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PREFACE • • • •

ii

A Banach algebra is at once a Banach space and an

algebra with norm satisfying the multiplicative inequality

IIxyU ~ /IxUlly/l. Many of the Banach spaces which occur in

analysis are at the same time Banach algebras under a definition

of multiplication which itself plays a role in analysis.

A good example is the Banach space of absolutely integrable

functions on the real line with multiplication defined as

convolution. Since applications to analysis have always

provided the main impetus to the study of Banach spaces, it is

rather surprising that there was not a comparable interest

shown in Banach algebras. Some of the reason lies, no doubt,

in the general unfamiliarity of non-specialists with modern

algebra plus the almost universal assumption of finiteness

conditions by algebraists. Finiteness conditions rule out the

most interesting cases from analysis and make it difficult to

ferret out and develop algebraic tools applicable to the infinite

case. There were, of course, a number of important attempts to

exploit more fully the additional algebraic structure given

in a Banach space by an operation of multiplication, sorne of the

pioneers being Nagumo17)and YOSida26), Murray-von NeumannI 4,15,16)

and Stone2~.). Wiener25), although not explicitly drawing

attention to the algebraic nature of the tools he was using,

made systematic use of the algebraic properties of convolution

for establishing certain deep theorems in analysis. However,

it remained for Gelfand4)in 1941, with his now classical paper



iii

on normed rings; to lay the foundation for a theory of

Banach algebras. Gelfand's innovation was a systematic use

of elementary ideal theory coupled with the Gelfand-Mazur

theorem that a normed division algebra (over the complex numbers)

must be the complex numbers. His fundamental result was that

a semi-simple commutative Banach algebra (with an identity) is

isomorphic to an algebra of continuous functions on a compact

Hausdorff space. At the saroe time, Gelfand5}used his theory of

normed rings to give an elegant proof of the well-known theorem

of N. Wiener25)that the reciprocal of a non-vanishing absolutely

convergent Fourier series is also an absolutely convergent

Fourier series. This proof attracted a great deal of attention

to Banach algebras.

Since the appearence of Gelfand's 1941 papers, there

has been a rapid growth of interest in Banach algebras. This

interest has in turn played an important role in the recent

trend among algebraists to dispense with finiteness conditions.

The theory of Banach algebras has, generally speaking, developed

in two main directions, representing respectively the algebraic

and analytic tendencies. The algebraic emphasis has been on

structure theory, while the analytic emphasis has been on

extending properties of very special Banach algebras to more

general cases and on extending analytic function theory to the

more general situations provided by Banach algebras. In the

following thesis, we shall attempt to bring out the main points

in the algebraic line of development.



CHAPTER l

PRELIMINARY NOTIONS

For the sake of completeness we shall touch upon a few

preliminary notions required for the exposition of the main

theorems in this thesis. Sorne of these notions are classical

and we present them briefly, leaving out sorne of the longer

proofs which are to be found in the works quoted in the

bibliography.

1. Topological Concepts

Partial Ordering: A binary relation "<;" between elements.

of a class A. is called a partial ordering of A (in the weak sense)

if it is transitive (a<b and b<c~a<c), reflexive (a-c a for

every ae.A.) and if a<b and b<a~a = b. A is called a directed

~ under "~" if it is partially ordered by "<" and if for

every a and b EA there exists cE A such that c-c a and c< b.

A partially ordered set is linearlI ordered if either a<b or b-c a

for every distinct pair a and b€A. A is partially ordered in

the strong sense by "<" if "<:" i5 transitive and irreflexive

(ata).

Zorn's Lemma: Every partially ordered set A includes a

maximal linearly ordered subset. If every linearly ordered

subset of A has an upper bOUnd in A, then A contains a maximum
12)*

element· •

* The number in the bracket refer5 to the bibliography.



Theorem 1.1 (Axiom g! Choice): If F' is a function with

domain D such that F(x) is a non-empty set for every x€D, then

there exists a function f with domain D such that f(x) EF(x) for

every x e:n.

Topological Space: A fami1y F of subsets of a space (set)

S is cal1ed a topo10gX for S if and on1y if:

(i) ~ and S are in F; where ~ denotes the nul1 set;

(ii) If F1C F2, thenU{A:A.€F1l E F; that is, the union of

the sets of any subfami1y of F is a member of F;

(iii) The intersection of any finite number of sets of F is

a set of F.

If F1 and F2 are two topologies for S, then F1 is said to

be weaker than F2 if and on1y if F1 CF2•
If Sl is any fami1y of subsets of S, then the topo10gy

generated by Sl, F(Sl)' is the sma11est topo10gy for S which

inc1udes Sl; if F = F(Sl)' then Sl is ca11ed a sub-basis for F.

It fo110ws readi1y that A€F(Sl)' if and oo1y if A is f6 or S, or

if A. is a union (perhaps uncountab1e) of fini te intersections of

sets in S1. If every set in F = F(S1) is a union of sets in S1,.

then Sl is cal1ed a basis for F. If a topology F is given for S,

then S is cal1ed a top010gica1 space and the sets of F are the

open subsets of S. If A is any subset of S, then the union of

all the open subsets of A. is ca11ed the interior of A and is

denoted by int(A); evident1y int(A) is the 1argest open subset

of A., and A is open if and on1y if A. = int CA.). If peint (A) ,

tben A. is said to be a neighborhood ·of p. Neighborhoods are

general1y, but not always, taken to be open sets. k set of

neighborhoods of p is cal1ed a neighborhood basis for p if



every set which contains p includes a neighborhood of the set.

A subset of S is closed (with respect to the topology F) if its

complement is open. It follows that ~ and Sare closed, that

that the intersection of any number of closed sets is closed,

and that the union of any finite number of closed sets is closed.

If A is any subset of S, the intersection of aIl the closed sets

which include A is called the closur~ of A an~is denoted by Aj

evidently A is the smallest closed set including A, and A is

closed if and only if A =I.

A subset A of a topological space S has the Heine-Borel

property if every family of open sets which covers A includes

a finite subfamily which covers A. A subset A which has the

above property is said to be compact. A set A is dense in S if

t: = S, dense in Y if YCAf\ Y. A set A is separable 1f there 1s

a countable set which is dense in A. In particular, S is a

separable space 1f there is a countable set which is dense in S.

Hausdorff Spaces: Given a space S and a collection of

subsets {Ua}' called neighborhoods, the space will be called a

Hausdorff space or a TZ-space if:

(i) To every point p there i5 at lea5t one neighborhood

U{p) containing 1t.

(1i) If Ul{P) and UZ(p) are neighborhoods of p, there 1s

at least one ne1ghborhood U3(p) of p such that U3(P)<:U1(P)(\U2(p).

tiii) If U(p) 1s a neighborhood of p and q €.U(p}, then

there 1s a ne1ghborhood U(q) of q with U(q)C:U(p).

(1v) If p f q, there exist neighborhoods U(p) of p and U(q)

of q such that U(p) (\ U(q:> = f/I..



First Countability Axiom: There is a countable basis

at each point of the space.

Second Countability Axiom: The space has a countable

basis.

A Hausdorff space satisfying the second countabi1ity

axiom is separable.

A topo10gical space ls locally compact if every point

has a c10sed compact neighborhood. A 10cal1y compact space

can be made compact by the addition of a single point.

Cartesian Products: The Cartesian product Sl X S2 of

two sets S1 and S2 is defined as the set of a1l ordered pairs

(p , q) such that P€,Sl and qES2,

Sl X S2 = {(p, qJ: p € S1 and q € S2)•

Thus the Cartesian plane of analytical geometry is the Cartesian

product of the real line by itself. The top01ogy of $1 X S2

can be given by means of the definition of a topo1ogical space

based on neighborhoods. If noW~is a basis for Sl and~'
is a basis for S2", we defineL" of S1 X 32 as the totality .

of all sets of the form W = U X V, where UE.L, and Vf.L'.•
The above definition of the Cartesian product obvious1y extends

to any finite number of factors: Sl X S2 •••••••• X Sn is the

set of ordered ri-ade (Pl, ••••••• , Pn) such that Pi € Si for

i = l, ••••••• ,D.

Theorem 1.2 (Tychonoff): The Cartesian product of a

family of compact spaces is compact.

Lemma 1.1. The Cartesian product of a family of
. . a)

Hausdorff spaces is a Hausdorff space •



2. Normed Linear Spaces

A, normed linear space is a vector space over the real

numbers or over the complex numbers on which is defined a non­

negative real-valued function called the norm (the norm of x

being designated "xII) such that

(triangle inequality)

(homogenei ty ) •

(i)

(ii)

(iii)

Ilxll = O~x = 0

/Ix + y Il ~ IIx /1 +. IIrl

IIAx" 1: l"1 • IIx"

A normed linear space is generally understood to be over the

complex number field, the real case being explicitly labeled

as a real normed linear space. A normed linear space becomes

a metric space if the distance d(x, y) is defined as !Ix - yll,
and it is called a Banach space if it is complete in this metric,

i.e., if whenever /lxn - ~/I~ 0 as n, m~OO, then there exists

an element x such that IIxn - x,,~ 0 as n~ CO.

The metric space topology in question has for a basis

the family of aIl open spheres, where the sphere about Xo of

radius r, S(xo, r ) is the set {x: IIx - xoll<r}*. The open

spheres about Xo form a neighborhood basis for xo•
It follows directly from the triangle inequality that

1nxll - /lylll ~'Ix - yll, so tbat !Ix" is a continuous function of x.

* {x: IIx - xoll<r} Ls the set of al.L x such that IIx - xolf<r.
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3. Linear Functionals

Consider a vector space E over the field of complex

numbers or more briefly a complex vector space.

Definition. A linear transformation (mapping) from a

complex vector space E to a complex vector space Et is a mapping

M from E into E' such that

M(a,x + {3y) = ~Mx + f!>My

identically for all complex numbers 0(, and f3 and all vectors

x and y in E.

Linear transformations whose range space Et coincides

with the complex vector space C of all complex numbers are

called linear functionals. Explicitly: a linear functional

on a complex vector space E is a complex-valued function r on E

such that

(i) ~ is additive (i.e., ~(x + y) = ~(x) + ~(y) for

every pair of vectors x and y in E.

(ii) 'f is homogeneous (i.e., ~(a.x) =<X.~(x) for every

complex number QG and for every vector x in E).

The definition of a conjugate linear functional differs

from the one just given in that the equation J~) =C(f(x) is

replaced by ~tx.x) = ci~(x), where Ci denotes the complex conjugate

of«.

If C is the complex number fi eld ( wi th II<X/I = roc.l l , the

space of continuous linear mappings (functionals) of a normed

linear space X into C is called the conjugate space of X,

denoted X*. Since the complex number field is complete,



it follows that X* is always a Banach space.

Definition. A bilinear functional on a complex vector

space E is a complex-valued function ~ on the Cartesian product

of E with itself such that if

then for every x and y in E, Ty is a linear functional and Y/x

is a conjugate linear functional.

A bilinear functional f(' is symmetric if cp(x, y) =q;(y, x)

for every pair of vectors x and y.

A bilinear functional ~ is positive if tp(x, x) ~ 0 for

every vector x ; we shall say that tp is strictl! positive if

lp(x, x) > 0, whenever x 1 O.

Inner Product: An iODer product in a complex vector

space E, is a strictly positive, symmetric, bilinear functional

on E. An inner product space is a complex vector space E with

an inner product defined 1n it.

Hilbert Space: A Hilbert space is an inner product
. 7)

space wh1ch, as a metric space, 1s complete •

Theorem 1.3 (Hahn-Banach): If Y is a 11near subspace of

the normed linear space X, if F is a bounded linear functional

on Y, and if Xo 1s a point of X not in Y, then F can be extended
* 12)

to Y + (xo) without changing its norm •

It follows from Zorn's 1emma that a functional F such as

above can be extended to the whole space X without increasing

* (xo) denotes the linear subspace generated by a subset X o

of the vector space X.
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its norme For the extensions of F are partially ordered by

inclusion, and the union of any linearly ordered subfamily is

clearly an extension which includes all the members of the

subfamily and hence is an upper bound of the subfamily.

Therefore, there exists a maximal extension by Zorn's lemma.

Its domain must be X, sinee otherwise it eould be extended

further by the Hahn-Banach theorem.

4. Rings ~ Ideals

In order to discuss inverses in a ring without assuming

a unit element we introduce the "circle" operation

xoy = x + y -xy,

and call y the right guasi-inverse of x, and x the left guasi­

inverse of y. We say that y is a guasi-inverse of x if

xoy = yox = 0, and that x is quasi-regular if it has a quasi­

inverse. Under the operation "0" the quasi-regular elements

form a group whieh has zero as an identity.

Totreat maximal ideals in rings without unit it is
21)

convenient, following Segalto introduce regular ideals.

Definition. A (right, two-sided) ideal in an algebra

is called regular if there exists an element of the algebra

*that is a (left, two-sided) identity modulo the ideal.

* An element e is a left identity modulo an ideal if ex - x

is in the ideal for every x in the algebra.



Theorem 1.4. In any ring R an e1ement x has a right

quasi-inverse if and on1y if there exists no regu1ar maximal

right idea1 modulo which x is a 1eft identity.

Proof. If x has no right quasi-inverse, then the set

{xy - y: y € AJ is a right ideal not containing x modulo which

*x isa 1eft identity, and this idea1 can be extended to a

regular maximal idea1 with the sarne property by Zorn's 1emma.

Converse1y, if x has a right quasi-inverse y and if x is a 1eft

identity for a right idea1 l, then x = xy - y E. I. Then

y = xy - (xy - y) El for every yé R and l = R. Thus x cannot

be a 1eft identity modulo any proper right ideal.

Theorem 1.5. If M is a regu1ar idea1 in a commutative

ring R, then M is maximal if and on1y if RIM is a field.

Proof. If HjM has a proper idea1 J, then the union of

the cosets in J is a proper idea1 of R proper1y inc1uding M.

Thus M is maximal in R if and on1y if HlM has no proper idea1s.

Therefore, given XER/M and not zero, the idea1 {XY: YEHjM }

is the whole of R/M. In particu1ar, XY = E for sorne Y, where

E is the identity of Rft~. Thus every e1ement X has an inverse

and RjM is a field. The converse follows from the fact that a

field has no non-trivial idea1s. If R is an algebra over the

comp1ex numbers, then the above field is a field over the

comp1ex numbers.

* xy = y mod l sinee xy - yEI.
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We shall find throughout that the presence of an identity

in an algebra makes the theory simpler and more intuitive than

is possible in its absence. It is therefore important to observe,

as we do in the theorem below, that we can always enlarge an

algebra deficient in this respect to one having an identity.

Theorem 1.6. If A is an algebra without an identity,

then A. can be imbedded as a maximal ideal of deficiency one in

an algebra Ae having an identity in such a way that the mapping

Ie~ 1 = A"le is a one-to-one correspondence between the

family of aIl (right) idea1s le in Ae which are not inc1uded

in A and the fami1y of aIl regular (right) ideals 1 of A.

Pr-oofî , The elements of Ae are the ordered pairs (x, A) ,
where xEA and 1\ is a complex number , Considering (x, A) as

x + Ae, the definition of multiplication is obvious1y

It is clear that (0, 1) is an identity for Ae and that the

correspondence x~ (x, 0) imbeds A in Ae as a maximal ideal

with deficiency 1.

Now let le be any (right) ideal of Ae not included in

A and let 1 = le nA. le mus t contain an e1ement v of the form

(x, -1). Then the element u = v + e = (x, O}~A is a left iden-

*tity for le in Ae and hence automatica11y for l in A. Thus l is

regular in A. Moreover, since uy - y E le and uy EA for al.L y,

we see that yE.le if and only if uyEI.

* uy - y = (u - e)y = vyEle for aIl yEAe •
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Conversely, if l is a regular (right) ideal in A and

u = (x, 0) 1s a left identity for l in A, we define le as

{y: uyE.l l. Direct consideration of the definition of

multiplication in Ae shows that l is a (right) ideal in Ae;
hence le is a (right) ideal in Ae• lt is not included in A

since u(x, -1) = utu - e) = u2 - uE land therefore u - e =
(x, -1) E I e• Moreover, the fact that uy - y E. l for every y E. A

shows that yE.l if and only if uyE. land yE,A, i.e., l = I e nA.

We have thus established a one-to-one inclusion preserving

correspondencebetween the family of aIl regular (right) ideals

in A and the family of aIl (right) ideals of Ae not included

in A. In particular the regular maximal (right) ideals of ~ are

the intersections with A of the maximal (right) ideals of Ae
different from A12) •

5. Radical and Spectrum

The radical is defined to be the union of aIl quasi-
* 9)regular right ideals. Jacobson shows that it is a two-sided

ideal, and is in fact equal to the intersection of the regular

maximal right ideals or the regular maximal left ideals.

A ring is ~-simple if its radical is zero.

Next let A be an algebra over an algebraically closed

field F. We say that a non-zero scalar Ais in the spectrum

of x € A if i\lx is not quasi-regular; and 0 is defined to belong

to the spectrum of x unless A has a unit element, and x a(two­

sided) inverse with respect to it.

* A right ideal is quasi-regular if its elements are quasi-regular.



CHAPTER II

BANACH ALGEBRAS

1. E1ementarr Theory

Definition. A Banach algebra A is an algebra over the

complex numbers, together with a norm under which it is a

Banach space and which 1s related to multiplication by the

inequality:

IIxyIl , !Ix Il IIy".

Theorem 2.1. If x E.A and IIxll < l, then x is quasi­

regular, the quasi-inverse being given by y = -~ (1) xi
'~1 '

which is also a continuous function of x.

Proof. If Yn = -L~ xi, then IIYm - ynll =

in the usual sense. Then x + y - xy = lim(x + Yn- xYn )

0, and y is a right quasi-inverse of x. Similarly,

Cauchy sequence, and its limit y is given by the

L
eD •

- x~
1

= lim xn =

infinite series

because y commutes with x, y is a left quasi-inverse and

therefore the quasi-inverse of x. Since the series is uniformly

convergent in the clos ed sphere IJxI! t: r < l, i t follows that the

quasi-inverse is a continuous function of x in the open sphere

IIxll < 1.

Theorem 2.2. In a Banach algebra A with the property

that a (right) quasi-inverse of every element in some neighbor­

hood of zero exists, every regular maximal (right) two-sided
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ideal is closed.

Proof. Let M denote a regular maximal (right) two-sided

*ideal, then it f0110ws easily that M is a (right) two-sided

ideal. It is evidently sufficient to show that lr= A is false.

Employing an indirect argument, suppose that Jr is A. Putting e

for a (left) two-sided.identity modulo M, it is clear that

there exists an element of M, m, such that the (right) quasi­

inverse of e - m exists. Putting y for this (right) quasi­

inverse, then the defining equation of y,

(e - m)y == e- m + y,

. ld d.. h d d 21 )y~e s a contra ~ct~on w en re uce modulo M •

Definition. The spectral radius of an element x€A,

denoted by r(x) is defined as ·f ol l ows :

r-{x) 1: sup 1i\1" where AE. spectrum of x.

In his paper on "normed rings", Gelfand4)proved the

formula for the spectral radius"

Gelfand's proof depends on the application of Taylor's theorem

to a certain vector-valued function. However, the proof which

we will outline utilizes only numerical functions and this is

done by a slight modification of Gelfand's argument.

* We denote the closure of a set by superposing a bar.



We form the expansion

*(Ne)' = - ( Ax + X-x2 + ,,3x3 + • • • • • • +. • • •• + )

which is certainly convergent for complex numbers Àwith IAI<C
Ilxll-l• Let f be any fixed continuous functional on the algebra.

Then r] (Nd '] is a complex-valued function of A, defined for

A-l not in the spectrum of x, which one verifies by direct

computation of the derivative to be analytic. In particular it

is analytic for IÀI~ [r(x)]-l. Hence its power series

expansion int\, namely,Lf(Xn)t\n must converge for 1i\1<

(r(x)]-l. Let t be any positive real number greater than r(x).

Then~lf(t-nxn)1 converges. Hence the sequence t-nxn is

bounded for every f. By a weIl known theorem of Banach, the

sequence is bounded in norme Extracting the n-th root we obtain

(1)

On the other hand (r(x» n = r(xn) ~ IIxnnand hence

(2)

Combining (1) and (2) we obtain

(3)

A particular case of (3) asserts that r(x) = 0 is

equivalent to "xnlll/n~o. Such elernents have been called

"generalized nilpotent" or "quasi-nilpotent". In the commutative

case they constitute precisely the radical, while in the non-

* (~), denotes the quasi-inverse ofAx.
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commutative case the radical is the union of aIl ideals which

consist entirely of generalized nilpotent elements.

Lemma 2,1. If u is a relative identity modulo a proper

regular ideal l, then d(I, u) ~ 1.

Proof", If there exists an element xE l such that

lIu - xII< L, then u - x has a quasi-inverse a, where

(u - x Ia - a - (u - x) = O. Since x, xa , and ua - a are all in l,

i t follows that u El, a contradiction.

Theorem 2.3. If l is a closed ideal in a Banach algebra A,

then A/I becomes a Banach algebra if the norm of a coset Y is

defined as its distance from the origin: !IYI/ = glb{lIx ll : xE.yJ.

Proof. Firs t, IIY Il = 0 if and onl.y if there exists a

sequence xn E. y such that "xnll~ O. Since y is closed, this

will occur if and only if 0 EY, so that IIIII = o~ y = I.

Next IIYl + Y211 = glb{IIxl + x211: xl€ Yl, X2EY2} ~ glbfllX1II + "x21~
= glb{ Ixll: Xl E.Y11 + glb {IIx2": X2 E. y2J= IIY1 Il + IIY'2 II· .

Similarly I~Y" = IAI'!IYII, and A/I is thus a normed linear epace ,

If {Yn} is a Cauchy sequence in A/l, we can suppose, by passing

to a subsequence if necessary, that IlYn+l - Ynll< 2-n •

Then we can inductively select elements Xn EYn such that

!Ix n+l - xnll< 2-n, for d(xn, Yn+l) = d{Yn, Yn+l )< 2-n •

Since A is compl~te, the Cauchy ' sequence has a limit xo, and if

Yo is the coset containing xo, then IlIn - Yoll ~ IIxn - xoll so

that {Yn] has the limit Yo• That the original sequence converges

to Yo then follows from the general metric space lemma that, if

a Cauchy sequence has a convergent subsequence, then it itself
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is convergent. Thus Ail is complete.

Ir x and Y are two or its cosets, then IIXYII = glb{lIxyll},

where x ex aed y 4;Y. Hence, glb{/Ixyll} =' glb{IIx ll · IIyll} =

glblllx"}.glb~"YII} = IIxll·IIYII. If l is regular and u is a relative

identity, then the coset E containing u is the identity of Ail

and IIEII = glb{IIxll: xEE}= glb{IIu-yll: YE.I} = d(I, u l il! 1 by

Lemma 2.1. If A does not have an identity and liE" > l, then it

is possible to renorm Ail with a smaller equivalent norm so that

liEIl = 1 4, g) •

Corollary. If l is a r-egul.ar maximal ideal and if A is

commutative, then it follows from Theorem 1.5. and the above

theorem that Ail is a normed field.

Theorem 2.~.(Gelfand-Mazur): Every normed field is

isometrically isomorphic to the field of complex numbers.

Proof. We have to show that for any element x or the

field there is a complex number Asuch that x = Àe. We proceed

by contradiction, supposing that x -Àe is never zero and

therefore that (x _,\e)-l exists for every A. But if f is any

continuous linear functional over the field considered as a

Banach space, then f[ {x -Ae)-l], as a function of A, is seen

by direct calculation to have the derivative r[{x _"-e)-2], and

is consequently analytic over the whole plane. A1so (x -Àe)-l

~ 0 as A~ CD, for {x _"e)-1 = X-1(x/A - e)-l, and (xiA - e)-l

~ -e asA~CD. Thus f[(x-"e)-l]-+o asi\~CD and hence

f[ (x _'\e)-1] _ 0 DY Liouvi11e's theorem. It follows from the

Hahn-Banach theorem and Zorn's lemma that (x -Àe)-l = 0,

a contradiction4,12).
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Remark. The above proof has not made use of the fact

that multiplication is commutative, except for polynomials in

a single element x and its inverse. Thus it actually has been

shown that the complex number field is the only normed division

algebra.

2. Commutative Banach Algebras

In this section we restrict our attention to a commutative

Banach algebra A. The results which will be outlined are

essentially those obtained by Gelfand4)in his paper on normed

rings, except that we do not assume an identity element.

*Theorem 2.5. (Stone-Weierstrass): Let A be a closed

subalgebra of the Banach algebra C(S) of all continuous (real or

thatalgebra, suppose

***in A such that x(p) = y(p) •

an x EA such that x(Pl) 1 0,

complex) functions on the locally compact space S which vanish

**at infinity. In the case of the complex

if x E.A then there exists a y

If for every Pl 1 P2 there is
24)

x(P2) = 0, then A = C(S) •

~ Space 2! Maximal Regular Ideals. LetttC denote the

class of all maximal regular ideals in a commutative Banach

algebra A. Unless A is equal to its radical, a case which we

exclude,'rnis ncn-vacuous , If Me.W, then A/M is a normed field

and so, by the Gelfand-Mazur theorem is isomorphic to the complex

* A is closed in the topology "xII = suplx(p)l.

** A function x vanishes at infinity if for é > ° there is a

compact set outside of which Ix(p)l<é. *** x(p) is conjugate of x(p
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numbers. There is accordingly associated with M a homomorphism

*x~x(M) of A onto the complex numbers with M as its kernel •

If ~ is the homomorphism of~whose kernel is the regular

maximal ideal M, then the number ~(x) is explicitly determined

as follows: if eM is the identity of the field A/M and if X is

the coset of A/M which contains x, then 6.M(x) is that complex

number À. such that X = A~. If x is held fixed and M is varied,

then GM(x) defines a complex-valued function x(M) on the settt(

of all regular maximal ideals of A. Next we define a topology

inmin terms of neighborhoods. Let E. be given, E. > 0, let n be

a positive integer, and let xl, x2, ••••••• , xn be any n points

of A. Then the set of elements M of~with

i = l, 2, •••••• , n

form a neighborhood of Mo by definition. The set of neighbor­

hoods of Mo is obtained by varying é, n, and the x's. Then

becomes a locally compact Hausdorff space, called the structure

space of A, such that each x(M) is a continuous function of M

which vanishes at infinity. If A has an identity, then~is

compact. The range of the function x(M), except possibly for

the value 0, is equal to the spectrum of x. Therefore, the

max Ix(M)1 = r(x) ~ /lxll, where r Ix) denotes the spectral radius.

Hence x~x(·) is a continuous homomorphism of A into the Banach

algebra C«tO of all continuous, complex-valued functions defined

* The kernel of a homomorphism of an algebra is the collection

of elements which are mapped into zero by the homomorphisme
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and vanishing at

infinity•.This homomorphism is an isomorphism if, and only if,

A is semi-simple. If for each xEA there exists a conjugate

element x such that x(M) = x(M), then, since the functions x(M)
*separate elements oflt{, it follows by the Stone-Weierstrass

theorem that the functions x(·) form a dense subset of C«<O.

If in addition xn"";' 0 is equivalent to Xu(M)~0 uniformly for

Me.~ then the functions x(.) will exhaust C(C(O. This will be

so, in particular, if the norm in A satisfies the condition

that IIx2
11 = IIxll2. That iS,1J.tilizing the above remarks on x(M)

**and the formula for the spectral radius, we obtain

from which it follows that the uniform convergence induces the

convergence in the norme In this case r(x) = IIxll.

An element x EA is quasi-regular if, and only if, x (M) :1 1

for all M. If A has an identity, then x will have an inverse ·

in A if, and only if, x(M) :1 0 for all M; i.e., x does not belong

to any maximal ideal. The latter observation 1s the basis for

Gelfand ts5)proOf of the Wiener theorem mentioned in the preface.

The proof goes briefly as follows:

Take W as the class of au sequences x ={~n } of complex

nwnbers such that IIxll =z: I~nl< 00. Let ~ be a complex

* The functions x(M) separate elements ofro if, for Ml , ~

there exists an element xEA such that x(MI) , x(M2).

** r(x) = lim IlxDIII / n
D~OO •
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number and x = {~n}. y =f iln} elements of W. Then W is a

commutative Banach algebra under IIxll as norm. and algebraic

operations :

The element 80n , where SOn = l or 0 according as n = 0 or n 1 0,

is an identity in W. Every homomorphism of W onto the complex

numbers is of the form

L n=+oo
x~ l: ei nu,

n=-co ,n

where u is a real number. Thusll(is in one-to-one correspondence

*(actually homeomorphic) with the real numbers modulo 2~

Now if xtu) =L:::~neinu.where x ={~nl€w. then the

condition xfu) ,; 0 for all u implies the existence of y ={Yln}EW
such that xy = 1. Clearly ~n=+coY7neinu = [x(u)] -1 50 that

~n=-oot

the Wiener theorem is proved. Gelfand5)uses the same methods

to prove a variety of theorems of the same type. In each case

the key problem i5 the determination of the maximal idea15 of

the particular Banach algebra under consideration.

* A one-to-one transformation which i5 bicontinuOU5 is called a

homeomorphism (topological mapping). Two topological spaces

are called homeomorphic if one can be homeomorphically mapped

on the other.
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3. Regu1ar Banach A1gebras

In the idea1 theory of commutative Banach a1gebras,

the fo11owing questions arise:

Question 1. Is every proper closed ideal included in

at least one regular maximal ideal?

Question 2. la every ideal which is included in precisely

one maximal regular ideal neceasarily equal to that maximal ideal?

Question 3. ls every closed ideal equal to the inter­

section of maximal ideals containing it?

In studying these and related questions, the following

notion of "regularity" of a Banach algebra is of importance.

A commutative Banach algebra A is said to be regular

provided, for any closed subset F inlt( and MoEtcC- F, there

exist~ x EA such that x(M) = 0 on F and x(Mo) ri O. We shall

outline briefly in this section a few results on regular algebras

many of which are due to Silo~3), who has made an exhaustive

study of the subject.

We observe first that regularity of A is necessary and

sufficient for the given topology inft(to be equivalent to the
24)

following topology which is due to Stone • Let 3 be a subset

oflt(and denote by 1(3) the closed ideal obtained as the inter­

section of aIl M in 3. The closure of 3 in the Stone topology

is defined to be the set of all M in~which contain 1(3).
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An example which shows that the two topologies are not always

equivalent is the algebra of aIl functions fez) analytic in the

circle Izi « l and continuous in Izi ~ 1. If A is regular and

F is a closed subset of1tC, then the algebra A/I{F) has F as its

space of maximal ideals. This result implies that A is normal.

In other words, if FI and F2 are disjoint closed sets in~,

and F2 is compact, then there exists an x such that x{M) = 0 on

FI and x{M) = l on F2 • A function f{M) defined on~is said to

belong locally to an ideal l of A i!, for every MO in1ï(there

exists an xMO in l and a compact set ~ disjoint from Mo such

that XMo{M) = f{M) in the complement of CMo • It is a consequence

of normality that, if f{M) belongs locally to A, then f{M)

actually belongs to A in the sense that there exists an x in A

for which x{M) = f{M) in aIl of?r(.

An ideal in A is said to be primary if it is contained in

exactly one maximal regular ideal. If the zero ideal is primary,

then A itself is called a primary algebra. In this case A

contains exactly one maximal regular ideal. An algebra in which

every closed primary ideal i5 maximal, i.e., an algebra in which

Question 2 has an affirmative answer, 15 called an N*-algebra.

If every closed ideal is an intersection of maximal ideals,

i.e., the answer to Question 3 is affirmative, then the algebra

is cal1ed an N-algebra. The terminology here is Silov's23).

Every N-algebra is an N*-algebra, but the converse is not true
Il)

as is shown by the following example. Kaplansky ,has shown

that for an arbitrary locally compact abelian group G, aIl the
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On the

*primary ideals are maximal, hence Ll(G)
. 20)

other hand, Schwartz has shown that if

is an N-algebra.

G is the three

dimensional Euclidean space, then Ll(G) contains a closed ideal

which is not an intersection of maximal ideals, that is , Ll(G)

is not an N-algebra. However, we have the following criteria

for N*- and N-algebras when A is semi-simple and regular.

In order for A to be an N*-algebra it is necessary and sufficient

that, corresponding to every x€.A and Mo€M'with x(Mo) = 0, there

exist a sequence {xnl such that "xnll~O and xn(M) = x(M) outside

of some compact set Cn which does not contain Mo. The N-algebra

criterion is obtained by requiring {xn} to be independent of Mo.

Thus, in order for A to be an N-algebra, it is necessary and

sufficient that, corresponding to every x, there exist {xn} such

that "xnll~O and xn(M) = x(M) outside of sorne compact set Cn

disjoint from the closed set of all M for which x(M) = O.

This result can be used, for example, to show that the algebra

V of all continuous functions x(t) of bounded variation on [0,1],

with the ordinary algebraic operations and norm

IIx" = max1x (t )1+ var x (t) ,

is a regular N-algebra. The space of maximal ideals for V is

[O,lJ with x(Mt} = xl t }, where ~ is the maximal ideal associated

with t.

We shall now discuss in more detail Question l posed at

the beginning of this section. If A is an arbitrary commutative

* Ll(G} are the complex functions on the group G which are

summable with respect to left Haar measure, with multiplication

defined as convolution.
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semi-simple Banach algebra, it has been observed by Mackey13),

that an affirmative answer to the above question can be given

under the following two assumptions: (a) A is regular and

(b) the set of elements x, such that x(M) vanishes outside some

compact subset of~, is dense in A. The proof goes as follows:

Let l be a closed proper ideal and assume that there is no M

such that leM. If C is any compact subset of~, then regularity

of A implies the existence of a u E.I such that u(M) = l for M€.C.

Now if x(M) = 0 for M$C, then, by semi-simplicity, we have xu = x.

Hence xEI. Thus l contains every element x such that x(M)

vanishes outside a compact set. It follows from (b) and the

closure of l that l = A, a contradiction. Therefore, l CM for

sorne Mé«t It should be remarked that there is no problem here

if A has an identity element, for then a proper ideal can always

be embedded in a maximal (automatically regular) ideal.



CHAPTER III

BANACH *-ALGEBRAS

1. Commutative *-algebras

We shall call a Banach algebra A a *-algebra if it adroits

an involution *: that is, a conjugate linear anti-automorphism

of period two. We say that A is symmetric if every x*x is quasi­

regular. The meaning of symmetry is easily understood in the

commutative case: it is precisely equivalent to the statement

that each regular maximal ideal is self-adjoint(M* = M).

Moreover the functions x(M) then have the property that x*(M} is

complex conjugate of x(M). If we add the assumption I/x2n = IIxn2

then as noted previously(page 19}, the algebra A can be completely

identified with the algebra C(<<0 of all continuous complex

functions vanishing at infinity on the space\((of regular maximal

ideals.

An important fact is that symmetry of a commutative

*-algebra can be proved from a suitable assumption on the norme

Theorem 3.1. Let A be a commutative *-algebra in which

IIx*xl/ ~ kllx*lIl1xll holds for every x, with k independent of x.

Then A is symmetric.

If k = l, the hypothesis simplifies to the equality

IIx*xll == I/x*lIl1xl/. In this case, with the additional assumption

of a unit element, the theorem was proved by Gelfand and Neumark6) .

In the generality stated above, the theorem is likewise due to
2)

Arens • We shall outline a slightly modified version of Aren's
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proof. First, if necessary we adjoin a unit element; as norm

we may take

(I) IIx + "" = IIx Il + 1A' •

It is easy to verify that our hypothesis survives, perhaps with

a smaller value of k. So, after a change of notation, we may

simply assume that A has a unit element. Next we prove:

(2) r{x*x) = r{x*)r{x) ,

Proof of 2. In any commutative Banach algebra we have

r{xy) , r{x)r{y); thus only the reverse inequality in (2) needs

proof'. We have

while

On passage to the Iimit we obtain r{x*x) ~ r{x*)r{x).

Proof of 3. Let y be self-adjoint (y* = y).

Then lIy2 11 ~ kllyll2 and by induction on n

On extracting the 2n_th root and passing to the limit we get

r{y) ~ kllyll. \Ve now apply this with y = x*x:
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On the other hand

r(x*x) ~ r(x*)r(x) ~ I/x*lIr(x) •

From (4) and (5) we obtain k2 11x ll ~ r(x). The other half of (3)

holds in any Banach algebra.

In summary: the spectral radius r(x) gives a norm

equivalent to the original norm; and if we use it as a new norm

we achieve the equality I/x*xll = IIx*II11xll. To complete the proof

that the algeqra A is symmetric, we follow the elegant method

given by Arenfsl).

Set

x(M) = a + bi, x*(M) = c + di ,

where a, b, c, d are real numbers. It is required to prove

that a - c = 0 and b + d = O. Assume the contrarYj for example,

let b + d i O. Define

l
y = ---[x + x* - (a + c )el ,

b + d ]

where e is the identity of A. Evidently y is a Hermitian element

and

1

b + d

This means y - ie has no inverse in A. Therefore,

(y - i e )* = y* + i e

has no inverse, whence it lies in sorne maximal ideal Mf. Thus

(y + ie)(M) = 0 or y(Mf) = -i. Hence for an arbitrary positive
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number N

(éa)

(6b)

(y + iNe) (M) = i u + N),

(y - iNe) (M t) = -i (l + N) •

Applying (1) to (6a) and (6b) we obtain

l + N ~ IIy + iNe Il ,

l + N ~ lIy - iRell •

Hence, by applying the condition IIx*xll = IIx*lI11xll to the elements

y + iNe and (y + iNe)* = y - iNe, we obtain

,

i.e., (1 + N)2 ~ N + N2 for arbitrary N ~ 1~2n, a contradiction.

Hence, b + d = O. Applying the sarne argument to ix in place of x,

we obtain a - c = 0 , whence that x*(M) = iTMT, i.e., A is

symmetric.

2. States and Representations

We now turn our attention to non-commutative Banach

algebras. Nearly aIl work in this field has thus far been

confined to algebras possessing an involution with suitable

properties, which makes it possible to make connections with

the highly developed theory of Hilbert space. We proceed to

describe the mechanism that achieves this connection.
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By a state on a *-algebra we Mean a linear functional f

such that for every x, f(x*) is the complex conjugate of f(x)

and f(x*x) ~ o. These functionals are also called positive.

If A is a *-algebra of operators on a Hilbert space H,

and f is a fixed vector in H, we May construct astate by

defining f(T) = (Tf, T) for all T in A.

The first step is to use the state f to define an inner

product on A via the definition (x, y) = f(y*x). This inner

product is positive semi-definite, which is enough to yield the

Cauchy-Schwartz inequality:

(1)

The elements with (x, x) = f(x*x) = 0 form, by (1), a left

ideal l in A, and the quotient space Ail is in a natural way

*a pre-Hilbert space. For each fixed x in A the mapping

y + I~xy + l

is a linear transformation Tx on A/I. In other words, there is

a unique way of passing from a state on A to a representation of

A by linear transformations on a pre-Hilbert space. The vital

thing is to know that the linear transformations Tx are continuous,

and so can be extended to the completion of Ail. For this we

must have

(2) f(y*x*xy) ~ K{x)f{y*y)

for aIl x and y, where K(x) May depend on x. We shall now

* A Hilbert space, which May not be complete.



30.

prove (2) under either of two hypotheses.

(a) Suppose * is continuous. Let z be a self­

adjoint element of norm less than 1. The binomial expansion

for (1 - z)1/2 converges. We write u (formally if there is no

unit element) for the sum, and k = uz; k is an actual ring

element. We observe (by the continuity of *) that u* = u.

Hence k*k = y*u2y = y*(1 - z)y. From f(k*k) ~ 0 we deduce

(3) f(y*zy) ~ f(y*y) •

Now put z = (x*x)/(lIx*xl/ + é) and take the limit as€~ 0;

we obtain

This is a strengthened form of (2).

(b) Suppose f is continuous.
:Ii

In (1) replace x by (x*x)2 y:

Extract the 2i +1_th root in (5), and multiply the results

for i = 0, 1, •••••• , n - 1. We obtain

(6)

By the continuity of f,

On app1ying (7) to (6) and passing to the 1imit we deduce

(8) f(y*x*xy) ~ r(x*x)f(y*y) •

This is an improvement on (4) •
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In the event that A has a unit element and * is

continuous, f is automatical1y continuous, for by rep1acing

y by 1 in (1) and (4) we get

Moreover now that we know f to be continuous, we can repeat

our argument using (8) instead of (4). The result we obtain

is an improvement of (9):

(10) •

The continuity of astate f can be proved for suitably

weIl behaved algebras even if they lack a unit e1ement.

To prove this we begin with the observation that it is sufficient

to show that f is bounded on the positive elements of norm 1.

Suppose on the contrary that f(xi)~ro, where xi = 0, "xiII = 1.

We can suppose that f(xi) > 2i• Write y =L 2-ixi •

The difference between y and any partial sum is non-negative;

hence f(y) > i for every L, a contradiction.

By a *-representation of a *-algebra A we shall Mean

a *-preserving'homomorphism of A into the algebra of bounded

operators on a Hilbert space. A *-representation is called

c1c1ic if there exists a vector of the Hilbert space whose

transforms are dense. If A has a unit element, then the

*-representation induced by astate is cyclic: it turns out

that the image of l is the desired cyclic vector. If A is a

C*-algebr:, segal22)gets a cyclic vector even without a unit

* A uniformlyclosed self-adjoint algebra of operators on

Hilbert space.
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element, by making use of the fact that any C*-algebra has

*an "approximate unit" in a rather strong sense. The connection

between states and representations is completed by the remark

that any *-representation is a direct sum of cyclic representations
**

and a trivial representation.

The next step in the theory is to consider the set of
***states of norm 1. These form a convexset, and the extreme

points are precisely those which give rise to *-representations

which are irreducible in the sense of admitting no closed
****

invariant subspaces. The Krein-Millman theorem then assures us

that any *-algebra, which possesses a faithful *-representation,
*****has a complete ~ of irreducible *-representations.

* An approximate unit of a C*-algebra A is a directed system Vu

of elements of A such that IlVull ~ 1 and lim VuU = U for every
u

U in A.

** A representation is trivial if it sends every element into

the zero operator.

*** A convex set is one which, if it contains the points x and y,

contains the segment xy.

**** The Krein-Millman theorem asserts that a convex set, in the

conjugate space of a Banach space, which is compact in the

weak (neighborhood) topology, is the weak compactification

of the convex core of its extreme points, an extreme point

being one which is not an inner point of a segment contained

in the set.

***** A collection of representations of A is called complete if

no element of A except zero is mapped into zero by every

representation in the collection.
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Remark. The results presented in the above section can

be given a quantum mechanieal interpretation. They grew out of

investigations which tried to give a broader and more rigorous

treatment of certain parts of quantum mechanies, particularly of

the principle that the spectral values of an observable are

determined by the behaviour of the observable in the irreducible

representations of the operator algebra describing the physieal

system in question. The original mathematical model for the

observables in quantum theory was the class of aIl self-adjoint

elements of the algebra C of all bounded operators on a Hilbert

space. However, it seemed desirable to consider the collection

Qf self-adjoint elements in less restricted algebras of operators

as a possible model for the observables, the Most notable reason

being: (a) the lack of a physical reason why every self-adjoint

operator should correspond to an observable, (b) the serious

mathematical difficulties in quantum electrodynamics.

The concept of astate was introduced by von Neumann and

Weyl (independently) in a quite general fashion and in the case

of the algebra C just mentioned it was shown that an element of

the Hilbert spaee of norm unity (a wave function) gave rise to

*a pure state. In more general systems the question of the

existence of pure states was left open, but we should mention

that the proof of this existence is now based on the Krein­

Millman theorem which was proved on1y fair1y recently.

* A pure state is one which is not a linear combination with

positive coefficients of two other states.



3. C*-algebras

22)
Following the terminology of Segal , we define

a Q*-algebra to be a uniformly closed self-adjoint algebra

*of operators on Hilbert space. One May give an equivalent

intrinsic set ofaxioms due to Gelfand and Neumark6) :

a C*-algebra is a *-algebra in which, for every x, IIx*x1l • /Ix1l 2 •

Gelfand and Neumark included the assumption of symmetry in the

postulates for a C*-algebra but Fukamiya3) showed this to be

redundant.

We shall now discuss questions of structure theory,

confining ourselves to C*-algebras. In the light of Jacobson's

structure theory of rings, we set forth the problem as follows.

Let A be a C*-algebra, { Pi} its primitive ideal:*. To know the

structure of A, we have to know: (a) the structure of the

primitive C*-algebras A/Pi , (b) how these algebras combine

to give A.

It is instructive to review the commutative case.

Here each A/P is simply the field of complex numbers, and the

.way they combine is fully described by saying that we get aIl

continuous complex functions vanishing at infinity on the

space of maximal ideals.

In attempting to generalize to the non-commutative case,

the first step is to select the analogue of the space of maximal

* The Hilbert space is not necessarily separable.

** A (two-sided) ideal P in a ring A is called primitive if 0

is the only x E.A such that AxCP.
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ideals. An appropriate selection is the structure space of
10)

Jacobson ., i.e., the space of primitive ideals topologized

(after Stone) by making the closure of the set [ Pi} of primitive

ideals the totality of all primitive ideals containing ()Pi •

Next we consider the possibility of a representation by continuous

functions. For an element x in A and a primitive ideal P, we May

form the image x{P) of A mod P. Naturally, it is not promising

to speak of the continuity of x{P}, for we cannot compare elements

in the unrelated algebras A/P. Instead of x{P) we consider IIx{p}lI;

this is a real-valued function on the structure space X whose

continuity is perfectly meaningful. It turns out, as we will

illustrate in the following that, the functions IIx{p}II are

continuous if and only if X is a Hausdorff space.

This focuses attention on the problem of determining

reasonable conditions which will assure us that X is a Hausdorff
11)

space. This problem is taken up by Kaplanskyin the case where

each A/P is known to be the algebra of all completely continuous
**operators on a Hilbert space. Such an algebra is called a

CCR-algebra ("completely continuous representations").
,

The main structure theorem asserts that any CCR-algebra possasses
*a composition series Ir such that each Ir+l/Ir has a Hausdorff

structure space.

* A weIl ordered ascending chain Ir of closed two-sided ideals.

** An operator on a Hilbert space is completely continuous if

it is the limit in the uniform topology of operators with

finite dimensional range.
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Lemma 3.1. Let X be a topological space at each point

of which a C*-algebra Ax is given and let A be a self-adjoint

algebra of functions from X to {Ax} , with f(x) €Ax, satisfying

the following two conditions: (a) "f(x~1 is continuous at 0,

that is, if f(x) = 0, then for anyE.> 0, there exists a

neighborhood U of x sucb that I/f(x) 11< é for x in U.

(b) nf(x)/1 1s bounded, and A is complete under the norm

IIfll = sup8f(x) Il. Then for any self-adjoint element f €A, the

spectrum of f(x) is a continuous function of x in the following

sense: for any x E.X and E> 0, there Ls a neighborhood U of x

such that for all yE U, the spectrum of f(y} 15 contained in

an E-neighborhood of the set consisting of 0 and the spectrum

of f(x).

Proof. Write V for the set consisting of 0 and the

spectrum of f(x), and Wfor an é-neighborhood of it. Let p be

a continuous real-valued function which vanishes on V and is

equal .to 1 on the complement of W. Then g = p(f) vanishes at x,

and so by the continuity of the norm, IIg(y) Il < 1 for y in a

suitable neighborhood U of x. For y in U the spectrum of g{y}

must lie in W.

We now quote the following useful resultl l}.

Lemma 3.2. Let A. be any ring and B either a two-sided

in A, a subring of the form eAe, or a subring of the form

(1 - e)A(l - e), e being an idempotent. Then there is a one-one

correspondence between the primitive ideals of B and those

primitive ideals of A containing B. The mapping is implemented

by p~ P f\ B, P primitive in A, and i t is a homeomorphism in the

topologies of the structure spaces of A and B.
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In the context of C*-algebras, the use of the Jacobson

structure space is perhaps open to suspicion on two grounds.

(1) A, primitive ideal is the kernel of a purely algebraic

irreducible *-representation. For C*-algebras one naturally

prefers to use irreducible *-representations. Since in the

latter case irreducibility means the absence of closed invariant

subspaces, the connection between the two concepts is not clear.

However, in one direction we can clear up the ambiguity: any

primitive ideal P is also the kernel of an irreducible

*-representation. To see this, we note that there is a regular

maximal ideal M such that P is the kernel of the natural

repre5entation on AIM. Now in the terminology of Sega122
) ,

*there exists astate vanishing on M. By an appropriate
**application of the Krein-Millman theorem we can get further

***a pure state w vanishing on M. The *-representation attached

to w is irreducible and has P as kernel. Whetber it is true

conversely that the kernel of an irreducible *-representation

i5 primitive is an open question; but in any event the structure

of Jacobson i5 the smaller of the two spaces, and for Many

purposes tbis more or less justifies its use.

(2) For commutative Banach algebras, it has been found that

the structure space has unsatisfactory properties, and that the

right topology i5 the weak topology introduced by Gelfand.

However, for commutative C*-algebras, the two are known to

* Astate isa complex-valued linear functional f such that
f(x*) is the complex conjugate of f(x).

** For a statement of the Krein-Millmantheorem, see page 32.

*** For the definition of a pure state, see the footnote on pg.33.
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coincide. The next three results will indicate that for

arbitrary C*-algebras, the Jacobson structure space is

reasonably weIl behaved.

Having selected the structure space X of primitive ideals

{Pit in A, we May represent an arbitrary element x of A by the

set {~} of its images in the C*-algebras {A/Pi}. We shal1

write x(P) for the value of x at the point P of X. Utilizing a
11')theorem of Kap1ansky ., we can say that this functiona1

representation preserves norm; that is, we have IIxl/ = supnx(p)I/,

taken over P in X. However, in this context where X is the

structure space, even more is true: the sup is attained for

some P in X. Because of the identity IIx*xll = IIx1l2, one needs to

prove this only in the case x ~ 0, and we May assume Ilxll = 1.

To say that I/x(P)1I is less than 1 is to say that the spectrum

of x (p) does not contain 1; that is, that - x has a quasi­

inverse modulo P. If this is true for every P, then-x has

a quasi-inverse modulo every primitive ideal. It is known

that this implies that - x has a quasi-inverse in A itself,

contradicting IIxll = 1.

Lemma 3 •.1. Let x be a self-adjoint e1ement of a C*-algebra

with structure space X. Let E be a closed set of real numbers

containing O. Then the set Z of PEX, such that the spectrum

of x(P) is contained in E, is a c10sed subset of X.

Proof. Suppose that Q is in the c10sure of Z, and x(Q)

has a in its spectrum, a~E. Let p be a continuous rea1-valued

function vanishing on E but not a. Then p(x) vanishes on Z but

not at Q, contradicting the definition of the topology of X. Q.E.D.



The next result indicates that it is quite generally true

that the functions on the structure space "vanish at infinity".

Lemma 3.4. Let x be any element of a C*-algebra with

structure space X, and é a positive number. Then the set K of

P E.X for which IIx(P) // ~ €. is a compact subset of X.

Proof. Because of the identity IIx*x1l = IIxn 2 we need,
consider only the case where x is self-adjoint. Let {Fj} be a

family of (relatively) closed subsets of K having void intersection.

We must prove that a fini te subset of the F's already have void

intersection. Let I j be the intersection of the primitive ideals

comprising Fj, Ho the ideal generated by the Ij's (in the purely

algebraic sense), and H the closure of Ho. We observe that H is

not contained in any of the primitive ideals comprising K.

For if HCR, RE.K, then R contains each r j. By the defini tion of

the topology of the structure space, we see that R lies in each Fj,

a contradiction. Next we remark that A/H is semi-simple (indeed

a C*-algebra). Hence, H is the intersection of the primitive

ideals containing it. We write L for this set of primitive ideals,

and observe (as just shown) that L is disjoint from K. Hence, for

every Q in L, we have /Ix(Q)//<cS. Write r = sup/lx(Q} n taken,
over Q in L. If we write xl for the image of x mod H, we see that

r is precisely the sup of the norms of aIl the images of Xl at

primitive ideals of A/H. As we remarked above, such a sup is

actuallyattained; in other words we have r = IIx(Qo)1I for a

suitable Qo in L. Hence r is itself less thancS. Let p(t) be a

continuous real-valued function of the real variable t, which

vanishes for Itl ~ r, equals 2 for Itl ~ é, and is linear between;
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write z = p(x). Then z is in H sinee it vanishes on L, and

IIz (P) Il = 2 for P in K. Since Ho is dense in H, there exists an

element y in Ho with IIy - zU< 1. The element y must already lie

in the union of a finite number of l's, say Il ••••• Ir., ,
Then FI" ••• (\Fr must be void; for at any primitive ideal in

this intersection y would vanish, whereas IIy(P}II ~ l throughout K.

The question as to when the functional representation on

the structure space gives functions with continuous norm is

completely answered in the following theorem.

Theorem 3.2. For any C*-algebra A with struct~e space X,

the following statements are equivalent: (1) X is Hausdorff,

(2) for any x€A., the funetion IIx(p}1I is eontinuous on X.

Proof", That (2) implies (1) is immediate. If Q, RE.X,

Q '1 R, then there exists x €A vanishing sayat Q, but not at R.

The continuous real-valued funetion IIx(p}1I yields disjoint

neighborhoods of Q, R.

To prove that (1) implies (2), we begin by investigating

continuity o;f IIx{P)1I at O. Take a ;fixed QEX, and let l be the

closure of the set of al.L xEA~ such that x{P) vanishes in a

neighborhood of Q; l is a closed two-sided ideal in A. We claim

that l = Q. If not, sinee l is the intersection of the primitive

ideals containing it, l will also be contained in a different

primitive ideal Qoe By the Hausdorff separation property, there

exists a neighborhood U of Q whose closure does not contain Qo.

By the definition of the topology of X, A, contains an element

vanishing on U but not at Qo and this is a contradiction., .

At this point we know that anything vanishing at Q is a limit of
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elements vanishi~g in a neighborhood of Qj this proves continuity

of I/x(p)II at O.

We now pass to the general proof of continuity. Because of

the equation I/x*xl/ = IIx1l2, it is enough to do this for self­

adjoint x. Let QEX and E. > 0 be given, and wri te r = IIx (Q) ".

It follows from Lemma 3.1 that in a suitable neighborhood of Q,

IIx(P) 11< r + ê. To complete the proof it will suffice to show

that the set of P with IIx(p) Il > r - E. 1s open ; or alternatively,

that the set of P with IIx(p) 1/ ~ r - E. is c.Lcaed , This is a

consequence of Lemma 3.3 Il).

Remark. If we combine Lemma 3.4 and Theorem 3.2, we see

that when the structure space is Hausdorff it is also locally

compact.

In the following theorem we treat the fundamental case in

which we are able to prove that the structure space is Hausdorff.

Theorem 3.3. Let A, be a C*-algebra in which for every

primitive ideal P, A/P is finite dimensional and of order

independent of P. Then the structure space of A 15 Hausdorff.

Proof. We shall not prove this by considering the structure

space directly; instead, following the idea of Kaplanskyllf), we

provisionally introduce another space. Let M be the finite­

dimensional C*-algebra (a full matrix algebra) to which each A/P

i5 i50morphic. Let Y be the space of all *-homomorphi5m5 of

A into M, including the 0 homomorphisme In the weak topology,

y i5 a compact Hausdorff space, and the elements of A, are

represented by continuous functions from Y to M. Each primitive



ideal in A gives rise to an orbit of points in Y, the orbit being

in fact induced by the group G of *-automorphisms of M. Now G ls

compact in its natural topology, and the mapping from G onto an

orbit is readily seen to be continuou~. Hence the orbits are

closed, and we may forro a wall defined quotient space X relative

to this decomposition of Y. The points of X are of course in

one-one correspondence with the set consisting of the structure

space of A and a point at infinity. Being a continuous image of Y,

X is again compact. We can no longer speak of elements of A as

being represented by continuous functions x(a) on Xi but the

function /Ix(c)1I is constant on orbita, and so gives us a uniquely

defined function on X, which is again continuous. Moreover, these

functions IIx(a)1I exist in sufficient abundance to separate points

of X, for given two distinct points of X, we can find an element

xEA vanishing at one but not at the other. From this it follows

that X is Hausdorff. Q.E.D.

In order to see how the above considerations fit into

a more general framework, we make a few remarks and consider only

*the homogeneous case. Without the a1d of a weIl behaved

*-operation, it seems to be difficult to construct a satisfactory

theory; in general terms one may trace the trouble to the fact

that the group of automorphisms of M is not compact. Hence, let

us assume that A has a continuous *-operation which is symmetric.

Then the construction of the above space Y, and its reduction to X,

go through; this appears to be a satisfactory beginning for the

* A Banach algebra A such that aIl A/P are isomorphic to a fixed

finite-dimensional matrix algebra M.
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theory. Still, one 1s troubled by the fact that there are three

further possible ch01ces for a space of primitive ideals:

(1) the structure space, (2) primitive ideals with the weak

topology 1nduced by traces of elements, (3) the space of maximal

1deals (in Gelfand's sense) of the center Z of A. If A is a

C*-algebra, it 1s known that all four versions coincide, but the

general situation is not clear. In particular, the choice (3)

is in jeopardy, since perhaps Z = O. The case of degree two is

an exception, sinee then (xy - yx)2 is always in the center.

From the homogeneous case treated in Theorem 3.3, we pass

on to the case where A is a C*-algebra such that each A/P is

finite-dimensional with a fixed upper bound on the order.

This hypothesis can be described more briefly by saying that A

satisfies a polynomial identity. In order to clarify our further

considerations, we make a few general remarks at this point.

Consider the algebra of n by n matrices over a field. In the

notation of Kaplansky, this satisfies a polynomial identity

[Xl, •••••• , Xr(n)] = 0 ,

where r(n) is a certain function of n, and matrix algebras of

higher order do not satisfy this identity. Amitsur and Levitzki

have shown that r(n) = 2n, but for our purposes, aIl that matters

is that some identity shall exist that characterizes n by n

matrices. Now let A be any Banach algebra; let Cn denote the

set of aIl primitive ideals P such that A/P is a k by k matrix

algebra with k ~ n, and let In be the intersection of these

ideals. Then A/In satisfies the above polynomial identity, and
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so does every primitive image of A/In. It follows that Cn is

a closed subset of the structure space. Moreover, it follows

from Lemma 3.2 that Ir_1/lr is homogeneous: each of its

primitive images is an r by r matrix algebra.

Let A be any C*-algebra satisfying a polynomial identity.

The above defined chain of ideals In reaches 0 in a finite number

of steps. We have thus constructed a finite composition series

for A, with the property that every factor algebra has a Hausdorff

structure space.

Composition Series. By a composition series of a

C*-algebra A, we mean a well-ordered ascending series of closed

two-sided ideals I s' beginning with 0 and ending \~th A, and

such that for any limit ordinal u, lu is the closure of the union

of the preceding l's. The use of an ascending series here, as

opposed to a descending series, is typica1 of ring theory, and is

analogous to the superiority of minimal over maximal ideals.

Theorem 3.4. Let A be a C*-a1gebra such that every

primitive image A/P is finite-dimensional. Then A has a

composition series ls such that each 1s+1/1s satisfies a

polynomial identity.

Proof. In the structure space X of A, let Cn be the set

of primitive ideals P such that A/P has degree not greater than n.

Then X is the union of the countable family of closed sets Cn, and

hence, one of them, say Cr, must have a nonvoid interior U.

Let l denote the intersection of the primitive ideals comprising

the complement of U. Since the latter is closed, these are
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precisely the primitive ideals containing Ij in particular we

see that l is nonzero. By Lemma 3.2, the primitive ideals in

l itself are in one-one correspondence with the members of U.

It follows that the primitive images of l are aIl of degree not

greater than r. Hence l satisfies a polynomial identity: to be

precise, the identity for r by r matrices. This is the beginning

of our composition series. The algebra Ail again satisfies the

hypothesis of our theorem (any primitive image of Ail is a

primitive image of A), and we continue by transfinite induction.

As we observed above, a C*-algebra B with a polynomial

identity has a {finite) composition series such that aIl factor

algebras possess a Hausdorff structure space. In particular the

first nonzero ideal in this series has a Hausdorff structure

space, and by Lemma 3.2 the latter i5 homeomorphic to an open

subset of the structure space of B. If we combine this with

Theorem 3.~, and another application of Lemma 3.2, we obtain the

following corollary.

Corollary. If A is a C*-algebra such that every primitive

image Alp is finite-dimensional, then the structure space of A has

a nonvoid open Hausdorff subset.

From a certain point of view, the study of C*-algebras

may be divided into two parts: the determination of the primitive

ones, and the study of how the latter combine to form a general

C*-algebra. We now pick out a class of C*-algebras for which the

first problem evaporates, and so attention is concentrated on the

second.
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Definition. A CCR-algebra is a C*-algebra for which every

primitive homomorphie image A/P is isomorphic to the algebra of

*all eompletely continuous operators on a Hilbert space.

We now prove our main structure theorem.

Theorem 3.5. A CCR-algebra has a composition series 15

such that each 15+1/15 has a Hausdorff structure space.

Proof. Let A be the algebra and X its structure space.

Select a self-adjoint element x in A whose spectrum lies in (0, 1)

and actually contains 1. At any P€X, the spectrum of x{p) is a

finite or eountable set with at most ° as a limit point. Let p(t)

be a continuous real-valued function, vanishing in a neighborhood

of 0, satisfying p(l) = l, and, say, linear between. We pass to

y = p(x), and observe that every y(P) has a finite spectrum lying

between ° and 1. Let B denote the intersection of the primitive

ideals containing y, or in other words, the set of P with y(p) = 0;

let Y be the structure space of B. Lemma 3.2 shows that B is

again CCR, and that Y is in a natural way an open subset of X.

We will now show that Y has an open Hausdorff subset.

For this purpose we first note that y(Q) r° for any QE.Y.

For n = 2, 3, •••• , let Cn denote the set of QEY for which the

spectrum of y(Q) lies in the closed set consisting of 0 and the

closed interval from lin to 1. By Lemma 3.3 Cn i5 closed. Also,

5inee the speetrum of each y(Q) is finite, Y =l)cn- Hence one

of the Cts, say Cr, has a nonvoid interior U. Let q{t) be a

* See the footnote on page 35.
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continuous real-valued function satisfying q(O) = 0, q(t) = l

for t ~ l/r, and write z - q(y}. Then at every point of Cr,

z maps into a nonzero self-adjoint idempotent, and this is

a fortiori true at aIl points of the closure V of U. Let J be .

the intersection of the primitive ideals in B whieh comprise V.

Let D = B/J; the structure space of Dean be identified with V.

Let e denote the homomorphie image of z mod J; then e is a self­

adjoint idempotent not vanishing at any point of V. We eonsider

finally the algebra eDe; by Lemma 3.2 its structure space ls

again homeomorphic to V. Now it follows from Lemma 3.2 again

that the primitive ideals in eDe are of the form R(\eDe = eRe,

where R is primitive in D. Thus the primitive homomorphie images

of eDe are of the form el(D/R)el, el being the image of e mod R.

We know that D/R is the algebra of aIl completely continuous

operators on a Hilbert space. It follows that el(D/R}e1 is

finite-dimensional. In short, aIl the primitive images of eDe

are finite-dimensional. The corollary of Theorem 3.4 is therefore

applicable, and tells us that V has a nonvoid open Hausdorff

subset, say Z. The intersection T of Z and U is a nonvoid open

Hausdorff subset of Y. The same set T is open in X (since Y is

open in X). Let l be the intersection of the primitive ideals

comprising the complement of T. Then l is a nonzero closed two­

sided ideal in A whose structure space is homeomorphic to the

Hausdorff space T (Lemma 3.2 15 being used again). This is the

beginning of our composition series; we continue with a similar

treatment of A/l, and 50 on by transfinite induction,ll).

Our study of CCR-algebras now stands as follows. We have

established the existence of a composition series such that all
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the factor algebras have a Hausdorff structure space. Next, if A

is a CCR-algebra with a Hausdorff structure space X, then Lemma 3.4

and Theorem 3.2 show that X is locally compact, and that the

representation of A on X gives us functions with continuous norm

vanishing at infinity.

4. W*-algebras

Sorne tentative investigations indicate that the prospect

is not very bright for developing the theory just described

beyond CCR-algebras. However, this outlook changes if we are

willing to strengthen the assumption of uniform closure to that

of weak closure. We define a W*-algebra to be a weakly closed

self-adjoint algebra of operators on a Hilbert space.

For W*-algebras there is a highly developed structure theory,
14 15 16)due to Murray and von Neumann' , •

Murray and von Neumann considered only the separable

*Hilbert space, and concerned themselves largely with factors.

However, neither the results nor the methods change very much

if one drops both these restrictions. We shall proceed to

briefly describe the structure of an arbitrary W*-algebra.

*):<
The dominating role is played by the projections. We calI

a projection e abelian if eAe is commutative; calI e finite if

right and left inverses coincide in the algebra_eAe~ _W~ say_

that A is of type l if it is generated by abelian projections,

* Factors are algebras whose center is the complex numbers.

** A projection 1s a self-adjoint idempotent.
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of type II if it contains no abelian projections but is generated

by finite projections, of type III if it contains no finite

projections. A known result is that, any W*-algebra is a unique

direct sum of algebras of types l, II and III.

Algebras of type l are completely known. By the methods

of multiplicity theory, one decomposes the algebra into direct

summands, one for each cardinal number, which are uniform in

a suitable sense. A uniform algebra attached to the cardinal K

can be, in a sense, described as an K by K total matrix algebra

over a commutative algebra.

About W*-algebras of type III little is known except that

they exist, and that in the non-separable case a cardinal-valued

dimension theory can be constructed.

There remains the Most interesting case of algebras of

type II. In studying these, the first step is to single out

*those which are finite. In accordance with the terminology of

. Murray and von Neumann, we say that sucb an algebra is of type Ill.

An arbitrary algebra of type II decomposes uniformly into uniform

parts, a typical uniform summand being a K by K matrix algebra

over an algebra of type III_ Thus the study of algebras of

type II can be reduced essentially to the case of Ill, and one

can furthermore reduce to the case where the commuter is of type II~

The Most important fact about an algebra of type III is

the existence of a trace. For algebras that are not necessarily

* Those for which the unit element is finite, as defined above.
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factors, the trace is a linear function x~T(x) from the algebra

*to the center, which is the identity on the center, is positive,

and satisfies T(xy) = T(yx). The proof of the existence of the

trace, even after many simplifications, is still quite elaborate;

it seems that it would be m05t desirable to have a simpler proof.

As regards the structure theory of algebras of type 111 1
the known facts are as follows. Murray and von Neumann16)define

a factor of type III to be approximately finite if it i5 the weak

closure of the union of an ascending chain of finite-dimensional

algebras. They show that aIl approximately finite factos are

isomorphic, and that there exist factors that are not approximately

finite. Thus, at the present writing, it is not known whether

there exist more than two non-isomorphic factors of type III-

* x ~ 0 implies T(x) ~ o.

1
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