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Abstract

This thesis trcats of the issue of distortion in magnetic resonance (MR) imaging, with
focus on Echo Planar imaging (EPI) and anatomical 3D imaging.

After a review of MR theory, the principle of image formation, an analysis of
distortion in the context of MRI and field mapping principles, an analysis of the EPI
image formation process, which reveals the two-dimensional nature of the EPI point-
spread function (PSF'), is presented, and a full 2D correction technique based on the
inversion of the 4D tensor EPI imaging equation using the Conjugate Gradient (CG)
method is proposed. A 1D approximation of the technique is also derived for cases
where the PSF can be approximated as being one-dimensional, such as in Fourier
imaging, or EPI imaging in fields with low field inhomogeneity.

The proposed technique is demonstrated by means of computer simulations, and
several aspects of its implementation are studied. A comparison between different
correction methods based on field map data, still using computer simulations, is pre-
sented and reveals the behaviour of the different methods when applied in non-ideal
conditions.

Finally, the practical application of the proposed method is demonstrated on real
EPI scans and gradient echo images.

This work reveals some interesting characteristics of the correction method based

on the CG algorithm, like fast convergence, possibility to recover from severe distor-



tions and EPI By-induced ghost artifacts reduction, but it also points out limitations
of this correction method, such as potentially high computational cost and noise sen-

sitivity.



Résumé

Dans cette these, le probléme de la distortion dans les images de résonance magnétique
(IRM) est étudié, plus particulierement dans le contexte de l'imageric écho-planaire
(EPI) ainsi que de l'imagerie de Fourier conventionnelie.

Aprés une révision de la théorie sous-jacente aux principes de résonance magnétique
et de la nature des distortions, une analyse du processus de formation d'image par la
technique EPI révéle la nature bi-dimensionnelle de la fonction d’étalement de point
(PSF), et une méthode de correction 2D basée sur l'inversion, par la méthode des gra-
dients conjugués, du systéme d’équations 4D représentant le probleme est proposée.
Ensuite, le cas particulier dans lequel la fonction d’étalement peut étre approximée
par une distribution unidimentionelle est dérivé.

La méthode proposée est démontrée au moyen de simulations par ordinateur et
différents aspects de 'implémentation de la méthode sont étudiés. Une comparaison
des différentes méthodes de correction des distortions dans les images d'TRM dans des
conditions non idéales est ensuite effectuée.

Finalement, ’application a de véritables images de résonance magnétique est
démontrée dans le cas d’images écho-planaires, et d’images provenant d’une étude
3D en écho de gradient.

Ce travail révele d'importantes caractéristiques concernant la méthode de correc-

tion basée sur les gradients conjugés, telles que la convergence rapide, la possibilité



de restorer de sévéres distortions et la réduction des fantomes, dans les images EPI,
causés par les inhomogénéités du champ magnétique. Il souligne par contre les lim-
itations de cette technique, telle la sensibilité au bruit et les longs temps de calcul

qu’elle requiert.



List of Figures

1D vs. 2D correction, and the respective applications.

Available states of the magnetic moment for a spin 1/2.

Distribution of spin population. . . . . . . ... .. ... .......

Precession of the magnetization

.....................

Excitation in the lab reference frame.

.................

Excitation in the rotating reference frame.

...............

Encoding in spin-warp imaging and the relation to k-space trajectory.

Examples of the NMR sampling function magnitude.

Simultaneous measurement of By and gradient errors.

--------

The EPI image process.

The EPI sequence and its k-space trajectory

..............

Spin-echo sequence with the gradient echo shifted from the spin-echo.
Typical gradient-echo sequence.

.....................

Conjugate gradient iterations on noisv data

..............

Sekihara’'s geometrical distortion correction method.

.........

Weis’s distortion correction mecthod

Conjugate Phase Reconstruction for an EPI image.

..........

INlustration of the Tilted View Angle Technique.

...........

(41}



3.5 Echo ProjectionImaging . . ...................... 64
4.1 The EPI point spread function . . ... .. ... ... ... ..... 71
4.2 Illustration of the origin of field-inhomogeneity related ghosts. . . . . 72
4.3 The 4D tensor equation in matrix form. . . ... ... ... ..... 73
4.4 Line component of the EPI k-space trajectory. . ... ... ... .. 78
4.5 Column component of the EPI k-space trajectory. . . ... ... .. 79
4.6 Main component of the EPI point spread function. .. ... ... .. 80
4.7 Ghost component of the EPI point spread function. . ... ... .. 81
4.8 The two components of the EPIPSF . . . . ... ... ... ..... 82
4.9 Algorithm for the computation of the 4D kernel A . . . . . ... .. 83
4.10 Various matrices involved in 1D correction. . . . ... ... .. ... 88
5.1 Analytic phantom used in the simulation . ... ... ... ..... 92
3.2 Simulated EPI images and By maps used in the simulations . . . . . 93
5.3 Algorithm for the calculation of the simulated EPI image. . ... .. 94
3.4 Effect of the number of iterations in the 2D CG algorithm. . .. . . 101
5.5 Effect of the sparsity level of the kernel in the 2D CG algorithm. . . 102
3.6 Effect of the number of iterations in the 1D CG algorithm . . . . .. 103
3.7 Effect of the sparsity of the kernel in the 1D CG algorithm. . . . .. 104
5.8 Simulations of the effect of EPl image noise . . . . .. ... .. ... 107
5.9 Effect of EPI image noise. Maximum By amplitude = £ 25 Hz. . .. 108
5.10 Effect of EPI image noise. Maximum B, amplitude = £ 30 Hz. . . . 109

=

'Ol

Effect of EPI image noise. Maximum B, amplitude = + 75 Hz. . . . 110

[ %)

'CH

Correction with EPI SNR=oc, and By max. amplitude = £+ 25 Hz. . 111

(41}

1
1
.13 Correction with EPI SNR=70, maximum B, amplitude = + 25 Hz. . 112
1

3.14 Correction with EPI SNR=50, maximum B, amplitude = + 25 Hz. . 113



5.15
5.16

Correction with EPI SNR=00, maximum By amplitude = + 50 Hz.

Correction with EPI SNR=70, maximum B, amplitude = + 50 Hz. .

5.17 Correction with EPI SNR=50, maximum B, amplitude = £+ 50 Hz.

5.18
5.19
5.20
5.21
5.22
5.23
5.24
3.25

5.26

6.1
6.2
6.3
6.4
6.5

Correction with EPT SNR=00, maximum By amplitude = £ 75 Hz.
Correction with EPI SNR=70, maximum B, amplitude = £+ 75 Hz.
Correction with EPI SNR=50, maximum B, amplitude = + 75 Hz. .
Simulations of the cffect of By map noise

...............

Effect of By map noise

Correction with By SNR=10, maximum By amplitude = £+ 50 Hz.
Correction with By SNR=30, maximum By amplitude = + 50 Hz.
Correction with a noisy, unprocessed By map.

.............

Correction with a noisy, masked By map.

High and low bandwidth gradient-echo 3D imaging sequences.
By field mapping sequence. . . . .. .. .. ... ... ..
CP and CG reconstructions of the EPI image of a phantom.

........

Distortion correction on a volunteers head EPI image.

Distortion correction a flash acquisition with the CG1D method.

134
135
136
137
139



Acknowledgments

This work would have been impossible without the support of the following people:

e My supcrvisors Dr G. Bruce Pike and Dr Terry M. Peters for their countless
hours of availability. Their contribution reached well further the strict scientific
aspects. The journey through the final version of this thesis has been long and
difficult. Without their patience, support and direction, this work may never

have been completed.
e John Sled for providing me with his spline smoothing source code and program.
e Gerard Crelier. for helpful discussions and suggestions.

e Brad Gill and Jeff Atkinson for taking some of their precious time to serve as

subjects for in-vivo experiments.

e Dr. Abas Sadikot and Dr. Mario Alonso, neurosurgeons. for helping me to

appreciate the clinical relevance of my work.



List of Symbols and Abbreviations

2-D
3-D
ADC
By
B,
BW
BW,,
CG
Cp
CT
DFT

Euler Constant (2.71828 ...)
Gyromagnetic Ratio of Hydrogen Nucleus (42.58 MHz/T)
Imaginary Number Unit (y/—1)
Precession frequency

Pi Constant (3.141592 ...)

Plank’s constant (1.054589 - 1073 J . 5)
Two-Dimensional

Three-Dimensional

Analog to Digital Converter

Main Static Magnetic Field
Excitation field

Bandwidth

Bandwidth per pixel

Conjugate Gradient

Conjugate Phase

Computerized Tomography

Discrete Fourier Transform

Gradient Field in the z-direction



G, Gradient Field in the y-direction

G. Gradient Field in the z-direction

EEG Electroencephalography

EMF Electromotive Force

EPI Echo-planar Imaging

fMRI Functional MRI

FFT Fast Fourier Transform

FOV Field of view

Hz Hertz frequency unit (s™1)

ICGI Intensity Corrected Geometrical Interpolation

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IGNS Image-Guided Neurosurgery

KSC K-space Correction

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

PGI Pure Geometrical Interpolation

ppm Part per million

PSF Point Spread Function

RF Radio-Frequency

RMS Root Mean Square

SI-ICGI Sinc Interpolated Intensity Compensated Geometrical
Interpolation

SI-PGI Sinc Interpolated Pure Geometrical Interpolation

SNR Signal-to-noise Ratio



SVD

T1
T2

228

Singular Value Decomposition
Tesla magnetic induction unit
Longitudinal Relaxation Time
Transverse Relaxation Time
Echo Time

Repetition Time

Magnetization



List of Contributions

—

o

o

. P. Munger, G.R. Crelier, T.M. Peters and G.B. Pike. An inverse problem ap-

proach to the correction of distortion in EPI images. IEEE Trans Med Imaging.
2000 Jul;19(7):681-9.

P. Munger. Beyond Fourier: The Wavelet Transform. Chapter 5 of the book
“The Fourier Transform in Biomedical Engineering”, Terry M. Peters. Jackie
Williams Editors, Birkausser, Boston, 1998.

P. Munger, G. Crelier, T.M. Peters and G.B. Pike. Conjugate Gradient Restora-
tion of EPI Images. Proceedings of the Sixth Annual Meeting of the Interna-

tional Society for Magnetic Resonance in Medicine. Sydney, Australia, April
1998.

. G.R. Crelier, R.D. Hoge, P. Munger and G.B. Pike. Perfusion-based functional

magnetic resonance imaging with single-shot RARE and GRASE acquisitions.
Magn Reson Med. 1999 Jan;41(1):132-6.

T.M. Peters, B.L.K. Davey, P. Munger, R.M. Comeau, A. Evans, and A. Olivier.
Three-dimensional multi-modal image-guidance for neurosurgery. IEEE Trans-
actions on Medical Imaging, 15:121-128, 1996.



Chapter 1

Introduction

Since its introduction in 1973, Magnetic Resonance Imaging (MRI) [64] has gained
wide acceptance as a valuable diagnostic modality, in part because of its ability to
represent different properties of the tissues (proton nuclei density, relaxation times.
susceptibility, etc.) and different physiological aspects (flow, diffusion, perfusion,
motion, etc.), and also due to its non-invasive nature.

In the early days of MRI, data were acquired as projections and well known re-
construction methods, such as filtered back-projection, used in x-ray computed to-
mography, were applied to MRI data. The advent of Fourier imaging, [59, 35] which
allowed higher signal-to-noise ratios (SNR), marked an important step in MR imaging.
These techniques are however limited in certain clinical applications due to the fact
that static field inhomogeneities translate as geometrical distortions of the images.
In contrast, in projection reconstruction, the effect of field inhomogeneity is to cause
blurring in the reconstructed image [62].

Advances in magnet design technology have contributed significantly to improve
this situation, but still, MRI does not in general meet the geometrical accuracy re-

quirements of applications such as Image-Guided Neurosurgery (IGNS). Furthermore,
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very rapid imaging techniques, such as echo planar imaging (EPI), can suffer extreme
distortion. This is in part due to the fact that field inhomogeneities do not arise ex-
clusively from imperfect magnet design, but also from magnetic properties of different
tissues, cavities and biological liquids.

A number of methods have been proposed to reduce or eliminate the deleterious
effects of static field inhomogeneities. These include pre-scan shimming [89], modified
acquisitions and post-processing corrections. All of these methods have drawbacks,
such as increased imaging time, incomplete correction, requirement of human inter-
vention or dependence on the imager hardware that limit their use in real-life clinical
problems that often generate a large amount of data.

The problem of distortion becomes particularly important in areas of dynamic EPI

and Image-Guided Neurosurgery.

Dynamic EP1

Echo-Planar Imaging (EPI) (67] is an ultra-fast imaging technique that is extremely
sensitive to static field inhomogeneities because of the low effective bandwidth per
pixel used. Large distortions in EPI, in addition to field inhomogeneity-related arti-
facts, restricts its use in IGNS.

Additionally, the analysis of functional MRI (fMRI) data acquired with EPI se-
quences [9] often relies on the precise registration between anatomical and fMRI im-
ages. Distortion in EPI images may result in a misalignment between the functional
and anatomical data, which may in turn interfere with the interpretation of results.

The effect of static field inhomogeneities on EPI imaging is not only geometric
distortion, but also signal loss. Furthermore, the geometric distortion cannot be

considered as strictly one-dimensional. In this case, a full 2D correction scheme can

be considered.
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Image-Guided Neurosurgery using volumetric gradient-echo data

For the large majority of qualitative diagnostic applications, small geometrical dis-
tortions can be safely ignored without major consequences. However, Image-Guided
Neurosurgery. which uses pre-operative MRI anatomical information to provide in-
teractive guidance during open-cranium surgery (28, 29, 40, 41, 81], often requires
geometric accuracy on the order of 1 mm. This geometrical accuracy requirement
may not be rcached in some regions of the MRI volume, especially near air-tissue
interfaces. Distortion of stereotactic frame fiducial markers, used to establish image
geometry, is also a concern {15].

Although the usc of high bandwidth sequences may help to reduce the effect of
geometrical distortions. this is achieved at the expense of reduced signal-to-noise ratio
(SNR) [80. 27]|. Hence. an efficient correction method could contribute to relaxing the
tradcoff between SNR and geometrical accuracy and provide distortion-free images
with higher SNR.

The gencral requircments for a distortion correction technique may be stated as

follows:

e Acquisition time - minimal overhead on total acquisition time.
e Automatic - no or minimal intervention of the operator.

e Computation time - can be applied in a reasonable time compared to the nor-
mal time-scale between pre-operative scan and surgery, in the case of IGNS. or

compared to the time required for data analysis, in the case of functional EPI.

e Effective — provides stable and significant correction of distortion and related

effects without introducing new artifacts.



CHAPTER 1. INTRODUCTION 1.1. PROPOSED SOLUTION

1.1 Proposed Solution

This thesis addresses the problem of distortion in MRI from first principles, with
an approach similar to image restoration and inverse problem methods. From the
knowledge of the non-ideal conditions and the detailed mathematical process by which
the images are formed, one tries to mathematically invert the process to yield a
restored image, free from the effects of non-ideal conditions. Although this approach
can in general be applied to any imaging situation, some types of image degradation,
such as blurring or dephasing, where part of the information is irreversibly lost, are
handled with difficulty by inverse problem approaches. The case of distortion is
different because, when distortion is not too severe, no information is lost. In that case,
we have found that it can be effectively dealt with using inverse problem methods.

The primary field of application of the proposed inverse-problem method is the
restoration of EPI images. Because EPI image degradations due to static field inho-
mogeneity is not strictly one-dimensional, we state the problem in terms of a general
4D linear system of equations relating the ideal, undistorted image and the measured
image.

We further show that this method can be applied as well to 1D correction problems.
EPI distortion can be approximated, through some simplifications of the k-space
trajectory, as a one-dimensional distortion problem. All Fourier imaging methods
(including 3D gradient-echo imaging) in which a single k-space line is acquired at
each excitation, strictly conforms to the 1D distortion problem. Figure 1.1 illustrates
the relationship between the 2D and 1D correction methods and the imaging situations
where they are applicable.

Whether it is applied to 1D or 2D restoration, the proposed approaches follow
the same logic. Under ideal conditions, this imaging equation, relating the measured

signal and the imaged object, takes the form of a discrete Fourier transform (DFT),

4
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2D correction . EPl imaging

® s
‘0 )
R

1D comrection _ . GE imaging

Figure 1.1: 1D vs. 2D correction, and the respective applications.

Relation between 1D and 2D correction vs. relevant imaging techniques. In
order to take account of the two-dimensional nature of EPI image degra-
dations, a 2D correction method is needed (top arrow). However, the EPI
degradation can also be approrimated as one-dimensional, which can be ad-
dressed by a 1D correction method (diagonal arrow). In the case of anatom-

ical 3D imaging, the tmage degradation is strictly one-dimensional, and the
1D method is suitable for this case (bottom arrow).

and the image is normally reconstructed using an inverse FFT. When static field
inhomogeneities are present, the equation deviates from the DFT reclationship and
a more general solution approach must be taken. The distortion correction problem
can be expressed as a system of linear equations relating the distorted image with
the ideal, distortion-free image. In the case of 2D processing, the linear relationship
takes the form of a 4D tensor equation that can be reshaped into a large system of
linear equations. In the case of 1D processing, the correction consists of independent
resolution of a linear system of equation for each column of an image®.

It has been found in practice that using iterative techniques such as the Conjugate
Gradient method or the Steepest Descent method [47, 97] provided good correction of
geometrical and associated intensity distortions in a very small number of iterations

(2-3). Furthermore, because the distortion problem is stated in the form of a system

aFor simplicity, “column” refers to the direction in which the primary distortion occurs. It is the

readout direction in Fourier imaging, and the phase encoding direction for EPI.

(<1}
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of iinear equations, any technique for solving linear systems may be used, provided
that the size of the linear system allows them to be used practically (i.e. matrix

inversion, Gaussian climination, etc).

1.2 Goals of the thesis

The objectives of this thesis are:

e Formulate the MRI image distortion correction process as an inverse problem.

e Implement and evaluate this inverse problem method for the full 2D correction

of EPI images.
e Adapt the method for 1D processing.

e Compare the performance of some of the By-map based distortion correction

methods for EPI image processing in different non-ideal situations.

e Evaluate the 2D and 1D correction approaches for EPI imaging sequence.

1.3 Outline of the thesis

Chapter 2 presents a review of the relevant physical and mathematical aspects of MRI
together witk& introductions to different topics of interest with respect to this work.
This includes the physical conditions giving rise to the distortion phenomenon, MR
image formation principles, EPI imaging, field mapping and a brief introduction to
iterative methods for solving linear systems of equations.

A literature review of the the main classes of existing distortion correction methods
is presented in Chapter 3. The attention is mainly focused on “By map”-based cor-

rection methods, because these methods allow the subject-dependent, as well as the

6
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machine dependent distortions to be addressed, and because the correction approach
proposed in this thesis falls into that category.

The core of the thesis begins at Chapter 4, where the mathematical foundation
of the proposed method is developed. The EPI imaging process is discussed in detail
and a full 2D formulation is developed. A description of the 1D correction model,
following [54] is also presented, and the approximation allowing the EPI distortion to
be corrected by the 1D model is discussed.

Chapter 5 presents computer simulations allowing the basic properties of the pro-
posed method to be better understood, and comparisons with other existing By map
based methods to be achieved.

Chapter 6 deals with the specific application of the proposed method to the cor-
rection to Echo-Planar images. The focus is to demonstrate the applicability of the

inverse-problem approach to EPI and 3D imaging applications, and to discuss the

practical issues encountered.

1.4 Original contributions

The original contributions of this thesis are:

e Formulation of the EPI geometrical distortion correction problem as a 2D inverse

problem.

e Design, implementation and evaluation of a full 2D correction scheme, extending
that proposed by [54], on EPI images that corrects for geometrical distortion,

and for second order effects related to field inhomogeneity.

e Evaluation of the potential advantages of using 2D correction, rather that 1D,
for EPI data.



CHAPTER 1. INTRODUCTION 1.4. ORIGINAL CONTRIBUTIONS

e Objective comparison of existing 1D distortion correction methods by means of

computer simulations.

e Evaluation of the developed correction methods in an in-vivo human imaging

context.



Chapter 2

Background

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging is a technique based on the physical phenomenon called
nuclear magnetic resonance (NMR) [105, 50, 22|. This section briefly reviews the
basic physics of NMR. necessary for the understanding of this thesis and discusses the

means by which this phenomenon is exploited for imaging.

2.1.1 Nuclear spin and magnetic moment

Atomic nuclei constituted with an odd number of protons and/or neutrons possess a

magnetic moment m related to their spin angular momentum s by:
m = s, (2.1)

where 7 is a constant (different for each nuclear species) called the gyro-magnetic ratio.
Hydrogen nuclei (H) are the most common in biological tissues and are the ones

generally used for generating the MRI signal. The gyro-magnetic ratio of hydrogen is
42.58 MHz/T.
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Because the angular momentum is subject to spatial quantization in the presence
of a magnctic field, so is the magnetic moment. If the magnetic field is directed
along the :-axis. the z-projection of the angular momentum of a nucleus with spin
quantum number / may only take a set of discrete values m,h, where my, = -1, -1 +

L,....I = 1.1. and is called the magnetic quantum number and hk is Plank’s constant.

According to Eq. (2.1) the z-projection of the magnetic moment may take the values

m; = ymsh. The magnitude of the angular momentum is /I(J + 1)A.

m.

spin “up”

spin “down”

Figure 2.1: Available states of the magnetic moment for a spin 1/2.

In the presence of a magnetic field By, two values of the z-projection of the
magnetic moment are possible for a spin 1/2. These states are referred to
as “spin up” and “spin down”.

2.1.2 Polarization: equilibrium magnetization

The physical quantity manipulated and measured in NMR is the magnetization M
that is defined as the total magnetic moment per unit volume present in a given
material. The first step to observe the NMR phenomenon is to create a polarization,

which generates an equilibrium magnetization.

10
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Because 'H nuclei have a spin quantum number I = 1/2, the spin® population

is split into two energy levels in the presence of a static magnetic field Bo® directed

along the z-axis.

: E, = ivhBy
AE = vhB,

: E: = —i+hB,

Figure 2.2: Distribution of spin population.

The ezcess of spins in the “up” state, giving rise to the net magnetization,
is dictated by the Boltzmann distribution.

The two states are typically referred to as “spin up” and “spin down" according
to the sign of the = component of the magnetic moment (Fig. 2.1). The energy
separation between the two levels is AE = 'y,l"—xBo = vhBy (Fig. 2.2). The relative
number of spins per unit volume occupying the two states at a temperature T is

dictated by the Boltzmann equation

B eff = 5 (2.2)
Ty

where k is Boltzmann's constant, and where n; and n| are the number of spins in the

2It is current practice to call “spin” the nuclei exhibiting this property. Hence, the terms “spins™
and “nuclei” may be used interchangeably.
b Calling B “magnetic field” is an abuse of language currently committed in the MRI literature.

In the physics literature, the symbol B refers to the magnetic induction or magnetic flur density,
and the magnetic field is represented by H. The important thing to remember is that H results only
from the current distribution while B includes a contribution due the magnetic properties of the
surrounding material. Because the MRI signal always arises in some material, the relevant vector is

B. From now on, we will retain the MRI convention and refer to B as the magnetic field.

11
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“up” and “down” states respectively. This excess of spins in the “up” state ,

YhBo YhBo
—_ = =~ V .
ny —n; = N tanh T = Norr (2.3)

where N = n; + n| is the total number of spins per unit volume, produces a net
macroscopic magnetization vector My, directed along the z-axis, whose amplitude is:

N~*h%B,

1
A/I() = E’Yh(’nt - TLL) = —m—.

(2.4)

In the classical view, the net equilibriun magnetization arises from the partial

alignment of the spin’s magnetic dipoles with the static magnetic field Byo.

2.1.3 Dynamics of the magnetization

In classical terms, the basic equation describing the behaviour of a magnetic moment
m(t) experiencing a magnetic field B(t) is derived by equating the torque experienced
by the magnetic moment, ym(¢) x B(t), with the temporal rate of change of the

angular momentum. dm(t)/dt.

dm(t)
—; = ym(t) x B(t). (

8
(4]}
A

However, at a microscopic level, quantum mechanics provides the only accurate
description of the behaviour of the spins. Nevertheless, it can be shown that, under
the conditions of minimally interacting spins, the equation for the time evolution of
the expectation value of the magnetic moment operators is exactly the same as the
classical equation [25, 1]. This legitimizes the extension of the above equation to
describe the dynamic behaviour of the net magnetization:

dM(t)
dt

= yM(t) x B(t). (2.6)
The solution of this differential equation in the case of a static magnetic field B, (it

12
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~
[}

By

Y

Figurc 2.3: Precession of the magnetization

In the presence of a static magnetic field Bg, the magnitude of the magne-
tization M remains constant while its projection in the -y plane rotates at
an angular rate 7By around the z-azis.

is assumed by convention that By is directed along the positive z-axis) is:

Mgy =M, +iM, = e 5! (2.7)
M. = constant. (2.8)

Hence, the magnetization vector remains constant in magnitude and undergoes a

precession at an angular rate

wo = vBo (2.9)

around the z-axis (Fig. 2.3). Equation (2.6) is known as the Larmor equation and wjq
as the Larmor frequency. For hydrogen nuclei and for a typical 1.5 Teslas magnetic
field strength, the Larmor frequency is 42.58,, MHz/T x 1.5, T = 63.9, MHz

We will see shortly that Eq. (2.6) does not take the important relaxation processes

into account. It is however suitable for describing the magnetization behaviour when

13
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the time scale involved is short compared to the relaxation constants. Hereafter, the
quantities M., and M. will be referred to as transverse magnetization and longitudinal
magnetization respectively.

The use of complex notation in Eq. (2.7) will be useful when dealing with the

Fourier interpretation of the imaging process.

2.1.4 Excitation

Excitation refers to the process of disturbing the net magnetization from its equilib-

rium state by the application of radio-frequency (RF) fields.

- {)

PPTT - Sebei "- >w1 )

Te®
o’
.
s
.
e

LT
...-.--.....

B.(t)

Figure 2.4: Excitation in the lab reference frame.

The precessing magnetization can be tipped away from its equilibrium state
when a rotating magnetic field in the z-y plane By (t) is applied.

The magnetization can be moved away from its equilibrium position if a magnetic
field B, (¢) rotating in the transverse (zy) plane at an angular frequency wrgr is applied

(Fig 2.4). In order to write the solution of (2.6), it is useful to adopt a frame of

14
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reference that rotates around the z-axis at wgrp, the angular rate of B;. In the rotating
frame, the solution is again a precession of the magnetic moment vector, but around
a magnetic field Bog given by

A /!
B.g = ‘::z +B), (2.10)

where Aw = wy —wrr is the difference between the Larmor frequency vBy and that of
the rotating frame, and 2’ is the unit vector directed along the positive z’-axis (Fig.

2.5).

- {r

-“w = .,'B{
By

M

Figure 2.5: Excitation in the rotating reference frame.

The ezcitation s described more simply in a reference frame rotating together
with with the rotating B, field. In this reference frame, the effect of the
B, field is to change the direction along which the precession takes place.
When the angular rute of B, is different from the Larmor frequency vBy,
the magnetization precesses around the direction of Beﬂ (left). When the
two angular rates are equal, the “on-resonance” condition is achieved, where
the magnetization can be tipped away from the z-azxis the most efficiently.

The phenomenon of resonance is exhibited in the last equation: because the am-
plitude of the rotating field B, is typically much smaller than that of the static field

By, the effective field in the rotating frame is very close to the z-axis unless w; is

15
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close to wg. When w, = wp, Aw = 0 and the effective field completely lies in the
transverse plane. In this case, the magnetization precesses around the B, field and
can be significantly tipped away from the z-axis, into the xy plane, if the excitation
field is applied for a sufficient time.

From the quantum mechanical point of view, excitation may be considered as

resulting from stimulated transitions between the different energy levels.

2.1.5 Relaxation

As stated before, the time evolution of the magnetization presented so far is incom-

plete. We introduce the Bloch equation which describes the behaviour of the net

magnetization including relaxation effects [10]:

dM(¢) M:%+ M,y | (Mo — M)

o = M) x B(t) - = T (2.11)

where X, y and Z are the unit vectors corresponding to the axes z, y and : respec-
tively. The first term of the Bloch equation accounts for the previously discussed time
evolution of the magnetization in presence of a magnetic field. The two other terms
describe the T, (transverse) and T (longitudinal) relaxation processes respectively.
T relaxation is the re-growth of the M, component to the equilibrium value of
the magnetization after a departure from this equilibrium. The recovery is approxi-
mately exponential and is associated with energy exchange between the spin system
and the surrounding lattice. For this reason it is also called spin-lattice relaxation.
Longitudinal relaxation may be understood by spin transitions stimulated by atomic
and molecular motion of the surrounding lattice from excited energy levels to lower
ones. It is principally due to the components of this motion at the Larmor frequency.
T, relaxation is due to a loss of phase coherence between the spins and is also

called “spin-spin” relaxation. It is caused by the fact that the spins experience slightly

16
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different magnetic fields (and consequently different precession frequencies) depending
of the physico-chemical environment. As opposed to T3 relaxation, T, relaxation is
also affected by low frequency local field variations.

Relaxation processes play an essential role in MRI since they constitute the pri-
mary mcchanism for controlling the image contrast.

In the casc of a time varying magnetic field B.(t), the solution of the Bloch equa-

tion for the transversc magnetization, in the absence of an exciting field, is
May(t) = M, (0)e " Tee=" Jo Be(r)dr (2.12)

From now on. M will refer to the transverse magnetization unless stated otherwise.

2.1.6 Imaging principles

Once the magnetization has been tipped away from the longitudinal axis by the excita-

tion, the resulting time-varying transverse magnectization may induce an electromotive

force (EMF) in the receiver coil.

In order to form an image, the signals from different points of the imaged object
must be resolved. This is performed by manipulating the phase of the spin system in
a space variant manner by means of magnetic field gradients.

Consider first a one dimensional magnetization distribution M (z). After the ex-

citation of M(z), the signal generated, s(t), will be, according to (2.7),
s(t) = / M(z)e~"Botdr
= e*7Bot / M(z)dz, (2.13)

which only gives information relating to the total magnetization of the distribution.
To resolve different points in the distribution, a gradient field G, (directed along the

z-axis but varying in magnitude along the r-axis) is apply along with the static By

17
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field. The total magnetic field experienced by the spins being Bo + G.z2, the signal

recorded is:

s(t) = /; M(z)e *1(Bo+Gaalt gy

= e~PrBot / M(z)e~G=*dz. (2.14)

Filtering out the frequency component at wg from this signal, i.e. demodulating at

wo, and applying the variable change k; = ;= G.t we obtain:
s(ks) = / M(z)e~ k=2 g (2.15)

This equation establishes that the base-band time signal generated in the presence of a
gradient field is proportional to the 1D Fourier transform of the spatial magnetization
distribution M(z). Sampling this signal at equal intervals and performing a discrete
Fourier transform vields the 1D image of the transverse magnetization distribution

M(zx).

2.1.7 K-space interpretation

A very elegant and useful way to look at the MR imaging process is the k-space
interpretation {103|. K-space refers to the 2 or 3-D Fourier transform space of the
imaged object. An MRI sequence can be described as a way to collect data in k-
space, and once enough data are gathered, the reconstruction can be performed and
the image obtained.

To derive the general k-space formulation, we write the solution for the transverse
magnetization of the Bloch equation for an arbitrary time-varying linear gradient
G(t) = [Ga(t), G, (1), G=(t)]-

M(r,t) = M(r,0)e™" Ta(r) giwot g~y f; G(r)-rdr (2.16)
where r = [z, y, z].

18
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The general continuous imaging equation is obtained by integrating (2.16) over

space and ignoring relaxation effects.

s(t) = / M(r, t)dr (2.17)
= it f M(r,0)e="7 Jo Stwdr gy (2.18)

Removing the high frequency component e~**¢ and letting

k = 217; [z G(r)dr, (2.19)

with k = [k, ky, k], we find
s(k) = /v M(r,0)e2 % dr. (2.20)

In MRI, a pulse sequence generates a series of gradients in such a way as to cover the
k-space data. The generality of the k-space formulation allows an infinite number of
ways to perform this operation. The path along which data are measured in k-space is
referred to as the k-space trajectory. A common k-space trajectory, that of spin warp
imaging {35], consists of measuring one raster line of k-space for every excitation. The
line encoding is referred to as readout encoding since data are sampled in the presence
of a linear gradient that spread the frequency spectrum of the MR signal according
the to its origin in space. The encoding in the other direction. i.e. corresponding to
moving between different lines in k-space is called the phase encoding. It is performed
by letting the spins dephase by applying a gradient of a given amplitude during a
fixed time (Fig. 2.6) ©.

“Readout direction is often referred to as “frequency encoding” direction because different spatial
positions in the image are associated with different temporal frequencies in the NMR signal. However,
from the k-space perspective, frequency and phase encoding both encode the signal by imposing linear
phase variations of the magnetization across the imaged object. The frequency encoding gradient

does so in a continuous manner rather than discrete as in phase encoding.
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Figure 2.6: Encoding in spin-warp imaging and the relation to k-space trajectory.
Encoding in the kr direction is performed by applying a gradient in the z-
direction while the signal is sampled. The x-direction is referred to as readout
direction. Encoding in the ky direction is done by applying a gradient in the
y direction prior to signal readout. The direction y is called phase encoding
direction.

2.1.8 Sampling

For the reconstruction to be performed with a computer, the analog time signal must
be sampled and digitized. We discuss now the implications of this sampling process.
To simplify things., we consider a 1D case and assume that the k-space trajectory
is linear and uniform. This assumption is satisfied when the readout gradient and
the sampling rate are both constant. Since we are interested only in the relationship
between the object and the image, we will not explicitly distinguish between frequency
and phase encoding.

Sampling the signal involves a finite number of points N. One of the consequences
of this is that higher spatial frequencies of the objects are not measured, limiting the
resolution of the image. The other effect of sampling is aliasing.

The real, continuous magnetization distribution is obtained from the analog signal
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by the inverse Fourier transform

M(z) = [ % s(k)er = dk (2.21)

However in practice, the analog signal s(k) is sampled at a finite number N of locations

nAk, with n = —N/2,... N/2 — 1. Thus, the sampled signal is:
s(nAk) = Ak [ M(z)e 2mndkegy (2.22)

The reconstructed image M(mAz) is obtained by inverse discrete Fourier transform

of the sampled signal, or
N/2—-1
M(mAz) = Y s(nAk)ePmimnakas
n=-N/2
N/2-1

-+0C .
- /' M(z) z 2TnAK(mAT~z) 5.

n=-N/2

M(mAz) = M(z) * S(z)|mas (2.23)

where
N/2-1
S( 1,) — Z ezmnAkz
n=-=N/2
N/2-1
= 3 eminks/az/N
n=—N/2
sin ( 2= s
P S (i:) e NAz , (2-24)
sm (N’Az)
and is called the NMR sampling function [80]. Equation (2.24) relates the real, con-

tinuous magnetization distribution M(z) with the finite resolution, discrete recon-
structed image M(mAxz). The NMR sampling function is periodic of period NAz =
FOV, where FOV is the field of view, and has zeros at nAz where n is an integer.
Fig. 2.7 illustrates two examples of the NMR sampling function. Note that the NMR
sampling function exhibits both the spread of the main peaks and the Gibbs ringing

due to the finite extent sampling of k-space [112], and the aliasing caused by discrete
k-space sampling.
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Figure 2.7: Examples of the NMR sampling function magnitude.

The NMR sampling function relates a real, infinite resolution object, wnth the
MR image of this object. Its period (the distance between the larger peaks) is
related to the space between samples in k-space and defines the field-of-view
(FOV). The smaller ripples are related to the extent of the k-space covered
by the sampling and define the spatial resolution (dx) of the image.

2.1.9 Selective Excitation

An important aspect of MR imaging is the ability to selectively excite the magneti-
zation based on its position in space.

Selective excitation is achieved by applying RF energy to the sample in the pres-
ence of a magnetic field gradient. Some insight into this process can be gained by
looking at the Bloch equations. In practice. the selective excitation pulses are much
shorter than the typical relaxation constants of tissues and it may be approximated
that no relaxation occurs. Furthermore, the small flip angle approximation will lead
to a powerful interpretation of the selective excitation in terms of Fourier relationship.

Taking B(r,t) = B} (t) X + B{,(t) ¥ + G(t) - r Z, the Larmor equation in the

rotating frame can be written, in the particular case of excitation, as:
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M.(r,t) 0 G(t)-r —Bj,(t) M. (r,t)

d

| Mt | =7 -G(t)-r 0 Bi_(t) M(r,t) (2.25)
M'(r,t) B (t) —B(t) 0 M!(r,t)

The small flip angle approximation allows the equation for the z magnetization to
be decoupled from that for the transverse magnetization. Letting M.(r,t) = My and

dM(r,t)/dt = 0 we obtain:

M(r,t) 0 G(t)-r —Bl,(t) M (r,t)
i ’ —_—- ’ ’ (2 06)
Z| Mty [=7] -G@®)-r 0 ' (2) M(x.t) 2
M!(r,t) 0 0 0 My(r)

We now can write the equation for the transverse magnetization M = M, +iM,,

d d d .
ZM(E D) = ZM(r.t) +izM,(r.1) (2.27)
= —7i(G(t) - r M(r.t) — Mo(r) By, (t)), (2.28)

where B}, = Bj, + iBj,. Assuming that M(r,0) = 0 and that the excitation
takes place between ¢t = 0 and ¢t = T, the solution of this first order linear equation

at the end of the excitation is:

T )
M(r, T) = iy Mo(r) /0 B, (t)e . Sryrirgy (2.29)

The k-space interpretation can be made evident by letting:

k(t) = 27—“ /: " G(r)dr (2.30)
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Thus. we obtain for the transverse magnetization

MrE.T) = ivM, /T -iznlcr 9
M(r. = iyMp(r) A Bizy(t)e dt (2.31)
. 0 dt —i2rk-r
= iy Mo(r) /k o Bl..,_,,(t)‘— emi2mer g (2.32)

2.1.10 Signal-to-noise ratio

The signal in MRI is determined by the available transverse magnetization, which is
itself determined by the equilibrium magnetization, Eq. (2.4), and the pulse sequence
parameters.

Noise in MRI primarily comes from two sources [19]. The first source is electrical
Johnson noisc within the receiving coil and amplifier, which can be kept to 2 minimum
by proper coil and amplifier design and matching. The second scurce of noise is

. produced by random Brownian electronic fluctuations inside the sample or subject.
For small samples and low frequencies, coil-related noise is more important and coil
optimization is essential. In imaging however, where the size of samples can be large
and operating frequencies high, subject-related noise dominates. From whichever
source it may originate, noise in MRI is considered white (with a constant power
spectrum), i.e.. the noise energy is the same at all frequencies, and moreover, is

independent from the signal. The noise power spectrum, as a function of frequency is
given by:
N(f) = 4kTR, (2.33)

where k is the Boltzmann’s constant, T the temperature and R is the resistance of

the receiving coil and of the sample. The total noise voltage for a bandwidth BW is

then:

‘ Noise voltage = \/4kTR (BW) [volts]. (2.34)
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Hence, one way to control the amount of noise measured in an MRI sequence is to
change the receiver bandwidth. Since the noise energy is constant for all frequencies,
the noise collected is proportional to the square root of the bandwidth.

Signal-to-noise ratio (SNR) is an important measure of image quality and gives
an indication of the relative importance of useful signal relative to useless noise. We
will use the amplitude SNR defined as:

SNR = \/ signal encrgy (2.35)
noise energy

Noise in MRI is considered to be normally distributed, of variance o2, on both the

real and imaginary channels. Thus,

SNR = \/mgnal energy _ signal amphtude. (2.36)

o? o

When considering magnitude images, this complex Gaussian noise translates as Rician-

distributed noise in regions of the image where signal is present, and Rayleigh dis-
tributed noise in background regions.

Because the standard deviation of the Rayleigh distributed noise is m:y.

the SNR of a magnitude image may be estimated from the background standard

deviation oy by:

SNR — Signal amplitude 577 (2.37)

Obk

Effect of imaging parameters on SNR

For a given pulse sequence, the MR image noise is affected by the various image
parameters: voxel size (Az, Ay, Az), matrix size (N, Ny, N.) and receiver bandwidth

(BW). The simplest way to express SNR, for spin-warp imaging is {34, 80j:

SNR x AzAyAzVTotal readout time. (2.38)
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If Taq is the readout duration and Nex is the number of excitation sequences averaged

to obtain the image, this can be expanded as:

SNR o AzAyAz\/N,N.TaqNex = AszAz——V\!/V;L“::ijc. (2.39)

The proportionality with respect to the voxel size arises from the fact that the MR
signal is proportional to the voxel volume. The proportionality to the square root of
the N’s may be explained by the fact that each voxel being interrogated NV times,
the total signal is /V times larger than that of a single measurement while the noise
standard deviation is VN times that of a single measurement?. The dependence on
the receiver bandwidth per pixel B "Vpix explained by the constant power spectrum of
the noise: the wider the receiver bandwidth, the larger is the noise energy measured.

We note that, although the noise is affected by the receiver total bandwidth, the SNR
depends only on the bandwidth per pixel.

2.2 Distortion in MRI: Theory

Distortion in MRI is a well known phenomenon. The various factors that may induce
distortion are typically divided into two main classes 69, 5|: machine-dependent and
subject-dependent factors. In any case, distortions are the result of any factor that

cause the spatial position of a spin to be erroneously encoded.

2.2.1 Machine-Dependant factors

These are the distortion factors attributed to imperfections of the imaging device.

Although these were quite significant in the early days of MRI, they have become less

dWe recall that for independent noise values, the variances add instead of the standard deviation.

For instance, for n; and n; two normally distributed random variables. var(n; + nz + ... + ny) =

var(ny) + var(ng) + ... + var(ny)
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of a problem nowadays with the advances in hardware design technology. Moreover,
the subject-independent nature of these effects render them predictable and easily

measurable and, in certain case, it is possible to compensate for such problems using

techniques established [42].

Static B, field inhomogeneity

The static By field is typically produced by a coil of super-conducting material. Be-
cause of the limited physical dimensions of such a coil and manufacturing imperfec-
tions, the magnetic field produced is not perfectly uniform [19]. Furthermore, current
fluctuations within the coil induce time-varying variations of the main magnetic field.
Static field inhomogeneities are typically spatially smooth variations. Note that the
distortion caused by By inhomogeneities are proportional to the strength of this static

field, and larger effects may be expected for high field (e.g. 3-4 T) imagers.

Gradient field spatial non-linearity

The spatial encoding of MR images strongly relies upon the assumption that the
gradient fields are linear. It has been shown [56, 5| that this may not be the case in
general.

It is generally accepted that gradient non-linearity depends on the geometry of the
coil only, and consequently, scales linearly with the current flowing through the coil.
As will be discussed later, this fact is important for the determination of the effect
of gradient field non-linearity on the reconstructed image. It has been experimentally
demonstrated that the gradient nonlinearity-induced distortions are essentially inde-
pendent of the polarity of the phase encoding gradient and of the gradient strength
[5]-

Gradient non-linearity tends to increase with the distance from the magnet isocen-
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tre. In brain MR imaging, the imaged region usually lies in the vicinity of the isocen-
tre, where the effects of gradient non-linearity are likely to be minimized.

Static field inhomogeneities do not have any effect in the phase encoding direction
in spin-warp imaging (this will be discussed in further detail later in this chapter), so
gradient non-linearity is the main cause of distortions in the phase encoding direction.
In EPI, there is no such clear distinction between readout and phase encoding, and
gradient non-linearity has an effect in both directions.

Hence, in spin-warp imaging, a technique to estimate the gradient non-linearity is
to acquire pairs of images of a reference phantom of known geometry with orthogonal
directions of the phase encoding gradient (Fig. 2.8). It is then possible from these
two images to determine independently the component of distortion due to gradient
field non-linearity and static inhomogeneity [56]. Note that this technique, as it relies
on knowing the true geometry of the object with respect of the distorted images. can
only be applied to access system-related field imperfections.

More recently, a method for the correction of gradient non-linearity was proposed
[63], in which the analytic expression of the gradient field was determined by least-
square fitting based on phantom data.

Intrinsic gradient non-linearity is present in many commercial scanners, leading to
considerable (but predictable) image distortion. Such distortions are usually corrected

by a post-processing “image-warping” algorithm.

Eddy currents

Eddy currents are caused by the rapid switching of the magnetic field gradients, caus-
ing currents to be induced in the electrically conductive parts of the MR scanner
[11]. These time-variant currents in turn, induce extra time varying gradient fields

that add to the one applied, resulting in an effective gradient field different from that
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Figure 2.8: Simultaneous measurement of By and gradient errors.

If two images of the same object of known geometry are acquired with or-

. thogonal directions of readout and phase encoding, it possible to measure both
the static field and the gradient field errors. This assumes however that the
underlying true geometry of the object is knouwn.

expected. Because the induced currents have a direction such as to decrease the rate
of change of the magnetic field, the effect of eddy currents is to flatten the effective
applied gradient waveform, i.e. to reduce the effective rise time of the gradients. Since
eddy currents have a predictable behaviour given a known temporal variation rate of
the gradient, they can be measured and a modified gradient waveform that will lead
to the desired effective waveform can be derived based on these measurements. Most
modern MR imagers are also equipped with actively shielded gradient coils that mini-
mize the effects of eddy currents. The combination of eddy-current compensation and
active gradient shielding makes the effects of eddy currents negligible in most situa-
tions. Exceptions are reported for imaging techniques involving very fast switching
. of gradients (e.g. EPI) or particularly strong gradients (e.g. diffusion imaging).
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Time varying eddy currents do not generally cause distortion in MR images: in-
stead they cause positioning errors of the points in k-space. The in-plane effect on the
reconstructed images when reconstructed with normal 2D-IFT is usually more com-

plex than simple pixel displacement. It has been noted however that eddy-currents

may induce distortion of the slice profile [42].

2.2.2 Subject-Dependant factors

Bulk susceptibility effects

The susceptibility effect arises because the magnetic field B, which is the physically
relevant quantity that determines the precession frequency, is affected by the magnetic
properties of the surrounding material [83]. If the nominal magnetic field is Bg, the

magnetic field B experienced by different materials will be:

B = (1 + x)Bo, (2.40)

where x is the magnetic susceptibility of the material.

Because the reconstruction process assumes the magnetic field is By, the extra
factor x By is reflected in the reconstructed image as a geometrical distortion (23, 4, 8|.
Hence, the effective magnetic field giving rise to the NMR phenomenon is dependent
upon the magnetic susceptibility of the surrounding material. The exact dependency is
itself a function of the geometry of the various regions [37, 36]. Several researchers have
investigated the susceptibility effects. Shizhe et al. [98] used a finite element model of
a human head to find the magnetic field distribution based on the solution of Maxwell’s
equations. Sumanaweera et al. [102] present an experimental determination of the
susceptibility induced distortions and conclude that, although the effect is negligible at
bone-tissue interfaces, it is important near air-tissue interfaces. The spatial variation

of the perturbation field caused by susceptibility may be much more rapid than in
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the casc of those from static By non-linearity. Moreover, various pathologies, such as
tumours and hacmatoma, may generate extra susceptibility effects [26, 113].
Susceptibility cffects are not always a nuisance, and can in fact be used as a means

of mecasuring the magnetic susceptibility of materials or substances [51].

Flow effects

In some applications. including image-based guidance for electroencephalography (EEG)
depth electrode placement, it is mandatory to avoid blood vessels. The effect of flow-
induced phasc shifts has been studied (74] and is well-understood. It is due to the fact
that the position of a given spin moves between the encoding of its y-position and
the encoding of its z-position. In the idealized case were the flow velocity profile is
flat. the displacement is uniform across the vessel and a shift of the vessel is observed
in the reconstructed image. In more realistic situations, the flow velocity profile is
non-uniform (c.g. tends to zero toward the walls of the vessel) and the shape of the
vessel is deformed as well.

A number of methods have been proposed to reduce the flow displacement ef-
fect. The “offset gradient echo method” [76] uses asymmetrical echoes to reduce the
time interval between the phase encoding gradient and the gradient echo. Backward-
evolving phase encoding uses a time-variant phase encoding that terminates at a fixed
time as close as possible to the readout gradient, providing a constant echo-time. This
method is similar to the Kumar-Welti-Ernst technique [59] and consequently leads to

distortion in the phase encoding direction due to static field inhomogeneities®. Mo-

¢ The Kumar-Welti-Ernst imaging sequence differs from the spin-warp method from the fact that
the duration of the phase encoding gradient is varied at each excitation rather than its amplitude.
The implication is that static field inhomogeneity causes distortion in the phase encoding direction,
as well as in the frequency encoding direction. The spin-warp method does not suffer from the
distortion in the phase encoding direction.
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ment compensated phase encoding [74] employs a bipolar phase encoding gradient
with a large first moment that “extrapolates” the phase that a spin moving at con-
stant velocity should have at the gradient echo centre.

This thesis does not address flow induced distortions and this brief review is in-

cluded here for the sake of completeness.

Chemical Shift effect

The Larmor relationship (2.9) links the resonance and the precession frequency of
the magnetization arising from an ensemble of nuclei of a given isotope. Beside the
intrinsic magnetic property of these nuclei (captured by the gyromagnetic ratio),
their chemical environment (e.g. the molecule within which they are situated) has
an impact on the observed precession frequency. In magnetic resonance imaging, the
signal is primarily generated by hydrogen nuclei present in two chemical environments,
water (H;0) or fat (CH, groups). The chemical shift appears because the 'H nuclei
“sees” a different magnetic field depending on the chemical environment to which it
belongs (water or fat). This difference is generally described by including a chemical

species dependent screening constant, o, in the Larmor relationship:

ww = Y(1-ow)Bg (2.41)

wig = (1 - of)Bo, (2.42)

where the subscripts w and f refer to water and fat respectively. The chemical shift

is defined as the difference between the angular precession rates of the two species:
es = UJf — Wy = ‘Y(O’w - O’f)Bo. (243)

An important characteristic of the chemical shift is that it is field-dependent as shown

by the above equation. Hence, a higher magnetic field gives rise to larger chemical
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shifts. Because of this, the chemical shift is often expressed as a relative value in ppm
(parts per million), dcs, in order to remove the field dependence:

YW 105 [ppm] = Iw ~ 9F08 [ppm] (2.44)
W l-0c W

dcs =
In MRI, the nominal Larmor frequency is set to that of water protons. This implies
that the protons in fat generate a signal which is off-resonance. At 1.5 T, the relative
chemical shift dcs between water and fat around —3.5 ppm, which results in an ab-
solute chemical shift wes/(27) of around —220H . The minus sign indicates that the
precession frequency in fat is lower than that in water.

In spin-warp imaging, chemical shift translates into a spatial displacement of pixels
containing fat with respect to those containing water. In other words, an image may
be considered as a superposition of water and fat images that are shifted with respect
to each other. Depending on the bandwidth per pixel, this shift may be on the order
of several pixels. For instance, with a bandwidth per pixel of 200 Hz, the shift is of
one pixel. In EPI, where the effective bandwidth is much smaller. the shift may be
on the order of 10 pixels or more.

The most drastic approach to solve this problem is to saturate the fat signal,
usually by a frequency selective binomial pulse, leaving only the water signal in the
image. One drawback of this method is that By field inhomogeneities may cause the
fat saturation pulse to partially destroy some of the water signal, leading to water
signal losses. Increasing the bandwidth per pixel is also effective in reducing distortion
but this results in a loss of SNR, as described earlier.

Another approach to reduce the chemical shift artifact is to use the so called
fat nulling technique that is based on the fact that the T1 relaxation time of fat
is different from that of water in most tissues. The technique employs an inversion
recovery sequence, where a 180° pulse inverting the magnetization is followed by a

90° pulse. The time between the two pulses is carefully adjusted (around 150 ms at
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1.5 T) so that the fat signal is zero at the excitation (90 ° pulse), and only the water
magnetization is excited into the transverse plane to generate a signal.

Chemical shift may also be used to selectively image water or fat [33]. This may
be done by adding and subtracting images acquired with different echo times. If the
echo time difference is such that the phases of water and fat are 180° from one another
at readout time, the addition of the two images will give a water image, and their
subtraction will give a fat image. This simple method may not work in the presence
of static field inhomogeneities, but other more complicated methods involving more
acquisitions allow water and fat to be separated in such non ideal conditions {46, 45].

In brain imaging, fat is normally only present near the skin and in the region of the
optic tracts. so the fat-shift phenomenon is not considered as an important problem

for many applications. This thesis does not address distortion caused by chemical
shift.

2.2.3 Mathematical characterization of distortion

Here we develop the mathematical relationships describing distortion in MRI for the
one dimensional case, as it applies to spin-warp imaging. Two situations are discussed:
frequency encoding, where the signal is sampled at regular time intervals while a con-
stant readout-gradient is applied, and phase encoding, where each sample is acquired
after the application of a fixed duration gradient of varying amplitude.

Frequency encoding

We consider static field inhomogeneities ABg(z), (which may arise either from magnet
imperfection or from susceptibility effects), and gradient field non-linearities AG.(z).

Extending Eq. 2.12 to account for the spatial variation of the magnetization, the
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1-D signal equation may be written:
s(t) = / M(z)e~" Jo BEndr gy (2.45)

The magnetic field (excluding By) at any time is:

B(t, z) = (ABy(z) + Gz + AG.(z)z)t (2.46)
_ [ABy(x) | AG.(z) .
_ (_—G, + (1 » 27 ) )G,t. (2.47)

Setting k.(t) = v/27G,t, the signal equation is:
—2ri ABglz) AGz(z) T
s(ka(t)) = / M(z)e (22 )e)h0 ) (2.48)

The effect on the reconstructed image may be seen by defining the variable change:

+ ABy(z) + AG ()

r(z)=z G. G.

T (2.49)

Provided that the inverse mapping z(z’) exists, we obtain

s(ko(t)) = [ M(z(z'))e= 3= @)k % dr’ (2.50)
= fz\/I(z(J:'))e‘z"i”'(’)"‘ j—i B dr'. (2.51)

So, the IFT reconstructed image M'(z’) is
M'(z") = M(x) dz’ B (2.52)

showing that an intensity distortion is associated with the geometrical distortion.

Phase Encoding

In the phase encoding direction, time is not directly involved. We use m to parame-

terize the phase encoding step.

s(m) = / M(y)e~ "B gy, (2.53)
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The total magnetic field is
B(m,y) = ABo(y) + (G, + AG(y))ym, (2.54)
and setting ky(m) = v/27G,m,
s(ky(m)) = [ Mghe-rammg (5 H g, (2.55)

and similarly to the previous case,

dy'|”t _.
M'(y') = M(y) ’EJ e~ YABay) (2.56)
where
, AG B
y=y+ —é‘(y) y. (2.57)
y

As compared to the frequency encoding case, we note that the static field inhomogene-
ity does not causc geometrical distortion in the phase encoding direction: it merely
causes a phase error that is not troublesome when looking at magnitude images. How-
ever, the effect introduces intensity errors in inversion recovery images. where the real
part of the image data is of interest, or can be problematic when using half Fourier

techniques where one unmeasured half of k-space is inferred from the other measured
half.

2.3 Echo Planar Imaging

Echo-planar imaging (EPI) is an ultra fast imaging sequence allowing images to be
acquired in a time on the order of 100 ms. The obvious advantage of performing
imaging at such a speed is that most physiological motion can be “frozen”. Unfortu-

nately, this speed advantage may only be achieved at the expense of significant image
degradations.
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One cause of degradation in EPI images is the phase error introduced by the
main (Bp) field inhomogeneity along the EPI trajectory. Although this phase error
is predictable for a point-object (it increases linecarly along the trajectory) it is non
linear when the signal comes from different points of the object with different local
By values (Fig. 2.9). The most adverse effect of these phase errors is geometrical
distortion. These distortions can be troublesome in various applications, including
surgical guidance and correlation of functional magnetic resonance imaging (fMRI)
data with anatomical information from different sources. In addition to geometrical
distortions, we show in Chapter 4 that By inhomogeneity also introduces so-called
N/2 ghosting.

Several methods have been suggested to address the distortion problem in EPI
images. Some approaches correct distortion directly in image space using a By field
map [88] or by using two acquisitions having different polarity of the phase encoding
gradient {12]. Other methods apply a phase correction to the k-space data prior to
performing normal 2D DFT reconstruction {108, 93]. All of these methods approach
the EPI distortion problem on a column-by-column basis. by independent 1D cor-
rections of the EPI image along the phase encoding direction. This 1D processing
approach is based on the assumption, which is valid under certain conditions, that
the EPI point spread function is one-dimensional.

The single-shot EPI sequence [67], acquires the entire k-space data matrix in one
excitation. In the blipped EPI method {87], an oscillating readout gradient is applied,
together with the short blipped phase encoding gradient (Fig. 2.10a). If data are
sampled only during the constant portion of the readout gradient, the resulting k-
space sampling is uniform. When data are acquired during the ramp-up or ramp-down
period of the readout gradient, the k-space data resulting from a uniform temporal

sampling rate are non-uniform. To obtain uniformly spaced points in k-space, one can

37



CHAPTER 2. BACKGROUND 2.3. ECHO PLANAR IMAGING
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Figure 2.9: The EPI image process.

Each pizel of an imaged object (called here ideal image) contribute to the
total k-space data (top row). However, because of field inhomogeneity each
of these contributions is affected by a phase error which depend on the field
inhomogeneity and the k-space trajectory (centre row). The corrupted k-space
components add up to constitute the total non-ideal k-space data.

use a non-uniform sampling rate [38] or perform interpolation [13] of the non-uniform
data prior to reconstruction by inverse DFT. The EPI sequences discussed in this
thesis use the first method (non-uniform sampling rate) so that no interpolation is
required. The k-space trajectory is as shown in Fig. 2.10b.

Because the phase variation along the EPI k-space trajectory is much larger in
the blipped encoding direction [107], the effect on the reconstructed image can be
approximated by distortion in the direction of the blipped encoding. The reason

. for this is that most of the EPI distortion correction methods work by applying 1D
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Figure 2.10: The EPI sequence and its k-space trajectory

a) The EPI blipped sequence uses and aiternating readout gradient and a so-
called “blip” phase encoding gradient. b) K-space trajectory. The alternating
readout gradient moves the measurement point back an forth in k-space. The
blip gradient ensures that e different k, line is measured at each traversal of
k-space in the k. direction.

corrections to each column of a corrupted EPI image. We will later discuss the
implications of this approximation, together with a full 2D correction method of EPI
distortions.

This characteristic of EPI images, to be affected by By inhomogeneity mainly in
the phase encoding direction, is inverse to the situation found in spin-warp imaging
where the distortion affects the readout direction. This can be explained by seeing
the k-space trajectory as a long readout gradient being folded in 2D k-space. Even
though in EPI the receiver bandwidth is set according to the time length of the readout
gradient required to read one line of k-space (as it is the case in 2D or 3D Fourier
imaging), one often refers to the EPI effective banduwidth, which corresponds to the
inverse of the total readout time. The distortion in the phase encoding direction in
EPI imaging is directly related to the effective bandwidth. For instance, if the total
readout time is 200 ms, the effective bandwidth is 1/200 - 10%s~! = 5Hz and a field

inhomogeneity equivalent to 5Hz will produce a one pixel distortion in the phase
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encoding direction, and a 220 Hz chemical shift would result in a pixel displacement
of 44 pixels.

2.4 Field mapping

Since the primary effect of field inhomogeneity is to induce phase shifts, the most
popular method for measuring By-maps is based on phase maps. Several By mapping
methods have been proposed {96, 95|. Because phase effects other than those produced
by static field inhomogeneity may be present, a difference of the phases of two images
acquired with different echo times may be used to obtain the phase variation due only
to the static field inhomogeneity. As introduced earlier. one such important effect in
in-vivo imaging is the chemical shift caused by fat.

We discuss here the production of field maps using both spin-echo and gradient-

echo sequences in the presence of fat.

2.4.1 Spin-echo imaging

In spin echo imaging, the 180° refocusing pulse brings the phase of the water signal

to zero at time TE. For any other time, the complex signal may be written [46]:

-uuc,,At) enABAt

I = (pw + pre (2.58)

where py and pg are the proton density of water and fat respectively, w,, is the fat
precession angular frequency difference between water and fat (= —200 Hz at 1.5 T)
and At = tgg —tsg is the time difference between the gradient echo and the spin echo.

Consider two acquisitions with time differences of At = +x/w,. The complex

signal for each acquisition is:

—7ABAt

I = (pw—pr)e (2.59)
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L. = (pw — pr)e7®58%. (2.60)
The phase of the product I_I7}
L2 = [py +pf| e85, (261)

is proportional to the field inhomogeneity AB.

180 x
90 x .
1 spin echo
RF : T T -
selection i :
. phase enc.——— ) i
freq. enc. 4 r - T -
H -—Tx— ' ' H
:  Tge b
t=0 T Tse Tee
2

Figure 2.11: Spin-echo sequence with the gradient echo shifted from the spin-echo.

Normally, the readout gradient is applied so that the centre of the gradient
echo corresponds to the centre of the spin echo. By shifting the readout
gradient, the centre of the gradient echo does not correspond to the centre
of the spin echo, and the spins are not refocused in the centre of k-space,
leaving a By tnhomogeneity-dependent phase terms in the image that may be
used to determined the By field map.

41



CHAPTER 2. BACKGROUND 2.4. FIELD MAPPING

2.4.2 Gradient echo imaging

In the case of gradient echo imaging, the phase continuously evolves from the time of

excitation to the time of readout because no refocusing occurs.

I'=(pw + ppeiert) e85, (2:62)

Consider again two acquisitions with TE’s of t = TE &+ n/w.,. The complex signal

for each acquisition is:

I_ — (pW _ ppe“"“TE) enABAte—tABTE (2.63)
I+ = (Pw _ ppewc,TE) e—:‘yABAte—tABTE_ (2.64)
The product I_I73 gives:
Lr; = [p%v ~ pwpr (e""“TE + e"‘""TE) + p?r] A8 (2.65)
= [pfv — 2pwpr cos(w.sTE) + p%:] e2ABAL (2.66)

Again, because the term in square brackets is real and positive (law of cosines), the
phase of this product is proportional to the static field inhomogeneity.

We note that in both cases, the dynamic range of the By map is YAB = tw.,/2 =
=100 Hz at 1.5 T.

2.4.3 By map noise

Since field maps are in fact phase maps, their noise characteristics are quite different
from those of magnitude images or complex images. As discussed before, the noise

on the real and imaginary channels of an image may be considered to be Gaussian

distributed.
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Figure 2.12: Typical gradient-echo sequence.

In a gradient echo sequence, there is no 180° RF pulse to refocus the de-
phasing caused by the By inhomogeneity. So, gradient echo images naturally
contain phase terms that are related to the By inhomogeneity.

Consider an image pixel having a real value R. an imaginary value I and a noise
standard deviation o. The exact phase noise distribution is quite a complex function

but the limiting cases where SNR— 0 and SNR— oc are simple [100, 99]:

7/v/3 SNR =0
0y = (2.67)
o/m SNR — oc

where SNR = m/o is the magnitude signal-to-noise ratio and m = /R? + I2. In the
first case (SNR= 0) the phase noise is uniformly distributed between —r and +7 and
in the second case (SNR — o0) it is normally distributed.

This points out the fact that By noise standard deviation essentially depends
upon the magnitude data. Furthermore, this means that the By map is meaningless

for background regions where the magnitude is completely determined by noise. By
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map data must be processed in some manner in order to get rid of the meaningless
phase map values, i.e. those in the image of the background. One way to do it is to
apply a mask on the By, map, based on a thresholded version of the magnitude data.

Other ways to avoid the non-significant field map values will be considered later.

2.5 Iterative Methods for Linear Systems

The core of this thesis consists of considering the MR image distortion problem as a
system of linear equations. As stated in the introduction, the only practical methods
for solving the large linear systems of equations arising in image restoration problems
are the iterative ones. The Conjugate Gradient method is one of them. In this section,

the theory underlying the Conjugate Gradient method is briefly discussed.

2.5.1 Quadratic Forms
We define f, the scalar function of the vector x by
f(x) = %x’Ax -x'b+ec, (2.68)

where A is an N x N matrix, and b and c are N x 1 vectors. x{ means the Hermitian

conjugate, i.e. complex conjugation and transposition, of x. If A is symmetric, the

gradient of f is given by
Af(x) = (Ax - b)". (2.69)
Furthermore, if A is positive definite, i.e if
x'Ax >0 for all x #0, (2.70)
f(x) is a multidimensional parabola which has a critical point x,, satisfying

Ax,, =b. (2.71)
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Conscquently, finding the minimum of f(x) is equivalent to solving the linear system
Ax=b. (2.72)
In order to solve (2.72) iteratively, a few definitions are needed.
e The n** itcration of the vector x is denoted by x,,.

e The crror e, at the n'” iteration is

e, =X, — X.

e The residual r, at the nt® iteration is

r. =b - Ax, = —“Af(x,;) = —Ae,.

2.5.2 General search direction: line minimization

. The basic element of many iterative techniques is the line minimization, which con-
sists of finding the minimum of an N-dimensional quadratic form f(x) along a given
direction xo + p where x; and p are vectors of dimension N — 1. This solution can
be found by finding the value of a scalar parameter a such that f(ap) is minimum.

This can be done by setting the directional derivative of f(x) to zero.

a3
75a ep) = Af(ap)p=0 (2.73)
(@Ap-r1)p = 0=a= P (2.74)
| Y P = a = pTAp’ .
2.5.3 General search direction method
In an iterative context, we consider a set of search directions {pqg. pP1,--.,Pp~}. Start-

ing from an initial value xg, the global minimization proceeds by successive minimiza-

tions along the search directions p;.

. r. = b—Ax, (2.75)
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t
an = —tbn (2.76)
prAp,
Xn+1 = xfl+anpnyn=07lr"'rN' (2'77)

The essential difference between the different iterative methods is in the way the

search directions are chosen.

Steepest Descent Method

In this method, the search directions are chosen to be the residuals. The rationale
behind this choice is that, since the residuals are equal to the negative gradient, the
search directions are those along which the quadratic form decrcases the fastest. The

iteration steps of the Steepest Descent Method are then:

r. = b-Ax, (2.78)
t
an = =B (2.79)
rnAr,,
Xnsl = Xp+a@ulfp,n=01,...,N. (2.80)

One feature of this method is that the residual at a given step is orthogonal to that

at the next step.
The main drawbacks to this method are that the search directions are not neces-
sarily independent of each other; a given direction may be searched more than once,

and the minimization along one given direction can partially be undone by the search
in a direction previously taken.
Conjugate Gradient Method

In the Conjugate Gradient Method, the search directions are chosen in such a way
as to minimize the number of searches by avoiding searching the same direction more

than once, ensuring that the residual is decreased at each iteration. To achieve this a
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set of A-conjugate vectors f is built-up as the iterations are performed. The algorithm

is as follows:

ro = b-Axg (2.81)
Po = To (2.82)
( rir,
a, = ;
PrAP-
Xn+l = Xn -+ Qnly,
§ Thsi = Tpn—a,APpp, (2.83)
t
r | %
ﬁn+1 = n:;{r ad
L Pn+yi = Fpyr+ Bn-i-lpn

The last two equations of the algorithm update the search vector. Although the
final form of this algorithm is simple, its derivation requires a considerable amount of
analysis, which is beyond the scope of this section but can be found in [47]. Much of
this analysis is to demonstrate that the conjugate directions are mutually A-conjugate
and that old search directions are not required to derive new search directions satis-

fying this property.

2.5.4 Normal equations

Because the iterative methods presented above require the system matrix to be sym-
metric and positive definite, they can be applied to the normal equations related to a

general linear systems. The normal equation corresponding to the system b = Ax is:
A'b = ATAx. (2.84)

If the matrix A is non-singular, A'A satisfies the properties of symmetry and positive-
definiteness. When the matrix A is singular, At A is non positive definite but the CG

f A set {pg,P1,---Pn-1} are said to be mutually A-conjugate when p,»Ap§ =0 when i # j.
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algorithm may still give useful solutions. Hestenes [49] derives a relation between the
conjugate gradient and the pseudo-inverse of a matrix.

The conjugate gradient method is particularly attractive for large sparse linear
systems because is uses the system matrix A only through multiplication with vectors
(even when used with normal equation, the product A'A never needs to be computed
explicitly).

Without going into too much detail in the convergence property of the Conjugate
Gradient algorithm, we can say that the number of iterations required to achieve
solution is at most equal to the number of distinct eigen-values of the matrix A
(47, 97]. Hence, in the ideal case where the eigen-values of A are all equal. the CG
method (and also the Steepest Descent method) would converge in one iteration. This
can be explained by noting that, in this case, the multidimensional parabola has a
perfect circular symmetry which causes the gradient always to point directly to the
minimum point.

In general, the CG method is theoretically guaranteed to converge in at most N
iterations (N is the dimension of the linear system). In practice however, accumulated
roundoff errors cause a gradual loss of orthogonality of the search directions and
convergence may not be obtained after NV iterations. In this respect, CG can be
considered as a genuine iterative method. Moreover, for large linear systems. it may
be impossible to perform even close to V iterations.

Reports of the use of conjugate gradient methods for deblurring of projection
reconstruction MR images were produced by [537] and Man [66], and for EPI imaging
distortion correction by Kadah [54].
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2.5.5 Conjugate Gradient and noise

In any real life situation, random noise may contaminate Eq. (2.71) and the exact
solution may not exist. In this situation, the problem may be considered as a least
square problem. The conjugate gradient is still useful in these conditions, as it may
lead to an approximate solution of the problem.

Figure 2.13 show an example of the behavior the congugate gradient algorithm in
the presence of noise. In such noise contaminated problems, the monotonic decrease
of the residual may not correspond to a reduction of the error between the solution
vector and the true solution. This behavior is due to the fact that the matrix A is
usually ill-conditionned, which means that largely differing vectors x; and x, may
lead, when multiplied by A to nearly equal results b; and b,.

In this thesis, the number of iterations is kept small, and a precise understanding
of the effect of noise on the convergence properties of the conjugate gradient method
is not as relevant as for other applications where a larger number of iteration are
needed in order to achieve an acceptable solution. For instance, in [66], the problem

is regularized by replacing the problem (2.84) by:
A'b = (ATA - M\D)x, (2.85)

where 1 is the identity matrix of the same size as A, and ) is a regularization parameter
whose value is selected according to the noise level. As the value A increases, the

approches the conjugate phase solution.
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Figure 2.13: Conjugate gradient iterations on noisy data

Ezample of the behavior of the residual and error terms in noiseless (left)
and noisy (right) situations, for a 64 x 64 system of equation. The residual
term is ||Ax: — b||2/]|b||2, the error term is ||x; — x||2/||x||2 and the noise
term is ||n||2/]|bl|2, where ||v||2 refers to the 2-norm of the vector v, i.e., the
square root of the sum of the squared elements of v. In both the noiseless and
notsy cases, the residual decreases monotically as the number of iterations
increase. In the noiseless case, this reduction of the residual is associated
with a reduction of the error term. In the noisy case, on the other hand,
the error term may increase even when the residual decreases, due to the
ill-conditionned nature of the matriz A. The dotted line in the right graph
shows the noise level, and illustrates that the error term can never go below
the noise level.




Chapter 3

Distortion Correction in MRI

Since the first days of MRI, attempts have been made to address the issue of geo-
metrical distortion. As stated in the previous chapter, the main distortion source is
static field inhomogeneity - which may itself be due to machine imperfections or to
susceptibility effects - and the deviations of the gradients from linearity. Even though
various distortion correction methods have been proposed in the past (e.g. [52]), we

will focus in this chapter on those methods that allow the magnetic susceptibility

effects to be taken into account.

3.1 Post-processing approaches

As in [17], we may distinguish two main categories of distortion correction methods:

those that use explicit By, map information and those that do not.
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3.1.1 B; map based methods
Direct implementation of the distortion equation

A number of mcthods are based on the direct application [93, 94, 39, 78] of the dis-
tortion cquation (2.52). This is typically performed in two steps. The first step takes
care of the gcometrical distortion itself, and the second step addresses the associated
intensity inhomogencity. Because these methods are all similar, only one of these
approaches. that proposced by Sekihara ([93]) is described in some length here.

First, a lincar intcrpolation is performed to correct for geometrical distortion (fig.

3.1). In onc dimension, the geometrically corrected image My([) is computed with:

g = I+6(I) (3.1)
I = g (3.2)
D = g-r, (3.3)

and
My(I) = (1 - D)M'(I') + DM'(I' + 1). (3.4)

[z] indicates the largest integer not greater than z. Equation (3.1) computes g,
the position of pixel I due to the field offset. I’. in Eq. (3.2), represents the index
of the pixel in which the center of the distorted falls and D, from Eq. (3.4) is the
fraction the distorted pixel overlaps with the pixel grid. In Eq. 3.4, the geometrically
corrected pixel value My is computed as a linear combination of the values of pixels
I' and I’ + 1 with weigths corresponding to the amount of overlap (1 — D and D
respectively).

Following this interpolation, the discrete Jacobian is evaluated from the By map

data and is applied to the interpolated data to perform density compensation.
M) = My (I)W(I) (3.3)
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W) = 1+6(+1)—6(), (3.6)

where M(I) is the value of the fully corrected pixel.

This method consists essentially of a discrete implementation of the distortion
equation.

Feig et. al. [39] proposed a similar technique with the difference that the phase
error was derived from the image itself rather than from a separately acquired field

map. This approach did not consider phase variations due to factors other than static

field inhomogeneity.

Geometrical warping

Weis et al. [106] introduced a method based exclusively on geometrical interpolation.

The interpolation used is:

L = I-05+4(I-0.5) (3.7)
R = I+05+46(I+0.5) (3.8)
I; = round(L) (3.9)
Il = round(R) (3.10)

D, = L—(I' —0.5) (3.11)

D, = R- (Il -0.5) (3.12)
n o= I'—I'+1 (3.13)

L and R are the positions of the left and right edges of the distorted voxel respectively.
I} and I/ are the indices of undistorted pixel where L and R lie. D, (D) is the distance
between L (R) and the left side of the pixel I} (I.). Finally, n corresponds to the
number of undistorted pixels that are “touched” by the distorted one. Fig. 3.2 clarifies

the meaning of the different values.
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Figure 3.1: Sekihara’s geometrical distortion correction method.

The correction is performed in two steps. In the first step, a linear interpo-
lation is performed to displace the distorted pizel to the correct position as
determined by the field map (a). Secondly, the resulting corrected pizel value
is multiplied by the intensity compensation factor derived from the values of
the By map at the pizel of interest and the following pizel. This last term is
an approzimation of the Jacobian of the coordinate transformation between
the distorted and non-distorted tmage.
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Figure 3.2: Weis’s distortion correction method

In this method, the value of an undistorted pizel is obtained by linear inter-
polation of the distorted pizel values between the left and the right edge of
the distorted pizel. This allows for geometrical and intensity effects to be
corrected at once. The algorithm must handle two distinct cases: a) the dis-
torted pizel expands over more than one undistorted pizel and b) the distorted
pizel is completely inside an undistorted pizel.
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The value of the undistorted pixel is obtained by the following interpolation:

Il -1
(L-D)M(I)+ Y. M(k)+D.M(I}) n>1
M(I) = k=Il+1 (3.14)
(D, — DY)M(I! =1I') n=1

The intensity compensation is obtained as a by-product of this equation because this
method independently deals with the left and the right edge of a distorted voxel.

One shortcoming of the two methods outlined above is the implicit assumption
that the point-spread function is rectangular, i.e. the sinc-like character of the PSF is
ignored. Violations of this assumption are small for high resolution imaging, but they
become more apparent at low resolution, as is in the case of echo-planar imaging, for
instance.

A number of other methods use geometrical interpolation to correct for distortion
but they use calibration phantom images to derive a distortion map [90, 92. 91. 53. 24]
and model the distortion map as a quadratic function, which may be inaccurate,

especially when the inhomogeneity is susceptibility induced.

k-space phase correction

Weisskoff et al. [108] proposed a correction method ~ which they apply to EPI images
but that may be generalized to other spin-warp imaging - where phase corrects the
k-space data, based on the knowledge of the field map. Given a distorted image profile

M, the k-space corrected data Sj are computed as follows:
N-1 s
Sk = 3 Mpe ™ (3.13)
m=0
where N is the number of points in the profile and 4,, is the distortion term (in
pixel units) which is proportional the B; inhomogeneity obtained from a field map
(0 = YABo/(2rBW,)). The corrected image profile is obtained by IFT of the

corrected k-space data Sp.
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Recently, a similar method was proposed, but used reference scans rather than a

By map [20].

Conjugate Phase Reconstruction

Conjugate phase reconstruction [77] consists of “undoing” the unwanted phase varia-
tion due to field inhomogeneity. This is equivalent to reconstructing each pixel of an
image separately with a demodulation frequency adjusted to the value given by the

field map (Fig. 3.3). Mathematically, the conjugate phase corrected profile, MSF, is

given by:
N-=-1 N
MEF = 3 S 55", (3.16)
k=0

where S}, is the corrupted k-space data

N-1 ot msd
1= 3 Mue (%), (3.17)
m=0

The conjugate phase method may seem similar to the Weisskoff's method at first
sight, since both are based on phase correction in k-space. The difference can be
clarified by comparing equations (3.15) and (3.17). The two equations have the same
form except that Weisskoff’s equation involves the distorted, rather than the undis-

torted image profile and the opposite spatial distortion term (—4,,) as compared to
Eq. (3.17).

3.1.2 Double-gradient Methods

The most well known post-processing method that does not use By map information is
that proposed by Chang and Fitzpatrick (18, 17]. Consider two images acquired with
different readout gradients, G, and G.a. Because of the relation between readout

gradient amplitude and geometric distortion in readout direction, the two images
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Figure 3.3: Conjugate Phase Reconstruction for an EPI image.

The conjugate phase reconstruction is equivalent to performing a separate
reconstruction for every pizel of an image. Prior to the reconstruction of
a given pizel, the k-space data are demodulated with a function dependent
on the k-space trojectory and the By inhomogeneity at the pizel position
(centre row). For each reconstruction, only the pizel for which the ezact
demodulation was performed is kept in the final image (bottom row).

will exhibit different amount of distortion. If z{ and z, are the distorted spatial
coordinates of each distorted image, and z is the coordinate system of the undistorted
image, following Eq. 2.52, we may write according to Eq. (2.52):

-1 d.'LJz

dr

-1
1

and Mj(z)) = M(z) (3.18)

which can be combined as:

dzy _ Mi()
iz, ~ My(z))

(3.19)
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Provided that at least a pair of corresponding points (z4, Z5) is known, the above

diffcrential cquation can be solved to find the correspondence between z; and r,.

Then. from Eq. (2.49).

i, = r+ ABGO(Q:) and (3.20)
B,
¥, = r+ aé#, (3.21)
and the solution for z is:
_on T (3.22)
a—1 -

This shows how to get the correction for the pixel displacement. It is intuitively casier
to understand Eq. (3.22) when the gradients of the two images have the same ampli-
tude but opposite polarities. In this case, « = —1 and = = (x; + z3)/2, confirming
that the real position is midway between the distorted position x; and z,.

For the intensity correction, one can take the derivative on both side of Eq. (3.22):

- dr, _dzp 9
b= a—l(adx dz:) (3.23)

1 M(x) M(z) o
- _ . 24
S (" M) Myz)) (3.24)

from whick we find:
(4 (4

M(z) = (o — 1)— D2 Ma(z3) (3.25)

aMy(zy) — Mi(z})
As stated above, an initial condition, a value of z, for which z/ is known, is required for
the solution of the differential equation (3.19). When the object does not extend over
the whole field of view, this is typically achieved by identifying the first point of non-
zero intensity on each distorted image, a task that can be performed automatically.
In the other case, an arbitrary pair of matching points must be selected, and this
usually require human intervention. In any case, the accuracy of the method depends

on the accuracy with which the initial starting point is determined.
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Moreover, this technique requires two images (or volumes) to achieve correction,
hence doubling the acquisition time, making it prohibitively long for 3D imaging and
fMRI studies.

An example of the application of this method is reported in [65]. This technique

has also been proposed for the correction of EPI images {12]. A variant is presented

in [55].

3.2 Modified Acquisitions

As opposed to post-processing methods, modified acquisition methods attempt to
remove the effect of field inhomogeneities at the acquisition stage, by applying various
modifications to the conventional acquisition strategies.

Slice select

[n plane

Tilted view angle

Figure 3.4: Dlustration of the Tilted View Angle Technique.

Because in-plane distortions are associated with proportional slice selection
distortions, those distortions appear to vanish when the view angle is tilted.
This is pructically accomplished by applying a gradient in the slice select
direction together with the usual readout gradient when sampling the signal.
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3.2.1 View angle tilting

In 1987, Cho et al [21] proposed a method based on view angle tilting. Their tech-
nique, applicable to 2D imaging, used the fact that geometrical distortions (including
chemical shift) present in the frequency encoding direction are associated with pro-
portional distortion of the slice profile. Then, by reading out the echoes with the
slice selection gradient applied together with the frequency encoding gradient, they
were able to obtain images free of distortion. This is equivalent to using an effective
readout direction that is slightly tilted with respect to the direction of the desired
readout gradient (fig 3.4).

In order to see how the distortion can be eliminated with the view angle tilting
method, we write the signal equation in one dimension, including the slice selection

direction (z).

AB(=x)

S(t) =/:/z.l\/[(:r,z)e"2mwc"(”+_¢?')dxdz. (3.26)

The heart of the method is to apply a gradient in the z-direction during signal readout

together with the usual readout gradient in the z-direction.
S(t) = f / M(z, z)e"2mGstg=2m1Get(z+ 55 ) 4rgy (3.27)

Applying the variable change

z - AB(z)/G., (3.28)
S(t) becomes:

S(t) = _/;:/;A/I(I’ 2 — AB(z)/Gz)e—mﬁ’szt(z’—%l)

e tmnCa(e+ 22 | 42| 4y (3.29)

o
'
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Because the Jacobian of the transformation, dz/dz’, is unity and the terms in B(z)

cancel, we finally find:
S(t) = / / M(z, 2 — AB(z)/G;)e 3™C:ts' g 2mivCetz d gy (3.30)
Jz

The application of the gradient in the slice select (z) direction has the effect of tilting
the view angle by # = tan~!(G./G;). The cancellation of the field inhomogeneity
terms in Eq. 3.29 occurs because a distortion also occurs in the slice select direction
and that this distortion is proportional to the distortion observed in the in-plane (z)
direction.

They also note that the images obtained are convolved with a narrow rect func-
tion that depends on the slice-selection bandwidth and the amplitude of the readout
gradicnt. Because of the absence of slice selection in 3D imaging, this method is only
applicable to 2D acquisition methods. The application of this technique to EPI would

be difficult because two resonating gradients would have to be applied simultaneously.

3.2.2 Echo-projection and similar techniques.

A set of mutually similar techniques use an alternating readout gradient together
with a train of 180° pulses. In these techniques, one data point is acquired at the
centre of each inter-pulse interval (Fig. 3.5). This, ensures that any dephasing of
the magnetization due to chemical shift or By inhomogeneity is refocused when data
points are sampled, eliminating their effect on the reconstructed image. Combined
with this periodic refocusing of the magnetization, the alternating readout gradient
produces a k-space coverage which alternates between negative and positive k-space
values. But since the effects the field inhomogeneity are eliminated in this type of
sequence, the imaged object is assumed to be real, and a one-sided Fourier Transform

is performed to reconstruct the signal.
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Refocused gradient imaging (Miller et al) [70] and spin-inversion imaging (Wong et
al) [109] use sinusoidal gradients while echo projection imaging (Bendel) [7] have been
proposed with ramped linear gradients. The main disadvantages of these techniques
is that they require high RF power and long imaging times, due to the limit on the
sampling frequency achievable imposed by the duration of the 180° pulses.

3.2.3 Conclusion

Addressing the problem of field inhomogeneity-induced distortions involves a clear
tradeoff between imaging time and post-processing time. Modified acquisition tech-
niques tend to need longer acquisition times, which may not be compatibie with
certain applications. For instance, in 3D imaging, the acquisition time already ap-
proaches the reasonable limit (10-15 minutes for a whole head) and modified acqui-
sition techniques would only make it worse. For dynamic EPI. time resolution con-
straints also put a limit on the acceptable acquisition time. Longer acquisition times
are not only a problem with modified acquisitions methods. Some post-processing
technique, such as the double gradient method, require two set of data to be ac-
quired. By map-based methods also involves a increase in total scan time because of
the need to measure a field map. But since By inhomogeneities typically have low
spatial frequency content, they can be acquired with much smaller resolution than
the image to be corrected. In 3D imaging for instance, a By at one quarter of the
spatial resolution of the data set to be corrected will be acquired 4 times as fast. The
By map measurement overhead is then only 25%.

The processing time is also a concern in distortion correction. Post-processing
techniques must also be efficient, considering the large amount of data generated by
3D and dynamic EPI techniques. For instance, consider the computational burden of

applying a one-dimensional correction method to a 256 x 256 x 200 3D volume. The
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Figure 3.5: Echo Projection Imaging

The Echo Projection Imaging pulse sequence (a), is composed of a train of
180° RF pulses with an alternating, periodic readout gradient. The periodic
refocusing of the magnetization provided by the RF pulse train effectively re-
moves By and chemical shift artifacts from the image, when data points are
acquired at 2nt intervals. The k-space trajectory (b}, alternates between posi-
tive and negative k-space values. Other methods, such as Refocused Gradient
Imaging and Spin Inversion Imaging differ from Echo Projection imaging
only by the waveform used for the alternating gradient.

number of line corrections in this case would be 256 x 200 = 51200 (assuming the first
dimension is the readout direction). Assuming each line correction takes 1 sec., the
total processing time would exceed 14 hours, which is hardly acceptable in a clinical

situation. The acceptable processing may obviously vary. In a research context, long
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processing times are certainly more common and tolerated than in a clinical context.

Another important point to be considered is the decoupling between the image
data and the non ideal conditions giving rise to distortions in the reconstructed images.
In the double gradient method no such decoupling occurs. This means that, even for
different images acquired with the same conditions of By inhomogeneity, such as a
set of dynamic fMRI images, two acquisitions would be needed for each image. By
map-based techniques do not have this limitation. The separation between distorted
image and non-ideal imaging conditions is the most evident for the inverse problem

approach presented in this thesis.

65



Chapter 4

EPI correction as an image

restoration problem

This chapter presents a formulation of the distortion correction of EPI images problem
from the point of view of image restoration. Parts of this material, was published by
the author of this thesis [73] and was the subject of an oral presentation in the Sixth
Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM),
Sydney, Australia, in April 1998 [72].

As shown in the introduction chapter, By-induced degradations in EPI do not
merely translate into geometrical distortions, they also cause some amount of éhommg.
Although this ghosting may be small for small levels of By inhomogeneity, it becomes
important as the field becomes less homogeneous and is very relevant for practical
EPL

Even if the general principles of image restoration are conceptually straightfor-
ward, their practical application is often challenging, due to the potentially large
amount of data to be manipulated. In the general case, an N x N problem involves a

system of linear equations of size N2 x N2, which may only be manipulated efficiently
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if suitable approximations are made to reduce the amount of data to be processed.
Another concern when dealing with image restoration problems is the computational
complexity of the task. Any algorithm requiring days of computation time would only
be of academic interest in a practical situation.

In the following, we discuss the discrete-discrete model of EPI image formation,

and we develop approximations allowing solutions to be computed in a reasonable

time.

4.1 EPI Imaging Equation

In the presence of B, field inhomogeneity, the discrete data collected during a 2D
MRI acquisition can be expressed as a linear transformation between the ideal M x NV

image I, , and the measured signal Si; [75]:

My X

2

Sk = Z -z: Im.nKm.n;k,le (4'1)

A N

m=—5 n=-7

with,

—2mi( 52+ 48+ L ABm.ntes)

Knnki =€ : . (4.2)

where m and n are the vertical and horizontal spatial indices, M and N arc the vertical
and horizontal image matrix dimensions. ABp,, is the spatially variant B, field
inhomogeneity while ¢, is the time between the sampling of the k-space point (k,{)
and the RF excitation (when the FID is sampled) or the centre of the echo (when the
spin echo is sampled). This last parameter depends on the k-space trajectory which
we assume to be perfect, i.e, the gradient timing and spatial linearity are assumed to
be ideal.

Equation (4.1) can be transformed into a relation between the FT reconstructed

image I, .. and the ideal image I, by taking the 2D DFT of K nx; with respect
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to k and ! on both sides of equation (4.1) for each value of m and n. Mathematically,

M _, N,
2 2

!

man = Z Z I .nAm.u;m'.n’e (43)
m=—4 n=—4%

A 2
Am,n;m’.n’ = Z Z Km.n;k,le

M N
S]] =-—=1 ’ ’
2 3 Mk — ! -
3 2 ( (vnu m) !n‘ n) ¥ :B . ) ")

B

(4.4)

I
™
LM

We note that A, p.m'.nv is the 2D spatially variant point spread function (PSF) as-
sociated with voxel (m,n). Depending on the particular form of the point spread
function, some simplifications to this equation may be possible. Using integral equa-
tion terminology, we refer to Aq, n.m’ n’ as the kernel of the EPI imaging equation.
We show below how this 4D equation can be solved directly using sparse matrices
and the conjugate gradient method, leading to a general 2D correction approach.
Also, we have demonstrated that the particular form of the EPI kernel will lead to an
important simplification of this equation. allowing the 2D problem to be decomposed

into a series of 1D problems.

4.2 EPI point spread function (PSF)

It is interesting to look at the effect of the phase errors in the EPI imaging process
on the reconstruction of a point-object. Consider a point-object Img.ng = Omo.mOn ng-
From equation (4.3),

M N
My K

Ma,Na  __
PSFm':ﬂ_r - Z 2 Jmo,méﬂ,ﬂo A‘"l,n;ﬂl',"-'
AL N

m=—% n=—3

= AmO ng,m’,n’
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i ! I(n' -
eZm(k(mqu)+ (n yng)_zﬁ;ABmo'notk,l) (4.5)

Fig. 4.1 illustrates the EPI PSF for several different frequency offset values caused
by deviation of the main field (ABg) from the nominal value By. Note that the PSF

extends in both dimensions and four distinct effects can be observed:

e geometrical distortion, a consequence of the shift of the main peak in the phase
encoding direction, which is proportional to the frequency offset. This is seen

as the upwards shift of the imaged points in Fig. 4.1.

e blurring in the phase encoding direction, demonstrated by the sprcad of the
main peak. This blurring is a consequence of the fact the sampling grid is not

centred on the sinc PSF produced by k-space truncation.

e ghosting in the phase encoding direction, indicated by the presence of a secc-

ondary peak, which is increasingly evident as the frequency offset increases.
e blurring of the ghosts, mainly in the frequency encoding direction.

We note that ghosting in EPI may have other causes that can be more significant
than the shape of the PSF. One of these factors is the misalignment of the analog to
digital conversion (ADC) window with the time varying gradients {14]. A misalign-
ment of even a fraction of the inter-sample spacing can cause significant ghosting of
the image. The origin of the N/2-ghost is due to the fact that ADC misalignment
results in a shift of even k-space lines in one direction, and of odd k-space lines in
the other direction. Because a shift in k-space translates as a phase modulation in
the image space, the images resulting from the odd and even k-space lines of k-space,
which are aliased by N/2, because of undersampling by a factor of 2, are affected by
different phase shifts. In a perfect situation, when the ADC is correctly aligned, the
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aliases in the odd and even images cancel out completely. But when the two images
are affected by different phase shifts, this cancellation does not occur, hence the N/2
ghosts.

An important characteristic of the EPI PSF is that it does not merely shift as
the field offset increases due to the presence of the ghosting component. For small
field offset, the ghosting component amplitude is only a few percent of the main peak
amplitude. However, for larger field offsets, it becomes larger relative to the main
peak.

While the PSF is two-dimensional, it can be approximated by a one-dimensional
function for small field offsets (e.g < 50 Hz). This fact will be exploited later to justify
1D processing. A similar 1D analysis was performed in [34].

Another simple way to understand the particular shape of the EPI PSF is to note
that an EPI image can be considered as the sum of two images composed of the odd
and even k-space lines separately (Fig. 4.2). Thesec images arc both aliased over half
the FOV and they are distorted in opposite directions in the readout direction. In
the real EPI image, being the sum of these two aliased images, the cancellation of

the ghosts is not complete because of the different distortions affecting them in the

readout direction.

4.3 Matrix formulation

In order to solve the 4D imaging equation (4.3), it must be restated in the form of
a matrix equation. If I’ and I are the M N x 1 vectors formed by reformatting I .

and [, , into vectors formed by the concatenation of their columns, i.e:

Im+hln+M/2 = Inn (4-6)

¥! - 1
m/+Mn'+M/2 m'n’ (47)
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ghost peak

0O Hz 0 Hz 100 Hz 200 Hz

main peak

Figure 4.1: The EPI point spread function

The EPI point-spread function is obtained with Eq. (4.5). Here are ezamples
of the PSF for By fields offsets of a) 0 Hz, b) 50 Hz, c) 100 Hz and d) 200
Hz, for an impulse object at the centre of the field-of-view (my = ng =0).

. The EPI parameters are: matriz size = 128x 128, TE = 65 ms, Tgcq = 123
ms. The horizontal and vertical directions correspond to the frequency and
phase encoding directions respectively. The main characteristic of the EPI
PSF is the presence of the “ghost” peak alias from the main peak by half
the field-of-view. Note how the magnitude of this ghost peak increases as the
field offset becomes larger.

( I_y _~ \ { I’y _~ )
2 2 2 2
’
Ly g Ly
- -
I= Iﬂ—l—ﬁ I = ,i[~l—i (4-8)
2 v 2 2 ' 2
(4
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AM N
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Figure 4.2: Dlustration of the origin of field-inhomogeneity related ghosts.

If only odd or even lines of k-space are reconstructed, an aliased image is
obtained. Because of the nature of the EPI trajectory, the distortions in the
phase encoding direction is the same for the images reconstructed from odd
k-space lines and that obtained from even k-space lines. However, the distor-
tions on the frequency encoding direction are in opposite directions because
k-space data are acquired with different polarities of the readout gradient.

Because of this, the images do not erxactly overlap when added to form the
complete EPI image.
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and A is thec MN x M N matrix defined by
( A M _~._ M _N A_wm N._M _N Apm N_j._M _N \
—ETTETT Y I ik it 2 Ly -Lk-F.—%
N A_wm N._M N Aum N M N
T e stlL-Fi-5+lL-F T-La-Li-F+1,—5
2 2 2 2 2 2 2 2 2 , (49)

>
[

(4.10)

This is illustrated in Fig. 4.3. In absence of ficld inhomogeneity. the matrix A is the

=y

B U S |
® we| |

PSF corrcsponc-ling to different pixels

Figure 4.3: The 4D tensor equation in matrix form.
The 4D tensor equation describing the EPI imaging process may be expressed
as a matriz equation where the M x N distorted and undistorted images are

stretched into MN x 1 vectors, and the M x N x M x N 4D kernel is
re-arranged as a MN x M N matriz.

identity matrix. It is easy to see that with a small amount of inhomogeneity, A will be
close to the identity matrix and consequently sparse. This can be better appreciated

by noting that each column of A is the column rescanning [84] of the two-dimensional
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EPI point spread function corresponding to one pixel of the ideal image. A look at
Fig. 4.1 shows that this vector contains a small number of significant values, and so
is sparse to a high degree.

We also note that the geometrical distortion is reflected by a vertical shift of the

diagonal elements of the A matrix.

4.3.1 Low rank approximation of the kernel

Computation of the kernel A can be performed by computing the PSF for each pixel
of the ideal image. We develop here a practical simplification of the PSF that allows
the kernel to be calculated more efficiently.

Because of the particular shape of the EPI k-space trajectory, it is possible to
show that the EPI PSF can in fact be approximated very closely by a rank-2 matrix.

In order to see this, we first note that the trajectory itself may be well approx-
imated by a rank 2 matrix. This is because the EPI trajectory is composed of two
main trends: the back and forth behaviour produced by the oscillating gradient and
the linear motion in the k, (phase encoding) due to the blip phase encoding gradient.
This is performed as follows.

Let U, A, and V be the singular value decomposition of the trajectory matrix t.

Because this matrix is typically of rank 2. it can be expressed as
t = AUVY + \2UV? (4.11)

where U, U? and V!, V2 are the first and second singular vectors of U and V

respectively (assuming the singular values and singular vectors are sorted in decreasing

order of magnitude.)

The vector U! depends only on k and represents the linear time increase along

the blip encoding direction. The vector V! has a constant value V!. U? alternates
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between two values: +U? for even k-space lines and —U? for odd k-space lines. V?
represents the ADC sampling along the frequency encoding direction.

The benefit of this formulation is that, when considering odd and even trajectory
lines separately, the kernel becomes separable with respect to k and [, i.e., the PSF
can be computed with three 1D DFT'S instead of one full 2D DFT.

To show this, we write the PSF, for a pixel in the center of the FOV, as a sum of

two terms: one over the even k’s and the other over the odd k’s.

N
2

PSF0.0 E : e?'ﬂ't(%/ﬂ,,-i»v—_AB[AlUklcvl_*_'\zuzvlzl) +
m,n E :
..—__ =—XN na

) 2k a_x lyrloytl 3217202
2R 3 Z mi( 3+ 42— L ABAULV -0 V3] (4.12)
k=— =
1 2
which may be written
M_y N_
2% 2
PSFOO _ Z eZTri(ﬁ"'z-z—ABA‘UleVl) e"m(%‘—%ABA‘UQV) .
=M (==X
=4 -2
¥
2k 2 . - 2,
2% Z eZm(“;’;z’:’ABAlU“’V‘) 2 27 %+-2;ABA2U'V")Y (413)
=—X
where U}° and U}¢ represent the odd and even elements of U}.
k k k
If we define:
M _ \I
[y
1 i( FR - ABAULV!Y) | omim 2mi( 3B - L ABALULVY)
Pmn = Z e 1/2 + e~ z: e Zn
Y M
= -
A‘!
— Z eZmT,»e—2mlABA‘U‘V‘
k=—A
P s L. 1 L 1
= IDFT {5HaBM0V!] (4.14)
a (2km‘7 [€728 1) A“—r ! (2k d irrt 1)
2 2mi( 3km 2 ABAlULV omim 27i Zm 2 ABALULOV
P = Z: e M/2 2% —e N Z e M2 2
M
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- z (1) k ZmVe—ZmlAB,\IULV‘
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= IDFT {(_l)ke—2ni§'7;ABA1U,:V‘} (4.15)
¥ )
gk = Z 2mi(F-FABNUV?) Z e2ri( §+3LABNUE)

N

=-X

2

| ’-’|<

N 1
2 Jlm
= 2 e*™'% cos (YABAZU?V}?)

==X
I=—3

= IDFT {cos (7ABA2U2V2)} (4.16)

N
L -1

L if L 22072
= e2mi( R - ABNUE) _ e2mi( R+ ABAURUE)

wjz

rd

=-% ==X

2

vl

-1
= -% ™% sin (YABNU2V?),
!

= IDFT {sm (vABANUV?)} (4.17)

ulz

we get:

PSF%?, = phah + Phg2 (4.18)

In order to compute the PSF for an arbitrary point (mg, ng). the equations (4.14) to
(4.18) are modified to take the following form:

pl = IDFT {e"—ﬁ"ﬁe-z’"‘%‘wwﬁ"‘} (4.19)
p2 = IDFT Ie £(—1)ke -Zmlw’*‘f""‘} (4.20)
¢ = IDFT {e 2 cos (—yAB,\2U2V,2)} (4.21)
@ = IDFT{ 5 sm('yAB,\zUzvz)} (4.22)
PSFoo™ = phgn + Phda (4.23)

We note that this decomposition actually involves only three 1D DFT’s since p!

and p? are simply related by a N/2 circular shift. Figs. 4.6 and 4.7 shows an example

. of these vectors.
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An interesting side effect of this decomposition of the kernel is that the first term,
p'q' represents the main peak of the PSF, while the second term, p?q® corresponds
to the ghost component.

Figures 4.4 and 4.5 show the singular value decomposition of a typical k-space
trajectory and Fig. 4.8 displays the decomposition of a typical EPI PSE into vertical

and horizontal components.

4.4 Implementation of 2D correction

4.4.1 By map processing

Since the By map is essentially a phase image, we have seen before that it is affected by
full-scale noise in background regions. In other words, the field map is meaningless in
the background regions and its value must not be considered in the image correction.
However, the field map is generally different from zero in the neighbourhood of the
interface between the image and the background. An expeditious way of handling this
would be to set the field map to zero in regions where the magnitude image is smaller
that a certain threshold value. However, this creates discontinuities in the field map
that translate into artifacts in the reconstructed images. An alternative approach
is to perform a 2D spline fitting on the field map, where only the meaningful field
map values are considered and to let the splines extend over the background region.
This produces a By map with the correct value over the regions where there is signal

and which is continuous at the object boundaries. Furthermore, such fitting helps to

reduce the field map noise.
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Figure 4.4: Line component of the EPI k-space trajectory.

The k-space trajectoru, because of its particular form in EPI, can be approz-
imated by a rank-2 matriz, i.e., it can be erpressed as a sum of two outer
products Uy Vi + UaVo;. This figure shows the components depending on
k, the line index of the trajectory matriz. U; aeccounts for the time increase
during the “descent” of k-space. U, describes the fact that the direction of
k-space traversal is alternated at every k-space line.
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Figure 4.5: Column component of the EPI k-space trajectory.

This figure shows the components depending on |, the column indezx of the
trajectory matriz. V1 is constant, meaning that the phase accrual along any
column of the k-space trajectory is the same. V> reflects the non-uniform
sampling pattern that is used for every line of k-space. The non-uniform
sampling is necessary to obtain equally spaced k-space samples when data
are acquired in the presence of a non constant readout gradient.
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ﬂ'

|p'1|'

Figure 4.6: Main component of the EPI point spread function.

Because the k-space trajectory is a rank-2 matriz, the EPS PSF can be also
approzimated with a rank-2 matriz (details in the text). The PSF is com-
pletely determined by the four vectors: pim, P2m: Qin and Qon. The product
PimQin corresponds to the main component of the PSF, i.e. that which ac-
counts for the distortion in the phase encoding direction.
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Figure 4.7: Ghost component of the EPI point spread function.

The product P2mQon represents to the ghost component of the PSF, i.e. that
which accounts for the N/2 ghost component in the readout direction.
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main component P1q:

full EPI PSF

ghost component  P2Q:
—dp—

Figure 4.8: The two components of the EPI PSF
The decomposition of the EPI trajectory allows the EPI PSF to be separated
tn two components: the main part and the ghost part. The main point in
performing this separation is to speed up the computation of the 4D kernel.
It may be computed in 3 1D FFTs instead of 1 2D FFT.
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4.4.2 4D kernel computation

Since the column of the kernel A is formed by the EPI PSF corresponding to a
given image location, it was computed column-wise using the rank-2 approximation
discussed above. In order to make it sparse, the negligible elements of the PSF, based
on a fixed threshold, were set to zero. This threshold, which may be considered as
a free parameter of the correction method, allows the sparsity, i.e. the number of
non-zero values in the sparse kernel, to be adjusted. The implications of the choice
of this threshold will be discussed in the next chapter. The detailed algorithm to
compute the 4D kernel is given in Fig. 4.9.

compute the matrices U, S, and V, the SVD of the k-space trajectory.
for (i =0to N —1)
for (j=0to N-1)
- compute the vectors p*, p?, q*, q® from Eq. (4.19) to (4.22)
- compute PSF for pixel (%,7) using Eq. (4.23)
- reshape the PSF into a column vector
- discard elements of PSF smaller than threshold
- store in sparse form in the column i + Nj of the sparse matrix A
end for j

end for :

Figure 4.9: Algorithm for the computation of the 4D kernel A
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4.4.3 Solution of the 4D linear system

Once the sparse 4D kernel is obtained, the CG method may be applied to the normal

equations

A™' = ATAM, (4.24)

where the tilde again refers to the rescanned versions of the 4D kernel and the 2D

images. This is done by slightly modifying the standard CG algorithm (2.83) as

follows:

b = xg=M
o = Af(b—AXo)

Po = TIo
qQn = ATApn
a, = Fafn
gL
P'Qn
Xny1 = Xp + Qply,
mn (4.25)
Fpnyet = Pp— QnAQna
r$|+1l'n+1
6n+l - l‘i. r,
| Pnt1 = Fpy + Br+1dn

We stress again the fact that the matrix A'A never needs to be computed explic-
itly, because the product q, = A'Ap, can be computed as two sparse matrix-vector

multiplications, i.e. q, = At(Ap,).

4.5 1D correction approximation

The goal of this section is to demonstrate that, under small field inhomogeneity condi-

tions, the 2D correction can be approximated by a series of 1D corrections. A similar
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analysis was recently independently reported by Kadah and Hu [534].

The particular form of the EPI PSF suggests that, in the case where field offsets
are relatively small, one dimensional processing can be performed on each column
of an image. This approximation, conceptually corresponding to the case where the
“ghost” part of the PSF is ignored, has many advantages. First, the solution of the
large 4D linear system is replaced by a set of smaller and more manageable 2D linear
systems.

The 4D tensor equation (Eq. 4.1) can be simplified by making the approximation
that ¢;; depends only on k. Eq. (4.1) then becomes

M—-1LN-1

Su=3% % Lpne™™ B +%+ABmate) (4.26)

m=0 n=0

Performing an inverse DFT with respect to [, we obtain:

N-1M-1N~1 ( km | Hn=n')
S = SN e (e R s )
81 - m,n
{=0 m=0 n=0
M—-1N-1 N-1 ’
— Z Z Imne—zﬁ(’%é.-g;ABm,,,tk) Z 2t
m=0 n=0 =0

M-1N-1 e
= T ez amma;,,

m=0 n=0

M—1 e
= z [m,nle_zm T+57Mm.n’tk) . (4.27)
m=0

which can be expressed in matrix form as
S. =K., n=0...N -1, (4.28)

where S,, and I, are the m** column of S, and I, respectively and K, is the
M x M matrix defined by:

[Knlim = e 27 (58 +55 8Bm.nti) (4.29)

This approximation effectively decouples the M N x M N linear system into N linear
systems of size M x M.
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As in the 4D case, Eq. (4.29) may be expressed in terms of the distorted image by

performing a 1D inverse DFT with respect to k on both sides of the equation, leading

to:

L,=A,, n=0..N-1 (4.30)

where A, = F'K,,, and F is the discrete Fourier Transform matrix F,, = e~ 2"%7 .
The t represents the hermitian transposition (complex conjugation plus transposi-
tion).

This recasting of the 2D problem into a series of 1D problems allows us to look at
the use of the conjugate gradient method for 1D correction. Because of the simpler
form of the 1D problems, analytical expressions for the kernel may be obtained. To
show this, we rewrite the matrix K in terms of a quantity A,, which corresponds to

the pixel shift in pixel units.
Kim =™ 2% ko — _N/2.. . N/2-1. (4.31)

It is useful to adopt the convention that the vectors and matrices are —N/2-based,
i.e., that their first index is —/N/2. The reason for this choice is that Kj,, does not

have the circular symmetry (i.e. Kix+nNm+n # Kim) as is the case for the discrete

Fourier transform matrix.

The matrix A is the Discrete Fourier transform of K and can be written:

N/2-1 ,
Amwm = Y Kime®™ %
k=—N/2
N/2-1 i —m—drm)
= ¥ emTmET (4.32)
k=—N/2

An analytical expression for the elements of the matrix A can be derived by explicitly

performing the inverse DFT: Using the fact that the summation can be expressed as
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a gecomctric progression of the form

N-1 _ N
k= 1-r (4.33)
= l-r

we can write

_ p2mi(m'—m—Am)
4 — -mi(m'=m) miAm l-e
<“im'm —

1 — e2mi(m’'—-m—Amn)/N
—-2mildm
= €

—wi(m’—m)em'Am l—e
1-— eZwi(m’—m)/Ne—ZﬂiAm/N

= e-milm'-m-Am)/N sin{(m(m’' — m — Ay,))

sin(w(m’ —m — Ap)/N)’ (4.34)

We may check that when there is no field inhomogeneity, A,, = 0 and Eq. (4.34)
gives Aprm = Omrm, i.e. the reconstructed and measured images are related by the
identity matrix.

Because of the form of the normal equation 4.24, it is also useful to consider the

related problem
K'S = K'KM = PM with P =K'K = A'A. (4.35)

Using a procedure similar to that leading to equations (4.34) it can be shown that

the elements of P are given by:

—mi(m'—m’'+A s —Am) 1 — g2 (Am —4m)

Pm'm = e

e

(4.36)

The closed form solutions (4.34) and (4.36) allow the matrices A and A'A =P to
be computed directly, without a 2D DF'T. Moreover, it has the advantage of allowing
the matrix A to be obtained efficiently by computing only the elements close to the
diagonal.

Fig. 4.10 give an example of how the different matrices may appear.
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A'A

Figure 4.10: Various matrices involved in 1D correction.

Nlustration of the matrices K from Eq. (4.31), A from Eq. (4.34), A’ and
A’A =P from Eq. (4.36) computed from the 1D Gaussian field map shoun
on the top graph. Although it may be difficult to intuitively understand the
meaning of K, it is much clearer to look at its Fourier Transform A which
relates the distorted and ideal images. The curved diagonal of A reflects the
fact that the ideal becomes distorted when transformed by A. One can also
see how the conjugate phase methods, which attempt to correct by multiplying
the distorted image by the complez conjugate of A, A’, undoes the effect of
the matriz A regarding to pizel displacement. The matriz A’ A represents the
relationship between the conjugate phase reconstruction and the ideal image,
and shows how the two images differ in amplitude.

4.5.1 Solution of the 2D linear systems

In the case of 1D processing, the linear system

AllL, = AlA.L, (4.37)
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is solved for every column of the EPI image. The matrices A, are computed using
equation [4.34]. The fact that A has a closed form expression allows the computing
requirement to be relaxed by considering only a certain number of the matrix elements
on each side of the main diagonal.

It was found in practice, that in both 2D and 1D cases, a small number of iterations
(2-3) was sufficient to yield a good solution. Not only did a larger number of iterations
not help to significantly reduce the error, it may actually increase it and produce

artifacts in the reconstructed image. The next chapter considers this point further.

4.6 Summary

This chapter has exposed the mathematical fondations underlying the core of the
thesis. First, the EPI imaging equation problem was stated in terms of a 4D tensor
equation. The EPI imaging process was also studied, and its point-spread function
was shown to exhibit ghosting artifacts, in addition to the expected geometrical shift
in the phase encoding direction.

The solutions of system of equation representing the EPI imaging process was
shown to be practically achievable by transforming it in such a way as to get a sparse
linear system. A full 2D correction method, based on the solution of the sparse
linear system by the Conjugate Gradient algorithm, was developped, along with a
computational simplification based on the low-rank characteristics of the EPI k-space
trajectory.

Finally, it was demonstrated that the 4D tensor equation decouples into a set
of smaller 2D problems when the k-space trajectory is approximated as varying in

one direction only. A special case of above full 2D algorithm was derived from this
simplification, leading to a 1D algorithm.
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Chapter 5

Computer simulations and

techniques comparisons

5.1 Introduction

This chapter investigates various aspects of the application of the CG-based correction
method presented in the previous chapter, by means of computer simulations and
compares the performance of different correction methods under different imaging
conditions in the context of EPI imaging. Although these simulations can not take
all aspects of an actual situation into account, they have the advantage of allowing
the specific effects of various parameters to be observed.

The first section, (Section 5.2), introduces various aspects of the simulations. The
Results and Discussion sections (Sections 5.3 and 5.4) are separated in two parts. The
first deals with simulations performed to evaluate the impact of certain parameters of
the CG method on the quality of the reconstruction. The second section presents a

comparison, again by computer simulations, of the different By-map based methods.
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5.2 Methods

5.2.1 Analytic phantom

In real experiments, it is often difficult to evaluate the performance of correction
techniques due to the absence of an absolute “gold standard” against which to com-
pare the results. In simulations, this gold standard is given a-priort and simulated
experimental data are derived from it.

In this whole chapter, the reference image (i.e. the “gold standard”) is an analytic
phantom (Fig. 5.1). It comes from an idealized analytic object known at infinite
resolution. In this case, the object is a circle, with smaller squares inside. Because the
continuous Fourier Transform of those shapes is known analytically, one can calculate
the exact k-space signal that such an object would generate. The analytical phantom
image is then obtained by evaluating the analytic Fourier Transform of the object
onto a rectangular discrete grid (which is equivalent to sampling the k-space signal
of the object) and performing and inverse discrete Fourier transform (DFT) on this
discrete data set. The analytic phantom used in this chapter was sampled onto a
64 x 64 grid.

The advantage of using an analytic phantom, instead of an a-priori sampled image,
is that the truncation (ringing) artifacts in the analytic phantom reflects more closely

what is observed on an actual MR image.

5.2.2 EPI k-space trajectory

All simulations in this chapter assume the following parameters for the EPI sequence:
Echo time of TE = 35ms, total acquisition time T,.; = 61ms. The readout period
for a single line of k-space is T = 960us. So, the bandwidth per pixel in the readout
direction is 1/T =~ 1kHz and the effective bandwidth in the phase encoding direction
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Figure 5.1: Analytic phantom used in the simulation

The analytic phantom is computed by evaluating the analytic Fourier Trans-
form of an object (in this case a circle with squares inside) onto a rectangular
discrete grid of 64 x 64 points, and performing an IFFT of this set of discrete
data. This image is considered as the “gold standerd” in the simulations of
this chapter.

is 1/Tyeq = 16Hz.

The readout gradient is constant, except for the ramp up and ramp down portions
that are sinusoidal. In order to keep a constant sampling distance between k-space
points, the ADC sampling timing must be non-uniform during the non-constant por-

tions of the readout gradient (ramp-up and ramp-down portions). This is taken into

account in the k-space trajectory matrix.

5.2.3 Simulation of EPI images

Given a By-map and a k-space trajectory, a simulated EPI image can be obtained by
using the EPI imaging equation (4.1). Note that in distorted EPI image simulations,
the kernel need not be explicitly stored in memory, so all the kernel values are used
in the computation of the simulated EPI image. Fig. 3.2 shows three examples of
simulated EPI images. The detailed algorithm for the computation of simulated EPI

images is displayed in Fig. 5.3. The k-space trajectory is described in section 5.2.2.
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Analytic phantom

+25Hz

* 50 Hz

* 75 Hz

BO maps Simulated EPIs

Figure 5.2: Simulated EPI images and Bo maps used in the simulations
Each of the simulations in this chapter uses one of the By field maps above
(left, B, C and D). For each field map, a corresponding simulated EPI image
(right, B, C aend D) is computed from the analytic phantom (A) using the
algorithm of Fig. 5.3. The k-space trajectory described in Section 5.2.2 is
used for all simulations. The field map is composed of two Gaussian blobs
with opposites amplitudes and different FWHM.
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input: I The M x N undistorted image.
B The M x N Bg map.
t The M x N k-space trajectory.

output: I'  The M x N simulated EPI image.

for (k=0to M — 1)
for({=0to N -1)
S'(k.l)=0
for (in=0to M - 1)
for(n=0to N - 1)
S'(k,l) = S"(k. 1)+
I(m.n) xexp {—2ni = (km/M + In/N + B(m,n) = t(k,l))}
end for n
end for m
end for [
end for k£
return I' = 2D IFFT (S’)

Figure 5.3: Algorithm for the calculation of the simulated EPI image.
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5.2.4 Validation methodology

The experiments described in this chapter consist of correcting simulated distorted
EPI images. Once the correction is done, one is interested in quantitatively comparing
the corrected image and the original gold-standard (i.e. the analytic phantom). Since
the presence of field inhomogeneity manifests itself as two distinct effects on an image,
namely geometrical distortion and intensity distortion (section 2.2.3), it would be
instructive to decouple the two effects on the distorted image and measure the amount
of correction of the two effects separately. However, such a procedure is not easy to
design and may introduce some artificial bias in the measurcment of the amount
of correction. Because of this, we use a much simpler metric, the root mean square
(RMS) difference between the simulated image and the corrected image. Note however
that this has the disadvantage of giving only a global measure of correction, regardless
of the relative importance of geometrical versus intensity effects. We nevertheless
believe that such a measure is meaningful as the ultimate goal of distortion correction
is to produce a corrected image that is as close as possible to the image that would
have been obtained had the field been perfectly homogeneous. Moreover, this measure
can be made more robust and significant by computing the RMS difference only over
pixels that have significant intensity, and in the present case, we fixed the threshold at
10% of the maximum pixel value, eliminating the contribution of background pixels
in the measure. A negative aspect of this measure is that it is sensitive to any bias
that may be introduced by a correction method. However, the reader will be able
to check in the Results section (5.3) that the RMS differences give a good indication

of how different two images are from each other and generally agrees with the visual

perception of “closeness”.
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More precisely, the measure of correction error is given by:

RMS Difference = \J%E‘:; (llph(i,j)l - |Icor1'(i,.7')|)2 (5.1)

where Iph (7,7) and Icorr(¢, j) are the complex values of the analytic phantom and the
corrected image at pixel (i, j) respectively, and where 7,5 run over the pixel positions

that have a significant signal intensity (larger than 10% of the maximum intensity of

the analytic phantom).

5.2.5 Implementation of the CG algorithm for EPI correction

2D

The 2D Conjugate Gradient method is implemented in two steps: The first is the
computation of the sparse matrix representing the 4D kernel A from the field map
and the k-space trajectory, using algorithm shown in Fig. 4.9. One free parameter
of the kernel computation is the threshold at which values are considered sufficiently
small to be ignored. The number of elements in the sparse kernel increases as this
threshold is reduced. This parameter has direct effects on the computational cost
of the CG iterations because the sparse matrix-vector multiplication cost is directly
proportional to the number of non-zero elements in the sparse matrix. In addition, it
clearly has direct implications on the memory storage required for the kernel. One of
the simulations presented in this chapter investigates the effect of this parameter on
the reconstruction.

The second step is to apply the modified CG algorithm (4.25) using as input the
kernel A computed as described above and the distorted image reshaped into a column

vector M. Then the iterations in Eq. (4.25) are performed, leading to an estimate of

the correct image.
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In some implementations of the CG algorithm, the iterations are performed until
a condition on the residual is met, e.g. until the residual is smaller than a predeter-
mined tolerance. This approach may lead to unpredictable computation times since
the convergence may differ depending on the condition number of the linear system.
In the implementation used in this thesis, the number of iterations is fixed, which
ensures a predictable computation time. Moreover, depending on the nature of the
linear system, the desired tolerance may not be achievable. Note, that the number of
iterations directly affects the computational cost of the CG solution.

The total computational cost of the whole correction process, i.e. kernel compu-
tation and CG iterations, is therefore determined both by the sparsity of the kernel
and the number of iterations. For the correction of one EPI image only, the kernel
computation time is much larger than the time required for the CG iterations. Since
the kernel computation time is independent of cither of the two parameters. the total
computation time is only weakly affected by them. On the other hand, when correc-
tion is applied to a large set of images all sharing the same k-space trajectory and By
map, for instance in a fMRI study, then the number of iterations may be the most

important factor determining the total correction time.

1D

The 1D version of the CG algorithm, like the 2D version, is performed in two steps.
The main difference is that the 1D version is applied to every column of the distorted
image to yield the corrected image.

For every column (or row, depending on the phase encoding direction) of the
image, the matrix A, is computed according to Eq. (4.34), and the system of
equations (4.30) is solved with the modified Conjugate Gradient algorithm (4.25).

Because the matrix A, is close to diagonal, some computing time may be saved by
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only computing the elements in a diagonal band. One of the simulations presented

later will give an idea of the influence of the width of the diagonal band.

5.2.6 Noise and EPI images

In the simulations that compare the different correction methods, the effect of noise
in the distorted input image is evaluated. Following the discussion in Chapter 2 on
noise in MRI, complex Gaussian noise is added to the distorted simulated EPI image.
The level of noise is adjusted in the simulations by changing the standard deviation

of the noise added. The standard deviation o of the noise to be added to an image

for a given target SNR is:

<m>

7= SNR (5-2)

where < m > is the mean image magnitude over the non-background regions.
The SNR definition is given be Eq. (2.36). This relationship is valid when the image
intensity is large because in this case, the noise obeys the Rician distribution which
tends to the normal distribution with standard deviation o with the signal amplitude
goes to infinity. We note that violations of the Gaussian assumption of the signal
noise distribution may cause an error in the estimation of the complex noise variance

required for a given magnitude SNR, but does not imply that the noise distribution

in the magnitude image is wrong.

5.2.7 Noise and By map

In one of the simulations to be described later in this chapter, noise is added to the By
field map. Because in a real situation the By map is derived from the phase difference
between two images acquired with different echo times (see Section 2.4), the By map

noise is stated in terms of the SNR of one or another of the two images.
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The By map noise is computed as follows: First the phase noise is computed from
Eq. (2.67), with the value of o determined by Eq. (5.2). Note that this phase noise
does not have the same probability distribution depending on the position. The phase
noise in background regions is uniformly distributed between —m and 7, and normally
distributed in regions where there is signal. Second, the phase noise is converted
into frequency by multiplying with the factor v/2/(2r At) where At is the echo time
difference of the field mapping sequence. We assume the value At = 4.48ms. The V2
factor arises because the By map is obtained from a difference of two phase image and
the standard deviation of the phase difference is v/2 times larger than the standard

deviation of the individual phase images.

5.2.8 Computer hardware

All simulations in this chapter were performed on a PC equipped with an Intel Pen-
tium 180 MHz processor and 128 MB of RAM, running the Linux Mandrake 7.0
operating system. The simulations were performed in the Matlab version 3.3 (The
Mathworks, MA, USA) environment. Some algorithms, especially those involving in-
tensive explicit looping, were coded in C (mex functions), but called from Matlab.
The Matlab and C source code for all algorithms used in this chapter. together with

the scripts running the simulations are included as an appendix.
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5.3 Results

5.3.1 Effect of CG parameters

2D

Simulations have been performed in order to investigate the effect of two important
parameters of the CG method: the number of iterations, and the number of elements
retained in the sparse kernel. In each case, the simulated EPI images and correspond-
ing Bg maps shown in Fig. 5.2C were used.

In the first simulation, 5 reconstructions where performed using a unique kernel
matrix, but with different numbers of iterations (0, 1, 2. 3 and 4). Results are shown
in Fig. 5.4.

In a second simulations, 5 reconstructions where performed with a fixed number
of iterations (3), but different numbers of non-zero elements in the kernel matrix.
Results are shown in Fig. 5.5. The kernel density factor is defined as the percentage
of non-zero elements in the kernel with respect to the kernel maximum size, i.e., if n
is the number of non-zero elements, the sparsity factor is (100n/N*) %. For instance,
a sparsity factor of 1% for a matrix size of 64 x 64 means that the number of non-zero

elements in the sparse kernel is 1/100 * 64% = 167772.

1D

Simulations were also run in a similar fashion to that described above, but with the
1D version of the algorithm. In the first (Fig. 5.6), the distorted EPI image was
reconstructed with different numbers of iterations (0, 1, 2, 3 and 4). In the second
(Fig. 5.7), the number of iterations was kept fixed, but the width of the diagonal
band of A,,, was set to 2, 4, 8, 16 and 32.
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Analytic phantom  Simulated EPI
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(A X R X R X X | 228
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ceescensce . 5

. CG 2D reconstructions

Difference between CG 2D reconstructions and analytic phantom

- i . L -10
13.05 362 1.85 .73 .7
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Figure 5.4: Effect of the number of iterations in the 2D CG algorithm.

Five reconstructions were performed with the same kernel, but with differ-
ent numbers of CG iterations (center row). The difference images between

the reconstructed images and the analytic phantom together with the RMS
differences is shoum on the bottom row.
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Analytic phantom  Simulated EPI

547 3.08 272 2.0S 1.75
RMS difference

Figure 5.5: Effect of the sparsity level of the kernel in the 2D CG algorithm.

Five reconstructions were performed with the same number of iterations, but
with kernels having different numbers of non-zero elements. The difference
images between the reconstructed images and the analytic phantom together
with the RMS differences is shoun on the bottom row. The sparsity factor
is defined as the percentage of non-zero elements in the kernel with respect

to the kernel size, i.e., if n is the number of non-zero elements, the sparsity
factor is (100n/N*) %.
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300
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secessces 75

. CG 1D reconstructions

Difference between CG 1D reconstructions and analytic phantom

e -

RMS difference

Figure 5.6: Effect of the number of iterations in the 1D CG algorithm
Five reconstructions were performed with the same kernel, but with differ-
ent numbers of CG iterations (center row). The difference images between
the reconstructed images and the analytic phantom together with the RMS
differences is shoum on the bottom row.
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Analytic phantom  Simulated EPI
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Tresmes TLIill: 225
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126.51 13.09 295 243 2.26
RMS difference

Figure 5.7: Effect of the sparsity of the kernel in the 1D CG algorithm.

Five reconstructions were performed with the same number of iterations, but
with kernels with a diagonal band having different widths. The difference
images between the reconstructed images and the analytic phantom (bottom
row) together with the RMS differences is shoun on the bottom row. The
sparsity factor is defined as the percentage of non-zero elements in the kernel
with respect to the kernel size, t.e., if n is the number of non-zero elements,
the sparsity factor is (100n/N*%) %
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5.3.2 Comparison between the different methods for EPI cor-

rection

In this section, we describe simulations whose goal was to evaluate the relative perfor-
mance of the different correction methods in EPI. The aspects studied are the effect

of noise on the input EPI images and the effect of noise in the By map.

On the distortion correction methods simulated

The methods compared are Conjugate Gradient (CG), Conjugate Phase (CP) Pure
Geometric Interpolation (PGI), Intensity Corrected Geometrical Interpolation (ICGI)
and K-Space Correction (KSC).

As discussed in the literature review chapter (section 3.1.1), the PGI and ICGI
methods do not take the sinc-like aspect of the PSF into account. As a consequence,
it was found that the performance of those methods can be significantly degraded for
small matrix sizes due to partial volume effects. This can be improved however by
interpolating the distorted profile over a smaller pixel size prior to the application of
those correction methods {48]. For this reason, we implemented the two methods in
two different manners: one where the correction was applied directly to the distorted
image profile (labelled as PGI and ICGI), and the other were the correction was
applied on a sinc-interpolated distorted profile (labelled as SI-PGI and SI-ICGI).
The resulting corrected profiles were interpolated back to the original pixel size after

correction.

To summarize, the different correction methods compared are:
e 2D Conjugate gradient (CG2D)

e 1D Conjugate gradient (CG1D)

e 2D Conjugate phase (CP2D)
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K-space correction (KSC)

e Pure Geometric Interpolation (PGI)

Sinc Interpolated Pure Geometric Interpolation (SI-PGI)

Intensity Corrected Geometrical Interpolation (ICGI)

Sinc Interpolated Intensity Corrected Geometrical Interpolation (SI-ICGI)

Effect of image noise

The purpose of these simulations is to evaluate the effect of noise in the EPI image
upon the correction process. Each correction method is applied to a distorted EPI
image to which noise was added. The EPI image SNR in the simulations are oc (no
noise), 70, 50, 30 and 10. Moreover, each simulation was performed with different
levels of distortions (B, C and D on Fig. 5.2). In order to reduce and assess the effect
of statistical fluctuations, the simulations were run 10 times for each level of image
noise, and the RMS differences were averaged. The details of these simulations are
shown in Fig. 3.8.

Figs. 5.9, 5.10 and 5.11 show the quantitative results of the simulations for each
distortion levels. Figs. 5.12 to 5.20 show examples of corrections at image noise levels

oo, 70, and 30, and at different levels of distortion.
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Analytic Phantom k-space trajectory

,‘/ l
\ Field map

~,/=2S¢50=75Hz

Simulated
Distorted EPI

l+ complex gaussian noise |
' 'SNR = Inf, 70,50,30,10

RMS difference |
v
: Noisy Simulated
EPI image
L ”'!//
- KN 14 / -
glg?;fge Apply correction method

Repeated 10 times

Figure 5.8: Simulations of the effect of EPI image noise

A simulated distorted EPI was computed from an analytic phantom image, a
k-space trajectory matriz and a field map. Then, the following was repeated
10 times: Noise was added to the simulated EPI image and formed a noisy
EPI image. Then the various correction methods were applied to the noisy
EPI image, using the k-space trajectory and the field map used previously
for the creation of the simulated EPI image. Finally, the corrected image

was compared with the original analytic phantom by computing the RMS
difference between the two images.
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Effect of noise on EPl image
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Figure 5.9: Effect of EPI image noise. Maximum By amplitude = = 25 Hz.
RMS difference between images corrected with the different methods and the
analytic phantom. The small lines on top of the bars represent the standard

deviation over 10 identical trials. Some of them are too small to be visible
on the graph.
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Effect of noise on EPI image B CG2D
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Maximum Bo map amplitude: 50 Hz —
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Figure 5.10: Effect of EPI image noise. Maximum By amplitude = + 50 Hz.
RMS difference between images corrected with the different methods and the
analytic phantom. The small lines on top of the bars represent the standard

deviation over 10 identical trials. Some of them are too small to be visible
on the graph.
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Effect of noise on EPI image
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Figure 5.11: Effect of EPI image noise. Maximum By amplitude = + 75 Hz.
RMS difference between images corrected with the different methods and the

analytic phantom. The small lines on top of the bars represent the standard

deviation over 10 identical trials. Some of them are too small to be visible
on the graph.
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Simulated EPI B0 map

Reconstructions Differences
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Figure 5.12: Correction with EPI SNR=oc, and By max. amplitude = + 25 Hz.

The images on top are the analytic phantom image (top left), the simulated
EPI (top center) and the By field map (top right). The images in the left
part of the figure are the images reconstructed with the various correction
methods (see 5.3.2). The images in the right portion of the figure represent
the difference between the reconstructed images and the analytic phantom.
A perfect correction would yield a zero difference image. The numbers close
the the difference images are the RMS errors for the respective methods.
The grayscale map of the difference images runs from -25 to +25. The next
figures are built on the same model.
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Simulated EPI B0 map
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Figure 5.13: Correction with EPI SNR=70, maximum By amplitude = £+ 25 Hz.
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Figure 5.14: Correction with EPI SNR=530, maximum B, amplitude = + 25 Hz.
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Simulated EPL
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Figure 5.15: Correction with EPI SNR=0c, maximum By amplitude = + 50 Hz.
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Simulated EPI BO map
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Figure 5.16: Correction with EPI SNR=70, maximum By amplitude = £+ 50 Hz.
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Simulated EPI
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Figure 5.17: Correction with EPI SNR=50, maximum By amplitude = £ 50 Hz.

116



CHAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.3. RESULTS

Simulated EPI BO map
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Figure 5.18: Correction with EPI SNR=0c, maximum By amplitude = £+ 75 Hz.
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Simulated EPI BO map
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Figure 5.19: Correction with EPI SNR=70, maximum Bg amplitude = + 75 Hz.

118



CHAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.3. RESULTS
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Figure 5.20: Correction with EPI SNR=50, maximum By amplitude = + 75 Hz.
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Effect of By map noise

The purpose of these simulations was to evaluate the effect of By-map noise on the
correction process. Each correction method was applied to a distorted noiseless sim-
ulated EPI image, with noisy By maps. The By map SNR in the simulations were 70
and 50. In these simulations, the noise was added to the By map, according to the
description in Section 5.2.7, and was then spline-smoothed. The simulations were run
10 times for each level of By map noise, and the RMS differences were averaged. The
details of these simulations are shown in Fig. 5.21. The need for processing the By
map may be better appreciated by looking at Fig. 5.25, where a reconstruction was
performed with a B, map that was not processed at all (only the background values
were masked), or at Fig. 5.26, where the field map had the meaningiess background
pixels masked out.

Fig. 5.22 shows the quantitative results of the simulations for each method and

each noise level. Figs. 5.23 and 5.24 show examples of corrections at By noise levels

50 and 10.
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Analytic Phantom k-space trajectory

s
\ / .
| § Field map
e . — #50Hz

Figure 5.21: Simulations of the effect of By map noise

A simulated distorted EPI was computed from an analytic phantom image, a
k-space trajectory matriz and a field map. Then, the following was repeated
10 times: Noise was added to the By map according to the description of
section 5.2.7. The resulting noisy By map was then spline-smoothed and the
various correction methods were applied to the EPI image, using the k-space
trajectory and the spline-smoothed field map. Finally, the corrected image
was compared with the original analytic phantom by computing the RMS
difference between the two images.
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Effect of noise on B, map
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Figure 5.22: Effect of By map noise

RMS difference between images corrected unth the different methods and the
analytic phantom. The small lines on top of the bars represent the standard
deviation over 5 identical trials.

122



CHAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.3. RESULTS

Noisy BO map
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Figure 5.23: Correction with By SNR=10, maximum By amplitude = £ 50 Hz.

The images on top are the analytic phantom (top left) and the simulated EPI
(top right). The images in the lower left part of the figure are reconstructed
with the various correction methods (see 5.3.2). The images in the lower
Tight portion of the figure represents the difference between the reconstructed
images and the analytic phantom. A perfect correction would yield a zero
difference image. The numbers close the the difference images are the RMS
errors for the respective methods.
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Figure 5.24: Correction with By SNR=50, maximum By amplitude = = 50 Hz.
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Figure 5.25: Correction with a noisy, unprocessed Bg map.

125



CHAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.3. RESULTS

Noisy BO map
Simulated EPI +

Analvtic

CG2D CGID
PGI ICGI
SI-PGI si-icat SUPST st-icat

Figure 5.26: Correction with a noisy, masked Bg map.
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5.4 Discussion

5.4.1 Effect of CG parameters

Figure 5.4 shows how the CG2D correction performs with different numbers of itera-
tions. The 0 iteration case, which corresponds to the conjugate phase reconstruction,
shows complete correction for distortion, but reveals important intensity errors. The
most interesting fact is that with only one CG iteration, this intensity error almost
completely disappears. Performing more iterations does little to improve the recon-
struction, as seen by the slow decrease of the RMS errors after the first and the
subsequent iterations. From the RMS errors, we can conclude that using 2 or 3 iter-
ations is a good compromise between computation time and the level of correction.

The number of elements retained in the sparse kernel has a less obvious importance,
as demonstrated by the fact that each reconstruction in Fig. 5.5 has a relatively small
RMS error. However, using a larger number of elements helps to reduce the By
induced ghost artifacts. as the difference images show. Note that the actual density
needed for adequate ghost reduction depends on the amplitude of field inhomogeneity.
Another important point is that for a larger matrix size (e.g. 128 x 128) smaller density
(relative to the matrix size) may be needed for the same amount of ghost reduction
because the matrix size is proportional to N* while the number of significant values
in the kernel increases roughly as N2.

In the 1D version of the CG correction method, the effect of the number of itera-
tions is similar to that observed in the 2D version of the method (Fig. 5.6). Again 2
or 3 iterations seems to be the best choice.

The width of the diagonal band in the kernel for CG1D reconstruction has in-
teresting consequences (Fig. 5.7). When it is smaller than the maximum amount of

distortion (measured in pixels), important artifacts appear on the reconstructed image
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(see reconstruction for widths 2 and 4 in Fig. 5.7). However, as long as the width of
the central band of the kernel extends beyond the maximum distortions in the image,
correction is near complete. Note that, since smaller widths have computation time
advantages, the optimal width of the diagonal band depends on the level of distortion

in the image to be corrected.

5.4.2 Comparison between the different methods for EPI cor-

rection
Effect of EPI image noise

Several conclusions may be drawn from Figs. 5.9, 5.10 and 5.11. The CG methods
perform better than the other methods in high SNR situations, with a small advan-
tage for the CG2D method, due to the to its ability, unique among all the methods
compared, to reduce ghosting artifacts, which can be seen on the difference images
of the reconstruction examples of Figs. 3.12 to 5.20. This advantage of the CG2D
method tends however to disappear at lower image SNR, when the artifact becomes
overwhelmed by the noise.

One can also see that the RMS error of those methods increases faster as the EPI
image noise level increases compared to other methods, suggesting a higher sensitivity
to image noise. We note that 50-70 is a typical SNR for a 64 x 64 EPI image.

The graphs of Figs. 5.9 and 5.10 also show that the sinc interpolated version
of the PGI and ICGI method perform significantly better than the version using
no interpolation. The CP2D and KSC methods have much larger errors than the
others, due to the failure to account for intensity errors for CP2D, and to incomplete
distortion correction, especially in large distortion situations, in KSC.

We also note that the performance of the SI-CGI and SI-ICGI is similar to CG1D
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in small distortion situations (Fig. 5.9) but gets worse as the amount of distortion
increases.

In large distortion situations (50-75 Hz), there is a region in the image that any
method fails to properly correct (Figs. 5.15 to 5.20). This region corresponds to
where the gradient of the By map is the largest and in a direction which causes a
compression of the distorted image. In these regions, the distortion is so large that
some information is permanently lost, sincc many image points are mapped to a
unique spatial location. Just above this region is another of high By inhomogeneity
gradient, but which causes the image to be stretched. CG1D and CG2D correct for
this stretching while other methods fail to do so. One interesting fact is that in large
distortion situations, the reconstructions with the sinc-interpolated methods (SI-PGI
and SI-ICGI) present an important artifact in the high By inhomogeneity gradient
region, making the total RMS error larger than the non interpolated versions of the
samc algorithms (Fig. 5.20). This behaviour is due to the presence of the high
frequency components, in this region of the image, which cause the sinc-interpolation
to fail.

The results of the simulation on By map noise (Fig. 5.22) demonstrates the effec-
tiveness of the spline smoothing procedure performed on the By map prior to recon-
struction. At a By SNR of 50 and 30, the residuals are very similar for all methods.
The situation is quite different when the By map is not processed, as shown on Fig.
5.25, since the RMS errors are significantly larger than in Figure 5.24. The situation

is not improved by masking out the noise background in the field map (Fig. 5.26).

5.4.3 General Discussion

The simulation presented in this chapter did not consider systematic errors in the

computation of the field map. Probably the most important factor is the distortion
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of the field map itself. In the case of EPI, distortions of the image are several times
larger than the distortion of the field map, so they can be safely ignored. In the case
of GE imaging however, the distortion of the field map may be of the same order
of magnitude as that affecting the image to be corrected. Sekihara [96] has shown
that this effect can be attenuated by correcting the distortion in the field itself before
correcting the image. According to their report, this sort of bootstrapping procedure
seems to correct for effects related to the geometrical discrepancy between the field
map and the corrected image. Another way to minimize the effect of distortion in the
field map is to acquire it with a large bandwidth sequence, i.e. a high readout gradient.
The SNR price to be paid for this increased bandwidth is minimal considering that
the field map need only be acquired at low resolution, and smoothing can be applied

to reduce the noise without affecting the nature of the field map.

5.4.4 Conclusion

This chapter described in detail several computer simulations having the goal to in-
vestigate the behaviour of the Conjugate Gradient based correction methods under
different operating conditions, and to compare these methods with other By map
based methods.

The first group of simulations allowed the optimal values for the parameters of
the CG correction methods to be determined. The convergence of the CG methods
was found to be fast, and a small number of CG iterations are usually needed for
achieving satisfactory reconstruction.

In summary, the following conclusions may be drawn. The CG based methods
provide more optimal solutions, in the RMS sense, than the other methods. CG2D
could partially correct for By inhomogeneity induced ghosts artifacts. All other 1D

methods failed in this respect, since they do not take this component of image degra-
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dation into account. Moreover, CG-based methods, 1D and 2D, can better correct
severe distortions that appear as a stretching of the image. The situation is different
when the distortion compresses the image. The explanation in that severe compres-
sion of the image may result in a loss of information, which translates as many-to-one
mapping, and numerical singularities in the kernel. It may be possible to somewhat
improve the reconstruction of near-singular compressed image regions by using many
more iterations, but even then, the noise sensitivity of the imaging equation must be
somehow controlled, by using preconditionning for instance. Severe stretching dis-
tortions on the other hand, do not in general cause the kernel to be singular, and
CG-based methods can correct for them.

The practical significance of ghost reduction in EPI images is not obvious because
of the relatively small amplitude of those artifacts. They can be safely ignored in
simple diagnostic applications where qualitative aspects of the image are considered.
The situation may be different in applications, such as fMRI, where quantitative,
statistical image analysis plays and important role and the significant signals are the

result of small differences between images.
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Chapter 6

Application to real data

The objective of this chapter is to illustrate and demonstrate the use of the Conjugate

Gradient method for the correction of real EPI images and anatomical gradient echo

images.

6.1 Methods

6.1.1 EPI imaging

The practical implementation of the CG gradient method is the same as that presented
in the previous chapters. It involves the measurement of a By map, which is acquired

at the same spatial resolution and geometry as the EPI image to be corrected.

6.1.2 3D anatomical imaging

The theory developed in the previous chapters, more specifically the 1D correction
procedure, can be applied to anatomical 3D imaging with few modifications. In this
case, the main aspect to be addressed is the computing time.

The distortion caused by static field inhomogeneity in 3D Fourier imaging has
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an cffcct only in the frequency encoding (readout) direction. Hence, a N x M x S
volume. where N, M and S refer to the dimensions in the frequency encoding, phase
encoding and 3D partition directions respectively, can be corrected from the effect of
Bg inhomogencity by performing M x S 1D corrections along the frequency encoding
direction.

The asscssment of the distortion correction is more difficult in gradient echo imag-
ing due to the much smaller distortions typically observed. In order to evaluate the
distortion correction by the CG method, a pair of image volumes acquired in the
same geomctry and at the same spatial resolution were acquired. One of the two
acquisitions used a large readout bandwidth (320 Hz/pixel) while the other, a small
bandwidth (32 Hz/pixecl). Because of the relationship between readout bandwidth
and distortion. one may expect the distortion on the high bandwidth sequence to be
around 16 times smaller (520/32). Then, the correction can be applied on the low
bandwidth data. and the result compared to the high bandwidth image considered as

the “gold standard”. The high and low bandwidth imaging sequences are displayed
in Fig. 6.1.

6.2 Results

6.2.1 Correction of real EPI images

The CG and CP correction methods were applied to real blipped EPI images of a
phantom and of a volunteer’s head (matrix size = 64 x 64, TE = 35 ms, Tacq = 61
ms) on a Siemens Vision 1.5 T scanner. Non-uniform sampling of the signal was
performed in order to obtain equally spaced points in k-space. This non-uniform
sampling has been taken into consideration in the calculation of the kernel in Eq.

(4.1). No phase correction was applied to the EPI raw data.
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Figure 6.1: High and low bandwidth gradient-echo 3D imaging sequences.

Image sequences used for the gradient echo example. Two data sets, with dif-
ferent bandwidths, were acquired with a gradient-echo sequence. The inverse
of the total readout duration is the bandwidth per pirel.

A normal spin echo sequence (matrix size = 64x64, TE1/TE2/TR = 10/14.48/400
ms), interleaved with a second sequence having the echo shifted by At = 4.480 ms,
was used to generate the By map (Fig. 6.2). The By field map was obtained by
subtracting the phases of the two acquisition. With this value of At, water and
fat protons, although precessing at different rates, demonstrate the same relative
phase at TE and TE+At, which makes the phase difference observed between the
two acquisitions dependent upon static field inhomogeneity only and not to chemical
shift [46]. We found that, for this example, phase unwrapping was not required.
We note that, although the acquired field map is itself subject to distortion due to

field inhomogeneity, the magnitude of these distortions is negligible compared to the
distortions affecting the EPI image.
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For the acquisition of both the phantom and the volunteer head data, the field
map was fitted with 2D splines in order to minimize noise effects.

In both the CG2D and CP2D methods, the 4D kernel needs to be computed. This
took around 5 minutes for this example. The CG iterations, performed for the CG2D

method, took a few secourds to camplete. 90° 180°
A [} \ A [} \
| / i AN
RF _| , .

Slice selection |
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Figure 6.2: By field mapping sequence.

In this sequence, two data sets are acquired in an interleaved manner. The
first acquisition is a standard spin-echo. The second echo is acquired asym-
metrically with respect to the spin-echo signal, with a time difference between
the spin-echo and the gradient echo equal to At. The By map is obtained
from the difference of the phase tmages A¢ resulting from the reconstruction
of the two data sets. At any point of the image, the frequency offset with
respect to the nominal resonance frequency is given by Af = A¢/(2wAt).

6.2.2 Results of correction of a 3D flash image

Two volumetric data sets, with a matrix producing isotropically resolved voxels of 1 x
1 x 1 mm3, were acquired with bandwidths 32H z/pixel and 520 H z/pixel respectively.
For the high bandwidth sequence TR/TE = 11.6/5.2 ms and for the low bandwidth
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Figure 6.3: CP and CG reconstructions of the EPI image of a phantom.

The top images show a spin-echo image of the phantom along with a raw
and a processed field map. The center images, are an EPI image of the
same phantom (left) and the reconstruction with the CP1D, CP2D, CG1D
and CG2D methods. In the bottom images, the difference between the spin
echo image and the EPI image, CP2D and CG1D corrections respectively is
displayed.
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Figure 6.4: Distortion correction on a volunteers head EPI image.

The top images show a spin-echo image of the volonteer’s head along with a
raw and a processed field map. The center images, are an EPI image of the
same volunteer’s head (left) and the reconstruction with the CP1D, CP2D,
CG1D and CG2D methods. In the bottom images, the difference between the
CG2D and CP1D corrections is displayed.
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sequence, TR/TE = 40.4/19.6 ms.

A 3D gradient-echo B0 map sequence was also acquired (TR/TE = 52/5.2 ms)
with a 2 x 2 x 2 mm? resolution.

Fig. 6.5 shows the result of CG reconstruction of an image of the 3D flash ac-
quisition. The comparison is qualitative here, but the difference images display some
reduction of the distortion of the low bandwidth image compared to the high band-

width image. The correction of the whole volume with the CG1D method took ap-

proximately 2 hours.

6.3 Discussion

6.3.1 EPI

The EPI examples, shows that both the CG and CP methods significantly reduce
the geometrical distortions. Moreover, the CG methods. as opposed to CP, can be
seen to also correct for intensity errors. This intensity correction is more obvious on
the phantom image, because of its flat intensity profile. This is bourne out by the
simulations.

These two examples do not show the difference between 1D and 2D processing.
This is because other factors cause N/2-ghosting that masks the B0 inhomogeneity
related ghost artifacts. Among these factors, we mention ADC offset and eddy cur-
rents, because they can induce non-ideal effects that affect differently odd and even
k-space lines.

The in-vivo experiment (Fig. 6.4) demonstrates again that the best performance
is achieved by the CG1D and CG2D approaches. The intensity correction provided
by CG method can be seen on the difference image CG2D — CP1D.
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Figure 6.5: Distortion correction a flash acquisition with the CG1D method.

The top left image is taken from a 3D data set acquired with small bandwidth,
while the top right image is acquired with a large bandwidth. Because the
inverse relationship between bandwidth and distortion, the large bandwidth
sequence is ezpected to represent the reality more closely than the low band-
width image. The Top centre image is the corrected low bandwidth image.
The bottom images show the different between the low and high bandwidth
images before and after CG1D correction.

6.3.2 Gradient-echo imaging

The simulations for EPI have shown that the 1D version of CG reconstruction per-
forms in a manner similar to the sinc-interpolated geometric interpolation methods.
This points out the fact that using CG for 1D problems may be overkill, particularly

in the case of small distortion, considering the significantly longer processing time re-
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quired. We nevertheless present an example of CG correction on a real gradient-echo
acquisition. with the purpose of demonstrating the the general applicability of the
CG correction method to this kind of data.

In the case of 3D imaging, for a 1 mm isotropic resolution, the acquisition time
for a 256 x 256 x 128 scan can be of the order of 15 minutes. Because the duration
of the acquisition alone is considerable, the associated field map should be acquired
as fast as possible. The casiest way to measure the field map quickly is to reduce the
spatial resolution. For a factor of 2 or 4 reduction in spatial resolution, the scan time
is reduced by a factor of 4 or 16, to around 4 or 1 minutes respectively. Furthermore,
since the field map is inherently a low frequency function, and that it undergoes further
smoothing for noisc reduction (e.g. spline fitting, low-pass filtering) , the penalty for
measuring a field map with lower resolution than the image to be corrected appears
to be small. Moreover, from the simulation results that have shown that the CG
methods arc somewhat sensitive to field map noise, using the lower spatial resolution

field map has thc additional advantage of presenting a higher SNR.

6.4 Summary

This chapter demonstrates the practical application of the CG based methods, both
on EPI images and a gradient-echo image. In the case of EPI image correction, both
the CP and CG methods reduced the geometrical distortion equally well. Moreover,
the ability for the CG methods to better compensate for intensity inhomogeneity
than CP methods, as observed in the simulations of the previous chapter, was clearly
demonstrated in the phantom EPI example. These example do not show, however,
the advantage of full 2D correction versus 1D processing, because B, inhomogeneity

induced ghost artefact were not the most important ghost artifact on these images.
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For gradient-echo correction, the 1D CG and CG methods were applied. In order
to somewhat assess the distortion correction, two data sets were acquired: one with
small bandwidth and relativeley large distortion, and one with large bandwith and
little distortion. The second data set was used as a reference against which the CG
correction of the first data set was compared. Results showed an improvement of the

geomtrical accuracy after the correction.
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Chapter 7

Conclusions

This thesis has dealt with the issue of distortion and image restoration in MRI. Geo-
metrical distortion is often more difficult to identify than other artifacts, and therefore
may not be readily appreciated. Small amounts of distortion are virtually impossible
to distinguish visually without relying on an external reference. but can cause localiza-
tion errors that can reach several millimeters. Obviously this extreme precision is not
needed in every applications but one must always be suspicious. By inhomogeneity
induced ghosting artifact in EPI images, although usually very small, can nevertheless
have important consequences, especially in fMRI studies, where time-varying patterns
of pixel intensity that are barely larger than the noise level are considered [60, 38, 32|.

Beyond the diagnostic applications, MRI is increasingly being considered as an
aid for therapeutic purposes, such as MR Image-Guided surgery or radiotherapy
(85, 31, 6], because of its ability to exhibit anatomical and functional characteris-
tics complementary to those obtained from other imaging modalities. This is where
the geometric accuracy is essential and the issue of geometrical distortions in MR
images arises.

Radio-therapy is a field where MR images are increasingly relied upon. Computed
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Tomography (CT) already plays an important role in this field, because the electronic
demnsity of tissues can be directly obtained from the CT images, allowing treatment
planning software to perform tissue inhomogeneity corrections and compute a more
accurate dose distribution. In spite of this, MR may be of great utility as a guide to
determine the extent of regions to treat and this is where MR distortion becomes a
concern. With the advent of IMRT (Intensity Modulating Radio-Therapy) [110, 86],
dose distributions can be tailored with much more precision than with conventional
static techniques and the issue of the accurate delimitation of the region to be treated
needs to be addressed even more.

Still in the domain of radio-therapy, MR has been used for some time as a tool for
relative dosimetry (30, 16, 79]. It is particularly useful in applications where 3D dose
distributions are needed and difficult to obtain by other means, such as curie-therapy,
where radioactive sources are inserted into the patient, and can also be an essential
tool for the quality assurance of complicated dvnamic treatment techniques. Because
the spatial dose distribution is inferred from the MR scans of a volume of Fricke gel.

any geometrical and intensity distortions in these images will result in errors on the

measured dose distribution.

7.1 Thesis Summary

The thesis begins by introducing the main motivations and objectives for this work.
Correction of distortion in EPI images and anatomical imaging (such as 3D gradient
echo) are identified as the main objectives.

The second chapter presents a summary of MR imaging theory, from basic physical
theory to imaging principles. Concepts needed throughout the thesis, such as EPI

imaging, By field mapping, the mathematics and physics of distortion, and Conjugate
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Gradient method, were also briefly explained.

Chapter 3 reviews the main published distortion correction methods, focusing on
Bo-map based methods. The relevance of the By-map based methods over the others
for distortion correction of dynamic EPI data and large anatomical data sets have
been discussed.

The fourth chapter begins the mathematical analysis of the EPI distortion prob-
lem, and showed that in EPI, because of the particular k-space trajectory, the artifacts
induced by By inhomogeneity are more complicated than in normal 2D or 3D Fourier
imaging. In addition to the usual distortion, ghosting artifacts are present. The
formalism for the proposed 2D correction method is developed together with a sim-
plification of the computation process based on the low rank of the k-space trajectory
matrix. For cases where the distortions are approximately or truly one dimensional,
the 1D specialization of the method is also derived, allowing the computational com-
plexity of the correction problem to be dramatically reduced from a large YN x M N
problem to N small M x M problems.

Chapter 5 presents the main results of the thesis, based on computer simulations.
The goal of this chapter is two-fold: it allows the effect of different parameters involved
in the Conjugate Gradient reconstruction in 1D or 2D to be studied, as well as the
different By-map based methods to be compared. This chapter discusses in detail
the various aspects of the simulations and presents results in both quantitative and
qualitative forms.

A few examples of the application of the CG-based correction methods on actual
MR scans are shown in Chapter 6. The objective is to demonstrate that these tech-
niques are applicable to real-life problems, and discusses the particularity of applying
the correction methods on real data. The problem of the validation of the correction

in a real situation was not addressed in detail however.
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In Appendix A are included the Matlab source code of the main functions that
constitute the implementation of the 1D and 2D CG methods, together with that of
other By map based methods. We believe that it is important that results of this thesis
can be accurately reproduced, used and, doubtlessly, improved by other researchers.
Due to the nature of numerical computations, where small differences in implemen-
tation may cause notable changes in the results, the only way to ensure that the
implementation of algorithms found in this thesis is clear for everybody is to include
the source code. The possibility of implementation errors are unfortunately always
possible (although rigorous verification and testing can minimize this possibility) and
submitting the source code is a way to eventually unmask these bugs. Bevond bugs,
the possibility that the algorithms have not been fully optimized is even more likely,
if not certain. Considering the substantial computation effort needed to apply some

of these algorithms, optimization may make a non negligible difference when using

them in a clinical environment.

7.2 Main findings

The inverse problem approach was first suggested by Kadah and Chu [54] in order
to correct for 1D distortion problems, i.e. when the image degradation is only in
one direction. We have gone further by implementing a 2D version of this correction
approach, which can potentially eliminate second order ghosting artifacts, in addition
to geometrical distortion.

The 2D implementation of the inverse problem method involves a very large
system of equations. For example, a 4096 x 4096 system of equations is required
for the 2D correction of a modest 64 x 64 image. The storage requirement for

such a linear system in complex form and double precision is 4096 x 4096 x 2 x
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8(bytes)/1024(bytes/kB)/1024(kB/MB) = 256MB. For a 128 x 128 image size, the
full storage requirement would be of 4Gb. Therefore, direct methods of solutions
(pseuso-inverse, SVD, Gaussian elimination) are not practical for this sort of problem
due to the size of the equation systems involved.

In this thesis, approximations and computational methods were developed to make
the 2D restoration problem practically achievable in the case of the blipped, single-
shot EPI sequence, with modest computer hardware and in reasonable times. The key
element of this simplification is to recognize that the equation system representing
the imaging process is sparse when expressed in image space. This fact allows the
useful information in the kernel of the system of equations to be stored in many fewer
elements than M? x N2, for a M x N image size.

We have found that the most computationally intensive part of the 2D correction
is the computation of the sparse kernel. Chapter 4 showed that the complexity for
the calculation of the kernel can be reduced by exploiting the low-rank characteristic
of the EPI blipped sequence k-space trajectory.

The inverse problem method is more elegant and mathematically rigorous, but is
more time consuming that other more direct approaches. It was found that the power
of the inverse problem approach could potentially be beneficial in EPI image restora-
tion. But even in this case, other factors prevented us from clearly demonstrating
this benefit in-vivo. Furthermore, CG based methods have been shown to better deal
with large distortions that stretch parts of an image. When distortion appears as a

compression of the image, information may be irretrievably lost and CG methods may

fail, like the other methods, to correct the image.
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7.3 Future Work

A number of important issues have not been addressed in this thesis. This section

identifics some of them and suggests avenues of investigation.

7.3.1 In-Vivo Experimental validation: MR tagging

The absolutc in-vivo validation of a distortion correction technique is not an easy
problem duc to the fact that “reality” may not be known. For this purpose, the use of
tagging sequences. such as Spatial Modulation of Magnetization (SPAMM) (2, 68, 114]
and DANTE scquences [71] may be considered. The principle is to apply a tagging
pulse that producc a pattern of parallel strips, or a grid. on top of the imaged object.
before each repetition of a normal acquisition sequence. The geometrical distortion
then appears as a deformation of this strip pattern. Two or three strip patterns can
be applied in sequence so as to form a two-dimensional of three-dimensional grid.
Tagging methods such as these have been used for other reasons than the assessment

of geometrical distortion. for instance motion measurement (82, 3] and estimation of

in-vivo spatial resolution [104].

7.3.2 Field map acquisition and processing

The essential element of the CG method, and many other reconstruction methods
is the field map. Whichever method is used, the correction can be only as good
as the field map is accurate and representative of the real static field distribution.
Consequently, an important part of the improvement of Bg-based correction methods
relies on the field map acquisition and processing side.

It has been shown that the CG method is somewhat sensitive to the noise in the By

field map, and that some processing must be performed in order to reduce its noise
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prior reconstruction. The best approach we have found so far is to perform spline
smoothing on the field map. However, this can be time and memory consuming for
large data sets. It would be interesting to consider other field-map processing meth-
ods, and particularly edge preserving noise-reduction methods, such as Anisotropic
Diffusion [44], or Wavelet Packet Filtering {111] which may be considered for such a
task.

Another aspect of field map processing that has not been addressed in this work
concerns phase unwrapping [46, 101}, which is necessary when the magnitude of the
field map exceeds the dynamic range allowed by the field map sequence. This problem
is not as simple as it may seem for complicated images containing small regions
isolated from the rest of the image. Furthermore, the low resolution of the field map

can complicate the task of accurately determining where phase wraps occur.

7.4 Concluding remarks

MRI imager technology improves every day. Magnetic field homogeneity is constantly
improving, gradient fields are increasingly more linear and stable. One factor that
cannot be improved is the subject dependent susceptibility induced field inhomogene-
ity. Better shimming can improve the situation, but high order shims are needed to
take the full complexity of subject-induced field inhomogeneity into account. With
the improvement of the technology, such subject dependent factors may likely become
the dominant effects as the other design-related factors are reduced. On the other
hand, the tremendous increase in computing power may suggest that methods that
are ignored today, because of their large computing cost, may find some applications

in the future.

While MR technology continues to improve, MR imaging is being applied in in-
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creasingly difficult conditions. For instance, interventional MRI [43, 61| uses open
magnets where it is difficult to obtain good field homogeneity. In such circumstances,
image correction methods may have an important role in the future, considering that
the processing power is likely to improve as well.

In this thesis, we have added a new method to an already large set of correction
approaches. Since no single correction method or imaging sequence will ever solve
all the problems encountered in the complex reality of MRI, a variety of available
options is the best guarantee that magnetic resonance imaging will continue to evolve
and improve as a diagnostic, treatment support and basic rescarch modality. We

modestly hope that this work will contribute to this evolution.
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Appendix A

Source code

A.1 CG 2D algorithm

function A = kernel4d(BO, traj, thresh)

%
A
h
%
%
%
)
%
%
%
h

%

A = kerneld4d(BO, traj, thresh)
Computes the 4D EPI kernel from a BO map and a k-space trajectory
Input: BO: MxN BO map (Hz)

traj: EPI trajectory (s)

thresh: sparsity threshold (% of maximum value)

Cutput A: MxNxMxN 4D sparse kermel

get image dimensions

(M,N] = size(BO);

% compute singular value decomposition of the k-space trajectory
fu,s,V] = svd(traj);

%

allocate space for sparse matrix

A=gparse(M*N,M=N) ;

% loop over image pixel coordinates
for (jj=-N/2:N/2-1)

for (ii=-M/2:M/2-1)
% computes the rank-two decomposition of the EPI PSF
[ul,u2,v1,v2] = psf_dec(U,S,V,BO(ii+M/2+1,jj+N/2+1),ii,jj);
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end;
end;

% computes PSF
PSF = ulsvi+u2s=v2;

% set elements smaller than threshold to zero
PSF(abs (PSF)<thresh/100) = 0;

% compute column index in the 4D kermel
rr = (ii+M/2)+(jj+N/2)=N+1;

% £ill up one column of the 4D kermel
A(:,rr) = sparse(PSF(:));
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function (p1,p2,q91,q92] = psf_dec(U,S,V,dB,m,n)

%

% [p1,p2,q1,92] = psf_dec(U,S,V,dB,m,n)

h

% Computes the rank-two EPI PSF decomposition, i.e.
% the 4 vectors pl,p2,ql and q2 such that
% plxql + p2*q2 = PSF

h

% Input: (U,S,V] Singular value decomposition of the k-space
% trajectory matrix. [U,S,V] = svd(traj)
% dB Local field inhomogeneity

% (m,n] Pixel location

%

% Output: pi main PSF component column vector

% p2 ghost PSF component column vector

A ql main PSF component row vector

% q2 ghost PSF component rowvector

%

%

M = size(U,1);

N = size(V,1);

Ul = U(:,0);

U2 = U(:,2);

Vi = V(:,1);

V2 = V(:,2);

S1 = 8(1,1);

S2 = 5(2,2);

k = (-M/2:M/2-1)’/M;

1 =

(-N/2:N/2-1)/N;

= exp(-2*pi*i*(k*m+dB»S1»V1(1)»U1));

fftshift (ifft(ffeshift(tmpl)));
fftshift(p1);

= co8(2*pi*(dB*S2+U2(1)*V2’)) .sexp(-2*pixi*l*n);
fftshift (ifft(£ftshift(tmpl)));

= -i»gin(2*pi*(dB*S2+U2(1)*V2’)) .»exp(~-2*pi*islsn);
fftshift (ifft(££ftshift(tmp2)));
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function x = cg2(A,b,nit)

%

% x = cg2(A,b,nit)

%

% Solves A’A x=A"Db

% with the conjugate gradient method.
% A’b is taken as the initial guess.

% Input: A MxN Matrix A

% b Mx1 Constant vector b
% nit Number of iterations
%

% Output: x Nx1 solution vector x

tol = le-4;

x=A’x»b;

ii = 0;

r = A’=(b-A*x);

d =r;

delta_new = r’sr;
delta_old = delta_new;

for ii=1:nit
q = A'=(Axd);
alpha = delta_new/(d’=q);
x = x+alpha»d;
r = r-alpha=q;
delta_old = delta_new;
delta_new = r’=r;
beta = delta_new/delta_old;
d = r+beta=d;

end;
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A.2 1D CG algorithm

function A = A_mat(delta,ndiag)

%

% A = A_mat(delta,ndiag)

%

% Computes the A matrix for 1D correction

%

% Input: delta Nx1 distortion vector (in pixel units)
% ndiag Width of main diagonal.

%

% Output: A NxN matrix

%

% get vector dimension
N = length(delta);

% set default value for ndiag
if (nargin==1)

ndiag=N;
end;

% allocate space for kernel A
A =zeros(N);

% loop over elements
for (ii=0:N-1)
for (jj=circ_ind([round(ii-ndiag/2) :round(ii+ndiag/2)],N))
tmp = ii-jj-delta(ii+l);
tmp2 = tmp/N;

if (tmp~=0)
s = sin(pistmp)/sin(pi=tmp2);
else
s = N;
end;
A(ii+1,jj+1) = exp(-pi*i»tmp2)=*s;
end;

end;
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function undist = CG_1D(dist,BO,traj,nit,ndiag)

%

% undist = CG_1D(dist,BO,traj,nit)

%

% Applies the CG method to all columns of an image.
%

% Input: dist MxN distorted image

% BO MxN field map (Hz)

% traj MxN k-space trajectory (s)

% nit number of CG iterations

% ndiag wvidth of diagonal band of the kermel
%

% Output: undist MxN corrected image

%

% get image dimensions
{M,N] = size(dist);

% set defaults

if nargin < §
ndiag = M/4;

end

if nargin < 4
nit = 3;

end

% allocate space for corrected image
undist = zeros(M,N);

% loop over columns
for jj=1:N

% effective bandwidth
BW = 1/(traj(M,jj)-traj(1,jj));

% compute kermel
A = sparse(A_mat(BO(:,jj)/BW,ndiag));

% apply CG on column
undist(:,jj) = cg2(A/M, dist(:,jj), nit);

end;
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A.3 PGI and SI-PGI algorithms

function undist = PGI(dist,delta)

%

% undist = PGI(dist,delta)

%

% Implementation of the Weis’s correction method
A

% Input: dist Mx1 distorted profile

% delta Mx1 pixel displacement vector (in pixel units)
%

% Output: undist MxN corrected profile

%
%
% REF: Weis, J. and Budinsky, L., Simulation of the influence of

% magnetic field inhomogeneity and distortion correction
% in MR imaging.
% Magnetic Resonance Imaging 8(4), pp 483-9, 1990.

%

M = length(dist);

’ undist = zeros(M,1);
for ii=2:M-1

L = ii-0.5+0.5=(delta(ii-1)+delita(ii));
R = ii+0.5+0.5=(delta(ii)+delta(ii+1));
Ilp = round(L);

Irp = round(R);

% make sure indices are valid

if (Ilp<1) Ilp = 1; end;

if (Ilp>M) Ilp = M; end;
if (Ilp<1) Ilp = 1; end;
if (Irp>M) Irp = M; end;
D1 = L-(I1p-0.5);
Dr = R-(Irp-0.5);
n = Irp-Ilp+1;
if n>1
undist(ii) = (1-D1)»dist(Ilp) + Dr»dist(Irp);
for(kk=Ilp+1:Irp-1)
undigt(ii) = undist(ii)+dist(kk);
end;
else
undist(ii) = (Dr-Dl)=dist(Ilp);
end;

@ =
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undist(l) = dist(1);
undist (M) dist(M);
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function undist = PGI_1D(dist,BO,traj,nint)

h
% undist = PGI_1D(dist,BO,traj,nint)
A

% Applies the PGI method to all columns of an image.

h

% Ioput: dist MxN distorted image

% BO MxN field map (Hz)

% traj MxN k-space trajectory (s)

% nint number of points for sinc interpolation
%

% Output: undist MxN corrected image

%

% get image dimensions
[M,N] = size(dist);

% set default: no interpolation
if (nargin < 4)

nint = M;
end;

% allocate space for corrected image
undist = zeros(M,N);

% loop over columns
for jj=1:N

% effective bandwidth
BW = 1/(traj(M,jj)-traj(1,3j));

% interpolation

if (nint > M)
% interpolates to nint points
dist2 = interpft(dist(:,jj),nint);
BO2 BO_interp(BO(:,jj)/BW,nint);

% apply PGI on interpolated data
tmp = PGI(abs(dist2),B02);

% interpolate back to original size
undist(:,jj) = interpft(tmp,M);

% no interpolation
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elseif (nint == M)
undist(:,jj) = PGI(abs(dist(:,jj)), BO(:,jj)/BW);

% not a good idea
else

error(’PGI_1D: invalid interpolation parameter’)
end;

end;
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function undist = ICGI(dist,delta)

%

% undist = ICGI(dist,delta)

%

% Implementation of the Intensity Compensated Geometrical Interpolation
% method.

%

% Input: dist Mx1 distorted profile

A delta Mx1 pixel displacement vector (im pixel units)
%

% Output: undist MxN corrected profile

% REF: Sekihara, K. and Kuroda, M. and Kohno, H., Image restoration from
% non-uniform magnetic field influence for direct Fourier NMR imaging.
% Phys. Med. Biol. 29(1), pp. 15-24, 1984

M = length(dist);
undist = zeros(M,1);
for ii=1:M-1
g = ii+delta(ii);
Ip = floor(g);
% make sure Ip is fine
if (Ip<1) Ip = 1; end;
if (Ip>M-1) Ip = M-1; end;
D = g-Ip;
undist(ii) = ( (1-D)»dist(Ip) + D=dist(Ip+1) ) = ...
( 1+ delta(ii+l)-delta(ii) );
end;
undist(M) = dist(M);
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function undist = ICGI_iD(dist,BO,traj,nint)

%

% undist = ICGI_1D(dist,BO,traj,nint)

[}

%

% Applies the ICGI method to all columns of an image.
%

% Input: dist MxN distorted image

% BO MxN field map (Hz)

% traj MxN k-space trajectory (s)

% nint number of points for sinc interpolation
%

% Output: undist MxN corrected image

/)

% get image dimensions
M,N] = size(dist);

% set default: no interpolation
if (nargin < 4)

nint = M;
end;

% allocate space for corrected image
undist = zeros(M,N);

% loop over columns
for jj=1:N

% effective bandwidth
BW = 1/(traj(M,jj)-traj(1,jjd));

% interpolation

if (nint > M)
% interpolates to nint points
dist2 = interpft(dist(:,jj),nint);
BO2 = BO_interp(BO(:,jj)/BW,nint);

% apply ICGI on interpolated data
tmp = ICGI(abs(dist2),B02);

% interpolate back to original size
undist(:,jj) = interpft(tmp,M);

. % no interpolation
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elseif (nint == M)
undist(:,jj) = ICGI(abs(dist(:,jj)), BO(:,jj)/BW);

% not a good idea
else
error(’ICGI_1D: invalid interpolation parameter’)

end;

end;
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A.4 KSC algorithm

function undist = KSC(dist,delta)

%

% undist_im = KSC(dist,delta)

%

% Implementation of the K-Space Correction method (fourier versiom)
%

% Input: dist Mx1 distorted profile

4 delta Mx1 pixel displacement vector (in pixel units)
%

% Output: undist MxN corrected profile

%
%
% REF: Weisskoff R.M. et al., Correcting Gross Distortion on

% Echo Planar Images, Proceedings of 11th Ann meeting SMR p.411 (1992)
h

M = length(dist);

% compute synthetic data

k = fftshift((0:(M-1))*~-M/2);

m = (0:(M-1));

k_synth = exp( -2#pisisk=(m-delta’)/M) = dist;

% recomstruct undistorted image

% phase correction on reconstructed image because k=-M/2 -> t=0 in
% the trajectory

% exp(2spi*isdelta/2)

% no need to compute this factor if only the magnitude corrected
% image is wanted

% undist = ifft(k_synth).sexp(2*pi*ixdelta/2);

undist = ifft(k_synth);
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A.2. KSC ALCORITHM

function undist = KSC_1D(dist,BO,traj)

A

% undist = KSC_1D(dist,BO,traj)

%

% Applies the KSC method to all columns of an image.
%

% Input: dist MxN distorted image

% BO MxN field map (Hz)

% traj MxN k-space trajectory (s)
%

% Output: undist MxN corrected image

%

% get image dimensions
[M,N] = size(dist);

% allocate space for corrected image
undist = zeros(M,N);

% loop over columns
for jj=1:N

% effective bandwidth
BW = 1/(traj(M,jj)-traj(1,3j));

% apply KSI on column
undist(:,jj) = KSC(dist(:,3jj),B0(:,jj)/BW);

end;
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A.5 Analytic phantom

function samples = circle2D(parx,pary,r0,center,int)

%

% samples = circle2D(parx,pary,rO,center,int)

%

% Returns the samples of the 2D Fourier transform of a circle
% at the positioms kx, ky.

A

% Input: parx: (FOvVx, Nx]

% pary: (FOVy, Nyl

% r0: Radius of the circle

%4 center: [{x,y] of the center

% int: Multiplicative factor (intensity)
4

% Output samples: (Nx)x(Ny) matrix representing the k-space
% sample of the object.

% for a FOV of (FOVx)c(FOVy)

%

FOVx = parx(1); Nx = parx(2);

FOVy = pary(1); Ny
dx = FOVx/Nx;

dy = FOVy/Ny;

dkx = 1/Nx/dx;

dky = 1/Ny/dy;

pary(2);

(kx, ky] = meshgrid( -1/2/dx:dkx:1/2/dx-dkx, 1/2/dy:-dky:-1/2/dy+dky );
r = sqrt(kx. 2+ky."2);

ind_orig = find(zr==0);

r(ind_orig) = 1;

samples = zeros(size(kx));

samples = int*rO*besselj(l,2+pi*rO=r)./r;

samples(ind_orig) = int*pisr0~2;

% offcenter
samples = samples.®exp(2spix»i*(center(1)=kx+center(2)#*ky));
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function samples = rect2D(parx,pary,dim,center,int)

%

% samples = circle2D(parx,pary,dim,center,int)

%

% Returns the samples of the 2D Fourier transform of a rectangle.

%

% Input: parx: (FOVx, Nx]

% pary: (Fovy, Nyl

% dim: a and y dimensions of the rectangle
% center: [x,y] of the center

% int: Multiplicative factor (intensity)

%

% Output samples: (Nx)x(Ny) matrix representing the k-space
h sample of the object.

h for a FOV of (FOVx)c(FQOVy)

4

FOVx = parx(1); Nx = parx(2);

FOVy = pary(1); Ny
dx = FOVx/Nx;
dy = FOVy/Ny;
dkx = 1/Nx/dx;
dky = 1/Ny/dy;
[kx, ky]l = meshgrid( -1/2/dx:dkx:1/2/dx-dkx, 1/2/dy:-dky:-1/2/dy+dky );

pary(2);

epsilon = 0.0001;

ind_orig = find(kx==0);

kx(ind_orig) = epsilon»ones(size(kx(ind_orig)));

ind_orig = find(ky==0);

ky(ind_orig) = epsilon*ones(size(ky(ind_orig)));

samples = zeros(size(kx));

samples = int*sin(pi*dim(1)=kx)./(piskx).*sin(pi*din(2)=ky)./(pisky);

% offcenter
samples = samples.sexp(2spiris(center(1l)skx+center(2)*ky));
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% 2D analytical phantom test
h
4
A
%
%

clear all;

% imaging parameters

FOVx = 256;

FOVy = 256;

Nx = 64;

Ny = 64;

Radius = 110;

T = 2*Radius/sqrt(2)»0.98;
Width = 10;

Gap = 10;
WARIARALADAADALL DN N

N_squares = floor( (T+Width)/(Width+Gap) )
T = N_squares*(Width+Gap)-Gap;

% phantom background

k_space = circle2D({FOVx Nx], [FOVy Nyl ,Radius, ([0 0],1);

% squares
for ii = 1:N_squares
for jj = 1:N_squares

disp([’... computing square ’, num2str(ii), ’,’, oum2str(jj), ’ ...’]);

centerx=-T/2+Width/2+(ii-1)=(Gap+Width);
centery=-T/2+Width/2+(jj-1)=(Gap+Width);
k_space = k_space + ...

rect2D([FOVx Nx], [FOVy Nyl, (Width Width], [centerx centery]l,2);

end;
end;

% reconstruct
phantom = fftshift(fft2(£ftshift(k_space)));
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A.6 EPI image simulation

function epi = simulate_epi(im, BG, traj)
%

%

% epi = simulate_epi(undist_im, BO, traj)
%

% Compute a simulated EPI image

%

% Input: im: MxN image

% BO: BO field map in Hz

A traj: k-space trajectory in s
%

% Ouput: epi: MxN simulated EPI image

%
[M,N] = size(im);

k = zeros(size(im));
(11,kk] = meshgrid(~N/2:N/2-1,-M/2:M/2-1);

% loop over the pixels of the image
for ii = -M/2:M/2-1
for jj = -N/2:N/2-1
kK =k + im(ii+M/2+1,jj+N/2+1)= ...
exp ( -2=pisi=(iiskk/M + jj=*11/N +
BO(ii+M/2+1,jj+N/2+1)straj) );
end; 4 jj
end; % ii

% reconstruct epi image
epi = fftshift(iffv2(£ftshift(k)));
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A.7 K-space trajectory

function traj = make_traj(ADC_raster_file, M, N, TR, offset)

%
h
h
h
A
4
A
%
%
%
%
%
%
%
%
%

t
d
T

%

traj = make_traj(ADC_raster_file, M, N, TR, offset)

Makes an EPI k-space trajectory from a raster file

Input: ADC_raster_file: file name
M: number of k-space lines
N: size of the raster file
TR: time to read one k-space line (us)
offset: time the readout begins (us)
Output: traj: MxN matrix whose element traj(i,j)

represents the time at which
point (i,j) of k-space was sampled.
Units of traj are in seconds.

read_adc_raster ([ADC_raster_file,’_’,num2str(N),’.txt’],N);

)

(TR-t(N)/1e3)/2;

offset;

make k-space trajectory

for ii=1:2:M

T = T+d;

traj(ii,:) = T+t/1le3;

T = traj(ii,N)+2=d;
traj(ii+1,:) = T+£fliplr(t)/1le3;
T = traj(ii+1,1)+d;

end;

traj=traj/le6; % change units for seconds
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#include
#include
#include
#include

<stdio.h>
<string.h>
<math.h>
"mex.h"

void mexFunction(

int nlhs, mxArray *plhs{],
int nrhs, const mxArray =prhs(]
)

char tmp_string{100];
char =file_name;

FILE=* f£f;

int top, i, buflen, N;
double* tmp_vect;

int* tmp_vect2;

/* Check for proper number of arguments */
if (nrhs != 2) {
mexErrMsgTxt ("read_adc_raster requires two input arguments.");

}
if (nlhs != 1) {

mexErrMsgTxt ("read_adc_raster requires ome output argument.");
}

/* get file name =/

buflen = (mxGetM(prhs[0])*mxGetN(prhs(0])) + 1;
file_name = mxCalloc(buflen, sizeof(char));
mxGetString(prhs[0], file_name, buflen);

f = fopen(file_name,"z");

if (!'f) mexErrMsgTxt("read_adc_raster: cannot open file\n");
N = smxGetPr(prhs(1]);

tmp_vect = mxCalloc(N,sizeof(double));

tmp_vect2 = mxCalloc(N,sizeof(int));

while(!feof(£f)) {

facanf (£f,"%s" ,tmp_string) ;
if (!strcmp(tmp_string, "Entry_Values:")) break;

170



APPENDIX A. SOURCE CODE A.7. K-SPACE TRAJECTORY

}
for (i=0; i<N; i++) {
fscanf (f,"%d" ,&ktmp_vect2[i]);
top_vect[i] = (double)tmp_vect2(i];
}

plhs[0] = mxCreateDoubleMatrix(1,N,mxREAL);
mxSetPr(plhs[0] ,tmp_vect) ;

return;
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A.8 Support functions

function n = BO_noise(mag, SNR, mask)
%

% n = BO_noise(mag, sigma, mask)

%

% Creates BO map noise

%

% Input: mag MxN magnitude image

% SNR SNR of one of the magnitude image
% mask image mask

%

% Output n MxN noise matrix

% Field map are typically obtained from the difference between
% the phase of two images. The parameter SNR is the signal-to-noise
% ratio of the two images generating the field map.

% compute standard deviation
sigma = mean(abs(mag(mask)))/SNR;

% phase noise in background: uniformly distributed between -pi and pi
n_ph = (rand(size(mag))=*2*pi-pi);

% phase noise in signal regiomns: normally distributed
% with std dev = sigma/mag
n_ph(mask) = randn(size(mask))*sigma./mag(mask);

% because 2 phase images are subtracted, the noise standard deviation
% is sqrt(2) larger.

dt = 4480e-6;

n = n_ph/2/pi/dt*sqrt(2);
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function d = rms_diff(a,b,mask)

%

% d = rms_diff(a,b,mask)

%

% Computes the RMS difference between two images
%

% Input: a First image

% b Second Image

/A mask Image mask over which the difference is evaluated.
% See image_mask function.

%

% Output: ¢ RMS difference

%

[M,N] = size(a);
d=sqrt( sum( ( abs(a(mask)) - abs(b(mask)) )."2 ) /M/N);
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function [m,bk] = image_mask(im,th)

%

% [m,bk] = image_mask(im,th)

%

% Computes the image and background mask for an image based on a threshold.
%

% Input: im Image

h th Threshold in percent of maximum image value.

%

% Output: m Image mask, i.e. indices for which abs(im} >= th
% bk Background mask, i.e. indices for which

% abs(im) < th

%

% convert threshold in absolute pixel value
thpercent = max(im(:))»th/100;

% compute image make
m = find( abs(im(:)) >= thpercent );

% find backgound mask as the complement of image mask
bk = setdiff(1:length(im(:)),m)’;

if (length(m)+length(bk)) =length(im(:))

error(’image_mask: Abnormal image mask calculation’)
end
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APPENDIX A. SOURCE CODE A.8. SUPPORT FUNCTIONS

function g = gauss(M,N,FWHM,cx,cy)

%

% g = gauss(M,N,FWHM,cx,cy);

%

% Creates an MxN Gaussian centered at the origin.

%

% Input: M,N Size of the 2D gaussian

% FVWM Full Width at Half maximum in pixel units
% cx,cy Center

%

% Cutput: g 2D Gaussian

%

% set default values
if (nargin==3)

cx = 0;
cy = 0;
end;

% compute variance
a = FWHM~2/4/log( 2 );

[x,y] = meshgrid(-N/2:N/2-1,-M/2:M/2-1);
g = exp( - ( (x-cx).*(x-cx) + (y+cy).=(y+cy))/a );
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APPENDIX A. SOURCE CODE

A.8. SUPPORT FUNCTIONS

function ind = circ_ind(x,N);
%

% ind = circ_ind(x,N)

%

% Circular index in the range

%

% Input: x Index
% N range
%

% Output: ind Index

%

ind = mod(x-1,N)+1;

1:N, i.e. circ_ind(x+n*N,N) = x if 1<=x<=N
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APPENDIX A. SOURCE CODE A.8. SUPPORT FUNCTIONS

function BO2 = BO_interp(BO,nint);

%

% BO2 = BO_interp(BO,nint)

%

% Performs cubic interpolation on a 1D field map
L]

A

% Input: BO Nxi field map

% nint Size of interpolated field map
%

% Output: BO2 nintxl interpolated field map
%

% get BO map dimensions

N = length(BO);

% perform cubin interpolation
B02 = interp1(1:N,BO,1:N/nint:N+1-N/nint,’=*cubic’)»nint/N;

% replace NaN values by 0
B02(isnan(B02))=0;
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