Mouse) 0.089 0.07 0.007 0.215 2302 1

σ (Residual) 0.697 0.04 0.631 0.772 3371 1

Table 4.11: Posterior estimates for the Symptoms linear mixed model for BONCAT+, along

with 90% credible interval, effect sample size, and Rhat (to indicate convergence). Non-zero

fixed effects estimates are bolded.

Mean SD 2.5 percentile 97.5 percentile

HNA -0.32 0.08 -0.49 -0.16

PI+ -0.46 0.07 -0.60 -0.32

BONCAT+ -0.68 0.19 -1.05 -0.32

Table 4.12: Estimated symptoms effect for the different cell types under the ‘Symptoms’

model.

would likely lose the significance of the ‘recovery’ state; the reverse would be true if ‘recovery’

were chosen. We might see a significant difference to the ‘symptoms’ state, in contrast. We

will see that in future analysis, such as that done in Chapter 5, we select ‘symptoms’ as our

42



Alicia Ter-Cheam

Pre-symptoms Recovery Symptoms

HNA 0.19 0.26 -0.16

PI+ -0.20 -0.28 -0.66

BONCAT+ 0.56 0.58 -0.30

Table 4.13: Estimated disease state effects for the different cell types under the ‘Disease State’

model, with ‘baseline’ state as the baseline. Covariates with non-zero credible intervals are

bolded.

baseline state because we wish to contrast it with other states, in particular ‘pre-symptoms’

and ‘recovery’. For the purposes of this analysis, using the Symptoms linear mixed model

with the binary predictor allowed us to show that there was evidence of a drop in cell counts

during the ‘symptoms’ state.

We also look at the estimated variance effects across the different cell types in Table 4.14

under the ‘Symptoms’ model. Table 4.15 shows these same proportions standardized by the

sample standard deviation for each cell type.

In all cell types, residual variability (day to day) is greater than between mouse variability.

However, cage variability is highly dependent on the cell type being measured. As expected

from the mean plots in Figure 4.3, the cage effect is rather large in the BONCAT+ data,

but small in the HNA data. Mouse variability is also estimated to be very close to 0 in the

BONCAT+ data.
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σu (Cage) σv (Mouse) σ (Residual)

HNA 0.27 (0.02, 0.88) 0.33 (0.22, 0.48) 0.78 (0.74, 0.82)

PI+ 0.93 (0.27, 2.38) 0.39 (0.24, 0.64) 0.70 (0.66, 0.75)

BONCAT+ 1.93 (0.62, 4.85) 0.13 (0.01, 0.36) 1.02 (0.91, 1.15)

Table 4.14: Estimated variance effects for the different cell types under the ‘Symptoms’

model, along with the 90% credible interval.

σu (Cage) σv (Mouse) σ (Residual)

HNA 0.32 0.39 0.93

PI+ 0.98 0.41 0.74

BONCAT+ 1.40 0.095 0.74

Table 4.15: Estimated variance effects for the different cell types under the ‘Symptoms’

model, standardized by the sample standard deviation of the proportion for each cell type.
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Chapter 5

Application: 16S sequencing data

5.1 Introduction

The nature of sequencing data poses a challenge when trying to model it: we often see that

it is over-dispersed yet very sparse and is high-dimensional and under-determined [28].

For the larger microbiome dataset, there are counts available for the latter two cages, i.e.

a total of 10 mice. There are also 11 days of observations: days -2 to 0, 3 to 7, 10, 17, and

24. We will also consider the same disease state delineation as described in 2.1. Because of

the large range of values, the log transformation is taken for all nonzero observations. Any

0 counts are kept at 0.

Note that there is only a single measurement of PI+ for all ten mice whereas there are

mouse-specific measurements for the other three cell types. Since it is of interest to determine

which cell-type is abundant in the bacteria over time, we take the average cell counts for all

mice, see Figure 5.1 for reference.
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Figure 5.1: Aggregated log cell counts for Firmicutes bacteria, averaged over all mice. Grey

dashed lines separate the disease states.

5.2 Univariate Gamma GLMM

5.2.1 Methodology

To stabilize some of the overdispersed and underdetermined nature of the sequencing data,

we aggregate taxa using the sum of all daily data points for a physiology, still distinguishing

by mouse.

We will be modelling the taxa individually, hence fitting the model to each taxon one at

a time. While this won’t be able to provide a mathematically holistic understanding of how
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the cell types change over time, we can still discuss findings relevant to each taxon.

Taking the log of integer cell counts, Ycjk ∈ [0, ∞). Indexing follows the same notation

as 2.2, where c = 1, 2, 3, 4 represents the different cell types, j = 1, 2, ..., 10 represents the

mouse, and k = 1, 2, ..., Ki represents the experimental day.

The model:

Ycjk ∼ Gamma(αcjk, βcjk)

log(µcjk) = Xcjkβ + vj

vj ∼ Normal(0, σ2
v)

αcjk = µ2
cjk/ϕ

βcjk = µcjk/ϕ

where vj is the mouse random effect. With only two cages, we don’t include a cage effect,

but will include a fixed effect for cage (though there doesn’t appear to be any evidence in

the descriptive statistics that a cage variable is needed). Thus, there are two fixed effects in

the model: β1 which captures time dependence, and β2 which is the cage effect.

We consider two methods of handling zero counts, which can still occur with the aggre-

gation over the phyla. First would be to ignore these observations and second would be

pad them by a very small value (i.e. 0.01). The second method would allow us to con-

sider all observations, and represents a low count that didn’t happen to be captured during

measurement.

Because there is only a single PI+ observation for all mice for each OTU, we cannot use

a mixed model for PI. Instead, we will have to use a regular gamma GLM.
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Then, to consider the relationship between all four different cell types, we consider the

Dirichlet distribution. From the four independent Gamma distributions [6], we have that

Yc ∼ Gamma(αc, βc), i = 1, ..., 4

V =
4∑

c=1
Yc

Zc = Yc/V

(Z1, Z2, Z3, Z4) ∼ D(α1, α2, α3, α4)

with D(α1, α2, α3, α4) being the four-dimensional Dirichlet distribution.

In the Bayesian model, we assume the following priors for our model, following [8]:

σ2
v , ϕ ∼ Half-Cauchy(0, 2.5)

and the improper uniform prior for β (i.e. the whole real line is considered with equal

probability). For the MCMC draws, we use Stan [3]. We use four chains with 2000 iterations

each, throwing out the first 1000 from each chain as the burn-in.

5.2.2 Research findings

For the researchers, there are six OTUs of interest that correspond to: E. Coli, Akkermansia,

B. Thetaiotamicron, Dubiosella Newyorkensis, Turicibacter, and Parasuturella. We will also

be looking at the five phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and

Verrumicrobia), the twelve classes, and the ten most populous families.

Still looking at the averages, we sum all cell counts for a given day to determine the

proportion of each cell type for a type of bacteria. Continuing with Firmicutes, we plot the
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proportions in Figure 5.2. We can see that the proportion that PI+ makes up decreases

dramatically after day 0. We also see that the BONCAT+ gradually takes up a larger

proportion in Firmicutes over time. LNA also increases its share of the cell count after day

0, being approximately level with HNA by day 6.
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Figure 5.2: Proportions of each cell type for Firmicutes bacteria, averaged over all mice.

There were 7 different phyla observed over the 556 OTUs; however, epsilonbacteraeota

only had 177 counts of which only 2 were nonzero, both on sample day 7. Figures 5.1 and 5.2

showed the patterns in abundance for Firmicutes bacteria; however, we do not necessarily

see these same patterns in the different phyla. In Figure 5.3, we plot the different propor-

tions of each cell type for the three most populous phyla, Bacteroidetes, Firmicutes, and

Proteobacteria. In Figure 5.4, we visualize the most abundant cell type, with the proportion

of the cell count that it makes up. For ease of reading, this is also done for only these three
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most populous phyla.
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Figure 5.3: Proportions of each cell type for the three most populous phyla, Bacteroidetes,

Firmicutes, and Proteobacteria, averaged over all mice.

It is difficult to visualize in a single figure the balance between all cell types for all six

phyla. We often see levels of HNA, LNA, and BONCAT+ similar to each other, with PI+

levels varying the most for the different phyla. We are again interested in seeing if there is

a certain time that helps determine when there are specific changes in these levels.

Without considering the mouse effect, we first see which of the covariates have evidence

of a relationship with cell counts.

We find that for time (i.e. day) is a significant predictor for BONCAT+ and PI+. This

is expected as we see an increase in BONCAT+ levels over time. For PI+, this is likely

because of the high values during the baseline period. It should be noted that treating day

as a linear predictor may be inaccurate as we don’t expect changes to occur linearly with
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Figure 5.4: Cell type with the largest proportion of cell count for the three most populous

phyla, Bacteroidetes, Firmicutes, and Proteobacteria, averaged over all mice.

time, and would be affected by the large values of the follow-up periods, W1 and W2.

For disease state predictor, the ‘recovery’ state is significantly different than baseline for

all cell types. However, this isn’t too meaningful in itself, and the ‘Symptoms’ predictor is

only significant in the case of PI+.

The cage has a significant effect for LNA and BONCAT+ in all three models.

We present the results for the Firmicutes bacteria with the Gamma GLMM in Tables

5.1, 5.2 and 5.3. Convergence seemed to be very good for these models, with Gelman-Rubin

statistics all about 1 and large effective sample sizes.

For PI+, we can only consider the usual gamma GLM since there is a single measurement

for all 10 mice. We still use the same Bayesian approach for fitting our model and the same
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Mean SD 5% 50% 95%

Intercept 6.49 0.12 6.29 6.49 6.67

Day -0.00 0.01 -0.02 -0.00 0.01

Cage -0.03 0.19 -0.35 -0.04 0.29

σ2
v 0.23 0.10 0.11 0.22 0.41

Intercept 6.46 0.16 6.21 6.47 6.70

Symptoms 0.06 0.11 -0.13 0.06 0.23

Cage -0.03 0.20 -0.34 -0.04 0.27

σ2
v 0.25 0.11 0.11 0.23 0.45

Table 5.1: Posterior estimates for the gamma GLMM for HNA in Firmicutes bacteria, along

with 90% credible intervals, with zero counts removed. Non-zero fixed effects estimates are

bolded.

priors without σ2
v . The posterior results are presented in Table 5.4. Convergence was also

quite good for this model.

Looking at the estimate mouse effects, we can see that mouse 8 has much lower values

than the rest of the mice. This is shown in Figure 5.5, with a similar estimate for HNA

and LNA. Otherwise, doesn’t appear to be much mouse effect present. We do note that our

simulation studies have shown a tendency to underestimate the random effect, though with

little impact on the estimation of the fixed effects.

Overall, there doesn’t appear to be any consistent trend in amongst all cell types. How-
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Mean SD 5% 50% 95%

Intercept 6.32 0.15 6.07 6.32 6.55

Day 0.02 0.01 0.01 0.02 0.03

Cage 2 -0.40 0.19 -0.70 -0.40 -0.10

σ2
v 0.26 0.10 0.13 0.24 0.45

Intercept 6.38 0.13 6.17 6.38 6.60

Symptoms 0.14 0.10 -0.03 0.14 0.30

Cage -0.33 0.18 -0.62 -0.33 -0.05

σ2
v 0.22 0.10 0.08 0.20 0.39

Table 5.2: Posterior estimates for the gamma GLMM for LNA Firmicutes bacteria, along

with 90% credible intervals, with zero counts removed. Non-zero fixed effects estimates are

bolded.

ever, this may be expected as we expect different cell types to be more or less abundant

over time. We would then proceed by combining the four gamma distributions into a single

Dirichlet and seeing if there is a time dependence.

When looking at Proteobacteria bacteria, the cage is now only significant for BONCAT+

and time/disease state is only significant for PI+. This aligns with what we can see in the

average counts over time for Proteobacteria in Figure 5.6.

For the most part, mouse effects tend to be non-significant, except for mouse 8 which

always has lower levels for all three cell types (recall that PI does not have unique values for
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Mean SD 5% 50% 95%

Intercept 6.25 0.38 5.61 6.28 6.84

Day 0.02 0.01 0.01 0.02 0.04

Cage -0.44 0.23 -0.81 -0.44 -0.06

σ2
v 0.31 0.14 0.13 0.29 0.57

Intercept 5.75 0.14 5.52 5.75 5.98

Symptoms 0.03 0.11 -0.16 0.03 0.22

σ2
v 0.18 0.10 0.04 0.17 0.37

Table 5.3: Posterior estimates for the gamma GLMM for BONCAT+ Firmicutes bacteria,

along with 90% credible intervals, with zero counts removed. Non-zero fixed effects estimates

are bolded.

each mouse). Mouse 7 has significantly lower levels of HNA, but average levels of the other

two cell types.

We use Bayes factors [14] as a means of evaluating whether there is evidence to support

a time dependence in the data, particularly as an alternative to the frequentist p-value. The

Bayes factor is the ratio of the posterior odds of our hypothesis H1 to its prior odds. They

are provided in Table 5.5. Following Kass and Raftery, we will consider values of 3.2 to 10

to be substantial evidence, 10 to 100 to be strong, and over 100 to be decisive evidence.

Overall, there is plenty of evidence to suggest that there is a time dependence for the

different bacterial physiologies in our OTUs of interest. In particular, HNA shows strong to
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Mean SD 5% 50% 95%

Intercept 6.22 0.20 5.88 6.23 6.55

Day -0.03 0.01 -0.05 -0.03 -0.01

Cage 0.00 0.10 -0.17 0.00 0.18

Symptoms 0.09 0.11 -0.10 0.09 0.27

Cage 0.00 0.10 -0.16 0.00 0.18

Table 5.4: Posterior estimates for the gamma GLM for PI+ Firmicutes bacteria, along with

90% credible intervals, with zero counts removed. Non-zero fixed effects estimates are bolded.
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Figure 5.5: 90% confidence intervals for the estimated mouse effects for BONCAT+ Firmi-

cutes bacteria.
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HNA LNA BONCAT PI

E. Coli 4398 0.05299 62.59 3.330 ×106

Akkermansia 8.309 ×106 1.412 ×1011 1.159 ×1014 0.8112

B thetaiotaomicron 3.158 ×1033 1.403 ×1011 1.187 ×1039 0.7838

Dubosiella newyorkensis 4.647 ×105 1.111 ×108 4.245 ×106 7.010 ×109

Turicibacter 0.03308 1.119 8817 0.2888

Muribaculaceae 20.21 2.324 ×104 0.1292 1.293 ×107

Eubacterium 18.82 0.9826 0.1830 6.575

Muribaculaceae 19.57 2.330 ×104 0.1385 1.356 ×107

Parasutterella 9265 9.409 ×107 3.193 0.2961

Table 5.5: Bayes factors for the day predictor for the OTUs of interest. Bolded values are

those which have shown decisive evidence in favour of a time dependence.

decisive evidence of a time effect for almost all the bacteria except Turicibacter. It should

be noted that there is evidence of time dependence for at least one physiology for all of the

different OTUs; however, Turicibacter only has evidence of time dependence in BONCAT.

5.2.3 Discussion

Several models were fit using this dataset: one with only a time predictor (day), one using the

disease states as a categorical predictor and one using the same binary ‘symptoms’ covariate

from 4.3. These models were also all fit to five different phyla, each of the classes, the ten
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Figure 5.6: Aggregated log cell counts for Proteobacteria bacteria, averaged over all mice.

Grey dashed lines separate the disease states.

most populous families, and eight OTUs. Hence, it would be tedious to include tables with

all the estimated parameters. Furthermore, they likely wouldn’t be very informative without

a specific taxon we would want to analyze in greater detail.

As mentioned in 5.2.1, a disadvantage to this model is that we cannot easily compare

results from the different taxa without direct comparison of the estimated quantities. We

also encounter a lot of variability between the different taxa and no clear patterns amongst

them. This makes it difficult to conclude much more than the fact that there exists some

time-dependence structure in the data.

Ultimately, we are currently satisfied to simply identify the existence of some time de-

pendence as it is sufficient for showing the dynamic nature of the gut microbiome. This also
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aligns with what was found in Section 4.3.

5.3 Multinomial GLMM

While the previous methods allowed us to answer questions about how the individual phys-

iologies changed over time, we still wanted a method to answer questions about how the

abundances of cell types changed relative to each other. For instance, are certain taxa more

likely to be abundant in HNA during the pre-symptoms disease state?

In order to assess these questions, we would require a model that dealt with the multi-

variate response.

5.3.1 Methodology

We consider a multinomial generalized linear mixed model, where the response is the vector

Y ∈ Z4 containing the cell counts of HNA, LNA, BONCAT+, and PI+ for the OTUs of

interest. Thus, our model is

Yjk ∼ Multinomial(π1jk, ..., π4jk)

with πcjk, c = 1, ..., 4 representing the proportion of cells being of each physiology and

such that ∑4
c=1 πcjk = 1. Again, j = 1, 2, ..., 10 represents each mouse and k = 1, 2, ..., K

represents the experimental day. We’re going to omit the fixed cage effect used in Section 5.2,

as this model already contains many parameters to be estimated and there was no evidence

to include it in the previous model.
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Following along with the GLMM set-up, we have that

log
(

πcjk

π4jk

)
= Xjkβc + vj

(π1jk, ..., π4jk) ∼ D(α1jk, ..., α4jk)

vj ∼ Normal(0, σ2
v)

σ2
v ∼ Half-Cauchy(0, 2.5)

where vj is the mouse random effect and D(α1jk, ..., α4jk) is the four-dimensional Dirichlet

distribution. Notice that this is similar to when we combined four independent Gamma

distributions in Section 5.2.1.

For this data, we consider the disease state predictor, as we had done in the proportions

data. In this case, the ‘symptoms’ state will be our baseline disease state. Figure 5.7

shows the proportions averaged over all mice for each day, as well as averaged for each

disease state. We won’t be using the time predictor, since there does not appear to be any

linear trend. In this analysis, we will focus on just the six OTUs the researchers chose to

study: E. Coli, Akkermansia, B. thetaiotaomicron, Dubiosella newyorkensis, Turicibacter,

and Parasutterella.

To understand the meaning of the coefficients β that are being estimated, we return to

the perspective of looking at cell counts. Another way of viewing the multinomial is if we

think of the multinomial being built from a conditional Poisson distribution. Let µc be the

mean count for the c-th cell type. Ignoring indexing on X for simplicity, we could also define:

log µc(X) = βc
0 + βc

1x1 + ... + βc
1x4 = Xβc
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Figure 5.7: Proportions of each cell type for E. Coli bacteria, averaged over all mice.

where xi = 1, ..., 4 is the indicator variable for the disease states baseline, pre-symptoms,

recovery, and follow-up, respectively.

For identifiability, β4 = 0, i.e. we set BONCAT+ as the baseline cell type. The condi-

tional distribution that yields the log-likelihood is a multinomial distribution where we get

our probabilities

πc(X) = eXβc∑4
l=1 eXβl

,

with indexing by mouse and experimental day left out for ease of reading. Since β4 = 0, we

have that

π4(X) = 1
1 +∑3

l=1 eXβl
, πc(X) = eXβc∑3

l=1 eXβl
, c = 1, 2, 3

For the ‘symptoms’ disease state, Xβc = βc
0. For all remaining disease states i = 1, ..., 4,

Xβc = βc
0 + βc

1xi.
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5.3.2 Research findings

Of interest are the odds ratios, i.e. how much more likely a cell is to be a specific physiology

over another physiology. In Table 5.6, we include the odds ratios for the different physiologies

in E. coli. For ease of reading, the rest of these tables for the remaining OTUs are included

in the Appendix.

We consider the ‘symptoms’ state to be our baseline. Thus in the table, we can interpret

0.622 (in the first row, first column of values) to mean that HNA is 0.622 times more likely to

be abundant than BONCAT+ during the symptoms period. Meanwhile, we can read 1.632

(in the second row, third column of values) as the odds of an E. coli bacteria being LNA

is 1.632 times the odds of the bacteria being BONCAT+ during the pre-symptoms state.

The bacteria ‘being LNA’ refers to LNA being the dominant cell type, if we consider a strict

classification based on cell abundances.

5.3.3 Discussion

Overall, we can see that there are many significant differences in the odds of a bacteria

being more dominant in one physiology over another. That is to say there is evidence that

a bacteria is more likely to have proportions of one cell type than another.

There aren’t many overall trends that we can grasp just by looking at the six OTUs.

We must also consider two baselines concurrently: the disease state baseline as well as the

baseline physiology in our odds ratio. It might be useful to find some method that allows us
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(Intercept) Baseline Pre-Symptoms Recovery Follow-up

Odds ratio (relative to BONCAT+)

HNA 0.622 1.132 0.897 1.194 0.690

LNA 0.487 1.152 1.632 0.850 0.557

PI 0.546 0.516 2.556 1.141 0.737

Odds ratio (relative to HNA)

LNA 0.782 0.796 1.423 0.557 0.631

PI 0.877 0.400 2.500 0.838 0.937

Odds ratio (relative to LNA)

PI 1.121 0.502 1.757 1.505 1.485

Table 5.6: Multinomial GLMM odds ratios for E. coli bacteria. Bolded values are nonzero

at the 90% credible level.

to harmonize all these results, beyond the specific disease state and physiology the research

would have to focus on.

This model was very difficult and slow to run using Bayesian inference, especially when

including the random effects. None of the random effects had non-zero value, on the 95%

credible level. There was also much autocorrelation in the mouse effect.
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Chapter 6

Discussion

6.1 On the research questions

The main interest of the researchers was determining whether the bacterial abundances

changed over time, particularly between different physiological states throughout the pro-

gression of the disease. Through the generalized linear mixed models, we were able to char-

acterize how the bacterial OTU changes between physiological fractions with time. We saw

evidence that there were changes in abundances between physiological states. For instance,

Turicibacter changed in BONCAT+ without changing in HNA or LNA.

We were also able to observe which of the physiologies/cell types was most dominant for

the different physiological periods. In the onset of colitis, BONCAT increased moving from

PI-dominant bacteria changing to BONCAT-dominant physiology.

Using the proportions data set, we were able to compare the different disease states and

whether there was a change in cell proportions between the different states. Of interest was

whether this change in proportions was specific to each cell type. Amongst all cell types, we

found a drop in proportions during the symptoms state, which we could characterize using
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the dichotomized disease state variable.

It should be noted that the sequencing data, which dealt with nine different OTUs, was

too variable day-by-day to provide any clear results regarding disease states. The analysis

for the sequencing data instead focussed on identifying a time-dependence for each cell type.

The highly variable nature of this data made it quite difficult to decide on an appropriate

predictor to consider. We saw definite peaks around the symptoms state, i.e. days 4-6 of

the experiment; however, the specific day of the peak varied for each cell type and OTU. As

we needed to keep it consistent among all the physiologies, we couldn’t capture this peak

appropriately with any one day. Choosing instead to group days by disease state, as done by

the proportions data, also did not provide useful results as the groupings tended to neutralize

any of the sharp peaks we saw in the raw data. Thus, just a general time variable was all

we could consider.

The logistic regression model from 4.3 and the multinomial model from 5.3 both consid-

ered disease state as a categorical predictor. Therefore, one of the states needed to be set

as the baseline in the model; this was ‘baseline’ in 4.3 and ‘symptoms’ in 5.3. There is more

specific discussion in 4.3.3 about the possible impact of these choices. After becoming more

familiar with the dataset over time, a more informed decision was made to choose ‘symptoms’

as the baseline in 5.3. This is because it was of greater interest for the researchers to contrast

cell abundances in the different states with the ‘symptoms’ state. While we might want to

revisit the disease state model with different baselines, specifically ‘symptoms’, we found

that the symptoms model with the dichotomized disease state was sufficient to describe the
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changes in cell behaviour.

That being said, we found that the diversity is very dynamic over time, as shown by

the large within mouse variation relative to the variation between mice or between cage, of

which there was no strong evidence. In fact, rarely were the random effects significant when

looking at the 90% credible intervals. However, it must be noted that these GLMMs have

a tendency to underestimate the true random effect, as shown in our simulation study in

Section 3.3. That being said, the simulation study showed that, despite the random effects

being underestimated, there was not much impact on the estimation of the fixed effect which

is of more interest to the researchers.

6.2 Future work

In order to handle the zero-inflation of the sequencing data, we aggregated different obser-

vations to those of the same class, phyla, etc. It might be worth exploring a more direct

method of handling the zeros, such as using a Beta-Binomial model.

There is also interest for the researchers to looking into general trends among different

bacteria. In our model in Section 5, we tended to look at each OTU (or phylum) individu-

ally and make conclusions on an individual basis. However, it would be worth considering

different OTUs simultaneously to get a sense of the overall gut microbiome. In particular,

this would make it much easier to get a sense of the results, rather than having to parse

through each set of estimated parameters that come from each OTU’s model.
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Chapter 7

Conclusion

The aim of this research was to determine whether there was statistical evidence of changes

in physiology during the different biological disease states. We also wanted to see how well

a generalized mixed model performed for the data which included both proportions and

standardized counts.

With the proportions data, where different cell types were seen as a proportion of the

entire gut microbiome bacterial population, we were able to say that there was indeed evi-

dence of change within the bacterial physiology for the different disease states. This data set

used a logistic mixed regression model with random effects added for the cage and mouse.

It was found that during the symptoms state, there was a significant drop in cell count

amongst all cell types, relative to the cell counts in the other states. However, it was more

difficult to parse out the other states, such as finding a difference between the recovery and

the pre-symptoms state. However, as focus was on the symptoms state, these results were

sufficient for the biological analysis.

In the sequencing data, we looked at nine bacterial OTUs and their standardized cell

counts, which are more reflect of the raw counts in contrast to the default relative abundances.
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The data were highly variable between different OTUs and for each day. Grouping days by

disease state, as done with the proportions data, tended to neutralize any of the peaks in

cell count that we wanted to characterize. Instead, the analysis focussed on a general time-

dependence and we were able to conclude that there was change in abundances over time

for all the OTUs.

The generalized mixed models used were usually able to capture the changes in the data,

though the random effects themselves were usually not significant. In fact, time-variation

was usually much larger than any variation between cages or between mice. In the future, we

would be interested in looking at how we might better handle this highly variable dataset,

which was also rife with systematic zeros. This might be done using a Beta-Binomial model,

for instance.

In our analysis of the data, we were indeed able to find evidence of change in the physi-

ology during the different biological disease states.
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Appendix A

Multinomial tables from Section 5.3.2.

(Intercept) Baseline Pre-Symptoms Recovery Follow-up

Odds ratio (relative to BONCAT+)

HNA 0.972 1.383 0.629 0.976 0.912

LNA 0.998 1.658 0.831 1.029 1.118

PI 0.631 2.666 0.635 1.101 0.453

Odds ratio (relative to HNA)

LNA 1.026 1.230 1.355 1.081 1.258

PI 0.649 1.250 0.654 0.732 0.323

Odds ratio (relative to LNA)

PI 0.632 1.016 0.483 0.677 0.256

Table A.1: Multinomial GLMM odds ratios for Akkermansia bacteria. Bolded values are

nonzero at the 90% credible level.
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Alicia Ter-Cheam

(Intercept) Baseline Pre-Symptoms Recovery Follow-up

Odds ratio (relative to BONCAT+)

HNA 1.284 2.448 1.072 1.117 1.196

LNA 1.318 2.652 1.279 1.108 1.248

PI 0.822 3.450 0.875 0.770 0.511

Odds ratio (relative to HNA)

LNA 1.026 1.111 1.224 1.017 1.070

PI 0.640 0.902 0.522 0.441 0.273

Odds ratio (relative to LNA)

PI 0.624 0.811 0.427 0.433 0.255

Table A.2: Multinomial GLMM odds ratios for B. thetaiotaomicron bacteria. Bolded values

are nonzero at the 90% credible level.
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Alicia Ter-Cheam

(Intercept) Baseline Pre-Symptoms Recovery Follow-up

Odds ratio (relative to BONCAT+)

HNA 1.171 1.793 0.910 1.088 0.868

LNA 1.300 1.493 1.068 1.019 0.943

PI 0.716 2.790 0.854 1.347 1.048

Odds ratio (relative to HNA)

LNA 1.111 0.925 1.303 1.040 1.207

PI 0.612 0.952 0.574 0.758 0.738

Odds ratio (relative to LNA)

PI 0.551 1.029 0.440 0.728 0.612

Table A.3: Multinomial GLMM odds ratios for Dubosiella newyorkensis bacteria. Bolded

values are nonzero at the 90% credible level.
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Alicia Ter-Cheam

(Intercept) Baseline Pre-Symptoms Recovery Follow-up

Odds ratio (relative to BONCAT+)

HNA 1.173 0.791 0.595 0.794 0.742

LNA 1.500 0.706 0.588 0.614 0.708

PI 1.250 0.748 0.460 0.614 0.807

Odds ratio (relative to HNA)

LNA 1.279 1.143 1.264 0.988 1.220

PI 1.066 1.008 0.824 0.824 1.159

Odds ratio (relative to LNA)

PI 0.833 0.882 0.652 0.833 0.950

Table A.4: Multinomial GLMM odds ratios for Turicibacter bacteria. Bolded values are

nonzero at the 90% credible level.
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Alicia Ter-Cheam

(Intercept) Baseline Pre-Symptoms Recovery Follow-up

Odds ratio (relative to BONCAT+)

HNA 2.647 2.583 1.769 1.206 0.979

LNA 2.490 6.954 8.995 1.459 1.598

PI 1.275 11.684 7.190 1.269 0.944

Odds ratio (relative to HNA)

LNA 0.941 2.532 4.782 1.138 1.536

PI 0.481 2.177 1.956 0.507 0.464

Odds ratio (relative to LNA)

PI 0.512 0.860 0.409 0.445 0.302

Table A.5: Multinomial GLMM odds ratios for Parasutturella bacteria. Bolded values are

nonzero at the 90% credible level.
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Appendix B

Additional figures
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Figure B.1: Additional figure from 4.3.1: Box plot of distributions of the HNA value per

cage and per disease state.
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Alicia Ter-Cheam
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Figure B.2: Additional figure from 4.3.1: Box plot of distributions of the PI+ value per cage

and per disease state.
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Figure B.3: Additional figure from 4.3.1: Box plot of distributions of the BONCAT+ value

per cage and per disease state.
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