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Abstract

Principal component analysis (PCA) is a popular statistical tool typically presented as a dimensionality

reduction algorithm. PCA’s strengths apply when high-dimensional data is said to roughly lie on a lower-

dimensional subspace, allowing for the disposal of non-essential dimensions in favour of representing the

inputs more parsimoniously. The procedure is based upon the search for an orthogonal linear subspace

spanning a lower dimension than the input dimension. In the classical setting this can be accomplished

by performing a singular value decomposition (SVD) on the sample covariance matrix. However, it is

this reliance on the SVD that bear out two major weaknesses of PCA. The first such weakness are its

computational restrictions. Computing the sample covariance and the following SVD may be infeasible in

situations where the volume of data is too large, or simply inappropriate in situations where we wish to

compute live updates associated with some serialized data stream. The next weakness is PCA’s fragility to

outliers deviating off the true subspace.

This thesis first aims to review several existing solutions to these problems by exploring the development

of streaming/stochastic algorithms addressing its computational limitations, and the development of robust

algorithms addressing its sensitivity, as well as implementations of algorithms that are both robust and

streaming. Following this review a novel robust streaming estimator is presented based on a percentile-based

hard-thresholding function, presented as a streaming implementation of the robust PCA algorithm developed

by Zhang and Yang (2018).
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Résumé

L’analyse en composantes principales (ACP) est un outil statistique populaire généralement présenté comme

un algorithme de réduction de la dimensionnalité. Les points forts de l’ACP s’appliquent lorsque des données

à haute dimension se trouvent en gros dans un sous-espace à plus faible dimension, ce qui permet d’éliminer

des dimensions non essentielles au profit d’une représentation plus parcimonieuse des entrées. La procédure

est basée sur la recherche d’un sous-espace linéaire orthogonal couvrant une dimension inférieure à la di-

mension d’entrée. Dans le cas classique, cela peut être accompli en effectuant une décomposition en valeur

singulière (DVS) sur la matrice de covariance de l’échantillon. Cependant, c’est cette dépendance à l’égard

de la DVS qui confirme deux faiblesses majeures de l’ACP. La première de ces faiblesses réside dans ses

restrictions de calcul. Le calcul de la covariance de l’échantillon et de la DVS suivante peut s’avérer impos-

sible dans les cas où le volume de données est trop important, ou simplement inapproprié dans les situations

où nous souhaitons calculer des mises à jour en direct associées à un flux de données sérialisées. L’autre

faiblesse est la fragilité de l’ACP aux aberrations s’écartant du véritable sous-espace.

Cette thèse vise d’abord à examiner plusieurs solutions existantes à ces problèmes en explorant le

développement d’algorithmes de streaming/stochastique répondant à ses limites de calcul, et le développement

d’algorithmes robustes répondant à sa sensibilité, ainsi que les implémentations d’algorithmes qui sont à la

fois robustes et de streaming. Suite à cet examen, un nouvel estimateur robuste de streaming est présenté,

basé sur une fonction de seuillage dur au centile, et est présenté comme une implémentation de streaming

de l’algorithme PCA robuste développé par Zhang et Yang (2018).
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Chapter 1 Introduction

1.1 Motivation

Trends toward large data regimes have seen data collection and storage volumes grow more rapidly than

the computing power needed for processing and analysis (Yelick, 2017). In addressing this problem it is a

natural question to ask whether there exists some pre-processing transformation which permits the user to

“compress” the data without a “material loss of information”, both defined herein. Principal component

analysis (PCA) is a popular tool for such a transformation following its independent derivation by Pearson

(1901) and Hotelling (1933). In the context of PCA we may interpret “compression” to refer to carrying

out a linear transformation on the data from its original higher-dimensional space to a lower-dimensional

subspace, and “without material loss of information” to refer to minimizing the loss between the original

data and its low-dimensional projection. Other interpretations exist and will be examined in later sections.

In situations where the number of observations is high or the dimension of the original space is large, it

may become impractical or infeasible to compute the PCA estimator using the entire sample of observations.

In such situations streaming algorithms are offered as a solution. We refer to an algorithm as streaming (also

known as stochastic or online) if it computes iterative updates towards the true estimator using only a single

observation at a time. We contrast such algorithms with offline algorithms (also known as batch algorithms)

which have full access to the sample of observations when providing an update rule to an estimator.

In Section 2 we will review the classical description of PCA in both offline and online settings. In Section

3 we motivate the need for robustness and review existing offline and online robust PCA procedures. We

then present the robust algorithm from (Zhang and Yang, 2018) and build upon it to derive a novel robust

streaming PCA algorithm. In Section 4 we demonstrate the performance of this algorithm in a number of

different settings and discuss its efficacy as a robust streaming solution to the problem of low-rank subspace

estimation.
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Chapter 2 Principal Component Analysis

2.1 Classical PCA

Consider a set of D potentially correlated random variables

x = (x1, ..., xD)T ,

with covariance matrix Σxx. Without loss of generality assume E[x] = 0. Principal component analysis

seeks to generate a set of d ordred and uncorrelated linear projections

z = (z1, ..., zd)
T , 1 ≤ d ≤ D,

from the D the input variables x. The imposition of linearity on the transformation of x informs us that

each composite variable zj can be written as

zj = vj1x1 + · · ·+ vjDxD = vTj x, j = 1, ..., d,

where vj = (vj1, ..., vjD)T is a (D × 1)-dimensional vector of projection coefficients, known as the jth

principal component. The PCA algorithm determines the d principal components (v1, ...,vd) such that

1. the d linear projections (z1, ..., zd) of x are ranked according to their variance

Var(zj) = Var(vTj x) = vTj Var(x)vj = vTj Σxxvj ,

in decreasing order, Var(z1) ≥ · · · ≥ Var(zd), and

2. each zj is orthogonal to all other zk, k 6= j, i.e.

0 = Cov(zj , zk) = E [(zj − E[zj ])(zj − E[zk])] = E [zjzk] = E
[
vTj xxTvk

]
= vTj Σxxvk.

3



4 CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS

To determine a unique (D × d)-dimensional subspace parameterized by this linear transformation V =

[v1, ...,vd] we must impose some optimality condition on the principal components. Two popular derivations

of PCA view such a condition as either a variance-maximization problem or a least-squares optimization

problem. The ladder is analogous to the “material loss of information” interpretation of PCA discussed

above while the former can be thought as seeking the linear combinations z retaining the greatest amount

of information of its inputs x under a low-rank constraint. The details of both derivations, as well as their

relationship to each other, are discussed next.

2.1.1 PCA as a Variance Maximization Problem

2.1.1.1 Iterative Algorithm

As stated above, PCA seeks to generate an orthogonal linear transformation of its input variables and rank

these projections in order of decreasing variance. Therefore, if we wish to determine the first principal

component z1 we must solve

maximize
v1∈RD

Var(z1) s.t. vT1 v1 = 1.

Noting that

Var(z1) = vT1 xxTv1 = vT1 Σxxv1,

we more typically express this maximization problem as

maximize
v1∈RD

vT1 Σxxv1 s.t. vT1 v1 = 1.

Note that the normalization constraint must be introduced in order to avoid unbounded solutions ‖v1‖ →

∞ and that orthogonality cannot yet be enforced since no other principal components are in consideration.

Define the Lagrangian function f corresponding to the above optimization problem,

f(v1) = vT1 Σxxv1 + λ1(1− vT1 v1),

where λ1 is the Lagrange multiplier. Differentiating f and setting the result to zero,

∂f(v1)

∂v1
= 2 (Σxx − λ1ID) v1 = 0.

From elementary linear algebra, the above equation has a nonzero solution v1 if and only if the determi-
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nant of Σxx − λ1ID is zero. Therefore, if v1 is nondegenerate, and (λ1,v1) satisfy

Σxxv1 = λ1v1,

then λ1 must be largest eigenvalue of Σxx (since we are maximizing f) and v1 its correspoding eigenvector.

Substituting this solution into the original objective yields

Var(z1) = vT1 Σxxv1 = vT1 λ1v1 = λ1,

informing us that the variance of z1 is precisely equal to the largest eigenvalue of Σxx. To find the second

principal component v2 we now solve a similar constrained problem to that of v1, with the addition of an

orthogonality constraint vT1 v2 = 0, i.e.

maximize
v2∈RD

Var(z2) s.t. vT2 v2 = 1, vT1 v2 = 0.

Form the associated Lagrangian function

f(v2) = vT2 Σxxv2 + λ2(1− vT2 v2) + µvT1 v2,

now with the additional multiplier of µ associated with the orthogonality constraint. Differentiating with

respect to v2 and setting the result to zero,

∂f(v2)

∂v2
= 2 (Σxx − λ2ID) v2 + µv1 = 0. (2.1)

Left-multiplying both sides of (2.1) by vT1 yields

0 = 2vT1 (Σxx − λ2ID) v2 + µvT1 v1

= 2vT1 Σxxv2 + µ,

while left-multiplying both sides of (2.1) by vT2 yields

0 = 2vT2 (Σxx − λ2ID) v2 + µvT2 v1

= vT2 Σxxv2.
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Summing these two results,

0 = 2vT1 Σxxv2 + µ+ vT2 Σxxv2

= 0 + µ+ 0

= µ.

Plugging this value for µ into the original derivative gives

∂f(v2)

∂v2
= 2 (Σxx − λ2ID) v2 = 0.

Similar to the first principal component, this equation informs us that λ2 must be the next largest

eigenvalue of Σxx with corresponding eigenvector v2, and that Var(z2) = λ2.

Continuing in this way we can iteratively derive the remaining principal components z3, ..., zd:

1. Choose vj so that zj = vTj x has its variance maximized and is uncorrelated with all previous projections

z1, ..., zj−1.

2. The coefficients vj are given by the jth eigenvector of Σxx, associated with the jth largest eigenvalue

λj .

3. The variance of the jth component is given by the jth eigenvalue λj so that by construction Var(z1) ≥

· · · ≥ Var(zd).

2.1.1.2 Matrix Algorithm

It is typically more convient to express the variance maximization problem as a simultaneous procedure over

the matrix of coefficients V rather than a sequence of procedures over vectors v1, ...,vd. We are able to

express the d transformed variables z1, ..., zd more succinctly using the matrix product

z = (z1, ..., zd)
T = VTx,

where V = [v1, ...,vd] ∈ RD×d is a linear transformation aspiring to contain the principal components of

x. We can combine the d objective functions from the iterative procedure by noting that

max
v1,...,vd

d∑
j=1

Var(zj) = max
v1,...,vd

trace (Σzz) ,
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but

Σzz = Var(z) = Var(VTx) = VTVar(x)V = VTΣxxV

so

max
v1,...,vd

d∑
j=1

Var(zj) = max
v1,...,vd

trace (Σzz) ,

= max
V

trace
(
VTΣxxV

)
.

This final quantity is sometimes written even more succinctly using the Frobenius inner product 〈A,B〉F =

trace(ATB),

max
V

trace
(
VTΣxxV

)
= max

V
trace

(
VVTΣxx

)
(cyclic property of the trace)

= max
V
〈VVT ,Σxx〉F .

Next, we can express the sequence of normalization and orthogonality constraints

vTj vj = 1, j = 1, ..., d

vTj vk = 0, j 6= k,

as the product

VTV = Id.

That is, the sequence of constraints in the iterative algorithm is equivalent to restricting V to orthonormal

(D × d) linear transformations. Putting the objective and constraint together we are able to express the

complete variance maximization problem as the following constrained problem

maximize
V

trace
(
VTΣxxV

)
s.t. VTV = Id. (2.2)

Recall that the iterative algorithm’s solutions v1, ...,vd were precisely the solutions to the (ordered)

eigenvalue-vector equations

Σxxvj = λjvj , j = 1, ..., d,

corresponding to the largest d eigenvalues. Therefore, the solutions can be expressed as the simultaneous
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system

ΣxxV = ΛV,

where Λ = diag (λ1, ..., λd) is a matrix containing the ordered eigenvalues of Σxx along the diagonal and

zeros elsewhere. Letting V∗ ∈ RD×d denote the optimal subspace defined by the first d eigenvectors of Σxx,

the maximized variance contained by the first d projections is

max
v1,...,vd

d∑
j=1

Var(zj) = max
V∈RD×d

trace
(
VTΣxxV

)
= trace

(
V∗T

(
V∗ΛV∗T

)
V∗
)

= trace(Λ)

=

d∑
j=1

λj .

That is, the maximized variance of the first d principal components is precisely the sum of the largest d

eigenvalues of the input variables’ covariance matrix. This result is sometimes more generally referred to as

Ky Fan’s maximum principle (Fan, 1949, 1950; Vu et al., 2013a).

2.1.2 PCA as a Least-Squares Problem

In the least-squares setting we PCA as being tasked with finding some “encoding” function f that generates

a lower-dimensional transformation of its inputs x (Goodfellow et al., 2016). Let z denote this d-dimensional

encoding of x given by f , i.e.

z = (z1, ..., zd)
T = f(x) = f((x1, ..., xD)T ).

In addition to the encoding function f , PCA must also find a corresponding “decoding” function g that

allows us to approximately reconstruct inputs x given the encoded variables z,

x ≈ g(z) = g(f(x)).

Principal component analysis restricts the decoder g to the set of linear transformations

g(z) = Vz,
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where V ∈ RD×d and whose columns are orthonormal,

VTV = Id.

As is no surprise in the least-squares setting, we operationalize “approximate reconstruction” of inputs

x to be the squared `2-norm of the difference between x and its reconstruction g(z) = Vz. This gives rise

to the following least-squares objective

min
z

E
[
‖x− g(z)‖22

]
= min

z
E
[
‖x−Vz‖22

]
,

where we have assumed V to be fixed for the time being. We can expand this objective as

‖x−Vz‖22 = (x−Vz)
T

(x−Vz)

= xTx− 2xTVz + (Vz)
T

Vz

= xTx− 2xTVz + zTVTVz

= xTx− 2xTVz + zT z.

Computing the gradient ∇z

∇z‖x−Vz‖22 = ∇z

(
xTx− 2xTVz + zT z

)
= −2VTx + 2z,

and setting this to 0 yields the first order condition,

0 = ∇z‖x−Vz‖22

⇐⇒ 0 = −2VTx + 2z

⇐⇒ z = VTx.

Therefore, the assumption that decoder g is linear leads to the least-squares optimal encoder f given by

z = f(x) = VTx.
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Hence, the d-dimensional reconstruction of x defined by PCA through the least-squares procedure is

g(f(x)) = g(VTx) = VVTx.

In the least-squares context it is not uncommon to see the orthogonality constraint on V to be presented

instead as low-rank constraint on orthogonal projection matrices W. A square matrix W ∈ RD×D is said

to be an orthogonal projection matrix if it is both idempotent and symmetric,

W2 = WT = W.

With such a matrix W the restriction VTV = Id is equivalent to restricting W so that rank(W) = d

(Chang et al., 2014; Nie et al., 2016; Warmuth and Kuzmin, 2008). To see this equivalence we interpret W

as the linear transformation mapping inputs x onto a low-rank subspace,

g(f(x)) = Wx = VVTx ≈ x,

and if V ∈ RD×d, then rank(VVT ) = rank(V) = d. Secondly,
(
VVT

)T
= VVT so

(
VVT

)2
=
(
VVT

)T (
VVT

)
= VVTVVT = VVT ,

i.e. VVT is indeed an idempotent, symmetric, rank-d matrix, admitting it into the set of orthogonal

projections. Therefore, any solution V∗ to the constrained least-squares problem

V∗ = arg min
V

E
[
‖x−VVTx‖22

]
s.t. VTV = Id

must also solve the problem

W∗ = arg min
W

E
[
‖x−WTx‖22

]
s.t. W2 = W, rank(W) = d

according to W∗ = V∗V∗T .

2.1.3 Least-Squares and Variance Maximization Equivalence

We now wish to show that the two interpretations of PCA are indeed equivalent. Given inputs x =

(x1, ..., xD)T and a (D × d)-dimensional subspace parameterized by V = [v1, ...,vd], we express a lower-
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dimensional set of approximations z = (z1, ..., zd)
T as the linear combinations z = VTx. We begin from the

least-squares procedure

minimize
V

E
[
‖x−VVTx‖22

]
s.t. VTV = Id.

Expanding the objective

min
V

E
[
‖x−VVTx‖22

]
= min

V
E
[(

x−VVTx
)T (

x−VVTx
)]

= min
V

E
[
xTx− xTVVTx− xTVVTx + xTVVTVVTx

]
= min

V
E
[
−2xTVVTx + xTVVTx

]
= min

V
E
[
−xTVVTx

]
= max

V
E
[
xTVVTx

]
.

Since xTVVTx is a one-dimensional scalar we can express it as the trivial trace

max
V

E
[
xTVVTx

]
= max

V
E
[
trace

(
xTVVTx

)]
.

Using the cyclic property of the trace operator,

max
V

E
[
trace

(
xTVVTx

)]
= max

V
E
[
trace

(
VTxxTV

)]
= max

V
E
[
trace

(
zzT

)]
= max

V
trace

(
E
[
zzT

])
(linearity of the trace)

= max
V

trace (Var (z)) ,

where the final line was achieved by recalling that our inputs x are assumed to have mean zero. This informs

us that minimizing the reconstruction error ‖x −VVTx‖22 given by the least-squares optimal V is indeed

equivalent to maximizing the variance explained by the principal directions z. That is, the d-dimensional

subspace minimizing the reconstruction error is identical to the subspace maximizing the variance contained

in the linear projections of the input variables.

2.1.4 Sample Estimators

Classical PCA is commonly presented as an offline linear dimensionality reduction technique using n samples

drawn from a D-dimensional distribution, X = [x1, ...,xn]T ∈ Rn×D, xi = (xi1, ..., xiD) ∈ RD. Since we
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rarely have access to the underlying covariance Σxx we begin by estimating it with the sample covariance

Σ̂xx = 1
nXTX, column-centering X if its columns are not known to be drawn from a mean-zero distribution.

Then, letting Z ∈ Rn×D denote the projected samples,

Z = XV,

we estimate the variance contained by such a transformation according to

V̂ar (Z) =
1

n
ZTZ =

1

n
VTXTXV.

Therefore, the offline optimization problem is to find the subspace, parameterized by V ∈ RD×d, which

maximizes the empirical variance of the projections Z,

maximize
V

trace(VTXTXV) s.t. VTV = Id, (2.3)

or, equivalently, which minimizes the distance between the sample matrix X and its reconstruction

VVTX,

minimize
V

‖X−VVTX‖2F s.t. VTV = Id, (2.4)

where we are now considering the least-squares criterion using the Frobenius norm because we are mini-

mizing a difference of matrices rather than a difference of vectors.

In much the same manner as the population case, it can be shown that optimization problems (2.3) and

(2.4) are solved when the optimal V∗ has columns set to the first d eigenvectors of the covariance matrix

1
nXTX = VΛVT , with corresponding first d eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd (Julian, 2008; Goodfellow

et al., 2016). Analogously to the population case, such eigenvalues are equal to the variance of the data

along the direction of the associated eigenvector. Therefore, the d-dimensional subspace maximizing the

empirical variance is given by the first d eigenvectors associated with the largest d eigenvalues. Algorithm

(1) outlines the process of using the eigendecomposition on the sample covariance matrix to find the PCA

estimator.

Alternatively, we could use the singular value decomposition (SVD) on the (column-centered) samples

X directly instead of the eigendecomposition on the sample covariance matrix n−1XTX. This application

of the SVD is a direct result of the Eckart-Young theorem (Eckart and Young, 1936; Mirsky, 1960) which

states that if X has the SVD

X = UΣVT ,
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Algorithm 1: Offline/Sample PCA Algorithm

Inputs: A sample of n observations X = [x1, ...,xn]
T ∈ Rn×D drawn from a D-dimensional

distribution, integer d corresponding to the desired (lower) dimension.
1 Estimate the columnwise means µX by its estimator µ̂X = x̄ = n−1

∑n
i=1 xi.

2 Columnwise-center X according to x
(c)
i = xi − x̄, i = 1, ..., n so that Xc =

[
x
(c)
1 , ...,x

(c)
n

]T
.

3 Estimate Σxx by the sample covariance matrix Σ̂xx = n−1XT
c Xc.

4 Compute the first d ordered eigenvalues of Σ̂xx, λ̂1, ..., λ̂d ≥ 0, and associated eigenvectors v̂1, ..., v̂d.

5 Compute the optimal rank-d reconstruction of some observation x′ ∈ RD,

x̂(d) = x̄ +

 d∑
j=1

v̂jv̂
T
j

 (x′ − x̄).

6 Compute the jth projection of some observation x′,

ẑj = v̂Tj (x′ − x̄)

then the best rank-d approximation of a matrix X ∈ Rn×D with respect to the Frobenius loss

minimize
X

‖X− X̂‖2F s.t. rank(X̂) = d

is given by

X∗ = U1:dΣ1:dV
T
1:d,

where U1:d ∈ Rn×d and V1:d ∈ RD×d correspond to the first d columns of U and V, and Σ1:d ∈ Rd×d

a diagonal matrix of the first d singular values. From this result is it easy to compute the first d linear

combinations Z,

Z = XVT
1:d = U1:dΣ1:d.

2.1.5 Convex Relaxation of the PCA Optimization Problem

Note that neither the variance-maximization problems

maximize
V∈RD×d

E
[
trace

(
VTxxTV

)]
s.t. VTV = Id,

maximize
W∈RD×D

trace (ΣxxW) s.t. W2 = W = WT , rank(W) = d
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nor the equivalent least-squares problems

minimize
V∈RD×d

E
[
‖x−VVTx‖22

]
s.t. VTV = Id,

minimize
W∈RD×D

E
[
‖x−Wx‖22

]
s.t. W2 = W = WT , rank(W) = d

are convex. In particular, the constraints imposed on V or W do not describe convex domains. To see

why consider the pair of orthonormal matrices

I2 =

1 0

0 1

 , −I2 =

−1 0

0 −1

 .

The convex combination λI2 + (1− λ)I2 is equal to the zero matrix for λ = 0.5 and cannot be admitted

to the set of orthonormal matrices. Furthermore, the set of low-rank orthogonal projections W provides no

relief since the set of rank-d matrices is not convex (viz. λI1 + (1− λ)I2 has rank zero for λ = 0.5).

Such nonconvexity is troublesome in situations where we wish to use gradient-based procedures to solve

the PCA optimization problem. Consequently, convex relaxations of the PCA constraints have been used

as a way of making PCA more amenable to the rich body of work in convex optimization (Boyd and

Vandenberghe, 2004; Dattorro, 2010). In the context of the low-rank projection matrix constraint Chang

et al. (2014); Hu et al. (2004); Wright et al. (2009) note that the nuclear norm (also known as the trace

norm or Schatten 1-norm)

‖W‖∗ = trace
(√

WTW
)

=
∑
i

σi(W)

corresponds to the convex hull of rank-d matrices and can be used as a penalization term in the least-

squares setting, mediating W (and thereby controlling V) in a convex regime. This relaxation is more

commonly specified by the constraint on V such that VVT has bound eigenvalues λi(VVT ) ∈ [0, 1] and

trace(VVT ) = d (Arora et al., 2012, 2013; Arora and Marinov, 2019; Candès and Tao, 2010; Goes et al.,

2014; Journée et al., 2010; Kot lowski and Warmuth, 2015; Mianjy and Arora, 2018; Olfat and Aswani,

2019; Tibshirani, 2016; Vu et al., 2013a,b). To see that this is indeed a convex relaxation, first note that

VTV = Id must clearly have d eigenvalues identically equal to one. Therefore VVT must also have d

eigenvalues identically equal to one, with all others equal to zero.1 Hence, any convex combination of rank-d

projection matrices VVT must also be an element of the set of trace-d projection matrices with eigenvalues

bound within 0 and 1. Indeed, this relaxation is in fact the convex hull of rank-d projection matrices, also

1If A ∈ Rn×p has singular value decomposition UΣV T then ATA = V Σ2V T while AAT = UΣ2UT . Indicating that both
ATA and AAT have common nonzero eigenvalues diag(Σ2) = (σ2

1 , ..., σ
2
min(n,p)

).
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known as the Fantope of order d, (Dattorro, 2010; Hastie et al., 2015)

Fd = conv
{
VVT |V ∈ RD×d, VTV = Id

}
=
{
W ∈ SD | 0 �W � ID, trace(W) = d

}
,

with {VVT | V ∈ RD×d, VTV = Id} the set of extreme points of Fd (Overton and Womersley, 1992;

Vu et al., 2013a). For a proof of this relationship between the set of rank-d orthogonal projections and the

Fantope see Fillmore and Williams (1971). A vital property of the Fantope is that performing the convexified

PCA problem with respect to elements W ∈ Fd is in fact equivalent to the original nonconvex problem. An

outline of the proof found in Overton and Womersley (1992) is as follows. We have

trace(ΣxxW) = trace(QΛQTW)

= trace(ΛQTWQ)

= trace(ΛW′),

with QΛQT the eigendecomposition of Σxx and W′ := QTWQ. Note that W ∈ Fd ⇐⇒ W′ ∈ Fd

since both clearly have trace d and both share common eigenvalues

det
(
QTWQ− λI

)
= det

(
QT (W − λI) Q

)
= det

(
QT
)

det (W − λI) det (Q)

= det
(
QTQ

)
det (W − λI)

= det (W − λI) .

Then,

trace(ΛW′) =

D∑
i=1

λiw
′
ii

achieves maximum value
∑d
i=1 λi from the conditions on W′. However, this was precisely the same

maximal value for the original problem over orthonormal (D × d) matrices, i.e.

d∑
i=1

λi = max
V :VT V=Id

trace
(
ΣxxVVT

)
= max

W∈Fd

trace (ΣxxW) .

A geometric intuition for this equivalence can be presented in terms of the distance between points x

in the original space and their subspace projections. The expansion the constraint set from orthogonal

projections to the Fantope can be thought of as including all ‘near-orthogonal’ projections. Under this
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interpretation of Fd it is clear that the minimizing projection from Fd must itself be orthogonal since any

other ‘near-orthogonal’ projection necessarily maps x further away.

With convexity established we now have a relible framework to implement iterative solutions to the PCA

objective.

2.2 Streaming PCA

In situations where it is infeasible or otherwise undesirable to either compute a sample covariance matrix

or perform an eigendecomposition/SVD, it becomes productive to consider streaming alternatives to the

classical PCA estimator. Indeed, given n samples drawn from a D-dimensional distribution, computing the

sample covariance matrix has time complexity O(nD ·min(n,D)) and memory complexity O(D2), while the

eigendecomposition has worst-case time complexity O(D3) (Elgamal and Hefeeda, 2015; Garber and Hazan,

2015; Goes et al., 2014; Kreßner, 2004). Even in the case of modest dimensionality it is not impossible to

imagine environments in which the user wishes to compute estimates of the PCA estimator using a stream

of sequentially received observations, rather than to be forced to wait for a sufficient number of observations

to arrive.

Despite its conceptual simplicity, stochastic optimization has been shown to achieve the same error rates

as empirical risk minimization (Bottou and Bousquet, 2008; Bottou, 2010; Nemirovski et al., 2009; Shalev-

Shwartz and Srebro, 2008; Shalev-Shwartz et al., 2011; Shalev-Shwartz and Tewari, 2011; Shalev-Shwartz

and Ben-David, 2014) and the success of these algorithms in a number of machine learning environments

suggests that PCA may be afforded the same advantages if formulated properly. This framework for PCA,

advocated for in Arora et al. (2012, 2013), models the problem by using sequential samples drawn from an

unknown distribution D to iteratively update estimates of the optimal components V.

2.2.1 Power Iterations

To formulate PCA as a streaming algorithm consider a serialized stream of D-dimensional observations

drawn from some unknown distribution x
i.i.d∼ D. In this setting we express the problem of finding the first d

principal components as the stochastic optimization problem of finding the orthogonal subspace V ∈ RD×d

maximizing the total variation of the projections z = VTx over the distribution of x, i.e.

maximize
V : VT V=Id

Ex [trace(Var(z))] = maximize
V : VT V=Id

Ex

[
trace(VTxxTV)

]
, (2.5)
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or, the equivalent stochastic least-squares problem

minimize
V : VT V=Id

Ex

[
‖x−VVTx‖22

]
.

The gradient of the objective function with respect to V is

∇VEx

[
‖x−VVTx‖22

]
= −∇VEx

[
trace

(
xxTVVT

)]
= −2Ex

[
xxTV

]
To compute an estimate of the parameterized subspace V we wish to apply an iterative projected gradient

descent procedure using this gradient. That is, if f is a differentiable function then −∇f(a) points in the

direction f decreases most quickly at point a. Using this fact we can construct a sequence of estimates

a0,a1, ...an, ... according to

an+1 = an − α∇f(an), n = 0, 1, ...

where α ∈ R corresponds to a (sufficiently small) step size towards the optima in the direction of the

gradient. With this in mind we can construct the gradient descent sequence for PCA given the stream of

observations {xt}Tt=1, xt ∼ D, known as the stochastic power method. We compute serial updates
{
V(t)

}T
t=0

according to

Ṽ(t+1) = V(t) − α∇V

(
‖xt − xtx

T
t V(t)‖22

)
= V(t) + αxtx

T
t V(t)

V(t+1) = Porth

(
Ṽ(t+1)

)
,

where Porth

(
Ṽ(t+1)

)
projects Ṽ(t)Ṽ(t)

T
onto the set of D×D with d eigenvalues equal to one and D−d

eigenvalues equal to zero. This update scheme is known as the power iteration method or sometimes simply

stochastic gradient descent for PCA. As noted in Arora et al. (2012), the use of Porth(Ṽ(t)) is an abuse of

notation since we are projecting the product Ṽ(t)Ṽ(t)
T

and not Ṽ(t). We examine this projection operator

Porth in more detail in Section 2.3.

Noting that xtx
T
t has rank-1 at each step, calculating the gradient xtx

T
t V(t−1) requiresO(Dd) operations.

This is a significant savings over the complexity O(D2d) of ΣxxV(t) if D is large. The projection step can

be carried out in O(Dd2) operations, which in principle would inflate the complexity of the whole algorithm,

but (Arora et al., 2012) demonstrate that this projection step need only be performed very infrequently. This

preserves the comparatively efficient time complexity of power iterations to O(Dd) per update. Recalling

that simply calculating the sample covariance matrix Σ̂xx = 1
nXTX over n samples takes O(nD ·min(n,D))
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operations withO(D2) memory units. Contrast this with the respective time/memory cost of power iterations

after n iterations, O(nDd) andO(Dd). The advantage of iterative procedures becomes clear for large ambient

dimension D and small subspace dimension d.

When retrieving the first principal component (d = 1) this update scheme is also commonly referred to

as Oja’s algorithm (Oja, 1982; Oja E., 1985), or the Hebbian algorithm (Sanger, 1989) extended to PCA by

Kim et al. (2005). In the case of d = 1, if the covariance matrix of the observations has bounded spectral

norm and eigengap λ between its first and second eigenvalues, then the above projected gradient descent

scheme can be shown to be ε-optimal after O
(

log(1/ε)
λ

)
iterations (Shamir, 2015). Recently, Xu and Gao

(2018) have given a gap-free convergence rate for the first-principal-component-retrieval problem to be as

low as O( 1
ε ). A survey of convergence rates for stochastic PCA algorithms in the both the case for d = 1

and d ≥ 1 can be found in Shamir (2016) and Allen-Zhu and Li (2017).

2.2.2 Matrix Stochastic Gradient

A second iterative algorithm presented in Arora et al. (2013) seeks to optimize over the convexified problem

maximize
W∈Fd

E
[
xTWx

]
⇐⇒ maximize

W∈Fd

trace (ΣxxW) . (2.6)

The gradient of this objective is

∇W trace (ΣxxW) = Σxx ≡ xxT ,

yielding the update rule on iterates W(0),W(1), ...

W(t) = PFd

(
W(t−1) + αxtx

T
t

)
, (2.7)

where PFd
is now projecting the candidate updates onto the (now convex) constraint set with respect to

the Frobenius inner product. Let W̄ denote the average over T iterates

W̄ =
1

T

T∑
i=1

W(t).

Arora et al. (2013) note that since this sum of rank-d matrices is not in general rank-d some auxiliary

transformation must be performed on W̄. Arora et al. (2013) address this by drawing upon related work.

In particular, if a (suboptimal) feasible solution to convex problem (2.6) is not rank-d matrix then Warmuth

and Kuzmin (2008) describe a randomized cap-and-scale algorithm which samples from the suboptimal W̄
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to generate a rank-d matrix W∗ whose objective value in (2.6) remains unchanged.

Algorithm 2: Matrix Stochastic Gradient Algorithm

Inputs: Step size α, iteration limit T , initialization W(0)

1 Compute (2.7) T times, each with an independent sample xt.

2 Average iterates {W(t)}Tt=1,

W̄ =
1

T

T∑
i=1

W(t).

3 Sample from W̄ to produce rank-d matrix W∗ according to Warmuth and Kuzmin (2008).

Letting W∗ denote the optimal solution to the original nonconvex problem, the MSG algorithm has

convergence guarantee (Arora et al., 2013; Mianjy and Arora, 2018; Shamir and Zhang, 2013)

E[xTW∗x]− E[xTW∗x] = O
(

log T√
T

)
.

A major limitation of the MSG algorithm is that the rank of W(t) may increase at any iteration, causing

added complexity, while the power iteration algorithm need only track a (D × d) orthogonal matrix.

In general, the cost of using convex relaxation methods is added complexity, making these implementa-

tions more difficult to scale (Mianjy and Arora, 2018). Of course, in cases where the nonconvex algorithm is

essentially intractable, having a tractable inefficient problem is much appreciated.

2.2.3 Incremental PCA

A second algorithm presented by Arora et al. (2012) is based on an incremental SVD algorithm (Brand,

2002) and aims to approximate the underlying covariance matrix while accessing only a single sample at

each step. The proposed update rule is

C(t+1) = Prank−d

(
C(t) + xtx

T
t

)
, (2.8)

where Prank−d projects it argument to the nearest rank-d matrix (D × D) matrix with respect to the

spectral norm. This projection step is quite simple is achieved by setting the smallest D − d eigenvalues to

zero. In principle this would require the incremental PCA algorithm to compute an eigendecomposition at

each step, but the limitation of using only single observation per step allows for an efficient algorithm since

each xtx
T
t will be symmetric and have rank 1. After n updates the incremental PCA algorithm is shown to

have time complexity O(nDd2) with memory cost O(Dd) per. The computational cost of incremental PCA

is a factor of d greater than power iterations, representing a material disadvange of the method. However,
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the (deliberate) omission of a step size in (2.8) allows incremental PCA to usable out-of-the-box, given a

desired subspace dimension d, while power iterations may require step-size tuning to produce satisfactory

results.

2.2.4 Online PCA

Another iterative procedure to approach the PCA estimator is referred to as online PCA (Arora et al., 2012;

Goes et al., 2014; Warmuth and Kuzmin, 2008). The derivation begins by noting that instead of solving the

variance maximization problem over orthogonal projections W (or equivalently, over orthogonal subspaces

V) we may solve the variance minimization problem for the orthogonal complement of M ∈ RD×(D−d),

M = ID −VVT .

Similar to the case of VVT , the matrix M must be rank D−d and have precisely D−d eigenvalues equal

to one with the remaining d equal to zero. Once again, this constraint (specifically the ‘projection matrix’

and ‘rank-(D − d)’ elements) are not convex but can be relaxed to form the convex problem

min
M

E
[
trace

(
MxxT

)]
s.t. 0 �M, ‖M‖2 ≤ (D − d)−1, trace(M) = 1. (2.9)

Note that Warmuth and Kuzmin (2008) scale M so that its trace is equal to one, with the expected effect

on the spectral norm. Estimates
{
M(t)

}
t=1,2,...

were shown (Arora et al., 2013) to be the iterates the mirror

descent algorithm (Beck and Teboulle, 2003) according to

M(t) = PRE

(
exp

{
log M(t−1) − αxxT

})
,

where log and exp refer to matrix logarithms and exponentials

log A =

∞∑
k=1

(−1)k+1 (A− I)k

k
,

exp A =

∞∑
k=1

Ak

k!
,

and PRE projects its argument onto the nearest member of the constraint set in (2.9) with respect to the

quantum relative entropy (see (Arora et al., 2013; Goes et al., 2014) for details).

Fortunately, a key result from in the formulation of online PCA is that this projection step is not too

elaborate. To perform PRE(·) we cap the largest D − d′ eigenvalues to 1/(D − d) and shrink the smallest



2.3. THE ORTHOGONAL PROCRUSTES PROBLEM 21

d′ eigenvalues of M so that trace(M) = 1 (ensuring each eigenvalue is within [0, (D − d′)−1]). Here, d′ is

chosen to be the largest integer that permits us to perform this cap-and-shrink while satisfying the eigenvalue

constraints.

Warmuth and Kuzmin (2008) provide convergence guarantees for their method. For step size α, optimum

M∗, and assuming ‖xt‖2 ≤ 1, they find that after T updates, such that T is bound below by

T ≥ O

(
[(D − d)trace (M∗Σxx) + ε] d log d

D

ε2

)
,

then M(t) will satify

E

[
1

t

T∑
t=1

trace
(

(D − d) M(t)Σxx

)]
− trace ((D − d) M∗Σxx) ≤ ε.

Although such bounds exist it should be noted that the rupdates require an eigendecomposition for the

the matrix logarithm and another for the projection. Optimizations to these procedures have been identified

(Tsuda et al., 2005) but these do not address the separate fact that M(t) ∈ RD×D will be rank D at each

step while updates V(t) in the power method were only rank d, which by the nature of PCA is expected to

be substantially smaller in any situation which the size of D is an obstacle.

2.3 The Orthogonal Procrustes Problem

Many formulations of a number of PCA algorithms require the estimates of V to be orthogonal. Hence, it is

in our interest to find a projection operator Porth : RD×d → RD×d mapping an input matrix to the nearest

orthogonal matrix with respect to the Frobenius inner product. Having such an operator would permit us to

complete the projected gradient descent algorithm by computing iterative orthonormal updates to V. The

task of finding such an operator part of a problem more broadly known as the orthogonal Procrustes problem

(Schönemann, 1966).

The orthogonal Procrustes problem seeks the orthogonal matrix Ω∗ which most closely projects a matrix

A to a second matrix B according to

Ω = arg min
Ω

‖ΩA−B‖F s.t. ΩTΩ = I.

Of present interest is the special case when A = I. In this setting we find that the optimizer Ω∗ becomes
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the desired projection operator

Porth(B) ≡ Ω∗ = arg min
Ω

‖Ω−B‖F s.t. ΩTΩ = I.

In the general setting with arbitrary matrix A the problem of finding this optimizer Ω∗ is equivalent to

finding the nearest orthogonal matrix to a given matrix M = BAT . To find this projected matrix Ω∗ we

use the singular value decomposition of M

M = UΣVT ,

then the optimizer Porth(B) ≡ Ω∗ is given by the product

Porth(B) ≡ Ω∗ = UVT .

To prove this we apply the definition Frobenius inner product ‖X‖2F = trace
(
XTX

)
and some elementary

properties of the trace operator,

Ω∗ = arg min
Ω

‖ΩA−B‖2F

= arg min
Ω

trace
(
ATΩTΩA− 2ATΩTB + BB

)
= arg min

Ω

{
trace

(
ATA

)
− 2trace

(
ATΩTB

)
+ trace

(
BTB

)}
(linearity of trace)

= arg min
Ω

{
−trace

(
ATΩTB

)}
= arg max

Ω
trace

(
ATΩTB

)
= arg max

Ω
trace

(
ΩTBAT

)
. (cyclic invariance of trace)
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Applying the singular value decomposition of BAT = M = UΣVT ,

Ω∗ = arg max
Ω

trace
(
ΩTBAT

)
= arg max

Ω
trace

(
ΩTUΣVT

)
= arg max

Ω
trace

(
VTΩTUΣ

)
(cyclic invariance)

= arg max
Ω

trace
((

UTΩV
)T

Σ
)

= arg max
Ω

〈UTΩV,Σ〉F .

Since all three matrices U,Ω,V are orthonormal it follows that the product UTΩV is itself orthonormal

(
UTΩV

)T
UTΩV = VTΩTUUTΩV = VTΩTΩV = VTV = I.

Let Z = UTΩV and note that because Σ is a diagonal matrix we can write the product ZTΣ as

ZTΣ = [σ1z1 σ2z2 · · · ],

where σ1, σ2, .... are the singular values of BAT and z1, z2, ... are the column vectors composing Z. A

consequence of the orthonormality of Z = [z1 z2 · · · ] is that the trace

trace
(
ZTΣ

)
=
∑
i

[ZTΣ]ii =
∑
i

σizii

must be maximized when each unit vector zi = (zi1, zi2, ...) has precisely one nonzero element at the ith

entry

zij =


1 i = j

0 i 6= j

,

i.e. when Z = I. Any other construction of an orthonormal matrix Z would necessarily lead to a smaller

trace. To see why, first note that the entries of Z must be bound within -1 and 1 as a consequence of

orthonormality,

1 = zi
T zi =

∑
k

zik
2 ≥ zij2 ≥ 0 =⇒ |zij | ≤ 1.

Using this property, along with the fact that σi ≥ 0, we find that the products along the diagonal σizii

are each maximized when zii = 1, and so the sum along the diagonal must itself be maximized for these
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values of zii. The only way to achieve this and retain orthogonality is if all other entries off the diagonal are

zero, i.e. Z = [zij ] = I.

Finally, with this solution for the optimal Z∗ = I, we find the expression for the optimal Ω∗ to be

I = UTΩ∗V ⇐⇒ Ω∗ = UVT ,

giving us a general expression for the orthogonal projection operator

Porth(B) ≡ Ω∗ = UVT ,

as desired.



Chapter 3 Robust Principal Component Analysis

A well documented property of PCA is its high degree of sensitivity to outliers (Candès et al., 2011; Chan-

drasekaran et al., 2011; Clarkson and Woodruff, 2017; Frieze et al., 2004; Bhojanapalli et al., 2015; Yi et al.,

2016; Chen and Wainwright, 2015; Gu et al., 2016; Netrapalli et al., 2014), with even a single adversarial

outlier potentially producing large deviations in the estimated subspace/principal components (Lerman and

Maunu, 2018b; Maunu and Lerman, 2019). Such behaviour motivates a need for robust PCA estimators. In

this section we will examine a number of existing robust solutions in both the online and offline settings,

and then present a novel online extension of the robust algorithm derived by Zhang and Yang (2018).

It should be noted that what the literature refers to as “robust PCA” concerns two distinct (but related)

problems (Lerman and Maunu, 2018b; Vaswani et al., 2018),

1. retrieving a low-rank subspace in the presence of corrupted high-dimensional data, and

2. finding a low-rank approximation to corrupted data.

The first problem has been associated with robustness to inlier-outlier/Haystack data regimes (Lerman

et al., 2015; Lerman and Maunu, 2018b; Maunu and Lerman, 2019). Such models assume that the data

X ∈ Rn×D can be partitioned into inlier and outlier components Xin ∈ Rnin×D and Xout ∈ Rnout×D,

nout = n − nin. The inliers span on or near a low-dimensional subspace while the outliers are dispersed

across the ambient high-dimensional space. In the online setting we imagine that an iterate x is sampled

from the inlier distribution with probability pin or the outlier distribution with probability pout = 1−pin. On

the other hand, second problem has been more associated with sparse-corruption matrix retrieval models.

Such models typically assume the data X has an additive decomposition of an underlying low-rank matrix

L and a sparse corruption matrix S with elementwise noise,

X = L + S.

In order to reliably distinguish between the two classes of methods we will follow the naming convention

in Lerman and Maunu (2018b) wherein the first problem is referred to as robust subspace recovery (RSR)

25



26 CHAPTER 3. ROBUST PRINCIPAL COMPONENT ANALYSIS

while the second is referred to as robust PCA (RPCA).

Note that these two problems are equivalent in the classical (non-robust) PCA setting. Finding the

low-rank subspace V immediately provides the projection generating low-rank approximations VVTx, and

it is only in introducing different corruption regimes that we may distinguish between the two.

3.1 Robust Offline Methods

3.1.1 Fast Median Subspace

Many robust perspectives make use of the relationship between a projection W onto subspace V and the

orthogonal complement W⊥ = I−W onto V⊥. Namely,

‖Wx‖22 + ‖W⊥x‖22 = xTWTWx + xTWT
⊥W⊥x

= xTWx + xT (I−W)x

= xTWx + xTx− xTWx

= xTx

= ‖x‖22,

so

‖x‖22 − ‖W⊥x‖22 = ‖Wx‖22. (3.1)

This allows us to express the PCA objective in terms of an optimization problem over orthogonal com-

plements according to

minimize
W

n∑
i=1

‖xi −Wxi‖22 ⇐⇒ maximize
W

n∑
i=1

xTi Wxi

⇐⇒ maximize
W

n∑
i=1

xTi WTWxi (idempotence of W)

⇐⇒ maximize
W

n∑
i=1

‖Wxi‖22

⇐⇒ minimize
W⊥

n∑
i=1

‖W⊥xi‖22

A popular way of inducing robustness in the subspace recovery setting is to manipulate the PCA objective

in this form by instead using the least absolute deviations over the set of orthogonal complements W⊥ instead



3.1. ROBUST OFFLINE METHODS 27

of the squared `2 norm (Lerman and Maunu, 2018b)

minimize
W⊥

n∑
i=1

‖W⊥xi‖2. (3.2)

It should be noted that the identity (3.1) does not apply to ‖x‖2, and so solutions to (3.2) will not in

general coincide with solutions to

maximize
W

n∑
i=1

‖Wxi‖2. (3.3)

Nevertheless, algorithms for (3.2) and (3.3) can be adapted to suit each other, making both worthwhile

to consider.

Lerman and Maunu (2018a) present an iterative algorithm, referred to as the fast median subspace (FMS)

algorithm, which approximates the solution V∗ of (3.2) by iterates

V(t+1) = arg min

n∑
i=1

w
(t)
i ‖W⊥xi‖2,

where weights {w(t)
i }ni=1 are given by

w
(t)
i = ‖W(t)

⊥ ‖
−1
2 ,

with W
(t)
⊥ the orthogonal complement to the orthogonal projection onto V(t). The solution to the FMS

problem is shown to be given by the solution to the weighted PCA problem by performing an eigendecom-

position on the weighted covariance matrix XTdiag(w
(t)
1 , ..., w

(t)
n )X on the centered data.

3.1.2 Geometric Median Subspace

The geometric median subspace (GMS) algorithm (Zhang and Lerman, 2012) is another robust estimator

using objective (3.2) but manipulates the constraint set so that the problem is convexified. The GMS relaxes

the constraints on candidates to include all symmetric matrices with trace-1. Since aspirant matrices in the

GMS algorithm are no longer the orthogonal complements to orthogonal projections W onto a candidate

subspaces, we instead denote these approximations of W⊥ by Q. The GMS-optimal Q∗ is the solution to

Q∗ = arg min
Q

n∑
i=1

‖Qxi‖2 s.t. QT = Q, trace(Q) = 1. (3.4)

The target subspace is then estimated using the last d eigenvectors (those with the smallest d eigenvalues)

of the optimal Q∗. Furthermore, the matrix Q∗ is shown to be a robust approximation to the inverse

covariance matrix of X in the context of X = L + S noise structure for magnitudes of noise not too large.
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3.1.3 REAPER

The REAPER algorithm (so called because it harvests low-rank structure from data) was formulated as

an improvement to GMS (Lerman et al., 2015) by defining a tighter relaxation of the original nonconvex

problem. To do so they consider the Fantope of order D − d, shown earlier to be the tighest relaxation of

rank-(D − d) projections. The REAPER-optimal Q∗ is the solution

Q∗ = arg min
Q∈FD−d

n∑
i=1

‖Qxi‖2 (3.5)

As is the case with the GMS algorithm, the robust estimate of V is provided by the eigenvectors of Q∗

corresponding to the smallest d eigenvalues.

In both GMS and REAPER procedures the authors recommend an iteratively reweighted least squares

(IRLS) strategy for obtaining the minimizer Q∗. The GMS-optimal Q∗ is solved by iteration according to

Q(t+1) =

(
n∑
i=1

xix
T
i

max
(
δ, ‖Q(t)xi‖2

))−1 /trace

( n∑
i=1

xix
T
i

max
(
δ, ‖Q(t)xi‖2

))−1
 ,

where δ is some (typically very small) regularizer to avoid dividing by zero. The IRLS strategy for the

REAPER algorithm is more subtle and requires establishing an approximate equivalence of its objective

with a weighted quadratic program.

3.2 Robust Streaming Methods

3.2.1 Robust Stochastic Gradient Descent

A weakness of the GMS and REAPER algorithms is that they are both derived in the context of full access

to a sample X and so are unsuited to large data regimes defined as is. Goes et al. (2014) offers two stochastic

alternatives that modify the GMS objective known as robust stochastic gradient descent (robust SGD).

The first of the robust SGD methods considers the problem

maximize
U∈RD×d

E
[
‖UTx‖2

]
s.t. ‖U‖2 ≤ 1. (3.6)

When d = 1 (3.6) simplifies to projection-pursuit PCA which has been shown to be robust by earlier
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work (Li and Chen, 1985). To define a descent algorithm from (3.6) first compute its gradient

∇U‖UTx‖2 ≡ ∇U

√
‖UTx‖22

=
∇U‖UTx‖22√
‖UTx‖22

=
xxTU

‖UTx‖2
.

Goes et al. (2014) then solve (3.6) by considering iterates of the form

U(t+1) = Porth

(
U(t) + ηt

xtx
T
t U(t)

‖U(t)Txt‖2

)
. (3.7)

By the same argument as was seen in the power iteration algorithm via Arora et al. (2012), Goes et al.

(2014) conclude that the projection step may be omitted from the majority of updates. After n samples the

first robust SGD algorithm is reported to have equal costs O(nDd) in time and O(Dd) in space as in power

iterations.

In principle any power ‖UTx‖p2 could be taken for 0 < p < 2, with increasing robustness anticipated as

p → 0. Of course, p = 1 corresponds to the least p such that (3.6) remains convex. Should one be brave

enough to attempt the nonconvex problem of p ∈ (0, 1), we modify the update rule to be

U(t+1) = Porth

(
U(t) + ηtxtx

T
t

xtx
T
t U(t)

‖U(t)Txt‖p−22

)
.

The second robust SGD method considers a similar problem as (3.6) but instead seeks to minimize over

orthogonal complements,

minimize
U∈RD×(D−d)

E
[
‖UTx‖2

]
s.t. UTU = ID−d. (3.8)

The update rule for (3.8) is found in the same way as for (3.6), defining iterates

U(t+1) = Porth

(
U(t) − ηt

xtx
T
t U(t)

‖U(t)Txt‖2

)
. (3.9)

3.2.2 Robust Incremenetal SGD

Goes et al. (2014) derive a third algorithm based upon the GMS problem, distinct from the ‘robust SGD’

methods above. In terms of a stochastic optimization problem, the GMS procedure is expressible as

Q∗ = arg min
Q∈RD×D

E [‖Qx‖2] s.t. QT = Q, trace(Q) = 1, (3.10)
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where Q can be thought of as ‘near’-orthogonal complements to orthogonal projections W onto a low-

dimensional subspace, and Q∗−1 = Σ̂ the robust covariance estimator. Differentiating the objective in the

same manner as for the robust SGD problems yields

∇QE [‖Qx‖2] = E
[

xxTQ

‖Qx‖2

]
= Q E

[
xxT

‖Qx‖2

]
.

So, at Q = Q∗ Goes et al. (2014) note that

Q∗ = c · E
[

xxT

‖Q∗x‖2

]−1
⇐⇒ Σ̂ =

1

c
· E

[
xxT

‖Σ̂−1x‖2

]
.

A naive proposal for an update procedure for robust covariance iterates Σ(t) is given by

Σ(t+1) = Prank−d

(
Σ(t) +

xtx
T
t

‖(Σ(t))−1‖2

)
. (3.11)

However, this it is immediately obvious that this is ill-defined since the projection step will necessarily

make the iterates singular. The address this deficiency the authors suggest first considering the update on

the inverse matrix

(Σ(t+1))−1 = (Σ(t))−1 − (Σ(t))−1xxT (Σ(t))−1

1 + xT (Σ(t))−1x
, (3.12)

then following up this step with the rank-d projection. This adjustment is a direct application of the

Sherman-Morrison formula for an invertible matrix S and outer product uvT

(S + uv)
−1

= S−1 − S−1uvTS−1

1 + vTS−1u
.

The inverse adjustment procedure is reported to be computed in 4D + 5Dd operations. Therefore, since

the rest of the rank-1 update is identical to the incremental PCA algorithm in Arora et al. (2012), we find

that the robust incremental procedure is able benefit from robustness while preserving time cost O(nDd2)

and space cost O(Dd).
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3.2.3 Robust Online PCA

The final algorithm presented by Goes et al. (2014) extends the REAPER procedure to a stochastic setting,

minimize
Q∈FD−d

E [‖Qx‖2] (3.13)

Scaling Q so that it has trace-1 yields formulation

minimize
Q

E [‖Qx‖2] s.t. 0 � Q, ‖Q‖2 ≤
1

D − d
, trace(Q) = 1. (3.14)

In this form we are able to draw an immediate comparison with the online PCA of Warmuth and Kuzmin

(2008), now with ‘robustified’ objective E [‖Qx‖2] in lieu of the classical (online) PCA objective E
[
‖Qx‖22

]
.

Using the mirror descent solution from the original online PCA problem to the robust version (3.14) defines

the sequence of updates

Q(t+1) = PRE

(
exp

{
log Q(t) − ηt

xtx
T
t Q(t) + Q(t)xtx

T
t

2‖Q(t)xt‖2

})
. (3.15)

A principal result from Goes et al. (2014) is that after T iterations with step size ηt = η = 2√
T

√
d

D−d

the updates (3.15) achieve convergence guarantee

(D − d)E
[
‖Q̂x‖2

]
≤ (D − d) inf

Q
E [‖Qx‖2] +

√
d(D − d)

T
,

where Q̂ is sampled uniformly from the iterates Q(1), ...,Q(T ).

3.3 Robustness via Percentile Hard-Thresholding

3.3.1 Offline Setting

One method to achieve robustness that has seen success in low-rank recovery is to apply hard-thresholding

to the PCA objective (Zhang and Yang, 2018). Let Fγ : Rn×D → Rn×D be a hard-thresholding function

mapping entries of input A = [Aij ]i,j to zero if their magnitudes simultaneously exceed the (1 − γ)th

percentile of both its row and column values (in absolute value), i.e.,

[Fγ (A)]ij =


0 if |Aij | > |Ai,.|[γ] and |Aij | > |A.,j |[γ]

Aij otherwise,

(3.16)
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where Ai,. represents the ith row of A and A.,j represents the jth column of A, while |Ai,.|[γ] and |A.,j |[γ]

represent the (1−γ)th percentile of the absolute values of the ith row and jth column, respectively. With this

hard-thresholding function the robust PCA problem as described in Zhang and Yang (2018) is formulated

as follows: Given data X = L∗ + S∗, for low-rank L∗ and sparse corruption matrix S∗, the sample robust

PCA problem seeks to recover L∗ (and thereby recovering S∗ as well) from X by solving the optimization

problem

L̂ = arg min
L : rank(L)=d

‖Fγ(L−X)‖2F . (3.17)

An iterative projected gradient descent solution using manifold optimization is provided by Zhang and

Yang (2018), with memory usage O(nD) and a per-iteration complexity of O(nDd). The high relatively

complexity emerges from the requirement of computing a full singular value decomposition in each step of

the descent procedure. The cost of this algorithm motivates a need for streaming alternatives that have less

costly update rules. Such streaming algorithms are also expected to be less memory-intensive since they will

be unable to access more than a single observation per iteration.

3.3.2 Extension to the Streaming Setting

We now turn towards the novel contribution of this thesis by extending the robust PCA algorithm described

in Zhang and Yang (2018) to a streaming setting. We seek to design an objective analogous to that of

objective (3.17) but expressed as a stochastic optimization problem, as was the case for the the streaming

formulation of classical PCA. To do so, as was the case for classical PCA, we treat the data as a stream of

D-dimensional observations drawn from some unknown distribution x
i.i.d∼ D.

Consider the vector-valued analogue of thresholding function (3.16) Fγ : RD → RD mapping the entries

of a vector to zero if the magnitudes exceeds the (1− γ)th percentile of the input entries (in absolute value),

i.e.

(Fγ(a))j =


0 if |aj | > |a|[γ]

aj otherwise,

(3.18)

where |a|[γ] denotes the (1−γ)th percentile of the absolute values of a = (a1, ..., aD) ∈ RD. Our optimiza-

tion procedure is as follows: We simultaneously seek the d-dimensional orthonormal subspace parameterized

by V ∈ RD×d and d-dimensional transformation z solving the least-squares problem

minimize
z∈Rd,V∈RD×d

Ex

[
‖Fγ(x−Vz)‖22

]
s.t. VTV = Id. (3.19)

To explore this objective function define the operator Sγ : RD → RD serving as an indicator of whether
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an entry of its input exceeds the thresholding percentile of its determined by its entries

(Sγ(a))j =


0 if |aj | > |a|[γ]

1 otherwise.

Using Sγ rewrite the hard-thresholding operator as

Fγ(a) = Sγ(a) ◦ a,

where ◦ represents the elementwise product of the arguments. Two key properties of Sγ are that it is

idempotent with respect to ◦

Sγ(a) ◦ Sγ(a) = Sγ(a),

and that if the magnitudes of the entries of a are not all identical different then, for some small perturbation

∆a,

Sγ(a) = S(a + ∆a).

That is, the sparsity pattern of a remains unchanged under small perturbations. This decomposition of Fγ

in terms of Sγ , and the following properties of Sγ , will prove to be convenient when deriving the gradient of

our robust objective.

3.3.2.1 Alternating Minimization

The objective (3.19) requires joint optimization of both the parameterized subspace V and the composite

variables z. To solve this we perform an alternating minimization procedure by separating the joint problem

into two marginal optimization problems. First, keep V fixed at some estimate V0 and optimize (3.19) with

respect to z,

z∗ = arg min
z∈Rd

‖Fγ(x−V0z)‖22. (3.20)

Next, keep z fixed at the updated value z = z∗ and now minimize (3.19) with respect to V

V∗ = arg min
V∈RD×d

‖Fγ(x−Vz∗)‖22 s.t. VTV = Id. (3.21)

Procedures (3.20) and (3.21) are then iterated through until some tolerance has been reached. To solve
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(3.20) consider a finite difference using a small perturbation of our variables z + ∆z. We have

‖Fγ(x−V0(z + ∆z))‖22 − ‖Fγ(x−V0z)‖22

= ‖Sγ(x−V0(z + ∆z)) ◦ (x−V0(z + ∆z))‖22 − ‖Sγ(x−V0z) ◦ (x−V0z)‖22

= ‖Sγ(x−V0z) ◦ (x−V0z−V0∆z)‖22 − ‖Sγ(x−V0z) ◦ (x−V0z)‖22

= 2〈Sγ(x−V0z) ◦ (x−V0z),−V0∆z〉

= 2〈Fγ(x−V0z),−V0∆z〉.

Hence, the gradient of Ex

[
‖Fγ(x−V0z)‖22

]
with respect to z is given by the inner product 〈Fγ(x −

V0z),−V0∆z〉 (up to a constant), yielding a gradient descent step towards the minimizer z∗,

z+ ← z + αFγ(x−V0z)V0.

Using similar arguments in search of incremental updates V + ∆V towards the minimzer V∗,

‖Fγ(x− (V + ∆V)(z + ∆z))‖22

= ‖Sγ(x− (V + ∆V)(z + ∆z)) ◦ (x− (V + ∆V)(z + ∆z))‖22

= ‖Sγ(x−Vz) ◦ (x− (V + ∆V)(z + ∆z))‖22

= ‖Sγ(x−Vz) ◦ ((x−Vz)− (V∆z + ∆Vz))‖22

= 〈Sγ(x−Vz) ◦ (x−Vz),x−Vz〉 − 〈Sγ(x−Vz) ◦ (x−Vz),V∆z + ∆Vz〉.

Meanwhile,

‖Fγ(x−Vz)‖22 = ‖Sγ(x−Vz) ◦ (x−Vz)‖22

= 〈Sγ(x−Vz) ◦ (x−Vz),x−Vz〉.

Therefore, subtracting these two results, to form our finite difference

‖Fγ(x− (V + ∆V)(z + ∆z))‖22 − ‖F (x−Vz)‖22

= 2〈Sγ(x−Vz) ◦ (x−Vz),−V∆z−∆Vz〉

= 2〈Sγ(x−Vz) ◦ (x−Vz),−∆Vz〉

= 2〈Fγ(x−Vz),−∆Vz〉.
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Hence, the gradient of Ex

[
‖Fγ(x−V0z)‖22

]
with respect to V is given by −Fγ(x −Vz)zT , yielding a

gradient descent step towards the optimal V∗

V+ ← Porth

(
V + αFγ(x−Vz)zT

)
,

where the Porth is performed to ensure V+ is a feasible solution. Given an observation xt, step size α,

and iterates V(t), z(t), we define robust streaming PCA algorithm as the iterative alternating update rules

z(t+1) = z(t) + αFγ(xt −V(t)z(t))V(t)

V(t+1) = Porth

(
V(t) + αFγ

(
xt −V(t)z(t+1)

)
z(t+1)T

)
.

3.3.2.2 Additional Projections of V

We now explore some properties of V which will permit us to derive an additional projection operation.

This second projection will allow us to form a second update rule for V, and therefore a second alternating

minimization procedure for our robust streaming algorithm. Applying the orthonormality of V, and since

an update V + ∆V must also satisfy, we have

(V + ∆V)T (V + ∆V) = Id.

Then,

Id = (V + ∆V)T (V + ∆V)

= VTV + VT∆V + ∆VTV + ∆VT∆V

⇐⇒ 0 = VT∆V + ∆VTV + ∆VT∆V,

with ∆VT∆V ≈ 0 we may simplify this as

VT∆V + ∆VTV = 0.

That is, VT∆V is a skew-symmetric matrix.1 We are able to exploit this constraint on VT∆V to derive a

projection operator on increment ∆V. Denote the set of increments ∆V of V satisfying the skew-symmetry

1A matrix A is said to be skew-symmetric if AT = −A.



36 CHAPTER 3. ROBUST PRINCIPAL COMPONENT ANALYSIS

of VT∆V by

T =
{

∆V ∈ RD×d : VT∆V + ∆VTV = 0
}
.

We can see that any step ∆V ∈ T should have the decomposition

∆V = Y1 + VY2,

where Y1 ∈ RD×d satisfies VTY1 = 0 and Y2 ∈ Rd×d is some skew-symmetric matrix. With this we

denote Pskewsym to be the projection operator projecting matrices onto the set T .2 Then, given a matrix

A ∈ RD×d, its projection onto the set T (with respect to V) is given by

Pskewsym(A) =
(
ID −VVT

)
A + V

(
VTA−ATV

2

)

This gives rise to two possibilities for updating estimates of V

(Algorithm 1) V(t+1) = Porth

(
V(t) + αFγ

(
xt −V(t)z(t+1)

)
z(t+1)T

)
(Algorithm 2) V(t+1) = Porth

(
V(t) + αPskewsym

(
Fγ

(
xt −V(t)z(t+1)

)
z(t+1)T

))
.

2Note that this is an abuse of notation since Pskewsym takes as its argument increment ∆V and transforms it so that VT ∆V
is skew-symmetric, not ∆V itself.



Chapter 4 Experiments

4.1 Artificial Data

In this section we seek to evaluate the performance of both proposals for robust streaming extensions of

PCA. Of present interest is a data regime in which observations x ∈ RD are subject to a sparse additive

noise component s ∈ RD. Let q ∈ [0, 1] denote the proportion of nonzero entries of s to zero entries, so that

x is exposed to corruption in a total of q ·D entries. This outlier setting is designed as a vectorized analogy

to the sparse-corruption noise regime found in the low-rank matrix decomposition literature X = L + S,

including Zhang and Yang (2018), which used this setting to derive and test the offline robust PCA via

percentile thresholding algorithm. To this end, we generate i.i.d. samples of the form

x = l + s

where l ∈ RD represents the underlying signal from a lower-dimensional space embedded in in RD and

s ∈ RD provides the additive noise components with q · D nonzero elements. For brevity, we will abuse

terminology and refer to the signal l as a “low-” or dimensional” or “lower-dimensional” signal rather than

“the signal drawn from a low-rank subspace of RD”. To generate l we draw i.i.d. samples l ∼ N (0,Σ), where

Σ = V∗V∗T ∈ RD×D is a rank-d covariance matrix, and V∗ ∈ RD×d is an orthonormal parametrization of

the underlying subspace. We generate the gross corruption vector s by drawing q ·D entries from N (0, 100),

with the remaining D − q ·D entries set to zero.

We follow the testing metric used in Goes et al. (2014) for assessing the performance of robust streaming

analogues to PCA. Specifically, for each update V(t) of V∗ we compute the normalized subspace angle

between the estimated subspace and the true subspace, given by the largest inner product of the columns

of V(t) and V∗ (Knyazev and Argentati, 2002). If the two subspaces are orthogonal to one another then

the angle between them will be π
2 , and so for convenience we choose to scale the subspace angle to range

over [0, 1]. Additionally, the two novel robust streaming algorithms are contrasted with the classical PCA

37
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estimates which provides a lower bound for the performance of a streaming PCA implementation.

4.1.1 Step Size Tuning

We first investigate both algorithms’ performance as a function of the step size α, as well as the three-way

relationship between chosen step size α, thresholding parameter γ, and noise proportion q. In the following

simulations we set the dimension of the ambient space D = 100, the target subspace dimension d = 4. In

order to empirically address what an appropriate step size should be, we consider both constant step sizes.

Constant step sizes are chosen from α ∈ {0.01, 0.025, 0.05, 0.1, 0.25, 0.5} while step sizes proportional to 1√
t

and 1
t are chosen as candidates for adaptive steps.

The influence of step size on performance can be seen in Figure 4.1, with the subspace angles calculated

from Algorithm 1 drawn as solid lines, and the angles calculated from Algorithm 2’s solutions drawn as

dashed lines. Note that in all four simulations the noise proportion q and thresholding parameter γ are

equal. Figure 4.1 makes it immediately clear that a constant step size is unsuited to both algorithms since

constant steps appear to provide (comparatively) unstable estimates when approaching the minimum while

being no faster than either adaptive option. Using adaptive step sizes permits the two algorithms to quickly

recover reasonable estimates of the underlying subspace, with no clear performance distinction between sizes

α ∝ 1
t or α ∝ 1√

t
.

A second observation from Figure 4.1 is that both Algorithm 1 and 2 seem to have some difficulty in

attaining the minimum and appear to effectively plateau to suboptimal levels if the proportion q of noisy

entries is too large, even after 3× 104 iterations.

It is also worthwhile to investigate the case when γ 6= q as it is unrealistic to assume apriori knowledge

of the data stream corruption proportion. To demonstrate the performance of both algorithms we consider

both scenarios γ < q and γ > q.

The results of such settings are visualized in Figure 4.2. Once again we find that constant step sizes prove

to be comparatively mediocre at generating reasonable increments of the estimated subspace towards V∗,

with little distinction between the two algorithms. More interestingly, we find that both streaming methods

trend towards the optima in the case of γ < q (albeit slowly), but quickly stall in the case of of γ > q. One

interpretation of this is that if γ > q then both algorithms are guaranteed to threshold entries belonging

to the low-dimensional signal vector l since the q · D entries of x associated with the nonzero elements of

s will have likely already been set to zero (as long as the corruption magnitudes are sufficiently extreme

relative to the signal magnitudes). As a consequence, both algorithms remove a (γ − q) > 0 proportion of

elements that may no longer be used to draw the estimates V(t) towards V∗. On the other hand, if γ < q
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Figure 4.1: Dependence of the normalized subspace angle between the true low-rank subspace V∗ and the
estimates V(t), t = 1, ..., 3 × 104, when the thresholding parameter equals the noise proportion γ = q. The
horizonal line is given by the classical (offline) PCA estimate of the underlying subspace which serves as a
lower bound for the stochastic (classical) PCA algorithm.
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Figure 4.2: Dependence of the normalized subspace angle between the true low-rank subspace V∗ and the
estimates V(t), t = 1, ..., 3 × 104, when the thresholding parameter equals the noise proportion γ < q (left)
and γ > q (right). The horizonal line is given by the classical (offline) PCA estimate of the underlying
subspace which serves as a lower bound for the stochastic (classical) PCA algorithm.

then we subject the algorithm to a (q−γ) > 0 proportion of un-thresholded corrupted elements. In this case

we would expect the robust streaming PCA algorithms to perform similarly to a classical streaming PCA

algorithm when noise level q′ = q − γ. More in-depth simulations of the (q, γ) relationship are presented in

the next section.

4.1.2 Thresholding Percentile

We now wish to investigate how sensitive the estimates V(t) are to changes in γ for some fixed corruption

proportion q. Figure 4.3 shows two scenarios with fixed q = 0.05 and q = 0.1 and varying γ around these

values of q. Note that Figure 4.3 is drawn using a log scale for the normalized subspace angle in order to

make the separation between thresholding parameters easier to visualize.

We continue to see this tendency of V(t) to quickly plateau when approaching V∗ if γ > q. This effect

holds even when the difference γ − q = 0.01, which corresponds to both algorithms incorrectly thresholding

a single entry on each iteration under our setting D = 100 (for sufficiently extreme corruptions). For this

reason, it appears to be worthwhile to underestimate γ when the population noise proportion is unknown.

We can more clearly visualize the (q, γ) relationship by generating a heatmap of the normalized subspace

angles between V(T ) and V∗ after T = 3 × 104 iterations, as well as minimal angles between V(t) and

V∗. Such a visualization of subspace angles is found in Figure 4.4, including both terminal and minimal

angles, across parameter settings γ ∈ {0, 0.01, 0.02, ..., 0.99, 1} and q ∈ {0, 0.01, 0.02, ..., 0.99, 1} using step
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Figure 4.3: The ability of algorithm 1 (left column) and algorithm 2 (right column) to recover the target
subspace fixing the noise proportion to q = 0.05 (top row) and q = 0.1 (bottom row) under a range of
thresholding settings.
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size α ∝ 1
t .

Consistent with earlier figures, we find a relatively narrow band in which both Algorithm 1 and 2 are

able to recover V∗. If γ < q then convergence is slow and only produces good estimates when γ and q

are not too different. On the other hand, if γ > q then both algorithms are able to quickly provide near-

orthogonal estimates, but the quality of these estimates above the line γ = q can be seen to plateau and have

been shown to be nontrivially suboptimal from earlier figures. A feature of Figure 4.4 that is immediately

noticeable is the distinction between Algorithms 1 and 2. Algorithm 1 can be seen to be more tolerant of

more extreme noise proportions if q can be reliably estimated, and therefore be used to set γ ≈ q. Holding

γ constant at γ = q we look restrict our investigation from Figure 4.4 to the question of how much noise

either model can tolerate. This is illustrated in Figure 4.5. We see a gradual performance decay when

increasing q ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. By holding γ at q, suggested by Figure 4.4 to be the

ideal thresholding parameter, we see that both algorithms seem to perform similarly, suggesting that the

performance difference seems to be limited to suboptimal settings of γ.

4.2 Real Data Tests

A popular data set for testing robust matrix retrieval algorithms in the X = L+S framework is the publically

available shoppingmall data studied in Candès et al. (2011); Yi et al. (2016); Zhang and Yang (2018). The

data consists of a sequence of frames taken from a camera in a shopping mall arranged in a 1000 × 81920

dimensional matrix. The n = 1000 rows correspond to individual frames of the video feed, and the D = 81920

columns correspond to a vectorized arrangement of video feed’s pixels, with resolution 320× 256 pixels. For

comparability with the offline algorithm in Zhang and Yang (2018) we set d = 3, as it was found that the

underlying signal can be well-approximated when its subspace is assumed to be 3-dimensional. We use step

size αt = 0.01/
√
t for both Algorithms 1 and 2, and set γ = 0.065, hard-thresholding values in each frame

if their absolute values exceed the 93.5th percentile. The procedure is initialized with a random orthogonal

matrix V(0) and a random vector z(0). Figures 4.6 and 4.7 visualize the algorithms’ performance by their

ability to decompose the data stream into background components (signal drawn from a low-rank space)

and foreground components (sparse perturbations over the signal).

From Figures 4.6 and 4.7 we find some ability to remove foreground components from the background,

particularly as the procedure iterates through later frames, but it is clear that the algorithms’ are not

as effective as the offline implementation in Zhang and Yang (2018). This is difference between offline

and online performance is not surprising since streaming algorithms necessarily have access to considerably

less information. Zhang and Yang (2018) performed 100 gradient descent steps accessing the entire 1000
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Figure 4.4: The ability of algorithm 1 (left column) and algorithm 2 (right column) to recover the target sub-
space across γ ∈ {0, 0.01, 0.02, ..., 0.99, 1} and q ∈ {0, 0.01, 0.02, ..., 0.99, 1} after 3× 104 iterations. Terminal
subspace angles are presented in the top row and minimal subspace angles are presented in the bottom row.
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Figure 4.5: Algorithm 1 (left) and 2 (right) performance when increasing q and setting the (impressionisti-
cally) optimal γ := q. The horizontal lines correspond to the offline classical PCA estimate which provides
a lower bound for classical streaming PCA estimates.

observations per update, while the present version only has access to single observations per update and only

the 1000 observations available in the data.

One observation of the algorithms’ performance on the shoppingmall data is that extreme regions of

brightness/darkness found in the background appear to be having difficulty being correctly grouped with

background features, and instead seem to be primarily grouped with the foreground (i.e. the bright pillar

on the left, the bright counter on the right, the dark square tiles). One way to understand why this occurs

in the online implementation but not its offline counterpart is via the thresholding operation Fγ . The offline

algorithm thresholds a value ai,j to zero if its absolute value simultaneously exceeds the (1− γ)th percentile

of the absolute values of row i (i.e. all other values frame i) and column j (i.e. all other values corresponding

to pixel j). As a result, if a pixel beloning to the background has an extreme light/dark value then it is

unlikely to be thresholded since, by virtue of belonging to the background, the pixel value will remain static

across the observations. This is not the case for the streaming algorithms. The online algorithm does not

have the benefit of across-observation (across-frame) information and is instead forced to make a decision

on which pixels to threshold based solely upon the values within the single frame across the 81920 pixels.

Therefore, if it a pixel is sufficienctly extreme relative to the other pixels in the frame, there is little to

prevent the online algorithm from being forced to set it to zero.

It should be noted that there is no ipso facto reason that the thresholding percentile γ must remain
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Algorithm 1: d = 3, γ = 0.065

Input xt, t = 5

Background: V(t)z(t)

Foreground: xt − V(t)z(t)

Algorithm 1: d = 3, γ = 0.065

Input xt, t = 265

Background: V(t)z(t)

Foreground: xt − V(t)z(t)

Algorithm 1: d = 3, γ = 0.065

Input xt, t = 895

Background: V(t)z(t)

Foreground: xt − V(t)z(t)

Figure 4.6: The performance of Algorithm 1 in the task of background/foreground decomposition at steps
t = 5, 265, 895 (left to right), with low-dimension assumption d = 3, thresholding parameter γ = 0.065 and
step size αt = 0.01/

√
t.
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Algorithm 2: d = 3, γ = 0.065

Input xt, t = 5

Background: V(t)z(t)

Foreground: xt − V(t)z(t)

Algorithm 2: d = 3, γ = 0.065
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Background: V(t)z(t)

Foreground: xt − V(t)z(t)

Algorithm 2: d = 3, γ = 0.065

Input xt, t = 895
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Foreground: xt − V(t)z(t)

Figure 4.7: The performance of Algorithm 2 in the task of background/foreground decomposition at steps
t = 5, 265, 895 (left to right), with low-dimension assumption d = 3, thresholding parameter γ = 0.065 and
step size αt = 0.01/

√
t.
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constant throughout the online procedure, and as a result it is not difficult to imagine an algorithm which

takes into account frame-by-frame information to produce variable estimates for γ.

4.3 Conclusion

This thesis proposes two novel robust streaming implementations of the PCA procedure based on the offline

percentile hard-thresholding algorithm in Zhang and Yang (2018). Compared to the offline algorithm with

access to the full sample throughout the gradient descent procedure, the streaming alternatives present

solutions that are less costly in terms of both runtime and memory requirements at the expense of accuracy.

However, accuracy is a welcomed expense in situations where an offline implementation is simply infeasible.

Indeed, the utility of dimensionality reduction is proportional to the dimension of the problem, and with

ever increasing data volumes it has become an outstanding problem to develop streaming solutions.
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