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The main function of a blood cell's surface is to 

r·eceive informat.ion the environment. Recently, 

experiments have ~nd~cated that the cell membrane plays a 

vital role in the life, development, and regulation of cells. 

However, there is no existing method to quantify the 

membrane sh-~pe that observable 

locon\otion. 

changes in 

To .achie•Je this ob.Jectiue using 

occur in 

autornatic 

technique~ of digital image processing, the main goal of this 

research is to develop an image interpretation system capable 

of analyzing the structural changes in the morphology of a 

non-rigid moving obJect from a sequence of pictures. 

A model for a general dynamic scene analysis system is 

des: et" ibed. It consists of three basic entities: 

data, static data. and a co1lection of analysis processes. 

Based on this model. we have implemented a rule-based image 

interpretation system ~or moving cells. 

The system describes the dynamic behaviour of a moving 

cell using symbolic terminology which is meaningful to 

individuals working in cell biology. With the aid of this 

the global changes in the cell structure and 

pseudopod kinetics are anal~zed. a subpart of the 

ce~l is classified as being either "pseudopod" or "ceLl 

body". A pseudopod is described as "growing", "contracting", 

or "stationat ... y". other aspects of the global 

behaviour of the cell are characterized and described. For 
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the "dom~nat~on" of a pseudopod in contributing to 

the locomotion of the cell. 

The s~stem is also applicable to the study of the 

dynamics of other white blood cell types. Ultimately, this 

type of study could allow the detection of abnormalities, and 

the efffects of drugs, if any, in the locomotory responses or 

leucocytes. 
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RESLir-1E 

La pr~nc~pa1e fonct~on de la membrane d'un globule est 

de rec:evo.it .. de 1 '~nfor·mation de son environnemen~ 

Recemment1 
~ ~ ~ 

des experiences ont demontre que la membrane .JOUe 

un role primordial dans la vie1 le 
~ 

developpement et la 

regulation des globules. Toutefois:1 il n'existe pas de 

m'thode permettant de quantifier les changements observables 

de la forme de la membrane au cours de la locomotion. Afin 

d'atteindre cet obJectif tout en utilisant des techniques 

automatiques de traitement des images digitales~ le but 
... 

principal de cette recherche est de concevoir un systeme 
~ 

d'interpretation d'images capable d'analyser les changements 

structuraux de la morphologie d'un ob,Jet non-rigide en 

mouvement l partir d'une s~quence d'images. 

Un mod~ le de " , ~ systeme general de 
... 

scenes 

dynam.iques est d~cr .it. Il se compose de trois entit;s de 

base: donn~es dynamiques~ donnees stat.iques et ensemble de 

processus d'analyse. En nous fondant sur ce mod~le1 nous 

, ~ ' avons rea1~~e un syst&m& "ru1e-b.ased" 

d'images de globules en mouvement. 

Ce syst~me d~crit le coroportement dynamique d'un globule 

en mouvement ~ l'aide d'une terminolog.ie symbol~que qui est 

fam.il.i~re ~ ceux qui oeuvrent dans le domaine de la biolog.ie 

cellula.ire. A l'aide de ce systemeJ les changements globaux 

" de la structure cellula~r& et de la cinetique des pseudopodes 

Ains.i1 on class.ifie les parties d'un globul~ 
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comme itant so~t "pseudopod~", soLt "corps du globule". Un 

pseudopod& peut itre "en expansion", "en contraction" ou 

"stationnaire". De plus, d'autres aspects 

global du globule sont characterises et 

du comportement 

dec:r.its. Par 

exemple, la ndomin.atiora" d'un pseudopode dans sa contribution 

a la locomotion du globule. 

Le systeme s'applique aussi a !'etude de la dynamique 

d'autres types de globules blancs. Ultimement, ce genre 

d'etudes permettrait la detection d'anomal~es des reactions 

locomotric~s des leucocytes, et s'il y a lieu, des errets de 

certa~nes drogues sur celles-ci. 
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CHAPTER :t 

INTRODJJCTIOt-~ 

1. 1 BIOMEDICAL PROBLEM 

I . Cell movement ig a fundamental process of some 

impor·tance to aspects of cell biology as diverse as 

migration of cells in embryological development and to host 

defense mechanisms. Advances have been made recently in the 

character.ization of locomotory paths taken by cells in v.i"tro 

and how these are affec-ted by various substances. Th~ 

internal mechanisms for cell locomotion are also reasonably 

well understood. However, progress has been much slower as 

"'to how the cell moni tor·s external 51,..1bstances in order that 

internal mechanisms might be regulated. This interaction 

between external factors and cell internal processes has -to 

occur at or within the cell membrane. 

the Society for 

Developmental Biolog~, held in Yancouer B.C. in June of 

1979, was mainly d~voted to summarizing the c1,..1rrent status 

of knowledge about cell surface (plasma membrane). At the 

conclusion of the symposium, Wessells stated CWessells, 79J: 
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"It has become increasingly evident that the cell 

surface plays a truly pivotal role in the life~ 

development~ and regulation of cells. On one hand~ the 

surface functions in the transmission of information 

from the environment to the cell, and here I mean not 

only molecular signals, but also mechanical forces 

stemming from adhesions and JUnctions that affect the 

cytoskeleton and so intracellular activations. The 

surface is al$o in a real sense an expression of the 

cel1~s genetic information and 

Embryologists and developmental 

developmental state. 

biologists must pay 

increasing heed to the cell surface and to its changing 

propet"·ties. " 

Development in mwticellular eukaryotes<*> must depend 

on mechanisms that extend beyond the usual notions inherent 

in our concepts of sequential gene activation. For example~ 

development of an embryo requires that cells know where they 

are and where they should be. There must be mechanisms that 

regulate this social behaviour of cells and more than 

intuition informs us that the cell membrane is inv~lved both 

as the donor and receptor of such social signals CBranton. 

80]. 

The important activities of the cell membrane have now 

----------------------------------------------------
<*>Organisms made up of cells with nuclei bounded by 

nuc1ear envelopes. 
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function, and mechanical ~unction. Study of r·eceptor 

function and mechanical function have led to the realization 

that components of the c•~~ surface are mobile in the plane 

of the membrane but that this lateral mobility is subJect to 

regulation [Singer •nd Nicolson, 1972; Nicolson, 1976al. 

Such regulated, lateral mobil.ity has been the basis f"or many 

hypotheses or• the rnolecu.lar mech.anisms mediating cell 

recognition and growth control tEdelman, 1976; Nicol.son, 

1976a; bi.- Irt particular·, it isr ot"ten suggested that the 

inter.actiort ot" extr·acellular ligands(*) with their cell 

surface receptors alters the distribution of transmembrane 

elements "that can bind to 1'1\0til.i ty-related protein:s> such as 

actin or tubulin at the cy-toplasmic surface of the plasma 

membrane [Edel.man, 1976; eourguignon and Singer, 1977J. 

Although many observations give credence to such 

hypotheses, it is 

demons'trati.ot·• of· 

orrl.':::f 

the 

that a direct chemical 

binding between men1brane and 

cytoplasmic has be-en demonstrated. 

transmembrane elements can in-teract with components a-t the 

C':::ftoplasmic sut .. f"i\CE' of the rnen,brane, one would like to kn•:JW 

the precise na-ture of the binding sites. the affinities and 

specif"icities of' the interaction, and the manner in which 

-----------------------------------------------------
(*) A molecule that will bind to a complementary site 

on a given structure. 
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these affinities are regu~ated. Some progress has been made 

~n this direction w~th the polymorphonuclear leucocytes 

<PMN) in that binding studies with the chemotactic agent, N. 

formylmethionineleucinephen~lalanine(*), have been carried 

out CWil~iams et al. , 77J. The locomotory organ of these 

cells is the pseudopod and changes in pseudopod activity are 

the first morpho~ogical events visible as the cells respond 

to chemotactic agents. Similarly, lymphocytes also show 

pseudopod activit~ during locomotion CLewis and Webster, 

21], and many studies have been done on membrane bound 

ligand interactions in this cell type. Little is known of 

the pseudopod kinetics of these cells during locomotion. 

1. 2 OBJECTIVES 

As indicated in the previous section, pseudopod 

formation is an important property of locorooting cells, yet 

presently, there is no existing method for quantifying the 

observable changes in the membrane shape that occur during 

lbcomotion. 

interaction, 

Consequently~ it is 

at the membrane 

difficult to 

level, between 

study 

the 

~e 

cell 

internal processes and the external factors which modify 

cell locomotion. Therefore, what is required is a system to 

analyze a sequence of images of a moving cell to provide a 

quantification and description <numerically and 

-----------------------------------------------------
(*) So~etimes abbreviated as: ~ Met-Leu-Phe 
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symbol~cally> o~ the dynamic changes ~n membrane shape. For 

0 example, this study would prove use~ul ~n assessing whether 

leucocytes sensed a chemotact~c 9rad~ent by a "temporal" or 

"spat~al" mechani$M CZigmond et al. , S1i Gerisch and 

Such a study would be o~ relevance to the 

understanding of the role of the cell membrane in the 

me-chanisms which regulate the social behaviour of the cell, 

To achieve this obJ~Ctiue using automatic techniques of 

digital image processing, the main goal of this research is 

to develop an image interpretation system capable of 

analyzing the structural changes in the shape o~ a non-rigid 

moving obJect from a sequence o~ pictures. To do this, th~ 

system would have to be able to: recognize the various 

image patterns, segment and interpret the desired obJect, 

shape, and structure of the moving obJect. 

Using this system to analyze the dynamics o~ blood cell 

motion, biologists can obtain the quanti~ications and 

descriptions of the data necessary to understand or answer 

questions pertaining to the cell behaviour. Figure<1. 1> 

illustrates certain concepts for analyzing the observable 

changes in the membrane shape in order to understand its 

role in regulating and modifying the cell locomot~on. Th.i.s 

f.i.gure refers to a moving cell under observation~ and a 

biologist might be interested in the answers to three bas.i.c 

p•rtaining to the cell's dynam~c behaviour. 
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Figure(1.1}Charaeterization of the obser1Jable changes in 
the cell membrane .of a motJing cell, in order to understand 
the nature and distribution of "receptors" on or within the 
membrane. The properties of these receptors might explain 
the interaction between external factors and cell internal 
process, a.nd how these mechanisms regulate the social be­
ha1Jiour of the cell. 
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F~rst, how can one recognize a subpart developed on or by 

the membrane as a "pseudopod"? And if it is a ps~udopod. is 

it stationary? growing? or contracting? is a 

pse-udopod "dominant" (the- dominartt pseudopod is one whi.ch 

contributes to the cell locomotion> or not? If so, what i.s 

its degree of dortJination? Finally. if all this information 

the third question would pertain to the 

interpretation of this data. 

pseudopod dominant and another not? 

Our system has-. successfully provided all the 

quantification. description. and characterization 

information whereby the first two cited basic questions can 

be ansWEH'&d. Analysis of the data obtained may provide the 

c answer to the third question. 

In these studies we have looked 
1._ 

at the pseudopod 

responses of PMN during random and chemotactic motion 

pr in\ar ily beca•..tse at the commencement of this study we had 

ample knowledge of -'Chemotactic .agents for PMN but ver~:~ 

l~ttle was known of l~mphoc:wte chemotactic agents. Another 

advantage o~ commencing this work using PMN is that this 

cell exhibits complex shape changes and therefore any 

techn.ique devised to qw:m'ti tate these ch:anges can readilr:J b.;:. 

applied to relativelw simpler shape forms such as the 
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Constructing and implementing a system which has the 

c~pabilities of accomplishing the ObJectives cited in the 

ing section, requires and represents a merging of four 

dift·er·ent in vision and image 

ftt.Atc•matic Pr--ocessing of 

Mic~oscopic Images, (b) Image Sequence Analysis. (c) Shape 

Analysi~ and Description, (d) Knowledge-Based Systems. 

T -.n di~!ii:al prc•cessing of' cell 

most of the work has dealt with static pictures of 

blood smears (or frozen cells) for the .Purpose of 

classification or counting. Previous work applied to the 

. study of moving cells has concentrated on tracking cell 

studt;::~ing cell interaction 

characteristics. Furthermore. there is no existing system 

which concerns itself with the analysis of the structural 

changes in the cell shape. Consequently there is no method 

extant which quantifies and characterizes the observable 

changes in the cell membrane shape occuring during 

locomotion. Indeed. a terminology for these descriptions is 

not &veri available, and an obJective o~ this research was to 

develop one in conJunction with physiologist~ 

Even if we extend our consideration to the general 

problem o~ processing dynamic imagesJ this field has been 

largely restricted to motion detection. ar1d 

tr·acki.ng. MoEt of the previous research has attempted to 
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analyze an ~mage sequence by cons~dering the multitud~nous 

data representing the incremental changes that occur between 

each two sequential ~rames from the sequence. This data 

mainly pertained to the changes in locomotion o~ an obJect, 

rather than the dynamic alterations in its shape. This is 

because most o~ the work in this field has dealt with the 

motion o~ rigid obJects, having static three-dimensional 

shape~ Thus, two main issues have been ignored by most of 

the past research: Ca> shape and structural changes of a 

non-rigid 'moving ObJect~ ·and (b) motion under·standin•;;, and 

description. These issues are among the aspects addressed 

in this thesis. 

In our current work we are dealing with non-rigid 

objects, which change their shape and structure randomly due 

to physical properties. Thus, we are considering three 

kinds or changes with time: locomotion, shape, and 

structure. All alter Y·ar.doml'J t"'rom frame to frame and 

interact vJi th each· other. This t"'.:mdomtiess in images: 

recording cell locomotion is partiallw du~ to the ~act that 

the chamber simulating the environmental conditions o~ the 

live cells under the m~croscope permits the cells to move to 

some extent in three-dimensions. Consequent1y, the 

two-dimensional ~mages resuLting ~rom filming these celLs 

are actually recordings o~ three-dimensional changes. 
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To achieve th~ obJectives o~ motion understanding and 

description, it is not enough to merely determine the 

incremental movem~nts or changes that occur between 

consecutive images tTsotsos et al. , 801. What is required 

is a system which abstracts a description o~ the Qlobal 

motion characteristics ~rom the static and incremental data. 

Development of such a swstem represents the approach being 

taken in our present research in image sequence analysis. 

The problem or shape discrimination is a central one to 

pattern recognition and as such has received considerable 

attention in most papers dealing with recognition of 

charac-ters, chromosome-s, 

et~ Most or the work in the perception of shape has used 

numerical descriptors in terms of feature measurements such 

as sides, angles, moments, curvature. calor, 

describinQ an arbitrary shape in a specific 

facing the following problems: (a) 

image, 1.o1e 

Estimating 

etc. 

are 

the 

incremental change in the shape and structure o~ a non-rigid 

moving ob ... tect. (b) Detecting and characterizing the 

structural changes in the morphology of a non-rigid moving 

obJect over a period of time from a sequence of pictures. 

(c) Presenting all of the above descriptions in a meaningful 

terminology to the user. 
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We have developed a procedure which produces 

meaningful description of' .. the shape and .its 

changes. We have also developed an expression f'or measuring 

the complGoxit'&l or an arbitrary shape pattern. Th.is 

expression is based on a group of selected shape properties 

which are .ir,dependent of loc:ati.on, tr·anslation, rotation, or 

se: a ling. Another shape property .is introduced to measure 

the degree of' curvature regularity <angle or side 

regularity> of' the shape of an obJect. This property is 

shown experimentally to play a considerable role in shape 

discrimination and is used to describe membrane shape. 

An understanding system, either as a computer vision 

system f'or static scene interpretation, or visual motion 

c description from a sequence of' images, requit"'es the 

construction or a knowledge-based system. This S''Jstem 

should utilize the knowledge from diverse sources or 

information, consisting of multiple levels of analysis, and 

to be supported by an·efficient control structure mechanism. 

The progress towards the development of' knowledge-based 

systems for visual motion understanding is slow, and the 

work which has been done is very limited. :In our reseat"'ch 

we have utilized the most advanced strategies of' computer 

vision interpretation of static .images, merging them with 

the experience gained in image sequence cmalysis to 

construct a visual motion understanding system. 
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From a philosophical point or view, the present 

structure is motivated by .the computer vision framework 

proposed by Levine [Leuine~ 78J. The latter has been 

revised and implemented by Levine and Shaheen ~or general 

static scene analysis and interpretation tLevine and 

Shaheen, S1l. Low level segmentation has been reported in 

CLevine and Nazif~ S2J. The approach is based on 

independent processes that cooperate through a common 

database structure. The system and data structure model ~or 

a , general motion undet"standirtg systen\ dt!>veloped in our 

research is described in Chapter 3 and briefly reviewed in 

the following section. 

1.4 MODEL STRUCTURE AND SYSTEM IMPLEMENTATION 

The main input for any image sequence analysis system 

is a series of two-dimensional digital images representing 

the variation in a specific scene along a third-dimension. 

The func~ion of the system is to generate a description of 

the consistent characteristics and behaviour of the moving 

obJect<s> recorded within the sequence <see Figure 1.2). A 

theoretical model for a general dynamic scene analysis and 

motion understanding system has been developed. It involves 

three basic entities <Figure 1. 3): 

(a) Static <constant> data: The dat.a which r·emains 

unchanged during the courstl" of analysis. 

constraint knowledge pertaining to the class of scenes 

and motion unde-r anall::tSis, as well as the control 
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Sequence Description o I 
DYNAMIC of images the consistent 

contains SCENE behaviour 
secen~s of ANALYSIS .... characteristics movsng SYSTEM of the 
object(s) moving object 

Figu.re(1.8} The main inputjouput data of a dynamic 
scene analysis system. 
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COLLECTION 
STATIC DATA OF ANALYSIS DYNAMIC DATA 

PROCESSES ... .~ 

~ .. ... 
Each of which Remain unchanged Contmual{r change 

during Che analysis is usigned to a during the ana{ysis 
particular tasl 

Figure(1.9} Basic structure units of a dynamic scene 
analysis system. 
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information describing the pertinent cornpt..Jtational 

processes. 

(b) A collection of analysis processes each of which is 

(c) Dynamic data: The data which are continually changing 

as a result o-f· the functioning of the different 

analysis processe~. 

The different types of data which may be manipulated by 

the system have been classified by the model into: 

(a) Sequence of images: A set of two-dimensional images 

which represents the main input of the system. Each 

element of this set is a static image of the scene at a 

specific tirne. 

Cb) Set of objects: Each image of the temporal sequence may 

be segmented into a set of obJects. This set may also 

be divided into two subsets according to whether the 

obJect is moving or stationary. ObJects have complex 

shapes, and it is usually necessary to decompose them 

into pr·imi tive st..lbparts. The result of this 

decomposition is a collection of subobJects associated 

(c) Set of features: A set of objects is described by 

static features~ which define the different pr·operties 

of shape, structure, or motion of the objects and 

subobjects to be measured or analyzed by the system. 
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(d) Group of symbolic descr~ptors: A set of symbol~c 

descr~ptors or qualifiers ~s used to classify and 

descr~be the numerical values of the different 

properties of the moving ObJects. 

(e) Group of characteristic~: Each characterist~c ~s the 

descr~pt~on of a group of features wh~ch cooperate to 

define a specific type of behaviour. These may be 

based on the global changes in the cell~s shape. 

structure. motion, combination of more than one change, 

and/or the effect of the environment on the cell~s 

behaviour. 

(f) Set of rules: The model which represents the knowledge 

conta~ns two bas~c types of data: constraint knowledge 

and rules. The latter may be further classified into 

representat~onal and control rule~ The 

representational rules are responsible for generating 

the different descriptions and characteristics 

according to the numerical measurements of 

different features. The control rules account for thq 

activation and scheduling of the different system 

processes. 

The dynamic and static data are designed as two 

associative data memories: a Short Term Memory (STM) and a 

Long Term Memory <LTM>. All the analysis processes can 

communicate with both the STM and LTM. Both the STM and LTM 

are implemented as a relationa~ database. The STM contains 
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a record of th~ instantaneous cell motion, shape, and 

structural changes, as 

the cell bethaviour. 

the morphologw of the 

well as. the current description of 

The LTM contains the general model of . 

cells under analysis. as well as 

control information describing the pertinent computational 

processes. 

The system c:onsists of 

processes which are designed 

hierarchial structure consisting 

different computational 

to execute through a 

of three basic levels: 

static, incremental. and global <see Figure 1..4). 

This step is similar to 

conventional im~ge processing system in that the input 

is a single digital image, and the output is a 

description and interpretation of the scene. However. 

in the analysis of dynamic images. the information 

extracted from the previous frames of the same sequence 

may also be used as knowledge to assist in the analysis. 

of the current frame. The main objective of this stage 

is to identify the desired moving obJect, segment it. 

and describe it in each frame of the sequence <see 

Figure 1. Sa). 

(b) Incremental Ch~nge Detection: This is 

step between the static and the 

an intermediate 

global. The main 

obJective is to detect and describe the incremental 

changes in shape. structure~ and motion or the moving 

object <see Figure ~. Sb). 
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(INPUT 

1 Sequence' 
I of Images) 
\' J • LTM STM 

STATIC S.CENE ---- - ... ..... .... 
STATIC 

... ANALYSIS r"J . .... DYNAMIC 
DATA DATA 

Model 
INCREMENTAL 

Instanta.aeous ~ - CHANGE 
.... -

knowledge and 
... ...... ,.. 

and d.ynamic DETECTION 
description. description 

. olcen 
morphology 

Control .. .,GLOBAL and motion 
information ~ ANALYSIS AND ~ 

CHARACTERIZATION 

.·~ 

OUTPUT) 

+ 
Characteristic 
BehctJiour and 
Description 
of the Cell 

Figure(1 . ..f) Main processing stages and data 
structure of a moti9n understanding system 
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Static 
> •• ,., n descrlptloD 

ol the cell Single STATIC ... SCENE .... morphology 
Imaie(l) ... -ANALYSIS aDd JocatioD 
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(a) 

DescriptloD of Sta.tic 
descrlptioD 
of Frame(i) INCREMENTAL the mcremental 
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Static 
description 

of Frame(i+l) 
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~.___ __ 
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Function czn4_ ~"'"- ~fl,p_y,Jfoutput 
da.ta. of the ba.sic processing sta.ges 
of a motion u.ndersta.nding system. 
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<c> G~oba~ Analysis: This ~· the highest ~eve~ in the 

hierarchy o~ the dynamic scene analysis system. The 

goa~ is to ana~yze the static and incremental data in 

order to detect and describe the global observab1~ 

changes within the sequence of frames. In this way, 

the characterization or the consistent dynamic 

behaviour of the cell may be obtained (se-• 

Figure 1. 5c>. 

From the above discussion, we can see that the 

separation of' 

LTM from the 

the knowledge and control in~ormation in the 

analysis processes wil~ al~ow ~or the 

app~ication of the system to different classes of scenes or 

motion. Storing the d•,&nami.c data ir• ill"l associative memory 

<STM), completely separate from the analysis processes, was 

necessary in order to achieve the complete independence o~ 

the processes. This means that each process wi~~ 

communicate data to and from the STM and not to the other 

processes, a fact ~hich enhances the consistency of the 

the analysis processes a~lows f'or the modularity and 

extensibility of the system. 

In conclusion. a system for quantifying and 

characterizing the motion and structural changes in the 

shape o~ a non-rigid moving ObJect has been developed and 

applied to analyze the cell's dynamic behaviour. 
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1.5 SUMMAR'r AND GENERAL OVERVIE~J 

1. 5. 1 Summary 

The m~in function of a blood cell's surface is to 

receive information from the environment. Recently., 

experimen~s have indicated that-the cell membrane plays a 

vital role in the 1i~e, development., and regulation or 

cells. However~ there is no existing method to quantify the 

observable · 

locomotion. 

changes in 

To achieve 

membrane shape 

this obJective 

that oo=w" .in 

using automatic 

the main goal of techniques OT digital image proc~ssing, 

this research is to develop an image interpretati~n system 

cap~ble of analyzing the structural changes in the 

morphology of ~ non-rigid moving obJect from a sequence of 

pictures. 

A model for a general dynamic scene analysis system is 

described. :It consists of three basic entities: dynamic 

data~ static data, and a collection of analysis processes. 

Based on this model, we have implemented a rule-based image 

interpretation system for moving cells. The system consists 

of different cooperating computational processes, which 

interact with two common memories, a Short Term Memory <STM) 

and a 

record 

Long Term Memory <LTM>. 

of the instantaneous 

structural changes. as well 

description of the cell behaviour. 

The STM contains a dynamic 

shape., and 

as the current global 

The LTM data are static. 

These describe the g&neral 
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mode~ of the morpho~ogy of the cells under ana~ysis• as we~~ 

0 as contro~ info~mation pe~tinent to the computationa~ 

processes. The ~atter are activated by the contro~ rules 

throughout the three hierarchical ana~ysis stages: static. 

incremental~ and global. They it"'teract through the STM 

using the information stored in the LTM, until a complete 

description of" the dynamic cell motion and morpho.logy ·is· 

obtained. 

It is of in-terest to describe the- dynamic activity of 

the cell using a symbolic terminology which is meaningful to 

With the aid o~ the global 

observable changes in the ceLl locomotion~ one o~ the main 

behavioural characteristics is mathematically quantified and 

0 This ref"e-t"s to 

the directional ~ocomotion of the cell with respect to the-

directionaL ef"fect of an externa~ factor. 

effectiveness of an external factor on modifying the cell 

locomotion is quantified. Also. a mathematical expression 

for measuring the complexity of an a~bitrary shape pa~~ern 

is developed and demonstrated in describing the membrane 

shape and quantifying its observable changes. The global 

changes in the cell structure are a~so analyzed; hence, a 

• 
subpart of the cell is classified as "pseudopod or cell 

body", and is described as "growing, 

contract~ng, or $tationary". Furthermore, some asp~cts o~ 

the global behaviour of the cell are characterized and 

described. For ex~mple, the "domination" o~ a pseudopod ~n 
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This stud~ might provide clues to the nature and 

distribution or "recep~ors" on or within the membrane which 

would be a vi:tal l.i.nk .in the interaction between the 

external f"actors and cell internal processes. 

might lead to the understanding or the roles cell membrane 

pl.a~ in the mechanisms ~hich regulate the social. behaviour 

of the cell. 

It is interesting to note that this technique is also 

applicabl.eo to other similar pr·obleoms. Examples ar·e the 

visual monitor i.ng of the behaviour· of rats under the 

influence of various drug protocols, or the quantification 

and analysis of the changes of growing plants in different 

soils or under the effect of different fertilizers. 

1. 5. 2 Review Of Chapters 

The thesis consists of nine chapters. Chapter :1. is the 

introduction which briefl.y describes all the a:opects and 

ob,Jectives of' our curr·ent research. Chapter 2 is a review 

of the significant work which has been done in the relevant 

areas of study. These are: (a) Image Sequence Analysis. 

Cb) Shape Analysis and Description. <c> Knowledge-Based 

Systems, and <d> Automatic Processing or Microscopic Images. 

The critiques which are presented in this chapter are aimed 

at: (a) A brief review o~ the significant work ~n each of 
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research. <b> Analyz~ng and summarizing the 

0 <c:> Comparing 

our current work ir' this research to that which has preceded 

it, and demonstrating the possibility and advantages ·of 

integrating the experience from the different fields in 

order to utilize it in our present study. Although~ we have 

restricted our review in 1:his chapter only to the work that 

is relevant to our research~ the resulting critique is 

lengthy. ThereforeJ the busy reader may wish to only refer 

to Sec:ti.ons 2. 2. 4.. 2. 3. 11.. e; 4. '7 J <md 2. 5. 7, wh.ich- repr·esent , 

summaries of the progress in each of these fields and the 

contribution of our work in each. 

The system and data structure of a theoretical model 

for a general scene at'\alysis and motion 

understanding system is discussed in Chapter 3. The chapter 

includes five sections. Section 3. 1 is an introduction and 

general overview of the present structure. The data 

structure and knowledge representation is presented in 

Section 3. 2. 

which may be manipulated by the system and the basic 

e~ements for knowledge representation, as well as their 

mathematical det'ini tiot'ls. Seoctior• 3. 3 describes the 

structure of the rules that are responsible for knowledge 

representation, and Section 3. 4 describes those associated 

with the contt--ol s 'tY·uc'tut'e of the system. The 1ast 

Section 3. 5 is a summary. 
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Chapter 4 describes the ~owest ~eve~ of ana~ysLs, that 

is, static scene ana~ysi~ The main ObJectives of this 

stage ar·e to identify the desired moving ObJect, segment it, 

and describe it in each frame of the sequence. This stage 

consists of the four main processes shown in Figure (4. 1>. 

The first process is concerned with the extraction of the 

, c•ll urader- ana~r;6Sis from the input image; this is described 

in Section 4. 2. An algorithm for generating the polygonal 

approximation of the ce11 boundaries is described in 

Sectiorr 4. 3. Section 4. 4 presents the appt"''ach ·for 

decomposing the cell into its primitive subparts. A 

discussion pertaining to the selection of the properties to 

be measured, and their theoretical definition is given in 

Section 4.5. Finally, Section 4. 6 details a process which 

summarizes the cell morphology to generate a description of 

the cell in the current frame. 

Given the location and geometric features of the cell 

in two different frames, Chapter 5 presents processes for 

detecting. qualifying. and describing the incremental 

changes in the location, shape. and structure of the cell 

and its subparts between the two frames (see Figure 5. 1.). 

The discussion in this chapter is given in the three main 

sections 5. 2, 5. 3~ and 5. 4. The~ describe the changes in 

the location~ shape, and structure, respectively. In e.ad1 

of these sections~ the difrerent aspects associated with 

incremental change detection~ qualification, and description 

is discussed. Section 5. 5 is a summary. 



c 

c 

INTRODUCTION 

Chapt'i'r 6 describes pt~ocesso:-s few global l•:>c•:>motion 

analysis and description <see Figure 6. 2). The input data 

~or this stage are the static location o~ the cell in each 

~rame1 the incremental displacement, and the direction of 

motion between two sequential frames. The output is a 

description of the cell locomotion behaviour. First~ the 

automatic ceoll tracking to construct its path1 and ·extract 

the path parameters is described in Section ~ 2. This 

includes a description of methods for reconstructing a 

smooth and simple cell path in order to retain a record of 

the significant changes. Also1 techniques for detecting and 

removing any artifact of cell movement due to noise or 

undesirable exper·imental conditions .:are demonstrated. 

the motion analysis and description is discussed in 

Section 6.3. Based on measurement parameters of the cell 

path~ a quantification and symbolic description· of the 

chemotaxis behaviour of the cell is provided in Section 6.4. 

In this way~ the effectiveness of an external factor on the 

global 'Cell locomotion is quantified and described. 

a summary of this chapter is 

presented. 

A quantification and symbolic description of the 

observable changes in the cell shape is given in Chapter 7. 

Figure (7.1> shows the main processes and data structures 

used in shape analysis and description. The input to this 

stage of the system consists of the static and incremental 

description or the shape properties in and between each 
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fram~ The output cons~sts of a summary descr~b~ng the 

changes of the cell shape and their characterization. The 

mE!'thodologi•s and processE!'s which are used to accomplish 

this are discussed ~n Chapter 7 in the following order. The 

basic methodologies and techn~ques for detecting the global 

changes f'rom the static and incr·emEmtal data are describ!d 

in Section 7~2. Description of the global changes in each 

of the main shape properties is given in Section 7.3. In 

Section 7.4~ we show experimentally that an individual shape 

property is not :s:uf-/";ic:ient to des er ibe an arb.l trary shape. 

Also in the same section~ we discuss the development of a 

mathematical expression for the membrane shape measure. In 

this •.o.~ay, the global chat-.ges in the cell mernbrar.e shape can 

be characterized and described. Finally, Section 7.5 is a 

summary of the chapter. 

Two main issues are addressed in Chapter Q, global 

structural analysis, and characterization of global dynamic 

behaviour. The obJective of the first issue is to analyze 

the static and incrementa1 structural descriptions in order 

to generate a summary of' the global structural change~ 

This analysis includes techniques to detect any false 

decompos~tions of the eel~ in the low level processes~ due 

to irrelevant change, noLse, error in the segmentat~on, or 

experimental conditions. Using the LTM rules, we show how 

to reconstruct the c&ll structure by ~od~fying the low level 

decompos~tion using high level in~ormation for feedback. 

Besides generat~ng the descr~pt~on o~ the global observable 
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chang~s in the ceLl struc~ure, a description of the 

morphology and locomotion of each individual subpart is 

g~ven for ~he period of time it appears. In this way. a 

subpart of the cell is classified as pseudopod or cell body. 

Then a pseudopod is described as stationary, 

contracting. 

or 

The second part of Chapter 8 is concerned w~th the 

integrat~on of the three global aspects pertaining to 

locomotion, shape-, and strJ.Acture, ir1 ord~r to understand and 

character izfl' the dyr.amic 

high level process. the 

behaviour of the cell. In this 

symbolic description of the 

observablE' change-s in i:he cell shape. stt"ucture, and motion 

are the essential data to characterize the consistent 

dynamic behaviour of the cell. The last section of 

Chapter 8 discusses one of the basic questions related to 

unders-tanding the t"Ol.e theo ceoll meon\brane plays in the 

mechanisms which regulate its soc.ial behaviour. That is. 

the domination of a pseudopod in the global locomotion of 

the ce~~- Thus. 

pseudopod domination is defined. 

Finally. in Chapter 9, the research is summarized and 

discussed. Different experimental conditions and results 

are aLso presented. An evaluation of the computer analysis 

and characterization is given based on a comparison to those 

obtained by <a physiologist. The possibl.ity of different 

appLications and future work conclude the thes~s. 
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Two appendices have been added at the end or the 

thesis: Appendix (A) presents a short mathematical proor or 

the formulas that are u~ed ror measurin9 angle and side 

I"E1'9Ularity 

Appendix (8) 

f ac:ili. ties .. 

of' theo 

describes 

including 

contour 

the 

blood 

computational facilities. 

oT' an arbi 'trary shape. 

laboratory methods and 

cell preparation and the 
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CHAPTER 2 

A CRITIQUE OF THE LITERATURE 

2.1 INTRODUCTION 

The ma~n ObJeCt~ve or our research Ls to des~gn and 

implement a knowledge-based s~stem capable or analyz~ng, 

understand~ng~ and descr~b~ng the vLsual motion of a 

non-rig~d moving object. Using this system· for quantifying 

and character~zing the structura~ changes in the morphology 

of a moving cell from a sequence of pictures, we may be ab~e 

to understand ~nd describe the cell dynamic behaviour. 

Constructing and implementing a system which has these 

capab~l~ties requires and represents a merging exper~ence at 

the intersect~on of four different disc~plines in computer 

vision and image processing. The~ are: 

(b) Image Sequence Analysis, 

(c) Shape Analysis and Description, 

(d) Automatic Processing of Microscopic Images. 
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The recent rapid growth in each of these fields of study 

makes an exhaustive survey of any one of them a thesis on 

its own. Table(2. 1> gives some of the significant 

references and surveys in each ~ield. However~ the 

critiques which are presented in this chapter ar·e aimed at: 

<a> A brief review of the significant work in each of the 

our research. 

(b)· Analyz.ing and summarizing the pr·ogress in each of these 

fields as a gained experience. 

Cc) Comparing our current work in this research to that 

which has pre-ceded it~ and demonstrating the -'-' possibility and advantages of integrating the 

experience from the differEr:~nt fields in order to 

utilize it .in our present study. 

The review in this chapter is organized as follows: 

First~ the general problerA of .an.alyzing .a sequencE> of' images 

is discussed in Section 2. e. This section shows the r.apid 

progress in this field from empirical techniques for change 

detection between two images based on low-level pixel 

comparison methods~ to the recent trend of using high-level 

global symbolic descriptors for visual motion understanding. 

Second .. the problem of shape pEtrception is described in 

Section 2.3 as a composition of two hierarchical processes, 

shape analysis and shape description. 
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TABLE(2.1) 
---------------------

(1) Image Sequence Analysis: 
[Martin and Aggarwal. 78J survey 
CNagel. 78;79l survey 
CScacch~J 791 survey 
~EEE. Trans. on Pattern Analysis and Machine 
~ntelligenceJ Yol. PAMI-21 No. 6. Nov. ~980. 

(2) Shape· Analysis and Description: 
[Pavlidis. 78;80J 
CMeagher. 79J 
"Structural Pattern Recognition". 
Springer-YerlaQ• New Vork. 1977. 
T. Pavlidis. <ed. ) 

(3) Knowledge-Based Systems: 
[Levine. 78; Hanson and Riseman. 7Sa;7SbJ 
"Computer Vision Systems" 
A. R. Hanson and E. M. Riseman. <eds. ), 
CRychenet"'• 81J 
"Pattern-Directed ~t"tf'erence Systeftts" 
D. A. Waterman and F. Hayes-Roth <eds.) 

(4) Automatic Processing of Cell Images: 
[Preston. 76l 
Digital Picture Analys~s in Cytology. 
in "Dig~tal P~cture Analysis" 
tBartels and Wied 771 
IEEE. Trans. on Pa~tern Analysis and Machine 
~ntelligence. Vol. PAMI-2, No. 5, Sep. 1980. 

surveys 
survey 

book 

articles 
book 

Bibliography 
book 

survey 

Table (2. 1) Ma.Jor references in ar·eas related to research in 
understanding the dynamic behaviour o~ non-rigid moving 
ob,Ject. 
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The d~f'f'erent techn~que~ and ~~gor~thms developed ~n each 

stage are d~scYssed~ as well as the advantages and 

d~sadvantages or each sche-me f'ot" d~f'f'erent appl~cat~ons. 

Th~rd, .in Sect~on 2.4 the art of the "knowledge .rmg~neer" ~s 

d~scussed through the d~f'ferent strateg~es for the structut"e 

and ~mplementat.i.on of· knowledge-based systems. In th~s 

respect, two maJor problems are of ~nterest: knowledge 

representat.ion, and tt'\e control structure wh.ic:h makes an 

eff~c:ient use of this knowledge. D~fferent approaches to 

problems are d~sc:ussed. Also, examples of' 

and visual knowledge-based systems for computer v~s~on 

mot~on understand~ng are r·ev~ewed ir• Sect~on 2. 4. 

2. 2 DYNAMIC SCENE ANALYSIS 

2. 2. 1 Introduction 

The ~nput data to a stat~c image processing system is a 

digital ~mage which is obtained by quant~zing the sensor 

signal from one or several spectra~ channels at each grid 

po~nt of' a two-dime-nsional t''aster. If' th~s sampling process 

.is extended to include time .as a thit .. d dimension.. the 

resulting samples are a sequence of images. The dynamic 

scene analysis system is the system wh~ch analyzes th~s 

sequenc& of images by studying the vat"i.ations frc•r&\ ft"ame 

<~mage> to frame due to the motion of an obJect(s) recorded 

within the sequence. The ObJective of this analysis is to 

describe the observable changes throughout the sequence of 

~mages in order to study or- charao:::tet"ize the beh.:lvi.our of 
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the moving obJect(&) (see F~gure 1. 2). The system which 

attempts to solve this prob.lem thorough.ly is attempting to 

imitate visual motion perception. This perception 

constitutes a hierarchy of processes which include motion 

detection, understanding, and description. All of these 

aspects are addressed by this thesis. 

Image sequence analysis differs from scene analysis of 

one image it"'l that not only must irtformation be &xtr.acted 

from ec.ch frame~ but in .addition, infot .. mation must be 

extracted from thti!' sequence as well. This rnear.s that the 

details derived from each image must be integrated into a 

coherent whole. This ~ntegration is not a simple 

compilation of facts because changes in the scene at"'e 

continually occuring due to the nloti.on of the sensor or the 

object<s> in the scene Cf1artin and AggarwaL 79J. 

On the other hand, image sequences provide i.nformation 

which may assist the analysis1 so that mor·e efficient 

results may be obtained. Thus, the results of" pt"ocessit'9 

previous images /'rom a sequence may be s,.u;:ed to guide 

segmentation and feature extraction processes of the current 

image. Also, the results of processing later images may be 

used to clarify ambiguities (for example, due to obJeCt 

occlusion or poor image quality) irt previous images [Yachid.a 

e-t a.l. ~ 7 e J . 
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Ulstad CUlst.ad, 731 has related the historw o~ this 

problem to the work done .in 1920 bW St.illmar. whi.ch was 

concerned w.i th the detecti.on.. using analog methods, of small 

changes between two photographs. However, most of the work 

that has been undertaken on .image sequence analysis is 

relat.ivelw recent. depending, as it does on digital image 

processing. Attention to the analysis of image sequences as 

a field of stud~ .in .its own right was actually only started 

in ~979 when the ~i.rst international workshop took place. 

The ····work·' on sequenc• imag& analwsis .in th• last few years 

has been quite extensivE!'. Thi.s fact can b• r•aliz:•d from 

the recent survey bw Nagel CNagel, 791. In this survey, he 

reviewed some <not all) of the aspects of s•quence image 

analysis; 517 articles are cited by 683 different authors. 

In order to focus our attention on the main trernds of 

our research, the review of the previ.ous work i~ image 

sequence analysis will be restricted to "three sections. 

First, the maJor recent surveys in this field will be 

discussed [Martin and Aggrawal~ 7Si Nagel, 78;79; ScacchL, 

79l. Second, the- .individual work which Ls directly related 

or emplo!JS similar techniques to those we at"e using in our 

current research is r&vie•JJed. In the third section, 

conclusions and general r•marks are given, as well as a 

comparison of our current research with the previous work 

done in sequence .image analysis. 
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2.2. 2 REVIEW OF SURVEYS 

2.2. 2.1 [Martin And AggarwalJ 78] 

The ~irs~ survey to review the work in dynamic scene 

analysis was presented by Martin and Aggarwal [Mar~in and 

Aggarw.rd.1. 7Sl. nuty first discuss the perception o~ motion 

in biological sys~ems. Then. in the remainder o~ ~heir 

report~ they review the different literature in dynamic 

scene analysis under two classes: motion deteetion. and 

motion analysis. The following is a brief review of this 

paper. 

In the perception of motion in biological systems. 

Martin and Aggarw~l define two phases of visual perception: 

peripheral and attentive processes. The peripheral process 

must be able to detect motion and direct the attentive 

process to it~ wh.ile the latter must be able to tt"'a•:k the 

movement and attend to the details of the ObJect in motion 

[Chien and Jones~ ?5J. It ~s c1a~med that these two phases 

of perception are no~ cognitive processes. A higher level 

cognitive process is probably required to relate both of 

these processes to the current "psychologica1 set" of the 

person. his knowledge. and expectations. In this discussion 

of motion perception in a biological system. Martin and 

Aggarwal refer 'to the wot··k in [ Johansson. 75; Hubel and 

Wiesel. 59; Lettvin et al. , 59; Barlow and Hill. 63; 

Mackay. 61; Schouten, 67l. 



0 

0 

LITERATURE CRITIQUE Page 2-37 

In terms o~ the ~tructure o~ the biological vision 

s~stems~ Martin and Aggarwal define and describe the d~namic 

scene analysis system and its role. They address two basic 

functions: <a> 

images~ (b) to solve the occlusion problem. The differet'lt 

techniques in dynamic scene analysis are classified into two 

main classes: motion detection <peripheral process>~ and 

which have been used for motion detection were mainly 

concentrated on c:ross-cot··relation and image differenc:.tngr 

whereas in motion analysis~ the centroid matching and shape 

analysis techniques were used. 

In the cross-correlation technique~ the 

"cross-correlation coefficient" is computed <using the FFT> 

for each pairing of pixels in a section of an original 

picture to a candidate one in ~he second picture. The 

candidate section which yields the maximum coefficint is 

chosen as the rnatch. 1'1ost of the systems which have used 

cross-correlation techn~ques were originaly designed ~or 

estimating cloud motion. Among these is the work by CLeese 

et al. 70; 71; Smith .:md Phillips1 72; Lo and Parikh~ 73; 

Arking et al. 1 75 J. 

The image diffet"encing techniques are based on 

determining areas of change between two different images of 

the same sequence. The areas of change are found by a 

simple subtractive process. Therefore~ the images must be 

carefully no~malized1 with respect to both spatial 
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coordinates and intensity value. Thus, these types o~ 

techniques do not atterApt to t··ecogniz:e any particular 

feature in either of the two images; consequently, they 

cannot describe any of 'the motior• f·eatures. Exan\ples o~ 

systems which have used this type of technique were 

presented in the work of [Lillestrand, 72; Ulstad 73; Limb 

and Murphy, 75; Nagel, ?63. 

In the centroid matching techniques, the obJects are 

reduced to centroid:s, 

feature of thi' ob.,1ects. 

fllaking 

While 

spatial location the only 

this approach makes the 

solution to the tracking problem rather simple, it destroys 

all the features needed for shape analysis or solving 

Centroid coordinates as descriptors of 

obJects are used in the tracking approaches of [Endlich et 

al., 71; Greaves. 75; Levine and Youssef, 78; Levine et 

al., 8:1J. 

In summary, the review by Martin and Aggarwal discusses 

two low level supposedly non-cognitive processes to analyz:e 

a sequence of images. motion detection <peripheral) and 

motion analwsis <atte-ntive). Their studfJ leads to the 

conclusion that additional research is needed to derive 

systems which use both levels of analysis, as well as 

employing higher level cognitive processes to exploit the 

parallelism inherent in the visual process. The first step 

taken in this direction was by Badler CBadler, 74J in 

generating a scet"'J.&rio from a sequen•:e of two-dimensional 

images. 
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2. 2.2. 2 

The f~rst comprehensive survey to d~scuss the probiem 

of motion analysis based 

presented by tNagel# 7Sl. 

on a d~gital image sequence was 

In this survey# the analysis of 

~mage sequences has been emphas~zed ~n two main aspects: 

First~ the different experien~e in ~mage sequence analysis 

is evaluated accord~ng to speciaiized application areas. 

Second~ the schema within which the different approaches are 

organized, according to the techniques used for interframe 

comparison. The different approaches for interframe 

comparison are ciass~fied by Nagel into the following six 

categories: 

(1) No Interframe Comparison: The approaches included in 

this category use only interframe image processing 

techniques to derive a sequence description which is 

subsequently evaluated by different means such as human 

perception or non-pictor~al data processin~ S~nce the 

frames or a sequence a~e not compared with each other. 

no dissimilarity function is required. For example, the 

sequence description of Tasto CTasto# 73; Tasto et al. , 

7Sl consists or a seri~s of ordered lists of coordinate 

pairs. Each list represents a left vertricular contour 

at each frame of the sequence. Other approaches by 

[Jones, 74; Chien and Jones, 751 can also be included 

in this category. 
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(2) Indirect In~erframe Comparison: In this category, the 

compar~son ~s per~ormed ind~rect~y by detecting the 

change in a specific measured feature from sequeon-tial 

images or windows o~ the images. For example~ Uno [Uno 

et al.J 76J inspected the displacement of an obJect 

moving horizor•ta~ly ~rom 'the center of a f'ixed window. 

This di.splacetnE'nt is assigned a posi. ti.ve or nega·ti:ve 

value, depending upon whether the obJect passed the 

window center or not. Then~ an interframe comparison is 

performed by detecting the sign change in the subsequ•nt 

frames. 

of" Tasto 

The indirect interframe comparison in the work 

tTasto, 73;74J is performed by f"i.nding an 

initial estimate for a lef"t ventricu~ar contour~ 

is then tracked in the subsequent frames. 

which 

(3) Dissimilarity Grading: The approaches which belong to 

this c.ategory r·equire that imag•s: ~rom the sequence are 

registe>red with re-spect to each other. as in video frame 

sequences from stationary cameras. These approaches are 

mainly based or• dei:ec1:.i.n.g the changes in the .grayva~ue 

of" th• corresponding raster position between two 

sequential images. The number of raster points <pixels) 

which i.s use-d as a nei.ghborhood for detern\.i.ning the 

change are defined by CNagel, 7Sl as -the ORDER of the 

descriptors for the dissimilarity grading. He discusses 

dif"f"erent approaches~ using a dif~~rent ORDER or 

descriptors. In general, most of the algorithMS which 

assign ~he different components of an image of a 
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sequence as stationary or non-stationary. use techniques 

whLch can be cateoorized as dissimilarity grading. For 

example. in the approach of' Hogg CHogg, 76;77J, the 

non-stationary image components are determined by change 

detection with respect to a r·ef'erence frame. The 

descriptor invo~ve-d in the dissimilarity grading is the 

pixel grayvalue <ORDER • 1). The velocity determination 

for video images of moving ObJects is demonstrated by 

Nagel [Nagel• 781. His technique is based on several 

approachets CLimb and Murphy, 75a;75b; Cafforia ·and 

Rocca. 76; Fennema and Thompson, 781. 

(4) Similarity Search followed by Dissimilarity Grading: 

The interframe comparison techniques which belong to 

this category use a similarity search procedure in order 

to find the best match between the substructures from 

the two im~ges to be compared. Once sufficient 

correspondence is achieved, both images can be 

registered on a single raster in order to determine the 

difference Cdissi.~r.il.ari ty grading>. The 

approaches in this category are rarely made explicit. 

Nor do they even provide. in a formalized manner. the 

appropriate substructures. their descriptors. and the 

way the similarity search is guided [Nagel, 781. The 

similarity search between the two images to be compared 

by Price [Price~ 76; and Price and Reddy~ 77l is 

performed 

se~ected 

by compar~ng the description <gr·oup of 

features) for each reg~on from one image w~th 
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the description of each region from the other. Then, 

the dissimilarLt~ grading maw be performed in more than 

one way. One alternative consists of comparing the 

actual feature valu•s or best-match regions. In fact, 

the approach of Price has, to some extent1 a common 

basis with our technique for incremental change 

detection; 'there for·•. a detail•d description of his 

work .is presented in a la-ter section of this chapter. 

(5) Dissimilarity Grading, followed b~ Similarity Search: 

In the approaches assigned under this category, first, a 

dissimilarity grading pt"ocedure is used to detect areas 

where changes have occurreod <nor1-stationary components). 

Then, these non-stationary components may be tracked 

from frame to frame (using a similarity search) in order 

to gathctr more infcrt"mation pertaining to the moving 

obJect. Consequently, a complete description of the 

ObJect dynamic behaviour may be generated. 

Dissimilarity gradLng is illustrated in the work of 

tYachida et al. , 79l blJ £electing non-stationary image­

components which are sub£equentl~ tracked from frame to 

frame using several descriptors. Technical details of 

Yachida's work will be given in a later section of this 

chapter. Another example of approaches belonging to 

this category is in the work of CNagel, 781. Two 

subsequences 

TV-frames so 

(fb B) 

that the 

frame from subsequence 8 

chosen 

image 

never 

from a set"ies of 

of a moving obJect in a 

over1apped the ObJect 
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image in the corresponding ~rame o~ subsequence A. 

Then. a dissimilari~y ~unc~ion was de~ined. I~ was 

based on the likelihood ratio ~or the hypotheses that 

the grayvalues observed in the overlap o~ two regions 

~rom di~f'erent ~rames had been sampled ~rom the same or 

~rom two different normal graylevel distributions. 

Finally. the similari.ty stt.arch is perform•d using the 

cross-correlat~on of segment edges ~or candidate images 

~rom adJacent ~rames. 

(6) Similarity Search: Most of the approaches which are 

concttrned with tracking moving obJects through a 

sequence of images can be assigned to this category. 

The similarity search procedure is frequently applied 

using cross-correlati.on techniques CLeese et al. 70;7~; 

Smith and Phillips. 72; Arking et al., 751. Another . 

set of approaches assigned to this category, are those 

which are based on cen~roid coordinates as descriptors 

for tracking moving ob~ects [Endlich et al. 7~. 

Greaves. 75; Levine and Youssef, 78]. 

The survey of CNagel, 7Sl discusses the different 

aspects of image sequence analysis through a review of the 

different approaches and techniques which have been used. 

These are classified arsd discussed according to: (a) their 

application areas;, (b) the methodologies they use f'or 

interframe comparison. Discussing the different approaches: 

according to their application areas is the main obJective 

of an ~xtens:i-ve recent survey by Nagel CNageJ., 79J. This 
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survey is reviewed in ~he next sction. The techniques used 

~or interframe comparison are classified into the six 

categories listed above. 

is to demonstrate the 

The purpose of. this classification 

wide variety of possibilities ~or 

interframe comparison at different levels; from comparing 

individual pixels from different images to comparing 

symbolic descriptors. 

Aspects like segmentation and velocity determination of 

moving obJects~ in terms of interframe coding~ are discussed 

by Nagel CNagel, 781. 

the overall fi&ld. 

conclusion may be 

The survey concludes with remarks on 

Speci.f ically, the quEUi'tion, .. What 

drawn from observable variati.ons i.n 

descrip'tor values for the image of a moving obJect?... In 

other words, can a global description be generated from the 

observable changes?. To achieve this type of description. 

problems such as the loss of a tracked obJect due to 

occlusion, or poor image conditions. must be investigated on 

a global level. In this respect. Nagel suggests that the 

research in the analysis of image sequences could contribute 

to the task of modeling the dynamic environment <model-based 

systems>. 

Nagel that 

researchers working on the analysis of image sequences 

should be aware of the increasing diversity of application$ 

as a gained experience. Based on this suggestion. he has 

made a considerable effort to ga'ther the accumulated 

individual exp&rience and investigations from different 
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Th~s appl~cat~on-or~en~ed survey by Nagel tNagel. 791 is 

br~ef'ly discussed ~n the next sectior •. 

2. 2.2. 3 CNaael1 79] • 

A thorough discuss~on of' the analys~s of' 

[Nagel~ 79J. In th~s survey~ more than five hundred 

articles have~ been l~sted from a wide scat~ering of 

application-oriented .._IOYr"'nalSI conference 

per~od~cals1 and technical reports. This 

well-documented article ~ill appear as a chapter ~n the book 

entitled "Image Sequence Analys~s" and ed~ted by T.S. 

HYang. The different areas of appl~cat~on are organ~zed by 

coding - of' image seqyences1 pro"Cessi:ng 

image seqyences from airborne and satellite sensors, med~cal 

<.image se-quences of the human body), 

b~omed~cal; behav~oural s'tud~es, c•bJect i:rack~ng ~n outdoor 

scenes (traffic mon~toring and target tracking), ~ndustrial 

automation and robot~cs1 and spatial image sequences. 

The main obJective of 'the survey is to demonstrate the 

parallels between the different application areas, so that 

the commonalities in basic problems. processing techniques. 

and underlying concepts may become discernible. This 

investigation might facili.tate the solution 

approaches from one application to another. Another 

advantage ~s that the development of some application areas 
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B fu~ure ~nalog in certain other areas. 

the survey reviews the literature in sufficient 

detail to enab~e a non-specialized reader to decide ~hether 

or not an approach is r~levant to him in the context of 

The survey is documented 

with a comprehensive b~bliography. augmented by an author 

index which facilitates access to· the literature. 

The significance of this survey by Nagel Ls that it 

summarizes the current status of knowledge on image sequence 

analysis, the short in the present approaches, and 

what the future work should offer. This may be realized 

"A th·:.·c•r'·',:l f"or-· the <!"--'·"i.V,J.~t.ion .:::f image seqs..let·p::es l..rill 
have to offer a rather wide spectrum of concepts and 
descrip+ive tool~ in crder to cope with available input 
data. In uiew of this consideration. it appears 
quest~onable whethar w~ know already enough to sketch 
th•? ::~~·t:t··t .. Jctur·.;;:. .:;1:' "in·f::.:;.lli>;;~et-.-t; :.:r.t;:~sterns" '-.thid"t sht.:H.~ld be 
capable of analyzing image sequences. Such schemas are 
useful because the~ attempt to chart a vast area and 
thus provLde a preliminary framework within which 
d.;:··L:li.l..:-:•d r'e::::e.~r-·ch r·('"Sults C·oli'l b.-,;· ·=ssessed. It is •::>nl'J 
argued here that one should be careful with any 
explicit or implicit claims about presenting the 
der~n~te structure The 
:i..n f"o r··ri•·B ·I.: ion •::•:)ni.:.~ i.ned in 
f"t-·':'l(:t:i.ol··, ,,;h.i•:h '·'·''"" kn.;:.s .. J 1;.:• 
E"t:.i. . .l-1. 'f.:oo 91'·•;-:::;i;:". 

discrepancy between 
i.mage sequences and 
extract automatically 

the 
the 
is 

From the above review of Nagel's survey. one can 

the 

capability of the present techniques, and the amount of 

information which is contained in and can be extracted from 

However. the development of general models 

rooted in a knowledge-based system lS more promising. 
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a system ~s rei'erred to by Scacch~ CScacch~, 7'9l as an 

"intelligent system", which is thEto S.Yb.Ject oi' oyr· d~scussion 

in the next section. 

2.2.2. 4 [ScacchiJ 791 

The review oi' tScacchi, 791 is dii'i'erent from both that 

of [Martin and Aggarwall 77;781 and tNagel, 7S;79J, in tha~ 

it is not survey-oriented, but is mainly concerned with the 

structure oi' an 11 intelligent" system for visual motion 

perception, analysis, and understanding. 

Scacchi has built his discussion on the literature 

applicable to visual motion perception reviewed from topics 

which include scene an.al~si.s, hardware-based v·.ision S'Jstems. 

computer animation.. art.it'i.cial irttelligence, and human 

mot.i.on percept.i.on. From the review of· this l..i terature.. h~ 

has attempted to define the attr.ibutes and internal 

struc-ture of an intelligent system which would sirnulate 

<model> human visual motion percept~on. His stud~ 1ed to 

the conclusion that the solut~on to achieving this ob,Ject~ve 

~s implicit in the des~gn oi' a knowledge-based computer 

vision system. 

Thus, Scacchi's study concerns two related sub,Jects, 

visual motion analysis <image sequence analysis), and the 

structut"'E!' of· a knowledge-based system capable of performing 

this analysis. Both subJects are the main concern ot' our 

current research. Therei'ore, Scacchi's report w.i.ll be 
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view, and in Section 2. 4 it will be discussed as a reFerence 

subJect in the preceding sections. H •:r '•·' e • .. J et', 

is his pointing out the impracticalitw of using symbolic 

This lS attributed to the computational 

real-time analysis. He 

describes these di~ficultiss as follows: 

and implied processing of high-level descriptions of obJects 

is impractical for each image arriving at real-time frame 

From our point of view. we do not agree with 

Scacchi on thiE aspect, since the problem does not represent 

This is 

technological problem which could be solved either by 

p lel computer processing, or b~ a multileuel analysis. 

An alternative possibility (implemented in our system), is a 

low-level process, concerned with feature extraction and 

measurements, which may be easily performed in real time. 

The analysis and symbolic descriptions may later be computed 

by a higher level stage of the system <see Chapter 3). 

Discussing computer an~mation techniql~es .. 

... i..n ic sc0n~ analysis. Both are based on the use of 

int,:-_•t'·n.::11 d~"? so::r·· J ... p·ti.ons and representational 

In dynamic scene analysis. the 
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transforms motion into descrip~ions. Whereas. in computer 

animation, the system trans~a~~s the descriptions into 

motion. One of 'the most commor, techniques used in the 

production of animated f'i~ms is "keo~Q frame" interpo~ation 

[8urtynk and Wein~ ?SJ. It is worth mentioning here that 

some steps in our approach to the extraction of the 

in static and incrementa~ data, are simi~ar 

technique. 

changes 

to this 

According to Scacchi, visual •notion analysis by an 

inte~ligent system requires different analysis strategies 

depending upon the viewing situation. He defined three 

different viewing situations according to the "motion 

vantage perspective,.: (a) stationary observer and moving 

obJects. (b) moving observer viewing stationary ObJects, and 

(c) moving observer vieowing moving obJects. Based on these, 

he discussed the knot.•ledge and control requirements for a 

visua~ system <see Section e. 4). 

An inte~~igent vision ssystem shou~d exploit the visual 

know~edge embedded in a coherent image sequence. the 

so-ca~~ed "obJect motion coherence". The latter is defined 

in tScacchi. ?9J as a low-level property of visua~ motion 

know~edge. This knowledge is similar to that which humans 

use when viewing an image sequence; ~hat is. if an obJect 

is recognized at a given rnoment <ft"ame of ~he sequence), -it 

is sti~~ the same ObJeCt in sight unti~ the scene changes 

<in a ~ater frame). Thus. an intelligent system should rely 

more on high-order knowledge~ desc~ip~ion, representations. 
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and processing to recognize the key frames~ those ~n wh~ch 

obJect ~eatures change unexpectedly. We observe that a 

high-level o~ recognition should be supported by such a 

low-level process~ng procedure. Thus, when new ObJect 

~eatures appear, or when the existing features change1 a key 

frame is initiated <see Section 7. 2.1 for more detail on 

this methodology). 

In this section~ we have briefly reviewed the study of 

Scacchi ~n v~sual mot~on analys~s, 

function o~ an intelligent system for 

and 

that 

his view of the 

purpose. The 

remainder o~ h~s report discusses the basic requirements ~or 

constructing such an inte11~gent system, to be reviewed in 

Section 2.4. However. in conclusion, Scacchi suggests that 

a system for visual motion analysis and understanding must 

be organized around descriptive multi-level knowledge 

sources~ whose interactions are directed by continually 

emergent, distributed control processes. 

Certain recent empirical approaches which follow this 

new trend and/or are related to our research, have been 

selected for d~scuss~on in the follow~ng sections. 
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2.2. 3 Review Of Relevant Work 

2.2.3.1 tYachida Et Al.} 781 

Vac:hida et al. tVachida et al. 1 78l presented a system 

that detects and tracks live moving ObJects. They observed 

f'i:shes swimming .in .a vatT in order to study their behaviour 

under a var.iety of stimuli. such as lights or tones. A 

sequence of' 20-2!50 frames recorded for· periods of between 

2-30 seconds (8 frames per :secor.d) were obtained through 

either video tape (connected to an overhead camera) or c:ine 

f'ilm. Vac:hida et al. addressed three main problems to be 

solved b~:c~ their sy£:tem: (a) developing ar1 ef'fic:.ient 

procedure to process a large number of frames~ (b) to solve 

the difficulty in boundary detect.ion due to blurred images, 

and (c) to solve the occlusion problem. 

They succ:essf'ully designed a sophisticated image 

sequences ar.alysis system which has the following features: 

(a) identification of the moving obJects from images which 

are often motion-blurred. <b> using the analysis results of 

previous .frames to guide a feature extt''action process in <:.~ 

current frame, <c) employ.ing shape prediction in order to 

disambiguate situations wl'.ere one obJect occludes anothet"1 

and (d) using the results of later frames. to reanalyze 

pr·evious f'rame-s, where uncertaint':J existed. 
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In general, the system of Yach~da 

effic~ent one for motion detect~on and 

Page 2-!52 

et al. ~s an 

tracking moving 

obJects. However, their work does r.ot ~nc:lude global motion 

analysis, or shape change detection. quantificat~on.. and 

analysisJ these aspects. are considered in our present work. 

2.2.3.2 [Price And Reddy1 771 

Rs discussed previously in Section 2.1.2.2 regard~ng 

change detection, Price and Reddy [Price and Reddy, 77] 

describe a technique for symbolic registration and change 

anal.ysis. 

The two images to be compared are segmented partially 

or completely using a region splitting algorithm. The 

segmented regions are descr~bed by features including size, 

intensity, location.. c:it"cul.arity <perimeter squared divided 

by area), or~entation, elongation <length-to-width rat~o), 

as well as a combination of these features, and rel.ations 

between a region and its neighbor·:s. The ~eature based 

description of theo segmented image constitutes the s:wrnboli.c 

representation of the image. R similarit':l search is 

performed by comparing the symbolic representation of the 

two images in order to determine the corresponding regions 

in the two images. These resul.ts are used to analyze 

changes in the corresponding regions <dissimilarity grad~ng) 

which occurred between the two images. 
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It ~s ~mportant to note that the work or Pr~ce and 

Reddy prov~des expli.c~t means f'or i.ntroduc:i.ng doma~n and 

task knowledge to each stage o·f" the processing. For 

example, ~n th• simil.ari ty search, each f·eature dif'f'erence 

is multiplied by a strength f'actor which could be chosen by 

the user to ref' l.ect spec if' ic: knowledge on the relevance of' 

this f'eature f'or the current domain, task, or state of' 

search. This methodology f'or introducing outside knowledge 

and task description, is a step towards the development of' a 

more generill system, rather than JUSt solving a specific 

problem. Ho•..J&ver, the use of a genet"al analysi.s system 

introduces the problem of specif'ying and incorporating task 

knowledge, which is not encountered in a special purpose 

system. 

In conclusion, the research of Price and Reddy 

represents an initi.al effort towards the development of a 

general system f'or syo\bol.ic change detection ar1d analysis. 

Although they concentrated their work on the symbolic 

description of' the change b•tween two aerial or satellite 

images, their results provide-d ~mportant .ir.centiveos to 

adapting them f'or use i.n image sequence analysis. 

Our current work, concerned with incremental change 

detection and anal~Jsis (an i.ntet ... mediate stage between the 

static and global analysis), is to some extent similar to 

the work of' Price and Reddy. This similarity rests on the 

use of symbolic descriptions: and .analysis. Also1 the 

knowledge and task desct'iption at"e expressed expl.ici tly ·.for 



LITERATURE CRITIQUE Page 2-54 

each stage o~ the p~ocessing. How~ver, in their repor~, 

they neither speci~y the type of symbo~ic descriptors they 

emp~oy.. nor the rnethod of quantifying the changes 

swmbo~.ica~~'='· These aspects are .addressed .in our current 

work <see Sectior• 4. 6 >. 

2.2.3. 3 [TsotSOSI 76] 

An extensive and significant work on motion detection, 

representation.. understanding and description h1r1s beEm 

carried out over the last few years by Tsotsos at the 

Univers~ty o~ Toronto. In an ear~y work by Tsotsos 

tTsotsos1 ?6J1 he describes a scheme for recognizing the 

motion of an obJect from a sequence o~ images in order to 

describe them symbo~ically. This work has its roots in the 

research of· Mil~er CMill.er, 721 and Badler CB.ad~er .. 75J. 

Mil.l.er has ana~yzed the English motion verbs and 

directional prepositions. He provides a classi~ication of 

Engl.ish motion verbs using a hierarchy of primitive motions. 

Badler was the first to use such symbo~ic components as 

descriptor·s in temporal scene analysis~ al. though he did not 

work with 

attempting 

movements. 

r&al. image-s. 

to pr·ovide 

He considered image sequences when 

Er,glish descriptions 0~ 

Badler's work provides precise definitions for 

directionals and adverbs, and he also outlines ideas on the 

representation of the semantic components of the verb. as 

defined b\:f Miller. 



0 symbolic r~pres~ntation of motion. the main ObjeCtive or 

76] first find 

.;::ppt··o::.pr· iate .and 

impl~mentation o~ the The motion terms used in this 

description are verbs• These 

were built upon lower level concepts such as traJectories. 

locations and velocities. 

t.i.Q!1.• 

They are defined in hierarchial 

,-;.·t ::wi:i.n9 t,Ji th th.;;. d-tanging c•b.Je•=t 

location and ending with the motion verbs. 

work of Tsotsos. the type o~ motion to be recognized and 

described by the system is restricted to translation. 

The r~pr~sentation and descrLption of motion concepts 

in Tsotsos. 76 was the basis of tile development of a general 

framework for the abstraction and understanding of motion 

concepts from a sequence of images (Tsetses. 80J. 

The main goal of Tsotsos' framework is to find suitable 

representations ~or mot1on descript~ons, at different levels 

This framework ~s 

based on the assumpt~on that the design of an expert swstem 

certain tasks requires the 

representation and use of knowledge relevant to that task. 

Based on this ~gsumption, Mot~on Description Formalism (MDF> 

has been defined as a domain expert which can create a 
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particular problem domain. 

Tsotsos has def'ined two main difficulticts with his 

specific appliccr.tion, the analysis of cinecat"dioangiograms: 

(a) the huge number of ~mages to be analyzed, (b) the poor' 

quality of' the individual images due to x-ray dosage 

limitations. Also~ he has defined and classified the 

important aspects of motion und•rstanding as fo~~ows : 

(1) Computer Vision (a> image segmentation and 

(b) ObJect description Cc) ~motion 

detection Cd> motion tracking (e) interimage 

descr .ipti on. 

movement 

<2> Representation of Knowledge : <a> general temporal 

concept representation Cb> problem domain motion concept 

representation 

organization. 

Cc> biased knowl.edge 

(3) Recognition Control Structure : (a) integration of 

descriptive and visual concepts Cb> change and focus of 

attention mechanisms Cc) temporal. segmentation Cd) 

disamb.iguation due to obJect occl.usion (e) goodness-of-fit 

measures (f) generation of low-level. guidance <g> scene 

sampl..ing rate considerations <h> artifactual motion 

handl..ing1 i. e. 1 "temporal noisen (i) generation of sequence 

spanning descriptions. 
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The motion concepts ~re repr&sented in a h~erarch~al 

structure. Each level down the hierarchy prov~des a more 

deta~led ~orm o~ descript~on ~or the mot~on concept, 

spanning all the levels between the most abstract motion 

terms to the picture elements in the image. In this 

hierarchy, each motion concept is represented with~n a 

"frame". Each ~rame has an arb~trary number o~ "slots" that 

form i"ts parts. E.ach slot has ara associated "type" th.:~t 

re~ers to another ~rame, thus defining a "PART-OF" hierarchy 

o~ description. 

Fr·om the above re,Jiew of' Tsotsos... work, we may coraclude 

that based on the liguistic .:malysis or motion ver·bs by 

Miller, and the symbolic description o~ movement o~ an 

Tsotsos was the f'irst to develop a 

methodology ~or representing and describing motion concepts 

f'rom a sequence of' iflla9es. Thus, he has achie~v•ed a 

signif'icant advance toward the development or a general 

framework for motion understanding, based on knowledge 

representation and a symbo~ic ana~ys~s and description o~ 

the semantic motion concepts. This framework is being 

tested through an ongoing proJect called ALYEN C A Lef't 

Ventricular Wall Motion Ana~ysis Consultant). The obJective 

of RLYEN is to ~nalyze films or the human left ventricle in 

order to generate a conceptual description o~ the shapes and 

motion exhibited by the left ventricular wall, noting 

abnormalities and unusua~ occurances. 
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In spit~ o~ the maJor d~~ferences in the technica~ities 

o~ Tsotsos~ work1 and the work deve~oped in our current 

research .. theoreticaLlY there are two simi~arities in both 

approaches: First, both are based on a knowledge-based 

scheme. S•condl~, the extraction ar•d symbolic description 

(i) Data Structure: In Tsotsos~ mode~. knowledge is 

represented through a hierarchia~ data structure consisting 

of frames and slots, whereas our mode~ structure is a 

rule-based system. 

<2> Control Structure: In Tsotsos~ framework, the 

control structure 

which dep•nds on 

is based on h~pothesis and prediction, 

the existing krtowledge of the Model 

< taodel-dr iven). Our contro~ structure 

condition-action rules. which depend on the occurence o~ 

observed events (data-driven>. 

(3) Application 

restricted to certain 

Domain: Tsotsos~ framework is 

problem domains in which motion 

concepts are de~inab~e. such as human gait patterns or heart 

wal~ motion. These restrictions do not apply to our system. 

Thus, the knowledge pertaining to the class o~ scenes under 

analysis is represented in the LTM as a 

<primitive) constraints related to the physical 

of the obJect and their motion capabilities. 

maximum. minimum .. or avet .. age dimensions of the 

set of local 

pt'•operties 

Examp~es . .,t ... e 

obJect in 
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and maximum po~sible displacement during a given 

time period. the con~traint knowledge may be 

Section 3. 3 >. rules use these 

constraints and the STM dynamic data <generated from an 

analysis of' the input sequence of images) to generate the 

motion description. 

A maJor problem which has been ignored by all previous 

work~ including Tsotsos1 is the recognition~ quantification, 

and description of the structural changes of a moving 

Tsotsos [Tsotsos~ 761 has commented on this problem 

as follows: "A problem which Badler and others (including 

myself) seem to ignore in their designs~ but which became 

apparent on consideration of several examples, is the 

recognition and description of obJ•ct construction. 11 I.n 

our current work~ we analyze the dynamic changes of a 

non-rigid D'IOVing ob ..sect. Consequently, the problem of 

recognition &nd dfl\scription of the ob ..sect construction 

changes has be•n studied in detaiL 

2. 2.4 Summary 

I.n the preceding sections, we have briefly reviewed the 

progress in the analysis of a series of two-dimensional 

digital images repres~nting the variation in a specific 

scene along & third-dimensiot'll that is, time. The pr·evious 

techniques and approaches for this analysis have been 

presented in the l.i'terature under three titles: Dynamic 
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Scene Analysis~ Image Sequence Analysis, and Visual Motion 

Percep~ion/Understanding. First. the title "Dynamic Scene 

Analysis" was used to address the initial survey in this 

area of" study by Martin and.Aggarwal CMartin and Aggarwal. 

78]. Nagel [Nagel~ 78], in order to generalize the field to 

include spatial image sequ•nces as well. published the 

second surveov using the ti.tl• "Anal\:fS:i:s of Image Sequences". 

The third ~itle "Visual Mo~ion Perc:•ption/Understanding .. 

ind.ic:a~e-s ~h• rece-nt trend in ~he cur·rent research in this 

area of study. which seeks to dev•lop a general n intel·igent•• 

system ¥or the understand1ng and description of visual 

motion. 

The fir$t survey in image sequence analysis was 

presented by Martin artd Aggarwal CMar'tin .and Aggarw.alJ., 7Sl. 

In this revie-w. ~he-y first discuss the perception of motion 

in a biological system. Second, in terms of the biological 

sys~em structure. they divide the work in dynamic scene 

analysis into two main classes. motion detection 

(periph•ral) and motion anal.ys.is <attentive). These were 

initially applied to the automated detection and measurement 

of cloud motion from satell.ite pictures. Most of the 

resulting computer programs used cross-correlation and imag• 

differencing techniques. rn motion analysis. the work was 

based on two techniques, centroid matching and shape 

analysis. 
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Further s~gn~~~cant progress in image sequence ana~ys~s 

was carried out by Nagel. Besides his own research. he has 

presented the two most extens~ve surveys in image sequence 

analysis. In Nagel's first survey CNagel, 78], he first 

reviewed the different experiences in image sequence 

analysis, discussed accordit'\9 to specific appl.ication areas. 

Second. he m.ade a vtotrw ·u·,orough analysis of the different 

comparison techniques, the so-cal.led "interframe 

comparison". In this study, he listed s~x categories with~n 

which 

<a> 

the d~fferent comparison approaches maw be organized: 

no interframe comparison, (b) indirect inter·frame 

comparison, (c) dissitnilarity gr·ading. (d) sim~larity 

search, followed by di:s:s.imilar i ty gr·ading, <e) disSJimilar i ty 

grading, followed by similarity search. (f) similarity 

search. Furthermore. he discussed aspects, such as 

segmentation and velocity determination of moving obJects, 

in terms of interframe coding. 

The second survey by Nagel CNagel. 79J is a rather 

revi.ew. He c:i.ted more than fi.ve 

hundred articles~ 

Throughout this review. attention has been drawn to the 

interaction between the evaluation of image sequences and 

the importance of quantitative models in describing complex 

phenomena in the ~pp1ication domain. The parallels between 

different 

demonstrated. 

transfer of' 

approaches in dif'f'erent 

This investigation might 

.applications 

f~cilitate 

experienc& between dif'f'erent applications. 

the 

Of' 
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part~cular in~er&s~ Ln this survey is that it shows the wide 

gap be~ween ~he amount o~ information current techn~ques can 

aoxtract from an image sequence~ and the ~nformation 

potential of the seq•...tence itself. Al.so, it shows that 

present experience is no~ enough to achieve what we can cal.l 

an "inteligent" system which c.ara simu!.ate human "visual 

mot~on percep~ion°. 

In general, most of the previous research has attempted 

to analyze an imag• sequences by consider~.ing the 

multitudinous data repr•s•nting the movements or changes 

that occur between each two sequential frames from the 

sequence. This .incremental data may be generated by several 

techniques: of comparison. This .approach to .image sequencE> 

analysis has resulted ~n thti? development of sophisticated 

computer systems for motion detection, recognition, and 

tracking and has yielded an enormous number of applications. 

Motion understanding and description have been ignored by 

most of the past research. To achieve the obJectives of 

motion understanding and description, it is not enough to 

merely determine the incremental movements or changes that 

occur between consecutive images CTsotsos et al. 1 S0J. What 

is required is a system which abstracts a summary 

descr~pt~on Cin n~~ural language) of the global motion 

characteristics ~rom the multitude o~ static and incremental 

data. Development o~ such a system represents the new 

direction being taken .in the cur·r·erat t'esearch in . image 

sequence analysis. 
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Th~s recent trend in current research is directed 

towards the development or ~ system which has the capab~lity 

or motion detection~ understanding, and description in a 

global manner similar to human visual motion perception. 

The first step in this direction was taken by Badler; his 

achievement was to generate a symbolic description for 

motion concepts. Also, Price and Reddy attempted to use· 

symbolic descriptors and analysis to describe the changes 

between two different images of the same scene. Yachida et 

al. [Yachida et al. , 78J used high-level global analysis to 

improve the low-level processing or ambiguous situations in 

individual frames. Based on Badler's work, Tsotsos then 

symbolic 

description. Recently, Tsotsos has introduced a framework 

for a general system for motiort understand.ing and 

description using predefined motion patterns. 

Most of the recent approaches are based on modelling 

the dynamic environment or the motion using knowledge-based 

systems. However, there are d~~ferent uLews pertainLng to 

model construction, data and knowledge representation, and 

control structure strategies. 

In our current work, we have developed a model for a 

general image sequence analysis system consisting of three 

basic entities: 



0 

LITERATURE CRITIQUE 

<a>Dynamic data: The data which 

during the analysis <input, output, 

results>. These data are stored in 

<STM>. 

Page 2-64 

continually change• 

and any computational 

a Short Term Memory 

<b>Static (constant> data: The data which remains 

unchanged during the analysis (description o~ the class o~ 

scenes under analysis and the control in~ot .. mation d•scribing 

the pertinent computational processes. 

a Long Term Memory <LTM>. 

These are stored in 

<c>A collection of analysis processors, each o~ which 

is assigned to a particular task. 

Both STM and LTM are implemented as a relational 

database. The STM is designed to work as a communication 

channel for all of the processes. It cor.tains a record of 

the instantaneous ob.Ject motion.. shape, and structw"'al 

changes.. as well as.. the current global description of the 

ob,Ject behaviour. The LTM con-tains the general model o~ the 

morphology of the ob.Jec'ts under analysis. as well as control 

in~ormation 

processes. 

desc:l"'ib.irtg 

The 

pertinent 

pt"ocessors 

c:omputat.ional 

are activated 

and global analysis. They .in'terac't 'through the STM using 

the in~ormation stored in the LTM, unt.il a complete 

description of the dynamic ob.Ject motion and morphology is 

obtained. 
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.In the preceding section we have brief~y compared our 

work to the most reL&vant recent approach by Tsotsos. From 

th£s comparison and the above review, we may cLaim that our 

work provides an essential and original contribution to the 

research in image sequence analysis in two basic ways: 

First, the constructio~ of our model is a rule-based 

structure <knowledge repre•entatior. and control strategy>. 

Within this structurEb the dynamic behaviour of the moving 

ObJect is described using generic knowledge <constraints> 

and rules; for example~ the exact motion pattern of the 

class of scene under anaL~sis is not defined. Consequently, 

the system has a much wider application, especially for 

those sequences containing moving obJects whose motion 

patterns are not known a priori, or which exhibit random 

motion. Second, in our work we analyze, quantify, and 

symbolically describe the structural changes of non-rigid 

moving obJects hitherto neglected in all the previou$ work 

done in image sequence anaLysis. 

2.3 SHAPE ANALYSIS AND DESCRIPTION 

2. 3.1 Introduction 

The probLem of shape descrimination is a central one to 

pattern recognition and as such has received considerable 

attention in most papers dealing with recogniti.on of 

characters, l.l.•avef·or-ms, chromosomes; cells~ machine parts. 

among other appli.cations. Thi.s area of study ~s taking bn 

~ncreasi.ng i.mportance but much wor-k st~ll remains to be 
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done. Furthermor•~ shape perception is a common problem in 

any computer· vision, scene analysi$, or pattern recognition 

system. The solution to this problem may be achieved 

through two stages o~ processing: 

description. Figure <2.~> is a 

shape analysis, and shape 

schematic diagram which 

shows the basic steps ~or shap• analysis and description~ as 

well as the input and output data at each step. 

Shape analysis: Ir. shape analysis, a digitized iMage o~ an 

obJect is transformed into a scalar vector whos& 

elements are measurements of some of the shape 

properties (features or shape descriptors), e~ , 

length, width, elongation, circularity, Fourier 

descriptors~ moments, and other shape features. Th• 

second task of shape analysis is to transform the image 

of an ObJect into a graph. The properties of this 

graph express the shape and structural properties of 

t'he obJect. 

Shape description: Shape description represents the higher 

level process of shape perception by computer. In this 

process the scalar uector or graph, the resulting form 

of the shape analysis, is analyzed by a syntactic 

analysis met-hodology in order to generate a text in a 

natural language <symbolic description>. It contains 

all the relevant information pertaining to the shape of 

the obJect. 
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Early attention to thLs area of study is related to 

CAttneave, 54J, which shows that shape analysis has roots in 

psychology as well as computer vision. In Attneave's work, 

he discussed human visual perceJ:•tion f'ron\ ar. in-formation 

th•ory point of view. Of particular interest in his 

findings is that shape information is concentrated along 

contours, especially at those points at which its direction 

changes rapidly <currently called "critical points"). 

current shape analysis and 

description techniques is presented in this section. The 

review in this section is restricted to the t•chniques which 

analyze two-dimensional ObJects in a plane. The literature 

is reviewed in the following order: First, the focus of 

attention is directed to the most recent surveys in this 

area by CMeagher, 79; Pav~idis, S1J. Second, the shape 

- analysis techniques which have been used or are directly 

related to our current work are reviewed under topics which 

include: (a) curve representation and critical point 

detection, (b) curve and polygonal approximation, and (c:) 

shape decomposition. 

analysis techniques 

Sections 2. 1. 6-Z. 1. 9 

Then, more sophisticated shape 

are briefly reviewed in 

inclusive. These include moments, 

Fourier transforms, thinning and integral geometry, and 

relaxation. The syntactic analysis and shape description 

techniques are reviewed in Sectiot"'l 2, 1-.-10.- Finally, in the 

last section 2.1. 11, our current work in shape analysis and 

description is summarized and compared to the previous ones. 
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2. 3. 2 Recent Surveys In Shape Analysis And Description 

The recent survey o~ Meagher [Meagher 791 presents a 

brie~ overview of the ~iterature perta1n1ng to techn1ques 

~or shape analys~s and desc~iption. This survey begins with 

a general short overview o~ the field. He then considers 

papers pertaining to curve representation and proceeds to 

more sophisticated techniques. He reviews the literature 

under topics whi.ch include chai.n code rnethodology .. polygonal. 

approximation .. syntactic analysis. relaxat~on.. Fourier 

Meagher~s survey is a basic: descriptors, and moments. 

review ~or a neophyte reader as a pointer to the s~gnificant 

work in the fi~ld. However. the survey by Pavlidi.s 

CPav~i.dis, 81J, <the last updated version on a series of 

reviews by the same author).. is not only a complete 

well-documented- review) but it ma!J also be considered as a 

comprehensive study in shape analysis and descr~ption. 

In the recent review by Pavlidis [Pav~idi.s, 8~], the 

methodologies USEtd .in shape discrimination have been 

classified according to several criteria. First. he defines 

"external" and "interna~" to rerer to local boundary 

followers and glob a~ boundary or 

respectively. Second. he makes another distinction on the 

basis of "scalar transform" and "space domain" techniques as 

to whether the process transforms the pi.cture into an array 

of scalar features or into another picture, as is the case 

in the medial axis transformation technique. Finally. he 

defines "inf·orrn.ation ·iind 11 infor·m.at ion 
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non-preserv~ng" techn~que~ depend~ng on whether or not ~t 

~s possible to reconstruct the picture from the shape 

description. 

Pavlid~s uses the firs~ two cr~ter~a to form four 

categories in order to class~fy the different ~echn~ques of 

shape analysis as follows: 

Ca) moments and moment invariants, 

(b) two-dimensional Fourier Transform <FT> of the 

biraary coded image~ 

<c) binary masks~ 

<2> External Scalar Transform 

<a> Fourier Transform of boundary <eg. , FT of tangent 

angle versus arc length), 

(3) Internal Space Domain 

(a) medial axis transformation <MAT) 

· <b) various thinn~ng algor~thms 

Cc) var~ous integral geometry schemes 

Cd) techniques using the concepts of convexity and 

concavity (eg. , decomposition into primary convex 

subsets) 
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(4) External Spac~ Domain 

(a) syntactic descript~on techniques. 

Most of' the pub~ications on shape have dealt with 

"information non-preserving" techniques. In particu~ar they 

have emphasized properties such as symmetry~ elongation .. 

angularity... etc. CK.au.af'ff,ar... 67'; Kolers, 7'0; artd Langridge ... 

72J. Such properti.es give useful inf'ormatiort about the 

shape of simple ObJects but fail to do so for complicated 

ones which must necessarily ·be given in terms: of local 

characteristics of primitive subparts CRosenfeld... 76J. 

The dif-ferent 

description wi~~ 

groups according 

Section 2. 3. 1.. 

techn~ques for shape analysis and 

be reviewed in the following sections in 

to the methodologies defined in 

2. 3. 3 Curve Representation And Critical Point Detection 

The Freeman chain code may be considered one or the 

earl.iest and famous ror representing 

information pertaining ~o curve or contour of a digital 

i.mage. The chain code may a~so be used for further shape 

analysis or desc:ript.ion. The method of encoding an 

arbitrary geometric: curve via the use of the chain code is 

presented in CFreeman~ 61.l. 

developed i.n [Freeman~ 74;77; 

finding the critical points 

This scheme is further 

Freeman and Davis ... 77J... for 

(corners, maxima curvature, 

inf~ection... discont~nu~ties ~n c:urvatur~, ~tc:. > of' a curve. 
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0 This method has been used w~dely. since. by 

many authors using different techniques for general shape 

-~n.::;l.tjsi:::: An advanced application of 

s based on chain codes to object recognition is 

presented in Mck~e and Aggarwal. -,.•-:--
( ( . 

Detecting the critical point~ from the boundary of a 

publ..i.c.~tir::>n:::: i.n field. From ·these 

the work of CRosenberg, 72] is noteworthy in 

determining the dominant points of a convex blob. In 

~n algorithm was presented by CRosenfeld and 

Johnston. 73] for selecting the curvature maxima. Also the 

understanding was carried out 

mainly for detecting such critical points as the definition 

of angles and sides of a curve. 

In our current application. the contour (boundary 

points) of an arbitrary shape is represented by number of 

sides and vertices obtained by a polygonal approximation 

( ·~~ d~:;:::c;,.-. j_ pt i •:•t'l • ::;f ·t~-.t?s~ te•::hniques is giver • 

Th•::?n the •:r·· i. i:ical pc•i.n-ts .:1r·e e::-::tr.=x·=ted at -u-..;:,se 

vertices which exhibit special convexity (see Section 4. 3). 

0 
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2. 3. 4 Curve And Polygonal Approximation 

Polygonal approximation is a known technique in shape 

analysis. In this technique a curve or contour is 

represented by fitted straight lines. The input to such 

algorithms can be either the boundary points directly, or 

their chain cod~ The output~is a list or vertices of the 

t"itted lines. These techniques have the advantage of 

reducing the noise as well as the amount of data to be 

manipulated by higher Level stages of the system (the number 

or the vertices is always less than the boundary points>. 

The mathematical aspects o~ these techniques may be found in 

tPavlidis. 77l. In some appli~ations the fittod lines or 

polygons may b• used directly for shape re(;ogni t.i.on or 

description, while in others they are an interm~d.i.ate form 

or data. For example, in the introductory ~eport for a 

general dynamic scene analysis system applica~~. for the 

characterization or the dynamic behaviour of ce-1 l nlotion by 

[Levine and Youssef, S0l, the output ot" tt·:·- polygonal 

approximatior• represents the .input f'or the shapq,. 

decomposition. The latter is further analyz•d by higher 

level processes ~f the system <incremental and global 

analysis). 

Some schemes for constructing polygonal ~pproximation 

are concerned with sele•=ti.ng the vertices fro!\'; i;ne boundary 

points so as to generate the best fitted polygon. Others 

may allow the vertices to leave the curve itself .if they 

generate a better fitted polygon. One of the early .and most 
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efficient techniques by Ramer~ selected the polygon vertices 

from the boundary points tRamer, 72J. The resulting 

polygons of Ramer's algorithm are not necessarily optimum 

<minimum number or vertices), but his algorithm is 

computationally much more efficient than those generating 

optimum one~. An •lgorithm for polygonal approximation 

based on Ramer's scheme is implemented in our current work; 

therefore, a detailed description of this technique is 

presented in Section 4. 1 

In some schemes for c:ot·•s tructing polygonal 

approximation, the minimum distance <not to exceed a 

specific threshold> between the segment of the boundary and 

the fitted line is used as a criterion for selecting the 

best fitted approximation line <eg. Ramer 72>; in others, 

the fitted line is chosen so as to minimize the area 

difference between the approximation line and the original 

curve, eg., [McClur·e, ??J. 

Other techniques for 

approximation are based on 

points. Montanari 

extracting the polygonal 

the chain-encoding of the 

[Montanari,?0l boundary 

al.gorithm for determining the chain code 

pt··esented an 

of a contout". 

Then, by a smoothing operation on the chain code, a minimum 

perimeter approximating polygon may be generated. 

Different from previous work, Pavlidis CPaulidis, 73J 

introduced an algorithm for segmenting a waveform in order 

to generate a piecewise l.ineat"' approximation. This 
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algori~hm is modified in CPavlidis and Ho~owitz, 74] to 

introduce a spli t-and-l'itE.<r·ge algot" i thrn which improves the 

previous one, in that it is faster and does no~ require an 

initial segmentation. This algorithm is currentl~:~ one or 

the mos~ popular for curve segmentation, and its application 

is presented in many papers by dif~eren~ authors. For 

example, these methods are applied to the recognition of 

handwri~~en numbers in CPavlidis and Ali 75J. 

2.3.5 Shape Decomposition 

Another set of shape analysis techniques is based on 

decomposition of complex shapes into simpler ones. These 

methodologies are prime examples of structural pattern 

recogni~ion and shape analysis. They are based on the 

assumption that shape perception is a hierarchical process 

CPavlidis, 6S;72J. In these techniques the original figure 

is expressed as the union of some of its subsets (primitive 

components). The shape of the latter may be simpler, and 

therefore, some of the less complex descriptions may be 

applic:abl.e. Most of the subseq•..1en't schemes emphasize the 

concept of convexity at·•d assume polygonal approximat-ion of 

the original obJect. One of these requires the 

decomposition of the obJect into primary convex subsets 

[Pavlidis, 68; 721, giving an output which car. be expt .. essed 

through a JUXtaposition graph CPavl.idis, 72a;72b; and Feng 

and Pavlidis, 75). 
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A decompos:~tion techn~que based on a graph-theoret~c 

clustering method is developed by [Shapiro and Haralick, 7'9J 

to trans~orm a two-dimensional shape into a binary relation 

whose clusters represent the s~mple parts of the shaplil'. 

This m!l'thod first deterrnit•tes dense regions .. which are local 

r•gions of high compactr~ess and then ~orms clusters by 

merging those dense re-giot-.s having a h~gh enough · overlap. 

Maruyama [Maruyama~ 721# suggested a decomposition o~ shapes 

into angularly simple regions. Each angularly simple region 

has , at, least one· interior point which can "see .. its entire 

boundary. Schachter tSchachter, 7Sl presented a method ~or 

decomposing polygons into convex sets, based upon a Delaunay 

tessellation of the polygon. It ~s implemented as a 

divide-and-conquer technique. 

l>li th these de-compo:esi tion methods, the shape of an 

obJect is represe-nted as a graph. The results have a number 

of desirable features which are also shared to some extent 

by the MAT : 

(a) They are trans:lat~on and rotation 

insens~t~ve ~o reg~stration. 

invariant 

<b) To a large extent they are size invariant. 

and 

(c) They usually pl"'c•duce an 11 anthropomor•phic:" description. 

Cd) THey give data structures wh~ch are particularly 

appropr~ate for syntact~c or structured pattern 

recogn~ tion. 
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The ma~n d~sadvantage or th~s methodology is that the 

programs required to implement it tend to be quite complex. 

In our system the cell shape is decomposed into its 

primat.ive parts at the convex angles, in a fashion -si-milar 

to [Feng and Pavlidis, 75J. However. in our algorithm the 

decomposition pr·ocedUt"e is goverr.ed by the rules dependent 

on the physical structure of the cell (see Secti.on 4. 4).-

2. 3. 6 Moments And Moment Invariant Techniques 

In the category of "internal" scalar· transform 

techniques, the method of' n1omen'ts was the earl.i.est one used 

[Al.t.. 6a; Giuliano et al., 6~; Hannah, 7~; Ledley, 641. 

In these techniques the moments of a digitized ob.J&ct in a 

plane are de-fined as in geometry and mechanics as f'ollows: 
U V 

m<u.v> • SUM < X Y > 

where m 

X,Y =the different points of the Object. 

It can be shown that: 

m(0,0) =the area of the ob,Ject, 

mC0,~)/mC0,0) • theY coordinate of the center of gravity. 

Higher order moments and linear combinations of moments 

<"moment invariants") possess various invariant 

characteristics under a number of ob,Ject transformation~ 

An early work using moments for pattern recognition is 
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5 or below are surficient to discriminate between 35 printed 

characters~ whereas moments of higher order are found to be 

increasing!~ sensitive to noise. Another earl~ work in 

pattern recognit~on which was based on moments was tGiuliano 

et al. i 6~J. Ledley [Ledley; 64J has used the moment$ 

methodology ~or shape analysis in biomedical pictures. A 

more recent application of moments to aircraft 

identi~ication is presented in CDudani et al.; 77J. 

2. 3. 7 Fourier Transform <FT) Techniques 

Other significant approaches to shape description 

compute the two-dimensional Fourier transform <FT> of the 

characteristic ~unction of the obJect or use binary masks to 

extract features conveying the shape information [Nagy; 64l. 

We note that the or,e-dirne-r.sional FT of" the boundary c:at"' · be 

prof"itably assigned as an "external" scalar transform 

technique t2ahn and Roskies, 72; and Rosenfeld and Kak, 

76J. Due to the f"act that most of the shape information of 

an obJect is concentrated along its contout"', 

one-dimensional FT has been the concern of many researchers. 

In this methodol.ogy, the Four.ier trarts-f·orm of the boundary· 

is computed; and the resulting coefficients are used as 

features <shape descriptors) for shape discrimination. 

An early work in shape analysis using FT was presented 

by Borel tBorel, 65J. He used the tangent angle versus arc 

length to detect the curve segment of maximum curvatur~. 

Then a matching <using cross correlation> between the 
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s•c~ion o~ maximum curva~ure of an unknown contour and known 

shape is perf'orrl\ed. Systems and a~gorithms f'or shape 

are based on FT schemes involve many ana~ysis which 

applications. Examples are h.andprinted character 

recognition [ Granlund, 721 and air·c::raf't 

[Richard and Hemami, 741. 

identification 

A re~•r•nce which con~ains a consid•rab~• amount of 

information on Fourier descriptors is tZahn and Roskies, 

721. In a more recent study by Persoon and Fu [Persoon and 

Fu, 77J, the work described in rZahn and Roskies,721 and 

tGranlund, 721 is extended. The paper also includes a 

of the subJect~ as well as review and general discussion 

experimental results. 

2.3. 8 Thinning Algorithms And Integral Geometry 

The Medial Axis Transformation <MAT) or skeleton was 

the earliest and most widely studied method among the 

"internal .. 

Mott-Smi t h .. 

space 

?0; 

domain tec:hrd.ques CMontanari, 

Philbric:k, 66; Rosenfeld and Weszka 76J. 

The skeleton may be used to derive information on the shape 

of' the original f'igure. but its computation can be quite 

time-consuming and very sensitive to noise tRosenf'e~d and 

761. These difficulties may be reduced by first 

obtaining a polygonal approximation of the original contour. 
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A number of technique~ re1.ated to in~egr.a1 geometry 

have been proposed by various authors Ct<1inger et .al.. 71; 

Nakimoto et a1.~ 73; Pavlidis~ 68; Rutovitz, 70; Spinr.ad, 

65; · Wong and Steppe, 69J. In ~hese techniques, the obJect 

is intersected by a number of chords ~~~hose length statistics 

can be used for shape description. For example~ Rutovitz 

CRutovit:z, 70J has used radial chords~ all passing tht"ough a 

common point, to describe the shape of chromosomes. 

2. 3. 9 Relaxation 

Other methodologies which may be used in shape analysis 

and interpretation .are based on relaxation techni.ques. They 

use the context of a scene or section of the scene to reduce 

the ambiguity in the labeling of a set of obJects or 

subparts of an obJec~. For example, in an indoor scene 

interpretation system~ the fact that a roof is always above 

the walls, or in a face recognition system, a nose is always 

spatially above a mouth~ could be used to eliminate some 

erroneous labeling attempts. Four models of relaxation 

processes are presented in CRosenfel.d et al. 76l. The 

authors showed how these models -are • .. used to reduce the 

uncertainity in a situation before 

semantics-based analyzer. 

processing 

demonstrated 

by a 

that 

by using cor.textual inf'ormation, the more powerful: forms of 

relaxation may be used to adJust the probabilities of labels 

assigned to parts of an ObJect. 
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2. 3. 10 Syntactic Analysis And Shape Description 

The main goal of shape pe~ception either by human or 

computer is to translate pictorial data of an obJeCt into 

the relevant info~mation 

This goal may be achieved through 

-two processes: sh.rtpe analysis and shape descripti.on. In 

the above sections we reviewed different techniques for 

shape analysis. In this section, we will discuss shape 

description~ ·and bri~fl.y review the limited wor·k which has 

been done in this sUbJeCt. 

Shape analysis processes produce informati.or• related to 

the shape of an ob,Ject in 'the f·or·rn of sc.alar vector--s or .a 

g~.aph. The main obJective of shape description is to 

ana.Lyze this data using a svnt.actic methodolog\1 in o~der to 

generate .a symbolic description of the obJect. 

To describe the shape of an ob,Ject, the scalar vecto~s 

are not-very he.Lpful unless the features of their components 

have wel.l-defined phy~ical meanings. Moreover~ in the case 

where the shape of the obJect is complex, the desc~iption 

cannot be accomplished in terms of such scalar measures 

un.Less some s.implifyittg transformation is Ysed first. The 

techniqu•s which achieve this at"e those which transforrft the 

ob.JEtCt into a graph, so that its shape properties can be 

expressed through the propert.ies of th.at graph. Such a 

t~ansfo~mation can be perfor·mEod by or,e of" two basic 

techniques. The fi~st is thinning~ where the objet:t .is 
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0 
reduced into a line drawing graph (a skeleton)~ eg. , MAT. 

The second is the decomposition methodology, (both types of 

are reviewed in the above sections>. The 

thinning techniques are more appropriate for the description 

of filamentary-like whereas the decomposition 

In order to generate a symbolic description of an 

ob,Ject from its gr.aph, it is necessary to develop a ••gr.aph 

language" and 11 graph 9t" amrllar 11
• Then. a given graph could be 

parsed according to this grammer to generate sentences in a 

natural language describing the shape. 

Pavlidis CPavlidis. 75;76i77J provides a considerable amount 

of information on this sub,Ject. 

of syntactic analysis in various applications. Examples 

are: Chinese character recognition .and handwritten 

numerals. A theoretical discussion of the .advantages and 

disadvantages of various syntactic techniques in shape 

description is presented in CPavlidis, 77l. The- recent work 

analysis. First. she used the method described in CSh.apiro 

and Haralick~ 79l to decompose a shape into a set of its 

pr.i.mi of:ives. Then~ using these primitives. their properties. 

and -their interrelationships; a matching procedure to f.i.nd 

mappings from a prototype shape to a candidate shape is 

0 p•rformed. Her model gives a f.avorable result on 

hand-printed character data. 
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One of the 

description from 

[ Holl.erba ck.. 751. 

few systems which has used a symbolic 

everyday natural language is the work of 

He developed an approach towards shape 

description~ based on prototype modification and g•neralized 

cylinders. The emphasis throughout his work has been to 

develop useful, qual.itative descriptions which bring out the 

·significant features of" pottery and polyhedra. 

2. 3. 11 Summary And Review Of Our Current Work 

The perception of shape plays a prominent role in both 

human and computer vision. Shape perception by computer may 

be achieved through two stages of processing, shape analysis 

and shape description. Algorithms for shape analysis have 

been briefly reviewed and cl.assified under two categories: 

whether they examine only the boundary or the whole area, 

and whether they describe the original pictures in terms of 

scalar measurements or tht"ough structural descriptions. 

Most studies of shape and pattern recognition are based on 

global feature measurements which then constitute a feature 

vector used for the shape representation. 

rn spite of the difficulty of addressing the general 

problem of shape description, the solution is more promising 

with the use of syntactic analysis. Therefore.. more 

recently. there has been interest in syntactic pattern 

recognition techniques which analyze patterns by a parsing 

process of hierarchial decomposition. The advantages of 

such an approach suggest that it might be appropriate to 
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study h~erarchial shape representat~on ~n more detail as a 

vehicle ~or cell shape description. as well as the global 

structural and membrane shape changes which occur during 

l.ocomot~on. 

Ir• our current r·e-search, besides the general. 

di~~iculties of describing an arb~trary shape in a specific 

image. we are ~acing the ~ol.l.owing problems: 

(a) Estimating the incremental. change between two di~ferent 

images in the shape and structure of a non-rigid moving 

ObJect. 

(b) Detecting and characterizing the gl.obal structural 

changes in the morphology of a non-rigid moving obJect 

over a period of ti~e from a sequence of pictures. 

(c) Presenting al.l the above descr"iptions in a meaningful 

terminology to the user. 

We have developed the procedures which produce a 

meaningful symbolic description of th~ shape and its 

changes. Also, we have developed a mathematical. express~on 

for measuring the complexity of an arbitrary shape pattern. 

This expression is based on a group of selected shape 

properties which are independent of translation~ rotation. 

or scaling. Another shape feature is introduced through our 

work in shape analy~is, to measure the degree of curvature 

regularity <angle and/or side regularity) of the shape of an 

This feature is shown experimentally to play a 
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valuable role in shape d&scrimination. This study in shape 

analysis is demonstrated by describing the membrane shape 

and quantifying its observable changes. 

2.4 COMPUTER VISION KNOWLEDGE~BASED SYSTEMS 

2.4.1 Introduction 

Any vision system consists of two basic hierarchical 

processes: a low level. which is concerned with data 

extraction from the perceived scene~ and a high level, which 

is concerned with in~erpretation and description or that 

which constitutQs the scene. To accomplish this, the system 

utilizes information r~om two sources: data from the 

perceived scene. and the knowledge and expectations 

(perceptual set) of the observer. Thus, the d~velopment of 

computer vision systems has become a study at the 

intersection or the neighboring disciplines of image 

processing. scene analysis. pattern recognition. artificial 

intel..ligence, and cogrt.i i;.it)e ps~:Jchol.ogy. 

One of' our main concerns in this research is the 

development of a computer vision system for understanding 

and describing the visual motion of non-rigid moving 

obJects. The ob,Jective of this section is to briefly review 

the signif'icant work in this field as a gained expet"ience. 

However. we car.r.ot disct.~ss visual ntotion ur.det"standing 

without first considering its roots in 

interpretation and description. 

static scene 
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In the past~ most comput~r vision research has dealt 

with the low level processes associated with this problem. 

As a result~ considerable experience has been gained on how 

to segment a simple digital image into regions that 

correspond to obJects as precei,Jed by a human observer. 

However, this stage of progress has not been accomplished 

yet for complex scene analysis. In complex scene analysis~ 

the low level segmentation results in a larger number of 

regions than those which can be perceived by a human 

c observer. In order to .achieve a meaningful partition -of the 

image under analysis, the system should utilize external 

knowledge. The latter may be per~aining to the class of 

scenes under consideration and~or general knowledge about 

regions, lines~ edges, angles, corners, ... etc. In this case 

we may refer to the system as a "knowledge-based system", in 

other words we may define the knowledge-based system as: a 

system whose output depends upon the use of external 

information (knowledge> that is independent of that 

contained within the input digital image. 

In this review. the two following Sections ~ 4. 2 and 

2.4.3 discuss the two basic problems which are associated 

with the construction of knowledge-based systems. knowledge 

representation and control structure. Three d~fferent 

methods of introducing the kno~.oJledge to the analysis 

algorithm are then described in Section 2. 4.4. Examples of 

dif~erent structure$ of knowledge-based systems will be 

briefliJ reviewed ~n Sec:t.ion 2. 4. 5. These .include 
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HEARSAY-I!. a speech recognLtLon system. and the work of 

Levine and his eo-workers on image segmentation and 

interpretation. In Section 2.4.6, a review or the ~Lmited 

visua~ motion understanding is presented. 

Section 2.4. 7, the differ~nt aspects of this review wi~l be 

summar izeod. 

2. 4.2 Knowledge Representation 

Knowledge representation is the .first problem to face 

the designer o~ a knowledge-based system. Most research has 

concentrated on the development and use of' "models" which 

describe the pr"·oblem domain at dif'f'erent levels of' 

abstraction [Levine, 78; Riseman and Hanson, 78; Hewitt, 

77; Soloway and ~iseman. 773. Thus, models play an 

important role in the organization of the descriptive 

information incorpot"ated in given knowledge 

re-presentation. However. model construction can be very 

difficult for ill-defined prob~em domains [Scacchi, 79J. 

In the past many kno•.,.ledge-based computer vision 

systems have been developed b~sed on using specialized 

knowledge mode~s of the problem domain under analysis. 

Zuc:ker et a~. have suggested the development of a system 

capable of' analyzing different scene classes, instead of 

deve~oping different models for different classes CZucker et 

al. , 75J. In their approach~ the knowledge to be utilized 

a knowledge-based system is classified into two 
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cat~gories~ scene-independent and scene-dependent. The 

form~r inc~udes ~ocal fea~ures <edges, 

... e"tc) 'that occur in man~ different types o·t scenes.. as 

well as knowledge to coherently group these features. This 

knowledge may be reJ:•r•sented as ugen•ral purpose models". 

The scene-dependent know~edge includes descriptions 

pertaining -to the scene 'to be ana~yzed <for examplEt ·-the 

loc.a'ti.on# shape.. or 'the exi.st.ance of specific ObJec-ts). The 

models representing such knowledge are "specialized models". 

Thus~ if the scene-dependent knowledge is structurally 

separated from the scene-independent knowledge, changing the 

class of scene to be analyzed will on~y necessitate 

substitution of the scene-dependent know~edge base [Levine 

and Shaheen 8:1.; Riseman and Hansc•f'•.. 78l. General purpose 

models have the advantage that they can be used in anal~zing 

different types of scenes, even when no a priori ~howledge 

about "the scene is available. A prime example of systems 

bas•d on this strategy can be found in the low level 

segmentation system developed by Levine and Nazi.f CLevine 

and Naz:if # 82J. 

2. 4. 3 Control Structure 

The second problem encountered in designing a 

knowledge-based system deals with the design of an efficient 

control structure.. necessary for at·• e-ffective use of ·the 

knowledge organized at dit"'ferent levels. Thus, a 

knowledge-based system which employs different levels of 
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processing, and us~s diverse knowledge sources organized at 

multiple levels, n~~ds a control structure mechanism to 

~ocus ~ts attention on which processing task to be 

activated, and on which knowledge is to be chosen. This 

attention focusing mechanism may be directed by one of two 

control structure strbtegies: data-driven, and model-driven 

[Lesser and Erman, 77; Nii and Feigenbaum, 78]. In the 

data-driven control structure, the systems's processing 

attention is directed by incoming low level information, i.e. 

the occurence of specific observed events, such as 

recognizing 

[ Levine, 78; 

or characterizing specific obJect features 

Levine and Shaheen, 81.; Levine and Nazif, 

82]. In the model-driven control strategy, the system 

relies on its existing knowledge <scene model> to suggest or 

hypothesize the occurrence of obJects or events (Tsotsos, 

80]. 

2. 4. 4 Knowledge Interaction 

Another issue related to knowledge-based systems is the 

interfacing of the knowledge with the analysis processors. 

This interfacing may be accomplished through one of three 

possibilities: 

<a> by incorporating the required knowledge directly 

into the ana~ysis processors, 

<b> through interaction with the user <man/machine 

inter action), 

(c) by storing in a properly designed database. 
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E~r~y work ~n computer v~s~on Lnc~uded the know~edge 

(seen~ mode~) within the ana~ysLs processes. These systems 

achieved satis~ac~ory results with ~imited c~asses of 

scenes~ such as the blocks wor~d tShir~i. 75J or o~~ice 

scene tGarvey and Tenenbaum, 74l. Shaheen conc~udes th~t 

the disadvantages of this methodo~ogy rest ~n ~he inhibiting 

of the flexibility, extensibility, and the capabi~ity of 

experimentation with th41!t system tShaheen, 79]. It w~s 

precisely this factor that motivated Levine to use the 

inter~ction method in the early version of his reported 

computer vision system structure CLevine, 78J. 

Introducing the wor~d knOlA'ledge thr·ough an int&ractive 

process is necessary to gain the experience required to 

build the "intelligent system". Experimentation with 

different types of know~edge at different ~eve~s of 

abstr~ction for dif~erent scene c~asses will lead to an 

efficient design o~ the database. Examples of interactive 

knowledge-based systems can be found in tAriki et al. ,78; 

78; Tsotsos, 76; Futrell and Speckert 79; and 

Potel and Sayre. 7Gl. 

Accessing the knowledge from a properly initialized 

database is an essential f ac:tot"' in the automation of an 

image understanding system. However, construction o~ such a 

database is not easy, especially in the case of multiple 

level. knowledge representation. Therefore, systems using 

this method of knowledge/process communication should be 

supported by an efficient control structure strategy as 
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described above. In the case of a general ~nterpretation 

systemJ the complex~ty of the database is 

proportional to the generality of the system <the extent of 

d~~~erent scene class•• to be anal~zed by the system>. 

In this section we described sorne <not all.> aspects 

related to the structure o~ a knowledge-based system as a 

tool. for a c:ompu't•r vision system. The literature which 

will be reviewed in the following section represents but a 

fraction of' the accumulated work and experience gathered in 

this field and for purposes of this thesis the most closely 

related to our currernt t"esearch. 

2.4.5 Examples Of Knowledge-Based Systems 

HEARSAY-I! 
[Lesser and Erman~ 77J 

In HEARSRY-I:I a "blackboard" global data structure was 

introduced as a means of communication and interaction 

between the different sources of knowledge. Th~s knowledge 

structure serves as a short term database for stor~ng act~ue 

data generated at different levels. R scheduler is used as 

a mechan~sm to focus the system attention to which chunks of 

information are useful for a given task1 and which task 

should be activated. 
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In genera~# HEARSAY-II has ~n~t~ated a new generat~on 

o~ comp1ex syst•ms. It i~~ustrated how a system per~ormance 

may be a~~ected by its know~edge engineering. Because of 

the potentia~ o~ the HEARSAY-II app~ication to other 

research domains~ it has influenced other approaches by many 

researchers. It had an impact on their work and ideas for 

dif~erent fie~ds1 especially in computer vision. The ro~e 

o~ the STM in Levine's vision system is very simi~ar to that 

o~ the b~ackboard in HEARSAY-II. The g~obal blackboard 

structure, together with the attention ~ocusing schemes~ 

provide a working contro1 str·.ategy fot.. an understanding 

system that ana~izes multip~e knowledge sources organized at 

di~ferent ~eve~s. It seems that a knowledge-based vision 

understanding system cou~d be developed along these lines. 

An Image Segmentation and Interpretation System 

[Levine, 78; Levine and Shaheen, 81; Levine and Ting, 1981] 

The concept. 

knowledge which 

o~ cooperating independent sources of 

operate on a global data structure has 

motivated the framework for a computer vision S':.istem 

proposed b':.l Levine CLevine, 78l. This framework laid the 

foundation for much advanced work in computer vision carried 

out in the last few years by Levine and his eo-workers at 

Mc:Gill University [Levine, 79; Levine and Shaheen, 81; 

Levine and Youssef, 80; Levine and Nazif, 82; Levine and 

Ting .. 198.1J 
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The main ObJective of Levine's work was to deve~op an 

interactive comp~ter vision system to experiment with 

di~~erent picture strategies. The system consists o~ three 

hierarchica~ levels. The obJective of the low leve~ process 

is to segement th• image into regior•s possessing similar 

primary ~eatures such as intensity~ hue, saturation, and 

texture. The result o~ this process may be described as 

complete or partial segmentation, depending on whether the 

segmented regions correspond to obJect as perceived by a 

human observer or not. A complete segmentation is possible 

~or a picture which contains nonoverlapping obJects on a 

uni~orm background, such as blood cells; whereas partial 

segmentations result froM the processing of normally comp~ex 

pictures, which contain obJects that exhibit depth, 

occ~usion, shadows, and highlights, such as for examp~e, 

outdoor scenes. 

The resulting regions from the low level partia~ 

segmentation may be the input to an intermediate level 

processing [Lev.ir.e .and Ting. 1.981.; T.ing. 791. At this 

leve~. the model ~eatures and topological structure are used 

in two stages, local and global. A local template matching 

is used to match regions against obJect prototypes, followed 

by global optimiz.atiort using dynamic programming. Other 

optimization techniqwes could also have been used. The 

result of this intern\ed.iate .tevel is a group of rnifiO\t"'•;;Jed 

regions:~ each 

interpret at ions. 

o~ whLch is: assigned a 

At the highest level of the 

set o~ region 

hierarchy~ a 
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v~s~on product~on system, ~n conJunct~on w~th a re~ationa~ 

database, ~s used to comp~ete the anal~s~s. 

The imp~ementation and exper~mentation resu~ts or the 

high level computer vision .t.nterpretat~on system proposed in 

[Lev.t.ne., 78J~ have been reported recent~y [Levine and 

Shaheen, a~J. The results show that the perrormance or the 

high level processing stage and cons~quentl~ the rinal 

interpretation or the scene depends strong~y on the initial 

segmentation (low level processing). Therefore, the 

obJecti.ve of' the ongo.t.ng research by Levir•• and Naz~f" 

CLevine and Naz.t.r, 82] ~s to develop a general purpose low 

level ru~e-based system to inaprove the initial seogmentat~on. 

Rule-Based System for Low Level Image Segmentation 
CLevine and Nazif"., 82; Naz~f" and Levine, S2J 

The obJective of' this work is to desi.gn a low leve~ 

rule-based segmentation system ~n order to test dif"f"ere-nt 

segmentation strategies and compare their results to those 

obtained by a humans. The approach is based on using 

general knowledge about ~ow level properti.es or the image in 

the f"orm of condition-action ru~es, in order to decide, f"or 

examp~e~ if' a specif"~c reg~on(s) should be merged or split. 

Thus., f'or an ar·bi trary ~n~ tial segmentat~on, they test 

different strategies wh.t.ch employ different sets of rules, 

in order to f" ind a set of" condi t~on-act ior-. rules which ~eads 

to the best segmentation. For example, in one of the 

methodologies th•y use1 the process beg~ns with an initial 
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segmentation~ and then iterates by merging and splitting the 

di~~erent regions unt~l the ~inal segmentation i~ achieved. 

The action~ merge or split, is decided by the incoming low 

l.evel data conditions <r·eg.ion ~e.atures~ neighborhood in the 

picture) and a set o~ cor.di tion-action t"ules. Theo latter is 

a represent.ation o~ the general. knowledge pertaining to 

reogions, lines, and groups of both. 

The potential of Levine and Nazif"s low level 

segmentation system rests on the ~ollowing factors: 

(a) The systeom accepts any leovel of initial seogmentation, 

~or example, the entireo image may be considered as one 

region or each pixel as a regior., 

(b) The system ~acilitates 

rules and . sets of 

experimentation with different 

rules to examine the different 

(c) Scene context knowledge is not required, therefore the 

system is applicable to any class of scenes <general 

pul"'p ose model). 

(d) The control structure .is that of a production system, in 

which control rules are used in addition to the 

knowl"l'dge rules. 

(e) The output of the system provides a description of the 

image in terms of regions <uniform neighborhoods in the 

picture), lines <maJor discontinuities in ~eatures), 

and areas <large regions or groups of regions and lines 
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(~) Early results obtained using this system indicate 

prom~s~ng r~sul~s ~or ~mage segmentation which are very 

close to the low level output expected by a human 

observer. 

Xn this section we reviewed a few examples of 

knowledge-based systems; howEPver· our discussion was 

restricted to 

analysis. In 

computer vision 

the foll.owing 

systems for static scene 

section we shall discuss the 

same topics for visual motion understanding from sequence of 

iroages. 

2. 4. 6 Knowledge-Based Systems For 

Visual Motion Understanding 

From the discussion in the preceding section we may 

realize the difficulty in designing a computer vision system 

~or static scene analysis. 

sequence of imag~s~ the 

For motion understanding from a 

task is more difficult. This is 

because we face all the difficulties of static scene 

interpretation~ as well. as the problems of motion 

understanding and description. Tsotsos has commented on 

this difficulty by st.ating that "motion understanding is a 

monstrously large problem" tTsotsos, 761. 
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S~m~lar to our discussion in the previous sections with 

regard to image interpretation, visual motion peception 

consists o~ two hierarchicaL processes, motion detect~on and 

motion understand~ng. These aspects were d~scussed in 

Sect~on 2.2.2.~, referring to the study by Martin and 

Aggarawal, and in Section a2. J, we reviewed the aspects and 

the related work that have been done in image sequence 

In this section, we will focus our 

attention on the aspects of visual motion understanding by 

us~ng knowledge-based systems. 

Most·of the work that has been done in image sequence 

analysis has been restricted to the fairly low level 

processing part, which is concerned with motion detection. 

The few approaches which considered an intermediate level 

<motion interpretation) andror high level part (motion 

understanding> have been based on interactive systems 

[Badler~ 75; Price and Reddy, 771 and specific domain 

applications CTsotsos/ 80J. 

The first attempt in constructing a knowledge-based 

system for motion understanding may be related to Badler 

CBadLer, 75l. He used the motion verbs as models to 

describe the motion concepts. Based on Badler's approach, 

Tsotsos has adapted the problem of motion understanding to 

his research. Tsotsos's recent work, in spite of its 

restrictions, be considered the first actual 

knowledge-based system employing high level knowledge 

Cmodels> to describ• the motion concepts. 
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In order ~o develop a visual motion understanding 

system~ we should make use o~ the experience gained in 

compu~er vision o~ s~atic images <this is our phi~osophy in 

the current rese•rch). Scacchi reported an out~ine ~or 

future work towards the developmeont o~ an 11 intel~igent 

system.. ~or visual motiora percep~i.on. His report is based 

on emerging experience ~rom computer vision, hardware-based 

vision systems~ computer anim~tion. artificial inte~ligence~ 

and human motion perception CScacchi, 79J. Considering the 

different relative viewing situations, Scacchi specifies 

five requirements for developing a visual motion perception 

and understanding system: 

(a) a "long-term" mernory to model the features and spatial 

relationships of known or observed static obJects, 

(b) an "ini;:ermedi~ttte•• memory where 

<control structure) can 

the focusing 

interact with 

mechanism 

both the 

knowledge-base (database) and incoming data (dynamic 

data>~ 

Cc) a "low level" visual memory to support hardware-based 

capabilities for extt"'acting ~he features from the 

Cd> an attention-directed "retina" to observe 

features withira the which .acts 

knowledge-base process. 
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<e) the di~ferent processes and system structure should 

.interactively 

( dat a-dr .iven >. 

work .in no predetermined order 

The system which Scacchi outlined and seeks .is an 

integrated system <he claims) similar to HEARSAY-XI, which 

has "the ab.ili ty to .analyze, under·stand, and react to a 

bounded though not necessarily predictable range of 

situations arising from conflicting, competing. and 

cooperating .interactions" [Scacchi, 79l. This integration 

may be achieved through a distributed control structure of 

the different knowledge sources and processing activities, 

directed by knowledge-based transactions. 

As a concluding remark. one can see that the outline 

for visual motion understanding, to a large extent, shares 

the same philosophy of the recent trend in computer vision 

of static images which was proposed by many approaches 

tRiseman and Hanson; 78, Levine,78J. This philosophy is 

very cl.osely related to out" appt"oach in this research which 

is described in the next section. 

A System for Understanding the 

Dynamic Behaviour of a Moving Cell 
[Levine and Youssef S~l 

In our current have de»igned a 

knowledge-based system for understanding and describing the 

dynamic behaviour of non-rigid moving ob~ects. From a 
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philosophical point o~ view~ the present $tructure is 

motivated by the computer vision ~ramework proposed by 

Levine tLevine1 7Sl. The latter has been revised and 

implemented by Levine and Shaheen for general static scene 

anal~sis and interpretation [Levine and Shaheen1 81; Levine 

and Nazif, 82J. The structure consists of independent 

anal~sis processes cooperating through a common database 

s-tructure. 

Our structure for a motion 

understanding s~stem involves three basic entities: dynamic 

data1 static data, and a collection of analysis processes~ 

each or which is assigned a particular task. Conceptually~ 

two different memories at"e used, a Short Term Memory <STM> 

and a Long T •rm Memory ( L Tl'1). The . dynamic data are 

continually changing as a result or the functioning or the 

different analy$i$ processes. They are stored in the STM1 

which is designed to work as a communication channel for all 

or the processes. Ea~h process can read from and write into 

the STM. It contains a record or the instantaneous obJect 

motion~ shape~ and structural changes. &:!i wel.l as the 

current global description o~ the ObJect dynamic behaviour. 

The static data in the LTM remains unchanged during the 

course of analysis~ and contains constraint knowledge 

pertaining to the class of scenes and type of motion under 

analysis~ as well as the pertinent computational processes. 

The system also consists of diffet"ent computational 

processors. which ar·e designed to execute through a <loose) 
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hierarchical struct~re consisting of three basic levels: 

static, incremental, and global <see Figure 1.4>. 

2. 4. 7 Summary 

is: to 

image. 

the understanding and descr ipt ior. of' the motion recordlii!'d 

within the sequence. In order to accomplish this, the 

system should utilize inf'ormation from two sources, the 

input image, and external knowledge pertaining to the class 

of scenes and/or type of motion under consideration. The 

system which utilizes this type of external knowledge is 

refered to as a knowledge-based system. Currently, the 

structure and us• of' knowledge-based systems represents a 

topic of broad interest within the computer vision and Al 

community. 

One of the basic and maJor problems in the structure of 

knowledge-based systems is the representation and efficient 

use of this knowledge. A common and powerful paradigm 

suggested by many approach&s:, is to represent the knowledge 

through "models" describing the problem domai.n under 

consi.derati.on. Most of the early computer visi.on systems 

are based on using models ot' speciali.zed f.<:nowled•;e 

The recent describing the class of $C:enes under analysis. 

trend in the structure of knowledge-based systems is 

directed to the use of a general purpose models, which can 



c 

LITERATURE CRITIQUE Page 2-102 

be used for a w~de var~ety o~ scene c~asses CZucker e't al. • 

75; Levine and Nazif, 82J. 

Know~edge-based systems which emp~oy different ~eve~s 

of processing that use multiple sources of knowledge 

organized at different levels of description, need an 

efficient control structure mechanism. The function of the 

control structure ~s to regulate the social behaviour 

(activities> of the system, that is to decide what and when 

specific knowledge should be used, which processor should be 

activated, and the general commun~cation between the 

knowledge and the analysis processes. Two types of control 

structure have been defined, model-driven and data-driven. 

The knowledge pertaining to the control structure is also 

represented in the system by the models. 

In the preceding sections. we have reviewed some of the 

related approaches which propose a basic knowledge-based 

structure. The foundation of roost of the recent approaches 

were found in HEARSAY-It, the speech recognition system. 

The computer vision system proposed by Levine [Levine, 7SJ 

has the same phi~osophy as that prbposed by Riseman and 

Erman [Hanson and Riseman.. 75J. 8oth structures are based 

on independent processes that cooperate through a common 

database structure. 

The progress ~owards the development or knowledge-based 

systems for v~sual motion understanding ~s slow, and the 

work which has been done is very limited. The first step ~n 
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this direction was taken bw Badler [8adler, 75l~ who used 

motion verbs as models to describe motion concepts. The 

applic:atiot'\ was to the generation of' line drawing images. 

Tsotsos has been engaged in the problem of' motion 

understanding; his recent report tTsotsos et al. , 81J may 

be designated as the ~irst knowledge-based swstem f'or visual 

motion understanding, in spite of its restrictions <see 

Section 2.2. 3. 3). Scacchi has presented an outline of' the 

structure of' a knowledge-based "intelligent" system for 

vi.sual motion understartdirtg CScacchi, 79J. His outline is: 

base-d on emergirag experience from computer vision <scene 

analysis), hardwar·e-based visior, systea\s, computer 

animation. artil'ici.s.L and human motion 

perception. 

Considering the previous discussion, we maw conclude 

that an understanding system, either as a computer vision 

system for static scene 

description from a 

interpretation. or 

sequence of images. 

construction of a kno•,Jledge--b.ased system. 

visual motion 

requires: the 

This system 

should utilize the know.Ledge from diverse sources of 

inf'ormation. consisting of multiple levels of' analysis. and 

to be supported by an efficient control structure mechanism. 

In light of the above discussion on the aspects and 

structure of' knowledge-based systems and the structur• 

developed in this thesis, we may claim that our research has 

successfully u~ilized the most advanced strategies of 

computer ~ision interpretation of static images, merging 
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them with the experience gained in image sequence analysis 

to construct a visual Motion understanding system. 

2.5 AUTOMATIC PROCESSING OF MICROSCOPIC IMAGES 

2. 5.1 Introduction 

The ear~y his'tory of' the aut'oroatic image processing or 

ce~~ images can be traced to the 1950's, and is directly 

re~at'ed to the developm•nt of the so-called te~evision 

microscope [Preston~ 

done in this field has 

76J. Most or the work which has been 

been concerned with the feature 

extraction and ana~ysis or cell images for theoretical study 

and research. However, in the practical field~ there have 

been studies aimed at the- automation of the re-cognition, 

·classification, artd cour1ting of' the cells in a blood smear. 

Significantly~ little of this work was addressed to the 

tracking and study of cell locomotion. Recently. 

experiments have indicated that the •:ell membrane plays a 

vital role in the mechanisms that regulate the social 

behaviour of the cell. o¥ which locomotion is an important 

component. Howeveri there is no existing work that attempts 

to quantif'y the observable changes .in the membrane shape 

that occur in 1ocomotiors. 

In that which f'ollows, we shall present a concise 

description of the important work done in each of these 

directions. First. a brief review of the progress in the 

studies of cell morphology is traced in Section 2. 5. 2. 
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the s~gnificant work which has been done ~n 

automat~c process~ng o~ ce~l ~mages 

class~fication purposes is reviewed 

for counting and 

~n Section 2. 5. 3. 

Third, the early teochniques for cell track~ng are reovie•~Jed 

in Section 2. 5. 4. The fourth Section 2.5.5, discusses some 

of the advanced approaches for the quantification and 

analysis of ce~l ~ocomotion, focusing attention on pro~ects 

which have been under study at McGill Univers~ty. The 

recent interest in the role that cell membrane plays in 

locomotion is discussed in Section 2. 5. 6. Finally, ~n 

Section 2.5.7 a conclusion of this sect~on, as well as the 

contribution of our research to the f~eld of· autornatic 

pr·ocess~ng of cell images, is presented. 

2.5.2 Theoretical Study Of Cell Morphology 

The init~al effort in the processing of cell images was 

concerned with the study of cell m•::>rphology, primarily for 

the purposes of clinical diagnostic application. Early in 

1952~ Young and Robert developed a flying-spot scanner for 

use in part~cle size analysis [Young and Robert, 52J. By 

1961, a special-purpose computer and television microscope 

had been constructed as reported by Izzo and Coles Cizzo and 

Coles, 621. Its initial use was in the research of the 

feasibility of screening blood smears for rare types of 

blood cell whose occurence appeared to be significant as an 

indicator of low levels of radiation damage to humans. 
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A maJor program in chromosom~ pict~re processing, ~sing 

a photomicrograph scanner rather· than a te~evision 

microscope as the input device to the general purpose 

computer~ was es'tabli.s:hed at the Nationa~ Research 

Founda'tion <Washington~ D. C. ) and 'the new England Medical 

Center CBos'ton)J as described by Ledley et al. in 1965 

[Ledley e't al. J 65J. In 196SJ the Tirs't genera~-purpose 

system Tor 'the digita~ analysis OT cell images was realized 

by Wied e't al. [ Wied et al. , 68]. Ledley 

described 'three diTferent methods for analyzing cell images 

72]. In the first method~ intercommunicating 

programmable cursors are utilized for the detection of 

boundary and area features. The second is concerned with an 

evaluation of the curva'tures of boundary segments to isolate 

the cells. The third method imbeds the picture data in a 

non-Euclidean coordinate sys'tem as an aid to the ensuing 

ar.alysis. 

As recen't as 1.97·5~ Bacus reported on a novel method 

which required that the cell image be digitized through two 

76]. He then used a 

whitening transrormation technique to produce two s~parate, 

transformed "colour" and "density" imag~s. Based on this 

type of preprocessing~ he dev~loped a scene segmentation 

technique TOr blood cell neutrophils [Mui et aL J 76l. 



c 

0 

LITERATURE CRITIQUE Page 2-107 

2. 5. 3 Cell Counting And Classification 

In order to develop a practical anal~sis system~ it was 

necessary to study pattern recognition and classification of 

cells. The automatic classification of peripheral blood 

leukocytes has also been the sub~ect of considerable study 

since the ~960~s CBacus~ 70; 

PrestonJ 70; Mendelsohn 

Mendelsohn .. 661. 

'Ingram et al. , 68; Ingram and 

et al. , 68; Prewitt and 

'In one of the earliest pieces of work, Prewitt and 

Mendelsohn attempted to classify blood cells into five 

categories.. utilizing an optical density histogram 

representation of the digitized cellular image CMendelsohn 

et al., 68; Prewitt and l"lendelsohn .. 66l. 

During the period :1.969-1972.. Your.g at t~IT simulated a 

system to perform an automated leukocyte differential. count 

through the measurement of nucleus and cytoplasm color and 

size CYoung, 69J. H• classified the l.eukocytes into one of 

five basic types: cos.inophi.l., basophi.l., 

lymphocyte, and monocyte. Ingram and Preston worked with 

larger data bases but cl.assifi.ed cells into onl.y three 

categories Cingram et al.; ~ 68; Ingram and Preston, 70l. 

Later in 1972, Bacus et al. dealt with the difficult 

interclass problem to classify the peripheral blood 

leukocytes into eight categories CBacus and Gose, 72l. They 

used as morphology measurements. the nuclear si.ze, nuclear 

shape~ nuclear and cy~op~asm~c texture. cytoplasm colour, 
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and cytoplasm texture. 

c the following categories: "sm.all l~~mph•;,cytes, 

large lymphocytes. band neutroph~l.s, segmented 

neutrophils. cosinophiles. basophils, and monocytes". 

Although more recently, several private companies have 

begun the development. and in some cases the marketing, of 

practical classi~ication device~. the 

reported research has been of a very preliminary nature. 

Fot' ex.ample.· the investigations were carried out with 

extremely small data bases. usually with cells from only one 

person, and with either no independent testing set. c•r an 

extremely small one. Some of the investigations have 

c [Causley and Young, 53J. 

... , t:' 4 c.' ..), Early Work On Cell Tracking 

With regard to the analysis of cell movement, Par· part 

was one of the first to examine this problem in 1.951. 

He used television to study the movement of 

blood cells. During the period 1953-1957, Causley and Young 

CCausley and Young. 53J. Hawksle~ [Hawksley et al. , 54J. and 

Barer EBarer, 57J used television techniques to stud~ living 

cells. 

In 1975 Greaves reported on an interactive on-line 

computer-television system for studying the behaviour of 

moving organisms CGreaves. 75]. Parameters relating to this 
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behaviour. such as for example velocity and rate of change 

o~ direction. were extracted with the aid of an interactive 

graphics system. In :1.976, 

elec-tromechanical instrun\fi•nt 

movemeni;s Of an individual 

Greert and Barnes desigreed .an 

to automatically ~ollow the 

white blood cell [Greene and 

76]. Youssef· [Youssef". 77J discusses this 

2. 5.5 Quantification Of Blood Cell Locomotion 

The movement Of blood cells and the factors which 

affect their lc:•cornot.ion are importance to the 

understanding Of the role these cells play in host defense 

mechanisms. A maJor pr·oJect which concerns the study o~ 

blood cell movment. quanti~ying and characterizing the 

different factors controlling their dynamic behaviour, has 

been carried out during the last few wears in the Computer 

Vision and Graphics Laboratory <CYaGL), at McG.ill Universty. 

Four proJects have been under study: 

Ci) Quantification Of blood cell movement by automatic image 

processing methods. 

Cii) A real-time laboratory device for 

quantifying blood cell movement. 

trackireg and 

<iii) An automatic picture processing method for extracting 

genealogical information from proliferating cell 

cultures. 
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<~v) QuantLr~cation and character~zat~on or the motion and 

shape of a moving ce~L 

The first two proJects have been comp~eted and their 

resu~ts have been reported [Levine and Yousser .. 78a;78b; 

Kno.ll... 79 l. The third prOJeCt is discussed in CFerrie.. 79; 

Ferrie et al.. .. 82; Ferrie and Levine.. 811. The proposed 

approach adopted by the fourth proJect has been presented by 

Yousser and Levine [Levine et al ... 79; Youssef and Levine, 

801. Recent.ly this work has been comp.leted and the results 

are presented in this thesis. A brief review of the 

ObJectives and achievements of the above proJects is 

presented be~ow. 

c (i) Quantification of Blood Cel~ Movement by 

Automatic Image Processing Methods 

In order to facil.itate the study of cell movement, 

Levine and Youssef introduced a new automatic picture 

processing method for tracking and quantifying the dynamics 

of b.lood cel.l. motion tYoussef, 77; Levine and Youssef, 78; 

Levine et a~. 80J. The input to the program ~s a 16 mm 

cine fil.m of the cell. cul.ture viewed in a steady state. 

Under the circumstances, the gl.obal directiona~ movement of 

the group of cells under considet'ation can be char~aetet"'iZI!-d 

by a Markov chain mode~ [Boyarsky, 77]. By observing and 

c quantifying the eel~ paths.. it is possib~e.. using this 

mode~.. to detern1ine- the prob.abili ty that the cell pop-ulation 



LITERATURE CRITIQUE P.age 2-111 

is moving in a particular direction. This information might 

be of interest in the study of the effect of substances on 

c•ll movement ... defects in white blood cell roigration... and 

The .above approach has man':!J d~~tsirable of·eatur~~ts over 

previ.ous work The syst•m has successfully achieved the 

cells. It quantifies the cell path data... and computes the 

steadw-state probabiliti.es in order to pr~~tdict the direction 

in which the cells will ultimatly move. Besides obtaining 

accurate steady-state results, the system can also be used 

~o ob~a~n a path ror each tracked cell. Thi.s da"ta is 

essential to the study of the characterization of locomotion 

c 
influences. 

Cii) A Real-time Laboratory Device for Tracking 

and Quantifying Blood Cell Movement 

Based on the approach described above, 

Youssef presented a design for an integrated practical 

laboratory system which facilitates the tracking and 

quantifying of the cell movement in a real-time environment 

[Levine and Youssef... 7Sbl. The construction of this device 

is based on observing the cell movement directly <in 

real-time> via a microscope using a TV camera connected to a 

digitizer. The practical implementation of this decice was 

reported by Knoll [knoll... 79J. Another desirable advantage 
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or this device is that besides tracking the cell in 

real-time, it also reduces the noise in the input image 

which results from recording the motion on a cine rilm. 

Other possible applications might be in the study of the 

effect or drugs on cell movement, defects in WBC migration, 

and general interaction among cells. 

Two common restrictions characterizing all the tracking 

approaches described thus far <including the approach of 

Levine and Youssef) are: <a> the cells being tracked must 

remain well isolated rrom one another <no occlusion or 

overlapping>, (b) most of the approaches are based on 

centroid matching techniques. Thus. the changes on the cell 

shape that may occur between the sequential frames have been 

ignored. In order to develope a tracking system which 

considers these factors. the system should utilize world 

knowledge about the class of scene and the obJects to be 

tracked <see Section 2. 4 on knowledge-based systems>. The 

first - tracking sy:r.tem · u•hich considered these restrictions 

was deve1oped ~n Japan at Koyoto Un~vers~ty by Ariki et al. 

CAriki et al.. , 7SJ. They proposed an interactive image 

model.ing system for tracking moving objects from a sequence 

of images. They accomplished this obJective by constructing 

interactively, models or the object to be tracked. Using 

these model patterns. they can measure the changes in 

specified features <intensity, location, and shapes>. The 

fit'St system wh.ich achieved the same 

automatical.ly was developed by Ferrie and Levine CFerrie and 
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81J. A brief description of this approach is 

presented below. 

Ciii) An Automatic Picture Processing Method for Extracting 
----------------------------------------------------·-
Genealogic~! Informat~on from Proliferating Cell Cultures 

---------------------------------------------------------

The study of Ferrie and Levine was concerned with 

extracting genealogical information from proliferating cell 

cultures by using automatic image processing technique~ 

[Ferrie and Levine. 81]. Their tracking approach is based 

on updating the description of the cell in the current frame 

(t) by matching the feature vectors of each candidate in 

this image to the featur~ vector of the cell in the previou~ 

frame <t-1) <the static model of the cell>. Two casoaas 

c arise: <a> the cell is located. then the static model is 

updated and the tracking is continued. <b> the match failed 

indicating that the cell has undergone a state transition. 

In this case the process computes the hypothesis of the 

different possible state transitions. By testing each 

hypothesis indLvLdually, th~ system selects the one that 

best matches its supporting evidence. 

In this approach, ~n order to solve the correspondente 

problem. explicit models of the different state transitions 

of the cell are used. the random morphological 

changes. especially with a phase-contrast obJective. are 

very difficult to model. Consequently, the prototype models 

of the cell transitions are not sufficient to solve th~ 

correspondence problem in these cases. Of 
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~s the ~act that an "expert" human can keep 

track~ng the ce1l desp~te these artiractual problems. Thus. 

he uses cues from the v~sible morophlogy of the cell to 

distinguish those ~~oJhich ar• artif actual due to shadows or 

phase-contrast. 

The system which simulates this "expert" process is the 

obJec-tive of the- cut .. rent research by Levine and Ferrie 

[Ferrie and Levine. 81). They propose to accomplish th~s 

obJective by modeling the set o~ visual cues and response of 

the expert which he use$ to ~dentify the location of a cell. 

This knowledge will be represented in the form of implicit 

models which may be used through inferential mechanisms 

where syntactic kno~.<~ledge <explicit models) are not 

sufficient. 

2. 5. 6 Membrane Shape Changes 

The~ma~n function of a cell's surface ~s to receive 

.inf'ormat.ion from the environment. It has become 

increas:.ingly evident that the surface plays a pivotal role­

in the l~fe, deueloproen~ and regulation of cell~ The 

mechan~sms that regulate this social behaviour of ce1ls. of 

which locomotion is an important component, are not well 

understood. Recently, experiments have indicated that the 

cell membrane plays a vital role in these mechan~sms. 

However, there .is no existing method to quant~~y the 

observable changes in membrane shape that occur in 

l.ocomot~on. 
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The work o~ Lewandowska et al represents an empirical 

approach to analyzing the locomotion of leukemia cells by a 

computer image proc•ssing method [Lewandowska et al. , S1J. 

They measure th• location and shape of specific types o~ 

cells Cleukemia)~ using a group of simple features~ such as 

area, perimeter, ratio of perimeter to area, and elongation. 

These features are computed ~or a few frames (10 frames are 

reported) selected interactively from a sequence of images 

recording the cell locomotion. This interactive selection 

is based on choosing those frames in which a significant 

Then, the computed 

features of the cell in each of these frames are compared 

with ten simple prototype models describing the different 

c patterns which may be exhibited by the cell. 

For obvious reasons we are not going to compare our 

current work to the approach of Lewandowska et al. , however 

we may point out the restrictions of their work by the 

following points. T~eir method is applicable to lymphocyte 

cells Cleukemia) which exhibit relatively simple shape 

patterns <which ar• easy to model> during their locomotion. 

compared to Pt·lN. The system computes only the location and 

general shape <uaing shape ~eatures use~u1 only ~or simp~e 

shapes) in a few st~tic frames. ignoring the structure of 

the cell. Th~ system does not deal with any problems of 

image sequence analysis, such as the quantification and 

description of incremental or global changes. Another major 

problem in image sequence analysis is finding the frames in 
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wh~ch s~gn~f~cant change~ have occured Ckey frames> and 

wh~ch ~s solved ~n th~s system ~nteract~vely <manually>. 

the s~mplistic:. 

methodolog~es and technicalities of Lewandowska et al, this 

work is still worth mention~ng for two reasons: First, it 

is an attempt towards the solution of a difficult problem, 

name1y quant~fying •nd character~z~ng the observable changes 

in the cell membrane. Second, this work is rooted in a 

completely independent local research experience Cthey do 

not rt1ake use of or ref'er to any of the previous work in the 

related areas). For example, they refer to the ratio of the 

area over the perimeter as the uMal~nowska factor". This 

feature is now established in the computer v~sion community 

as "circularity". Another example, is that the method they 

use to generate the polygonal approximation of the cell 

shape, has no theoretical basis. Therefore, in many cases 

the polygon may represent a completely different shape from 

the cell. 

2. 5. 7 Summary 

From the previous brief discussion. it is evident that 

research on the analysis of cells using computers has been 

carr~ed on for over twenty years. Th~s has more recently 

led to the development of exper~mental and also pract~cal 

systems whose per~ormance in many cases equals that of the 

human technologist. 
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The maJor efforts in automatic image processing of ceLl 

images have been focussed on the analysis of chromosomes. 

of ~he work which has been done in ~his area has been 

direc~ed toward$ the recognition and classification of cells 

on a blood smear. The study of cell movement and the 

largely 

ignoreod. the recen~ work at the Computer Vision 

and Graphics Laboratory at McGill University offers the 

possibility of quantifying and characterizing the cell 

dynamic behaviour. 

The structural changes in the cell morophology ~hat 

occur during locortot.ion have not been reported in the .-
~ literature. Furthermore~ .in spite of the iropor"tance .and 

great inter· est irr undet··stand.ing the t'ole that the •=ell 

membrane plays .in locomotion~ there is no existing method 

for quantifying and analyzing the observable changes .in the 

membrane shape. 

In our current research we have developed an image 

descr.ibing the s-tructural changes in the morophology of a 

mov.ing cell. Thus~ we see that the contributions of our 

research in the automatic processing of cell images lie .in 

the followirrg: 
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(a) Wi~h th~ a~d o~ the global observable changes in th• 

cell locomo~.ion. one of the main behavioural 

character~stics is mathematically quantified and 

described; namely, the chemotactic behaviour <the 

directional locomotion of the cell with respect ~o th~ 

directional effec~ of an ex~ernal factor). 

Consequently. the effec~iveness of an external factor 

in modifying the cell locomotion is quantified. 

(b) A mathemat~cal expression for measuring the complexity 

of the cell shape pattern has been developed and used 

to describe the membrane shape and its observable 

changes. 

(c) The global changes in the cell structure are also 

analy:zed; a subpart of the cell is classified 

as being a "pseudopod" or "cell body". and a pseudopod 

is described "gr•owing ••. or 

"stat~onary". 

(d) Furthermore. some aspects of the global behav~our of th~ 

cell are summarized and described; f'or example. th12 

"domination" of a pseudopod in leading the locomotion 

of the ce.ll. 

Ce> We describe the dynamic activity of 

symbolic terminology 

b.iologis't. 

l'-'hich is 

the cell using a 

meaningful to the 
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Th~s computer study might provide clues to the nature 

and d~str~but~on of "receptors" on or within the membrane, 

which is a vi~al link in the interaction between the 

external factors and c&ll internal processes. 

might lead to a better understanding of the role that the 

cell membrane plays ~n the mechanisms wh~ch regulate the 

social behaviour of cells. 

-

0 



c 

CHAPTER 3 

SYSTEM AND DATA STRUCTURE 

3.1 INTRODUCTION 

The main goal of' our resear·ch is to design and 

implement an imag• und\f'rstat'\ding syst~~tm capable of analyzing 

the locomotion and structural chang~~ts in the shape of a 

non-rigid moving obJect from a sequet'\Ce of' pictures. Any 

system which tries to solve this problem thoroughly is 

attempting to imitate hurnan visual rnotion percept.i.on. The 

latter constitutes a hierarchy of' processes, which includes 

motion dete-ction, under•tanding. .ared description. 

these aspects are addressed by this research. 

From a philosophLcal point of' view, the 

All of 

present 

structure is motivated by the computer vision framework 

proposed by Levine (Levine, 781. The latter has been 

revised and implerliEH'lted by Levine and Shaheen for general 

static scene analys.i.s and interpretation CL~~tvine and 

Shaheen, 811. A rule-based system for low-level image 

segmentat.i.on is described in (Levine and Nazif, ~9821. 
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Our propose-d for· a general motion 

0 understanding s~stem involves three basic entities: dynamic 

each of which is assigned a particular task. The d~n.amic 

d.ata are continually changing as a result of the functioning 

The~ are stored in the 

the STM~ which is designed to work as a communication 

channel for all of the processes. Each process can read 

from and write into the STM. It contains a record of the 

instantaneous ob-Ject motion~ shape~ and structural changes, 

as well as the current global description of the ob-Ject 

dynamic behaviour·. The static data in the LTM remains 

unchanged during 'the course of analysis~ and c:.ontains 

c constraint knowledge pertaining to the class of scenes and 

motion under analysis, as well as the pertinent 

computational processes. 

The system also consists of different computational 

processors~ which are designed to execute through a <loose> 

s-tatic, .i. nc:rement.el~ and global <see Figure 1.. 4). These m.avJ 

be described as follows <Figure 1.. 5): 

S-tatic: Scene Analysis: 
====================== 
This s-tep is similar to a static image pt"ocess.i.ng system. 

The inpu-t is a single digital image~ examples or which are 

shown in Figure (4. 3). The ou-tpu-t .is a description and 

interpretation of the scene. However, .in image sequence 

analysis, the information extracted f·r·om the previous frames 
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of the same sequence may be used to ass~st the analys~s of 

the current frame. The ma~n ob~ective of this stage is to 

identify the desired moving ob~ect. segment it. and describe 

it in each frame of the sequence. Figure <1. 5a> shows a 

block diagram of this st-age of analysisJ and Figure <4. 1> 

shows the processes and data structure. The segmentation 

output can be seen in Figure <4. 21a>. l:n (4. 21b>. the 

result of static sh~pe anal~si.s i.s presented, in which the 

cell is represented b~ a labeled star graph. 

Description <4. 1> is' typical- of those generated -by the 

system. How this is obtained is described in Chapter 4. 

l:ncremental Change Detection: 
============================= 
This stage is an intermediate step between the static and 

c the global. The main objective is to detect and describe 

the incremental changes in the shape. structure. and mot~on 

of the moving ob~ect between two sequential frames <see 

Figure 1. 5b). Figure (5. 1) shows the processes and data 

structure of this stage. and Description <5. 1> gives an 

example of a summary of the incremental changes between two 

sequential frames. Th~s stage of analysis is described in 

Chapter 5. 

Global Analysis: 
================ 
This presents the highest level in the hierarchy of the 

system. The goal is to analyze the static and incremental 

data in order to detect and describe the global observable 

changes within the sequence of frames <Figure 1.5c). Two 

ba~ic steps are involved. The first is concerned with the 
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0 
global dE?sc:r.ipi;ion or three aspects pertaining to the cell 

d!:;lt"l·E'IIfl.iCS; locomotion. shape, and structure. The 

s•cond integrates these different global descriptions into a 

coherent characterization of the behaviour of the cell. The 

methodologies and implemented techniques pertaining to this 

stage are described in Chapters 6~8. inclusive. 

The dif~erent processes interact through the STM using 

information stored in the LTM, until a complete 

description of the dynamic cell motion and morphology is 

obt.aine•d. 

' c DATA STRUCTURE AND KNOWLEDGE REPRESENTATION 

The dif~erent types of data which may be manipulated by 

the system are classified into: a sequence of images, a 

group of ObJects and subobJects. a set of features, a group 

of symbolic descriptors. a group o~ characteristics. and a 

The latter may be further divided into 

representational and control rules. In this section. the 

definition of these data will be presented. Also.• ~J.Ie will 

I.ASed for· kno•.·Jlo?d•;~e 

representation and model construction at any level of 
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3. 2. 1 Basic Elements For Knowledge Representation 

The main input for any image sequence analysis system 

is a series of two-dimensional digital images representing 

the variation in a specific scene along a third-dimension. 

These images may be obtained in various ways; for example, 

cine film, video t•pe1 or a TV camera observing a scene in 

real time, whereby the images are captured at specific time 

intervals. Whatever the input device, the actual data for 

~he' analysis system i~ a ~et of two-dimensional images <I>, 

where each element of this set represents a static <single> 

image of the scene at a specific time ti. The latter are 

elements of <T>, the set of sample times at which the frames 

are obtained: 

(3.1) 

and Iti is the image of the scene at time ti. The period or 

time between two frame~ <i> and (k) is given as Tik. 

Each image Iti of the temporal sequence may be 

This set may also be divided into two subsets according to 

whether the obJect is moving or stationary: 

<OBJECTS> ={MOVING OBJECTS>,<STATIONARY OBJECTS> (3.3> 

<MOVING OBJECTS> (3. 4) 

<STATIONARY OBJECTS}= <S01,S02 •...• SOk> (3. 5) 

where MOi is moving object<i> and SOi is stationary obJect<i>. 
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and Lt Ls usually 

0 necessary to decompose them into primitive subparts. The 

result of th~s decomposition is a collection o~ SUBOBJECTS 

Thus. for example, a moving 

obJect MOi may be decomposed into : 

MOi = (SMOi1~SMOi2 •.... ,SMOs}, (3. 6) 

where s is the number of subObJects o~ obJect MOi. :X:f' MOi = 
<8}, this indicates that the obJect MOi is simple and cannot 

be decomposed. Figut""e <4. 12b) shows an example of 

sequence of' cel.l bot..~t-.daries. Figure <4. :1.5> indica't'es their 

pol.ygonal approximatLons, and F~gure <4. :1.7> Ll.lustrates the 

cell. decomposL tior.s. 

whose decomposit~on is represented by a star graph. The 

-~ central node indicates the body of the cell, while the 

others symbol.ize the "bumps" on the cell membrane. It is 

these protrusions t'hat \.lltimately grow int'o the pseudopods 

discussed earlier. An example is given in Figure <4. ~S>. 

A set of ob,Jects is described by static features. The 

latter define the diff'erent pr·operti.es of shape. structure, 

or motion of' the obJects and subobJects to be measured or 

analyzed by the system: 

<FEATURES>= <PROPERTY,NUMERICAL VALUE> = <P,V> C3. 7) 

(3. 8) 

and ( 3. ·;a) 

A property name in the set <P> is given by Pi. l:t may take 

0 
on any value in the set <V>. Furtherl'llore, 

VCPi) to def'ine the numerica1 va1ue of a specit"'ic 
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property Pi. I~ the value is given at a certain time tJ• 

this is indicated by Y<Pi~ tJ). 

The set or properties may be divided <grouped) into 

<PROPERTIES>= <SHAPE,LOCATION~STRUCTURE,MOTION> 

= <SP .. LP ... RP .. MP> (3. 10) 

<SHAPE:> • <SP1,SP2 ....... :> (3. 1:1.) 

<LOCATION> = <LP1,LP2, .... > (3. 12) 

<STRUCTURE> = <RP1,RP2, .... > <3. 13) 

<MOTION> = <MP1,MP2 •.... > (3. 14) 

<P> = <SP> U <LF> U <RF> U <MF> (3. 15) 

where SF, LF, RF, and MF are 'the group of' properties which 

define the location, structure, and motion. 

respectively. 

Table (3. 1) give~ examples OT the different cel.l 

properties under each gt .. oup heading <shape~ 

s'tructure.mo'tion, and location). This fixed list is stored 

in "the~ LTM.- On the other hand, +,he num•rical values 

(dynamic data) of th• specifi•d properties are stored in the 

STM, and may be Uf:•da'ted at any time 'throughout; the analysis. 

3. 2. 2 Symbolic Qualifiers 

A set of' symbolic de:Scriptors or qualif'iet"·s <Q> is used 

c to classify and describe the numerical values of the 

different properties of the moving cells. The nurAber.. of 
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defined qualifiers rrray be less than th& number of 

properties. because more than one property may be described 

using the same symbolic descriptor. al.l 

properties based on measurements of distance between two 

points (length, base-line, connective-line, displacement> 

may be described as SHORT, LONG, ... ,VERY LONG. Also, as 

already indicated for the properties, the set of symbolic 

qualifiers may be grouped into subsets according to the 

nature of the properties they describe. Thus: 

(3. 16) 

<SQ} = <SQ1., SQf, ... )· shape qualifiers, <3. 17> 

<RQ} = <RQ1.,RQ2, ... )- structural qualifiers. (3. 18> 

<MQ} = <MQ1,MQ2, ... } I motion qualifiers, <3. 19> 

- <LQ} = <LQ1,LQ2, ... } I 

~ 
location qualifiers. C3. 20> 

Each property is specified by a subset of symbolic 

qualifiers; thus: 

<Q<Pi)} = <Q1(Pi), Q2(Pi), ... I Qk(Pi))-, <3. 21> 

where Q(Pi> is the subset of qualifiers describing the 

property Pi. Table <3. 2> gives a list of examples of 

different cell properties and their multiple levels of 

description. This type of information is stored in the LTM. 

whereas the symbolic descriptors of the actual image under 

analysis are stored in the STM. For the latter, the 

assigned qualifier for a specific property Pi at a given 

0 
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cell 

eel.! 

characteristic. Each cel.l. characteristic is 'the description 

of a group of features which cooperate to define a specific 

type of behaviour. These may be based on 'the global changes 

in cell shape, •tructure. motion. combination of more than 

one global change~ and/or the effect of the environment on 

the cell behaviour. The general form of this set of 

characteristics. 

<CH>. <CH1. CH2 •... I CHi •... }, 

is given by 

<CHARACTERISTICS> • <PROPERTY, OPERATOR, QUALIFIER> 

<CHi> 

(3. 22) 

(3. 23> 

(3. 24) 

where Pi,Qi,Qi are elements of 'the sets <P}, <O}, <G>. The sets 

<P> and {Q} have already been defined. and the se-t 

<O> = <AND,OR,LT.GT,EQ,LE,GE,NE,AE,GTT,LTT,MST,LST} (3. 25> 

specifies the relationship between the property and its 

qual.i f ier. 

Table (3.3) gives th& definition of the different 

elements of <O>. 

preceding sections for the As indicated in the 

properties and qualifiers. the set of characteristics may 

also be grouped into subsets, according to the nat"~re of the 

behaviour they describe. 
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0 3. 3 KNOWLEDGE REPRESENTATION RULES CLTM) 

Know1edge represen~a~.ion and mode1 cons~ruction are 

probabl.y ~he mos-t .inlpor~an~ aspec~s of' the s-tructure of a 

knowledge-based sys'tem. we 

described 'the different types of da't.a which represent the 

basic elements of 'the knowledge represen~a~.ion for a motion 

understanding sys~em. In this sec'tion1 we w.il.l demons~rate 

how these basic data el.ements can be used to create a world 

model. 

In our proposed struc~ure1 the model which represent~ 

the knowledge contains two basic types of data. constraint 

knowledge and rules. The latter may be further classified 

.into representation.al and control rul.es . The 

representational rules are responsible for generating the 

different descriptions and char.acter.istics according to the 

numerical measurements of ~he different features. The 

control rules account for the activation and scheduling of 

the different syste-rR processors. This ~ype of data will be 

described .in Sectic•n 3. 4. 

In the human undet--s:tanding system~ 

and/or description of a specific situation is accomplished 

by an inference process which u~.ilizes the perceived data1 

as well as a priori knowl.edge and experience. The latter is 

modeled by the constraint knowledge. I~ is classif'ied 

according to two basic criteria: first~ whether it is 

scene-dependen~ or -independent. Second. according to the 
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natut"'e of' the cell propet"'ties. 

Scene-independent knowledge holds ~or any class of 

obJects in motion. Fot"' example~ the descriptions of a 

circular or elongated shape. 

motion~ are the descriptions constant velocity, positive 

acc:elet"'a'tion~ or negative acceleration. Conver-sely, 

scene-dependent kraowledge only per-tains to a specific class 

of scene or- motion patt&rrt. Thus~ the r-equired knowledge 

which may be used *or the understanding of the blood cell 

motion is differ-ent from that which characterizes the 

behaviour of vehicle drivers on an urban highway~ an animal 

under a dr-ug protocol, or a growing plant. Both of' these 

kinds of constraints are involved in the design of the 

representational rules which embody the world model. 

The function, classification and construction of the 

rules pertaining to the image model will be discussed in 

this section. Rules involving the control of the analysis 

will be considered in Section 3. 4. All the LTM rules may be 

described as condition-action relations. They consist of 

predefined situations <C> and descriptions of actions <A> to 

be taken when the specified situations occur. The gener.el 

form of these rules is: 

R U L E if CONDITIONS ==then==>> ACTIONS 
======= 

<RULES} = < <CONDITIONS}, <ACTIONS> > 

<R> 

where <C> = <C1,ce~ ... ,CJ}, 
and <A>= <A1~A2, ... ,Ak>. 

Cl. 26> 

(3. 27) 

(3. 28) 
(3. 29) 
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Typical situations <conditions> and actions may b~ summarized 
as f'ollows: 

Situations: 

(a) Completion of' th~ execution of' a specific process. 

(b) Occurrence of' a specif'ic situations through or 
af't•r the execution of' a specific process. 

(c) Sp•cif'ic property values. 

(d) ObJect or subObJect descriptions. 

Actions: 

(a) Starting and stopping the system. 

(b) Activation of' a specif'ic process. 

Cc> Generation of a set of' features~ descriptions~ 
or characteristics. 

Cd> Data presentation for output. 

Both general and "expert" knowledge are represented as 

production rules. The•e may be classif'ied into three groups 

according to their f'1 .. mction, as follows: 

(a) To translate the measured numerical. values VCP> of' the 

dif'f'er~nt cell properties into symbolic qualifiers 

GHP). 

(b) To generate the static~ incremental, and global symbolic 

descriptions or the motion, shape, and structure or the 

moving cell. 
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Cc) To ~n~egra~e ~he multitude of observable changes and 

global descr~ptions in~o a coheren~ whole, in order ~o 

geoneorai:e ~he chat"'actet"isi:ic behaviour of' the cell. 

In the following, the structure and examples of each of 

these d~ffert!'nt groups of representa~ional ru.les at"'E.' 

desc:r .ibed. 

Qua.lifiers 'Q> (group (a) above> are the elements of 

natural. .language which humans use f'or describing ObJec:~s. 

In our system. th•y are computed by a set of Qualif~er Rules 

CQR>. The funct~on of the lat~er is to choose among a set 

of symbolic descriptors the appropr~ate one for a given 

numer~cal va.lue associated with a specific property. 

we have: 

<QUALIFIER RULES> • <CONDITIONS> ==then=•> <ACTIONS> 

<CONDITIONS> = <NUf'IERICAL VALUES, OPERATORS>. 

<ACTIONS> • {QUALIFIERS> 

{QR} 

<QR~> 

= {QR:t... QR2, 

= <V<Pi>, O, 

• • • I QRi, ... > 

Thus 

(3. 30) 

(3.31) 

(3. 32) 

(3. 33) 

(3.34) 

where EJ is an elemment of <E>, a set of thresholds stored 

in the LTM. The complete set of qualifiers <Q} and 

operators <O> used by ~h~s set of rules was def~ned ~n 

Sect~on 3. 2. The numer~cal value V<Pi> may be defined by a 

measurement or a constraint perta~ning to the spec~f~ed 

property. 
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Two issues are o~ signi~icance. How many levels. and 

how should ~he thresholds be chosen?. A ~horough study o~ 

these i.ssues i.s pr·f.'s~mted i.n Chapter 4. With regard to the 

first, the number of classes for a s~mbolic descrip~or is 

controlled by the accepted level of approximation related to 

the desirable description. Specifically, the greater the 

number of class@S <levels>~ the more precise the 

description. On the other hand, the smaller the number of 

classes deFined, the more .insensitive will be the process o~ 

analysis to noise. Obviously, more data compression is also 

obta.ine4 The question arises as to how these con~licting 

factors can be reconciled. 

The simplest method 

organize it into two 

for dividing a 

groups. This 

subclass is 

is similar 

to 

to 

transforming a gr.ay-1evel image into a binary or.e <black and 

white>. Thus. using .a single threshold, each numerical 

value can be assigt·,ed to one of SHORT, LONG or FAST, SLOL-J, 

and so on. It is generally accepted that the human ability 

to categorize into subclasses is indeed limited. In 

recognition of this~ we have de~ined the number or 

subclasses to be five. in the following order: VERY LOW. 

LOW, MEDIUM, HIGH, VERY HIGH. Tab.le <3. 2> gives ex.:unples ot 

the different qualifiers for some of the main properties 

measured. In some special cases, the nature of the property 

to be described requires a di~rer~nt rorm of quant~fication. 

For example, in describing th~ direction of motion of a 

moving obJect. eight levels are defined <EAST. EAST-NORTH, 
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NORTH~ WEST-NORTH. WEST, WEST-SOUTH, SOUTH, EAST-SOUTH). 

The sEPcond .issue invo~ved in desc:ri.bing a set of' 

numeric.a~ values is how to defi.ne the 

thresho~ds .in order to di.vi.de this set. This problem seems 

easier than .it is; it involves clusteri.ng theory. human 

psycho~ogy, and probleM domain knowledge. A thorough study 

o~ this subJect has been made by Deno~sky at MXT [Deno~sky, 

76l. The title of' hi.s study, "HOW NEAR XS NEAR?" is, in 

f'act, a good def'inition of' the pt"'oblem. In order to design 

a suitab~e quantification to be used for different classes 

of' obJects and motion, normalization of the dynamic data is 

important. Thus, if' the numerical values of a specific 

property are normal.i.zed to range between zero and one. a 

general rule may then be used f'or assigni.ng the quali.fiers. 

For example: 

RULE<3. 1): 

rF V<Pi). GE. Ei, .AND . . LT. £2, ==then==> Pi<--Ql, 

where V<Pi.) is the normalized value of property Pk, Ql is 

the chosen symboli.c qualif'i.er, and £1,E2 are classi.f'i.cation 

t.hresho~d values whi.ch define the boundari.es of' the 

qualif'ier Ql. The- act .ion Pi<--Ql is interpreted as 

assigning the qualif.ier Ql to the pt··operty Pi., thereby 

generating Ql<P.i.). An exanlple of .a complete specif'ication 

is: 

RULE<3. 2): 

(a) IF V<area) . GE. E9, AND . LT. E1, =then=> AREA <-- V. St1ALL 

(b) IF V<area) . GE. Ei1 AND . LT. Ee~ =then=> AREA ·(-- SMALL 
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<c> IF V<area) . GE. £2, fiNCt . LT. £3, =then=) AREA .,:-- t1EDIUt1 

(d) IF V<area> . GE. £3, AND . LT. E4, =then=:> AREA <:-- LARGE 

(e) IF V<area) . GE. E4, AND . LE. £51 =then=:> AREA <-- V. LARGE 

The thresho.ld va~ue:s E1, E2, ... , Em, ... 1 En are stored in the 

LTM as constraint knowledge. 

The second s•t o~ rules <group (b) above> is 

the static, incrementa~, and globa~ changes o~ the obJect. 

Each o~ these processes may involve rules related to shape. 

structure 1 or motion. We note that all o~ the data 

manipulated at this stage will be in symbolic ~orm. 

The function of these rules in the motion understanding 

c system is similar to that of constructing a sentence in the 

natural language. Examples are: 

RULEC3. 3>: IF SMALL<RELATIVE-AREA> . AND. SHORTCBASE-LINE), 
=then=:> DESCRIPTION . EQ. PSEUDOPOD CANDIDATE. 

RULE<3. 4): IF VERY-SHORT<DISPLACEMENT<i~i+i)) 

=then=> DESCRIPTION .EQ. STATIONARY. 

RULE<3. 5>: IF YERY-LONG<DISPLACEMENTCi.i+1>> 
=then=> DESCRIPTION . EQ. ARTIFACT. 

These examples demonstrate the use of the representational 

rules at the static and incremental levels of description. 

In corporating these, another function is to generate the 

global features of the cell and its motion. This task may 

be accomplished in two steps. The first is concerned with 

the detection of all the frames in which a change has 

occurred. These are referred to as "key frames" <KF> 

CBurtynk and Wein, 7Sl~ and are descr·ibed by rules· based on 
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symbolic qua~J. f' i.el"'·:a:. The set of key f't".:Uales may be def'ined 

as: 

<KF> -<KF1., KFa, • • • I KF ..J• ... >. (3. 35) 

Thus. for example. if a spec:ifi.c property has the same 

qualifier for a sequence of i.mages, then that property may 

be desc:ri.bed by the same global descriptor. The frames in 

which the qualifier has changed (beginning and end), are 

assigned as key frame~ 

following ru~e: 

RULE(3. 6>: 

Thi.s strateg~ may be modeled by the 

IF Q(pJ., t1.) . EQ. Q(Pi, t2> . EQ. Q(Pi, tk) . NE. Q(t(k+1.) > 

=then=> Q(Ti.k) .EQ. Q(ti.). AND. KF ._1 . EQ. k. 

Note that Ti.k i.s the period which includes the samples 

<tLt2 •... ,tk> and KFJ is the key frame number ._1 which 

occurs at tJ.wre tk. As wJ.th other vari.ables, Ti.k may be 

normalized and described symbolically as VERY SHORT. SHORT, 

MEDIUM, LONG, or VERY LONG. 

The above is an example of a simple rule, based only on 

the dynami.c: data of the different properties. The second 

step in provi.di.ng a useful global descri.pti.on. J.s concerned 

wi.th di sting•.d.shi.ng the signifi.cant changes from the 

i.rrelevent or noisy ones. In this case, a 

sophisticated approach wo~ld uti.lize the dynamic descri.ption 

of the different properties, in con._1~nction wi.th logical 

kno~JJledge constraints. For example, an inference process 

co~ld eli.mi.nate the very short events. These are ~sually 
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caused by noi.se or random changes due to undesirable 

exper-imental condi 't i.ons. suppose a speci..f"ic 

pr-oper--ty Pi. is described 'through three sequential periods 

It" the time T~2 is 

very short r-elative to both T0~ and T23 <T01,T23 )) T12), 

then an inf'erenc:e process might el.imir.ate T12 by one of two 

actions: first, by merging all three periods T0~.T~2,T23 

into one <T03), or second, by merging T12 either to T01 or 

T23. Thus, if the cell was described in three sequential 

periods as SMALL, VERY SMALL, and SMALL, then a mer-ging of 

these periods would result in SMALL as the description. 

RULE(3. 7): IF <T91. GTT. T12 .LTT. T23>. AND. 

c <Q1 .EQ. Q3 .AND. Q1. NE. Q2), 

=then=> t'IERGE THE THREE PERIODS INTO Q13(Pi, T03> 

where T03 = T01 + T12 + T23, and Q13 = Q1 = Q3. 

Figure <7. 5a) illustrates the function o.f" this rule. 

T01 or T23, is based on logical i.nference. 

the length of the cell was described in three sequenti.al 

periods as bei.ng SHORT, VERY SHORT, MEDXUM, then one may 

logically deduce that i.t has changed from SHORT to MEDIUM, 

if the description of the very short period <T12) i.s the 

same as that of either the preceding or following period. 
I 

Thus, if the description of' the VERY SHORT period is closer 

to the SHORT peri.od rather than to MEDIUM period. period T12 
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may be merged to T01. This ~ogica~ deduction may be 

accomp~ished by the fo~~owing rule: 

RULE<3. S>: 

IF <T0~ .. GTT. T~2~ .AND. T12. LTT. T23> 

.AND. (Q~. GT. Q2 .AND. Q2. LT. Q3. AND. Q1. LT. QJ>~ 

.OR. <Q1. LT. Q2 .AND. Q2. GT. Q3. AND. Q1. GT. QJ), 

•then=> MERGE PERIODS T01 AND T12 INTO Q12<Pi~T02> 

wher~ T02 = T01 + T12~ and Q1.2 = Q1. Figur•e (7. 5b) 

i~lustrates the function of this r·ule. Other examp~es of 

simi~ar ru~es are shown in Figures <7. 5c-7. 5g). 

The third set of rules (group <c> above) is responsible 

for integrating these different descriptions into a final 

coherent characterization. In this sense, its task is 

similar to that of a human. The latter studies and analyzes 

the data by observing the eel~ in order to under·star.d and 

character i:ze its dynamic behaviour·. Be~ow are exarnp~es of 

this set of ru~es, which main~y depend on the expert mode~. 

The general format is given by 

RULE : IF DESCRIPTION =•then==> CHARACTERISTIC 

For examp~e. if the total d.isp~acement of the- cell · in the 

main directions <EAST, EAST-NORTH, ... > is given as: 

<TOTAL DISPLACEMENT$)= <TD1, TD2, ... , TDi1 .. . 1 TOm), <3. 36) 

where TDi is the t.ota~ d.isplacements in directior• (.i), then 

wet hav~: 

RULE<3. 9>: IF TDi . GTT. TD._t (._t=:LI Cl. , . I ffi) 
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·~hen=> CHARACTERISTIC . EQ. DIRECTIONAL LOCOMOTION. 

RULE<3. ~0): IF DIRECTIONAL LOCOMOTION 

. AND. CELL DIRECTION . AE. BACTERIA LOCATION 

•then=> CHARACTERISTIC .EQ. POSITIVE CHEMOTAXIS. 

RULE<3.~~): IF PSEUDOPOD IS GROWING 

. AND. PSEUDOPOD DIRECTION .EQ. CELL DIRECTION 

=then=> CHARACTERISTIC .EQ. DOMINANT PSEUDOPOD. 

The above show how the global cell locomotion may be 

characterized as positive chemotaxis~ or how a pseudopod may 

be described as dominant. 0~ course~ di~~erent descriptions 

are also possible. For example~ the global cell locomotion 

may be described as being VERY STRONG NEGATIVE CHEMOTAXIS to 

VERY STRONG POSITIVE CHEMOTAXIS~ or a pseudpod may be 

classified as being NOT DOMINANT or VERY DOMINANT. An 

example of the global locomotion description is given in 

Description (6. 1>~ Description (7.1) summarizes the global 

changes in the cel1 membrane shape, and Description (9. 3) 

presents the final characterization of some pseudopods. 

3. 4 CONTROL STRUCTURE RULES 

Constructing a knowledge-based system with different 

levels of processing, which utilize multiple sources of 

knowledge organized at different levels of descriptionj 

requires an efficient control structure. Two strategies for 

defining control structure have been discussed in the 
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~i tel"·ature: mode~-driven a~d data-driven. 

system activiti~s are contro~1ed by the existing know1edge; 

whereas in the second~ it is the data that dominates. The 

mechanism we are proposing for this motion understanding 

system is a ru1e-bas&d structure which is both model and 

data-driven. 

The mode~-driven contro~ ru1es are responsib1e for 

activating~ deactivating, and scheduling the different 

processes and representationa1 rules, as wel~ as starting 

and stopping the system according to a predefined <by the 

model) hierarchica1 or sequential order. These rules are 

executed hierarchically, and in sequential order within the 

same 1evel of the hierarchy. 

The high leve1 rY1es in the hierarchy are concerned 

with starting and stopping the sy•tem, as well as activating 

the main ana1ysis stages. For example; 

CONDITIONS ==='then===> 

Comp1eted Stage 
-===-·=======.-::= 

START 
STATIC SCENE ANALYSIS 
INCREMENTAL CHANGE DETECTION 
GLOBAL ANALYSIS 
CHARACTERIZATION 

---> 
---> 
---> 
---> 
---> 

ACTIONS 

Stage to be Activated 

STATIC SCENE ANALYSIS 
INCREMENTAL CHANGE DETECTION 
GLOBAL ANALYSIS 
CHARACTERIZATION 
STOP 

The intermediate level control structure rules are 

divided in'to groups corresponding to the main analysis 

stages of the system. Each group is executed in a special 

order to activate the di~~erent computational processes 

required for the cor .. respor.·al.ng- stage. For example, STATIC 
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SCENE ANALYSIS is given by the following: 

CONDITIONS 
Completed Processes 

===then===:> 

················=··= 
START 
DICITIZATION 
SEGMENTATION 
BOUNDARY AND MAIN FEATURES 
POLYGONAL APPROXIMATION 
DECOMPOSITION 
STATIC DESCRIPTION 

---:> 
----> 
---> 
---> 
---> 
... --> 
---> 

ACTIONS 
Process to be Activated 
·==··=············==·==== 

INITIALIZATION~ OIGITIZATION 
SEGMENTATION 
BOUNDARY AND MAIN FEATURES 
POLYGONAL APPROXIMATION 
DECOMPOSITION 
STATIC DESCRIPTION 
EXIT 

Finally; low level control rules are associated with 

each computational pt··oc~~o:ss. They specify and schedule the 

different processors <subroutines) that are neccessary to 

complete the analysis of the current process. For example; 

segmentation is defined as a set of actions by the 

model-driven rules~ to be executed in sequential order: 

R(0): START SEGMENTATION 
A<1>: GET THE CURRENT FRAME 
AC2): LOCATE WINDOW 
AC3): COMPUTE HISTOGRAM 
A<4>: SELECT THRESHOLD 
A<5>: COMPUTE BINARY WINDOJ..l 
AC6): FILTER BINARY WINDOW 
AC7): RECOGNIZE TRACKED CELL 
ACS>: TRACK BOUNDARY 
A(9): COMPUTE MAIN FEATURES 
AC1.0): RETURN 

The model-driven rules which control the execution of the 
above computational processes may be described as: 

RULE: IF A<i> completed ==then=•> activate A<i+~> 

Note that at this low level of analysis~ most of the control 

rules are data-dr~uen~ since the next action to be taken is 

usually' , dependent on the result of the pr'eceding 

computation. 
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The prede~~ned model-dr~ven structure we d~scussed 

above may be ~nterrupted at any t~me during the analys~s on 

the occurrence o~ speci~ic situations. Examples are 

mentioned in Section 3. 3. This type o~ control strategy is 

essential ~or any multiple level understanding system. For 

example, the results of higher level processes may be used 

to remove ambiguous situations, or to improve the analysis 

results of lower level processes. This is of particular 

importance in motion understanding~ where the dynamic 

analysis may be utilized to improve ObJect representation in 

the static images. 

di~ferent levels) of the system could be achieved through 

direct feedback links frout the higher levels to the lo~t1er 

ones. However, the direction of this feedback is not known 

a priori, since it depends on the evaluation of different 

properties of the images. 

the data-dr~ven control structure rules is to direct the 

~low of the con-tr-ol. between -the different processes of the 

sys-tem. 

The d~rection of the control may be achieved by 

specifying the action to be takenJ such as the next process 

or the representational or control rules to be activated. 

It is important to note that the data-driven rules take 

precedence over the i'low of the .cmalysi.s. Thus, if a 

model-driven rule should posses the same conditions as a 

"""' data-drivetY ruieJ the action specit"'ied by the former" would 
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have priority. For example~ during static scene analysis. 

the ~ollowing model-driven rule speci~ies the next process 

to be activated after the polygonal approximation is 

completed: 

=then=> 

POLYGONAL APPROXIMATION IS COMPLETED, 

ACTIVATE POLYGON DECOMPOSITION. 

However, the ~ollowing data-driven rule could change this 

action: 

RULE<3. 13): IF 

=then=> 

POLYGONAL APPROXIMATION IS COMPLETED, 

.AND. NCA .LE. 1, 

ACTIVATE STATIC DESCRIPTION. 

<NCA re~ers to the number o~ convex angles. See Table 3. 1). 

Thus, 

prede~ined 

by using 

~low o~ 

data-driven control rules, the 

analysis <POLYGONAL APPROXIMATION --> 

POLYGON DECOMPOSITION>, is changed to <POLYGONAL 

APPROXIMATION --) STATIC DESCRIPTION. This occurred because 

the cell in the current frame had a simple shape which could 

not be decomposed. Another important function or 

data-driven rules is to influence the rlow of control 

between the different stages of analysis. In this way. 

top-down feedback could remove ambiguous situations at the 

lower levels of the data hierarchy. 
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3.5 SUMMARY 

To achieve the obJectives of motion underst~nding and 

description~ it is not enough to mere~~ de~erm~ne ~he 

incrementa~ movements or changes tha~ occur between 

consecutive images. What is required is a s~stem which 

abstracts a summary description. of the global motion 

characteristics ~rom the multitude of static and incremental 

data. Development of such a system represents the new 

direction being taken in the cur·rent research in image 

sequence analysis. 

A model for a general dynamic scene analysis system has 

been constructed. It consists of three basic entities: 

dynamic data~ static data. 

processes. The different 

manipulated by the system 

and a collection of 

types of data which 

have been classified 

analysis 

may be 

into: a 

sequence of images~ a group of obJects and subObJects. a set 

of obJect features. symbolic descriptors, global behaviour 

characterLst1cs <these are functions of groups of features 

and descri.ptors used to describe specific behavioural 

patterns), and a set of rules. which may be classified into 

representational rules and control ru~es. 

Based on this model. we have implemented a rule-based 

image interpretation system for moving cells. The system 

consists of different cooperating computational processors. 

Conceptually. two different memories are used, a Short Term 

Memory (STtif> and a Long Term Memory <L TM>. Both are 
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implemented as a ~elational database. The STM is designed 

to work as a communication channel for all of the processes. 

It contains a dynamic record of· the instantaneous cell 

motion, shape, 

current globa~ 

and structural changes, as well 

desc:f'·iption of' the cell behaviour. 

as the 

The LTM 

data a~e static:, and are implemented as rules. These 

describe the general model of' the morphology or the ce~ls 

under analysis, as well as control information pertinent to 

the computational processes. The latte~ are activated by 

the control rules throughout the thr·ee hierarchical' :analysis 

stages: static1 incremental, and global. They interact 

through the STM us~ng the in~ormation stored in the LTM, 

uratil a complete description of' the dynamic cell moti.on and 

morphology is obtai.ned. 
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TABLE (3.1) DIFFERENT TVPES OF PROPERTIES 
----------------~--------~-~-----~-------­~-------------------~~~--~~------~--~-----

SHAPE PROPERTIES 

PROPERTY SYMBOL -------.-. ------
AREA A 

PERIMETER p 

LENGTH L 

WIDTH 

ELONGATION · E 

CIRCULARITY c 

AVERAGE BENDING ENERGY ABE 

ANGLE REGULARITY AR 

SIDE REGULARITY SR 

NO. OF POLYGON SIDES NS 

LENGTH OF POLYGON SIDE LS 

INTENSITY <COLOR> I 

NO. OF CONCAVE ANGLES NCA 

DEFINITION 

Total number of pixels. 

Length of the c:ontout". 

The distance between the two 
f' ar·thes:t points on the boundat"y. 

The maximum extension of' the 
ObJect not"mal to the length. 

The complement of the ratio of 
the width to the length. 

The t"atio o.f the square of the 
perLmeter to the area. 

The rate of change of the 
Tangent along the boundat"~ 

A Measurement of the sum of the 
differences between the angles 
ot a given polwgon and a regula!"' 
one <equal angles> having the 
same number of sLdes. 

ihe same as above~ except ·the 
measurement involves the sides 
it"•Stead of the angles. 

Number of sides in the 
approximation polygon. 

The length between two 
sequential vertices. 

The average intensitw of the obJect. 

Nurnber of vertices whic:h have an 
internal angle greater than 180. 
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STRUCTURE PROPERTXES 

PROPERTY DEFINITION 
--------- ----------
NUMBER OF SUBOBJ'ECTS NSO Number of primitive subparts. 

CONNECTIVE LINE CL The distance between the ce11 
centroid and that of' a subpart. 

BASE LINE BL The adJacent line between the 
ce~L and a subpart. 

SUBOBJECT AREA ASO AY·ea of' a subpart. 

SUBOBJ'ECT PERIMETER PSO Perime-ter of' a subp.art. 

RELATIVE AREA RA The ratio of .a subpart area 
to the total ceLl al""ea. 

LOCATXON PROPERTXES 

C PROPERTY 

BOUNDARY COORDINATES 

CENTROID <X~Y> 

ORIENTATION 

CONTAINING RECTANGLE 

FIT"rED RECTANGLE 

POLYGON CENTROID 

SUBOBJECT CENTROID 

DEFINITION 

SX)BY The X and Y coordinates 
of the boundal""y points. 

OR The angle between the main axis 
of' the ObJect and the X axis. 

CRX,CRY The minimum containing !""ectangle. 

FRX.FRY The l""ectangle whose main axes 
are the length and width 
of' the obJect. 

PCNTX,PCNTY Centroid coordinates of' the 
polygor.al appl""oximation. 

SCNTX,SCNTY Centl""oid coordinates of' a subpart. 
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PROPERTY 

DISPLACEMENT 

DIRECTION 

VELOCITY 

ROTATION 

MOTION PROPERTIES 

SYMBOL DEFrNITION 

DIS Translation distance. 

DIR 

YL 

RO 

Direction or motion w. r. t. X axis. 

Ratio of displacement to time. 

Change in the orientation or 
the cell 
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Tabl&(3. 2) 
··==-====== 

Examples of Symbolic Qualifiers of Some Properties} and 
----------~--------------~-------~-------~-------------

Their Different Levels <Classes) of Qualification. 

PROPERTY j.,;t QUAl-IFl:ER 2nd QUALIFIER 3rd QUALIFIER 
····=··· ==·········=· ··=·-=·--····· ···-········· ELONGATION NOT ELONGATED SLIGHTLY ELONGATED ELOt .. CATED 
CIRCULARITY NOT CIRCULAR SLIGHTLY CIRCULAR ALMOST CIRCULAR 
A. B. ENERGY VERY JAGGY J'AGGY ALMOST SMOTH 
REGULARITY VERY IREGULAR IRE GULAR ALMOST REGULAR 
SIZE VERY SMALL SMALL MEDIUM 
MEMBRANE SHAPE VERY COMPLEX COMPLEX ALMOST' SIMPLE 
SPEED VERY SLOW SLOW AVERAGE 
ACCELERATION HIGH POSITIVE LOW POSITIVE CONST. SPEED 
LENGTH, TIME I VERY SHORT SHORT MEDIUM 
DISTANCE 

4th QUALIFIER 5th QUALIFIER 
========·=·== ============= 

c VERY ELONGATED FILAMENTARY 
CIRCULAR VERY CIRCULAR 
SMOOTH VERY SMOOTH 
REGULAR VERY REGULAR 
LARGE VERY LARGE 
SIMPLE VERY SIMPLE 
FAST VERY FAST 
LOW NEGATIVE HIGH ~~EGATIVE 
LONG VERY LONG 
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Tab1e(3. 3) 
=========== 

A Set of Operators and Their Definitions. 
-------~----------~----------------------

OPERATOR 
======== 

AND 
OR 
LT 
GT 
EQ 
LE 
GE 
NE 
FIE··· 
GTT 
LTT 
MST 
LST 

OEFINJ:TJ:ON 
===•==::.===== 
Logical AND. 
Log.ical OR. 
Lll'SS than. 
Gr•a'ter than. 
Equal. 
Less ~han or equal. 
Greater ~han or equal.. 
Not equal. 
Approxi.ma~ely equal. 
Much greater ~han. 
Much less than. 
Most. 
Least. 
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CHAPTER 4 

STATIC SCENE ANALYSIS 

4.1 INTRODUCTION 

In the preceding chapter~ we presented the system and 

data structure of a system for understanding and describing 

the dynamic behaviour of a non-rigid moving obJect. Based 

on this structure~ we have imp~emented a ru~e-based system 

f'or characterizing the behaviour of· a mov-i;ng ce~l. The 

system consists of' three basic entities: dynamic data 

<STM>~ static data <LTM>~ and a collection of analysis 

processes. The ~atter are designed to perf'orm three stages 

of analysis: static scene analysis~ incr&mer.tal -ch.=inge.> 

detection~ and global analysis. This chapter is devoted to 

describing the input, output, and function of the different 

processes of the first stage of analysis, that is, Static 

Scene Analysis. 

The static scene analysis stage, in the proposed 

system. is similar to, and has the same -function, as a 

static image processing systea Thus, the input is a single 

digital image, and the output is an interpretation and 

description of the 5CEme. 

analysis, the information extracted from the previous frames 
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o¥ the same sequence may be used to assist the anaLysis of 

the current frame. 

identify the desired moving ob~ect~ segment it~ and describe 

it in each frame of the sequence <see Figure 1.5a>. This 

stage consists 

Figure (4. 1>. 

of .f·our main 

They include 

processes as 

segmentation, 

approximation, po~ygonal decomposition. and 

(~ocation and shape of the moving ob~ect>. 

shown in 

poLygonal 

description 

The first process in the static scene analysis stage is 

concerned with the extraction of the cell under analysis 

from the input image; this is described in Section 4. 2. An 

algorithm for generating the polygonaL approximation of the 

ceLl. boundaries is desct'ibed in Section 4. 3, as are the 

advantages of this approximation. Section 4.4 describes the 

approach of' decornposing 'the cell <which maw have a compLex 

shape) into its pt"irnitive 51,1bparts. A discussion pertaining 

'to the selection of the properties to be nl&asured, and their 

'theoretical def'inition is given in Section 4.5. Finally. 

Section 4.6 describes a process which integrates the cell 

morphologw that has been extracted and measured by the 

pr·evious process•s in order 

description <numerically and 

the current frame. 

'to generate a coherent 

symbolically> of the cell in 
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and STATIC SHAPE 

Symbolicali=-=====F=_...,. AND LOCATION 
Mapping . DESCRIPTOR 

Tables 

Figure(4.1) Processes and data structure 
of the static scene analysis stage. 
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4.2 CELL EXTRACTION <SEGMENTATION> 

4.2.1 Introduction 

Segmentat~on is a basic and common prob1em in any ~mage 

pr·ocessing syste-m. The ObJective is to divide the input 

image into regions corresponding to the obJects and the 

background in the scene as perceived by a viewer. A1though 

this problem has ditterent defin~t~ons in the 1iterature" 

all of them have the same argument. For example~ Pavlid~s 

has def~ned ~t .as "the operation of look~ng at a scene and 

pick~ng up ob,Jec·ts: t"rom the backgr·ound. In such an etfort 

we d~v~de the picture ~nto different parts which have some 

mean~ng for the vie•..stH'. " CPavlidis~ 771. Where-as~ Levine 

has def~ned the segmentation stage ot a vision system as .. At 

this stage" the .input image ~s divided ~nto regions 

containing p~xels whose primary features such as intensity .. 

hue., saturation, and textyre are s~milar. " [Lev~ne.. 781. 

The final goa1 of the segmentation is a co1lection of 

reg~ons wh~ch correspond exactly to the obJects in the 

scene. In some cases. th~s may be achieved by applying the 

segmentation operations di~ectly to the ~nput image. In 

other cases, processes which use external knowledge must be 

app1~ed to the image after ~t has been partially segmented. 

The rormer .is applicable in cases where the image consists 

of ob.Jects superimposed on a uniform background. for 

example, nonoverlapping blood cells rYoussef, 771. In this 

case a simple thresholding process suffices to result .in ~ 



0 

STATIC SCENE ANALYSIS Page 4-155 

complete segmentation of the obJects from the background. 

Ut~liz~ng external knowledge is necessary for segmenting 

complex ~magesJ such as a typ~cal suburban scenes~ or images 

containing threee-dimensional effects, i.e. occlusion or 

shadows. In these cases, the ~n~tial segmentation results 

only in a partial segmentat~onJ where the segmented regions 

do not necessarilld corr•spond to the obJects ~n the scene. 

the use of a priori knowledge about the scene 

under consideration is essential. 

Segmentation of a scene by the human visual system may 

be considered as one of psychophysical perception. It 

involves processes which are not well understood yet 

[ Rosenfeld, 76l. Therefore, there are no criteria to define 

the succ:•ssful segmentation and it is not susceptibl-e to a 

purely analytical solution. However, this problem has been 

considered in a recent work by [Levine and Nazif, S2l. 

I.n image sequence analysis, the segmentation has two 

main obJectives;· the first one is to segment the scene into 

obJects and background, and the second is to segment the 

obJects into moving and stationary. Most image sequence 

analysis systems have accomplished these two obJectives 

separately; segrnenting the scene f' irst, then extracting the 

moving obJect, using its geometrical properties rFerrie, 

79]. In some cases# the obJective was to segment the 

individual pixels of the image into movit"''g or stationary 

using pixel to pixel comparison between the sequential 

f'rames [Yakimovsky .. 75J. Using this: rl'lethodology# the moving 
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pixels can be grouped to form regions corresponding to the 

moving obJects CNagel, ??l. Other techniques in image 

sequence analysis are based on: first, the initial 

segmentation of the sequence of frames, then, the 

utilization of the information extracted from the sequence 

in order to achieve a complete segmentation of the 

individual frames. Recently, a knowledge-based system h&$ 

been developed in order to accomplish both complete 

segmentation 

utilizing a 

and 

priori 

motion detection 

knowledge about 

consideration tTsotsos, eeJ. 

simultaneously by 

the sequence under 

The input of any motion understanding system is a 

sequence of two-dimensional digital images recording the 

obJect motion to be analyzed. Xn the case of microscopic 

cell images, the sequence recording the cell motion may be 

obtained in various ways; for example, cine film 

<time-lapse unit>, or a TV camera observing live cells in 

real-time through a microscope, where the images are 

captured at specific intervals of t~me. Then the ~mages may 

be transfered directly to the computer memory, and/or to a 

video tape. However, the actual data of the analysis 

processes is a series of two-dimensional images. 

Most of the previous techniques for microscopic cell 

image segmentation are based on the existing contrast 

between the cells and the background. However, in the case 

of live cells, the contrast is continualy changing due to 

· two' factors: the··phase contrast of the cell photography and 
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the three-dimensional motion 

the 
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of the cell. The latter may 

cell intensity distribution 

the cell region). Thus~ the 

also cause a change ~n 

<gray-value d~stribution 

di~~iculties o~ segmenting 

summarized as: 

live cells in motion be 

(1) Phase contrast photography causes a gradient shadow area 

between the cell and the background. Consequent~y~ the 

exact boundary of the cell ~s hidden within this shadow 

area. Therefore~ an inference process for labelling the 

pixels o~ this area as belonging to either the cell or the 

background may be necessary. 

<2> The three-dimensional changes in the cell structure 

continually cause random changes in 

consequently~ 

the 

the 

cell intensity 

cell-background distribution over time; 

contrast will change. we cannot use the same 

threshold<s> ~or segmenting the cell in the di~ferent ~rames 

o~ a sequence. A dynamic thresholding scheme may be 

necessary. 

Besides the above d~~f~culties~ in the case 

real-time analysis~ where the ~mages must be captured at 

short time intervals~ the segmentation should be a fast 

process. Therefore, most of the soph1sticated segmentation 

techniques are not practical for real-time application~ 

since they require long and expensive computatio~ Also, in 

the analysis of the moving cells, the task of the 

segmentation may not only include the extraction of the cell 

from the background, but may also include the segmentation 
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An algo~ithm fo~ the ext~action of a moving cell is 

implemented in ou~ ~o~k. It consists of a collection of 

computational subp~ocesses coope~ating th~ough a common 

dynamic data memory1 the CSTM). The diffe~ent subp~ocesses 

and data st~uctu~es of this segmentation algo~ithm a~e shown 

in Figu~e C4.e>. Th1s inc~udes the ~o~lowing subp~ocesses: 

cell windowing~ th~esholding~ bina~izing~ filte~ing, 

matching~ and bounda~y t~acking. The activation~ 

deactivation and scheduling of the different subprocesses is 

accomplished by control rules sto~ed in the LTM. These 

subprocesses may be executed in ite~ation until a 

satisfacto~y segmentation is obtained. The execution and 

the number of iterations is controlled by the LTM ~ules. 

The actions of these rules are based on the dynamic data 

CSTM> pertaining to th• cell morphology in the p~evious 

f~ame~ the resulting data from the different segmentation 

subprocesses of the ct.trrertt frame' and the L TM constraint 

knowledge. The obJective as wel~ as examp~es of the input 

and output of each subprocess is given be~ow. 

4. 2. 2 Cell Window 

The f i~st step towat"ds cell extraction .is to locate and 

adJUSt the size of the window containing the ce~l under 

analysis. The obJeCtive is to minim.i.ze the sea~ch area to 

that which only includes the t~acked cell with a r-eason.able 

background. Although it is diff.i.cult in many cases to 
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Figure(4.1~} Algorithm for manual and/or 
automatic segmentation of cell images. 
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isolate the tracked cell within the window, the candidate 

cells will at least b• restricted to those w~thin the 

window. Examples of typical input images are shown in 

Figure <4.3>. Each image consists of 128x1.28 pixels, each 

pixel having 6 bi "ts of gray level infot"mation. The images 

include neutrophil cell<s)~ red cells~ and a piece of 

bacteria located ~n the lower le~t side o~ the image. ~ 

In our system the s~ze and location of the window may 

be adJusted either inter·actively or automatically. In the 

interactive method~ the user specifies the location and the 

size parameter of' the •tJindow through a keyboard or by using 

a Joystick. In 'th.- autoalatic method, 'the initial window 

parameters in a frame are determined by the system. 

utilizing the location and size of the cell in the previous 

frame as well as the LTM constraint knowledge <maximum 

displacement of' 'the cell between two sequential frames>. 

Thus the initial location of the window in frame<i> is 

determined from the window parameters in frame<i-1> via: 

length 

width 

= es + L<i-1> 

= 25 .... ~(i-1.) 

(4.1.) 

<4.e> 

(4. 3) 

where X<i-1),YCi-1.> are the x,y coordinates of' the cell 

centro.id at s ~s the maximum possible 

displacement of the cell between two sequential frames, L 

and W are the maximum extension of the cell in the Y and X 

directions, respectively in frameCi-1). 
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Figure(-4..9) Typical examples of input images in 
a sequence, recording the dynamic movements of 
a neutrophil cell. . 
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The above parameters are the best ~nit~a1 expectation. 

However.. the w~ndow may be shifted.. and the size may be 

adJusted according to the data extracted from the initiaL 

segmentation. Figure <4.4) shows the selected window from 

an input image. 

4. 2. 2. 1 Histogram 

histogram is well-known technique f'or 

transforming two-dim•nsional· images ~nto scalar vectors. 

Thus, the histogram <H> is a vector which represents the 

f'requency distribution of the gray values of' an image or 

window of the image .. 

<H> = <Ge.. 01.. ea.. . .. , Gk, . . . .. G<m-1)> (4. 4) 

where Gk is the number of pixels which have gray-value equal 

to k.. and m is the number of gray levels. The histogram may 

be computed as follows: 

(1) Set G0, G1, ... ,Gm= e, 

<2> scan the image and f'or each pixel: 

(3) If f'<x,y) = k .. then Gk = Gk + 1. 

The histogram may be plotted as shown in Figure <4. 5), 

where the X axis represents the gray-value, and the Y axis 

represents the number of pixels. For example, the histogram 

for a blank image <all the pixels having the same 

gray-value, say g) is a 

Histogram analysis is an 

vertical line located at g. 

established method for image 

segmentation where the image contains contt"asted ob,Jects on 

a uniform background. The histogram in this case will 
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- - Figure(4.4) Selecting the window containing 
the cell under analysis~ 
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Figure(4.5} The computed histogram 
of the selected window. 
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include two "peaks" representing the ob~ects and the 

background. The "valley" between the two peaks represents 

the gray-value which may be used as the threshold to segment 

the ob~ect~ from the background. This simple segmentation 

can be achieved only for simple images. However, in most 

typical images the resulting histogram is more complex. It 

either contains a large number of peaks which do not 

correspond to specific ob~ects, or it does not include clear 

peaks. For example~ in Figure (4.5> in spite of the fact 

that a human can separate sever·al obJects from the 

background, the histogram contains only one maJor 

unconstrained peak~ and that peak is not well-defined. 

In cases as shown in Figures (4.5), the histogram as it 

is, may not be useful for direct thresholding. However, a 

histogram anal~::~sis .and modification ma~::~ be helpful for an 

initial-guess segmentation. In general, most of the 

histogram information ma~::~ be extracted from its maxima 

point~ Therefore, the histogram ma~::~ be represented as a 

set of extrema <K> <peaks and valleys> as: 

H • <K> = <K1., K2, ... ,K~, ... , Kv> 

where KJ is a gray-level (i) such that: 

Gi number of pixel.s at l.evel<i), .smd 

G<i-1) < Gi > G<i+1) 

G(i-1) > Gi < G<i+i) 

"peak,. or 

"vall.e~::~". 

(4.5> 
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This inrormation may b& utilized to the 

appropriate thresholds fer the segmentation. • 

4. 2. 3 Thresholding 

The task of the thresho2ding subprocesses is to ana2yze 

the histogram <H} in ot"der to find the thresho2d(s) 

<gray-va2ue<s>> which may be used to segment the ce21 rrom 

the background, and/or the ce21 into cytoplasm and nuc2eus. 

Fr~m~Figure (4.5) we can see that the histogram includes 

only one unconstrained mode. That means both the ce21 and 

the background have regions which exhibit the same 

gray-2evel. Howev&r, the original image <Figure 4.5a) shows 

that the cell is darker than the background. Therefore, a 

good initia2 guess is to consider the maximum frequency 

(peak) as threshold v&lue <Ct). This may be computed as 

f'ol2ows: 

Gt = Max (G0, G~, ... , G63] 

Then the binary image may be obtained as: 

IF' r<x .. y> . GE. et, THEN b<x. y> = 0 

:IF f'(x, y > • LT. Gt, THEN b(x, ':!!) = 1. 

<4.6) 

where rcx,y> is the intensity image and b(x,y) is the binary 

iroage. Figure (4. 6) shoc.1s the resulting binary image. 

The above method gives a satisfactory segmentation if 

the c•J.2 has a homoger.eous gray level. However, as we can 

see in Figure (~ 6) most of the inside region of the cell is 

segmented as backgr·ouf'td. This is because the inside regions 
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Figure(4.6} Binarization using maximum 
'gray level frequency {highest peak in the 
histogram) as a threshold value. 
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of the cell (nucleus area) have a similar intensity to the 

background <both are represented by the peak of the 

histogram). In order to segment the cell as one region from 

the background. we propose the follow~ng modif~cat~on: 

AVERAGE THRESHOLDING 

The proposed modification ~s based on dividing the 

histogram into three reg~ons: the low gray-level region 

<0-Gc) which mainly represents cell pixels, the high 

gray-level region <Gb-63> mainly represents background 

partially represents cell pixels and partially background 

area. Figure C~ 7> illus~rates these three regions. :rn 

order to compute the thresholds for these regions, we assume 

that the maximum frequency Gt <highest peak in the 

histogram) divides the image into two regions: <a> dark 

<0-Gt), .and (b) bright CGt-63). The threshold values Gc and 

Gb are then computed as the .average gray level of each of 

these regions. respect~vely. This can be computed by 

scanning the cell window. and assigning each pixel rcx.y> to 

one of the regions as -follows: 

(j_) se-t Gtc = 0 and Gtb = e 

(2) IF f(x, y> . GE. Gt, THEN Gtc = Gtc + f"(x, y>. AND Ne = Ne + 1 

(3) IF fcx.y> . LT. Gt, THEN Gtb = Gtb + fcx. y), AND Nb = Nb + 1 

(4) Gc = G'tc I Ne 

(5) Gb = G'tb I Nb 

where Gtc and Gtb are the sums of" the gray levels .in the 
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Gc 
Dark Common Bright 
region region region 

Figure(4. 7) Dividing the histogram of the 
0 cell image into three main regions. 

Figure(4.8) Binary image obtained by 
averaging threshold method. 
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dark and br~ght reg~ons~ respect~veLy, Ne and Nb are the 

number OT p~xels ~n each region. Us~ng the threshoLd values 

Gc and Gb, the b~nary ~mage can be obta~ned by scanning the 

cell window and labelLng each pixeL as cell <1> or 

background <0> as folLows: 

(~) IF T(x,y) . LE. Gc, THEN b(x,~> = 1, 

<e> IF T(xjy) . GE. Gb, THEN bCx,y> = e, 

(3) IF (T(x, y> - Gc) . GT. CGb - T(x, y) ), THEN b(x, y) = 1. 

(4) IF CGb - f(x, y>) . GE. (TCx .. y> - Gc>, THEN b(x, y> = e 

In this way, pixels with gray levels between Gc and Gb 

are labeled as cell or- background according to whether they 

are closer to Gc: or Gb, respec:t~veLy. Figure <4.8) shows 

the resulting b~nary ~mage using the above threshoLding 

method. The result OT this thresholding technique is a good 

initial segmentation, however, there are stLll some p~xels 

within the cell region which are segmE>nted as background and 

v~ce versa (because OT the ~mage conditions>. This noise 

may be removed by a filtering operation, which is described 

in the next section. 

4.2. 4 Filtering 

The input of the filter~ng subprocess is a noisy binary 

~mage <Figure 4. 9a), and the obJective is to reduce the 

noise by relabelling the noisy pixels <0-)1 or 1->0>. This 

obJective may be achieved in two steps. In the Tirst step. 

all single pixels and thin regions (reg~ons of one pixel 

width> are removed. This ~s achieved by using the four 
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(a) 
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(b) 
Figure(4.9) Removing noise by Jilttering 
- · (a) input (b) output. 
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connec~~on cr~terion shown ~n Figure <4. ~ea>. 

if a specific pixel is labeled as cell and ~ts four 

connected ne~ghbors ~re labeled as background~ then the 

label of th~s p~xel ~s changed to background. and vice 

versa. The second step is based on an inference procedure, 

which utilizes constrain~ knowledge perta~ning to the cell 

s~ruc~ure. 

enclosed by 

labeled and 

For example, if a small background region ~s 

a larger cell region, ~hen ~his region will be 

merged ~o the cell r·egion. Figure (4. 1.0b) 

illus~ra~es an example of this ca:se. Figure (4.9b) shows 

~he ou~put of fil~er"·ing the noise in Figure <4. 9a). 

4. 2. 5 Cell Selection And Matching 

The ou~put o-f' the segrAen~ed b~nar~:J ~mage may conta~n 

more than one region. In some cases. there are ~wo reg~ons 

~he cell and the background <the optimum resul~). However• .. 

in mos~ cases, the segmen~ed image ma~:~ cot"'lta~n more than two 

reg~ons <where other cell<s> or par~ of cell ma~:J enter the 

search w~ndow), and/or regions o-f' ~he background are labeled 

as cell regions. In order to select the region representing 

~he cell under analysis~ we use the cell seleetion and 

matching prociitss.. which has two main f"unctions: <a> to 

select ~he cell undet"' analysis. and. (b) ~o measure the 

d~f-f'erence between the properties of the selec~ed cell from 

the curren~ franu? and the cell in the previous frame, 

~hereby correct~ng the segmen~atior. process <see 

Figure 4. 2>. 
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(a) Removing single pixels and thin regions. 

c c c c CIC 

B c 
;. 

c c clc 
c B B c c c c c 
c c c c c c c c 

(b) Using cell shape and structure knowledge 
to remove noisy regions. 

C cell pixel B background pixel X any 

Figure(-4..10} Filtering operations. 
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CeLl seLection and matching may be considered as a 

pattern recognition process. in that an ObJect which 

exhibits specific properties andlor matches a specific 

pattern <modeL) is to be selected among a set o~ ObJects. 

Figure (4.1j.a) shows a block diagram or this process for 

stat.i.c scene- or image seque-nce- arta.lysis o~ rigid moving 

obJects. In this case,-the shape- andlor the structure or 

the moving obJect does not change within the sequence, 

therefore a pro"tot~c~pe rnodel may be used ~or sel.ecting the 

rE'g-ion that corr•sponds to the moving obJect amorrg the se:t 

of segmented regions. On the o-ther hand, in the case of a 

non-rigid moving ObJeCt (such as for example, blood cells), 

there is no standard model of the moving obJect, because its 

shape andlor structure are changed continually within the 

sequence. 

the current frame is based Ot"• matching to the c:elL 

morphology and location from the previous frame. The 

properties used for the matching a:e: '-JeLl as the maximum 

allowable changes in the values or these properties, bet~o1een 

the sequentiaL ~rarnes, are specified by the LTM rules. 

strategy is ilLustrated in Figure <4. 11b). 

This 

The theoretical aspects and quantiric:ation of the c:ell 

ma-tching will be described in detail in the following 

chapter <Incremental Change Detection and Quantification). 

The matching or the ceLl may be quantified and normalized 

between zero and on•• where the less is the matching, the 

smaller is the vaLue (0 = no matching. and 1 = identical 
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Model of 
object ~-=~MATCHING 

Figure(4.11a) Ma,tching each region 
in the bina,ry image to the sta;tic 
model of the desired object. 
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Set of 
binary 

• rege.ons 

region 

Properties 
of the object 

in fra,me(i-1) 

Binary 
ules·t--....-tMATCHING~--~ image 

Figure(.4,.11b} Using a rule-ba,sed, 
strategy to select the object under 
anaJysu in jrame(i), by matching 
the different regions in frame(i) to 

the object properties in frame(i-1). 

of frame(i) 

Selected 
object 

Figure(4.11} Matching procedur~s: (a) static image 
processing e•d-rigid mofJing object. (b) non-rigid 
moving object. 
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do matching> . 

not expect 

acceptable 

an exact m.atch between sequential frames. 

percentage of matching <Em> depends on 

The 

the 

maximum possible incremental change in the cell prperties 

and may be specified by the LTM rules. For example: 

RULE(4.1): IF M<Ok~t.i~t.i+1). GE. Em 

•=then••> Oi <--- A CELL CANDIDATE. 

where M<Ok~ti~ti+1) is the matching value of obJeCt Ok .in 

frame <i.+1.) to the cell ir• frame <i>. 

This rule may result in one of three possibilities: 

Ca) Only one region categorized as a cell candidate. This .is 

the optimum and desired situationJ it occurs in most cases. 

(b) More than one regiOY• is categorized as cell candidates. 

In this case~ we select the one that exihibits the best 

matching: This situation occurs if there is more than 

one cell in the search window. 

<c> No regions are interpreted as cell candidates. This case 

arises due to one or more of the following situations: 

<i> Undesit"ed expEH"imet"'ttal conditions~ such as 

moving the slide containing the cel.ls under the camera. 

<ii> Unexpected cell displacement which locates the cell 

outside the window <completely or partially>. 

(iii> Error in the initial segmentation due to the 

three-dimensional motion of the cell. 

The actions to be taken by the s~stem in this case~ depend 

on the incoming conditions. Examples of these actions are: 
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A1: correct threshold values. 

A2: shif't window. 

A3: expand window. 

A4: stop processing. 

. 
The output o~ the cell extraction consists o~ a binary 

image (0"'s for b.ackgr·ound and 1"'s for cell elements> as 

shown in Figure <4. 9>. 

the final step of the segmentation~ which is concerned with 

boundary tracking and feature measurerttents. The obJective 

is to transf'orm the two-dimensional binary image into a 

scalar vector <boundary coordinates and property values> 

representing the cell .in the current f'rame. 

0 4.2.6 Boundary Tracking 

The boundary points are those elements of' the obJect 

which are adJacent to the background. The boundary point 

can be def' ined based as- either foyr or· eight conr.ected. The 

latter can be defined as: if any of· the ce-ll pi.xe-ls has one 

of its eight neighbors .as background, then this pi.xel is a 

boundary point. In the case of f'our connected boundaries. 

an obJect pixel is a boundary point ir any of its neighbors 

in the X or Y directions is background. 

be- model.ed as: 

RULE<4. 2>: IF 

==then==> B<Xi,Yi> IS A BOUNDARY POINT. 

for eight connected boundaries: 
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..J~ k • (-:1.~ -1.)~ <-1., 0)~ <-1.~ ;1), (0, -1;•, 

<B~ :1.>~ (:1., -1.), <1~ 0), <1.,1.) 

for four connected boundaries: 

..J• k • <-1. 0), (:1., E)), (0, -:1.), (0, 1.) 

The different boundary points <B> may be found by 

scanning the binary image and extracting the points which 

satisfy the above ru~e. However. a faster process is to 

continue scanning until the first point 81 is found. Then. 

a tracking algorithm <boundary follower> may be used to find 

the remaining points <BZ.e3 •....• B<b+i)}; where 81. = 

B<b+1.), and b is the ,...umber of' boundary points. The 

boundary tracking method is not only faster than the 

scanning. but also represents the boundary as a sequence of 

points <similar to the chain code method), which is more 

useful for retrieval purposes. The eight connected method 

results in contours that are more .,Jagged and have more 

boundary points than those resulting from the four connected 

boundaries. Figur·e-s <4. !l.2a> and <4. 12b> show ex.:lmples of 

the boundary points of the cell shapes in a sequence of 

frames, obtained using the eight and four connected 

boundaries respectively. From these figures one can see the 

advantages of using four connected method for this c~ass of 

obJects. 
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FRAME I 1 . FRAI1Eit 2 FRA11E# 3 FRAI·1Eit 4 FRAI1EI 11: 

..J 

wb ~ ~ ~ ~ 
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wb q)> ~ ··qp 'q;b 
FRA11EI 11 FRAI·1Eit 12 FRAf·1E# 13 FRAt1EII 14 FRAMEII 15 

Figure(4..1Sa) Eight connected boun.dtJries of tJ sequence of cells. 

0 

~ JJ p «> ~ 
FRAME I 1 FRAI1Et 2 FRAME I 3 FRAHEI 4 FRAME I 5 

~ <P. ~ ~· ~· 
FRAfiEt 10 FRAfiEI 9 FRAMEI 8 FRAME I 7 FRAME I 6 

~ ~ 0 qj) cJ> . 
FRAMEI 11 FRAMEI 12 FRAMEI 13 FRAI1EI 14 FRAHEI 15 

Figure(4..1Sb) Four connected boundaries of a sequence of cells. 
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PROPERTY MEASUREMENT 

The complete descrip~ion o~ ~he selec~ed properties and 

their theore~.i.c.al def.ini~ions will be presen~ed in 

Section 4. 5. the 

following main properties o~ the cell in ~he current frame 

may be computed: average 

p~~trirneter, ltmgth, width. and orier.tation. 

The preceding sec~ions described three sequential 

subprocesses for cell segmenta~ion <adJusting size and 

location o~ cell window. thresholding, and cell selecti.on 

and matching). Although these processes may be be executed 

0 interactively by the user. they have been designed and 

implemented so that they may be executed automatically by 

the model-driven rules. Also, the segmentation may be 

corrected by iterative execution of these <or some of the) 

processes according to the specification of the data-driven 

rules <Figure 4. 2>. A description and summary of the 

complete automatic segmentation procedure is given in the 

next section. 

4.2. 7 Automatic Segmentation 

The di~ferent subprocesses of the segmentation and cell 

extraction, which have been described in ~he previous 

sections, may be executed and their parameters <window size. 

location. threshold values, ... > adJusted automatically by 
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model and data-driven control rule~. These speci~y and 

schedule the different processors <subroutines> that are 

the model-driven rules, to be executed in sequential order: 

A(0): START SEGMENTATION 
A<1>: GET THE CURRENT FRAME 
A(2): LOCATE WINDOW 
AC3): COMPUTE HISTOGRAM 
A<4>: SELECT THRESHOLD 
A(5): COMPUTE BINARY WINDOW 
A(6): FILTER BINARY WXNDOW 
A<7): RECOGNIZE TRACKED CELL 
A(8): TRACK BOUNDARY 
A<9>: COMPUTE MAIN FEATURES 
A<10): RETURN 

The model-driven rules which control the execution of the 

aboveo computational processes may be d•sct"ibed as: 

RULE(4. J): :IF ACT<.i.) comp~eted ==them==> activate ACT(i+1;• 

Note that at this low level of' analysis, most o~ the contt"ol 

rules are data-driven, since the n•xt action to be taken is 

usually dependent on the result of' preceding 

computation. Consider a typical rule in ACT<5>. If the 

extracted cell touche~ any of the window borders. the window 

should be shifted until the complete cell is located inside 

the window. This situation can be controll&d by the 

t"ollowing rule: 

RULEC4. 4): 

IF XMN . EQ. XLFT ==then==> >(LFT <-- XLFT - SHIFT 

IF XMX . EQ. XRIT ==then==> XRIT <-- XRIT + SHIFT 

IF YMN . EQ. YBTM ==then==> 'r'BTM <-- YSTM - SHIFT 

IF YMX . EQ. YTOP ==then==) YTOP <-- YTOP + SHIFT 
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IF RULE<4. 4) XS ACTIVATED ==then==> ACTIVATE <A3 --) A?> 

whe~e XMN, XMX and YMN .. YMX aY·e the minimum .and maximum 

location of' the cell, and XLFT,XRIT"YBTM, and YTOP are the 

lef"t~ ~ight" bottom, and top dimension of' the window. SHIFT 

is .a constant value that def"ines the shifting distance of' 

the window. An example of' a rule which control the 

computation of the threshold value Gt is related to ACT(7). 

The action is based on the computation of' the difference 

between the area of the segmented cell in the current frame 

and the previous one. The dif"ferenc:e in area dA<i,i+1> can 

be computed and normalized as f"ollows: 

A<.i> - A<i+1> 
dA(i,i+1> = ------------- (4. 7) 

0 A<i> 

This value is used b':lthe f"ollowing rule, which utilize the 

constraint knowledge about the maximum change in cell size 

correct the estimated threshold as follows: 

RULE<4. 5): 

IF A<ti>-A<ti+1) . G~ Et1 ==then==> DECREASE THRESHOLD 

-IF A<ti>-A·<t-.i-+1)- . LT. - Et2 ==then==) INCREASE THRESHOLD 

IF RULE<4. 5> IS ACTIVATED ==then==) ACTIVATE <A4 --) A7> 

The window parameters and the threshold values may be 

adJusted iterativelld using the above rules until a 

satisfactory segmentation is achieved. Figure <4. 13) shows 

examples of the output of' the dif"f"erent steps of the 
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Fi.gure(-4..18} The output of the 
different steps in the automatic 
segmentation. Several iteration 
are required to obtain a 
satisfactory result. 
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automatic segmentation. In this f' igure. the satisractory 

segmentation o~ the cell is achieved arter five iterations 

using threshold values of 36, 34, 33, 31. and 29. 

4.3 POLYGONAL APPROXIMATION 

Polygonal .approxirl\at.i.on may be categorize-d as a data 

compression method. It is a well-known technique in shape 

digital i.mage processing and pattern analysis for 

recognition. In this 'tec:hni.que. a curve or cantour is 

represented by fitted straight lines. The input to such 

algori.thms can be ei.ther the boundary points directly, or 

thei.r chai.n code. The output is a list of vertices of the 

f" i tted l i.nes. These techniques 

reducing the noise as \.tell as the 

have the advantage 

amount of data to 

or 

be 

mani.pulated by higher level stages of the system <the number 

of the verti.ces wi.ll always be less than the boundary 

poi.nts>. For example, polygonal approxi.mation often retains 

the local peaks that are .important in the shape anal';:~si.s or 

biological ObJects; and they often retain the shape of the 

orginal ObJect as it is percieved by the human viewer. 

In some applications, the fitted lines or polygons may 

be used directly for shape recognition or description. while 

in others they are an intermediate form of data. For 

example, in or..tr S\dstem, the output of the polygonal 

approximation rt&prettents the it"tpwt for the shape 

decomposition. The latter is f·ut"ther analyzed by higher 

level processes of' the system <incremental and glob . .,.~ 



STATIC SCENE ANALYSIS Page 4-185 

analysis). The mathematical aspects o~ the polygonal 

approximation may be found in CPavlidis, 771. A review of 

th~ significant work in the literature, pertaining to the 

polygonal approximation~ is presented in Section 2. 3. 4. In 

this secti.on1 first, a summary of the obJectives and 

different methodologies of the polygonal approximation will 

be presented. an algorithm f'or polygonal 

approximation~ based Ot"l the technique introduced by Ramer 

CRamer, 72J will be discussed. 

OB3ECTIVES AND METHODOLGIES 
•==•===c===•=============== 

The problem of polygonal approximation may be defined 

as follows: given a set of boundary points representing the 

c shape of a planar obJect, the obJective is to ~ind the 

minimum set or vet"·tices which pertain to the or.igin.al shape. 

Some schemes f'or constructing polygonal approximations at"·e 

concerned with selecting the vertices from the boundary 

points in order to generate the best fitted polygo~ Others 

may allow the vert.ices to leave the curve itself, if they 

generate a better fitted t=•olygon. In some .algor·i thms, f'or 

the minimum d.ist.ance <not to exceed a speci~ic 

threshold> between the segment of' the boundary and the 

f'itted line is used as a criterion for selecting the best 

f'itted approx.imating line CR.amer, 72J; whereas in others, 

the fitted line is picked so as to minimize the difference 

in area between the approxLmating line and the original 

curve~ e. g. CMcClw .. e~ 771. The definition of the best 
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fitted polygon <optimum) differs according to the following 

cri:ter.ia: minimum number of vertices, minimum perimeter. 

and minimum error <the difference between the polygon and 

the area>. Another common ObJective for any 

polygonal approximation technique is to minimize the 

computation time. 

The different methodologies that h.ave been used for the 

polygonal approximation may be classified into three basic 

techniques:: C1) splitting. <2> merging. and (3) merging and 

splitting. The splitting algorithm starts by dividing the 

boundary points into two sections and pr·oceeds furthet" by 

dividing each section in two .as long as a uniformity 

predicate is false. The merging algorithm proceeds in a 

0 linear scan evaluating the uniformity pr~dicate.as it goes 

along; when this is false, a new segment is started. In 

the merging and splitting. the algorithm initially divides 

the set of boundary points into a number of segments <n> 

(break points>, the latter either splitted or merged. 

IMPLEMENTED ALGORITHM 
·===·=============··= 

A splitting algorithm for polygonal approximation based 

on a technique presented originally by Ramer CRamer. 72J, is 

implemented in our current work. This technique is one of 

the earliest and most e-f'fi.c.ient techniques; it select~ ~he 

polygon vertices: ft•·om the boundary points. The resulting 

polygons are not necessarily optimum <minimum number of 

ver'tices >, but the c:omputat.ional. al. got" i thm .is m•~ eh mor·e-
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e~~icient and simp~er than those generating optimum ones. 

The procedure or the aLgorithm can be described through 

a binary tree; the root corresponds to the whoLe boundary. 

The branches of e~ch node correspond to the subintervals. 

The bottom leafs are the final intervals <the resulting 

polygon vertices>. In order to improve the result of 

R•m•r~s aLgori~hm, a sugges~ion was introduced by PavLidis 

CPavlidis, 76J. In this modi~ication, the final intervals 

(polygon vertices> can be used as initial break points ~or a 

merging-splitting algorithm. This may result in an optimum 

polygon <minimum vertices and error). On the other hand, in 

order to decide whether to merge or split, the computation 

is quite time consuming. However, a similar result may be 

obtained without using the merging-splitting algorithm. 

This can be achieved by the proper seLection of the 

threshold value of Ramer~s algorithm. 

The approximation threshold value pLays an essential 

factor in the procedure, and the resuLt o~ the polygonal 

approximation algorithm. Based on this value, a decision 

may be taken whether a given interval should be divided into 

two segments or not. Thus, i~ the maximum normal distance 

between the approximating line and the boundary points 

exceeds the approximation threshold value, then the interval 

is divided at the boundar~ point which exhibits the maximum 

normal distance. Figure C4. 14> illustrates the use o~ 

different threshold values for a given shape. In this 

figure, the X axis represents the threshold values, and the 
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Figure(-4..14) An approzimate estimation for 
the threshold value (Eth) necessar11 for pol1Jgonal 
approzimation., which minimize both number o J 
verticies and the error (the difference between 
the resulting polygon and the original shape). 
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Y axis represents two parameters: the number of vertices 

and the error. From th~s figure we can see that. the lower 

the threshold value, the h~gher the number o~ vert~ces and 

the less the errot.. <the d~f·f'erence between the polygon and 

or~ginal shape). This ~·~ns that increasing the ef'fic~ency 

towards one of these desired objectives (n\inimum nurAber of 

vertices and min.imurR e-rr·ot .. > comes at the cost of' 'the other. 

A basic ~ssue is to ~ind the approximation threshold 

value which minimizes these two conflicting factors 

simultaneously. From Figure (4. 14> we can s:ee that the 

intersection of the two curves: representing the number of 

vertices: .and the error <point £), is a good estimat.ion as an 

approx.imation threshold value. However, this po.int .is 

specif.ic for each individual shape. Therefore, this method 

is: more useful in the stat.ic scene analys.is: or image 

sequence analysis: of r.igid moving objects, where the shape 

does not change and .is known a prior~. Conversely, .in theo 

image sequence analysis of· non-rigid moving obJects. the 

threshold value shoul.d be updated wi. th the shape char.ges. 

In the implemented a~gori.thm for the present system. 

'the threshold value is chosen based on exper.imental work in 

order to f'ind the- value that retait"1S: the cell shape <as i:t 

is perceived by a human observer> for a min~mum number of 

polygon vertices:. Thu:S, the value of 1. 5 pixels (1.i! of the 

average cell perimeter·) has been found to be the best 

threshold ~or polygonal approximation for most cell shapes. 

Figure <4~15) shows the polygonal ~pproximation o~ the ceLl 



Page 4-190 

~· <}J ~ JJ ~ 
FRAME I 1 FR~d1EI 2 FRAHE# 3 FRAI1EI 4 FRA~1Et 5 

q)) ~ 1h ~ 0 
FRAI1EI 19 FRAt1Eil 9 FRAME I 8 FRAME I .. FRAME I 6 f 

~ ~ 0 0 ~ 
FRAHEI 11 FRAMEI 12 FRAHEI 13 FRAHEI 14 FRAI'IEI 15 

Fi.gure{4..15) PolygonaJ. o.ppro~ma.tion. of the cell shapes in G 
st.ibsequefWe,-OJ sequeAtiQI fro.mes. The origin.aJ boundaries 
a.re shown in figure (4.1B). 
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shapes ~n a sequence or frames, shown in F~gure <4.12). The 

po1ygon features to be measured at th~s stag& of ~na1ysis 

are g~ven ~n Tab1e 4. 1. 

4.4 POLYGONAL DECOMPOSITION 

An important ObJ&Ct~ve in our research to 

characterize and descr.:Lbe ttte dynamic behav.:Lour of the 

d~ff'erent pseudopods t"or·roed dur~ng 1ocomotion. 

· s'tudy · the:· l"'elationshi.ps between changes in the shape ·of the 

subparts, their rnovement, and the global locomotion of the 

cell. Thel"'efol"'e' the decomposition of the cell into its 

primitive· subparts represents an essentia1 proc7s fol"' 

understanding the stl"'uc~ural changes of a moving eel . 

Decomposition methodologies are prime examples of 

structul"'al pattern recognition and shape analysi~ They are 

based on the assumption that shape perception is 

hie!"'archical process CPavlidis, 68i72l. In these techniques 

The shape of the 1atter may 

be simpler and, ther~fore, some of the 1ess compl.ex 

descriptions may be applicab1e. A review of the different 

decomposition techniques is presented in Section 2.3. 5. 

These different techniques can be classified as follows: 

(a) primary convex subsets, 

(b) concave vertices, 

<c> c1ustering, 

(d) k-nearest neighbors, 
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structure of the cell. Thus~ the cell shape has a stat"" like 

structure, where the center node is the cell body, and the 

branches are pseudopods or subparts of' the cell. Since we 

are interested meinly in the pseudopods and the subparts 

forming around the membrane, the decomposition at the convex 

angles seems to be the most efficient method for cell 

structural analysis. 

The internal angles of' the polygonal approximation of 

the cell may represented as a set of' numerical values <V> 

such that: 

(4. 8) 

where Vi is the internal angle of vertex <i>, and nv the number 

of polygon vertices. The angle Vi may be assigned as 

convex angle <VX> or concave angle <VC> according to the rule: 

RULE<4. 6) 

IF Vi . VT. 190, ==then==> Vi <--- VX, 

IF Vi .LT. 190~ ==then•=> Vi<--- VC, 

thus the set <V> may be expressed as: 

<V> =<<CONCAVE ANGLES),< CONVEX ANGLES>> 

<V> = < <VC>, <VX> > 

<Ye>= <VC1,vce~ ...• vcnc> 

<VX> = <VX1,vxe •... ~vxnx> 

(4. 9) 

(4. 10) 

(4. 11) 

(4. 12) 

where nc,nx are the number of concave and convex angles 

respectively, and ne + nx = nv. 

For example the angles of the cell polygon in Figure#<4. 16a> are: 

<V> = <V1 ,va, .... ,V16> 

= <VC1~VX1,VC2,VC3,VC4,YX2,VC5,VC6,YX3,VC7,VCS,VC9, 



3 

1 
(a) 

(b) 

Figure(4.16) Decomposition of the cell into its 
primi·titJe subparts. (a) input., (b) output. 
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VX4,VX5,YX6,VC10) 

<VC> • <VC1.,VC2, ... ,VC1.0> 

<VX> • <VX1,VX2, ... ,VX6> 

We def'ine 11 Convex S'trin9•• <CXS> as a sequence of' convex 

angles <VX"'s) without interruption of' concave angles <VC"'s>. 

Each string may contain any number of' convex angles Cone or 

fhONi•). Thus. 'the set <VX> may be •~p~essed as: 

<VX> • <VXS1.,VXS2 •... ,VXSns> 

where ns is the number of' conve-x angles strings. 

In the above example: <VX> = <VXS1.,VXS2,VXS3,VXS4>. 

(4. 13) 

The polygon w.i.Ll b• decomposed .if' .it conta.ins .a"t least two 

strings of' convex angles. 

RULEC4. 8): 

IF NS . GE. 2.,. ==then==> ACTIVATE DECOMPOSITION 

RULEC4. 9): 

IF NS . LE. 1, =•then=•> EXIT 

The decomposition process starts by considering the 

whole polygon as subpart number one. Then, it proceed~ by 

connecting the last vertex in each convex string CVXSCi>> to 

the f'irst vertex in the next one CYXS<i+1.)). The .Line 

connecting these two vertices is de~ined as the "Base Line" 

<BL). The 

conditions: 

base line should satisfy the following 

<a> it lies entirely inside the polygon, Cb) it 

does not intersect any of the polygon sides or another base 

line. If' the base line satisfies these conditions, the part 

of the polygon bounded by it is assigned as a new subpart, 
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and subpar't nl~n\ber· one ls: Ybdated by sub-tracting th.i.s new 

subpart. F~gure (4. 16b) shows the decomposition of the ce~l 

in Figure (4. 16a), and Figure (4. 17> shows the decomposition 

of the ce~ls in the f·ratrJG>S 'that are shown in Figures (4. 12> 

and (4. 15>. In Figure (4. 17), w• c.ar. s•• that the cells in 

frames 76 and 77 are e~amples of nondecomposabl• polygons 

which may be classified as simple or very simple shapes. 

The last procedure in the polygon decomposition is to 

represent the cell by a labeled graph that has a star 

configuration. In this gr·aphJ 'the central node corresponds 

to the main body of the cell, and the different nodes cou~d 

correspond to the primitive subparts of the eel~ <mainly 

pseudopods>. The branches connecting the different nodes to 

the central one, represent the structural relationships 

between the ce~l body and the different pseudopods or 

subparts. Figure <4.~8) ~llustrates the labeled graphs of 

the polygon decomposition shown in Figure <4.~7). The area 

of a node in the gr·aph is equiva~ent to the area of i;he 

corresponding subparts. The connecting lines between the 

c:enter node and the diffet··ent branches are equivalent to the 

distance between the corresponding subparts and the eel~ 

c.entroid .and ha viiS' th• same direction < .:mgle w~ th the X 

a~is). 

Analysis of the labeled graph will provide information 

about topological pr·opert.i.es ot' 'the entire cell stt"'uctUt"'e, 

its shape, as well as its primitive subparts. In 

Section 4.6 we demonstrate the analysis of the labeled graph 
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~·. ~ ~ ~ ~ ' 

FRAME I 1 FRAME I 2 FRAME I 3 FRAI1EI 4 FRAf1EI 5 

~ ~ Wv ~ ~ 
FRAMEI 19 FRAME I 9 FRAME I 8 FRAME I 7 FRAI1Ett 6 

~··· 

~ ~ ~ ~ 
FRAM£41 11 FRAI1EI 12 FRAMEI 13 FRAMEI 14 FRAMEI 15 

u u &! <f!J 4 
FRAMEI 76 FRAME I 77 FRAMEI 78 FRA11EI 79 FRAHEI 80 

Q§ <§ (g (% ~ a 
FRAMEI SS · FRAMEI 84 FRA11EI 83 FRAI1EI 82 FRAMEt 81 

tg ~ ~ ~ ? ~ 
FRAMEI 86 FRAMEI. 87 FRAI1EI 88 FRAMEI 89 FRAMEI 98 

Figure(4.17} Decomposition of the cell in a sequence of frames. 
Note that. frames 76 and 77 have simple shapes wh1"ch cannot be 
decomposed. 
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FRAI'IEI 1 FRAMEI 2 FRA~lEI 3 FRAI'IEI 4 FRAMEit 5 

FRAME# 10 FRA11EI 9 FRAME I 8 FRAHEI .. FRAME I 6 r 

ie 
FRAMEI 11 FRAME* 12 FRAMEI 13 FRAI"'EI 14 FRAMEI 15 

C) 0 ciZJ X ;( 
FRAMEI 76 FRAHEI 77 FRAMEI 78 FRAI1EI 79 FRAHEI 89 

~ ~ ~ ~ ~ 
FRAI1EI 85 FRAiiEI 84 FRAME I 83 FRAI·IEI 82 FRAHEI &1 

~ .. ~ ~ ~ ~ 
FRAME I 86. FRAMEI 87 FRAHEI 88 FRAI1EI 89 FRAHEI 98 

Figure(.4.18)Gra.phs representing the geometrical structure of the cell. 
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in order to generate the description'o~ the ce1l in a given 

frame. 

4.5 FEATURE EXTRACTION AND SELECTION 

Feature extractiot"t ar'rd se1ection is one of' the most 

important and diff'icult steps 

pattern recognition system. The 

in any scene analysis or 

best definition of this 

problem is still as it ~as stated more than twenty six years 

ago by Selfridge "The extraction of significant features 

from a background of irrelevant detail" CSelfridge. 551. 

This prob1em can be divided into two main steps: 

•xtract.ion and feoature !h?lection. 

Featureo extraction is the process which associates a 

set of primitive properties <P> with each obJeCt (Q) or 

subobJect <SO>. For examp1e. obJect <Oi> may be associated 

with a set of pt'operties as: 

{P,Qi} = <<P~.Oi),(P2,Qi), ... , <Pn,Qi)} (4. 14) 

where n is the nur~tb~.tr of' el.ements in the set <POi)., which 

represents al.l the properties which can be measured for 

ObJeCt ( Oi). 

The feature selection is the process of pruning 

ineffective sets of properties in order to select an 

effective subset. For example~ the selected subset <Ps> for 

ObJect <Oi) could be: 

<Ps• Oi} • <<Ps1. Oi), <Ps2, Oi> •.... , <Psm. Oi)) <4. 15> 

where <Ps.Qi} is subset of <P,Oi}, and m is the number of 
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the selected properties to be measured and used for 

representing or describing ObJeCt <Oi>. 

The selected elements.o~ the subset <Ps#Oi> maw be some 

of the original elements of the set <P#Oi>~ or a function of 

one or more of them. For examp~e. the original set may 

include the fol~owing properties: ~ength. width, area. and 

perimeter. The se~ected subset may include the properties: 

area. circularit~. and elongation~ where. 

circularity = < 4. 7(' . area ) I < perimeter squared ) , 

elongation = width I length 

The selected subset of properties depends on the type 

of obJeCt UAder· anal~sis, the ObJectives of the- analwsis. 

and the desired level of description. For example. in 

ge-ometrical shape analysis, in order to describe or classify 

a given polygon as: triangle. quadrangle-, pentagon. 

hexagon. . ... , only one property is t"equ.i.red, that is the 

number of si.d•s or number o~ vet"tic:es. l4httreas, if the 

desired description requires furthe-r c:lassif'ication-such as: 

right-triangle~ 

isosceles-right-tri~ngle, 

isosceles-triangl~. 

equilateral-triangle, square. 

rectangle, rhombus. parallelogram, trapezoid, . . . etc. the 

selected subset of properties should include the length of' 

each side and the angle at each ver~ex. 

The aspec~s of' feature ex~raction and selection are- a 

subJeC~ ~or which there is a substational li~eorature (it is 

a common problem in a1most every system). An e-arly survey 
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of this subJect for general applications may be found in 

[Levine, 69J, and another for radiographic images in [Hall 

e~al, 71l. Mor~ recent~~~ Sklansky introduced an updated 

summary of this sUbJeCt CSklansky, 78l. There are many 

other lengthy papers, and a survey of them would take us 

beyond the intended scope of this research. For example, in 

the analysis of cell images, Lee introduced a method for 

computing features for classification, storage, and 

retrieval of leukocytes [Lee, 76J. Fu and Bacus, in order 

~to classif~ wee, made a study to select a subset tha~ 

contains 17 properties out of a complete set including 367 

di~~erent properties Cinc~uding the di~ferent Fourier 

descriptors>. 

In general, most of the previous computer vision 

systems have been designed to perform tasks or solve 

problems similar to what humans do. This means that the 

problem and solution have been defined by humans. 

Consequently, the properties which have been used by the 

program to solve a specific problem have been selected to be 

similar to those used by humans to solve. the same prob~em. 

For example, the properties which have been used for blood 

ce~l classification are those which have been utilized by 

biologists to recognize the different types of cells. 

However, in our current research, we are designing a 

system to quantify and describe the dynamic behaviour of a 

moving cell, a problem which has not been yet solved by 

biologists; This is because the data analysis techniques 
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necessary to achieve *hese ObJeCtives are not avai~ab~e to 

b.iol.ogi.sts. Consequently~ the properties and descr.iptOr$ 

which may be used have not been de~ined by them. There for&. 

the d~sign and implemeni:ai:.ion o~ our sys-tem needed 

in-teractive sessions. w.i 'th a coopera'tir•g biologist~ in order 

to find the most use~ul and e~fective properties which may 

be used to accomplish the desired obJec-tives. 

The properties which are used in our system ~or the 

. dif~erent stages of analysis are given in Tabl.e 4. :1. They 

have been selec-ted based on three factors: 

<b> number of prope~ties <minimum>• 

<c> speed of computation. 

In the preceding sections of this chapter1 we described 

!l:hree ~evels- of' ce.Ll abstraction: segMenta-tion, pol.ygonal. 

approximation. and poltJgor. dec::omposi. tion. At each l.evel of 

in- Table 4. :1. Figure· (4. cj;~) 

i~~ustrates the basic properties which can be measured for 

'the cell shape. In the remainder of this section, .et 

description and 'theoretic::a~ de~i.nition of each property will 

be given. 

AREA: 
====== 

Is the number of non-zero p.ixel.s in the binary image of 
the obJect~ 

y=MXY x=NXX 
A = sum · St.UA 

y=MNY x=MNX 
B<x, y> (4. 16> 
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~--_j 
Minimum containing rectangle 

Figure(4.19} Main features of a cell. 
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0 e1se where <background> 

PERIMETER: 

Is the ~ength or the exterior outline or the ob~ect. 

It can be calcul.at&d f·rom the summation of' -the distanc• 

betw~~ten the adJacent vertices of' the ObJect po~~gon. 

m e 2 1.12 
P = sum [ < X<i+1.) - X<i> ) + < YCi+1.) - Y<i> ) l 

i=1 

wh~~tre m is the- number or vertices if"• the polygon. 

(4.17) 

Due to 

the cyclic nature X<m+~> • X1., and Y<m+1> = Y1. In the case 

of' computing the polygon from the boundary points: 

1.12 
P = NB1 + NB2 . <2> (4. 1.8) 

where NB1 the number of points where XCi> = X<i+1.) or Y<i> = 

Y<i+1), and NB2 else ~here, NB1+NB2 • the tota~ number or 

boundary points. 

MINIMUM CONTAINING RECTANGLE: 
===============•=========•*== 

entire ObJeCt. The orientation or the rectangle is para~lel 

to th.;o X and Y axis. This rectang.le can b.;o us.;od as a rough 

estimate of the size and location of the obJect. Its s.i.ze 

and location are defined by the minimum and maximum location 

of the ObJect in the X and Y directions <MNX, MXX, MNY, and 

MXY; see Figure 4. 19>. 



STATIC SCENE ANALYSIS Page 4-205 

CEN'rROID: 
·====·=== 

The X and Y 

coordinates of the centroid CNX,CNY can be computed from the 

binary image as: 

y=YMX x•XMX 
CNX • t sum SUFt\ X B<x,f:6) ] ~ RREA (4. :1.9) 

y•YMN x=>CMN 

y•YMX x=XMX 
CNY = t sum sum Y B(x,y> l ~ AREA (4. 20) 

y•YMN x•Xt1N 

AVERAGE INTENSITY: 
=================· 
The average gray value- <br·ightness> of' the ObJect. 

c y=YMX x=XMX 
AVI = t sum sum f(x, y> l ~ AREA (4. 21.) 

y•YMN x=Xt1N 

. where f'(x, y> .is the gray-value of the pixel <X, Y> in--

the intensity image. 

BEST FIT RECTANGLE: 
========•========·= 
The rectangle whose m.a.i.n axes are the length and width 

of the obJect. 

CIRCULARITY: 
===•======== 

Is a relative measure of' the ratio between the area and 

the square of the perimeter. Its value varies between 0 and 

1., the latter value being obtained for a circle. 

0 Circularity has often been used as a measure of 

"smoothness", Ot' the ''complexity" of a boundary, s.ince the 
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more comp~ex th~ boundar~~ the longer the perimeter. 

ratio has a1so been us~d as a measure or compactness or 

figures:. However# Rosenfe1d disputes the re1iablity of this 

measure- ror digital p.ictut"e analysis tRosenreld~ 731. In a 

later section of this thesis, 

unreliabil.ity through experimental exampl«-s. The 

circularity may be computed as: 

CIRC (4.22) 

LENGTH: 
·======= 
The distance between th• two farthest points on the boundary. 

2 2 1/2 
LENGTH = max < C <Xi-XJ) + <Yi-YJ) J } (4.23) 

n is 'the number of the boundary points. 

WIDTH: 
====== 

The maximum extension of the obJect on both sides of the length an1 
normal to it. 

ELONGATION: 
=========== 
The complement o.f' the ratio of the width to the length. 

ELONGATION = ~ - ( WIDTH / LENGTH > 

AVERAGE BENDING ENERGY<ABE>: 
===================·======== 
The rate of change of the Tangent along the boundary. 

i=n e 
ABE = [ sum C dCi / Li ) l / n 

i=1 

(4. 24> 

(4. 25) 

where dCi is the change in the Tangent at vertex i# and Li is 

half of two sides at verte-x i. 



STATIC SCENE ANALYSIS Page 4-207 

REGULARITY: 
=·====·==== 

Regu~ari'ty is a well-known pt"'operty that humans have 

always used to describe the shapes of different obJects. 

However. it has not yet attracted much attention as a shape 

descriptor in computer vision systems. For· example, a 

as perfectly regular shapes. 

unfamiliar ob.,Jects. A measure car. be defined to determine 

by comparing it to a 

perfectly regular shape. In our research, we found that 

0 for g.lobal shape 

description and classification. The power of this property 

in characterizing various arbitrary shapes wi~l be 

demonstrated in .a l.atet .. section. 

The regularity of a specific shape is based on two 

criteri.a, angles and sides. Definitions and mathematical 

formulae for computing each are given below. 

ANGLE REGULARITY 
================= 

A measurement of the sum of the differences between the 

angles of a given polygon and a regular one (equal angles> 

having the same number of sides. Thus, for a polygon with n 
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<An> is: 

i.=n 
An = sum ai 

i=1 

Page 4-208 

= <n-2) . 1813. (4. 26) 

ar = Cn-2).~80 / n. The angle regularity CAR> can be computed 

AR • 
i.=n 

[ sum lai-arl l / K 
i=1 

(4.27> 

where K is a norm•lization factor, which is determined i.n 

order that AR = 0 for the most regular shapes, and equal 1 

for the most irregular ones. The value of K can be computed 

as: 

ar<n+2) for n even 
K = <4. 28) 

ar(n+1) for n odd 

SIDE REGULARITY <SR> 
·==================· 

The same as above, except the measurement involves the 

sides instead of the angles. 

i=n 
SR = [ sum 

i=1 
li - L 

L = PERIMETER / n 

It can be computed as: 

l / [ 2L <n-2) l (4. 29) 

(4. 30) 

where n the number of si.deos, l.i is the l.ength of' a given 

side, and L is the length of the side of regular polygon 

that has the same perimeter and number of' sides. 
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Readers are r~ferred to Appendix A for a short proof or 

equations <4.28> •nd <4.29>. 

4. 6 STATIC SHAPE DESCRIPTION 

Shape perception is a common problem in any computer 

vision, scene analysis, or pattern recoQnition system. In 

this problem, we imitate a very complex process, the human 

perceptua.L process. The solut.i.or. to th.i.s problem may be 

ach.i.eved through two stages of processing: shape analysis' 

and shape description. Figure (2. ~> is a schemat.i.c d.i.agram 

that shows the basic steps for shape analysi$ and 

description, as well as the .input and output data at each 

step. In the preced.i.ng sect.i.ons of th.i.s chapter. we 

described the different processes associated with the first 

stage of th.i.s task, that is the shape analysis. In these 

processes, the digit.ize-d .image of" the cell is transformed 

into two forms: a sca.Lar vector whose ele-ments 

measurements of the main shape properties, and a graph. The 

properti.eos of this graph express the shape- and structural 

properties of the ce-ll. In this section, we will describe 

of 

The 

the processes which are associated with the second step 

shape perception, that is the shape description. 

obJective is to utilize data which result~d from the shape 

analysis in order to generate a symbolic summary describing 

the shape and structure of the cel1 in the current frame. 
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Past work ~n shape descr~pt~on has resulted ~n 

develop~ng systems wh~ch work remarkably well ~n s~mulat~ng 

human v~:s~on. For example~ character 

waveforms, chromosom&s, f~ngerpr~nts, cells, and mach~ne 

parts, among others. Th~s work has not resulted ~n a sound 

theor'r,l of shape des:cr·i.pt.i.on tHollerbach, 75; Shapiro, S0l. 

A revi.ew of the signi~i.cant work which has been done ~n 

shape anal'r,lsis and descr~pti.on is presented in Section 2. 3. 

4. 6.1 Symbolic Description 

Symbolic description is the most natural and powerful 

method for the human to express himse.Lf and his perception 

of the world. In computer vision, where steps are taken to 

model human perception, a symbo.Li.c descript~on is an 

important methoh for repr~senting the information in a more 

natura.L and informative ·form. For example, .in the automatic 

processi.ng of" mi.ct··oscop.ic ~m ages, it ~s interesting to 

describe the output or the analysis ~n a symbo.L~c 

term~nology which is meaningful to b~o.Logists. Bartl.ett 

descr.i.bes this in "Remembering" as: 

"Words can ~ndicate the qualitative and relational features 
o~ a si.tuati.on i.n thei.r genera~ aspect JUSt as di.rect~y as, 
and perhaps even more satisfactory than. they can describe 
its particul.ar indivi.duality. This is, ~n fact, what gives 
to language .its .intimate rel.ati.on to thought processe~ " 
CBartlett, ~9761. 

Symbolic descript~ons to rep~esent the data in computer 

vision was suggested by Minsky CMinsky, 741. In h~s 

Framework for Representing Knowledge, he pointed out the 
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lack o¥ usefulness of con~inuous-range numerLcal data. In 

not the exact value~ but some qualitative JUdgement based on 

this va.lue. Also~ he showed the power or s•Jmbo l.i.c: 

description f'ot... vision over all the other methods in the 

~ollow.i.ng statement: 

"·This essay·· contains· quite· a· .,.ew different arguments- against 
quant~tat~ve mode.ls. Perhaps I should expla~n the general 
princible upon which they are based~ since I see that 
separately they are not very compelling. Thesis: the 
output of a quantitative mechanism~ be it numerical, 
statistical~ analogue~ or physical <non-symbolic:>, is too 

cc~.:s-tructureJ.ess and· uni.t'\~ermati.ve to permit further -analysi.s. 
Number-like magnitudes can form the basis of decision for 
immediate action~ for muscular superposition, for filtering 
and summing of stimulus features~ and so forth. Bu~ each is 
a "dead end" so far as further understanding and planning is 
conc:erned1 for each is an evaluation -- and not a summary. 
A Number cannot reflect the consideration that formed it. 
Thus, although quantitative results are useful for immediate 
purposes, they impose a large cost on further and deeper 
development. " [Minzky, 741. 

· One of the few applications .which used symbolic: 

description in a manner close to our approach is by 

[ Hollerback1 751. In his approach to shape description, he 

vase such as body, neck, lip, foot, and handles. He used 

these descriptions to categorize d~~~erent vases. 

In orde-r ~or the human to choose the proper symbolic 

descri.ptor for .a SJ:•&ci ~ .ic pr"operty of' an obJect.~ he compat ... es 

the perceived data to his a priori knowledge about the same 

class of obJect or similar ones. For example1 to describe a 

person as "SHORT or TALL"~ the human compares the length of' 

the person to the length of an average adult. This process:. 
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involves human p~odvct~on rules such as: 

"IF PERSON IS TALLER THAN THE AVERAGE, THEN HE IS TALL", or 

11 IF PERSON IS SHORTER THAt~ THE AVERAGE, THEN HE IS SHORT". 

The above represents an example of a human production 

rule in its simplest form. The basic elements of data which 

constract this" rul.• are: (a) data extracted f'rom the·· 

perceived scene <the person to be described in the above 

example), (b) a priori knowledge to be used as reference in 

>; r·.::.. T.• "'' c:-=.or-der:c to·; c. describe'. ·-th•cc.c.perce~ved data <the lengti'f""'Of the -,.;;.. 

0 

average person), (c) a comparative operator to be used in 

the matchi.r.g or cornpar~son procedure <tal.l.er than, shorter 

than), <d~ an adJeCtive desct"iptor <tall, short>. It is 

clear that (a), (b), and (c) are the basic elements of the 

left hand side of the rule <conditions), whereas (d) 

r-epresents the right hand side <action).~ 

This philosophy of human production rules is the 

foundation of the structure of our representational rules 

for assigning symbolic descriptors to the diff'erent 

prope~ties of the moving ObJect under analysi.~ Thus. the 

Symbolic Descriptor Representational Rules <SDRR> are a 

group of cor.d.ition --> action prc•ds..~o:ti.•::>n rules; their m.ain 

function is to choose. among a set of symbolic descriptors, 

the appropriate one, for a given n~merical value which has 

been extracted from the sequence of' .i.ma•;;Jes. 
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In th• above example, if" a more precise description is 

required~ a human maw expand his description to f"ive cLasses 

to .inc:1ude "VERY SHORT, SHORT, AVERAGE, TALL, VER'T' TALL". 

:tn this case-, th• property of" an ob.ject is described in 

mu1tiple levels of" description. Obviously the process here 

wil1 be more di.f'fic:ult and ambiguous. Thus, ir• describing 

·the 1ength of a p8'rson. one may say: 

IF THE PERSON IS SHORTER THAN 4. 5 FEET, 

THEN HE IS VERY SHORT 

IF THE PERSON IS TALLER THAN 4. 5 FEET, 

AND SHORTER THAN 5 FEET, 

THEN HE IS SHORT 

IF THE PERSOt,f IS TALLER THAN 5 FEET, 

AND SHORTER THAN 5.5 FEET, 

THEN HE IS AVERAGE 

IF THE PERSON IS TALLER THAN 5. 5 FEET, 

AND SHORTER THAN 6 FEET, 

THEN HE IS TALL 

IF THE PERSON IS TALLER THAN 6 FEET, 

THEN HE IS VERY TALL" 

In the above description. approximate values (4.5, 5, 

5.5, and 6) have been used as classif"ic:ation thresholds to 

classif"y and describe a person as a member of one of five 

classes "VERY SHORT, SHORT, AVERAGE, TALL.. VERY TALL". 

However, these classification thresholds will be different 
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amongst the Watusi and Pygmy tribes of A~rica. This 

discussion indicat~s two basic subJects for analysis: the 

number of classes, and the classification thresholds. These 

aspects will be discussed .in the follo1t1ing sections. 

4. 6. 2 Number Of Classes (Levels> Of A Symbolic Descriptor: 

The number of classes of a symbolic descriptor is 

controlled by the accepted level of approximation which is 

related to the deosirableo descri.ption. Specifically, the> 

greater the number of classes <levels), the n\Ot"'e precise the 

description. On the other hand, the fewer classes that are 

defined, the simpler i.s the programming, the fewer required 

rules. the fewer symbolic descriptors to be defined, the 

smaller the processing time, and the more data compression 

is achieved in ger.eral. The-seo factors f'orce the designer to 

study the optimum number of classes that combines the best 

or the above c:onf lic:t.ing factors. 

The simplest method ~or d.iv.idi.ng a set o~ data .into 

classes is to classify them into two groups similar to 

transforming a gray-l~vel image into a binary one Cblack and 

white>. Thus, using a single threshold, each numerical 

value can be assigned to one of two subdescriptor:s: such as 

"SHORT, LONG", "FAST, SLOW", .... etc. 

In this respect it is generally accepted that human 

ability to classiry a set of data into classes is limited in 

number. 



0 

STATIC SCENE ANALYSIS Page 4-215 

-o~ subc~asses to ~~ve ~eve~s in the ~o~~owing order: VERY 

LOW~ LOW1 MEDIUM~ HIGH~ VERY HIGH. Thus, in our present 

system, a~l the mea~ured numerical values of the different 

properties are described symbolical~y in terms of five 

levels of description. However~ in some special cases, the 

nature of the property to be described provokes other 

·numbers of' leoveJ..s; -For examp~e-, in describing the· direction 

of' the motion of ~ moving ObJect Csymbo~ica~ly instead of 

angles) eight levels are defined <EAST, EAST-NORTH, NORTH, 

c·· WEST-NORTH;, WEST, ·WEST-SOUTH, SOUTH, EAST-SOUTH). :Table' 'iJ. a 

gives examples of the subdescriptors of the different levels 

of· some of the main properties. 

4. 6. 3 Classification Thresholds 

The second pY·oblen~ irwolved in des er ibing a set· of 

numerical values symbo1ic.ally is how to define the 

thresho~ds that can be used to divide this set of data into 

a · '9i.t.'en nt.~mber of· classes. -- This problem seems eas.ier than­

.it is. The solution involves c~ustering and grouping 

theories, human psychology, and the problem doma.in knowledge 

representation. This problem was the subJect of a thorough 

study by Denofsky at MIT CDenofsk~, 76]. The title of his 

study "HOW NEAR IS NEAR?" .is, .in fact, a good def.in.ition of 

the problem. Although• he did not develop a mathematical 

theory for determining the classification thresholds, 

neither does he specify in detaiL, how to make the 

appropr-iate- cho.ice for~, the:se p.Brameters in a · -speo.:!t".tc 



c 

STATIC SCENE ANALYSIS Page- 4-216 

situation. However, he showed through many example-s that 

commonsense choices lead to good thresholds. 

In the example demonstrated in the previous sections, 

thresholds o~ 4.5, 5, 5. 5, and 6 have been used in order to 

classi~y and describe a person as a member of one of five 

classeos "VERY SHORT, SHORT, AVERAGE, TALL, VERY TALL". 

Also~ it was m•ntion•d that th•se thresholds will b0 

di~ferent depending on the class of people. Another example 

~roro the motion description, which possesses the same idea 

is to describe .a displacement distance as uvERY SHORT, 

SHORT, AVERAGE., LONG, VERY LONG". The thresholds here will. 

depeond mainly on the type o~ moving obJect. For example, 

twenty microns is a very long distance for a moving blood 

cell, whereas a thousand miles is a very short distance ~or 

the Space Shuttle Columbia. 

In order to design a general knowledge representation 

strategy, which may be used ~or di~ferent classes of obJect~ 

and motion, a normalization technique of the dynamic data is 

employed. Hence. a general rule may be used for computing 

the symbolic descriptors for the different properties. A 

description of such normalization techniques is given below. 

4. 6. 4 Normalization 

For any set of numerical data 

<V> •<V1,va, ... ,vn> (4. 32) 

(the dat.a can be ther measure-ments of .any of' the ob,Ject or 
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motion proper~ies), the different e~ements may have va~ues 

between <Vmin) and <Vmax>~ where Vmin and Vmax are the 

minimum and maximum va~ues of (y~,ve, ... ,Vn>, respectively. 

The different e~ements of this set may be normalized ~o 

range between 0 .smd 1 as follows: 

vi = < Vi - Vmin ) / < Vmax Vmin ) (4. 33) 

where vi is the normalized value o~ Vi. 

Two t~pes of normalization are defined: local 

normaliz-ation <scene-dependent) and 

<scene-independent). In the local 

glob.al normalization 

normalization, the 

parameters Vrnin -~tnd Vmax are -the minimum and maximum va.lues 

of the dynamic date measured from the scenes under ana~ysis. 

Xn globa~ normalization, t~se parameters are defined by the 

constraint knowledge. They are the typical values as 

retrieved from the gener·al knowled9e pertaining to the class 

of obJects under consideration. For example, in the study 

of the shape changes of a moving eel~, in order -to describe 

the change in the size <area) of the neutrophil cell: <i> 

l.oc:al.: Am~n and Amax are the m~nimum and max~mum area oF 

the cell, measured from the sequence under analysis, (ii) 

global: Arnin and Amax are the minimum and maxirnum area of 

any neutrophil cel.l. under any conditions. Obviously, in the 

first case the parameters are dynamic data which may change 

for the different analyses <STM data>~ whereas in the second 

case, they pertain -to constraint kno~.rJledge related to 

neutrophil cell <LTM data). 
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~he second stage of the thresholding problem is to find 

the thresholds which divide the range of the normalized data 

<0-~) into classes representing the dirrerent levels of 

description. Let us consider the range to be divided into 

which define the boundaries of each level. Then each 

normalized value is assigned to the corresponding symbolic 

qualifier using the following rul•: 

RULE<4. 9) IF VCPk). GE. Ei, AND .LT. EJ, 

where V<Pk) is the normalized value of the property Pk, 

Dl is the corresponding symbolic qualifier <descriptor), 

Ei1EJ are classification t'hr•shold values, which define 

the boundar'sl of the dasc:riptor 01, and Q(Pk> is the 

symbolic qualifier of the property Pk. 

Example: 

RULEC4. 10a): 

IF V<area> . LT. E1, =then=> Q(area) <--- V. SMALL 

IF V<area> . GE. E:L .. AND . LT. Ee, =then==> Q(area> <--- SMALL 

IF V<area> . GE. E2, AND . LT. E3, =then=> Q(area) <--- MEDJ:UM 

IF V<area) . GE. EJ, AND . LT. E4, =thErn=> Q(area> <--- LARGE' 

IF V<area) . GE. E4, =then=> Q(area) <--- V. LARGE 

Estimating the threshold values E1.E2 •... ,E<n-1) is an 

interesting subJect for study, however, it has not yet 

l:t is known that people seem to 

respond according to a power law for many tasks in their 

Based on thi8 fact, Denofsky proposed a thresholding 
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method based on an exponent~a~ sca~e. ~n wh~ch each 

threshold ~s half' the prev~us. and J.s the geometr~c mean 

<GM) of' the th,...esholds on each s~de of' ~t [[)enof'sky, ,??J. 

Through cop~ous e~amples drawn .from everyday life, Denofsky 

claims that this method g~ves reasonable results~ with~n 

(+~-)25?. of' where humans would place the threshold. 

In th• examples giv•n by Denofsky~ he divided the range 

of' data into a number of' classes, that are expanded in one 

direction from a fixed point. Thus~ the descriptors of 

these examples describe the data of' a specific property only 

f'r-om one side. For example~ how near·~ far~ short, long~ 

small, and larg~ A more informative descript~on can be 

generated if' we divide the range of' data into classes that 

are expanded in two dir-ections <left and right) from a 

middle f'ixed point~ where the classification ~s symmetrical 

with respect to this point. The classes of' the LHS and RHS 

ar-e described by ve,...y low, low. almost low, and almost high. 

high, very high respectively, and the middle class describes 

the average portion o.f' -the data. This c~assi..fi.cati.on method 

~s more usef'ul, espec~ally for data which change between 

negative and posi t~ve values. For· example, in the 

description of the acceleration of' a moving obJect. the LHS 

and RHS classes wowld describe negative and positive 

acceleration respectively. The middle class would describe 

data which indicates an a~mos~ constan~ veloc~ty. Another 

example relates to the rotation of an obJect in clockwise 

and anticlockwise directions. Such an approach is descr~bed 
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be~ow. 

Le~ us consider the classifica~ion of the range 0-1 

into (n) c~asses~ wh&re r• is an odd nutlber great•r than one 

(3, 5 ...... ). 

the average ~eve~ c~ass; on each side of this c~ass, there 

are [(n-1.)/21 c~ass•s higher and ~ower than ~he average. If 

to the m.i.dd~e c~ass ther,: 

E1 • 1.-E<n-1), 

E2 • 1-E<n-2), 

• • • • • • • • • • • • • I 

E<<n-1)/2) • E<<n+3)/2). (4. 34) 

We divide the range into <m> equa~ units. 

This: r·epresents th• width of' the smallest 

c~ass <the highest and ~owest class). Using the power ~aw. 

each c~ass is ha~f the- previous or•• (for classes above the 

middle>.. and is twice the previous c~ass (for the c~asses 

below the midd~e). Thus, if Wi is the width of class <i> 

W~ = Wn 

we = wcn-1> = 2T, 

• • • • •• • • • • • • • • • • I 

i-1 
Wi = e T .. <4. 35) 

and W<<n+i)/2) = 2W<<n-i)/2) = 2W<<n+3)/2), 

where WCn+i)/2 is the width of' the middle class. This 

width can b• determined in terms of the unit T as follows: 

<n-1)/2 
W(n+1)/2 = 2 T (4. 36) 
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For examp1e~ ~¥ n=5~ then the width of the m~dd1e c1ass ~s 

4T. The tota1 number of un~ts m can be determ~ned as: 

i•n 
m • sum Wi (4. 37) 

~·1 

= W:1. + we + . . . + Wn 

• T + er + 4T + . . . + 4T + eT + T 

= W(n+:1.)1"2 + e cw<n+1.>1"e :1.] 

Therefore~ 

and 

• 3 UHn+1)/2J 

<n-1)/2 
m • 3 . 2 

T = 1. / m. 

e (4. 38) 

e (4. 39) 

(4. 40) 

Thus the w~dth of the d~fferent classes can be computed, 

<W:L=T~ W2=2T~ WJ=4T, ...... Wn=T>. The d~¥¥erent thresho1d 

E:1. • W1. / m 

Ee = <W1 + we> / m 

J•i. 
Ei = C sum WJ J / m 

..j==1. 

Figure<4. 20> shows the- c1assification 

di¥ferent nwrobers of classes <n=3, 5, 7, 9). 

(4. 41.) 

thresholds f'or 

In the descr.ibed 

swstem, we divided the normal.ized range of data into f.ive 

classes.. us.ing thr·eshold values of . 1, . 3 , . 7 and . 9. For 

example.. the qual.ification of the cel1 area given .in th~ 

above example may be computed as: 

RULE<4. 10b>: 
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T 
.T5 

T = 1/4 = .25 

.T .IJ 

T = 1/10 = .1 

.88 .us 
T = 1/22 = .045 

.61 .85 .98 .08 

T = 1/46= .02 

m= 3. 2(n-1)/2- 2 

T=l/m 

Figure(4 .. ~0) Classification a range of 
normalized data {0-1} into different 
numbers of classes {9,5, "'9}. 
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IF V<area) . LT. . 1~ =then=> Q(area> <--- V. SMALL 

IF V<area) . GE. . 11 AND . LT . . 3, =then=> Q(area> <--- SMALL 

IF V<area> . GE. . J~ AND . LT. . 71 •then=> Q(area) <--- MEDIUM 

IF V<area) . GE. . 7J AND . LT. • 91 •then•> Q(;~~re-a) <--- LARGE 

IF V<area) . GE. . 9, •then=> Q(area) <--- V. LARGE. 

When se~ecting symbolic qualifiers <SMALL, 

LARGE, .... ), one should consider the following factors: <a> 

pertinence to the proper~y to be described. 

for the size properties we may use SMALL, LARGE, .. ·' and for 

distance properties we may use SHORT, LONG, .. ,, (b) describe 

the numerica~ values to the best approximation. For 

example, VERY SMALL, SMALL, MEDIUM, LARGE, and VERY LARGE~ 

(c) meaningfu~ to the user. For exarnple, in the description 

of the cell images, the symbo~ic qualifiers should be drawn 

f'r-om termin.ologt.cJ ~1hich are used by biologists. 

The pr·evious sections define how to generate the 

symbolic qualifiers which describe the different properties 

A final step in th• 

static description is to integrate the symbo~ic qualifier~ 

into a coherent summary describing the under 

summary shoul.d 

and grammatically correct. 

considera ti.on. 

understandab~e, 

Description <4.1> gives an example of the description 

generated by the system. 
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4. 7 SUMMAR't' 

Three s-tages of an.a11r,4s:.is are def·ined 'to achieve the 

obJec-tives of· unders-tanding and describing 

These are: (i.) 

'the dwnamic 

s-tatic scene 

analysis, < e > 

analysis ~and 

incremental change detection, and (3) global 

descrip't:ion. ··In this chapter, ~we have · 

static scene analysis. 

· s-umm-at"'y dEtscription 

The obJec-tive is -to 

Gf the cell loca-tion, 

structure in the current frame. This 

accomplished in 'three levels of processing. 

ge-nerate .e 

shape1 and 

is 

processes which are responsible for locating and segmenting 

the cell under analysi.s; the output of this level is sho11m 

in figure(4. 2i.a). The .intermediate level is cor.cerned with 

the shape and structure analysis of the ce-ll.· In this 

analys.is, f ir·st, the polygonal approximation of the cell is 

computed .in order to reduce the noise around the boundarw 

poi-nts, as we-ll as--the amount of data to be manipulated bw 

the higher levels. Then1 in order to study the cell 

structural changes, -the cell polygon is decomposed into its 

pri~i.tives. The laTter represent the different subparts of 

the cell. Finally~ the different subparts of the cell are 

g.iven by a labeled graph. The properties of this graph 

~represent the geomet.Y'ical s-tructure of the cel.l. 

Figure (4.21b) shows the output of these three steps of 

analysis. The function of· the h.igh l.evel processing is to 

-±rrtegrate ··the output- of - th• analysis proc•sses · -i,i:o -a , 
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(a) 

(b) 

' "Ftgure(4..B1) The" output of the different steps of the static 
scene analysis . 

. (a) The segmentation process. 
. . {b) Shape and structure analysis. 
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coherent description such one given .in 

Decript.ion <4. 1.). This description is presented in a 

symbol.ic: terminoLogy that .is autaningf'ul. to the bio.logist. 
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TABLE(4.1) DIFFERENT PROPERTIES FOR CELL REPRESENTATION 
~-------~-----------~-~~~-~--~-~----------------------­-------~----------------~~-----~--~--~-----~-----------

SEGMENTATION 
---------------------------
AREA 

PERIMETER 

LENGTH 

WIDTH 

ELONGATION 

CIRCULARITY 

AVERAGE BENDit-.IG 
ENERGY 

INTENSITY <COLOR> 

BOUNDARY 

CENTROID (X,Y> 

ORIENTATION 

CONTAINING RECTANGLE 

FITTED RECTANGLE 

POLYGONAL DECOMPOSITION 
--~~~---~ ---------------------~ ---~---------
AREA NUMBER OF SUBPOLYGONS 

PERIMETER CONNECTIVE LINE 

ANGLE REGULARITY BASE LINE 

SIDE REGULARITY SUBOBJECT AREA 

NO. - -OF VERTICIES RELATIVE AR£A · 

LENGTH OF POLYGON SUBOBJECT PERIMETER 
SIDES 

ANGLE BETWEEN SIDES SUBOBJECT CENTROID 

NO. OF CONCAVE ORIENTATION 
ANGLES 

POLYGON CENTROID CENTROID 

YERTICIES COORDINATES 
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DESCRIPTION (4. 1) 
================= 

STATIC SCENE ANALYSIS 
--------=--==--=-========-== 

DESCRIPTION OF THE CELL IN FRAME 9 

The ce~~ has ~ COMPLEX shape. wh~ch 1s JAGGY and 
SLIGHTLY ELONGATED. It ~s or~ented towards the NORTH. 
The cell has a MEDIUM s1ze and VERY LONG perimeter, with 
an average DARK graw ~evel. 

DETAILS: 
===;::==== 

The cell can be dE!'composed into the- following simpl.e 
(convex> blobs: 

The FIRST <The main bod~ of the cell> has a size of 
THREE-QUARTERS of the total s~ze of the cell. 

The SECOND is adJacent to the main bodw w~th a SHORr· 
baselinei its size is approximatl~ ONE-TENTH of the cell. 
Its centroid is QUITE NEAR TO the cell's centroid in 
the WEST-SOUTH direction . The length of its per1meter is 
ONE-FIFTH of the total cell perimeter. 

The THIRD is adJacent to the main body with a SHORT 
baseline; its size ~s approx~rnatly ONE-FIFTH of the celL 
Its centroid 1s QUITE NEAR TO the cell's centroid ~n 
the WEST direction. The length of its perimeter is 
THREE-TENTHS of the total cell perimeter. 

The FOURTH is adJacent to the rnain body with a SHORT 
baseline; its size is approximatly ONE-TENTH of the cel.l. 
Its centroid .is QUITE NEAR TO the cell's cEtntro.id in 
the NORTH direction . The length of its perimeter is A 
QUARTER of the total ce~l perimeter. 



CHAPTER 5 

INCREMENTAL CHANGE DETECTION 

5.1 INTRODUCTION 

Incremental change detection or inter-frame comparison 

is an established methodology in image sequence analysis. 

The di.f.f'erllJ'nt techniques and the previous work based on th.is 

methodology reviewed in Section 2.2.2.2. In the 

preceding chapter we described algor·ithn\s for stat.ic: scene 

output is a desc:r.iption <r•umer.ic arrd ::>yl'l\bol..ic:) of the cell. 

under anal.ysis1 as w•~l as its di-fferent subpart:e: and their 

between two sequential. frames~ 

descriptions will comprise the material. of this chapter. 

The probl.em of incremental change detection can be 

defined simply as: detect the dif-ferences between two 

pictures of the same scene taken over a period of t.ime or 

from two different perspectives. 

solving this problem may be as simple as the detection of 

the obJect(s) which appear .in only one of the two images 

to the "' corresponding obJects and parts of obJect::> .in both 
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images, and then estima~ing the change in the location and 

shape ~or each obJect [Youssef and Levine, 80]. 

Given the location and geometric features of a specific 

obJect in two diff•rent frames <the results of the static 

scene analysis>, the main obJective of this stage of 

analysis is to detect and describe the changes in the 

location, shape, and structure of the cell and its subparts 

between the two frames <see Figure 1.5b>. Figur·e (5. 1> 

illustrates the different processes and data structure of 

the incremental change detection, and Description <5.1> 

gives a sample of the descr·iption generated by the system. 

The processes which generated this description will be 

described in the remainder of this chapter. The d.i.scuss.i.on 

is given in three main Sections 5. 2, 5. 3, and 5. 4. They 

describe the changes in the location. shape, and structur·e 

reospeoctively. In each of these sections, the different 

aspects associated with the incremental change detection, 

qualif' ic:ation, and description is discussed. Finally, 

Section 5. 5 gives some- concl.udi.ng r•mat"ks. 

5. 2 LOCATION CHANGE DETECTION 

Detection of the change in the location of a moving 

obJect from a sequence of images is a basic and common 

technique for tracking. The ob~ective is to produce the 

path of' the movLng ob~ect~ so that the mot.i.on pattern of the 

obJect may be understood. An example is the tracking system 

They quantified the path 
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Figure(5.1) Processes ancl data structure of 
the incremental changes in location, shape, 
ancl structure of a non-rigid motJing object. 
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data of" a group of l.ive bl.ood cel.l.s, -thereby computing. the 

s-teady-stat~ probabil.ities -that the cel.l.s wil.l. ul.timatl.y 

Lev.ine et al.. ~ S:L J. 

The change of the l.ocation of" an ObJE>Ct .is a function 

of the morphology of its &l.ements. This process may result 

in the translation and/or rotation of" the obJect. The two 

types of' motion are ill.ustt"'ated in Figure <5. 2). Any moving 

obJect can beo cl.assif'ied into one of two cl.asses: 

(a) Rigid ObJect: An ObJect which retains constant size and 

shape in three-dimensions, such as for example, 

a moving vehicle. 

(b) Non-Rigid ObJect: An obJect which changes .its size , shape, 

0 and/or structurE> wi-th time, such as fat" exampl.e, 

a blood cell. 

In the motion of a rigid obJect, the geomett .. ic. 

rel.ationships of its elements are constant, whereas the 

non-rigid obJect· ha£- 'two types of rtlotion which-~ -occur 

simul. taneously. One is the relative motion of the diff"erent 

components. and the other. the gl.obal motion of the obJect. 

Theref'ore, the term- "transl.at.ion" may be used to .identif'y 

the change .in the locatior• of a t" .igid obJect, whet"eas the 

term "locomotion" .is used to describe the rnot.ion of' a 

Theref'ore. we refer to blood cel.l 

movement as locomotion. 
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5. 2. 1 Computation Of The Change In Location 

In the case of a rigid obJect~ the change in the 

locat~on may be computed as follows: 

Ci) D~splacement in the X direction: 

dX • XC<i> - XCCi+1) (5. :1.) 

<ii) Displacement in ~he Y direction: 
------~-----~-~-~-~-------------

dY • YC(i) - YC<i+1) (5.2) 

<iii>Translation: 

a 2 112 
TR = ( dX + dY > (5.3) 

Similarly~ the dir·ection of motion cart be computed as: 

(i.v> Direct~on: 

-1 
DR = Tan < dY I dX > (5. 4)· 

of the cell in frames' Ci) and <1+1) respective!~. 

ROTATION 
======== 

The rotation or an object can be defined by its angular 

displ.acement. This can be computed as the change in the 

orientation <angle between the maJor axis of th~ object and 

the X axis>. Thus: 

Rotation: 

0 RO = ORCi) - ORCi+1) (5.5) 

where OR(i) and OR<i+1) are the cell orientation in frames 
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<~> ~nd Ci+1) respectively <see Figure 5. 2). 

Computation of the change in iocation of a non-rigid 

ob.Jttc:t is probl•r,.atic:.al. This .is bec:ayse th• relative 

motion of the differ·ent •lemtmts of the ObJect may change 

the centroid coordinates~ even when the entire obJect is in 

a stationary position, and vice versa. In order to compute 

its change in location~ we may conceptually consider each of 

its •lements as a rigid moving obJect. Then, the change in 

location of each element (k) may be computed individually 

and represented as a vector v<k>. The resultant of all the 

vectors can be estimated and represented by the vector (V). 

The latter yields the change .in location of the entit"e 

obJect. Figure (5. 3) illustrates this method. 

The above method for estimating the change in the 

·1.:oc::at3.on -o-f-~ non-rigid-ob-JeCts .is theoretically possib-J;e- -if ·· 

the different elements can be distinguished in both 

locations (the two sequential frames). 

how•ver, it is""'impra-c:t.i-cal, since we cannot distinguish 

these dift .. erent elen1emts. An example is the moving cell. 

under study. However, Ysing a similar technique, we can 

detect the chat'lgf' in location by approximation. · ~This rs -

accomplished by estimating the change in the location of 

certain critical points computed from a knowledge of the 

boundary of the obJec~ Examples are points of maximum 

curvature, points of the ~aximum extension of the obJect in 

the plane, and the centroid Since these points are shape 

dependent, · 'the ·approximation her·e depends or. lJhich · .t!'-
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Cell 

11 

Figure(5.9) Computing the displacement of 
. a non-'rigid. moving object by considering . 

. each element in the object as an independent 
rigid moving object. 
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faster, the change in shape ot·· location. However, the main 

assumption in image sequence analysis is the smooth change 

between sequential frames. Therefore~ these critical points 

could be considered, to a large extent, shape independent 

between two sequential frames. 

The previous analysis of the change in the location of 

non-rigid- moving obJ•cts is necessary if a detailed and 

exact description of the instantaneous changes is the main 

obJective. However, if incremental change detection is an 

intermediate step in the global analysis of the dynamic 

motion; we do not really need to go through this detailed 

computation. For example~ in the analysis of the global 

locomotion of a moving cell, a change is only encountered if 

the cell exhibits displacement greater than a specific. 

threshold C~z.~hich is alwa•;:~s a function of the cell diameter). 

Therefore, we only need· «m approximation of the displacement 

between the sequential frames. The latter may be wrong, but 

will be corrected in the global analysis. Because of this, 

the change in 'the cell location be"tJ..Jeen two sequential 

frames will be considered as the displacement of the 

centroid~ and the rota~ion is estimated as the change in the 

or1.entation of' t.-.e cel.l. 

Description C5. ~) gives the numerical description of 

the incremental · ch~nQe ~n the cell location between two 

sequential frames. It includes the exact values of the 

displacement of the crit~cal points which specify the cell 

location~ as "Jell · ·as the direction of -the motion 
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(considering the posLtion in the ~irst ~r.ame as the origin>. 

5.2.2 Symbolic Qualification Of Incremental Location Change 

The incremen~al change in the cell location may be 

quali~ied and described syrnbolically by using the 

· -~alif'ication rules c::tescri.bed in Section 3. 2.- e.-- For· 

example~ the displacement of the cell <DL> between two 

sequential f·r·ames rnay btt- qualified as VERY SHORT, SHORT, 

LONG, -. or - YER.,Y ·LONG. Two other qualifiers: 

STATIONARY and ARTIFACT are used to describe the stationat"Y 

<no change in 1ocation> and artitactual movement o~ the 

·cell. The latter coul·d..- be due to undesired expe-rimental. 

conditions <these conditions are discussed in 

Section 4.2. 5). These qualification rules are: 

RULEC5. 1.): 

IF dl . LT. E0 ==then==> Q(dl) <--- STATIONARY 

IF dl . GE . E0 At-ID . LT. E~ ==then==> Q(dl.) <--- VERY SHORT 

IF dl . GE. E1. AND . LT. E2 ==then==> Q(dl.) <--- SHORT 

IF dl . GE. E2 AND . LT. E3 •=then==> Q(dl) <--- MEDIUM 

IF dl . GE. E3 AND . LT. E4 ==then==> Q(dl) <--- LONG 

IF dl . GE. E4 AND . LT. E5 ==then==> Q(dl) <--- VERY LONG 

IF dl . GE. E5 ==then==> Q(dl) <--- ARTIFACT 

where dl is the nor~alized value o~ DLCi,i+1.), thi!k 

displacement of' the cell between t .. r·.arnes i1 i+1. E0, E~, ... 1 

E5 are threshold values <3-1) specifying the boundaries of' 

e.crc:h; qu.ali f'ier~ ·('see- Section·.· 4~- 6. 3>. The not .. malizat.t~n Ci-f' "Dt. · ' 
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may be obtained as: 

di = DL<~~~+~) / K (5. 6) 

where K ~s normalization factor, which is a function of the 

ceil d~ameter and the time ~nterval between ~equent~al 

frames. Another method of normal~z~ng the value DL is 

described in Section 4. 6. 4. Thus, by either using the local 

or global· maximum and mil,i.mum-- values of DL.. dl nray be 

obtained as: 

d~ = ~----~--~~----------- (5. 7) 
DL<max> - DL(min> 

where DLCmin) and DL<max> are the minimum and maximum 

possible values for the displacement of the cell between two 

sequential frames. 

The direction of n\otion CDR) between two sequential 

frames may be' qu.alif.i.ed -ar"id· descr·ibed as EAST~ EAS"r-NORTH, 

NORTH .. WEST-NORTH, WEST, WEST-SOUTH, SOUTH.. or EAST-SOUTH 

according to the following rules: 

RULE<5. 2>: 

7F DR .GT. 337 AND .LE. 22 ==then==> DR <---EAST 

IF DR. GT. 22 AND .LE. 67 ==then==> DR <---EAST-NORTH 

7F DR. GT. 67 AND .LE. 122 ==then==> DR <---NORTH 

7F DR. GT. 122 AND .LE. ~57 ==then==> DR <---WEST-NORTH 

IF OR . CT. :157 AND . LE. 282 ==them==> DR <--- WEST 

7F DR . GT. 202 AND . LE. 24? ==thet"''==> DR <--- WEST-SOUTH 

7F DR . GT. 247 AND . LE. 292 ==then==> DR <--- SOUTH 

7F DR. GT. 292 AND .LE 337 ==then==> DR <---EAST-SOUTH 
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The incremental change in cell orientation <rotation. 

RO> may be described s~mbolically ~sing two quali~iers. Th~ 

~irst is used to describe the direction o~ the rotation as 

CLOCKWISE or ANTICLOCKWISE according to whether the value o~ 

RO less than or greater than zero. The second quali~ier is 

used to describe the amount o~ rotation between two 

·sequen-tial framers as -NO ROTATION1 SLIGHTLY~ PRRTIAL--t.;V~ 

CONSIDERABLE~ or SIGNIFICANT. 

obtained by the ~allowing rules: 

This qualification may be 

RULE<5. 3): 

IF RO . LT. e ==then==> QCRO> <--- CLOCKWISE 

IF RO . GT. e ==then==> QCRO> <--- ANTICLOCKWISE 

IF RO . EQ. 0 ==then==> QCRO> <--- NO ROTATION 

IF lROI . GT. 0 AND . LE. E:1. ==then= c) QCRO> <--- SLIGHTLY 

IF IROI . GT. E1 AND . LE. E2 ==then::=:> Q(RO> <---= PARTIALLY 

:IF IROI . GT. E2 AN[) . LE . E3 ==then==> Q(RO> <--- CONS:IDERABLE 

IF IROl . GT. E3 ==then•=> QCRO> <--- S:IGNIFICANT 

Thus:.. the cell rotation be1:ween two frames (i) and <i+1> may 

be desc:ribeod as: 

THE CELL HAS NO ROTATION. 

or 

THE CELL EXHIBITS SLIGHT ROTATION IN THE CLOCKWISE DIRECTION~ 

THE ORIENTATION HAS CHANGED FROM OR1 TO OR2. 

Desc:rip'tion (5.1)is a t~JPi.C:al example of' the incremental 

change descripti.on between two sequential frames. 
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5. 3 INCREMENTAL SHAPE CHANGE 

The obJective o~ this process is to detect and describe 

the .incr•mental changes- in the cell shape between two 

The process.t includes 

obJectives: 

(a) .individual shape property change. 

(b) membrane shape change and matching. 

two main 

Description (5. 1> is an example o~ the generated description 

o~ 'the shapec and s:'tr1..1ctura.1 changes of a cel.l betwe•n two 

sequential frames. R description of the processes and 

algor~thms which produce these results is given .in the 

fol.lowing sections. 

5. 3. 1 Individual Shape Property Change 

The obJective is to compute the change in each shape 

property o~ the cell. These properties are: area, 

perimeter, length, width, number of convex angles, 

circul.arity, regularity~ elonga~ion, average bending energy, 

and intensity. The change may be computed by one of two 

methods: s•,Jmbolic: compat"'ison <qualification) or numeric 

comparison followed bw symbolic qualification. 

The symbolic comparison method is based on comparing 

the symbolic qualifiers describing the same property in the 

frames under st1,4dy. The purpose of the comparison is to 

detect if the property has the same qualifier in both 

frames, or if it has been changed. This comparison may be 



INCREMENTAL CHANGE DETECTION Page 5-242 

described simply by the following rul~: 

RULE<5. 4): 

-=then==> THE PROPERTY +fRS THE SAME DESCRIPTION l:N BOTH FRAMES. 

==then==> THE PROPERTY QUALIFICATION HAS CHANGED FROM Q1 AT 

FRAME<i> TO Q2 AT FRAMEC1+1). 

property <PJ) in frames <1> and <i+1)# respectively. This. 

method of incremental change detection and description has 

the advantage of being simple~ fastJ and does not include 

any numerical computation. On the other hand, it does not 

truly represent the exact change in the proper·ty valueJ as 

demonstrated by Figure <3. 4). In this figure, we can see 

that symbolic comparison may result in no change, even for 

certain large magnitude changes i.r• the prope-rty values. 

Sometimes these may be larger than differences which do 

produce qualification·change. 

The disadvantage of· s~t~mbolic cornp.arison can be avoided 

by first normalizing the exact change in the property 

(numerically>~ then using a symbolic qualifier to describe 

the computed change. This may be accomplished as follows: 

I PJ(i) - PJ(i+1) I 

dPJ = ----------------------- (5.8) 
max r PJ<i> J PJ<i+1> J 

where dPJ is the normalized value of the change in property 
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C&Cegory(J) Category(2) Categor.r(l} Category(J+J) 

Propertr value 

Exact d.t&Dge 
lD &lie propertr nlue 

(a) A qmboHc compuisoa would aot deeect a cllaage. 

Category(i+ 1) 

V(Pi1) V(Pl2) Property value 

Exace d.taage 
lD elle propertr value 

(b) A qmboHc compulsoa detecw clraage, evea though 
~ =="'-=~--='- = '''""'" '"L-~==n '" lluLmap.ltude umucA •mallu th&JJ 6bOWD ID (a). 

Figure(5.4} Disadvantage of a symbolic comparison 
to detect incremental change in a specific property. 
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qualified and described s~mbolicall~ as follows: 

RULE<5. 5): 

IF dPJ . LT. E1 ===-then==> Q(dPJ) <--- NO CHANGE 

IF dP,J . GE. E1 AND . LT. E2 ==then==> Q(dPJ> <--- SLIGHTLY 

IF dP.J . GE. E2 AND . LT . E3 ==then==> Q(dPJ> <--- PARTIALLY 

IF dP.J . GE. E3 AND . LT. E4 ===then==> Q<dP.J> <--- CONSIDERABLE 

IF dP,J . GE. E4 ==-then==> Q<dP,J> <--- SIGNIFICANT 

where E1., E2~ E3~ and E4 at" Et -the- qualif'ication threshol.ds 

which may be estimated in a similar way to that described in 

previous sections. 

The above method has 'the advantage of' d~scribing 

symbolically the exac:t change .in a spec.ific-property bet.ween 

two sequential frames. However, the normalization for a 

large sequence of frames may be costly in computation. 

Therefore, if the final goal of the analysis is the global 

behaviour of the property, a compromise may be made between 

the above two methods. This can be achi.eved b~ using the 

symbolic comparison to d&scf'..ibe whether, 'the~e .is change .. in 

the qualif'i.cat.ion of' the property, and the sign of' the value 

PJ(i) - PJ(.i+1) to describe whether its value has increased 

or decre .ased. This can be accomplished by using .the 

f'ollowing representati.onal. rules: 

RULE(5. 6>: 

IF PJ(i) - PJ(i+1) . GT. 0 ==then•=> DECREASE 

IF PJ(i) - P,J(i+1> . LT. 0 =•then==> INCREASE 

An examplE' is: 

IF LENGTH<i> - LENGTH<.i+1.) . GT. a ==then==> Q(.dP> <-- SHO-RTER 
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IF LENGTH<i>- L£NGTH<i+1> .LT. 0 ==th~n==> Q(dP) <-- L:..ONGER 

where SHORTER and LONGER at"e qua.lif· ier·:s f'ot .. ch.arages: in any 

distance properties, such as length, width~ or perimeter. 

~~·~her quali~iers may, be used according to the n•ture o~ the 

property~ such as ~or example, SMALLER and LARGER for size 

properties~ or LESS and MORE f·or other properties such as 

e.longation1 circYlaritw; or- r·egularity. An exampl;e-"'of -the 

generated description, using this method is: THE ELONGATION 

OF THE CELL DECREASED. Description (5. 1) gives the complete 

.ftscriptitm o~~ th~~t ~itJ.lcbetween two sequential frarnl!fs. ~ ~ 

It is wor"th men-tioning here tha-t 'the descriptions given 

in this section and the following ones are based on expert 

knowledge. They .iare motiv.ated by discussiot'ls with Dr. P. B. 

Noble, Faculty of' Dentistry, McGill University, about which 

type of in~or·mation i'li sought, how much detail is desired, 

what are the most meaningful symbolic qualifiers. 

- " 5. 3. 2 Incremental_ ~tembt'\ane Shape Change And Matching 

In the preceding section, we demonstrated methods for 

detecting, quar.tif'ying, and descr·ibing the incremental 

changes in each of· the indi.vidual shape properties. Now. 

given the shape of the cell membrane in two sequential 

frames, as shown in Figure <5. 5), is there any change in the 

membrane shape?. The answer· to this questior. wi.ll be the 

subJect of discussion in this section. 



Frame 9 Frame 10 

Figure{5.5) Two succe~ssve frames . 

. , 
(I I - . 

l/-1._./ 

Figure{5.6a) Cell decomposition. 

Figure(5.6b) Graph representation. 
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~unct~on or all the prop~rties describing it. There~ore, 

the change in a single property is insufficient to specify 

the ch~nge in shape. However~ a function o~ the dif~erences 

of some of' the shape pt"'operties can bii' used to measure the 

change in membrane shape between the different frame~ In 

this way, a compar~son can be made betwe~n different shapes. 

The selection of these properties <which properties and how 

many?> is a very important issue, which will be discussed in 

detail in chapter 7 <Global Shape Analysis). However, it .is 

desirable that these propert.ies be translation, rotat.ion, 

and size independent. 

average bending energy. and elongation. The change in each 

of' these properties has a dif'f'erent e-ffect on the membrane 

shape change. Therefore, weighting factors may be necessary 

in order to normalize the effect of' different property 

change. Thus, the membrane shape change <MSC) may be 

computed as: 

k•m Pk<i> - Pk<i+1) 
MSC • C sum 

k==:1 Pk(i) + Pk<i+:1) 
• Wk J ~ m (5.9) 

where m is the number of' selected properties and Wk is th~ 

weighting i'actor. The ~arg•r 1;he value o~ MSC1 the more 

versa. The 

of' membrane shape matching <MTCH> can be 

MTCH = < :1 - MSC ) . :100 Y. (5. 10) 

Thus, small valyes: of" MTCH indic.atEI' leoss matching of" the 
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versa. For exampl~~ MTCH is equal to 100~ if we match the 

membrane shape in .a specific frame to itself. 

In similar tashion~ the numerical value of the 

percemtag e matching MTCH may qualiTied and described 

symbolically as follows: 

RUL£(!5. 7): 

IF MTCH . LT. E1 ==then==> Q<MTCH> <-- QUITE DIFFERENT 

IF MTCH . GE. E1 AND . LT. E2 =l=ther~~=) .Q.(MT.CH> .. -<--. DIFFEREtll- .. 

IF MTCH . GE. ee AND . LT. E3 ==then==> Q(MTCH) <-- ALMOST SIMILAR 

IF MTCH . GE. E3 AND . LT. E4 ==then==> Q(MTCH) <-- SJ:MILAR 

IF MTCH . GE. E4 :;;.=then==> -G<M"tCH> <-- VERY SIMILAR 

5. 4 INCREMENTAL STRUCTURAL CHANGE 

In the previous section~ we discussed the detection and 

quantification of incremental change in the membrane shape, 

.as, well. as their pef"C:E'f'tt.ager= -.a:t.ching in two., se-qu•n*Lal•- • 

two sequential frames will be discussed in this section. 

The process includes two main steps: 

(a) structural matching of the subparts of the cell~ in 

order to find the corresponding subparts between 

two sequential frames~ 

<b> determination of incremental changes.in shape and geometrical 

properties of the corresponding subparts. 



INCREMENTAL CHANGE DETECTION Page 5-249 

In static scene anal~sis~ the cell is decomposed into 

its primitive subparts <Figure 5.6a)~ and then represented 

bw a labeled graph as ~hown in Figure (5. 6b). Given the 

topological properties of each subpart and their 

interrelationships in two sequential frames, we seek the 

following: 

Ca) To find which subpart in the second frame corresponds to 

which one in the first. 

(b) For two corresponding subparts, detect the incremental 

changes in shape and r&lative position. 

Cc) Quantify and describe the results of (a) and <b) nurneric.ally 

and symbolically. Description#<5.~) and Table#(5.1) give typical 

examples of this result. 

5.4.1 Subpart Matching 

The problem of matching the different subparts of the 

cell in two sequential frames may be defined as follows. 

Given two sets of obJeCts, it is required to recognize the 

corresponding elements (ObJects> from the two sets. In 

other words, if we have two sets <A> and <B> such that: 

<A>= <a1,a2, ... ,ai, ... ,am> 

and <B> = <b1,b2, ... ,bJ, ... ,bn}, 

the obJeCtive is to find the different elements of the set <A,B> 

<A, B> =- <<a1, b1), caa, b2), ... 1 Cak, bk), ... >, 

where ak is an element of <A> and bk is an element of <B>. 

Figure (5.7) illustrat~s this problem and illustrates an 

arbitrary.solution. 
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Figure(S. 7} Definition of the subpart 
correspondence, problem. 
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This problem can be considered as a s~mple pattern 

recognition procedure if: (a) both sets have the same 

number of elements~ (b) the corresponding elements in both 

sets have the same property values. However, besides the 

standard problems of the pattern recognition in a static 

scene, we also exper~ence other types or dif~~culties, due 

to the nature of cells as non-rigid obJects. These 

difficulties are: 

<a> Any sl~ght change- in the me-mbrane shape car-a cause different 

decomposi t~ons. 

(b) The c•ll in both frames may not have the same number of 

subparts because pseudopods are continually growing and 

contracting. 

Cc> The same subpart of the cell may not have the same 

topological properties in subse-quent frames. 

Cd> The cell may have more than one subpart with the same 

simple shape but in different re.lative pos~ti.ons. 

<e> Noise is caused by the registration of the different frames. 

Cons~dering the above difficulties, this section 

describes an algorithm 

subpar:-;ts. of the cel.l 

for recognizing the corresponding 

between ,~~ two - s&quential . frames. 

Figure <5.9a) shows the labeled graph of the cell in two 

sequential frames. The subparts of the cell in the first 

frame are labe.led 1, 2, ... , -nr and .in iJhe second frame .,a, 

b, ... • m, where nand m are the number of subparts of the 

cel.l in the first and second frames, respective.ly Cin 

Figure 5. ea. n=6 and m=S>. 
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Figure(5.8} Solution of the L •• 

subpart correspondence 
problem. · 
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ar-e: 

(~) Consider- the subparts o~ the ~irst ~rame as mode1s 

<prototypes), and for each subpart <i> in the second frame 

find the subpart (J) in the fir-st t"l"ame which gives the best 

match <Mmax), where: 

Mmax = max <Mi~, r-ua, • • • I MiJ• ... " Min> (5. ~~) 

MiJ is the match between sub part i <second ~rame) and 

subpart J <fir-st frame), and is defined by 

k=m Pk(i) - Pk<.J> 
MiJ = r: sum ------------- Wk J / n\, (5. ~2) 

k=~ PkCi) + Pk<.J> 

where m is number of subpart pr.opet'ties, .and Pk<i> .. Pk(J) are-_ 

the va1ues of the property <k> for subpar-ts i and J' 

r-espectively. Figure <5.Sb) illustrates this match. The 

subpart properties which are used in this matching process 

are: area.. perimeter, circularity, 

bending enerQy, centroid coordinates, base-11ne, and 

connective-line, and orientation.;::-

specify the relative position of a subpart in the ce11 

structure. 

<2> Repeat step number(~), considering the subparts o~ the 

second frame .as the models of' the subparts in the first 

f'rame. Figure <5. Se) illustra~s this "step. 

(3) Subparts i and .J correspond if MiJ = M.Ji. Thus, two 

subparts that have been matched in both steps <~> and <2> 

are said to correspond <see Figure 5. Sd>. 
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The result of the above algor~thm ~sa set (A,B,M> of 

the correspond~ng subparts in the two frames and their 

percentage match. Thus:, 

<A~e,M> = <Ca1,b1,m1),(a2~b2,m2), ... , Cai,bi,mi), ... ,Cal,bl,m~>> 

CS. 13> 

where ai is the number of the subpart ~n the first frame 

wh~ch correspond~ to the subpart number bi ~n the second 

frame, with percentage match equal to m~. This result may 

be described symbolically as: BLOB NUMBER ~ IN THE SECOND 

FRAME CORRESPONDS TO BLOB NUMBER J IN THE FIRST FRAME, or 

BLOB<S> NUMBER < ........ ) IN THE SECOND FRAME DOCES) NOT 

CORRESPOND TO ANY IN THE FIRST FRAME. Table CS. 1) gives an 

example of the ~esult of computing the 

matching of the different subparts between 

frames. This ~esult ~s summarized 

Description <5. 1>. 

correspondence 

two sequential 

syrnbol~cally in 

5.4.2 Increme11tal Changes In Corresponding Subparts 

In the preceding section, we described how to compute 

the correspondence between different subparts of the cell in 

two sequential frames. The changes ~n the topological 

properties of these subparts and their relationships to the 

global changes of the entire cell are the basic elements for 

understanding the dynamic behaviour of the cell. 

Measurement, qualification, and description of the changes 

in the corresponding subparts between the sequential frames, 

are described below. 
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The computation of the ~ncrementa1 change between the 

correspond~ng subparts ~s vef'Y s~m.ilar· to the computation of 

the ~ncremental change ~n the location and membrane shape of 

the ent~re cell (which described in 

Sections 5. 2 and 5. 3). The differences are: <a> the 

incremental changes are computed for each two corresponding 

subparts instead of the entire eel!~ <b> besides the changes 

in the shape and locatioru in the case of' the subparts , the 

changes the topolog~cal properties (structural 

relat~onsh~ps of the d~fferent subparts> are also computed 

Thus~ th• diffet"ent properties which are considered for the 

changes in the different subparts are: 

0 
Shape Propert~es Structural Propert~es 

---------------------
area centro~d coordinates 

base-line 

circularity 

or.ientation 

average-bending-energy 

An example of the exact values of the change ~n each of the 

above properties between the correspond~ng subparts of two 

sequential frames are given in Oescr~ption (5. 1). These 

values are normalized as follows: 
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0 
tdPil 

DPi = -------~------------- (5. 14) 

As be~ore. th• changes in the di~ferent properties of 

the corresponding subpa~ts can be qualified and described 

symbolically as: NO CHANGE, SLIGHTLY, PARTIALL't', 

CONSIDERABLE, SIGNIFICANT <see Description 5. 1>. 

In systems where .inct .. emental change detection is an 

above descriptions may give more information than is 

required at this stage. Usual!~, this stage is only 

taken place, and i~ ~o. whether a decrease or increase has 

occured. There-tor•• to obtain only the required 

information, make th& de-scr.ipi;ion simpler. and to save 

unn•cessary computation. our symbolic description o~ the 

incremental changes .in the di-tferent subparts .is generated 

as shown in Table 5. 2. 

5.4. 3 Total Structural Matching 

The total struc~ural match (SM) of the cell between two 

sequential frames is computed as a percentage value <0-100~) 

their percentage match. Thus. SM will equal to 100~ if <a> 

~· 
the cell has the same number of subparts in both frames. (b) 

there is a one to one match betweG"n all s•..tbparts.~ .::~nd <c> 

there is no change in any of the subpar+. properties. The 
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structural match or the cell may equal 0X Lf there are no 

corresponding subparts between ~he two frame~ 

SM may be comput•d as: 

SM = (Mi + M2 +. . . . + Mk) / m , 

The v.al,.Je of 

(5. 15) 

pet ... centage match or 

corresponding subparts <see equatLon <5. 12.)), k is the 

number or the correspondLng subparts. and m the number or 

the subparts Ln the second frame. The latter is used Lf we 

are matchLng the structure of the cell in the second frame 

to that in the first t·rame. In the case where there is no 

order between the two frames~ the value m should be replaced 

by <n+m>r2, where n the number of subparts in the first 

rl""ame. 

The total structral match of the cell may be descl""ibed 

symbolically as QUITE DIFFERENT, DIF-FERENT, ALMOST SIMILAR~ 

SIMILAR, or VERY SIMILAR. Thus, looking at the cell in the 

two successive frames given in Figure <5.5), Lt appears that 

they are similar. This JUdgement- 'Ai.ll. change .c aft&r 

comparing the lab•l•d graphs that represent the cell in both 

frames <Figure ~. 6). Obviously.. there are changes .in shape 

and structure. Using the " ana1ysis . descrJ.bed .. li,n . !f:he 

preceding sections, these changes are detected, qual.J.fied, 

and presented in a summary, such as Description (5.1). 
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5. 5 SUMMARY 

In ~his chapter, we presented processes for detecting, 

quali:fying, and de-scribing the incremental changes in i;he 

loca~ion, shape1 and structure of a moving cell. First, the 

d.iffereonce between the motion of t"'igid ob..Jec~s and non-rigid 

obJects was discussed. The change in location was computed 

in teorms of the displacement and rotation of the cell. 

Second, ~he changes in each of the shape properties were 

computed in order to estima~e ~he change in membrane shap~ 

Based on the 1a~~er, the matching of the cell shape between 

two frames was computed as a pet''centage value. Third1 the 

change in cell s~ructure was computed in terms of the 

correspondence of different subparts of the cell. Finally, 

changes in shape and relative location of corresponding 

subparts were- computed in order to quantify and describe the 

structural matching of the cell in successive frames. 

The procedures of most of' the · ,p~ocesse.s =pr.eosen'ted in 

this chapter are based on comparisons of the symbolic 

qualifiers of the different properties in the two frames 

under consideration. In some cases,~-however, in orde~ to 

produce a precise description of' the changes, a comparison 

of' the numerical property values in both frames is first 

estimated, from which a symbolic -qtt.alifier . is de:i:er.mined-. 

The symbolic qualifiers which describe the changes in the 

different properties are chosen by representational rules~ 

as descr~bed ~n the previous chapters. 
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Structural matching of subparts is very important in 

understanding the dwnamic behaviour of the moving celL 

This is because~ using this data~ rne can estin1ate the tim~ 

when a speci~ic subpart started to grow <appear> or contract 

<disappear>. Also.. the study of changes in -the topological 

properties of the diff·et ... ent subpar·ts is important in ot .. der 

to recognize i~ a speCific subpart is a candidate for a 

pseudopod or not .. and to quantify the behaviour of the 

different pseudopods. 

thorough study in Chapter 8. 
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TABLE<S. 1) MATCHING OF SUBPARTS BETWEEN FRAME 9 and 10 
----------------~--~-------~~------------------------­~----~-~----~~-----~~~-~---~--~--~------~----~-~------

<A> MATCHING FRAME I 10 TO FRAMEt .. ,.:, , , , 
FRAME# 1.€1 ======> FRAME# 9 
========= ========= 

SUBPARTI 1 ~ t t if ; :- : ( t":" ""'" 3 
SUBPARTI 2 1. 
SUBPARTI J 2 
SUBPART# 4 3 
SUBPART# 5 4 

(8) MATCHING FRAME# 9 TO FRAME# 10: 

SUBPARTI 
SUBPARTI 
SUBPARTI 
SUBPART# 

FRAME# 9 
========= 

1 
2 
3 
4 

======> FRAME# 1.0 
=:c•====== 

1 
3 
4 
5 

(C) CORRESPONDENCE OF SUBPARTS: 
FRAME# 10 =··===> FRAMEI 9 
=•===··== ==··==== 

SUBPARTI 1 NONE 
SUBPART4t e NONE 
SUBPARTI 3 2 
SUBPARTI 4 3 
SUBPARTI 5 4 

MATCH 
===== 
9.892 
e. 842 
e. 91.8 
e. 926 
0. 938 

NATCH 
===== 
0.867 
e.918 
0.926 
e.938 

~tATCH 

====== 
0.0 
0.0 
0. 918 
0. 926 
e. 938 
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Change 
i.n 

Propert~ 

V.a~Ye 

of 
Change 

TABLE<5.2) __ ... ______ _ 
.................... 

Twpe 
of" 

Change 

STATIONARY 

Ch.arage 
Descr· .i.ption 

NO CHAt>IGE 

SMALLER 

dP == -V£ DECREASE "I SHORTER 

LESS 

LARGER 

+VE INCREASE LONGER 

MORE 
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Nature 
of' 

Property 

AREA 

PERIMETER 

CIRCULARITY 

REGULARI.TY 

ELONGATION 

AV-BEN-ENG 

BASE-LINE 

CON-LINE 

REL-AREA 

propert~. Description (5. 1.) is .a sample of .a t~pi.cal 

frames. 
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DESCRIPTION <5. 1~ 
=======-:=c================ 

INCREMENTAL CHANGE DESCRIPTION 
=== === == = === == == === == === === == = = ==-==- ==-==- :::::::::-= = == == == = === = = =.:::: == 

OF THE CELL IN FRAMES 9 AND 10 
~-====~================================= 

LOCATION 
-------------------

D:X:SPLACEMENT : 

The centroid of the cell has moved 
distance <approx~mately ONE-TENTH 
diameter) ~n a WESTERLY d~rect~on. 

ROTAT:X:ON 

a VERY SHORT 
of' the cell 

There was SLIGHT rotat~o~ in the ANTICLOCKWISE 
dir•ction 

OR:::J:ENTAT:XON 

The orientation of the cell has changed from 
NORTH to NORTH-EASTERLY 

SHAPE 
------------

The desct"iption of' the ch.ange ~n theo shape 
~s g~ven below in two parts:<1> the global change 
of' the membrane shape~ and <2> the structural 
changes in the pr~m~t~ve parts of the cell and 
their interrelat~onships. 

MEMBRANE SHAPE CHANGES ____ ...,.__,..., _______________ _ 
The general matching of' the cell~s shape between 
the two frames is YERY GOOD. This is due to the 
change of the main shape properties which can be 
dEOscrib&d as follows. 
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There .is t-AO change in the COMPACTNESS, ELONGATION 
REGULARITY~ SIZE, and th~ PERIMETER o~ the ce~l. 

There .is a SLIGHT change in the COMPLEXITY o~ the 
ce.L.L; .it bec:arne LESS COMPLEX. 

STRUCTURAL CHANGES 

The structure of the cell in the two 
frarnes is ALMOST SIMILAR. This conclusion is 
based on a c:omparisron of the primitive parts of 
the cell in the two frames. A detailed 
descr.iption .is given below. 

DETA::X:LS 

Blob numbers<1,2> in the second frame DO NOT 
correspond to ANY blobs in the first frame. 

Blob number<2) in the first f"rame CORRESPO~ADS to 
blob number·(3) it"! the second frame. The latter 
has a LARGER SIZE, LONGER PERIMETER, and a LONGER 
BASE-LINE. The CONNECTIVE-LINE is SHORTER, 
and .is ROTATED in ANTICLOCKWISE direction. 
The SHAPE is LESS REGULAR. 

Blob number<3) in the 
blob number(4) in the 
has a LARGER SIZE~ 
SHORTER BASE-LINE. 
SHORTER, and it .is 
direction. The SHAPE 

first frame CORRESPONDS to 
second frame. The latter 
the SAME PERIMETER, ·and a 

The CONNECTIVE-LINE is 
ROTATED in a CLOCKWISE 
is MORE REGULA~ 

Blob number<4> in th• first frame CORRESPONDS to 
blob number(5) in the second frame. The latter 
has a LARGER SIZE, LONGER PERIMETER, and a 
LONGER BASE-LINE. The CONNECTIVE~(IN£-is THE SAME, 
and is ROTATED irt a CLOCKl~ISE direction. The SHAPE 
is MORE REGULAR. 



CHAPTER 6 

GLOBAL LOCOMOTION ANALYSIS 

6.1 INTRODUCTION 

The main ob,Ji>C't'i.•Je of the present system is to 

understand and descr~be the dynamic behaviour of a non-rigid 

moving ob,Ject from a s:eoqu~nce of pictures. To achieve this 

obJective, three stages of analysis have been defined: 

static scene analysis, incremental change detection, and 

global analysis. The first two stages are described in 

chapters 4 and 5 respective!~ The global analysis Cthe 

third stage) presents the highest level in the hierat"chy of 

the syste~ The obJective is to analyze the multitudinous 

data which is extracted from the static and incremental 

analysis in order to detect and describe the global changes 

fr-om th• irr•levant and noisy ones. 

main processes and data structur·e of 

stagct. 

Figure C6. 1) shows the 

the global analysis 

The global .an'"la.lysis will be described in thr·ee 

Chapters <6-8). First, the global locomotion of the obJect 

will be analyzed .:md descl"ibed in this chapter. Secorrd, the 

global changes in the shape will be discussed in Chapter 7. 

Finally, Chapter S involves two basic issues. The first 
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LTM STM 

jli 1" ~ ' . Static data 
~ LOCOMOTION 

c 

-~··~ ' ···-" ."c 

Incremental 
SHAPE - data 

~~ 
- ... 

~~ ' . $ 

8~ STRUCTURE - - Global -
property 

' description 
' • 

~ 
GLOBAL Global 

BEHAVIOUR dynamic 
= -:3- . CHARACTERIZER descriptio'n 

0:: 

.. '" ___ ~ _ ~- _ ~- ~FigJJ.re.(6.1} Main processes and data 
structure of the global analysis stage. 
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pertains to the global $tructural changes, and the second is 

concerned with th• integration of the three a~pects 

pertaining to th• locomotion, shape, and structure in order 

to generate a coh•rent description of the dynamic behaviour 

of the moving obJect. 

The g~obal locomotio" analysis of a moving obJect 

involves two basic steps. The first is responsib~e for 

motion detection <tracking> by locating the ObJect in each 

image of the sequence, and detecting the incremental change 

in location. The second step is concerned with motion 

analysis. The output of the former is the path which 

represents the obJect movements, whereas the motion analysis 

should provide a description of the motion pattern or 

behaviour. 

mainly concerned wi t•·· rnotion detection. 

knowledge-based systems for motion analysis, 

and description is the recent trend in 

A review of the significant work 

analysis was 

Construct.i.ng 

understanding, 

.image sequence 

and evaJ.uation 

of the current status of the gained experience in this field 

is pres,nted in Section 2. 2. The system under discussion is 

designed as a rule-based system for understanding the 

dynamic behaviour of a rhoving cell. 

Cell movement is a fundamental process of SOIIle 

importance- to host de·f'ense mec:h.anisms. Most of the reseat"ch 

in understanding the mechanisms which regulate these 
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processes was concen~ra~ed in cell locomotion and chemotaxis 

analysis. The latter ~s the response or a motile cell to 

the d~rec~ional inf'luence of external tactors. such as 

bacteria. tumour or ch&mical substances. The goal of these 

studies is to provide .answers to some or the basic questions 

about the cell locomotion, such as : 

<a> How does the cell move from point A to point B ? 

Does it move in a straight line ? Curved path ? 

Zig-zag traJector~ ? Any specific pattern ? 

Does the cell exhibit any velocity or acceleration ? 

Cb) Is the cell movement random or chemotactic ? 

If it is chemotactic~ is it positive or negative ? 

From the analysis of the cell locomotion, can one 

predict the future behaviour of the cell ? 

Can the cell behaviour be modified by changing any of 

the environmental conditions ? 

Cc) What is the role of the cell surface in regulating the 

social behaviour· of the cell? 

Is there av~ relat~onship between changes ~n the 

membrane shape and/or structure and the cell 

locomotion? 

Most ot the previous work in cell motion analysis was 

restric~ed to cell tracking either by manual or automatic 

production of the cell path and/or quantifying its data in 

order ~o provide answers the questions in group <a> 

above. The r·ecent wot··k [Levine ~t. al, 80J was 

ditf'erent that the~::~ computed the steady-state 



0 

GLOBAL LOCOMOTION ANALYSIS PagE> 6-268 

probab~l~ties of ~ ceLl moving in a particular direction. 

Their analysis prov~ded answers to questions in group <b> 

above. In our current research~ the cell locomotion 

analys~s is designed to prov~de a descript~on of dynamic 

cell behaviour. In this wa~~ questions in group <c> may be 

answererd. 

Processes for locating the moving cell in each frame of 

the sequence arcd comput~ng the incremental d~:splacements 

<motion detection) are described in Chapters 4 and 5. In 

the remainder of this chapter we will describe processes for 

global locomotion analysis and descr~ption. Figure (6.2> 

shows the global locomotion analysis processes and data 

structure. The input data for this stage of the system are 

the static location of· the ceLl at each singlE- frame~ the 

incremental displacement, and the direction of motion 

between two sequential frames. The output is a description 

of cell locomotion behaviour. A t~Jpical example of the 

generated summary is given in Description <6. 1.>. I.n "the 

following sections~ the global cell tracking and path 

construction is described. The motion analysis and 

description is discussed in Section 6. 3. Section 6. 4 is 

concerned with the quantification and description of 

chemotaxis behaviour. Finally~ in Section 6.S1 a summary of 

this chapter is pr·esented. 
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Figure{6.8) Global locomotion analysis 
processes and data structure. 
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6.2 CELL TRACKING AND PATH CONSTRUCTION 

A cell path is the traJectory or Lts locomotLon. It 

can be construc~ed by connecting the centroLd poLnts or the 

cell at the dirr•rent locations or its movement. The 

simplest method or constructing a cell path is by recording 

the X and Y coordinates or the centroid at a constant time 

interval, and then connecting these points in the same 

sequence as recorded. This produces a cell path <P> where 

P = < p~,pa, ... ,pi, ... ,Pm>, <6.1> 

and m is the numbet" of points in the path. 

In image seq~ence analysis the tLme interval between 

two successive points in the cell path is the time interval 

between two sequential Trames. Figures (6. 3a), (6.3b), and 

C6.3c) show typical cell paths sampled at the minimum time 

interval <the rilming rate . 5 seconds). ThLs method is 

adequate ror analysis OT cell movement for a short period or 

time where the detail or each 

desi.red. But ror long time 

incremental displacement .is 

peri.ods, this method is not 

userul. The following reasons may be ci.ted: 

Ca) The path .includes irrelevant mo,.Jernents which make 

the detection of the global changes more dir1icult. 

Cb) Sensitivity to noise. 

(c) The coordinates or the cell centroid are, to some 

extent, shape dependent. 
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Jiioame .a umber: Fltst=11 Last= 101 SampUag= llr.me {.5 secoat&) 

SCALE 
<--) 

9.3 

t1ICROHS 

Figure{6.8a} Time aampling of ~he cell path. 

.Frame Dumber: Fll'st=1, Last=100, Sampling= I frame (.5 secoDds) 

SCALE 
(--) 

1. 9 

11ICRONS 

Figure{6.8b} Time aampling of the cell path. 
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Figure(6.9c} Time sampling of the cell path. 
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For the purposes of global locomotion analysis, we 

shou~d smooth, simplify, and at the same time retain all the 

global changes o~ the cell path. To do that, we may 

consider two m•thods, time and distance sampling. A 

description of each method is given below. 

In the construction of the cell path using time 

sampling, we sample the path using longer time intervals 

<Tm), where Tm = m. to, and to is the time interval between 

two sequential frames. Thus, we consider the location of 

the cell in each of m frames. This will reduce the number 

of path points by a factor of m, but it will not smooth it. 

This is especially true when the cell is stationary or in 

motion with very short displacemer.ts. Therefore.. we ftH!IY 

consider the distance sampling method, which is described 

below. 

6. 2. 1 Cell Path Construction Using Displacement Sampling 

This method is based on the assurnption that the cell 

has moved only if it exhibits a displacement which exceeds a 

specific threshold <Ed). This threshold is a function of 

the cell diameter. Thus .. 

Ed = K CD, (6. 2) 

where CO is the average cel.l diameter, and K is a constant. 

To construct the cell path using a constant displacement 

threshold, we carry out the following steps: 

(1) Take the centroid coordinates of the cel.l in the first 

frame <Xo,Yo) as the original point in the path P0. 
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<2) Find the first subsequent frame Ci) where the distance 

CLS> between the centroid of the ce~~s is greater than 

c: 2 11'2 
LS = [ <Xo-Xi> + CYo-Yi) J (6.3) 

(3) Take the point ()(,i, Yi) as p1 in the ce~~ path 

(4) To f.i.nd points pe, pJ, ... , pn; 

Put Xi ---> Xo ,~ and Yi ---> Yo .. 

and repeat steps <2> and <3> 

Figures (6. 4a), C6. 4b), and <6. 4c> show the ce~l paths which 

were tracked for 200 frames (100 seconds) by using the 

thresholds E = 1, 2, and 3 microns, respectively. From 

these figures, one can see that by increasing the threshold 

0 CEd), we increase the simplicity and smoothness of the cell 

path and at thea sarae time retain the global changes. 

However.. there is a limit to how much this threshold can be 

increased. At a certain point, we start to lose some of the 

detail of the cell movements <see Figures 6.4b and 6. 4c>. 

Fortunately, because of the slow motion of the cell, this 

threshold value is not very critica~ and may vary within a 

small range without .at"rec:tit1g the resulting path. From our· 

previous experience wi:th c:ell tracking.. the threshold has 

been chosen to be a quarter of the average cell diameter. 

Thu~, E = . 25 CD for the neutrophi~ ce~l.. and this may be 

considered as constt··aint knowledge in the L TM. 
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Frame number: First=l, Last=200, Sample distance= I microJJ (1 pael) 

SCALE 
(-) 

2.4 

MICROHS 

· .,_ Fi.gure(6.4a).D4s-tance sampling of the cell path. 
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.Frame .number: Fird=l~ L&st=200~ S&mpJe dise&Dce=2 microDs (2 paeJs) 

SCALE 

(-) 

2.4 

HICROt~S 

SCALE _.­

(-) 
2.4 
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Figure(6.4b) Distance sampling of the cell path. 

Fig~re(6.4c) Distance sampling of the cell path. 
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In the prec•ding sec~ion, we described how to construct 

a smooth and simple cell path b~:~ eliminating irrelevant ot"' 

noisy movement, and retaining the global changes. However~ 

in tracking the cell for a long period, we may face another 

problem in constructing the overall cell path. This problem 

is mainly due to undesirable experimental conditions, which 

cause discontinuity in the cell path. A description of this 

problem and its solution are given below. 

,,2.2~, Connection Of Cell Path Segments 

In order to study ~he change in the cell shape and 

structure, it is necessary to film the cell at high 

magnification to ge~ as much detail about its shape and 

structure as possible. Consequently~ the viewing window of 

filming is reduced. Hence~ after some time the cell may 

move out of this window. In order to keep the cell in view, 

either the slide containing the cells, or the camera should 

shifted to relocate the cell accordingly. The shift of the 

scene causes a sudden J~mp in the cell location between two 

sequential frame~. This introduces problems for the system 

at two different levels. First, at the registration stage 

(automatic segmentation of the cell), and secondly, during 

global locomotion analysis. Solving this problem at the 

registration level is reported earlier in Section ~ 2. In 

the remainder of this section we will show how this problem 

can be solved at a higher level. 
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The sudden Jump of ~he cell can be detected from the 

sudden ~ncrease ~n ~he ~nc~emental d~splacement. In 

F~gure (6.5-&)J the sudden Jump of the cell appears as a long 

stra~gh~ l~ne between two segments of the path. In order to 

obtain a cont~nuous path and to ~gnore any art~fac::tual 

movemen~~ we sh~ft the path segments by vector translation 

of the cell locations in all the subsequent frames after the 

Jump. For exampleJ if there ~s a Jump between frames <~> 

and (i+1)1 where <Xi~Yi)l <Xi+1JYi+1) are the locations of 

the cell before and after the JUMpl we compute the 

translation vector <shift) as: 

X-shift = XS = Xi+1 

Y-sh~f't = YS = Y.i.+1 

Xi 

Yi. 

(6.4) 

(6.5) 

Then1 for frames i+111+21 ... ~n-11n <n =number of the frames 

to be processed) the location of the cell will be changed 

to: (X.i.+1+Xs~Yi+1+Ys>~ (Xi+2+Xs~Yi+2+Ys>~ .. . 1 <Xn+Xs~Yn+Ys). 

This action can be described by the following rule: 

RULE<6. 1): 

IF 

==thEm==>< 1. > 

<cD 

xs <-- X.i+!L Xi 

Xi+1 <-- Xi+1 + XS 

AND 

AND 

YS <-- Yi+1 - Yi 

Yi+1 <-- Yi+1 + YS 

Xi+2 <-- Xi+2 + XS AND Y.i+2 <-- Y.i+2 + YS 

X~+r• <-- Xi+n + XS AND Yi+n <-- Y~+t"t + YS 

where n is the number of the frames to be processed~ and 

L<~~ i+1) ~s the displacement between t1110 sequential frames. 

Edd ~s the threshold value wh~ch specif~es the maximum 
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Figure{6.5o.) Original path (time sampling). 
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Figure{6.5b)Distance sampling with artifact removed. 
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acceptab~e 

movement. 

incr~menta~ disp~acement without artifactual 

The above is an example o~ the use o~ the LTM rules in 

eliminating some o~ the undesirab~e experimental conditions. 

Figures (6. 5a), (6. 5b>~ (6.3c>~ and <6. Se> show ce~~ paths 

be~ore and a~ter removing the gaps caused by the ce~l Jump. 

In Figures (6. Sb) and <6. Se) the ~ocations where the cell 

Jumps have been r•moved are marked with a circ~e. 

In this section, ..,,e have d~scribed methods ~or pruning 

and integrating the ~arge amounts o~ data which represent 

the locations and incremental disp~acemet'lts o~ a ce~l. This 

is !tCComplished by elirtlinating the irre~evant. noisy, .and 

artir.actua~ movement or the cell. The output or these 

processes is the path which represents the observable motion 

o~ the eel~. The latter is further ana~yzed in order to 

generate a summary or the global locomotion. The processes • 

which are responsib~e ~or generating this description. wi~l 

be described in the f"ol.~owi.ng section. 

6. 3 MOTION ANALYSIS AND DESCRIPTION 

In the pre-ceding sect.ion we d.iscussed methods for 

producing the path which represents the g~obal motion of the 

eel~. It consists of a sequence of steps. Each step is 

associated w.ith a set of numerical va~ues descr.ibing the 

motion propert.ies such as: frame number~ time~ distance~ 

Thus, the global 
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·, F'igure.(6.5c)Di8tance sampling with artifact removeit: 
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mot~on of a ce~~ can be def~ned as a sequence of steps {$}, 

0 where: 

(6. 6) 

~nd each e~ement of this set Si represents a step · of th~ 

global locomotion, with m the number of motion steps. Each 

element i is associated with a set of motion properties 

<P<Si>)~ such that: 

<6. 7) 

distance, direction, The 

determination of the frame number specifying the start of 

•~eh mot~on step was described in the preced~ng section. 

Here~ we wil~ show how to compute and qua~ify the other 

0 
motion properties. 

6. 3. 1 Distance 

In the locomot~on analysis of a moving eel~, three 

types of distances can be computed: total path displacement 

distance <TDD> <time sampled>~ total path locomotion 

distance <TLD> (distance sampled), and total translation 

distance <TTD> <vector sum of all locomot~ons>. The 

definition and computation of each is given below. 

TOTAL PATH DISPLACEMENT - TIME SAMPLED <TDD> 
=================··========================= 

The TDD represents the total movement of the cell~ including 

those that are irrelevant, noisy, and random. Th~s distance 

can be computed by adding all the incremental displacements 
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o7 ~he cell be~ween sequen~Lal 7rames as 7ollows: 

TDD = 
n-1 
SUM 
i=~ 

(6.9) 

sequential 7rames~ and n is ~he number OT the processed 

Trames. Figure C~6) shows the total displacement distance 

o7 the cell at di77erent times. 

TOTAL PATH LOCOMOTION - DISTANCE SAMPLEDCTLD> 
==============================··============= 

The TLD represent$ the movements whLch result in moving the 

cell an observable distance <exceeding a speci7ic 

threshold>. This distance is represented by the global 

locomotion path <see section 6. 2>. The TLD can be computed 

bw adding all the lengths OT each step: 

TLD = 
m-1 
SUM 
i=1 

(6.9) 

where m is the number OT the path points, and LSCi,i+1> 

is distance between two sequential points: 

LS 
2 

= C <X<Ni) - XCNC1+1)) 
2 

+ CYCNi) - Y<NCi+1)) 

TOTAL TRANSLATION DISTANCE CTTD> - VECTOR SUM 
============================================= 

1/2 
J (6. 10) 

The TTD is the distance between the locations o7 the cell in 

the 7irst and last 7rames or the sequence under analysis. 

locations A,B Cth~ first and last 7rames) respectively, then 

TTD is equal to ~h~ length AB and can be computed as: 
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2 2 ~/2 

TTD = t <Xb - Xa) + <Yb - Ya) l (6. 11) 

latter is less than the TDD; thus. TTD < TLD < TDD. This 

is because of the nature of the cell movement <the cell does 

not move in a straight line <see Figures 6. 3-6.5). Analysis 

of the relationships between these distances is important in 

characterizing the randorAness and chemotaxis behaviour of 

the cell. These aspects will be discussed in Section 6.4. 

The distance of· each 1ocomation step of the global path 

can be qualified and described as; VERY SHORT, SHORT, 

AVERAGE, LONG, or VERY LONG. This qualification is based on 

a compar .ison r,Ji th the average step d.istance < LSav), wh.ich 

can be computed as: 

LSav = TLD / NS (6. 12) 

where TLD is the total. locomotion distance of the cell path 

and NS the number of steps. Thus. if a specific step has a 

distance that is close to LSav, it can be described as 

AVERAGE. This me&ans that LSav specifies the data in the 

middle of the qualification range. Therefore, the value of 

LSav can be used as a normal.ization factor for the distance 

as f"o.Llows: 

LSni = LSi / 2. LSav (6. ~3) 

where LSni is the normalized value of the distance of step 

(.i). Using the representational rules, the distance can be 

described symbolically as: 
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RULE<6. 2>: 

:IF LSni. . LE. E:l. ==then==> Q(LSi> <--- VERY SHORT 

IF LSni . GT. E1 RfliD . L.E. £2 ==then•=> Q(LSi> <--- SHORT 

IF L.Sni. . GT. e:e AtliD . L.E. £3 ==then==> Q(LSi) <--- AVERAGE 

IF L.Sni . GT. E3 AND . LE. E4 ==then==> Q(LSi.> <--- LONG 

IF L.Sni . GT. E4 ==then==> Q(LSi) <--- VERY LONG 

6. 3. 2 Time 

The time of each motion step TSi is equal to 

TSi = < NF<i.+1) - NF<i> > to (6. 14) 

where <to> is the time interval between two sequential 

frames~ and NF<i>~NF<i+1>'are the frame numbers where step$ 

i and i+1 are started. The value of TSi can be normalized 

by comparing it to the average time of a motion step. This 

can be computed as: 

TSni = Ti I 2Tav 

TSav = <n-1> . to I NS 1 

(6. 1~) 

(6. 16) 

where Tni is the not'maliz:ed time of step i~ n is the number 

of 'the processed frames, and NS is the number of' the motion 

s-teps. The value Tni can be described as VERY SHORT~ SHORT. 

AVERAGE .. LONG, and VERY LOtoiG using the followi.ng rul.e: 

RULE<6. 3>: 

IF Tn . LE. E1 ==then==> Q(Ti) <--- VERY SHORT 

IF Tn . GT. E1 AND . LE. E2 ==then==> Q(Ti) <--- SHORT 

IF Tn . GT. E2 AND . LE. E3 ==then==> Q(Ti> <--- AVERAGE 

IF Tn . GT. E3 AND . LE. E4 ==then==> Q<Ti) <--- LONG 

IF Tn . GT. E4 ==then==> Q(Ti> <--- VERY LONG 
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6. 3. 3 Direction Of Motion 

The di.rectJ.on of the cell locomotiot'l betwee-n two points 

in the global path can be computed as: 

-1 Y<NF(J.+1>> - Y<NFi> 
DRSi = tan C ------------------- l (6. 17) 

X<NF<i+i)) - X<NFJ.) 

coordinates of two sequential points in the cell path. 

The direction DRSi can be described symbolically i.n 

terms of the main directi.ons in the plane as: EASTERLY~ 

NORTH-EASTERLY~ NORTH~ NORTH-WESTERLY~ '"ESTERL y I 

SOUTH-WESTERLY, SOUTH, or SOUTH-EASTERLY. 

6. 3. 4 Velocity 

The basic definition of velocity J.s the rate of change 

in distance with time (dLidt>. In image sequence analysis, 

since the time interval between two sequential frarnes is 

constant~ the incrementa~ disp~acement can be considered as 

the velocity of the moving ObJect. Figure (6. 7a> shows the 

velocJ.ty <dLidt) of a moving cell at different times. From 

this figure one can see that the cell has a random velocity. 

This randomness is due to two main factors, the nature of 

the cell movement~ .and the random chat-.ge in · shape which 

causes change in the centroid coordinates. In order to 

detect the global changes in velocity, we may consider two 

methods for smoothing the. relation Cdlldt): averaging and 

sampling. 
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In the averag~ng method~ the veloc~ty of the cell at 

spec~fic t~me Vt1 is considered as the average of the 

velocity from time (t) to the time <t+dt>~ thus, 

t+dt 
Vt = [ SUM Vi l I dt , 

i•t 
(6. 18) 

where dt ~s constant and depends on the type of moving 

obJect and the desired degree of smoothness of the curve. 

Figures (6. 7b> and (6. 7c) show the output of averaging the 

velocity using the above method on the data of Figure (6. 7a) 

for dt=2. 5 and 5 seconds (5 and 10 frames), respectively. 

After averaging the velocity~ we can use a curve analysis 

technique to detect the points of velocity change. 

This method 9ives adequate results in many cases. On 

the other hand, it includes two operations~ averaging and 

curve analysis. Also with this approach, we are considering 

including those due to the change in 

shape or rotatio~ This can be avoided by using the 

sampl~ng method~ which i$ descr~bed below. 

VELOCITY CHANGE BY SAMPLING 
=========================== 

In this method, the input is the cell path data 

produced by sampling at constant interval distance <see 

section 6. 2>. The cell path is defined as <S>, where: 

where m the number of points in the path. The velocity 

of the cell can be defined by <V>, where: 
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<V> = <V::t, \12. . .. , Vi, ... , V<m-::1)) (6. ::19) 

Vi = L.Si I TSi (6. 20) 

Table<6. 1> gives an example of the velocity of the cell 

computed for 450 frames in a sequence. This me~hod for 

computing ~he veloci~y of the cell has the advantage that it 

is only a function or the cell translation (shape and 

rotation independent), and is less sensitive to noise. 

MoreoverJ the velocity may be computed simultaneous with the 

cell path sampling. th&r·eb't) reducing the overall cost of' 

computation. 

In order to qu.antif'y and descr·ibe the vel.oci ty, we 

first co!l'lpute the .average velocity of the cell. motion. 

ThenJ the latter can be used as the normalization factor as 

follows: 

Vav = TLD I NS (6. 2::1) 

VSni = VSi I 2. Vav ~ (6. 22) 

where Vav is the average velocity of the cell, and VSni is 

the normal.ized value of the velocity at step Ci). This can 

be utilized by the representational. t"Yles to · describe the 

cel.l. motion as: STATIONARY, VERY SLOW, SLOW, AVERAGE, FAST, 

VER'r' FAST 

6. 3.5 Acceleration 

The acceleration CA) of a moving ob~ect is the rate of 

change velocitw with tirne. Thus: 

A = dV I dt 
e 

= d2L I dt (6. 23) 
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Hence, if the velocity of the cell (dLidt> is represented by 

a straight line, then the slope of this line represents its 

acceleration. In order to compute- the acceleration' we can 

follow the same steps described in the preceding section for 

the velocity. There is one difference. That is~ we compute 

the second derivative instead of <dLidt). All the issues 

which have been discussed for the velocity are applicable to 

the acceleration. The two methods which were described 

above for the global velocity computation, can also be used 

for the acceleration. Therefore, only the basic steps for 

determining the acceleration will be given below. If the 

velocity is givEPn .fiS <Y> such that: 

<V>= <YS1, YS2, ... , VSi, ... , VS<m-1)). 

then the acceleration <A> may be given as: 

<A>= <AS1, AS2, .. ·' ASi, ... 1 AS<m-2>> 

ASi = [ VSi - VS<i-1> J I TSi 

(6. 24) 

(6. 25) 

(6.26) 

and AS1 = 
stationary 

YS1~ considering the 

position. Table <6. 1> 

cell started from ~ 

Qives an exarnple of the 

resu~ts of this computation. 

Two qualifiers are used to describe the acceleration at 

each motion step. The fi.rst is to descr•ibe it as positive 

or negative. 

RULE<6. 4>: 

IF AS! . LT. 0 

IF ASi . GT. 0 

==then==> Q<ASi> <--- NEGATIVE ACC. 

==then==> Q<ASi) <-~- POSITIVE ACC. 
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The second qualifi~r is used to describe the acceleration as 

VERY SLOW, SLOW, AVERAGE, FAST, and VERY FAST. 

6. 1 gives an example. 

Description 

In this section, we discussed methods for the global 

analysis of the basic cell locomotion properties 

(displacement, velocity, and acceleration). Table (6.1> 

summarizes the numerical description of cell motion 

properties, and their symbolical qualification J.s given in 

Description (6.1). In the following section, we will 

discuss and analyze one of the most important properties of 

cell locomotion, namely chemotaxis behaviour. 

6.4 CHEMOTAXIS ANALYSIS 

Chemotaxis is the response of' a motile cell to the 

directional inf'luenc~ of' an external factor (bacteria, 

tumour, chemical substances). 

lies in the f'act. that 

The importance of 

it results in the 

chemotaxis 

ef'f'icien"t 

localization of invading agents. The role which chemotaxis 

plays in eliminating the tumour cells was a subJect of' study 

by [Levine et. al, 91l <see also Section 2. 5. 5). In their 

study, the locomotion of cells is characterized as positive 

chemotaxis, negative- chemotaxis, or random motion. 

Locomotion analysis in the- current research is different in 

the sense that here we attempt to understand and 

characterize the dynamic behaviour of a single moving cell. 

This section is concerned with the quantification and 

description of the relationship between the cell locomotion 
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and the ~nfluence or an external factor· (chemotaxis 

analysis>. The obJeCtive of this analysis is ~ccomplished 

in thr'ee steps: 

(a) Compute the global directional movement of the cell. 

<b) Quantify the cell response to the influence of an 

external factor~ thereby quantifying the effectiveness 

of the influence. 

(c) Characterize and describe the global behaviour of 

the cell locomotion. 

A typical example of the quantification of the global cell 

lqcomot~on is given in Description <6. ~). The processes and 

algorithms which are employed to generate these descriptions 

are described in the remainder of this section. 

6.4.1 Computing The Directional Movement Of The Cell 

The obJective of this analysis is to determine whether 

the cell motion has a tendency towards a specific: direction 

or if .it is random. The input for this analysis consists of 

the incremental displacement of the cell between sequential 

frames. The output includes quantification of the movement 

of the cell in the main directions of the plane. 

Let us define the inc:rememtal displacement and 

direction of motion between two sequential frames <i~i+~) a~ 

Li and Di~ where: 

Li = [ 
e e 

dXi + d'T'i 

-l. 

~/2 

l 

Di = Tan < dY / dX ) 

(6. 27) 

(6. 28> 
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and dXi = CX(i+1) - Xi) , dYi = <Y<i+1) - Yi) 

We divide the plane o~ cell motion into nd equal di~ections 

S1, S2., ... , SJ, ... , Snd. 

to 360/nd. The incremental displacement is considered to be 

in direction Si if the displacement has an angle Di with the 

The vector tha~ 

represents the total locomotion in a specific direction 

CTDR) can be computed as the resultant of all the cell 

displacements in that direction. Figures <6.8a) and (6. 8b) 

show the total displacement of the cell, where the space is 

divided into 4 and S equal directions respectively. The 

vector <RR> which represents the global locomotion of the 

cell is the resultant of all the vectors defining the cell 

locomotion in the diff"er·er•'t directions. 

RR = 
nd 

sum RDi . 
i=1 

Thus: 

(6. 29> 

where "sum" in this equation indicates a vector summation. 

As an alternative, if the displacements of the cell in 

the different directions is not required, the vector RR can 

be computed directlw from the X and Y coordinates of the 

cell location in each frame of the sequence as follows: 

n-1 
TDX = sum [X(i+1>-X<i>l~ and 

i=1 

e a 
LRR = [ ( TDX > + < TOY > 

n-1 
TDY = sum CY<i+1)-Y(i)J 

i=1 

112 
J (6. 30) 
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-1 
DRR = Tan < TDY / TDX ) , (6. 31.) 

where Xi~ Yi are the X ar.d 'r' c:oot .. dinates of the cell at 

frame(i) .. and n is the total number of' f'rames. 

Figures <6. 9a) and <6.9b> ~how the locomotion of' the cell in 

the different directions.. as well as the global locomotion 

vector (marked wi-th two ar·rows >. 

The directional tendency of the cell is the amount or 

movement that the cell exhibits in a specitic direction. In 

the case of random locomotion~ the tendencies of' the cell in 

the different directions· are approximately equal. 

Consequently the resul tarrt vector RR of' the cell locomotion 

is approximatly zero. In the case of chemotactic 

locomotion .. the cell exhibits a tendency to move in a 

specific direction. 

The movement in the different directions~ as well as 

the global locomotion~ can be described as NONE.. VERY SHORT1 

SHORT.. AVERAGE.. LONG, and VERY LONG. This qualification is 

based on a compar·is:on •.di.'th typical random motion. In this 

case.. the cell locomotion in each direction is almost equal. 

This can be computed as: 

TDRav = TTD / nd <6. 32) 

The locomotion in a specific direction can be normalized as: 

TDRNk = TDRk I TDRav (6. 33) 

Then using the representational rules~ the normalized value~ 

of the directional movement of the cell can be assigned to 

the appropriate symbolic qualiriers. Fot' example.. we may 
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describe the cell mot~on as being AVERAGE if the resultant 

vector is about equal to TDR. 

6.4.2 Chemotaxis Quantification 

The chemotactic motion of the cell can be measured as 

the percentage movement of the cell in the direction of 

influence to the tc,tal movements in the space domain. Thus, 

if the total locomotion of the cell is represented by the 

vector RR = <LRR~ DRR>, '»here LRR and DRR are the length and 

direction of the vector RR, then the percentage chemotactic 

motion PCM can be computed as: 

PCM = LRR / TLO . 100 (6. 34) 

where TTD is total locomotion distance in the space domain 

(which is 

the cel.l 

computed above>. Thus, using the value of PCM, 

motion can be characterized as random 

chemotactic by the following rule: 

RULE<6. 5): 

IF PCfiJ . LE. E1 ==then==> RANDOM 

ZF PCM .GT. E~ AND. LE. Ea ==then==> ALMOST RANDOM 

IF PCM . GT. Ee AND . LE. E3 ==then==> PARTIALLY RANDOM 

IF PCM .GT. E3 AND. LE. E4 ==then==> ALMOST CHEMOTACTIC 

IF PCM . GT. E4 ==then==> CHEI'10TACTIC 

or 

Thus, chemotaxis can be described as positive or 

negative depending on whether the cell moves towards or 

against the direction of influence. To compute and describe 

this behaviour, we consider the cell as having started its 

motion from point 0 <Xo,Yo), the origin of the two 
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dimensional pl~n•• with the ex~ernal factor concentrated at 

a point E cxe,Ye>. Th• line OE which connects the original 

position of the cell (0) to the center of the external 

factor CE> repres•nts the direction of the influence, as 

shown in Figure (6. 10>. In this figure, the line sos, which 

passes through the poin~ 0 and is normal to the line OE, 

represents the border line which divides the plane into two 

regions. One is PCR or "positive chemotaxis region" Cthe 

region where the external factor is located), and the other 

is NCR or "negative chemotaxis region". Thus, if the vector 

that represents the global locomotion is in the Y·egion PCR, 

this indicates positive chemotaxis. If it is in region NCR, 

negative chemotaxis is implied. 

follows: 

RULEC6. 6): 

This can be quantified as 

IF DRR .GE. Ei AND . LT. E2 ==then==> NEGATIVE CHEMOTAXIS 

IF DRR .GE. E2 AND . LT. E~ ==then==> POSITIVE CHEMOTAXIS 

where DRR is the angle of the global locomotion with the X 

axis <0-360 degr99s), E1 and E2 are the angles of the border 

line between ~he positive and negative chemotaxis regions. 

6. 4. 3 Quantifying The Effectiveness Of Influence 

The effectiveness of an external factor <EF> on the 

locomotion of a moving cell can be def'ined .as its ability to 

attract the cell in the direction of its influence. This 

force is a function of two factors: <a> the percentage of 

the chemotactic movements CPCM>, .and <b> the angle between 
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gative Chemota:tis Region 

(NCR) 

Positive Chemota:ds Region (PCR) 

Figure{6.1~} G.lobal locomotion analysis to 
characterize the chemota:z:is behatJiour 
of the. motJing ce.ll1 as well as the 
effectiveness of an e:dernal factor 
on cell locomotion. 
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the di~ection of motion and influence <ORI>. Thus, 

EF = f<PCM,DRI> . <6. 35) 

The value PCM is desc~ibed and estimated in the 

p~eceding section. The angle DRI can be computed as: 

DRI = fOR - DII I (6. 36> 

whe~e OR and DI •~• the di~ections of the global locomotion 

and the influence, ~espectivel~. The value DRI can be 

utilized as an indicator to tell whether or not the eel.! 

will ultimately r-each the area where the external factor is 

located. To compute this, the value of DRI can be 

normal.1zed between <0-~> as: 

DRin = ( 90 - DRI > / 90 . (6. 37) 

Thus, ORin = -1, if the global locomotion is opposite to the 

0 direction of influence (purely negative chemotaxis), and 

DRin = +1, if the locomotion is exactly in the direction of 

influEPnce <purelw positive chEPmotaxis>. Using 

representational rules, the value DRin can be used to 

dEPscribe the d.1rection of global locomotion compa~ed to the 

direction of influence as QUITE OPPOSITE, ALMOST OPPOSITE, 

PERPENDICULAR, ALMOST THE SAME, THE SAM~. 

Finally, the effectiveness of an influence can be 

computed as the geometric mEPan (GM> of PCM and DRin: 

1/C: 
EF = < PCM . DRin > . 100 (6. 39> 

Note that EF lies between plus and minus 100~. 
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Thus~ the valuE' EF ~s ~ summary or the chemotactic 

movement and the ef'fectiveness: of the influence. The sign 

indicates positive or negative chemotaxis~ and the amplitude 

the This can be utilized by 

representatinal rules to describe the global behaviour of 

the cell locomotion as follows: 

RULE<6. 7): 

J:F EF . LT. 0 •=tt'le-t't==> NEGATIVE CHEMOTAXIS 

IF EF . EQ. e ===th•n==> RANDOM MOTION 

IF EF . CT. 0 =•the-r•==> POSITIVE CHEMOTAXIS 

IF· :EFI . LE. E1 •=then==> SLIGHT 

IF tEFI . GT. E1. AND . LE. E2 ==then==> ALMOST 

IF I EFI . GT. E2 AND . LE. E3 ==then==> AVERAGE 

IF I EFI . GT. E3 AN[, . LE. E4 ==then=•> STRONG 

IF I EFI . GT. E4 ==then=•> VERY STRONG 

D•scription (6. 1) is a typical example of the global 

locomotion c:haracteri.zation and description generated by the 

system. Figure (6.11> shows different global locomotion 

characterizations of' the same cell under the influence of' 

bacteria placed in different positions. 

The analysis of the chemotaxis property of cell 

locomotion is presented in -this section. Th.is proper-ty 

plays an important role ir, describir•g th• cel.l under the-· 

influence of an external factor. In this analysis~ we first 

computed the movement of the cell in the different 

directions~ as well as the vector which represents the 

global locomotion. Secondly~ we quantified the response of 
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Figure(6.11) Global quantification and characterization 
of moving cell locomotion. 

The symbol B represents the location of the e:&ternal influence. 
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~he cell to the effect or an external fac~or. Finally. we 

es~imated the effectiveness of the influence of the external 

fac~or on the cell locomotion. In this way, the global 

6.5 SUMMARY 

Motion analysis and descrip~ion or a non-rigid moving 

obJect can be achi~ved in two steps. The first is concerned 

with ~otion detection and tracking of an obJect in the image 

sequence. The second step concerns the analysis or data 

extracted from the first step in order to generate a summary 

of the locomotion behaviour. In the present system, the 

processes which are associated with the first step ar• 

responsible for locating the cell in each image or th~ 

sequence, and detecting the incremental change in it$ 

location between seq~.aer.ti.al 

described in chapters 4 and 5. 

frames. These processes are 

In this chapter, we have 

described the processes which are associated with the second 

step. That is, global motion analysis and description. The 

obJectives of these processes are to analyze the mul~itude 

of s~atic and incr•mental. da~a in or·der to characterize and 

describe the locomot.ion behaviour of the cell.. To 

accomplish this, first, the global movement or the cell is 

detected from the irrelevant and noisy ones. From this 

data, the path of motion is constructed in a sequence of 

steps. Each motion step i.s described by a set or m•::;)tion 

properties. such as: time. distance, direction of motion, 
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veloci~y.. and accelera~~on. 

Chemo~axi:s is one of ~he most important de:scrip~ors of 

cell locomotion. I~ is th~ response of a moving cell to the 

influence of an external factor. In order to quantify and 

describe this behaviour} first, the total displacement of 

the cell in each of the ma~n directions of the spatial 

domain is quantified 

similar random motion. 

and described 

The latter 

in comparison to a 

implies no ex~ernal 

factor, so that the cell should exhibit equal locomotion in 

the different directions. Then, the vector that represents 

the global locomotion of the cell is also quantified and 

described as random or chemotactic. Finally, ~he chemotaxis 

is quantified as a function of two parameters: the 

percentage of the chemotactic motion, and the angle of its 

direction with the direction of the influence. Thereby, the 

chemotaxis behaviour of the cell is described as POSITIVE or 

NEGATIVE. Also.. the effectiveness of an influence is 

described. Description <6.1) presents a summary generated 

by the system for the global locomotion behaviour of a cell 

which was tracked for 430 frames <ea5 seconds). 
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DESCRIPTION <6. 1) 
================= 

GLOBAL LOCOMOTION ANALYSIS AND DESCRIPTION 

INTRODUCTION 
=·=···=·=·=== 

The ~ollow~ng ~s a global characterization and 
discription of the locomotion analysis of a NEUTROPHILE 
cell. The cell motion was recorded in real time on ~6mm 
cine film at rate of TWO ~rames per second. The cell was 
under the influence of BACTERIA which is located in the 
SOUTH-WESTERLY direction of the original location of the 
cell. The total observation time ·was 225 seconds (450 
frames>. The following is a description of the cell 
locomotion between fr~me number 200 and 450 <125. 0 seconds) 

CELL PATH and ~lOTION ANALYSIS 
··=========================== 

The space domain of the cell motion is divided into 
EIGHT equal d~rections<states). First, the cell path was 
obtained by sampl~ng the displacement between frames in 
~ncrements of approKimatly a 0 m~crons. Then sequences 
with the same incremental direct~on were merged ~nto one to 
produce the final cell path which consists of 34 steps. 
The descr~ption of the time, d~stance~ speed~ d~rection, 
and accelerat~on of the cell at each step is as follows : 

TIME DISTANCE SPEED DI.RECTI.ON ACCELERATION 
=·-= ==•===== ===== ========= ============ 

YERY SHORT YER\' SHORT YERY SLOW NORTH-EASTERLY NONE 
VERY SHORT SHORT VERY FAST EASTERLY VERY ~AST POSITIVE 
YERY LONG VERY LONG AVERAGE WESTERLY AVERAGE NEGATIVE 
SHORT VERY SHORT VERY SLOW NORTH-EASTERLY VERY FAST NEGATIVE 
SHORT MEDIU~l VERY FAST SOUTH-WESTERLY VERY FAST POSITIVE 
SHORT VERY SHORT YERY SLOW NORTH-EASTERL'r' VERY ~AST t~EGATIVE 
MEDIUM SHORT AVERAGE SOUTH-WESTERLY VERY FAST POSITIVE 
VERY LONG MEDIU~l SLOW SOUTH NONE 
LONG MEDIUf'1 AVERAGE SOUTH-WESTERLY SLOl~ POSITIVE 
SHORT MEDIUM VERY FAST EASTERLY VERY FAST POSITIVE 
MEDIUM LONG FAST SOUTH-WESTERLY VERY FAST NEGATIVE 
SHORT MEDIUM VERY FAST EASTERLY VERY FAST POSITIVE 
SHORT MEDIUM VERY FAST NORTH-WESTERLY VERY FAST NEGATIVE 
MEDIUM VERY LONG VERY FAST SOUTH AVERAGE NEGATIVE 
MEDIUM MEDIUM AVERAGE SOUTH-WESTERLY AVERAGE NEGATIVE 
LONG MEDIUI'1 SLOW SOUTH AVERAGE NEGATIVE 
MEDIUM MEDIUM AVERAGE SOUTH-EASTERLY AVERAGE POSITIVE 
MEDIUM MEDIUI'1 FIYERAGE SOUTH-WESTERLY SLOirl POSITJ:VE 
SHORT MEDIUM VERY FAST SOUTH-EASTERLY VERY FAST POSITIVE 
MEDIUM MEDTIIM ~&lctT C!.niiTU-I.II:'<:'T~n• tl I.,.... ....... l .._ ..... J"'\"'P .............. ~""' ............ ,_ 
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LONG MEDIUM SLO(.I SOUTH AVERAGE NEGATIVE 
MEDIUM MEDIUI"l AVERAGE SOUTH-WESTERLY AVERAGE POSITIVE 
MEDIUM MEDIUM AVERAGE SOUTH NONE 
SHORT MEDIUf'1 FAST SOUTH-WESTERLY VERY F'AST POSITIVE 
VERY LONG VERY LONG AVERAGE SOUTH AVERAGE NEGATIVE 
MEDIUM LONG VERY FAST WESTERLY VERY FAST POSITIVE 
MEDIUM MEDIUM AVERAGE SOUTH-EASTERLY FAST NEGATIVE 
VERY LONG MEDIUf'l SLOW SOUTH AVERAGE t~EGATIVE 

LONG MEDIUI'-1 AVERAGE SOUTH-EASTERLY SLOW POSITIVE 
VERY SHORT VERY SHORT VERY SLOW NORTH-EASTERLY VERY FAST NEGATIVE 
SHORT MEDIUM FAST EASTERLY VERY FAST POSITIVE 
MEDIUM VERY SHORT VERY SL.OW NORTH-EASTERLY VER'r' FAST NEGATIVE 
SHORT SHORT AVERAGE EASTERLY VERY FAST POSITIVE 
MEDIUM MEDIUM AVERAGE SOUTH-EASTERLY AVERAGE 

CHEMOTAXIS ANALYSIS : 
=====·=============== 

Chemotaxis is the response OT a motile cell to the 
directional inT luence of a chem.i.cal subst.ar.c:e or .any external 
yac:tor <BACTERIA in this film>. The TOllowing is a summary OT 
the d.i.rE<c:tional rnovemerrts OT the cell under an.al.ysis when 
compared to typical random motion of a similar cell: 

DIRECTION 

EASTERLY 
NORTH-EASTERL.Y 
NORTH 
NORTH-WESTERLY 
WESTERLY 
SOUTH-WESTERLY 
SOUTH 
SOUTH-EASTERLY 

CONCLUSION : 
========·==· 

TOTAL DISPLACEMENT 

AVERAGE 
NONE 
NONE 
SHORT 
AVERAGE 
VER'r' LONG 
VERY LONG 
AVERAGE 

The resul tat'\t directional locomotion is in a SOUTH 
direction~ which .is ALMOST THE SAME direction in which the 
BACTERIA is located. This motion represents THREE-FIFTHS of 
the total displacem•nt o~ th~ cell. 

From the above analys~s we m.a~ conclude that 

THE CELL HAS AN AVERAGE POSITIVE CHEI~OTAXIS t10TION 
----------------------------------------------------

NEGA1.IVE 
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TABLE <:6. ::1.> 
================== 

GLOBAL LOCOMOTION ANALYSIS AND DESCRIPTION 

GLOBAL LOCOMOTION DATA 
·-······============== 

FIRST FRAME NUMBER 
LAST FRAME NUMBER 
TOTAL TIME 
ANGLE TO BACTERIA LOCATION 
INCREMENTA~ STEP 
NUMBER OF STEPS 
TOTAL DISTANCE 
AVERAGE DISPLACEMENT /STEP 
AVERAGE TIME /STEP 
AVERAGE VELOCITY 
AVERAGE ACCELERATION 
TOTAL DISPLACEMENT 
AVERAGE ANGLE OF DIRECTION 

RESULTANT DIRECTION 

CELL PATH AND MOTION ANALYSIS 

= 1 
= 450 
• 224. 5 
• 45. 00 
= ~.0 
= 22 
= 93. 50 
= 4.25 
= 10.20 
= e. 42 
= e. ee 
= 63. se 
= 247. 00 

Seconds 
Degrees 
Mi.crons 

M.icrons 
M.icrons 
Seconds 
M.icrons/Seconds 
M.icrons:/Seconds squ~red 

= SOUTH-WESTERLY 

•========================~====== 

STEP INITIAL FINAL TIME DISTANCE DIRECTION VELOCITY ACCELERATION 
No. FRAME FRAME <sec> <m.icrons) S STATES <m.iclsec> <m.iclsec. sec) 

No. No. 
====• ===== ===== ===== =======c= ========= ====a==== =======~===== 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1.2 
1.3 
1.4 
1.5 
16 
17 
18 
1.9 
20 
21. 
22 

1 
24 
76 

134 
1.69 
1.87 
201 
202 
224 
236 
238 
240 
245 
278 
296 
350 
393 
419 
43:1 
434 
441 
443 

24 
76 

134 
169 
187 
201 
202 
224 
236 
238 
240 
245 
278 
296 
359 
393 
4:19 
43:1 
434 
44:1. 
443 
450 

11.5· 
26. 0 
29.0 
17. 5 

9. 0 
7. 0 
0. 5 

11.0 
6. 00 
:1. 00 
1.00 
2. 50 

16. 50 
9. 00 

27. 00 
21.50 
13.00 

6.00 
1.50 
3.50 
:1.00 
3.50 

5. 95 
15. 76 
10. 65 

6.:17 
5. 86 
9. 90 
0. 91 
5. 20 
9. 00 
:1. 37 
0. 00 
0. 91 
5. 00 
5. 01 

10. 52 
:1:1.. 08 

5. 26 
9. 00 
:1. 32 
e. ee 
e. 79 
1. 73 

5 
6 
s 
7 
5 

5 
e 
6 
2 
6 
7 
6 
7 
6 
a 
e 
1 
e 
1 
8 

e. 52 
a. 61 
0. 37 
a. 35 
e. 65 
0. 00 
1. 82 
0. 47 
e. 00 
::L. 37 
0. 00 
e. 36 
9. 30 
0. 56 
e. 39 
e. 52 
0. 40 
e. 00 
e. ss 
0. 00 
e. 79 
0. 50 

0.04 
0. 00 

-0. 0i 
0. 00 
0. 03 

-0. 09 
3. 64 

-0. 12 
-0. 08 

1. 37 
-::L. 37 

9. 14 
0. 00 
0.03 

-0. 01 
0.01 

-0.01 
-0. 07 

0. 59 
-0. 25 

0. 79 
-0. 09 
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CHEMOTAXIS ANALYSIS 
-=-=======-============================== 

DIRECTION 

1-EASTERLY 
2-NORTH-EARTERLY 
3-NORTH 
4-NORHT-WESTERLY 
5-WESTERLY 
6-SOUTH-WESTERLY 
7-SOUTH 
8-SOUTH-EASTERLY 

RESULTANT LOCOMOTION 

DISPLACEMENT 

3.031==) 
0.00:> 
0.001) 
0. 00l) 

17. 011===========> 
34. 13l========================) 
e1.691===============> 
17. 641============) 

Page 6-31.0 

SOUTH-WESTERLY 63. 80 ==============================:====~> 

(a) PERCENTAGE OF TOTAL LOC0~10TI:ON IN 
DIRECTION OF INFLUENCE------------------------ 90.56 ~ 

(b) RATIO OF MAGNITUDE OF CHEMOTACTIC 
MOTION IN DIRECTION OF INFLUENCE 
TO TOTAL CELL LOCOMOTION----------------------- 68.24 ~ 

(C) EFFECTIVENESS OF THE EXTERNAL 
FACTOR ----------------------------------------- 78. 61. ~ 
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CHAPTER 7 

GLOBAL SHAPE ANALYSIS 

7.1 INTRODUCTION 

The perception of shape plays a prominent role in both 

human and cornpui:•r vision. It is: a common prob~er11 in any 

computer vision1 $Cene analysis~ or pattern recognition 

system. The solution to this problem may be achieved 

through two stages of processing: shape analysisJ and shap• 

description. In shape analysis, a digitized image of an 

obJect is transfot"'mted into a scalar· vector whose elements 

~re measurements of some of the shape properties. The 

second task of shape analysis is to transform the image of 

an obJect into a graph. The properties of this graph 

express the shape and structural propert~&s or the ObJeC~ 

Shapte description represents the higher level process of 

shape perception by computer. In this process the scalar 

vector or graphJ the t .. esul ting form of "the shapE> analysis, 

is analyzed using a ?Yntactic analysis methodology in order 

to generate a sumrflary in a natural language <a symbolic:. 

description). It contains all the relevant informa-tion 

perta~ning to the shape of the obJect. 
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Figure <2. 1) shows the basic steps for shape analysi$ 

and description, as well as the input and output data a~ 

each step. A brief review of current shape analysis and 

description techniques was presented in Section 2.3, and 

attention was directed to the most recent surveys in this 

area CMeagher, 79; Pavlidis, 811. The shape analysi$ 

techniques which hav~ been used or are 00directly related to 

our current work are also reviewed in the same section. 

Most of the work which has been done in dynamic scene 

analysis is restricted to the stYdy of the motion of ~igid 

obJects. Some of this work has considered change in shape 

due to change in the viewing conditions. For example, a car 

moving in front of a fixed camera tNagel, 78bJ, fish 

swimming in a vat CYachida et. al~ 78], and motion of the 

left vertricular [Tsotsos, 801. However, in each of these 

cases the change is restricted by many constraini:s and is 

predic-t ab le. 

Our study differs from previous work in that we study 

the motion of non-r•igid moving obJects. The- changes in 

shape are due to changes in the physical properties, which 

are non predictable. Analysis o(- the random changes in i:he 

shape of moving obJects is very important in studying the 

characteristic be-haviour of biological obJects. For 

example, it has become increasingly evident that the cell 

membrane plays a pivotal role in the life, development, and 

regulation of cells. There is no existing method to 

. quantify the observable changes in nlembt"'ane shape that occur 
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in locomotion, an impor~ant component of cell behaviour. 

The general problem of shape description is very 

difficult. Recently, there has been interest in syntactic 

pattern recognition techniques which analyze patterns by a 

hierarchial decomposition parsing process. The advantages 

of such an approach suggest that it might be appropriate to 

study hierarchial shape representation in more detail as a 

vehicle for cell shape description, as well as for the 

global structural and membrane shape changes which occur 

during locomotion. 

The problem of shape analysis and description of an 

arbitrary shape in a static scene was discussed in 

Chapter 4. The techniques used to solve this problem 

include: (a) segmentation and boundary tracking, (b) 

curvilinear and polygonal approximation, (c) polygonal 

decomposition and labeled graph representation, and (d) 

rule-based syntactic analysis and shape description 

techniques <to quantify and describe the shape properties 

symbol~cally). Xn addition to the general difficulties of 

describing an arbitrary shape in a static image, we face the 

following problems: 

(a) Estimating the incremental change between two different 

images, of the shape and structure of a non-rigid 

moving obJect. 
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Cb> Detect~ng and character£zing the global shape changes ~n 

the morphology of· a non-r~gid mov~ng obJeCt over a 

per~od of t~me from a sequence of p~ctures. 

(c) Present~ng all the above descr~ptions in a meaningful 

form to the user. 

The probl~m of· the incremental change detection and 

description was d~sc~ssed in Chapter 5. The problem of 

detecting and characterizing the global changes in the shape 

w~ll comprise the remainder of this chapter. F~g~re <7.1.) 

shows the ma~n proc•sses and data str~ctures used ~n global 

shape analys~s and descr£ption. The input to th£s stage of 

the system consists of the static and ~ncremental 

descript~on of the 

frame. An example 

Figure (7.2>. It 

shape propet'ties in and between each 

of the ~nput data is shown in 

consists of the static values of one of' 

the shape properties <circular~ty> ~n 1.50 frames in 

sequence. The output consists of a summary describing the 

global changes of the cell shape and their characterization. 

A typical example of this characterization is given in 

Description <7.1). The methodologies and processes which 

are used to generate these descriptions are discussed in 

this chapter in the fo.llo•.~Jing ordet". 

The basic methodologies and techniques for detecting 

the global changes from the static and ~ncremental data are 

described ~n Section 7. 2. Description of the global changes 

in each of the main s.hape pt"operties:: wi.ll be given in 
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' >" '"' .. '- '- p .. "" U SI uFtgure(1:1:) ltocesses and 'data structure 
for global shape analysis. 
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CIRCULAR In• FRAMEI: FIRST= 1,LAST=159,IHCREMEHT= 1 

.8739 

.8319 

.7881 

• 7452 

• 7924 w ' ~Ill 
.6595 

.6166 ~ 

.5738 
A :11'·-

.5399 Ulll 

.4889 

.4452 

.4023 ~A 

.3594 

.3166 

.2737 

.2308 m TiiiU ~~ ~ 
91 181 Ill I l~llll3~141 111111 

1 11 21 31 41 51 61- 71 I 1 
FRA~1E HUMBER 

Figure{7.S} The ·static description of one of the sha,pe 
properties {circularityJ.used a,s input data for global shape 
analysis. 
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S&ction 7. 3. In S&ction 7. 4, we will show experimentally 

that an individual shape property is not su¥ricient to 

desc:r.ibe an arbitrary shape. Also in the same section, we 

discuss th~ development or a mathematical expression ¥or th~ 

membrane shape me-au:u..tre. In this way, the global changes in 

the cell membrane shape can be characterized and describe-d. 

Finally, Section 7.5 is a summary of the chapter. 

7.2 METHODOLOGY FOR DETECTING AND 

DESCRIBING GLOBAL SHAPE CHANGES 

The technique ¥or detecting and describing the shape 

changes in this thesis consists of three basic steps: 

(a) Global change detection: to detect relevant changes in 

shape from the static and incremental data. 

(b) Symbolical qualification: to transform the global data 

into symbolic qualifiers. 

<c> Characterization and description: 

symbolic qualification in to 

to analyze 

summarize 

the 

the 

characterist.ic behaviour of the changes in the cell shape. 

The obJective of the global change detection is to 

reduce the stat.ic &nd incremental data to those representing 

information relevant to the global changes. This can be 

achieved by detecting the points <frames) where a 

significant change has occured, called "key frames". There 

are two definitions for point of significant change. The 

¥irst definitio~ is a point where the dynamic behaviour 

changes. For example, from stationary CdP/dt = 0) to 
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increasing (dP/dt ) 0) or decreasing (dP/dt < 0). The 

second refers to a time at which a significant change has 

occured in the qualification (descr~ption) level. 

be def'it·,ed a:::: 

QiCPk) ----> QJ(Pk), 

where Qi(P) and Qj(P) are two differ.:::nt 

This >:.3n 

of 

qualification for the property (Pk). For example. from 

SIMPLE to COMPLEX, or from SMOOTH to JAGGED. 

If the change in the qualification level is the only 

required description for a specific application. this can be 

accomplished by applying the representational rules directly 

to the static and incremental symbolic qualifications. 

However. in some applications. description of the changes in 

the dynamic behaviour (for example from increasing to 

decreasing or stationary) is also required. 

The technique developed for this system is designed to 

detect and provide descr~ptions for both types of global 

chang•?S. 

so:-ct~ons. 

in the 

This will be described in tne following two 

First. in Section 7. 2. 1. detection of the changes 

behavio1...1t·· I;Jill 

Section 7. 2. 2 describes a methodology for detecting and 

summar~zing the significsnt change~ in ~he qualificati0n 

le• vel. 
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7. 2.1 , Dynamic Changes And Key Frames 

The obJective OT this analysis is to detect the points 

where the dynamic behaviour o~ a speci~ic property has 

changed. The Trames wh~re th~se changes have occured are 

reTerred to as key Trames. To accomplish this~ the static 

and incremental d~ta is ~irst normalized between e-1~ and 

represented by a curve~ as shown in Figure (7.2). The 

amplitude of the curve at any point <frame) represents the 

~tatic Value Ot the property at that frame. The variations 

between the neighbouring points in the curve represent the 

frames. Cc .. u··ve smoothing and approximation can be used to 

detect the points (key frames) in the curve where 

significant changes occur. This data can be used to 

characterize and describe the changes in the property under 

consideration. A detailed description of this computation 

is given below. 

NORMALIZATION 
============= 

In the global shape analysis processes; normalization 

is employed as a preprocessing step for all the static and 

incremental data for the following reasons : 

(a) The different_ proper·ties have been measw"'ed in different 

units. 

0 
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Cb) The values o~ the input data have di~~erent scales 

Cvaring over $everal order o~ magnitude>. 

(c) The amplitude o~ the change for di~~erent properties 

varies widely. 

In order to detect the global changes in a speci~ic 

property and to be able to perform any mathematical 

operation between the di~~erent properties, we should 

present their data in a uniform pattern. The theoretical 

aspects and different methods of normalization are discussed 

in Section 4.6. 4. In this operation~ the values o~ a 

specific property in a sequence o~ frames P1,P2, .... 1Pn are 

normalized to range between zero and one to give 

p~1p21 ..... 1pn1 as follows: 

pi = C Pi - Pmin ) I < Pmax - Pmin >1 <7. 1) 

where pi is the normalized value o~ Pi1 and 

Pmin = Min <P~~P21 . .. 1Pn> (7.2) 

<7.3) 

Normalizing the static and incremental data will assist 

the analysis o~ the following steps: 

(~) Detecting the global changes~ especially when the change 

is very small from frame to frame or almost negligible 

relative to the original value of the property. 

(2) Describing the property value or the change in it, by a 

limited number oi symbolic qualifiers. 

(3) Comparing the amount of change between dif~erent 

properties. 
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(4) Form~ng higher leve~ descriptors as a function o~ mor~ 

than one property. 

CURVE APPROXIMATION AND SMOOTHING 

Curve approximat~on or fitting is a popular techniqu• 

~n many branches of engineering and computer science for 

describing large volumes of data in a concise way. The 

objective is to extract the re-~evar.t informatior• (points of 

s~gnificant chang•> f"rom a se-t of ~r·re-levant and noi.sy data. 

fitting can be f"ound in rPav~idis, 77J. From a theoretical 

point of' view, techniques which are used for polygonal 

approximation can also be used for curve approximation. The 

difference between the two methods is thati in most cases, 

the data for· polygona~ approximation is given in two 

dimensions (f"(x,y>>~ whereas f"or curve approximation the 

In Section 4. 3 we 

described an algorithm fc•r polygonal approximation based on 

a splitting technique developed by tRamer, 72J. Using the 

same we will describe below an iterati.ve 

splitting algorithm for curve approximation. 

Figure <7. 2) shows an example of the input data to the 

curve approximation algorithm. The procedure of the 

algorithm consists of' the -following steps: 

(1.) Connect the f"irs't ar•d 'the last point on the curve by a 

s-traight line AB. 

<2> Find the point C o.n 'the curve at 'the maximum di.stance Ln\ 
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from the ~i.ne AB. If Lm is grea~er ~han the approxi.ma~ion 

thresho~d E1 then sp~.t:t the curve .at poi.nt C. 

(3) For each new segment, repeat steps <1> and (2). 

Figure <7.3) shows the curve approximation of the data i.n 

Figure <7. 2>. 

The output of the curve approximation consists of a set 

of ver~ices <KF> representing the key frames: 

<KF> .. <KF:b t<Fe, ... , KF .J, .KFtR>, (7.4) 

where m the number of key frames. Each key frame is defined 

by ti.me (frame number) and the property value at that ti.me, 

as follows: 

(7.5) 

Pi<tJ) i.s the valu• of the property <i> at ti.me <~.J). 

The key framfts of a specific: property represent the 

first type of global change of the property under anal.ysis. 

Thus, between each two sequentia~ key frames <two sequential 

vertices on the curve approximation> the property has a 

constant dynamic behaviour <increasing, desc:reasing, or 

stationary). This behaviour can be described from the 

information included in the key frames. At this level, the 

fo~~owi.ng g~oba~ data can be computed for each period 

between two sequential key frames: 

TIME OF CHANGE 
============== 

TKF<i,i+1) = Ct<i+1) - ti +to) to seconds, (7. 6) 

where ti.,t(i+1) are the times of key frames i and i+1 

respectivel.y, and to is the time intet"Va~ between two 
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CIRCULARITY FRAMEI: FIRST• 1,LAST=1S9,IHCREMEHT• 1 

.8739 

.8318 
c .7881 
I 
R .7452 c 
u • 7924 
L 
A .6595 
R 
I .6166 
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\} .5738 I 
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.4880 

.4452 

.4023 
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Figv.re{7.S) Curve ftttin.g of the sta.tie tla.ttJ sh.oum tn. 
figure{7.B). An iterative splitting algorithm. is used to 
compu.te a. piecewise linea.r a.ppro:Dima.tion to the curve. 
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sequent~al frames. 

AMOUNT OF CHANGE 
=···===·===·==== 

CKF<~.i+1) D Pi+1- p~ I (7. 7> 

where P~. Pi+1 are the pr·operty values at kew frames KF<i> .and 

KF<i+1) respectively. 

RATE OF CHANGE 
-·-=======···= 

-1 
RKF(i,i+1) =tan C CKF<i,i+1) I TKF<i,i+1) l. (7.8) 

In a similar fashion to that described in the preceding 

chapters. the values of TKF, CKF, and RKF can be qual~f"ied 

.· in order t9 s:ummar ize the dynamic changes in the property 

under analys~s, as follows: 
TJ:ME OF TYPE OF AMOUNT OF RATE OF 
CHANGE CHANGE CHANGE CHANGE 

------------
____ ..,... _____ 

------------ ---------
TKF CKF<01+1-) ICKFI RKF 

VERY SHORT STATIONARY NEGLIGIBLE VERY SLOW 
SHORT INCREASING SLIGHT SLOW 
AVERAGE DECREASING AVERAGE AVERAGE 
LONG CONSIDERABLE FAST 
VERY LONG SIGNIFICANT VERY FAST 

The above analysis is meant to describe the global 

changes in the dynamic behaviour of a spec.i:f' ic pr·operty. 

For example, the generated description of the ELONGATION 

property could be: 

"For a SHORT time. the ELONGATION was INCREASING at a VERY 

SLOW rate, causing a SLIGHT INCREASE in the ELONGATION. 

Then for a LONG time it was STATIO~~ARY. This was followed 

by a VERY FAST DECREASE in a VERY SHORT time. " 
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Thus, at this level~ the global description of a 

specific property can 

Each period is bounded 

be given over a number of periods. 

by key frames representing the 

initial and final frame numbers~ and the property qua.lifiers 

<levels> at each key frame. From this data, the amount and 

rate of change in each period can be computed. Table <7. i> 

summarizes the numerical data resulting from the curve 

approxiroation of the data that is shown in Figure (7. J). 

,:fi 2. '2" · Qualification Of Level Changes 

In order to summarize the global changes in the 

qualification levels of a specific property. two methods can 

be used: <a> applying the representational rules directly 

to the static and incremental symbolic qualifications; Cb) 

applying the representational rules to the key frame data. 

Method <a> is recommended only if the generated description 

from curve approximation is not required. Otherwise, method 

(b) is obviously faster and will result in a more precise 

description. This is because, in the curve approximation. 

most of the irrele\..•ant and noisy data has already been 

removed. and the information reduced to only that included 

In this case. the data .associated with 

the key frames represent the input for higher level 

processes and rules. The obJective is to split and merge 

these periods between the key frames in order to generate a 

summary of the quantification level changes. The procedures 

of these higher level ·processes are described below. 
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c SPLITTING AND MERGING THE PERIODS BETWEEN KEY FRAMES 
========================·=========================== 

In order to qual.if'y and describe a shape propet'tY 

through a period of' time with the appropriate qual.if'ier 

(descriptor), the periods between the key -frames, may be 

sp~it or merged, according to speci-fic rules. The obJective 

changes, and generate a new sequence of periods. The 

property in each of these periods has the same qualitier. 

SPLITTING 
·===·==== 

The output of the curve appt"oximation consists of' a 

number of' periods, each period being bounded bY two key 

-frames. I-f the symbolic qual.ifier of the property in these 

two key -frames is di~~erent, we spl.it the period bounded by 

them into a number of periods, such that, the property in 

each period has the same qualifier. For each new period, ~ 

key f~ame is. initiated a~d the key frames set is updated. 

This can be achieved by applying the fol.J.wing rul.e 

RULE<7. 1>: 

IF Q(Pk, KFi) . NE. 

2) INITIATE KF<i+1), KF<i+2), ... , KF<i+m) 

where Q(Pk, KFi) and Gl<Pk, KF J) are the- property qua~if iers in 

key frames KF<i> and KF(J), respectively. For example, if 

Ti~is the period bounded by key frames KF<i),_ KF<J) 
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respectivel.y, wher-e the de-scriptor is dif'f'et"ent at those key 

c frames# and the period TiJ is split into f'our periods Ti1· 

T12~ T23, T3J, then the three key frames KF<i+1), KF<i+e>, 

KF(i+3), shoul.d be initiated, and inserted in the key frame-

set: KF<J+1>-->KF<J+4), 

.. , KF<n>-->KF<n+3). Figure <7. 4a> shows two sequential 

periods resul.ting frorfl the cu~ve approximation, and 

Figure <7.4b) shows the result of splitting them into a 

number of periods. Table <7. 2) shows the output of applying 

the splitting rul• to the data given in Table <7.1). The 

output of' the spl.itting operation consists of' a sequence of 

periods, with the property in each having the 

qua.LJ.f'J.er. 

0 MERGING 
=====·== 

The splitting operation might result in some sequential 

periods that have the same qualifiers, as shown in 

Figure <7. 4b), or it may produce very short periods <see 

Table 7. 2). The 1at'tet.. are usually caused by noise or 

changes due to undesirable experimental conditions. These 

periods can be merged according to other rules. For 

example, if a specific property has the same qualifier for a 

sequence of periods, then these periods can be merged. The 

property during the merged period can be described by the 

same descriptor, and the key frames updated. This strategy 

may be modeled by the following rule: 

RLILE<7. 2>: 
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5~----------------------------------------~ KFi+1 

Figure(7.4a) Two periods bounded by three sequential 
key fra.mes1 resulting from the curve appro:timation of the 
static data.. In each period1 the dynczmic behaviour of the 
characteristic is constant. Betwe.e.nKF(i) anclKF(i+1) the 

'· characteristic is increasing. During the ne:z:t period it is 
decreasing. 

KFi3 KFI+l KF(J+1)1 

KFI2 KF(i+l)2 

K.Fil _.!f!l+2 

KF.,!. 

F~re(7.4b) S~llttbJg the above periods la to a sequeace of periods, 
where m each perJod the propedy has the S&me quaHilcation descrip­
tor. By lunher analysis, these periods may be merged using high level 
representatloaal rules. 

·,, JZigure(7-~4)Splitting1'eriods in order to generate a descrip­
tive summary of the global changes in a specific property. 

(a) input1 (b) ()utput. · . . . . . 
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IF Q(Pk, Ti .. i+1) . EQ. Q(Pk, Ti+1, i+2) . EQ. . . . . EQ. 

cthen=> 1> MERGE: 

3) KF<u-J+i+1> <--- KF<u), u=J.-n 

Assign a qua~~f~er 
to the merged period. 

Updating 
4> DELETE KF<u> , u=tn-<J-.i-1),n] 

key frames 

where n .is the number or key frames. Note that T~J is the 

roerged peri.od that i.t'\cludes the pet"iods 

updated to KF<.i+~), KF<J+i) to KF<i.+2>, .... and so on. 

Table <7. 3) shows the result or applying the above rule to 

the data in Table <7. 2>. 

The above is an example of a simple rule, based only on 

the dynami.c data of the different properties. The second 

step in creating global periods, .is c:onc:ern~d wi.'th 

dist.ingui.shing the sign~f.icant changes from the irrelevent 

or· noisy ones. In this case. a more sophisticated appro~c:h 

would utilize the dynam~c description of the different 

properties, in conJunction with logical krrowledge 

constraints. For example, an infet"'ence process could 

eliminate the very short events. Thus, suppose a specific: 

property P~ is measured through three sequential periods 

If the ti.me T12 is very short relative 
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to both T0~ and T23 CT0~.T23 >> T~2), then we mLght 

eliminate T~2 b~ one of two actions: first, b~ mergLng all 

three periods T011T12.T23 into one 

merging T12 to either T01 or T23. Thus. 

<T03), or second, by 

if the cell was 

described in three sequ&ntial periods as SMALL. VERY SMALL. 

and SMALL, then a merging of these periods would result in 

SMALL as the description~ This may be achieved by the 

following rule: 

RULE<7. 3): 

where 

IF <T01 .GTT. T12. LTT. T23>. AND. 

Q(Pi.T01) .EQ. Q(Pi.T23) . AND. 

Q<Pi~T01> .NE. Q(PL,T12), 

=then=> 1> MERGE THE THREE PERIODS INTO T03 

2> UPDATE THE KEY FRAMES 

T03 • T01 + T12 + raJ, and 

Figure <7. 5a> 

illustrates the function of this rule. In this figure. the 

values Q(Pi.T13), Q(Pi.T01), and Q(Pi.T23> are presented as 

Q1~ Q2, and QJ, respectively. The details of the merging 

action, steps 1 and 2 in the above rule, is similar to that 

described in Rule 7.2. 

A second action, in which T~2 may be merged to either 

T01 or T2J, is based on logical inference. For example, if 

the length of' the cell was described .in three sequential 

periods as being SHORT, VERY SHORT, MEDIUM, then one may 

logically deduce that it has changed f'rom SHORT to MEDIUM, 

if the description of' the very short period <T~2) is the 
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INPUT RULE OUTPUT 
CODditioD:JJII::ll::: •actiOD 

CoDdltiou: ActioD: merge 

n 
QJ==Q3+ Q2 

TOJ+Tl!l u (a,) +T28 
Q1 Q2 QS 

J QS>Ql>Q2 T01+T12 I 

TOl T12 T23 {b) - ~ ~· Q!l>Ql>QB TOJ+Tl2 "" I ~ 

~ 
Q (c) .a .... 

lJ I 
~ Ql>QS>Q2 T12+T23 

~ {d) = 
" fl .a Q2>QS>Q1 T12+T23 

ea (e) Q .. s L, Ql>Q2>Q8 
.AND. T01>T28 

TOJ+TJ2 

(/) 
~f QS>Q2>QJ . T12+T23 

.AND. T23>T01 

Time (g) 
Note: man the above llgures_, T01>>T12<<T23, 

R"' - R. ~- Q Is $he qualill.er 

Figure{'T."§) UsiDg coDditloD==>actioD. rules to 
el.imb:tate irrelevant aDd noisy changes. 
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same as that of either the preceding or following period. 

Thus~ if the descript~on of the VERY SHORT period is closer 

to the SHORT period rather than to MEDIUM period, period T12 

may be merged to T01. This logical deduction may be 

accomplished by the following rule: 

RULE(?. 4): 

IF <T01. GTT. T~2~ . AND. T12 .LTT. T23> 

.AND. (Q1 .GT. Q2 .AND. Q2. LT. Q3 .AND. Q1. LT. Q3), 

.OR. (Qi. LT. Q2 .AND. Q2. GT. Q3 .AND. Q1. GT. Q3), 

=then=> 1) MERGE PERIODS T01 AND T12 INTO T02' 

2) UPDATE KEY FRAMES 

where T02 = T01 + T12~ and Q<Pi,T02> = Q(Pi,T01>. 

Figure <7.5b) illustrates the function of this rule. Other 

examples of similar rules are shown in Figures (7. 5c-7. 5g>. 

Table <7. 4) gives the fin~l global periods after applying 

the merging rules on the data in Table <7. 3). From this 

table one can see that the number of the global periods has 

decreased from 43 <Table 7. 2> to 10 <Table 7.4) by applying 

the rules discussed. Also, all periods which have duration 

of one frame have been eliminated. 

The final step in this analys~s ~s to character~ze the 

data and describe them svmbol~cally in a fashion similar to 

the preceding chapter~ For example, the t~me for each 

period TiJ may be normalized and described symbolically as 

VERY SHORT, SHORT, MEDIUM, LONG, or VERY LONG, and th~ 

property during each period can be qualified as described in 
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Chapter 4. In t:he f'ollowing sectior., we will show how to 

use the above methodology t:o describe the global changes in 

each individual shape property. 

7.3 GLOBAL CHANGES IN THE DESCRIPTION 

of Individual Shape Properties 

In Section 4. 5 we defined the factors influencing the 

selection of properties used by the system for describing 

the different aspects of' 'the dynamic behaviour. In addition 

to these f'ac'tors, for shape description we require that the 

method be translation~ rotation, and size independent. 

Based on these crit:eria and from our experimental work, we 

found that the most efficient properties for cell shape 

de:scrip1.:ion are: 

(1.) Circularity 

(2) Average Bending Energy 

(3) Angle Regularity 

(4) Elongation 

(!)) Number of' Concave Angles 

(6) Number of' Subparts 

Using the methodologies described in Sections 7. 2.1 and 

7. 2. 2, the global changes in each of these properties can be 

described. :s'ta'tic 4f'td incremental data 

associa1.:ed with each pr·operty should be not""mali:zed to rat-.ge 

be-tween zero and one. Zero corresponds to the simplest 

shape and one 'to the most complex. 

def'ini'tion of elongation EL is: 

For example, the 
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EL = Width I Length . 

From this def' ini -tionJ orte cart see that EL = 1. for shapes 

resembling squareE-~ and EL = 0 f'or f'ilamentary-like shapes, 

in which the width is negligible relative to the length. 

Ac:c:ording 11;,11 squ.ar·e-like- shapes 

than elongated ones. Therefore~ 

are assumed to be simpler 

the computation of the 

elongation c:an b~ modified to: 

EL = 1 - ( Width I Length ) 

= I Leng-th - Width I I Length. (7. 10) 

In this case EL = 0 for square-like shapes, and EL = 1 for 

filamentary shapes. Another example c:.an be given for 

c:irc:ularityJ which is defined as: 

2 
CR = P I 4 II A (7. 1.1) 

wher• P is the perimeter and A is the at .. ea. This expression 

c:an be normalized as: 

2 
CR = 1. - ( P / 4 II A ). <7. 1.2) 

Thus, CR = 0 ~or the most c:irc:ular shapes, and CR = 1 for 

the least circular ones. Figures <7. 3), <7. 6a> and <7. 6b> 

show examples of the normalized values of the static: data 

f'or different shape properties computed for 150 frames in 

sequEllt"lce. 

The normalized static data for each property are 

analyzed according to Sections 7. 2.1 and 7.2. 2, using the 

same sequence of steps used f'or curve analysis. That is1 

splitting, merging, and Finally generating summaries 
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FRAMEI: FIRST= 1tLAST•lS9,IHCREMEHT• 1 

{a) 

FRAMEI: FIRST= 1,LAST•159,INCREKEHT• 1 

(b) 

Figure{~6)Thenormalizecl values of two shape properties 
in a sequence of 150 frames. 

(oJ Avera.ge Bett.ding Energy (b) Angle regularity 
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describing their global changes. Typical examples of these 

summaries are giv•n in Descr.iptior, (7. 1>. The syrnbo~ic 

qualifiers which ~re used to describe the different shape 

properties are given in Table <3. 2>. Examples of cell 

shapes that are described by each qualifier are given in 

Figures (7. 7a-7. 7b). 

7.4 MEMBRANE SHAPE: GLOBAL CHANGE DESCRIPTION 

In the preceding sections we discussed the basic 

methodology for detecting and describing the global changes 

in each of the shape properties. Ir• this section~ we will 

discuss how to integrate these properties in order to 

describe the changes in the- membrat'e shape. 

The task of describing the cell membrane shape is 

similar to that of describing the silhouette <contour) of an 

arbitrary shape. This task may be considered one of the 

difficult issues in computer vision and pattern recognition. 

In spite of the e-normous t"'esearch and number of publications 

on the subJect~ there is as yet no established technique for 

solving this problem. However~ we should recognize that we 

are trying to imitate one of the most complex processes of 

human visual perception. 

Most previous work h~s attempted to solve the problem 

by describing the shape in terms of· the properties of the 

object boundary. These techniques have achieved reasonable 

success in static sc~ne analysis. However~ .in dyn.amic scene 
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Figure(7. 7) Eza.mples of cell sha.pe property ch.ara.cteriza.tion 
a.ntl description. ·(t:i,) Angle regula.rity (b) Circularity. 
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analysis, it is n•cessary to describe the changes in shape 

c as well. This problem has been almost completely neglected. 

In our research, b•sides the difficulties of describing an 

arbitrary static shape,.we also want to describe the random 

changes in the shape of non-rigid moving obJects. 

From the previous analysis of the individual shape 

properties, one can see that each of them describes only a 

specific shape property. But the change in ObJect shape 

does not necessary match the equivalent change in a 

particular property. In other words, we may find that many 

different shapes have the same value for a specific 

property. 

OBSERVATION: There is no known single shape property that 
============ ---~------------------------------~--~-------~ 4:) gives a unique value for each different shape. 

----------------------------------------------
The shape properties indicated above are those referred 

to as information nonpreserving [Pavlidis, 761. Examples 

are circularity, elongation, and regularity. On the other 

hand, there are some shape measurements that are unique for 

different shapes, and are termed information preserving. 

For example, if we take the chain code of a digital contour 

and string the digits together, the resulting number is 

unique for each shape. However, this representation is 

clearly not useful as a global description for the shape. 
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In order to ~llustrat~ the above observat~on, we use as 

an exarnple, one of the earl~est and most establ~shed shape 

descriptors, that is, circularity. Figure <7. 8) shows 20 

different shapes that are designed such that all of them 

have the same area and perimeter. From this f~gure' one can 

see that a wide variety of different shapes can have the 

same circularity value. 

the above observation 

for example, elongation, 

energy. Therefore, 

In a similar fashion, we can show 

for other shape properties' such as 

regularity, and average bending 

in order to generate different 

descript~ons for different shapes, we must use more than one 

property. 

one shape. 

The perfect description ~s the one that fits only 

In order to achieve th~s, we may have to use an 

infinite number of descriptors. 

we must find the minimum and 

Since this is impossible, 

most efficient set of 

descriptors that generates complete informative descriptions 

for the different shapes. 

For example, ~n order to choose descriptors for 

different classes of neutrophil cells, categorized as 

Juvenile, banded, segmented, and hypresegmented, Liu tLiu, 

76J studied the classification power of different 

descr iptot"'s. He discriminated between the power of the 

different shape descriptions as follows: 

more ~t'"tfOt"'mative than .another 

description, 02, if the set of shapes that can be described 

by 01, is included in the set of shapes described by D2". 

For example, the description of a given shape as a square or 



Page 7-340 

[F u ~ 
1 2 a 4 

~ 0 S7 8 
5 6 1 8 

[S c{] Z1 j) 
9 10 11 12 

0 

0 D w C1 
13 14 15 16 

G1 [5 Q V 
11 18 19 20 

Figu.re{1.8) Ditrereut shapes havmg 'he same area ud 
perimewr, ud heuce the same circulari'Y. 



GLOBAL SHAPE ANALYSIS Page 7-341 

rectangle ~s more informative than describing it as 

quadrangle. 

In d~namic scene anal~sis of non-rigid moving obJects, 

the task of finding 'the seot of properties that generates 

complete informa-tive deoscriptions is more difficult. Th~s 

is because, besides the above requirements <minimum number 

of properties and unique stat~c descriptions for the 

different shapes)~ the change in the generated descriptions 

should correspond to i;t•e change ~n the shape, and be 

insensitive to noise. Our approach is based on forming a 

mathematical expression which can be computed from the 

individual shape prc•perties. This expression represents the 

degree of membrane shape complexit~. the 

0 change in its value can be used as a measurement for the 

Expression for Membrane Shape Desription 
=======·================================ 

In order to form an expression for the measurement of 

an arbi'trar~ shape, we choose the min~mum set of properties 

based on two criteria: (a) maximum discrimination between 

the different shapes, and (b) descriptive power related to 

shape compl.e-xi ty. To satisfy these criter~a~ we have- used 

the shapes given in Figure <7.S) as a training set. We 

computed the value of each shape property for every shape in 

the training set. Then, we selected the properties that: 

(a) produced the same value for a minimum number of shapes~ 

and Cb> sorted the complexity of the shapes in a manner 



0 

GLOBAL SHAPE ANALYSIS Page 7-342 

simL~ar to that o~ human sorting. In this experiment. we 

dLd not inc~ud~ circu~arity. because the shapes were 

original!~ designed to give the same value for circularity. 

However~ circularity was tested separately using some o~ the 

ce~~ shapes (see Figure 7. 7b). 

From the above simple experiment, we selected the 

following shape properties in order to form an expression 

for the membrane shape measurement: circularity, average 

bending energy, and angle regularLty. Table <7.3a) gives 

the resu~t of computing the property values for the 

different shapes in the training set. Figure (7. 9> shows 

the shapes associated with the values of the different 

properties, and Figure <7. 10) is a sort of the shapes 

according to complexity. using each individual property. 

To combine the three selected properties into one 

expression, we have repeated the above experiment. using the 

arithmetic and geometrLc means of the properties. The 

result of this exper~ment is given in Table <7.5b) and is 

shown in Figure (7. 1~>. From this data. we can see that the 

mean of more than one property is more efficient than an 

individual one. Based on this experiment. we have se~ected 

the geometric mean of circularity. average bending energy, 

and angle regularity, as a measure for the cell membrane 

~~~ 
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[F u ~ y 
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ANGR: 9.520 ANGR: 0.556 AHGR: 0.536 AHGR: 0.417 AHGR: 9.629 
AlJBE: 0.021 AVBE: 0.013 AlJBE: 0.593 AVBE: 0.096 AVBE: 0.00<' 
AUGt1: 9.277 AtJGt1: 0.288 AVGM: 0.291 AVGM: 0.326 AVGM: 0.580 
AIJAM: 0.388 AV.Ar1: 0.395 A~JAt·1: 0.581 AVAM! 9.376 AVAM: 0.417 

Figute{7.9) Different propertg values of shapes having 
· tM sa.me circula.rity. 

PERM: Perimeter, AVBE: Avera.ge Bending Energy, 
. CIRC: Circularity, A YAM.· Arithmetic Mea.", 
~ANGR: Angle-Regularity, AVGM: Geometric Mean. 
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(b) Sorting using geometric mean. 

Q Figure{7.11} Different shapes sorted according to their 
- --- . comple~ity_using the: (a) arithemetic mean (b) geometric 

mean, of the average bending energy and angle regularity. 



c 

GLOBAL SHAPE ANALYSIS Page 7-346 

The geometric or arithmetic mean of the selected 

properti~~ts can be cornputed from static data. The result 

repre-sents the static values of the membrane shape in the 

sequential frames as shown in Figure (7. 12). This can be 

analyzed in a similar· fashion to the individual :shapeo 

properti~~ts in order to generate a summary of the global 

changes in the cell membrane. This will include detecting 

key frames and assigning descriptors to both the dynamic 

trends and 'the actual values of membrane shape. The 

differen-t symbolic qualif'iers that .are used to describe the 

membrane shape are: VERY SIMPLE, SIMPLE, ALMOST SIMPLE, 

ALMOST COMPLEX~ COMPLEX~ VERY COMPLEX. Note that her• we 

are using six categories for the symbolic qualification in 

order to give a more precise description near the average 

level. In fact, the qualifiers ALMOST SIMPLE and ALMOST 

COMPLEX combined, .are the same as the qualifier AVERAGE that 

is given in most of the preceding descriptions. 

Figure (7.13) shows examples of cell shapes that are 

characterized by the different descriptors. A typical 

example of the generated summary of the global membrane 

shape changes is given in Description (7. ~). 

7. 5 SUMMARY 

Shape description represents the high level stage of 

shape perception by the system. The obJective is to analyze 

the data resulting from the low level shape analysis 

processes i.n order to_ generate a :!P..artlmary containing all _the 
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FRAMEI: FIRST= 1,LAST•1SB,IHCREMEHT= 1 
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1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 

FRAME HUMBER 

Figure(7.1B}Geometric mean of circularit11, atJerage 
bending ener1111, and angle regularity computed for cell 
shapes in a sequence o I 150 frames. 
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~ 
AU10ST SIMPLE 
( FRAt1EI398) 

VERY Cot1PLEX 
<FRAt1EI 40) 

_ Figure(1.13} examples ol ceU shape cb&n.cteris&tioll. 
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relevant information perta~ning to the shape of the ob~ect 

under analys~s. In sp~te of the difT~culties ~n descr~b~ng 

the arbitrary shape of an obJect in a static scene~ in our 

research we wish to describe the significant changes in the 

shape of a non-rigid moving ObJect. 

~n this chapter~ we have demonstrated a methodology for 

detecting and describing the changes in shape of a moving 

cell from a sequence or images. The input to these 

processes consists of the static description of the cell 

shape properties in each frame of the sequence. The output 

i~ a summary that characterizes the changes in each of the 

cell shape properties individually~ as well as the global 

membrane shape itself. The description is given as a 

sequence of per~ods bounded by key frames. The latter 

represent the transitions where significant changes have 

occured. 

A global change is defined as a significant change in 

the dynamic behaviour or the level of the symbolic 

qualifications. The for·mer occut"' when a specific shape 

property changes its dynamic behaviour; for example~ from 

being stationary to increasing or decreasing. The key 

frames that define the times of these changes can be 

computed from the curve that represents the static data of 

the property under consideration. In order to achieve this1 

a curve approximation technique similar to that of the 

polygonal approximation is used to detect the relevant 

information f'rom the ir·relevant and noisy data. 



0 

GLOBAL SHAPE ANALYSIS Page 7-350 

The global changes in the level of the qualification 

descriptors can be accomplished by using the high level LTM 

representational rules. The latter utilize the dynamic data 

and constraint knowledge of the cell shape properties. The 

representational rules can be applied directly to the 

symbolic qualifications of the static shape properties~ or 

their curve approximatio~ The latter has the advantage 

that the data is reduced to those represented by the key 

frames .. and most of the irrelevant and noisy changes at"e 

removed by the curve approximation. The processes that 

detect the global changes in the qualification levels use 

spl~tt~ng •nd merging o~ the periods between sequential key 

frames. 

We have show experimentally that a single shape 

property cannot be used to describe the changes in the cell 

membrane shape. 

for measuring 

based on a group 

Therefore, we have developed an expression 

the coMplexity of an arbitrary shape pattern 

or selected shape properties that are 

location, rotation, and size independent. This expression 

is used to measure the complexity of the membrane shape in 

each frame of the sequence. The resulting data is 

represented by a curve that can be analyzed using techniques 

similar to the analysis of individual shape properties. In 

this way.. the changes in the membrane shape can be detected .. 

qualified~ and described. 
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F~nally, a summary of the global changes in cell shape 

and its individual 

symbol~c terminology. 

properties is generated in meaningful 

A typical example of this summary is 

given in Description <7.~>. 
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DESCRIPTION <7. 1> 
==========:=::===================== 

GLOBAL SHAPE ANALYSIS 
--~~~~~---------------=-=== AND DESCRIPTION 

----=-===--=-====-=-== 
INTRODUCTION 
··=========== 

A summary of ~he g1oba1 changes in the ce11 shape 
characteristics a~e descr~bed be1ow. The description is 
given in two sections. F~rst~ the characterization of each 
of the main cell shape properties, and then, the g1obal 
changes in the cell membrane shape are described. The 
description given is for the period including frame number(~) 
to f'rame number(:1~0).. .a durat.ion of" 75. e s~S~>conds. 

SHAPE PROPERTIES 
================== 
AVERAGE BENDXNG ENERGY 

PERIOD FRAME 
NUMBER NUMBER TIME DESCRIPTION 
====== ======== ==== =========== 

1 1 --> e VERY SHORT SMOOTH 
2 3 --> 18 SHORT ALMOST SMOOTH 
3 19 --> ee VERY SHORT JAGGED 
4 21 --> 30 SHORT ALMOST SMOOTH 
5 31 --> 35 VERY SHORT JAGGED 
6 36 --> 37 VERY SHORT ALMOST SMOOTH 
7 38 --> 44 VERY SHORT SMOOTH 
8 45 --> 78 MEDIUM ALMOST SMOOTH 
9 79 --> ss VERY SHORT JAGGED 

10 86 --> se VERY SHORT VERY JAGGY 
1~ 89 -->183 SHORT JAGGED 
12 104 -->:1.27 r·1EDIUI'1 ALMOST St'IOOTH 
13 128 -->~38 SHORT JAGGED 
14 139 -->158 SHORT ALMOST SMOOTH 
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C:I:RCULAR:CTY 

PERIOD FRAME 
NUMBER NUMBER. TIME DESCRIPTION 
··==·= =====··= ··== ===··====== 

1 1 --> 25 t1EDIUf1 NOT CIRCULAR 
2 26 --> 43 SHORT SLIGHTLY CIRCULAR 
3 44 --> 53 SHORT ALMOST CIRCULAR 
4 54 --> 57 VERY SHORT CIRCULAR 
5 58 --> 78 SHORT VERY CIRCULAR 
6 79 -->131 LONG ALMOST CIRCULAR 
7 132 -->137 VERY SHORT SLIGHTLY CIRCULAR 
8 138 -->1.45 SHORT ALMOST CIRCULAR 
9 146 -->149 VERY SHORT CIRCULAR 

10 150 -->150 VERY SHORT VERY CIRCULAR 

ANGLE REGULAR::t:TY 

PERIOD FRAME 
NUMBER NUMBER TIME DESCRIPTION 
====== ======== ==== ======•==== 

1 1 --> :13 SHORT ALMOST REGULAR 
2 14 --> 2:1. SHORT IRREGULAR 
3 22 --> 23 VERY SHORT ALMOST REGULAR 
4 24 --> 28 VERY SHORT IRREGULAR 
5 29 --> 32 VER\-' SHORT ALMOST REGULAR 
6 33 --> 36 VERY SHORT IRREGULAR 
7 37 --> 46 SHORT VERY IRREGULAR 
8 47 --> 52 VERY SHORT :IRREGULAR 
9 53 --> 57 VER\o' SHORT ALMOST REGULAR 

10 58 --> 64 VERY SHORT VERY REGULAR 
11 65 --> 67 VERY SHORT ALMOST REGULAR 
12 68 --> 70 VER'r' SHORT REGULAR 
13 71 --> 77 VER\o' SHORT VER'r' REGULAR 
14 78 -->109 MEDJ:UM ALMOST REGULAR 
15 110 -->116 VERY SHORT IRREGULAR 
16 117 -->147 MEDIUM ALMOST REGULAR 
17 148 -->150 VER\-' SHORT REGULAR 

MEMBRANE SHAPE DESCRIPTION 
=============::::====================== 

The ¥o1low~ng is a summary of the globa1 shape of the 
ce11 membrane based on the GEOMETRIC MEAN of the fo1low~ng 
properties: AVERAGE BENDING ENERG'r', CIRCULARITY, and ANGLE 
REGULARIT'r'. 
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Q PERIOD FRAME 
NUMBER NUMBER TIME DESCRIPTION 
====== =·=====· ==== ·========== 

1 1 --> 18 SHORT COMPLEX 
2 19 --> 20 VERY SHORT ALMOST SIMPLE 
3 21 --> 27 VERY SHORT COMPLEX 
4 28 --> 36 SHORT ALMOST SIMPLE 
5 37 --) 44 SHORT VERY COMPLEX 
6 45 --> 49 VERY SHORT COMPLEX 
7 50 --> 57 SHORT ALMOST SIMPLE 
8 58 --> 60 VERY SHORT SIMPLE 
9 61 --> 64 VERY SHORT VERY SIMPLE 

10 65 --> 70 '9'ER'r' SHORT ALMOST SIMPLE 
11 ?1 --> ?? VER'T' SHORT SIMPLE 
12 78 --> 86 SHORT ALMOST SIMPLE 
13 87 --> se VERY SHORT SIMPLE 
14 89 -->113 MEDIUM ALMOST SIMPLE 
15 114 -->:1.16 VER'T' SHORT COMPLEX 
16 1:1.7 -->145 MEDJ:UM ALMOST SIMPLE 
~7 1.46 -->150 VERY SHORT SIMPLE 
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TABLE <7. :::L> 
======================= 

GLOBAL SHAPE ANALYSIS 
==================-==========:::=r;;======::::::==== 

ANALYSIS OF INDIVIDUAL SHAPE PROPERTY 

PROPERTY = CIRCULARITY 
FIRST FRAME NUMBER 
LAST FRAME NUMBER 
TOTAL TIME 

= 1 
= 150 

PERCENTAGE OF CURVE APPROXIMATION = 
75.0 Seconds 
20. 0 ?. 

QUALIFICATION THRESHOL[)S = 

CURVE APPROXIMATION 
===•=========a===== 
NUMBER OF PERIODS =15 

PERIOD INITIAL FINAL INITIAL FINAL 
NUMBER FRAME No. FRAME No. LEVEL LEVEL 
====== ========= ========= ===== ===== 

1 1 2:1 1 1 
2 21 3:1 1 3 
3 31 49 3 1 
4 49 se :1 3 
5 50 ~2 3 3 
6 52 54 3 4 
7 54 57 4 4 
8 57 58 4 5 
9 ss 77 5 5 

19 77 80 5 3 
1.1 se se 3 3 
:Le ss 139 3 a 
13 139 145 2 3 
14 145 146 3 4 
15 146 150 4 5 

SLOPE<RATE 
OF CHANGE> 
========== 

3 
5 
1 
5 
1 
5 
1 
5 
2 
1 
4 
2 
4 
5 
4 

Table (~:1) The output data for the curve approximation in 
Figure 7. 3. Tn,1s data-are -rip-r-esented by a squence of key f'rames. 
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TABL-E < 7. 2 :::• 
================= 

GLOBAL.. SHAPE ANALYSIS 
===========::o:r=================-==== 

NUMBER OF PER:IODS == 43 

PERIOD INITIAL FINAL 
NUMBER FRAME No. FRAME No. LEVEL 
=··=·= =·====== ====·=== ===== 

1 1 21 1 
e 2:1. 22 :1. 
3 23 23 2 
4 24 25 1 
5 26 30 2 
6 3:1. 3:1. 3 
7 31 31 - 3 
8 32 34 2 
9 35 35 3 

10 36 39 2 
11 40 40 1 
:1.2 40 40 1 
13 41 43 2 
14 44 44 3 
15 45 45 2 
16 46 50 3 
17 50 52 3 
18 52 53 3 
19 54 54 4 
20 54 57 4 
21 57 57 4 
22 58 ss 5 
23 58 77 5 
24 77 77 5 
25 78 78 4 
26 79 80 3 
27 80 88 3 
29 sa 129 3 
30 1.31 1.31. 3 
31 132 135 2 
32 136 136 3 
33 137 137 2 
34 138 1.38 3 
35 139 139 2 
36 139 139 2 
37 140 145 3 
38 145 145 3 
39 :146 146 4 
40 :1.46 147 4 
41 :1.48 148 5 
42 149 149 4 
43 :1.50 150 5 

Splitting the periods resulting ~rom the curve approximations~ 
given in Tab~e#<7. 1) into periods having the s.arne level. 
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TABLE <:7. 3:> 
==-=--===-===== 

GLOBAL SHAPE ANALYSIS 
=====-===--===-===-======-===-=-=== 

NUMBER OF PERIODS • 29 

PERIOD 
NUMBER 
··=·=· 

1 
e 
:3 
4 
5 
6 
7 
s 
9 

1.0 
1.1 
12 
1.3 
14 
1.5 
16 
17 
1.8 
1.9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

INITIAL 
FRAME No. 

1 
2:3 
24 
26 
3:1. 
32 
35 
36 
40 
41 
44 
45 
46 
54 
58 
78 
79 

130 
:1.31 
:1.32 
:1.36 
:1.37 
:1.38 
:1.39 
:1.40 
146 
1.48 
1.49 
1.50 

FJ:NAL 
FRAME No. 
=·====== 

22 
23 
25 
30 
31. 
34 
35 
39 
40 
43 
44 
45 
53 
57 
77 
78 

:1.29 
:1.30 
131. 
135 
1.36 
1.37 
138 
139 
145 
147 
148 
1.49 
1.50 

LEVEL 
===== 

1. 
2 
1 
2 
3 
2 
3 
2 
1. 
2 
3 
2 
3 
4 
5 
4 
3 
2 
3 
2 
3 
2 
3 
2 
3 
4 
5 
4 
5 

Tabl• 7. 3 Th• result of roerging the periods given in Table 7. 2 
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TABLE <::7. 4:> 
=============~= 

GLOBAL SHAPE ANALYSZS 
=-=============:c==-====--======== 

NUMBER OF PERIODS = 1.0 

PERIOD INITIAL. FINAL 
NUMBER FRAME NO. FRAME r~o. LEVEL 
=·==== ··===·== ===·==== ··=== 

1 1 25 1 
2 26 43 2 
3 44 53 3 
4 54 57 4 
5 58 78 5 
6 79 131 3 
7 132 137 2 
s 138 1.45 3 
9 146 1.49 4 

1.0 1.50 1.50 5 

T.ab~eo 7. 4 The final result of mergit"'lg 'the periods g.i.ven 
in Table 7. 3 by us.i.ng Rules 7. 3 and 7. 4. 
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TABL-E <7- 5A> 
:::::::================= 

SHAPE 
================================= 

FIGURE ANGLE AVERAGE ARITH~1ETIC GEOMETRIC 
NUMBER REGULARITY BENDING ENERGY MEAN MEAN 
====== ========== =============== =====·==== ========= 

"' 0. 0000 0.0065 0. 2073 0. 0011 
2 0. 4167 0. 0074 0. 3464 0. 1237 
3 0. 5000 0. 01.33 0.3762 0.1.600 
4 0. 5250 0.0219 0. 3874 0. 1921. 
5 0. 7669 0. 0212 0.4678 0. 2156 
6 0.5333 0.0321 0.3936 0. 2191 
7 0. 5024 0. 0099 0. 3759 0. 1454 
8 0. 5333 0. 0650 0. 4046 0. 2774 
9 0. 5000 0.01.25 0. 3759 0. 1568 

10 0.5357 0.0304 0.3938 0. 2156 
1'- 0. 6366 0. 0244 0.4254 0.2122 
12 e. 59ee 0. 0246 0. 4129 0. 2085 
13 e. 4621 0. 0843 0. 3872 0. 2883 
14 e. 4672 0. 1210 0. 4012 0. 3264 
15 0. 5333 0. 0289 0. 3925 0. 21:1.7 
16 0. 5201 0. 0208 0. 3883 0. 1889 

0 17 0. 5556 0. 0133 0. 3947 0. 1.657 
18 e. 5357 0.5928 0. 581.3 0.5803 
19 0. 4167 0. 0957 0. 3757 0. 2906 
20 0. 6286 0. 0074 0. 41.71 0. 1.418 

Table<7.5a> The computed values of' 'two d.if'f'erent shape 

propert.iesJ and 'the.ir arithmet.ic and geome'tr.ic means f'or the 

dif'f'erent shapes g.iven .in Figure <7. 8). 
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ANGLE 
REGULARITY 

NO. VALUE 
·=·======· 

1 e. 00e0 
19 0. 4167 

2 e. 41.67 
13 e. 4621 
14 e. 4672 

9 0.5000 
3 0. 5000 
7 0. 5024 

16 e. 5201 
4 e.5250 
8 0. 5333 
6 e.5333 

15 e. 5333 
10 0.5357 
1s e. 5357 
17 0. 5556 
12 e.59S8 
2e e.6286 
11 e.6366 

5 e. 7669 

Figure<?. 10a) 

TABLE <:7'. !'58:> 
===========-========-==-= 

SHAPE ANAL'r•S::J:S 
====-=============-========= 

AVERAGE 
BENDING ENERGY 

NO. VALUE 
======·=·======= 

1 
20 

2 
7 
9 
3 

17 
16 

5 
4 

1.1 
1.2 
15 
10 

6 
a 

13 
19 
14 
18 

0.0065 
0.0074 
0.0074 
0.0099 
0.0125 
0.0133 
0.0133 
e. eees 
0.021.2 
e. 0219 
a. 0244 
a. 0246 
a. 02a9 
0. 0304 
e. 0321. 
0. 0659 
0. 0843 
0. 0957 
0. 1210 
0. 5928 

ARTHIMETIC GEOMETRIC 
MEAN MEAN 

---------- ----------
NO. VALUE NO. VALUE 
=======~== ·=·==·==== 

1 
2 
7 

1.9 
9 
3 

1.3 
4 

16 
15 

6 
10 
17 
:14 

8 
1.2 
20 
11 

5 
18 

0. 2073 1 
0. 3464 2 
0.3759 20 
0. 3759 7 
0. 3759 9 
0. 3762 3 
0. 3872 17 
0. 3874 :16 
0. 3883 4 
0. 3925 :12 
0. 3936 15 
0. 3938 11 
0. 3947 5 
0. 4012 10 
0. 4046 6 
e. 4129 s 
0. 4171 13 
e. 4254 1.9 
0.4678 14 
0. 5813 18 

0. 001.1 
e. 1237 
8. 141.8 
0. 1454 
0.1.568 
0. 1600 
0. 1657 
0. 1889 
0.1921 
e. 2058 
0. 2117 
0. 2122 
0. 2156 
0. 2156 
0. 2:191 
0. 2774 
0. 2883 
0. 2906 
0. 3264 
8. 5803 

Figure<7.10a) FigureC7. 10a) Figure<?. 1.0a) 

Table(~5b) Sorting different shapes <given in Figure 7.8> 

according to their complexity as m~asured by the average bending 

energy1 angle regularity, and the arithemetic and geometric 

means of' both. 



CHAPTER 8 

GLOBAL STRUCTURAL ANALYSIS 

AND 

DESCRIPTION OF DYNAMIC BEHAVIOUR 

8. 1 INTRODUCTION 

Most of the woY·k i.n dynamic scene analysis has 

considered change in location as the maJOr aspect in 

understanding the dynamic behaviour of .a moving obJect. 

Reocently, some, .albeit few, efforts have considered the 

change in shape of a r.i.gid moving obJect duEl' to changE!' in 

the viEI'wing conditions (see Section 2. 2. 3). In the present 

research, we designed a system for understand.i.ng and 

describing the dynamic behaviour of a non-rigid moving 

obJect. The maJor difference from the 

that the changes .in shape are due 

morphology (spatial structure) of the 

previous work, .is 

to changes .in the 

primitive components 

of the obJeCt. Thus, we analyze, quantify, and describe the 

structural changes of a non-rigid moving obJect, hitherto 

neglected in all the previous work done in image seq•..tence 

analysis. 
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The dynamic behaviour of a non-rigid moving ObJect can 

be described in terms o~ changes in 1ocomotion, shape, and 

structure. 

Chapter 6, 

Chapter 7. 

The locomotion 

and the global 

Two main issues 

ana1ysis is described in 

shape changes are discussed in 

wi1l be addressed in this 

chapter, global structural analysis, and characterization or 

global dynamic behaviour. The ObJective of the !irst issue 

is to analyze the static and incremental structural 

descriptions in order to generate a summary or the global 

structural changes. The second part o~ this chapter is 

concerned with the integration or the three global aspects 

pertaining to 1ocomotion, shape, and stt""ucture, in ot .. der to 

understand and characterize the dynamic behaviour or the 

movi.ng obJect. 

8.2 GLOBAL STRUCTURAL ANALYSIS 

The main goal of analyzing the structural changes in a 

movi.ng cel1 is to char·acter.ize and descri.be the dynamic 

behaviour or the diTTerent pseudopods that are TOrmed during 

ce1l locomotion. Also, we need to study the relationships 

between the changes in the sh.af:•e or subparts. their 

movement, and t.h9 g.tobal locomotion of the ce.t.t. For 

example, in the study of the dynamic behaviour of a moving 

cell, a developmental biologist might be interested in the 

answers to the following three basic questions. Fi.rst, how 

can one recognize a subpart developed on or by the membrane 

as a "pseudopod"? And ~~ ~t ~s a pseudopod, is it 
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stationary. growir1gJ or contracting?. Second. is a 

pseudopod n dort~inar•t 11 or not? A domir.ant pseudopod is one 

which leads the locomotion of the cell. If so, what is its 

degree of domination? Finally, if all of this information 

is at hand, the third question would be the interpretation 

of this data. Why is a specific pseudopod dominant and 

another not? 

Our approach to the analysis of the structural 

is based on the same philosophy as syntactic 

changes 

pattern 

recognition techniques. These analyze patterns by a parsing 

process of hierarchical decomposition. Such techniques 

appear to be quite amenab~e as a str·ategy for cel.l shape 

description, including the global structural and membrane 

shape changes <see Section 2.3.~0>. 

Quantification and characterization of the structura~ 

changes o~ a moving cell can be accoropl.ished in three stages 

of analysis: static, incremental, and global. In static 

analysis, the ce~l is decomposed into its primitive 

subparts. The ~atter can be represented as a labeled graph 

that conveys th• topological properties of the cel.l. This 

stage of analysis is described in Chapter 4. The 

incremental analysis is responsible for 

quantifying the structural changes between 

detecting and 

two sequential 

frames. The processes that accomplish this are discussed in 

Chapter 5. In these pt"'Ocesses, the labeled graphs in both 

frames are rnatched in order to detect the corr·espondence 

between the dLf1eren~ subparts. Then~ the incremental 
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changes in the corresponding subparts are quantif'ied and 

describfl!!ld. Ce11 structure can be matched in two ~rames, and 

described on a scale beginning with VERY DIFFERENT and 

ending with VERY SIMILAR. Global structural analysis is the 

f'inal stage which will be discussed below. 

The ob,JE'Ctive of' global str·uctural analysis is to 

g•nerate a 

from which 

summary of the significant structural changes, 

questions pertaining to the subpart and/or 

pseudopod characteristics can be answered. The processes 

and data structure of' global structural anal~:~sis are shovm 

in Figure <8. 1>. In these processes, we f'irst detect the 

f'rames where f'alse structure has occurred. This is 

accomplished by an analysis of' the incremental structural 

changes. These use representational rules that incorporate 

both dynamic data and constraint knowledge pertaining to the 

cell under consideration. Most of the cases of false 

structure are correct•d by f'eedback to the low l•vel 

d•composition process. Then, observablE' changes in the 

properti•s of each subpart are analyz•d and described. The 

f'ina1 step in this ana1ysis is to generate a description of' 

the significant changes in th• structure of the cell and its 

primitive subparts. 

8. 2. 1 GLOBAL STRUCTURAL MATCHING 

Two main obJectives are cited: Ca) To analyze the 

static structure data and the incrementa1 structural 

matching data in order to detect and correct Cif possib1e> 
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LTM STM 

GLOBAL .... 
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false structure resulting from the low level decomposition. 

(b) To find the sequence of frames in which individual 

subparts appeared. These two issues will be discussed in 

the following two sections. 

8. 2.1.1 Detection And Correction Of False Structure 

Errors in the low level decomposition can produce false 

struc-tures. This is ~nainlw caused bw artifactual shape 

changes due to registeration noise~ irrelevant changes~ 

and/or the three-dimensionality of the cell. These 

~rtifactu~l situations cannot be detected by the static 

analysis stage. However~ at the incremental analysis stage, 

false structures can be interpreted as ambiguous situations. 

This can be detected through a low value of the cell 

structural match between two sequential frame~ On the 

other hand~ if a false decomposition appears in several 

sequential frames~ it cannot be detected from the 

incremental structural matching. 

Our approach to det•cting the cases of false structut"'e 

uses representational rules' that utilize both the dynamic 

data and constraint knowledge pertaining to the structure of 

the cell under considet'ation. For example~ if the 

structural match SM<i-1~i) (see equations <5. 12> and <5. ~5)) 

between two sequential frames Ci-1) and (i) is less than a 

specific threshold value Em~ this indicates either 

significant structural change or a false decomposition at 

frame <i). This ambiguous situation can be encountered by 
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RULE<8. j.): IF SM<i-1~i> . LT. Em 

••then•=> SIGNIFICANT STRUCTURAL CHANGE 

. OR. FALSE DECOMPOSITION 

However~ this can be clarified at 'thi!!' global level by the 

follwing rule: 

RULE<S. 2>: IF 

==then••> FALSE DECOMPOSITION AT FRAME<i> 

matches 

between frames <i-j.),(i) and (i), <i+1) respectively. These 

rules are based on the cell structural data which are 

derived from frames (i-1)~ (J.), <i+1>~ and the constraint 

knowledge pertaining to the cell dynamic behaviour. For 

example. a pseudopod or subpart of the cell membrane cannot 

be formed and deformed in three sequential frames (1. 5 

seconds in this par·t.icul.ar application). 

The threshold val.ue Em in the above rule specifies the 

acceptable structural match SM. The latter is computed 

based on two factors: the cot"respondence between the 

different subparts in both frames and the changes in their 

properties <see equation 5. 15>. With regard to the former~ 

it seen from equation <5.15> that the value of SM is bounded 

by: 

0 ( SM<i-1,i> ( [ K<i-1,i) / NSP<i> ], (8.1) 

where K<i-1.i) is the number of the corresponding subparts. 

0 between frames (i) and <i-1), and NSPCi) is the number of 
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subpar~s in ~rame <i>. For ~he 1at~er. The change in the 

va1ue o~ SM depends on the changes in the properties or the 

corresponding subparts. The effec~ of these changes on the 

value o~ SM is les• than that caused by the change in the 

number of correspor•ding subparts. A lower bound on the 

value o~ SM has been found experimentally to be governed by: 

SM<i-1,i> > [K(i-1.i>- 1J ~ NSP<i> (9.2> 

From this inequali~y~ we can compute'the threshold value of 

the minimum acceptable structural matching as: 

Em = [K(i-1.i) - 1l ~ NSP<i> (8.3) 

Using this value in Rule (8.2), the cases o~ false structure 

can be detected. Figure CS. 2> shows examples of sequential 

frames where false decompositions have been de~ected. In 

this f'igurea. the stt'uctural matching o~ the cell in the 

false f'rames. with the pt"evious and the successive ones is 

indicated. Using the bound defined by equation <8.3> 

yielded satisfactory dis~inc~ions between false and 

appropria~e decompositions using Rules <8.1> and <8.2>. 

When a false structure is detected, the attention of 

the sys~em will be directed to the frame where the faul~ has 

occurred. More ir•formation about the ce.ll structurli!' and its 

match with ~he previous and successive ones is extracted. 

For example, information such as OVERDECOMPOSITION or 

UNDERDECOMPOSITION can be extracted from the global 

analysis. and utilized by the low level decomposition 

processes ~o correct the false decomposi~ion. Examples of 

the rules that accomplish this ObJ•ctive ar•: 



(a} 

(b) 

(c) 

c 
(d) 

(e) 

~- s~rudural ~ 
maCclt 3 

i 

.560 ---> 2 

lstruccural ~ 
mafdl 4 1 

<--- .377 

FRAHEI 48 FRAHEI 49 FRAMEI 59 

<--- .469 .469 ---> 

FRAMEI 82 FRAI1EI 83 FRAHEI 84 

<--- .449 .435 ---> 

FRAf1EI 122 FRAME# 123 FRAI1EI 124 

<--- .362 ---> 
FRA11EI 239 FRAMEI 240 FRAI1EI 241 

.472 ---> 
FRAMEI 268 FRA~1EI 269 FRAMEI 270 

F'igure(8.B) Ezamples of frames hatJing false structure 
(decomposition) detected at the global structural analysis 
stage.-

Note tlaat ID eacA e:xample tlte middle frames, wltere the false 
strudure appears, il associated with a low value ol nrudural mafd 
compared wltlJ both file previous and successive frame.. 
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RLILE<S. 3): IF FALSE DECOMPOSITION AT FRAME<i> 

0 • At11D. NSP<.i-1> . EQ. NSP<i+1> . LT . NSP<i> 

==then==> OVERDECOMPOSITION AT FRAME(i) 

RULE<8. 4): IF FALSE DECOMPOSITION AT FRAME(i) 

. AND. NSP<i-1> . EQ. NSP(i+1.) . GT. NSP(i) 

==then=•> UNDERDECOMPOSITION AT FRAME<i> 

where NSP<i-1>~ NSP<i>~ NSP<i+1) are the number o~ subparts 

at frames i-1~ i1 and i+1~ respective~y. . For examp~e, in 

Figure <8.2) an overdecomposition is detected in each of the 

middle frames. 

Using this type of feedback data~ speci~ic ru~es are 

activated in order to modify the result o~ 'the original low 

level ana~ysis. For 9xample1 ir1 the case of the 

overdecomposition~ the following rules will be activated: 

RUL£(8. 5>: 

IF OVERDECOMPOSITION AT FRAME<i> 

==then==> 1) MERGE SPJ+SPk 

e) FOR EACH MERGE, MEASURE SM<i-1~i> AND SM(i,i+1.> 

3) SELECT THE MERGE THAT RESULTS IN 

Figure (8.3> shows the result o~ activating Rule 8.5 on the 

cases shown in Figure (8. 2>. The correc-ted structure and 

the resulting modifi&d structural matches are shown in 

Figur• < 8. 4). We may note in Figure <8. 2d) that a ~alse 

structural change has oc:curr·ed betweet"' frames 240 and 241; 
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FRAI1EI 49<SPI1+5),.695 FRAI·1EI 49<SPI1+2),,69S FRAMEI 49<SPI2+5),.9S2 
:.!MATCH ., . 695 ~!11fiTCH •, . 698 :IMATCH • . 9'5e 

(b) 

FRAME I 83 .SPI 1 +3+4 FRAI1EI 83 SPI 1 +2+4 
~MATCH • .959 ~MATCH • .463 

(c) 

FRAME1123 SPI 1+3+4 FRAHE1123 SPI 1+2+3 
%MATCH • .445 ~MATCH = .947 

FRAMEI248 FRAI1EI240 FRAI1EI240 FRAME1248 FRAt1EI240 
<SPI1+3)~.449 CSPI1+4),.656 <SPIJ+4),.921 <SPI2+3),.873 <SPI1+2),.445 
~MATCH •. 449 ~MATCH c. 656 :.:MATCH • · 921 ~MATCH=. S73 ~MATCH.• .445 

~)e 4 JJ JJ ciJ 
FRA11EI269 FRAME1269 FRAMEI269 FRAMEI269 FRAMEI269 
<SPI1+3.>:• .?48 <SPI2+3),, 743 <SPIU+2), • 760 <SPI2+6), .967 <SP11+6>,. 7_53 
~MATCH • . 740 :.:MATCH • . 743 ~MATCH = . 760 :IMATCH • . 967 ~MATCH • . 753 

Figure(8.8) Possible variations in the decompositions 
of the cells· hatJing false structure in Figure(8.1)1 (see 
Rule 8.5). · 
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' .952 ---> -
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<--- .947 .919 ---) 
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<--- .432 .921 
FRAMEI 239 FRAMEI 240 SPI3+4 FRAMEI 241 

<--- .967 .746 ---> 
FRA11EI 268 FRAf1EI 269 SP1t2+6 FRAMEI 270 

Figure{8.4) Correcting the false structure of the ezamples 
shown in Figure(B.S) usino Rule 8.5. 
Note tllat ha case {d}, tile seructur&l matclt ltas on.f.r been eo.,.. 

rected between frames 240 .l.nd 241. There still rem.ah!s a signille&JJJ 
strudural discrepancy between frames 239 ud 240. Tltus, sabpart 
8 ha frame 239 ltas merged witlt the ceU bocf.T, and m frame 240, tlte 
11ew sabput 2 appears. 
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.a s~gn~fLc.an~ change Ln structure has occurred be~ween 

frames 239 .and 240. 

Us~ng the above rule, most cases of false struc~ure can 

indeed be corrected. However~ in some sLtuations ~t may 

fail~ especial.ly Lf the false decoh\posi~~on ~s due to noLse 

or artifactual. changes. In this caseJ another rule should 

be act~vated in order to describe the situatLon. and actLon 

taken. For example: 

RULE<8. 6>: 

IF THE ACTION SPECIFIED BY RULE<S. 5) DOES NOT 

IMPROVE THE STRUCTURAL MATCHING BETWEEN 

FRflt1ES (~) AND <i-1) . OR. <i> AND <L+1> 

==then==> <1> MEASURE SM<i-1,i+1) 

<2> ACTIVATE RULE<S. 7> 

RULE<S. 7) IF SM<i-11i+1). GT. SM<i-1~i> .OR. SM<i~i+1) 

==then==> DELETE FRAME(i) FORM THE SEQUENCE 

where SM<i-1Ji+1) is the structural match between frames i-1 

and i+1. 

__ The r~s!-!l t oS act~vating the above set of rules can be 

one of the following: 

(a) The structure of frame(i) is corrected and the matching 

is improved; this is - the most common cas~ Examples of 

this case are shown in Figure (8.2), and the result of 

correcting them is shown in Figure <8. 4). 

(b)_ .The"' .f.,:.lse .. decoJraposi:tion of' frarne(i) cannot be cot"rected, 
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but frames <~-~) and (i+~) exh~bit an acceptable structural 

match. In th~s case, frame<~> is considered as noisy data 

and deleted from the sequence. We may mention here, thqt 

deleting some frameos f·rom the sequence does not affect the 

global result. On the contrary, deleting the frames that 

include noisy or irrelevant information improves the global 

result. 

C~) The structure of frameCi) cannot be corrected, and the 

decomposition in frames ( i -1.) and < i +1.) do not rnatch. This 

case is not very common. However, if it does occur, it will 

cause noise which can be removed by additional rules to be 

described below. 

The above example demonstrates the detection of a false 

decomposition that has occurred in a single frame. In order 

to detect false decompositions in a sequence of frames, a 

global analysis strategy can be used. In this case, first, 

curve approximation 

similar to that 

and analysis is used iY• a fashion 

described in Chapter 7 for global shape 

analysis. The obJective of the curve approximation here is 

to detect the points <key frames) where significant 

structural changes have occurred. Thus, the structural 

matching between the sequential frames <SM> can be 

represented by a curve, as shown in Figure <8.5). The 

amplitude of the curve at any point Ci) represents the 

structural matching between two sequential frames SM<i-1,i). 

Therefore, the variations in neighbouring points on the 

curve indicate the structural changes of the cell. A global 
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structural change is d~~ined as a point where a subpart has 

apppeared or d~sappeared. Th& output OT the curve 

approximation is a set OT key frames. Then~ a TUrther 

analysis < spli ttiY•9 at'\g met"ging) of the periods betweoen the 

key fram•s~ Will result in a summary of the structural 

changes. This analysis is similar to that described in 

Chapter 7 for the global shape analysis. 

The output of the global structural matching is a set 

OT key Trames. Each key Trame repres~nts the time where a 

subpart has appeared or disappeared. This is utilized to 

detect and characteri%e the global structural changes of the 

cell. However~ in this particular application, we are also 

interested in characteor·izing the dynamic behaviour of theo 

difTerent subparts. Therefore, each/ subpar"t is extracted 

and its properties analyzed as follows. 

8.2. 1. 2 Extraction Of Individual Subparts 

In order to characterize the dynamic behaviour of the 

diTferent subparts OT the cell. first, we initiate a record 

TOr each individual subpart. This record .includes the 

Tollowing .information: <a> the init.ial and final Trame 

numbers <time of appear'i.ng and disappearing), <b) the 

subpart labe.l in each Trame of the sequence where it has 

a,:•peared. and <c) its duration. The latter .is normalized 

and described in a Tashion similar to that used for other 

variables, i. e. , as VERY SHORT~ SHORT, MEDIUM, LONG, or VERY 

LONG. The number of subparts c1assified by each of these 
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descr~ptors can be uti1ized as one o~ the parameters that 

characterize the ov•r~ll ce11 dynamic behaviour. 

The second step involves the analys~s o~ the different 

propert~es of each subpart, in order to characterize it as: 

(a) irrelevant change or noise, (b) part o~ or the ce11 

body, and (c) pseudopod. However, we are specifically 

interested in those subparts which may be characterized as 

pseudopods. Therefore, we only analyze those that seem to 

be good candidates for pseudopods. The selection is based 

on an initia1 guess utilizing expert knowledge. For 

example, the subparts that appeared for MEDIUM, LONG, or 

VERY LONG period are se1ected. Also, those which started 

after the cell has a VERY SIMPLE shape <one part) are likely 

candidates. . In fact, these are the criteria which we are 

currently using. This is because, at this stage of 

research, our knowledge about the pseudopod characteristics 

is limited. However, using the present system, we expect to 

gain more knowledge. pertaining to these characteristics. 

Hence, more sophisticated rules could be developed to 

improve the selection of the pseudopod candidates. 

Analysis and characterization of the subparts will be 

described in the following section . 

• 
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8.2.2 Individual Subpart Characterization 

The ma~n goal of charac~erizing ~he individual subparts 

of the cell ~s ~o know whe~her a specific subpar~ is a 

pseudopod or not. In order to accompl~sh this, each subpart 

is trea~ed individual~y as a moving obJec~. The properties 

pertaining to the location, shape, and the topolog~cal 

structure of each subpart are analyzed using similar 

techniques to those described for the entire cell in 

previous chapters. 

The ma~n propGtrties that are available for subpart 

characterization are given in Table 4. ~. However, the 

actual properties which are employed depend on the purpose 

of the analysis. For example, in the present system~ we 

have used the area~ base line~ connect~ve line, perimeter~ 

and orientat~on <the angle between the connective line and 

the X axis) ~n order to characterize a subpart as either th~ 

cell body or a pseudopod. 

of propet""ty of specific Changes in the values 

subpart under analysis can be reprsented by a curve, as 

This curve is analyzed us~ng the 

in Chapter 7 for global shape 

shown ~n F~gure <9. 6>. 

.methodology described 

analysis. This analys.is consists of two main steps. First, 

a curve approximation is used in order to detect the key 

frames where the significant changes occurred. This can be 

utilized to describe the global changes in the dynamic 

behaviour of the property under analysis as increasing, 

• 
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decreasing, or st~tionary (see Section 7.2. 1>. Then a 

~urther analysis~ that includes splitting and merging the 

periods between the key frames, is used i.n order to generate 

the final description of the changes in the property <VERY 

SMALL, SMALL, MEDIUM, LARGE, OR VERY LARGE> <see 

Section 7. 2. 2). 

The output is sum~arized i.n a number of periods. Each 

period is bounded by key Trames, where the dynamic behaviour 

of the property between sequential key frames is constant 

<increasing~ decreasing, or stationary). The amount of 

change in each period is expressed in terms of numerical and 

symbol.i.cal qual.i.fi«-rs. The former represents changes in the 

number of qualification levels (+or- 0,1,2,3,4>. The 

latter gives the change i.n the symbol.ic qual.i.fi.er as MEDIUM 

---> LARGE or SHORT ---> VERY SHORT. A typical example of a 

summary of the global changes in the properties of' a 

speci~ic subpart is given in Description <8.1a), and the 

result of analyzing a specif'ic property is given in more 

detail in Description (8. 1b>. This data is utilized in 

order to determine whether a specif'ic subpart is a pseudopod 

or not, as described in the next section. 

8.2. 2.1 Is A Subpart A Pseudopod? 

A pseudopod is a protrusion forming around the cell 

membrane. The study of the pseudopod characteristics is 

essential in understanding the role that the membrane plays 

in regulating the ~ocia~ behaviour of the cell. In order to 
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character~ze a subpart as a pseudopod, we use production 

representationa~ that uti~ize 'the dynam~c data 

associated with it~ as we~l as 

pertaining to pseudopods in gemeral. 

constraint 

rules is to compare the description o1 specific subpart 

properties to the- pseudopod constraint knowledge. For 

example~ a pseudopod has an area that should not exceed half 

of the eel~ area, has elongated shape, concave corners, 

short base line, and ~ts main axis is almost normal to the 

cell body. However, these properties change gradually 

through the growing and contracting of the pseudopod. For 

example, a pseudopod starts with a relat~vely long 

base line, very small area, and main axis parallel to the 

cell body. Thus, we cannot use 'the properties of a specific 

subpar't ~n a static frame to decide whether it ~s a 

pseudopod or not. We ha•Je used the normalized values of the 

base line and re~ativ~ area to characterize a subpart as a 

pseudopod or part of the ce~l body, by using the following 

rule: 

RULE< B. 8): 

IF BASE LINE <SHORT . OR. VERY SHORT> 

. AND. AREA (SMALL . OR. VERY SMALL> 

==then==> SUBPART <--- PSEUDOPOD 

IF ... BASE LINE <LONG . OR. VERY LONG> 

. AND. AREA <LARGE . OR. VERY LARGE) 

==then==> SUBPART <--- CELL BODY 
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In the above ru~e, the symbolic qualification of two of 

the subpart propert~es ~s used to characterize it as a 

pseudopod or the ce~l body. However1 in many cases this 

decision is not c~ear; in such cases more properties shou~d 

be used, such as e~ongat1on and regularity. 

In the present anal~sis, a subpart is characterized by 

a percentage va~ue PCB indica tir•g the conr idence of its 

interpretation as a pseudopod or cell body. This value is 

computed as: 

(8. 4) 

(8. 5) 

where A(i) is the ce~l area in frame <i), and PA<~,i)~ 

line, perimeter, relative area and relative baseline of 

pseudopod < J) in f·rame- ( i), respectively. Using the values 

of PRA and PRB, the value of PCB can be computed as: 

1/2 
PCB<i> = C PRA<i> . <1.-PRB(i)) l (8. 6) 

Then, using global analysis of the curve representing these 

values, we obtained the global characterization of the 

subpart. An example of this characterization is given in 

Description < 8. 2a). 
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8. 2. 2. 2 Pseudopod Description 

In the preceding section~ we described how to 

characterize a subpart o~ the cell as pseudopod or cell 

body. In this section, we will discuss the changes in the 

morphology o~ a pseudopod in order to understand and 

describe its dynamic behaviour. In this way, questiong 

pertaining to the pseudopod kinetics can be answered. For 

example, in this particylar application, we are interested 

in whether.. a pseudopod is growing, contracting, or 

stationary?. 

Suppose a speci~ic subpart is characterized as a 

pseudopod during the period TiJ <ti and tJ are the initial 

and final frame numbers of the pseudopod period). Then the 

different properties which describe the changes in location, 

shape and structural relationships dur-ing this period at"e 

analyzed to generate a description of its dynamic behaviour. 

At this stage of study, expert knowledge about growing, 

contrac-ting.~ ot"' stationary pseudo pods is limited to a 

definition based on the change in its size. 

many cases, although a pseudopod may be stationary. the size 

of the entire cell may change, which consequently alters the 

pseudopod size. The effect of this can be avc•ided by using 

as a feature the change in the r~lative area of the 

pseudopod compared to the entire cell. 

and the change in the absolute area of 

change in the pseudopod size can 

Using this parameter 

the pseudopod~ the 

be quantified ~s a 
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percen~age value <PCA>, such ~hat: 

PA<.i.> - PA<i-j_) 
PCR • ---------------- <8. 7) 

A<i-1) - A<i> 

where PA<.i.-1>~ PA<i> ~md A<i-1), A<i> are 'the areas of" 'the 
. 

pseudopod and cell in f"rames <i-j_) and (i), respec-tively. 

charac-terize pseudopod as GROWING, CONTRACTING, or 

STATIONARY: 

RULE<S. 9): 

IF PCA . LT. £j_ =='then==> CONTRACTING 

IF PCA . CE. E1 . AND . LT. E& ==then==> STATIONAR',' 

IF PCA .CE. E2 ==then==> CROWING 

Descrip-tion <8.2) is a typical example of this 

c characteriza-tion. Ii: represen-ts 'the incremental description 

of" the pseudopod characterization. By anal.yz.i.ng this 

desc:rip~ion, a summary of" 'the pseudopod character.i.zat.i.on .i.$ 

obtained. 

8. 3 DYNAMIC BEHAVIOUR DESCRIPTION 

The observable changes .in the three basic aspects of" 

the dynamics of" a non-rigid moving obJect <l.ocomotion, 

shape, and structure> have been studied individually. 

Howevet"', in most cases, the change .in any of these aspects 

is rela~ed to change in the others. For example, the shape 

and structure of" an ObJect are .functions of each other. 

Therefore, in order tc• •.mderstand the dr,:~namic behaviour· of a 

non-t"'igid moving obJect, it is not enough to study the 
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changes in each aspect individua~ly. We sho~ld also examine 

the relationship between the changes in all the dynamic 

aspects. J:n f' act. this is one of' our main obJectives. ' We 

wish to determine the relationship between the changes in 

the membrane shape, 

global locomotion of 

pseudopod characteristics, and the 

the cell. In this section, we wil.l. 

discuss the behaviour of a moving cell in order to answer 

questions pertaining to the domination of the different 

r:•seudopods in locomoting the cell. Figure <8. 7> shows the 

processes and data str·uctur·es of' this stage of anal•Js.is. 

A pseudopod can be defined as dominant .if it leads the 

mot.ion. '"e have employed two mt~tasures to compute the 

domination. The first is based on two parameters~ and the 

second on three parameters. The first approach includes the 

following steps: 

(a) Represent the dynamic rnotion o-f· a pseudopod by .a vector 

PV. This vector is the resultant of· two vectors; the first 

representing 

pseudopod. 

c::ontr.acti on. 

the locomotion 

and the second. 

of the centr-oid 

direction of 

of the 

gt .. owth or 

The latter can be computed from the increase 

or decrease in the pseudopod elongation in the dir-ection of 

the main axis of the pseudopod. 

(b) Represent the total cell locomotion during the period 

pseudopod existertce by the vector CV. 

(C) Initiate the vectors PV and CV from a point ti~ where ti 

is time <the initial -fr·ame number) ,,,here the pseudopod 

This is illustrated in Figure (8.8). 



Figure(B. 7} Global dynamic behaviour 
understanding and description. 
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FRAMEI: FIRST~372,LAST•385 

Figure(8.8)A tJector diagram representing the 
dynamic changes (location and shape) of the 

pseudopod ancl the total locomotion of the cell. 

The tJectors represent the resultant motion 
during the existence of the pseudopod. 
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Cd) From the analysis of the vectors PY and CV, we can 

characterize 

similar to 

th~ pse~dopod domination. This ana~ysis is 

that de :set .. .i.bed ir• Chapter 6 for· the 

characterization of the chemotaxis behaviour. 

In this cas~. the d~rection of the vector PV is the 

direction of .influence, and the vector CV wi~l be used as 

the vector sum of the ce~l locomotion. Then. by using 

equation <6. 38), the dominat~on of a pseudopod in locomoting 

the cell is quantified and characterized as NOT DOMINANT, 

SLIGHTLY 

DOMINANT. 

pseudopods 

locomotion. 

DOMINANT, ALMOST DOMINANT, DOMINANT, or VERY 

Figures <8. 9a-8.9e) show examples of different 

and 

A 

their degree of 

typical example 

dornination the cell 

of the 

characterization 

Description (8. 3>. 

using these two vectors is given in 

In the second approach, an additional factor can be 

considered in the pseudopod characterization. This 

parameter is the relat.i.ve location of the pse~dopod with 

respect to the ent~re cell. This can be presented by the 

vector PSV. which represents the connective line between the 

centroid of the ps~udopod and that of the entire cell. This 

is shown in Figure <S. ~0>. In this case. the domination DOM 

of a pseudopod is a funct.i.on of three vectors PV, PSV, and 

CV: 

DOM = f ( PV, PSV, CV> (8. 8) 



c 

PSEUDOPOC>I 143 

Figure(8.9a}NOT DOMINANI' 

PSEUC>OPOD• 59 PSEUDOPOC>I 183 

Figure(8.9b)SLIGirrLY DOMINANT 
-4::::;;(>.., CELL LOCOMOTION 

<>"€> PSEUDOPOD DYNAMIC CHANGES 

Figures(8.9a-8.9b} Vector diagrams of pseudopod behatJiour 

characterized as: (a) NOT DOMINANI' 
(b) SLIGHTLY DOMINANT 

Page 8-389 
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PSEUPOP•)(,I 176 

Figure{8.9c)ALMOST DOMINANT 

PSEUDOPODI 19 FRAHEil FIRST• S,LAST• 22 PSEUDOPOOI 91 FRAMEI: FJRST•169,LAST•182 

Figure{8.9d} DOMINANI' 

Figures{8~9c·8.9d) Vector diagrams of pseudopod behaviour 

· characterized as: (c) ALMOST DOMINANI' 
{d) DOMINANT 
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PSEUI.lOPOI)IJ ~I PSEUDOPOt>• 60 

PSEUDOPODII 92 PSEUDOPOOI 1:58 

Figure{8.9e)Vector diagrams of pseudopod behaviour 
characterized as VERY DO MINANr. 
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PSEUDOPODI 19 FRAHEI: FIRST= 5,LAST• 22 

--e~.- cell locomotion 
c. -~ pseudopod dynamic changes 

.,..,.er- pseudopod relative location 

Figure(8.10}Avector diagram representing the 
dynamic changes of a pseudopod, its relative 
location, and the total locomotion of the cell. 
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Thus, if we cons~der the cell locomotion~ we assume 

that specific patterns in the pseudopod dynamics and 

location result in cell movement. Analyzing these vectors a 

pseudopod can be characterized as VERY DOMINANT, DOMINANT, 

ALMOST DOMINANT, SLIGHTLY DOMXNANT, or NOT DOMINANT. These 

s~mbolic qualifications are used to discriminate between the 

different classes of pseudopod domination. However. the 

terminology is not established and may be changed in the 

future when the characteristic behaviour of pseudopods is 

better understood. Description <S. 4> gives a typical 

example of characterizing different pseudopods using these 

three vectors. Examples are shown in Figures <S.~~a-8. ~~e). 

A final step pertaining to pseudopod characterization 

is to study the global rate of formation and deformation of 

the different pseudopods. and the effectiveness of each in 

dominating the cell locomotion. In order to accomplish 

this. we examine the cell locomotion path and the vectors 

representing the dynamics of the different pseudopods in one 

vector diagram, as shown in Figures CS. ~2a) and ea. 12b). 

The vectors that represent the pseudopods branch from the 

cell path at the points where each pseudopod started to 

appear. From this figure, one can see the rate of pseudopod 

formation and the effectiveness of each in dominating the 

cell path. The cell locomotion in this particular figure 

was under the influence of bacteria located in the bottom 

left corner of the plan• <South-West>. Cell locomotion was 

characterized as POSITIVE CHEMOTAXIS Csee Description 5. 1). 
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PSEUDOPOD. '' 

PSEUDOPODI 183 

0 

Figure{8.11a)Vector diagrams of pseudopods that are 
,_ --- ,, • • • k _. chc:n·acterized as· NOT DOMIN~ using three vectors~· -

--ea-,... CELL LOCOMOTION 

--eE>!illo'tt>~ PSEUDOPOD DYNAMIC CHA.i\TGES 

e-e.e- PSEUDOPOD RELATIVE LOCATION 

0 
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PSEUDOPODI 88 FRAHEI: FtRST•1S4,LAST•I68 PSEUDOPOOI 158 

Figure{8.11b)SLIGHTLY DOMINANT 
I'SEUOOPOOI 1!19 

Figure{8.11c)ALMOST DOMINANT 

Figures{8.11b-8.11c) Vector diagrams of pseudopods 
that are characterized using three vectors as: 

(b) SLIGHTLY DOMINA.NT, 
•· '" T" (c) ALMOSI' DOMINANT. 
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PS£UDOPODI 7 FRAK£1: FlRST• 7oLAST• 17 PSEUDOPODI 37 

PS£UDOI'ODI 68 PSEUDOPODI 188 

Figure{8.11tl}Vector diagrams of pseuaopocls that are 
characterized as DOMINA.NT, using three vectors. 
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PSEUDOPODI 151 

PSEUOOPODI 185 

i 

Figure(8.11e) Vector diagrams of 
pseudopods that are characterized 
as VERY DOMIN~ 
using three vectors. 
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t PSEUDOPODS= 9 

PSEUDOF·OD 

CELL 

Figure(8.11la} 

I PSEUDOPODS= 18 FRAHEI: FIRST= 1,LAST=395 

Figttre{8.1f:b} 

Figure(8.1S) A vector diagram representing the cell 
locomotion path and the different pseu.dopods that formed 
during a sequence of: 

(a) 188 frames, {b) 985 frames. 
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One can see ~ro~ Figure <S. 1Z> that the dyna~ic behaviour of 

~he ce11 is due to the ef~ect of the pseudopod dynamics. 

Also~ we note that the pseudopods guide the cell towards the 

bacteria. Thus, if we consider the cel1 starting at the 

origin of the plane, in order to reach the bacteria, it 

should move in the South-West direction. As we can see ~ro~ 

Figure (8.12>~ whenever the cell started to lose this 

d~rect~on, a pseudopod formed and guided the cell in the 

right direction. 

The accuracy of the quanti~ication and characterization 

oi the changes in location, shape, and structure of a moving 

cell that obtained by this system, are tested and evaluated 

based on a comparison to those obtained by a physiologist. 

The result of this evaluation is reported in Chapter 9. 

8.4 SUMMARY 

Understanding and describing the dynamic behaviour of a 

moving cell can be .achieved through anal~;~sis of the global 

changes in its 1ocation, shape, and structure. However, the 

change that occurs in any of these aspects is due to and may 

cause change in the others. Therefore, it is not enough to 

study the changes in each aspect individually, but we should 

study the relationships between them as well. Detection and 

description o~ the global changes ir• locomotion and shape of 

a moving cell from the static and incremental data that are 

extracted for a sequence o~ images are discussed in 

Chapters 6 and 7, respectively. In this chapter, we have 
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d~scussed two bas~c ~ssues: Ca) detectLon and description 

of global structural changes, and (b) integration of the 

locomot~on1 shap~~ and structure descriptions in order to 

understand and describe the global dynam~c behaviour of th& 

cell and its pseudopods. 

In stat~c scene analysis, the cell structure was 

described ~n each frame of the sequence through a labeled 

graph that represents the primitive subparts of the cell. 

However, this str·uc:ture may be false in some individual or­

sequence of frames~ due to noise, irrelevant changes, and/or 

the three-dimensionality of the cell. In this chapter~ we 

have described a rule-based method for detecting and 

correcting these false cases. .This is accomplished by using 

data-driven representational and control rules that utilize 

information extracted from high level processes, and 

constraint knowledge about the cell under consideration. 

The obJective of' these rules is to describe the different 

situat.i.ons, and provide this informat~on to the low level 

processes in order to correct specific: false structures. 

The different properties pertaining to the location, 

motion, shape, and the relative location of each subpart are 

extracted and analyzed. In this way, the dynamic behav.i.our­

of each subpar-t is described. These descriptions were then 

utilized in order· to character~ze a subpart as (a) cell 

body, and (b) stationary, growing, or contracting pseudopod 
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The interaction between the external factors and the 

internal cell processes occurs at or within the ce~l 

membrane by forming ~nd de~orming pseudopods. In order to 

understand the mechanisms that regulate the formation of 

these pseudopods; we studi&d; in the second part of this 

chapter; the relationship between the cell locomotion and 

the characteristics o~ the different pseudopods. In thi~ 

study; a pseudopod is defined as dominant if it leads the 

cell locomotion. Thus, the cell locomotion can be 

considered as a cause and effect action. The cause is the 

dynamic behaviour of a pseudopod, and the effect is the cell 

locomotion. Based on a vector analysis of the global cell 

locomotion~ pseudopod dynamics <location and shape); and 

pseudopod relative location~ the domination of a pseudopod 

is quantified and characterized as VERY DOMINANT, DOMINANT, 

ALMOST DOMINANT, SLIGHTLY DOMINANT, or NOT DOMINANT. 

Finally, the global locomotion path and the vector$ 

that represent the formation of the different pseudopod$ 

during the observation period, are presented simultaneously 

in a vector diagram; as shown in Figure ea. 1~). Hence, 

questions about pseudopod formation, and the effectiveness 

of each on the cell locomotion, are answered. 



c 

Q 

GLOBAL STRUCTURAL ANALYSIS Page 8-402 

· DESCRIPTION (8.1 a) 

SUBPART PROPERTY GLOBAL ANALYSIS 
============···==·==========·===== 

SUBPART NUMBER = 5S 

FRAME NUMBER 
FIRST 
LAST 

DURATION 
CURVE APPROXIMATIOttl THR. 

GLOBAL 
• 86 
= 117 

• 32 
= 20.0" 

LOCAL 
1 

32 

CLASSIFICATION THRESHOLDS = .100 ~. 300 1. 700 1.900 I 

PROPERTY 

NUMBER OF PERIODS • 5 

PERIOD FRAME TIME 
NUMBER NUMBERS <SEC> 
====== ======== ....... .: 

1 1 --> 3 1. 5 
2 4 --> 6 1. 5 
3 7 --> 8 1. 0 
4 9 --> 28 10. 0 
5 29 --> 32 2. 0 

PROPERTY :: 

NUMBER OF PERIODS = 4 

PERIOD FRAME TIME 
NUMBER NUMBERS <Sec:) 
====== ======= ==== 

1 1 --> 20 :1.0. 0 
2 2:1 --> 22 i. 0 
3 23 -->- 25 :1. 5 
4 26 --> 32 3. 5 

PROPERTY : 

NUMBER OF PERIODS = 2 

PERIOD FRAME TIME 
NUMBER NUMBERS (SEC) 
====== ======= =··= 

1 i --:> 28 14. 0 
2 29 --> 32 a. e 

AREA 

CHANGE 
DESCRIPTION 
==========· 
<-2>DECREASE 
< 1>INCREASE 
<-:t>DECREASE 

FEATURE 
DESCRIPTION 
============ 

->MEDIUM 
->LARGE 
->MEDIUM 

< 0>STATIONARY 
<-2>DECREASE 

VERY LARGE 
MEDIUM 
LARGE 
MEDIUM 
MEDIUM 

->MEDIUM 
->VERY SMALL 

BASE-LINE 

CHANGE FEATURE 
DESCRIPTION DESCRIPTION 
=========== =========== 

<-3>DECREASE VERY LONG ->SHORT 
< 1.>INCREASE SHORT ->MEDIUM 
<-1>DECREASE MEDIUM ->SHORT 
< 3)INCREASE SHORT ->VERY LONG 

RELATIVE BASE-LINE 

CHANGE FEATURE 
DESCRIPTION DESCRIPTION 
=========== =========== 

<:eJ>STATIONARY SHORT ->SHORT 
<1>INCREASE SHORT ->~tEDIUM 
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PROPERTY : 

NUMBER OF PERIODS = 3 

PERIOD FRAME 
NUMBER NUMBERS 
...... ···=·== 

1 1 --> 5 
2 6 --> 2 
3 29 --> 32 

TIME 
<SEC> 
••••• 

e. s 
11.5 
2.0 

PROPERTY ! 

NUMBER OF PERIODS = 3 

PERIOD FRAME TIME 
NUMBER NUMBERS <SEC> 
====== ======= ===== 

1 1 --> 5 2. 5 
2 6 -->25 10. 0 
3 26 --)32 3. 5 

PROPERTY 

NUMBER OF PERIODS = 1 

PER::I:t"1ETER 

CHANGE 
DESCRIPTION 

<-2:>DECREASE 
< 0:>STATIONARY 
<-2:>DECREASE 

FEATURE 
DESCRIPTION 
·=·····-··= 
VERY LONG -:>MEDIUM 
MEDIUM -:>MEDIUM 
MEDIUM -:>VERY SHORT 

CONNECTIVE L:t:NE 

CHANGE FEATURE 
DESCRIPTION DESCRIPTION 
=========== =========== 
<-e:>DECREASE MEDIUM -:>VERY LONG 
< 4:>INCREASE VERir' SHORT -:>VERY LONG 
<-2:>DECREASE VERY LONG ->MEDIUM 

RELAT::I:VE AREA 

PERIOD FRAME 
NUMBER NUMBERS 

TIME CHANGE FEATURE 
<SEC> DESCRIPTION DESCRIPTION 

·===== ======= ===== ==·===*==== =====·===== 
1 1--> 32 16.0 <0>STATIONARY MEDIUM ->MEDIUM 
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DESCRIPTION <8. 1 b) 

SUBPART PROPERTY ANALYSIS 
••••==c========•=~======= 

SUBPART NUMBER = 58 
FRAME NUMBER : 

DURATION 

FIRST 
LAST 

GLOBAL 
== 86 
= 117 

= 32 
• 20. 0 " 

LOCAL 
1 

32 

Page 8-404 

CURVE APPROXIMATION THR. 
CALSSIFICATION THRESHOLD = .109 ~. 388 1. 708 1. 900 I 

PROPERTY : AREA 

NUMBER OF PEROIDS = 5 

PERIOD FRAME TIME 
NUMBER NUMBERS <SEC) DESCRIPTION 
====== ======= ==== ============ 

1 1 --> 3 :1.. 5 VERY LARGE 
2 4 --> 6 1. 5 MEDIUM 
3 7 --> e :1..0 LARGE 
4 9 --> 28 :1.0.0 MEDIUM 
5 29 --> 32 2. 0 VERY LARGE 

NUMBER OF PEROIDS • 5 

PERIOD FRAME TIME 
NUMBER NUMBERS <SEC> DESCRIPTION 
====== ======= ==== =========== 

1 1 --:> 3 1. 5 <-e>DECREASE 
2 4 --> 6 1. 5 < 1)INCREASE 
3 7 --) 8 1. 0 <-1)DECREASE 
4 9 --> 28 1.0. 0 < 0>STATIONARY 
5 29 --> 32 2. 0 <-2>DECREASE 

NUMBER OF PEROIDS = 5 

PERIOD FRAME TIME CHANGE PROPERTY 
NUMBER NUMBERS <SEC> DESCRIPTION DESCRIPTION 
====== ======== ===== =========== =========== 

1 1--) 3 1. 5 <-2>DECREASE VERY LARGE ->MEDIUM 
2 4--) 6 1. 5 < :1.)INCREASE MEDIUM -:>LARGE 
3 7--) 8 1. 0 <-1>DECREASE LARGE -:>MEDIUM 
4 9--)28 10. 0 < 9)STATIONARY f'tEDIUM -:>MEDIUM 
5 29--)32 2. 0 <-2)DECREASE t1EDIUM ->VERY SMALL 
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CONCLUSION : 
============ 

X INCREASE 
X DECREASE 
X STATIONARY 

= 7. 69 " 
• 41.03" 
= 51..28" 

GLOBAL CHANGE DESCRIPTION : 
=•============······======= 

Page 8-405 

SLIGHTLY INCREASE -MODERAlELV DECREASE -MODERATELY STATIONARY 

.. 
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DESCRIPTION (8. 2a) 

GLOBAL STRUCTURE ANALYSIS 
-=====----==-==-==--=----------==-=== 

SUBPART CHARACTERIZATION : 
·==·==========·=·====·=-·= 

SUBPART NUMBER = SS 

FRAME NUMBER 

DURATION 

FIRST 
LAST 

CURVE APPROXIMATION 
=================== 
PERIOD FRAME 
NUMBER NUMBERS 
====== ======·= 

1 1 --) 15 
2 16 --) 29 
3 30 --) 32 

GLOBAL 
= 86 
= 1.17 

= 32 

LOCAL 
1. 

32 

TIME DESCRIPTION 
<sec.) 
==== *•========== 
7.5 
7.0 
1. 5 

CELL BODY 
PSEUDOPODE 
PSEUDOPODE 

SUMMARY OF SUBPART CHARACTERIZATION AFTER ANALYSIS 
================================================== 
NUMBER OF PERIODS = 2 

PERIOD FRAME TIME DESCRIPTION 
NUMBER NUMBERS <sec.> 
====== ======== ===-= ·=========== 

1 1 --) 15 7. 5 CELL BODY 
2 16 --) 32 a. s PSEUDOPOD 
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DESCRIPTION (8. 2b) 
GLOBAL STRUCTURE Ar-.IAL T'SIS ----==----=·--==--=-===--===------= 

PSEUDOPOD CHARACTERIZATION : 
·==··==========•============ 

SUBPART NUMBER = 58 

FRAME NUMBER 
FIRST 
LFIST 

DURATION 

NUMBER OF PERIODS = 1.8 

PERIOD FRAME 
NUMBER NUMBER 
====-== ========== 

1 1 --> :15 
2 1.6 --> 1.6 
3 17 --> 17 
4 18 --> 18 
5 19 --> 19 
6 20 --> 20 
7 21 --> 21. 
8 22 --> 22 
9 23 --> 23 

10 24 --> 24 
11 25 --> 25 
12 26 --> 26 
13 27 --> 27 
1.4 28 --> es 
15 29 --> 29 
16 30 --> .30 
17 31 --> 3:1. 
18 32 --> 32 

SUMMARY AFTER ANALYSIS 
====================== 
NUMBER OF PERIODS - 4 

PERIOD FRAME 
NUMBER NUMBER 
====== =========== 

1 1 --> 15 
2 16 --> 28 
3 29 --> 29 
4 30 --> 32 

GLOBAL 
== 86 
Ill 11.7 

== 32 

TIME 
<sec> 
===·= 

7. 5 
e. s 
e. s 
0.5 
e. 5 
0. 5 
0. 5 
0. 5 
0. 5 
e. s 
0.5 
e. 5 
e. s 
0. 5 
0. 5 
e. z 
0. 5 
0.5 

TIME 
<sec> 
===== 
7.5 
6. 5 
e. s 
:1.. 5 

LOCAL 
1 

32 

CHARACTERIZATION 

·==========·======== 
CELL BODY 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
CONTRACTED PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 
STATIONARY PSEUDOPOD 

CHARACTERIZATION 

==================== 
CELL BODY 
STATIONARY PSEUDOPOD 
CONTRACTED PSEUDOPOD 
STATIONARY PSEUDOPOD 
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Q DESCRIPTION (8. 3) 

PSEUDOPOD CHARACTERIZATION AND DESCRIPTION 
••••=••===•=•••••=•m=•=••••••••••••=•===== 

Theo followinQ results are obtained usinQ the vectors 
for global cell locomotLon and pseudopod dynamics as 
parameot•rs for characterization. 

PSEUDOPOD DURATION 0 0 M I N A T I 0 N 
NUMBER <SEC> PERCENTAGE DESCRIPTION 

···=·=·== ======== =·======== ·============ 
13 11. 5 32.13 NOT DOMINANT 
10 9. 0 76. 66 DOMINANT 

7 5. 5 88. 23 DOMINANT 
37 9. 5 99.23 VERY DOMINANT 
32 5. 5 37.39 NOT DOMINANT 
51 13. 5 99. 76 VERY DOMINANT 
58 16. 0 69.27 ALMOST DQMINANT 
60 10. 0 95. 24 VERY DOMINANT 
59 8. 0 57.60 SLIGHTLY DOMINANT 
80 7. 5 80. 04 DOMINANT c 91 7. 0 76. 20 D0f1INANT 
92 5. 0 98.66 VERY DOMINANT 

108 8. 0 99.91 VERY DOMINANT 
150 13. 5 98. 33 VERY DOMINANT 
143 6. 0 24.88 NOT DOMINANT 
158 5. 0 91. 33 VERY DOMINANT 
177 19. 5 40. 46 NOT DOMINANT 
176 9.0 60.65 ALMOST DOMINANT 
185 15.5 99.81 VERY DOMINANT 
183 11.5 50.22 SLIGHTLY DOMINANT 
222 7. 0 99.1.3 VERY DOMINANT 
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DESCRIPTION (8. 4) 

PSEUDOPOD CHARACTERIZATION AND DESCRIPTION 
•=•=========a~••======•••==•===••••••••••• 

The following results are obtained using the vectors for 
global cell locomotiora1 pseudopod dynamics, and pseudopod 
relative location •~ parameters for characterization. 

PSEUDOPOD DURATION D 0 M I N A T I 0 N 
NUMBER <SEC> PERCENTAGE DESCRIPTION 

···==·=·= ======== :=a:======·== =·========· 
1.3 1.1.. 5 3:1.. 61 NOT DOMINANT 
1e 9. 0 79. 57 DOMINANT 

7 5. 5 79. 48 DOMINANT 
37 9. 5 89.34 DOMINANT 
32 5.5 39.54 NOT DOMINANT 
51. 1.3.5 ·91.25 VERY DOMINANT 
59 1.6. 0 34.14 NOT DOMINANT 
6e 10. 0 78.06 DOMINANT 
59 8.0 45.63 NOT DOMINANT 
se 7.5 58. 62 SLIGHTLY DOMINANT 
91 7. 0 28. 61. NOT DOMINANT 
92 5. 0 93. se VER'r• DOMINANT 

109 e. 0 77. 34 DOMINANT 
150 13.5 60. 05 ALMOST DOMINANT 
143 6.0 32.07 NOT DOMINANT 
1.58 5.0 58. 37 SLIGHTLY DOMINANT 
1.77 1.9.5 55.36 SLIGHTLY DOMINANT 
176 9.0 69.12 ALf10ST DOMINANT 
195 1.5.5 90.91 VERY DOMINANT 
183 11.5 23.1.4 NOT DOMINANT 
222 7.0 46. 12 NOT DOMINANT 



CHAPTER 9 

DISCUSSION AND CONCLUSIONS 

9.1 INTRODUCTION 

In the preceding cl"tap'ters of this thesis, we described 

the different aspects pertaining to the construction and 

implementation o~ a system for quantifying and 

characterizing the changes in location, shape, and structure 

of' a moving cell. The discussion in the thesis started in 

Chapter 2 with the review and analysis of the previous 

experience in related areas of study. It ended in Chapter S 

by describing higher level processes that are concerned with 

the integration o~ the aspects pertaining to locomotion, 

shape. and i.n to understand and 

characterize the dynamic behaviour of the cell. 

This chapter pre:srer.ts a summat""Y and general d.iscuss.ion 

of the present research. First, .in Section 9.2, the 

different aspects described in this thesis will be 

summar.ized, f'ocussing on the main contributions of' the 

thesis. In Section 9.3 we present examples of' experimental 

results and the.ir comparison to those obtained by a 

physiologist. Suggestions f'or modifying and expanding the 

system are discussed in Section 9. 4, as 
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poss.ibi.li.'ti.es 

appJ.i.cati.ons. 

for further experiments and di.fferent 

Finally, Secti.on 9. ~ is a concl.usion. 

9.2 SUMMARY AND CONTRIBUTIONS 

The pri.mar~ f'unct~on or the cell surrace is to 

transform .information from the environment to the cell. It 

has become increasingly evident that the cell surrace plays 

a pi.votal role in the life, development, and r·egulation of 

cells. The mechanisms that regulate this social behaviour 

are not well understood, but recent experiments have 

indicated that the cell membrane plays a vital role. 

However, there is no 

observable changes in 

locomotion. To achieve 

existing method for quantifying the 

membrane shape that occur in 

this obJective using automatic 

techniques of digital lmage processing, this thesis presents 

an image interpretation system capable of analyzing the 

structural changes in the morphology of a non-rigid moving 

obJect from a sequence of pictures. 

A model for a general. dynamic scene analysis system has 

been constructed. It consists of three basic entities: 

of anal.ysis 

which may be 

dynamic data~ static data, and a coll.ection 

processors. n... di.f'f'er·ent t':jpes of data 

manipulated by 'the system have been cl.assified into: 

sequence of images, a group of obJects and subobJects, a set 

of obJect features, symbolic descriptors, global behaviour 

characteristics. The latter are functions o~ groups of 

features and descriptors used to dE:tscribe speci~ic: 
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behavioural 

classified 

emplowed. 

patterns. A set 
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of rules. which may be 

and control~ is also 

Based on this model1 we have implemented a rule-based 

image interpretation system for moving cells. The syst@m 

consists of different coopera~ing computational processes. 

Conceptually~ two different memories are used, a Short Term 

Memory <STM> and a Long Term Memory <LTM>. Both are 

implemented as a relational database. The STM is designed 

to work as a communication channel for all of the processes. 

It contains a dynamic record of the instantaneous cell 

motion, shape, and structural changes~ as well as the 

current description of the cell behaviour. The LTM data are 

static, and are implemented as rules. These describe the 

general model of the morphology of the cells under analysis, 

as well as control information pertinent to the 

computational processes. The latter are activated by the 

control rules throughout the three hierarchical analysis 

stages: static~ incremental, and global. They interact 

through the STM using the information stored in the LTM, 

until a complete description of the dynamic cell motion and 

morphology is obtained. 

Comparing the structure of an image sequence analysis 

system described in this thesis to others, we may claim two 

original contributions. First, the construction of our 

model of cell motion as a rule-based system <knowledge 

representa-tion and control Within t-his 
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structure, the dynam~c behav~our of the moving cell is 

described using generic knowledge <constraints) and rules. 

Consequently. the sys~em has much wider application. 

especially for those sequences containing moving obJects 

whose motion patterns are not known a priori, or which 

exhibit random motion. Second. in our work w~ analyze, 

quantify, and symbolically describe the structural changes 

of non-rigid moving ObJeCt~, a subJect hitherto neglected. 

In particular, the quantification of the pseudopod dynamics 

has not appeared in the literature. 

Constructing and implementing an understanding system 

capable of analyzing and describing the dynamic behaviour of 

a moving cell represents a merging of four d~fferent 

disciplines in comp'-!ter· v.i.sion and image processing. They 

are: (a) Automatic Processing of Microscop~c Images, (b) 

Image Sequence Analys~s~ Cc) Shape Analysis and Descript~on. 

and (d) Knowledge-Based Systems. An analysis and brief 

review of the sigt'\i f icant work done in each of these areas. 

as well as the contribution of our work in each field1 was 

summarized and pres~nted in Chapter e. 

With regard to the general problem of processing 

dynamic ~mages, two main issues have been ignored by mos't of 

the past research: <a) shape and structural changes of a 

non-rig~d moving obJect. and Cb) motion understanding •nd 

descrip'tion. These issues are among the aspects addressed 

in this thesis. We analyzed the dynamics of a moving cell, 

which changes i:ts s:h:apf!' and structur·e t'.andomly due to its 
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ph~sical properties. Thus1 we have considered three kinds 

of" changes wi:th time: l.ocomo·ti.on, shape, and structut"'e. 

All alter randomly ~rom .frame to .frame and interact with 

each other. 

To achieve the obJectives of motion understanding and 

description~ it is not enough to merely determine the 

incremental movements or changes that occur between 

consecutive images. What is required is a system which 

abstracts a description of the global motion characteristics 

from the static and incremental data. Development of such a 

s\:istem re presents the approach taken in our rese.ar·ch. 

Shape analysis and d&scription is .a central issue to 

most computer vision and pattern recognition systems. This 

problem was discussed in the thesis. Besides the general 

difficulties of describing an arbitrary shape in a specific 

image1 we have studied the following problems: <a> 

Estimating the incremental change in the shape and structure 

of a non-rigid moving obJect such as a cell. (b) Detecting 

and characteriz~ng the structural changes in its morphology 

over a period of time from a sequence of pictures. <c> 

Presenting all of the ab9ve descriptions in a meaningful 

terminology to the user. 

We have developed a procedure which produces 

meaningful s!Jmbolic desc:t"iptiorl of' the shape and its 

changes. We have also presented an expression for measuring 

the complexity of an at .. bitrary shape. This expt"EH;sion is 
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based on a group o.f' selected :shape propet"tie:s which .ar•e 

.independent of trans~ation, rotation, and :size. Another 

:shape property was introduced to measure the degree of 

curvature regularity <ang~e and :side regularity) of the 

shape of an obJect. This property is shown experimenta~~Y 

to p~ay a considerable role in :shape discrimination and is 

used to describe membrane shape. 

It is o.f' interest to describe the dynamic activity of a 

c•ll using ' symbolic termino~ogy which is meaningful to th• 

individuals working in cell biology. With the aid o.f' this 

system, on• of the cell's primary behavioural 

characteristics is described, namely, the chemotaxis. This 

refers to the directional locomotion of the cell influenced 

by an external factor. Thus, the effectiveness of the 

latter on modifying the cell locomotion is quantified. The 

global changes in the cell structure are also analyzed. 

Hence, a subpart of the cell is classified as being either 

"pseudopod" or "cell body". A pseudopod is described as 

"growing", Furthermore, 

other aspects of' 'the g~oba~ behaviour o.f' the ce~l at'e 

characterized and described. For example, the "domination" 

of a pseudopod in contributing to th• locomotion of the 

ce~l.. Sampleo:s of the generated characterizatiort are given 

in Descriptions 4. 1, 5. 1, 6. 1, 7. 1, S. 1, and 9.1.. 
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9. 3 EXPERIMENTAL RESULTS 

9.3. 1 Neutral And Chemotactic Conditions 

Th~ system has been tested by quantifying and 

characterizing the dynamic behaviour of a polymorphonuclear 

leucocyte <PMN>~ as well as, its pseudopod kinetics in both 

chemotactic and neutral conditions. In the chemotactic 

case1 the cell motion was recorded under the .influence of a 

small sample_of 'E.coli' (bacteria). Figure (9.1) shows two 

frames of the same sequence <9 and 102). In this figure~ 

the bacteria are shown in the South-West corner of the 

image. We can se• that the cell in the North-We-st c:ort"'ter in 

frame 9 has moved towards the bacteria in frame 102. This 

indicates positive chemotaxis. A se-quence of 450 frames 

<225. seconds) was analyzed by the system. The complete 

description of the results of the different stages of the 

analysis was presented throughout the thesis. For example1 

the global locomotiop of the cell is described by the system 

as "THE CELL HAS AN AVERAGE POSITIVE CHEMOTAXIS" (see 

Description 6. 1 for complete details). In addition~ the 

pseudopod dynamics that contributed to this chemotactic 

l.ocomoti.on are quantified and charactet"'ized~ a complete 

description of which is presented in Descriptions 8.3 and 

8.4 <also see Figures S. 10 to 8.12 inclusive>. 

With respect to the neutral cor.di. tion~ the cell motion 

was recorded without the presence of external. chemotactic 

factors. The same experiments conducted fo~ chemotactic 
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Flgate(0;1' -'1l/picaJ ettamples of input images at different 
times ~n a recorded sequence of tha dynamic movement of 
a neutrophil cell. 

The cell in NE corner in frame 9 has moved in a Southr 
· Westerly diraction in frame 1 Of. 
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locomotion were used to analyze the cell dynamic behaviour 

under the neutral conditions. Examples of the results of 

these experiments are shown in Figures (9.2) to (9. 5). In 

order 'to unders-tand the difference between the c:&ll dynamics 

under chemotactic and neutral conditions, w& present in 

these figures the cell path using the same sampling 

parameters for bo"th chemotactic and neutral c:ondJ.tJ.ons. The 

same number of frames <60) is shown in each case. From 

these figures, we can observe the following: <a> The cell 

path under chemotac~ic conditions is straighter and more 

directed than the one under the neutral conditions <see 

Figures 9.2 and 9.3). (b) The vector representing the total 

locomotion of the cell in the different directions of the 

plane is ALMOST SIMILAR for the neutral conditions. This 

situation is described by the system as RANDOM LOCOMOTION. 

In the chemotactic _cas•, the vector is LONGER in the 

direction of the bacteria <see Fig~oo~res 9. 4 and 9. 5>. The 

vector sum of the cell locomotion is almost zero in the 

neutral case~ whereas in the chemotactic condition it has a 

value in the direction of the bacteria <see Figure 9. 5). 

This is the situation even though a relatively short path is 

examined in the example shown in these figures. The 

amplitude and direction of the motion vector are utilized to 

quantify and describe the chemotaxis behaviour (see 

SEtction 6. 4>. 
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Flame number: Flrst=1, Luc-60, SampllDr-J lrame (.5 econd1} 

SC!oiLE 

( --;. 
1. 7 

NICRONS 

(a) Cell path under chemotactic condition. 

Ftame number: Flrst=1, Last= BD, SAmpUng=J lrame (.5 seconds) 

SCALE 
(--) 

0.€ 

MICF.:ONS 

(b) Cell path under neutral condition. 
Figure {9.1} 7\"me sampling of the cell path under 

neutral and chemotactic conditions. 
(a) Chemotactic {b )Neutral. 
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»ame·nvmber: First= I, Last=60, Sample di8tuce==2 microu (2 pizels) 

SCALE 
( --) 

1.7 

M I CROt~S 

(a) Cell path under chemotactic condition. 

.Frame number: Firn=1, Last=60, S&mple di8tuce==2 microns {2 pi:rels) 

SCALE 
(--) 

. 0.4 

fHCRot4S 

(b) Cell path under neutral condition. 

Figure{9.9} DiBtance Bampling of the cell path under 
· , chemotactic and neutral conditions. 

(a) Chemotactic {b) Neutral. 
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Frame .aumber: Flrst=J, Lut=60, 4 1t1te a.a~m 

(a} Chemotactic. 

Frame .aumbeJ': Fllst=1, Last=60, 4 mte .ua~m 

(b) Neutral. 
Figure{9.4} Vector sum of cell locomotion in each 

of four directions under: (a) Chemotactic condition 
(b) Neutral conda"tion. 
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.F)oame JJUmber: Firs&=l, Last=60, 8 si&ie o&J.ysiB 

~ RESULTAHT LOCOMOT!OH 

(a) Chemotactic. 

Jf}oame JJumbe.r: Flnt==1, Last=60, 8 state oalyslB 

~.....-------; 
RESULTAHT LOCOMOTION 

(b) Neutral. 
Figure(9.5) Vector sum of cell locomotion in each 

•afrf!iv/rt~directions .. under: (a) Chemote.ctic condition 
(b). Neutral condition. 
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The above observ~t~ons represent an examp~e 

d~namic behaviour that are quantified precies~y 

system and summarized in numeric values and 

description that is a meaningful to the biologist. 

of the 

by the 

symbolic 

9. 3.2 Comparison To Characterization By A Physiologist 

The quantification and characterization of the changes 

in location~ shape, and structure of a moving cell that are 

obtained by this system have not been computed before~ 

either visually <biologist) or automatically <computer). In 

order to test the accuracy of the resulting data~ the ouput 

information at each stage of analysis was presented to a 

physiologist <Dr. P. Noble, Faculty of Dentistry, McGill 

Universit~). Most of the computer results agreed with his a 

priori knowledge about cell and pseudopod dynamic behaviour. 

However, some of these data~ especially those pertaining to 

specific membrane shape and structural changes, cannot be 

evaluate~ at this time because they have not been reported 

before, and are not yet we1~ understood. 

The same sequence of frames that was analyzed by the 

system has been studied by the physiologist. The pseudopods 

that were characterized automatically are described in 

Descriptions <S. J) and <8.4), and those inspected visually 

are reported in Description (9.1). We have compared the two 

sets of results~ and this comparison is shown in 

Descriptions (9. 2) and <9. 3). is 

estimated based on ~he differences in the characterization 
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The results indicate an error OT ~Sr. in the case where cell 

locomotion and pseudopod dynamic changes were 

characterization parameters. This error is reduced 

by using the pseudopod relative location as 

parameter TOr characteri%ation. 

used as 

to 10r. 

the third 

From this comparison~ we claim that the system has 

successTully characterized the kinetics OT the pseudopods 

that contribute to the cell locomotion. Using the developed 

technique, it is now possible to study why in random motion 

one pseudopod becomes dominant and to compare these 

pseudopod characteristics with pseudopods during chemotactic 

locomotion. The technique, being applicable to other 

leucocyte types, i. e. l~mphocytes, will enable one to study 

pseudopod kinetics in positive and negative chemotaxis. 

This TUture study is discussed in the Tollowing section. 

9.4 FUTURE WORK 

Lymphocytes play an important role in host defense 

mechanisms. They are a heterogeneous group of cells which 

can be subclassiTied on the basis of their functional 

response. '9' lymphocytes are bone marrow dependent and 

produce antibodies in response to antigenic challenge. The 

thymus dependent 'T' lymphocytes are responsible for 

cell-mediated immune response as well as the regulation of B 

cell function CPritchard et al., 731. 
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Recently. the T 1ymphocytes have been subfrac~~onated 

~n~o ~hree classes based on the surface recep~ors ~o ~he Fe 

portion of the immunoglobulin IgG and IgM. One class 

consists of 'T' cells having receptors for IgM; that is the 

Tm cells enhance the activ~ty of e lymphocytes to produce 

antibody. The second class of T cells. with receptors for 

IgG, Tg cells suppress 8 lymphocyte activity CFerrarini et 

al., 75; Moretta et al.~ 751. A third class of T 

lymphocytes~ To~ has ne~ther of the above receptors and has 

been implicated in the natural killing of tumour ce-lls 

CSukseola et al. , 79J. These lymphocyte subsets have been 

shown to respond diff'eret'\tly to vat"'ious: lymphocyte 

cytotaxins CEl-Nagar et al. ~ 80J. It has been shown 

recently that lymphocytes exhibit a negative chemotaxis 

against certain stages of' the natural history of tumour 

cells tNoble and Lewis. 79l. 

It would be of' ~ntereost to utilize the pseudopod 

characterization technique- discussed in this thesis to study 

the pseudopod kinetics of T cell subsets undergoing random 

locomotion and positive and negative chemotaxis. The 

characterization of lymphocyt• locomotory responses would 

allow us to detect, if' any.. abnormalities ~n locomotry 

response existing ~n a variety of disease states. If these 

exist, then the effic~ency of lymphocyte. host defense 

mechanism could by severely compromised. 
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In this sectionJ we discussed the use of the developed 

technique in future reose-.arch and experinlEmts pertait"'it"'g to 

the understanding of the dynamic behaviour of different 

t~pes of cells. However, there are other suggestions for 

modifying and/or exp&nding the system, in particular for the 

This will be discussed below. 

In this research we have studied the dynamic behaviour 

of a moving cell from a sequence of two-dimensional images. 

Most of the false se-gmentations, decompositions, and 

artifactual changes are due to the effect of the three 

di.mensional.ity of the cell. motion. Fortunately, in the 

present application, the three dimensional motion of the 

cell.s is restricted to some extent, because these cells 

<PMN) require a substratum on which they flatten before 

commencing l.ocomotion. However, for general appl.ications, 

for exampl.e, human, animal, or vehicle motion, it would be 

necessary to employ more sophisticated processes and rules 

that consider the three-dimensional changes in motion. 

shape, and structure of the moving obJect. 

The image sequence analysis discussed includes three 

Most of the 

problems encountered at the incremental and global stages 

are due to errot's committed by the low level processes. The 

latter are responsible l'or .the segmentation and description 

of the cell in each frame of the sequence. Improving the 

performance of the low level processes will solve most of 

. .:these .. problems~ ,... ~ F,pr exaunple, we ar·e employing simple 
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segmentation methc.~ds based on histogram thresholding 

techniques and ~il~er.ing operations that utilize data 

resulting from the analysis of previous frames and 

constraint knowledge pertaining to the cell structure. The 

result of the seomentatior• maw be improved if we employ more 

sophisticated techniques that utilize general knowledge 

about lines~ regions, areas~ and textures, such as for 

example, the system reported by Levine and Nazif' tLev.ine and 

Nazif~ 82J. 

9. 5 CONCLUSION 

The structural changes in the cell morphology ~hat 

occur during locomotion have not been previousl_y reported .in 

the J.iterature. Furthermore, in spite of the .importance and 

great interest in understanding the role tha~ the cell 

membrane plays in the locomotion, there is no existing 

method for quantifying and analyzing the observable changes 

in the membrane sh~pe. Xn this research, we have developed 

an image interpretation swstem capable 

analyzing, and describing the structural 

morphology of a moving cell. 

of' quantifying, 

changes in the 

The system has successfully provi.ded all the 

quantificati.on, descri.ption, and characteri.zat.ion 

i.nformation whereby basic questi.ons pertaining to the cell~s 

dynami.c behaviour can be answered. Thi.s study might provide 

clues to the nature and d.i.stri.bution of "receptors" on or 

withi.n the membrane which would be a vital l~nk in the 
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interaction between the external factors and cell internal 

processes. Also, it might lead to the understanding of the 

roles the cell membrane plays in the mechanisms which 

regulate 'the social behavi.our of the cell. 



c 

DISCUSSiON AND CONCLUSIONS Page 9-429 

DESCRIPTION (9. 1) 

PSEUDOPOD CHARACTERIZATION AND DESCRIPTION 

Classification of d~fferent pseudopods 
categories according to their domination 
locomotion. The following characterizat~on ~s 
visual observation. 

into . five 
of the cell 
obtained by 

PSEUDOPOD 
NUMBER 

·======== 
:13 
:10 

7 
37 
32 
51 
58 
60 
59 
80 
91 
92 

108 

150 
:143 
158 
177 
:176 
1.S5 
183 
222 

CATEGORY 
NUMBER 

======-·· 
2 
3 
3 
4 
1 
5 
1 
5 
2 
1 
5 
5 
5 

DOMINATION 
DESCRIPTION 
==========· 
SLIGHTLY DOMINANT 
ALMOST DOMINANT 
ALMOST DOMINANT 
DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
SLIGHTLY DOMiNANT 
NOT DOMINANT 
VERY DOMINANT 
VERY DOMINANT 
VERY DOMINANT 

UNDEFINED 
UNDEFINED 
UNDEFINED 
Ut~DEFI~~ED 

UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
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DESCRIPTION (9. 2> 

PSEUDOPOD CHARACTERIZATION AND DESCRIPTION 
··====·====····============·==========·=·= 

The followinQ is the result of comparing the visual 
pseudopod character1zat1ons with those generated 
automatically by the syst•m# us1ng two vectors parameters. 

PSEUDOPOD VISUAL 
NUMBER CHARACTERIZATION 

========= ====•==·=======· 
13 
19 

7 
37 
32 
51 
58 
69 
59 
se 
91 
92 

108 

150 
143 
158 
177 
176 
185 
183 
eee 

SLIGHTLY DOMINANT 
ALMOST DOMINANT 
ALMOST DOMit,ANT 
DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
SLIGHTLY DOMINANT 
SLIGHTLY DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
VERY DOMINANT 

UNDEFINED 
UNDEFI~~ED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINEO 
UNDEFJ:NED 

AUTOMATIC 
CHARACTERIZATION ERROR 

NOT DOMINANT - 1 
DOMINANT + 1 
DOMINANT + 1 
VERY DOMINANT + 1 
NOT DOMINANT 0 
VERY DOMINANT 0 
ALMOST DOMINANT + 2 
VERY DOMINANT 0 
SLIGHTLY DOMINANT 0 
DOMINANT + 2 
DOMINANT + 3 
VERY DOMINANT 0 
VERY DOMINANT 0 

VERY DOMINANT ? 
NOT DOMINANT ? 
VERY DOMINANT ? 
NOT DOMINANT ? 
ALMOST DOMINANT ? 
VERY DOMINANT ? 
SLIGHTLY DOMINANT ? 
VERY DOMINANT ? 

TOTAL PERCENTAGE ERROR = 18 ?. 

Note: The UNDEFINED pseudopods are those that could not be 
characterized visually~ and they are not included in the 
computation of the total percentage error. 
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DESCRIPTION ( 9. 3) . 

PSEUDOPOD CHARAClERIZATION AND DESCRIPTION 

The ~ollowing is *he result o~ comparing the visual 
pseudopod characterizations with those generated 
automatica11y by the system, using three vector parameters. 

PSEUDOPOD VISUAL 
NUMBER CHARACTERIZATION 

=======·= =======•====·=-= 
1.3 
1.9 

7 
37 
32 
51. 
58 
60 
59 
80 
91 
92 

1.08 

150 
1.43 
158 
1.77 
1.76 
1.85 
1.83 
222 

SLIGHTlY DOMINANT 
ALMOST DOMINANT 
ALMOST DOMINANT 
DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
SLIGHTLY DOMINANT 
SLIGHTLY DOMINANT 
NOT DOMINANT 
VERY DOMINANT 
VERY DOMINANT 

UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFINED 
UNDEFJ:NED 

AUTOMATIC 
CHARACTERIZATION ERROR 
================ ===== 
NOT DOMINANT - 1 
DOMINANT + 1 
DOMINANT + 1. 
DOMINANT 0 
NOT DOMINANT 0 
VERY DOMINANT 0 
NOT DOMINANT 0 
DOMINANT - 1. 
NOT DOMINANT - 1. 
SLIGHTLY DOMINANT 0 
NOT DOMINANT 0 
VERY DOMINANT 0 
DOMINANT - 1. 

VERY DOMINANT ? 
NOT DOMINANT ? 
VERY DOMINANT ? 
NOT DOMINANT ? 
ALMOST DOMINANT ? 
VERY DOMINANT ? 
SLIGHTLY DOMINANT ? 
VERY DOMINANT ? 

TOTAL PERCENTAGE ERROR = 10 ?. 

Note: The UNDEFINED pseudopods are those that could not be 
characterized visually~ and they are not included in the 
computation o~ the total percentage error. 
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AF'PENDIX 
AND SIDE 

(A) 
REGULARIT'r1 

Regu~ar~ty ~s a shape property that humans have always 

Th~s 

property has not yet attracted much attenstion as a shape 

descr~ptor ~n the COlf&pu-ter v~s~on literature. In order to 

make use of' ~t~ we can determine the irregular~ty of' the 

polygon approximation of' an obJect by compar~ng ~t to a 

The measure is based on two 

criteria, angles and sides. Def'initions and mathematical 

f'ormulas for comput~ng each are given in Sect~on 4.5. The 

f'ollowing is a short proof' of 

equations (4. 26-4. 29) inclusive. 

ANGLE REGULARXTY 

In this measure, the ang~es of a polygon are used as a 

criterion f'or measuring its regularity. Thus~ the shape of 

an ob.J•ct can b• described as perf"ectly regular1 if all the 

angles of its polygon approx~mation are equal. 

squares, rectangles~ pen-tagons. and hexagons. 

internal angles <An) is: 

i=n 
An = sum ai 

~-1 
= <n-2> . 180. 

Examples: are 

For a polygon 

<A. 1) 

In the case of' a polygon with regular angles~ we have 

a1 = a2 = aJ = ... = ai = ... an • A1 
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and A = Cn-2.). 180 t' n. CA.2> 

The irregularity of a polygon representing a given shape 

di~ferences between its angl•s and a regular on• having the 

same number of veortices. This difference sum AD can be 

computed as: 

i•n 2 1;'2 
AD = t sum <ai - A) ) <A.3> 

i=1 

Thus~ AD = 0 for a perfectly regular polygon~ and the 

This value 

can be normalized to range between e and 1~ where 0 

c corresponds to the pef'ectly reg•..1lar shape, and 1 to the most 

irregular one. In this case, a normalization factor Ka can 

as: 

AR :a AD I Ka, 0 < AR < 1 <A.4> 

To determ~ne the value of Ka, which normalizes AR, Ka 

should equal the lfl.iiximu«• poss.ible value of AD fot' the 

di~ferent polygons that having the same> nunlber of vet"'tices. 

Ka ~ ADmax, <A.S> 

where ADmax is the sum of the differences between the angles 

ot p&rf'ectly regular polygon and the corresponding one whi.ch 

has the same r.umber of' vertices and the most irregular 

angl.es. F~gure CA. 1a> shows exampl.es of the followi.ng 
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perfectly regular polygons: equilateral triangleJ square. 

and pentagon. Figure <A. ~b) shows the corresponding po~ygons 

that have the same number of vertices and most irregular 

angles. From these figures. and by using equation CA. 3), the 

value of ADmax can be determined as function of the number of 

vertices <n> for po~ygons with even and odd number of 

verticies, as fol~ows: 

POLYGONS WITH EYEN NUMBER OF VERTXCIES 
······==========··===·======·=·=··==== 
ADmax = Cn/2 + 3..) A + Cn/2 - 1) (360 - A) 

= n/2 A + A + Cn/2 - 3..) 360 - Cnt"'2 - 3..) A 

= n/2 A + A + <n - 2> 180 - n/2 A + A 

ADmax = 2A + (n - 2) 180 <A.6> 

Substituting from equation CA. 2) into <A. 6), we obtain 

c ADmax = A<n+2) CA. 7> 

POLYGONS WITH ODD NUNSER OF VERTICIES 
==•==•===========•==•==e============= 

n - 3.. n - 1 
ADmax = < ----- + 1 ) A + < ----- - 1 > <360 - A> + (180 - A> 

2 2 

n + 3.. n - 3 
= < ----- > A + < ----- ) <360 - A> + <189 - A> 

n + 1 n 3 n - 3 
= ( ----- ) A + ( 

..., ____ 
) <360) - < ----- ) <A> + (180 - A> 

2 2 2 

n + 3.. n - 3 n - 3 
= ( ----- + ----- ) <A> + ( ----- ) (360) + (180 - A) 

2 2 2 

= A + <n - 2) 3..80 CA. S> 

Substituting from equation CA. 2> into <A. 8), we obtain 

Al>m.ax = A(n+1> <A. 9) 
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(•) E:rUDpJu of perlectl;y reruJar poi,Jrou. 

· Figure(A;1)Per fec~ly regular polygon 
approzimations with corresponding 
ones that have the most irregular 

-~ ·angle8 and the sides. · 
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S:X:DE REGlJLAR:J:TY 

The lengths o~ the polygon sides are used in this 

measure as a criterion ~or determing irregularity. Thus' a 

polygon is described as perfectly regular if all the sides 

have equal length. For example~ an equilateral triangle or a 

square. For a polygon with n sides 1~, 12~ 13~ .... ~ 1i~ 

.i=n 
P = sum li . 

.i=:l 

In the case of a polygon with regular sides~ we have 

11 = 12 = 13 = ... • li = ... ln = L~ 

and L= P/n. 

<B. 1.) 

(8. 2) 

The irregularity of a polygon can be defined based on a 

comparison with a regular polygon approximation having the 

same number of sides and perimeter. 

differences LD can be computed as: 

LD = [ 
i=r• 2 
suro <li - L> 
i=:1 

Thus~ the sum of the 

112 
] <B. 3> 

Note that LD = e for a polygon with regular sides~ and 

the- higher the value of LD.. the more ir·regular the shape.. In 

a similar fashion to that described above~ the value of LD 

can be normalized between e and 1 to obtain a measure for the 

Side Regularity <SR>~ as: 
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0 < SR < 1 <B. 4) 

and Ks = LDrnax (8.5) 

where LDmax is 'the sum or the dif'ferE-rtces betwee-n the lengths 

of a regular polwgon and the corresponding one which has the 

same numbe-r of irregular sides. Figure <R.1c> shows 

corresponding polygons that have the same number of irregular 

sides for thos• shown in Figure <A.1a>. From these figures~ 

and by using equation <B.3>, the- value- of LDmax can be 

determined as function of the number of sides <n> as follows: 

LDmax • <n-a> L + <n L - a L> 

= n L - 2 L + n L - a L 

LDrtax = aL<n-2> (8. 6) 
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APPENDIX (8) 

LABORATORY FACILITIES AND METHODS 

Blood Cell Preparation 

Polymorphonuclear leucocytes <PMN> were prepared by 

pricking a ~inger and placing the drop o~ blood on a 

cverslip. A~ter incubating ~or 25 minutes at 37'C in a moist 

chamber~ the pls:ma clot was removed and the r·ertaainir•g red 

cells washed o~~ wi~h Hank's balanced sal~ solution CBoyarsky 

and Noble. 77J The adherent PMN were covered with Minimal 

Essential medium, Harpes bu~~ered pM7.2 containing 20~ ~etal 

cal~ serum and the coversilp was placed on s standard 3" x ~" 

cover slide and the edges sealed with molten wax. For 

chemotaxis experiments a small sample of 'E.coli' was heat 

fixed to the coverslip prior to placing upon it the drop of 

blood. The locomotory tre.Jectot"ies: of the PMN's were 

followed using a Bolex-Wild time-lapse unit at 2 frames per 

s•cond. A wild M40 inverted microscope with phase contrast 

optics and 300x magni~ication was used. 

COMPUTATIONAL FACILITIES 

The experimental work for quantifying and characterizing 

the dynamic behaviour of a moving cell is presently operating 

on the computational facilities of the Computer Vision and 

Graphics Laboratory <CVaGL)., McGill IJrtiversi ty. The main 

processor of th• laboratory .is a DEC VAX !l.1.17S0 computet' with 

a virtual memory that allows up to two million bytes of 
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main processor via a UNIBUS in~er~ace inc~ude a GRINNELL 

Mode~ GMR 27~ 24 plane co~our graphic te~evision disp~ay and 

f'rame grabber. In .addition to :s:tandar•d input t~~trnlinals, a 

magnetic tap• uni~' a disc unit, and a ~ine prin~er. 

The CRINNELL a~so controls a Joystick for interactive 

communication with ~he display. A microprocessor int~~tr~ace 

is present~y being added ~o ~he faci~i~~ for contro~ of' a 

film advance unit. It provides complete software capability 

f'or advancing ~6 mm cine film automatically or on a 

frame-by-frame basis. The image scanned by A COHU Model 4353 

TY.camera is captured via the CRINNELL Graphic Digitizer 

op~ion at a rate of up to 39 frames per second. 

The GRINNELL. pY·ovides a 256X256, 64 graw level image 

intensity arraw which is stored in th~ CRINNEL.L. video plane 

memory, accessable to the YAX. Under the command of the YAX, 

a microprocessor iraterface is used to control the r ilm 

advance device, while the cine f'rames are digitized by the 

GRINNEL.L and stored oYa rAagnetic tape or disc. 

The op~ion of' real ti~e tracking and analysis is 

possible by connecting the TV camera directly to 

microscope and viewing live blood cells. This method 

also 

-the 

is 

described in det~il in Clevine and Youssef, 78, Knoll, 791. 
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