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Abstract 

In a number of electrical engineering problems, so-called "crossing points" - the instants 
at which two continuous-time signals cross each other - are of interest. Often, particularly 
in applications using a Digital Signal Processor (DSP), only periodic samples along with 
a partial statistical characterization of the signals are available. In this situation, we are 
faced with the following problem: Given limited information about these signals, how can 
we efficiently and accurately estimate their crossing points? 

For example, an audio amplifier typically receives its input from a digital source decoded 
into regular samples (e.g. from MP3, DVD, or CD audio), or obtained from a continuous-
time signal using an analog-to-digital converter (ADC). In a switching amplifier based 
on Pulse-Width Modulation (PWM) or Click Modulation (CM), a signal derived from 
the sampled audio is compared against a deterministic reference waveform; the crossing 
points of these signals control a switching power stage. Crossing-point estimates must be 
accurate in order to preserve audio quality. They must also be simple to calculate, in order 
to minimize processing requirements and delays. 

We consider estimating the crossing points of a known function and a Gaussian random 
process, given uniformly-spaced, noisy samples of the random process for which the second-
order statistics are assumed to be known. We derive the Maximum A-Posteriori (MAP) 
estimator, along with a Minimum Mean-Squared Error (MMSE) estimator which we show 
to be a computationally efficient approximation to the MAP estimator. 

We also derive the Cramer-Rao bound (CRB) on estimator variance for the problem, 
which allows practical estimators to be evaluated against a best-case performance limit. 
We investigate several comparison estimators chosen from the literature. The structure of 
the MMSE estimator and comparison estimators is shown to be very similar, making the 
difference in computational expense between each technique largely dependent on the cost 
of evaluating various (generally non-linear) functions. 

Simulations for both Pulse-Width and Click Modulation scenarios show the MMSE 
estimator performs very near to the Cramer-Rao bound and outperforms the alternative 
estimators selected from the literature. 
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Sommaire 

Dans bon nombre de problemes d'ingenierie electrique, il est interessant de noter les 
points dits points de croisement, soit l'instant ou deux signaux continus se croisent. Sou-
vent, surtout dans les applications utilisant un processeur de signal numerique (PSN), 
seuls des echantillons periodiques avec une caracterisation statistique partielle des signaux 
sont disponibles. Dans une telle situation, nous sommes face au probleme suivant: vu 
Pinformation limitee sur ces signaux, comment peut-on estimer de fagon efficace et exacte 
leurs points de croisement? 

Par exemple, dans un amplificateur audio avec modulation d'impulsions en duree (MID) 
ou en position (Click Modulation, ou CM), un signal inconnu est compare a une onde 
de reference deterministe; les points de croisement de ces signaux controlent un etage 
de puissance commutatif. L'entree d'un tel amplificateur est habituellement decodee en 
echantillons reguliers (par exemple, l'audio d'un MP3, d'un DVD ou d'un CD) ou en-
core obtenue a partir d'un signal continu utilisant un convertisseur analogique-numerique 
(CAN). Les estimations de points de croisement doivent etre precises afin de conserver la 
qualite audio. Elles doivent aussi etre simples a calculer afin de minimiser les exigences et 
les delais du traitement. 

Nous voulons estimer les points de croisement d'une fonction connue et d'un processier 
aleatoire gaussien, grace a des echantillons, egalement espaces et brouilles par le bruit, du 
processier aleatoire pour lesquels les statistiques du second ordre sont presumees etre con-
nues. Nous derivons l'estimateur du maximum a posteriori (MAP), ainsi qu'un estimateur 
de type Erreur Quadratique Moyenne Minimale (EQMM); nous montrons que ce dernier 
est une approximation numerique efficace de l'estimateur MAP. 

Nous derivons egalement la Borne de Cramer-Rao (BC) de la variance de l'estimateur 
pour le probleme, ce qui permet devaluation d'estimateurs pratiques par rapport a une 
limite de performance dans la meilleure situation. Nous etudions plusieurs estimateurs de 
comparaison choisis parmi la litterature. Nous prouvons que la structure de l'estimateur 
EQMM et celle des estimateurs de comparaison sont tres semblables, rendant la difference 
d'utilisation de ressources informatiques entre chacune des techniques hautement dependante 
du cout relie a revaluation de diverses fonctions (habituellement non lineaires). 

Les simulations a la fois des scenarios avec modulation d'impulsions en duree et avec 
modulation d'impulsions en position (CM) montrent que l'estimateur EQMM s'approche 
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tres pres de la CRB et est plus efficace que les autres estimateurs choisis dans la litterature. 
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Chapter 1 

Introduction 

1.1 The Crossing-Point Estimation Problem 

In many signal processing applications, the samples of an unknown, continuous signal 
are used to estimate the times at which this signal crosses a known function. The known 
function depends on the application, and is typically zero, a fixed level, or a periodic carrier. 
Often, only noisy samples of the unknown signal are available, along with some information 
about their statistical properties. This thesis concerns itself with three questions: 

• Is there an optimal method to estimate the crossing points of the unknown signal and 
the known function? 

• If so, is there a computationally efficient approximation to the optimal method? 

• How accurate can the resulting estimates be? 

This crossing-point estimation problem arises in a number of applications. For exam-
ple, zero-crossings are of interest in pitch detection for speech signals [1], demodulation 
of FM and FSK signals [2], and frequency estimation for power-quality monitoring [3]. 
Level-crossings have been extensively studied [4], and are of practical interest in non-linear 
sampling applications [5]. Carrier crossings have also received substantial theoretical treat-
ment [6], and are of practical interest in Pulse-Width Modulation (PWM) [7, 8], Click 
Modulation (CM) [9], and non-linear sampling applications [10]. 

The examples of PWM and CM are of particular interest due to the growing demand 
for high-fidelity, inexpensive switching amplifiers. In these applications, crossing points of a 
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bandlimited signal and a known carrier (which may be sawtooth, triangular, or sinusoidal) 
must be accurately determined in order to preserve the fidelity of the input signal (e.g. 16 
bits at a sampling rate of fs = 44.1 kHz, in typical audio applications.) In consumer-grade 
equipment, this process must also be computationally efficient to avoid costs associated 
with an expensive Digital Signal Processor (DSP) or a high gate count in custom silicon. 

In this thesis, we investigate the crossing-point estimation problem from the perspec-
tive of statistical signal processing. Although we approach the problem in a general way, 
we focus on the particular applications of PWM and CM due to the rapid progress and 
continuing interest in switching amplifier research and design. 

1.2 Previous Work 

Several investigations of the discrete-time crossing-point estimation problem have been 
conducted in order to design digitally controlled switching amplifiers using PWM. In all 
such cases, estimating crossing points was cast as a two-step process: crossing points were 
first rapidly and coarsely located by observing points at which samples of the random signal 
and carrier cross each other. Then, nearby samples of the random signal and carrier were 
used to generate a more accurate estimate of the crossing point. 

The most common approach to refining crossing-point estimates is to approximate the 
random signal between samples using a continuous interpolating function. It then remains 
to estimate the crossing points of the interpolating and carrier functions, for which many 
root-finding techniques (e.g. Brent's algorithm or Newton's method) are applicable. 

The simplest choice for the interpolator is also the most frequently used: the unique 
polynomial of order M — 1 passing through M sample points of the random signal. For ex-
ample, when M — 2, the polynomial interpolator corresponds to straight-line interpolation 
between samples on either side of the crossing-point. In [11], straight-line interpolation 
is abandoned in favour of higher-order polynomial interpolation. However, straight-line 
interpolation is explored for a different parameter set and found to perform adequately in 
[12]. Cubic and higher-order polynomial interpolators are explored in [8, 13, 14, 15, 16, 7]. 
These references, all of which focused on PWM audio amplifiers, suggest the estimation 
accuracy of low-order polynomial interpolators varies strongly with design conditions. 

An alternative scheme [14, 7] begins with an infinite-sum expression for the crossing 
points assuming the unknown input is an analytic, nonrandom signal and given knowledge 
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of all of its derivatives. This expression is truncated to an appropriate number of terms, 
and the derivatives of the random signal are estimated using numerical techniques. 

Several surveys [15, 13, 17, 18, 19, 7] describe, evaluate and compare the above tech-
niques. The impact of crossing-point estimation errors in PWM are considered in [20]. 

None of the approaches mentioned above take advantage of statistical knowledge of the 
underlying signals. It is unclear if and when these techniques are optimal in any sense, as 
they are designed on an ad-hoc basis. While they can perform adequately in an oversampled 
regime when the random signal is low-pass in nature, these techniques do not generalize to 
arbitrary signal models, and may not be as computationally efficient as alternatives. 

1.3 Thesis Contributions 

This thesis approaches the discrete-time crossing-point estimation problem from a sta-
tistical perspective under the Maximum A-Posteriori (MAP) framework. By adopting a 
statistical framework, it is possible to inject and exploit information about the random sig-
nal, such as its autocorrelation function, which would not be feasible with a nonstatistical 
approach. It is also possible to model and compensate for measurement noise. 

We derive the MAP estimator for the problem, a methodological process yielding an 
estimate that meets certain optimality criteria. We also derive the Cramer-Rao bound 
(CRB) on estimator variance for the problem, which provides an absolute metric against 
which estimators may be compared. We introduce an alternative crossing-point estimator 
using the Minimum Mean-Squared Error (MMSE) estimator for the random signal, and 
show it to be an approximation to the MAP estimator under oversampled, high-SNR con-
ditions. We consider the computational complexity of these and several estimators chosen 
from the literature. 

Finally, we present simulated results using both sinusoidal (for CM) and sawtooth (for 
PWM) carrier crossings as a scenario. We compare the performance of the MAP and 
MMSE estimators with the Cramer-Rao bound and a number of estimators chosen from 
the literature. The MAP and MMSE estimators approach the CRB and outperform the 
alternatives simulated. 
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1.4 Organization 

The remainder of this work is organized into five chapters. 
In Chapter 2, we present an introduction to switching amplifiers, focusing on the tech-

niques of Pulse-Width Modulation and Click Modulation. This material motivates explo-
ration of the crossing-point estimation problem and provides some context for the simula-
tions presented later. 

In Chapter 3, we formally define the discrete-time crossing-point estimation problem. 
We also introduce several constraints on the general problem introduced by Pulse-Width 
and Click Modulation. These constraints allow a number of simplifications to be used in 
the derivations that follow. 

In Chapter 4, we derive both MAP and MMSE estimators, as well as the Cramer-Rao 
bound on estimator variance. We also formally develop some of the previously published 
solutions to the crossing-point estimation problem in order to compare them with the 
estimators proposed in this thesis. We consider the computational cost of these techniques. 

In Chapter 5, we present some experimental results. These results are gathered from 
simulations focusing on PWM and CM as representative test scenarios. 

Finally, we conclude with Chapter 6. Mathematical proofs are provided in the appen-
dices for longer derivations. 



5 

Chapter 2 

Switching Amplification 

2.1 A Basic Switching Amplifier 

Consider an amplifier with gain K, which accepts the signal a(t) and produces Ka(t). 
Generally speaking, it is desirable that a(t) approximates a(t) as closely as possible; any 
differences imply distortion. 

A lack of distortion is not the only consideration facing amplifier designers. Particu-
larly in consumer electronics, two additional factors - efficiency and cost - are of growing 
importance. A more efficient amplifier can substantially improve a device's battery life, 
size, weight, and reliability. These improvements, in turn, allow reductions in the cost of 
a device, particularly as consumer trends demand smaller, more integrated, highly mobile 
products. 

The central difficulty in building an efficient amplifier surrounds the drivers, the transis-
tors that deliver bulk power to the load. While these can be coaxed into doing an excellent 
job of reproducing signals with high fidelity, they generally do so with very poor efficiency 
— in a traditional, class-AB audio amplifier, typical performance estimates are between 
50% and 72.5% [21]. Switching amplifiers confront this efficiency deficit by transforming the 
audio signal into a form that can be efficiently amplified, but from which the undistorted 
audio can easily be recovered. 

Switching amplifier designs may be represented using the basic structure of Figure 2.1. 
This block accepts an input signal a(t), and outputs the signal a(t) amplified by the gain 
K. Ideally, this amplifier reproduces a(t) = a(t). However, within the amplifier, the input 
a(t) is transformed into a highly distorted signal. As we will see, switching amplifiers 
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take advantage of the fact that some types of distortion can be permissible and, in fact, 
advantageous. 

Fig. 2.1 A Basic Switching Amplifier 

The input signal a(t) is converted into a two-level control signal by the modulator. In 
general, this modulator encodes the input signal into the pulse edges (or, equivalently, pulse 
centers and widths) of the control signal. 

Next, the output from the modulator is used to control a switch. This switch, typically 
built out of Field Effect Transistors (FETs), converts the low-power control input into a 
high-power signal capable of driving a load (e.g. a loudspeaker.) The control signal occupies 
a small number of states; although multi-level switching converters exist, it suffices here to 
consider only two-level designs. 

The output from the switch passes through the demodulator before reaching the load. 
Because the switch and demodulator both process the amplifier's full output power, each 
must be efficiently designed. Inexpensive FET power stages can switch states very rapidly 
and can be highly efficient. However, to minimize the amplifier's energy dissipation, ex-
pense, bulk, and sensitivity to component and operating condition variations, the demod-
ulator is generally restricted to a passive, low-order, low-pass filter. 

By restricting the demodulator to a low-order, low-pass filter, the role of the modulator 
is essentially fixed. This role is discussed in the following section. 

2.1.1 The Ideal Switching Modulator 

The modulator in Figure 2.1 must convert a continuous-time signal to a switching represen-
tation by injecting high-frequency components which may either be neglected or removed 
by the demodulator. In other words, the modulator's output may be decomposed into dis-
joint low-pass and high-pass regions. The low-pass region reproduces the input signal a(t) 
without distortion. Due to the demodulator filter, the high-pass region should not leave 
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the switching amplifier and may be used arbitrarily by the modulator to shape the input 
signal into a switching form. This role is illustrated in Figure 2.2, where Fa represents the 
bandlimit of a(t). The Fourier transform of a(t) (which we presume to exist) is denoted 

Mf)-
Guard Region Guard Region 

\m\ "don't-care" region 

frequency (Hz) 

Fig. 2 .2 Spectral Characteristics of the Ideal Switching Modulator (Magni-

tude |J4(/) | versus frequency / in Hz) 

Although the primary task of the modulator is to generate a switching signal that 
faithfully reproduces the input signal in a low-pass region, there are a few additional traits 
a well-designed modulator should exhibit. For instance, the FETs comprising the power 
switch dissipate substantial amounts of energy during switching, reducing efficiency. In 
addition, abruptly switching a load with inductive characteristics (such as a loudspeaker) 
can stress components and introduce electromagnetic interference (EMI). Finally, switching 
cannot occur instantaneously (as the designer typically assumes), since the switch produces 
a voltage signal which is neccessarily continuous; this non-ideality also introduces distortion. 
For these and other reasons, the modulator should be designed with as low an average 
switching rate as is practical. In a digitally-controlled switching amplifier, the modulator 
should also be computationally inexpensive, since computational requirements can directly 
determine the cost of the modulator. 

In the following sections we explore Pulse-Width Modulation and Click Modulation, 
two of the modulation schemes applicable to switching amplifier designs. Although this 
coverage is not exhaustive (we neglect, for example, delta-sigma modulation), our purpose 
is to give a sense of the structure of these modulators and the role of a crossing-point 
estimator within each of them. 
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2.2 Pulse-Width Modulation 

The dominant modulation scheme used in switching amplifier designs is Pulse-Width Modu-
lation (PWM).1 PWM is a well-known method, used for many decades [22] in (for example) 
motor control and switching power supplies. 

In this section, we present a brief description of several variants of PWM, in order to 
provide a sense of how PWM signals are generated in continuous-time systems. We also 
explore the spectral properties of a PWM signal, and discuss how these properties effect 
the ability of a PWM-based switching amplifier to attain the ideal modulator spectrum 
of Figure 2.2. For clarity, we present PWM in a continuous-time environment; additional 
effort is required to build a PWM system in discrete time. 

2.2.1 Variants of P W M 

Pulse-Width Modulation schemes are generally classified in two ways. The first distinction 
is the type of sampling: natural sampling (NS) or uniform sampling (US). The second 
distinction is the form of the carrier signal, which yields Trailing Edge (TE), Leading Edge 
(LE), or Double-Edge (DE) PWM. These classifications are illustrated with the schematic 
of a simple pulse-width modulator in Figure 2.3. The block labelled "ZOH" corresponds 
to a Zero-Order Hold or sample-and-hold device with sample period Ts — l / / s [23]. 

Natural Sampling (NS) 

o(t) 
a(t) ZOH 

Uniform Sampling (US) 

Trailing-Edge PWM / [ / J / | 

Double-Edge PWM / \ / \ / \ -

Leading-Edge PWM \ | \ ] \ ] 

Fig . 2 .3 Flavours of PWM 

1The PWM scheme described here might more properly be called Intersective PWM or IPWM, to 
distinguish it from other schemes (such as Click Modulation) that also generate a pulse train with varying 
pulse widths. At the risk of confusion, we use the more conventional acronym PWM. 
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The input to this pulse-width modulator is the arbitrary (but generally bounded in 
amplitude) signal a(t). Depending on the sampling method (NS or US) and carrier y(t), 
the output p(t-,s) corresponds to a particular PWM scheme. The carrier, with period 
Ts = l / f s , adds a time-varying bias to the input signal. The comparator removes all 
information from the biased input except for its sign. 

P W M Sampling Schemes 

The type of sampling - NSPWM or USPWM - has important repercussions in a digital 
pulse-width modulator. USPWM generates crossing points which are trivial to calculate, 
but which exhibit non-linear distortion of the input signal in the baseband region (see also 
Figure 2.5.) Non-linear distortion in the baseband is a sufficiently negative feature that 
most PWM schemes disregard USPWM except as a tool for the development of improved 
schemes more closely mimicking Naturally-Sampled PWM [11, 24]. 

In the following section, we explore the variants of NSPWM illustrated in Figure 2.3. 

P W M Carriers 

Variants of NSPWM have the general structure shown in Figure 2.4. (We use the notation 
introduced in [24].) 
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Leading-Edge (LE) PWM I PLE(£; A) 

Trailing-Edge (TE) PWM __T 

a(t) ^ ^ 

WTE -

y{t) 

Double-Edged (DE) PWM PDE{U a) 

Fig . 2 .4 Generating Naturally-Sampled TE, LE, and DE Pulse-Width Mod-

ulation 

In all three PWM variants, the output signal p{t\ a) is defined by the crossing points of a 
bounded input signal a(t) and a periodic carrier y(t). The output waveform p(t; a) exhibits 
pulses of width w that encode the desired signal a(t). For TE and LE PWM, the carrier 
is a sawtooth, and only half of the edges in p(t; a) are determined by the input a(t). For 
DE PWM, the carrier signal is a triangle wave, and both edges of p(t; a) are determined by 
a(t). In all three cases, the carriers shown have the same fundamental frequency fc = l/Tc, 
and the input a(t) is always bounded by extrema of y(t). 

2.2.2 Spectral Characteristics of N S P W M Signals 

The spectral characteristics of PWM have been studied in many papers [22, 25, 26, 27, 24]. 
Closed-form expressions for the PWM output spectra generated by an arbitrary (deter-
ministic) signal have only recently been published, first informally [27] and then more 
rigorously [24]. We review these results in order to explore the spectral characteristics of 
a PWM signal. Black's analysis [22] may be used to demonstrate the same characteris-
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tics when a(t) is constrained to be sinusoidal; we focus on the more recent approaches to 
promote generality. 

Let the signals a)> °)> a n d a ) represent (respectively) the output of a 
trailing-edge, leading-edge, and double-edge Pulse-Width Modulator with input a(t), given 
|a(£)| < 1. The Fourier transform of a(t) (which we assume exists) is denoted A ( f ) , and 
that of [a(i)]n (for positive integer values of n) is denoted An(f). The following results are 
taken from [24]. 

TV ailing-Edge (TE) N S P W M 

For trailing-edge PWM, we have: 

00 2 

pTE(i; o) = a(t) + [ s i n ~ ( -1)* sin (2 t tk f c t - kxa(t))] (2.1) 

The corresponding spectrum PTE(/; a ) is given by the following: 
oo 1 

Prsifl a) = A ( f ) + £ — [6(J + 2TTk f c ) - 6(f - 2TTkf c)} 
k=I 3 * 

+ E +k fc ) + ( - i r M n ( / - */e)] (2.2) 
k=1 71=1 

Leading-Edge (LE) N S P W M 

For leading-edge PWM, we have: 

00 2 
pLE(i; a) = a(t) + Y — [(- l) f c sin (2wkf c t + hra(t)) - sin (2irkfct)] (2.3) 

k=1 

The corresponding spectrum PlbU; a) is given by the following: 

oo 
PLEU\ a) = A ( f ) — [<*(/ + 2 txk f c ) - S(f - 2tt kfe)\ 

fe=i 

+ D"1)* E [(-l)n-^n(/ + k f c ) + An(f - kfc)] (2.4) 
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Double-Edge (DE) N S P W M 

For double-edge PWM, we have: 

P D E ( * ; a) = a(t) + J J s i n ^27rfc/ct + kir^^ ^ - sin (2itkfct - kir-

The corresponding spectrum P d e ( / ; o ) is given by the following: 

{j2k-K)2n-2 

(t) + l 

(2.5) 

PDB(f-,a) = A ( f ) + Y , ( - l ) k Y l 
k=1 n= 1 2 2 " - 2 ( 2 n - 1)! (S 2 „- i ( / + 2 k f e ) + S 2 n - i ( / - 2kfc)) 

j22 n _ 1(2n)! 

2n—1 

-(52„(/ + (2fc - l ) / c ) + S2n(f - (2k - 1 )/c)) (2.6) 

Note that (2.3) may be derived from (2.1) using the identity PLE(^o) = —PTE(*;—a)-
In addition, (2.5) may be derived from (2.1) and (2.3) directly by noting that 

PDE(t; a) = pTE ( i; i i ^ ] + pLE (2.7) 

The magnitude spectra of PTE(/;a), PLE{/\ A), and PDB(/; A) are similar (except in the 
case of DEPWM, which does not have impulse components at multiples of fc.) An illus-
tration for a bandlimited audio signal a(t) with a flat-top spectrum is shown in Figure 2.5. 

-fc 
-2/c 2/c 

\A(f)\ 
^ 1 • 1 ^ / ( H Z ) 

Fig . 2 .5 Magnitude Spectrum of a TEPWM or LEPWM Signal 

The spectrum shown in Figure 2.5 has three salient features: 

• The flat component at the centre corresponds to the input signal, 

• There is an infinite sequence of delta terms at multiples of the carrier frequency, and 

• Each of these carrier terms is accompanied by a phase-modulated term that produces 
a "skirt" around it in the spectrum. 
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In the following section, we explore the consequences that the structure of all three 
PWM signals has on a PWM-based switching amplifier. 

2.2.3 Disadvantages of N S P W M for Switching Amplification 

The "skirts" around each carrier term in Figure 2.5 are generated by phase-modulation 
terms An(f) in the corresponding PWM spectrum. In general, phase modulation of an 
arbitrary signal a(t) generates a signal that is not bandlimited; thus, each phase-modulation 
term in (2.1), (2.3) and (2.5) has infinite spectral support in general, and some energy from 
each term in the infinite summation contributes to the baseband region in Figure 2.2. 

In practice, the presence of unbounded phase-modulation terms in NSPWM motivates 
designers to increase the switching frequency fc in order to decrease the amount of baseband 
distortion. Although this strategy cannot completely remove the baseband distortion, a 
suitably high switching frequency can render this type of distortion negligible compared to 
other sources. 

An increase in switching frequency comes at a cost. A higher switching frequency 
generate more edges in the modulator output, which produces more distortion due to 
imperfect switching, dissipates more energy within the switching FETs, and radiates more 
electromagnetic interference (EMI) due to fast-slewing control signals and inductive kick-
back when the load has inductive characteristics. Digitally-controlled switching amplifiers 
typically generate switching waveforms using a dedicated peripheral that is only able to 
place edges with a clock-dependent accuracy; a higher switching frequency produces more 
edges per unit time and correspondingly more instances in which the switching signal is 
distorted due to the finite clock rate and other limitations of this peripheral. 

The spectral characteristics of PWM therefore introduce a set of design trade-offs. 
Switching frequencies cannot be too low, otherwise significant energy from phase-modulation 
terms will leak into the baseband region of Figure 2.2. Once inside the baseband region, 
energy from phase-modulation terms passes the demodulator filter in Figure 2.1. Once past 
the demodulator filter, this unwanted energy is dissipated by the load, where it reduces the 
efficiency and fidelity of the amplifier. On the other hand, overly high switching frequencies 
exacerbate other imperfections and inefficiencies in the switch and modulator. 

In the following section, we introduce Click Modulation. This alternative to PWM 
schemes comes at a higher signal-processing cost, but avoids the fundamental trade-off 
afflicting PWM in switching amplifiers. 
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2.3 Click Modulation 

In the previous section, we described the spectral characteristics of a PWM signal and 
showed that it only approximated the ideal modulator spectrum of Figure 2.2. In a PWM 
system operating on the input signal a(t), baseband distortion resulted from the spectrally 
unbounded, phase-modulation terms accompanying each carrier harmonic. 

Click Modulation (CM) [9] is an alternative to PWM that provides a distortion-free 
baseband, allowing a lower carrier frequency. In a CM system, we seek to bandlimit each 
of PWM's phase-modulation terms. We do so directly by forming the phase modulation 
<p(t) of a(t), and low-pass filtering it, producing (f)(t). Under the right conditions, we can 
reverse the phase-modulation process on the filtered signal (j>(t) and obtain a signal a(t) 
which may be pulse-width modulated without generating baseband distortion. 

Figure 2.6 shows the block diagram of a click modulation system [9]. This system 
first creates the pre-envelope a+(t) = a(t) + ja(t) of its input a(f). The signal a+(t) has 
no spectral content at frequencies / < 0, and encodes a(t) in R{a+(i)}.2 [28] The pre-
envelope a+(t) is supplied to an analytic exponential modulator (AEM), which generates 
cj)(t) = e~ ia+W. The signal (j>(t), which is complex in general, encodes a(t) uniquely in its 
phase arg <j)(t) if a(t) is appropriately bounded. Then, <j){t) is low-pass filtered to form (f)(t). 
In a properly designed CM system, the phase arg no longer reproduces a(t) exactly, 
but they are spectrally identical over a low-pass region determined by the designer. 

The remainder of the CM system is equivalent to explicitly forming arg and passing 
it to a TEPWM system [9, 27]. Two ground-referenced comparators combine to form the 
switching signal q(t). These comparators are replaced by crossing-point estimators in a 
discrete-time click modulator; however, there are two important considerations concerning 
crossing-point estimation in this system: 

• Two comparators in Figure 2.6 suggest two crossing-point estimators in a discrete-
time implementation. In practice, only one crossing-point estimator is required in 
this system because the crossing-points of — sin(ct + 9) are known a-priori. 

• The remaining comparator is ground-referenced, suggesting a zero-crossing problem. 
However, the signal s(t) applied to the other terminal is the sum of an unknown 
portion and a deterministic (sinusoidal) portion; as simulations demonstrate (see 

2The K{ • } operator produces the real part of the argument. Similarly, the I{ • } operator denotes the 
imaginary part of the argument. 
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Fig. 2 .6 Block Diagram of a Click Modulation System 
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Chapter 5), better performance may be obtained by decomposing the zero-crossing 
problem into a sinusoidal carrier-crossing problem. 

The interpretation of CM as TEPWM with an additional predistortion stage is illus-
trated in Figure 2.7. 

o(f) o+(<) m 
Low-pass. 

m 
arg{Q 

ar(t) Ka(t) o(f) 
Pre-Envelope Filter 

o+(<) m 
Low-pass. 

m 
arg{Q 

ar(t) 
TEPWM 

Ka(t) 
Pre-Envelope Filter Low-pass. arg{Q TEPWM 

Fig. 2 .7 Block Diagram of CM as a Pre-Distorted PWM Scheme 

Once again, the pre-envelope a+(t) is formed, phase-modulated and filtered. In this 
formulation, the predistorted signal arg <j>(t) is explicitly formed and pulse-width modu-
lated. We note that this formulation is primarily useful for explanatory purposes; there 
are practical reasons not to construct a CM system in this manner. For example, although 
4>(t) is low-pass in nature, arg{4>{t)} may be an extremely wideband signal, requiring a 
prohibitively high oversampling rate in a digital system. 

For the complete design details of a CM system, interested readers are referred to [9]. 

2.3.1 Design Considerations for CM in Switching Amplifiers 

As described in [9], CM requires filters which are extremely difficult to realize. In Fig-
ure 2.6, the input audio signal is processed by a Hilbert transformer. In the alternate 
formulation illustrated in Figure 2.7, an analytic filter removes negative-frequency compo-
nents of the input audio. An audio signal may have meaningful content as low as 20 Hz; 
in either formulation, the resulting filter has a transition region as narrow as 20 or 40 Hz -
an extremely impractical requirement, particularly when ripple and stopband attenuation 
requirements are stringent. This limitation has been noted [29, 30], although an alternative 
scheme is neither completely nor rigorously described. 

The remaining design challenges in a CM system are surmountable: other filters within 
the system may be designed with reasonable tolerances using ordinary DSP techniques. 
The nonlinearities involved are characterized by rapidly decaying harmonics, suggesting 
that a low oversampling rate may not introduce too much distortion due to aliasing. The 
comparators in Figure 2.6 are precisely the crossing-point estimation problem considered 
in this thesis. However, the Hilbert filter at the beginning of a CM system cannot be 
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economically realized, and it is not obvious from published research how to sidestep this 
issue. 

2.3.2 Required Developments for a Practical CM System 

The "missing link" in a CM system is clearly a method to avoid extremely narrow transition 
regions in the Hilbert filter of Figure 2.6. Another interesting avenue of research into a 
CM system would be the introduction of a double-sided CM scheme; as the published CM 
system is comparable to TE PWM, a double-edge equivalent could exhibit reduced carrier 
power (relative to the power of the desirable audio signal) and improved rejection of some 
distortion due to imperfections in the switching waveform. 
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Chapter 3 

Problem Formulation 

The preceding chapters described the discrete-time crossing-point estimation problem in-
formally and provided some motivation and background for further investigation. In this 
chapter, we present a formal definition of the problem. 

First, we describe the problem in its general form. We then describe a simplified ap-
proach that is commonly adopted in practice, and which we will investigate in the sequel. 

Following the formulation of the general crossing-point estimation problem, we focus 
on the particular applications of PWM and CM. Properly-functioning PWM and CM sys-
tems place additional constraints on the signals involved; these constraints simplify the 
developments in the following chapter. 

3.1 Discrete-Time Crossing-Point Estimation 

Let s(t) be a continuous, real-valued, wide-sense stationary (WSS) Gaussian random pro-
cess with zero mean, autocorrelation function rs(t — u) = E{s(t)s(u)}, and variance 
°s = rs(0)- Let y(t) be a known, deterministic signal. We wish to determine the se-
quence of crossing-points T\ < < . . . of s(t) and y(t), or equivalently, the zero-crossings 
of z(t) defined as follows: 

z(t)±s(t)-y(t). (3.1) 

In a continuous-time system, these crossing points may be detected using the comparator 
circuits shown in Figure 3.1. In these circuits, the crossing points are encoded in the edge 
positions of the output signal. The floating-reference circuit in Figure 3.1(a) is clearly 
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identical to the ground-referenced circuit in Figure 3.1(b); however, the equivalent forms 
lead naturally into distinct estimators in the sequel. 

Nf 
v(t) -J-W 

(a) Ground-referenced comparator 

Wr 

• t *(t) 

»w -Pit) 

(b) Floating-reference comparator 

Fig. 3.1 Comparator Circuits for Continuous-Time Detection of Crossing 
Points 

In the discrete-time problem, we are provided with a set of K consecutive uniformly-
spaced noisy samples from s(t), where k € Z is an integer index. We define these noisy 
samples as a;[A;], i.e. 

x[k] ±s(kTs+Td)+n[k] (3.2) 

where Ts denotes the sampling period, Tj is a sampling offset, and n[fc] is an additive 
measurement noise. This noise signal may be used to model, for example, quantization 
effects. We model n[k] as a WSS discrete-time Gaussian random process with zero mean 
and autocorrelation function rn[k — I] = — l], where a\ denotes the variance and 
6 is the Kronecker delta function.1 The relationship between s(t) and x[k] is depicted in 
Figure 3.2. 

k] 
KTS + TD s(t) ^ s(/cTs + Td) N 

T 0 -
x{k] 

Fig. 3 .2 Sampling and Noise Model 

^fhat is, d[fcj = i for k = 0; o[A;j = 0 otherwise. 
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The discrete-time crossing-point estimation problem may be stated as follows. Given 
the known carrier y(t) and K samples of arffc], estimate the sequence of points to < T\ < • • • 
satisfying s(n) = y(ri), or equivalently, Z(T;) = 0. 

Because K is arbitrary and the number of crossing points Tj is not limited, the complex-
ity of this problem is unbounded. In the following section, we describe a two-step approach 
to the discrete-time crossing-point estimation problem with a much simpler form. 

3.2 Simplified Discrete-Time Crossing-Point Estimation 

Following published approaches to discrete-time crossing-point estimation, [14, 7, 12] we 
impose a two-step structure on our solution to the general problem as shown in Figure 3.3. 
Each step may be viewed as a separate estimation process: 

• first, coarsely locate crossing-points using the estimator Ei; 

• then, apply the more refined estimator E2 in the neighbourhood of each crossing point 
to generate a more exact estimate. 

x[k] B 
E I 

X I , X 2 , . . . 
E 2 

N , f2, • • • 
E I E 2 

Fig. 3 .3 Two-Step Crossing-Point Estimation 

In the coarse estimator Ei, we define £[k] as follows: 

tik]=x[k}-y(kTs + Td) (3.3) 

The coarse estimator monitors £[k\ for changes in sign. When the noise term is sufficiently 
small, £[k] PS z(kTs + Tj). Thus, neglecting the possibility that multiple zero crossings of 
z(t) occur within each sampling interval, sign changes in £[k] (i.e. when — l]£[fc] < 0) 
bound each zero crossing Tj to a single sample interval % defined as follows: 

n E % 4 ([k - 1}TS + Td, kTs + Td) (3.4) 

In (3.4) and throughout the remaining development, we neglect the vanishing probability 
that the zero crossing occurs precisely on a sampling instant. The coarse estimator may 
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miss zero crossings when the sampling rate is not sufficiently large when compared to the 
Nyquist rate, because multiple zero crossings may occur in a single sample interval. A 
number of improvements to Ei are possible; however, this estimator is not the focus of our 
investigation. 

Once the coarse bound on T; has been generated, we restrict our investigation to samples 
immediately surrounding %. We form the M-dimensional vectors Xj and ^ using Mi 
consecutive samples of a:[fc] and preceeding Ti and M2 = M — M\ consecutive samples 
immediately following Ti\ 

X; = 

x[k - Mi] 

x[k - 1] 

x [k + M2 - 1] 

i[k-M1] 

fl* - 1] 
m 

£ [ f c + M 2 - 1] 

(3.5) 

The second estimator E2 must solve the simplified discrete-time crossing-point estima-
tion problem, which is defined as follows: Given y(t), the sample vector x* (equivalently, 
£;), and the bracketing interval % for the ith zero crossing of z(t), find an estimate f j of 
the true crossing-point n . 

Because the carrier signal y(t) is completely specified, we are able to consider E2 in 
two equivalent forms. These forms are the discrete-time equivalents of the continuous-time 
cases shown in Figure 3.1. In one form, we use the vector Xj to determine crossing points 
of s(t) and y(t). In the second form, we use the vector to estimate zero crossings of z(t). 
These two forms are shown in Figures 3.4 and 3.5. 

Fig. 3 .4 Forming x,; M = 4 
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Fig. 3 .5 Forming M = 4 

In the following chapter, we focus on E2 and attempt to develop good estimators for 
Ti by exploiting statistical knowledge about the input vector X;. Because henceforth we 
consider only a single crossing point at a time, we may drop the subscript i on r^ %, x,, 
and without ambiguity. 

We have now defined the discrete-time crossing-point estimation problem in its general 
and simplified forms. When considering these problems as they apply to PWM and CM 
systems, several additional constraints are imposed that greatly simplify the derivations 
that follow. We consider these constraints in the following section. 

3.3 Carrier Function Constraints 

In the previous sections, we formally defined the crossing-point estimation problem under 
the assumption the carrier function y(t) was completely specified. The actual form of the 
carrier signal y(t) depends on the application. In this section, we explore the effects the 
carrier signal has on the problem definition. 

In both CM and PWM, the carrier function y(t) is a periodic function: a sinusoid in 
the case of CM, and a triangle-wave or a sawtooth for different varieties of PWM. Figure 
3.6 shows the permissible carrier waveform for each scheme. For these carriers, the phase is 
arbitrary but known, the time average (DC) value is zero, and the peak amplitude is ±AC. 

For the discontinuous (upper) waveforms in Figure 3.6, the discontinuities in y(t) pro-
duce additional crossing-points whose locations are exactly known; we therefore neglect 
these edges and focus on the unknown (variable) crossing points. 

In order for our model to accurately match the application, we wish to guarantee that 
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Fig . 3 .6 Typical Click and Pulse-Width Modulation Carrier Functions 

exactly one crossing-point occurs in each interval Cj defined as follows: 

Cj±(Tj,Tj+1) (3.6) 

To do so, we begin by bounding s(t) such that —Ac < s(t) < Ac; this ensures at least one 
crossing point occurs in Cj. 

Avoiding multiple zero crossings within each interval Cj involves a more complicated 
relationship between the carrier period and signal bandwidth [25]. The occurance of mul-
tiple, or no, crossing-points within each interval indicates an undesirable condition known 
as modulator overload. In the sequel, we assume modulator overload does not occur.2 

3.4 Motivating a Closer Look 

In this chapter, we formally defined the crossing-point problem. We introduced statis-
tical characterizations of the signals involved, and introduced a model for the effects of 
measurement noise. 

To motivate the estimators developed in the following chapter, we note that none of the 
published crossing-point estimators we reviewed in Section 1.2 allowed this statistical infor-
mation (such as the sample autocorrelation) to be exploited. In addition, these estimators 

2We cannot, of course, guarantee that the Gaussian signal s(t) is absolutely bounded below a particular 
amplitude with probability 1. Instead, we require the probability of an excursion beyond Ac to be negligible. 
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were introduced on an ad hoc basis, prompting questions about their generality. 
For example, consider a crossing-point estimator that approximates s(t) using s(t), 

defined as the unique polynomial of order N — 1 passing through the N points of x. This 
estimator, which we will denote POLS in the sequel, generates crossing-point estimates 
Ti by determining the points at which y(t) = s(t) using a root-finding method such as 
Newton's method. 

How general is this estimator? Polynomial interpolation has been shown [31] to approx-
imate sinc-kernel interpolation when the sampling rate fs is high compared to the Nyquist 
rate for the signal being interpolated. This suggests the POLS estimator may perform well 
in the absence of noise, when s(t) is a lowpass signal and fs is high compared to the Nyquist 
rate. However, when noise is substantial, or when s(t) is not suitably oversampled, POLS 
may not perform adequately. As we will show, an estimator that intelligently makes use of 
autocorrelation information is superior to polynomial curve fitting. 

Various improvements to basic polynomial interpolation (e.g. PLS, or Penalized Least-
Squares curve fitting [32]) have been examined in the literature; few of them have been 
evaluated in the specific contexts of PWM amplification or crossing-point problems. PLS, 
for example, balances fidelity (how close the chosen approximating function comes to each 
of the datapoints) with the smoothness of the fitted curve. In the case of polynomial 
approximations, such a scheme might vary the order of the polynomial adaptively, balanc-
ing mean-squared error with a penalty that promotes smooth (low-order) solutions. This 
approach raises several questions: How can known or predictable parameters (e.g. band-
width, noise, or variance) be used to adapt order? Is the additional complexity tolerable? 
Finally, if we neglect noise (or assume it can be perfectly removed under such a scheme), 
there is still no guarantee that the adapted curve suitably matches the underlying function. 
However, the estimators we examine also have an order associated with them; dynamically 
modifying this parameter is an interesting avenue for future research. 

Finally, a statistical investigation of the crossing-point estimation problem can yield 
results beyond the estimators themselves. For example, the Cramer-Rao bound for the 
problem (which we derive in the following chapter) allows the performance of nonstatis-
tical and statistical estimators alike to be evaluated against an absolute limit. Without 
knowledge of this limit, it is difficult to establish how good a crossing-point estimator can 
fret. 
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Chapter 4 

Algorithm Development 

Having defined the crossing-point estimation problem in the preceding chapter, we now in-
vestigate several solutions. We first derive the Maximum A-Posteriori (MAP) estimator for 
the problem, a methodical process that furnishes an estimator which is known to approach 
optimality under certain criteria. The MAP estimator is, however, not always convenient 
or efficient to calculate. Following the derivation of the MAP estimator, we introduce the 
Minimum Mean-Squared Error (MMSE) estimator, a computationally straightforward es-
timator. We link the newly developed MAP and MMSE estimators by showing that the 
MMSE estimator is an approximation to the MAP estimator under certain conditions. 

We then derive the Cramer-Rao bound (CRB) for the problem. The CRB reflects the 
best-case performance for any unbiased crossing-point estimator (which may not necessarily 
be attainable); it allows practical estimators to be judged against an absolute metric. 

We also introduce a number of reference estimators to the discrete-time crossing-point 
estimation problem. These estimators have been selected from the literature and represent 
the most common solutions currently adopted in practice. 

4.1 Distribution of Sample Vectors 

Consider the discrete-time random process x[k] given by (3.2), where s(t) and n[fc] are 
statistically independent Gaussian, wide-sense stationary (WSS) processes with zero mean 
and respective autocorrelation functions rs(t—u) (continuous-time) and a\5[n—l\ (discrete-
time). It follows that £[£] is Gaussian with zero mean, autocorrelation function r[.fc] = 
rs(kTs) + &nd[k], and variance a2 = r[0] = a\ + <r2, where a2

s = rs(0). 
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We now consider the joint distribution of the M-dimensional observation vector x de-
fined as follows, where M = M\ + M2: 

x[k - Ma] 

x[k - 1] 
x[Jfc] 

x[k + M2- 1] 

s([k - Mi\T. + Td) + n[k - Ma] 

— 1]TS + Td) + n[k — 1] 
s(kTs + Td) + n[k) 

s([k + M2- 1 }TS + Td) + n[k + M2 - 1] 

(4.1) 

We may also express the observation vector x as x = s + n, where s and n are, respectively, 
the (unobservable) contributions from s(kTs + Td) and n[k}: 

s = 

s([k - M\\TS + Td) 

s ( [ fc - l ]T s + Td) 
s(kTs + Td) 

s([k + M2~l]Ts+Td) 

n 

n[k - Ma] 

n[k - 1] 
n[k} 

n[k + M2 - 1] 

(4.2) 

The probability density function (pdf) of x, / (x) , takes the standard multivariate Gaus-
sian form: 

/(x) exp (4.3) 
( 2 T T ) M / 2 | E O | 1 / 2 

where Eo = ,E{xxT} is an M x M symmetric Toeplitz sample covariance matrix with 
determinant |Eo|. We have: 

E0 = ^{ ( s + n)(s + n)T} 

= E{ ssT} + £?{nnT} (4.4) 

where we have defined E s = E{ssr}, and where I is the M x M identity matrix. For sub-
sequent analysis, it is convenient to introduce the correlation vector function p(r) defined 
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as follows: 
r s (r - [k - Mi]Ts - Td) 

p(r) 4 E{s(r)s} 
rs(r-[k + M2-l]Ts-Td) 

Now, E s may be expressed in terms of p(r) as 

piXk-M^T.+Tt) T 

(4.5) 

p([k + M2-l)Ts + Td) T 

We assume E s is positive definite. In this case, So is also positive definite (even in the 
absence of noise, i.e. when a \ = 0.) 

4.2 Maximum A-Posteriori (MAP) Estimation 

Let / (r |x) be the probability density function (pdf) of a zero crossing of z(t) at time t = r 
conditioned on the sample vector x and given r e T . (Because of the coarse estimator 
Ei, the search is limited to r € T; please refer to Section 3.2 for details, noting that the 
subscript i is implicit here. In the sequel, r is implicitly limited to this range.) The MAP 
estimate of r maximizes this function, i.e.: 

Let / ( r ) and / (x ) represent, respectively, the a-priori pdfs of a zero crossing at time r and 
the sample vector x. Farther, let / ( x | r ) be the pdf of the sample vector x conditioned on 
a crossing point at r . We expand the conditional distribution / ( r |x ) using Bayes' rule: 

Tmap = argmax/(r |x) (4.6) 

(4.7) 

The MAP estimate is the maximum (with respect to r ) of (4.7). We differentiate the 
logarithm of the right-hand expression with respect to r and set the result to 0. This 
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process yields the canonical MAP equation [33]: 

j U o g / ( x | r ) = - | > g / M 
T—TMAP t = T m a p 

We define 5(x | r ) and S(T) (which are sometimes called the conditional and a-priori 
score functions, respectively) as follows: 

5-(x|r) 4 A log / ( x | r ) S(T) 4 ± log / ( r ) (4.8) 

The MAP estimate now satisfies 

5 (x |T)U m a p = - 5 ( T ) U m a p (4.9) 

In the sequel, we express componentwise derivatives of scalars, vectors, and matrices (which 
are always with respect to r) using a dot notation. For example, y(r) = dy{r)/d,T. 

In the following subsections, we derive expressions for S(r) and 5(x | r ) . 

4.2.1 A-Priori Crossing-Point Density 

In this section, we consider the probability density fT(t) of a crossing point at time t, i.e. 
the probability that s(t) = y(t). To simplify the derivation of this distribution, we make 
three crucial assumptions: 

1. The probability that \s(t)\ > Ac (i.e. overload) is negligible, 

2. The carrier waveform y(t) is invertible (i.e. one-to-one) in every interval Cj, and 

3. One (and only one) crossing point occurs in every interval Cj. 

As described in Chapter 2, each of these assumptions is satisfied in the applications of CM 
and PWM. Consider a segment Cj of y(t). (It suffices to consider a rising segment of y(t), 
as falling segments follow by symmetry.) We use the second and third assumptions to write 
the following equivalence: 

FM) ^ Pr{r <t} = P r{s ( t ) < y(t)} (4.10) 
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That is, for rising carrier segments, a crossing point occurs in the interval (oo , t ) fl Cj if 
and only if s(t) < y(t). Thus, each segment of the carrier y(t) allows us to map the 
known density f s ( s ) into the desired density f T ( t ) - This mapping process is illustrated in 
Figure 4.1. 

Fig . 4 . 1 Deriving the A-Priori Crossing Point Probability Density 

We have, in the interval t E Cj: 

rwW 

/

y(t) ry(t) i 

fs(s)ds = / - = 

=e ds 

We differentiate under the integral sign, giving 

M = — v I s , y(T) !7T<7f 

for r € Cj. This result may be extended to sections of y(t) with negative slope by symmetry: 

e x P ( - 2 k y ^ 2 ) , . 
f(r) = 

y/2 irat •\y(r)\ (4.11) 

for r G Cj. This expression will be used both for MAP estimation and in evaluating the 
CRB. 
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4.2.2 Deriving the A-Priori Score Function 

Solving for S(T) = J ; log / ( r ) is straightforward when f(R) takes the form (4.11). For 
r € Cj, y(r) is one-to-one; therefore, y(r) ^ 0 for all points within it. We have: 

S(r) = Pr ~ (4.12) 
y{r) 0-2 

Alternately, in the absence of a-priori information about crossing points, we may model r 
as uniformly distributed on Cj. This approach is mathematically equivalent to Maximum-
Likelihood (ML) estimation. In simulation, the two approaches are essentially indistin-
guishable, indicating that the a-priori distribution / ( r ) is uninformative under the operat-
ing conditions we evaluate. (This point will be discussed further in Chapter 5.) 

4.2.3 Conditional Distribution of Sample Vectors 

We now consider the distribution of the vector x conditioned on a crossing point at time r , 
or equivalently from (3.1), given s(r) = y(r). We begin by forming the augmented sample 
vector 

x . = [ x r , s(R) ]T = [ (NT + ST) , S(T) ] t . (4.13) 

As n and s(r) are statistically independent and Gaussian, x r is a Gaussian random vector 
with zero mean and covariance matrix £ r which may be expressed in partitioned form as 
follows: 

Er = 
So P(T) 

L P(T)t °2S \ 
(4.14) 

The conditional distribution of x given r is equivalent to the addition of a new random 
variable with a known value, and can be expressed as 

/ ( x | r ) = / ( x r K r ) = y(r)) 

= / ( X r ) | S ( r ) = v ( r ) ( . 

fs(y(r)) 1 
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The pdf / ( x | r ) can be shown to be Gaussian with covariance matrix E(r) and mean /x(r) 
defined as follows: [34] 

E ( t ) = E o - B l l l p l l (4.16) 

Mr) ' (4.17) 

We will frequently require the derivatives of E(r) and £t(r). For convenience, we differen-
tiate these quantities here: 

t { T ) = _p(T)pT(T)+p(T)pT(T) ( 4 1 8 ) 

A ( r ) ( 4 . 1 9 ) 

In the following development, we suppress dependence of y, p, E, and /z on r to simplify 
notation. We have: 

^ ( - K x - r t ^ C x - r t ) ( 4 2 0 ) 
1 J (27t)m/2|E|1/2 1 J 

These expressions completely characterize the conditional distribution. We now con-
tinue deriving the MAP estimator. 

4.2.4 Deriving the Conditional Score Function 

The MAP estimate of r satisfies (4.9). In order to derive the MAP estimator, we require 
an expression for iS'(x|r). Combining (4.20) and (4.8), we have:1 

5 ( x | r ) = ~\Tt [ l ° g | E | + ( X " - ^ <4-21> 

To simplify this expression, we introduce the following definitions: 

a = PtTT1P/(TI C = XRE~V 

b = PtYTxPI<TI d = x r E 'P (4.22) 

e = f ^ p / a - l 
1Pull derivations of (4.21), (4.23) and (4.26) are provided in Appendix A 
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Using some manipulations and elementary identities for differentiating matrix expressions, 
(4.21) may be expressed as follows: 

5 (x | r ) = 6 - ( o y - ^ - V + y j a y - ^ + y i b y - d ) ( 4 . 2 3 ) 

Due to the terms a, b, c, and d, this form for S'(xlr) still depends on the conditional 
covariance matrix E, which in turn depends on r . We may use the Sherman-Morrison-
Woodbury formula [35] to express E _ 1 in terms of Eq 

S " 1 = So1 + (4.24) 
v2-pT E 0 p 

This formula is valid provided that Eo is nonsingular (which is assumed a-priori) and 
provided a 2 ^ p t E q 1p, which is satisfied in the presence of noise (See Appendix C for 
proof.) We apply (4.24) to each of the definitions (4.22) in order to express S'(x|r) without 
using the conditional covariance matrix. Let: 

°o = PTEq V/o'f Co = x r E o V 

b0 = P t E q 1 P / O r s d0 = X t E o l p (4.25) 

e0 = prTlQlp/o-2
s 

After substitution, (4.23) may be expressed as: 

Q/VI \ _ doy ftp(aoy - c0)(y - Q>) , bo*2* + (do - y)(aoy - Qo) - yb0(y - Co) 
cr2( 1 - a0y + ~ ^ W ) (4'25) 

Combining the above results, we may now state the fully simplified MAP estimator. 

4.2.5 The M A P Estimator 

Combining (4.26) and (4.9), and once again noting that the dependence on r has been 
omitted, the MAP estimate satisfies 

_<?mi = d ° y b ° ( a ° y ~ ~ ^ b o C T*+ (d° ~ y)(a°y ~ ^ ~ yb°(y ~ c°) 
a2 a2(l-a0)2 o-2(l — do) 

(4.27) 
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where either (4.12) or 0 (when / ( r ) is uninformative) may be used in place of S(R). 
In order to generate estimates using this expression, a zero-finding method such as 

Brent's algorithm [36] or Newton's method may be applied. There is no a-priori guarantee 
that an unique zero of (4.27) exists in T , and that it corresponds to the maximum of 
(4.6) within T . We do not investigate uniqueness of the solution in this work. Although 
(4.27) may exhibit multiple candidates in T , judicious selection of a starting point for the 
zero-finding algorithm produces excellent results. (In simulations, we provide the MMSE 
estimate described below as a starting point to the MAP estimator.) The experimental 
results presented in the following chapter do not suggest any investigation of uniqueness is 
necessary in practice. 

Although (4.27) cannot be simplified further, it is both numerically sensitive and com-
putationally expensive. (One such numerical problem is briefly described in the following 
section.) To design a more practical estimator, we will make a number of approximations 
in order to simplify (4.27). In doing so, we will arrive at a MMSE formulation for the 
problem. 

4.3 Minimum Mean-Squared Error (MMSE) Estimation 

Consider the minimum mean-squared error (MMSE) estimate s(t) of s(t) at arbitrary t 
given the vector x of nearby samples. This estimate is given by the Wiener-Hopf equa-
tion: [37] 

s(t) = p{t)TZolx = Co 

The expected mean-squared error for this estimate is given by: [37] 

c - a2
s - p(t)TZo:lp(t) = a2

s( 1 - o0) 

As e is a variance and So is nonnegative definite, e e [0, cr^]. We may consider e to be a 
measure of confidence in s(t). When x consists of samples near t, we should expect this 
error to be very small compared to <r2. 

Due to the 2-step structure of our estimator, r is bounded by (3.4). This bound allows 
us to choose a vector x of nearby samples such that 1 — ao is very small over the region 
of possible zero crossings. When 1 — ao is very small, the second term on the right-hand 
side of (4.27) dominates. At the MAP estimate T (where, again, dependence on the time 



36 Algorithm Development 

variable is suppressed), we have: 

bojaoy ~ cp)(y - eg) 

b0(y ~ Co) 2 

— i— (4.28) 

Thus, when 1 — ao is very small, and neglecting for a moment that ao and Co are themselves 
functions of r , the upper expression in (4.28) is approximately parabolic in y with two real 
roots very near to each other. Our approximation replaces these two roots with a single 
root of multiplicity 2. In both cases, these two nearby (or coalesced) roots can cause great 
difficulty in locating MAP estimates using (4.27), since the numerically calculated curve 
only gradually approaches (and, given computational errors, may not necessarily cross) the 
origin. Some zero-finding algorithms tend to reject solutions with even multiplicities and 
converge to nearby (but incorrect) solutions [36]. In practice, it is sometimes necessary to 
minimize the square of (4.27) instead of using a zero-finding algorithm in order to avoid 
this problem. 

The MMSE (or approximated MAP) estimate corresponds to solutions of (4.28). The 
two candidates are roots of bo and y — CQ. However, as bo is a function of r and £Q 1 only, 
it does not involve the sample vector in any way. This term may contribute only static 
solutions to the estimator equation, which we may disregard. Moreover, as we will see, 
choosing the roots of the remaining term results in an estimator which performs very well 
and is intuitively satisfying. 

Defining the M-dimensional vector wMMSE = EQ : x , the MMSE estimate must satisfy 
the simple relation: 

w Tp(r) = y(r) (4.29) 

We denote this estimate as fMMSE: 

W E = arg r [wTp(r) = y(r)] (4.30) 

This result has an intuitive form, since it relates the MMSE estimate of s(t) to the known 
carrier signal y(t) and solves for the points at which they are equal. In contrast to ordinary 
MMSE estimation, the relationship between time and amplitude y(r) is known; here, we 
seek the unknown crossing-point time r using this relationship. 
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Since both the carrier signal and p(r) are in general nonlinear functions, a root-finding 
method must once again be adopted. The structure of the MMSE estimator is illustrated 
in Algorithm 1. 

Algorithm 1 Crossing-Point Estimation via the MMSE Algorithm 
loop 

if £[fc - l]f [fc] < 0 then 
x = [*[*: - Mi], ...,x[k + M2- l ] f 
w = E - 1 x (using, e.g. Cholesky factorization of E - 1 ) 
repeat 

refine guess f via Newton's or Brent's algorithms 
e= | w T p ( f ) - j / ( f ) | 

until e < tol 
end if 

end loop 

Similar to the MAP estimator above, we have assumed the existence and uniqueness of 
solutions to (4.30) in T without providing any assurances of either property. In practice, 
no such problems arise. In addition, the computational difficulties in the MAP estimator 
do not occur in the MMSE formulation, and a simple zero-finding algorithm performs very 
well. (Indeed, we use the MMSE estimate as an initial guess to the MAP estimator during 
simulation.) 

4.4 MMSEZ Estimator 

We briefly digress and introduce the MMSEZ estimator, which is a further simplification of 
the MMSE estimator. However, unlike the MMSE interpolator, the MMSEZ interpolator 
performs measurably worse than the MAP estimator in simulations. We include the MM-
SEZ estimator chiefly because the relationship between MMSE and MMSEZ estimators is 
analogous to the relationship between POLS and POLZ estimators (which are described 
below in Sections 4.6.2 and 4.6.3), both in structure and performance. 

Consider the two-step estimation process illustrated in Figure 3.3. During the estima-
tion step Ei, periodic samples y(kTs + Td) of the carrier signal are required to coarsely 
bound crossing points. From the computational perspective of E2, these samples of y(r) 
are "free." Otherwise, particularly when y{t) is nonlinear, evaluations at arbitrary i may 
be expensive enough to avoid. 
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To take advantage of these known samples, we generate a MMSE estimator for £ = 
[£[k — Mi] , . . . , £[k + M2 — 1]]T and solve for its zero crossings. To do so, we define a new 
vector correlation function pz(r) = E{z(r)£} and covariance matrix = E{££T] which 
are analogous to p(r) and £o, but which include statistical information about y(t) between 
samples. (It is not always obvious what the best choice for pz(r) is, particularly when y(t) 
is discontinuous. A detailed investigation of the MMSEZ estimator is not pursued here.) 

Algorithm 2 Crossing-Point Estimation via the MMSEZ Algorithm 
loop 

if £[fc - l]f [fc] < 0 then 

w = Ez (using, e.g. Cholesky factorization of Tiz x) 
repeat 

refine guess f via Newton's or Brent's algorithms 
* = | w r p , ( r ) | 

until e < tol 
end if 

end loop 

Compared to MMSE (see Algorithm 1), MMSEZ avoids computations of y ( f ) in the 
root-finding step. As we will see in the following chapter, this reduction in complexity 
can be accompanied by reduced performance. Moreover, the evaluation of each element of 
pz(f) is likely to incur a similar computational cost to each evaluation of y ( f ) \ therefore, 
the savings may not be meaningful. 

4.5 Fundamental Performance Limits 

In this section, we consider best-case and worst-case performance metrics for crossing-point 
estimators. For the best-case limit, we derive the Cramer-Rao bound for the variance of 
an unbiased crossing-point estimator. The worst-case metric is provided by considering the 
variance of random crossing-point estimates. 

4.5.1 Cramer-Rao Bound (CRB) 

The Cramer-Rao bound for the random parameter r bounds the variance o"||Ter of any 
unbiased estimator as follows: [33] 

4 > J " 1 (4.31) 
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where XT is the Fisher information for the random parameter r , which for the problem 
under consideration takes the form:2 [38] 

1 
Tr = p E ' V + ^ t r E EE E (4.32) 

L 

This expression may readily be simplified using the notation introduced in (4.22): 

lT = ey2 + ibyy + a y \ b 2 + ae (433) 

As before, it is desirable to express T r without using the conditional covariance matrix E. 
To this end, we use the expressions (4.24) and (4.25) to obtain: 

_ b%y2 + 2b0yy + a0y2 a0e0 bg(l + a0) 
~ a 2 ( l - a0) + 1 - a0

 + (1 - a0)2 + a* ^ 

To remove the effect of the specific choice of r on the bound (4.31), it is convenient to 
further average this expression over permissible r in (4.31). How this is done depends on 
the application; for PWM and CM, although it is possible to consider only the case of E2 

and to average over all possible intervals T provided by Ei, it is much simpler and more 
useful to average over the entire interval Cj and provide a Cramer-Rao bound for both Ei 
and E2. TO do this, we use the expression (4.11) for / ( r ) ; we also average over the sampling 
delay Td, assuming an uniform distribution over [0, Ts]. We then have: 

4>Ts \ £ 3 Jc ZAt, td,y)f(T)drdt0 (4.35) 

4.5.2 U U B (Uniform Upper Bound) 

The UUB reflects a lower bound on estimator performance which is attained by simply 
guessing a random location (in the permitted region T ) for the crossing. We generate fUUB 

from an uniform distribution in T . The variance of this estimate is T2 /12. 
2The derivation for this expression and the simplified version below may be found in the appendices. 
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4.6 Comparison Estimators 

We have now derived MAP and MMSE estimators for the discrete-time crossing-point 
estimation problem, as well as upper and lower bounds on performance that provide a con-
venient metric against which to measure estimators' performances in simulation. Because 
a number of solutions to the crossing-point estimation problem have been developed in the 
literature, we introduce several comparison estimators in the following sections. 

We begin with two estimators based on Lagrange polynomial estimation. We assume 
familiarity with polynomial interpolation and Lagrange polynomials; background infor-
mation can be found in [31, 39, 40]. Polynomial interpolation is widely used in com-
puting the crossing-points of a signal and a sawtooth or triangle wave in PWM applica-
tions [15, 12, 7, 14, 8, 41, 16]. 

Following introduction of the polynomial crossing-point estimators, we present a degen-
erate case (designated ILIN), which is identical to one of the polynomial estimators (POLZ) 
when the number of samples is restricted to M = 2. 

Each estimator introduced in this section is identified with a short, capitalized designa-
tion. These designators will be used in the sequel to compactly identify each estimator. 

4.6.1 Lagrange Formulation 

We adopt a vector formulation of Lagrange interpolation, which promotes the interpretation 
as a time-varying FIR filter. We define the M-dimensional column vector function l(r) 
componentwise as follows: 

u r ) = n V ; ^ / ™ = ° « * > 
n=k — Mi v ' 

n^m 

Given a vector of samples x taken near the arbitrary time r , an estimate of s(r) can be 
generated via the inner product xTl(r). Likewise, £ t1( t ) provides an estimate of Z(T). In 
both cases, noise is neglected, and no information about the structure of s(t) or y(t) is 
exploited. 

Many authors have noted that Lagrange polynomial interpolation is optimal in the sense 
that it minimizes approximation error at the frequency 0 (i.e. at DC) [39]. This property 
suggests that Lagrange interpolation of a sampled signal with substantial high-frequency 
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content will produce good results provided the sampling rate is much greater than the 
Nyquist rate for that signal. We will investigate the performance of Lagrange schemes 
later in Chapter 5. 

We next introduce two polynomial estimators, denoted POLZ and POLS. POLZ inter-
polates £ to estimate z(r), and POLS interpolates x to estimate s(r). 

4.6.2 POLZ (Polynomial-z) Estimator 

The POLZ estimate tpolz is defined as a solution (in T) to 

* T l ( r ) U O L Z = 0 (4-37) 

The POLZ estimator may be visualized with the help of Figure 3.5. In this figure, the 
sample vector £ is shown in a dashed box; this estimator fits a polynomial to these M 
samples surrounding the crossing point r . 

The structure of the POLZ estimator is illustrated in Algorithm 3. 

Algorithm 3 Crossing-Point Estimation via the POLZ Algorithm 
loop 

if £[k - l]£[fc] < 0 then 
Z=[Z[k-M1],...,£[k + M2-l]]r 

repeat 
refine guess T via Newton's or Brent's algorithms 
e r k T K r ) | 

until e < tol 
end if 

end loop 

Because polynomial estimation performs poorly when the function being approximated 
exhibits discontinuities, the performance of POLZ should degrade for PWM schemes when 
£ incorporates an edge of y(t). However, in the case of PWM, we will shortly argue that 
POLZ and POLS may be made computationally identical with a little care. 
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4.6.3 POLS (Polynomial-s) Estimator 

The POLS estimate TPOLS is defined as a solution (in T) to 

xT l(r) I . = y{r)\ . (4.38) \ ' lr=rpoLS '7*=TOLS v ' 

The POLS estimator may be visualized with the help of Figure 3.4. In this figure, the 
sample vector x is shown in a dashed box; this estimator fits a polynomial to these M 
samples surrounding the crossing point r . 

The POLZ estimator may be more convenient to compute than the POLS estimator, 
since it does not require evaluations of y(r) at arbitrary r . However, as the polynomial 
of order M — 1 passing through M points is unique, the POLZ and POLS estimators are 
mathematically identical when y(r) is a polynomial. When y(r) is not a polynomial, as in 
CM applications, the POLZ and POLS methods perform differently and it is important to 
distinguish between the two methods. 

In the case of PWM, y(r) is piecewise linear. Assuming the interval T does not straddle 
a discontinuity in y(t), it is possible to simply replace y(t) with a linear function that 
matches it precisely within T . A POLZ estimator implemented in this fashion produces 
results identical to a POLS estimator, which suggests why no distinction between POLZ 
and POLS is present in the literature. 

The structure of the POLS estimator is illustrated in Algorithm 4. 

Algorithm 4 Crossing-Point Estimation via the POLS Algorithm 
loop 

if £[k - l]£[fc] < 0 then 
x = [x[A; - Mi], ...,x[k + M2- l ] f 
repeat 

refine guess f via Newton's or Brent's algorithms 
c = | x r l ( f ) - y ( f ) | 

until e < tol 
end if 

end loop 
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4.6.4 ILIN Estimator 

We introduce a final estimator which we will designate ILIN. This is not actually a "new" 
estimator, since it is equivalent to POLZ when the number of samples M is equal to 2. 
We consider this special case because it is generally treated separately from higher-order 
polynomial methods, and since its solution need not be implicitly defined. 

The computational structure of the ILIN estimator is shown in Algorithm 5. 

Algorithm 5 Crossing-Point Estimation via the ILIN Algorithm 
loop 

if £[Jb - 1 ]£[k] < 0 then 

end if 
end loop 

Note that this algorithm requires a division by a variable quantity £[k — 1] — £[&]. In the 
MMSE, POLZ, and POLS algorithms above, divisions could be pre-computed as reciprocal 
multiplications; thus, in implementations (e.g. most DSPs) where divisions are expensive, 
they could be avoided. This ILIN algorithm avoids iterative calculation of the solution, at 
the expense of this unavoidable division. 

4.7 Computational Complexity 

We have now defined the MAP and MMSE estimators, the Cramer-Rao bound, and several 
reference estimators. In practice, the computational expense of each method is often as vital 
a consideration as its performance. For switching audio amplifiers in particular, crossing-
points must be calculated as many as several million times per second; for this reason, 
before evaluating the performance of each, we consider their computational cost. (We may 
disqualify the MAP estimator outright on this condition.) 

Complete crossing-point estimators using the POLZ, POLS, MMSEZ, and MMSE sche-
mes share a very similar structure (see Algorithms 1, 2, 3, and 4.) First, each zero-crossing 
r is coarsely located in the region T using the estimator Ei. Next, samples in the neigh-
bourhood of T are passed to the refined estimator E2 to generate a better estimate. The 
structure of E2 is different for each scheme, but in each case. Eg generates estimates f using 
an iterative root-finding process such as Newton's method or Brent's algorithm [36]. 
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For the POLZ and POLS cases when M = 1 or M = 2, the crossing point may be 
calculated in closed form and the iterative step is not strictly necessary. However, M = 1 
is a degenerate case in which E2 may be entirely neglected and M = 2, corresponding to 
straight-line interpolation, requires division operations which may be costly and involve an 
iterative computation anyway. We neglect these details in the following discussion. 

We define the following quantities: 

fj, is the cost (in elementary operations) of evaluating a scalar nonlinear function. For 
example, /i is the cost of evaluating y(r), and M/i is the cost of evaluating p(r); 

A is the probability (per sample of x[/c]) that Ei will detect a crossing point and 
require an evaluation of E2; 

k is the number of iterations of the root-finding algorithm (e.g. Brent's method). 
(For simplicity, we assume that each root-finding iteration k evaluates the relevant 
functions only at a single time instant r .) 

Now, the computational cost for each scheme (in elementary floating-point operations per 
second) may be evaluated as follows: 

where fs is the sampling rate. The first term fs(/j, + 1) is the cost of the coarse estimator 
Ei and is shared by all the schemes we investigate. The second cost, which depends on the 
estimator used, is more interesting and is the subject of the subsections that follow. 

4.7.1 Cost of MMSE 

Referring to Algorithm 1, we note that the Cholesky factorization L of £ = LLT may 
be precomputed. Therefore, we may compute the vector w = £ - 1 x by foreward- and 
back-substitution at a total cost of 2M2. 

The cost CMMSE MAY be expressed as follows: 

c = f.0i + i) + f.\(...) (4.39) 

CMMSE = Ml* + 1 ) + /SA(2M2 + k[Mfi + 2M + /X]). (4.40) 



4.7 Computational Complexity 45 

4.7.2 Cost of MMSEZ 

The algorithm for MMSEZ (Algorithm 2) is nearly identical to the algorithm for MMSE. 
The primary difference is the reduced number of evaluations of y(r). We may write CMMSEZ 

directly: 

CMMSEZ = Un + 1) + /SA(2M2 + k[Mfi + 2 M- 1]) (4.41) 

reflecting a minor savings in computations with respect to the MMSE algorithm. 

4.7.3 Cost of POLS 

Both Lagrange estimators make use of the vector-valued function l(r). Although we know 
the form of this function, we regard it as an arbitrary non-linear function with evaluation 
cost M/j, in keeping with the cost analysis of the MMSE and MMSEZ estimators. 

The cost of the POLS scheme is therefore 

CPOLS = f.(ji + 1 ) + fsXk[Mn + 2M + //]. (4.42) 

4.7.4 Cost of POLZ 

The cost of the POLZ scheme is 

CPOLZ = fs(» + 1) + f.Xk[Mn + 2M- 1]. (4.43) 

The POLZ estimator enjoys a slightly lower computation cost compared with the POLS 
estimator. 

4.7.5 Remarks on Cost 

Two factors determine the relative cost of each scheme: the number of samples M, and the 
cost /i of evaluating a nonlinear function. Because the number of samples is likely to be 
low (typically 4-8), the expense of functional evaluation dominates. Each of l(r), p(r) , and 
y(r) have varying complexity depending on their form, the technology used to implement 
them, and the approximations or computational shortcuts that are often used in practice. 
As we have focused on the general crossing-point estimation problem, we do not consider 
a particular implementation in sufficient detail to make a definitive statement concerning 
complexity. 
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We may, however, draw the following conclusions: 

• POLZ is only slightly simpler than POLS, and 

• MMSEZ is only slightly simpler than MMSE; finally, 

• MMSE and MMSEZ are more expensive than POLS and POLZ. 

As we will see in Chapter 5, MMSE and POLS outperform MMSEZ and POLZ, suggesting 
that MMSE and POLS are the chief methods of interest. 
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Chapter 5 

Performance Simulation 

In the previous chapter, we derived the MAP and MMSE estimators and the associated 
CRB. We have also reviewed the MMSEZ, POLZ, POLS, and ILIN crossing-point estima-
tors for the purpose of comparing their performance. In this chapter, we present simulations 
in which the performance of these methods are evaluated and characterized as a function 
of various system parameters. 

5.1 Scenario 

In the following subsections, we introduce the two scenarios of interest: one for Pulse-Width 
Modulation, and one for Click Modulation. The chief difference between these scenarios is 
the form of the carrier function y(t). The results for each scenario are comparable, though 
they differ in some interesting ways. 

5.1.1 Operating Point Parameters 

We explore the effects of varying a number of parameters. In order to limit the number of 
possible parameter variations, we hold each at the operating point in Table 5.1 and alter 
one parameter at a time. 

The parameters fs = 1/TS, M, Ac, cr2 and a\ are described in the preceding chapters. 
We have introduced the parameter f Im which corresponds to the bandlimit of s(t), which 
we assume is strictly low-pass in nature. 

We have chosen a very high signal-to-noise ratio (SNR) (rs/crn. In open-loop, switching 
audio amplifiers using a high-quality digital audio source (such as CD or DVD audio), the 
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Parameter Value Description 
fs = l/T. 192 kHz sampling rate 

Q.M/2'K 24 kHz bandlimit of s(t) 
M 4 number of samples (Mi = M2 = 2) 
Ac 1 carrier amplitude 

< (2~15)2 /12 noise variance 
-I (1/8)2 signal variance 

Table 5.1 Operating Point Parameters 

sole source of noise is due to finite word length. A value of 16 bits is typical, corresponding to 
the noise variance er2 = (2~15)2/12. In a PWM amplifier, the input samples x[k] correspond 
directly to audio samples, and this choice for cr2 is obvious. In a CM system, a substantial 
amount of signal processing must occur to transform the audio signal into the x[k] applied 
to a crossing-point estimator. We neglect the possibility that this signal-processing injects 
significant additional noise, and use the same o\ for the CM scenario as well. 

The signal variance is (1/8)2. This figure is chosen somewhat arbitrarily to maximize 
the SNR without a substantial probability of modulator overload (i.e. |s(i)| > Ac.) 

5.1.2 Pulse-Width Modulation 

For Pulse-Width Modulation (PWM), we adopt a triangle-wave carrier y(t) with amplitude 
Ac and period Tc = 2-K/Q.M- The signal s(t) is bandlimited to the same angular frequency 

Energy in a typical audio signal ranges from 20Hz to 20kHz, though it is usually con-
centrated within the low end of the audible spectrum. There is additional structure in an 
audio signal due to other factors; for example, psychoacoustic properties of human hearing 
are often exploited to increase perceived quality (viz. noise shaping) or decrease storage 
requirements (viz. MP3 audio). A flat, strictly bandlimited model neglects all of these 
details, though it is not obvious how a richer model would be useful. 

5.1.3 Click Modulat ion 

For Click Modulation (CM), we adopt a sinusoidal carrier y(t) = Acos(£lmt + 9). The 
signal s(t) is bandlimited to the same (angular) frequency Qm . 

A spectrally flat, bandlimited signal model is an obvious choice for the CM scenario. The 



5.2 Methodology 49 

upper comparator in Figure 2.6 corresponds to a crossing-point estimator in a discrete-time 
implementation. (The lower comparator processes the deterministic input — sin(c£+0), and 
therefore needs no estimator.) The input s(t) to the upper estimator may be expressed 
as the sum of a deterministic, sinusoidal component cos ct and a bandlimited unknown 
component g(t) with a maximum bandwidth b > c (see [9, Eq. 5].) The unknown component 
g(t) has significant spectral content near b, particularly for audio signals with substantial 
low-frequency content. However, the steps that transform audio into g(t) obscure much of 
the structure in the original audio signal. 

5.2 Methodology 

In this section, we describe the synthesis models used for each of the signals required, and 
explain the methodology used to conduct the simulations. 

5.2.1 Signal Model 

For both PWM and CM scenarios, s(t) is modeled as a wide-wense stationary Gaussian 
random process with zero mean and flat, bandlimited spectral characteristics. That is, the 
power spectral density (psd) of s(t) is given by 

{i * ( « ) = < " " l U J } < n M (5-1) otherwise. 

Accordingly, the autocorrelation function of s(t) may be expressed as: [42] 

rs(t) = a2
ssmc(nrnt/n). (5.2) 

Note that this expression for rs(t) is used to evaluate p(r) within the MAP, MMSE and 
MMSEZ estimators. 

During computation, in addition to the samples of s(t) required to form the vectors x 
and £ in (3.5), we require precise knowledge of each of the true crossing points of s(t) and 
y(t) in order to determine the error for each estimator. To determine these crossing points 
with high precision, it is necessary to generate s(t) in such a way that it may be evaluated 
at arbitrary time instants with reasonable computational requirements. 

We generate a continuous function s(t) which is parameterized by a collection of random 
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variables in two ways: the Karhunen-Loeve expansion (KLE) [42], and an ad-hoc approach 
using a sum of sinusoidal signals. The KLE approach is more attractive from a theoretical 
perspective for reasons that are explained below, but is slow during simulation. The sum-of-
sines approach is much more practical to simulate, and results generated by these methods 
are indistinguishable. 

Signal Generation using the Karhunen-Loeve Expansion 

We begin with the Karhunen-Loeve expansion for the bandlimited signal s(t): 

s(t) = 1 i.m. J2n=i s n M t ) to < t < tM-1 (5.3) N—*oo 

where l.i.m. represents the limit in the mean-squared sense and [to, tM~\\ is the observation 
interval. For strictly bandlimited spectra, the functions ipn(t) are scaled Prolate Spheroidal 
Wave Functions (PSWFs) [33]. The corresponding sn are uncorrelated, zero-mean Gaus-
sian random variables with variance A„, where A„ are parameter-dependent eigenvalues 
associated with each eigenfunction ipn(t)- Theoretical background concerning the PSWFs 
themselves may be found in [33, 43, 44]. 

In practice, the expected energy A„ associated with each eigenfunction within the ob-
servation interval decreases rapidly as n increases, and the summation in (5.3) may be 
truncated. We truncate the summation when additional terms contribute less than 10 -6 

of the total energy in s(t) over the observation interval. Depending on the scenario being 
simulated, this requires between 6 and 10 summation terms. 

Signal Generation using a Sum of Sinusoids 

The KLE is an optimal representation for bandlimited functions in the sense that it maxi-
mizes the energy in the first N terms of (5.3); thus, an expansion with finite N using the 
PSWFs as basis functions exhibits less distortion than any other choice of basis functions. 
However, the PSWFs and corresponding eigenvalues are slow to calculate in practice. We 
introduce an alternative approach which is not as theoretically pleasing, but which produces 
indistinguishable results in simulation and is much faster to calculate. 

We use the following signal model: 

«(*) = En=l V2(TS/N + <j>n) t0<t< tM-1 (5.4) 
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where ojn and 4>n are uniform random variables, all independent, over the (respective) 
intervals [0, QM] and [0,2IR]. We use N — 10 terms in the summation. The various RVs 

u a r e independently generated. 

5.2.2 Monte Carlo Simulations 

For each simulation, short segments of s(t) are generated randomly using one of the above 
approaches. In order to minimize the number of non-negligible components N required 
for the Karhunen-Loeve expansion (5.3), these segments are of minimum length, i.e. the 
observation interval (M — 1)TS. This allows us to evaluate s(t) precisely at any point within 
the observation interval. 

Next, the carrier phase 9 of y(t) is chosen randomly. Along with s(t), this completely 
specifies y(t) and z(t) = s(t) — y(t) for each experiment. We sample s(t) and z(t) and add 
noise, forming the sample vectors x and 

Before passing these vectors to each estimator, two conditions must be met: 

• z(t) must have a crossing point in T PI Cj (the sampling and carrier intervals defined 
in (3.4) and (3.6) respectively); 

• this crossing point must be observable by the coarse estimator Ei by looking at the 
Mith and (Ma + l) th samples of 

Candidate scenarios that do not meet these two conditions are discarded. 
Finally, each estimator is evaluated in turn. Because each estimator takes an iterative 

form, some starting estimate must be provided; except for the impractical MAP estimator, 
we select the center of T . 

Solving for the MAP estimate presents practical difficulties for the reasons explained 
in Section 4.3. The MAP estimate is defined implicitly in (4.27). However, this expression 
is ambiguous when multiple solutions exist in T , since one estimate must be chosen from 
amongst several candidates. (This ambiguity also exists for the other estimators with 
implicitly defined solutions. However, only the MAP estimator exhibits multiple candidates 
in practice.) As the SNR and oversampling rate are increased, the same process that allowed 
the MAP estimator to be approximated by the MMSE estimator renders the MAP estimate 
difficult to locate: a-s the MMSE and MAP estimators converge, the two nearby solutions 

1 These samples correspond to — 1] and which are used by Ej to determine where E2 is applied. 
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to (4.27) corresponding to (y — cO) = 0 and (a0y — cO) = 0 approach a single solution 
(y — cO)2 = 0, for which the simple root-finding algorithm we employ (MATLAB's f z e r o 
function) encounters difficulty.2 To avoid the problem, we obtain MAP estimates using the 
following process: 

• we use the MMSE estimate as an initial guess, and 

• instead of applying a root-finding method to (4.9), we minimize IS'(XIT) + 5(r) |2 . 

Although more circuitous, this method of obtaining MAP estimates is more robust in 
practice. 

5.2.3 Removal of Outliers 

There are two types of outliers produced in simulations: 

• individual experiments which produce results outside T, and 

• individual experiments with an estimation error that is disproportionately larger than 
other experiments using the same parameters. 

The first class of outliers is readily identifiable in situ, since the estimate f and the bounding 
region T are known. When such an outlier occurs, the estimator may fall back on an 
alternative estimator, or may choose to replace the invalid crossing-point estimate with 
the nearest valid crossing point (i.e. an endpoint of T.) It should be noted that when 
the SNR is low, crossing points may actually occur outside the region T identified by the 
coarse estimator Ei; in these situations, valid experimental results are incorrectly flagged 
as outliers. 

The second class of outliers must be identified by statistical analysis of an ensemble of 
experimental results, given exact knowledge of where each crossing point actually occurred. 
These outliers, which are typically due to numerical errors in pathological cases, cannot be 
identified in situ and are not flagged or removed in simulation. 

In most scenarios, no outliers were detected or removed. Where outliers occurred, the 
number of experiments which produced them are listed along with the performance figures 
below. 

2The function whose roots we wish to obtain has two very closely spaced solutions, or in the limit, a 
single root with multiplicity 2. Many numerical root-finding algorithms are known to perform poorly or 
even fail with close or multiple roots. [36] 
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5.2.4 Reference Estimators 

In addition to the MAP and MMSE estimators corresponding to (4.27) and (4.30), and 
the Cramer-Rao bound given in (4.31) and (4.34), we evaluate a number of alternative 
estimators. These estimators are taken from the literature and are useful for comparison. 

U U B Uniform Upper-Bound; see Section 4.5.2. 

ILIN Linear interpolation between the nearest samples of using Algorithm 5. This 
method is a degenerate case of POLZ when M = 2. See e.g. [7] and Section 4.6.1 
above. 

POLZ Solves |(£) = 0 using Algorithm 3. 

POLS Solves x(t) — y(t) using Algorithm 4. 

MMSEZ Approximation to the MMSE estimator using Algorithm 2. 

MMSE Approximation to the MAP estimator using Algorithm 1. 

M A P MAP estimator using (4.27) where / ( r ) is given by (4.11). 

CRB Cramer-Rao Bound; see Section 4.5.1. 

5.3 Results 

We present results for two scenarios: click modulation (using a sinusoidal carrier) and 
pulse-width modulation (using a triangular carrier.) Each data point on the following 
graphs represents a statistical analysis of approximately 20,000 experiments. 

5.3.1 Click Modulation 

Figure 5.1 shows the estimator performance as the number of samples is varied over the 
even numbers between 2 and 10. All estimators except ILIN (which uses 2 samples in all 
cases), along with the CRB, rapidly approach a limit beyond which more samples do not 
improve performance. This behaviour reflects the fact that additional samples are unable to 
meaningfully improve performance because they are increasingly distant from the crossing-
point, and are not substantially correlated with S(T). The percentage of outliers associated 
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with the data in Figure 5.1 are shown in Table 5.2. Note that whenever the estimated bias 
approaches 0, small variations (which could be due to genuine estimator bias or numerical 
errors, for example) cause large visual differences in the log-scale bias graphs; this effect 
should not be attributed to estimator behaviour. 

Fig. 5 .1 Estimator Performance (CM); Number of Samples M Varies 

M MMSE MMSEZ MAP POLS POLZ 
2 - - < 0.1% - -

Table 5.2 Outliers associated with Fig. 5.1 

Figure 5.2 shows the estimator performance as a function of the oversampling ratio. The 
horizontal axis is normalized to the sampling rate so that 1 corresponds to sampling s(t) 
at its Nyquist rate. Critical (Nyquist-rate) sampling is excluded; at such a low oversam-
pling ratio, crossing points are not suitably separated and the assumptions of our two-step 
estimator are not valid. Each method improves as the oversampling ratio is increased, 
although the ILIN estimator does not improve as rapidly as the other methods. 

Where outliers associated with the data in Figure 5.2 occurred, they are tabulated in 
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Oversampling Ratio 

Fig. 5 .2 Estimator Performance (CM); Oversampling Ratio Varies 

OSR MMSE MMSEZ MAP POLS POLZ 
4 - - < 0.1% - -

Table 5.3 Outliers associated with Fig. 5.2 

Figure 5.3 shows the estimator performance as the signal-to-noise ratio {a s /an , shown 
in dB) is varied. For high-fidelity switching amplifiers, the SNR may be well over 96 dB. In 
the high-SNR regime, when high accuracy is required, the MAP and MMSE estimators have 
a distinct advantage over the MMSEZ, POLS, POLZ, and ILIN estimators. At low SNRs, 
the MMSE and MAP estimators produced results flagged as outliers at a rate of several 
percent; no other estimators produce outliers (see Table 5.4.) In addition, at low SNRs, 
scenarios with crossing-points not detected by Ei are simply discarded. This "scenario 
filtering" process removes predominantly difficult (noisy) scenarios. 
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SNR (dB) 

Fig. 5 .3 Estimator Performance (CM); SNR Varies 

SNR MMSE MMSEZ MAP POLS POLZ 
5dB 4.0% 3.4% 3.9% <C 0.1% < 0.1% 
17dB 0.8% 3.1% 0.8% - -

29dB 0.1% 1.5% 0.1% - -

41dB <C 0.1% 0.1% < 0.1% - -

53dB « 0.1% < 0.1% < 0.1% - -

Table 5 .4 Outliers associated with Fig. 5.3 

Figure 5.4 shows the estimator performance as the carrier amplitude (Ac) is varied. 
A large carrier amplitude, combined with a sinusoidal carrier, decreases the ability of the 
POLZ and MMSEZ estimators to approximate the carrier with a straight line. Corre-
spondingly, the performance of the POLZ and MMSEZ schemes diverge from the POLS 
and MMSE schemes as Ac is increased. When the amplitude is low with respect to the 
signal standard deviation, it is not guaranteed that zero crossings are adequately separated 
and our model may not be accurate. 
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Fig. 5 .4 Estimator Performance (CM); Carrier Amplitude Varies 

5.3.2 Pulse-Width Modulation 

We now review the performance of each scheme in a PWM scenario. As these results are 
often similar to the CM scenario described above, we focus on the differences between the 
two scenarios. 

Figure 5.5 shows the estimator performance as the number of samples M is varied. This 
result shows the performance of the POLZ and MMSEZ schemes decreasing as additional 
samples are supplied to the estimator. In both cases, this effect reflects the inability of 
a continuous interpolator to accurately model a discontinuous y(t). As the length M of 
the sample vector £ is increased, the probability that it will contain a discontinuity in y(t) 
increases. In the case of POLZ, the interpolator is polynomial, and therefore continuous. 
With MMSEZ, the interpolator is strictly bandlimited, and is unable to model a discontin-
uous y(t) which has infinite spectral support. (The relationship between polynomial and 
bandlimited interpolation is well documented in [31, 40].) Outliers associated with the data 
in Figure 5.5 are tabulated in Table 5.5. 
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Fig. 5 .5 Estimator Performance (PWM); Number of Samples M Varies 

M MMSE MMSEZ MAP POLS POLZ 
10 < 0.1% 0.3% <C 0.1% - -

8 - 0.1% - - -

2 - - < 0.1% - -

Table 5 .5 Outliers associated Fig. 5.5 

Figure 5.6 shows the estimator performance as a function of the oversampling rate. 
Once again, the horizontal axis is normalized to the sampling rate so that 1 corresponds to 
critical sampling. As in Figure 5.5, the probability that £ contains a nonlinearity strongly 
affects the performance of the POLZ and MMSEZ estimators; when the oversampling ratio 
is large, this probability is negligible and the performance of POLZ and MMSEZ approach 
that of POLS and MMSE. 

Figure 5.7 shows the estimator performance as the signal-to-noise ratio (crs/cr„, shown 
in dB) is varied. In contrast to the above scenario where M was varied, we can see the 
performance of the POLZ estimator converges to that of POLS as the oversampling ratio 
is increased. Likewise, the performance of MMSEZ converges to that of MMSE. As noted 
above, the ability of any estimators to perform below the CR.B is due to an unfair "scenario 
filtering" that occurs when the coarse estimator Ei is not able to reliably detect crossing-
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i -

5-

Oversampling Ratio 

Fig . 5 .6 Estimator Performance (PWM); Oversampling Ratio Varies 

points during simulations. 
Where outliers associated with the data in Figure 5.7 occurred, they are tabulated in 

Table 5.6. 

SNR MMSE MMSEZ MAP POLS POLZ 
5dB 7.0% 5.3% 7.0% 0.1% 0.1% 
17dB 1.3% 0.8% 1.3% - -

29dB < 0.1% < 0.1% < 0.1% - -

41dB < 0.1% < 0.1% < 0.1% - -

53dB < 0.1% < 0.1% < 0.1% - -

Table 5 .6 Outliers associated Fig. 5.7 

Figure 5.8 shows the estimator performance as the carrier amplitude (Ac) is varied. 
Compared to the results for a sinusoidal carrier (see Figure 5.4), the performance of the 
ILIN estimator improves more rapidly when the carrier is triangular. This effect reflects 
the fact that when the carrier amplitude is significantly larger than the signal amplitude, 
the signal z(t^ heino- linear! v int.ernolat.ed is nredominantlv linear. O V / O \J i A v 
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Fig. 5 .7 Estimator Performance (PWM); SNR Varies 
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5.3.3 Discussion 

We now draw some conclusions from the simulations presented in the previous subsections. 
The performance of the MMSE estimator was, in all simulations conducted, indistin-

guishable from that of the MAP estimator. This result is critical, since the MAP estimator 
is computationally expensive enough to render it useless in resource-constrained, real-time 
applications. The ability of the MMSE estimator to accurately and efficiently approximate 
the MAP estimate provides us with a practical and effective estimator. 

In simulations, the polynomial estimators POLS and POLZ did not always approach the 
CRB. In these cases, the MMSE estimator performed substantially better than the nearest 
polynomial scheme. It is worth noting that the operating point described in Table 5.1, 
chosen to model a practical scenario for switching audio amplification, is one such scenario. 

Simulations also exposed the limitations of the POLZ and MMSEZ estimators. Not 
only do these estimators perform poorly when they encounter discontinuities in y(t), their 
performance when compared to POLS and MMSE (respectively) is often reduced. The 
appeal of MMSEZ and POLZ is diminished considering that their estimates are only slightly 
simpler to compute than POLS and MMSE estimates. 
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Chapter 6 

Conclusions 

6.1 Thesis Review 

In this thesis, we explored the discrete-time crossing-point estimation problem. This prob-
lem arises in a number of applications, including discrete-time modulator design for switch-
ing amplifiers. We reviewed the most common approach to the problem, based on a two-step 
estimation process involving a coarse estimator Ei followed by a refined estimator E2. 

We then reviewed two choices for the refined estimator E2 based on polynomial interpo-
lation. These estimators, denoted POLS and POLZ, were selected from the literature. Most 
publications focus on an application (PWM) in which the distinction between POLS and 
POLZ is not crucial; in our analysis, the differences between the schemes was emphasized. 

We introduced a statistical formulation for crossing-point estimation, which led to a 
MAP estimator and the Cramer-Rao bound for the problem. Because the MAP estimator 
was too complex to be useful in resource-constrained, real-time applications, we simplified 
the MAP estimator, producing a computationally efficient MMSE estimator, 

We presented simulations for both Pulse-Width Modulation and Click Modulation sce-
narios. In all cases, the MMSE estimator closely tracked the MAP estimator and outper-
formed the MMSEZ, POLS, POLZ and ILIN estimators. 

This work is important for three primary reasons: firstly, it casts an outstanding prob-
lem in a rigorous statistical framework, and provides the means with which to fairly evaluate 
competing estimators. Secondly, it introduces the MMSE estimator and shows it to per-
form very near the Cramer-Rao bound, suggesting there is not much room to improve on 
the scheme from the perspective of estimation accuracy. Finally, the MMSE estimator 
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substantially outperforms the alternative estimators in a scenario chosen to model high-
performance, switching audio amplification. 

6.2 Future Work 

The MMSE estimator has an algorithmic structure that is nearly identical to the POLZ 
and POLS estimators, although it requires potentially expensive evaluation of the vector 
correlation function. The task of implementing the MMSE algorithm is greatly dependent 
on the computational resources that silicon can provide. However, there are only a few 
broad classes of implementation device (e.g. FPGA, DSP, general-purpose CPU, or custom 
silicon) available to designers, and it would be worthwhile to investigate balancing accuracy 
with computational efficiency for one or several of these. 
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Appendix A 

Derivation of the Conditional Score 
Function 

In this appendix, we derive the conditional score function -S'(x|r) defined as follows: 

5 ( x | r ) 4 | - l o g / ( x | T ) (A.l) 

where 

A*\T) - (27r)W2|E|V2 ' ^ ^ 

and the vector fx and matrix E are functions of the variable r . 
We begin by reviewing several basic properties that are used throughout the sequel. 

Then, we derive the general expression for 5 (x | r ) . Finally, we apply this result to our 
problem to generate a simpler expression. 

A . l Basic Proofs 

These basic results are commonly known. Where complete proofs are omitted, they may 
be found in [45]. 

Property 1. The derivative E" 1 of the inverse of a nonsingular, square matrix E may be 
expressed as follows: 
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Proof. As E is invertible, we may write 

E~1E = J 

where / is the M x M identity matrix. We differentiate both sides, giving: 

E - 1 E = —E_1E 

Multiplying both sides by E _ 1 from the right yields the desired result. 

Property 2. The derivative of a log-determinant is given by the following: 

- l c g | S | = t r { S - ' E } 

• 

(A.4) 

Proof. This identity is a trivial extension of Jacobi's theorem, for which a proof is given 
in [46]. • 

A.2 General Case 

Combining (A.l) and (A.2), we have: 

We may immediately differentiate the second term. Noting that E is symmetric, we may 
simplify the result to the following expression: 

S(x|r) = log |E| + / jTE _ 1 (x - y) - ±(x - - p) 

We apply Property 2 to the first term: 

S(X|T) = t r { S + fiTE-^X - p.) ~ I ( x - / x ) T E " 1 ( x - /*) (A.5) 

This is the most general expression for the conditional score, and is independent of the 
problem we consider. In the following section, we use the identities defined in (4.22) to 
simplify this result further. 
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A.3 Specialization to Discrete-Time Crossing Point Estimation 

Equation (A.5) provides a general expression for 5 (x | r ) . In the following section, we apply 
this result to the crossing-point estimation problem in order to obtain a simpler expression. 

We begin with the first term of (A.5). From the definition of E in (4.16), we have: 

PPT + PPT 

and 

- i tr j E _ 1 E j = ± tr { E - V P T + ^ P P T } 

= ^ | [ t r { E - V p T } + t r { E - W r } ] 

= 2 H Y ^ P + F ^ P } 

= b 

For the second term of (A.5), the definitions of p, and E yeild 

/ X T E _ 1 ( X - p ) = i ^ p y + p y j E " 1 ( * -

Thus, using the definitions of a, b, c and d, 

i i T E-*(x - p) = _y(*y-c) + y(by-d) 

To simplify the third and final term of (A.5), we begin by applying Property 1, the definition 
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of fj,, and the above expression for E: 

- i ( x - i r ^ x - p) = - i ( x - / i ) r E _ 1 (ppT + ppT) E _ 1 (x -
2 (7? ' 

= I X 
py E - 1 p p r E 

(ay-c)(by-d) 

Combining the above expressions yeilds the desired result: 

S(K\T) = b -
(ay - c)(by - d) + y(ay - c) + y(by - d) 

(A.6) 
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Appendix B 

Derivation of Fisher Information for 
Multivariate Normal Distributions 

B . l General Case 

In this section, we derive the Fisher Information Matrix (FIM) for a multivariate, real 
Gaussian distribution where the covariance matrix E and mean /Lt are functions of the 
single parameter r . 

Theorem 1. The Fisher Information for a multivariate real Gaussian random variable x 
with mean H(T) and covariance matrix E(r) is given by the following:1 

Proof. This derivation is similar to that found in [47], and the results are identical. Our 
derivation is notationally consistent with the rest of this work and corrects a minor error 
in their derivation. 

where / (x ) is given by (A.2). Although the squared quantity is identical to -S(x|r) for our 
problem, it is straightforward and instructive to complete the derivation for the general 

xAs elsewhere, the overdot represents differentiation with respect to r, and the dependence on T has 
been suppressed for convenience. 

J — ixTY,~1ix + - tr E - 1 E E - 1 E 
1 (B.l) 

We have: 
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case. We have: 

d_ 
dr log / (x ) = - | t r { E - 1 s } + / / r E _ 1 ( x - - ±(x - j » ) T i r " f ) (B.3) 

Squaring this expression, we get 

j n 2 

dr log / (x ) 

Thus, 

= 1 tr { e ^ e } 2 + [ ^ E - ^ x - /.)]2 + i [(x - - !*)]' 

+ i t r { E - 1 E } ( x - A i f E - 1 ( x - A i ) 

— t r | E _ 1 E | / X T E _ 1 ( X — /Z) 

- / X T E _ 1 ( X - / x ) ( x - / I F S R ^ x - / i ) ( B . 4 ) 

£ { f l o g / ( x ) 

+ £ ; { [ A r E - 1 ( x - / x ) ] 2 } 

+ ^ | [ ( x - A , ) r E - 1 ( x - / x ) ] 2 } 

+ I tr { E - 1 ! : } £ {(x - / , ) r E - 1 ( x -

- t r { E ^ E } E { / * T E _ 1 ( X - / X ) } 

- E {A T S- a (x - /i)(x - M f E - ^ x - /*)} (B.5) 

We now evaluate each expectation term in sequence. The second term of (B.5) is the second 
moment of ^ t r E _ 1 (x - /x) ~ iV(0,/ i rE~1EE_V)» a n ( l thus equals / i rE _ 1 /x . For the third 
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E 

term, we have [47]: 

| [(x - / x f i r 1 (x - /x)]21 = E | £ x i t ^ x j x j l ^ 1 

= ^^ {XiXjXmxn} 
ij,m,n 

— ^ 1 S j j 1 !^^ [SijXjmn + Ej m Ej n + EinEjm] 
i,j,m,n 

= t r { E ^ E } 2 + 2 t r { E ^ E E ^ S } 

Applying Property 1, we get: 

E | [(x - n)Tt~l(x - /x)] 2 | = tr { e ^ e } 2 + 2 tr { E ^ E E ^ E } 

For the fourth term of (B.5), we have: 

E {(x - - / x ) } = £ 7 { t r {(x - j i f X T ^ x - / x ) } } 

= t r { E - 1
J B { ( x - A x ) ( x - A t ) T } } 

= tr | E _ 1 E | 

Applying Property 1, we get: 

E | ( x — /x)RE_ 1(x — /Lt)| = — tr | E _ 1 E | 

(B.6) 

(B.7) 

The fifth and sixth terms of (B.5) are zero, since they are odd-order moments of zero-mean 
Gaussian distributions. Collecting the above results, we have: 

(B.8) 

which is the desired result. 
• 
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B.2 Specialization to Discrete-Time Crossing Point Estimation 

We wish to express (B.8) in a simplified form, using the definitions for E and p, defined in 
(4.17) and (4.16). We have: 

+ \ tr | E _ 1 E E _ 1 E | = 1 [ y ^ E - ' p + 2 ^ E " 1 p + tfp^p] 

+ 2^4 [tr {Z~\PPT + PPT)X-\PPT + PPT)}] (B.9) 

= [y2e + 2 yyb + y2aj + ^ trjs"1 [pbpT + papT + pepT + pbpT]} 

Rearranging the tr { • } expressions yeilds the desired result (4.33): 

(B.10) 

/xrE-V + \ tr {s^EE-1!;} = ^ y2e + 2yyb + y2a +b2 + ae (B.l l) 

The final step from (4.33) to (4.34) is a straightforward substitution of each of (4.22) into 
(4.24). The resulting expression may be written using (4.25). 
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Appendix C 

Proof of (4.24) 

We wish to prove that the equation 

s - 1 = S o 1 + y ^ 1 ^ 
o i - p v o p 

is a valid expression for E - 1 . As stated in Section 4.2.4, this statement is valid provided that 
So is nonsingular (which is granted, since we assume So is positive definite) and provided 
a 2 — /?(r) r£o XP( r) 0 (which we will establish here.) 

We may express £q 1 by expanding (4.4) with the Sherman-Morrison-Woodbury for-
mula [35]. The result is unconditionally valid for a2 / 0. 

Eo1 = E ; 1 - E + E ; 1 ) - ^ ; 1 (C.2) 

As the sum of positive definite matrices, the center term (c~2I + E"1) and its inverse are 
positive definite. Likewise, the matrix quadratic Ej1(cr~2/ + Ej1)~1Ej"1 is positive definite. 
Thus, the second term in the sum is necessarily positive, and for any p(r) ^ Owe have the 
strict inequality 

P(T)T£OV(T) < P(T)tE;1P(T) ( C . 3 ) 

We may immediately disregard the case in which p(r) = 0, since it corresponds to the 
degenerate case in which the observation vector x is totally uncorrelated with S(T) at a 
particular r . 

To complete the proof, we now show that p ( r ) r E~ 1 p ( r ) < This is trivial, since e = 
a2 — p(r)TE~1p(r) is the variance of the MMSE estimator to s(r) given the (unobservable) 



8 0 Proof of (4.24) 

sample vector s [37]. The quadratic expression is nonnegative, and since variances are by 
definition nonnegative, 

Summarizing, we have shown: 

p(r)T^p(r) < p(r) Ti~ p(r) < cr] (CA) 

therefore, 
p(rY^p(r)^ai (C.5) 


