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MESTRACST

The main functinon of a blood c2ll's surface is *o
receive information from the environment, Recently.
experiments have indicated that the cell membrane plays a
vital role in the life, development, and regulation of cells.
However, there iz no existing method +o gquantify - the
observable changes in membrane shapes that occur in
locomation. To achieve +this objective wusing autonatic
techniques of digital image processing the main goal of this
rezearch iz to dewelop an image interpretation system capable
h.

nges in the morphology of 2

wm

of analyzing the structural

N
[
t

nor-rigid mouving cbgzay from s sequence of pictures.

A model for 3 general dymamic scene analysis  system is
described. It congists of three basic entities: dynamic
data, static data, and a cbllection of  analysis process2s.
Based on this mnodel, we have implemented a rule~-bassd image

interpretation system For mouing ceslls,

The system dezcribes the dyrnamic behaviour of a3 moving

cell wusing symbolic terminology which iz mezningful o

individuals working in cell biology. With the 2z2id of this
systemn, the globsl changes in the  c2ll  structure  and

pseudopod kinetics are analyzed,  Hemce, 3 subpart of  the

cell is classifisd as being either  “"pzeudopod" or "cell
body". A pssudopod is described as "growing', "contracting".
or "stationary". Furthermore, othsr aspects of the global

behaviour of thes cell are characterized and described. For
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example, the “domination" of a pseudopod in contributing o

the locomoticorn of the cell.

The system is also applicable +to the study of the
dyriamics of other white blood cell types. Ultimately, this
type of study couldd zllow the detection of abnormalities, and
the efffects of drugs, if any, in the locomotory responses of

leucocytes,
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RESUME

La principale fonction de la membrane d‘un globule est
de recevolir de L information de son  environnement.
Recemment, des expériences ont démontré que la membrans joue
un role primordial dans la vie, le déueloppement et la
regulation des globules, Toutefois, i1 n‘existe pas de
mathode permettant de gquantifier les changements observables
de la forme de la membrane au cours de la locomotion. Afin
d’atteindre cet obgectif tout en utilisant des technigques
automatiques de traitement des imasges digitaless, le but
principal de cette recherche est de concevolr un sgstsme
d’interprétation d’images capable d’analyszsr les changements
structuraux de la morphalogie d7un obget non-rigids  2n

\ o v
mouvemant a partir duns géquence d7images.

Un moddle de systime génfral d-analyse de  scanes
dynamigques est décrit. Il =e compose de frois entites de
bkase: donnges dynamiques, donnees statinques et ensemble de
processus d analyse. Er nous fondant sur ce modile, nous
avons réalisza un sgstgme *“rule~bazed" d’interprftation

d”images de globules en mouvement.

Ca sgstgme decrit le comportemnent dynamiqus d’un globule
en mouvement 3 1l aide d’une terminologie symbolique: qui =st
familidre 3 ceux qui osuurent dans le domaine de la binlogie
cellulaire. A 17a3ide de ce systems, les changements 3lobaux
de la structure cellulaire =t de la cihgtique des pssudopodes

-
sont analyses. Rinzi, on classifis les parties d7un globule
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comme etant soit "pseudopodeY, soit "corps du globule". Un
pseudopode peut @ire “en expansion", ‘“en contraction" ou
"gtationnaire". De plus, d’autres aspects du comportement
global du globule sont charactérisés et décrits. Par
exemple, la "domination" d’un pseudopode dans sa cont#ibution

3 la locomotion du globule.

Le systéme s’applique aussi 3 l’étude de la dynamique
d’autres +types de globules blancs. Ultimement, ce genre
d’&tudes permettrait la detection d’anomalies des réactions
locomotrices des leucocytes, et 57il y a lieu, des effets de

certaines drogues sur celles-ci.



O

AZENOWNLEDGEMENT S

The author mishes 4o express his s=sincere thanks and
appreciation *o his rezearch supsrvisor, Prof. M. D. Levine
for- his invaluable adwvice, guidance, and encouragement
throughout the periocd of this tesearch. Also, for his
patience and critical nreview of the manuscript of +this

lengthy thesis.

The author also wishes to thank Dr. P.B. Noble,
Associate FProfezsor, DReuvizion of 0Oral Surgery and Medicine,
Fa&ultg of Dentistry, McGill Uneversity, for his cooperation
in supplging‘ Uz with films of blood cells, for sharing with
us his knowledge and medical experience, and for his valuable

comments and suvalustion of the computer results.

The author is particularly grateful +o Dr. S 2ucksr,
for his constructive comments and help especially during the

sabbatical yesar of his supesrvisor.

Thanks are alsc expresssd to the members of the Computer
Vision Group for their helpful cComments and suggestions, In
particular, I would likese ta thank e, R. Y. Leclerc $for his
careful reading of most of the marnuscript, HMe. A. Mazif for
hig help with +the data base structure and his friendly
conversation and wvaluable comments, Me. F. Ferrie for his
assistance in interfacing the film asdvance device to the VAN
computer{ and for his reading oFf some parts of  the
manuscript, Furthernors, Warm thanks are dus tno

Mr. M. Pekiner and M. K. Gupta, for their willingness to



Fage= VII

help with the ever present problems in producing this thesis
Gratitude is also felt towards Mr. P. Parent, Comput2r Vision
and Graphics Laboratory System Manager., for his help with the

computer hardware problemns and for translating the abstract.

A great debt of gratitude is felt towards Ms. J. Kander.
for her careful reading the first three chapters of the

thesis.

The author is particularly grateful to the Ministry of
Education, R. R. Egypt. . for his personal financial

sponsorship.

This research wags supported in part by the HMedical
Research Council of Carnazds under LGrant MNo. MA-3236, and the

FProvince of (Quebsc undae Grant No. ER~-533.



TABLE QF COMTENTS

SECTION

At ww 0s e saae seme dev
E 2]

II

IIT

Iy

vl

vII

THBLE OF CONTENTS

DESCRIFTION

REBSTRACT

RESUME
ACKMNOMLEDGEMENTS
TRAEBLE OF CONTEHTS .

LIST OF FIGURES .

LIST OF DESCRIFTIONS.

CHAFTER 1

INTRODUCTION
1.1 BEIOMEDICAL FROBLEM
1.2 OBJECTIVES
1.3 RELEVANT ARERS OF STUDY .
1.4 MDDEL STRUCTURE AND SYSTEM IMPLEMEMTRTION .
1.5 SUMMARY AMND GENERRIL. OVERVIEW
1. 5.1 Summary .
1.5 2 Review O0Ff Chapters

Page YIII

ii

iy

vi

Lwiidi

X

L Kxliv

L XxUL



TABLE QF CONTENMNTS

ne

o

ro

ro

ro

ro

noe

o

n

n

n

o

o

o

re

R r

CHRFTER &

R CRITIGUE OF THE LITERATURE

1 INTRODUCTION

2 DYNAMIC SCENE RNRLYSIS

2.1 Introduction

22 Revieu of Surveys .

2.2 1 [Martin And Aggarwal, 781

g.2 ¢ [Nagel., 781

2.2 3 [Hagel, 791

2.2 4 [Scacchi, 791

2.3 Reuvisw of Relesuvant work .

231 [Yachida Et RLl. ., 7381

2.3.2 [Price Amd Reddy, 771 .

2.3. 32 [Tsotsas, 761

2 4 Summary .

3 SHAPE ANALYSIZS AND DESCRIPTION

1 Introduction
.32 Recent Suruyays In Shaps Rnalysis And

Peszcription .
3.3 - Curwe Representation And Critical Point
Detection .

3.4 Curve And Polygonal Approximation .
3.5 Shape Deconposition .

3.6 Moments And Moment Invariant Technigues .
3.7 Fourier Transform (FT> Techniguss

.3.8 Thinning Algorithms And Intesgral Geometry .

Fage IX

-39
2-33
2-33

2-36

n
i
-4
0



oo

n

n n

n

o

o

I

o

0

oo

oo

TABLE QOF CONTENTS

3.9 Relaxation

3. 10 Syntactic RAnalysis And Shape Cescription
3.11 Summary And Review Of Qur Current Work

4 COMPUTER VISION KNOWLEDGE-BASED SYSTEMS .
4. 1 Introduction

4.2 Knowledge Representation

4.3 Control Structure .

4. 4 Knowledge Interaction .

4.5 Examples of Knowladge-Based systems .

.4. 6 Krnowledge-Bazed Systems for

Vizual Motion Undersztanding .

4.7 Sunmary .

S RUTOMATIC PROCESSING OF MICROSCOPIC IMAGES
5.1 Introduction

5.2 Theoretical Study OFf Cell Morphology

5.3 Cell Counting And Classificstion

5. 4 Early Hork On Cell Tracking .

8.5 Ruantification 0f Blood Cell Locomotion .
5.6 Membirane Shape Changes

S.7 Summary .

CHRARFTER 3=

SYSTEM AND DATA STRUCTURE

1 INTRODUCTION

2 DATA STRUCTURE AND KNOWLEDGE REFRESENTATION .
. 2.1 . Ba=zic Elements For Knowlsdge Representation .
2.2 Symbolic Qualifiers .

2-184

2-114

2-115

2-197

2~-188

2-199

2-114

£-116



TABLE OF CONTENTS

3.3 KHOWLEDGE REPRESENTATION RLILES CLTHS
324 CONTROL STRUCTURE RULES .
3.8 SUMMARY .

CHARFTER <4

STATIC SCENE ANALYSIS
4.1 INTRODUCTION
4. 2 CELL EXTRACTION (SEGMENTATION)
4. 2. 1 Introduction
4.2.2 Cell Window .
4. 2.2 1 Histogram .
4.2. 3 Threshalding
4.2. 4 Filtering .
4. 2.9 Cell Selection and Matching .
4. 2.6 Boundary Tracking .
4. 2.7 Automatic Ssgmentation
4. 3 POLYGONRL APPROXIMATION .
4. 4 POLYGONAL DECOMPOSITION .
4. S FEATURE EXTRACTION AND SELECTIONM
4. 6 STATIC SHRFE DESCRIPTION
4. 6.1 Symbolic Descripiion
4. 6.2 Mumbszer of Classes (Levels) of 3 Symbolic

Dezcriptor

4. 6. 3 Claszsification Threzsholds .
4. 6.4 Mormalization .
4.7 SUMMARY .

Page XI



@ o

n

«

[

TABLE QF CONTENTS

CHARFTER 5

INCREMENTAL CHANGE DETECTION

1 INTRODUCTION

2 LOCATION CHAMGE DETECTION .

.2.1 Computation 0Ff The Chang= In Location .

2.2 Symbolic GQualification O0f Incremsental Location
Change.

3 IMNCREMENTAL SHFAFPE CHAMGE

3.1 Imdividual Shape Property Change

3.2 Incremental Membrans Shape Change And Matching

4 INCREMENTRL STRUCTURAL CHRHMGE .

.4.1 Subpart Matching

.4.2 Incremental Changes In Corresponding Subparts

.4. 3 Total SHtructural Matching .

.5 SUMHMARY .

CHRARFTER S

GLOBAL LOCOMOTION ANALYSIS

.1 INTRODUCTION
2 CELL TRACKING ANMD PATH COMSTRUCTION .
.21 Cell Path Comstrusztion Using Displacemsnt
Sampling.
g8 Connection Of Cell Path Seqments
.3 MOTION AMNALYSIS AMD DESCRIFTION |
3.1 Distance

Page XKII

S-e29

5-238

5-239

5-238

5-241

5-241



o

0

& o o & o o

N N N N N

TABLE OF COMTENTS

Fage RIII

3.2 Time 6E—-2536
23 Direction OFf Motion . H~-2B7
3.4 Velacity £-287
3.3 Acceleration 6~-291
4 CHEMOTAXIS RHALYSIS . | £-293
4.1 Computing The Directional HMovement 0f The Cell €-29%4
4.2 Chemotaxis Quantification . 6£~299
4.3 Ruantifying The Effectiveness 0f Influence . 6-300
.5 SUMMARY . £—-305
CHAPTER 7+

GLOBAL SHRPE AHALYSIS

1 INTRODUCTION 7-311
2 METHODOLOGY FOR DETECTING AND . 7—-317
2.1 Dyrnamic Changes And Key Frames 7—319
2.2 ‘ Gualification 0Ff Level Chatges 7—-329
3 GLOBAL CHAKGES IN THE DESCRIPTION

OF INDIVIDUAL SHAPE FROPERTIES 7—333

4 MEMBRAMNE SHAPE: GLOBAL CHANGE DESCRIPTION . 7-336
5 SUMMARY . 73246
CTHAFRPTER =

GLOBAL STRUCTURAL ANALYSIS AMD DESCRIPTION OF

DYHAMIC BEKARYIOUR

1 INTRODUCTION e-3261
.2 GLOBAL STRUCTURFAL ANRLYSIS B-3Z&e
2.1 Global S3tructural Matchinn A-7Ad



TABLE OF CONTEMTS Pag

o0
o

Cetection And Correction Of False Structurs

ne
n =

PP opoRE

Extraction 0f Individual Subparts .
Individual Subpart Characterization .

Is A Subpart A Pseudopond? .

N -

Pseudopod Description .

DYMAMIC BEHAVIOUR DESCRIPTION .

® ® ® ® o ®

SUMMARY .

CHARPTER <

DISCUSSION AND CONCLUSION-

INTRODUCTION
SUMMARY RAND CONTRIBUTIONS .
EXPERIMENTAL RESULTS

Heutral And Chemotactic Conditions

A U
WoW W N B

n P

Comparison To Characterization By A
Physiologist
9.4 DISCUSSTON AMD FUTURE WORK

9.5 CONCLUSION

AFFENDIN A

AHGLE AND SIDE REGULARITY . . . .

AFFENDIYXM B2

LABORATORY FACILITIES AND METHODS .

REFERENTCES



FIGURE
NUMBER

S g wm maw s ot
SEZS==m=

e

LIST OF FIGURES

o

LIST OF FIGURES

S M A A GE) ST ICH AR EI S B
W WA S S AN TS AN S STV g PP R B

DESCRIPTION

W mmIIERIIDS

Characterizstion of the obsetrvable changes in
the cell membrane of a moving c2ll, in order
to understand its dynamic behaviour and the

pseudopod kinstics .

The main inputsoutput data of a dynamic scene

analysis system

Basic structure units of a dynamic scene
anzlysis suystem.
Main processing stszges and data structure of a

.

motion understanding systemn.

Function and main input/output data of the
bazic processing stages of & motion

understanding system.

The basic procgsses for shape analysis and

description.

Proceszses and data structure of the static

scene analysis stage.

Algorith for manual and/or automatic

segmentstion of cell images.

Page RV

1-18

4-133

4-159



LIST OF FIGURES Fage

LY

.19

.11

.1z

.13

.14

Typical examples of input images.

Selecting the window containing the cell

under analysis.
Histogram of the gelected window.

The resulting binary image using the maximumn

gray level frequency as threshold.
Dividing the histogram into thres regions.

The resulting binary iwnage by averaging

threshold method.

Removing rnoize by filtering,

Ca) input and (bd ouilput.

Examples of filtering op=trations.

Different matching procedurses: (a) static image
processitg and rigid moving ob gect,

(b? non-rigid moving ab jeot.

The boundary points of the cell shapes in a
sequencze of framez., obtained using: <a? eight
contwcted boundaries, (b} four connected

bourdaries.

Examples of the output of the ditfferent steps

of the automatic sagmentation.

An approximate estimation for the threshold

4-163

4-164

4-196

4-171

4-173



o

LIST OF FIGURES

.15

.16

.17

.18

.19

value (Eth) neceszgary fot polygonal
approximation, which minimize both number of
vertices and the error (the difference between

the resulting polygon and the original shape?.

Polygonal approximation of the cell shapes in
a sequence of framnes. The original boundaries

are shown in Figure (4. 12).

Decamposition of the cell into its primiticve

subparts., {(a3) input, (b) output.

Cecomposzition of the cells in 3 seguence of

frames.

Graphs reprezsenting the gesoma2trical structure

of the cellz: in a seguenhce of frames
Main features of a cell.

Clasgification a range of normalized data (B-1)

into different rumbers of classes (3,5, 7. 9.

The output of these three

w
=+
i
pu)
7}

of analysis.

Proceszes and data structure of the incremental
changes in location, shaps, and structure of a

non~rigid moving ob ject.

Ditferent typez of motion.

Computing the displacemsnt of a non-rigid moving

Page HVII

4-138

4-1%0

4-194

4-137



"

R

A

LIST OF FIGUREEZ Page AVIII

obgect by conszidering each slemnt in the obg=sct

as an indepesndent rigid moving objgect,

.4 Dizadvantges of symbolic comparison to detect

the incremental change in a specific property.

S The boundaries and polugonal approximation of

the cell in two sequential frames,

.6 Polygonal decompogition and graph rapresentation

of the cell in two sequential frames.

4 Definition of the subpart correspondence
problem.

. 8 Solution of the zubpart correspondence
problem.

.1 Main processes and data structure of the global

analysis stage.

.2 Global locomotion analysis process2s and data
structure.
3 Time sampling of the cell path.

{ad 48 frames (5 gsec. ).
(b>» 160 framez (56 sec. )

(g 458 frames (FE5 sec. ).

. 4 Distance sampling of the oell path.

Car 290 frames, sample Jdistance 1 micron

(b2 200 frames, sanple distance = 2 microns.

S5-236

5-243

J5-246

S-246

S-232

&6-271
£-274

6-272



O

LI8T

a5
S %
S
]
-
. 18

s

FIGURES

FEemowing the

path:

Car Originsl

thY Diztanoe
ZE5 frame

Lz Distsnce

450 {rams

«To+al'displac

Velooity of %

{al no avetrzg

Vecotor sum of
Car Ffour dires

(b 2ight dir

Chr osight s2ta

=, =ample distarmce = 3 microns.

srtifast movenents of the cell

path (time éamplingl

satpling with aftifact removed
3 ih Sequencs

sampling with artitact removed

= in Segquence

-

smaent of the mowvwing cell.

he mouving ce2ll d(dL/des:
ing
sequence of 5 frames.

f zequence of 18 frames

locomotion in =ach of:
ctions.

szhlions

all locomotion:
g2 anhalysis

tes analysis.

Fage

for

for

Globzl locomntion anzlysisz to characterize the

chemotaxis be

s 1L

the o

12
i

ffectiveness

haviour of the mowving cell., as

o the Tell locomotion

of an external factor



LIST

6. 14
7.4
7.2
7.3
v.4
7. G
V.5
-2 -
Y. f
N

OF FIGURES

Global gquantification and characterization of

mowing -ell locomotion

Frocess and dsts strucsture for global shape

The stsztic description of one of the shape

properties (oircularityr used as input data

1

"

for gqlobal zhaps asnaly

]

=

Curue fitting of the static data shown in

oy
s

B N
R G

Figur

31}

Splitting periods in ordsr to g2nerate a

dizcriptive summsry of the global changes in

a gpecific propaerty Cad input,

(b’ output

Uzsimg condition ==laction rules to eliminate

irrelevant and nolsy changes

The normslized valuss of

in a2 zegquence of 158 fram

1,

arnergy, (ki Angle regularity

Chi Circularity

Ditferant shapss having the

T

[x]

zhape proportis

caz

W

Rverage bending

23
!
i
[
i

=1
!
£
U
ey



LIST OF FIGURES

.18

.11

.12

.13

parimeter, and hence the same circularity.

Different property valuse of shapes having

the same circularity .

Different shapes sorted according to their
complexity using: <(a) average bending energy.

(b> angle regularity .

Different shapss sorted according to their
complexity using: <(ad> arithemetic mean,
(b> geometric mean, of the average bending

en=rgy and zngle regularity.

Geomatric mean of circularity, avesrage bending
enargy, atid angle regularity computed for cell

shapes 1in a s=2querce of 158 frames .

Examples of cell shape charscterization

Global structural znalysis, processes and data

structure.

Examples of frames having ftalse structure
(decomposition? detected at the global

structural analysis stage.

Possible vgriations in the decompositions of the

cells having false structure in Figure (& 22

Correcting the falsze structure of the examples

LV AN
RAL

7-348

7-343

7-344

7-345

7—-347

7-348



LIST. OF FIGURES Fage XXIT

shown in Figure ¢S .82, . . . . . . . . . . . . . B-372

.3 Curves representing the structural matching of
the cell between each pair of sequential frames.

Ca? 60 framesz in saquence,

(b> 225 frames in sequences . . . . . . . . . . . 8=-373
.6 Curves representing the changes in subpart

properties . . . . . . . . . . . . . . . . . . . B=379
.7 Global dynamic behaviour undzrstanding and

description. . . . . . . . . . . . . . . . . . . B-33%
. 8 R vector diasgram representing the dynamic

changes C(location and shape? of the pseudopod

and the totsl locomotion of the coell . . . . . . 8-387

.9 Vector disgrams of pseudopod behauviour

characterized Cusing two vectors) as:

Ca> HOT DOMINANMT., <¢(b> SLIGHTLY COMINANT. . . . . B-339

(crx ALMOST DOMIMANT, (d> DOMINANMT. . . . . . . . B-370

Ce> VERY DOMINANT. . . . . . . . . . . . . . . . B-391
.10 A vector disgram repressenting the dynamic

changes of 3 pseudopod, its relative location

and the total locomotion of the c-ell . . . . . . B-332

.11 Vector diagrams of pseudopod behauviour
characterized (using three vsctors) as:
(3> ROT DOMINANT . . . . . . . . . . . . . . . . B-3%4
(b> SLIGHTLY DOMINANT, <c» ALMOST DOMINANT . . . 2-335

(d> DOMINANWT . . . . . . . . . . . . . . . . . . B-332%



LIST OF FIGURES Page HHIII

.2

')

(22 YERY DOMINANT. B-397
A vector diagram representing the cell

locomotion path and the different pseudopods

that formed during a sequ=ahnce of:

(3> 182 frames. C(b) 385 frames . . . . . . . . . B-39B
Typical examples of input images at different

times in a recorded sequence of the dynamic

movement of neutrophil cell. . . . . . . . . . . 9-417
Time sampling of the cell path under neutral

and chemotactic conditions . . . . . . . . . . . 9-419
Diztance sampling of the c=2ll)l path under neutral

angd chemotactic conditions . . . . . . . . . . . 9-4¢8
Vector sum of cell locomotion in sach of four
directions under neutral and chemotactic

conditions . . . . . . . . . . . . . . . . . . . 9-4g1
Vector sum of cell locomotion in each of eight
directions under neutral and chemotactic

conditionms . . . . . . . . . . . . . . . . . . . 9=-4z22

Perfectly regular polygon approximations with
corregsponding ones that have the most irregular

angles and the sides . . . . . . . . . . . . .. 43

o



LIST OF TABLES Fage XXIV

LIST OF TRELES

TABLE DESCRIPTION PAGE
NUMBER

mmsm=s JEoTmAamIIImaSR s
21 Magor references in areas trelated to

research in understanding the dynamic

beghaviour of non~rigid moving obgect. . . . . . 2-32
3.1 DIFFERENT TYPES OF PROPERTIES 3-146
SHAPE PROPERTIES . . . . . . . . . . . . . . 3-146
STRUCTURE PROFERTIES . . . . . . . . . . . . 3-147
LOCATION PROFERTIES . . . . . . . . . . . . . 3-147
MOTION PROPERTIES e e . .. ... 3-14s
3.2 Examples of Symbolic Quali?iers of Some

Properties, and Their Different Lesusls

(Claszses) of Qualification. 2-14%
3.3 AR Set of Dperators and Their Definitions. Z2-150
4.4 Different properties for cell representation:

Segmentation, Folygonal approximation,

Decomposition. . . . . . . . . . . . . . . . . . 4-2er
S.1 Matching of subparts betweenn two sequential

frames . . . . . . . . . . . . . . . . . . . . . 5-28B2
S.2 Generating symbolic description of the incremsntal

changes in  the different subparts . . . . . . . S-2&1

6. 1 Global locomotion analysis and description:



LIST OF TABLES Page XXV

. Sa

. Sb

Summary of the rumerical description of cell

motion properties. . . . . . . . . . . . . . . . k-3D9

The ocutput data for the curve approximation in

Figure ¢7.3> . . . . . . . . . . . . . . . . . . 7-355

Splitting the periods resulting from the curve
approximations, given in Table ¢7. 1) into petriods

having the same level, . . . . . . . . . . . . . ?=-356

The result of merging the petriods given in

Table 7. 2. . . . . . . . o . . . . ... ... . T=&T7

The final result of merging the periods given in

Tsble 7.3. . . . . . . . . . . . . . . . . . . . 7=338

The computed values of two different shape
properties, and their arithmetic and geometric
means for the different shapes given in

Figure (7. 8>.. . . . . . . . . . . . . . . . . . 7-399

Sorting different shapes (given in Figure 7. 82
according to their complexity as measured by the
average bending erergy. angle regularity,

and the arithemetic and geomztric m2ans of both. 7-368



LIET OF GELORIPTIONS Page XHYI

OEESORETIFTTION GESCRIPTION
HUMEER

2 Static soens analysis: Description of the cell

B Irncremental change description:

ot

=T Gornersted summary of cell locomotion beshawiour

-}

S Giobsl shape analuysiz and description
Thape propecties

Membratve shape description

o

@4 Subipact property global analysis
2. ds Summary of different properties

2

2. 4k Detail'descwiptimn of one property

g Global Structurs Analysis
2. 88 Subpart characierizaestion
2. &b Pzeudopod characterization

3 Pzeudopod characterization and description
sl the wvectors for global cell locometion and
preudoped dynanics as parameters for
Characherization.

2

4 Pzeudopod characterization and description

welrey the weokors For global <ell locomotions

8-40¢

E-407



A

LIST OF

]

. ™4

ol

DESCRIPTIONS Page ZAYII

psaudopod dynamicz and psaudopod
relative location sz parameters for

characterizastion

Classzification of different pgeudopods into

five categorises acoording o their domination

of the Zl1l locomoshicon. by wizuwal obserwation

The result of compsating the wisual pseudopod
characterizations with thosze generated
automatically by the systen. using tuo

vestor  paraneters

The result of Comparing the visual pseudopod
characterizations with those generated

automatically by the system, using three

waotar  parameters



CHAPTER 1

INTRODUCTION

1.1 BIOMEDICAL FROBLEM

/- Cell nmovement is a fundamental process of some
importance to aspects of cell biology as diverse as
migration of cells in embryological development and to host
defense mechanisms. Advances have been made recently in the
characterization of locomotory paths taken by cells in vitro
and how these -are affected by various substances. The
internal aschanisms for cell locomotion are also reasonably

well understood. Howegwver, progrsss has be2n much slowsr as

4o how the cell monitors external substances in  order that

internal nechanisms might be regulsted This interaction
betueen external factors and cell intetrnal processes has o

cccur at or within the cell memnbrans.

The thirty-sighth Symposium of thoe Society for
Developmental EBiology, held in Vancover B . C,  in June of
1979, was mainly devoted to summarizing the current status
of knowledge about c2ll surface (plasma memnbrared. At the

conclusion of the symposium, Wessz2lls stated [Messells, 791



INTRODUCTION Page 1-2

"I+t has become increasingly svident that the c=ll
surface plays a truly pivotal role in the life,
development, and regulation of cells. On one hand, the
surface functions in the transmission of information
from the environment to the cell, and here I mean not
only molecular glgnals., but also mechanical forces
stemming from adhesions and gunctions that affect the
cytoskeletorn and so intracellular activations. The
surface is also in a real sense an  2xpregsion of the

- cell's genetic information and developmental state.
Embryologists and developmental biologists must pay
increasing heed to the cell surface and to its changing

proparties. "

Develaopment in muticellular sukaryotesd(*) pust despend
on mechanisme that extend beyond the usual notions inhesrent
in our concepts of segquential gene activation. For example,
development of an embryo reguires that cells know where they
are and where they should be. There must b2 mechanisms that
requlate this social behaviour of cellzs and more than
intuition informs us that the cell membrane is involued both
as the donor and receptor of such social signals [(Branton,

gal.

The important activities of the cell membrane have now

. e D e Gt Gotm S A T s . T WY S SO e S PP PR P S TS et St e e WS et T St S Ve b D S Wl L e - Bk e e R o -

(#30rganisms made up of cells with ruclei bounded by

nuclear envelopes.
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been documerted in fermz of transport function, receptor
function, and mechanical function, Study of receptor
function and mechanical function have led to the realization
that compornents of the cell surface are mobile in the plane
of the membrane but that this lateral mobility is subgect to
regulation [Singer and NWicalson, 1972; Nicolson, 1976al.
Such regulated; lateral mobility has been the basis for many
hypotheses on the molecular mechanisms wmediating cell
recognition and growth control [Edelman. 1976, MNicolson,

~1976a;bl; In particular. it is often suggested +that the

iﬁteraction of extracellular ligands(*) with their cell
surface receptors alters the distribution of transmembrane
elements that can bind to motility~related proteins such as
actin or tubulin at the cytoplasmic surface of the plasma

membrane [Edelman, 1976; Bourguignon and Singer., 19771.

Although many obsgervations give ocredence %o suizh
hypotheses, 1t iz omly recently that a direct chemical
demonstration of the binding betuweszn membrane and
cytoplasmic comnponants has been demonstrated. If
transmembrane elements can interact with components at  the
cytoplasmic surface of the membrans, one would like to khow
the preczise nature of the binding sites, the affinities and

specificities of the interaction, and the manner in which

- s — Tt o S D M i T N By S st g T S P At e T ey Sawe et s e M . B W o By i Sy Y o . e S A S A S Sy S —

(%) A molecule that will bind to a3 complementary site

on a given structure.
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these affinities are regulated. Some progress has been made

in this direction with the polynorphonuclear lLeucocytes

(PMNY in that binding studies with the chemotactic agent, N
formylmethionineleucinephenylalanine(*}, have been carried
out [Williams et al., 77]. The locomotory organ of these
cells is the pseudopod and changes in pseudopod activity are
the first morphological euents visible aszs the cells trespond
to chemotactic agent=. Sinilarly, lymphocytes also shou
pseudapod activity during locomotion (Lewis and UWebster,
241, and many studies have been done on menbrane bound
liéand interactions in this cell 4type. Little is known of

the pseudopod kinetics of these cells during locomotion.

1.2  OBJECTIVES

As indicated in +the previous s2ction, ps=udopod
formation iz an important property of locomoting cells. yet
presently, there is no existing mathod for quantifying #he
cbsepruvable changes in the membrane shape that occur during
locomotion. Conseqgquently. it 4is difficult to study +the
interaction. at the membrane level, betwsen the cell
internal processes and the extesrnal factors which modify
cell locomotion, Therefore, what is required iz a system to
analyze a zequence of images of a mowving cell $o provide 23

quantification and description Chumerically and

. s e T A i s T Sy W T G4 S i 00w s BN . PG Ve e M P ey e it 4t Bt s e P e Pt s e e v v M o e W S iy O (o T G S

(*) Sometimes abbreviated as: £ Met-Leu-Phe
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sgmbolicailu) of the dynamiz changes in ma2mbrane shap=2. For
example, this study would prove useful in assessing whether
leucocytes sensed & chemotactic gradient by a “"temporal" or
"spatial" mechanigsm [(Zigmond et al., 8i1; Gerisch and
Kéller; 811. Such a study would be of relevance to the
understanding of the role of the cell membrane in the
mechanisms which regulate the social behaviour of the cell,

i. e directed cell migration.

To achieve this obgective using automatic techniques of
digital imzaqe processing, the main goal of this research is
to develop an image interpretation system capable of
analyzing the structural changes in the shape of a non-rigid
mouving ob ject from a g=quence of pictures. To do this, the
system would have +to0 be able to: recognize the various
image patterns, segment and interpret the desired obgect,
and detect the significant (global} changes in the Location,

shape, and striucture of the moving object.

Using this system to analyze the dynamics of blood cell
motion, biologists can obtain +the quantifications and
descriptions of the dzta recessary to understand or  answer
questions pertaining +to the cell behauviour. Figureddi. 1>
illustrates certain concepts for analyzing the observable
changes in the membrane shape in order to understand its
role in regulating and modifying the cell locomotion. This
figure refers %o a moving cell under observation, and a3

bioleogist might be interezted in the answers to threes basic

questions pertaining %o the <c=2ll's dynamic behaviour.
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CELL IN
MOTION

(fRIMITIVE SUBPARTS)

Figure(1.1 )Characterization of the observable changes in
the cell membrane of a moving cell, in order to understand
the nature and distribution of “receptors” on or within the
membrane. The properties of these receptors might ezplain
the interaction between external factors and cell internal
process, and how these mechanisms regulate the social be-
haviour of the cell.
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First, how can one recognize a subpart developed on or by
the membrare as a “"pssudopod"? And if it is a pseudopod, is
it stationary? arowing? or contracting? Second, is 2
pseudopad “"dominant® <(the dominant pseudopod is one which
contributes to the cell locomotion’ or not? If so, what is
its degree of domination? Finally, if all this information
ie at hand, +the third guestionh would pertain to +the
interpretation of this data. For example, why is a specific

pseudopod dominant and anocther not?

Dur system has syuccessfully provided all the
qQantiPication; description. and characterization
information whereby the first two cited basic questions can
be answered. Analysis of the data obtained may provide the

ansuer to the third question.

In these studies we have looked at the pséudopod
responses of PFMN during random and chemotactic motion
primarily because at the commencement of this study we had
ample knowledge of chemntactic agents {for PMN but very
1ittle was kroun of lunphocyte chemotactic agents, Another
aduvantage of commeEncing fthis work using PMN is fthat this
cell exhibits complex shape changes and therefore any
technique deuised to guantitate these changes can readily be
applied to relatively simpler shape forms such as the

lymphocyte.
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13 RELEVENT AREHZ OF STUDY

Consteucting amd implementing a system which has  the
mapabilitiss  of  sccomplizhing  the objectives cited in the

precading zsotion, redulres and represents a merging of four

difterent dizciplines in conputer vision and image
prosessing. They ara: Cal Automatic Processing of
fiicroscopic ITmages, Thd Image Sequence Analysis. (¥ Shape

Frinluysis

Y

aivd Desoriptlion. (42 Enowledge-Based Systems.

Iri Yhe  automstic o digital image processing of  cell

dpans

]

s most of the work has dealt with static pictures of

bBloond =mearz  doe frozen oells) For the  purposze of
classification  or  counting. Frevious work applied to the

Csthudy of mowisg o=ll

1

haz concentrated on  tracking cell

praths ol rather than Fhudyging cell interaction
characteriztics Fur-tharmnore, there is no  existing .sgstem
which  concerns Ltzelt  with the analysis of the structural
chiatiges in the ocell shaps. Conzequently there is no method
aextant whickh guantifies and characterizes‘the observable
chighges in the  cell membrans shap=a dcouring during
locomation. Inde=d, a terainology for these descriptions is
not ewven available. and an obgective of this research was %o

dewalop ome in Sonpenction with phyzioclogists,

Even if we extend our consideration o  the general
problem  of proceszing  dynamic images, this field has been
largely restricted to  motion detection, recognition, and

tracking. Mozt of the prewvious research has attenpted to
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analyze an image sequence by consideting the multitudinous
dats representing the incremental changess that occur betueen
each two sequential frames from tThe sequence. This data
mainly pertained to the changes in locomotion of an bbJect,
rather than the dynamic alterations in itz shape. This is
because most of the work in this field has dealt with the
motion of rigid obgects, having static three-dimensional
shapes. Thus, $wo main issues hawve be2n ignored by most of
the past reseasrch: (a2 shape and structural changes of a
rion-rigid “moving cbyesct, ~and (b> motion understanding and
description. These issuss are among the aspects addressed

in thig thesis.

In ocur current work we are dealing with non-rigid
ocbjects, which change their shape and structure randomly due
to physical properties. Thus, we are considering thrse
kinds of changes with tima: locomotion, cshape, and
structhure. All alter randomly +rom {ramse <o frame and
interact with each other. This randomness in inages
recording cell locaomotion is partially dus to the fact that
the chamber simulating the envirormental conditions of the
live cells under the microscope petmits the cells to move +o
some extent in three-dimensions. Consaquently, the
tvo-dimensional images resulting from filming these cells

are actually recordings of thres-dimensional changes.
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To achieve the obgectives of motion understanding and
description, it is not enough to merely determine the
incremental movements or chénges that occur between
consecutive images [Tsotsos et al.., 881 What is required
is a system which abstracts a description of +the global
motion characteristics from the static and incremental data.
Development of -such a system represents the approach being

taken in our present research in image sequence analysis.

The problem of shape discrimination is a central one %o
pattern recognition and as such has received considerable
aftention in most papeﬁs dealing with recogrition of
characters, waveformns, chromosomes, cells, machine parts,
etc. Most of the work in the perception of shape has used
numerical descriptors in terms of feature measuremsnts such
as sides, arngles, monments, curvature, color, texture, etc.
In our current research, besides the general difficulties of
describing an arbitrary shape in 3 specific image, we are
facing thé following problemns: ‘(a) Estimating the
incremental change iﬁ the shape and structure of a non—-rigid
moving ob_ject. Cby Detecting and characterizing the
structural changes in the morphology of a non-rigid moving
cbject over a period of time from a sequence of pictures.
(c? Presenting 211 of the above descriptions in a meaningful

terminology to the wussar,
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We have developed a procedure which produces a
meaningful symbolic description of the shape and its
changes. We have also developed an expression for measuring
the complexity of an arbitrary shape pattern. This
expression is based on a3 group of selected shape properties
which are irdependent of location, translation, rotation, or
scaling. fAnother shape property is introduced +o0 measure
the degree of curvature regularity (angle or side

regularity> of the shape of an objgect. This property is

shoun experimentally - to¢ play a considerable role in shape

discrimination and is used to describe membrane shape.

An understanding system, esither as a computer vision

system for static scene interpretation, or visual motion

description from a sequence of images, requires the
construction of a knowlesdge-based system. This system
ghould utilize the knrnowledge {frowm diverse sources of
information. consisting of multiple levels of analysis, and

to be supported by an efficient control structure mechanism.
The progress towards the development of knowledge—based
systems for visuwal motion understanding is slow, and the
work whickh has besn done is very limited. In our research
we have utilized the most advanced strategies of comnputer
vision interpretation of static images, merging them with
the experietice gained in image sequence anslysis to

construct a3 visual motion understanding system.



INTRODUCTION Fage 1-12

From a philosophical point of uview, the presant
structure is motivated by  the computer uvision framsuwork
proposed by Levine [Levins, 7el. The latter has been
revised and implemented by Levine and Shaheen for general
static scene analysis and interpretation [Levine and
Shaheen, 811. Low level segmentation has been reported in
[Levine and MHazif, €21]. The approach is based - on
independent procezsses that cooperate through a common
database structure. The system and data structure model for
a :general motion understanding system déveloped in owur
research iz described in Chapter 2 and briefly revieuwed in

the following section.

1.4 NODEL STRUCTURE RND SYSTEM IMPLEMENTRTION

The main input for any image sSsquence analysis system
is a series of two-dimensional digital images representing
the variation in a specific scene along a third-dimension.
- The - functiotri of the system is to gesnerate a description of
the consistent characteristics and behaviour of the movihg
obgectisd recordsd within the ssaquence (ses Figure 1. 2. A
theoretical model for a general dynamic scene analysis and
motion understanding szystemn has b2en developed. I+ involues

three basic entities (Figure 1. 3):

(a» Static d(constant? data: The dats which remains
unchanged during the course of analyszis. They contalin
constraint knowledge pertaining to the class of scenes

and motion undetr analysis, as  well as the control
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Figure(1.2) The main input /ouput data of a dynamic

scene analysis system.
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Figure(1.8) Basic structure units of a dynamic scene

analysis system.
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information describing the pertinent computational

proceszses,

(b> A collection of analysis processes each of which is

assigrned to a particular task.

{c)> Dynamic data: The data which are continually changing
as a tresult of +the fFfunctioning of the different

analysis processes.

The different types of data which may be manipulated by

the system have been classified by the model into:

(a’) Saquence of images: A set of two-dimensional images
which reprezents the wmain input of the system. Each
eglement of thizs set is a static image of the scene at a

specific tinme.

(b> Set of obyects: Each image of the temporal sequence may
be ssgmented into a set of objescts. This set may also
be divided into two subsets according to whether the
object 4is wmoving or stationary. Db ects have comnplex
shapes, and it ig usuwally necessary to decompos2 tham
into primitive subparts. The result of this
decomposiftion is a collection of subobjects associated

with sach object.

(c) Set of features: R set of obgscts is described by
static features, which define the different properties
of shape. structure, or motion of the obgects and

subob _jegczts to be mezsured or analyzed by the systemn.
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<d>» Group of sgymbolic dJdescriptors: A sze2t of =ymbolirc
descriptors or gualifiers is used +o classify and
describe the numerical wvalues of the different

properties of the moving cobjects.

(e> Group of characteristics: Each characteristic is the
description of a group of features which cooperate to
define a specific type of behaviour. These may be
based on +the global changes in +the cell’s shape,
structure, motion, cowmbination of more than one change.
and/or the effect of the environment on the cell’s

behaviour.

(f> 3et of rules: The model which rapresents the knowledge
contains two basic types of data: constraint krnowledge
and rules. The latter may be further classified into
representational and control rules. The
representational rules are responsible for gernerating
the different descriptions and characteristics
according %o the numerical measurements of the
different features. The control rules account for the
activation and scheduling of the Jdifferent systesm

prrocesses.

The dynsmic and stsatic data are designed as  two
associative data memories: a Short Term Memory (STM} and a
Long Term Memory (LTHD. ALl +thes analysis processes can
communicate with both the &TH and LTHM. Both the STHM and LTH

are implemented as 3 relational database, The STM contains
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a record of the instantaneous cell wmotion. shape, and
structural changes., as well as. the current description of
the cell behaviour, The LTM contains the general model of
the morphologu of the cells undet+ analysis, as well as
control information describing the pertinsnt computational

processes.

The system consists of different computational
processes which are designed to execute through a
hierarchial structure consisting of <fthree basic levels:

static, incremental. and global (see Figure 1. 4>,

a)static Scene Analysis: This =step is similar to a
conventional image processing system in that the input
iz a =ingle digital image, and the output is a
description and interpretation of the scene. Howsuver,
in the amalysisz of dynamic images, the Ainformation
extracted from the previous frames of the fame sequence
may also be used as knowledge to assist in the analysis
of the current frame. The main objective of this stage
is to identify the desired moving obgect, segment it,
and deszaribe it in each frame of the sequence (s20

Figure 1. S5a).

(b3 Incremental Change Detection: This is an intermasdiate
step between the static and +the global. The main
obgactive is to detect and describe +the dincremental
changes in shape, structurs, and motion of the mouving

ob_ject <see Figure 1. Sb).
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Figure(1.4) Main processing stages and data
structure of a motion understanding system



19

Page 1

Static
description
STATIC of the cell
—» morphology

Single | 5!  SCENE
and location

fmage() | ANALYSIS
of frame(i)
(s)
Statsc .
description , Description of
of Framef(i) INCREMENTAL the incremental
CHANGE |—fpichanges between
Static DETECTION frame(i} and
description frame(i1)
of Frame(i-4-1)
(b)
Static
descriptions
GLOBAL Global
Incremental ANALYSIS description’
descriptions ,
v
() (CHARACTERIZER)
Figure(1.5) v
??ction and main input/output Characteristic
ata of the basic processing stages Behaviour and
of a motion understanding system. Descripton
of the Cell




INTRODUCTION Fage 4-ER

(c?» Glebal RAnalysis: This 4= the highe=zt level in the
hierarchy of the dynamic scerne analysis system. The
goal is to analyze the static and incremental data in
order +to detect and qescribe the global observable
changes within the segquence of frames. In this way.
the characterization of the consistent dynamic

- behavicur of the cell may be obtained (see

Figure 1. 5¢».

From +the above discussion, we can see that the
separation of ﬁhé knowledge and control information in the
Lfn from +the anzalysis processes will allow for the
application of the system to different classes of scenes or
motion. Storing the dynamic data in an  associative memory
(8TM>, completely separate from the analysis processas, was
necessary in order to achieve the complete independence of
the proceszes. This means that each process will
communicates data to and from the STM and not <o +thes other
processes, a fact which enhances the consistency of the
overall syztem data. Moreover, the complete independsnce of
the analysis processes allows for +the modularity and

extensibility of the systenm.

In conclusion, a system for gquantifying and
characterizing the motion and structural changes in the
shape of a non~rigid moving obgect has bsen developed and

applied to analyze the cell’s dynamic bezhaviour.
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1.5  SUMMARY AMD GEMERAL OVERVIEW

1.5.1  Sunmary

The main function of a blood cell’s surface is ‘o
receive information from the ervironment. Recently,
experiments have indicated that the cell membrane plays a-
vital role in the 1life, development, snd regulation of
cells. However, there is no existing method to quantify the
observable - changes in - membrane shape that occur in
locomotion. To achisve <this objgective using automatic
techniques of digital image processiﬁg; the main goal of
this research is to develop an image intsrpretation system
capable of analyzing the structural changes in the
morphology of a non-rigid moving object from a sequence of

pictures.

R model for a general dunamic s=cene analysis system is
described. It consists of three basic entities: dynamic
data, static data, and a collection of analysis processes.
Based on this model, we have implemented a rule-based image
interpretation system for moving cells. The system consists
of different cooperating computational processes: which
interact with two conmon memories, a Short Term Memory (STHM)

and a Long Term Memory C(LTM). The STH containg a dynamic

record of the ingstantansous cell wotion, shape, and
structural changes, as well as  the current global
description of the cell behaviour. The LTM data are static,

and are implementegd as rules. Theze describe the general
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model of the morphology of the cells undér analysis, as well
as control  information pertinesnt $0o  the computational
processes. The latter are activated by +he control rules
throughout the three hierarchical analysis stages: static,
incremental. and global. They interact through the STM
using the information stored in the LTM, wuntil a complete
description of the dynamic cell motion and morphology is-

obtained.

It is of interest to describe the dynamic activity of
the cell using a symbolic terminology which is meaningful to
thé concerned biclogist. With the aid of the global
observable changes in the cell lozowotion, one of the main
behavicural characteristics is mathematically quantified and
described, name2ly. +the chemotaxis behaviour. This refers to
the directicnal locomotion of the cell with respect to the
directional effect of an external factor. Consequently, the
effectiveness of an external factor on modifying the cell
locomotion is quantified. Also, & mathematical expression
for measuring the complexity of an arbitrary shape pattern
is developed and demonstrated in describing the membrans
shape and quantifying its observable changes. The global
changes in the cell structure are also analyzed; hence, a
subpatrt of the cell is classified as "péeudopod or o2ll
body". and 3 psewudopod is described as “growing,
contracting, or stationary". Furthermore, =ome aspects of
the global behagviour of <the cell are characterized and

described. For exawmple, the "domination” of a pseudopod in



O

INTRODUCTION Page 1-~23
leading the locomotion of the cell.

This study might provide clues +o the nature and
distribution of "receptors" on or within the membrane which
would be a wvital link in the interaction between the
external factors and cell internal processes. Also, it
might lead to the understanding of the roles cell membrane
play in the mechanismse which regulate the social behaviour

of the cell.

I+t is interesting %o riote that this technique is also
applicable to other similar problems. Exanples are the
visual monitoering of the behaviocur of ratse under the
influence of wvarious drug protocols, or the gquantification
and analysis of the changes of growing plants in different

solils or under the effect of different ftertilizers,

1.5.2 Review Of Chapiers

The thesis consists of nine chapters. Chapter 1 is the
introduction which briefly describes 2all the aspects and
objectives of our current research. Chapter 2 is a reuvieuw
of the significant work which has been dore in the relesuant
areas of study. These are: Ca> Imsge Seguence RAnalysis,
(b> Shape HAnalysis and D[Description, <) Knowledge-Basad
Systems, and (d} Rutomatic Frocessing of Microscopic Images.
The critigues which are presented in this chapter ars aimed
at: <(a) A birief review of the significant work in each of

the cited figlds., focusing attention orn those relatéed to aur
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research. (b?> Analyzing and summarizing the progress  in
each of these fields as a gained experiences. {c> Comparing
our current work in this research to that which has preceded
it, and demonstrating <the posgsibility and advantages -of
integrating the experience from the different fields in
order to utilize it in our present study. Although, we have
restricted our review ity this chapter only to the work that
is relevant to our research, the resulting critique is
lengthy. Therefore, the busy reader may wish to only refer
to Seétions 2.2 4, 2.3. 11, 2:4. 7, and 2.5.7, which repressnt-
sunmnaries of the progress in sach of these fields and the

contribution of our work in each.

The system and data structure of a3 theoretical model
for a genetral dynanic scene analysis and motion
understanding system is discussed in Chapter 3. Th2 chapter
includes five sections. Section 2.1 is an introduction and
general overview of the present structure. The data
gtructure and krowledge representatinon is pres2anted in
Section 3. 2. Thig section defines all +the +types of data
which may be manipulated by the system and the basic
elements for Knowledge tepreszentation, as well as their
mathematical definitions. Section 3.3 describes the
structure of the rulez that are reszponsible for krnowledge
representation, and Section 3 4 describes those associated
with the control structure of the system. The las+t

Section 3.5 is a summary.
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Chapter 4 describez the lowest leuvel of analysis, that
is, static scene analysis. The main objectives of this
stage are to identify the desired moving ob_ject. segment ift,
and describe it in each frame of the sequence. This stage
consists of the four main processes shown in Figure (4. 1),
The first process is concerned with the extraction of the
- gell under anhalysis from the input image; +this is described
in Section 4.2. fin algorithm for generating the polygonal
approximation of +the cell bhoundaries is described in
Section 4. 3. Section 4. 4 presents the approach for
decomposing the cell into its primitive subparts. A
discussion pertaining to the selection of the prop=rties to
be measured, and their theoretical definition is given in
Section 4. 5. Finally, Section 4.6 details a process which
summatr-izes the cell morphology to generate a description of

the cell in the current frame.

Given the location and gecmetric features of the c=211
in two different frames, Chapter 5 presents processes or
detecting, qualifying, and dessribing the incremental
changes in the location, shape, and structure of the cell
and its subparts betuesn the two frames (see Figure 5. 11
The discussion in this chapter is given in the thtree main
sections 5.2, 5.3, and 5. 4. They describe the changes in
the location. shape, and structure, respectively. In esach
of these sections, the different aspects associated with
incremental change deta2ction, gualification. and description

is discussed. Section 5.5 is a sunmary.
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Chapter & describez procezses for global locomofion
analysis and description (see Figure 6. 25, The input data
for this stage are the static location of the cell in =ach
frame, the incremental displacement, and the direction of
motion between two sequential frames. The output is a
description of the cell locomotion beshaviour. First, the
automatic cell tracking to construct its path, and extract
the path parameters is described in Section 6. 2. This
includes a description of wmethods for reconstructing a
smooth and simple cell path in order to retain a record of
the significant changes. Alzo, techniques for detecting and
removing any artifact of cell mnovement due to noise or
undesirable experimental conditions are demonstrated. Thenh,
the motion analysis and description is discussed in
Section 6. 3. Based on measurement parameters of the ¢ell
path, a quantification and symbolic description of the
chemotaxis behaviour of the cell is provided in Section &. 4.
In this way. the effactiveness of an external factor on the
‘global -cell locomotion is  quantified and described.
Finally, in Section 6.5, a summary of this chapter is

presented.

A quantification and sumbolic description of the
observable changes in the zell shape is given in Chapter 7.
Figure (7.1> shows the main processes and data structurss
uged in shape analysis and description. The input to this
stage of the sysztem congists of the static and incremental

description of +he sghape properties in and betwsen =ach
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frame, The output consists of a summary describing the
changes of the cell shape and their characterization. The
methodologies and processes which are used <o accomplish
this are discussed in Chapter 7 in the following order. The
basic methodologies and techniques for detecting the global
changes from the static and incremental data are described
in Section 7. &. Description of the global changes in each
of +the main shape properties is givén in Section 7. 3. In
Section 7.4, we show experimentally that an individual shape
property i not sufficient fto describe an arbitrary shape.
Also in the same section: we discuss the development of a
mathematical expreagsion for the membrane shape measure. In
this way, the global changes in the cell membrare shape can
be characterized and described. Finally, Section 7.5 is a

summary of the chapter,

Two main issues are addressed in Chapter 8, global
structural analusis, and characterization of global dynamic
behaviour. The objgective of the first issue is 1o analyze
the static and incremental structural descriptions in order
to generate & summary of the global structuwrsasl changes.
This analysis includes techniques to detect anhy false
decompositions of the cell in the low le2vel processes. due
to irrelevant change, noise; error in the segmentation. or
experimental conditions. Using the LTM rules, we show how
to reconstruct the cell structure by modifying the low lauesl
decomposition using high level information for feedback.

Besides generating the description of the global obssrvable
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changes in the c¢ell structure, a description of the
morphology and locomotion of each individual subpart is
given for the pericd of time it appears. In this way, a
subpart of the cell ig classified as pseudopod or cell body.
Then a pseudopod is described as stationary, growing, or

contracting.

The second part of Chapter 8 is concerned with the
integration of <+the +three global aspects pertaining *o
locomotion, shape, and structure, in order t0o understand and
characterize tThe dynamic behaviour of the cell. In this
hiéh level process. the symbolic description of the
observable changes in the cell shape. structure, and motion
are +the essential data +o characterize the consistent
dynamic behaviour of the cell. The last section of
Chapter 8 discusses one of the basic guestions related +o
understanding the role the cell membrane plays in the
mechanisms which regulate its social behaviour. That is.
the domination of a pseudopod in the global locomotion of
the cell. Thus, a characterization of the degres of

pseudopod domination is defined.

Finally. in Chapter 9, the rezesrch is summarized and
discussed. Different exparimental conditions and results
are also presented, A evaluation of the computer analysis
and characterization is given basad on a compawison to those
obtained by a physiologist. The possiblity of dJdifferent

applications and future work conclude the thesis.
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Two appendices hawve been added at the end of the
thesis: Appendix (A’ presents a short mathematical proof of

the formulas that are uszed +for measuring angle and side

regularity of the contour of an arbitrary shap=.
Appendix (B> describes the laboratory methods and
facilities. including blood cell preparation and the

computational facilities.



CHRPTER 2

A CRITIGUE OF THE LITEEATURE

2.1 INTRODUCTION

The main objective of our ressarch is +t0 design and
implement a knowledge—based system capable of analyzing.
understanding. and describing +the visual motion of a
non—-rigid moving obgect. Using this system for quantifying
and chara&terizing the structural changes in the morphology
of a moving cell from a sequence of pictures, we may be able
to understand and describe the cell dynamic behaviour.
Constructing and implementing a system which has these
capabilities requires and represents a merging experience at
the intersection of four different disciplines in computer

vision and image processing. They are:
(a?» Knowledge-based Suystems,

(b> Image Sequence Rnalysis,

{c? Shape fAnalysis and Description.

(d} Automatic Processing of Microscopic Images.
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The recent rapid growth in 2ach ot these fields of study
makes an exhaustive survey of any one of them a thesis on
its own. Tablec2. 1> gives some of the gighificant
references and gurveys in each‘ field. Howewver, the

critiques which are presented in this chapter are aimed at:

{a’> A brief review of the significant work in each of the
cited fields focuzing our attention on those related to

our research.

(b>» Analyzing and summarizing the progress in each of these

fields as a gQained experiencs.

(¢ Comparing our current work in this research to that
which has preceded it, and demonstrating the
possibility and adwvantages of integrating the
experience from the different fields in order ‘to

utilize it in our present study.

The review in th%s chapter 1s organized as follows:
First, the general problem of analyzing a sequence of images
ie discussed in Section 2. 2. This section shows the rapid
progresgs in this field from empirical technigues for change
detection betugen two images based on low~level pixel
comparison methods, to the recent trend of using high-level
global symbolic descriptors for visual motion understanding.
Second: the problem - of shape pefception is described in
Section 2.3 as a composition of two hierarchical processes,

shape analysis and shape description.
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TABLE(2. 17

R G TR SR S S S
R W WA S A

(1) Image Sequence RAnalysis:

{Martin and Aggarwal, 78] survey
[Nagel, 78,791 survey
(Scacchi., 791 survey

IEEE, Trans. on Pattern RAnalysis and Machine
Intelligence. Yol. PAMI-2, No. &, Nov. 198g@.

(2) Shape-Analysis and Description:

[Pavlidis., 78,861 surveys
[Meagher, 721 survey
"Structural Pattern Recognition®,

Springer_.VYerlaq, New York. 1977. book

T. Pavlidis, (ed. >

(3) Knowledge-Based Systens:

[Levine, 78; Hanson and Riseman. 78a; 78bl articles
"Computer VYision Suystems" book

A. R. Hanson and E. M. Riseman. <(eds. s,

CRychener, 811 Bibliography
*Pattern-Directed Inference Systens® book

D. A. Waterman and F. Hayes~Roth (eds. &

(4) Rutomatic Processing of Cell Images:

CLPreston., 761 article, suruvey
Pigital Picture Analysis in Cytology.

in "Digital Picture fAnalysis"

CBartels and Wied 771 suruay

IEEE, Trans. orn Fattern Analysis and Machine

Intelligence., Yol. PAMI-2, No. 5, Sep. 1980.

Table (2. 1) Major references in areas related to research in
understanding the dynhamic behaviour of non-rigid moving
ob ject.
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The different technigques and algorithmz developed in each
stage are discussed. as well as the advantages and
disadvantages of each sgcheme for different applications.
Third, in Section 2.4 the art of the "knowledge engineer" is
discussed through the different strategies for the structure
and implementation of knowledge-based systems. In this
respect, two major prablems are of interest: knouwledgsa
representation, and the control structure which makes an
efficient use of this knowledge. Different approaches to
these problems are discussed. Rlso. examples of
knowledge~bagsed syztems for computer wvision and visual

motion understanding are reviewed in Section 2. 4.

2.2 DYNAMIC SCEME ANALYSIS

2.21 Introduction

The input data t0o a static image processing system is a
digital image which 1is obtained by quantizing the sensor
signal from one or several spectral channels at each grid
point of a two-dimensional raster. If this sampling process
is extended to include time as a third dimension, the
resulting samples are a sequence of images. The dynamic
scene ahalysis system is the system which analyzes this
sequence of images by studying the wvariations from frame
(image? to frame dus to the motion of an object(s) recorded
within the sequence. The objective of this analysis is to
describe the observable changes throughout the sequence of

images in order to study or charascterize the behaviour of
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the moving obgect(s) (see Figure 1.2). The system which
attempts +to solve this problem thoroughly is attempting to
imitate visual notion parception. This parception
constitutes a hierarchy of processes which include motion
detection, understanding. and description. R1l of these

aspects are addressed by this thesis.

Image sequence analysis differz from scene analysis of
one image in that not only must information be extracted
from each frame. but in addition, information must be
extracted from +the sequence as well. This means that the
détails derived from 2ach image mnust be integrated into a
coherent whole. This integration is not a simple
compilation of facts because changes in +the scene are
continually coccuring due to the motion of the sensor or the

obgect(s> in the scene [Martin and Rggarwal. 78],

On the other hand, image sequences provide information
which may assist vthe analysisg, so that wmore efficient
results may be obtained. Thus, the results of processing
previous images from a sequence may be . used to guide
segmentation and feature extraction processes of the current
image. Also, the results of processing later images may be
used Yo clarify ambiguities (for example, due +to ocbgyect
occlusion or poor image guality) in previous images [Yachida

et al., 781 o
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Ulstad [Ulstad, 73] has related the history of this
problem +to +the work done in 1928 by S$tillman which was
concerned witﬁ the detection. using analog methods, of small
changes between two photographs. However, most-of the work
that has beenn undertaken on image sequence analysis is
relatively recent, depending. as it does on digital image
processing. Attention to the analysis of image sequences as
a field of study 4in its own right was actually only started
in 1979 when the first international workshop took place.
The -~work: on -sequence image analysis in the last few years
has been quite extensive. This fact can be realized from
the recent survey by Nagel [MNagel, 791, In this survey, he
reviewed some (not all) of the aspects of sequence image

analysis; 517 articles are cited by 683 different authors.

In ordetr to focus our attention on the main trends of
our research, the review of the previous work in image
sequence analysis will be restricted +o “three sections.
First, the majgor recent surveys in this field will be
discussed [(Martin and Rggrawal. 78; Nagel, 7?8; 79; Scacchdi.
791, Second, the individual work which is directly related
or employs similar techniques to those we are using in our
current research is reviewed. In the third section,
conclusions and general remarks are given, az well as a
comparison of our current research with the previous work

done in sequence image analysis.
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2.2.2 REVIEW OF SURYEYS

2.2.2.4 [Martin And Aggarwal, 78]

The first survey to review the work in dynamic scene
analysis was presented by Martin and Aggarwal [Martin and
Aggarwal, 781, They firet discuss the perception of motion
in bioclogical systens. Then, in +the remainder of their
report, they review the different literature in dynamic
scene  analysis under two classes: motion detection, and
motion analysis. The following is 3 brief review of this

paper.

In the perception of motion in biclogical systenms,
Martin and Aggarwal defivne two phases of visual petrception:
peripheral and attentiuve processes. The peripheral process
must be able +to detect motion and direct the attentiuve
process to it, while the latter must be able <+to +track the
movement and attend to the details of the obgject in motion
[Chien and Jones., ?51. It is claimed that these two phases
of perception are not cognitive processes  A higher lewel
cognitive process ig probably reguired to relate both of
these processes ‘o the current “psychological set" of the
persor, his knowledge, and expectations. In this discussion
of motion perception in a biological system. Martin and
figgarwal refer to the vork in [Johansson, 75; Hubel and
Wiesel, 59 Lettvin et al., 59 Barlow and Hill, &3

Mackay. 61; Schouten, 6&71.
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In terms of the structure »of the biological wvision
systems, Martin and Aggarwal define and describe the dynamic
scene ahalysis system and its role. They address two basic
functions: ca’ to assgociate ‘“"semantically identical"
images. (b> to solve the occlusion problem. The different
techniques in dynamic scene analysis are classified into two
main classes: motion detection (peripheral process), and
motion analysis (attentive process). The methodologies
which have  been used for motion detection were mainly
concentrated on crozs-correlation and image differencing,
whereas in motion analysis, the centroid matching and shape

analysis techniques were used.

In the crosg-correlation technique, the
"cross-correlation coefficient" is computed (using the FFT)
for each pairing of pixels in a section of an original
picture +<to0 a candidate one in the second picture. The
candidate section which yields the maximum coefficint is
chosen as <the wmatch Most of the systems which hauve used
cross—-correlatiorn techniques were originaly designed +or
estimating cloud motion. Among these is the work by [Leese
et al. ¥8; 7l Smith and Phillips, 728; Lo and Parikh, 73;

Arking et al. ., ?¢51.

The image differencing techniques are based on
determining areas of change betwesrn two different images of
the same sequence. The areas of change are found by a
simple subtractive process. Therefors, the images nust be

carefully normalized, with respeact to both spatial
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coordinates and intensity value. Thus, these type=s of
techniques do not attempt +to recognize any particular
feature in either of +the two images; consequgntlg; thay
cannot describe any of the motion features. Examples of
systems which have used +this type of <technique were
presented in the work of [Lillestrand, 72; Ulstad 73; Limb

and Murphy. 73, Nagel, 761.

In the centroid matching techniques, the obgects are
reduced +to centroids, making spatial location the only
feature of the‘ ob jects. While +this approach makes the
sélution to the tracking problem rather simple, it destroys
all the features needed for shape analysis or solving
occlusion problems. Centroid coordinates as deszcriptors of
objects are used in the tracking approaches of ([Endlich =%
al., 71, Greaves, ¢5; Levine and Yousset, 78; Levine ot

al., 81)].

In summary, the review by Martin and Aggarwal discusses
two low level supposedly hon-coghitive processes o analyze
a sequence of images, motion detection <(peripheral’r and
motion analysis J(attentivel. Their study leads to the
conclusion that additional resesarch is needed t9 derive
systems which use both levels of analysis, as well as
employing higher level cognitive processes to exploit the
parallelism inherent in the visual process. The first step
taken in this direction was by Badler ([Badler, 741 in
generating a scenario from a se2quence of two-dimensional

images.
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2.2.2.2  [Nagel, 74]

The first comprehensive survey to discuss the problem
of motion analysis based on a digital image sequence was
presented by [Nagel, 78l. In this survey, the analysis of
image sequences has been emphasized in two main aspects:
First, the different experience in image sequence analysis
is evaluated according +to specialized application areas.
Second, thée schema within which the different approaches are
" organized, according to the techniques used for interfrane
comparison. The different apptoaches for interframe
comparison are classified by Nagel into the following six

categories:

(4> No Interframe Comparison: The approaches included in
this category use only interframe image processing
techhiques to derive a sequence description which is
subsequently evaluated by diftferent means such as human
perception ot non-pictorial data processing. Since the
frames of a sequence are not compared with each other.
no dissimilarity function is required. For example, the
sequence description of Tasto [(Tasto, 73; Tasto et al..,

731 consists of a zeries of ordered lists of coordinate

pairs. Each list represents a left vertricular contour
at sach frame of +the sequence. Other approaches by
[Jones, 74; Chien and Jones, 751 can also be included

in this category.
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Indirect Interframe Comparison: In this category. the
comparison 4is performed indirectly by detecting the
change in a specific measured feature Ffom sequential
images or uwindows of the images. For example, Uno [Uno
et al., 76] inspected the displacement of an object
moving horizontally from the center of a fixed window.
This displacement is assigned a8 positive or negative
value, depehding upon whether the object ﬁassed th;
window centar or not. Then. an interframe comparison is
performed by detecting the signh change in the subsequent
frames. The indirect interframe comparison in the work
of Tasto [Tasto, 73;74]1 is performed by finding an
initial estimate for a left ventricular contour. which

is then tracked in the subsequent frames.

Dissimilarity Grading: The approaches which belong o
this category require that images from the sequence are
registered with respect to each other, as in video frame
sequences from stationary camneras. These approaches are
mainly based on detecting the changes in +the grayvalue
of the corresponding raster position betwesn two
sequential images. The number of raster points (pixels?
which is wused as a neighborhood for determining the
change ate defined by [Magel, 781 as the ORDER of the
descriptors for the dissimilarity grading. He discusses
different approaches: using a different ORDER of
descriptors. In general, most of the algorithms uvhich

assign the different components of an image of a
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sequence as stationary or non-stationary, use techhigues
which can be categorized as dissimilarity grading. For
example, in the approach of Hogg [Hogg, ?6:771, the
non-stationary image components are determined by change
detection with respect to a reference frame. The
descriptor inuvoluved in the dissimilarity grading is the
pixel grayvalue (ORDER = 1). The velocity determination
for uideo images of moving obgects is demonstrated by

Nagel [HNagel. 7?81. His techniqu? is based on sevetral

- - approaches [Limb -~ and Murphy, 7Sa; ?5b; Cafforia  and

(4>

Rocca, v6:; Fennema and Thompson, 781.

Similarity Search followed by Dissimilarity Grading:
The interframe comparison technigques which belang to
this category use a similarity search procedure it order
to find <the best match betwsen the substructures from
the two images to be compared. Once sufficient
correspondence is achieved, both images can be
registered on a single raster in order to determine the
difference (dissimilarity gradingd. The early
approaches in this category are rarely made explicit.
Nor do they even provide, in a formalized manner, the
appropriate substructures, their descriptors, and the
way the similarity search is guided [Nagel, 781 The
gimilarity search between the two images to be compared
by Price ([Price, 76, and Price and Reddy, 771 is
performed by comparing +the description Cgroup of

gelected features) for each region from one image with
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the description of each region from the other. Then,
the digsimilarity grading may be performed in more than
bne way. One alternative consists of comparing the
actual feature values of best-match regions. In fact,
the approach of Price has, to some extent, a common
basis with our technique for incremental change
detection; +therefore, a detailed description of his

work is presented in a later section of this chapter.

Dissimilarity Grading, followed by Similarity Search:
In the approaches assigned under this category, first, a
dissimilarity grading procedure is used to detect areas
wvhere changes have occurred (non-stationary components’.
Then, these non-gstationary compornents may be +tracked
from frame to frame C(using a similarity search) in order
to gather more information pertaining 4o the mouing
obgect. Consequently, ’a complete description of the
ob_ect dynamic behaviour may be generated.
DPissimilarity grading 4is illustrated in the work of
[Yachida et al., 7281 by selecting non-stationary image
components which are subsequently tracked from frame *o
frame using several descriptors. Technical details of
Yachida“’s work will be given in a later section of this
chapter. Another example of approaches belonging +*o
this category is in the work of ([Nagel, 781 Two
subsequences (A, B> -were chosen from a series of
TV-frames so <that +the image of a moving obgect in a

frame from subsequence B never overlapped the obgect
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image in the corresponding framez of subsequence A
Then, a dissimilarity function was defined. It was
based on the likelihood ratio for the hypotheses that
-the grayvalues observed in the overlap of <two regions
from different frames had been sampled from the same or
from <two different normal graylevel distributions.
"Finally, the similarity search is performed using the
cross~correlation of segment edges for candidate images

from adjacent frames.

(6> Similarity Search: Most of the approaches which are
| concerned with tracking moving obgects through a
sequence of images can be assignhed +to +this categoty.
The similarity search procedure is frequently applied
using cross—correlation techniques [(Leese et al. °8; 74
Smith and Phillips, 72; Arking et al., ?51. Another .
set of approaches assigned to this category, are those
which are based on centroid coordinates as descriptors
for <tracking mowving objgects [Endlich et al. 71,

Greaves, 75; Levine and Youssef. ?781].

The survey of {[Nagel, 7?81 discusses the different
aspects of image sequence analysis through a review of the
different approaches and techniques which have been used.
These are classified and discussed according to: <(a}) their
application areas, (b> the methodologies they use for
interframe comparison. Discussing the different approaches
according to their application arsas is the main objectiuve

of an extensive recégEnt survey by Nagel [Nagel, 791. This
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survey is reuviewed in the next sction. The techniques usad
for interframe comparison are classified into the six
categories listed above.‘ The purpose of this classification
is to demonstrate the wide variety of possibilities for
interframe comparison at different levels; from comparing
individual pixels from different images +o comparing

symbolic descriptors.

Aspects like segmentation and welocity determination of
moving obgjects., in terms of interframe coding, are discussed
by Hagel ([MNagel, 78]. The survey concludes with remarks on
tﬁe overall field. Specifically, the question. " What
conclusion may be drawn {from obserwvable variations in
descriptor values for the image of a moving object?". In
other words, can a global description b2 generated from the
observable changes?. To achieve this type of description.
problems such as +the loss of a +tracked object due to
occlusion, or poor image conditions, must be investigated on
a global level. In this respect, Magel suggests that the
research in the analysis of image sequences could contribute
to the task of modeling the dynamic environment (model-bas=d

systems),

A final, noteworthy, remark by Nagel is that
researchers working on the analysis of image segquences
should be aware of the increasing diversity of‘ applications
as a gained experience. Based on this suggestion, he has
made a considerable effort +to gather the accumulated

individual experience and investigations from different



LITERATURE CRITIQUE ‘ . Page 2-435

applications and has presented them inn a coherent review
This application-oriented survey by MNagel [Nagel, 791 is

briefly discussed in the next section.

2.2.2.3 [Nagel, 79]

R thorough digcussion -of the analysis of image
sequences is given 1in the most recent survey by Nagel
[Hagel, 791. In this survey, more than five hundred
articles have- been listed from & wide scattering of
application-orisnted Journals. conference proceedings,
periodicals., texts, and technical raports. This
well-documented article will appear as a chapter in the book
entitled "Image Sequence Analysis" and e@ited by T.S.
Huang. The different areas of application are organized by
Hagel to include: coding “of image sequences, processing
image sequences {from a2irborne and satellite sensors, medical

applications {image sequences of the human body>,

"biomedical; behavicural studies, object tracking in outdoor

scenes (traffic monitoring and target tracking), industrial

automation and robotics, and spatial image sequences.

The main ob ective of the survey is to demonstrate the
parallels between the different application areas, so that
the commonalities in basic problems, processing techniques,
and underlying concepts may become discernible. This
investigation might facilitate the +transfer of solution
approaches from one application to another. Another

advantage is that the development of szome application areas



LITERATURE CRLUTIOLE Page 2-46
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a system iz referred to by Scacchi [Scacchi, 7?91 as an
"intelligent systemn", which is the sub ject of our discussion

in the next section.

g.e.2.4 [Scacchi, 79]

The review of [Scacchi, 791 is different from both that
of ([Martin and Rggarwall 77; 781 and [MNagel, 78;79], in that
it is not survey~oriented, but is mainly concerned with the
structure- of an "intelligent” system for visual motion

perception, analysis, and understanding.

Scacchi has built his discussion on the Jliterature
applicable <o visual motion perception reviswed from topics
which include scene analysis, hardware-based vision systems,
computer animation, artificial intelligence, and human
motion perception. From the revisuw of this literature. he
has attempted to define the attributes and internal
structure of an intelligent system which would simulate
(model?> human visual motion perception. His study led to
the conclusion that the solution to achieving this objective
is implicit in the design of a knowledge-based computar

vision system.

Thus, Scacchi‘s study concerns +two related subjects,
visual motion analysis C(image sequence analysis), and the
structure of a knowledge-based system capable of performing

this analysis. Both subjects are the main concern of our

- current research. Therefore, Scacchi’s report will be
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transforms wotien into descriptions. Whereas, in computer
animation., the system <tTranslatezs +the descriptions into
motion. ODne of +the most commonn techniques used in the
production of animated films is "key frame" interpolation
[Burtynk and Wein. 78l. It is worth mentioning here that
some steps in our approach to the extraction of the changes
in static and incremental data, are similar to this

technique.

fAccording to Scacchi, wvisual wmotion analysis by an

intelligent system requires different analysis strategies

depending upon the viewing situation. He defined three
different viewing situations according +to the "motion
vantage perspective™: (a)> stationary observer and mouving

objects, (b)Y mouing obgerver uviewing stationary objects, and
(c? moving ocbserver viewing mouving ob jects. Based on these.
he discussed the knowledge and control requirements for a

visual system (see Section 2. 4).

An intelligent vision system should exploit the wvisual
knowledge egmbedded in a cohersnt image sequence. the
so-called "ob_gject motion coherences". The latter is defined
- in  [Scacchi, ?39) as a low-level property of visual motion
knowledge. This knowledge is similar to that which humans
use when viewing an image sequence; that is, if an object
is recognized at a given moment (frame of the sequencel, it
is still <the same obgect in sight until the scene changes
(in a later frame>’, Thus, an intelligent system should rely

more on high-order knowledge, description, representations,
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and processing to recognize the key frames, those in which
obgyect features change unexpectedly. We observe that a
high-level of recognition should be suppotrted by such &
low-level processing procedure. Thus, when new object
features appear, or when the existing features change, a key
frame is initiated <(see Section 7.2 1 for more detail on

this methodology).

In this section, we have briefly reviewed the study of
Scacchi in wvisusl motion analysis: and his view of the
function of an intelligent system for that purpose. The
rémainder of his report discusses the basic requirements for
constructing such an intelligent system, to be reviewed in
Section 2. 4. However, in conclusior, Scacchi suggests that
a system for wvisual motion analysis and understanding must
be organized around descriptive ~multi-—level knowledge
sources, whose interactions are directed by continually

emergent, digtributed control processes.

- Certain recent empirical approaches which follow this
new trend and/or are related +to our research. have been

selected for discussion in the following sections.
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2.2 Review Of Relewant Work

e.2.3.1 [Yachids Et AL, 78]

Yachids et al. [Yachida et al., 781 presented a system
that detects and tracks live moving objects. They observed
fishes swimming in a vat, in order to study their behaviour
under a wvariety of stimuli, such as lights or tones. A
sequence of ZE6E-238 frames racorded for periods of betwueen
2-32 secondg (8 frames per second) were obtained through
either video tape {(connected to an overhead camerad or cine
film. Yachida et al. addressed three main problems to be
solved by their system: Ca> developing an efficient
procedure +to process a large number of frames, (b) to solve
the difficulty in boundary detection due to blurred images.

and (c? to solve the occlusion problem.

They successfully designed a sophisticated image
sequences analysis systen which has thes following features:
(a) identification of the mouving ob_gects from images which
are often motion~blurred. (b> using the analysis results of
previous frames %0 guide a feature extraction process in =&
current frame, (¢?» employing shape prediction in order o
disambiguate situations where one object occludes another.
and dd> wusing the results of later frames, to reanalyze

previous frames, where uncertainty existed
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In genersl, the system of Yachida et al. is an
efficient one for motibn detection and tracking moving
obgjects. Houwever, their work does not include global motion
analysis: or gshape change detectior, quantification, and

analysis; these aspects are considered in our present work.

2.2.3.2 [Price fAnd Reddy 77]

As discussed previously in Section 2.1. 2.2 regarding
-change detection: Price and Reddy ([Price and Reddy. 771
describe a technique for symbolic tegistration and change

analysis.

The two images +o be compared are segmented partially
or completely using & region sSplitting algorithm. The
segmnented regions are described by features including size.
intensity, location. circularity (perimeter squared divided
by areal, orientation, elongation (length~to-width ratio’,
as well as a combination of these features, and relatibns
between a region and ites neighbors. The feature based
description of the gegmented image constitutes the symbolic
representation of +the inage. A similarity search_ is
performed by comparing the symbolic representation of the
two images in order to determine the corresponding regions
in the +two images. These results are wused o analyze
changes in the corresponding regions {(dissimilarity grading)

which occurved betwesen the two images.
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It is important to note that +the work of Price and
Reddy provides explicit means for introducing domain and
task knowledge <+ each stage of the processing. For
example, in <the similarity search, each feature difference
is multiplied by a strength factor which could be chosen by
the user ‘o reflect specific knowledge on the relevance of
this feature for the current domain, task, or state of
search. This methodology for introducing outside knowledge
and task description., is a step towards the development of a
—rmore? general system, rather than Just solving a specific
problem. However: the use of a general analysis system
introduces the problem of specifying and incorporating task
- krnowledge., which is not encountered in a special purpose

system.

In conclusiorn, the research of Price and Reddy
represents an initial effort towards the development of a
general system for sumbolic change detection and analysis.
Although +they concentrated their work on <the symbolic
description of the change between two aerial or satellite
images, their results provided important incentives +o

adapting them for use in image sequernce analysis.

Our current wark, concerned with incremental change
detection and analysis Can intermediate stage between the
static and global shalysig), is to some extenf similar +to
the work of Price and Reddy. This similarity rests on the
use of symbolic descriptions and analysis. Rlso, the

- knowledge and task description are expressed explicitly for
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each stage of the processing. However, in their report:
they neither specify the type of symbolic descriptors they
employ, nor the nethod of quan%ifging the changes
symbolicallu. These aspects are addressed in our current

work (see Section 4. 6>.

233 [Tsotsos, 76l

An extensive and significant work on motion detection,

-representation, understanding and description has been

carried out over the lazt few years by Tsotsos at the
University of Toronto. In an early work by Tsotsos
[Tsotsos, 76], he describes a scheme for recognizing the
motion of an. ob_ject from a sequence of images in order to
describe them symbolically. This work has its roots in the

research of Miller [Miller, 721 and Badler [Badler, ?51.

Miller has analyzed the English motion wverbs and
directional preposgsitions. He prowvides a classification of
Ernglish motion verbs using a hierarchy of primitive motions.
Badler was the first +to use such symbolic components as
descriptors in temporal scene analysis, although he did not
work with real images. He considered image sequences when
attempting to provide Erglish descriptions of object
movemnents. Badler’s work provides precise definitions for
directionals and adverbs, and he also outlines ideas on +the
representation of the semantic components of the verb, as

defined by Miller.
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particular problen domain

Tsotsos has defined +two main difficulties with his
specific application, the analysis of cinecardioangiograms:
(a> the huge number of images +to be analyzed, (b> the poor
quality of +the individual images due to ¥%-ray dosage
limitations. Alsow: he has defined and classified the

important aspects of motion understanding as follows

(1> Computer Vigion (a» image segmentation and
object recognition (b> object description <{c> “motion-
detection (d> motion +tracking <(ed interimage movemehnt

description.

(2> Representation of Knowledge : (a) general temporal

concept representation <b» problem domain motion concept

representation {ed recognition biased knowledge
organization.
(3> Recognition Control Structure : (a) integration of

descriptive and wvisuwal concepts <(b> change and focus of
attention mechanisms {cl temporal segmentation Cod?
disambiguation due +to object ccclusion (&) goodness—of-fit
measures (f) generation of low-lsvel guidance (g’ scane
sampling rate conisiderations Cho artifactual wmotion
handling. 1i.@.., "teumporal noise” (i) generation of sequence

gpanning descriptions.
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The motion concepts sre represented in a hierarchial
structure. Each levzl down the hierarchy provides a more
detailed form of description f§for the motion concept,
spanning all the levels between the most abstract motion
terms to the picture elements in +the image. In +this
hierarchy, each motion concept is represented within 3
"frame". Each frame has an arbitrary number of "slots" that
form 4its parts. Each slot has an associated “typ=" that
refers to another frame:. thus defining a "PART-0OF" hierarchy

of description.

From the above review of Tsotsos’ work, we may conclude
that based on +the liguistic analysis of motion verbs bu
Miller, and the symbolic description of movement of an
ocbgyect by Badler. Tsotsos was the first <o develop a
methodology for representing and describing motion concepts
from a sequence of imnages. Thus, he has achisved 2
significant advance toward +the development of a general
Framgwork for motion understanding, based on khowledge
representation and & symbolic analysis and description of
the semantic motion concepts. This framework is being
tested through an onhgoing progect called ALVEN (¢ R Left
Ventricular Wall Motion Analysisz Consulftant). The ob_jective
of RLVEN is to analyze films of th2 human left ventricle in
order to generate a conceptual description of the shapes and
motion exhibited by the left ventricular wall: noting

abnormalities and unusual occurances.
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In spite of the as jor differend&s in the technicalities
of Tsotsos’ work, and the work deuv2loped in out current
research, theoretically there are two similarities in both
approaches: First, both are based on a knowledge-based
scheme. Secondly, the extraction and symbolic description

of the global changes are common objectives.
The differences lie in the following factors:

(1> Data Structure: In Tsotsos’ model, knowledge is
represented through a hierarchial data structure consisting
of frames and slots, whereas our model structure is 3

rule-based syustem.

(2> Control Structure: In Tsotsos’ frameyork: the
control structure is baged on hypothesis and prediction,
which depends on the existing knowledge of the model
(model-drivend. Our control structure is based on
condition—~action rules. which depend on the occurence of

observed events {(data-driven).

(3> ARpplication Domain: Tsotsos” framework is
restricted %o certain problem domains in which motion
concepts are definable, such as human gait patterns or heart
wall motion. These restrictions do not apply to our system.
Thus, the knowledge pertaining to the class of scenes wunder
analysis ig represented in the LTM as a set of local
(primitive> constraints related to the physical properties
of the objgect and their motion capabilities. Examples are

maximum, minimum. or average dimensions of the obgect in
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pixels, and maxinum poseible displacement during a given
time period. Moreover, the oonstraint knowledge may be
generated by the system using a training set of data (see
Section 3. 3. The representational rules use these
constraints and the STM dynamic data (generated from an
analysis of the input sequence of images)> to generate the

motion description.

A majgor problem which has been ignored by all previous
work: including Tsotsog, ig the recognition, quantification,
and description of the structural changes of a mowving
oﬁJect. Tsotsos [Tsotseos, 761 has commented on this problem
as follows: "A problem which Badler and others J(including
myself> seem +to dighore in their designs, but which becams
apparent on consideration of several examples, is the
recognition and description of objgect construction. . In
cur current work, we analyze the dynamic changes of a
noen—-rigid mowing obgyect. Consequently, the problem of
recognition and description of the obgect construction

changes has been studied in detail.

.24 Summary

In the preceding sections. we have brisfly reviewsd the
progress in the anzslysis of a series of two-dimensional
digital images representing the variation in & specific
scene along a third-dimension: that is, time. The previous
techniques and approaches for this analysis have been

presented in the literature under thrse titlegs: Dynamic
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Scene Analysis, Image Sequence Analysis, and VYisual Motion
Perception/Understandinag. First, the title "Dynamic Scene
Analysis" was used to address the initial survey in this
area of study by Martin and Aggarwal [Martin and Aggarwal,
781. Nagel [HNagel, 781, in order fo generalizé the field to
include spatial image sequences as well. published the
second survey using the title "Analysis of Image Sequences"”.
The third <title "Visual Motion Ferception/Understanding”
indicates the recent trend in the currvent research in +this
-area of study. which seeks to develop a general “"inteligent”
system for the unhderstanding and description of wvisual

motion.

The first survey in image sequence analysis »as
presented by Martin and Aggarwal (Martin and Aggarwall., 781.
In this review, they first discuss the perception of motion
in a biological system. Second, in terms of the biological
system structure, they divide the work in dQnamic scene
analysis into tuo main classes. motion detection
(peripheral’ and motion anzlysis J(attentive)d. These ware .
initially applied to the automated detection and measurement
of cloud motion from satellite pictures. Mogt of the
resulting computer programs used cross~correlation ard image
differencing techniques. In motion analysis, the work was
based on two techniques: centroid matching and  shape

analysis.
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Further significant progress in image se2quence analysis
was carried out by Nagel. Besides his own research, he has
presented the two most extensive surveys in image s2quence
analysis. In MNagel’s first survey [Nagel, 781, he first
reviewed the different experiences in image sequence
analysis. discussed according to specific application areas.
Second: he made a very thorough analysis of +the different
comparison techniques, the so-called vinterframe
comparison". In this study, he listed six categories within
which the different comparison approaches may be organized:-
Ca’> no interframe comnparison, (b> indirect interframe
comparizon. ey disginilarity grading, (d> similarity
- search, followed by dissimilarity grading, (e) dissimilarity
grading: followed by =similarity search, () similarity
search. Furthermnore, he dJdiscussed aspects, such as
segmentation and wvelocity determination of moving objects.

in terms of interframe coding.

The second survey by Magel [Nagel, 791 is a rather
application~-oriented review. He cited more <than five
hundred articles. gathered from diverse applications.
Throughout +thisx reuvisw., attention has been drawn to the
interaction between the evaluation of image sequences and
the importance of quantitative models in describing complex
phenomena in the spplication domain. The parallels between
different approaches in different applications is
demonstrated. This investigation might facilitate the

transfer of experience betueen different applications. 1y
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particular interest in this survey is that it shows the wide
gap betuween the amount of information current techniques can
extract from arn image sequence, and 'the information
potential of the sequence itself. Also, it shows that
present experience i not enough to achieve what we can call
an ‘inteligent" system which carn sinulate human "visual

motion perception®.

In general, most of the previous ress2arch has attempted
to analyze an image Sequences by considering the
multitudinous data representing the movements or changes
tﬁat occcur betuween each two sequential frames from the
sequence. This incremental data may be generated by several
techniques of comparison. This approach to image sequence
analysis has resulted in the developmnent of sophisticatad
computer systems for motion detection, recognition. and
tracking and has yielded an 2hormous number of applications.
Motion understanding and description have been ignorad by
most of the past research. To achieve the objectives of
motion understanding and decscription, it is not ercugh to
nerely determnine the incremental movements or changes that
occur between consecutive images [Tsotsos et al., $£81. What
is required is & system which abstracts & SUummary
description <{in natural language? of +the global motion
characteristics from the multitude of static and incremental
data. Development of such a system represents the now
direction being taken in the current research in image

sequence analysis.
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This recent <trend in current research is directed
towards the development of a system which has the capability
of motion detection, understanding, and description in a
global manner sgimilar +to human visual motion perception.
The first step in thie direction was taken by Badler: his
achievement was +o generate a symbolic description for
motion concepts. Also, Price and Reddy attempted to use’
symbolic descriptors and analysis to describe the changes
between two different images of the same scene. Yachida et
al. [Yachida et al., 78] used'high—leuel global analysis t§
improve the low-~lewvel processing of ambiguous situations in
individual frames. Based on Badler ‘s work, Tsotsos then
developed a system for motion detection and symbolic
description. Recently, Tsotsos has introduced a framework
for a general system for motion unda2rstanding and

description using predefined motion patterns.

Most of the recent approaches are based on modelling
the dynamic environment of the motion using knowledge-bassd
systems. Howeuvar, there are different uviews pertaining +to
model construction, data and knowledge representation, and

control sitructure strategies.

In our current work, w2 have developed a model for a
genaral image =sequence analysis system consisting of thrae

basic entitiss:
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(aXDynamic data: The data which continually changes
during the analysis (input, output, and any computational
results). These data are stored in a Short Term HMemory

(STM>.

(b>Static (constant) data: The data which remains
unchanged during the analysis (description of +the class of
scenes under analysis and the control information describing
the pertinent computational processes. These are stored in

a Long Term Memory (LTMD.

(c)A collection of analysis processors, sach of which

is assignhed to a particular task.

Both 3T™M and LTHM =re implemented as & relational
database. The $STM is designed to work as a communication
channel for 3all of the processes. It contains 2 record of
the instantaneous obgect motion, shape. and structural
changes, as well as, the current global description of the
object behaviour. The LTM contains the gensral model of the

morphology of the objects under analysis, az well as control

information describing the pertinent computational
processes. The different processors are activated
throughout three hierarchial stages: static, incremental,

and global ashalysis. They interact through +the STHM wusing
the information stored in the LTM, until a complate
description of the dynamic obgect motion and morphology is

cbtained.
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 In the preceding section we hauve briefly compared our
work +to the most relevant recent approach by Tsotsos.  From
this comparison and the above review, we may claim that our
work provides an essential and original contribution to the
research in image seguence analysis in two basic ways:
First, the construction of our model is a rule-based
structure (knouwledge representation and control strategyl.
Within this structure, the dynamic behaviour of the mouving
object is described using generic knouwledge <(constraints?
and rules:; for example. the exact motion pattern of the
class of scene under analysis is not defined. Consequently.
the system has a much wider application, especially for
those sequences containing moving obgects whose motion
patterns are not knownn a priori, or which exhibit random
motion. Sacond, in owr work we analyze, quantify., and
symbolically describe the structural changes of non-rigid
moving ob_jects hitherto neglected in all the previous work

done in image sequence analysis.

2.3 SHAPE ANALYSIS AMD DESCRIPTION

2. 31  Introduction

The problem of shape descrimination is a central one to
pattern recoghition and as such has received considerable
attention in most papers dealing with recognition of
characters. waveforms, chromosomss, cells, machine parts,
- among other applications. This area of study is taking on

increasing importance but much work still remains to be
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done. Furthermore, shape perception iz a common problem in
any computer vision, scene analysis, or pattern recognition
system. The solution +to this problem may be achieved
through two stages of processing: shape analysis, and shape
description. Figure (2. 1) is a schematic diagram which
shows +the basic steps for shape analysis and description, as

well as the input and cutput data at each step.

Shape analysis: 1In shape analysis., a digitized image of an
obgject is trénsformed into a scalar vector uvhose
elements are neasurements of some oOf the shape
properties (features or shape descriptors), eg. .
length. width, elongation, circularity., Fourier
descriptors, moments, and other shape features. The
second task of shape analysis is to transform the image
of an obgect into a graph. The properties of this
graph express the ghape and structural properties of

the object.

Shape description:  Shape description represents the higher
level process of shape perception by computer. In this
process the scalar vesctor or graph, the2 resulting form
of +the shape ansalysis, is snalyzed by a syntactic
analysis methodology in order to generate a text in a
natural language (symbolic description). I+t contains
all the relevant information psrtaining to the shape of

the obgect.
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Early attention to this area of study is related +to
[Attneave, 541, which shows that shape analysis has roots in
psychology as well as computer vision. In Attheave’'s work:,
he discussed human visual perception from an information
theory point of view. 0f particular interest in his
findings is +that shape information is concentrated along
contours, especially at those points at which its direction

changes rapidly (currentig called “critical points").

A brief review of current shape analysis and
description techniques 1s presented in this section. The
réview in this section is restricted to the techniques which
analyze two-dimensional objects in a plane. The literature
is reviewed in the following order: First, <the focus of
attention iz directed <o the most recent surveys in this

area by [Meagher, 79; Pavlidis, 811. Second, the shape

T analysis techﬁiques which have been used or are directly

related to our current work are reviswed under topics which
include: (a; curve representation and critical point
detection, (bl curve and polygonal approximation, and (oD
shape decomposition. Then. mote sophisticated shape
analysis ftechhniques are briefly reviewad in
Sections 2. 1. 6-2. 4. 9 inclusive, These include moments,
Fourier transforms, thinning and integral geometry, and
relaxation. The syntactic analysis and shape description
techniques are reviewed in Section 2:1.18.- Finally, in the
last section 2.1.11, our current work in shape analysis and

description is summarized znd compared to the previous ones
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2.3.2 Recent Surveys In Shape Analysis And Description

The recent survey of HMeagher [Meagher 791 presents a
brief overview of the literature pertaining to techniques
for shape analusis and description. This survey begins with
a general short overview of the field He then considers
papers pertaining to curve representation and proceeds to
more sophisticated techniques. He reviews the literature
under topics which include chain code methodology. polygonal
approximation. - . syntactic analysis, relaxation, Fourier
descriptors,. and moments. Meagher‘s survey 4is a basic
review for a neophyte reader as a pointer to the signhificant
work in the field. Howaver, the survey by Pavlidis
[Pavlidis, 241, (the last updated version on a series of
reviews by the same author), is not only a complete
well-documented- review:; but it may also be considered as a

comprehensive study in shape analysis and description.

Iri the recent review by Pavlidis [Pauvlidis, 211, the
methodologies used in shape discrimination have been
classified according to several criteria. First, he defines
Yexternal® and "internal® to tefer %o local boundary
followers and global boundary or area examniners,
respectively. Second: he makes another distinction on the
basis of "scalar %transform" and "space domain®" techniques as
to whether the process transforms the picture into an array
of scalar features or into another picture, as is the case
in the medial axis transformatiorn technique. Finally, he

defines Pinformation preserving® and “information
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non—-preseruving" techniques, depending on whether or not it
is possible to reconstruct the picture {from +the shape

description.

Pavlidis uses the first +two criteria to form four
categories in order to classify the different techniques of

shape analysis as follows:
(1> Internal Scalar Transform
Ca’ moments and moment inuariants(

(b> +two-dimensional Fourier Transform <(FT> of the

binary coded image.
(¢’ binary masks.
(2> External Scalar Transform

(a’ Fourier Transform of boundary (eg.. FT of tangent

angle verzus arc lengthi,
(3> Internal Space Domain
(a) medial axis transformation (MAT)
“C(b? various thinning algorithms
() various integral geometry schemes

(d) techniques using the concepts of corvexity and
concavity (eg., decomposition into primary convex

subsetsg)
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{4) External Space Domain
(a?» syntactic description techniques.

Most of the publications on shape have dealt with
Yinformation non-preserving' techniques. In particular they
have emphasized properties such as symmetry, elongation.
angularity, etc, LKaufwarn, 67; Kolers, 70; and Langridge.
rel. Such properties give useful information about the
shape of simple obgects but fail to do so for complicated
ones which must necessarily be given in terms of local

characteristics of primitive subparts [Rosenfeld, 7el.

The different techniques {or shape analysis and
description will be reviewed in the following sections in
groups according to the methodologies defined in

Section 2. 3. 1.

.33 Curve Representation And Critical Point Defection

The Freeman chain code may be considered one of the
earliest and most famous schemes for representing
information pertsining to curve or contour of a digital
image. The chain code may also be used for further shape
analysis or description. The method of encoding an
arbitrary geometric curve via the use of the chain code is
presented in ([Freeman. 6411. This schene is furthar
developed in [Freeman. 74,77, Freeman and Davis, 771, for
finding the critical points (corners, maxima curvatursa.

inflection. discontinuities in curvature, etec. ) of a curve.
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2.3.4  Curve find Folygonal Approximation

Polygonal approximation is a known technique in shape
analysis. In thisg <technique a curve or contour is
represented by fitted straight lines. The input +to such
algorithms can be either the boundary points directly, or
their chain code. The cutput-is a list of vertices of the
fitted lines. These techniques have the advantage of
reducing the noise as well as the amount of data +o be
manipulated by higher level stages of the system (the number
of the vertices is always less than the boundary pointss.
The mathematical aspects of these techniques may be found in
[Pavlidis, 77]. 1In some applications the fittod lines or
polygons may be used directly for shape recoghition or
description: while in others they are an intermzdiate form
of data. For example. in the introductory eport for a
general dynamic scene analysis system applics+liz for the
characterization of the dynamic behaviour of ceii motion by
[Levine and VYoussef, 881, the output of trf; polygonal
approximation rapressants the input for the shape
decomposition. The latter is further analyzad by higher
level processes of the system (incremental.>and global

analysisy.

Some schemes for constructing polygonal .oproximation
are concerned with selecting the vertices from the boundary
points so0 as to generate the best fitted polygon. Others
may allow the wvertices %o leave the curve itself if they

generate s better fitted polygon. One of the early and most
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efficient techniques by Ramer, selected the polygon vertices
from the boundary points [Ramet. fel. The resulting
polygons of Ramer‘s algorithm are not necessarily optimum
(minimum nrumber of wvertices), but  his algorithm is
computationally wmuch more efficient than those generating
optimum ones. An  algorithm for polygonal approximation
based on Ramer‘s scheme is implemented in our current work;
therefore, a detailed description of this technique is

presented in Section 4, 3

In some gchemnes for constructing polygonal
aﬁproximation; the minimum distance <(not to exceed a
specific threshold) between the segment of the boundary and
the fitted line is used as a criterion for selecting the
best fitted approximation line (egq. Ramer ?2»; in others.
the fitted line is chosen so as +to minimize the area
difference between the approximation line and the original

curve, eg.. [McClure, 771.

Other techhiques for extracting the polygonal
approximation atr¢ based on the chain-encoding of the
boundary points, Montanari CMontanari, 721 presented an
algorithm for determining the chain code of a contour.
Then, by a smoothing operation on the chain code, a minimum

perimeter approximating polygon may be generated.

Different from previous work, Pavlidis ([Pawlidis, 73]
introduced an algorithm for segmenting a waveform in order

to0 generate a pilwcewise linear approximation. This
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algorithm is modified in ({Pauvlidis and Horowitz, 741 to
introduce a split-and-mevrqQe algorithm which idiwnproves the

previous one, in that it is faster and does not require an

initial segmentation. This algorithn is currently one of -

the most popular for curve segmentation, and its application
is presented in many papers by different authors. For
example, these methods are applied to the recognition of

handwritten numbers in [Pauvlidis and Ali ¢51].

2.3.9 Shape Decomposition

Another set of shape analuysis techniques is based on
decomposition of complex shapes into simpler ones. These
methodologies are prime examples of structural pattern
recognition and shape aﬂalgsis: They are based on the
assumption that shape perception is a hierarchical process
[Pavlidis, 68;72]. In these technhiques the original figure
is expressed as the union of some of its subsets (primitive
components). The shape of the latter may be simpler, and
therefore, some of the less complex descriptions may be
applicable. Most of the subsequent schemes emphasize the
concept of convexity znd assume polygonal approximation of
the original object. One of these requires the
decomposition of the object into primary convex subsets
[Pavlidis, 68;721, giving an output which can be expressed
through a juxtaposition graph [Pavlidis, 72a;72b; and Feng

and Pavlidis, 795).
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R decomposition tecknique based on a graph-theoretic
clustering method is deuveloped by [Shapiro and Haralick, 7%21]
to transform a two-dimensional shape into a binary relation
whose clusters represent +the simple parts of the shape.
This method first determines dense regions. which are local
regions of high compactness and then forme clusters by
merging those dense regions having a high enough :overlap.
Maruyama [Maruyama, 721. suggested a decomposition of shapes
into angularly simple regions. Each angularly simple region
has ~at - least one interior point which carn "see" its entire
boundary. Schachter [Schachter. 7?81 presented a method for
decomposing polygons into conhvex sets, based upon a Delaunay
tessellation of +the polygon. It is implemented as a

divide-and-conquer technique

bith these decomposition methods, the shape of an
obgect is represented ag a graph. The results have a number
of desirable features which are also shared to some extent

by the MAT

(a)> They are tfransglation and rotation invariant and

insensitive *o registration.
{b> To a large extent they are size invariant.
(c) They usually produce an "anthropomorphic" description.

(d> THey give data structures which are particularly
approptiats for syntactic or structured pattern

recognhition.
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The main disadvantage of this methodology is that the
programs required to implement it tend to be quite complex.
In our system +the <cell shape is decomposed into it¥s
primative parts at the convex angles, in a fashion similar
to0 [Feng and Pavlidis, 7?3). However, in our algorithm the
decomposition procedure is governed by the rules dependent

on the physical structure of the cell (see Section % 4).-

2.3.6 Moments And Moment Invariant Techniques

In the category of "internal® scalar transform
techniques., the method of moments was the earliest one used
[Alt, - 62; Giuliano et sl1l.. 61; Hannah, 741, Ledley, 641.
In these techniques the moments of & digitized obgect in a
plane are defined as in geometry and mechanics as follous:

mlu, vy = SUM (¢ Hu Vv) uv = 6,1.2,..
where m = is the moment,
XY = the different points of the object.
It can be shown that:
m(8, 82 = the area of the object,
md1,8>/m(B8, 8> = the X coordinate’of the center of gravity,

m<B, L5/ mde, B8 = the ¥ coordinate of the center of gravity.

Higher order momnents and linear combinations of moments
("moment invariants") pOssSess various invariant
characteristics under a number of obje2ct transformations.
An ecarly work wusing wmom2tits for pattern recognition is

presented by Alt (ALY, 62). He showed that moments of order
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S or below are sufficient to discriminate bstween 35 printed
characters, whereas moments of higher order are found to be
increasingly sensitive to noise. Rnother early work in

pattern recognition which was baged on moments was [Giuliano

et al.., 61]. Ledley C[lLedley. 641 has used the moments
methodology for shape analysis in biomedical pictures. A
more recent application of moments to aircraft

identification is presented in [Dudani et al., 771

2.3.7 Fourier Transforn (FT) Techniques

Other significant approaches +to shape description
compute the two~dimensional Fourdier transform (FT> of the
characteristic furction of the objzct or use binary masks fo
extract features conveying the shape information [Nagy, 641.
We note that the one-dimensional FT of the boundary can’ be

profitably assigred as an "external" scalar “fransform

technique [Z2ahn and Roskies, 72; and Rosenfeld and Kak,
761]. Pue to the fact that most of the shape information of
an objgject is concentrated along its contour, the

one-dimensional FT has been the concern of many researchers.
In this methodology. the Fourder ftransform of the boundary
is computed, and the resulting coefficients are used as

features (shape descriptors) for shape discrimimation.

An early work in shape analysis using FT was presented
by Borel [Borel, &51. He used the tangent angle uversus arc
length to detect the curve segment of maximum curvatursa.

Then & matching <(using c¢ross correlation) betwsen the
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section of maximum curvature of an unknown contour and known
shape is performned. Systeme and algorithme for shape
analysis which are based on FT schemes involve many
applications. -Examples - are handprinted character
recognition [Granlund. 7?21 and aircraft identification

[Richard and Hemami., 741].

A reference which contains & considerable amount of
information on Fourier descriptorsl is [Z2ahn and Roskies,
721. In a more recent study by Persoon and Fu [Persoon and
Fu, 7?71, +the work described in [2ahn and Roskies, 721 and
[Granlund, 72] is extended. The paper also includes a
review and geneyal discussion of the subject, as well as

experimental results.

2.38 Thinning Algorithms And Infegral Geometry

The Medial Axis Transformation (MAT>» or skeleton was
the earliest and most widely studied method among the
"internal® space domain techniques [Montanari, £9;
Mott-Smith, 78; Philbrick, 6£; Rosenfeld and HWeszka 761.
The skeleton may be uzed to derive information on the shape
of the original figure. but itz computation can be quite
time-consuming and very sensitive to noise [Rosenfeld and
Weszka, 761, These difficulties may be reduced by first

obtaining a polyguonal approximation of the original contour,
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A number of techniques related +o0 integral geometry
have been proposed by various authors [Klinger et al. 71
Nakimoto et &l., 73; Pavlidis, 68; Rutovitz, 70; Spinrad,
65; - - Wong and Steppe., €91]. In these techniques., the object
is intersected by a number of chords whose length statistics
can be used for shape description. For example. Rutovitz
[Rutovitz, 781 has used radial chords, all passing through a

common point, to describe the shape of chromosomes.

2. 3.9 Relaxation

Other methodologies which may be used in shape analysis
and interpretation zre based on relaxation techniques. They
use the context of & scene or section of the scene to reduce
the ambiguity in the labeling of a set of objects or
subparts of an obgect. For ‘example, in an Jindoor scene
interpretation system. the fact that a roof is always aboue
the walls, or in a face recognition system: a nose is always
spatially above a mouth, could ke used to eliminate some
erroneous labeling attempts. Four models of relaxation
processes are presented in [Rosenfeld et al. rd-P The
authors showed how these models -are used Yo reduce the
urncertainity in a situation before processing by a
semantics—based analyzer. Further, they demonstrated that
by using contextual information, the more powerful forms of
relaxation may be used to adjust the probabilities of labels

assighed to parts of an ob jact.
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2.3.18  Syntactic Analysis And Shape Description

The main goal of shape perception either by human or
computer 1is to +translate pictorial data of an obgect into
sgmbolis/ﬂescriptions containing <the relevant information

pertaining to the chyect. This goal may be achieved through

-two processes: shape analysis and shape description. In -

the above sections we reviewed different techniques ftor
shape analysis. In this section, we will discuss shape
description, and briefly review the limited work which has

been done in this subject.

Shape analysis processes produce information related to
the shape of an object in the form of scalar vectors or a
araph. The main obgective of shape description is o
analyze this data using a syntactic methodology in order to

generate a symbolic description of the object.

To describe the shape of an object, the scalar wectors
are not-very helpful unless the features of their components
have well-defined physicsl meanings. Moreover, in the case
where the shape of the obgect is complex, the description
cannot be accomplished in terms of such scalar measures
urless some simplifying transformation is used first. The
techniques which achieve this are those which transform the
object inte a graph, so that its shape properties can be
expressed through the properties of that graph. Such a
transformation can be performed by one of two basic

techhiques, The first is +thinning. where the obJgct is
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reduced into a line drawing graph (a skeleton), eg.., MAT.
The second is the decomposition methodology, (both types of
techniques are reviewed in the aboue sections). The
thinning techniques are more appropriate for the description
of filamentary~-like shapes. whereas the decomposition

techniques are applicable to any types of shapes.

In order to generate a symbolic description of an
ocbject from its graph, it is necessary to develop a "graph
language" and "“graph gramnar". Then, a given graph could be
parsed according to this grammer to generate senteﬁces in a

natural language describing the shape.

Although the uweork dore in this area is rather limited,
Pavlidis [Pavlidis, 75;76;77] provides a considerable amount
of information on this subject. He demonstrates the results
of syntactic analysis in wvarious applications. Examples
are: Chinese character recognition and handuwritten
numerals. A theoretical discussion of the advantages and
disadvantages of various syntactic techniques in shape
description is presented in [Pavlidis, ?71. The recent work
of Shapiro [Shapiro, 801 is also an example of syntactic
analysis. First, she used the method described in [Shapiro
and Haralick: 791 to decompose a shape into a =et of its
primitives. Then, using these primitives., their propertieé;
and their interrelationships,: a matching procedure +o find
mappings from a prototype shape +to a candidate shape is
performed. Her model gives a favorable result ohn

hand-printed character dats.
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One of the few sustems which has used a symbolic
description from ewveryday natural language is the work of
[Hollerback. ?S51. He developed an approach +towards shape
description, based on prototype modification and géneralized
cylinders. The emphasis throughout his 4wovk has been to
develop usgeful, qualitative descriptions which bring out the

- significant features of pottery and polyhedra.

2.3.11  Summary And Review Of Our Current Work

The perception of shape plays a prominent role in both
human and computer vision, Shape petrception by computer may
be achieved through two stages of processing, shape analysis
and shapes description. Algorithms for shape analysis have
been briefly reviewed and classified under two categories:
whether they ~examine only the boundary or the whole area,
and whethet+ they describe the original pictures in terms of
gcalar measurements or through structural descriptions.
Most studies of shape and pattern recognition are based on
Alobal feature measurements which then constitute a feature

vector used for the shape representation.

In spite of the difficulty of addressing the genetral
problem of shape dezcription, the solution is more promising
with the use of syntactic analysis. Therefore, more
recently. there has been interest in syntactic pattern
recognition techniquez which analyze patterns by a parsing
process of hierarchial decomposition. The aduvantages of

such an approach sJuggest that it might be appropriate +o
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study hierarchial shape representation in more detalil as a
vehicle for cell shape description, as well as the global
structural and membrane shape changes which occur during

locomotion.

In our current research, besides the general
difficulties of describing an arbitrary shape in a specific

image. we are facing the following problems:

(a> Estimating the incremental change between two different
images in the shape and structure of a non-rigid mowving

ok ject.

(b> Detecting and characterizing the global structural
changes in the morphology of a non-rigid moving obgject

over a period of time from a sequence of pictures.

(c» Presenting 2ll the abouwe descriptions in a meaningful

terminology to the user.

We have developed the procedures which produce a
meaninaful symbolic description of <the shape and its
changes. Also, we have developed 3 mathematical expression
for measuring the complexity of an arbitrary shape pattern.
This expression is based on a agroup of seleckted shape
properties which are independent of translation, rotation.
or scaling. Another shape featurs is introduced through our
work in shape analyszis, to measure the degree of curvaturs
regularity (angle and/or side regularity> of the shaps of an

ab gject. This feature is shown experimentally to play a
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valuable role in shape descrimination. This study in shape
analysis is demonstrated by describing the membrane shape

and quantifying its obserwvable changes.

2.4 COMPUTER YISION KMOWLEDGE~BASED SYSTEMS

£.4.1 Introduction

Any vision system consists of two basic hierarchical
processes: a low level, which is concerned with data
extraction from the perceived scene, and a high level, which
is concerned with interpretation and description of that
which constitutes the scene. To accomplish this., the system
utilizes information from +two sSources: data from the
perceived scene, and +the knowledge and expectations
(perceptual set) of the observer. Thus, the development of
computer wvision systems has become a study at the
intersection of the neighboring disciplines of image
processing. scene analysis, pattern recognition. artificial

intelligence, and cognitive psychology

One of our main concerns in this research is the
devalopment of a computer uvision system for understanding
and describing the wvisual wmotion of non-rigid moving
obects. The obgective of this section is to briefly reviesuw
the significant work in this field as a gained experience.
However, we cannhot discuss visual motion understanding
without first considering its toots in static scene

interpretation and description.
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In the past, most computer uvision research has dealt
with the low level pracesses associated with this problem.
As a result, considerable experience has been gained on how
to segment a simple digital image into regions that
correspond to obects as preceived by a human obseruver.
However, +this stage of progress has not been accomplished
yet for complex scene analysis. In complex scene analysis,
the 1low level segmentation results in a larger number of
regions than those which can be perceived by a human
observer. In order to achieve a meaningful partition -of the
image under analysis, the system should utilize external
knowledge. The latter may be pertaining to the class of
scenes under consideration and/or general knowledge about
regions., lines, edges, angles, corners....etc. In this case
we may refer to the system as a "knowledge-based system"., in
other words we may define the knowledge-based system as: a
system whose output depends upon the use of external
information (khowledge? that is independent of that

contained within the input digital image.

In this revisw, the two following Sections 2.4.2 and
2.4.3 discuss the +two basic problens which are associated
with the construction of knowledge—kased systems, knowledgse
representation and control structurs, Three different
methods of introducing +the knowledge to the analysis
algorithm are ther described in Section 2. 4. 4. Examples of
different structures of knowledge-based systems will be

briefly reviswed in Section 2. 4. 5. These jinclude
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HERRSAY-II. a speech racognition system. and the work of
Levine and his co~workers on image segmentation and
interpretation. In Section 2. 4.6, a review of the limited
work in the development of knowledge-based systems for
visual motion understanding is presented. Finally, in
Section 2. 4.7, the different aspects of this review will be

summarized.

¢.4.2 Knowledge Representation

Knowledge representation is the first problem o face
the desgigner of a3 knowledge-based system. Most research has

concentrated on the development and use of "models" which

describe the problem domain at different leusls of
abstraction [Levine, 78; Riseman and Hanson, 7?8; Hewitt,
77; Soloway and Riseman, 771 Thus., models play an

important role irn the organization of +the descriptiuwve
information incorporated in & given knowledge
representation. Howevetr, model construction can be vuvery

difficult for ill-defined problem domains [Scacchi, 791

In +the past many knowledge~based computer vision
=ystems have been developed based on wusing specialized
knowledge models of the problem domain under analysis.
Zucker et al. have suggested the development of a system
capable of analyzing different scene classes: instead of
developing different models for different classes [Zucker =2t
al., 7?51 In their approach:. the knowledge to be utilized

by a knowledge-based system is classified into +fwo



LITERATURE CRITIGUE Fage 2-85

categories, scerne-independent and scene-dependent. The
former includes local featurez (edges. lines, angles.
...etc) that occur in many different types of scenes, as
well as knowledge to coherently group these features. This
knouwledge may be represented as “general purpose mnodels®.
The scene—~dependent knowledge includes descriptions
pertaining to the scene to be analyzed (for example the
location, shape, or the existance of specific objects?. The
models representing such knowledge are “specialized models".
Thus, if the scene-dependent knowledge is structurally
separated from the scene-independsnt knowledge, changing the
class of scene %o be analyzed will only necessitate
substitution of the scene-~dependent knowledge base [Leuvine
and Shaheen 81; Riseman and Hanson, ?81. General purpose
models have the adwvantage that they can be used in analyzing
different types »oP scenes, even when no a priori khnowledge
about the scene iz available. A prime example of systems
based on this strategy can be found in the low leuval
segmentation system developed by Levine and Nazif [Levine

and Nazif, 821.

2.4.3 Control Structure

The second problem encountered in desighing a
knowledge-baszed system deals with the design of an =fficisnt
control structure. necesesary for an effective use of the
knowledge organized at different levals. Thus, a

knowledge-based system which employs different levels of
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processing, and uses diverze knowledge sources organhized 3t
multiple levels, needs & control structure mechanism Yo
focus its attention on which processing task to be
activated, and on which knowledge is +to be chosen. This
attention focusing mechanism may be directed by one of tuwo
control structure strstegies: data-~driven, and model-driuven
[Lesser and Ermnan, 77 Nii and Feigenbaum, 781. In the
data~driven control sgtructure, the sysztems’se processing
attention is directed by incoming low level information, i
the occurence of specific observed ayents, such as
recognizing or characterizing specific obgect features
fLevine, 78; Levine and Shaheen. 81, Levine and HNazif,
s21l. In the model-driven control strategy, the system
relies on its existing kKrowledge (scene model) to suggest or
hypothesize <the occurtrerce of objgects or events [Tsotsos.

801.

2.4.4 Knowledge Interaction

Another issue related to khowledge-baszed systems is the
interfacing of +the kriowledge with the analysis processors
This interfacing may be accomplished through one of three
possibilities:

(a> by incorporating the regquired knowledge directly
into the analysis processors.

(b> through interaction with the user (mans/machine
interaction),

(c?» by storing in a properly designed database
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Early work in computer vision included the knowledge
(scene modeld within the analysis processes. These systems
achieved satisfactory results with limited classes of
scenes, such as the blocks world [Shirai, 7?51 or office
scene [Garvey and Tenenbaum. 741, Shaheen concludes that
the disadvantages of this methodology rest in the inhibiting
of the flexibility, extensibility, and +the capability of
experimentation with the system [Shaheen, 791 It was
precisely this factor that motivated Levine <10 use the
interaction method in the early version of his reportead

computer uvision system structure [Levine, 781.

Introducing the world knowledge through an interactiwve
process is necesggary +to gain the experience required to
build the ‘“intelligent system". Expezrimentation with
different types of krnowledge at different levels of
abstraction for different scene classes will lead to an
efficient design of the database. Examples of interactive
knowledge-based systems can be found in [Ariki et al..,78;
Levine, 78; Tsotsos, 76; Futrell and Speckert ©8; and

Potel and Sayre, 761].

Accessing the khowledge from & properly initialized
database is an essential factor in the automation of an
image understanding system. Howewver., construction of such a
database is not easy, especially in the case of multiple
level knowledge representation. Therefore, systems wusing
this method of knowledge/process communication should be

supported by an efficient control structure strategy as
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described above. In the case of a gens=ral interpr2tation
system, the complexity of the database structure is
proportional to the generality of the system (the extent of

different scene claszses to be analyzed by the system).

In this section we described some (not all) aspects
related to the structure of a knowledge-based system as a
tool for a computer vision system. The literature which
will be reviewed in the following section represents but a
fraction of the accumulated work and experience gathered in
this field and for purposes of this thesis the most closely

related to our current research.

243 Examples Of Knowledge-Bazed Systems

HERRSAY-1I1

[Lesser and Erman, 771

In HERARSAY-II a "blackboard" global data structure was
introduced as a means of communication and interaction
between the different sources of knowledge. This khnouwledge
structure serves as a short term database for storing active
data genersted at different levels. A scheduler is used as
a mechanism to focus the system attention to which chunks of
information are useful for a given task, and which task

should be activated.
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In general, HEARSAY-II has initiated & new generation
of complex systems. It illustrated how a system performance
may be affected by its knouledge engineering. Because of
the potential of +the HEARSAY-II application %o other
research domains, it has influenced other approaches by many
researchers. It had an impact on their work and ideaszs for
different fields, especially in computer uision. The role
of the STM in Levine’s vision system is very similar to that
of the blackboard in HERRSRARY-II. The global blackboard
structure, together with the attention focusing schemes.
provide a working control strategy for an understanding
system that analizes multiple knowledge sources organized at
different levels It seems that a knowledge~based vision

understanding system could be developed along these lines.

An Inage Segmertation and Interpretation System

[Levine, 78:; Levine and Shaheen., 84; Levine and Ting, 19811

The concept of cooperating independent sources of
knowledge which operate on a global data structure has
motivated the framework +for a computer wvision system
proposed by Levine (Levine, 781, This framework laid the
foundation for much aduvanced work in computer vision carried
out in the last few years by L=vine and his co-workers at
McGill University [Levine, 78; Levine and Shaheen, B41;
Levine and Youssef, 88; Levine and Mazif, 82; Levine and

Ting, 19811
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The main obgyective of Levine’'s work was to develop an
interactive conputer vigion system +o experiment with
different picture strategies. The system consists of three
hierarchical levels. The obgective of the low level process
is to segement the image into regions possessing similar
primary featuresg such as intensity, hde, saturation, and
texture. The result of this process may be described as
complete or partial segmentation, depending on whether the
segmented regions correspond to object as perceived by a
human observer or not. A complete segmentation is possible-
for a picture which contains nonoverlapping obgjects on a
uniform batkground, such as blood cells; whereas partial
segmentations result frowm the processing of normally complex
pictures, which contain obgects that exhibit depth,
occlusion, shadows, and highlights, such as for example,

outdoor scenes.

The resulting regions from the low level partial
segmentation may ke the input +fo an intermediate level
processing [Levine and Ting. 1981; Ting, 791. At this
level, the model features and topological structure are used
in two stages:. local and global. A local template matching
is used to match regione against object prototypes, followed
by global optimization wsing dynamic programming. Dther
cptimization techniques could also have been used. The
result of this intermediate level is a group of mnerged
regions., each of which is assigned a set of region

interpretations. At the highest level of the hierarchuy, a
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vision production system, in conjunction with a relational

database, is used to complete the analysis.

The implementation and experimentation results of the
high level computer uision interpretation system proposed in
fLevine, 781, have been reported recently [Levine and
Shaheen, 811, The results show that the performance of the
high level processing stage and consequently <the final
interpretation of the scene depends strongly on the initial
segmentation d(low level processing’. Therefore, the
obgjective of <the ongoing research by Levine and Nazif
[Levine and Nazif. 821 is to develop a genefal purpose low

level rule-based system to improve the initial segmentation.

Rule-Based System for Low Level Image Segnentation

[Levine and Nazif., 82; Mazif and Levine, 821

The obgective of this work is to design a low level
rule-based segmentation system in order %o test different
segnentation strategies and compare their results to those
obtained by a humans. The approach iz based on using
general knowledge about low level properties of the image in
the form of condition~action rules, in order to decide. for
example, if a specific region(s) should be merged or split.
Thus, for an arbitrary initial segmentation, they test
different strategies which employ different sets of rules,
in order to find a set of condition-action rules which leads
to the best segmentation. For example. in one of the

methodologies +they use; the process begins with an initial
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segmentation, and then iterates by merging and splitting the
different regions until the final segmentation is achiesved.
The action, merge or split, is decided by the incoming low
level data conditions (region features, neighborhood in the
picture) and a set of condition—-action rules. The latter is
a representation of <the general knowledge pertaining to

regions, lines., and groups of both.

The potential of Levine and Mazif’s low level

segnentation system rests on the following factors:

(a)> The system accepts any level of initial segmentation,
for example, the entire image may be considered as ohe

region or each pixel as a regior.

(b3 The system facilitates experimentation with different
rules and sets of rules +to examine +the different

segmentation ztrategies.

(c? Scene context knowledge is not required, therefore the

zystem is aspplicable *o any class of scenes (general

purpose model).

(d> The control structure is that of a production system, in
which control rules are used in addition to the

knowledge rules,

(e The output of the system provides a describtion of the
image in terms of regions C(uniform neighborhoods in the
picture?, lines (major discontinuities in features),

and areas (large tegions or groups of regions and lines
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which repregent textured areas’.

(f> Early results obtained using this system indicate
promising resuJylts for image segmentation which are very
close to the low level output expected by a human

observer.

In this section we reviewed a few examples of
knowledge~-based systems; however our discussion was
restricted to computer vision systems for static scenhe
analysis. In the follouwing section we shall discuss the
s#ma topics for visual motion understanding from sequence of

images.

.46 Knowledge-Based Systems For

Yisual Motion Understanding

From the discussion in the preceding section we may
realize the difficulty in designing a computer vision system
for static scene anslysis. For motion understanding from a
sequence of images, the task is more difficult. This is
because we face all the difficulties of static scene
interpretation, as well as the problems of motion
understanding and description. Tsotsos has commented on
this difficulty by stating that "motion undehstanding is a

monstrously large problem” [Tsotsos, 761,
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Similar to our discussion in the previous sections with
regard +to image interpretation, visual motion peception
consists of two hierarchical processes, motion detection and
motion understanding. These aspects were discussed din
Section 2.2. 2.1, vreferring to the study by Martin and
Aggarawal, and in Section 2.2. 3, we reviewed the aspects and
the related work that have been done in image sequence
analysis in general. In this section, we will focus our
attention on the aspects of visual motion understanding by

using knowledge~basged systems.

Most of the work that has been done in image sequence
analysis has been restricted +to the fairly low leuv=l
processing part, which ig concernsd with motion detection.
The few approaches which considered an intermediate leausl
(motion interpretation? and/or high level part d<motion
understanding? have been based on interactive systems
[Badler. ?5; Price and Reddy, 771 and specific domain

applications [Tsotsos, 881

The first attempt in constructing a knouwledge-based
system for motion understanding may be related to Badler
[Badler., ?351. Me wused +the motion verbs as models +o
describe the motion concepts. Based on Badler’s approach.
Tsotsos has adapted the problem of motion understandirng o
his research. Tsotsos’s recent work, in épite of its
restrictions., may be considered the first actual
knowledge—-based system employing high level khouwledge

(models) to describe the wotion concepts.
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In order +to deuvelop a wvisual motion understanding
system:; we should make use of the experience gained in
computer vision of static images (this is our philosophy in
the current research?’. Scacchi reported an outline for
future work <towards +the development of an "intelligent
system” for wvisual motion perception. His report is based
on emerging experience from computer vision, hardware~based
vision systems. computer animation, artificial intelligence,
and human motion perception [Scacchi., 79]. Considering the
different relative  uviewing situations, Scacchi specifies
five requirements for developing a viswal motion perception

and understanding system:

(a> a "long-term" memory to model the features and spatial

relationships of known or obgerved static objects,

(b> an "intermediate" memory where +the focusing mechanism
(control structured can interact with both the
knowledge—base (database) and incoming data <(dynamic

datar.,

(c> a "low level" wisual memory to support hardware-based
capabilities for extracting the features from the

sCcene,

(d> an attention-directed "retina" +to observe abject
features within the image, which bacts as a

knowledge-base process.
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(e) the different processes and system structure should
interactively work in no predetermined ordear

(data-driven>.

The system which Scacchi outlined and seeks is an
integrated system <(he claims) similar to HEARSAY-II, which
has "the ability to analyze, understand, and react to a
bounded though not necessarily predictable range of
situations arising from conflicting, competing, and
cooperating interactions" [Scacchi, 791 This integration
may be achieved through a distributed control structure of
tﬁe different knowledge sources and processing activities,

directed by knowledge-based transactions.

As a concluding remark, one can see that <the outline
for wvisual motion understanding, to a large extent, shares
the same philosophy of the recent trend in computer wvision
of static images which was proposed by many approaches
{Riseman and Hanson:; 78, Levine, 781. This philosophy is
very closely related to our approach in thiz research which

is described in the next section.

A System for Understanding the

Dynamic Behaviour of 3 Moving Cell
[Levine and Youssef 81]
In our curtent research, ve have designed a

knowledge-based suystem for understanding and describing the

dynamic behaviour of non-~rigid mowving objects. From a
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philosophical pdint of uvieuw, the present ctructure is
motivated by the computer wvision framework proposed by
Levine [Levine, 781. The latter has been revised and
implemented by Levine and Shaheen for general static scene
analysis and interpretation [Levine and Shaheen, 81; Levine
and Hazif, 821, The structure consists of independent
analysis processes cooperating tThrough a common database

structure.

Our proposed structure for a genéeral motion
understanding system involves three basic entities: dynamic
déta; static dats, and a collection of analysis processes,
each of which is asssighed a particular task. Conceptually.
two different memories are used, a Short Term Memory (STHMD
and a Long Term Hemory <C(LTHM. The . dynamic data are
continually changing as & result of the functioning of the
different analysis processes. They are stored in the STH,
which is designed to work as a communication channel for all
of the processes. - Each process can read from and write into
the STM. It contains a record of the instantansous object
motion. shape, and structural changes, as well as the
current global description of the obgject dynamic behaviour.
The static data in the LTM remains unchanged during the
course of analysis, and contains constraint knowledge
pertaining ‘o +the class of scenes and type of motion under
analysis, as well a=s the peritinent computational processes.
The system also consists of different computational

processors, which are designed to execute through a (loose?
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hierarchical structure consisting of three basic levels:

static, incremental, and global (see Figure 1.4).

2.4.7 Summary

The obgjective of computer vision systems is to
interpret and describe the contents of a given digital
image. In image sequence analysis this objective includes
the understanding and description of the motion recordad
within the sequence. "In order to accomplish <this, the
system should wutilize information from tfwo sources, the
input image. and external knowledge pertaining to the class
of scenes andlor type of motion under consideration. -The
system which utilizes this type of external knowledge is
refered to0 as a knowledge-based system. Currently. the
structure and use of knowledge-based systems represents a
tapic of broad interest within the computer vision and RI

community,

One of the basic and majgor problems in the structure of
knowledge-based systems iz the representation and efficient

use of this knowledge. A common and powerful paradigm

.suggested by many aspproaches, is to represent the knowledge

through "models" describing the problen domain undar
consideration. Most of the esarly computer vision systens
are based on using models of specialized knowledge
describing +the class of scenes under analysis. The recent

trend in the structure of knowledge-based systems is

directed to the use of a general purpose models, which can
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be used for a wide variety of scens classes [Zucker et al..

735 Levine and Nazif., 821J.

Knowledge-based systems which employ different levels
of processing that use multiple sources of knowledge
organized at different levels of description, need an
efficient control structure mechanism. The function of the
control structure is to regulate the social behaviour
Cactivities? of the system, that is to decide what and when
specific knowledge should be used. which processor should be
activated, and the dgeneral communication betueen the
kﬁowledge and the asnalysis processes. Two types of control
structure have been defined, model-driven and data-driven.
The knowledge pertaining to the control structure is also

represented in the system by the models.

In the preceding sections., we have reviewed some of the
related approaches wuwhich propose a basic knhowledge-based
structure. The foundation of most of the recent approachss
were found in HEARSAY-II, +the speech recognition system.
The computer vision system proposed by Leuvine [Levine, 781
has the same philogophy as that proposed by Riseman and
Erman [Hanson and Risewman. 751, Both structures are based
on independent processes that cooperate through a common

database structure.

The progress towards the developmnent of knowledge-based
systems for uvisual motion understanding is slow, and the

work which has been done is very limnited. The first step in
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this direction was *aken by Badler [Badler, 731, who used
motion verbs as models o describe motion concepts. The
application was +o the generation of line drawing images.
Tsotsos has been engaged in the problem of motion
understanding; his recent report [Tsotsos et al.. 381l may
be designated as the firet knowledge-based system for visual
motion understanding, in spite of its restrictions (see
Section 2.2. 3. 3). Scacchi has presented an outline of the
structure of a knowledge-based ‘“intelligent" system tor
visual motion understanding [Scacchi, 79). His outline is

based on emerging experience {rom computer vieion (scenhs

analysisy., hardware-based vision systens, computer
animation. artificial intelligence. and human motion
petrception.

Considering the previous discussion, we wmay conclude
that an understanding system, =2ither as a computer vision
system for static scene interpretation, or uvisual motion
description from & sequenhce of images, requires the
construction of a knomledge-based system. This system
should utilize +the knowledge from divetrse sources of
information, consisting of multiple leuwels of analysis. and

to be supported by an efflcient cortrol structure mechanism

In light of the above discussion on the agpects and
structure of knowledge-based systems and the structure
developed in this thesis, we may claim that our res=arch has
successfully utilized +the most advanced strategies of

computer wision interpretation of static images, merging
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them with the experience gained in image sequence analysis

to construct a visual notion understanding system.

2.9 RAUTOMATIC PROCESSING OF MICROSCOPIC IMAGES

2. 9.4 Introduction

The early history of the automatic image processing of
cell images can be traced to the 1950's, and is directly
related to the developmeént of the so-called <television
microscope [Presston, 76). Most of the work which has been
done in this field has been concerned with the feature
extraction and analysis of cell images for theoretical study
and research. Howeuar, in the practical field, <thare have
been studies aimed at the automation of the recognition,
‘clasgification, and counting of the cells in a blood snear.
Significantly. little  of this work was addressed to the
tracking and study of cell locomotion. Recently.
experiments have indicated that the cell membrane plays a
vital role in the mechanisms that regulate the social
behaviour of +the cell, of which locomotion is an important
component. Housuer;:- there is no existing work that attempts
te quantify the observable changes in the membrans shape

that occur in locomotion.

In that which follows, we shall present a concise
description of the important work done in each of these
directions. First, a brief revisw of the progress in the

studies of <cell morphology is +traced in Section 2. 5. &
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Second, the significant work which has been done in
automatic processing of cell dimages for counting and
classification purposes is reviewed in Section 2. 5. 2.
Third, the early technhiques for cell tracking are reviewed
in Section 2.5. 4. Tha fourth Section 2.5. 5, discusses some
of <the advanced approaches for <the guantification and
analysis of cell locomotion, focusing attention on - projects
which have been under study at McGill University. The
recent interest in the role +that cell membrane plays in
locomotion is discussed in Section & 5. 6. Finally, in
Section 2.5.7 a conclusion of this section, as well as the
contribution of our research o0 the field of automatic

processing of cell images, is preszented.

2.3.2 Theoretical Study Of Cell Morphology

The initial effort in the processing of cell images was
concerned with the study of cell morphology, primarily for
the purposas of clinical diagnostic application, "Early in
1952, VYoung and Robert deusloped a flying-spot scanner for
use in particle size aralysis [Young and Robert, 521. By
1961, a2 special-purpose computer and television microszcops
had been constructed as teported by Izzo and Coles [Izzo and
Coles, 621. Its initial wuse was in the research of the
feagibility of screemning blood smears for rare - types of
bloed cell whose occcurence appeared to be significant as an

indicator of low levels of radiation damage to humans.
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A major program in chromosoms picture processing, using
a . photomicrograph sZanner rather than & television
microscope as the input device +to the general purpose
computer, was established at the National Research
Foundation (MWashington, D.C. > and the new England Medical

Center (Boston), as described by Ledley et al. in 1965

[Ledley et al.., &51]. In 1968, the first general-purpose

system for the digital analysis of cell images was realized
by Wied et al. [Wied et al., §&81. In 1971, Ledley
described three different methods for analyzing cell images
[Ledley, 7&l. In the first method, intercommunicating
programmable cursors are utilized for the detection of
boundary and arsa features. The second is concernsd with an
evaluation of the curvatures of boundary segments to isolate
the cells. The third method imbeds the picture data in &
non-Euclidean coordinate system 55 an aid to the snsuing

analysis.

As recent as 1975, Bacus repotrted on a nowvel methodg
which reqguired that the cell image be digitized through two
different colour filters (Bacus. 761, He +then used a
whitening transformation technique to produce two separate.
transformed “"colouwr® and "density" images. Based on this
type of preprocessing. he developed a scene segmentation

technique for blood cell neutrophils [Mui et al.., 7é1.
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2.9.3 Cell Counting And Classification

In order to develop a practical analysis system. it was
necessary to study pattern recognition and classification of
cells. The automatic classification of peripheral blood
leukocytes has alsgo been the subject of considerable study
eince the-1968“s [Bacus, 78; Ingram et al., 68; Ingram and
Preston, 70; Mendelsohn et al., €8; Prewitt and

Mendelsohn, 661,

In aone of the earliest pieces of work, Preuwitt and
Méndelsohn attempted to classify blood cells into five
categories, utilizing an optical density histogram
representation of +the digitized cellular image [(Mendelsohn

et al.. 68; Prewitt and Mendelsohn., €61

During the period 1969-1972, %Young at MIT simulated a
system to perform an automated leukocyte differential count
through the measurement of nucleus and cytoplasm color and
size [Young., 6%9). He classified the lsukocytes into one of
five basic +types: neutrophil. cosinophil, basophil,

lymphocyte, and mohocyte. Ingram and Preston worked with

- larger data bases but clagsified cells into only ‘three -

categories [Ingram et al.. &8; Ingram and Preston, 781

Later in 1972, Bacus et al. dealt with the difficult
interclass problem to classify the peripheral blood
leukocytes into eight categories [Bacus and Gose, 721, Thay
used as morphology measuremsnts, fhe rnu=lear size, nucle2ar

shape: nuclear and cytoplasmic <texture, cytoplasm colour,
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practical claszifi magority of the
reported  research has  bsen of a wvery preliminary nature.

For sxamplse. the dnvestigations were  carried out  with

(8

gxttrensly small date bazes, usuwally with cells {from only one
perzon, and with either no independent testing set. or  an
gxbrensely  =mall  ome. Some  of the inuvestigations have

purposely not included  "difficult”  or "nontypical” cells

[Causley and Yourg, 5310

»

. 3.4 Early Work On Cell Tracking

HWith regsrd to the anslysis of c2ll movemnent, Parpart

was  one of  the first o examine  this problem in 1931

(Farpart, 311 Heg used telewizion Lo study the movement of
bBlood cells. Lo irg the period 1¥33-1957, Causley and Young

[Causley and Young, 531, Hawksley [Hawksley =% sl . 341, and

ix 8

Barer [Barer, 5371 uzed teleuvizion technigques to study living

cell=s,

I 1973 Greaguss teported o an Anteractive on-line
camputer—-televizion systen for  ztudying the behaviour of

moving organisms [Gresves. 751 Fatramaters relating to this
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behaviour, such as for example uvelocity and rate of change
of direction, were extracted with the aid of an interactive
graphics system. In 1%97¢. Green and Barnes desigrned an
electromechanical instrument to automatically follow the
movements of an individual white blood cell [Greene and
Barnes, ?61. Youssef [Youssef, 771 discusses this

literature in detail.

.35 Ouantification Of Blood Cell Locomotion

The movement of blood cells and +the factors which
affect their locomotion are of importance to the
understanding of the role these cells play in host defense
mechanisms. A majgor projgect which concerns the study of
blood cell movment, quantifying and characterizing the
different factors controlling their dynamic behaviour, has
been carried out during the last few years in the Computer

Vision and Graphics Laboratory (CV¥aGL), at McGill Universty.

Four projgects have been under study:

(i) Quantification of blocod cell movement by automatic image

processing methods,

(ii> R real-time laboratory device for tracking and

guantifying blood cell movement

(iii)> An automatic picture processing mathod for extracting
genealogical information from proliferating cell

cultures.
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{iv) Quantification and characterization of the motion andg

shape of a moving cell.

The first two progects have been completed and their
results have been reported [Levine and Youssef, 78a; 78b;
Knoll, 791. The third progect ig discussed in [Ferrie, 7%
Ferrie et al., 82, Ferrie and Levine, 811, The proposed
approach adopted by the fourth project has been presented by
Youssef and Lewvine [Levire et al., 7% VYoussef and Levine.
861, Recently this work has been completed and the results
are presented in this thesis. A brief review of the
cbgectives and achievements of the above progects is

presented below.

(i) Quantification of Blood Cell Movement by
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In order to facilitate the study of cell movenent,
Levine and VYoussef introduced a new autbmatic picturs
processing method for tracking and quantifying the dynamics
of blood cell motion L[Youssef. 77 Levine and Youssef, 78;
Levine =t al. 861]. The input to the program is a 16 -mm
cine film of the cell cultures viewed in a steady state.
Under the circumstances. the global diractional mouvemsnt of
the group of cells undsr considetation can be characterized
by a Markov chain model [Eoyarsky, 771. By obserwving and
quantifying the cell paths, it is possible. using this

" model, to determine the probability that the cell population”
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is moving in a particular direction. This intormation might
be of interest in the study of the effect of substances on
cell movement, defects in white blood cell migration, and

the general interaction among cells.

The above approach has many desirable features over
previous work. The system has successfully achieved the
objective of automatically +tracking & group of live blood
cells. It quantifies the cell path data, and computes the
steady—-=state probabilities in order to predict the direction
in which the cells will ultimatly mous, Basides obtaining
aﬁcurate steady—~state results: the system can alsce be used
to obtain a path for each tracked cell. This data is
essential to the study of the characterization of locomotion
for different +types of cells under varying envirormental
influences.

(ii> A Real-time Laboratory Device for Tracking
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Based on the approach described abouve, Leuvine and
Youssef presented a design for an integrated practical
laboratory system which facilitastes the tracking ang
quantifying of the cell mouvement in a real-time environment
[Levine and Youszsef, 78hL1]. The construction of this dewvice
is based on observing the cell mouvement directly din
real—-time’ via a microscope using a TV camera connected to a
digitizer, The practical imnplementation of this decice was

reported by Knoll [knoll., 791 Arnother desirable aduvantage
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of this device iz that besides +tracking <the cell in
real-time, it also reduces th2 noise in the input image
which results from recording the motion on a cine film.
Other possible applications might be in the study of the
effect of drugs on cell movement, defects in WBC migration.

and general interaction among cells.

Two common restrictions characterizing all the tracking
approaches described +thus far Jdincluding the approach of
Levine and Youssef) are: (ad) the cells being tracked must
remain well iscolated from one another (no occlusion or
errlapping), (b> most of the approaches are based oHn
centroid matching technigques. Thus. the changes on the c2ll
cshape that may occur betuween the saquential frames have been
ignoted. In order o develope a tracking system which
considers these factors, the system should wutilize world
khowledge about the class of scene and the ob_jects to be
tracked (see Section 2. 4 on knowledge-based systems). The
first - tracking system - which considered these restrictions
was developed in Japan at Koyoto University by Ariki =2t al.
[Ariki et al. ., 781 They proposed an interactive imagse
modeling system for tracking moving objects from a sequence
of images. They sccomplizshed this obgjective by constructing
interactively, models of the obgect to be  fracked. Using
these model patterns, they can measure +the changes in
specified features (intensity, location, and shapes). The
first systen which achieved the same nbgectives

automatically was developed by Ferris and Levine L[Ferrie and
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Levine, £811. A brief description of +this apptoach is
presented below.

Ciii?> AN Automatic Picture Processing Method for Extracting
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The study of Ferrie and Levine was concerned with
extracting genealogical information from proliferating cell
cultures by using automatic image processing techniguas
[Ferrie and Leuvine, 811. Their tracking approach is based
on updating the description of th2 cell in the current frame
(f) by matching +the feature vactors of esach candidate in
this image to the feature vector of the cell in the previous
frame (t-1)> <(the static model of +the cell), Tuwo cases
arise: (a’ the cell is located, ther the static model is
updated and the tracking is continued, (b} the match failed
indicating that the cell has undergone a state transition
In +this case the procezss computes the hypothesis of the
different possible sitate +transitions. By testing weach
hypothesis individually. the system sslects the one that

best matches its supporting evidence.

In this apptroach, in order to soluve the correspondence
problem, explicit models of the differant state transzitions
of the cell are used. However:, the random morphological
changes: esgpecially with a phase-contrast obgective, are
very difficult +to model. Consequently, +the prototype models
of the cell +transiticns are not sufficient to solve the

correspondence  problem in  these cases. Qf particular
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interest., is the fact that an ‘“expert" human <an keep
tracking the cell despite these artifactual problems. Thus,
he uses cues from *he visible morophlogy of the cell to
distinguish those which are artifactual due +o shadouws or

phase-contrast.

The system which simulates this "expert" process is the
obgective of +the current research by Levine and Ferrie
[Ferrie and Leuvine, 811 They propose to accomplish this
objective by modeling the set of uisual cues and response of
the expert which he uses 1o identify the location of = cell.
This knouledge will be represented in the form of implicit
models which may be wused through inferential mechanisms
where syntactic knowledge (explicit modelg) are not

sufficient.

2.3.6 Membrane Shape Changes

The mzin function of a cell’s surtace is to receive
information from the anvironment. It has become
increasingly evident that the surface plays a pivotal role
in the 1life, dewvslopment, and regulation of cells. The
mechanisms that requlate this social behaviour of cells, of
which locomotion is an  important component, are not well
understood. Recently., experiments have indicated +that the
cell membrane plays & wvital role in  these wmechanisms.
However, there is no existing method +to guantify the
observable changes in membrang shape thst occur in

locomotion.
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The work of Lewandocwska ot al reprezents an empirical
approach to analyzing the locomotion of leukemiz cells by 2
computer image processing method [Lewandowska et al., 811.
They measure the Jlocation and shape of specific types of
cells C(leukenia’, using a group of =zimple features, such as
area, perimeter., ratio of perimeter to area, and elongation.
These features are computed for a few frames (160 frames are
reported? selected interactively from a sequence of images
recording the cell locomotion. This interactive selection
is based on choosing thoge frames in which a significant
change in the cell’s shape has occured. Then, the computed
features of the cell in each of these frames are comparad
with ten =imple prototype models describing the differant

patterns which may be exhibited by the cell

For obvious reasons we are not going +fo compare our
current work to the approach of Leuandowska et al., howeusr
we may point out the testrictions of their work by the
following points, Their method is applicable to lymphocyte
cells d<(leukemiad which exhibit relastively simple shape
patterns (which are sgasy to modeld during their locomotion,
compared o PMN. The system comput=s only the location and
general shape (Using shape features useful only for simple
shapes? in a few zgtatic frames, ignoring the structure of
the cell. The system does not deal with any problems of
image sequence analysis. such as the gquantification and
description of incremental or global changes. Ancother major

problem in image sequence analysis is finding the frames in
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which significant changes have occured (key frames’ and

which ie solved in this system interactively (nanually’.

On the other hand, in spite of the simplistic
methodologies and technicalities of Lewandouwska et al, this
work is still worth mentioning for two reasons: First, it
is an attempt towards the solution of a difficult problem.
namely gquantifying and characterizing the observable changes
in the cell membrane. Second, +this work is rooted in 3
completely independent local research experience C(they do
not make use of or refer to any of the previous work in the
reiated areas’. For exanple, they refer to the ratio of the
area over the perimeter as the "Malinowska factor”. This
feature is now established in the computer vision community
as "circularity". Another exampls, is that the method they
use to generate the polygonal approximation of <fhe zell
shape,; has no theoretical basis. Therefore, in many cases
the polygon may represent a completely different shape from

the cell.

2.9.7  Sunmary

From the previous briesf discussion, it is euvident +that
research on the analysiz of cells using computers has been
carried on for over twenty years. This has more recently
led to +the development of experimental and also practical
systemns whose performance Ln many cases equals that of +the

humarn technologist.
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The magor efforts in automatic image processing of cell
images have been focussed ot the analyszis of chromosomes,
blood smears, and ceruic#l smears. In general. the majority
of +the work which has been done in this area has beoen
directed towards the recognition and classification of cells
on a blood smear. The study of cell movement and the
characteristics of cell interaction have been largely
ignored. However. the recent work at the Computer Vision

and Graphics Laboratory at McGill University offters the

- possibility of guantifying and characterizing the cell

dynamic behaviour.

The structural changes in the cell morophology that
occur during locomotion have not been reported in the
literature. Furthermnore, in spite of <+he importance and
great interest in undersztanding the role that the cell
membrane plays in locowmotion, there iz no existing method
for quantifying and analuzing the observable changes in the

membtrane shape.

In our current research we have developed an image

interpretation system capable of gquantifying, analyzing, and

_describing the structural changes in the morophology of a

moving cell. Thus., w2 se2 that the contributions of our

research in the automatic processing of cell images lie in

the following:
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(a) Hith the aid of the global observable changes in  the
cell locomotion, one of the maih behavioural
characteristics is mathematically quantified and
described; namely., the chemotactic behaviour (the
directional locomotion of the cell with respect to the
directional effect of an external factor>.

- Consequently, the effectiveness of an external factor

in modifying the cell locomotion is quantified.

(b> A mathematical expression for measuring the complexity
of the cell shape pattern has been developed and used
to describe the membrane shape and its observable

changes.

{c? The global changes in the cell structure ars also
analyzed; hence, 2 subpart of the cell is classified
as being a "pseudopod" or "cell body", and a pseudopod
is described as "growing", “contracting®, or

"stationary”.

{d> Furthermore, some aspects of the global behaviour of ths
cell are summarized and described; for example, the
"domination" of a pseudopod in leading the locomotion

of the cell.

(e’ He describe the dynamic activity of +the cell using 2
symbolic terminology which 4is meaningful to the

biologist.
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This computer study might prouvide clues to  the naturs
and distribution of "receptors" on or within the membrane.
which i a wvital 1link in +the interaction between the
external factors and c¢ell internal procassses. Also, it
might lead to a better understanding of the role that the
cell wmembrarne plays in the mechanisms which regulate the

social behaviour of cells.



CHAPTER 3

SYSTEM AND DATA STRUCTURE

3.1 INTRODUCTION

The main goal of our research is to design and
implement an image understanding system capable of analyzing
the locomotion and structural changes in the §hape of a
non—rigid moving object from a sequence of pictures. Rny
system which tries +0 solve this problem thoroughly is
attempting <to imitate human visual motion perception. The
latter constitutes a hierarchy of processes, vhich includes
motion detection, understanding, and description. ARll of

these aspects are asddressed by this research.

From a philosophical point of view. +the present
structure is motivated by the computer uision framework
proposed by Levine (Leuvine, 781 The latter has been
revised and implemented by Levine and Shaheen for general
static scene analysis and interpretation [Levine and
Shaheen., 811. A rule-based system for low-level image

segmnentation is described in [Levirne and Mazxif, 19821].
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Qur proposed struacture for a general motion

understanding system inuvoluwes three basic entities: dynamic
data, static data, and a collection of analysis processes,
each of which is assigned a particular task. The dynamic
data are continually changing as a result of the functioning
of the different analysis processes. They are stored in the
the STM, which is desighed +to work as a comﬁunication
channel for all of +the processes. Each procegs can read
from and write into the STM. It contains a record of the
instantaneous object motion, shap=, and structurai-égahées,
as well as the current global description of the object
dynamic behaviour. The static data in the LTM remains
unchanged during the course of analysis, and contains
constraint knouledge pertaining to the class of scenes and
motion wunder anslysis, as well as the pertinant

computationsl processes.

The system also consists of different computational
processors, which are designed to execute through a2 (loose=)
hierarchial structure consisting of +three basic levels:
static, dincremental: and global (see Figure 1.4). These may
be described as follows <(Figure 1.53:

Static Scene Analysis:

===sosss=osssSsmswasms
This step is similar to a static image processing system.
The input is a single digital image, examples of thch are
chown in Figure (4. 3>. The output is 2 description and
interpretation of the scene. Howevesr: in image sequencea

analysis, the information extracted from the previous frames
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of <the same sequence may be used to assist the analysis of
the current frame. The main objective of this stage is +o
identify the desired mowving objgect, segmen% it, and describe
it in each frame of the sequence. Figure (1. S5a> shouws a
block diagram of <this stage of analysis. and Figure (4.1’
shows the processes and data structure. The segmentation
output can be seen in Figure (4. 2l1la). In <4. 2%tb), the
result of static shape analysis is presented, in which the
cell is represented by a labeled star graph.

Description (4. 1) is- tupical- of those generated by the
system. How this is obtained is described in Chapter 4.

Incremental Change Detection:

mooonsrssssssE—osmmEnesmsmESs
This stage is an intermediate step between +the static and
the global. The main obgective is to detect and describe
the incremental changes in the shape, structure, and motion
of the modlng object betuween Ywo sequential frames (see
Figure 1. Sby. Figure (S. 1> shows the processes and data
structure of +this stage, and L[escription (5. 1) gives an
example of a summary of the incremental changes between two
sequential frames. This stage of analysis is described in

Chapter 3.

Global Analysis:

A
This presents the highest level in the hierarchy of the
systemn. The goal is to analyze the static and incremental
data in order to detect and describe the global observable
changes within the sequence of frames (Figure 1.Sc’. Two

basic steps are involued. The first is concerned with the
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alobal desscoription of these gzpects pertaining o the c=2ll

dyramics;  that iz, locomotion. shape, and  structure. The
zeoond integrates these differsant global descriptionz into a
caberent characterization of the behaviour of the csll. The

main =tepz  of  this =tage are shown in Figure (6010 The
methodologies and implemnsnted techhnilgques perftaining to  this

stage sre described in Chapftersz 6-8, inclusive.

The different processes interact through the STH usincg
gt Iwmformation stored i1n the  LTH, until a complete
description of the dynamic cell wmetion and morphology iz
obtaireed. Examples of these descriptions are given in

Cesoriptions C& Lo, 7. 40 and (3. 3.

1.2 DATA STRUCTURE AND KNOMLEDGE REPRESENTATION

The different typssz of dats which may be manipulated by
thez =ystem mre clazssifised into: 3 sequsnce of images, a

giroup of obgects and subob gpocts. a3 set of features, a group
of zymbolic descripiTors. a grogp of characteristics, and a
et of rules, The latier may be furthsr divided into

reptrezentational @2nd  Conftrol rules, In this section. the

definition of theze dats will be presented, Also, we will
demornsteste bz they Yo b R 3=Po! for Ennowledge

representation amd  model construction &t any  leuvsl  of

abistractiom
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3.2.1 Basic Elements For Knowledge Representation

The main input for any image sequence analysis system
is a sgeries of tuwo-dimensional digital images representing
the variation in a specific scene along a third-dimension.
These images may be obtained in various ways; for example.
cine film, video tape, or a TV camera obs2rving a scene in
real time, whereby the images are captured at specific time
intervals. MWhatever the input device, the actual data for
the: analysis system iz a et of two-dimensional images <{IJ,
where each element of this set represents a static (single’
image of the scene at a specific time ti. The latter are
elements of T}, the set of sample times at which the frames
are obtained:

LTy = L£t1,t2,t3,. .., %1,....:tnd, (3. 1>
and Iti is the image of the scene at time ti. The period of

time between two framesz (i) and (k> is given as Tik.

Each image Iti of the temporal sequence may be
segmented into a set of obgects {OBJECTS> so that

<OBJECTS> = «<04,02,03,....,0n> (3. &>

This set may also be divided into two subsets according o

whether the object iz mouving or stationary:

{0BJECTS> = {MOVING OBJECTSX>, {STATIONARY OBJECTS>
{MOVING OBJECTS» = {MO4, MO2,. ..., MOmY> (3. 4>
{STATIONARY OBJECTSY» = {504, 302,. ... S0k} 3.3

3. 3>

where MOi is moving obgect(i) and S0i is stationary ob_ject(i).
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Obgects have & complex shapes. and it 4is usually
necessary to decompose them into primitive subparts. The
result of this decomposition is & collection of SUBOBJECTS
associated with each obgect. Thus, for example, a moving
obgject MOi may be decomposed into

MOi = {SMOiil.sSHM0Oi2,.....,SMOs), (3.6
vhere s is the number of subobjects of object MOi. ‘If MOLi =
{8}, this indicates that the object MOi is simple and cannot
be decomposed. Figure (4 12b> shows an examnple of 3
sequence of cell boundaries, Figure (4. 15> indicates their
polygonal approximations, and Figure (4. 17> illustrates the
cell decompositions. In our case. the obgect is a cell
whose decomposition is repregsented by a star graph The
central node indicates +the body of the cell, while the

others symbolize the "bumps" on the cell membrane. It is

“these.. protrusions +that ultimately grow into the pseudopods

discussed earlier. RAn example is given in Figure (4. 18).

R set of obgects is described by static features. The
latter define the different properties of shape, structurs,
or motion of the objects and subobgects to be measured or
analyzed by the system:

LPROPERTY., NUMERICAHL VALUEY = LP, V> <

L{FEATURESY = 3.7
where {Pr = LP1,P2,....Pi,... (3. 3>
and vy = {vLLve, .. L VLe L 3 (3. 3>

A property name in the set <P> is given by Pi. It may +take
on any wvalue in the set {¥>  Furthermore, we may write

Y(Pi>» to define the numerical valus of a specific
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property Fi. If the value is given at a certain time %

this is indicated by V(Pi, t 0.

The set of properties may be divided (grouped) into
subsets; for exatnple:

{PROPERTIESY> = {SHAPE, LOCATION. STRUCTURE, MOTIONY

= {&P, LP. RP, MP2> (3. 19>
{SHARPE> = {SP4, SF&.. > (3. 145
{LOCATIONX> = {LPL,LP2,.... 2> (3. 12>
{STRUCTUREY = {RPLi,RF2,....7% (3. 13>
{MOTIONY> = {MP1i.MP2,.... ¥ (3. 14>
.{P} = {SP) U {LF> U {RF> U {MF) (3. 15>

where SF., LF, RF. and MF are the group of properties which
define the shape. location, structure, and motion.

respectivelu.

Table (3.1 givesz examples of +the different cell

properties under each group heading (shape.
structure. motion,. and laecation)?. This fixed list is stored
in the- LTHM. - On the other hand, the numnerical values

(dynamic data) of the specified properties are stored in the
€TM, and may be updated at any time throughout the a2nalysis.

by any ptrocess.

322 Symbolic Qualifiers

A set of symbolic descriptors or qualifiers {®) is used
to classify and describe the numerical values of the

different properties of the moving cells. The nunber of
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defined qualifiers may be lesz than the number of
properties. because more than one property may be described
using +the same symbolic descriptor. For example, all
properties based on measurements of distance between two
points (length, base-line, connective-line, displacement?
may be described as SHORT. LONG.....VERY LONG. Rlso, as
already indicated for the properties, the set of symbolic
qualifiers may be grouped into subsets according to the

nature of the properties they describe. Thus:

L@> = {SQ, R, M&, LQ* (3. 16>
€S> = {S@1,.802.,... % ., shape qualifiers, (3.417>
<RQ> = {RR1, RQA2,... ¥ ., structural qualifiers, (3. 418>
MRy = {MRL, ME2,... % , motion qualifiers, (3. 13>
Ley = @1, L@z2,...* , location qualifiers. (3. 28>

Each property is specified by a subset of symbolic
qualifiers:; thus:

LRCPLYY = {QLCPid, Q2CP1i)>, ....,QkC(Pi}>, (3. 21>
where Q(Pi> is the subset of qualifiers describing the
property Pi. Table (3. 28> gives a 1list of examples of
different cell properties and their mnultiple levels of
description, This type of information is stored in the LTM.
whereas the symbolic descriptors of the actual image wunder
analysis are gstored in +the STHM. For +the latter. the
assigned qualifier for a specific property Pi at a given

time ty is given as QCPi, 1)
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Finally, in order to sumnat-ize the global c2ll
behaviour, we have defined the so-called call
characteristic. Each cell characteristic is the description
of a group of festures which cooperate to define a specific
type of behaviour. These may be based on the global changes
in cell shape, structure. motion, combination of more than

one global change. and/or the effect of the environment on

the cell behaviour. The general form of this set of
characteristics,
LCHY = LCH1i, CHa, ..., CH4i, ...2%, 3. 22>

is given by
{CHARARCTERISTICSY = {PROPERTY., OPERATOR, QAUALIFIERX (3. 23>

{CHi> = {Pi, 0i., @ik, (3. 24>

where Pi,01,0i are elements of the sets {PX», {0X, L&F. The sets

{P¥> and {@Y have slready been defined. and the set

€0y = {AND, OR, LT, GT, EQ, LE, GE, NE, RE, GTT., LTT, MST, LET> (3. 25>
specifies the relationship between the property and its
qualifier.
Table (3. 3> gives the definition of the different

elements of L0,

As indicated in +the preceding ssctions tor the
properties and qualifiers, +the set of characteristics may
also be grouped inte subsets, according to the nature of the

behaviour they describe.
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3.3 KNOWLEDGE REPRESENTATION RULES (LTM)

Knowledge representation and model consttruction are
probably +the mostb important aspects of the structure of a
knowledge-based system. In +the preceding section, we
described <the different types of data which represent the
basic elements of the knowledge representation for a motion
understanding system. In this section, we will demonstrate
how these basic data elements can be used to create a world

model.

In our proposed structure, the model which represents
the khowledge contains two basic types of data, constraint
knowledge and rules. The latter may be further classified
into representational and control rules. The
representational rules are responsible for generating the
different descriptions and characteristics according to the
numerical measurements of the different features. The
control rules account for the activation and scheduling of
the different system processors. This tupe of data will be

described in Secticnn 3. 4.

In the human understanding system, the interpretation
and/or description of a specific situastion is accomplished
by an inference process which ytilizes the perceived data,
as well as a priori knowledge and experience. The latter is
modeled by the constraint khnowledge. It ie classified
according to +two baszic criteria: tirst, whether it is

scene~dependent or -independent. Second. according to the
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nature of the cell properties.

Scene-independent knowledge holds for any class of
obgjects in motion. For example, +the descriptions of a
circular or elongated shape. Similar examples, related ‘o
motion, are the descriptions constant velocity, positive
acceleration, or negative acceleration. Conversely,
scene—dependent kricwledge only pertains $o a specific class
of scene or motion pattern. Thus, <the required knowledge
which may be used for the understanding of the blood cell
motion is different from that which characterizes the
beﬁaviour of vehicle drivers on an urban highway. an animal
under a drug protocol, or a growing plant. Both of these
kinds of constraints are involuved in the design of the

representational rules which embody the world model.

The function., classification and construction of the
rules pertaining <o the image model will be discussed in
this section. Rules involving the control of the analysis
will be considered in Section 3. 4. All the LTM rules may be
described as condition-z2ction relations. They conhsist of
predefined situations «{CFr and descriptions of actions <RY o
te taken when the gpecified situations occur. The general

form of these rules is:

RULE : if CONDITIONS ==then==>> ACTIONS
{RULESY = { {CONDITIONSY, <ACTIOMSY> > (3. 26>
<R> = {L{C¥, A>T} 3. a7
where {C> = {C1.C& ...,C >, (3. 282
and {AY = LA3.A2.....,AKY. (3. 2%
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Typical situations {(conditions> and actions may be summnarized
as follows:

Situations:

(a) Completion of the execution of a specitic process

(b} Occurrence of a specific situations through or
after the execution of a specific process,

(c) Specific property values.
(d> Obgect or subobject descriptions.

Actions:

(ay Starting and stopping the system.
(B> Activation of a specific process.

(c) Generation of a set of features, descriptions.
or characteristics.

(d? Data presentztion for output.

Both general and "expert" knowledge are repregented as
production rules. These may be classified into three groups

according to their function, as follows:

(a? To translate the m2asured numerical values V(P> of the
different cell properties into symbolic qualifiers

RCP>.

(b> To generate the static, incremental, and global symbolic
descriptions of the motion, shape, and structure of the

moving cell.
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(c? To integrats the multitude of observable changes and
global descriptions into a coherent whole, in order to
generate the characteristic behaviour of the cell.

In the following. the structure and examples of each of

these different groups of representational rules are

described.

Qualifiers {Q) (group (a)> above) are the elements of
natural language which humans use for describing obgects.
In our system: they are computed by a sat of Qualifier Rules
CAR>, The function af the lattet is 4o choose among a s=t
ofhsgmbolic descriptors the appropriate one for a given
numerical value associated with a specific propertu. Thus
we have:

{QUALIFIER RULESY

LCONDITIONSY> ==then==> {ACTIONS> (3. 2>

{CONDITIONS> = {NUMERICAL VALUES, OPERATORSX, 3. 31>
{ACTIONSY = {QUALIFIERS) (3. 32>
{QRY> = {ORL, QAR2, ..., QRiLi, ...> (3.3

{QRix> = {VC(Pi>, O, Eg> (3. 34>

vhere EJ is an elemment of {E>, a set of thresholds stored
in <the LTM. The complete set of qualifiers <0} and
operators {0 used by this set of rules was defined in
Section 3. 2. The numerical valus V(Pi} may be defined by a
measurement or a constraint pertaining to the specified

property.



SYSTEM AND DATA STRUCTURE Page 3-1332

Two issues are of significance. How many lev2ls, and
how should the thresholds be chosen? A thorough study of
these issues is presented in Chapter 4. Hith regard to the
first. the number of classes for a symbolic descriptor is
controlled by the accepted level of approximation related to
the desirable description. Specifically, the greater the
number of classes (levels), the more precise the
description. On  the other hand, the smaller the number of
classes defined, the more insensitive will be the process of
" analysis to noise. Obviously, more data compression is also
obtained. The guestion arises as to how these conflicting

factors can be reconciled.

The simplest method for diwviding a subclass is +o
organize it into tuwo groups. Thizs isg eimilar o
transforming a gray-level image into a binary one (black and
white). Thus, wusing a single threshold, each numerical
value can be asgigned to one of SHORT, LONG or FAST. SLOW,
and so onh. It is qgenerally accepted that the human ability
to categorize into subclagses is indeed limited. In
recognition of this. we have defined the number of
subclasses to be five, ih the following order: VERY LD
LOW, HWMEDIUM. HIGH, VERY HIGH. Table (3.2 givuss examples of
the different gualifiers for some of +the main properties
measur-ed. In some special cases, the nature of the property
to be described requires a different form of quantification.
For example. in describing the diraction of motion of a

moving object. esight lewvels are defined <(ERST, ERST-NORTH.
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NORTH, WEST-NORTH, WEST., WEST-S0UTH, SOUTH, EARST-SOUTH).

The second issue inuvolved in describing a set of
numet-ical values symbolically, is how t0 define the
thresholds in order %o divide this set. This problem seems
easier than it is; it involves clustering theory, human
psychology. and problem domain knowledge. A thorough study
of +this subject has been made by Denofsky at MIT [Denofsky.
761. The title of his study, "HOW NEAR IS NEAR?" 1is, in
fact, a good definition of the problem. In order %o design
a suitable quantification to be used for different classes
of obJects and motion, normalization of the dynamic data is
important, Thus, if the numeriﬁal values of a specific
property are normalized +to range between zero and one, a
general rule may then be used for assigning the qualifiers.
For example:

RULE<3. 1>:

IF VCPid> .GE. E1, .fAND. .LT. €&, ==then==> .Pic—-Ql,
where V(Pi) is the normalized value of property Pk, @1 is
the chosen symbolic qualifier, and Ei1,E2 are classification
threshold wvalues which define the boundaries of the
qualifier Q1. The action Pi<--81 is interpreted as
assigning the qualifier &Y +to the property Pi, thereby
genetrating QLIPL). fin example of a complete specification
is:

RULEC(3. 2>:
(a> IF V¥d(area> .GE. E8. AND .LT. E1, =then=> AREA <-- V. SMALL

(b> IF Vd(area> .GE. EL, AND .LT. Eg, =then=> AREA <-- SMALL
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(c>» IF Vcarea) .GE. £, ANl .LT. E3, =then=> AREA <{-- MEDIUM
(d> IF VcCarea)> .GE. E3. AND .LT. E4, =then=> AREA <~- LARGE
(e> IF W¥cCarea) .GE. E4, AND .LE. ES, =then=> AREA <-— V. LRARGE
The threshold values E1,E2.,....Em/,...,En are stored in the

LTM as constraint knowledge.

The second set of rules d(group (b> abowve) is
responsible for creating meaningful symbolic descriptions of
the static, incremental: and global changez of the object.
Each of these processes may ihvolve rules ralated to shape,
structure, or motion. We note that all of +the data

manipulated at this stage will be in symbolic form

The function of these rules in the motion understanding
system 1is similar to that of constructing a sentence in the
natural language. Examples are:

RULEC(3. 3>: IF SMALL(RELATIVE-AREA> . AND. SHORT(BRASE-LINE),
=then=> DESCRIPTION . EQ. PSEUDOFID CANDIDATE.

RULEC(3. 43: IF VERY-SHORT(DISPLACEMENT (L, i+13)
=then=> DESCRIPTION . EGQ. STATIONARY.

RULEC3. S>: IF VERY-LONGC(DISPLACEMENT Ci, i+1)>
=then=> DESCRIPTION . EQ. ARTIFACT.

These examples demonstrate the use of +the representational
rules at the static and ifincremental levels of description.
In corporating these, another function is to generate the
global features of the cell and its motion. This task may
be accomplished in two steps. The first is cohcerned with
the detection of all the frames in which a changs has
occurred. Theze are referred to as "key frames" KF>

[Burtynk and Wein. 7813, and are described by rules ‘based on
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symbolic qualifiers. The set of key frames may be defined
as:

LKF> = {KF1, KF2, ..., KFy, ...> (3. 35>
Thus, for example, if a specific property has the same
qualifisr for a sequence of images., then that property may
be described by the same global descriptor. The frames in
which the qualifier has changed (beginning and end), are
assigned as key frames. This strategy may be modeled by the

following rule:

RULE(3. 6):

IF QCPi, 1> . EQ. QCPi, t2> EQ. ... QCPi,tk)> . NE. QCtCk+1D2

=then=> Q(T1ik> .EQ. Q(ti> .AND. KFy . EQ. k.

Note that Tlk is the period which includes +the samples
{t1,¢2,...,tk> and KFy is +the key frame number _ which
occurs at time tk. RAs with other variables, Tik may be
normalized and described symbolically as VERY SHORT., SHORT.

MEDIUM. LONG., or VERY LONG.

The abouve iy an exanple of a simple rule, based only on
the dynamic data of the different propsrties. The second
step in prouviding & useful global description, is concernsd
with distinguishing the significant changes from the
irrelevent or noisy ones. In this case, a motre
sophisticated approach would utilize the dynamic description
of the different properties, in congunction with logical
knowledge constraints. For example, an inference process

could eliminate the very short svents. These are wusually
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caused by noise or random changes due to undesirable
experimental conditions. Thus, sSUuppose a specitic
property Pi is described through three sequential periods
QLCPi, TRL ), Q2<(PL, Ti2>, and Q3IC(Pi, T23). If the time Ti2 is
very short relative to both T@1 and T23 (Tel1,T23 >> Tic>,
then an inference process might eliminate Ti2 by one of two
actions: first, by merging all three periods TOli.Tiz, Te3
into one (T83)., or second. by mebging Ti2 either to T841 or
T23. Thus, if +the cell was described in three sequential
periods as SMALL, VERY SMALL, and SMALL, then a merging of
these periocds would result in SMALL as the description.

This may be achieved by the following rule:

RULEC(Z. 7>: IF (Tei . GTT. T4i2 .LTT. T23> . AND.
(1 .EQ. &3 .AND. Q1 . NE. @),

=then=> MERGE THE THREE FERIODS INTO @43(Pi, TH3)

where TR3 = To1l + Ti2 + T3, and Q13 = R1 = Q3

Figure (7. 5a) illustrates the function of this rule.

A second action, in which Ti2 may be merged +to either
Ted or T23, is based on logical inferencs. For example, if
the length of the cell was described in three sequential
pericods as being SHORT, VERY SHORT. MEDIUM. then one may
logically deduce that it has changsd from SHORT +o MEDIUNM,
if the description of the very short period (Ti2) is ths
same as that of either the preceding or following period.
Thus. if the descriptioh oft the VERY SHORT period is closer

to the SHORT period rather than to MEDIUM period, pericd Ti2
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may be aerged to THB1. This logical deduction may be

accomplisted by the following rule:

RULE(3. 8> :
IF (T4 . GTT. Ti2, .AND. Tie . LTT. Ta3d
.AND. (@1 . GT. Q2 .AND. @2 .LT. @3 .AND. Q1 .LT. Q33
LOR. <Q1 . LT. @2 .AND. G2 .GT. @3 .AND. @4 . GT. @3>,
sthen=> MERGE PERIODS TB1 AND Ti2 INTO Qiz<Pi.TB2>
where TB2 = TPl + Ti2. and Q128 = Q1. Figure (7. 5b>
illustrates +the function of this rule, Dther examples of

similar rules are shown in Figures (7. 3c-7. 5g).

The third set of rules (group (&2 above) is responsible
for integrating +these different descriptions into a final
coherent characterization. In this sense, its task is
similar to that of a human. The latter studies and analyzes
the data by observing the cell in order to understand and
characterize its dynamic behaviour. Below are examples of
this set of rules, wuhich mainly depend on the expert model.

The general format is given by
RULE : IF DESCRIPTION ==then==> CHRRACTERISTIC

For example, if the total displacement of the cell  in the
main directions (EAST, EARST-NORTH, ... > is given as:

{TOTAL DISPLACEMENTSY = {TD1. TD2....., TDi,...., TDm>, <3. 36>
where TDi is the total displacements in direction ¢id) then

we have:

RULEC3. 9>: IF TOL . GTT. TDy  Cuy=1,2,...,md
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=then=> CHRRACTERISTIC . ER. DIRECTIONAL LOCOMOTION.

RULE(3. 10>: IF DIRECTIONAL LOCOMOTION
. AND. CELL DIRECTION . AE. BRCTERIA LOCRTION

=then=> CHARACTERISTIC . EQ. POSITIVE CHEMOTRAXIS.

RULEC(3. 11>: IF PSEUDOPOD IS GROWING
. AND. PSEUDOPOD DIRECTION . E®. CELL DIRECTION

=then=> CHARACTERISTIC . EQ. DOMINANT PSEUCOFOD.

The above show how the global cell locomotion may be
characterized as positive chemotaxis, or how a pseudopod may
be described as dominant. OFf course, different descriptions
are also possible. For example, the global cell locomotion
may be described as being VERY STRONG HEGATIVE CHEMOTAXIS to
VERY STROMG POSITIVE CHEMOTAXIS. or a pseudpod may be
classified as being NOT DOMINANT or VERY DOMINANT. An
example of the global locomotion description is given in
Description (6. 4>, Description (7.1) summarizes +the global
changes in the cell membrane shape, and Description (8. 3)

presents the final characterization of some pseudopods.

3.4 CONTROL STRUCTURE RULES

Constructing a knowledge—-based system with different
levels of processing, which utilize multiple sources of
knowledge organized at different levels of description,
requires an efficient control structure. Two strategies for

defining control structure have been discussed in ths
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literature: model~driven and data—-driven. In the first,
system activities are controlled by the existing knouledge,
wvhereas in +the second, it is the data that dominates. The
mechanism we are proposing for this motion understanding
system is a rule-based structure which is both model and

data-drivern.

The model-~driven control rules are responsible for
activating. deactivating, and scheduling the different
processes and representational rules, as well as starting
and stopping the system according to a predefined (by the
mﬁdel) hierarchical or sequential order, These rules are
executed hierarchically, and in sequential order withiﬁ the

same level of the hierarchy.

The high level rules in the hierarchy are concernsad
‘with starting and stopping the system. as well as activating

the main analysis stages. For example;

CONDITIONS ===then===> RCTIONS
Completed Stage T Stage to be Activated
START —-———> STRATIC SCENE ANALYSIS
STATIC SCENE ANALYSIS ———> INCREMENTAL CHRNGE DETECTION
INCREMENTAL CHHNGE DETECTIDN ———2 GLOBAL RANALYSIS
GLOBAL ANALYSIS —-——2 CHRRACTERIZATION
CHARACTERIZATION —_——2 STOP

The intermediate level control structure rules are
divided into groups corresponding to the main analysis
stages of the system. Each group is executed in a special
order <o activate the different computational processes

“required for the corresponding stage. For esxample. STATIC
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SCENE ANALYSIS is given by the following:

CONDITIONS zz=then===> RCTIONS

Completed Processes Process to be RActivated

-+ 2+t 3+ ¢+ 333 -3 1 -2 %-§- X7 4 % % -+ 1§ 31 1 3 3 2 f ¢t 2 3 F-% Lt 2 4 ¢ 11
START ——D IMITIALIZATION, DIGITIZATION
DIGITIZATION —_———2 SEGMENTATION
SEGMENTRTION ———D BOUNDARY AND MAIN FERTURES
BOUNDARY AND MAIN FEATURES ——D POLYGONAL APPROXIMATION
POLYGONAL APPROXIMATION —— DECOMPOSITION
DECOMPOSITION ——2 STATIC DESCRIPTION
STATIC DESCRIPTION —— EXIT

Finally, low level control rules are associated with
each computational process. They specify and schedule the
different processors (subtroutines? that are neccessary *o
complete +the analysis of the current process. For example.
segmentation is defined as a set of actions by the
model-driven rules. to be executed in sequential order:

ACB)>: START SEGMENTRATION
A{1>»: GET THE CURRENT FRAME
AC2>: LOCATE WINDOW

A(3>: COMPUTE HISTOGRAM
A<4>: SELECT THRESHOLD
A(S>: COMPUTE BINARY WINDOUW
ACe>: FILTER BINARY WINDOW
AC?7>: RECOGNIZE TRACKED CELL
ACB8): TRACK BOUNDARY

A(9): COMPUTE MAIN FEATURES
A¢in>: RETURN

The model-~driven rules which control the execution of the
above computational proceszes may be described as:

RULE: IF Adi) completed ==then==> activate R(i+l)

Hote that at this low level of analysis, wmost of the control
rules are data-driven, since the next action to be taken is
usually - dependent on the result of the preceding

computation.
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The predefined model—-driven structure we discussed
above may be interrupted at any time during the analysis on
the occurrence of specific situations. Examples are
mentioned in Section 3. 3. This type of control strategy is
essential for any multiple level understanding system. For
example, +the results of higher level processes may be used
t0o remove ambiguous situations, or to improve the analysis
results of lower leuvel processes. This is of particular
importance in motion understanding, where the dyunamic
analysis may be utilized to improve object representation in

the static images.

Communication between +the different processes Cat
different levels) of the system could be achieved through
direct feedback links from the higher levels <40 the lower
ones. Howewver, the direction of this feedback ig not known
a priori, since it depends on the evaluation of different
properties of the images. Therefore, the basic function of
the data-driven conitrol structure rules is to direct the
flow of the control between the different processes of the

system.

The direction of +the control may be achieved by
specifying the action to be taken, such as the next process
or the representational or control rules <o be activated.
It is  important <o note that the data-driven rules take
precedence over the flow of the analysis. Thus, if a
model-driven rule should posses the same conditions as a

-4
data-driven rule, the action speciflied by the formar would
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have priority. For example, during static scene analysis,
the following model-driven rule specifies the next process
to be activated after +the polygonal approximation is

completed:

RULE(S. 12>: IF POLYGONAL ARPPROXIMATION IS COMPLETED.,

=then=> ACTIVATE POLYGON DECOMPOSITION.

However, the following data-driven rule could change this

action:

RULEC3. 13>: TIF POLYGOMAL APPROXIMATION IS COMPLETED,
.AND. NCAR .LE. 1.

=then=> ACTIVATE STATIC DESCRIPTION.
(HCR refers to the rnumber of conuvex angles. See Table 3. 1.

Thus, by using data-driven control rules, the
predefined flow of analysis (POLYGONAL APPROXIMATION —->
POLYGON DECOMPOSITIONS, is changed to CPOLYGOMNAL
APPROXIMATION --> STATIC DESCRIPTION. This occurred becauss
the cell in the current frame had a simple shape uvhich could
not be decomposed. Another importént function of
data—-driven rules is to influence the flow of control
betueen the different stages of analysis. In this way,
top-douwn feedback could remove ambiguous situations at the

lower levels of the data hisrarchy.
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3.9 SUMMARY

To achieve the ob_jectives of motion wunderstanding and
description. it is hot enough <to0 merely determine the
incremental movements or changes that occur between
consecutive images. What is required is a system which
abstracts a summary description of the global motion
characteristics from the multitude of static and incremental
data. Development of such a system represents the new
direction being taken in +the current research in image

sequence analysis.

A model for a general dynamic scene analysis system has
been constructed. It consists of three basic entities:
dynamic data. static data, and a collection of analysis
processes. The different +types of data wuwhich may be
manipulated by the system have been classified into: a
sequence of images. a group of obgects and subob_jects, 3 set
of object features. symbolic descriptors, global behaviour
chatracteristics (these are functions of groups of features
and descriptors used +to describe specific behavioural
patterns?, and a set of rules, which may be classified into

representational rules and control rules.

Based on this model, we have implemented a rule-based
image interpretation system for moving cells. The system
consists of different cooperating computational processors.
Conceptually, +wo different memories are used, a Short Term

Memory (STM> and & Long Term Memory (LTMD. Both are
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implemented as & relational database. The STM is designs=d
to work as a communication chamnel for all of the processes.
It contains a dynamic record of the instantaneous cell
motion, shape, and sgtructural changes, as well as the
current global description of the cell behaviour. The LTHM
data are static, and are implemented as rules. These
describe the general model of the morphology of the cells
under analysis, as well as control information pertinent to
the computational procecsses. The latter are activated by
the control rules throughout the three hierarchical analysis
stages: static, incremental, and global. They interact
through the STM using the information stored in the LTHM,
urntil & complete description of the dynamic cell motion and

morphology is obtsined.
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TABLE (3.1> DIFFERENT TYPES OF PROPERTIES

G0 A AR NS Sn GS G S N FURS VRS SRS SR ST N e SN TN N TS FRR G D0 GUN SN G Y SEF SRS SN SU GP SN e Y NS SUR DA SN R BED S
D S SIS DR 0 SO SO SR SN G U BRR GRS NND (NI YOS SE S NI GNP GBS EUT BAR SO ANR AN UM W WIS S0 SUD SN SO S0s S 0I% Sés Sur SUv Baw E S

SHAFPE FPROFERTIES

PROPERTY SYMBOL DEFIMITION
RRER A Total number of pixels.
PERIMETER A P Length of the contour.
LENGTH L The distance between the two
farthest points on the boundary.
WIDTH W The maximum extension of the
~ obgect normal to the length.
ELONGATION - E The complement of the ratio of
the width to the length.
CIRCULARITY c The ratio of the square of the
perimeter to the area.
AVERAGE BENDING ENERGY RBE The rate of change of the
Tangent along the boundary.
ANGLE REGULARITY AR A measurement of the sum of the
differences between the angles
of a given polygon and a regular
one (equal angles) hauving the
samne number of sides.
SIDE REGULARITY SR The same as abowve, except the
: - ’ measurement involuves the sides
insgstead of the angles.
NO. OF POLYGON SIDES HS Humber of sides in the
apptoximation polygon.
LENGTH OF FPOLYGON SIDE LS The length betwesn two
segquential vertices.
INTENSITY <{COLOR> I The average intensity of the obgact.
MNCA Humber of vertices which have an

NO. OF CONCAVE RANGLES

internal angles greater than 189,
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STRUCTURE PROPERTIES

PROPERTY DEFINITION

NUMBER OF SUBOBJECTS NSO Number of primitive subparts.

CONNECTIVE LINE cL The distance between the cell

centroid and that of a subpart.

BASE LINE BL The adjacent line between the
) cell and a subpart.

SUBOBJECT fARER ASO fr-ea of a subpart.

SUBOBJECT PERIMETER PSO Perimeter of a subpart.

RELATIVE AREA - 7 RA The ratio of a subpart area

to the total cell area.

LOCATION PROFPERTIES

PROPERTY DEFINITION
BOUNDARY COORDINATES BX, BY The ¥ and Y coordinates

) of the boundary points.
CENTROID <(¥.Y> CNHTX, CNTY Centroid coordinates,
ORIENTRTION OoRrR ' The angle between the main axis

B ) ' o o of the obgject and the X axis.

CONTAINING RECTANGLE CR*, CRY The minimum containing rectangle.
FITTED RECTANGLE FR¥, FRY The rectangle whose main axes

are the length and width
of the object.

POLYGON CENTROID PCHNTX, PCNTY Centroid coordinates of the
polygonal approximation.

SUBOBJECT CENTROID SCHTX, SCNTY Centroid coordinates of a subpart.
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MOoOTION FPROPERTIES

PROPERTY syYMBOL DEFINITION

DISPLACEMENT oIS Translation distance.

DIRECTION DIR Direction of motion w.r. t. X axis.
VELOCITY VL Ratio of displacement to time.
ROTATION RQ Change in the orientation of

the cell
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Table(3. 2)

SENmEmTRET

Exanples of ngbolic Qualifiers of Some Properties, and

S s S o S et G S S G A G e TS G G G G G CEE TR G G G P S S VS NS S SR TGP W S S . A A S S e S ST W TR SO G S W S SR G

e S D s g T T S W G ST G S = Gnie e e S U YL . S ST SN S e, Ty (e e S S B S e e S G D CUD WS CHS WD N AR Siu me U vt SuPe S S

PROPERTY 1+t QUALIFIER 2&nd GURLIFIER 3rd QUALIFIER
T MBI =EEmEmnmEmasaEm TN ATSN EE A SR N SN IR 5% 00 AR IR SESEEmmERSSITIIE
ELONGATION NOT ELONGATED SLIGHTLY ELONGATED ELONGRTED
CIRCULARITY NOT CIRCULAR SLIGHTLY CIRCULRR ALMOST CIRCULAR
A. B. ENERGY VERY JAGGY JAGGY ALMOST SMOTH
REGULARITY YERY IREGULAR IREGULAR ALMOST REGULAR
SIZE VERY SMALL SMALL MEDIUM
MEMBRANE SHAPE VERY COMPLEX COMPLEX ALMOST SIMPLE
SPEED VERY SLOW SLOW AVERAGE
ACCELERATION HIGH POSITIVE LOW POSITIVE CONST. SPEED
LENGTH, TIME, VERY SHORT SHORT MEDIUM
PISTANCE

4th QUALIFIER Sth QUALIFIER

TRV RNIBEESS SESESEEZIEEEmES

VERY ELONGATED FILAMENTARY

CIRCULRK YERY CIRCULRR
SMOOTH VERY SMOOTH
REGULAR VERY REGULAR
LARGE VERY LARGE
SIMPLE VERY SIMPLE
FRST YERY FAST

LOW NEGRATIVE HIGH MEGATIVE

LONG VERY LONG
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S e e S S TS S S P S WIS WP SRS s B Sl TR S (i S S T D U S T PP Yiee GS DS Sy S U PO P S e W G GO e

OPERATOR DEFINITION
SsaTERSx i+—+-3 323 %1 33§24
AND Logical RND.
OR Logical OR.
LT Less than.
GT Greater than.
EQ Equal.
LE Less than or equal.
GE Gre2ater than or equal.
NE Not equal.
RE- - Approximately equal.
GTT Much greater than.
LTT Much less than.
MST Most.
LST Least.
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CHAPTER 4

STATIC SCENE ANALYSIS

4.1  INTRODUCTION

In the preceding chapter, we presented the system and
data structure of a system for understanding and describing
the dynamic behavicur of a non-rigid moving object. Based
on this structure, we have implemented a rule-based system
for characterizing the behaviour of a moving cell. The
system consists of +three basic entities: dynanic data
(STM>, static data (LTM>). and a collection of analysis
processes. The latt?r are designed to perform three stages
of analysis: static scene analysis. incremental “change
detection, and global analysis. Thiz chapter is devoted to
describing the input. output, and function of the different
- processes of the first stage of analysis, that is, Static

Scene Rhalysis.

The static scene analysis stage, in the proposed
system, is similar <to, and has the same function, as a
static image processing system. Thus, the input is a single
digital image, and +the output is an interpretation and
description of the scene. Howaver, in image sequence

analysis., the information extracted from the previous frames
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of the zame sequencs m#g be uzed to assist the analysis of
the current frame. The main objectives of this stage are to
identify the desired moving object, segment it. and describe
it in each frame of +the sequence (sees Figure 1. 5a’. This
stage consists of four main processes as shown in
Figure (4. 1). They include segmentation, polygonal
approximation,‘ poalygonal decomposition, and description

(location and shape of the moving object).

The first process in the static scene analysis stage is
concerned with +the extraction of the cell under analysis
ffom the input image; this is described in Section 4. 2. An
algorithm for generating the polygonal approximation of the
cell boundaries is described in Section 4.3, as are the
advantages of this approximation. Section 4.4 describes the
approach of decomposing the cell (which may have a complex
shape) into its primitive subparts. A discussion pertaining
10 the selection of +the properties to be measured. and their
theoretical definition 4is given in Section 4, 5. Finally.
Section 4. 6 describes z process uvhich integrates the cell
morphology that has Ekeen extracted and measured by the
previous processes in order to generate a coherant
description J(numericslly and sumbolically) of th2 cell in

the current frame.
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Figure(4.1) Processes and data structure
of the static scene analysis stage.
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4.2 CELL EXTRACTION (SEGMENTATION)

421 Introduction

Segmentation ies a basic and common problem in any image
processing system. The objgective is to divide the input
image into regions corresponding to +the obJjects and the
background in the scene as perceived by a viewer. Although
this problem has different definitions in the literature.
all of them have the same argument. For example, Pavlidis
has defined it as "the operation of looking at a scene and
picking up obgects from the background. In such an effort
we divide the picture into different parts which have some
meaning for the viewer." [Pavlidis, 7?7]. HWhereas. Leouine
has defined the segmentation stage of a vision system as "Rt
this stage:; the input image iz divided into regions
containing pixels whose primary features such as intensity.

hue, saturation, and texture are similar. " fLevine, 781.

The final goal of the segmentation is a collection of
regions which correspond exactly to the obgects in the
scene. In some cases, this may be achiewed by applying the
segmentation operations directly +to the input image. In
other cases. processes which use gxternal knowledge must be
applied tfo the image after it hasz been partially segmented.
The former is applicable in cases where the image consists
of ob jects superimposed on a uniform background, for
example, nonoverlapping blood cells [Youssef, 771 In +this

case a simple thresholding process suffices 4o result in »
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complete segmentation of the objects from the background
Utilizing external knowledge is necessary for segmenting
complex images. such as a typical suburban scenes, or images
containing threee~-dimensional effects, i.e. occlusion or
shadous. In these cases, the initial segmentation results
only in a partisl segmentation., where the segmented regions
do not necessarily corresgpond to the objects in the scense.
Therefore, the use of a priori knowledge about the scene

under consideration is essential.

Segmentation of a scene by the human visual system may
be cbnsidered as one of psychophysical perception. It
involves processes which are nhot w2ll understood yet
[Rosenfeld, 76l. Therefore, <there are no criteria to define
the successful segmentation and it is not susceptible +to a
purely analytical solution. Howaver., this problem has been

considered in a recent work by [Levine and MNazif, 82l.

In image sequence analysis, the segmentation hasz two
main objectives; the first‘one is to segment the scene into
ohjecte and background, and tﬁe second is o segment the
objects into moving and stationary. tost image sequence
analysis systems have accomplished these +$wo obgectives
separately; segmenting the scene first, then extracting the
moving obgject, using its geonetrical properties [Ferrie.
791. In some cases, the objective was +to segment the
individual pixels of the image into moving or stationary
using pixel <o pixel comparison betwsen the sequential

frames [Yakimovsky. 75]. Using this methodology, the mouing
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pixels can be grouped to form regions corresponding to the

moving obgjects ([Nagel, ?271. ODther techniques in image
sequence analysis are based on: first, the initial
segmentation of the sequence of frames, thetr, the

utilization of +the information extracted from the sequence
in order 4to achieve a complete segmentation of the
individual frames. Recently, a knowledge-based system has
been developed 4in order <o accomplish both complete
segmentation and motion detection simultaneously by
utilizing a3 priori knowledge about the sequence under

consideration [Tsoteos, @1

The input of any motion understanding system is a
sequence of two-dimensional digital images recording the
object motion to be anglgzed. In the case of microscopic
cell images: <the sequence recording the cell motion may be
chtained in variocus ways; for examnple, | cine film
(time—lapse wunit’>, or a TY cam=ra observing live cells in
real-time through a wmicroscope, where the images are
captured at specific intervals of +time. Then the images may
be transfered directly to the computer memory, andr/or <o a
video tape. However, +the actual data of the analysis

processes is a series of two-dimensional images.

Most of the preuvious techniques for microscopic cell
image segwentation are based on the existing contrast
between the cells and the background. However, in the case
of live «cells, +he contrast is continualy changing dus to

" two factors:  the phase contrast of the cell photography and
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the three-dimensional motion of the cell. The latter may
also cause a change in the cell intensity distribution
(gray-value distribution of +the cell region). Thus, the
difficulties of segmenting live cells in motion may be
summarized as:

(13 Phase contrast photography causes a gradient shadow area
between the cell and the background. Consequently., the
exact boundary of the cell is hidden within +this shadow
area. Therefore, an inference process for labelling the
pixels of.this area ag belonging to either the cell or  the
background may be necessary.

(2> The three-dimensional changes in the cell structure
continually cause random changes in the cell intensity
distribution over time; consequently. +the cell-background
contrast will change. Therefore. we cannot use the sanme
threshold(s> for segmenting the cell in the different frames
of a sequence. A dynamic +‘thresholding scheme may be

necessary.

Besides the abouve difficulties, in the case of
real-time analysis, where the images must be captured at
short time interwvals:, the segmentsastion should be a fast
process. Therafore, most of the sophisticated segmentation
techniques are not practical for real-time application,
since they require long and expensive computation. Alsn, in
the analysis of the moving cells, +the +task of the
segmentation may not only include the extraction of the cell

from the background, but may also include +the segmentation
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of the different parts of the cell (nucleus and cytoplasm’.

An algorithm for the extraction of a moving cell is
implemented in our work. It consists of a collection of
computational subprocesses cooperating through a common
dynamic data memcry, the (STM). The different subprocesses
and data strﬁctures of this segmentation algorithm are shoun
in Figure (4. 2> Thie includes the following subprocesses:
cell windowing. thresholding. binarizing, filtering.
matching. and boundary tracking. The activation,
deactivation and scheduling of the different subprocesses is
aécomplished by control rules stored in the LTM. These
subprocesses may be executed in iteration until a
satisfactory segmentation is obtained. The execution and
the number of iterations is controlled by the LTHMH rules.
The actions of these rules are based on the dynamic data
{STM> pertaining to¢ the cell morphology in +the previous
frame, +the resulting data from the different segmentation
subprocesses of the curreéent frame: and the LTM constraint
knowledge. The objective as well azx examples of the input

and output of each subprocess is given below.

4.2.2 Cell Window

The first step towards cell sxtraction is to locate and
adyust <the size of +the window containing the cell under
analysis. The objgective ig to minimize the search area +to
that which only includes the tracked cell with a reasonable

background. RAlthough it is difficult in many cases +o
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Figure(4.2) Algorithm for manual and/or
automatic segmentation of cell images.
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isolate the tracked c¢ell within the window, the candidate
cells will at least be restricted 4o those within the
window. Examples of +typical input images are shouwn in
Figure (4, 3>, Each image consists of 128x128 pixels, each
pixel having £ bits of gray level information. The images
include neutrophil cell(s), red cells. and a piece of

bacteria located in the lower left side of the image.

In our system the size and location of the wihdow may
be adjusted either interactively or automatically In the
interactive method, the user specifieszs the location and the
size parameter of +the window through a keyboard or by using
a Joystick. In the automatic method, +the initial window
parameters in & frame are determined by the system
utilizing the location and size of the cell in the previous
frame as well as the LTM constraint knowledge <(maximum
displacement of the cell between +two sequential frames).
Thus the initiasl location of the window in framed(i) is

determined from the window parameters in frame(i-i1> wvia:

centroid = ¥{i-1} , ¥Yd{i-1) 4. 14>
length = 85 + L<i-1> 4. 22
width = £2S + Wd{i-1> (4. 3>

where X{(i-13,¥(i-1> are the X,¥Y coordinates of the cell
centroid at framed(i-12, s is the maximum possible
displacement of the cell betwesen two sequential frames, L
and MW are the maxinum extension of the cell in the ¥ and ¥

directions. respectively in framedi-1>.
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The above parameters are the best initial expectation
However., +the window may be shifted, and the size may be
adjusted according to the data extfacted from the initial
segmentation. Figure (4. 4} shows the selected window from

an input image.

4.2.2.1 Histogram

The histogram is a well-known technigque for
- transforming <fTuc-dimensional  images into scalar vectors.
Thus: the histogram {H> is a vector which represents the
frequency distribution of the gray values of an image or
window of the image,

{H> = {GB, G1, G2, ..., Gk, ..., Gl(m-11> (4. 4>
where Gk is the number of pixels which have gray—value equal
to ks and m is the number of gray levels. The histogram may
be computed as follows:

(1> Set Gg, G1, ....Gm = G,
- (2> scan the image and for each pixel:

(3> If fi{x,y>» = K, then Gk = Gk + 1.

The histogram may be plotted as shown in Figure (4 5%,
where the X axis represents the gray-value, and the Y axis
represents the number of pixels. For example, the histogram
for a blank image <(all <+he pixels having thes same
gray-value, say @2 is a wvertical line located at g
Histogram analysis is an established method for image
segmentation where the image contains contrasted obJects on

& wuniform background. The histogram in +this case will
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- Figure(4.4) Selecting the window contaz‘m’ng"' |
the cell under analysss.

C
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Figure(4.5) The computed histogram

of the selected window.
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include +two “"peakz" representing the objects and the
background. The “uvalley" between the two peaks represents
the gray-value uhich may be used as the threshold to segment
the obJgects from the background. This simple segmentation
can be achieved only for simple images. However, in most
typical images the resulting histogram is more complex. It
either contains & large number of peaks which do not
correspond to specific obgects, or it does not include clear
peaks. For example. in Figure (4.35) in spite of the fact
that a human can separate several objgects from the
background, the hiztogram contains only one ma_jor

unconstrained peak: and that peak is not well-defined.

In cases as shoun in Figures <4.3), the histogram as it
is, may not be useful for direct thresholding  Howsvuer, a
histogram analysis and moditfication may be helpful for an
initisl-guess segnentation. In general, most of the
histogram information may be extracted from its maxima
points. Therefore. the histogram mnay be representsed as a
set of extrema L{K}> {(peaks and valleys> as:

H = LKy = €K1, K2, ..., K,JJ e KX 4. 5

where KJ is a gray-levuel <i) such that:
Gi number of pixels at levellil, and
Gdi-1> € Gi > GCi+1) “peak® or

GCi-1) > Gi < GCi+1d "valley".
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This information may be utilized o 2 XaTs| the

apprapriate thresholds for the segmentation. .

4.2.3 Thresholding

THe task of the thresholding subprocesses is to analyze
the histogram <H> in order +to find the threshold(s)
(gray-valuecs)? vhich may be used to segment the ¢ell from
the background, and/or the cell into cytoplasm and nucleus.
From- Figure (4.5) ve can see that the histogram includes
only one unconstrained mode. That means both the cell and
the background have regions which exhibit the same
gray-level. However, the original image (Figure <. 353> shous
that the cell is darker than the background. Therefors, a
good initial guess is Yo consider the maximum frequency
{peak? as threshold value (Gt1. This wmay be computed as

follows:

Gt = Max [GB, G1, ..., GE3] (4. &>

Then the binary image may be obtained as:

14

IF f(x,y> .LT. Gt. THEN bex.y> = 1

where £{(x:;y) is the intensity image and bdx, y) is the binary

image. Figure (4. 6) shous the resulting binary image.

The above method gives a satisfactory segmentation if
the cell has a homogeneous gray level. However, as we can
see in Figure (4 6> mogt of the inside region of the cell is

segmented as background. Thig is because the inside regions
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Figure(4.6) Binarization using mazimum
gray level frequency (highest peak in the
histogram)as a threshold value.



STATIC SCENE RMALYSIS FPage 4-168

of the cell (nucleus area) have a similar intensity to the
background (both are represented by the peak of the
histogram). In order to segment the cell as one region from

the background, we propose the following modification:

AYERAGE THRESHOLDINWG
ErEzammzzzszsTzoSBES

The proposed modification is based on dividing the
histogram dinto three regions: the low gray-level region
(@-Ge? which mainly represents cell pixels, the high
gray-level region <(Gb-63> wmainly represents background
pixels; and the mediumn gray-leuvel region (Ge-Gb?» which
partially represents cell pixels and partially background
area. Figure (4 72 illusirates these three regions. In
order to compute the thresholde for these regions, we assume
that the maximum frequency Gt C(highest peak in the
histogram? divides +the image intoc two regions: (ad dark
(B-Gt)>, and <(b> bright (Gt-63>. The threshold valuss Go and
Gb are then computed as the average gray level of =2ach of
theze regions, respectively. This can be computed by
scanning the cell window. and assignhing each pixel #d(x,y> to
one of the regions as follows:
(1> set Gtc = 8 and Gtb = 8

(2» IF fi(x,y>» .GE. Gt, THEM Gtc

L}

Gtc + f(x,yd>, AND Nc = Nc

(3 IF f(x,y> . LT. Gt, THEN Gtb

]

Gtb + f(x,yd, AND Nb = Nb
(4> Ge = Gtc / Nc
(5> Gb = Gtb 7 Nb

where Gtc and Gtb are ithe sums of the gray levels in the
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Dark Common Bright
region  region region

Figure(4.7) Dividing the histogram of the
cell image into three main regions.

Figure(4.8) Binary image obtained by
averaging threshold method.
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dark and bright regions., respectively, Nc and Nb are the
number of pixels in each region. Uzing the threshold wvalues
Gc and Gb, the binary image can be obtained by scanning the
cell window and labeling each pixel as cell <12 or
background (8> as follous:

€15 IF fi{x,y> .LE. Gc, THEN bi(x,y> = 1,

(> IF f(x,y> .GE. Gb, THEN bix,y>» = 0,

(3> IF (Flx,y> - Ge> . GT. (Gb - Fix,y>3, THEN blx,y>*» = 1~

€4> IF (Gb - f{x,yd)> .GE. (fCuy? -~ Ged, THEN bix,y» = B

In this way. pixels with gray levels between Gc and Gb
afe labeled as cell or background according to whether they
are closer to Gc or Gb, respectively. Figure (4. 8) shows
the resulting binary image wusing the above thresholding
metﬁod. The result of this thresholding technique is a good
initial segmentation, houwsver, there are still some pixels
within the cell region which are segmented as background and
vice wversa (bescause of the image conditiong). This noise
may be removed by a filtering operation, which is described

in the next section.

4.2.4 Filtering

The input of the filtering subprocéss is a3 noisy binary
image <(Figure 4, 9a), and the obgective is to reduce the
noise by relabelling the noisy pixels (B->1 or 1->8).  This
objective may be achieved in two steps. In the first step.
all single pixels and thin regions <(regions of one pixel

width> are removed. This is achieved by using the four



Page 4-171

F‘zgure(4 9) Remouving noise by filttering
- (a)input (b) output.
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connection criterion shown in Figure <(4. 1Ba). For example.
if a specific pixel is Jlabeled as cell and 4its four
connected neighbors are labeled as background, then the
label of +this pixel is changed +to background, and vice
versa. The second step is based on an inference procedure.
which utilizes constraint knowledge pertaining to the cell
structure. For example, if a small background region is
enclosed by & larger cell region, then this region will be
labeled and merged <0 the cell region. Figure <4, 18b)
illustrates an example of this case. Figure (4, 9b? shous

the output of filtering the noise in Figure (4. 9a).

4,25 Cell Selection And Matching

The output of the segmented binary image may contain
more than one region. In some cases, there are two regions
the cell and the background {(the optimum result). Howsuet,

in most cases, the segmented image may contain more than two

regions (where other cell(s> or part of cell may enter the

search window?, and/or regions of the background are labeled
as cell regions. In order to select the region representing
the cell under shalysis, we use the cell selection and
matching process, which has tuwo main {functions: Ca> +to
select the cell undetr analysis, and, (b) to measure the
difference between the properties of the selected cell from
the current frame and the cell in the previous frame,
thereby correcting the segmentation process (see

Figure 4. 27.
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(a) Removing single pizels and thin regions.

c|c|C|C c|C|C|C

C|B|B|C cic|C|cC
—i

C|B|B|C c|C|C|C

lc|c|c|C c|c|C|C

(b) Using cell shape and structure knowledge
to remove noisy regions.

C cell pizel B background pizel X any

Figure(4.10) Filtering operations.
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Cell selection and matching may be considersd as a
pattern recognition process, in that an objgect which
exhibits specific properties andlor matches a specific
pattern <(model) -ig to be seslected among a set of abjects.
Figure (4.14a) shows a block diagram of this process for
static scene or image sequence analysis of rigid moving
ob jects. In this case, the shape and/or the gtructure of
the moving obJject does not change within the seguence.

therefore a prototype model may be used <for selecting the

region +that corregponds to the moving obgect among the set

of segmented regionsg. On the other hand, in the case of a
non-rigid mowving object {(such as for example, blood Eells>,
there is no standard model of the moving ob_gject, because its
shape and/or structure are changed continually within the
sequence. Therefore, sgelecting the cell under analysis in
the current frame 4is based on matching to <the c¢cell
morphology and location from the previous frame. The
properties used for the matching as well as the maximum
allowable changeg in the values aof these properties: betuesen
the sequential frames, are specified by the LTM rules. This

strategy is illustrated in Figure (4. 1ib’,

The theoretical azgpects and quantification of the c=ll
matching will be describad in detail in the following
chapter (Incremental Change Detection and Quantification>.
The matching of +the cell may be quantified and normalized
between zero and one., where the less is +the matching, the

smaller is the uvalue (8 = no matching, and 1 = identical
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Figure(4.11a) Matching each region
in the binary image to the statsc
model of the destred object.

Eules-——» MATCHING

Figure(4.11b) Using a rule-based

strategy to select the object under

analysts in frame(s), by matching

the different regions in frame(i) to
the object properties in frame(s-1).

\LSclected
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Set of
binary
regions

region

Properties
of the object
in frame(i-1)

Binary
image

of frame(s)

Selected
object

Figure(4.11) Matching procedures: (a) static tmage
processing and-rigid moving object. (b) non-rigid

moving object.



STATIC SCENE ANALYSIS Pags 4-17&

matching>. However, because of the continual changes, we do
rnot expect an exact match between sequential frames. The
acceptable percentage of matching (Em> depends on the
maximum possible incremental change in the cell prpetties

and may be specified by the LTHM rules. For example:

RULE<4. 13: IF MCOk, ti, ti+1l> . GE. Em

==then==> (0i <{-~- A CELL CANDIDATE.

where M(OK, ti; ti+d) ig the matching value of object Ok in

frame (i+l) to the cell in frame (i).

This rule may result in one of three possibilities:

(a’> Dnly one region categorized as a cell candidate. This 1is
the optimum and desired situation. it occurs in most cases.

(b> More than one region iz categorized as cell candidates.
In this case., we select the one that exihibits the best
matching: Thig situation occurs if there is more than
ohne c2ll in the search window.

{c?> No regions are interpreted as cell candidates. This case
arises due to one or more of the following situations:

(i) Undesired experimental conditions. such as
moving the slide containing the cells under the camera.

(ii) Unexpected cell displacement which locates the cell
outside the window (completely or partially).

(iiid> Error in the initizal segmentation due to the

three—-dinensionsl motion of the cell.

The actions to be taken by the system in this case, depend

on the incoming conditions. Example=s of these actions are:
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A1: correct threshold values.
A2: shift window.
A3: expand window.

A4: stop processing.

The output of the cell extractior consists of a binary
image (B’s for background and 17s for cell elements) as
shown in Figure (4. 9. This image represents the input for
the final step of the segmentation. which is concerned with
boundary tracking and feature measurements. The objective
is +*o +transform the tuwo-dimensional binary image into a
s&alar vector (boundary coordinates and property wvalues>

representing the cell in the currant frame.

4.2.6 Boundary Tracking

The boundary points are those elements of the obg ect
which are adjgacent to the background. The boundary point
can be defined based as either four or sight cornnected. The
latter can be defined as: if any of the cell pixels has one
of its eight neighbors as background, then this pixel is a
boundary point. In the case of four connected boundaries,
an cbgject pixel is 3 boundary point if any of ite neighbors
in the X or Y directions is background. This definition may

be modeled as:

RULEC4. 25: IF B(Xi,¥Yi> .EQ. 1 . AND. BC(Xi+gy, Yi+k» . ER. B8

==then==> B(Xi,¥Yi» IS A BOUNDRRY POINT.

for eight connected boundaries:
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J)k = (~=1, =12, (~=1,8), (-1,4>, <@, -1,
g, 10, 1, ~-13, (1,83, <i,1>
for four connected houndaries:

Jok = (~1,8), (1,8)>, (B8,-1), (8,1>

The different boundary points <B> may be found by
scanning the binary image and extracting the points which
satisfy the above rule. However, a faster process is *to
continue scanning until the first point Bi is found. Then,
a tracking algorithm (boundary follower: may be used to find
the remaining pointes <B2,B3.,.....BC(b+13}; where Bi =
B<b+1), and b is the rumber of boundary points. The
boundary tracking method is not only faster than the
scanning, but also represents the boundary as a sequence of
points (similar +to the chain code method?, which is more
useful for retrieval purposes. The eight connected method
results in contours that are more jJjagged and have more
boundary points than those resulting from the four connacted
boundaries. Figures (4. 12a> and <4.12b) show examnples of
the boundary points of the cell shapes in a seguence of
frames. obtained using the eight and four connected
boundaries respectively. From these figures one can seg the
advantages of using four connected method for this class of

ob jects.
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PROPERTY MEASUREMENT
szzosmmsszsszsSszoosnz

The complete description of the selected properties and
their theoretical definitions will be presasnted in
Section 4. 5. However, &8t the segmentation leuel, the
following main properties of the cell in the current frame
may be computed: area, centroid, average intensity.

perimeter, length, width. and orientation.

The preceding sections described +three saquential
subprocesses for cell segmentation (adjusting size and
location of cell window. thresholding, and cell selection
and matching?. Although these processes may be be executed
interactively by the wuser, they have been design=d and
implemented so that +they may be executed automaticslly by
the model-driven rules. Alzo, the segmentation may be
corrected by iterative execution of these (or some of thed
processes according to the specification of the data-driven
rules <(Figure 4 2>. A description and summary of the
complete automatic segmentation procedure is gilven in the

next section.

4,2.7 Rutomatic Segmentation

The different subprocessesz of the segmentation and cell
extraction, which have been described in the previous
sections. may be executed and their paramsters (window size,

location, threshold walues:...?> adjusted automatically by
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model and data-driven control rules. These specify and
schedule +the different processors (subroutines) that are
necessary to complete the analysis of the current process.
For example, segmentation is defined as a set of actions by
the model~driven rules, to be executed in sequential order:
ACB>: START SEGMENTATION

A<41>: GET THE CURRENT FRAME

AC2>: LOCATE WINDOW

AC3>: COMPUTE HISTOGRAM

A{4>: SELECT THRESHOLD

A¢S5>: COMPUTE BINARY WINDOW

A{63: FILTER BIMARY WINDOW

AC?7>: RECOGNIZE TRACKED CELL

A{(8>: TRACK BOUNDARY

A{9: COMPUTE MAIN FEATURES

A¢18>: RETURN

The model-driven rules which control the execution of the
above computational processeg may be described as:

RULEC4. 3>: IF RACTC(i> completed ==then==> activate ACTC(i+1:
Note that at this low level of analysis., most of the control
rules are data-driven, since the next action to be taken is
usually dependent on the result of the preceding
computation. Consider a typical rule in ACT(S). If the
extracted cell touches any of the window borders, the windouw
should be shifted until the complete cell is located inside

the window. This situation can be controlled by the

following rule:

RULECH. 45

IF XMN . EQ. XLFT ==then==> XLFT {-- XLFT SHIFT

IF XX . EQ. XRIT ==then==> XRIT <{-- ¥RIT + SHIFT

IF ¥YMN . EQ. YBTM ==then==> ¥BTM {-- ¥YBTM SHIFT

IF YMX . EQ. YTOP ==then==> YTOP <-- YTOP + SHIFT
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IF RULEC(4. 4> IS ACTIVATED ==then==> RCTIVATE (R3 --> R7>
where XMN, XMX and VYMN.YMX are the minimum and maximum
location of the cell, and XLFT, ¥RIT. YETM, and YTOP are the
left, right, bottom. and top dimension of the window. SHIFT
is a constant value that defines the shifting distance of
the window. An example of a rule which control +the
computation of the threshold value Gt is related to ACT(?7J.
The action is based on the computation of <the difference
between the area of the segmented cell in the current frame
and the previous orne. The difference in area dAdi, i+1) can
be computed and normalized as follows:

ACL> ~ ACi+d)
dACi, it1) = ~~—=== ———————— : 4. 7>

This value is used by the following rule:; which utilize the
constraint khowledge sbout the maximum change in cell size
in the time between two sequential frames, in order to
correct the estimated threshold as follows:
RULEC4. 3)>:

IF ACtid~-Adti+d> . GT. Et1 ==then==> DECREASE THRESHOLD

-IF ACEid—-ACEi+d)> . LT.  Et2 ==then==> INCREASE THRESHOLD
IF RULEC(4. 3> IS RCTIYATED ==then==> ACTIVATE (A4 --> AT}

The window parameters and the threshold values may be
ad justed iteratively using the abouve rules wuntil a
satisfactory segmentation is achieved. Figure (4. 13 shows

examples of the output of the different steps of the
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are required to obiain a
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automatic segmentation. In this figure, the satisfactory
segmentation of the cell is achieved after five iterations

using threshold values of 36, 34, 23, 31, and 29

43 POLYGONAL APPROXIMATION

Polygonal approximation may be categorized as a data
compression method. It is a well-khown technique in shape

analysis f{or digital image processing and pattern

- recognition, In +thiz- technique, a curve or coentour is

represented by fitted straight lines. The irnput <o such
algorithms can bé either the boundary points directly, or
their chain code.  The output is a list of vertices -of the
fitted lines. These techniques hawe the advantage of

reducing the noise as well as the amount of data to be

‘manipulated by higher level stages of the system (the number

of the vertices will always be less than the boundary
points). For example, polygonal approximation often retains
the local peaks that are important in the shape analysis of
bioleogical objects: and they often retain the shape of the

orginal obgject as it is percieved by the human viewet.

In some applications, the fitted lines or polygoms may
be used directly for shape recognition or description., wvhile
in others they are an intermediate form of data For
example. in our system, the output of the polygonal
approximation repregents the irnput for the shape
decomposition. The latter is further analyzed by higher

level processes of the system J(incremental and global
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analysis’. The mathematical aspects of the polygonal
approximation may be found in [Pawlidis. 771]. R review of
the significant work in the literature, pertaining to the
polygonal approximation. is presented in Section 2. 3. 4. In
this section, first, & summary of the objgectives and
different methodologies of the polygonal approximation will
be presented. Theri, an algorithm for polygonal
approximation. based on the technique introduced by Ramner

[Ramer, 72] will be discussed.

OBJECTIVES AND METHODOLGIES
SEszrssosSsRSTEsSSSroSSSzzss

The problem of polygonal approximation may be defined
as follouws: given a set of boundary points representing the
shape of a planar obgect. the obyective is to fFind the
minimum set of vertices which pertain to the original shape.
Some schemes for constructing polugonal approximations are
concerned with selecting +the wvertices from the boundary
points in order to generate the best fitted polygon. Others
may allow the vertices to leave the curve itself, if they
generate a better fittsd polygon. In some algorithms. {or
example, the minimum distance <(mot <o exceed a specific
threshold? between the segment of the boundary and the
fitted line is used as a criterion for selecting the best
fitted approximating line [Ramer, 721; whereas in others,
the fitted 1line iz picked 50 as to mninimize the difference
in area between the approximating lin2 and the original

curve, e.g. CHMcClure, 771 The definition of the best
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fitted polygon Coptimum: differs according to the following
criteria: minimum number of wvertices, minimum parimeter,
and minimum error (the difference between +the polygon and
the object area). Another common obgective for any
polygonal approximation technique is to minimize the

computation time.

The different methodologies that have been used for the
polygonal approximation may be classified into three basic
techniques: (1> splitting, (2> merging, and (3) merging and
splitting. The splitting algorithm starts by dividing the
béundarg points into two sections and proceeds further by
dividing <ach section in +two as long as a uniformity
predicate ig false. The merging algorithm proceeds in a3
linear scan evaluating the unifotmity predicate as it goes
along; when this is false, a new segment 1is started. In
the merging and splitting, the algorithm initially divides
the set of boundary points into a number of segments )

(break points). +the latter sither splitted or merged

IMPLEMENTED ALGORITHM
SEszzs=sSsszs=sSSessees

A splitting algorithm for polygonal approximation based
on 38 technique presented originally by Ramer [Ramer. 721, is
implemented in our current work. This technhique is one of
the earliest and mast efficient techniques; ii selects the
polygon vertices from the boundary points. The resulting
polygons are not necessarily optinmum (minimum number of

- verticesy, but the computational algorithm is much more
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efficient and simpler than those gen2rating optimum ohes

The procedure of the algorithm can be described through
a binary tree; the root corresponds to the whole boundatry.
The branches of each node correspond o the subintervals.
The bottom leafs are the final intervals (the resulting
polygon vertices). In order +to improve the result of
Ramer‘s algorithm: a suggestion was introduced by Pavlidis
[Pavlidis, 7?6l. In this modification, the final intervals
(polygon vertices? can be uéed as initial break points for 2
merging-splitting algorithm. This may result in an optimum
pﬁlggon (minimum vertices and error). On the other hand., in
order to decide whether to metge or split, +the computation
is quite time consuming However, a similar result may be
obtained without using the merging-splitting algorithm
This can be achieved by the proper selection of the

threshold value of Ramer’s algorithm.

The approximation threshold value plays an essential
factor in the procedure, and the result of the polygonal
approximation algorithm. Based on this value, a decision
may be taken whether z given interval should be divided into
two segments or not. Thus, if the maximum normal distance
betwesen the approximating line and +he boundary points
exceeds the approximation threshold value, then the interwval
is divided at the boundary point which exhibits the maximum
normal distance. Figure (4.44> illustrates +the use of
different <threshold wvalues for a given shape. In this

figure, the X axis represents the threshold values, and the
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4 Threshold value ;

Figure(4.14) An approzimate estimation for

the threshold value (Eth) necessary for polygonal
approzsmation, which minimize both number of
verticies and the error (the difference between
the resulting polygon and the original shape).
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Y axis represents two parameters: the number of vertices
and the error. From thiz figure we can see that, the lower
the threshold wvalue, the higher the number of vertices and
the less the error (the difference between the polygon and
original shape?. This means that increasing the efficiency
towards one of these desired objectives (minimum number of

vertices and minimum error) comes at the cost of the other.

A basic issue is %o find the approximation threshold
value which minimizes these <two conflicting factors
simultaneously. From Figure (4. 14} we can see that the
iﬁtersection of +the two curves representing the number of
vertices and the error (point E>, is a good estimation as an
approximation threshold wvalue, However, <+this point is
specific for each individuzal shape. Therefore, this method
is more wugeful in +the static scene analysis or image
sequence analysis of rigid moving obgjects: where the shape
does not change and is known a priori. Conversely, in the
image sequence analysis of non-rigid wmoving obgjects. the

-

threshold uvalue should be updated with the shape charnges.

In the implemented algorithm for +the present system.
the <threshold uvalue is chosen based on experimental work in
order to find the value that retains the cell shape (as it
is perceived by 3 human observer) for a minimum number of
polygon vertices. Thus, the value of 1.5 pixels 4¥ of the
average cell perimeter? has been found +o be the best
threshold for polygonal approximation for most cell shapes.

Figure (4: 15} shows the polygonal approximation of the cell
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Figure(4.15) Polygonal approzimation of the cell shapes in a
subsequence-of sequential frames. The original boundaries .

are shown in figure (4.18).
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shapes in a sequence of frames, shown in Figure (4. 12> The
polygon features to be measured at this stage of analysis

are given in Table 4. 1.

4.4  POLYGONAL DECOMPOSITION

An important obJgective in our research is to
characterize and describe <+the dynamic behaviour of the
different pseudopods formed during locomotion. And, *o
study the relationships between changes in the shape of the
subparts, their movement. and the global locomotion of the
cell. Therefore, the decomposition of the cell intor;ts
primitive subparts represents an essential proces for

understanding the structural changes of a mouving cell.

Decomposition methodologies are prime examples of
structural pattern recoanition and shape analysis. They are
based on the assumption that shape perception is a
hierarchical process [(Pavlidis, 68;721. In these techniques
the original figure ig expressed as the union of some of its
subsets (primitive compornents), The shape of the latter may
be simplesr and, ‘therefore, =zome of the less complex
descriptions may be applicable. fi review of the different
decomposition techniques is pressnted in Section 2. 3.3
These different techniques can be classified as follows:

(a) primary convex subsets,
(b2 concave vertices.
(cd> clustering.

(d> k—-nearegt neighhors,



STATIC SCENE ANALYSIS Page 4-123

structure of the cell. Thus:s the cell»shape has a star like
structure, where +the center node is the cell body, and the
. branches are pseudopods or subparts of fhe cell. Since we
are iIinterested mainly in the pseudopods and the subpatrts
formihg around the membrane, the decomposition at the convex
angles seems to be the most efficient method for cell

structural analysis.

The internal angles of the polygonal approximation of
the cell may represented as a set of numerical values V>
such that:

| LYY = V1, V2, .. LV, L L s YnuD (4. 8>
where ¥Yi is the internal angle of uvertex (i), and nv the number
of polygon vertices, The angle Vi may be assighed as
convex angle (¥¥) or concave angle (VL) according to the rule:
RULE<4. 6>
IF Vi . VT. 186, ==then==> Wi {--- V¥,
IF ¥Yi LT. 188, ==then==> Vi <{--—— ¥(,

thus the set {V}> may be expressed as:

<v> = {{ CONCAVE RNGLES 3>, { CONVEX ARNGLES >> (4. 2>
V> = L LVYCY, VW) > <4, 18>
WCx = {VvCL,vCe.....,¥Cnck (4. 14>
VR = VKL, X2, .. ., Vinx> (4. 12>

where nc, nx are the number of concave and convex angles
respectively, and nc + nx = nwv,
For example the angles of the cell polygon in Figure#(4. 16a’ are:

V1 . va,. ... Y162

<V

{VCL, VX1, YC2, VL3, VL4, VX2, VLS, VL&, VX3, VL7, VCE, VL9,
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()

Figure(4.16) Decomposition o f the cell into its
primitive subparts. (a) input, (b) output.
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VX4, VXS, ¥X6, vCoieyr
{VvCY = VCi.VCe,....,VCi0)

{VXY = VX1, VX2,....,VX6)

We define "Convex String" (CXS> as a sequence of convex
angles (VX‘s) without interruption of concave angles (VC7s).
Each string may contain any number of conuvex angles (one or
‘more>. Thus: the set {VYK)» may be expressed as:

{VKY = {¥%S1, ¥YXSE, ..., VXSns)> 4. 13>
where ns is the number of convex angles strings.

In the abouve example: LVX>: = {VYXS1, VXS2, VXS3, VXS4,

The polygon will be decomposed if it contains at least two
strings of convex angles.
RULE(4. 8):

IF NS .GE. &, ==then==> ACTIVATE DECOMPOSITION
RULEC4. 95 )

IF NS .LE. 1, ==then==> EXIT

The decomposition process starts by considering the
whole polygon as subpart number one. Then: it proceeds by
connecting the last vertex in each conuex string (VXSdid)> to
the first vertex in the next one (VXSdi+1)). The line
connecting these tuwoe vertices is defined as the "Base Lina"
(BL>. The base line should satisfy the Ffollowing
conditions: <(a) it lies entirely inside the polygon. <(b> it
does not intersect any of the polygon sides or snother base
line. If the base line satisfies these conditions, the part

of the polygon bounded by it is assigned as a new subpart,
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and subpart number one is ubdated by subtracting this new
subpar<. Figure (4  16b> shouws the decdmposition of the cell
in Figure (4. 16a), and Figure (4. 17> shows the decompositionh
of the cells in the frames that are shown in Figures (4, 127
and (4. 13>, In Figure (4, 17>, we can see that the cells in
frames 76 and 7?7 are examples of nondecomposable polygons

which may be classified as simple or very simple shapes.

The last procedure in the polygon decomposition is +to
represent <the cell by & labeled graph that has a star
configuration. In this graph, the central node corresponds
ta the main body of the cell, and the different nodes could
correspond to the primitive subparts of the cell <(mainly
pseudopods). The branchees connecting the different nodes to
the central one. represent the structural relationships
between the cell body and the different pseudopods or
subparts. Figure (4. 18> illustrates the labeled graphs of
the polygon decomposition shown in Figure (4.17). The area
of a node in the graph is equivalent o0 <the area of the
corresponding subparts. The connecting lines between the
center node and the different branches are equivalent to the
distance between the corresponding subparts and the cell
centroid and have the same direction <(angle with the X

axis?.

Analysis of the labsled graph will provide information
about topological properties of the entire cell structurs,
its shape, as well as its primitive subparts. In

- Section 4. 6 we demonstrate the analysis of the labeled graph
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Figure(4.17) Decomposition of the cell in a sequence of frames.

Note that frames 76 and 77 have simple shapes which cannot be

decomposed.
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in order +to gensrate the description’o# the cell in & given

frame.

4.5 FEATURE EXTRACTION AND SELECTION

Feature extraction and selection is one of +the most
important and difficult steps in any scene analysis or
pattern recognition system, The best definition of this
problem is still as it was stated more than tuwenty six years
ago by Selfridge "The extraction of significant features
from a background of Airrelevant detail" [Selfridge, 551.
This problem can be divided into two main steps: feature

extraction and feature selection.

Feature extraction is the process which associates a
cet of primitive properties <{P)> with each object (0 or
gubob ject (S0>. For example, object (0i> may be associated
with a set of properties as:

<P, 04y = L£(P1, 045, P2,040, ..., (Pn,Did> (4, 14>
vwhere n is the number of elements in +the set <P0Oil.uwhich
represents all +the properties which can be measured for

object COLY.

The feature selection is the procsss of pruning
ineffective setzs of properties in order <o select an
effective subset. For example,. the selacted subset {Ps)> for
obgect (0i% could be:

{Ps, 0i¥ = {(Pgi, 012, (PsS2,0i),... .., (Psm Qid> (4. 15>

where {Ps,0i¥ is subset of <P, 0i}, and m is the number of
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the selected properties to be measured and wuse2d for

representing or describing object <04i).

The selected elements. of the subset {Ps,0i> may be some
of the original elements of the set {F,0i)>, or a function of
one or more of them. For example, the original set may
include the following properties: length, width, area, and
perimeter. The selected subset may include the properties:
area, circularity, and elongation, where,

circularity = ( 4. J¥ . area > / ( perimeter squared ),

elongation = width 7/ length

The selected subset of properties depends on the +type
of -object under analysis, the objectives of the analysis.
and the desired level of description. For example, in

geometrical shape analysis, in order to describe or classify

& given peolygon as: - triangle. quadrangle., pentagon,
hexagon, ....., only one property is required, that is the
number of sides or number of vertices. Whereas, if the

desired description requires further classification-such as:

right-triangle. isosceles-triangla.
isosceles-right-triangle, equilateral-triangle, squars.,
rectangle, rhombus, parallelogram, trapezoid, ... 2tc,  the

selected subset of properties should include the length of

each side and the angle at each vertex.

The aspects of fe2ature extraction and selection are a
subgect <for which there is a substational literature (it is

a common problem in almost every systemd. An early surusy
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of this subject for general applications may be found in
[Levine, 691, and arnother for radiographic images in [Hall
et.al. 711. More recently. Sklansky introduced an updated
summary of this subgject [Sklansky, 781. There are many
other lengthy papers, and a survey of them would take us
beyond the intended scope of this research. For example, in
the analysis of cell images,; Lee introduced a nethod for
computing features for classification, storage, and
retrieval of leukocytes [Lee, 76). Fu and Bacus, in order
-to classify WBC, made a study to select a subset -that
contains 17 properties out of a complete set including 367
different properties (including the different Foaurier

descriptors).

In general. wmost of the previous computer wvision
systems have been designed +to perform tasks or solue
problems similar to what humans do. This means +that the
problem and solution have been defined by humans.
Consequently, the properties which have been uJused by the
program to soluve s specific problem hau2 been selected to be
similar to those used by humans to soluz the same problem.
For example, +the properties which have been used for blood
cell classification are those which have been utilized by

biologists to recoghize the different types of cells.

However, in our current research, we are designing a
system +to quantify and describe the dynamic behaviour of a
moving cell, a problem which has not been yet solved by

biologists: This is because the data analysis techniques
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necessaty to achieve these objectives are not available to
biologists. Consequently, +the propetrties and descriptors
which mag»be used gaue not been defined by them. Therefore,
the design and inplementation of our system needed
interactive sessionsg with a cooperating biologist, in order
to find the most useful and effective properties which may

be used to accomplish the desired objectives,

The properties which are used in our system for the
. different stages of analysis are given in Table 4. 1. They
have beesn selected based on three factors:

(#) effectiveness,

(b> number of properties (minimum?,

{(c> speed of computation.

In the preceding sections of this chapter, we described
three levels- of cell abstraction: segmentation, polygonal
approximation. and poiggon decomposition. At each level of
this abstraction, the cell is represented by a set of
properties as presented in-  Table 4. 1. Figure (4,19
illustrates +the basic properties which can be measured for
the cell shape. In the remainder of +this section, a
description and theoretical definition of each property will
be giveh.

ARER:

Is the number of non-zero pixels in the binary image of
the objgect,

Y=MRY  x=PMXX
A = sum T EUm BCx, Y2 ) ' (4, 16>
y=MNY x=MN¥

[
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Figure(4.19) Main features of a cell.
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. i oabgect elemant
where B(x,y?> =

@ else where (background?

PERIMETER:
t -+t 4+ $-2 131§

I= the length of the exterior outline of the object.
It can be calculated from the summation of the distance

between the adjacent vetrtices of the ob_ject polygon.

™ 2 2 1/2

P =sum [ ¢ ¥Ci4d)> = Hdid > +  ¥(i+1)> - ¥Y<iy ) ] {4. 47>
i=41

where m is the number of vertices in the polygon. Due +to

the cyclic nature ¥(m+1i) = X1, and ¥Ydm+il> = Y1, In the case
of computing the polygon from the boundary points:

ise
P = HNB1 + NBz . (&> (4. 18>

where NB1i the number of points where X(i) = X(i+1) or ¥(i) =
Y{i+1>, and NBZ2 else where, NBL+NB2 = the total number of
boundary points.
MINIMUM CONTAINING RECTAMNGLE:
e T

Defines the size of the rectangle which encloses the
entire obgject. The orientation of the rectangle is parallel
to the X and Y axis. This rectangle can be used as a rough
estimate of the size and location of the object. Its size
and location are defined by the minimum and maximum location
of the object in the X and ¥ directions (MNX, MXX, MNY, and

MXY;, see Figure 4, 19).
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CENTROID:
ZEEmmmmST
Is the center of gravity of the object. The ¥ and VY
coordinates of the centroid CNX,CNY can be computed from the
binary image as:
y=YMx x=XmMX
CHX = L sum sum ¥ Bix,y> 1 / RRER (4. 13>
Y=YMN x=XMHN
y=YMY X=X

CNY = [ sum sum Y Bd(x.,y> 1 /7 RAREA (4. 28>
y=vYrN  x=XMN

AVERAGE INTENSITY:
The average gray value (brightness> of the object.
y=YMX x=Xnx
AVYI = [ sum EUm fix,y>» 1 / RAREA (4. 21>
y=YMN  x=XMN
-where f(x,y? is the gray-value of the pixel (X, ¥> in-

the intensity image.

BEST FIT RECTANGLE:

sEscczssssEsssozass
The rectangle whose main axes are the length and width
of the object. |
CIRCULARITY:
sE=mzsESma=s

Is a relative measure of the ratio between the area and
the square of the perimeter, Its value varies betueen 8 and
1. the latter wvalue being obtainead for a circle.
Circularity has often been used as a measure of

“smoothness", o+ the “"complexity" of a boundary, since the
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more complex the boundary, the longer the perimeter. This
ratio has also been used as a measure of compactness of
figures. However, Rosemfeld disputes the reliablity of this
measure for digital picture analysis [Rosenfeld, ?731. In s
later section of +this thesis, we will demonstrate this
unreliability through experimental examples. The
circularity may be computed as:

2
CIRC = 4TIT R / P (4. 22>

LENGTH:

The distance betwesen the two farthest points on the boundary.

2 2 iv2
LENGTH = max £ [ (Hi=Kg> + (Yi-=-¥Ygy>» 1 > (4. 23>
i=1,2,3...,n"1 and J = i+1,i+2,.....n

n ig the number of the boundary points.

WIDTH:

The maximum extension of the obgect on both sides of the length an
normal to it

ELONGRTION:
SoEmmmEITRm

The complement of the ratio of the width to the length.

ELONGATION = 1 -~ ¢ WIDTH ~/ LENGTH > (4. 24>

AVERAGE BENDING ENERGYC(ABES:

S o S Sty Wy S THD SES amen con S ST P TR e fu WA W et b WO S S W Yt TN e
At 3 2 4 i it 3 3 -2 1 % -

The rate of change of the Tangent along the boundary.

i=n 2
ABE = [ sum ¢ dCi / Li > 31 / n (4, 25>
i=1

where dCi is the change in the Tangent at uertex i, and Li is

half of two sides at vertex i.
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REGULARITY:
Somzesszssos

Regularity is a well~khown propetrty that humans have
always used +to describe <the shapes of different obgects.
However: it has not yet attracted much attention as a shape
descriptor in computer uision systems. For example, a
circle, sqguare, rectangle.. pentagonh. and hexagon are defined
as perfectly regular shapes. These are used by humans as
references to approximately describe +the shapes of other
uﬁfamiliar objects. A measure can be defined to determine
the irregularity of an object, by comparing it to 3
perfectly regular shape. In our research, we found that
regularity is a reliable property for global shape
description and classification. The power of this property
in characterizing wvarious arbitrary shapes will be

demonstrated in & later section.

The regularity of a specific shape is based on two
criteria, angles and sides. Definitions and mathematical

formulae for computing each are given bslow.

AMGLE REGULARITY
SRS mmEmREm

A measurement of the sum of the differences betwaen the
angles of a given polygon and a regular one (equal angles?
having the same number of sides. Thus, for a polygon with n

verticies al,a2,a3,...,3i,...,an ths sum of internal angles
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(An) is:
i=n
An = sum ai = (n=-2> . 4186, (4, 26>
i=1 N
In the case of a regular polygon, ai=ag=a3= ..=ai= ..an = ar, and
ar = (n~-25.188 / n. The angle regularity (AR> can be computed
as:
i=n -
AR = [ sum lai-ar! 1 /K (4.27)>
i=4
where K is a normalization factor, which is determined in
order that AR = @ for the most regular shapes, and equal 1
for the most lrregular ones, The value of K can be computed
as:
arin+2) for n even

[}
K = H (4. 227
i arin+i’ for n odd

SIDE REGULARITY (SR)

MmN RIEEI RIS

The same as abowve, except the measurement involues the

sides instead of the angles. It can be computed as:

i=n

SR =[Lsum | 1li - LIV 1 / [ 2L (n-2) 1 (4, 222
i=41

L = PERIMETER / n (4. 32>

where n the number of sides, li is the length of a given
side, and L is +the length of the side of regular polygon

that has the same perimeter and number of sides.
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Readers are referred o RAppendix A for a short proof of

equations (4. 282 and (4. 297

4.6 STATIC SHRPE DESCRIPTION

Shape perception is a common problem in any computer
vision, scene  analysis, or pattern recognition system. In
this problem. we imitate a very complex process, the human
perceptual process. The solution +to this problem may be
achieved through two stages of processing: shape analysis.
and shape description. Figure (2.1> is a schematic diagram
that shows the basic steps for shaps=s analysis and
description, as well as the input and output data at each
step. In the preceding sectionz of this chapter, we
described the different processes associated with the first
stage of this task, that is the shape analusis. In - these
processes, the digitized image of the cell is transformed
into two forms: a scalar vector whose elemnents are
measurements of the main shap2 properties, and a graph. The
properties of this graph express the shape and structural
properties of the cell. In this section., we will describe
the processes which are associated with the second step of
shape perception. that is +the sgshape2 description. The
objective is to utilize data which resultsd from the shape
analysis in order to generate a symbolic summary describing

the shape and structure of the cell in the current frame.
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Past work in shape description has resulted in
developing systems uwhich work remarkably well in simulating
human vision. For example, character recognition,
waveforms, chromosomnes, fingerprints: cells, and machine
parts, among others, This work has not resulted in a sound
theory of shape description [Hollerbach. 75; Shapiro, 881.
A review of the significant work which has been done in

shape analysis and description is presented in Section 2. 3.

4.6.1 Synbolic Description

Symbolic description ie the most natural and powerful

method for the human to express himself and his perception
of the world. In computer vision, where steps are taken to
model human perception, a symbolic description is an
important methoh for representing the information in a more
natural and informative form. For example, in the automatic
processing of microscopic images, it is interesting *o
describe the output of the analysis in a symbolic
terminology which ig meaningful to biologists. Bartlett
describes this in "Remembering” as:
*Words can indicate the qualitative and relational features
of a situation in their general aspect Just as directly as.
and perhaps even more satisfactory than, they can describe
its particular individuality. This is, in fact, what gives
to language its intimate relation to thought processes.
[Bartlett, 19761.

Symbolic descriptions to represent the data in computer

vision was suggested by Minsky [Minsky, 741, In Hhis

Framework for Representing Knowledge, he pointed out the
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lack of usefulness of continuous—rangs humerical data. In
using a measurement, what is ultimately used, wery often, is
not the exact value, but szome qualitative Judgement based on
this wvalue. Also, he showed the power of symbolic
description for vision over all the other methods in the
following statement:

- "This essay containg quite a few different arguments against

quantitative models. Perhaps I should explain the general
princible upon which <they are based, since I see that
separately they are not very compelling. Thesis: the

output of a quantitastive mechanism, be it numerical,
statistical. analogue, or physical (non-symbolic?, is too
=T gtructureless and uninformative to permit further —analysis.
Number-like magnitudes can form the basis of decision for
immediate action. for muscular superposition, for filtering
and summing of stimulus features, and so forth. Buft sach is
a "dead end" so far as further understanding and planning is
concerned, for each is an evalusation -~ and not a summary.
A Number canhot reflect the consideration that formed it
Thus, although gquantitative results are useful for immediate
purposes, they impose a large cost on further and deeper
development. " [Minsky, 741
-~ One of +the few applications .which used symbolic
description in a manner close to our approach is by
[Hollerback. ¥91. In his approach to shape description, he
- - generated - symbolic descriptions of the different parts of a
vase such ag body, neck, lip. foot. and handles. He used

these descriptions to categorize differsnt vases,

In order for the human to choose the proper symbolic
descriptor for a specific property of an obgect, he compares
the perceived data to his a priori knowledge about the same
class of obJect or similér ones. For example, to describe a
person as "SHORT or TALL", the human compares the lsngth of

the person tao the length of an auverage adult. This process
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involves human production rules such as:

“IF PERSON IS TALLER THAN THE AVERAGE. THEN HE IS TALL",

“"IF PERSON IS SHORTER THAN THE AVERAGE., THEN HE IS SHORT".

or

The above represents an example of a human production

rule in its simplest form. The basic elements of data which

comstruct this- rule are: Ca)> data extracted from

the

perceived scene <(the person to be described in the abouve

example), (b> a priori knowledge to be used as reference

average person’, (c> a comparative operator to be used

in

- s=order: to:describe: -the--perceived data (the lengtir=of the

in

the matching or comparison procedure (taller than: shorter

than), {(d? an adjective descriptor (tall, short). It

is

clear that <a), (h?, and (c> are the basic elements ofbthe

left hand side of the rule (conditions), whereas

- represents the right hand side (action>. .

This philogophy of human production rules is

(d>

the

foundation of the structure of osur representational rules

for assigning suymbolic descriptors to the different

properties of <+he moving obgect under analysis. Thus.

Symbolic Descriptor Representational Rules (SDRR} are

the

a3

group of condition --2> action production rules: their main

function is to choose, among a set of symbolic descriptors,

the appropriate omne, for a given numerical value which has

been extracted from the sequence of images.
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In the above example, if a more precise description is
required, a human may expand his description to fiue cClasses
to include "VERY SHORT., SHORT., ARVERAGE, TALL, VERY TALL".
In +this case, the property of an obgect is described in
multiple levels of description. Obviously the pﬁacess hare
will be more difficult and ambiguous. Thus, in describing
+the length of a person, one may say: T ST

IF THE PERSON IS SHORTER THRW 4.5 FEET,

THEN HE IS VERY SHORT

IF THE PERSQON IS TALLER THAN 4.5 FEET,
AND SHORTER THAN S FEET,

THEN HE IS SHORT

IF THE PERSON IS TALLER THAN 3 FEET,
AND SHORTER THAN S. 5 FEET.

THEN HE IS AVERAGE o

IF THE PERSON IS TRALLER THRN 5.5 FEET,
AND SHORTER THAN € FEET,

THEN HE IS TALL

IF THE PERSON IS TALLER THRAN & FEET.

THEN HE IS VERY TALL*®

In the above description: approximate values <(4.5, 3,
5.5, and 62 have been used as classification thresholds ‘o
classify and describe a person as a mnember of one of fiuve
classes “VERY SHORT, SHORT, AVERRGE:, TRLL., VERY TALL".

Howaver, these classification thresholds will be differant
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amongst the MWatusi and Fggmg tribes of HAfrica This
discussion indicates two basic subjects for analyszis: the
number of classes, and the classification thresholds. These

aspects will be discussed in the following sections.

4.6.2 MNumber Of Classes (Levels) Of A Symbolic Descriptor:

The number of clasges of a symbolic descriptor is
controlled by the accepted lewvel of approximation which is
‘related to the desirable description. Specifically. the
greater the number of classes (levels), the more precise the
description. On the other hand. the fewer classes that are
defined, the simpler is the programming, the fewer required
rules, the fewer symbolic descriptors to be defined, the
smaller the processing time, and the more data compression
is achieved in gerieral. These factors force the designer to
study the optimum number of classes that combines the best

of the above conflicting factors.

The simplest method for dividing a set of data into
clasgses is to classify +them into +fwo groups similar %o
transforming a gray-level image into a binary one (black and
whited. Thus, uging a =single threshold, each numerical
value can be assigned to one of two subdescriptors such as

"SHORT. LONG". “FAST. SLOW", ....etc.

In this respect i% is generally accepted that human
ability to classify a set of data into classes ig limited in

number. Therefore, we mantain the consistency of the number
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- of subclasses +to five levels in the following order: VERY
LOW, LOW, MEDIUM, HIGH. WYERY HIGH. Thus, in our present
system, all +the measured numerical values of the different
properties are described symbolically in +terms of five
levels of description. However, inh some special cases, the
nature of the property to be described provockes other

-- - numbers of levels: -For example; in describing the direction
of the motion of a moving object <(symbolically instead of
angles) eight levels are defined (ERST, ERST-NORTH, NORTH,

== WEST-NORTH, WEST, UWEST~SOUTH, SOUTH, ERST-SOUTH). -Table 3. 2
gives examples of the subdescriptors of the different levels

of some of the main properties.

46,3 Classification Thresholds

The second problem involved in describing a set of-
numerical values symbolically is houw to define the
thresholds that can be used o divide this set of data into
“=r=== a -given number of classes. - This problem seems easier than-
it is. The solution irwvolues clustering and grouping
theories, human psychology, and the problem domain knowledgse
representation, This problem was the subject of a - thorough
study by Denofsky at MIT [Denofsky, 761. The title of his
study "HOW NERR IS NERR?" is, in fact, a good definition of
the problem. Althougt;, he did rnot dewelop a mathematical
theory for determining the classification thresholds,
neither does he specify in detail, how +to make the

- appropriate choice for these parameters in a -spesifie
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situation, However, he showed through many examples thail

commonsense choices lead to good thresholds.

In the example demonstrated in the previous sections,
threshelds of 4.5, 5, 5.5, and 6 have been used in order %o
classify and describe a person as a member of one of five
classes “VERY SHORT, SHORT, RAVERAGE, TALL, VERY TALL".
filso. it was mentioned <that these thresholds will be
different depending on the class of people. Another example
from the motion description, which possesses the same idea
is *0 describe a8 displacement distance as "YERY SHORT.,
SHORT; AVERAGE, LONG. VERY LONG". The thresholds here will
depend mainly on the type of moving obgect. For example,
tuwenty microns is a3 very long distance for a moving blood
cell, whereas a thousand mileg is a very short distance for

the Space Shuttle Colunbia.

In order to design a general knowledge represéntation
strategy, which may be used fFor different classes of objects
and motion, a normnalization technique of the dynamic data is
employed. Hence, a general rule may be used for computing
the symbolic descriptors for the different properties. R

description of such normalization technigues is given below.

4. 6.4 Mormalization

For any set of numerical dats

(the data can be the measurements of any of the obgect or
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motion properties?, the different =2lements may have values
between (Vmin) and (Ymax>d. whére Vmin and Vmax are the
minimum and maximum values of <v1;ve,...,vn>, respectively.
The different elements of this set may be normalized %o
range between B and 1 as follows:

vi = (Vi - Vmin > / ¢ Vmax - Vmin » (4. 33>

where vi is the normalized value of Vi,

Two types of normalization are defined: local
nornalization (scene~dependent) and global normalization
(scene-independent). In the local normalization, the
parameters Vmin atid Ymax are the mninimum and maximum values
of the dynamic data measured from the scenes under analysis.
In global normalization. these parameters are defined by the
constraint knowledge. They are the <typical wvalues as
retrieved from the general knowledge pertaining to the class
of objects under consideration. For example, in +the study
of the shape changes of a moving cell, in order to describe
the change in the size (area) of the reutrophil cell: i’
local: Anin and Amax are the mininum and maximum area of
the cell, measured from the sequence under analysis, (iid
global: Amin and Amax are the mininum and maxinum aresa of
any neutrophil cell under any conditions. Obuviously, in the
first case the parameters are dynamic data which may change
for the different analyses (STM datal, whereas in the secbnd
case, they pertain to conztraint knouwledge related +o

neutrophil cell (LTH datad.



STATIC SCEME AMRLYSIS Fage 4-cig

The second stage of the thresholding problem is to find
the thresholds which divide the range of the normalized data

(B-1) into classes representing the different levels of

description. Let us consider the range to be divided into
{n) classes, where EL1,E2,...,E(n—-1) are the threshold values
which define +the boundaries of each leuvel. Then each

"normalized value is assigned 4o the corresponding symbolic
qualifier using the following ruls:
RULE(4. 9) : IF V<{Pk?> .GE. Ei, AND .LT. Ey.

=sthensx)> @Q(Pk)> {~-- Dl

where V(Pk) is the normalized value of the property Pk,

Dl is the corresponding symbolic qualifier (descriptor),
Ei,Eg are classification threshold values, which define

the boundary of the descriptor D1, and RC(Pk> is the

symbolic qualifier of the property Pk

Example:

RULEC(4. 10a>:

IF V area> . LT. E1, =then=> QCarea) <{--- V. SMALL
IF VY<(area)> .GE. E1, AND .LT. E2, =then=> RQ{area> <--- SMALL
IF V<(area> .GE. E2, AND .LT. E3, =then=> GC(area) <{--- MEDIUM
IF VY<(area)> .GE. E3, AND .LT. E4, =then=> QC(area) <{--— LARGE

IF VCaread .GE. E4, =then=> Q{aread {~-- ¥ LARGE

Estimating the threshold values E1,E2,...,E(n-1> is an
interesting subject for study, howaver, if has not yet
attracted much attention. It is known that people seem to
respond accarding 40 a power law for many tasks in their

‘lives. Based on thig fact, Denofsky proposed a thresholding



STATIC SCEME AMALYSIS Page 4-21°9

method based on an exponential s£cale, in which each
threshold is half the previous, and i the geometric m=2an
(GM> of the thresholds on each side of it [Denofsky, .?71.
-Through copious examples drawn from everyday life, Denofsky
claims that this method gives reasonable results, within

(+/-225% of where humans would place the threshold.

In the examples given by Denofsky, he divided the range
of data into a number of classes, that are expanded in one
direction from a fixed point. Thus, the degcriptors of
these examples describe the datas of a specific property only
ffom one side. For example, how near, far, short, long.
small, and large. A more informative description can be
generated if we divide the range of data into classes that
are expanded in two directions (left and right> from a
middle fixed point, where the classification is symmetrical
with respect to this point. The classes of the LHS and RHS
are described by very low, low, almost low, and almost high,
high: very high regpectively., and the middle class describes
the average portion of the data. This classification method
is more wuseful, especially for data which change between
negative and positive values. For example, in the
description of the acceleration of a moving obgject. the LHS
and RHS classes would describe negative and positive
acceleration respectively. The middle class would describe
data which indicates an almost constant welocity. Another
example relates +‘o the rotation of an obgect in clockuise

and anticlockwise directions. Such an approach is described
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below.

Let us consider the classification of the range 8-1
into (nd classes, where n is an odd number gregter than one
€3,5,....). The middle class number {{(n+i1)/2) represents
the average level class; oh each side of this class, there
are [(n-1>/21 classes higher and lower than the average. If
we assume that the classification is symetrical with respect
to the middle clasg then:

Ei = 1-Ed(n-1),

E2 = 1-E(n-2>,

E({n~13/2> = E((n+3>/2). (4. 34>
We divide the range into (m} equal units. The width of each
is (T, T = 4/m. This represents the width of the smallest
class (the highest and lowest class). Using the power law,
each class is half the previous one (for classes above the

middle?, and is tuice the previous class (for +the <classes

below the middle>.  Thus, if Wi is the width of class (i}
then:

Wi = Wn =T,

W2 = Win-1> = 2T,

...'..;;i ....... s

Wi =g T, 4. 33>

and HW{N+10/72) = BU{(n=-1)/2) = ZHC(CN+3X/2),
where Wn+i)/2 is the width of ths middle class. This
width can be determined im terms of the unit T as follows:

(n-1>/2
Win+dor/2 = 2 . T (4. 365
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For example, if n=% then the width of the middle class is

4T. The total number of urits m can be determined as:

i=n
m = sum Wi <4, 37>
i=1 ~
= Wl + HWE + ... + Un
= T+ 8T + 4T + ... + 4T + 27 + T
= Wi{n+li)/E + 2 [Win+1orrg - A1
= 3 [W<n+l>/2] -~ 8 (4. 38>
Therefore, rome mr o
{n-1>/2
m =3 . 2 - & 4. 3N
and
T =41 /7 4, 48>

Thus the width of the different classzes can be computed.
(N1¥T» W2=2T, W3=4T, ....., Wn=T). The different threshold
values may be estimated as: ‘
Ei1 = W1 / m
EB2 = (Wi + W2> / m
J=i
Ei = ( sum WYy 1 /7 m (4, 44>
J=1
Figure(d. 28> shows +the - classification thresholds for
different nunbers of classes (n=3,35,7,9>. In the described
system, we divided the normalized range of data into five
classes, using threshold values of .1, .3 ., .7 and . 9. For
example., the qualification of the cell area given in the

above example may be computed as:

RULE(4. 10b>:
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T or T
25 15
n=3m= | T=1/4=.25
T| er 4T ar | T
1 .3 T .9
n=25m=10 T=1/10=.1
T|2T| 4T 8T 4T | 2T |T|
.045 .0138 318 .88 .85
n=7T,m=22 T=1/22=.O45
21 4T | T 16T 8T |4T'erT,
.02.08 .15 .38 .87 .86 .98 .08
n=9,m=46 T =1/46 = .02

n 18 the number of classes, (n—1)/2
m is the number of units, M=3-2 — 2
and Tis the unit width 1 — /™

Figure(4.20) Classification a range of

normalized data (0-1) into different
numbers of classes (5,5,7,9).
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IF VY<area> LT, L4, =then=> QcCarea) <{--- V. SMALL

IF ¥(area> .GE. .1, AMND .LT. .3, =then=> (@Carea) <--- SMRLL
IF V(aread> .GE. .3, AND . LT. .7, =then=> Q{area) <~-- MEDIUM

IF V(area> .GE. .7, AND .LT. .9, =then=> Qares> <{--- LARGE

IF V<Carea) .GE. .9 zthen=> RA{area) <{--- VY. LARGE.

When selecting the symbolic qQualifiers (SMALL.,
LARGE.. ... >, one should consider the following factors: (a)
pertinence to the property to be described. Fbr example.
for the size properties we may use SMALL, LARGE..... and for
distance properties we may us2 SHORT, LONG...., (b} describe
the humerical values +to the best approximation. For
example, VERY SHMALL., SMALL. MEDIUM, LARGE, and VERY LRRGE,
(c) meaningful to the user. For exanmple, in the description
of the cell images. the symbolic qualifiers should be drawn

from terminology which are used by biologists.

The previous sections define how +to generate the
symbolic qualifiers which describe the different properties
of the aobject in & specific frame. A final step in the

static description is to integrate the symbolic qualifiers

into a coherent summary describing the object under
consideration. This sSummary should be . informative.
urnderstandable, and grammatically correct.

Description (4. 1) gives an exanple of <the description

generated by the system.
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4.7  SUMMARY

Three =tages of anslysis are defined +o achieve the
obgyectives of understanding and describing the dynamic
behaviour of a mowving cell. These are: (1) static scene

analysis, (2> incremental change detection, and (3> global

analysis - and description.  In this chapter, -we - have-

discussed the processes associated with the firset stage, the
static scene analysis. The obgective is +to génerate 2
-summary description  of the cell location, shape, and
structure in +the current frame. This ob jective is
accomplished in <three levels of processing. Low level
processes which are responsible for locating and segmenting
the cell under analysis; the output of this level is shoun
in figured4. 2la>. The intermediate level is concerned with
the shape and structure analysis of the cell. - In this
analysis, first, the polygonal approximation of the cell is
computed in order <o reduce the noise around the boundary
- points, as well as the amount of data to be manipulated by
the higher leyels. Then, in otrder +o study the cell
structural changes, the cell polygon is decomposed into its
primitives. The latter represent the different subparts of
the cell. Finally., thes different subparts of the cell are
given by & labeled graph. The properties of this graph
- represent the - geometrical structure of | the - cell.
Figure (4.21b> shows the output of these three steps of
analysis. The function of the high level processing is to

dIntegrate - the —output - of - the analysis processes into-a
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(b)

" Figure(4.21) The output of the different steps of the static
scene analysts.

,'( a) The segmentation process.
-~ .- .(b) Shape and structure analysts.
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coherent description such as the one given
Decription (4. 1>, This description is presented in

symbolic terminology that is meaningful to the biologist.

in

-]
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DESCRIPTION (4. 1)

TEESESSESTESRIESS

STATIC SCEMWE ANALYSIS

- "F X & 2 % _§ X -2 __§ &% & 3 B N X% -8 35 3

DESCRIPTION OF THE CELL IN FRAME : 9

3 b3 3331 3 -+ 3+ -3 3 3t -3t Rt f 2t -2 {1 $-4 1 1

The cell has a COMPLEX shape. which is JAGGY and
SLIGHTLY ELONGRTED. It 4is oriented towards the NORTH.
The cell has a3 MEDIUM size and VERY LONG perimeter, with
an average DRARK gray level,

DETHIL

The cell can be decomposed into the following simple
(convex? blobs:

The FIRST (The main body of the cell) has a size of
THREE-QUARTERS of the total size of the cell.

7 The SECOND is sdjgjacent to the main body with a SHORT
baseline; its size is approximatly OME-TENTH of the cell.
Its centroid is QUITE NERR TO the cell’s centroid in

" the MWEST~SOUTH direction . The length of its perimeter is
ONE-FIFTH of the total cell perimeter.

-  The THIRD is adjacent to the main body with a SHORT
baseline; its size is approximatly OME~-FIFTH of the cell.
Its centroid is QUITE NEAR TO the cell‘s centroid in
the MWEST direction. The length of its perimeter is
THREE~TENTHS of the %otal cell pet-imeter.

The FOURTH is adjacent to the main body with a SHORT
baseline; its size is approximatly OME~-TENTH of the cell.
Its centroid is QUITE NERR TO the cell’s centroid in
the NORTH direction .The length of its perimeter is A
RUARTER of the total cell perimeter.
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INCREMENTAL CHAMNGE DETECTION

3.1 INTRODUCTION

Incremental change detection or inter-frame comparison

is an established wmethodology in image sequence analysis.

- The different techniques and the previous work based on this
methodology are reviewed in Section 2.2 2. & In the
preceding chapter we described algorithms for static scenhe
- analysis, in  which - the - input is a single frame ~and-the
output is a description (numeric and symbolic) of the cell
under analysis, as well as its different subparts and their
structur-al- relationships: - The incremental change detection
between two sequential frames, their qualifications, and

descriptions will comprise the material of this chapter.

The problem of incremental change detection can be
defined simply as: detect +the differences betuwsen ftuwo
pictures of the same scene taken ouver a period of time or
from tuo different perspectives. The task of the processes
solving this problem may be as simple as  the detection of
the objgecti(s> which appear in only one of the two images
CUlstad, 7¢517. Or it may be as difficult as assigning labels

to the corregponding obgects and parts of ob_gects in both
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images. and then estimating the change in the location and

shape for each objgect [(Youssef and Levine, 881.

Given the location and geometric features of a specific
obgject in +two different frames (the rezults of the static
scene analysis), the nmain objective of +this stage of
analysis is %o detect and describe <the changes in the
location, shape, and structure of the cell and its subparts
between the <+fwo frames (see Figure 1.35b)  Figure (5. 12
illustrates the different processes and data structure of
the incremental change detection, and Description (3. 17
gives a sample of the description generated by the system.
The processes which generated this description will be
described in the remainder of this chapter. The discussion
ig aqgiven in +three main Sections 5.2, 5.3, and 5. 4. Theay
describe the change=z in the location., shape, and structure
respectively. In ea;h of these sections, thefﬁifferent
aspects associated with the incremental change detection,
qualification. and destription is discussed. Finally.

Section 5.5 gives some concluding remarks.

2.2 LOCATION CHANGE DETECTION

Detection aof the change in the location of a mouving
ocbject from a sequehce of images is a basic and common
technique for tracking. The objective is +o produce the
path of the moving object, so that the motion pattern of the
chject may be understood An example is the tracking system

developed hy Levine and Youssef, They nquantified the path
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Fgure(5.1) Processes and data structure of
the incremental changes in location, shape,
and structure of a non-rigid moving object.
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data of a group of live blood cells, thersby computing. the
steady-state probabilities +that the cells will ultimatly
move in a specific direction [Levine and VYousgsef, 75;

Levine et al.. 811.

The change of the location of an obgect ig a function
of the morphology of itz elements. This process may result
in the translation and’/or rotation of the object. The two
types of motion are illustrated in Figure (5. 2). Any moving
object can be classified int§ one of two classes:

—————————— ;;ape in three-dimensions, such as for example.

a moving vehicle.

(b> Non-Rigid Object: An object which changes its size . shape,

- — . I o . T SO T W A VS WD WS W

and/or structure with tim2, such as for example.

a blood cell.

Inh the motion of a rigid obgect, <+he geometric
relationships of its elements are constant. whereas the
non-rigid- obgect has- +two  types of motion which—occur
simultaneously. Orne ig the relative motion of the different
components. and the other., the global motion of the object.
Therefore, - the term "translation" may be used to identify
the change in the locatiorn of a rigid obygect, whereas the

term "locomdtion" is used to describe the motion of a

non-rigid - obgect. Therefore, uwe refer +o blood cell

movement as locomotion.
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Figure(5.2) Different types of motion.
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5.21 Computation Of The Change In Location

In the case of a rigid obJgect, <+the change in the
location may be computed as follows:

(i> PDisplacement in the x'direction:

. — . G SO P o S B Y W AR G P ey Sy G Sy S S O U U N T G S P

dX = KCdi)> - XCdi+d> ¢S. 10

{ii> Displacement in the ¥ direction:

s . A S S S P A Gy SV M B, S S S ST TS G SIS I e i SUA S G S s S e W S

dy = YLO(i) - YCdi+1) (5. 27
~Therefore,; -the total incremental displacement is giwven by: - -

(iiid>Translation:

O — S i T s et TS > e e

2 2 1irse
TR = ¢ d¥ + d¥ 2 (5. 3>

Similarly, the direction of motion can be computed as:

Civy Direction:

" — - o o g

DR = Tan < dY /7 d¥X > (5. 43
where XC(id. ¥YCCid and XCC(il), YC(i+l> are the X and ¥ coordinates
of the cell in frames (i) and (i+1) respectively.

ROTATION
smssssm=

The rotation of an object can be defined by its angular
displacement. Thig can be computed as the change in the
orientation (angle between the major axis of the abgect and
the X axis). Thus:

Rotation:

e o e e W s atts doy S

RO = ORCi> - OR(i+1> (3. 3>

where OR(L)> and QR<{i+1> are the cell orientation in framess
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Civ and (i+l) resgpectively (see Figure 5 2).

Computation of the change in location of a non-rigid
ocbject is problematical. ‘ This 4is because the relative
motion of the different elements of the object may change
the centroid coordinates. even when the entire obgyect is in
a stationary position, and vice versa. In order to compute
its chénge in location, we may conceptually consider sach of
its elements as a rigid moving obect. Then, the change in
location of each element (k) may be computed individually
and represented as a uecto; ylkd, The resultant of all the
oeﬁtors can be estimated and represented by the vector (V).
The latter yields the change in location of +the entire

obgect. Figure (3. 3} illustrates this method.

The abouve method for estimating the change in the

“~location -of ~non-rigidobjects is theoretically possible if -

the different elements can be distinguished in both
locations <(the two sequential frames). In most cases,
however, it is= impractical, since we cannot distinguish
these different elements. An example is the moving cell
under study. However, using a similar technique, we can
detect the change in location by approximation.  This is-
accomplished by estimating the change in +the location of
certain critical points computed from a knowledge of the
boundary of the cobgect. Examples are 6oints\ of maximum
curvature, points of the maximum extension of the obgect in
the plane, and the centroid  Since these points are shape

- dependent, - the - approximation here depends on which  Is
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Figure(5.9) Computing the displacement of
a non-rigid momng object by conszdermg
“each element in the object as an independent
rigid moving object.
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faster, the change in shape or location. Houwever, the wmain
assumption in image sequence analysis is the smooth change
betuween sequential frames, Therefore, these critical points
could be considered, +to a large extent, shape independent

betweernn two sequential frames.

The previous asnalysis of the change in the location of
non-rigid. moving objgects is necessary if a detailed and
exact description of the instantansous changes is +the main
objective. However, if incremental change detection is an
intermediate step in the global anslysis of the dynamic
m@tion; we do not really need to go through this detailed
computation. For example, in the analysis of +the global
locomotion of a moving cell, a change iz only encountered if
the cell exhibits displacement greater +than a specific
threshold {(which is always a function of the cell diameter:’.
Therefore, we only need an apptroximation of the displacement
between the sequential frames. The latter may be wrong, but
will be corrected in the global analysis. Because of <this,
the change in the cell location betwueen two sequential
frames will be congidered as +the displacement of the
centroid, and the rotation is estimsted as the change in the

orientation of the cell

Description (5. 1) gives the numerical description of
the incremental change in the cell locatioh beftwaen two
sequential frames. It includes the exact values of the
displacement of the critical points which specify the cell

location, as well ‘‘as the direction of the motion
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(considering the positicrr in the first frame az the origind.

3.2.2 Symbolic Qualification Of Incremental Location Change

The incremental change in the c¢ell location may be

qualified and described symbolically by using the

--qualification rules  described in Section 3. 2.8~ - For:

example, +the displacement of the cell (DL)> betuween two

sequential frames may be qQualified as VERY SHORT. SHORT,

‘MEDTIUM. LONG, - --or - YERY - LONG. Two other qualifiers:

STATIONARY and ARTIFACT are used to describe the stationary

(no change in locationd and artifactual movement of the

cell. The latter could-be due to undesired experimental

conditions (these conditions are discussed in
Section 4. 2. 5. These qualification rules are:

RULE(S. 1): R

IF d1 .LT. E@ ==then==> Q(dls <--- STATIONARY
IF d1 .GE. E& AHD .LT. E1l1 ==then==> Q(dl} <{--- VERY SHORT
IF dl .GE. Ei1 AHND .LT. E2 ==then==> G(dl> <{--- SHORT
IF d1 .GE. E2 AHD .LT. E3 ==then==> Q(dl> <{--- MEDIUM

IF dl .GE. E3 AND .LT. E4 ==then==> Qd{dl> <{-—— LONG

A

IF dl .GE. E4 AHD .LT. ES ==then==> G(dl> <{--- VERY LONG

IF d1 . GE. ES ==then==> RA{(dl) <{-—— ARTIFACT
~where dl is the normalized value of DL(iai+1)1 the
displacement of the cell betwesn frames i, i+i. EB, Edi,....

ES are threshold values (@-1) specifying the boundaries of

gach-qualifier «(gee Section 4:6. 3», The normalizatiorn of DL " -
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may be obtained as:

dl = DLCL, 4415 /7 K (5. 62
where K is normalization factor, which is a function of the
cell diameter and the time interval between sequential
frames. ﬁnother method of normalizing the wvalue DL is
described in Section 4. 8, 4, Thus, by either using the local
or global maximum and  minimum wvalues of DL, dl may be
obtained as:

DLC4i, i+1> - DL(min?
dl = ~=ee—m———— o e o e o . €5.7>

DLdmax> - DPL{mind>
uh?re DL{min> and DL<{max> are the minimum. and m;ximum
possible values for the displacement of the cell between two

sequential frames.

The direction of motion (DRY betueen two sequential
frames may be guslified arid described as EAST, EAST-NORTH,
NORTH, MWEST-MORTH, WEST, UWEST-SOUTH, SOUTH, or ERST-SOUTH
according to the following rules:

RULE(S. 2>

IF DR . GT. 337 AND . LE. 22 ==then==> DR <{--— EAST

IF DR . GT. 22 AHD .LE. 67V ==then==> DR <{--- EAST~-NORTH
IF DR . GT. &7 HAND .LE 122 ==then==> DR {~-- NORTH

IF DR . GT. 4122 RAHD . LE. 15? ==then==> DR <{~-- WEST~NORTH
IF DR . GT. 41357 AND . LE. 282 ==then==> DR <{-—- WEST

IF DR . GT. 2v2 RHND . LE. 247 ==then==> DR {-~-- WEST-SOUTH
IF DR . GT. 247 AND . LE. 292 ==then==> DR <{--~ SOUTH

IF DR . GT. 292 AND . LE. 337 ==then==> DR <{--- EAST-SOUTH
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The incremental change in cell orientation (rotation.
R0O> may be described sgmbolicallg using two qualifiers. The
first is used to describe the direction of the rotation as
CLOCKKWISE or ANTICLOCKKWISE according to whether the value of
RO less than or greater than zero. The second qualifier 15

used 40 describe the amount of rotation between <two

sequential frames as "“NO ROTATION, SLIGHTLY, PARTIALLY.

CONSIDERABLE, or SIGNIFICANT. This qualification may be

obtained by the following rules:

RULEC(S. 3>: N
IF RO .LT. @ ==then==> RA(RD) {--- CLOCKWISE

IF RO .GT. © ==then==> Q(RO)> {~--~ ANTICLOCKWISE
IF RO . EQ. @ ==then==> Q(RO> <{--- NO ROTRTION

IF IRO! .GT. @ AND .LE. Ei ==then==> Q(RO)> J{--- SLIGHTLY
IF IRO! . GT. E1 AND . LE. E2 ==then==> QC(R0O> {---= PARTIALLY
IF {RO! . GT. E2 AND . LE. E3 ==then==> Q(R0O> <{--- CONSIDERHBLE

IF IRO! . GT. E3 ==then==> R(RO> {-—- SIGNIFICANT

Thus: the cell rotation betuesen tuwo frames (i) and C(i+i’> may
be described as:

THE CELL HAS HO ROTATION.

or

THE CELL EXHIBITS SLIGHT ROTATION IN THE CLOCKWISE DIRECTION.
THE ORIENTATION HAS CHAMGED FROM DR1 TO OR2.

Description (5. 14) is a typical example of thek incremental

change description between ftwo sequential frames.
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5.3 INCREMENTAL SHAPE CHAWGE

The objective of this process iz to detect and describe
the increméntal changes- in the cell shape between two
sequential frames. The process includes two main
objectives:

(a’) individual shape property change. o -
(b? membrane shape change and matching.
Description (5.1) is an example of the generated description
- of the - shape- and structural changes of a cell betueen two-
sequential frames. A description of the processes and
algorithms which produce these results is given in the

following sections.

931 Individual Shape Property Change

The obgective is 4o compute the change in each shape
property of the cell. These properties are: araa,
perimeter, length, width. number of convex angles,
circularity, regularity. elongation: average bending energy.
and intensity. The change may be computed by one of tTwo
methods: symbolic comparison dJ(qualification) or numeric

comparison Foiloued by symbolic qualification,

The symbolic comparison method is based on comparing
the symbolic qualifiers describing the same property in the
frames under study. The purpose of the comparison is +*o
detect if the property has +the same qualifier in both

frames, or if it has been changed. This compatrison may be
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described simply by the following rule:
RULE(S. 4):

==then==> THE PROPERTY HAS THE SAME DESCRIPTION IN BOTH FRAMES.

IF QCPJ, i> . NE. QCP, i+1)
==then==> THE PROPERTY QUALIFICATION HAS CHANGED FROM @1 AT
FRAMECL> TO G2 AT FRAMECi+1).

where Q1=QC(PJ, i} and G2=0CPy, i+1> are the qualifiers of
property (PJd in frames (i) and (i+l), respectively This
method of incrementsl change detection and description has
tﬁe advantage of being simple, tast, snd does riot include
any numerical computationn. On the other hand, it does not
truly represent the exact change in the property value, as
demonstrated by Figure (9. 4), In this figure, we can see
that symbolic comparison may result in no change, even for
certain large magnhitude changes in the property uvalues.
Sometimes these may be larger +than differences which do

produce qualification change.

The disadvantage of symbolic comparison can be avoided
by first normalizing *the exact change in the property
(numericallyl, then using a symbonlic qualifier +to describe
the computed change. This may be accomplished as follows:

P PJCd> - Pyci+dr |
dP§ =& wmmmeem———— e e e e e o e e e (5. 3>
max [ Pgdi>» , PgCi+lid 1
where dPy is the normalized value of the change in property

‘Pyr - betwesen frames €LY -and-  (i+1).  This wvalue mayg e -
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Category(l) Category(2) . Category(i) Category(i+1)

™

V(Pi1) V{(Pi2) Property value

ser- Exact change
in the property value

(a) A symbolic comparisor would not detect a change.

| Category(1) Category(2)  Category(i) Category(i--1)

@ V(Pil) V{Pi2) Property value

- Exact change
in the property value

(b} A symbolic comparison detects change, even though
cvimiors oo Bl€ - magaitude is much smaller than shown in (a).

~ = CoTrima e ¥ XTI L. AT SIFIad

Figure(5.4) Disadvantage of a symbolic comparison
to detect tncremental change tn a specific property.
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qualified and described symbolically as follows:

RULE(S. S>:

IF dPy .LT. E4 ==then==> Q(dP > <~~~ NO CHANGE

IF dPy .GE. Ei RHD . LT. EZ ==then==> QC(dP > <--- SLIGHTLY

IF dPy .GE. E2 RHD .LT. E3 ==then==> Q(dP)> <{--- PARTIALLY

IF dPy .GE. E3 AND .LT. E4 ==then==> QC(dP > <~-- COMSIDERRABLE
IF dPy . GE. E4 ==then==> Q(dPJ) <--- SIGNIFICANT

where E1l, E2, E3, and E4 are the qualification thresholds

which may be estimated in a similatr way to that described in

previous sections.

The above method has +the aduvantage of describing
symbolically the exact change in a specific property between
two sequential frames. Howaver, the normalization for a
large seguence of franses may be costly in computation.
Therefore, if the final goal of the analysis is +the global
behaviour of the property, a compromise may be made between
the above two methads, This can be achieved by using the
symbolic comparison +o describe whether.there is change in.
the qualification of the property. and the sign of the wvalue
Pydid ~ P ci+1) +o describe whether its value has increased
or decreasea. This can be accomplished by. using the .
following representational rules:

RULE(S. 6>:

IF PJ<id = Pydi+id . GT. 8 ==then==> DECRERSE
IF PYdid> — PJdi+dd . LT. @ ==then==> INCRERSE
An example is:

IF LENGTHC(i)> -~ LENGTH¢(i+1)> . GT. 8 ==then==> QM{dP) <-- SHORTER
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IF LENGTH(L)> ~ LEMGTH(iLi+1): . LT. 8 ==then==> Q{dP> <-— LONGER

where SHORTER and LONGER are qualifiers for charnges in any

distance properties, such as length, width, or perimetetr.

- Other qualifiers may- be used according to the nature of the

property., such as for example, SMALLER and LARGER for size

properties, or LESS and MORE for other properties such as

- elongation; circularity, -or regularity. An example-of the

generated description, using this method is: THE ELONGATION

OF THE CELL DECRERSED. Description (5. 1) gives the complete

-description of the tell-betuween two sequential frames. — - -

It is worth mentioning here that the descriptions given
in +this section and the following ones are based on expert
knowledge. They are motivated by discussions with br. P. B.
Noble, Faculty of Dentistry, McGill University., about which
tupe or‘inrormation is sought: how much detail is desired,

what are the most meaningful symbolic qualifiers.

9.3.2  Incremental flembrane Shape Change And Matching

In the preceding section. we demonstrated methods for
detecting, quantifying, and describing the incremental
changes in each of the individual shape properties. Now,
given +the shape of the cell membrane in two sequential
frames., as shown in Figure (5. 5), is there any change in the
membrane shape?. The answetr to this question will be the

subgyect of discusszion in this section.



Frame 9 Frame 10

.
>

Figure(5.5) Two successive frames.

I
N
N

Figure(5.6a) Cell decomposition.

Figure(5.6b) Graph representation.
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The shape of the contour of an object (silhouetts) is a
function of 3all the prop2rties describing it. Therefors,
the change in a single property is insufficient +to specify
the change in shape. Howewver, a function of the diffesrences
of some of the shape properties can be used to wmeasure the
change in membrare zhape between the different frames. In
this way, a comparison can be made betusen different shapes.
The selection of these properties (which properties and how
many?> is a very important issue, which will be discussed in
detail in chapter ? (Global Shape fAnalysis). Howewver, it is
desirable that these properties be translation. rotation,
and size independ2nt. Examples are clircularity, regularity,
average bending energy, and elongation. The change in each
of <these propertiss has a different effect on the membrane
shape change. Therefore. Qeighting factors may be nhecessary
in order to normalize the effect of different property
change. Thus, the membrane shape change (MSC> may be
computed as: |

k=m | Pk(id -~ Pkd{i+i>

MSC = [ sum | ————cmccmaa———
k=1 | Pk{i) + Pkd{i+i) |

Wk 1 7/ m 3. ®

where m is the nunber of selected properties and Wk is the
weighting factor. The larger the value of MSC, the more
change in the membrane shape, and vice versa. The
percentage of membhrane shape matching <(MTCH)» can be
estimated as:

MTCH = ¢ 4 - MSC > . 188 ¥ 5. 18>

Thus, small values of MTCH indicate less matching of +the
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membrane shape between two segquential frames, and vice
versa. For example, MTCH is equal to 1884 if we match the

membrane shape in & specific frame to itself.

In similar fashion, the numsrical value of the

percentage matching MTCH may qualified and described

symbaolically as follows: T
RULE(S. 7>:
IF MTCH . LT. Ei1 ==then==> Q(MTCH> <--~ QUITE DIFFERENT

IF MTCH . GE. E1 AND . LT. E2 =a=then==> Q(MTCH) <-- DIFFEREMT . ..
IF MTCH . GE. E2 AND .LT. E3 ==then==> Q(MTCH> <{~- ALMOST SIMILAR
IF MTCH . GE. E32 AND .LT. E4 s==then==> Q(MTCH> <-- SIMILAR

IF MTCH . GE. E4 z=then==> QAC(MTCH> <-- VERY SIMILRR.

2.4  INCREMENTAL STRUCTURAL CHANGE

In the previous section, we discussed the detection and

quantification of incremental change in ths membrane shaps.

as. well as their percentage: matching . in.: two-. gsequential. . .. .-c

frames. Incremental structural changes of the cell beituween

two sequential frames will be discussed in +this section.

The process includes two main steps: - - = . - . -

(a’ structural matching of the subparts of the cell, in
order to find the corresponding subparts betueen
two sequential frames, - S S

(b) determination of incremental changes in shape and geometrical
properties of the corresponding subparts.

-
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In static scene snalysis, the cell is decomposed into

its primitive subparts (Figure 5. 632, and then represented

by a labeled graph as sghown in Figure (5 6b). Given the

-topological properties of aach subpart and their

interrelationships in two sequentisl framesz, we seek the

follouwing:

(aX To find which subpart in the second frame corresponds o
which one in the first.

(b> For +wo corresponding subparts, detect the incremental
changes in shape and relative position.

(c) GQuantify and describe the results of (a> and (b» numerically
and symbolically. Description#(3. 1) and Table#<S5. 1> giuve typical

examples of thisz result.

5.4.1  Subpart Natching

The problem of matching the different subparts of the
cell in +two sequentiszl Frames may be defined as follows.
Given two sets of obgects, it is required to recoghize the
corresponding elements <(objects) from the two sets. In
other words, if we have two sets {A) and <B)> such that:

{AY = {a1,a2,...,ai,....,am>

and B> = {bi,b2,....,by.....bnx
the objective 1ig fo find the different slements of +the sat {A, B)
<A, B> = {Ca1,b1), ca2,b2),...., Cak,bkd>,...>
where ak is an element aof <AY and bk is an =lement of <{BY.
Figure (35 .75 illustrates this problem and illustrates an

arbitrary solution.
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Set(A) Set(B}

O—r 1 —@

@—— '+ —8

¢ ——®

o—= ~—O0

8
O

Figure(5.7) De finition of the subpart
correspondence - problem.
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This problem can be considered as & simple patiern

recognition procedure if: (a’ both sets have the same

number of elements, (b)Y the corresponding elemsnts in both

sets

have the same property values. Howzver, besides the

standard problems of the pattern recognhition in a static

scene, we also experience other types of difficulties, due

to

the nature of cells as non-rigid objecis. These

difficulties are:

.(a)

(b2

(c

(d>

(e

Ainy slight change in the membrane shape can cause diffarent
decompositions.

The cell in both frames may not have the same number of
subpar+ts because pseudopods are continually growing and
contracting.

The same subpart of the cell may not have the sam2

topological properties in subsequent frames.

The cell may have more than one subpart with the same
simple shape but in different relative positions.

Noise is caused by the registration of the differert frames.

Considering the above difficulties, this section

describes an algorithm for recognizing the corresponding

subparts. of the cell between-: two - sequential . frames. . .

Figure (35.8a) shows the labeled graph of the cell in %wo

sequential frames. The subparts of the cell in the first

frame are labeled 1., 2; ..., = and in the second frame a,

b,

cell

..o m, where n and m are the number of subparts of the

in the first and second frames, respectively (in

Figure 5. 8a, n=6 and m=5>. The main steps of the algorithm
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First frame Second frame

first frame <- second frame first frame -> second frame

W
1

>
~—
&

Correspondence of subparts
in the two frames ( == )

L/

Q
Q@

|

Figure(5.8) Solution of the -
subpart correspondence

(d) problem.

)
Q
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are:
(13 Consider the subparts of the first frame as models
(prototypes), and fFfor each subpart (i) in the second frame
find the subpart (4o in the first frame which gives the beét
match (Mmax?, where:

Mmax = max (Mid, Mi2, ..., Miy, ..., Mir> (5. 110
Miy is the match between subpart i (second frame> and
subpart § (first framel, and is defined by

k=m f Pkd(id> - Pk(y> |

Mij = [ Sum | =~———=——————- P LMK T/ m, ¢S, 12>
k=1 | PK(L)> + PkCD !

where m is number of subpart properties, and Pk<(i), Fk(y> are _
the wvalues of +the property (k? for subparts i and
respectively. Figure (5 8bJ> illustrates this match. The

subpart propertises which are used in this matching ptrocess -

are: area, perimeter. circularity, regularity, average
bending anergy. centroid coordinates, base-line, and
connective-line, and orientation- - We may note that - the

first six properties pertain +to shape, whereas the rest
specify the relative position of a subpart in the cell
structure, P T -

(2) Repeat step number<i), considering th2 subparts of the
second frame ag the models of the subparts in the first
frame. Figure (5. 8g) illustrates this step. I R
(3> Subparts 1 and ) correspond if Migy = M i, Thus, fwo
subparts that have been matched in both steps (14 and (2>

are =said to correspond (see Figure 5. 3di.
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The result of the aboue algorithm is a set <LA.B.M>F of
the corresponding subparts in the +tfwo frames and theair
percentage match. Thus.,

{A, B, M> = L(al.bi,ml), (a2, b2, m23,....,¢Cai,bi,mid,.. . ,<al,bl, ml>>
(5. 13>
where ai iz the number of the subpart in the first frame
which corresponds t0 the subpart numbar bi in the sscond
frame, with percentage match equal to ni. This result may
be described symbolically as: BLOB MUMBER i IN THE SECOND
FRAME CORRESPONDS TO BLOB NUMBER 4 IWH THE FIRST FRAME, or
BLOBC(S> NUMBER (. ....... > IN THE SECOND FRARME DOCES> NOT
CORRESPOND TO AMY IN THE FIRST FRAME. Table (5. 1) gives an
example of the result of computing +the correspondence
matching of the different subparts betwesn +tuwo sequential
frames. This result is summarized symbolically in

Description (5. 1)

9.4.2 Incremental Changes In Corresponding Subparts

In the preceding section, we deszcribed how to compute
the correspondence between different subparts of the cell in
two sequential frames. The changes in +the <topological
properties of these subparts and their relationships to the
global changes of the entire cell are the basic elements for
understanding the dunamic behaviour of the cell.
Measurement, qualification, and description of the changes
in the corresponding subparts between the szequential frames,

are described below.
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The computationh of the incremental change betwesn the
corresponding subparts is very similar to the computation of
the incremental change in the location and memnbrane shape of
the - entire cell (which are described in
Sections 5.2 and S. 3. The differences are: cad the
incremental changes are computed for each two corresponding
subparts instead of the entire cell, <{b» besides the changes
in the shape and location. in the case of the subparts , the
changes in the $opological propearties (structural
relationships of the different gubpartsd are also computed.
Thus, the different properties which are considered for the

changes in the different subparts are:

Shape Properties Structural Properties
area centroid coordinates
perimeter base~lines
circularity - conhective-line
regularity orientation
elongation

relative area T

average~bending-energy

An example of the exact values of the change in each of the
above properties between the corresponding subparts of two
sequential frames are given in Description (S 1). These

values are normalized as follouws:
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DPL 8 ~emomcccmcc e e . 5. 14>
max [PidE), Pic(t+din]

As before. the chariges in the diffsrent properties of
the corresponding subparts can be qualified and described
symbolically as: MO CHARNGE, SLIGHTLY, PARTIALLY,

CONSIDERRBLE, SIGNIFICANT <(see Description 3. 1),

In systems where incremental change detection is an
intermediate form of data. to a3 high level analysis.,. the.
above descriptions may giuve more information than is

required at this stage. Usually, +his <=tage 1is only

necessary to describe whether -a-charge in _property value has -

taken place, and if so, whether & decrease or increase has
occurad. Therefore, to obtain only the reguirad
information, make <the description simpler, and to save
unnecessary computation, our symbolic description of the
incremental changes in the different subparts is generated

as shouwn in Table 5. 2. Do rreseiti ie. s omeis

9.4.3 Total Structural Matching

The total structural match (SM> of the cell between two
sequential frames is computed as a percentage value (B8-1087)
. which depends on the nunber of»fCthesponding'wsubparts and
their percentage match. Thus, SM will equal to 190% if <a>
the cell has the same number of subparts in both frames, (b
there is a one to one match betwszen all subparts, and (=)

there is no change in any of the =ubpart properties. The
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structural match of the cell may =qual BX if there are no
corresponding subparts betuween the two frames. The walue of
SM may be computed sgs:

SM = (M1 + M2 + ... + M / m, (5. 15>
where Mi,M2,....HMk is the percentage match of the
corresponding subparts {see equation (5 12)>, k is the
number of the corresponding subparts, and m the number of
the subparts in the second frame. The latter is used if we
are matching the structure of the cell in the second frame
to that in the first frame. In the case where there is no
order betwaen the two frames. the valus m should be replacad
by <n+md/2, where n  the number of subparts in the first

frame.

The total structral match of the cell may be described
symbolically as GUITE DIFFERENMT, -CIFFERENT. ALMOST SIMILAR,
SIMILAR. or VERY SIMILAR. Thus, looking at the cell in the
two successive frames given in Figure (5. 55, it appears that
they are similar. This judgemsnt will - change .- after -
comparing the labeled graphs that represent the cell in both

frames (Figure 5. 6>. 0Obviocusly. there are changes in shape

-.and structure. Using the - analysis - described din the .. - - -

preceding sections: these changes are detected, qualified,

and presented in a summary, such asz Description (5;11
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2.9 SUMMARY

In this chapter, we presented processes for detecting,
qualifying, and describing the incremental changes in the
location, shape, and structure of a mowing oell. First, the
difference between the motion of rigid objects and non-rigid
obgects was discussed. The change in location was computed
in termns of the displacement and rotation of the cell.
Second: the changes in each of +the shape properties were
computed in order to estimate thes change in membrane shape.
Based on the latter. the matching of ths =ell shape between
two frames was computed as a percentage value, Third, the
change in cell structure was computed in terms of the
correspondence of different subparts of the cell. Finally,
changes in shape and relatiuve Llocation of corresponding
subparts were computed in order to quantify and describe the

structural matching of the cell in successive frames.

The procedures of most of the»fpnocessest:pnesentednfia =
this chapter are based on comparisons of +the symbolic
qQualifiers of the different properties in the <two frames
under consideration. In some cases, -howaver, in order to
produce a precise description of the changes, a comparison

of the numerical property wvalues in both frames is first

estimated, from which a symbolic -qualitier is ~determined. -~ - .-

The symbolic qualifiers which describe the changes in the
different properties are chosen by representational rules,

as described in the previous chapters.



INCREMENTAL CHANGE DETECTIOM Page 5-2359

Structural matching of subparts is wvery important in
understanding +the dynamic behaviour of the moving cell.
This is because, using this data, we can sstimate the time
when a specific subpart started +to grou C(appesar) or contract
(disappear). ARlso., the study of changes in the +topological
properties of the different subparts is important in ordar
to recognize if a specific subpart is a rcandidats for a
pseudopaod or not, and to quantify the behaviour of ths
different pseudopods. These issues are the subject of

thorough studu in Chapter 8.
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TABLE(S. 1) MATCHING OF SUBPARTS BETWEEN FRAME 9 and 10

VI Mo WIE SN G SIS S SN0 WIR GR B R e SUD WS U TR AP AUE SO0 Ul A SR s s SV WL SRR WA G 4O VL G GOR SR Gmw A G S NS G G P G SR WS gy DD NI VNG W WS TS
A AR SR TEE SUN ANE Al S GG N GAR PR WS 0G0 o0 Wi MU SO Mk A S SN W Y SIS G PUD NP AN SOF SUL SuR AND uE SRS B SNE SR SR BN W WY SN MY W wu TR SIY AN SRR AN MEY R

(R) MATCHING FRAME® 1@ TO FRAME®-9> - - =

FRAME# 186 s=====3 FRAME# © MATCH
SUBPART# 1 K/ a. 892
SUBPART#H 2 i 8. 842
SUBPART# 3 a2 8. 948
SUBPART# 4 3 8. 926
SUBPART# S 4 . 2328

(B MATCHING FRAME® 9 TO FRAMEH 10:

FRAME# 9 ======)> FRAME# 10 MATCH

SEmmmmmmem =|mmasmsmumes 341
SUBPART# 1 1 8. 867
SUBPART# 2 2 8. 948
SUBPART# 3 4 0. 926
SUBPART# 4 5 9. 938

(C> CORRESPONDENCE OF SUBPARTS:

FRAME# 16  =====a= > FRAME# 9 MATCH

Smesmmmamses mRmmamammes % 1-+—1-1
SUBPART# 1 NONME 0.0
SUBFPART# 4 HOME 9. 3
SUBPART# 3 2 8. 918
SUBPART# 4 3 . 926
SUBPART# 5 4 . 933
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TABLE(S. 2)
Change Value Type Change Mature
in of of Description of
Property Change Change Property
8 STATIONARY NO CHANGE RRER
PERIMETER
f SMALLER CIRCULRRITY
aP = -VE DECRERSE .E SHORTER REGULARITY
; LESS ELONGARTION
AV-BEN-ENG
{ LARGER BASE-LINE
+VE INCREASE % L.LONGER CON-LINE
; MORE REL-ARER

where dp is the uvalue of the incremental change in a specific
property. Description (5. 1> is a sample of a ‘typical
description of the incremental charges bestween two sdccessiue

frames.
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DESCRIFTION <5, A2

R —— 8 B — B

THCREMENTAL CHAMGE DESCRIPTIOHN

E———

OF THE CELL IN FRAES : 9 D 10
LOCATION G

The centroid of the cell has mouved a VERY SHORT
distance (approximately ONE-TENTH of the call
diameter) in a NESTERLY direction.

ROTARATION

I W S WS g gy S ey

There was SLIGHT rotation in +the ANTICLOCKWISE
directiorn

ORIENTRARTION T T

The orientation of the cell has changed #rom
NORTH to NORTH-EASTERLY '

SHARPE

G WS e W
TN WIS e WS VEM

The description of the changé in the shape
is given below in two parts: (1> the global change
of the membrane shape, and (2> the structural
changes in the primitive parts of the cell and
their interrelationships.

MEMBRANE SHAFPE CHANGES

CORED DS GRS WS B pum P A S rr— ———— — So— o S— S A — — i - S—

The general matching of the cell” s shape batwaen
the two frames is VERY GODD. This is due 4o the
change of the main shape properties wvhich can be
described &s follows.
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There iz NO change in ths COMPACTNESS, ELONGATION
REGULARITY. SIZE, and the FERIMETER of the cell.

There is & SLIGHT change in the COMPLEXITY of the
cell; it became LESS COMPLEX.

STRUCTURAL CHARMNGES

— . —— T— G- SNy rrif S i S Dt i ——tn C—_. Wa— — ——

The structure of the c2ll in the two

frames is ALMOST SIMILAR. Thiz conclusion is
based on a comparison of the primitive parts of
the cell in the tyd frames, A detailed

description is given below.

Blob numbers<i.2> in the second frame DO NOT
correspond to ANY blobs in the first frame.

Blob numberd2? in the first frame CORRESFOMNDS to

blob number<3) in the second frame. The latter
has a LARGER SIZE., LONGER PERIMETER., and a LONGER
BRASE~-LINE. The CONNECTIVE-LIME i=s SHORTER.

and is ROTATED in ANTICLOCKMWISE direction.
The SHRPE is LESS REGULRAR.

Blab numherfz) in the first frame CORRESPONDS to

blob numberd(4) in the second frame. The latter
has a LARGER SIZE, the SAME PERIMETER., and a
SHORTER BRSE-LIME. The CONNECTIVE~LINE is

SHORTER, and it 4is ROTATED in  a CLOCKWISE
direction. The SHAPE is MORE REGULAR.

Blob numberd{d4) in the first frame CORRESPDNDS +to
blob numberdS5> in the second frame. The latter
has a LARGER SIZE, LONGER PERIMETER, and a
LONGER BASE~LINE. The CONNECTIVE-LINE is THE SAME,
and is ROTATED in 3 CLOCKWISE direction. The SHAPE
is MORE REGULRAR.
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GLOBAL LOCOMOTION AMALYSIS

6.1 INTRODUCTION

The main obJjgective of the present system is to
understand and describe the dynamic behaviour of a non-rigid
moving obgect from a4 gequence of pictures. To achieve this
objective, three stages of analysis have been defined:
static scene analysis, incremental change detection. and
global analysis. Tha first +two stages are described in
chapters 4 and S respectively. The global analysis (the
third stage) presents the highest level in the hierarchy of
the system. The objective is to analyze the nultitudinous
data which is extracted from the static and incremantal
analysis in order to detect and describe the global changes
from the irrelevant and noisy ones. Figure (6. 1) shows the
main processes and data structure of +fhe global analysis

stage.

The glebal analysis will be described in three
Chapters (6-8). Firet, the global locomotion of the abjsct
wil; be analyzed arnd described in this chapter. Secord, the
global changes in the shape will be discussed in Chapter 7.

Finally, Chapter § involves +two basic issues. The first
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-
LTM STM
| T LOC;OMéTION WStatw data
) "‘SI{?, Incremental|
EQ — SHAPE <—  (dala
€3]
52| ' "‘
C O X =>l STRUCTURE [<+=>| @lobal
' property
description
GLOBAL '
4 BEHAVIOUR |=—% dgfgf: : .
e _é |/CHARACTERIZER lescription

e e e e een .. Figure(6.1) Main processes and data
structure of the global analysis stage.
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pertasins to the gQlobal structural changes, and the second is
concerned with +the integration of the three aspects
pertaining to the locomotion, shape, and structure in order
to generate a coherent description of the dynamic behaviour

of the moving object.

The global leocomotion analysis of a mowving obgect
involves +two basic sieps. The first is responsible for
motion detection (tracking?> by locating the object in each
image of the sequence, and detecting the incremental change
in location. The second step is concerned with motion
analysis. The output of the former is the path which
represents the object movements, whereas the motion analysis
should provide & description of the wmotion pattern or

behauviour,

Most of the early work in dynamic scene analysis was
mainly concerned with motion detection. Constructing
knowledge-based systems for motion analysis, understanding.
and description is fthe recent trend in image sequence
analysis. A review of the significant work and evaluation
of the current status of the gained experience in this field
is presented in Section 2. 2. The system under discussion is
designed as a rule-baszed system for understanding the

dynamic behaviour of a moving cell.

Cell movement 1= & fundamental process of some
importance to host defense mechanismg. Most of the research

in understanding the aechanisms which regulate these
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processes was concentrated in cell locomotion and chemotaxis
analysis. The latter.is the response of a motile cell *o
the directional influence  of exterﬁal factors, such as
bacteria, tumour or chemical substances. The goal of thess
studies is to provide answers to some of the basic questions
about the cell locomotion, such as :
(&8> How does the cell move from point f €0 point B 7
Does it move in a straight line ? Curved path 7
Zig~zag trajectory ? finy specific pattern ?
Does the cell exhibit any velocity or acceleration ?
(b>» Is the cell movement random or chemotactic ?
If it is chemotactic, is it positive or negative 7
From the analysis of the cell locomotion, can one
predict the future behaviour of the cell ?
Can the cell behaviour be modified by changing any of
the environmental conditions ?
(c)> What is the role of the cell surface in regulating the
social behaviour of the cell?
Is there any rela;ionship between changes in the
membr ane shape andsor structure and the cell

locomotion?

Most of the previcous work in cell motion analysis was
restricted to cell <tracking either by manual or automatic
production of the cell path and/or quantifying its data in
order to provide answers +o the questions in group (al
above. The recent woerk by [Levine =t al, 8Bl wuwas

different in that they conputed the steady-state
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probabilities of & c¢ell moving in a particular direction
Their analysis provided answers 1o questionz in group (b2
above. In our current research, the cell locomotion
analysis is designed +o0 provide a description of dynamic
cell behaviour. In this way, questions in group (c? may be

answered.

Processes for locating the moving cell in each frame of
the sequence and computing <the incremental displacenents
(motion detection) are described in Chapters 4 and S. In
the remainder of this chapter we will describe processes for
global locomotion analysis and description. Figure (6.22
shows the global locomotion analysis processes and data
structure. The input data for this stage of the system are
the static location of the cell at each single frame, the
incremental digplacement, and the direction of motion
between two sequential frames. The output is a description
of cell locomotion behaviour. A typical example of the
generated summary is giQen in Description (6. 1. In the
following sections. +the global <cell ftracking and path
construction is described. The motion analysis and
description is discussed in Section 6. 3. Section 6.4 is
concerned with the quantification and description of
chemotaxis behaviour. Finally. in Section 6.5, a summary of

this chapter is presented.
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Static

| locations
o .
CELL PATH

Incremental
f— — TRACKING AND [«@—— displacement

CONSTRUCTION \and direction
MOTION Global

RULES}——% ANALYSISAND [<—— locomotion

DESCRIPTION data
Global
| CHEMOTAXIS locomotion
ANALYSIS decription
LTM : i STM

Figure(6.2) Global locomotion analysis
processes and data structure.
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6.2 CELL TRACKING AND PATH CONSTRUCTION

R cell path ig the tragectory of its locomotion. It
can be constructed by connecting the centroid points of the
cell at +the different locations of its movement. The
simplest method of constructing a cell path is by recording
the X and Y coordinates of the centroid at a constant time
interval, and <then connecting these points in the same
sequence as recorded. This produces a cell path {P)> where

P =4<PLP2....PL,...,Pul, 6. 1>

and m is the number of points in the path.

In image sequence analysis the +time interval betyeen
two successive points in the cell path is the time interval
betueen two sequential frames. Figures (6. 3a), (6.3b>, and
(6.3c> show +typical cell paths sampled at the minimum time
interval (the filming rate .95 seconds:. This methed 1is
adequate for analysis of cell movement Yor a short period of
tine where the detail of each incremental displacement is
desired. But for long +time periods, this method is not
useful. The follouwing reasons may be cited:

(8> The path includes irrelevant movements which make
the detection of the global changes more difficult.

(b? Sensitivity to noise.

(c?) The coordinates of the cell centroid are, to some

extent, shape dependent.
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 Frame number: First=1, Last=10, Sampling=1 frame (.5 seconds)

SCALE

¢ )

8.3
MICRONS .

v

>

Figure(6.8a) Time sampling of the cell path.

Frame number: First=1, Last=100, Sampling=1 frame (.5 seconds)

SCALE
(—
1.’9

MICRONS

FYgure(G.Sb ) Time sampling of the cell path.
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Frame number: First=1, Last=450, Sampling=1 frame (.5 seconds}

SCALE
(—)

8.6
MICRONS

Figure(6.8c) Time sampling of the cell path.
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For the purposes of global locomotion analysis, wuwe
should smooth., simplify, and at the same time retain all the
global changes of the cell path To do that, we may
consider two methodsz, time and distance sampling. A

description of esch method is giveri below.

In the construction of +the cell path using time
sampling, we sample the path using longer time intervals
(Tm), where Tm = m. to, and to is the time interval between
two sequential frames. Thus, we consider the location of
the cell in each of m frames. This will reduce +the number
of path points by a factor of m, but it will not smooth it.
This is especially true when the cell is stationary or in
motion with wvery short displacements. Therefore, we may
consider the distance samnpling method, which is described

below.

6.2.1 Cell Path Construction Using Displacement Sampling

This method is based on the assumption that the cell
has moved only if it exhibits a diszplacement which exceeds a
specific threshold <(Ed>. Thigs threshold is a function of
the cell diameter. Thus.

Ed = K . CD, (6. 2>
where CD is the average cell diamater, and K is a rconstant.
To construct +the c¢ell path using a constant displacement
threshold, we carry out the following steps:

(1> Take the centroid coordinates of the cell in the first

frame (KXo, %Yo) as the original point in the path FB.
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{2) Find the first subsequent frame (i) where the distance
(L8> betueen the centroid of the cells is greater than
the threshold Ed, where |

g 2 178
LS = [ (Ko-Ki> + (Yo-¥Yi)> 1 . (6. 3>

(3> Take the point (Xi.,Yi) as pli in the cell path

(4> To find points p2,p3.....,phi
Put i ===3> Xo , and Yi ===2> Yo .,
and repeat steps (22 and (3>

Figures (6. 4a), <6 4b), and (6. 4c? show the cell paths which

were +tracked for 288 frames (180 seconds) by using the

thresholds E = 4. 2, and 2 microns. respectively. From
these figures, one can see that by increasing the threshold

(Ed}, we increase the simplicity and smoothness of the cell

path and at +the same +time retain the glaebal changes.

However, there is & limit to how much this threshold can be

increased. At a3 certasin point, we start to lose some of the

detail of the cell movements (see Figures 6.4b and 6. 4.

Fortunately. because of the slow motion of the cell, this

threshold value is not very critical and may vary within a

small range without affecting the resulting path. Fraom our

previous experience with cell tracking. the threshold has
been chosen +to ke a quarter of the average cell diamster.

Thus, E = .25 CD for the neutrophil cell., and this may be

considered as constraint knowledge in the LTM.
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Frame n’nmber: First=1, Last=200, Sample distance=1 micron (1 pixel)

SCALE

< )
2.4

MICRONS
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Frame number: First=1, Last==200, Sample distance=2 microns (2 pixels)

SCALE
<

3
2.4

MICRONS

Figure(6.4b) Distance sampling of the cell path.

Frame number: First=1, Last==200, Sample distance=3 microns (3 pixels)

SCALE _ -

< >

2.4

HICRONS

- Figure(6.4c) Distance sampling of the cell path.



GLOBAL LOCOMOTION ANALYSIS Page 6£-&°77

In the preceding section, we described how to construct
a smooth and simple cell path by eliminating irrelevant or
noisy movement. and retaining the global changes. Howeueat,
in track;ng the cell for a long period, we may face another
problem in constructing the overall cell path. This problem
is mainly due %o undesirable experimental condifions; which
cause discontinuifg in the cell path. R description of this

problem and its solution are given belowu.

6.2, 2--Lonnection Of Cell Path Segments - - - -

In order to study the change in the cell shape and
structure, it iz necessary <to film the cell at high
magnification to get as much detail about its shape and
structure as possible. Consequently, the viewing window of
filming is reduced. Hance, after some time +the cell may
move out of this window. In order to keep the cell in view.
either the slide containing the cells, or the camera should
shifted to relocate the cell accordingly. The shift of the
scene causes a sudden gunp in the cell location between two
sequential frames. Thig introduces problems for the system
at two different levels. First, at the registration stage
(automatic segmentation of the cell), and secondly, during
global locomotion analysis. Solving this problem at the
registration level is reported earlier in Section 4, 2. In
the remainder of this section we will show how this problem

can be solved at a higher level
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The sudden gump of the cell can be detected ¢rom the
sudden increase in the incremental displacement. In
Figure <6.Sa’, the sudden Jump of the cell appears as a long
straight iine between two segments of the path. In order to
obtain a3 continuous path and to dignore any artifactual
movenent, we shift the path segments by vector translation
of the cell locations in all the subsequent frames after the
Jump. For example, if there is a _jump between frames (i)
and (i+1), where (Xi,¥Yi), (Xi+1,¥i+l) are the locations of
the cell before and after the _jump, we compute the

thanslation vector <(shift) as:

H—-shift = 3 = Xi+1 -~ HKi (6. 4)
Y-shift = Ys = ¥Yi+l - Yi . (6. 5
Then, for frames i+i.,1i+2,....n-1l,n (n = number of the frames

Y0 be processed? +the location of the cell will be changed
to:  (Ki+li+Xs, Yi+i+¥s), (Ki+2+Xs, Yi+2+¥s)h, ..., (¥n+¥s, Ynt¥s).
This action can be described by the following rule:

RULEC6. 1) |

IF L<i, i+1> . GE. Edd

==then==>(1> Hs Co= KA+l — Ri AHE ¥YS <=-=~ Yi+i

i
<
-

22 Ri+l <—— MHi+l + XS AND Yi+l (- Yi+d + ¥YS

Hi+g {—= Hi+2 + XS AND Yi+g <—- Yi+2 + ¥S

Ri+n <~— Hi+n + X8 AND Yi+tn {—— ¥i+n + ¥S
where n is the number of the frames +to0 be processed. and
L{i, i+1)  is the displacement betwsen tuwo sequential frames.

Edd is the threshold wvalue which specifies the maximum
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Frame pumber: First=1, Last==225, Sampling==1 frame (.5 seconds)

D
SCALE 4
(—>
2.3
MICRONS

Figure(6.5a) Original path (time sampling).

Frame number: First=1, Last=225, Sample distance==2 microns (2 pixel)

SCALE ?-’ Artifact
) N threshold
2.2 taken as
MICRONS 6.0 microns

F¥gure(6.5b) Distance sampling with arits fact removed.
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acceptable incremental displacement without artifactual

movement.

The above is an example of the use of the LTM rules in
eliminating some of the undesirable experimental conditions.
Figures (6. 5a), (&.5b>, (6. 3c), and (€ S5c) show cell paths
before and after removing the gaps caused by the cell jump.
In Figures (6. 5b) and (6. 5c) the locations where the cell

Jumps have been removed are marked with a circle.

In this section, we have described methods for pruning
and integrating +the large amounts of data which represent
the locations and incremental displacements of a cell. This
is accomplished hy eliminating the irrelevant, noisy, and
artifactual movement of the cell. The output of <these
processes is the path which represents the observable motion
of the cell. The latter is further analyzed in order <o
generate a summary of the global locomotion. The processes
which are responsible for generating this description, will

be described in the following section.

6.3 MOTION ANALYSIS AND DESCRIPTION

In the preceding section we discussed methods for
producing the path which represents the global motion of the
cell. It consists of a sequence of steps. Each step is
associated with a set of numerical values describing the
motion properties such as: frame numbsr, time, distance,

direction, wvelocity, and. acceleration. Thus, the global
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Frame number: First=1, Last=450, Sample distance=4 microns (4 pixels)

SCALE
{—— 13
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MICRONS_

" Figure(6.5¢) Distance sampling with arti fact removed.

Artifact
threshold
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8.0 microns
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motion of a cell can be defined as a sequence of steps %7,
where:

{8> = {84, S& ..., Si, ..., Sm), (6. 67
and each element of this set Si represents a step of fthe
global locomotion, with m the numbgr of motion steps. Each
element i is associated with a set of motion properties
€P(S1i>3, such that:

<P(31i>>» = {P4ii, P2i, ...,Pkil} <6.7>
In these experiments, the properties were chosen to be time,
distance, direction, velocity, and acceleration. The
determination of the frame number specifying the start of
each motion step was described in the preceding section.
Here, we will show how to compute and qualify the other

motion properties.

6.3.1 Distance

In the locomotion analysis of a moving cell, threae
types of distances can be computed: <total path displacement
distance <(TDD?> <({time sampled?, total path locomotion
distance (TLD)» <ddistance sampled), and total translation
distance (TTD» <[(vector sum of  all locomotions:. The

definition and computation of each is given below,

TOTAL PATH DISPLACEMENT - TIME SAMPLED (TDD)
23 3 ¢t -+t 2 3t -t S 3t 4 31 315 5+ F ¥
The TDD represents the total movement of the cell, including
those that are irrelevant, nolsy. and random. This distance

can be computed by adding all the incremental displacements
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of the cell between segquential frames as follows:
n—-1
oD = SUM L<i, i+42 . (6. 3
i=1
where L{i,i+1l? is the incremental displacement betwsen tTuwo
sequential frames, and n is the number of the processed

frames. Figure <6. 8> shows the totsl displacement distance

of the cell at different timesz.

TOTAL PATH LOCOMOTION ~ DISTANCE SAMPLECC(TLD
3 31+ + 3+ 3+t 33 i+ 1t 4+ 2 F 3+t 5+ 3 31 3 32 34111
The TLD represents the movements which result in moving the
cell an observable distance (exceeding a specific
threshold?. This distance is represented by the global
locomotion path (see section 6. 2. The TLD can be computed
by adding all the lengths of each step:

-1

TLD = suUH LSC4i, i+1), (6. 3

i=1
where m is the number of the path points, and LS(4i, i+1)
is distance betuween two sequential points:

2 2 1/2
Ls = [ (X{NL) - XCNCL+1))  + (YCHLY - YNCi+1d)> 1 (6. 19>

TOTAL TRANSLATION DISTANCE (TTD> - VECTOR SUM
i 33 F 33 ittt 7 1t 1 L5 - ]

The TTD is the distance between the locations of the cell in
the first and last frawmes of the sequence under analysis.
Thus, if (Xa, VYal, (Xb.¥b> are coordinates of the cell at the
locations R.B (the firszt and last frames) respectively, then

TTD is equal to the length AB and can be computed as:



MOTT AU~ D~

Page 6-284

TOTAL DISPLACEMENT FRAME#: FIRST= 1,LAST=200,NCREMENT=

27.56
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23.88
22.84
!

n
[
A8

[y

&

)
~J

16.53
14,70
12.86
11.82
9.185
7.348
5.511
3.674
1.837

Logeal

S

~1 11 21 31-41 5161 71 81 S1191111121131141151161171181191

FRAME HNUMBER

Figure(6.6) Total displacement of the moving cell.
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n

2 g 1’2

TTD = L (Xb ~ Xa?» + <(¥Yb ~ VYa> ] (6. 115

The TTD, in most cases, is less than the TLD, and the
latter is less than the TOD; thus, TTD < TLD < TDD. This
is because of the nature of the cell movement (the cell does
not move in a straight line (see Figures 6. 3-6. 5). HAnalysis
of the relationships bétween these distances is important in
characterizing +the randomness and chemotaxis behaviour of

the cell. These aspects will be discussed in Section 6. 4.

The distance of each locomation step of the global path
can be qualified and described as: VERY SHORT. SHORT.
AVERAGE, LONG, or VERY LONG. This qualification is based on
& comparison with the auverage step distance (L&auv?, which
can be computed as:

LSayv = TLD / NS (6. 12>
where TLD is the total locomotion distance of the cell path
and N5 the number of. gteps. Thus, if a specific step has a
distance that is close to LSav, it can be described as
AYERAGE. This means that LSav specifies the data in the
middle of the qualificaticn range. Therafore, the value of
LSav can be used as a rnormalization factor for the distance
as follows:

. L8ni = LSi / 2. LSav (6. 13>
where LSnhi is the normalized valug of the distance of step
(i, Using the representational rules, the distance can be

described sumbolically as:
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RULE(&. 2>
IF LSni .LE. E1 ==then==> QCLSi) <{<-—-- VERY SHORT

IF LSni .GT. E1 AND .LE E2 ==then==> Q(LSi> <{--- SHORT

IF LSni .GT. E2 AND .LE. E3 ==then==> QC(LSi) <{--- RAVERAGE

IF LSni .GT. E3 AND . LE Ed4 ==then==> QC(LSi) <--- LONG

IF LSni .GT. E4 ==then==> é(LSi) {==—= VERY LONG

.32 Time

The time of each motion step TSi is equal to

TSi = ( NF<i+1d> ~ NF(ix » %o

where (to) iz the +time interval betueen <two

frames., and NF{i>, HFC(i+1)0 are the frame numbers
i and i+1 are started. The value of TSi can be
by comparing it to the average time of a motion
can be computed as:
| TSni = Ti / 2Tav
TSav = (n-1> . to / NS .,

where Tni is the normalized time of step i, n is

(6. 142
sequential
where steps
normalized

step. This

(6. 157
(6. 16>

the number

of the processed fram=s, and NS is the number of the motion

steps. The value Tni can be described as VERY SHORT., SHORT.

AYERAGE., LONG. and VERY LONG using the following
RULE(SE. 35:
IF Tn . LE. E1 ==then==> QR(Ti) {~-=-

IF Tn .GT. Ei AND .LE. E2 ==then==> Q(Ti) {~—-
IF Tn .GT. E2 AND .LE. E3 ==then==> Q(Ti) {~--
IF Tn .GT. E3 AND .LE E4 ==then==> Q(Ti) {---

IF Tn .GT. E4 ==then==> QCTi) {-—=

rule:

VERY SHORT
SHORT
AVERRGE
LONG

VERY LOMG
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6.3.3 Direction Of Motion

The directicon of the cell locomotion betuween two points
in the global path can be computed as:
-1 Y(NFCi+dd> ~ Y(NFid
DRSi = tan [ -==—creeemrrerccc——— ] (6. 17>
HINFCL+LD) ~ H(NFiD
" where X(NFL+Ld3, XI(NFL), Y(NFCi+1)>2, Y(NFi)> are the X and Y

coordinates of two sequential points in the cell path.

The direction DRSi can be described symbolically in
terms of the main directions in the plane as: ERSTERLY,
NORTH-EASTERLY. NORTH, NORTH-WESTERLY, WESTERLY,

SOUTH-WESTERLY. SOUTH, or SOUTH-EASTERLY.

6.3.4 Yelocity

The basic definition of velocity is the rate of change
in distance with time (dL/dt). In image sequence analysis.
since the time interval between two sequential frames is
constant, +the incremental displacement can be considered as
the velocity of the moving obgject. Figure (6, 7ad shows the
velocity ddL/d%) of a mowving cell at different times. From
this figure one can see that the c=ll has a random velocity.
This randomness is due to two main factors, the nature of
the cell movement, snd the random change in shape uwhich
causes change Jin +the centroid coordinates. In order to
detect the global changes in velocity, we may 'consider two
methods for smoothing the relation {(dll/dt?: averaging and

sampling.
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INCREMENTAL DISPLACEMENT FRAME#: FIRST= 1,LAST=208, INCREMENT= 1|
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Fgure(6.7a) Velocity of the moving cell (dL /dt).
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In the averaging method., the velocity of the cell at
gpecific +time V4, is considered as the average of the
velocity from time () *to tﬁe time (t+dt>, thus,

t+dt
vVt = [ Sun vi 1l / dt ., (6. 18>

i=%
where dt is constant and depends on the type of moving
object and the desired degree of smoothhness of the curuve,
Figures (6. 7b> and (6. 7c> show the output of averaging the
velocity using the above method on the data of Figure (6. 7a>
for dt=2.5 and $ seconds (5 and 18 frames), respectively.
After averaging the velocity, we can use a curve analysis

technique to detect the points of uelocity change.

This method gives adequate results in many cases. On
the other hand, it includes two operations, averaging and
curve analysis. Also with this apptroach, we are considering
all cell movements, including +those due fto the change in
shape or rotation. This can be avoided by using the

sampling method, which is described below.

YELOCITY CHANGE BY SAMFPLING
ErSe=ssTossssssSommSmoxzSssms
In this method, +the input is the cell path data
produced by sampling at constant interval distance (see
section 6. 2). The cell path is defined as {8), where:
{8 = {81. B2, ..., Snkr,
where m the number of points in the path. The velocity

of the cell can be defined by LV}, where:
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" - Figure(6.715=6Tc) Velocsity of the moving cell in Figure
(6.7a), where the velocity in each frame is represented by
the average of sequence of: (b) 5 frames, (c) 10 frames

!
»
5




GLOBAL LOCOMOTION RNALYSIS Page 6-2%1

V> = LV1, v, ..., Ni, ... 8= (5. 19>

¥i = LSi ¢/ Tsi . (6. 28>

Table(6. 1) gives an example of the wvelocity of the cell
computed for 4580 frames in a sequence. This method for
computing the velocity of the cell has the advantage that it
is only a function of the céll translation (shaps and
rotation independent), and is less sensitive 10 noise.
Moreouver: the velocity may be computed simultaneous with the
cell path sampling. thereby reducing the overall cost of

computation.

In order to quantify and describs the velocity, we
first compute +the awverage velocity of +the cell motion.
Then, the latter can be usged as the normalization factor as

follows:

Vav TLD / NS (6. 21>

YSni ¥8i / 2. Vav . (6. 22>

where Yav is the average velocity of the cell, and V¥Sni is
the normalized value of the uvelocity at step (i) This can
be utilized by the representational rules +to describe the
cell motion as: STRTIONARY, VERY SLOW, SLOW. AVERAGE. FAST,

VERY FAST

.35 Acceleration

The acceleration (A)> of a mouving obgect is the rate of

change welocity with time. Thus:
. 2
A = d¥ / dt = del. / dt . (6. 232
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Hence., if the velocifg of the cell (dL/d+t> is represented by
a straight line, then the slope of this line represents its
acceleration. In order to compute the acceleration, we can
follow the same steps described in the preceding section for
the velocity. There is onre difference, That is, we compute
the second derivative instead of (dL/dt)>. All the issues
which have been discussed for the velocity are applicable to
the acceleration. The +two methods which were describsd
above for the global velocity computation. can also be used
for +the acceleration. Therefore: only the basic steps for
determining the accegleration will be given below. If +the
velocity is given az <¥> guch that:

Lv)> = V84, V82, ..., NSi, ..., VB8im-13> ., (6. 24>
then the acceleration {A* may be given as:

{AS41., RS2, ..., ASL, ..., ASCm-2>> (6. 237

{AX¥

ASi = [ V¥8i -~ ¥S<di-1> 1 / TSi (6. 26>

and AS1 = V¥S81, considering the cell started from 3
stationary position. Table (6. 1> gives an example of the

results of this computation.

Two qualifiers are usged to describe the acceleration at
each motion step. The first iz to describe it as positive

or negative.

RULE(S. 4):
IF RASi .LT. @ ==then==> QCASi> <{--- NEGATIVE ACC.

IF ASi .GT. @ ==then==> QACASi) <--- POSITIVE ACC.
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The second qualifier is used %o describes the acceleration as
VERY SLONW, SLOW, RAVERAGE. FAST, and VERY FRAST. Description

6.1 gives an example.

In this section, we discussed wethods for the global
analysis of the basic cell locomotion properties
(displacement, velocity. and acceleration?. Table <(é&. 1>
summarizes the numerical description of cell motion
properties. and their symbolical qualification is given in
Description (6é. 1). In the following section, we will
discuss and analyze one of the most important properties of

cell locomotion, namely chemotaxis behaviour.

6.4 CHEMOTAXIS ANALYSIS

Chemotaxis is the response of a motile cell to the
directional influerce of an extermal factor (bacteria
tumnour. chemical substances). The importance of chemotaxis
lies in | the fact. that it results in the efficient
localization of invading agents. The role which chemotaxis
plays in eliminating the tumour cells was a subject of study
by [Levine et. al, 811 (see also Section 2. 5. 5. In their
study., +the locomotion of cells is characterized'as positive
chemotaxis. negative chemotaxis., or random motionh.
Locomotion analysis in the current research is different in
the sense that here we attempt to understand and
characterize the dynamic behawviour of a single mouving cell.
This section is concerned with the quantification and

description of the relationship batween the cell locomotinn



GLOBAL LOCOMOTIOM AHALYSIS Page 6-224

and the influence of an external factor (chemotaxis

analysisy. The obJective‘of this analysis is accomplished

in three steps:

(a) Compute the global directional movement of the cell.

(b> Quantify the cell response to the influence of an
external factor, thereby quantifying the effectiveness
of the influence.

(¢ Characterize and describe the global behaviour of
the cell locomotion.

A typical example of the quantification of the global cell

locomotion is given in Description (6. 1>, The processes and

algorithms which are employed to generate these descriptions

are described in the remainder of this section.

.41 Computing The Directional Movement Of The Cell

The objective of this znalysis is 4o determine whether
the cell motion has a tendency towards a specific direction
or if it is random. The input for this analysis consists of
the incremental displacement of the cell beiween s=2quential
frames. The output includes gquantification of the movement

of the cell in the main directions of the plane.

Let wus define the incremental displacement and
direction of motion between two sequential frames (i, i+1) as
Li and Di, where:

2 2 1i/2
Li=1[ dXi + d¥i 1 (6.27>

-1
Di = Tan < d¥ / d¥ > (6. 28>
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and dXi = (X{i+d)d ~ Kid> , d¥i = (Y(i+l)d - ¥Yi)

We divide the plane of cell motion into nd equal directions
$1,82,....,8J,....8nd. The extent of each direction is equal
to 360/nd. The incremental displacement is considered to be
in direction Si if the displacement has an angle Di with the
X axis that is between S(3-1> and Sj. The vector that
represents the +4otal locomotion in a specific direction
(TDR)> can be computed as the resultant of all the cell
displacements in that direction. Figures (& 8a) and (6. 8b>
show the total displacement of the cell, where the space is
divided into 4 and 8 equal directions respectively. The
vector (RR> which represents the global locomotion of the
cell is the resultant of all the vectors defining the cell
locomotion in the different directions. Thus:
nd

RR = sum RDi . (6. 29
i=1 .

where "sum" in this equation indicates a vector summation.

As an alternative,; if the displacements of the cell in
the different directions is not required, the vector RR can
be computed directly from the X and Y coordinates of the

cell location in each frame of the ssguence as follouws:

n-1 n—-1
TDX = sum [X(i+1>-X<¢i>], and TDY = sum [Y{(i+i)-Y(ix]
i=1 i=1
14 2 1/2

LRR =L ¢ TDX > + ¢ TD¥Y > 1 (6. 32>



Frame number: First=1, Last=250 4 state analysis
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Figure(6.8a) Vector sum of locomotion in
each of four directions.

Frame number: First=1, Last=250 8 state analysis
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Figure(6.8b) Vector sum of locomotion in
each of eight directions.
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-4
PRR = Tan ¢ TDY ¢/ TD¥ » . (6. 31>
where Xi, ¥Yi are the X and Y coordinates of the cell at
framedin, and " is the total number of f{rames.
Figures (6. %a> and (6. 9b) show the locomotion of the cell in
the different directions, as well as the global locomotion

vector {(marked with two arrows).

The directional tendency of the cell is the amount of
movement that the cell exhibits in a specific direction. In
the case of random locomotion, the tendencies of the cell in
the different directions  are approximately  equal.
Consequently the resultant vector RR of the2 cell locomotion
is approximatly zetro. In the case of chemotactic
locomotion. the cell exhibits a +tendency 40 move in =2

specific direction.

The movement in the dxfferent directions, as well as
the global locomotion., can be described as NONE. VERY SHORT.
SHORT, AVERAGE., LONG. and VERY LONG. This gqualification is
based on a comparison with typical random motion. In this
case; the cell locomotion in each direction is almost equal.
This can be computed as:

TORay = TTD /7 nd . (6, 327
The locomotion inh a specific direction can be normalized as:
TORHKk = TDRk ¢/ TDRawu ’ (6. 33
Then using the representational rules. the normalized values
of the directional wnovement of the cell can be assignéd to

the appropriate symholic qualifiers. For example, we may
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Figure(6.9b) Vector sum of all locomotion.

| Figure(6.9a-6.9b) Global cell locomotion.
(a) 4 states analysis, (b) 8 states analysis.
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describe the cell motion as being RVERRGE if the resultant

vector is about equal to TDR.

6.4.2 Chemotaxis Quantification

The chemotactic motion of the cell can be measured as
the percentage movement of <the c¢ell in the direction of
influence to the total movements in the space domain. Thus,
if +the total locomotion of the cell is represent2d by the
vector RR = {LRR,DRR}, where LRR and DRR are the length and
direction of the vector RR, then the percentage chemotactic
mofion PCM can be computed as: |

PCM = LRR / TLD . 188 . (6. 34>
where TTD is total locomotion distance in the sgpace domain
(which is computed 3abovel>  Thus, using the valu= of PCM,
the cell motion <can be characterized as randomn or
chemotactic by the follawing rule:

RULE(6. 5>:

IF PCH _ .LE. E1 ==then==> RANDOM

IF PCHM . GT. E1 AND . LE. E2 ==then==> ALMOST RHNDON

IF PCM .GT. E2 AND . LE. E3 ==then==> PRARTIARLLY RANDOM
IF PCM .GT. E3 AND .LE. E4 ==then==> ALMOST CHEMOTACTIC

IF PCHM . GT. E4 ==then== CHEMOTRCTIC

Thus, chemotaxis can be described 'asl positive or
negative depending on whether the cell moves towards or
against the direction of influence. To compute and describe
this behaviour, we consider the cell as having started its

motion from point 0 (¥o,Ye), the origin of the two
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dimensional plane. with the external factor concentrated at

a point E (Xe, Ye>. The lin2 DOE which connects the original
position of the cell (0} to the center of the external
factor (E) represents the direction of the influence, as
shown in Figure ¢6.18). In this figure. the line S0S. which
passes through the point 0 and is nqrmal to +the line OE,
represents the border line which divides the plane into two
regions. One is PCR or “positive chemnotaxis region" (the
region where the external factor is located’, and the other
is NCR or “negative chemotaxis region". Thus, if the vector
that represents the global locometion is in the region PCR.
this indicates positive chemotaxis. If it is in region NCR,
negative chemotaxis is implied. This can be quantified as
follows:

RULEC(6E. 63:

IF DRR .GE. E1 AND . LT. E2 ==then==> NEGATIVE CHEMOTRXIS
IF DRR . GE. E2 AMD . LT. E1 ==then==> POSITIVE CHEMOTRXIS
where DRR is the angle of the global locomotion with +the X
axis (B-368 degreesd, E1 and E2 are the angles of the border

line between the positive and negative chemotaxis regions.

-6.4.3 - Buantifying The Effectiveness Of Influence

The effectiveness of an external factor <(EF)> on the
locomotion of a moving cell can be defined as its ability to
attract the cell in the direction of its influence. This
force 1is a function of two factors: <(a) the percentage of

the chemotactic movements (PCM), and (b} th2 angle betusan
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Figure(6.10) Global locomotion analysis to
characterize the chemotazis behaviour
of the moving cell, as well as the

~ -=effectiveness of an external factor

on cell locomotion.
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the direction of motion and inPluence CDRI. Thus,

EF = £(PCM,DRI> . C6. 337

The wvalue PCM is described and estimated in the
preceding section, The angle DRI can be computed as:

PRI = DR -~ DI , (6. 36>
vhere DR and DI are the directions of the global locomotion
and the influence, respectively. The wvalue DRI can be
utilized as an indicator to tell whether or not +the cell
will ultimafelg reach the area where the external factor is
located. To compute this, the wvalue of DRI can be
normalized between (@-1) as:

DRIN = ¢ 98 -~ DRI > / 98 . 6,37
Thus, DRIn = -1, if the global locomotion is opposite to the
direction of influence (purely negative chemotaxis?, and
DRIn = +1, if the locomotion is exactly in the direction of
influence (purely positive chemotaxis). Using
representational rules, the value DRIn can be used +o
describe the direction of global locomotion compared to the
direction of influerce as QUITE OFPOSITE., ALMOST OPPOSITE.

FERPENDICULAR., ALMOST THE SRME. THE SRME.

Finally., the effectiveness of an influence can be
computed as the geometric mean (GM> of PCM and DRIn:
1/2
EF = (¢ PCM . DRIn ? . 199 “ (6, 38>

Note that EF lies betueen plus and minus 1882
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Thus, the value EF is a summary of the chemotactic
movemant and the effectiveness of the influence. The sign
indicates positive or negative chemotaxis, and the amplitude
represents the strength. This can be wutilized by
representatinal rules %o describe the global behaviour of
the cell locomotion as follows:

RULECE. 73:
IF EF .LT. @ ==then==> NEGATIVE CHEMOTRXIS
IF €F . EQ. 8 ==then==> RANDOM MOTION

IF EF .GT. 8 ==then==> POSITIVE CHEMOTRAXIS

IF {EF! . LE. E1 ==then==> SLIGHT

IF {EF! .GT. E1 HAND .LE. E2 ==then==> ALMOST

IF {EF! .GT. E2 AND .LE. E3 ==then== AVERAGE

IF I1EFi .GT. E3 RAND .LE. E4 ==then==> STRONG

IF (EF{ .GT. E4 ==then==> VERY STRONG
Description (6.1 is a 1typical example of the global
locomotion characterization and description generated by the
system. Figure (6.11) shows different global locomotion
characterizations of +the same cell under the influence of

bacteria placed in different positions.

The analysis of the chemotaxis property of cell
locomotion is presented in this section. This ptroperty
plays an important role in describing +the cell under the
influence of an external factor. In this analysis, we first
computed the movement of the gell in the different
directions; as well as the vector which represents the

g9lobal locomotion. Sacondly, we gquantified the response of
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XD=-70,2,XC=-86.3 %0=-95,2,%C=~78,3 XD=-7F9,8,%0=-64.3 %D=-54.8,%C=-53.2

&N AUVERAGE #t STRONG AN RUERAGE AN AYVERAGE
HEGATIUE CHEM, HEGATIVE CHEM. HEGRTIUE CHEN. HEGATIUE CHEH.
E ® B
¥D= 70,2, %C= 68.3 4D= 95,2,5%0= 78,3 0= 79,8507 €4,3 AD= 54.8.40% 52.0
_ AN AVERAGE A STRONG AN AUERAGE AN AUERAGE
POSITIVE CHEM. POSITIVE CHEM. FOSITIVE CHEM. POSITIVE CHEN.

Figure(6.11) Global quantification and characterization
of moving cell locomotion.

The symbol B represents the location of the external in fluence.

%D refers to the symbol DRI, and %C to PCM (see equation (6.28)).
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the cell to the effect of an external factor, Finally., we
estimated the effectiveness of the influence of the external
factor on the cell locomotion. In this way. the global

behaviour of the cell locomotion is described.

6.3  SUMMARY

Motion analysis and description of a non-rigid moving
obgject can be achieved in two steps. The first is concernad
with motion detection and tracking of an object in the image
sequence. The second step concerns the analysis of data
extracted from the first step in order to generate 3 summary
of the locomotion behaviour. In the present system, the
processes which are associated with +the first step are
responsible for locating the c¢ell in each image of the
sequence, and detecting the incremental change in its
location between sequential frames. These praocesses are
described in chapters 4 and 5 In this chapter, we have
described the processes vhich are associated with the second
step. That is, global motion analysis and description. The
obJectives of these processes are to analyze the multitude
of static and incremental data in order to characterize and
describe the locomotion behaviour of the cell. To
accomplish this, first, the global movement of the cell is
detected from the irrelevant and noisy ones. From this
data, the path of motion is constructed in a sequence of
steps. Each motion step is described by a set of motion

properties, such as: +time, distance, direction of motion.
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velocity, and acceleration.

Chemotaxis is one of the most important descriptors of
cell locomotion. It is the response of a moving cell to the
influence of an externai factor. In order to quantify and
describe this behaviour, first, the total displacement of
the cell in each of <the main directions of the spatial
domain is quantified and described in comparison +to a
similar random motion. The latter implies no external
factor, so that the cell should exhibit squal locomotion in
the different directions. Theh, the vector that represents
the global locomotion of +the cell is also quantified and
described as random or chemotactic. Finally, the chemotaxis
is quantified as a2 function of two parameters: the
percentage of the chewmotactic motion, and the angle of its
direction with the direction of the influ2nce. Thereby., the
chemotaxis behaviour of the cell is described as POSITIVE or
NEGATIVE. Also, th2 effectiveness of an influence is
descrihed. Description (6. 1> presants a summary generated
by the system for the global locomotion behaviour of a cell

which was tracked fotr 459 frames (2285 seconds).
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GLOBAL LOCOMOTION AMALYSIS AND DESCRIPTION
P e S S N S R A R S O S R S R R R N S N N N RIS I R I R
INTRODUCTION
t 4+ ¥+ 11 1-1 3-4-%-3
The following 4is a global characterization and
discription of the locomoction analysis of a NEUTROPHILE
cell. The cell motion was recorded in real <+time on 16mm
cine film at rate of TWO frames per second. The cell was

under the influence of BRCTERIA which is
SOUTH-WESTERLY direction
The total observation
following is

cell.
frames?.

The

CELL PHTH and FOTION HNHL?SIS

The space domain of the cell motion is

equal directions(states’.
obtained by sampling the
increments of

EIGHT

produce

the
The description of the time.

final

T T P T r T T Y T Y+ v - 13
SESNaoEDIaNToERTEREREESERR

approximnatly 2 8
with the same incremental direction were merged into one to
cell path which consists of 34 steps.
direction,

time

distance.

‘was 2285

First,

displacement betuween

microns.

spe=ed,

divided
the cell path was
frames in
Then sequences

located in the
of +the original location of the
seconds
a description of the cell
locomotion between frame number 200 and 4858 (125, 9 seconds?

and acceleration of the cell at each step is as follows :

TIME
VERY SHORT
VERY SHORT
YERY LONG
SHORT

- SHORT

SHORT
MEDIUNM
VERY LONG
LONG
SHORT
MEDIUM
SHORT
SHORT
MEDIUM
MEDIUM
LONG
MEDIUM
MEDIUM
SHORT
MEDTIUM

DISTANCE
YERY
SHORT
YERY LONG

YERY SHORT

MEDIUM

YERY SHORT

SHORT
MEDIUM
MEDIUM
MEDIUM
LONG
MEDIUM
MEDIUM
YERY LONG
MEDTUM
MEDIUM
MEDIUM
MEDIUM

MEDIUM
MEDTIIM

SHORT

SPEED
DES==s
VERY SLOW
YERY FAST

AYERAGE
YERY SLOW
VERY FAST
VERY SLOW
AYERAGE
SLOW
AVERAGE
VERY FAST
FRAST

VERY FRAST
VERY FAST
VERY FAST
AVERAGE
SLOu
AVERRAGE
AYERAGE

VERY FAST
FaaT

DIRECTION

=mETEsEsEs

NORTH-ERSTERLY
EASTERLY
WESTERLY
NORTH-EASTERLY
SOUTH-WESTERLY
NORTH-ERASTERLY
SOUTH-WESTERLY
SOUTH
SOUTH-WESTERLY
EASTERLY
SOUTH-WESTERLY
EASTERLY
NORTH~-WESTERLY
SOUTH
SOUTH-WESTERLY
SQUTH
SOUTH-ERSTERLY
SOUTH-WESTERLY
SOUTH-EASTERLY

CMITU_LICOT OO 10t

(450

into

£-3897¢

ACCELERRTION

BESEREEESE

NONE

VERY FAST
AVERAGE
VERY FRST
VERY FAST
VERY FAST
VERY FRST
NONE
SLOW
VERY
VERY FAST
VERY FRST
VERY FRST
AVERAGE
AVERAGE
AVERAGE
AVERAGE
SLOM

VERY FRST

[N ] ad ST IR T Pl

FRST

POSITIVE
NEGRTIVE
NEGRTIVE
POSITIVE
NEGRTIVE
POSITIVE

POSITIVE
POSITIVE
NEGATIVE
POSITIVE
NEGRTIVE
NEGRTIVE
NEGRTIVE
NEGRTIVE
POSITIVE
POSITIVE
POSITIVE

A RIS I t ae—
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LONG MEDIUM SLOW SOUTH AVERAGE
MEDIUM MEDIUM RYERAGE SOUTH-WESTERLY AVERAGE
MEDIUM MEDIUM RYERRGE SOUTH MNONE
SHORT MEDIUM FRST SOUTH~WESTERLY VERY FRST
VERY LONG VERY LONG AVERAGE SOUTH AVERAGE
MEDIUM LONG VERY FAST MWESTERLY VERY FAST
MEDIUM MEDIUM AVERAGE SQUTH-ERSTERLY FAST
YERY LONG MEDIUM SLOW SOUTH AVERAGE
LONG MEDIUM AVERAGE SOUTH-EASTERLY SLOW
VERY SHORT VERY SHORT VERY SLOW NORTH-ERSTERLY VERY FRST
SHORT MEDIUM FAST ERASTERLY VERY FRST
MEDIUM YERY SHORT VYERY SLOW NORTH-ERSTERLY VERY FAST
SHORT SHORT RAYERRAGE ERSTERLY VERY FRST
MEDIUM MEDIUM AVERAGE SOUTH~-EASTERLY AVERAGE
CHEMOTAXIS ANALYSIS :
-1t 3 3 F- 3 3+ -1+ -3 311
Chemotaxis is the response of a motile cell +to the

directional influence of 3 chemical substarce or any external
factor (BACTERIA in this film>. The following is a summary of
the directional movements of the cell under analysis when
compared to typical random motion of a similar cell:

DIRECTION TOTRAL DISFPLACEMENT
EASTERLY AVERAGE
NORTH-ERASTERLY NONE
NORTH NONE
NORTH-WESTERLY SHORT
WESTERLY AVERAGE
SOUTH-WESTERLY VERY LDNG
SOUTH VERY LONG
SOUTH-EASTERLY AVERAGE

CUNELUSIUM
The resultant directional locomotion is in a SDUTH

direction, which 4is RALMOST THE SAME direction in which the
BACTERIA is located. Thisx motion represents THREE-FIFTHS of
the total displacement of the cell.

From the above analysis we may conclude that :

THE CELL HAS AN AYERAGE POSITIVE CHEMOTRXIS MOTION

. e R e s S ol W W B BT MR KR B G WS s Wt Sy WS S Gl e L S W S A0 S AN A G e T Sw G G

6-308

NEGATIVE
POSITIVE

POSITIVE
NEGRTIVE
POSITIVE
NEGRT1VE
NEGRTIVE
POSITIVE
NEGRTIVE
POSITIVE
NEGRTIVE
POSITIVE
NEGRTIVE
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TRELE <. A2

GLOBAL LOCOMOTION ANALYSIS AMD DESCRIFTION
GLOBAL LOCOMOTION DATR

SmsEInmoassIRmsTIRNBeRESRT

1
458
224. 5 Seconds
45. 88 Degrees
S.8 Microns
ze
93. 580 Microns
4. 25 Microns
18. 28 Seconds
8. 42 Microns/Seconds
B. B8 Microns/Seconds squsred
£3. 86
247. 86

FIRST FRAME NUMBER

LAST FRAME NUMBER

TOTAL TIME

ANGLE TO BACTERIA LOCATION
INCREMENTAL STEP

NUMBER OF STEPS

TOTAL DISTANCE

AVERAGE DISPLACEMENT /STEFP
AVERAGE TIME /STEF

AVERAGE VELOCITY

AVERAGE ACCELERATION

TOTAL DISPLACEMENT

AVERAGE ANGLE OF DIRECTION

RESULTANT DIRECTION

CELL PATH AND MOTIO ANALYSIS :

EoSoEsumooSomsmEmanesxacmEmsesmmseas

SOUTH-WNESTERLY

STEP INITIAL FINAL TIME DISTANCE OIRECTION WELOCITY RCCELERRTION
No. FRAME FRAME <(sec? (microns) 8 STATES (mic/sec? (mic/serc. sec?

No. No.
=== =SSR === M SREITRSUESE STONSASSASTSR SomodnSnst SEsSRmRrmzoms
1 1 24 11.5 3.95 S 8. 52 B. o4
2 24 76 ce. @ 15. 76 & a. 61 8. 09
3 [g- 134 £9. 0 108. 65 8 8. 37 -9. 21
4 134 169 i7. 95 6.17 7 8. 35 B. 012
S 169 187 9.0 5. 86 S 8. 65 8. 83
6 187¢ 281 7.0 8. 84 2 8. 88 -3. 99
7 281 282 8.5 8. 91 1 1.82 3. 64
8 2ae 224 i1. 0 S. 28 = 6. 47 -8. 12
o 224 2356 6. bo 8. 89 2 B. 68 ~-B. B3
19 236 238 1. 06 1. 37 6 1. 37 1.37
11 238 240 1. 6o 8. 8@ e 8. 66 -1. 3¢
i2 24a 245 2. 58 @. 91 6 8. 36 8. 14
13 245 278 ie6. 30 9. 80 e 8. 3a@ B. 98
i4 278 296 9. 00 S.ed4 6 8. S5& B. 83
15 296 358 e7. 09 i8. 5e 7 a. 39 -8. 64
ié 350 393 21. 99 11.. 88 6 8. 58 9. 91
i7 393 419 13. 08 5. .26 8 8. 46 -8. 81
ie 419 431 6. 89 8. 89 e 8. @@ -B. 87
19 431 434 1. 58 1. 32 1 8. 88 B. 59
20 4324 441 3. 5@ 0. 68 [ 8. 66 -8, 23
21 441 443 1. 086 .79 1 8. 79 B.79
a2 443 450 3. 50 1.73 8 8. 50 -2, 0%
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CHEMOTHXIS ANALYSIS

o= mms SR ISR S ST oo SO AT IS INB T S INT SO SR mRS T
DIRECTION DISPLACEMENT

1-EASTERLY 3. 83i==

2~-HORTH-ERARTERLY 6. e8>

3~NORTH g 80>

4-HORHT-WESTERLY B. 801>

S-WESTERLY 17. Bl | ==s========)
6-SOUTH~WESTERLY 34, 13 | sxsmssssonmsSEsssssnsomm)
7-SOUTH 2l. 69l =ssssesomnsxs=ex)
8-SOUTH-ERSTERLY 17. 64 | ====zz=z=z==x>

RESULTANT LOCOMOTION :

- o T . S G S SR S A S Sy S W ARy Sy S G S TR

SOUTH—NESTERLV 63, 8D ==mzcorcssssssssrossarmoTnoRSSIESSES )

(a> PERCENTRGE QF TOTAL LOCOMOTIOM IN
DIRECTION OF INFLUENCE m e 96. 36 %

(b>» RATIO OF MAGNITUDE OF CHEMOTRCTIC
MOTION IN DIRECTION OF INFLUENCE
TO TOTAL CELL LOCOMOTION e 68. 24 %

(C> EFFECTIVENESS OF THE EXTERNAL '
FACTOR e e e e o e o 78.61 4



CHAPTER ¥

GLOBAL SHAPE ANALYSIS

7.1 INTRODUCTION

The perception of shape plays a prominent role in both
human and computer uvision. It is a common problem in any
computer vision, scCene analysis, or pattern recognition
system. The solution to +this problem may be achieved
through two stages of processing: shape analysis, and shape
description. In shape analysis, a digitized image of an
obgect is transformed into a scalar vector whose elements
are measurements of some of the shape properties. The
second task of shape analysis is to transform the image of
an obgect into‘ a graph. The properties of this graph
express the shape and structural properties of <the oObject.
Shape description represents the higher level process of
shape perception by computer, In this process the2 scalar
vector or graph, the resulting form of the shape analysis.
is analyzed using a syntactic analysis methodology in order
to generate a summary in a natural language (a sumbolic
description?. It contains all +the relevant information

pertaining to the shape of the obgect.
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Figure (2. 17> shows the basic steps for shape analysis
and description. a5 well as the input and cutput data at
each step. A brief review of current shape snalysis and
description techniques was presented in Section 2.3, and
attention was directed to the most recent surveys in +this
area [Meagher, ?9; Pavlidis, 811. The shape analysis
techniques which hauve been used or are 8B8directly related to
our current work are also reviewed in the same section.
Most of the work which has been done in dynamic scene
analysis is restricted to the study of the motion of rigid
objects. Some of this work has considered change in shape
due to change in the viewing conditions. For example, a car
moving in front of a fixed camera [MNagel, ?8bl, fish
swimming in a wvat [Yachida et, al, ?¢81, and motion of the
left vertricular [Tsotisos, 881, However, in each of these
cases the change is restricted by many constraints and is

predictable,

Qur study differs from previous work in that we study
the motion of non-rigid moving objects. The changes in
shape are due to changes in‘the physical properties, which
are non predictable. Analysis of the random changes in the
shape of movihg objects is very important in studying the
characteristic  behaviour of biological obgects. For
example, it has become increasingly evident that the cell
membrane plays a pivotal role in the life, development, andg
regulation of cells. There is no existing method <o

quantify the observable changes in membrane shape that occur



0

GLOBAL SHAPE ANALYSIS Page 7-313
in locomoticn: an imporitant component of cell behavicur.

The general problem of shape description 4is very
difficult. Recently, there has been interest in syntactic
pattern recognition techniques which analyze patterns by a.
hierarchial decomposition parsing process. The advantages
of such an approach suggest that it might be appropriate +o
study hierarchial shape representation in more detail as a
vehicle for cell shape description. as well as for the
global structural and membrane shape changes which occur

during locomotion.

The problem of shape analysis and description of an
arbitrary shape in a static scene was discussed in
Chapter 4. The <techniques used 4o solve this problem
include: (a’> segmentation and boundary tracking. (b
curvilinear and polygonal approximation, (o) polygonal
decomposition and labeled graph representation. and (d3>
rule-based syntactic analysis and shape description
techniques (to quantify and describe the shape properties
symbolically>. In addition to the general difficulties of
describing an arbitrary shape in a static image, we face the

following problems:

(a) Estimating the incremental change betweesn two different
images; of <the shape and structure of a non-rigid

moving obgect.
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(b> Detecting and characterizing the global shape changes in
the morphology of a non-rigid moving ob_gject over a

period of time from a sequence of pictures.

(c? Presenting all the above descriptions in a meaningful

form to the user.

The problgm'of the incremental change detection and
‘description was discussed in Chapter S. The problem of
detecting and characterizing the global changes in the shape
- will comprise the remainder of this chapter. Figure (7.1)
shows the main processes and data structures used in global
shape analysis and deszcription. The input to this stage of
the system consists of the static and incremental
description of <the shape prop2rties in and between each
frame. fin example of +the input data is shown in
Figure (7. 2). It consists of the static values of cne of
the shape properties (circularityd> in 158 frames in
sequence, The output consists of a summary describing the
global changes of the/cell shape and their characterization.
A typical example of this charscterization 1is given in
Description (7. 1>, The methodologies and processes which
are used to generate these descriptions are discussed in

this chapter in the following order.

The basic methodoiogies and techniques for detecting
the global changes from the static and incremental data are
described in Section 7.2 Description of the global changes

in each of the main shape properties will be given in
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Figure(7.2) The static description of one of the shape

properties (circularity) used as -.nput data for global shape
analysts.
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Section 7. 3. In Section 7.4, we will show experimentally
that an individusal shape property 1is not sufficient to
describe an arbitrary shape. Also in the same section: we
discuss the development of a mathematical expression for the
membrane shape measure. In this way. the global changes in
the cell membrane shape can be characterized and describesd.

Finally, Section 7.5 is a summary of the chapter.

7.2  METHODOLOGY FOR DETECTING AND
DESCRIBING GLOBAL SHAPE CHANGES

The technigque for detecting and describing +the shape
changes in this thesis consists of three basic steps:
(a> Global change detection: to detect relevant changes in
shape from the static and incremental data.
(b> Symbolical gqualification: +to transform the global data
into symbolic qualifiers.
(c) Characterization and description: to analyze the
symbolic qualification in order to .summarize the

characteristic behaviour of the changes in the cell shape.

The obgective of the global change detection is Yo
reduce the static and incremental data o those representing
information relevant to the global changes. This can be
achieved by detecting the points J(frames> where a
signi?icant change has occured, called "“"key frames". There
are two definitions for point of significant change. The
first definition is a point whete the dynamic behaviour

changes. For example, from stationary (dP/dt = 8) Yo
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increasing (dRSdE P o8y o decreasing (dPSAE O B The
zecornd  refers ko 3 $ime a2t which a significant change hasz

o

coured in the gqualification (deszcription: leuel, This zan

bhe defired zs:

GLCPRY === TR gOPRY,
whers RidPr  and 2J0FY  are two different levels o
Qualification for tThe property  (Fli. For exampls, from

SIMFLE to COMFLEM: or from SMOOTH o JAGGED

It the change in the gualiticstion lewsl iz the only

required description for a

iy

specitic application: this can be
acconplished by applying the repressntational rules directly

to  the +

9

i

tic  asnd  iricremental  suymbolic gualifications
Howauver, in =some applications, descripfion of the charnges in
the dignamic  behaviour  (Yor  sxamples  from increasing  to

decreasing or staticonaryd is also regquirsd

The techhnigue developsd for thiz system iz designed $o
detect and prouvide descriptions  for both types of globald

chang:ss. Thiz will be described in tre Yollowing fuo

sections. First. in Section 7.3 1, detection of the changes
i  the clygrramic behavinur will dizcussed. Sezond.,
Section V.2 ¢ describes 2 methodology for detecting and

summarizing the significant changey  in the gualification

leusl
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7.2.1 - bynamic Changes find Key Frames

The obgective of this analysis is to detect the points
where the dynamic behaviour of a specific property has
changed. The frames where these changes have occured are
referred +t0o as key frames. To accomplish this, the static
and incremental data is first normalized between 0-1, and
represented by a curve. as shown in Figure (7.22. The
amplitude of the curve at any point (frame’ represents the
static wvalue of the property at that frame. The variations
between the neighbouring points in the curve represent the
incremental changes of the property between the sequential
frames. Curve smoothing and approximation can be used +to
detect the points (key frames> in the curve uwhere
significant changes occur. This data rcan be used +to
characterize and describe the changes in the property under
consideration. R detziled description of <this computation

is given below.

NORMALIZATICON
In the global shape analysis processes., normalization
is employed as 3 preprocessing step for all the static and

incremental data for the following reasons :

(8> The different properties have been measured in different

units.
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(b)) The values of the input data have different scales

(varing over several order of magnitudel.

{c) The amplitude of the change for different properties

varies widely.

In order to detect the global changes in a specific
property and to be able to perform any mathematical
operation between the different properties, we should
present their data in & uniform pattern. The theoretical
aspects and different methods of normalization are discussed
in Section 4. 6. 4. In +this operation. the values of i
gpecific property in a sequence of frames PL,P2,.....Pn are
normalized to range between zero and one to give
pl.p2,..... s pns as follows:

pi = ¢( Pi -~ Pmirn > / ¢ Pmax - Pmin ), 7. L

where pi is the normalized value of Pi, and

Pmin Min (PL1.P2.....Pn7 (7. 22

Max (P41, P2,....,Pn). 7.3

Pmax

Normalizing the static and incremental data will assist
the analysis of the following steps:
(1> Detecting the global changes., esgpecially when the change
is wvery small from frame to Frame or almost negligible
relative to the original value of the property.
(2) Describing the property value or the change in it, by a
limited number of symbolic qualifiers.
(3> Comparing the amount of change between different

properties.
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(4> Forming higher levsal descriptors as a functiorn of more

than one property.

CURVE APPROXIMATION AND SMOOTHING
T T T T Cpr e pu P S e

Curve approximation or fitting is a popular technigue
in many branches of engineering and computer science for
describing large volumes of data in a concise way. The
obgective is to extract the relevant information (points of
significant change) from a set of irrelsvant and noisy data.
A mathematical background and different ftechniques for curve
Fitting can be found in [Pavlidis, 771. From & theoretical
point of wview, techniques which are used for polygonal
approximation can also be used for curve approximation. The
difference between the two methods is that: in most cases,
the data for polygonal approximation is given in two
dimensions (fGoydl: whereas for curve approximation the
data is given in one dimension <(f{yil. In Section 4.3 we
described an algoritham for polygonal approximation based on
a splitting technique developed by [Ramer, 721. Using the
same technique., we will describe below an iterative

splitting algorithm for curve appraximation.

Figure (7.2) shows an example of the input data to the
curve approximation algorithm. The procedure of the
algorithm consiszts of the following steps:

(1> Connect the first and the last point on the curve by a
straight line RB.

(22 Find the point C on the curve at the maximum distance Lm
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from +the line RB. If Lw is greater than the approximation
threshold E. then split the curve at point C.

(3> For each new segment, repeat steps (1) and (2).

Figure <(7. 3> shows the curve approximation of +the data in

Figure (7. 2).

The output of the curve approximation consists of a set
of vertices {KF}> representing the key frames:

{KF> = {KF1, KFe, ..., KFJ, ... KFmX, (7. 4>
where m the number of key frames. Esch key frame is defined
by <time (frame number) and the property value at that time,
as follows:

KFJCPid> = [+, PiCt )1l 7. 5>

Pictj> is the value of the property (i) at time (142

The key frames of a specific property represent the
first <type of global change of the property under analysis.
Thus, between each twd sequential key frames (two soquential
vertices on the curve approximation» <the property has a
constant dynamic behaviour d(increasing. descreasing., or
stationary). This behaviour can be described from the
information included in the key frames. At this level, the
following global data can be computed +or each period
between two sequential key Frames:

TIME OF CHANGE

4t} ]

TKFCi, i+1) = [$(i+1) - i + to> to seconds. (7. 62

where ti, t{i+l) are the <times of key Fframes i and i+1

respectively, and +to is the +time interval betueen two
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Figure(7.8) Curve fitting of the static data shown in
figure(7.2). An iterative splitting algorithm is used to
compute a piecewrse linear approzimation to the curve.




GLOBAL SHAPE ANALYSIS Page 7-324
sequential frames.

AMOUNT OF CHANGE

mxzsnzmmzscossssn

CKFCi, i+1> = Pi+d - Pi (7. 7>
vhere Pi, Pi+l are the property values at key frames KF(i) and
KF(i+1)> respectively.

RATE OF CHANGE

-1
RKF{i, i+1> = tan [ CKF<(4i, i+1) /7 TKFd4, i+1) 1 (7.8

In a similar fashion to that described in the preceding
chapters, +the wvalues of TKF, CKF, and RKF can be qualified
_in order to summarize the dynamic changes in the property

under analysis, as follows:

TIME OF TYPE OF AMDUNT OF RATE OF
CHANGE CHANGE CHRNGE CHANGE
TKF CKF¢(a/+/=> {CKF! RKF
VERY SHORT STRATIONRRY MEGLIGIBLE VERY SLOW

SHORT INCREASING SLIGHT SLOW
AVERAGE DECREASING AVERAGE AVERAGE
LONG CONSIDERABLE FAST

VERY LONG . _ SIGNIFICANT VERY FRST

The above analysis is meant to describe <the global
changes in the dynamic behaviour of a specific property.
For example. the generated description of +the ELONGATION
property could bé:

"For a SHORT time, the ELONGATION was IMNCREASING at a VERY
SLOW rate, causing & SLIGHT INCRERSE in the ELONGATION.
Then for a LONG time it was STATIONARY. This was followed

by a VERY FAST DECRERSE in a YERY SHORT time. ®
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Thus, at +this level, <the global description of a
specific property can be given over a number of periods.
Each period is bounded by key frames representing the
initial and final frame numbers. and the property qualifiers
(levels) at each key frame. From this data, the amount and
rate of change in each period can be computed. Table (7. 41>
summarizes the numerical data resulting from the curve

approximation of the data that is shown in Figure (7. 3).

-, &2~ Aualification Of Level Changes

In order <o summarize the global changes in the
qualification levels of a specific property, two methods can
be used: (a?) applying the representational rules directly
to the static and incremental symbolic gqualifications; (b»
appluing the representational rulesz to the key frame data.
Method (al is recommended only if the generated description
from curve approximation iz not required. Dtherwise: method
(b> 1is obviously faster and will result in a more precise
description. This is because, in the curve approximation,
most of +the irrelevant and noisy data has already besn
removed. and the information reduced to only +that included
in the key frames. In this case, the data associated with
the key frames represent the input for higher leual
processes and rules. The obgective is to split and merge
these periods between the key frames in order to generate a
sunmary of the guantification levsl changes. The procedures

of these higher level processes are described below.
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SPLITTING AND MERGING THE PERIODS BETWEEN KEY FRAMES
ESomrcocsoESsCsrassSsCssnsnSETsSoSSSSSaSsSSsoamzssoas

In order to qualify and describe a shépe property
through a period of <+time with the appropriate gualifier
(descriptor), the perionds between the key frames, may be
split or merged, according to specific rules. The obgjective
is %0 eliminate <the irrelevant. noisy, or artifactual
changes, and generate a new sgequence of periods. The

property in each of these periods hass the same qualifier.

SPLITTING
==sansses
The output of the curve approximation consists of a
number of periods, each period being bounded by two kay
frames. If the symbolic qualifietr of the property in these
two key frames is different, we split the period bounded by
them into a number of periods, such that, the property in
each period hag the same qualifier. For sach new period, 2
key frame is initiated and the key frames set is updated.
This can be achieved by applying the follwing rule :
RULEC(?. 1>:
IF ) Q{FPk, KF1i> | NE. RECPK, KF 3>
==then==> 1 SPLIT Tijy INTO Tii, Ti&.Te3,....,Tmy
2 KF(u+m? <~—— KFCu>» , u=gn
2) INITIATE KFCi+dd, KFCL+2), ..., KFC(i+m)
vhere Q(Pk,KFi> and QC(Pk.KFj> are the property qualifiers in
key frames KFC(i) and KF( >, respectively. For example, if

Tig is the period bounded by key frames KFC(id,  KF( g
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respectivelu, where the descriptor is different at those key
frames, and the period Tigy is split into four periods Tiil,
Ti2, Ta3, T3y, then the three key frames KF(i+1), KFC(i+E>,

KF(i+3)>, should be initiated, and inserted in the key frame.

set: kFCgo==2KF (g+3)>, KF(+15=~2KF( j+4>,
. 1 KF(N) ==2KF{n+3). Figure (7. 4a> shows two sequential
periods resulting fram the curve approximation, and

Figure (7. 4b) showe the result of splitting +them into a
number of periods. Table (7.2) shows the output of applying
the splitting‘rule,to the data given in Table (7.1>. = The
output of the splitting operation consists of a sequence of
periods, with +the property in each having the same

qualifier.

MERGING
mmamames:

The splitting operation might result in some sequential
periods that have the same gualifiers, as shoun in

Figure (7.4b>, or it may produce wvery short periods (saes

Table 7. 2). The latter are usually caused by noise or
changes due to undesirable experimental conditions. These
periods can be merged according +to other rules. For

example, if a specific property has the same2 qualifier for a
sequence of periods, then these periods can be merged. The
property during the merged period cam be described by the
same descriptor, and the key frames updated. This strategy
may be modeled by the following rule:

RULEC?. 2>:
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Figure(7.4a) Two periods bounded by three sequential
key frames, resulting from the curve approzimation of the
static data. In each period, the dynamic behaviour of the
characteristic is constant. Between KF(i) and KF(i+41) the
chardcteristic s increasing. During the nezt period it ts

decreasing.
5
4 KFi3 KFi+1 KF(i41)1
KFi2 KF(i+1)2
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Qualification Level Descriptor

3
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Figure(7.4b) Splitting the above periods into a sequence of periods,
where in each period the property has the same qualification descrip-
tor. By further analysis, these periods may be merged using high level
representational rules.

- Figure(7.4) Splitting periods in order to generate a descrip-
tive summary of the global changes in a specific property.

(a) input, (b) output.
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IF G@<Pk, Ti, iv+l)d (EQ. Q<CPk, Ti+l, i+2) . EQ. ... .EG

QCPK, Tg~1. 3> . NE.  QCPk, T, J+1)

=then=> 1) MERGE:
Ti, i+d + Ti+d, 442 + ... + Ty=1,3 -INTO-> Tigy

2> adPk, Ti P (=== QCPKs Ti, i+l { Assign a qualifier
to the merged period.

3> KFCu~g+i+l) C==— KFC(uUl, U= n
Updating
4> DELETE KF<u> ., u=Ln-(j-i-12>,nl
key frames

5 n {~~= N~ ~i~1

where n is the number of key frames. Mote that Tiy is the
merged period that includes the periods
LTi,i+1, Ti+l,i+2,....,Ty4~4, 4>, and the key frame KF(y> is
updated <fo KF{i+l)>, KF(g+1)> +o KFdi+2),....and so on.
Table (7. 3} shows the result of applying the above rule +to

the data in Table (7. &).

The above is an example of a simple rulé; based only on
the dynamic data o} the different properties. The second
step in creating global periods. is concerned with
distinguishing the gignificant changes from the irrelevent
or noisy ones. In this case, a more sophisticated approach
would wutilize +the dyramic description of the different
properties, in conjunction with logical krowledge
constraints. For example, an inference process could
eliminate the very short events. Thus, suppose a specific
property Pi is measured +through three sequential periods

Téd, Tiag, and T3, If the time T1i2 is very short relative
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to both T81 and T23 <(T91.7T83 >> Tiay, then we might
eliminate T12 by one of two actions: first, by merging all
three periods T81,T4i2,T23 into one (783>, or second, by
merging Ti2 to either TO1l or T23. Thus, if the cell was
described in three sequential periods as SMALL. VYERY SMALL.
and SMALL, then a merging of these periods would result in
SMALL as the decscription. This may be achieved by the
following rule:
RULECY. 3>:
IF (Te1 .GTT. Ti2 .LTT. Ta3> . RAND.
QCPi, TRLY . EQ. QCPi.T23» . AND.
QCPi. TBLY> . NE. QCPLi, Ti2>,
=then=> 1) MERGE THE THREE PERIODS INTO T83

2> UPDATE THE KEY FRAMES

where T83 = T81 + Tig + T23, and
QCPL, TA3)> = QC(Pi. TO1)> = Q<Pi, T23). Figure (7. 5a>
illustrates the function of this rule. In this figure, the
values RQCPi, T13>, G<CPi, TOL), and Q<CPi, T23> are presented as
@1, G2, and @3, respectively. The details of the merging
action, steps 1 and 2 in the abouvwe rule, is similar to that

described in Rule 7. 2.

A second action, in which TiZ2 may be merged +to either
T@lL or T23. is based on logical inference. For example, if
the length of the cell was described in three s2quential
periods as being SHORT, VERY SHORT, MEDIUM, then one may
logically deduce that it has changed from SHORT +to MEDIUM,

if +the description of the very short period (Ti2) is the
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1= Q3 Q2 s
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TOol Ti12 T28 (b)

r__YIr Q3>Q2>Ql T12+4T23 |

.AND. T23> T01

Time (9)
Note: In all the above figures, T01> > T12< <T23,
Q is the qualifier ,

Figure('7.5) Using condition===>action rules to
eliminate irrelevant and noisy changes.
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same as that of either the preceding or following period.
Thus, if the description of the VERY SHORT period is closer
to the SHORT period rather than to MEDIUM period, period TiE
may be merged <o TO1. This logical deduction may be

accomplished by the following rule:

RULEC?. 4>:
IF (Te1 . GTT. Tis, . AND. Ti2 .LTT. T&3
.AND. (@4 .GT. G2 .AND. Q2 .LT. Q@3 .AND. Q1 .LT. @33,
.OR. (@4 .LT. @2 .AND. @2 .GT. @3 .AND. Qi1 . GT. @33,
=then=> 1) MERGE PERIODS T81 AND Tiz INTO Ta2,

2> UPDRTE KEY FRAMES

where TO2 = To1i + Tia, and RCPL, TR2> = QCPL, TRl
Figure <(7.5b> illustrates the function of this rule. 0Other
examples of similar rules are shouwrt in Figures (7, 5c-7. 9g».
Table (7. 4> qives the final global periods after applying
the merging rules on the data in Table (7. 3). From <this
table one can see that the number of the global periods has
decreased from 43 (Table 7. 2> to 10 (Table 7.4 by applying
the rules discussed. Also, all periods which have duration

of one frame have been eliminated.

The final step in this analysis is to characterize the
data and describe them symbolically in a fashion similar to
the preceding chapters. For example, the <ime Ffor each
period Tiy may be normalized and described symbolically as
VERY SHORT, SHORT, MEDIUM, LONG, or VERY LONG, and the

property during each period —an be qualified as described in
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Chapter 4. 1In the following section, we will show how %o
use the above methodology to describe the global changes in

each individual shape property.

7.3 GLOBAL CHANGES IN THE DESCRIPTION

of Individual Shape Properiies

In Section 4. 5 we defined the factors influencing the
selection of properties used by the system for describing
the different aspects of the dynamic behaviour. In addition
tc these factors, for shape description we require that the
method be <translation. rotation. and size independent.
Based on these criteria and from our experimental work, we
found that the most efficient properties for cell shape
description are:

(1> Circularity

(2> RAverage Bending Energy
(3> Angle Regularity

(4> Elongation

(3> Number of Concave Angles

62> Number of Subparts

Using the methodologies dezcribed in Sections 7.2.1 and
7.2 8 the global changes in each of these properties can be
described. First:. the static and incremental data
associated with each property should be normalized to range
betuween zero and one. Zero corresponds to the simplest
shape and one to +the most complex. For example. the

definition of elongation EL is:
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EL = Wdidth / Length . (7.2
From this definition, orne can see that EL = 1 for shapes
resembling squares, and EL = 8 for filamentary-like shapes,
in which the width is negligible relative <o the length.
Accordingly, square-like shapes are assumed to be simpler
than elongated ones. Therefore, the computation of the
elongation can be wmodified to:

EL = 4 - { Hidth / Length )

= 1 Length ~ MWidth | / Length. (7. 19>

In this case EL = @ for square~-like shapes, and EL = 1 for
filamentarg shapes. Another exanple can be given for
circularity, which is defined as:

g2
CR = F /7 4 IIAR (7. 11>

where P is the perimeter and A is the area. This expression
can be normalized as:
=4

CR = 4 - <P /7 4 II A (7. 1&»
Thus, CR = @8 for the ﬁost circular shapes, and CR =1 for
the 1least circular ones. Figures (7. 3, (7. 6a> and (7. &b>
show examples of the normalized values of the static data
for different shape properties computed for 150 frames in

sequence.

The normalized static data for e=ach property are
analyzed according +to Sections 7.2.1 and 7.2.2, using the
same sequence of steps used for curve analysis. That is,

splitting, merging, and finally generating summaries
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describing their global changes. Typical examples of these

summaries are given in Description (7. 1). The symbolic

'qualifiers which are used +to describe the different shape

properties are given in Table (3. 2). Examples of cell
shapes that are described by each qualifier are given in

Figures (7. 7a-7. 7b).

7.4  MEMBRANE SHAPE: GLOBAL CHANGE DESCRIPTION

In the preceding se&tions we discussed the basic
methodology for detecting and describing the global changes
in each of the shape properties. In this section, we will
discuss how to integrate these properties in order to

describe the changes in the membrane shape.

The task of describing the cell membrane shape is
similar to that of describing the silhouette (contour? of an
arbitrary shape. This task may be considered one of the
difficult issues in computar vision and pattern recognition
In spite of the enormous research and number of publications
on the subject. there is as yet no established technique for
soluing this problem. However., we should recoghnize that we
are trying to imitate one of the most complex processes of

human visual perception.

Most previous work has attempted to solve +the problam
by describing +the shape in terms of the properties of the
cobyect boundary. These techniques have achieved reasonable

success in static scene analysis. However, in dynamic scene



Page 7-337

N O

UVERY REGULAR . REGULAF ALMOST REGULAR
(FRAMER 58> (FRAME#4B7 (FRAME#1995
ALMOST IREGULRAR IREGULAE UERY IREGULAR
(FRAME# 33 (FRAME#26E) (FRAME# 42)

< s (0) ANGLE REGULARITY

o N 49

UERY CIRCULAR CIRCULRAP ALMOST CIRCULRAE
{FRAlE# SB> CFRAME#4B7 ) (FRANE# 317
SLIGHTLY CIRCULRR ALMOST NOT CIRCULMR HOT CIRCULAR
(FRAMEH#265 ¢FRAMERZID) (FRAME# 17}

(b) CIRCULARITY

Figure(7.7) Ezamples of cell shape property characterization
and description. (a) Angle regularity (b) Circularity.
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analysis, it is necessary to describe the changes in shape
as yell. This problem has been almost completely neglected.
In our research, besides the difficulties of describing an
arbitrary static shabe;.we,also want to describe‘the,random

changes in the shape of non-rigid moving objects.

From the previougs analysis of +the individual shape
properties. one can see that each of them describes only a
specific shape property. But the change in obgject shape
does not necessary match the equivalent change in a
particular property. In other words:, we may find that many
difrerent shapes have the same wvalue for a specific
property.

OBSERVATION: There is no known single shape property that

ENSNSmem S S Sm IO TSR SR St G am e e G S e 500 Sul BEe ST Whe Saw SN TR GNP Gms T et S WA WY R GRS GO SR T T S S S AR ule TR SV ST S S S S e e T -

gives a unique valus for each different shape.

The shape properties indicated above are those referred
to as information nonpreserving [Pavlidis, ?761. Examples
are circularity, elongation, and regularity. On the other
hand, there are some chape measuremnents that are unique for
different shapes, and are termed information preserving.
For example, if we take the chain code of a digital contour
and string the digits together, the resulting number is
unique for each shape. However: this representation is

clearly not useful as a global description for the shape.
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In order to iliustrate the above obseruvation, we use as
an example, one of the earliest and most established shape
descriptors, that is, circularity. Figure (7.8> shows g0
different shapes that are designed such that all of them
have the same area and perimeter. From this figure, one can
see that & wide wvariety of different shapes can have the
same circulasrity value. In a similar fashion, we can show
the above observation for other shape properties, such as
for example; elongation. regularity, and average bending
energy. Therefore, in ordet to generate different
~descriptions for different shapes, we‘must use more than one
property. The perfect description is the one that fits only
one shape. In order to achieve this, we may have to use an
infinite number of descriptors. Since this is impossible,
we must find the wninimum and most efficient set of
descriptors that generates complete informative descriptions

for the different shapes.

For example, in order +to choose descriptors for
different clagses of neutrophil cells, categorized as
Juvenile, banded, segmented, and hypresegmented, Liu [Liu
761 studied the classification power of different
descriptors. He distriminated batween the power of the
different shape descriptions as follows: “A shape
description, D1, iz more informative than another
description, D2, if the set of shapes that can be described
by D4, is included in the set of shapes described by D2“.

For example, the description of a given shape as a square or



Page 7-340

2% v G
R TPZE
j Voo
R B QY

Figure(7.8) Different shapes having the same ares and
perimeter, and hence the same circularity.
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rectangle is more informative than describing it as

quadrangle.

In dynamic scene analysis of non—-rigid moving obJjects,
the task of finding the set of properties that generates
complete informative degcriptions is more difficult. This
is because, besides the abouve requirements (minimum number
of properties and unique static descriptions for the
different shapes), the change in the generated descriptions
gshould correspond +to *the change in the shape, and be
insensitive to noise. Qur approach is based on forming a
mathematical expression which can be computed from the
individual shape properties. Thig expression represents the
degree of membrane shape complexity. In this way. the
change in its value can be used as a measurement for the

change in the membrane shape.

Expression for Membrane Shape Desription
B U e P ORI

In order to form an expregsion tor the measurement of
an arbitrary shape, we choose th2 minimum set of properties
basaed on two criteria: (a) maximum discrimination betu=2en
the different shapes, and (b) descriptive power related to
shape complexity, To satisfy these criteria, we have used
the shapes given in Figure (7. 8) as a training set. We
computed the value of gach shape property for every shape in
the +training set, Ther, we selected the properties that:
(a? produced the same value for a minimum number of shapes,

and . (b> sorted the complexity of the shapes in a mannher
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similar to that of human sorting. In this experiment, wue
did not include circularity. because the shapes were
originally designed to give the same value for circularity.
However, circularity was tested separately using some of the

cell shapes (see Figure 7. 7b).

From the above simnple experiment, we selected the
following shape properties in order fo form an expression
for the membrane shape measurement: circularity, average
bending energy, and _angle regularity, Table (7. 5a) gives
the result of computing the property values for the
different shapes in the training set. Figure (7. 9> shous
the shapes associated with the values of the different
properties. and Figure (7,18 1is a sort of the shapes

according to complexity. using each indiwvidual property.

To combine the three selected properties into one
expression, we have repeated the above experiment. using the
arithmetic and geometric means of the properties. The
result of this experiment is given in Table (7. 5b’> and is
shown in Figure (7. 11>, From this data, we can see that the
mean of more than one property is more efficient than an
individual cne. Based on this experiment, we have selected
the geometric mean of circularity, average bending energy,
and angle regularity. as a measurs for the cell membrane

shape.
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Figure(7.9) Different property values of shapes having
* the same circularity.

PERM: Perimetler,
.CIRC: Circularity,

AVBE: Average Bending Energy,

AVAM: Arsthmetic Mean,
- - ANGR: Angle-Regularity, AVGM: Geometric Mean.
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Figure(7.10b) Different shapes sorted according to
their complezity using angle regularity.
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Figure(7.11) Dif ferent shapes sorted according to their
- . .~ ... complezity using the: (a) arithemetic mean (b) geometric

mean, of the average bending energy and angle regularity.
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The geometric or arithmetic mean of the selected
properties can be computed Ffrom static data. The result
represents the Static values of the membrane shape in the
sequential frames as shown in Figure (7. 12), This can be
analyzed in a similar fashion to the individual shape
properties in order to generate a summary of the global
changes in the cell membrane. This will include detecting
key frames and asgigning descriptors to both the dynamic
trends and the actual wvalues of membrane shape. The
different symbolic qualifiers that are used to describe the
membrane shape are: VERY SIMPLE, SIMPLE, ALMOST SIMPLE,
ALMOST COMPLEX, COMPLEX. VERY COMPLEX. Note that here we
are using six categories for the symbolic qualification in
order to give a3 more precise description near the average
level. In fact, the qualifiers ALMOST SIMPLE and RALMOST
COMPLEX combined, are the same as the qualifier AVERAGE +that
is given in mnost of the preceding descriptions.
Figure (7.13> shows examples of cell shapes that are
characterized by the different descriptors. A typical
example of the generated summary of the global membrane

shape changes is Qiven in Description (7. 1).

7.5 SUMMARY

Shape description represents the high level stage of
shape perception by the system. The obgjective is to0 analyze
the data resulting from <the low 1level shape analysis

processes in order to generate a summary containing all the
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Figure(7.12) Geometric mean of circularity, average
bending energy, and angle regularity computed for cell
shapes in a sequence of 150 frames.
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MEMBRANE SHAPE

] F:'gure(7.13)lexamples of cell shape characterization.
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relevant information pertaining to the shape of +the object
under analysis, In spite of the difficulties in describing
the arbitrary shape of an obgject in a static scene, in our
research we wish to describe the significant changes in the

shape of a non—-rigQid mouving ob(gect.

In this chapter. we have demonstrated a methodology for
detecting and describing the changes in shape of a moving
cell from & sequence of images. The input to these
processes consists of the static description of the cell
shape properties in each frame of the sequence. The output
is a summary that characterizes the changes in each of the
cell shape properties individually, &5 well as +the global
membrane shape itself. The descriptiﬁn iz given as a
sequence of periodes bounded by key frames. The latter
represent the <transitions where significant changes have

occured.

A global change is defined as a significant change in
the dynamic behaviour or the level of the symbolic
qualifications. The former occur when a specific shape
property changes its dynamic behaviour; for example, from
being stationary +¢ increasing or decreasing. The key
frames that define the +times of these changes can be
computed Fhom the curve that represents the static data of
the property under consideration. In order to achieve this.,
a curve approximation technique similar to that of the
polygonal approximation is used to detect +the relevant

information from the irrelevant and noisy data.
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The global changes in the level of +the qualification
descriptors can be accomplished by using the high level LTH
r;presentational rules. The latter utilize the dynamic data
and constraint knouwledge of the cell shape properties. The
representational rules can be applied directly to the
symbolic qualifications of the static shape properties. or
their curve approximation. The latter has <the advantage
that +the data is reduced %o those represented by the key
frames, and most of the irrelevant and noisy changes are
removed by the curve approximation. The processes that
detect the global changes in the Qqualification levels use
splitting and merging of the periods between sequential key

frames.

We have show experimentally that a single shape
property cannot be used to describe the changes in the cell
membrane shape. Therefore, we have developed an expression
for measuring the complexity of an arbitrary shape pattern
based on a group of selected shape properties +that are
location, rotation, and size indepesndent. This expression
is used to measure the complexity of the membrane shape in
each frame of the =equence. The resulting data is
represented by a curve that can be analyzed using techniques
similar to the analysis of individual shape properties. In
this way., the changes in the membrane shape can be detected,

qualified, and described.
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Finally, a sumnmary of the global changes in cell shape
and its individual properties is generated in meaningful
symbolic terminology. A typical example of this summary is

given in Description (7. 1),
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DESCRIEIFPTION J<7F. 4>
o== = _ ==

% & R B —§ 5 &N

GLOBAL SHAPE ANALYSIS

AND DESCRIPTION

LR N _ 3 B % & & B & B ___§ ]

INTRODUCTION

A summary of the global changes in the cell shape
characteristics are described below. The description is
qiven in two sections. First, the characterization of each
of the main cell shape properties, and then., the global
changes in the c¢ell membrane shape are described. The
description given is for the period including frame number(i>
to frame number<liS@), a duration of 75 8 seconds.

SHAPE PROPERTIES

S5y mu s oww w2 e S S s s e e e e
SNNEESEtRE SRR

AVERAGE BENDING EMNMERGY

PERIOD FRAME
NUMBER NUMBER TIME DESCRIPTION
1 i1 --> g YERY SHORT SMOOTH
2 3 --> 18 SHORT ALMOST SMOOTH
3 19 --> 208 VERY SHORT JAGGED
4 g1 --> 3@ SHORT ALMOST SMOOTH
S 31 --> 35 VERY SHORT JAGGED
6 36 --2» 37 VERY SHORT ALMOST SMOOTH
4 38 ~-—-> 44 VERY SHORT SMOCTH
8 45 -~> 78 MEDIUM ALMOST SMOOTH
9 79 -=> 85 VERY SHORT JAGGED
10 g6 —-> 88 VERY SHORT VERY JRAGGY
11 89 ~--2>183 SHORT JAGGED
12 184 -->127 MEDIUM ALMOST SHMOOTH
13 128 -->138 SHORT JAGGED

14 139 ~-->158 SHORT ALMOST SMOOTH
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CIRCULARITY
PERIOD FRAME
NUMBER NUMBER TINME DESCRIPTION
S@mEmaRs - 413 % 1 4 Smses SSsmnsmmntEs
i 1 -=> 25 MEDIUNM NOT CIRCULRR
e 26 ~--> 43 SHORT SLIGHTLY CIRCULAR
3 44 ~-> 53 SHORT ALMOST CIRCULRR
4 5S4 ~--> 57 VERY SHORT CIRCULAR
S 58 --> 78 SHORT YERY CIRCULAR
6 79 -=2>131 LONG ALMOST CIRCULRAR
e 132 ~-2>137 VERY SHORT SLIGHTLY CIRCULRR
8 138 -->145 SHORT ALMOST CIRCULARR
9 146 -->149 VERY SHORT CIRCULAR '
i@ 158 -->158 VERY SHORT VERY CIRCULAR

ANGLE REGULARITY

PERIOD FRAME
NUMBER NUMBER TIME DESCRIPTION
===m=== s====moss === SEmRESmaREs
1 1 ~--> 13 SHORT ALMOST REGULAR
e 14 -=-> 21 SHORT IRREGULRAR
3 ge --> 23 VERY SHORT ALMOST REGULAR
4 24 ~-> 28 VERY SHORT IRREGULAR
S ge --> 32 VERY SHORT ALMOST REGULAR
6 33 --> 36 YERY SHORT IRREGULRAR
? 37 ——> 46 SHORT VERY IRREGULAR
8 47 --> 52 VERY SHORT IRREGULAR
9 53 ~--> 57 YERY SHORT ALMOST REGULAR
10 58 —--> 64 VERY SHORT VERY REGULARR
11 63 ~=> 67 VERY SHORT ALMOST REGULRR
iz €8 ~—> 7@ VERY SHORT REGULAR
13 1L -2 77 VERY SHORT VERY REGULRAR
14 78 —-->109% MEDRIUM ALMOST REGULAR
15 118 -->116 VERY SHORT IRREGULAR
16 117 ~->147 MEDIUM ALMOST REGULRR
17 148 -->15@ VERY SHORT REGULAR

R
—a 32 _-J—§_ SR J J- - F T &+ F BB B S5 5 B &

The following is 2 summary of the global shape of the
cell membrane based on ths GEOMETRIC MEAN of the following
properties: AVERAGE RENDING EMERGY., CIRCULARITY, and ANGLE
REGULARITY. -
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PERIOD
NUMBER

VoOoNOTA DGR

FRAME
NUMBER

=R

1 --> 18
19 --> 26
21 --> g7
28 -~-> 36
37 —=> 44
45 ~--> 49
S® —-> 5¢
58 --> &0
61 ——> 64
63 ~=> 7@
71 —-> ?7
78 —-> 86
87 —--> 88
89 -->113
114 ~->11¢6
117 -->145
146 ~-2>156

TIME

S===

SHORT

VERY SHORT
VERY SHORT
SHORT
SHORT

VERY SHORT
SHORT

YERY SHORT
VERY SHORT
YERY SHORT
VERY SHORT
SHORT

VERY SHORT
MEGIUM
VERY SHORT
MEDIUM
VERY SHORT
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DESCRIPTION
ZEmmmsSEmRsEs
COMPLEX
ALMOST SIMPLE
COMPLEX
ALMOST SIMPLE
VERY COMFLEX
COMPLEX
ALMOST SIMPLE
SIMPLE

VERY SIMPLE
ALMOST SIMPLE
SIMPLE

ALMOST SIMPLE
SIMPLE

ALMOST SIMPLE
COMPLEX
ALMOST SIMPLE
SIMPLE
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TABLE <7. 4>

— BB - BB 5 8§ &-_§ 4

GLOEBAL SHAFRPE ANALY SIS

& -8 -8 -2 % & & & 2 & 5§ 3 & B R B S 5§ 8§

ANALYSIS OF INDIVIDUARL SHAPE PROPERTY
PROPERTY = CIRCULARITY

FIRST FRAME NUMBER = 1
LAST FRAME NUMBER = 156
TOTAL TIME = 735.0 Seconds
PERCENTAGE OF CURVE APPROXIMATION = 20.6 %
QUALIFICATION THRESHOLDS = .46, .38, .78, .98,
CURVE APPROXIMATION
SEsRREooosESERSET
NUMBER OF PERIODS =15
PERIOD INITIAL FINAL INITIAL FINAL SLOPEC(RATE
NUMBER FRAME No. FRAME No. LEVEL LEVEL OF CHANGED
=S|mzzm=R= S=mmassERs= SRRSSR=RES oEETR =smm=s SERmsEEREsS
1 1 a1 i 1 3
21 31 1 3 S
3 31 40 3 1 1
4 40 e 1 3 S
S 52 Se 3 3 1
6 o2 S4 3 4 3
7 54 57 4 4 i
8 57 S8 4 S 5
9 Se 7 S 5 e
i@ 7 (515 S 3 1
11 80 88 3 3 4
ie 88 139 3 2 2
13 139 145 2 3 4
14 145 146 3 4 S
15 146 15a 4 S 4

Table (7. 45 The output dats for the curve approximation in
Fiqure 7. 3. This data areée represented by a squence of key frames.
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Q GLOEBRAL SHAFE ANALYSIS

[ — % B R & ¥ - 8§ B2 —S--B & __§ -5 B B B & _§ 5§

NUMBER OF PERIODS = 43

PERIOD INITIRL FINAL
NUMBER FRAME No. FRAME No. LEVEL
SEmommae ERBEIREE 221+ 1+ 1 mmpm=i
1 1 21 1
2 21 22 1
3 23 23 2
4 e4 25 1
S 26 30 2
6 31 31 3
4 31 31 3
8 32 34 2
9 35 35 3
16 36 39 2
11 40 40 1
iz 40 48 1
13 41 43 2
14 44 44 3
is 45 45 2
16 46 Se 3
17 Se S52 3
C 18 52 53 3
19 54 54 4
2a 54 57 4
21 S 57 4
2e Se 55 S
23 o8 T 5
24 77 s S
25 78 78 4
26 79 80 3
a7 80 8s 3
29 88 129 3
30 131 131 3
31 132 135 2
32 136 136 3
33 137 137 2
34 138 138 3
35 139 139 2
36 1392 139 2
37 1408 145 3
38 143 145 3
39 146 146 4
48 146 147 4
41 148 148 S
42 149 149 4
43 156 158 5
@ Splitting the periods resulting from the curve approximations.

given in Table#(? 1) into periods having the same lewvel.
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TABLE <7. =Z>

W R R B

GLOBAL SHAFRFE ANALYSIS

Pk Sk —E---R —F-_ & —F F F__F_ K _F __B__E_ -5} __§ ¥ 4

NUMBER OF PERIODS = g9

PERIOD INITIAL FINAL

NUMBER FRAME Mo. FRAME No. LEVEL

mmEmomER -+ 13- 4%+ 434+ F 3§ 4 sSsmomamts
1 1 22 1
2 23 23 2
3 24 2s 1
4 26 30 2
5 31 31 3
6 32 34 2
7 35 35 3
8 36 39 2
9 43 46 1
19 41 43 e
11 44 44 3
12 45 45 2
13 46 53 3
14 54 57 4
15 55 77 5
16 78 78 4
17 79 129 3
18 136 130 2
19 134 131 3
2a 138 135 2
21 136 136 3
22 137 137 2
23 138 138 3
24 139 139 2
25 149 145 3
26 146 147 4
27 148 148 5
28 149 149 4
29 158 150 5

Table 7.3 The result of merging the periods given in Table 7.2
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GLLOBRAL SHAFPE AMNMALYSIS

3 & -8 8 __R__§ 3§ 3 S & 5 B _§ 3 B S _§ _§

NUMBER OF PERIODS = 18

PERIOD INITIAL FINAL
NUMBER FRAME NO. FRAME NO.
Smsmommmns b-1-3 -3 -1-%-§% 4 sSmmmasx

1 1 as

e 26 43

3 44 53

4 54 s7

5 58 78

6 79 131

7 132 137

8 133 145

9 146 149

10 150 150

LEVEL

WD WADWEUD P

Table 7. 4 The final result of merging the periods given

in Table 7.3 by using Rules 7.3 and 7. 4,
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TABILLE <7. SH >

SR 8§  _§-"%_ & & = &
SHARPE ANALYSIS
- & —_F -5 % B__—§ & 8B
FIGURE ANGL.E AVERAGE ARITHMETIC GEOMETRIC
NUNMBER REGULARITY BENDING ENERGY MEAN MEAN
S=ERS=s S=E==;mwnmew TS mEmEmESIES —SoassasmaRR =EE=SEREE=
1 0. oo0Q 8. PBES B. 2073 8. 8211
[ 8. 4167 8. 6974 9. 3464 9. 1237
3 @. S000 0. 8133 8. 3vé2 B. 1600
4 0. 52508 0. 8219 0. 3874 9. 1921
S 8. 7669 0. 8212 0. 4678 8. 2156
6 8. 5333 B. 8321 8. 3936 . 2191
7 0. 5824 8. BB99 8. 3759 B. 1454
8 0. 3333 8. 8650 a. 4846 8. 2774
9 0. 5666 8. 8125 9. 3752 0. 1568
ie a. 5357 9. 8304 B. 3938 B. 2156
11 B. 6366 8. 244 8. 4254 9. 2122
12 a. 5988 9. 246 8. 4129 8. 2985
13 g. 4621 0. 9843 8. 3872 8. 2883
14 8. 4672 8. 1219 8. 4612 8. 3264
15 8. 5333 0. p28° 8. 3925 B. 2117
ié 0. 5e01 0. 22038 8. 3883 . 188¢
17 a. 5556 8. 8133 8. 3947 8. 1657
i8 a. 5357 8. 5928 8. 5813 8. 5883
19 Q. 4167 8. 8957 8. 3757 8. 2906
2e 0. 6286 9. 8874 8. 4174 9. 1418

Table(?.5a) The computed wvalues of two different shape
properties. and their ardithmetic and geomstric means for the

different shapes given in Figure (7. 8).
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TARELE <7, S&E o

T DS rTTT MRED MMun oI EE IET I S = =R

=SEHARPRPE AMARLY SIS
- B R B F % B __&__§ & __J_ 4
ANGLE RVERRGE ARTHIMETIC GEOMETRIC
REGULARITY BENDING ENERGY MERN MERAN
NO. VALUE NO. YALUE NO.  VALUE NO.  VALUE
-+ -+ ¥ ¢+ 1 1+ -+ 3 SE=xzmmmansSzZoSI SRS oomomsms ESmDemmomanas
1 ©. 08000 1 Q. BRES 1 8. 2073 1 8.e011
19 6. 4167 20 0. 874 2 0. 3464 e 8.1e37
g2 0.4167 [ 6. 874 7 B.3759 20 8. 1418
13 6. 4621 ? 0. 8999 19 8. 3759 ¢  8.1454
14 0. 4672 9 0. 8125 2 8. 3759 9 0. 1568
9 0. 5000 3 . 8133 3 8. 3762 Z B.1668
3 6. 5ec0 iv 8. 8133 13 @ 3872 17 8. 1657
7 9. 5e24 16 6. azas 4 B.3874 16 8. 1889
16 6. S201 S 8. azie 16¢ 0. 3883 4 ©8. 1921
4 B.52509 4 8. a219 15 8. 3925 12 @o. 2858
8 8. 5333 11 g. 8244 6 ©8.3%3¢ 15 8. 2117
6 8. 5333 iz 8. 8246 10 ©0.3938 11 8. gige
15 8. 5333 15 8. 8289 17 B. 3947 S 8. 8156
18 ©. 5357 18 0. 8384 14 B.4812 10 6.2156
18 @. 5357 & @. 6321 8 8. 4846 & B 2191
17 6. 5556 B8 @. 0658 i2 @ 41g9 3 B8 2774
12 6. 5988 13 @. 0843 286 B.4171 13 9. 2882
28 9. 6286 19 8. 9957 11 8. 4254 19 8. 2986
11 9. 6366 14 6. 1210 S B.4678 14 8. 3264
S 8. 7669 18 6. 5928 18 8. 5813 1& 8. 5863

Figure(?. 18a> Figure(?. 1Ba> Figure(?7. 18a) Figure(?. 18a’

Table(?. 3b> Sorting different shapes (given in Figure 7.8)
according to their complexity 2s measured by the average bending
enerqgy, angle regularity. and the atithemetic and geometric

means of both.



CHAPTER &

GLOBAL STRUCTURAL ANALYSIS
AND
DESCRIPTION OF DYMNAMIC BEHAYIOUR

8.1 INTRODUCTION

Most of the work in dynamic scene analysis has
considered change in location as <+the major aspesct in
understanding.the dynamic behaviour of a moving obgect.
Recently, some, albeit few, efforts have considered the
change in shape of a rigid moving object due to change in
the viewing conditions (see Section 2. 2.3). In the present
research, we designed a system for understanding and
describing the dynamic behaviour of a non-rigid mouving
obgect. The major difference from the previous work. is
that the changes in shape are due +to changes in the
morphology (spatial structure’ of the primitive components
of the object. Thus, we analyze, guantify, and describe the
structural changes of & non—-rigid moving obgect, hitherto
neglected in all +the previous work done in image sequence

analysis,
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The dynamic behaviour of a.non—rigid mowing obyect «<an
be described in terms of changes in locomotion, shape. and
structure. The locomotion analysis is described in
Chapter 6, and the global shape changes are discussed in
Chapter 7.  Two main 4issues will be addressed in this
chapter, global structural analysis, and characterization of
global dynamic behaviour. The obgective of the first issue
is to analyze <the static and incremental structural
descriptions in order to generate a summary of +the global
structural changes. The second part of this chapter is
concerned with the integration of the three global aspects
pertaining to locomoticn., shape, and structure, in order fo
. understand and characterize the dynamic behaviour of the

moving obgject.

8.2 GLOBAL STRUCTURAL ANRLYSIS -

The main goal of analyzing the structural changes in a
moving cell is <o characterize and describe the dynamic
behaviour of the different pseudopods that are formed during
cell locomotion. Alsa, we need to study the relationships
between the chshges in +the shape of subparts, their
movement, and the global Jlccomotion of +the cell. For
example; in the study of the dynamic behaviour of a mouving
cell., a developmental biologist might be interested in the
ansyers to the following three basic questions. First. how
can one recoghize a subpart developed on ot by the membrans

. as . a "pseudopod"? . And if it is a pseudopod, is it
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stationary. growing, or contracting?. Second, is a
pseudopod "dominant" or not? A dominant pseudopod is one
which leads the lccomotion of the cell. If so, what is its
degree of domination? Finally. if all of +this information
is at hand, the third question would be the interpretation
of this data. Why is a specific pseudopod dominant and

another not?

Our approach to the analysis of the structural changes
is based on +the same philosophy as syntactic pattern
recognition techniques. These analyze patterns by a parsing
prbcess of hierarchical decomposition. Such techniques
appear to be quite amenable as a strategy for cell shape
description, including the global structural and membrane

shape changes (gee Section 2. 3. 18».

Buantification and characterization of +the structural
changes of a mouving cell can be accomplished in three stages
of analysis: static, incremental, and global. In static
analysis. the celi is decomposed into its primitive
subparits. The latter can be represented as a labeled graph
that conveys the topological properties of the cell. This

. stage of analysis is described in Chapter <. The
incremental analysis is responsible for detecting and
quantifuing the structural changes betwesen +two sequential
frames. The processes that accomplish this are discussed in
Chapter 3. In these processes, the labeled graphe in both
frames are matched in order to detect the correspondence

betueen the different subparts. Then, the incrsmental
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changes in the corresponding subparts are quantified and
described. Cell structure can be matched in twa frames, and
described oh a scale beginning with VERY DIFFERENT and
ending with VERY SIMILAR. Global structural analysis is the

final stage which will be discussed below.

The objective of global structural analysis is to

generate a summary of the significant structural changes,
\

from which questions pertaining <o <the subpart and/or
pseudopod characteristics can be answered. The processes
and data structure of global structural analysis are showun
in Figure (8. 15. In +these processes, uwe first detect the
frames where false structure has occurred. This is
accomplished by an analysis of the incremental structural
changes. These use representational rules that incorporate
both dynamic data and constraint knowledge hertaining to the
cell under consideration. Most of the cases of false
structure are corrected by feedback to the low level
decomposition process. Then. observable changes in the
properties of each subpart are analyzed and described. The
final step in this analysis is to generate a description of
the significant changes in the structure of the cell and its

primitive subparts.

8.2.1 GLOBAL STRUCTURAL MATCHING

Two main objysctives are cited: ta» To analyze the
static structure data and the incr2mental structural

matching data in order to detect and correct (if possible?
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STM
Static
| STRUCTORAL |[@—| structuza
FR *MATCIHNG description
False structure Incremental
detection and correction (== structural
‘ matching
Individual subpart
extraction —3» Global
structural
matching
INDIVIDUAL
SUBPARTS
CHARACTERIZATION
Is specific subpart
8 pseudopod?
: P d : p Description
seudopo r__@oi' individual
characterization subparts
Is pseudopod properties
growing, contracting,
or stationary?
Global
GLOBAL structural
_ STRUCTURAL | change
[C ACTERIZATION description

- Figure(8.1) Global structural dnalysz‘s,
processes and data siructure.
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false structure resulting from the low level decomposition.
(bd To find the sequence of frames in whickh individual
subparts appeared. These two issues will be discussed in

the following two sections.

8.2.1.1 Detection And Correction Of False Structure

Errors in the low level decomposition can produce false
structures. This 4is wainly caused by artifactual shape
changes due to registeration noise. irrelevant changes,
and/or the three-dimensionality of the cell. These
artifactual situations cannmot be detected by the static
analysis stage. However, at the incremental analysis stage.
false structures can be interpreted as ambiguous situations.
This can be detected +through a low value of the cell
structural match betwsen two sequential frames. On the
other hand, if & false decomposition appears in several
sequential frames. it cashnot be detected from the

incremental structural matching.

Our approach to detecting the cases of false structure .
uses representational rules that utilize both the dynamic
data and constraint knowledge pertaining to the structure of
the cell under consideration. For example, if the
structural match Sﬂ(i*iai) (see equations (5. 12> and (G 15X
betuween Ytwo sequential frames (i-1> and (i> is less than 3
specific +threshold wvalue Em. this indicates either
gignificant structural change or a false decomposition at

frame (i>. This ambigucus situation can be encountered by
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the incremental analysis at frames (i) and (i-1), by using
the following rule:
RULE(S8. 1>: IF SMCi~1,i> .LT. Em
==then==> SIGNIFICANT STRUCTURAL CHANGE
. OR. FALSE DECOMPOSITION
However, this can be clarified at the global level by the
follwing rule:
RULE(SB. 2>: IF SMCi-1, 41> . AND. SM(i,i+1> .LT. Em
==then==> FRALSE DECOMPOSITION AT FRAMEC(il
where SM{i-1,i>, SMdi,1i+1> are the structural matches
between frames (i-1),(i> and (i), (i+l)> respectively. These
rules are based on +he cell structural data which are
derived from frames <i-1), (i), (i+i), and the constraint
knowledge pertaining to the cell dynamic behaviour. For
example. a pseudopod or subpart of the cell membirane cannot
be formed and deformed in three sequential frames (1.5

seconds in this particular application’.

The threshold value Em in the abouve rule specifies the
acceptable structural match SH. The latter is computed
based on two factors: the correspondence between the
different subparts in both frames and the changes in their
properties (see equation 5. 455 Nith regard to the former,
it seen from equation (5. 15) that the value of SM is bounded
by:

8 < SM@i-1,4> < [ KCi-1,1i> / NSPC(i) 1, 8. 1)
where K{(i-1,1i> is the number of the corresponding subparts

between frames (i) and (i-1), and HNEP(L) is the numbsr of
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>subparts in frame (i>. For the latter, The change in the
value of SM depends on the changes in the properties of the
corresponding subparts. The effect of these changes on the
value of SM ie lesg than that caused by the change in the
number of corresponding subparts. A lower bound on the
value of SM has been found experimentally to be governed by:
SMCi~1,4i> > [KCi~4,1i> ~ 1] 7/ NSPC(iL» (8. 27
From this inequality. we can compute* the threshold value of
the minimum acceptable structural matching as:
Em = [K{i-4,1i> ~ 11 /7 NSPC(iD 8.3
Using this value in Rule (8.2), the cases of false structure
can be detected. Figure (8.2 shows examples of sequential
frames where false decompositions have been detected. In
this figure, the structural matching of the cell in the
false frames, with the previous and the successive ones is
indicated. Using +the bound defined by equation (8. 3
yielded satisfactory distinctions between false and

appropriate decompositions using Rules (8.1) and (8. 2).

When a false structure is detected., the attention of
the system will be directed to the frame where the fault has
occurred. More information about the cell structure and its
match with the previous and successive ohnes is extracted.
For example. information such as QOVERDECOMPOSITION or
UNDERDECOMPOSITION can be extracted from +th2 global
analysis: and wuytilized by the low level decomposition
processes +to correct the false decomposition. Examples of

the rules that accomplish this obgective are:
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% structural % structural
(a) ﬁ\\ match Q‘ match
h (=== 377 .. 560 ~--?

FRAME® 48 FRAME® 49 FRAME# 58

FRAME# 82 FRAME# 83 FRAMES® 84
f : {=—- .443 E: .435 --=> f :

FRAME# 122 FRAME# 123 FRAMES 124

X

@)
(== ,355
FRAME# 239 FRAME# 240
‘ %
b (== 641 b 2 --=> v

FRAME® 268 ' FRAME# 269 FRAMEH 270

Figure(8.2) Ezamples of frames having false structure
(decomposition)detected at the global structural analysis

stage.
Note that in each example the middle frames, where the false

structure appears, is associated with a low value of structural match
compared with both the previous and successive frames.
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RULE(8. 3>: IF FALSE DECOMPOSITION AT FRAMECL>
. AND. NSPCi-1> . EQ NSPC(i+1)> . LT. NSPC(iD

==then==> QVERDECOMPOSITION AT FRAMEC(i)

RULE(8. 4): IF FALSE DECOMPOSITION RT FRAMECi)
.AND.  NSP(i-12> . EQ. NSP(i+1)> . GT. NSP(il

==then==> UNDERDECOMPOSITION AT FRAMEC(i>
where NSP(i-1)>, NSP(iJ, NSP(i+li)> are the number of subparts
at frames i-1, i, and i+l, respectively.  For example, in
Figure <(8. 2> an overdecomposition is detected in each of the

middle frames.

Using this type of feedback data, specific rules are
activated in order to modify the result of the original low
level analysis, For example, in the case of the

overdecomposition, the following rules will be activated:

RULE(S. 5):
IF OVERDECOMPOSITION AT FRAME(L)
==then==> 1) MERGE SPJ+SPk J=1,2,. .., NSPCi-1),
k=g+1, J+2,. .., NSPi
2> FOR EACH MERGE, MEASURE SM(i~1, i) AND SM(4i, i+1)
3> SELECT THE MERGE THAT RESULTS IN

MAX. OF SM{i-1,4i> . DR, SMCL, i+1).

Figure (8. 3> shows the result of activating Rule 8.5 on the
cases shown in Figure (8. 2). The corrected structure and
the resulting modified structural matches are shoun in
Figure (8. 4>, e mwmay note in Figure (8. 2d) that a false

structural change has occurred between frames 249 and 2441;
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(4
<N

FRAME#® 49(SP#1+5),.695 FRAHEN 49(SPI1+2),.698 FRAME# 43(SP#2+5),.9532

“MATCH = . 695
FRAME# 83 SP#
%MATCH = .959
) | %
FRAME#123 SP#
%MATCH = .445
(@) Z% < 7
FRAME#240 FRAME#240
(SP#1+3),.449 (SPH1+4),.656
ZMATCH = . 449 SHMATCH = . 656
(e) éz E 4 ’g
FRAME#269 FRAME#2E9
(SP#143)4 ., 740 (SP#2+3),.743
“MBTCH = . 740 “MATCH = 743

XMATCH = . ZMATCH = . 952

4

FRg?E# 83 SP# 14244

6

143+4 FRﬁHEﬂ123 SP# 14243

1+3+44

/ =

FRAME#240 FRAME#240 FRAME#240

(SP#3+447,.921 (SP#243),,873 (SP¥142),.445

"MATCH = . 921 ZMATCH = . 872 UMATCH = . 445

“ij

4"9

FRAME#269 ~ FRAME#269 FRAME#269

(SP#142),.768 (SP#2+46),.967 (SP#1+6),.753

“MATCH = . 760 ZMARTCH = . 957 ZI‘IRTCH'= . 752

Figure(8.8) Possible variations in the decompositions
of the cells having false structure in Figure(8.2), (see

Rule 8.5).
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. 746

FRAME® S0

N

FRAME® 84

FRAMER 124

FRAME® 241

[5/

A

FRAME# 279

=

Figure(8.4) Correcting the false structure of the ezamples

shown in Figure(8.2) using Rule 8.5.

Note that in case (d), the structural maich has only been cor-
rected between frames 240 and 241. There still remains a significant
structural discrepancy between frames 239 and 240. Thixs, sabpart
3 in frame 239 has merged with the cell body, and in frame 240, the

new subpart 2 appears.
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a significant change in structure has occurred betwzen

frames 239 and 248.

Using the above rule, most cases of false structure can
indeed be corrected. However, in some situations it way
fail, especially if the false decomposition is due to noise
or artifactual changes. In this case, another rule should
be activated in order to describe the situation and action

taken. For example:

RULE(S. 6:
IF THE ACTION SPECIFIED BY RULE(S8. 5> DOES NOT
IMPROVE THE STRUCTURRAL MATCHING BETWEEN
FRAMES (i) AND <i-1> [ OR. (i) AND <i+i>d
==then==> (1> MEASURE SMd{i-1, i+l

(2> RCTIVYATE RULECS. 7)

RULE(8. 7> IF SMCi-1, i+1)> . GT. SMJi-1,i> [ OR. SMCi, i+ld

==then==> DELETE FRAMEC(i> FORM THE SERUENCE

where SM(i-1, i+1) is the structural match between frames i-1

and i+i.

_The result of activating the above set of rules can be
one of the following: |
(a’> The structure of framed(i) is corrected and the matching
is improwved; this is . the most common case. Examples of
this case are shown in Figure (8. 2, and the result of
correcting them is showtt in Figure (8, 4).

Kb The. false. decomposition of framne(i) cannot be corrected,
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but frames (i-1) and (i+1l) exhibit an acceptable structural
match. In this case, frame(i> is considered as noisy datas
and deleted from the sequence. We may mention here, that
deleting some frames from the sequence does not affect the
global result. On the contrary. deleting the frames that
include noisy or irrelevant information improves the global
result.

(€3 The structure of framecid> cannot be corrected, and the
decomposition in frames (i-1) and (i+l} do not match. This
case is not very common. However, if it does occur, it will
cause noise which can be removed by additional rules to be

described below.

The above sxample demonstrates the detection of a false
decomposition that has occurred in a single frame. In order
to detect false decompositions in a sequence of frames, a
global analysis strategy can be used. In this case, first.
curve approximation and analysis is used in a fashion
similar to that described in Chapter 7 for global shape
analysis. The obgective of the curve approximation here is
to detect the points <(key frames)> where signhificant
structural changes hauve occurred. Thus, the structural
matching between the sequential framesz <SM> can be
represented by a curve, as shown 1in Figure (8. 9). The
amplitude of <the curve at any point (i) represents the
structural matching betuween two sequential frames SM{i-1, ik,
Therefore, the wvariationz in nesighbouring points on the

curve indicate the structural changes of the cell. R global
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MARTCHING FRAME#: FIRST= 20,LAST= €@, INCREMENT= |
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Figure(8.5) Curves representing the structural matching

of the cell between each pair of sequential frames.

(a) 60 frames in sequence,
(b) 225 frames in sequence S T .
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structural change is defined as a point where & subpart has
apppeared or disappeared. The output of the curve
approximation is a set of key frames. Then,-a further
analysis (splitting ang merging> of the periods between the
key frames. will result in a summary of the structural
changes. This analysi=s ig similar to that described in

Chapter 7 for the global shape analysis.

The output of the global structural matching is a set
of kég frames. Each key frame represents the time where a
subpart has appeatred or disappeared. This is wutilized +*o
detect and characterize the global structural changes of the
cell. However, in thig particular application., we are also
interested in characterizing the dynamic behaviour of the
different subpar+ts. Therefore, each’ subpart is extractad

and its properties analuzed as follows.

8.212 Extraction Of Individual Subparts

In order to characterize the dynamic behaviour of the
different subparts of the cell. first, we initiate a record
for each individual subpart. This record includes the
following information: (8> the initial and final frame
numbers (time of appearing and disappearing), <¢b> the
subpart label in each frame of the sequence where it has
appeared, and (c> its duration. The latter iz normalized
and described in a fashion similar to that used for other
variables, i. e , as VERY SHORT, SHORT. MEDIUM, LONG, or YERY

L.ONG. The number of subparts classified by each of these
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1

descriptors can be utilized as one of +the parameters that

characterize the overall cell dynanic behauviour.

The second step involues the analysis of the different
properties of each subpart, in order to characterize it as:
(a) irrelevant change or noise, (b> part of or the cell
body, and <c? pseudopod. However, we are specifically
interested in those subparts wvhich may be characterized as
pseudopods. Therefore, we only analyze those that seem to
be good candidates for pseudopods. The selection is based
on an initial guess wutilizing expert knowledge. For
example, the subparts that appeared for MEDIUM, LONG, or
VERY LONG periocd are selected. Aflso, those which started
after the cell has a VERY SIMPLE shape (one part) are likely
candidates. . In fact, these are the criteria which we are
currently using. This 4is because. at this stage of
research. outr krowledge about the pseudopod characteristics
is limited. However, using the present system:. we expect to
gain more knowledge. pertaining to these characteristics.
Hence, more sophisticated rules could be developed *o

improve the selection of the pseudopod candidates.

Analysis and characterization of the subparts will be

described in the following section.
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8.2.2 Individual Subpari Characterization

The main goal of characterizing the individual subparts
of the cell is to know whether a3 specific subpart is a
pseudopod or not. In order to accomplish this, each subpart
is +treated individually as a mowving obgect. The properties
pertaining to +the location, shape, and +the <topological
structure of each subpart are analyzed using similar
techniques to those described for the entire cell in

previous chapters.

The main properties that are available for subpart
characterization are given in Table 4. 1. However, the
actual properties which are employed depend on the purpose
of the analysis. For example, in the present system. we
have used the area. base line, connective line, perimeter,
and orientation <(the angle between the connective line and
the ¥ axis? in order +to characterize a subpart as either the

cell body or a pseudopod.

Changes in the values of a property of a specific
subpart unhder analysis can be reprsented by a curve, as

shown in Figure (8. 63 This curve is analyzed using the

-methodology dascribed in Chapter 7 for global =shape

analysis. This analycis consists of two main steps. First,
a curve approximation is used in order to detect the key
frames where the significant changes occurred. This can be
utilized o describe the global changes in the dynamic

behaviour of the property wunder analysis as increasing.



Page 8-379

33 AREA 333 FRANE#: FIRST=313,LAST=333 $% PERIMETER 312 FRAME®: FIRST®313,LASTel3Y
116.6 s2.27 1
111.3 / 30,49 N |
] P
R 103.9 ~\T 4 48.71 ;
E 1e0.¢ % 4653
93.24 § 513
09,90 T 4338
84.53 R 41.68 K
79.18 \ 4 39,82 \
73.82 36.04
68.47 36.26
6312 34.48
5776 32.71
s2.41 30.93
ar.06 29.15
a.7 L_L 27.37
36.35 ST T SIS T B S G e S R G T ML ITIIIAIs | 23.99 3 Fia1s1 61718 Ni02 2 52 D2 018262 AN N3N M DI HIAI8
: FRAME NUMBER FRAME NUMBER
23 BASE LINE 33% FRAMES: FIRST=313,LAST=33S 2% CONMECTIVE LINE %3% FRANES: FIRSTal13,LAST=33S
12.84
12.60 11.98
2 11098 € 11.13 %/
R - o
$ 11.31 u N te.27 )
£ N
10.66 E 9.416
L [ N
I 10.02 : / T 8.568 N
W 1
£ 9.372 N Y 7.764 W4
8.726 | 6848
8.088 I 5992
7.434 £ 5.136
6.789 4.280
6.143 3.424
5,497 2.568
4.851 1.712
4,203 .8560
3360 3 BT GBI G171 D1 B202 D2 He T 202 N2 N2R20IWIRIAIBINIS 8900 5 o i o ST 0 M2m2 2 me B2 Q2 B2 823202 BT BIHIZ I HIGIS

FRAME NUMBER

%% ORIENTATION ¥32

(a) area (micons square) 2
(b) perimeter (microns) :
(c) base line (microns) !
(d) connective line (microns) ;
(e) orientation (degrees)

Figure(8.6) Curves. representing the

126.2
117.0
108.0
$3.03
$0.0e3
81.02
72,02
€3.02
34.02
45.01
38.81
27.01
18.01
9.003

FRAI'E NUMEIR
FRAME®: FIRST=313,LAS5T=333

T

) ATYTTT]

N1

I1/14T1B131

1P 10282132282 020202632 73202030 I1IIBIVICTIS
FRAME NUMBER

changes in subpart properties.
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decreasing, or stationary (see Section 7.2 1). Then a
further analysis, that includes splitting and wnerging the
periocde between the key frames, is used in order to generate
the final description of the changes in the property (VERY
SMALL., SMALL., MEDIUM, LARGE. OR VYERY LARGE} (see

Section 7. 2. 2J.

The output is summarized in a number of periods. Each
pericd is bounded by key frames, where the dynamic behaviour
of the property betueen sequential key frames is constant
(increasing, decreasing, or stationary’. The amount of
change in each period is expressed in terms of numerical and
symbolical qualifiers. The former represents changes in the
number of qualification levels (+ or - 8.1,8,3,4). The
latter gives the change in the symbolic qualifier as MEDIUM
~==2> LARGE or SHORT ---2> YERY SHORT. A typical example of a
summary of the global c¢hanges in the properties of a
specific subpart is given in Description (8.1a), and the
result of analyzing & sgpecific property is given in more
detail in Description (8, ib). This data is utilized in
order to determine whether a specific subpart is a pseudopod

or not, as described in the next ss2ction.

8.2.2.1 IsA Subpart A Pseudopod?

A pseudopod is a protrusion forming around the cell
membrane, The study of +the pseudopod characteristics is
essential in understanding the role that the membrane plays

in regulating the social hehaviour of the cell. In order to
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characterize a subpart as a pseudopod, we use production
representational rules that wutilize the dynamic data
associated with 4it, &8 well as constraint knowledge
pertaining <o pseudopods in gemeral. The function of these
rules is to compare the description of specific subpart
properties <o +the pseudopod constraint knowledge. For
example, a pseudopod has an area that should not exceed half
of the cell area, has elongated shape, concave corners,

short base line, and its main axis is almost normal +to +the

cell body. However, these properties change gradually
through the grouwing and contracting of the pseudopod. For
example., a pseudopod starts with a relatively long

base line, very small area, andAmain axis parallel to the
cell body. Thus: we cannot use the properties of a specific
subpart in a static frame +to decide whether it is a
pseudopod or not. We have used the normalized values of the
base line and relative area to characterize a subpart as a
pseudopod or part of the cell body, by using the following

‘

rule:

RULECS. 8):
IF BARSE LINE (SHORT . OR. VERY SHORT>
. AND. ARER (3MALL . OR. VERY SMALL>

==then==> SUBPART <{-~~ PSEUDOPOD

IF _BASE LINE (LONG .OR. YERY LONG>
. AND. AREA (LARGE . OR. VERY LRARGE>

==then==> SUBPART <--- CELL BODY
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In the above rule, the symbolic qualification of two of
the subpart properties is used +to0o characterize it as a
pseudopod or the cell body. However, in many cases this
decision is not clear; in such cases more properties should

be used. such as elongation and regularity.

In the present analysis, a subpart is characterized by

a percentage value FCB indicating +the confidence of its

interpretation as a pseudopod or cell body This walue is
computed as:

PRACy, 1> = PACY.- i> /7 ALY (8. 4>

PRBC(y, 1> = BL(y, i> / PP(J, i 8. 3

where R(i) is the cell area in frame (i), and PR(y, i,
BLC 4,12, PPC(J, 1>, PRACY, 1> a2nd PRBC J, i> are the area, base
line; perimeter, relative area and relative baseline of
pseudopod (J> in frame (i), respectively. Using the walues
of PRA and PRE., <the ualue of PCB can be computed as:
1’2
PCBCi> = [ PRACLY . C(1-PRBCi>> ] (8. 62

Then: using global anzlysis of the curve representing these
values, we obtained the global characterization of the
subpart. an example of this characterization is given in

Description (8. 2a).
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8.2.22 Pseudopod Description

In the preceding section, we described how to
characterize a subpart of the cell as pseudopod or cell
body. In this section, we will discuss the changes in the
_morphologg of a pseudopod in order +to understand and
describe its dynamic behaviour. In +this way, questions
pertaining to the pseudopod kinetics can be answered. For
example, in this particular application, we are interested
in whether a pseudopod is growing, contracting. or

stationary®?.

Suppose a specific subpart is characterized as »
pseudopod during the period Tiy {(ti and tJ are the initial
and final frame numbers of the pseudopod period). Then the
different propertiez which describe the changes in location,
shape and structural relationships during this perieod are

analyzed to generate a description of its dynamic behaviour.

At this stage of study, expert knouwledge about growing,
contracting, or staticnary pseudopods iz limited <to a
definition based on the change in its size. Howaver, in
nany cases, although a pseudopod may be stationary. the size
of the entire cell may change, which conseguently alters the
pseudopod size. The effect of this can be avoided by using
as a feature the change in the relative area of the
pseudopod compared to the entire cell. Using this paramester
and the change in the absolute area of the pseudopod: the

change in +the pseudopod size can be quantified. as a



GLOBAL STRUCTURAL ANALYSIS Page 8-334

percentage value (PCR?, such that:
PA(i> - PRCL-1D
PCA % —mec—emee e 8. 7>
ACi~-1> ~ ALY

where PACi-13:PACL) and ACi~-12, ACi> are the areas of the
péeudcpod and cell in frames (i-1> and (i}, respectively.
This value is used by the following rule 4in order *to
characterize a pseudopod as GROWIMNG, CONTRACTING, or
STATIONARRY:
RULECS. 95:

IF PCA .LT. E1 ==then==> CONTRACTING

IF PCA .GE. E1 .AND .LT. E2 ==then==> STRTIONRRY

IF PCR .GE. E2 ==then==> GROWING
Description (8. 2> ig a typical example of this
characterization. It represents the incremental description
of +the pseudopod characterization. By analyzing this
descripiion; a summary of the pseudopod characterization is

obtained.

8.3 DYNAMIC BEMAVIOUR DESCRIPTION

The observahle changes in the three basic aspects of
the dynamics of a non-rigid mowving obgect (locomotion,
ghape, and structure? have been studied individually.
Howeuver. in most cases, the change in any of these aspects
is related to change in the others. For example, the shape
and structure of an objgect are functions of each other.
Therefore., in order to understand the dynamic behaviour of 3

non-rigid moving obgect. it is not enough to study the
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changes in each aspect individually. We should also =xamine
the relationship betuween the changes in all the dynamic
aspects. In fact, this ig one of our main obgectives. ' HWe
wish +to determine the relationship between the changes in
the membrane shape, pseudopod characteristics, and the
global locomotion of +the cell. In this section we will
discuss the behaviour of a moving cell in order +0 answer
questions pertaining +to the domination of the different
pseudopods in locomoting the cell. Figure (87> shows the

prrocesses and data structures of this stage of analysis.

R pseudopod can be definad as dominant if it leads the
motion. Ne have employed +two measures to compute the
domination. The first is based on two parameters. and the
second on three parameiers. The first approach includes the
following steps:

(a) Repres=nt the dynamic motion of a pseudopod by a wector
PY. This vector is the resultant of two vectors;:; the first
representing the locomotion of the centroid of the
pseudopod., and the second. +the direction of growth or
contraction. The latter can be computed from the increase
or decrease in the pseudopod elongation in the direction of
the main axis of the pseudopod.

(k> Represent the total cell locomotion during the period
pseudopod existerce by the vector CV.

(c? Initiate the vectors PV and CV from a point i, where *i
ig time <(the initial frame number) where the psesudopod

commenced to appear. This is illustrated in Figure (8. 8).
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Figure(8.7) Global dynamic behaviour
understanding and description.
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PSEUDOPOD# 222 FRAME#: FIRST=372,LAST=3E5

CELL
_>

PSEUDOPOD
—e

Figure(8.8) A vector diagram representing the
dynamic changes (location and shape)of the
pseudopod and the total locomotion of the cell.

The vectors represent the resultant motion
during the existence of the pseudopod.
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(d? From the analysis of the wvectors PV and CV, we <can
characterize the pseudopod domination. This analysis is
similar to that described in Chapter 6 for the

characterization of the chemotaxis behaviour,

In this case, the direction of the wvector PY is the
direction of influence. and the vector CV will be used as
the vector sum of +the cell locomotion. Then, by wusing
equation (6. 38), the domination of a pseudopod in locomoting
the cell is quantified and characterized as HNOT DOMINANT.
SLICGHTLY DOMINAMT, ALMOST DOMINANT, ODOMINANT. or VERY
DOMINANT. Figures (8. 9a~8. 9e) show examples of different
pseudopads and their degree of domination of the cell
locomotion. A typical example of the ps=udopod
characterization uging these two wvectors is given in

Description (8. 3).

In the second apptrosch, an additional factor can be
considered in the pseudopod characterization. This
parameter is the relative location of the pseudopod with
respect to the entire cell. This can be presented bwy the
vector PSY, which represgents the connective line betwsen the
centroid of the pseudopod and that of the entire cell. Thiz
is shoun in Figure <8.16>. In this case, the domination OOM
of a pseudopod is a function of three uvactors PV, PS5V, and
cy:

Do = £ C PV, PSY, CV> (8. 82
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PSEUDOPOD#® 143 FRAME#: FIRST=255,LAST=26¢8 PSELIOFODS 177 TIAE#L FIRITRITd,_ ATl
|
-
Figure(8.9a) NOT DOMINANT
PSEUDOPODW S9 FRANEW: FIRST&il4,LnaTa12S PSEUDOPOD# 183 FRAME#: FIRST=313,LAST=I3S

Figure(8.95) SLIGHTLY DOMINANT

— CELL LOCOMOTION
—&6 PSEUDOPOD DYNAMIC CHANGES

Figures(8.9a-8.9b) Vector diagrams of pseudopod behaviour

characterized as: (a) NOT DOMINANT
- (b) SLIGHTLY DOMINANT
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PSEUDUOPILS  $3 L X HEEFE RS E T TR N PSEUDOPOD#H 176 FRAME#: FIRST=294,LAST2311

Figure(8.9c) ALMOST DO MINANT

PSEUDOPOD® 19 FRAME#: FIRST= 3,LAST= 22 PSEUDOPODS 1 FRAME#: FIRST=169,LAST=182

Figure(8.9d) DOMINANT

F‘igurcs(8;9c-8.9d) Vector diagrams of pseudopod behaviour

- characterized as: (¢c) ALMOST DOMINANT
(d) DOMINANT
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PSEUDOPODS €1 FRAME®: FIRSTa "2, a3T72159 PSEUDOPOLS 60 FRANER: FIRGT=111,LAST=129
PSEUDOPOD® 32 FPAME#: FIRST=173,LA5T=182 PSEUDOPOD# 158 FRANE®: FIRST=Z?1,LAST=2Ba
P

Figure(8.9¢) Vector diagrams of pseudopod behaviour
characterized as VERY DOMINANT.
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PSEUDOPOD# 18 FRAME#: FIRST= $5,LAST= 22

—e cell locomotion

-~ —e pseudopod dynamic changes
—eee pseudopod relative location

Figure(8.10) A vector diagram representing the
dynamic changes of a pseudopod, sts relative
location, and the total locomotion of the cell.
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Thus, if we consider the cell locomotion. w2 assume
that specific patterns in the pseudopod dynamics and
location result in cell movem2nt. Analyzing these vectors &
pseudopod can be characterized as VERY DOMINANT., DOMINANT,
ALMOST DOMINANT, SLIGHTLY DOMINANTY. or NOT DOMINANT. These
suymbolic qualifications are used to discriminate between the
different classes of pseudopod domination. However, the
terminology is not egtablished and may be changed in the
future when the characteristic behaviour of pseudopods is
better understood. Description (8 43> gives a typical
example of characterizing different pseudopods using these

three vectors. Examples are shouwn in Figures (8. 11a-8. 1i1e>.

A final step pertaining to pseudopod characterization
is o study the global rate of formation and deformation of
the different pseudopods. and the effectiveness of each in
dominating <the cell locomotion. In order to accomplish
this, we examine the cell locomotion path and the wvectors
representing the dunamics of the different pseudopods in one
vector diagram, as shown in Figures (8. 12a) and (8. 12b).
The wvectors that represent the pseudopods branch from the
cell path at the points where each pseudopod started to
appeat. From thiz figure, one can see the rate of pseudopod
formation and the effectiveness of esach in dominating the
cell path. The cell locomotion in this particular figure
was under the influence of bacteria located in the bottom
left corner of the plane (South-lest). Cell locomntion was

characterized as POSITIVE CHEMOTAXIS (see Description 5. 1.
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PSEUDOPODE 91 FRAME#: FIRST=1699LAST=~182 PSEUDOPODN 143 FRAME®N: FIRST=253,LASTe266

PSEUDOPODS 183 FRAME#: FIRSTs313,LAST=333 PSEUDOPODN 222 FRAME®#: FIRST=372,LAST=383

Figure(8.11a) Vector diagrams of pseudopods that are
~*“characterized as NOT DOMINANT, using three vectors: -

—e  CELL LOCOMOTION
— e PSEUDOPOD DYNAMIC CHANGES

—eee PSEUDOPOD RELATIVE LOCATION
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PSEUDOPOD® 80 FRAMEN: FIRST=154,LAST=160 PSEUOOPODS 138 FRAMNES: FIRST=271,LAST280

Figure(8.11b) SLIGHTLY DOMINANT

PSEUDOPODY 158 ) FRAMEN: FIRST=243,LASTw271 PSEUDOPODS 176 FRAMEM: FIRST=294,LASTs311

Figure(8.11c) ALMOST DOMINANT

Figures(8.11b-8.11c) Vector diagrams of pseudopods
that are characterized using three vectors as:

(b) SLIGHTLY DOMINANT,
< s (o) ALMOST DOMINANT.
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PSEUDOPODY 7 FRAMEN: FIRST= 7,LAST= {7 PSEUDOPODS 37 FRAME®: FIRSTs 33,LASTs 33
L 4
-
PSEUDOPODS 60 FRAME®: FIRST=111,LAST={30 PSEUDOPODS 108 FRAMES: FIRST=199,LAST=214
L 4

Figure(8.11d) Vector diagrams of pseudopods that are
characterized as DOMINANT, using three vectors.
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PSEUDOPODS 185 FRAME®: FIRST=3510,LASTu340

FSgure(8.11e) Vector diagrams of
pseudopods that are characterized

as VERY DOMINANT,
using three vectors.
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Figure(8.12) A vector diagram representing the cell
locomotion path and the di f ferent pseudopods that formed

during a sequence of:
(a) 182 frames, (b) 885 frames.
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One can see from Figure (8. 18> that the dynamic behaviour of
the cell is due to the effect of the pseudopod dunamnics.
filso, we note that the pseudopods guide the cell towards the
bacterias. Thus, if we consider the cell starting at the
origin of +the plane, 4in order to reach the bacteria, it
should move in the South—-West direction. Rs we can see from
Figure (8.12>, whenever the cell started <40 lose this
direction, a pseudopod formed and guided the cell in the

right direction.

The accuracy of the quantification and characterization
of the changes in location, shape, and structure of a moving
cell that obtained by this system, are tested and evaluated
based on & comparison to those obtained by a physiologist

The result of this evaluation is reported in Chapter 2.

8.4 SUMMARY

Understanding and describing the dynamic behaviour of 3
moving cell can be achieved through analysis of the global
changes in its location, shape, and structure, Howewver, the
change that occcurs in any of these aspects is due to and may
cause change in the others. Theresfore, it is not encugh +o
study the changes in esach aspect individually, but we should
study the relationships between them as well., Detection and
description of the global changes in locomotion and shape of
a moving cell from the static and incremental data that are
extracted for a sequence of images are discussed in

Chapters 6 and 7., respectively. In this chapter, w2 hawve
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discussed +two basic issues: (a) detection and description
of global structural changes, and (b2 integration of the
locomotion, shape; and structure descriptions in order to
understand and describe the global dgﬁamic behaviour of ths

cell and it=s pseudopods.

In static scene analysis, the c¢ell structure was
described in each frame of the sequence through a labeled
graph that represents the primitive subparts of the cell.
However, this structure may be false in some individual or
sequence of frames. due to noise, irreleuvant changes. and/or
the three-dimensionality of the cell. In this chapter, we
have described. a rule-based method for detecting and
correcting these false cases. This is accomplished by using
data-driven representational and control rules that wutilize
information extracted from high level processes. and
constraint khowledge about +the <cell under consideration.
The obgective of +these rules is to describe the different
situations, and provide this information to the low leuwel

processes in order to correct specific false structures,

The different properties pertaining to +the location,
motion., shape, and the relative location of sach subpart are
extracted and analyzed. In this way, the dynamic behavisur
of each subpart is described. These descriptions were then
utilized in order to characterize a subpart as (ar cell

body. and <(b)> stationary. growing. or contracting pseudopod.
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The interaction between the external factors and the
internal cell proceeses occurs at or within the cell
membrane by forming and deforming pseudopods. In order *to
understand the mechanisms that regulate the Pormation of
these pseudopods, we studied, in the second part of this
chapter, +the relationship between the cell locomotion and
the characteristics of the different pseudopods. In +his=s
study, a pseudopod  is defined as dominant if it leads the
cell locomotion. Thus: the cell locomotion can be
considered as a cause and effect action. The cause is the
dynamic behaviour of a pseudopod, and the effect is the cell
locomotion. Based on a vector analysis of the global cell
locomotion, pseudopod dynamnics (location and shape?, and
pseudopod relative location. the domination of a psesudopod
is quantified and characterized as VERY DOMINANT, DOMINANT.

ALMOST DOMINANT., SLIGHTLY DOMINANT, or NOT DOMINANT.

Finally. the global locomotion path and the vectors
that represent the formation of the different pseudopods
during the observation petriod, are presented simultaneously
in a wvector diagram: as shown in Figure (8. 128>. Hence.
questions about pseudopod formation, and the effectiveness

of each on the cell locomotion, are answered.
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DESCRIPTION (8.1 a)
SUBPFIRT PRUPERW I}LUBHL HNFlL'r’SI

s== === m=EEnESsEss

SUBPART NUMBER = 5%

FRAME NUMBER : GLOBAL LocAL
FIRST = 86 1
LAST = 117 32

DURATION = 32

CURVE APPROXIMATION THR. = 28.8 4

CLASSIFICATION THRESHOLDS .100 ,. 309 ,.798 ,. 908 ,
PROFERTY RREA

NUMBER OF PERIODS = S

PERIOD  FRAME  TIME CHANGE FEATURE
NUMBER  NUMBERS  ¢SEC)> DESCRIPTION DESCRIPTION
—_—_—mmawms SzsmsSs t-4—3—%-3-3 4333 F 3314 TLxEmEREmEST
1 14 -->3 4.5  <-2>DECREASE  VERY LARGE ->MEDTIUM
2 4 -=>6 1.5 < 1>INCREASE  MEDIUM ~>LARGE
2 7 -->8 1.8  <-1>DECREASE  LARGE ~>MEDIUM
4 9 -->28 16.8 < B>STATIONARY MEDIUM ~>MEDIUM
5 29 --> 32 28  <-2>DECREASE  MEDIUM ~->VERY SMALL
PROPERTY :@: BASE_LINE

NUMBER OF PERIODS = 4

PERIOD FRAME TIME CHANGE FEATURE
NUMBER NUMBERS (Sec? DEbCRIPTIDN DESCRIPTION

1 i--> 208 18. 6 <{-3>DECRERSE VERY LONG <>SHORT
=4 21 --> 22 1.8 < 1>INCRERSE SHORT ->MEDIUM
3 23 -->. 25 1. § <~A>DECRERSE MEDIUNM ~->SHORT
4 26 --> 32 3.3 < 3>INCRERSE SHORT ->VERY LONG
FROFERTY - RELATIVE BARARSE_LINE
NUMBER OF PERIODS = a2
PERIOD FRAME TIME CHANGE FEATURE
NUMBER NUMBERS (SEC> DESCRIPTION DESCRIPTION
=2===== s==msm=== sSmm= oDRTE=I=RIS=ET 22 5 3 3 311t
1 i --> @28 14. 8 <O>STATIONRRY SHORT ->SHORT

2 29 --> 32 2. 8 <1>INCRERSE SHORT ->MEDIUM
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FPROFPERTY - FERTMETER
NUMBER OF PERIODS = 3
PERIOD FRAME TIME CHANGE FERTURE
NUMBER HNUMBERS <(SECLC» DESCRIPTION DESCRIPTION
mMEDSWEEE mmEmmEEs nEISW mERnceREoSEe = SNETommIBEESs
1 1 -->95 e s <~2>DECRERSE VERY LONG ~>MEDIUM
2 6 —-> 2 11.5 < @>STATIONARY MEDIUM ->MECIUM
3 29 --> 32 2.0 <{-2>DECRERASE MEDIUM ~>VERY SHORT
FPROFERTY - CONMNMNECTIVE LINE

NUMBER OF PERIODS = 3

PERIOD FRAME TIME CHRMGE

NUMBER NUMBERS <(SEC> DESCRIPTION

=m=RsR =Emsz=sSm 3431+ =|=REx=mmmEEmss
1 i ~~>95 2.3 <-2>DECRERSE
2 6 -->25 10.09 < 4>INCRERSE
3 26 -->32 3.5 <-25DECRERSE

PROFPERTY -

NUMBER OF PERIODS = 1

PERIOD FRAME TIME CHAMNGE

NUMBER NUMBERS (SEC> DESCRIPTION

==mmER ==sm=== =S|=mss TSZmEmmmERESE

FEATURE
OCESCRIPTION

SR TE=osms

MEDIUM ->VERY LONG
VERY SHORT ->VERY LONG
VERY LONG ~D>MEDIUM

RELLATINVE ARERA

FERTURE
DESCRIPTION

e L b P

16.8 <O>STATIONARY MEDIUM ->MEDIUM
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DESCRIPTION (.1 b)
SUBFART PROPERTY ANALYSIS

T ENsmRsSxsnmoxgEmaEmEmss

SUBPART NUMBER =

FRAME

NUMBER :

DURATION

CURVE APPROXIMATION THR.
CALSSIFICATION THRESHOLD

S8
GLOBRL
FIRST = 86
LAST = 117
= 32
= 20.0 %

PROPERTY :
NUMBER OF PEROIDS = S
PERIOD FRAME
NUMBER NUMBERS
s ZmESSme

1 1 --> 3

2 4 --> 6

3 7 --> 8

4 9 --> 28

s 29 --> 32
NUMBER OF PEROIDS = 5
PERIOD FRAME
NUMBER NUMBERS
4+ 3+ 3 mmEmmse

1 1 --> 3

2 4 --> 6

3 7 --> 8

4 $ --> 28

s 29 ~--> 32
NUMBER OF PEROIDS = 5
PERIOD FRAME  TIME
NUMBER ~HNUMBERS (SEC)

1 1--> 3 1.5

2 4--> 6 1.5

3 7-->8 1.9

4 9-->28  10. 0

S 29-->32 2.8

ARERA

TIME

LOCAL

1
32

(SEC) DESCRIPTION

_———= Erxs==:mss=Sos

1.5 VERY LARGE
1.5 MEDIUM

i1. @ LARGE
18. @ MEDIUM

2.9 VERY LARGE
TIME

CSEC) DESCRIPTION

- o —
=== 24— 11

peEeR
*EOUN

CHANGE
DESCRIPTION

. B4 e i iy vy oo S o
sERsSSRaSmao=sR=

<-2>DECRERSE
< 1>INCRERASE
<-1>DECRERSE
< B>STATIONARY
{-2>DECREASE

=R

<-8>DECRERSE
< 1>INCRERSE
<-1>DECRERSE
< B>STATIONARY
<-2>DECRERSE

PROFPERTY
DESCRIPTIO

VERY LARGE
MEDIUM
LARGE
MEDIUM
MEDIUM

Page B8-494¢

.4808 .. 388 .. 7980 ,. 960 .,

N

-
-

->MEDIUM
->LARGE
~>MEDIUM
~>MEDIUM
~-2>YERY SMALL
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CUNCLUSIUN
% INCRERSE = 7.69%
% DECRERSE = 4103 %
% STATIONARY = 5128 %

GLOBAL CHHNEE DESCRIPTION :

================ [/ E_IZES

SLIGHTLY INCRERSE -MODERATELY DECREASE -MODERATELY STRTIONARY
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DESCRIPTION (8. 2a)
GLOBAL STRUCTURE AMWNALYSIS

SUBPART CHARACTERIZATION :
SUBPART NUMBER = 38
FRAME  NUMBER : GLOBAL  LOCAL
FIRST = 86 1
LAST = 117 32
DURATION = 32

CURVE APPROXIMATION
1+ 333 %

IESSnmRmI=

PERIOD FRAME TIME DESCRIPTION

NUMBER NUMBERS (sec)

==SEsm= 3 31—++§ m=m== TR EREEREISI =TS
i 1 --> 415 7.5 CELL BODY
2 1€ --> 29 7.0 PSEUDOPOLE
3 386 --> 32 1.5 PSEUDOPODE

SUMMARY OF SUBPART CHARACTERIZATION AFTER ANALYSIS

3 13+ 2t 22223 3 3 -4 2 33142 2t 5 23 334+ 143 343334

NUMBER OF PERIODS = 2

PERIOD  FRAME TIME DPESCRIPTION

NUMBER  NUMBERS . (sec)

=== mRESREs mmm= 23—+ 33+ ¢
1 1 --> 15 7.5 CELL EODY

2 i6 ~--> 32 8.5 PSEUDOPOD



GLOBAL STRUCTURAL ANALYSIS

SUBPART NUMBER =

FRAME

DURATION

NUMBER :

DESCRIPTION (8.:2b)
GLOBAL STRUCTURE ANALYSIS

-3 - R -2 % ¥ % B -_F B & SR _Z_ B __&§ 5 B B __& _F § ¥ _F B __§_ 3

PSEUDOPOD CHARACTERIZATION :

ErEEEaNESSNTESRERSN IS ASIENSE

Se

FIRST

LAS

NUMBER OF PERIODS

PERIOD
NUMBER

FRAME
NUMBER
mEmTETTRTE®R
1 --> 15
16 --> 416
1?7 =--> 17
8 --> 18
19 --> 19
28 --> 20
21 --> @24
ge --> g2
23 --> 23
24 --> 24
25 -—--> 2S5
26 --> 26
g¢ -—-> a7
28 -—--> 28
2% --> 289
38 --> 38
31 --2> 31
3g --2> 32

T

is

SUMMARY AFTER ANALYSIS

1+t -t X 45 £

NUMBER Q

PERIOD
NUMBER

EEm=s=

&G

F PERIODDS = 4
FRAME
NUMBER

1+ 1+ 1+ 51 1]

1 --> 15

i¢ --> g8

29 ~-> g9

38 --> 32

=

TI

GLOBAL

86
117

32

ME

(sec)

k33

GOOAREOCNRRLOENRRON

aagaauaaoaaaaguauaaaaaag

LOCAL

1
32

Page B-~-4B7

CHARACTERIZATION

RS 33 1 3+ 33 -F 3

CELL BODY
STATIONARY
STATIONARY
STATIONARY
STATIONARY
STATIONRARY
STATIONARY
STATIOMARY
STRTIONARY
STRTIONARY
STATIONARY
STATIONARY
STATIONARY
STATIONARY
CONTRACTED
STRTIONARY
STATIONARY
STATIONARY

PSEUDOPOD
PSEUDOPOD
PSEUDOFOD
PSEUDOPOD
PSEUDOPDD
PSEUDOPOD
PSEUDOPOD
PSEUDOPOD
PSEUDOPOD
PSEUDOPOD
PSEUDOPOD
PSEUDDFOD
PSEUDOFOD
PSEUDOFOD
PSEUDOPOD
PSEUDDFOD
PSEUDOPOD

CHRRACTERIZATION

CELL BODY

ot g S ot gty e s st e o
b3t

STATIONARY PSEUDOFOD
CONTRACTED PSEUDOQFOD
STATIONARY PSEULCOPOD
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DESCRIPTION (8. 3)
PSEUDOPOD CHARACTERIZATION AND DESCRIPTION

The following results are obtained using the vectors
for global cell locomotion and pseudopod dynamics as
parameters for characterization.

PSEUDOPOD DURRATION POMINATTION
NUMBER (SEC) PERCENTAGE DESCRIPTION
=mmoRE=mms T|ERIUTTmE S =m;meEmE=s -2 3 33§ 114
13 11. 5 3z. 13 NOT DOMINANT
10 9.0 76. 66 DOMINANT
7 5.5 88. 23 DOMINANT
37 9.5 99. 23 VERY DOMINANT
3e 5.5 37. 39 HOT DOMINANT
51 13. 5 98. 76 VERY DOMINANT
1] 16. @ 69. 27 ALMOST DBMINANT
60 16. 0 9%, 24 VERY DOMINANT
99 8.0 97. €0 SLIGHTLY DOMINANT
80 7.5 &06. 24 DOMINANT
91 7.9 76, 28 DOMINANT
Se 5.0 98. 66 VERY DOMINANT
188 £ 0 99. 91 VERY DOMINANT
150 13. 9 98. 33 VERY DOMINANT
143 6.0 24. 88 NOT DOMINRNT
158 5.0 91. 33 VERY DOMINANT
iv7e 19. 5 40. 46 NOT DOMINANT
176 S. 0 68. 65 ALMOST DOMINANT
185 15. 5 99. 84 YERY DOMINANT
183 11. 5 5a. g2 SLIGHTLY DOMINANT
eee 7.8 99. 13 VERY DOMINART
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DESCRIPTION (8. 4)

Page 8-40°9

PSEUDOPOD CHARACTERIZATION AND DESCRIPTION

SEESoRESXTumamSsnmEs

The following results are obtained using the vectors for

global cell locomotion,

pseudopod dynamics, and pseudopod

relative location asz parameters for characterization.

PSEUDOPOD DURRTION
(SEC>

NUMBER

13
10
I
37
32
51
S8
60
o9
80
91
92
108
150
143
158
iv7
176
185
183
gaee

|

aoawpR

-
MOV APWOANN

XY

B
NP

B
o0

SAUONOUIINIIIDRAARUD A

31.
79.
79.
89.
39.
-91.
34,
7e.
43.
S58.
28.
23.
7.
é0.
32.
S8.
S55.
69.
98.
23.
46.

&1
57
43
34
S4
25
14
3]
63
62
61
ga
34
8S
5 g
37
356
i2
91
14
i

DOMINRARTIGON
PERCENTRGE

ZmEmEIDmmmERs

DESCRIPTION

NOT DOMINANT
DOMINANT

DOMINANT

DOMINANT

NOT DOMINANT

VERY DOMINANT

NOT DOMINANT
DOMINANT

NOT DOMINANT
SLIGHTLY DOMINRANT
NOT COMINANT
VERY DOMINANT
DOMINANT

ALMOST DOMINANT
NOT DOMINANT
SLIGHTLY DOMINANT
SLIGHTLY DOMINANT
ALMOST DOMINANT
VERY DOMINANT

NOT DOMINANT

HOT DOMINANT



CHARPTER 9

DISCUSSION AND CONCLUSIONS

9.1 INTRODUCTION

In the preceding chapters of this thesis, we described
the different aspects pertaining +to the construction and
implementation of a system for quantifying and
characterizing the changes in location, shape, and structure
of a moving cell. The discussion in the thesis started in
Chapter 2 with +the review and analysis of the prévious
experience in related areas of study. It ended in Chapter 8
by describing highetr level processes that are concerned with
the integration of the aspects pertaining 4o locomotion,
shape. and structure. in otder o  understand and

characterize the dynamic behaviour of the cell.

This chapter presents a summary and general discussion
of the present resesrch. First, in Section 9.8  the
different azpects described in this thesis will be
summarized, focussing on the main contributions of the
thesis. In Section 9.3 we present examples of experimental
results and their comparison +to +those obtained by a
physiologist. Suggestions for modifying and expanding the

system are discussed in Section 2. 4, as well as
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possibilities for further axperiments and different

applications. Finally, Section 9.3 is 3 conclusion

9.2 SUMMARY AND CONTRIBUTIONS

The primary function of the cell surface is to
transform information from the environment to the cell. I%
has become increasingly evident that the cell surface plays
a2 pivotal role in the life, development, and regulation of
cells. The mechanisms that regulate this social behaviour
are not well understood, but recent experiments have
indicated that the cell membrane plays a wvital role.
However. there is no existing method for quantifying the
observable changes in wembrane shape that oTCur in
locomotion. To &achieve this obgective wusing automatic
techniques of diqital imsge processing, this thesis presents
an image interpretaticon system capable of analyzing the
structural changes in the morphology of a nhon-rigid mouving

’

obgject from a sequence of pictures.

A model for a general dynamic scene analysis system has
been constructed. I+t consists of <three basic entities:
dynamic data, static data, and a collection of analysis
processors. The different +types of data which may be
manipulated by the system have been classified into: a
sequence of images, a group of objects and subob_jects, a set
of object features, sgmbblic descriptors, global behaviour
characteristics. The latter are functions of groups of

features and descriptors used to describe specific
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behavioural patterns. A set of rules, which may be
clagsified as representational and control, is also
employed.

Based on this model, we have implemented & rule-based
image Ainterpretation system for moving cells. The system
consists of different cooperating computational processes.
Conceptually, two different memories are used, a Short Term
Memory (STM> and & Long Term Memory C(LTHM). Both are
implemented as a relational database. The STM is designed
to work as a communication channel for all of the processes.
It contains a dynamic record of the instantaneous cell
motion, shape. and structural changes, as well as the
current description of the cell behaviour, Thg LTH data are
static, and are implemented as rules. These describe the
general model of the morphology of the cells under analysis.,
as well as control information pertinent to the
computational processes. The latter are activated by the
control rules throughout <he three hierarchical analysis
stages: static. dincremental, and global. They interact
through the STM using the information stored in the LTM,
until a complete description of the dynamic cell motion and

morphology is obtained.

Comparing the structure of an image sequence analysis
system described in thiz thesis to others, we may claim two
original contributions. First, the construction of our
model of cell motion as a rule-based system (knouwledge

representation and control strategyl. Within this
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etructure, the dynamic behaviour of the moving cell is
described using generic knouwledge (constraints). and rules.
Consequently. the system has much wider application,
especially for those sgequences containing moving objects
whose motion patterns are not known a priori, or which
exhibit random motion. Second. in our work we analyze,
quantify, and suymbolically describe the structural changes
of non-rigid moving objects, a subgect hithertec neglected.
In particular, the quantification of the pseudoped dynamics

has not appeared in the literatursa.

Constructing and implementing an understanding system
capable of analyzing and describing the dynamic behaviour of
a mowving cell represents a merging of four different
disciplines in computer vision and image processing. They
are: (a’)> Automatic Processing of Microscopic Images. (b>
Inage Sequence Analysis, (c) Shape Analysis and Description,
and (d> Knowledge-Based Systems. An analysis and brief
review of the significant work done in each of these areas.
as well as the contribution of our work in each field. was

summarized and preszsented in Chapter 2.

With regard +to the general problem of processing
dynamic images, two main issues have been ignored by mnost of
the past research: (a) shape and structural changes of a
non-rigid moving object, and (b} motion understandirg and
description. These issues are among the aspects addressed

in +this thesis. UWe analyzed the dyramics of a moving cell,

which changes its shape and structure randomly due to its ..
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physical properties. Thus, we have considered thres kinds
of changes with time: locomotion, shape, and structurs.
ARll alter randomly from frame to frame and interact with

each other.

To achieve the objectives of motion understanding and
description, it 4is not enough to merely determine the
incremental movements or changes that occur between
consecutive images. What is required is a system which
abstracts a description of the global motion characteristics
from the static and incremental data. Development of such a

system represents the approach taken in our research.

Shape analyszisg and description is a central issue to
most computer vision and pattern recognition systems. This
problem was discussed in the thesis. Besides the g2netral
difficulties of describing an arbitrary shape in a specific
image, we have studied <the following problems: (al
Estimating the incremental change in the shape and structure
of a non-rigid moving object such as a cell. (b> Detecting
and characterizing the structural changes in its morphology
over a period of time from a sequence of pictures. <
Presenting all of the above descriptions in a meaningful

terminology to the user.

e have developsd a procedure which produces a
meaningful symbolic description of the shape and its
changes. We have also presented an expression for measuring

the complexity of an arbitrary shape. This expression is
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based on a group of selected shape ’properties which are
independent of <translation, rotation, and size. Anothenr
shape property was introduced +to0 measure <the degree of
curvature regularity <angle and side regularity’ of the
shape of an obgect. This property is shown experimentally
to play a considerable role in shape discrimination and is

used to describe membrane shape.

It is of interest to describe the dynamic activity of a
cell using ' symbolic terminology which is meaningful to the
individuals working in cell biology. MWith the aid of this
system, one of the cell’s primary behavioural
characteristics is described, hamely, the chemotaxis. This
refers to the directionsl locomotion of the cell influenced
by an external factor. Thus, the effectiveness of the
latter on modifuing the cell locomotion is quantified. The
global changes in the cell structure are also analyzed
Hence: a subpart of the cell is classified as being either
"pseudopod" or "cell body®. A pseudopod is described as
“growing"., "contracting®, or “stationary". Furthermnors2,
other aspects of the global behaviour of the cell are
characterized and described. For example, the "domination"
of a pseudopod in contributing to +the locomotion of the
cell. Samples of the geherated characterization are given

in Descriptions 4.1, 3.1, 6.1, 7.1, 8.1, and 9 1,
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9.3 EXPERIMENTAL RESULTS

9.31 MNeutral Rnd Chemotactic Conditions

The system has been tested by quantifying and
characterizing <the dynamic behaviour of a polymorphonuclear
leucocyte (PMN>, as well as. its‘pseudopod kinetics in both
chemotactic and nrneutral conditions. In the chemotactic
case, the cell motion was recorded under the influence of a
small sample of ‘E. coli’ <(bacteria’). Figure (9 1> shows tuwo
frames of the same seguence (9 and 162). In +this figure,
the bacteria are shouwn in the South-Hest corner of the
image. We can se¢ that the cell in the North-West corner in
frame 9 has moved towards the bacteria in frame 192. This
indicates positive chemotaxis. A sequence of 4580 frames
(225 seconds) was analyzed by the system. The complete
description of the results of the different stages of the
analysis was pregsented throughout the thesis. For example.
the global locomotion’of the cell is described by the system
as “THE CELL HRS AN AVERAGE POSITIVE CHEMOTRXIS" (soe
Description 6.1 for complete details). In addition, the
pseudopod dynamics that contributed +to0 this chemotactic
locomotion are quantified and characterized, a complete
description of which iz presented in Descriptions 8.3 and

8.4 (also see Figures 8.18 fto 8. 12 inclusive),

With respect to the neutral condition. the cell motion
was recorded without the presence of external chemotactic

factors. The same experiments conducted for chemotactic
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"Fignre(o‘lj ‘Typical examples of input iniages at different ...

limes in a recorded sequence of the dynam.zc movement of

e neutrophil cell,

The cell in NE corner in frame 9 has moved in a South-

" Westerly directton tn frame 108.
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locomotion were used to analyze the cell dynamic behaviour
under the neutral conditions. Examples of +the results of
these experiments are shown in Figures (9. 2> to (9. 5). In
order to understand the difference betueen the cell dynamics
under chemotactic and neutral conditions. we present in
these figures the cell path using the same sampling
parameters for both chemotactic and neutral conditions. The
same number of frames (66> is shown in each case. From
these figures, we can observe the following: (a) The cell
path under chemotactic conditions is straighter and more
directed than the one under the neutral conditions (see
Figures 9.2 and 3. 3). (b)) The vector representing the total
locomotion of the cell in the different directions of the
plane is ALMOST SIMILAR for the neutral conditions. This
situation is described by the system as RANDOM LOCOMOTION.
In the chemotactic case, +the wvector is LONGER in the
direction of +the bacteria (see Figures 9.4 and 9. 5. The
vector sum of the cell locomotion is almost zero in the
neutral case, whereaé in the chemotactic condition it has a
value in the direction of the bacteria (see Figure 9. 5.
This is the situation euen though a relatively short path is
examined in the example shoun in these figures. The
amplitude and direction of the motion vector are utilized to
quantify and deszscribe the ch2motaxis behaviour €1-1)

Section 6. 4).
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Frame number: First=1, Last==60, Sampling==1 frame (.5 seconds)

€CHLE

»
1.7

MICRONS

(a) Cell path under chemotactic condition.

Frame number: First=1, Last=60, Sampling==1 frame (.5 seconds)

SCALE

( :
B.c

MICROHS

(b) Cell path under neutral condition.

Figure (9.2) Time sampling of the cell path under

neulral and chemotactic conditions.
(a) Chemotactic (b)Neutral.
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- Framenumber: First=1, Last=60, Sample distance=2 microns (2 pixels) -

SCALE

1.7

MICRONS -

(a) Cell path under chemotactic condition.

Frame number: First=1, Last=60, Sample distance=2 microns (2 pixels}

SCALE

3
a.4
HICRONS

F‘:gure(g 8) Distance sampling of the cell path under

(b) Cell path under neutral condition.

- chemotactic and neutral condstions.
(a) Chemotactic (b) Neuiral.
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Frame number: First=1, Last=60, 4 state analysis

K

N
/ERI>
:
c
gH

Frame number: First=1, Last==60, 4 state analysis

(a) Chemotactic.

7S

(b) Neutral.

Figure(9.4) Vector sum of cell locomotion in each
of four directions under: (a) Chemotactic condition
(b) Neutral condition.
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Frame number: First=1, Last=60, 8 state analysis

j RESULTANT LOCOMOTION

(a) Chemotactic.

Frame number: First=1, Last=60, 8 state analysis

=XK=

RESULTANT LOCOMOTION

)

(b) Neutral.
Figure(9.5) Vector sum of cell locomotion in each

e g eight “directions under: (a) Chemotactic condition - «= oo

(b) . Neutral condition.
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The above observations represent an example of the
dynamic behaviour that are quantified preciesly by the
system and summarized in numeric wvalues and symbolic

description that is a meaningful to the biologist.

9.3.2 Comparison To Characterization By R Physiologist

The quantification and chsaracterization of the changes
in 1location. shape, and structure of a moving cell that are
obtained by this system have not been computed before.
either visually (biologist) or automatically (computers’. In
order to test the accuracy of the resulting data. the ouput
information at each stage of analysis was presented to a
phuysiologist (Dr. P. Noble, Faculty of Dentistry, MNcGill
University>. Most of the computer results agreed with his a
priori knowledge asbout cell and pseudopod dynamic behaviour.
Howewvet, some of these data, especially those pertaining to
specific membrane shape and structural changes, cannot be
evaluated at this tiMG because they have not been reported

before. and are not yet well understood,

The same sequence of frames that was analyzed by the
system has been studied by the physiologist. The pseudopods
that were characterized automatically are described in
Descriptions (8.3 and (8.4)>, and those inspected wisually
are reported in Description (2. 1>, We have compared the tuwo
sets of results., and this comparison is shown in
Descriptions (9.2 and (9 3). R percentage error is

estimated based on the differences in the characterization.
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The results indicate an error of 184 in the case where cell
locomotion and pseudopod dynamic changes were used as
characterization parameters. This error is reduced to 184
by using the pseudopod relative location as the third

parameter for characterization.

From this comparison, we claim that +the system has
successfully characterized the kinetics of the pseudopods
that contribute to the cell locomotion. Using the developed
technique, it is now possible to study why in random motion
one pseudopod becomes dominant and to comnpare these
péeudopod characteristics with psesudopods during chemotactic
locomotion. The technique. being applicable <o other
leucocyte +types, i. e. lymphocytes, will enable one to study
pseudopod kinetics in positive and negative chemotaxis.

This future study is discussed in the following section.

9.4 FUTURE WORK

Lymphocytes play an important role in host defense
mechanisms. They are a heterogeneous group of cells which
can be subclassified on the basis of their functional
response. ‘B’ lumphocytes are bone marrow dependent and
produce antibodies in response to antigenic challenge. The
thymus dependent ‘T lymphocytes are responsible for
cell-mediated immune response as well as the regulation of B

cell function [Pritchard et al.. ?731.
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Recently, the T lymphocytes have been subfractionated
into +three classes based on the surface receptors to the Fc
portion of the immunoglobulin IgG and IghM. One class
consists of “T“ cells having receptors for IgM; that is the
Tm cells enhance the activity of 8 lymphocytes +to produce
antibody. The second class of T cells:, with receptors for
IgG:; Tg cells suppress B lymphocyte activity C(Ferrarini et
al., 7S; Moretta et al., 735). A third class of T
lymphocytes, To, hasg neither of the above receptors and has
been implicated in the natural killing of tumour cells
[Suksela et al., 79]. These lymphocyte subsets have been
shown to respond differently to wvarious lymphocyte
cytotaxins [El-Nagar et al.. 881]. It has been shoun
recently that lymphocytes exhibit a negative chemotaxis
against certain stages of the natural history of tumour

cells [Noble and Lewis, 791.

It would be of interest +to0 utilize +the pseudopod
characterization technique discussed in this thesis to study
the pseudopod kinetics of T cell subsets undergoing random
locomotion and positive and negative chemotaxis. The
characterization of lymphocyte locomotory responses would
allow wus to detect, if any. abnormalities in locomotry
response existing in a variety of disease states. If these
exist, then the efficiency of lymphocyte host defense

mechanism could by severely compromised.
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In this section., we discussed the use of the developed
technique in future research and experiments pertaining to
the understanding of the dynamic behaviour of different
types of cells. However, there are other suggestions for
modifying and/or expanding the system. in particular for the

use in other applications. This will be discussed below.

In this research we have studied the dynamic behaviour
of a moving cell from a sequence of two-dimensional images.
Most of the ¢false <gegmentations. decompositions. and
artifactual changes are due to the effect of the three
dimensionality of the cell motion. Fortunately, in the
present application, the +three dimensional motion of the
cells is restricted to some extent, because these cells
(PMN> require a substratum on which they flatten before
commencing locomotion. However., for general aspplications,
for example, human, animal, or uvehicles motion, it would be
necessary to employ more sophisticated processes and rules
that consider <the three-dimensional changes in motion.

shape, and structure of the moving object.

The image sequence analysis discussed includes three
main stages: static, incremental., and global, Most of the
problems sncountered st the incremental and global stages
are due to errors committed by the low level processes. The
latter are responsible for the segmentation and description
of the cell in each frame of the sequence. Improving the
performance of the low level processes will solve most of

these _ problems. __For ,example, we are employing simple
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segmentation methods based on histogram thresholding
techniques and filtering operations that wutilize data
resulting from the analysis of preuioqs frames and
constraint knowledge pertaining to the cell structure. The
result of the segmentsiion may be improved if we employ more
sophisticated <techniques that utilize general knouwledge
about lines, regions, areas, and textures, such as for
example, the system reported by Levine and Nazif [Lewvine and

Nazif, 821.

9.9 CONCLUSION

The structural changes in the cell morphology that
occur during locomotion have not been previously reported in
the literature. Furthermore, in spite of the importance and
great interest in understanding the role that the cell
membrane plays in the locomotion, thare is no existing
method for qQuantifying and analyzing the observable changes
in the membrane shape. In this research, we have developed
an image interpretation system capable of gquantifying.
analyzing, and describing the structural changes in the

morphology of a moving cell.

The system has successfully provided all the
quantification, description, and characterization
information whereby basic questions pertaining to the cell’s
dynamic behaviour can be answered. This study might prouvide
clues to the nature and distribution of ‘“receptors" on or

within the membrane which would be a vital link in the
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interaction between the external factors and cell internal
processes. Also, it might lead to the understanding of the
roles the cell membrane plays in the mechanisms which

regulate the social behauviour of the cell.
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DESCRIPTION (9. 1)
PSEUDDPUD CHARACTERIZATION AND DESCRIPTION

SREVTLTIMEAXVREDNC SN IT I/ oSN BB s

Classification of different pseudopods into  five
categories according o their domination of +the cell
locomotion. The following characterization is obtained by
visual observation.

PSEUDOFOD CATEGORY OCOMINATION
NUMBER NUMBER DESCRIPTION
SExxomsEs -+ 5311 34 4+ 3433+ 3-3 3 3
13 2 SLIGHTLY DOMINANT
10 3 ALMOST DOMINANT
7 3 ALMOST DOMIMNANT
37 4 DOMINANT
32 1 NOT DOMINANT
51 S VERY DOMINANT
58 i NOT DOMIMANT
60 S VERY DOMINANT
99 2 SLIGHTLY DOMINANT
8a 1 HOT DOMINANT
91 S VERY DOMINANT
92 S VERY DOMINANT
ioe S VERY DOMINANT
150 - UNDEFINED
143 - UNDEFINED
158 - UNMDEFINED
177 - UNDEFIMNED
176 - UNDEFINED
1385 - UNDEFINED
183 - URDEFINED
22e - UNDEFIMNED
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DESCRIPTION €9.2)
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PSEUDOPOD CHARACTERIZATION AND DESCRIPTION

EasErNSDarEsEaAIaRmEEII TR I TR e anoommnes

The following is the result of
characterizations
automatically by the system,

pseudopod

with
using two vectors parameters.

comparing the wvisual
those generated

PSEUDOPOD
NUMBER
SnmmmmmmDs
13
10
7
37
32
51
58
60
59
80
91
92
108

156
143
158
177
176
185
183
az2

VISURL
CHARACTERIZRTION
SEEErnpEmTonEmEREma
SLIGHTLY DOMINMANT
ALMOST DOMINANT
ALMOST DOMINANT
DOMINANT
NOT DOMINANT
VERY DOMINANT
NOT DOMINANT
VERY DOMINANT
SLIGHTLY DOMINANT
SLIGHTLY DOMINANT
NOT DOMINARNT
VERY DOMINANT
VERY DOMIMANT

UNDEFINED
UNDEFIMNED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED

AUTOMATIC

CHRRARCTERIZATION ERROR

SnmaNmEsERRmIss
NOT DOMINANT
DOMINANT
DOMINANT

VERY DOMINANT
NOT DOMINANT
VERY DOMINANT
ALMOST DOMINRNT
VERY DOMINANT
SLIGHTLY DOMINANT
DOMINANT
DOMIHANT

YERY DOMINANT
VERY DOMINANT

VERY DOMINANT
NOT DOMINRNT
VERY DOMINANT
NOT DOMIMNANT
ALMOST DOMINANT
VERY DOMINANT
SLIGHTLY DOMIMANT
VERY DOMINANT

TOTAL PERCENTRGE ERROR = 18 X

Note:

characterized

visually,

and thay

computation of the total percentage error.

O+ + O+ + + +

SR I IR IR R N N

a0 Sy o
m=maRE

The UNDEFINED pseudopods are those that could not be
are not included in the
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DESCRIPTION ¢9.3) -
PSEUDOPOD CHARACTERTZATION AND DESCRIPTION

The following is the result of comparing the wvisual
peseudopod characterizations with those generated
automatically by the system, using three vector parameters.

PSEUDOPOD VISUARL AUTOMATIC
NUMBER CHARARCTERIZATION CHARACTERIZATION ERROR
mmmmmEE=s SEEsmmumEma=EIEs -3 3 3 3 3 -+t 3 141 ===
13 SLIGHTLY DOMINANT NOT DOMINANT -1
ie ALMOST DOMINANT DOMINANT + 1
e ALMOST DOMINANT DOMINANT + 4
- 37 DOMINANT DOMINANT %)
32 NOT DOMINANT NOT DOMINANT 0
51 VERY DOMINANT VERY DOMINANT 0
S8 NOT DOMINANT NOT DOMINANT %)
60 VERY DOMIMNANT DOMINANT -1
59 SLIGHTLY DOMINANT NOT DOMINANT -1
8a SLIGHTLY DOMINANT SLIGHTLY DOMINANT 8
o1 NOT DOMINANT NOT DOMIMANT a
og YERY DOMINANT VERY DOMINANT %)
ieg VERY DOMINANT DOMINANT -1
150 UNDEFINED VERY DOMINANT ?
143 UNDEFINED NOT DOMINANT ?
158 UNDEFINED VERY DOMINANT ?
1727 UNDEFINED NOT DOMIMANT ?
176 UNDEFINED ALMOST DOMINANT ?
185 UNDEFINED VERY DOMINANT ?
183 UNDEFIHNED SLIGHTLY DOMINANT 2
2e2 UNDEFINED VERY DOMIMANT ?

TOTAL PERCENTAGE ERROR = 18 2

Note: The UNDEFINED pseudopods are those that could not be
characterized visually, and they are not included in the
computation of the total percentage error.



AFPEMDIX <A>
ANGLE AND SIDE REGULARITY

Regularity is a shape property that humans have always
used to describe +the shape of different obgects. This
property has not yet attracted much attenstion as a shape
descriptor in the computer vision literature, In order to
make use of it, we can determine the irregularity of the

polygon approximation of an obgect by comparing it to a

perfectly regular polygon. The measure is based onh two
criteria, angles and sides. Definitions and mathematical
formulas for computing each are given in Section 4.5 The
following is a short proof of these formulas,

equations (4. 26—-4. 239> inclugive.
ANGL.E REGULARITY

In this measure, the angles of a polygon are used as 2
cr-iterion for measuring its regularity. Thus, the shape of
an obgject can be described as perfectly regular, if all the
angles of its polygon approximation are egqual. Examples are
squares, rectangles. pentagons, and hexagons. For a polygon
with n verticies ail. aé, a3,..., ai,..., an, the sum of the
internal angles (An) is:

i=n .
An = sum ai = (n-2> . 41i88. (A. 1>
i=1
In the case of a polygon with regular angles, we have

al = a2 = a3 = ..., = ai = _..an = A,
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and A = (n-2). 180 / n. CA. 2>

The irregularity of a polygon representing & given shape
can be defined based on a measurement of the sum of the
differences between its angles and a regular one having the
same number of vertices. This difference sum AD can be

computed as:

i=n 2 i/2
AD = [ sum <Cadi - A> 1 {R. 3>
i=1

Thus, AD = @ for a perfectly regular polygon. and the
higher the value of RAD, the more irregular it is. This value
can be normalized +to range between © and 1, where @
correspohds to the pefacily regularlshapea and 1 to the most
irregular one. In this case, a normalization factor Ka can
be wused to obtain a measure for the RAngle Regularity (AR},
as:

AR = AD / Ka. B<CAR C 1 (A. 4>

To determine the value of Ka, which ﬁormalizes AR, Ka
should equal the maximum possible walue of RARD for the
different polygons that having the same number of vetrtices.
Thus, set

Ka = ADmax . C(R. 3>
where ADmax is the sum of the differences between the angles
of perfectly regular polygon and the corresponding one which
has the same number of vertices and the most irregular

arngles. . = Figure (A 13> shows exambles of the {ollowing
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perfectly regular polygons: equilateral +triangle, square,
and pentagon. Figure (A, 1b) shows the corresponding polygons
that have the same number of vertices and most irregular
angles. From these figures. and by using equation (A 3>, the
value of ADmax can be determined as function of the number of
vertices <(n> for polygons with even and odd number of
verticies, as follous:

POLYGONS WITH EVEN NUMBER OF VERTICIES

(-t 2 3t 3+ 3 3 43 3313 3+ 2 23+ 32332+ 1+ 3 31 2 % 1 3 23 3}

ADmax = (n/2 + 1> A + (n/2 -~ 1) (360 - A>
=n/2 A+ AR+ (N2 -~ 1> 368 - (<n/2 - 13 A
=n/2 A+ A+ (n -~ 2> 180 - n/2 R + A
ADmax = 2R + (n - 2> 186 (R. &>

Substituting from equation (A 2) into (A.6), we obtain

Almax = A(n+2) . (A. 7

POLYGONS WITH ODD NUMBER OF VERTICIES

3+ ¥ ¥+ 1+ 3ttt i+ t-c3 i+ 1335 fI 3+ t5114
n - 1 n - 1
ADbmax = ( ————= + 1 >R+ { ———ee - 41 5 (360 - A + (180 - A>
c , e
n + 1 n -3
= ( me———— DA+ ( ——mem Yy (368 - ARY + <4186 - A
2 +4 :
n + 1 n -~ 3 n - 3
= ( ——m——— A+ ( mmemee ) (3683 - ( ————— > ¢AY + (488 - A>
e 2 2
n + 1 n -3 n -3
& { m———— 4 m——— Y CAY + ( s ¥ (368) + (4188 - R
2 e 2
= A + {n - 2 188 (R. 8>

Substituting from equation (A 2> into (A. 8}, we obtain

ADmax = A{n+i) . CR. 9
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(a) Examples of perfectly regular polygons.

(b) Examples of polygons having the most irregular angles.

\<::>

(c) Examples of polygons having the most irregular sides.

(/

- Figure(A.1) Per fectly regular polygon
approzimations with corresponding
ones that have the most zrregular

- angles and the sides.
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SIDE REGULARITY

The lengths of the polygon sides are used in this
measure as a criterion for determing irregularity Thus, a
polygon is described as perfectly regularzif all the sides
have equal length. For example, an equilateral triangle or a
square, For a polygon with n sides 11, 12, 13,..... 1i,

.+ ln, the perimeter P is computed as:
i=n
P = sum 1li . (B. 13
i=1
In the case of a polygon with regular sides., we have
11 =12 =13 = ... = 1li = ., .1ln = L,

and L= P/An. (B. 2>

The irregularity of a polygon can be defined based on a2
comparison with a regular polugon approximation having the
same number of sides and perimeter. Thus, the sum of the

differences LD can be coanputed as:

i=n 2 1i/2
LD = [ sum <(li - L>» 1 (B. 3>
i=1

Note that LD = 8 for a polygon with regular sides, and
the higher the value of LD, the more irregular the shape. In
a similar fashion to that described abowve, the wvalue of LD

can be normalized betwsen 8 and 1 to obtain a measure for the

Side Regularity (SR>, as:
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SR = LD 7/ Ks, 8 {SR<C 1 (B. 4>

and Ks = LOmax (B. 5>
where LDmax is the sum of the differerces between the lengths
of a regular polygon and the corresponding one which has the
same number of irregular sides. Figure (A. 1c? shouws
carresponding polygons that have the same number of irregular
sides for those shown in Figure (R. 1a). From these figures,
and by using equation (B.3>, the wvalue of LDmax can be

determined as function of the number of sides (n) as follows:

LDmax = (n=-2>» L + <h L -2 L3
=nlL-2L+nL-2°L

LDmax = 2L<{n-2> (B. &>
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APPENDIX (B>
LABORATORY FACILITIES RHMHD METHODS
Blood Cell Preparation

C

Polymorphonuclear leucocgtés (FMN: were prepared by
pricking a finger and placing the drop of blood on a
cverslip. After incubating for 2% minutes at I?7°C in a moist
chamber. the plsma clot was removed and the remaining red
ce;ls washed off with Hank‘s balanced salt solution [(Boyarsky
and HNoble, 7?71 The adherent PMN were covered with Minimal
Essential medium, Harpes buffered pM?. 2 containing 207 fetal
c3lf serum and the coversilp was placed on s standard 3" x 1
cover slide and +the edges sealed with molten wax. For

é:; chemotaxis experinents a small sample of ‘E.coli’ was heat
fixed to the coverslip prior to placing upon it the drop of
bkleood. The locomotory +tregjectories of the PHMN's were
followed using a Bolex-Wild time~lapse unit at 2 frames per
second. A wild M48 inverted microscope with phase contrast

optics and 308X magnification was used.

COMPUTATIONAL FACILITIES

The experimental work for guantifying and characterizing
the dynamic behaviour of a moving ce2ll is presentig operating
on the computational facilities of the Computer Vision and
‘:; Graphics Laboratory <CVaGL)», McGill University. The main
processor of the laboratory is a DEC VAX 14/788 computer with

a wvirtual memory that allows up <o two million bytes of

addr‘ess |SAarte Th.ee rmenmsmlasm el a8 e oo
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main processor wvia a LUNIBUS interface include a GRINNELL
Model GMR 27, 24 plane colour graphic television display and
frame grabber. In addition to standard input terminals, a

magnetic tape unit, a disc unit, and a line printer.

The GRINMELL alzo controls a Joystick for interactive
communication with the display. A microprocessor interface
is presently being added to the facility for control of a
film advance unit. It provides complete software capability
for advancing 46 mm cine film automatically or on a
frame-by~frame basis. The image scanned by A COHU Model 43353
TV camera is captured wia the GRINNELL Graphic Digitizer

option at a rate of up to 38 frames per second.

The GRIMNNELL prouvides a 256X256, 64 gray level image
intensity array which is stored in the GRINNELL video plane
memory, accessable to the VAX. Under the command of the VAX,
a micropr&cessor interface is used +to .control the film
advance device, while the cine frames are digitized by the

GRINNELL and stored on magnetic tape or disc.

The option of real %ime tracking and analysis is also
possible by connecting the TV camera directly to the
microscope and viewing live blood cells. This method is

described in detail in [Levine and Youssef, 78, Knoll, 791.
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