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Abstract

This thesis treats of the issue of distortion in magnetic resonance (~IR) imaging, with

focus on Echo Planar imaging (EPI) and anatomical 3D imaging.

After a review of ~lR theory, the principle of image formation, an analysis of

distortion in the context of N'IR! and field mapping principles, an analysis of the EPI

image formation process, which reveals the two-dimensional nature of the EPI point­

spread function (PSFL is presented, and a full 20 correction technique based on the

inversion of the 40 tensor EPI imaging equation using the Conjugate Gradient (CG)

method is proposed. A 10 approximation of the technique is also derived for cases

where the PSF can be approximated as being one-dimensional, such as in Fourier

imaging, or EPI imaging in fields with Low field inhomogeneity.

The proposed technique is demonstrated by means of computer simulations, and

severa! aspects of its implementation are studied. A comparison between different

correction methods based on field map data, still using computer simulations, is pre­

sented and reveals the behaviour of the different methods when applied in non-ideal

conditions.

Finally, the practical application of the proposed method is demonstrated on real

EPI scans and gradient echo images.

This work reveals sorne interesting characteristics of the correction method based

on the CG algorithm, like fast convergence, possibility to recover from severe distor-
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tions and EPI Bo-induced ghost artifacts reduction, but it also points out limitations

of this correction method, such as potentially high computational cast and noise sen­

sitivity.
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Résumé

Dans cette thèse, le problème de la distortion dans les images de résonance magnétique

(IR1\JI) est étudié, plus particulièrement dans le contexte de Pimageric écho-planaire

(EPI) ainsi que de l'imagerie de Fourier conventionnelle.

Après une révision de la théorie sous-jacente aux principes de résonance magnétique

et de la nature des distortions, une analyse du processus de formation d'image par la

technique EPI révèle la nature bi-dimensionnelle de la fonction d'étalement de point

(PSF), et une méthode de correction 2D basée sur l'inversion, par la méthode des gra­

dients conjugués, du système d'équations 4D représentant le problème est proposée.

Ensuite, le cas particulier dans lequel la fonction d'étalement peut être approximée

par une distribution unidimentionelle est dérivé.

La méthode proposée est démontrée au moyen de simulations par ordinateur et

différents aspects de l'implémentation de la méthode sont étudiés. Une comparaison

des différentes méthodes de correction des distortions dans les images d 'IRJvI dans des

conditions non idéales est ensuite effectuée.

Finalement, l'application à de véritables images de résonance magnétique est

démontrée dans le cas d'images écho-planaires, et d'images provenant d'une étude

3D en écho de gradient.

Ce travail révèle d'importantes caractéristiques concernant la méthode de correc­

tion basée sur les gradients conjugés, telles que la convergence rapide, la possibilité

ix
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de restorer de sévères distortions et la réduction des fantômes, dans les images EPI,

causés par les inhomogénéités du champ magnétique. li souligne par contre les lim­

itations de cette technique, telle la sensibilité au bruit et les longs temps de calcul

qu'elle requiert.

x
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Chapter 1

Introduction

Since its introduction in 1973, ~Iagnetic Resonance Imaging (~IRI) [64} has gained

wide acceptance as a valuable diagnostic modality, in part because of its ability to

represcnt different properties of the tissues (proton nuclei density, relaxation times,

susceptibility, etc.) and diffcrent physiological aspects (flow, diffusion, perfusion,

motion, etc.), and aIso due to its non-invasive nature.

In the early days of NIRI. data were acquired as projections and weil known re­

construction methods, such as filtered back-projection, used in x-ray computed tO­

mography, were applied to ~IRI data. The advent of Fourier imaging, [59, 35} which

allowed higher signaI-to-noise ratios (SNR), marked an important step in NIR imaging.

These techniques are however limited in certain clinical applications due to the fact

that static field inhomogeneities translate as geometrical distortions of the images.

In contrast, in projection reconstruction, the effect of field inhomogeneity is ta cause

blurring in the reconstructed image [62}.

Advances in magnet design technology have contributed significantly to improve

this situation, but still, ~IRI does not in general meet the geometrical accuracy re­

quirements of applications such as Image-Guided Neurosurgery (IGNS). Furthermore,

1
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CllAP'rER 1. INTRODUCTION

very rapid imaging techniques, such as echo planar imaging (EPI), can suifer extreme

distortion. This is in part due to the fact that field inhomogeneities do Dot arise ex­

clusively from imperfect magnet design, but aIso frOID magnetic properties of different

tissues, cavities and biologjcal liquids.

A number of methods have been proposed to reduce or eliminate the deleterious

effects of static field inhomogeneities. These include pre-scan sbimming [89}, modified

acquisitions and post-processing corrections. AlI of these methods have drawbacks,

such as increased imaging time, incomplete correction, requircment of human inter­

vention or depcndence on the imager hardware that limit their use in real-life clinical

problems that often generate a large amount of data.

The problem of distortion becomes particularly important in areas of dynamic EPI

and Image-Guided Neurosurgery.

Dynamic EPI

Ecb<rPlanar Imaging (EPI) [67] is an ultra-fast imaging technique that is extremely

sensitive to static field inhomogeneities because of the low effective bandwidth per

pixel used. Large distortions in EPI, in addition to field inhomogeneity-related arti­

facts, restricts its use in IGNS.

Additionally, the analysis of functional ~IRI (B'IRl) data acquired with EPI se­

quences [9] often relies on the precise registration between anatomical and ~IRl im­

ages. Distortion in EPI images may result in a misalignment between the functional

and anatomical data, which may in tum interfere with the interpretation of results.

The effect of static field inhomogeneities on EPI imaging is not ooly geometric

distortion, but aIso signal loss. Furthermore, the geometric distortion cannot be

considered as strictly one-dimensional. In tms case, a full 2D correction scheme cao

be considered.

2
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Image-Guided Neurosurgery using volumetrie gradient-echo data

For the large majority of qualitative diagnostic applications, small geometrical dis­

tortions CéUl be safdy ignored without major consequences. However, Image-Guided

Neurosurgery. which uses pre-operative MRI anatomical information to provide in­

teractive guidance during open-cranium surgery [28, 29, 40, 41, 81], often requires

geometric accuracy on the order of 1 mm. This geometrical accuracy requirement

may not be rcached in sorne regions of the ~IRI volume, especially near air-tissue

interfaces. Distortion of stereotactic frame fiducial markers, used to establish image

geometry, is also a concern [15}.

Although the use of high bandwidth sequences may help to reduce the effect of

geometrical distortions. this is achieved at the expense of reduced signal-to..noise ratio

(SNR) [80, 27]. Hcnce. an efficient correction method could contribute to relaxing the

tradeoff bctween SNR and geometrical accuracy and providc distortion-free images

with highcr SNR.

The gcncral requircments for a distortion correction technique may he stated as

follows:

• Acquisition time - minimal overhead on total acquisition ~ime.

• Automatic - no or minimal intervention of the operator.

• Computation time - can be applied in a reasonable time compared to the nor­

mal time-scale between pre-operative scan and surgery, in the case of IGNS. or

compared to the time required for data analysis, in the case of functional EPI.

• Effective - provides stable and significant correction of distortion and related

effccts without introducing new artifacts.

3



CIlAPTER 1. INTRODUCTION

• 1.1 Proposed Solution

t.l. PROPOSED SOLUTION

•

•

This thesis addresses the problem of distortion in l\JIRI from first principles, with

an approach similar to image restoration and inverse prohlem methods. From the

knowledge of the non-ideal conditions and the detailed mathematical process by which

the images are formed, one tries to mathematically invert the process to yield a

restored image, free from the effccts of non-ideal conditions. Although this approach

can in general be applied to any imaging situation, some types of image degradation,

such as blurring or dephasing, where part of the information is irreversibly lost, are

haodled with difficulty by inverse problem approaches. The case of distortion is

different because, when distortion is not too severe, no information is lost. In that case,

we have found that it cao be effcctively dealt with using inverse problem methods.

The primary field of application of the proposed inverse-prohlem method is the

restoration of EPI images. Because EPI image degradations due to static field inho­

mogeneity is not strictly one-dimensional, we state the problem in terms of a general

4D llnear system of equations relating the ideal, undistorted image and the measured

image.

We further show that this method can he applied as weIl to ID correction problems.

EPI distortion cao he approximated, through some simplifications of the k-space

trajectory, as a one-dimensional distortion problem. Ail Fourier imaging methods

(including 3D gradient-echo imaging) in which a single k-space line is acquired at

each excitation, strictly conforms to the ID distortion problem. Figure 1.1 illustrates

the relationship between the 2D and ID correction methods and the imaging situations

where they are applicable.

Whether it is applied to ID or 2D restoration, the proposed approaches follow

the same logic. Under ideal conditions, this imaging equation, relating the measured

signal and the imaged object, takes the form of a discrete Fourier transform (DFT),

4
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2D correction

10 correction

..

•

1.1. PROPOSED SOLUTION

EPI imaging

GE imaging

•

•

Figure 1.1: lD vs. 2D correction, and the respective applications.

Relation between ID and 2D correction vs. relevant imaging techniques. ln
order to take account of the two-dimensional nature of EPI image degra­
dations 1 a 2D correction method is needed (top a1Taw). However, the EPI
degrndation can also be approximated as one-dimensional, which can be ad­
dressed by a ID correction method (diagonal an-ow). ln the case of anatom­
ical 3D imaging, the image degradation is strictly one-dimensional, and the
1D method is suitable for this case (bottom afTOw) .

and the image is normally reconstructed using an inverse FFT. \Vhen static field

inhomogeneities are present, the equation deviates from the DFT rclationship and

a more general solution approach must be taken. The distortion correction problem

can he expressed as a system of linear equations relating the distorted. image with

the ideal, distortion-free image. In the case of 2D processing, the linear rclationship

takes the form of a 4D tensor equation that can be reshaped into a large system of

linear equations. In the case of ID processing, the correction consists of independent

resolution of a linear system of equation for each column of an imagell
•

It has been found in practice that using iterative techniques such as the Conjugate

Gradient method or the Steepest Descent method [47, 97} provided good correction of

geometrical and associated intensity distortions in a very small number of iterations

(2-3). Furthermore, because the distortion problem is stated in the form of a system

aFor simplicity, "'column" refcrs to the ditection in which the primary distortion occurs. It is the

readout direction in Fourier imaging, and the phase encoding direction for EPI.

5



of linear equations, any technique for solving linear systems may he used, provided

that the size of the linear system allows them to be used practically (Le. matrix

•
CHAPTER 1. INTRODUCTION 1.2. GOALS OF THE TUESIS

•

•

inversion, Gaussian elimination, etc).

1.2 Goals of the thesis

The objectives of this thesis are:

• Formulate the ~IRI image distortion correction process as an inverse problem.

• Implement and evaluate this inverse problem method for the full 2D correction

of EPI images.

• Adapt the method for ID processing.

• Compare the performance of some of the Bo-map based distortion correction

methods for EPI image processing in differcnt non-ideal situations.

• Evaluatc the 2D and ID correction approaches for EPI imaging sequence.

1.3 Outline of the thesis

Chapter 2 presents a review of the relevant physical and mathematical aspects of ~IRI

together with introductions to different topies of interest with respect to this work.
"

This includes the physical conditions giving tise to the distortion phenomenon, ~IR

image formation principles, EPI imaging, field mapping and a brief introduction to

iterative methods for solving linear systems of equations.

A literature review of the the main classes of existing distortion correction methods

is presented in Chapter 3. The attention is mainly focused on "Bo map17 -hased cor­

rection methods, hecause these methods allow the subject-dependent, as weIl as the

6



machine dependent distortions to be addressed, and because the correction approach

proposed in this thesis falls into that category.

The core of the thesis begins at Chapter 4, where the mathematical foundation

of the proposed method is developed. The EPI imaging process is discussed in detail

and a full 20 formulation is developed. A description of the 10 correction model~

following [54] is also presented, and the approximation allowing the EPI distortion to

be corrected by the 10 model is discussed.

Chapter 5 presents computer simulations allowing the basic properties of the pro­

posed method to be better understood, and comparisons with other existing Bo map

based methods to he achieved.

Chapter 6 deals with the specifie application of the proposed method to the cor­

rection to Echo-Planar images. The focus is to demonstrate the applicability of the

inverse-problem approach to EPI and 3D imaging applications~ and ta discuss the

practical issues encountered.

•

•

CHAPTER 1. INTRODUCTION 1.4. ORICINAL CONTRlBL'TtONS

•

1.4 Original contributions

The original contributions of this thesis are:

• Formulation of the EPI geometrical distortion correction problem as a 2D inverse

problem.

• Design, implementation and evaluation of a full 2D correction scheme, extending

that proposed by [541, on EPI images that corrects for geometrical distortion,

and for second order effects related to field inhomogeneity.

• Evaluation of the potential advantages of using 2D correction, rather that ID,

for EPI data.
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• Objective comparison of existing 10 distortion correction methods by means of

computer simulations.

•
CltAPTER 1. tNTRODUCTION 1.4. ORIGINAL CONTRIBUTIONS

•

•

• Evaluation of the developed correction methods in an in-vivo human imaging

context.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

NIagnetic resonance imaging is a technique based on the physical phenomenon called

nuclear magnetic resonance (NNIR) [105, 50, 22]. This section briefly reviews the

basic physics of N~IR necessary for the understanding of this thesis and discusses the

means by which this phenomenon is exploited for imaging.

2.1.1 Nuclear spin and magnetic moment

Atomic nuclei constituted with an odd number of protons and/or neutrons possess a

magnetic moment ID related to their spin angular momentum s by:

m = 1's, (2.1)

•
where l' is a constant (different for each nuc1ear species) called the gyro-magnetic ratio.

Hydrogen nuc1ei eH) are the most common in biological tissues and are the ones

generally used for generating the 1\00 signal. The gyro-magnetic ratio of hydrogen is

42.58 MHz/T.

9



Bccause the angular momentum is subject to spatial quantization in the presence

of a magnctic field, sa is the magnetic moment. If the magnetic field is directed

along the :-axis. the z-projection of the angular momentum of a nucleus with spin

quantum nunlber 1 may only take a set of discrete values ml,!i, where ms = - l, - 1 +

1, ... . 1 - 1. 1. and is called the magnetic quantum number and li is Plank's constant.

According ta Eq. (2.1) the z-projection of the magnetic moment may take the values

m= = "'Ymsh. The magnitude of the angular momentum is J1(1 + l)h.

•

•
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1/2 h

-1/2 fi

2.1. MAGNETIC RESONANCE IMAGING

spin "up"

spin "dO\"\ïl"

•

Figure 2.1: Available states of the magnetic moment for a spin 1/2.

In the presence of a magnetic field B0 1 two values of the z-projection of the
magnetic moment are possible for a spin 1/2. These states are refen-ed ta
as "spin up" and "spin doum".

2.1.2 Polarization: equilibrium magnetization

The physical quantity manipulated and measured in NMR is the magnetization M

that is defined as the total magnetic mOIDènt per unit volume present in a given

material. The first step to observe the miR phenomenon is ta create a polarization,

which generates an equilibrium magnetization.

10



Because l H nuclei have a spin quantum number 1 = 1/2, the spin& population

is split into two energy levels in the presence of a static magnetic field Bob directed

along the z-axis.

•
CllAPTER 2. BACKGROUND 2.1. MAGNETIC RESONANCE IMAGINe

•

-r---------- E, = ~:,Ii.Bu.. -
~E = [IiBo

.......--------- E i = -~;1iBu

Figure 2.2: Distribution of spin population.

The excess of spins in the "up" state~ giving rise to the net magnetization,
is dictated by the Boltzmann distribution.

The two states are typically referred to as "spin up" and "spin down" according

to the sign of the z component of the magnetic moment (Fig. 2.1). The energy

separation between the two levels is ÂE = '"Y ;7rBo = "'(hBo (Fig. 2.2). The relative

number of spins per unit volume occupying the two states at a temperature T is

dictated by the Boltzmann equation

ni ~E -r!\Bg
- =e lcT =e leT

nl
(2.2)

•

where k is Boltzmann's constant, and where nT and ni are the number of spins in the

aIt is current practice to call "spin" the nuclei exhihiting this property. Bence. the terms "spins~

and "nuclei" may he used interchangeahly.

b Calling B '"magnetic fieltl' is an abuse of language currently committed in the ~mI literature.

In the physics literature, the symbol B refers to the magnetic induction or magnetic flux density,

and the magnetic field is represented by H. The important thing to remember is that H rcsults only

from the current distribution while B includes a contribution due the magnetic properties of the

surrounding material. Because the MRI signal always arises in some material, the relevant vector is

B. From now on, wc will retain the MRI convention and refer to B as the magnetic field.
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''up'' and "down" states respectively. This excess of spins in the ''up'' state ,•
CUAPTER 2. BACKGROUND 2.1. MAGNETIC RESONANCE lMACINC

"(hBo "(hBo
nT - nt = Ntanh 2kT ~ lV 2kT 1

(2.3)

where N = nT + n! is the total number of spins per unit volume, produces a net

macroscopic magnetization vector Mo, dircctoo along the z-axis, whose amplitude is:

(2.4)

•

In the classical view, the net equilibrium magnetization arises from the partial

alignment of the spin's magnetic dipoles with the static magnctic field B o.

2.1.3 Dynamics of the magnetization

In classical terms, the basic equation describing the behaviour of a magnctic moment

m(t) cxperiencing a magnetic field B(t) is derivcd by cquating the torque cxpcrienced

by the magnetic moment, "(m(t) x B(t), with the temporal rate of change of the

angular momentum. dm(t)jdt.

dm(t)
dt = '"Ym(t) x B(t). (2.5)

However, at a microscopie level, quantum mechanics provides the OIÙy accurate

description of the behaviour of the spins. Nevertheless, it cao be shown that, under

the conditions of rninimally interacting spins, the equation for the time evolution of

the expectation value of the magnetic moment operators is exactly the same as the

classical equation [25, 1]. This legitimizes the extension of the above equation to

describe the dynamic behaviour of the net magnetization:

The solution of this differential equation in the case of a static magnetic field B o (it•
~?} = 1'M(t} x B(t}. (2.6)
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•
Figure 2.3: Precession of the magnetization

ln the presence of a static magnetic field Bo r the magnitude of the magne­
tization M remains constant while its projection in the x-y plane rotates at
an angular rate "YBa around the z -axis.

is assumed by convention that Bo is directed along the positive z-axis) is:

NI:; - constant.

(2.7)

(2.8)

Bence, the magnetization vector remains constant in magnitude and undergoes a

precession at an angular rate

Wo = "'fBo (2.9)

•

around the z-a.~s (Fig. 2.3). Equation (2.6) is known as the Larmor equation and wo

as the Larmor frequency. For hydrogen nuclei and for a typical 1.5 Teslas magnetic

field strength, the Larmor frequency is 42.58, , MHz/T x 1.5, T = 63.9, ~IHz

We will see shortly that Eq. (2.6) does not take the important relaxation processes

into account. It is however suitable for describing the magnetization behaviour when

13



the time scale involved is short compared to the relaxation constants. Hereafter, the

quantities Mxy and Ail: will be referred to as tmnsverse magnetization and longitudinal

magnetization respectively.

The use of complex notation in Eq. (2.7) will he useful when dealing with the

Fourier interpretation of the imaging process.

•
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•

•

2.1.4 Excitation

Excitation refers to the process of disturbing the net magnetization from its equilib­

rium statc by the application of radio-frequency (RF) fields.

•

~ 0'- __ ••

' .

Ba "'"
................ ...... ... ,....

•~~•.•.~ - , ~.. : Wl

a" '. . .. .•. . . . 1------='---___ ,lj
••-.-.. ..-•·····..··B

1
(t)

Figure 2.4: Excitation in the lab reference frame.

The precessing magnetization can be tipped away [rom its equilibrium state
when a ratating magnetic field in the x-y plane Bl(t) is applied.

The magnetization cao he moved away frOID its equilihrium position if a magnetic

field B1Ct) rotating in the transverse (xy) plane at an angular frequency WRF is applied

(Fig 2.4). In arder to write the solution of (2.6), it is useful to adopt a frame of

14



reference that rotates around the z-axis at WRF, the angular rate of BI. In the rotating

frame, the solution is again a precession of the magnetic moment vector, but around

•
ClIAPTER 2. BACKGROUND 2.1. MAGNETtC RESONANCE IMAGING

a magnetic field Beff given by

(2.10)

wherc ~w = Wo - WRF is the difference bctween the Larmor frcquency "fBo and that of

the rotating frame, and :;.' is the UIÜt vector directed along the positive z'-a.'Cis (Fig.

2.5).

_f

1\IIf

, ....-_•..-----_ .tif

--' ..,J.;' = f Beff

Mf
E;".-__....... !Jf

B f

l

~-f-.-.z
Bo

•
.r'

~w = ~'O - WRF i: 0
,

r f

~....·=o

Figure 2.5: Excitation in the rotating reference frame.

The excitation is described more simply in a reference frnme rotating together
with urith the rotating BI field. In this reference frame, the effect of the
BI field is to change the direction along which the precession takes place.
When the angular mte of BI is different from the Larmor frequency ....,Bo,
the magnetization precesses around the direction of Beff (left). When the
two angular rates are equal, the "on-resonance ~ condition is achieved~ where
the magnetization con he tipped away /rom the z-axîs the most efficiently.

•
The phenomenon of resonance is exhibited in the last equation: because the am­

plitude of the rotating field BI is typically much smaller than that of the static field

B o, the effective field in the rotating frame is very close to the z-axis unless Wl is
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close to wo. When Wl = Wo, ~W = 0 and the effective field completely lies in the

transverse plane. In this case, the magnetization precesses around the BI field and

can be significantly tipped away from the z-axis, into the xy plane, if the excitation

field is applied for a sufficient time.

From the quantum mechanical point of view, excitation may be considered as

resulting from stimulated transitions between the different energy levels.

•
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•

•

2.1.5 Relaxation

As stated before, the time evolution of the magnctization presented 50 far is incom­

pIete. We introduce the Bloch equation which describes the behaviour of the net

magnetization including relaxation effects [10]:

(2.11)

where X, Sr and z are the unit vectors corresponding to the axes x! y and z respec­

t ively. The first term of the Bloch equation accounts for the previously discussed time

evolution of the magnetization in presence of a magnetic field. The two other terms

describe the T2 (transverse) and Tl (longitudinal) relaxation processes respectively.

Tl relaxation is the re-growth of the J\tl: component to the equilibrium value of

the magnetization after a departure from this equilibrium. The recovery is approxi­

mately exponential and is associated with energy exchange between the spin system

and the surrounding lattice. For this reason it is also called spin-Iattice relaxation.

Longitudinal relaxation may be understood by spin transitions stimulated by atomic

and molecular motion of the surrounding lattice from excited energy levels to lower

ones. It is principally due to the components of this motion at the Larmor frequency.

T2 relaxation is due to a loss of phase coherence between the spins and is also

called "spin-spin" relaxation. It is caused by the fact that the spins experience slightly
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diffcrent magnetic fields (and consequently different precession frequencies) depending

of the physico-chemical environment. As opposed to Tl relaxation, T2 relaxation is

also affccted hy low frcquency local field variations.

Rcla~atiol1 proccsses play an essential role in ~IRI since they constitute the pri­

mary mcchanism for controlling the image contrast.

In the case of a time varying magnetic field Bz(t), the solution of the Bloch equa­

tion for the transverse magnetization, in the absence of an exciting field, is

•
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(2.12)

•
From now on. Al will refer to the transverse magnetization unless stated otherwisc.

2.1.6 Imaging principles

Once the magnetization has been tipped away from the longitudinal axis by the excita-

tion, the resulting time-varying transverse magnctization may inducc an electromotive

force (E~IF) in the receiver coll.

In arder to form an image, the signais frOID different points of the imaged object

must be resolved. This is performed by manipulating the phase of the spin system in

a space variant manner by means of magnetic field gradients.

Consider first a one dimensional magnetization distribution At/(x). After the ex­

citation of l\t/(xL the signal generated, set), will be, according to (2.7L

sCt) - LM(x)e-i"rBOtdx

- e-i"rBot1AtI(x)dx, (2.13)

•
which only gives information relating to the total magnetization of the distribution.

To resolve different points in the distribution, a gradient field G % (directed along the

z-axïs but varying in magnitude along the x-axis) is apply along with the static Bo
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field. The total magnetic field experienced by the spins being Bo + G:rxz, the signal•
CIL\PTER 2. BACKGROUND

recorded is:

2.1. MAGNETIC RESONANCE IMAGING

set) - i i\l/(x)e-i"{(Bo+G~z)tdx

- e-i"{BotLM(x)e-iG~ztdx. (2.14)

Filtering out the frequency component at Wo from tms signal, i.e. demodulating at

wo, and applying the variable change k;r = 2:Grt we obtain:

(2.15)

•

•

This equation cstablishes that the base-band time signal generatcd in the presence of a

gradient field is proportional to the ID Fourier transform of the spatial magnetization

distribution Ai/(x). Sampling this signal at equal intervals and performing a discrete

Fourier transform yields the 10 image of the transverse magnetization distribution

Al(x).

2.1.7 K-space interpretation

A very elegant and useful way to look at the MR imaging process is the k-space

interpretation [103]. K-space refers to the 2 or 3-D Fourier transform space of the

imaged object. An MRl sequence can be described as a way to collect data in k­

space, and once enough data are gathered, the reconstruction can be performed and

the image obtained.

To derive the general k-space formulation, we write the solution for the transverse

magnetization of the Bloch equation for an arbitrary time-varying linear gradient

G(t) = [Gz(t), Gy(t), Gz(t)].

(2.16)

where r = [x, y, z].

18



The general continuous imaging equation is obtained by integrating (2.16) over

space and ignoring relaxation effects.
•
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In ~IRI, a pulse sequence generates a series of gradients in sucb a way as to cover the

k-space data. The generality of the k-spacc formulation allows an infinitc number of

ways to perform this operation. The path along which data are measured in k-space is

referred to as the k-space trajectory. A common k-space trajcctory, that of spin warp

imaging [35], consists of measuring one raster Une of k-space for every excitation. The

line encoding is referred to as readout encoding since data are samplcd in the presence

of a linear gradient that sprcad the frequcncy spectrum of the ~[R signal accoràing

the to its origin in space. The encoding in the other direction. Le. corrcsponding to

moving between different lines in k-space is called the phase encoding. It is performed

by letting the spins dephase by applying a gradient of a given amplitude during a

fixed time (Fig. 2.6) c.

•

s(t) - 1kl(r, t)dr

- e-iwot1NI(r, O)e-i'"Y J:G(T).rdTdr.

Removing the high frequency component e-iwot and letting

k= 2: le G(r)dr,

s(k) = Iv l\tl(r, O)e-27rik.rdr.

(2.17)

(2.18)

(2.19)

(2.20)

•

cn.eadout direction is often referred ta as "frequency encoding' direction becau.se different spatial

positions in the image are assaciated with different temporal frequencies in the NMR signaL However,

from the k-space perspective, frequency and phase encoding both encode the signal by imposing linear

phase variations of the magnetization across the imaged abject. The frequency encoding gradient

does sa in a continuous manner rather than discrete as in phase encoding.
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Figure 2.6: Encoding in spin-warp imaging and the relation to k-spacc trajcctory.

Encoding in the kr direction is performed by applying a gradient in the x­
direction while the signal is sampled. The x-direction is referred to as readout
direction. Encoding in the ky direction is done by applying a gradient in the
y direction prior to signal readout. The direction y is called phase encoding
direction.

2.1.8 Sampling

•

For the reconstruction to he performed with a computer, the analog time signal must

he sampled and digitized. Wc discuss DOW the implications of this sampling proccss.

To simplify things, we consider a 10 case and assume that the k-space trajectory

is linear and unifonn. This assumption is satisfied when the readout gradient and

the sampling rate are bath constant. Sînce wc are interested only in the relationship

between the object and the image, we will not explicitly distinguish between frequency

and phase encoding.

Sampling the signal involves a finite numher of points N. One of the consequences

of this is that higher spatial frequencies of the abjects are not measured, limiting the

resolution of the image. The other effect of sampling is aliasing.

The real, continuous magnetization distribution is obtained from the analog signal
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by the inverse Fourier transform

1+00
At/(x) = -00 s(k)e2trila:dk

2.1. MAGNETIC RESONANCE IMAGING

(2.21)

(2.22)

Howevcr in practice, the analog signal s(k) is sampled at a finite number N of locations

nak, with n = -N/2, ... N/2 - L Thus, the sampled signal is:

s(n~k) = ~k [0000 M(x)e-21rin~la:dx.

The reconstructed image lÎ'/(max) is obtained by inverse discretc Fourier transform

of the sampled signal, or

S(x) -• where

N/2-L

kI(m~x) - L s(nLlk)e21rim~kar

n=-N/2
+00 N/2-L- 1 l\tI(x) L e21rin~k(m~-:r)dx

-oc n=-N/2

lÎ'I(m~x) - At/Cx) * S(x)lm~'

N/2-LL e21rin~kx

n=-N/2
N/2-1L e21rinkx/~{N

n=-N{2

sin (~) _-1œ..

- sin(~)e N~:,
NAx

(2.23)

(2.24)

•

and is called the NMR sampling function [SOl. Equation (2.24) relates the real, con­

tinuous magnetization distribution At/(x) with the finite resolution, discrete recon­

structed image kI(mLlx). The NMR sampling function is periodic of period lVaX =

FOV, where FOV is the field of view, and has zeros at nLlx where n is an integer.

Fig. 2.7 illustrates two examples of the mm sampling function. Note that the NMR

sampling function exhibits both the spread of the main peaks and the Gibbs ringing

due to the finite extent sampling of k-space [112}, and the aliasing caused by discrete

k-space sampling.
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Figure 2.7: Examples of the l\l'Nffi sampling function magnitude.

The NMR sampling function relates a real1 infinite resolution object, with the
kIR image of this abject. Its period (the distance between the larger peaks) is
related to the space between samples in k-space and defines the field-of-view
(FOV). The smaller ripples are related to the extent of the k.-s'pace covered
by the sampling and define the spatial resolutian (dx) of the image.

2.1.9 Selective Excitation

An important aspect of ~IR imaging is the ability to selectively excite the magneti-

zation based on its position in space.

Selective excitation is achieved by applying RF energy to the sample in the pres­

ence of a magnetic field gradient. Some insight into this process can be gained by

looking at the Bloch equations. In practice. the selective excitation pulses are much

shorter than the typical relaxation constants of tissues and it may be approximated

that no relaxation occurs. Furthermore, the small flip angle approximation will lead

to a powerful interpretation of the selective excitation in terms of Fourier relationship.

Taking B(rt t) = B~y(t) i: + B~y(t) y + G(t) . r z, the Larmor equation in the

rotating frame can be written, in the particular case of excitation, as:
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d

dt

AtI~(r, t)

AtI;(r, t)

AtI~(r, t)

="'(

G(t) . r -B~y(t)

o B~r(t)

-B~:r(t) 0

M~(r, t)

M;(rft)

NI~(r, t)

(2.25)

•

The small flip angle approximation allows the equation for the z magnetization to

he decoupled from that for the transverse magnetization. Letting NI:: (r, t) :::::: NIo and

dlvIAr, t)/dt = 0 wc obtain:

NI~(r, t) 0 G(t) . r -B~y(t) !vl~(r, t)
d

(2.26)
dt NI~(r, t) = "/ -G(t) . r 0 B~:r(t) !vl;(r, t)

NI~(r, t) 0 0 0 At/o(r)

WC DOW can write the equation for the transverse magnetization !vI = AtIr + 'ÏJ.\;IYf

d
dt N/(r, t)

d .d
- dt NIr(r, t) + t dt N/y(r, t)

- -"'(i(G(t)· r lv/Cr, t) - N/o(r) B~:ry(t)),

(2.27)

(2.28)

where B~ry = B~.r + iB~y. Assuming that N/Cr,O) = 0 and that the excitation

takes place between t = 0 and t = T, the solution of this first order linear equation

at the end of the excitation is:

•
The k-space interpretation can he made evident by letting:

"'( [Tk(t) = - G(T)dT
21r t
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Thus. WC obtain for the transverse magnetization

2.1. MAGNETlC RESONANCE IMAGING

M(r. T) - ;"Mo(r) fuT B'%1/(t)e-i2"kordt

- ;"Mo(r) 1:0) B'zy(t) 1:1 e-
i2

"k-
r dk.

2.1.10 Signal-to-noise ratio

(2.31)

(2.32)

•

The signal in ~IRI is determined by the available transverse magnetization, which is

itself determined by the cquilibrium magnetization, Eq. (2.4), and the pulse sequence

parameters.

Noise in ~IRI primarily comes from two sources [19]. The first source is electrical

Johnson noise within the receiving coiI and amplifier, which can be kept to a minimum

by propcr coil and amplifier design and matching. The second source of noise is

produccd by random Brownian electronic fluctuations inside the sample or subjcct.

For small samplcs and low frequencies, coiI-related noise is more important and coiI

optimization is essential. In imaging however t where the sizc of samples can he large

and operating frequencies high, subject-rclated noise dominates. From whichever

source it may originate, noise in l\tIRI is considered white (with a constant power

spectrum), i.e.~ the noise energy is the same at all frequencies, and moreover, is

independent from the signal. The noise power spectrum, as a function of frequency is

given by:

where k is the Boltzmann's constant, T the temperature and R is the resistance of

the receiving coiI and of the sample. The total noise voltage for a bandwidth BW is

then:

•

N(f) = 4kTR,

Noise voltage = J4kTR (BW) [volts].
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Hence, one way to control the amount of noise measured in an MRI sequence is to

change the receiver bandwidth. Since the noise energy is constant for all frequencies,

the noise collected is proportional to the square root of the handwidth.

Signal-t<rnoise ratio (SNR) is an important measure of image quality and gives

an indication of the relative importance of useful signal relative to useless noise. We

•
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will use the amplitude SNR defined as:

2.1. MACNETIC RESONANCE lMAClNC

SNR=
signal energy
noise energy

(2.35)

Noise in ~IRI is considered to be normally distrihuted, of variance (72, on bath the

real and imaginary channels. Thus,

When considering magnitude images, this complex Gaussian noise translates as Rician­

distributed noise in regions of the image where signal is present, and Rayleigh dis­

tributed noise in background regions.

Because the standard deviation of the Rayleigh distributed noise is J2 - rrj2CT.

the SNR of a magnitude image may he estimated. from the background standard

deviation CTbk by:

•
SNR=

signal energy signal amplitude
-

CT2
(2.36)

For a given pulse sequence, the ~m image noise is affected by the varions image

parameters: voxel size (~x, ~y, az), matrix size (N'X, Ny, N::) and receiver bandwidth

(BW). The simplest way to express SNR, for spin-warp imaging is [34, 80}:

•

SNR = signal amplitude ,)2 -rrj2.
CTbk

Effect of imaging parameters on SNR

SNR oc ~ay~zJTotal readout time.
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(2.39)

2.2. OlSTORXION lN MRl: TUEORYO~PTER2. BACKGROUND

IfTaq is the readout duration and Nex. is the number of excitation sequences averaged

to obtain the image, this can be expanded as:

JNyN:Nex
SNR <X t:t.x6y6z liNyN,T8ClNex = 6x6y6z J .

BWpix

•

•

The proportionality with respect to the voxel size arises from the fact that the l\JIR

signal is proportional to the voxel volume. The proportionality to the square root of

the N's may he explained by the fact that each voxel being interrogated N times~

the total signal is N times larger than that of a single measurement while the noise

standard deviation is JN timcs that of a single measurementd . The dependence on

the receiver bandwidth per pixel B~Vpix explained by the constant power spectrum of

the noise: the wider the receiver bandwidth, the larger is the noise energy measured.

We note that, although the noise is affected by the receiver total bandwidth, the SNR

depends ooly on the bandwidth per pixel.

2.2 Distortion in MRI: Theory

Distortion in ~IRI is a weil known phenomenon. The varions factors that may induce

distortion are typically divided into two main classes [69, 5}: maclùne-dependent and

subject-dependent factors. In any case, distortions are the result of any factor that

cause the spatial position of a spin to he erroneously encoded.

2.2.1 Machine-Dependant factors

•
These are the distortion factors attributed to imperfections of the imaging device.

Although thcse were quite significant in the carly days of MRI, they have become less

dWe reca1l that for independent noise values, the variances add instead of the standard deviation.

For instance, for nI and n2 two normally distributed random variables, var(ni + n2 + ... + nN) =
var(nl) + var(n2) + ... + var(nN)
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of a problem nowadays with the advances in hardware design technology. Moreover,

the subject-independent nature of these effects render them predictable and easily

measurable and, in certain case, it is possible to compensate for sucb problems using

techniques established [42].

•
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•

•

Static Bo field inhomogeneity

The static Bo field is typically produccd by a coil of super-conducting materiaL Be­

cause of the limited physical dimensions of such a coll and manufactwing imperfec­

tions, the magnetic field produced is not perfectly uniform [19}. Furthermorc! current

fluctuations within the coil induce time-varying variations of the main magnetic field.

Static field inhomogeneities are typically spatially smooth variations. Note that the

distortion caused by Bo inhomogeneities are proportional to the strength of this static

field, and larger effects may be expected for high field (e.g. 3-4 T) imagers.

Gradient field spatial non-Iinearity

The spatial encoding of ~IR images strongly relies upon the assumption that the

gradient fields are tinear. It has been shown [56, 5] that this may not be the case in

general.

It is generally accepted that gradient non-linearity depends on the geometry of the

coil only, and consequently, scales linearly with the current flowing through the coll.

As will he discussed later, this fact is important for the determination of the effect

of gradient field non-linearity on the reconstructed image. It has been experimentally

demonstrated that the gradient nonlinearity-induced distortions are essentially inde­

pendent of the polarity of the phase encoding gradient and of the gradient strength

[5].

Gradient non-linearity tends to increase with the distance from the magnet isocen-
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tre. In hrain l\Jffi imagingt the imaged region usually lies in the vicinity of the isocen­

tre, where the effects of gradient non-linearity are likely to he rninimized.

Static field inhomogeneities do not have any effect in the phase encoding direction

in spin-warp imaging (this will be discussed in further detaillater in this chapter), 50

gradient non-linearity is the main cause of distortions in the phase encoding direction.

In EPI, there is no such clear distinction between readout and phase encoding, and

gradient non-linearity has an effect in both directions.

Bence, in spin-warp imaging, a technique to estimate the gradient non-linearity is

to acquire pairs of images of a reference phantom of known geometry with orthogonal

directions of the phase encoding gradient (Fig. 2.8). It is then possible from these

two images to determine independently the component of distortion due to gradient

field non-linearity and static inhomogeneity [56]. Note that this technique, as it relies

on knowing the truc geometry of the object with respect of the distortcd images~ cao

only he applied to access system-related field imperfections.

~Iore reccntly, a method for the correction of gradient non-linearity was proposed

[63], in which the analytic expression of the gradient field was determined by least­

square fitting based on phantom data.

Intrinsic gradient non-linearity is present in many commercial scanners, leading to

considerable (but predictable) image distortion. Such distortions are usually corrected

by a post-processing "image-warpin~' algorithm.

•

•
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•

Eddy currents

Eddy currents are causcd. by the rapid switching of the magnetic field gradients, caus­

ing currents to be induced in the electrically conductive parts of the MR scanner

[11]. These time-variant currents in tum, induce extra time varying gradient fields

that add to the one applied, resulting in an effective gradient field different from that
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Figure 2.8: Simultaneous measurement of Bo and gradient errors.

If two images of the same abject of knoum geometry are acquired with or­
thogonal directions of readout and phase encoding, it possible to measure 60th
the static field and the grudient field e1Tors. This assumes however that the
underlying true geometry of the abject is kn01un.

expected. Because the induced currents have a direction sucb as to decrease the rate

of change of the magnetic field, the effect of eddy currents is to Hatten the effective

applied gradient waveform, Le. to reduce the effective tise time of the gradients. Since

eddy currents have a predictable behaviour given a lmown temporal variation rate of

the gradient, they can he measured and a modified gradient waveform that will lead

to the desired effective waveform can he derived based on these measurements. Most

modern MR imagers are also equipped with actively shielded gradient coUs that minî­

mize the effects of eddy currents. The combination of eddy-current compensation and

active gradient shielding makes the effects of eddy currents negligible in most situa­

tions. Exceptions are reported for imaging techniques involving very fast switching

of gradients (e.g. EPI) or particularly strong gradients (e.g. diffusion imaging).
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Time varying eddy currents do not generally cause distortion in :MR images: in­

stead they cause positioning errors of the points in k-space. The in-plane effect on the

reconstructed images when reconstructed with normal 2D-IFT is usually more com­

plex than simple pixel displacement. It has been noted however that ed.dy-currents

may induce distortion of the sUce profile [421.

•
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2.2.2 Subject-Dependant factors

Bulk susceptibility effects

The susceptibility effect arises because the magnetic field B, which is the physically

relevant quantity that determines the precession frequency, is affected by the magnetic

properties of the surrounding material [83]. If the nominal magnetic field is B o! the

magnetic field B experienced by different materials will be:

• B = (1 + X)Bo, (2.40)

•

where X is the magnetic susceptibllity of the material.

Because the reconstruction process assumes the magnetic field is Bo, the extra

factor XBo is reflected in the reconstructed image as a geometrical distortion [23,4, 8].

Rence, the effective magnetic field giving tise to the N~lR phenomenon is dependent

upon the magnetic susceptibility of the surrounding matetial. The exact dependency is

itself a function of the geometry of the various regions [37, 36}. Several researchers have

investigated the susceptibility effects. Shizhe et al. [98] used a finite element modelof

a human head to find the magnetic field distribution based on the solution of Maxwell's

equations. Sumanaweera et al. [102} present an experimental determination of the

susceptibility induced distortions and conclude that, although the effect is negligible at

bone-tissue interfaces, it is important near air-tissue interfaces. The spatial variation

of the perturbation field caused by susceptibility may he much more rapid than in
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the case of those from static Bo non-linearity. ~Ioreover, various pathologies, such as

tumours and haematoma, may generate extra susceptibility effects [26, 113}.

Susccptibility cffccts are not always a nuisance, and can in fact be used as a means

of measuring the magnetic susceptibility of materials or substances [51].

•
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•

Flow effects

In sorne applications. including image-based guidance for electroencephalography (EEG)

depth electrode placement, it is rnandatory to avoid blood vessels. The effect of flow­

induced phase shifts has been studied (74} and is well-understood. It is due to the fact

that the position of a gjven spin moves between the encoding of its y-position and

the encoding of its x-position. In the idealized case were the flow velocity profile is

flat~ the displacemcnt is uniform across the vessel and a shift of the vessel is observcd

in the reconstructed image. In more realistic situations, the flow velocity profile is

non-UIÛform (e.g. tends to zero toward the walls of the vessel) and the shape of the

vessel is deformed as weIl.

A number of methods have been proposed to reduce the flow displacement ef­

fect. The "offset gradient echo method" (76] uses asymmetrical echoes ta reduce the

time interval between the phase encoding gradient and the gradient echo. Backward­

evolving phase encoding uses a time-variant phase encoding that terminates at a fixed

time as close as possible to the readout gradient, providing a constant echo-time. This

method is similar to the Kumar-Welti-Ernst technique [59) and consequently leads to

distortion in the phase encoding direction due to static field inhomogeneitiese
• Mo-

e The Kumar-Welti-Ernst imaging sequence differs from the spîn-warp method from the fact that

the duration of the ph85e encoding gradient is varied at each excitation rather than its amplitude.

The implication is that static field inhomogeneity causes distortion in the phase encoding direction,

as weIl as in the frequency encoding direction. The spin-warp method does not suff'er from the

distortion in the phase encoding direction.
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ment compensated phase encoding [74} employs a bipolar phase encoding gradient

with a large first moment that "extrapolates" the phase that a spin moving at con­

stant velocity should have at the gradient echo centre.

This thesis does not address flow induced distortions and this brief review is in­

cIuded here for the sake of completeness.

•
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•

Chemical Shift effect

The Larmor relationship (2.9) links the resonance and the precession frequency of

the magnetization arising from an ensemble of nuclei of a givcn isotope. Besidc the

intrinsic magnetic property of these nuclei (captured by the gyromagnetic ratio),

their chemical environment (e.g. the molecule within which they are situated) has

an impact on the observed precession frequency. In magnetic resonance imaging, the

signal is primarily generated by hydrogen nuclei present in two chemical environments,

water (820) or fat (CH2 groups). The chemical shift appears because the l H nuclei

·'sees~ a different magnetic field depending on the chemical environment to which it

belongs (water or fat). This difference is generally described by including a chemical

species dependent screening constant, (J", in the Larmor relationship:

Ww - ,(1 - (J"w)Bo

wf - ,(1 - (1)Bo,

(2.41)

(2.42)

where the subscripts w and f refer to water and fat respectively. The chemical shift

is defined as the difference hetween the angular precession rates of the two species:

(2.43)

•
An important characteristic of the chemical shift is that it is field-dependent as shown

by the above equation. Bence, a higher magnetic field gives tise to larger chemical

32



shifts. Because of this, the chemical shift is often expressed as a relative value in ppm

(parts per million), des, in order to remove the field dependence:

•
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Wf - Ww Uw - uf
5cs = 106 [ppm] = 106 [ppm]

Ww 1- Uw
(2.44)

•

•

In ~IRI, the nominal Larmor frequency is set to that of water protons. This implies

that the protons in fat generate a signal which is off-resonance. At 1.5 T, the relative

chemical shift 5cs between water and fat around -3.5 ppm, which results in an ab­

solute chemical shift wcs/(27r) of around -220Hz. The minus sign indicates that the

precession frequency in fat is lower than that in water.

In spin-warp imaging, chemical shift translates into a spatial displacement of pixels

containing fat with respect to those containing water. In other words, an image may

be considered as a superposition of water and fat images that are shifted with respect

to each other. Depending on the bandwidth per pixel, this shift may be on the order

of several pbcels. For instance! with a bandwidth per pixel of 200 Hz, the shift is of

one pixeL In EPI, where the effective bandwidth is much smaller, the shift may be

on the order of 10 pixels or more.

The most drastic approach to solve this problem is to saturate the fat signal,

usually by a frequency selective binomial pulse, leaving only the water signal in the

image. One drawback of this method is that Bo field inhomogeneities may cause the

fat saturation pulse to partially destroy some of the water signal, leading ta water

signal lasses. Increasing the bandwidth per pixel is aIso effective in reducing distortion

but this results in a loss of SNR, as described earlier.

Another approach to reduce the chemical shift artifact is ta use the so called

fat nulling technique that is based on the fact that the Tl relaxation time of fat

is different from that of water in mast tissues. The technique employs an inversion

recovery sequence, where a 1800 puise inverting the magnetization is followed by a

900 pulse. The time between the two pulses is carefully adjusted (around 150 ms at
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1.5 T) 50 that the fat signal is zero at the excitation (90 0 pulse), and only the water

magnetization is excited into the transverse plane to generate a signal.

Chemical shift May also be used to selectively image water or fat [33}. This May

be donc by adding and subtracting images acquired with different echo times. If the

echo time difference is such that the phases of water and fat are 1800 from one another

at readout time, the addition of the two images will give a watcr image, and their

subtraction will give a fat image. This simple method May not work in the presence

of static field inhomogeneities, but other more complicated methods involving more

acquisitions allow water and fat to be separated in sucb non ideal conditions (46, 45].

In brain imaging, fat is normally only present near the skin and in the region of the

optic tracts. so the fat-shift phenomenon is not considered as an important problem

for Many applications. This thesis does not address distortion caused by chemical

shift.

•

•
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2.2.3 Mathematical characterization of distortion

Here wc develop the mathematical relationships describing distortion in ~IRI for the

one dimensional case, as it applies to spin-warp imaging. Two situations are discussed:

frequency encoding, where the signal is sampled at regular time intervals while a con­

stant readout-gradient is applied, and phase encoding, where each sample is acquired

after the application of a fixed duration gradient of varying amplitude.

Frequency encoding

We consider static field inhomogeneities âBo(x), (which May arise either from Magnet

imperfection or from susceptibility effects), and gradient field non-linearities ~G:r(x).

Extending Eq. 2.12 to account for the spatial variation of the magnetization, the
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1-D signal equation may he written:

set) = 1AiI(x)e-i"YI; B(Z,T)dTdx.

The magnetic field (excluding Bo) at any time is:

2.2. DISTORTION IN MRI: TUEORY

(2.45)

The effect on the reconstructed image may be seen by defining the variable change:

•

Setting kz(t) = "Y/27rGzt, the signal equation is:

s(k",(t» = ! M(x)e-:m("''bo,:z'+(I+''''b;"z'Hkr(t)dx

'( ) _ aBo(x) AGx(x)
x x - x + Gr + Gz x

Provided that the inverse mapping x(x') exists~ we obtain

s(k", (t)) = ! M (x(x'»e-2"'"" ("'lkz 1:;1dx'

1

dx' 1-1

- f 1\tI(x(x') )e-21ri:r'(x)kr dx dx'.

So, the 1FT reconstructed image kI/ex') is

M'(x') = M(x) 1::\-1

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

•

showing that an intensity distortion is associated with the geometrical distortion.

Phase Encoding

In the phase encoding direction~ time is not directly involved. We use m ta parame­

terize the phase encoding step.

(2.53)
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The total magnetic field is

B(m, y) = tlBo(Y) + (Gy + tlGy(y))ym,

and setting ky(m) = "Y/21rGym,

2.3. ECHO PLANAR IMACINC

(2.54)

f -( ~)s(ky(m)) = AtI(y)e-i-yABo(Y)e -21rl 1+ Gy k y
1/dy

and similarly to the previous case,

where

( ? ... _)_.00

(2.56)

•

•

(2.57)

As compared to the frequency encading case, we note that the static field inhomogene­

ity does nat cause geometrical distortion in the phase encoding direction: it merely

causes a phase error that is not troublesome when looking at magnitude images. How-

ever, the effect introduces intensity errors in inversion recovery images. where the rcal

part of the image data is of interest, or can be problematic when using half Fourier

techniques where one unmeasured half of k-space is inferred from the other measured

half.

2.3 Echo Planar Imaging

Echo-planar imaging (EPI) is an ultra fast imaging sequence allowing images to be

acquired in a time on the order of 100 ms. The obvious advantage of performing

imaging at such a speed is that most physiological motion can be "frozen11. Unfortu­

nately, this speed advantage may only be achieved at the expense of significant image

degradations.
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One cause of degradation in EPI images is the phase error introduced by the

main (Bo) field inhomogeneity along the EPI trajectory. Although tms phase error

is predictable for a point-object (it increases linearly along the trajectory) it is non

tinear when the signal comes from different points of the object with different local

Bo values (Fig. 2.9). The most adverse effect of these phase errors is geometrical

distortion. These distortions can be troublesome in various applications, including

surgical guidance and correlation of functional magnetic resonance imaging (~IRI)

data with anatomical information from different sources. In addition to geometrical

distortions, wc show in Chapter 4 that Bo inhomogeneity aIso introduces so-called

N/2 ghosting.

Several methods have been suggested to address the distortion problem in EPI

images. Sorne approaches correct distortion directly in image space using a Ba field

map [881 or by using two acquisitions having differcnt polarity of the phase encoding

gradient [121. Other methods apply a phase correction to the k-spacc data prior to

performing normal 2D DFT reconstruction [108, 931. AlI of these methods approach

the EPI distortion problem on a column-by-column basis, by independent 10 cor­

rections of the EPI image along the phase encoding direction. This 10 processing

approach is based on the assumption, which is valid under certain conditions, that

the EPI point spread function is one-dimensional.

The single-shot EPI sequence [67], acquires the entirc k-space data matrix in one

excitation. In the blipped EPI method [87], an oscillating readout gradient is applied,

together with the short blipped phase encoding gradient (Fig. 2.10a). If data are

sampled ooly during the constant portion of the readout gradient, the resulting k­

space sampling is uniform. When data are acquired during the ramp-up or ramp-down

period of the readout gradient, the k-space data resulting from a uniform temporal

sampling rate are non-uniform. Ta obtain uniformly spaced points in k-space, one can

•

•

•
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Figure 2.9: The EPI image process.

Each pixel of an imaged object (called here ideal image) contribute to the
total k-space data (top row). However, because of field inhomogeneity each
of these contributions is affected by a phase e1TOr which depend on the field
inhomogeneity and the k-space trajectory (centre row). The cOfT'Upted k-space
components add up to constitute the total non-ideal k-space data.

use a non-uniform sampling rate [38] or perform interpolation [13] of the non-uniform

data prior to reconstruction by inverse DFT. The EPI sequences discussed in this

thesis use the first method (non-uniform sampling rate) so that no interpolation is

required. The k-space trajectory is as shawn in Fig. 2.10b.

Because the phase variation along the EPI k-space trajectory is much larger in

the blipped encoding direction [107), the effect on the reconstructed image can be

approximated by distortion in the direction of the blipped encoding. The reason

for this is that most of the EPI distortion correction methods work by applying ID
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Figure 2.10: The EPI sequence and its k-space trajectory

a) The EPI blipped sequence uses and alternating readout gradient and a so­
called "blip n phase encoding gradient. b) K-space trajectory. The alternating
readout gradient moves the measu~ment point back an forth in k-space. The
blip gradient ensures that a different ky line is measured at each traversai of
k-space in the kx direction.

corrections to each column of a corrupted EPI image. We will later discuss the

implications of this approximation, together with a full 20 correction mcthod of EPI

distortions.

This characteristic of EPI images, to be affected by Bo inhomogeneity mainly in

the phase encoding direction, is inverse to the situation found in spin-warp imaging

where the distortion affects the readout direction. This can be explained by seeing

the k-space trajectory as a long readout gradient being folded in 20 k-space. Even

though in EPI the receiver bandwidth is set according to the time length of the readout

gradient required to rearl one line of k-space (as it is the case in 2D or 3D Fourier

imaging) , one often refers to the EPI effective banduridth, which corresponds to the

inverse of the total readout time. The distortion in the phase encoding direction in

EPI imaging is directly related to the effective bandwidth. For instance, if the total

readout time is 200 ms, the effective bandwidth is 1/200 . 103s-1 = 5Hz and a field

inhomogeneity equivalent to 5Hz will produce a one pixel distortion in the phase
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encoding direction, and a 220 Hz chemical shift would result in a pixel displacement

of 44 pixels.
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2.4 Field mapping

Since the primary effect of field inhomogeneity is to induce phase shifts, the most

popular method for measuring Bo-maps is based on phase maps. Several Bo mapping

methods have been proposed [96, 951. Because phase effects other than those produced

by static field inhomogeneity may be present, a difference of the phases of two images

acquircd with different ccho times may be used to obtain the phase variation due only

to the static field inhomogeneity. As introduced earller, one sucb important effect in

in-vivo imaging is the chcmical shift caused by fat.

We discuss here the production of field maps using both spin-ecbo and gradient­

echo sequences in the presence of fat.

2.4.1 Spin-echo imaging

In spin echo imaging, the 1800 refocusing pulse brings the phase of the water signal

to zero at time TE. For any other time, the complex signal may be written [46]:

where Pw and PF are the proton density of water and fat respectively, Wcs is the fat

precession angular frequency difference between water and fat (~ -200 Hz at 1.5 T)

and ~t = tGE - tSE is the time difference between the gradient echo and the spin echo.

Consider two acquisitions with time differences of ~t = ±7r/ W CS ' The complex

signal for each acquisition is:

• 1_ - (Pw - PF) e-l"'YdBdt

40
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(2.60)

The phase of the product l _I~

(2.61)
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Figure 2.11: Spin-eebo sequence with the gradient echo shifted frOID the spin-echo.

Nonnally, the readout gradient is applied so that the centre of the gradient
echa cofTesponds to the centre of the spin echo. By shifting the readout
gradient, the centre of the gradient echo does not cOfTespond to the centre
of the spin echo, and the spins are not refocused in the centre of k-space,
leaving a Bo inhomogeneity-dependent phase terms in the image that may he
used ta detennined the Bo field map.
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2.4.2 Gradient echo imaging

2.·1. FIELD MAPPINC

In the case of gradient eebo imaging, the phase continuously evolves from the time of

excitation to the time of readout because no refocusing occurs.

(2.62)

Consider again two acquisitions with TE's of t = TE ± 1r/ Wa . The complex signal

for each acquisition is:

•

1_ _ (PW - PFe lWc• TE) el..,~B~te-l~BTE

1+ - (pw - PFe lWc• TE) e-l..,~B~te-l~BTE.

The product l _I~ gives:

l _I~ _ ~~. - pwPF ( e lWc
• TE + e -&Wc.TE) + p}] e21..,~B~t

- [p~ - 2pWPF cos(wesTE) + p}] e21..,~B~t.

(2.63)

(2.64)

(2.65)

(2.66)

•

Again, because the tcrm in square brackets is real and positive (law of cosines), the

phase of this product is proportional to the static field inhomogeneity.

Wc note that in both cases, the dynamic range of the Bo map is 'Y~B = ±wa /2 ~

±100 Hz at 1.5 T.

2.4.3 Bo map noise

Since field maps are in fact phase maps, their noise characteristics are quite different

from those of magnitude images or complex images. As discussed before, the noise

on the real and imaginary channels of an image may he considered to he Gaussian

distributed.
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Figure 2.12: Typical gradient-ccho sequence.

In a gradient echo sequence, there is no 180Q RF pulse to re/oeus the de­
phasing caused by the Bo inhomogeneity. So, gradient echo images naturnLly
contain phase terms that are related to the Bo inhomogeneity.

2.4. FIELD MAPPING
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Consider an image pixel having a real value R~ an imaginary value [ and a noise

standard deviation u. The exact phase noise distribution is quitc a complcx function

but the limiting cases where SNR-. 0 and SNR-. 00 are simple [100, 991:

U41 = {1r/..;3 SNR = 0

u/m SNR -. 00

(2.67)

•

where SNR = mlu is the magnitude signal-to-noise ratio and m = .,;R2 + [2. In the

first case (SNR= 0) the phase noise is uniformly distributed between -1r and +1r and

in the second case (SNR --+ (0) it is normally distributed.

This points out the fact that Bo noise standard deviation essentially depends

upon the magnitude data. Furthermore, this means that the Bo map is meaningless

for background regions where the magnitude is completely determined by noise. Bo
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map data must he processed in some manner in order to get rid of the meaningless

phase map values, Le. those in the image of the backgroWld. One way to do it is to

apply a mask on the Ba map, hased on a thresholded version of the magnitude data.

Other ways to avoid the non-significant field map values will he considered later.
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2.5 Iterative Methods for Linear Systems

The core of this thesis consists of considering the J\'IR image distortion problem as a

system of linear equations. As stated in the introduction, the only practical methods

for solving the large linear systems of cquations arising in image restoration problems

are the iterative ones. The Conjugate Gradient method is one of them. In this section,

the theory underlying the Conjugate Gradient method is briefly discussoo.

2.5.1 Quadratic Forms

We define f. the scalar function of the vector x by

(2.68)

where A is an N x N matrix, and b and c are N x 1 vectors. xt means the Hermitian

conjugate, Le. complex conjugation and transposition, of x. fi A is symmetric, the

gradient of f is givcn by

•

4f(x) = (Ax - b)t.

Furthermore, if A is positive definite, i.e if

x t Ax > 0 for aU x f 0,

f(x) is a multidimensional parabola which has a critical point Xm satisfying

Axm =b.
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Consequently, finding the minimum of J(x) is equivalent to solving the linear system•
ClIAPTER. 2. BACKCROCND

Ax=b.

2.5. ITERATIVE METROnS FOR. LlNEAR. SYSTEMS

(2.72)

•

In order ta solve (2.72) iteratively, a few definitions arc needed.

• The n th itcration of the vcctor x is denoted by "n.

• The error en at the n th iteration is

• The residual r n at the nth iteration is

2.5.2 General search direction: Une minimization

The basic clement of many iterative techniques is the Une minimization, which con­

sists of finding the minimum of an N-dimensional quadratic fonn J(x) along a given

direction Xo + P wherc Xo and p are vcctors of dimension N - 1. This solution can

be found by finding the value of a scalar parameter 0 such that I(op) is minimum.

This can be donc by setting the directional derivative of I(x) to zero.

a
dao/Cap) - ~/(op)p = 0

rtp
(oAp-r)tp - O=>o=ptAp·

2.5.3 General search direction method

(2.73)

(2.74)

•
In an iterative context, we consider a set of search directions {Po, Pl,.'" PN}. Start­

ing from an initial value "0, the global mjnjrnization proceeds by successive mjnirniza-

tians along the search directions Pi.

(2.75)
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(2.76)

(2.77)

The essential difference between the different iterative methods is in the way the

search directions are chosen.

Steepest Descent Method

In this method, the search directions are chosen to be the residuals. The rationale

behind this choice is that, sincc the residuals are equal to the negative gradient~ the

search directions are those along which the quadratic form decrcases the fastest. The

itcration steps of the Steepest Descent ~[ethod are then:

r n - b-Axn (2.78)

• t
On

rnrn (2.79)-
rhArn

Xn+L - Xn + 0nrn, n = 0, 1, ... , N. (2.80)

One fcature of this method is that thc residual at a given step is orthogonal to that

at the next step.

The main drawbacks to this method are that the search directions are not neces-

sarily indepcndent of each other; a given direction may be searched more than once,

and the rnjnirnization along one given direction can partially be undone by the search

in a direction previously taken.

Conjugate Gradient Method

•
In the Conjugate Gradient Nlethod, the search directions are chosen in such a way

as to minimize the number of searches by avoiding searching the same direction more

than once, ensuring that the residual is decreased at each iteration. To achieve this a
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set of A-conjugate vectors r is built-up as the iterations are performed. The algorithm•
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is as follows:

ra - b-Axo

Po - ra

t
Qn

rnrn
-

~APn

Xn+l - Xn + Qnrn,

rn+l - r n - QnApn,
t

!3n+l
rn+lrn+l- trnrn

Pn+l - rn+l + .Bn+1Pn

(2.81)

(2.82)

(2.83)

•
The last two equations of the algorithm update the search vcctor. Although the

final form of this algorithm is simple, its derivation requires a considerable amount of

analysis, which is beyond the scopc of this section but cao be found in (471. Nluch of

this analysis is to demonstrate that the conjugate directions are mutually A-conjugate

and that old search directions are not required to derive new search directions satis-

fying this property.

2.5.4 Normal equations

Because the iterative methods presented above require the system matrix to be sym­

metric and positive definite, they can be applied to the normal equations related to a

generallinear systems. The normal equation corresponding to the system b = Ax is:

Atb = AtAx. (2.84)

•
H the matrix A is non-singular, AtA satisfies the properties of symmetry and positive­

definiteness. When the matrix A is singular, AtA is non positive definite but the CG

f A set {Po, Pl! ... PN-1} are said to he mutually A-conjugate when PiApJ = 0 when i #= j.
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algorithm may still give useful solutions. Hestenes [49} derives a relation between the

conjugate gradient and the pseudo-inverse of a matrix.

The conjugate gradient method is particularly attractive for large sparse tinear

systems because is uses the system matrix A only through multiplication with vectors

(even when used with normal equation, the product AtA never needs to be computed

e..'"q>licitly) .

Without going into tao much detail in the convergence property of the Conjugate

Gradient algorithm, we can say that the number of iterations required to achieve

solution is at most equal ta the number of distinct eigen-values of the matrix A

[47, 97]. Hence, in the ideal case where the eigen-values of A are ail equal, the CG

method (and also the Steepest Descent method) would converge in one iteration. This

can be explained by noting that, in this case, the multidimensional parabola has a

perfect circular symmetry which causes the gradient always to point directly to the

minimum point.

In general, the CG method is theoretically guaranteed to converge in at most lV

iterations (1'1 is the dimension of the linear system). In practicc however, accumulated

roundoff errors cause a graduai loss of orthogonality of the search directions and

convergence may not be obtained after N iteratioDS. In this respect, CG cao be

considered as a genuine iterative method. ~Ioreover, for large linear systems. it may

he impossible ta perform even close ta N iterations.

Reports of the use of conjugate gradient methods for deblurring of projection

reconstruction MR images were produced by [57} and NIan [66}, and for EPI imaging

distortion correction by Kadah [54} .

•

•

•
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2.5.5 Conjugate Gradient and noise•
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•

In any reallife situation, random noise may contaminate Eq. (2.71) and the exact

solution may not exist. In this situation, the problem may be considered as a least

square problem. The conjugate gradient is still useful in these conditions, as it may

lead to an approximate solution of the problem.

Figure 2.13 show an cxample of the behavior the congugate gradient algorithm in

the presence of noise. In such noise contaminated problems, the monotonie deerease

of the residual may not correspond to a reduction of the error betwecn the solution

vector and the truc solution. This behavior is due to the fact that the matrix A is

usually ill-conditionned, which means that largely differing vectors Xl and X2 may

lead, when multiplied by A to nearly equal results b l and b 2 .

In this thesis, the number of iterations is kept small, and a precise understanding

of the effcct of noise on the convergence properties of the conjugate gradient method

is not as relevant as for other applications where a larger number of iteration are

needed. in order to achieve an acceptable solution. For instance, in [66], the problem

is regularized by replacing the problem (2.84) by:

(2.85)

•

where 1 is the identity matrix of the same size as A, and À is a regularization parameter

whose value is selected according to the noise level. As the value À increases, the

approches the conjugate phase solution.
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Figure 2.13: Conjugate gradient iterations on noisy data

Exarnple of the behavior of the residual and erroT terms in noiseless (left)
and noisy (right) situations, for a 64 x 64 system of equation. The residual
term is IIAxi - bIl2/llbI12, the e1TOr term is Ilxi - x112/lIx112 and the noise
term is IInIl2/llbI12, where IIvl12 refers to the 2-norm of the vectorv, Le., the
square root of the surn of the squared elements ofv. ln both the noiseless and
noisy cases, the residual decn:ases monotically as the number of Iterations
increase. In the noiseless case, this retiuction of the residual is associated
with a retiuction of the e1TOr term. In the noisy case, on the other hand,
the e1TOr tenn may increase even when the residual decreases, due to the
ill-conditionned nature of the matrix A. The dotted line in the right graph
shows the noise level, and illustrates that the erroT tenn can never go below
the noise level.
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Chapter 3

Distortion Correction in MRI

Since the first days of ~(RI, attempts have been made to address the issue of geo­

metrical distortion. As stated in the previous chapter, the main distortion source is

static field inhomogeneity - which may itself he due to machine imperfections or to

susceptibility effects - and the deviations of the gradients from linearity. Even though

various distortion correction methods have been proposed in the past (e.g. [52]), we

will focus in this chapter on those methods that allow the magnetic susceptihility

effects to he taken into account.

3.1 Post-processing approaches

As in [17}, we may distinguish two main categories of distortion correction methods:

those that use explicit Bo map information and those that do not.
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3.1.1 Bo map based methods

3.l. POST-PROCESSING APPROACflES

Direct implementation of the distortion equation

A number of mcthods arc based on the direct application [93, 94,39, 78] of the dis­

tortion equation (2.52). This is typicaily performed in two steps. The fust step takes

care of the geornetrical distortion itself, and the second step addresses the associated

intensity inhomogeneity. Because these methods are ail similar, ooly one of these

approaches~ that proposcd by Sekihara ([93]) is described in sorne length here.

First. a linear interpolation is performed to correct for geometrical distortion (fig.

3.1). In one dimension! the geometrically corrected image !vIdel) is computed with:

9 - 1 + cS(l) (3.1)

l' - [gl (3.2)

• D - 9 - l', (3.3)

and

AtId(I) = (1 - D)/vl'(l') + D/vl'(l' + 1). (3.4)

[x] indicates the largest integer not greater than x. Equation (3.1) computes g,

the position of pixel 1 due to the field offset. l', in Eq. (3.2), represents the index

of the pixel in which the center of the distorted falls and D, from Eq. (3.4) is the

fraction the distorted pixel overlaps with the pixel grid. In Eq. 3.4, the geometrically

corrected pixel value Ald is computed as a linear combination of the values of pixels

l' and l' + 1 with weigths corresponding to the amount of overlap (1 - D and D

respectively) .

Following this interpolation, the discrete Jacobian is evaluated from the Bo map

data and is applied to the înterpolated data to perform density compensation.

• kf(l) = Md(I)W(I)
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•
CEL\PTER 3. O[STORX[ON CORRECT[ON lN MR1

WeI) = 1 + 5(1 + 1) - 5(1), (3.6)

where NICI) is the value of the fully corrected pixel.

This method consists essentially of a discrete implementation of the distortion

equation.

Feig et. al. [39] proposed a similar technique with the difference that the phase

error was derived from the image itself rather than from a separately acquired field

map. This approach did not consider phase variations due to factors other than static

field inhomogeneity.

Geometrical warping

Weis et al. [106] introduced a method bascd exclusively on geometrical interpolation.

The interpolation used is:

• L - 1 -0.5+8(1 -0.5) (3.7)

R - 1 + 0.5 + 6(1 + 0.5) (3.8)

l' - round(L) (3.9)l

If - round(R) (3.10)r

Dl - L - (If -0.5) (3.11)

Dr - R - (1; - 0.5) (3.12)

n - 1; - If + 1. (3.13)

•

L and R are the positions of the left and right edges of the distorted voxel respectively.

II and 1; are the indices of undistorted pixel where L and R lie. Dl (Dr) is the distance

between L (R) and the left side of the pixel II (1;). Finally, n corresponds to the

number of undistorted pixels that are "'touched" by the distorted one. Fig. 3.2 clarifies

the meaning of the different values.
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3.1. POST-PROCESSINC APPROACUES
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Figure 3.1: Sekihara~s geometrical distortion correction method.

The correction is perfOfTTled in two steps. In the first step, a linear interpo­
lation is performed to displace the distorted pixel to the correct position as
determined by the field map (a). Secondly, the resulting corrected pixel value
is multiplied by the intensity compensation factor derived frnm the values of
the Bo map at the pixel of interest and the fol101JJing pixel. This last term is
an approximation of the Jacobian of the coordinate transfurmation between
the distorted and non-distorted image.
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Figure 3.2: Weis's distortion correction method

ln this method, the value of an undistorted pixel is obtained by linear inter­
polation of the distorted pixel values between the left and the right edge of
the distorted pixel. This allows for geometrical and intensity effects to he
c017'ected at once. The algorithm must handle two distinct cases: a) the dis­
torted pixel expands over more than one undistorted pixel and b) the distorted
pixel is completely inside an undistorted pixel.
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(3.14)

3.1. POST-PROCESSING APPROACHES

The value of the undistorted pixel is obtained by the following interpolation:

(

(1- D/)MUt) + Ir;l M(k) + D,MU;) n> 1
l\1f(I) = k=1:+l

(Dr - Dc)Atf(I[ = I~) n = 1

CUAPTER 3. DtSTOR:rION CORRECTION IN MRl

•
The intcnsity compensation is obtained as a by-product of this equation because this

method independently deals with the lcft and the right edge of a distorted voxel.

One shortcoming of the two methods outlined above is the implicit assumption

that the point-spread function is rectangular, Le. the sinc-like character of the PSF is

ignored. Violations of this assumption are small for high resolution imaging, but they

become more apparent at low resolution, as is in the case of echo-planar imaging, for

instance.

•
A number of other methods use geometrical interpolation to correct for distortion

but they use calibration phantom images to derivc a distortion map [90, 92. 9L 53, 24}

and model the distortion map as a quadratic function, which may be inaccurate.

especially when the inhomogeneity is susceptibility induced.

k-space phase correction

WeisskofI et al. [lOS} proposed a correction method - which they apply to EPI images

but that may be generalized ta other spin-warp imaging - where phase corrects the

k-space data, based on the knowledge of the field map. Given a distorted image profile

Atf:n, the k-space corrected data Sk are computed as follows:

N-l
Bk = 1: M:ne-21rik(m~':m)

m=0
(3.15)

•
where N is the number of points in the profile and lSm is the distortion term (in

pixel units) which is proportional the Bo inhomogeneity obtained from a field map

(lSm = "'fdBo/(21rBWpix)). The corrected image profile is obtained by 1FT of the

corrected k-space data Si:.
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Recently, a similar method was proposed, but used reference scans rather than a•
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Bo map [20].

Conjugate Phase Reconstruction

Conjugate phase reconstruction [77] consists of '~doing" the unwanted phase varia­

tion due to field inhomogeneity. This is equivalent to reconstructing cach pixel of an

image separately with a demodulation frequency adjusted to the value given by the

field map (Fig. 3.3). ~Iathematically! the conjugate phase corrected profile, AI';"P, is

given by:

•
N-l

kl;t = L S~e21rik( fn--:~m ).
k=O

wherc s~ is the corrupted k-spacc data

N-L
S~ = ~ lvlne-21rik( m:':m ).

m=O

(3.16)

(3.17)

•

The conjugate phase method may seem similar to the Weisskoff's method at first

sight! since both are based. on phase correction in k-space. The difference can be

clarified by comparing equations (3.15) and (3.17). The two equations have the same

form except that Weisskoff's equation involves the distorted, rather than the undis­

torted image profile and the opposite spatial distortion term (-dm) as compared to

Eq. (3.17).

3.1.2 Double-gradient Methods

The most weIl known post-processing method that does fiot use Bo map information is

that proposed by Chang and Fitzpatrick [18, 17]. Consider two images acquired with

different readout gradients, Gz; and Gz;o.. Because of the relation between readout

gradient amplitude and geometric distortion in readout direction, the two images
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Figure 3.3: Conjugate Phase Reconstruction for an EPI image.

The conjugate phase reconstruction is equivalent to performing a separate
reconstruction for every pixel of an image. Prior to the reconstruction of
a given pixel, the k-space data are demodulated ·with a function dependent
on the k-space trajectory and the Bo inhomogeneity at the pixel position
(centre row). For each reconstruction, only the pixel for which the exact
demodulation was performed is kept in the final image (bottom row).

(3.19)

(3.18)

d~ Mf(~)

dxi = kIHxi)'

which can he combined as:

will exhibit different amount of distortion. If ~ and :4 are the distorted spatial

coordinates of each distorted image, and x is the coordinate system of the undistorted

image, following Eq. 2.52, we may write according to Eq. (2.52):

M;(x;) = M(x) I~I-l and k1;(x;) = M(x) I~I-l
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Providcd that at least a pair of corresponding points (x'IO' ~o) is known, the above

diffcrcntial cquation can he solved to find the corresponclence between X2 and Xl·

•
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Then. frOIIl Eq. (2.49)!

ÂBo(x) cl
x~ - x+ G

x
an

x
, ÂBo(x)
2 - x+o Gr '

and the solution for x is:

OX~ -:4
x= .

0-1

3.1. POST·PROCESSING APPROACHES

(3.20)

(3.21)

(3.22)

•

This shows how to get the correction for the pbcel displacement. It is intuitively casier

to understand Eq. (3.22) when the gradients of the two images have the same ampli­

tude but opposite polarities. In this case, a = -1 and X = (Xl + X2) /2, confinning

that the rcal position is midway between the distorted position Xl and X2-

For the intcnsity correction, one can take the derivative on both sicle of Eq. (3.22):

from which we find:

1 _ _1_ (0 dx~ _ d:4)
0-1 dx dx

1 l (N/(X) Al(x) )
- Cl: - 1 a ~\1f (x'l) - At/~(~) ,

(
NIf(~)M~(:4)

J.;/ x) = (0 - 1) aNI~(:4) _ A'/f(x't) .

(3.23)

(3.24)

(3.25)

•

As stated above, an initial condition, a value of :4 for which~ is known, is required for

the solution of the differential equation (3.19). When the object does not extend over

the whole field of view, this is typically achieved hy identi.fying the first point of non­

zero intensity on each distorted image, a task that can he performed automatically.

In the other case, an arbitrary pair of matching points must be selected, and this

usually require human intervention. In any case, the accuracy of the method depends

on the accuracy with which the initial starting point is determined.
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~Ioreover, this technique requires two images (or volumes) to achieve correction,

hence doubling the acquisition time, making it prohibitively long for 3D imaging and

fMRI studies.

•
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•

An example of the application of this method is reported in [65]. This technique

has also been proposed for the correction of EPI images [12]. A variant is presented

in [55].

3.2 Modified Acquisitions

As opposed to post-proccssing methods! modified acquisition methods attempt to

rcmovc the cffect of field inhomogeneities at the acquisition stage! by applying various

modifications to the conventional acquisition strategies.

Slice select
•

ln plane

, Tilted vie\\" angle

•

Figure 3.4: lliustration of the Tilted. View Angle Technique.

Because in-plane distortions are associated with proportional slice selection
distortions, those distortions appear to vanish when the view angle is tilted.
This is pmctically accomplished by applying a gradient in the sUce select
direction together with the usual readout gradient when sampling the signal.
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3.2.1 View angle tilting

3.2. MODIFIED ACQt."1SITIONS

In 1987, Cho et al [21] proposed a method based on view angle tilting. Their tech­

nique, applicable to 2D imaging, used the fact that geometrical distortions (including

chemical shift) present in the frequency encoding direction are associated with pro­

portional distortion of the slice profile. Then, by rearling out the echoes with the

slice selection gradient applied together with the frequency encoding gradient, they

were able to obtain images free of distortion. This is equivalent to using an effective

readout direction that is slightly tilted with respect ta the direction of the desired

readout gradient (fig 3.4).

In order to see how the distortion can be eliminated with the view angle tilting

method, wc writc the signal equation in one dimension. including thc slice selection

•
direction (z).

fl 2 . G ( .... ~BCZ1)Set) = J: :t J.\t/(x, z)e- 1n"Y :r:t:t, G;- dxdz. (3.26)

The heart of the method is ta apply a gradient in the z-dircction during signal rcadout

togcther with the usual rcadout gradient in the x-direction.

•

Applying the variable change

z = z' - ~B(x)/G:,

Set) becomes:

Set) = f f J\t/(x, z' - aB(x)/G=)e-2ri"G:t(:-~~~:r:)
Jr Ir

e- 2ri"YG :r:t ( x+ ~~i:r:) 1 dz 1 dxdz'.
dz'
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Because the Jacobian of the transformation, dz/dz', is unity and the terms in B(x)

cancel, we finally find:

•
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(3.30)

•

•

The application of the gradient in the slice select (z) direction has the effect of tilting

the view angle by () = tan-l(Gz/Gx). The cancellation of the field inhomogeneity

terms in Eq. 3.29 occurs bccause a distortion aIso occurs in the slice select direction

and t.hat this distortion is proportional to the distortion observed in the in-plane (x)

direction.

They also note that the images obtained are convolved with a narrow rect func­

tion that depends on the slice-selection bandwidth and the amplitude of the readout

gradient. Because of the absence of slice selection in 3D imaging, this method is ooly

applicable to 2D acquisition methods. The application of this technique ta EPI would

be difficult because two resonating gradients would have to be applied simultaneously.

3.2.2 Ech~projectioDand similar techniques.

A set of mutually similar techniques use an alternating readout gradient together

with a train of 1800 pulses. In these techniques, one data point is acquired at the

centre of each inter-pulse interval (Fig. 3.5). This, ensures that any dephasing of

the magnetization due to chemical shift or Bo inhomogeneity is refocused when data

points are sampied, eliminating their effect on the reconstructed image. Combined

with this periodic refocusing of the magnetization, the altemating readout gradient

produces a k-space coverage which altemates between negative and positive k-space

values. But since the effects the field inhomogeneity are eliminated in this type of

sequence, the imaged object is assumed to he real, and a one-sided Fourier Transform

is performed to reconstruct the signal.
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Refocused gradient imaging (~Iilleret al) [70} and spin-inversion imaging (Wong et

al) [109} use sinusoidal gradients while echo projection imaging (Bendel) [7} have been

proposed with ramped linear gradients. The main disadvantagcs of these techniques

is that they require high RF power and long imaging times, due ta the limit on the

sampling frequency achievable imposed hy the duration of the 1800 pulses.

•
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•

•

3.2.3 Conclusion

Addressing the problem of field inhomogeneity-induced distortions involves a clear

tradeoff between imag;ing time and post-processing time. ~Iodificd acquisition tech­

niques tend te need longer acquisition times, which may not he compatible with

certain applications. For instance, in 3D imag;ing, the acquisition timc already ap­

proaches the reasonable limit (10-15 minutes for a whole head) and modified acqui­

sition techniques would only make it worse. For dynamic EPL time resolution con­

straints aise put a limit on the acceptable acquisition time. Longer acquisition timcs

are not only a problem with modified acquisitions methods. Some post-processing

technique, such as the double gradient method, require two set of data to be ac­

quired. Bo map-based methods also involves a increase in total scan timc because of

the need to measure a field map. But since Bo inhomogeneities typically have Low

spatial frequency content, they can he acquired with much smaller resolution than

the image to he corrected. In 3D imaging for instance, a Bo at one quarter of the

spatial resolution of the data set to be corrected will he acquired 4 times as fast. The

Bo map measurement overhead is then only 25%.

The processing time is also a concem in distortion correction. Post-processing

techniques must aIso he efficient, considering the large amount of data generated hy

3D and dynamic EPI techniques. For instance, consider the computational hurden of

applying a one-dimensional correction method ta a 256 x 256 x 200 3D volume. The
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Figure 3.5: Echo Projection Imaging

The Echo Projection Imaging pulse sequence (a), is composed of a train of
1800 RF pulses with an altemating, periodic readout gradient. The periodic
refocusing of the magnetization provided by the RF pulse train effectively re­
moves Bo and chemical shift arti/acts /rom the image, when data points are
acquired at 2n'i intervalso The k-space tmjectory (b), altemates between posi­
tive and negative k-space values. Other methods, such as Refocused Gradient
Imaging and Spin Inversion Imaging differ /rom Echo Projection imaging
only by the waveform. used. for the altemating gradient.

•
number of line corrections in this case would he 256 x 200 = 51200 (assuming the first

dimension is the readout direction). Assuming each line correction takes l sec., the

total processing time would exceed 14 hours, which is hardlyacceptable in a clinical.

situation. The acceptable processing may obviously vary. In a research context, long

64



processing times are certainly more common and tolerated than in a clinical context.

Another important point to be considered is the decoupling between the image

data and the non ideal conditions giving tise to distortions in the reconstructed images.

In the double gradient method no such decoupling occurs. This means that, even for

difIerent images acquircd with the same conditions of Bo inhomogeneity! such as a

set of dynamic ~IRI images, two acquisitions would be needed for each image. Bo

map-based techniques do not have this limitation. The separation between distorted

image and non-ideal imaging conditions is the most evident for the inverse problem

approach presented in this thesis.

•

•

•
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Chapter 4

EPI correction as an image

restoration problem

This chaptcr presents a formulation of the distortion correction of EPI images problem

from the point of vicw of image restoration. Parts of dûs material, was published by

the author of this thesis [731 and was the subject of an oral presentation in the Sixth

Nleeting of the International Society of ~Iagnetic Resonance in ~Iedicine (ISNIR1\f)!

Sydney, Australia! in April 1998 [72}.

As shawn in the introduction chapter, Bo-induced degradations in EPI do not

merely translate into geometrical distortions, they aIso cause sorne amount of ghosting.

Although this ghosting may be small for smallievels of Bo inhomogeneity, it becomes

important as the field becomes less homogeneous and is very relevant for practical

EPI.

Even if the general principles of image restoration are conceptually straightfor­

ward, their practical application is often challenging, due to the potentially large

amount of data to he manipulated. In the general case, an N x N problem involves a

system of linear equations of size N2 x N2, which may ooly be manipulated efficiently
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if suitahle approximations are made to reduce the amount of data to he processed.

Another concern when dealing with image restoration prohlems is the computational

complexity of the task. Any algorithm requiring days of computation time would only

be of academic interest in a practical situation.

In the following, we discuss the discrete-discrete model of EPI image formation,

and wc develop approximations allowing solutions to be computed in a reasonable

•
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time.

4.1 EPI Imaging Equation

In the presence of Ba field inhomogeneity, the discrete data collected during a 2D

~IRI acquisition can be expressed as a linear transformation betwecn the idcal }.il x lV

image ! m,n and the measured signal Sk,l [751:•
with,

--..; -L f-t
Sk,l = 2: 2: !m,nKm.n;k,l,

m=-'";[ n=-f
(4.1)

(4.2)

•

where m and n are the vertical and horizontal spatial indices, }.Il and N arc the vertical

and horizontal image matrix dimensions. âBm,n is the spatially variant Ba field

inhomogeneity while tk,l is the time between the sampling of the k-space point (k, l)

and the RF excitation (when the FID is sampied) or the centre of the eebo (when the

spin echo is sampled). This last parameter depends on the k-space trajectory which

we assume to he perfect, i.e, the gradient timing and spatiallinearity are assumed to

he ideal.

Equation (4.1) can he transformed into a relation between the FT reconstructed

image [:n',n' and the ideal image [m.n by taking the 2D DFT of Km.n;/c,l with respect
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to k and 1on both sides of equation (4.1) for each value of m and n. l\Jlathematically,•
CHAP'rER 4. EPI CORRECTION AS AN IMACE RESTORATION PROBLEM ·l.2. EPI POINT SPREAD Ft.."NCTION (P5F)

~ -L ~-L

I:n',n' = L L Im,nAm,n;m'.n' ,
m=-''; n=-~

where Am.n;m',n' = 2D IDFT(Km,n;k.d, Le.,

(4.3)

Am,n;m'.n' -
.\1_L K-L ( , ')2 2 27l'i km +!!!-.
~ '" K .\1 .vL- L- m,n;k,le

k=- '':J l=-lf

k=-'':J l=-~

(4.4)

•

•

\oVe note that Am,n;m',n' is the 20 spatially variant point spread function (PSF) 85­

sociated with voxel (m, n). Depending on the particular form of the point spread

function, sorne simplifications to this cquation may be possible. Using integral equa­

tion terminology! we refer to Am.n;m' ,n' as the kernel of the EPI imaging cquation.

Wc show below how this 4D equation can be solved dircctly using sparse matrices

and the conjugatc gradient method, leading to a general 2D correction approach.

AIso, we have demonstratcd that the particular forro of the EPI kemcl willlead to an

important simplification of this equation. allowing the 2D problem to he decomposed

into a series of ID problems.

4.2 EPI point spread function (PSF)

It is interesting to look at the effect of the phase errors in the EPI imaging process

on the reconstruction of a point-object. Consider a point-object [mo,no = §mo.m§n,no'

From equation (4.3),

'':f -1 ~-1

PSFmo,no _ ~ ~ r ~ A
m',n' L- L- U mo,mU n,nor1m,n;m',n'

m=- ''; n=-Pf

- Amo,no,m',n'
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• M.-l ~-l , ,
:2 :2 21ri (k(m -mo) + l(n -no) ~AB t)
~ LeM .v :hr mo·no k,l •

k=-~ t=-lf
(4.5)

•

•

Fig. 4.1 illustrates the EPI PSF for severa! different frequency offset values caused

by deviation of the main field (ABo) from the nominal value Ba. Note that the PSF

extends in bath dimensions and four distinct effccts can be observcd:

• geometrical distortion, a consequence of the shift of the main peak in the phase

encoding direction, which is proportional to the frequency offset. This is seen

as the upwards shift of the imagcd points in Fig. 4.1.

• blurring in the phase encoding direction, demonstrated by the sprc3d of the

main peak. This blurring is a consequence of the fact the sampling grid is not

centred on the sinc PSF produced by k-space truncation.

• ghosting in the phase encoding direction, indicated by the presence of a sec­

ondary peak, which is increasinglyevident as the frequencyoffset increascs.

• blurring of the ghosts, mainly in the frequency encoding direction.

We note that ghosting in EPI may have other causes that can be more significant

than the shape of the PSF. One of these factors is the misalignment of the analog to

digital conversion (AOC) window with the time varying gradients (14}. A misalign­

ment of even a fraction of the inter-sample spacing can cause significant ghosting of

the image. The ongin of the N /2-ghost is due to the fact that ADC misalignment

results in a shift of even k-space lines in one direction, and of odd k-space lines in

the other direction. Because a shift in k-space translates as a phase modulation in

the image space, the images resulting from the odd and even k-space lines of k-space,

which are aliased by N /2, because of undersampling by a factor of 2, are affccted by

different phase shifts. In a perfect situation, when the ADC is correctly aligned, the
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aliases in the odd and even images cancel out completely. But when the two images

are affected by different phase shifts, tms cancellation does not occur, hence the Nj2

ghosts.

An important characteristic of the EPI PSF is that it does Dot merely shift as

the field offset increases due ta the presence of the ghosting component. For small

field offset, the ghosting component amplitude is only a few percent of the main peak

amplitude. However! for larger field offsets, it becomes larger relative to the main

peak.

Whilc the PSF is two-dimensional, it can he approximated by a one-dimensional

function for small field offsets (e.g < 50 Hz). This fact will be cxploited later to justify

ID processing. A similar ID analysis was performed in [54}.

Another simple way to understand the particular shape of the EPI PSF is to note

that an EPI image can be considered as the sum of two images composed of the odd

and even k-space lines scparately (Fig. 4.2). Thesc images arc both aliascd over half

the FOV and they are distorted in opposite directions in the rcadout direction. In

the real EPI image, being the sum of these two aliased images, the cancellation of

the ghosts is not complete becausc of the different distortions affecting them in the

readout direction.

•

•

CUAPTER 4. EPI CORRECTION AS AN IMAGE RESTORATION PROBLEM 4.3. MATRIX FORMll1..ATION

4.3 Matrix formulation

In order to solve the 4D imaging equation (4.3), it must be restated in the form of

a matrix equation. U Ïf and Ï are the ivlN x 1 vectors formed by reformatting [:n, ,n'

and I m •n into vectors formed by the concatenation of their columns, i.e:

Ïm+~ln+kl/2 - I mn (4.6)

• ï:n'+Mn'+A-l/2 - I:n'n' (4.7)
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ghostpeak

OHz

4.3. MATRIX FORMULATION

200Hz

•
Figure 4.1: The EPI point spread function

The EPI point-spread function is obtained Ulith Eq. (4.5). Here are examples
of the PSF for Bo fields offsets of a) 0 Hz, b) 50 Hz, c) 100 Hz and d) 200
Hz, for an impulse object at the centre of the field-of-view (mu = no = 0).
The EPI parn.meters are: matrix size = 128x 128, TE = 65 ms, Tacq = 123
ms. The horizontal and vertical directions correspond to the frequency and
phase encoding directions respectively. The main characteristic of the EPI
PSF is the presence of the Nghost" peak alias /rom the main peak by half
the field-of-view. Note how the magnitude of this ghost peak increases as the
field offset becomes larger.

•

Ï=

lM -1 t!.-1
2 '2

71
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l~, -1 t!.-1
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Figure 4.2: lliustration of the origin of field-inhomogencity related ghosts.

If only odd or even lines of k-space are reconstructed, an aliased image is
obtained. Because of the nature of the EPI trajectory, the distortions in the
phase encoding direction is the same for the images reconstructed /rom odd
k-space lines and that obtained from even k-space lines. However, the distor­
tions on the frequency encoding direction are in opposite directions because
k-space data are acquired with different polarities of the readout gradient.
Because of this, the images do not exactly overlap when added to form the
complete EPI image.
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and A is the J\;IN x }vIN matrix defined hy

4.3. MATRIX FORMULAT[ON

À= ~ (4.9)

equation (4.3) takcs the form of the 1\;/N x AtIJV linear system:

i' = AÏ. (4.10)

This is illustratcd in Fig. 4.3. In absence of field inhomogcneity~ the matrix À is the

•
Ï'

JI1.V

PSF com:sponding to different pixels

Ï

•

Figure 4.3: The 4D tcnsor equation in matrix forro.

The 4D tensor equation describing the EPI imaging process may be expressed
as a matrix equation where the AtI x N distorted and undistorted images are
stretched into Atl1V x 1 vectors1 and the AtI x N x AtI x N 4D kern.el is
re-a1TOnged as a MN x AtIN matrix.

identity matrix. It is easy to sec that with a small amount of inhomogeneity, À will he

close to the identity matrix and consequently sparse. This can he better appreciated

hy noting that each column of À is the column rescanning [84} of the two-dimensional.
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EPI point spread function corresponding to one pixel of the ideal image. A look at

Fig. 4.1 shows that this vector contains a sma1l number of significant values, and so

is sparse to a high degree.

Wc also note that the geometrical distortion is reflected by a vertical shift of the

diagonal elements of the Â matrix.

•
CHAPTER. 4. EP[ CORRECT[ON AS AN [MAGE RESTORATION PR.OBLEM 4.3. MATRlX FORMULATION

•

4.3.1 Low rank approximation of the kernel

Computation of the kemel Â can. be performed by computing the PSF for each pixel

of the ideal image. We develop herc a practical simplification of the PSF that allows

the kemcl to be calculated more efficient1y.

Because of the particular shape of the EPI k-space trajectory, it is possible to

show that the EPI PSF can in fact be approximated very closely bya rank-2 matrix.

In order to sec this, we first note that the trajectory itself may be weil approx­

imated by a rank 2 matrÎX. This is because the EPI trajectory is composed of two

main trends: the back and forth behaviour produced by the oscillating gradient and

the linear motion in the ky (phase encoding) due to the blip phase encoding gradient.

This is performed as follows.

Let U, À, and V be the singular value decomposition of the trajectory matrix t.

Because this matrix is typically of rank 2. it cao be expressed as

(4.11)

•

where Ul, U2 and yi, V2 are the first and second singular vectors of U and V

respectively (assuming the singular values and singular vectors are sorted in decreasing

order of magnitude.)

The vector U l depends oniy on k and represents the linear time increase along

the blip encoding direction. The vector yl has a constant value VI. U2 altemates
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between two values: +(/2 for even k-space Unes and -U2 for odd k-space lines. y2

represents the ADe sampling along the frequency encoding direction.

The benefit of this formulation is that, when considering odd and even trajectory

lines separately, the kemel becomes separable with respect to k and i, Le., the PSF

can be computed with three ID DFT'S instead. of one full 2D DFT.

To show this, we write the PSF, for a pixel in the center of the FOV, as a SUIn of

two terms: one over the even k's and the other over the odd k's.

•
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•
which may be written

.~{ -1 t!-1
PSFo,O = ~ e2ri(I~~2:~),lu~eVl) ~ e2ri(~-2:àB),2U2V?) +

m.n L- L-
k=-'~{ l=-f

'~: -1 ~-1
2ri~ ~ 2'/ti(~~AB),lutoVl) ~ ')ri(!!!.+~AB),2U2V.2)e .v L- e M /2 21l' le L- e- IV 21l' l ,

k=-'~: l=-f

where U~o and u~e represent the odd and even elements of U~.

If we define:

(4.12)

(4.13)

•

M-L .\t -1
1 ~ 2ri( 2km _ .:LAB)'1U1eVl) 2'~ ~ 2ri( 2km -.:LàB)' lU10V1)Pm = L.- e XI /2 21l' Je + e 1tI.v L- e At/2 21l' k

k=-~ k=-~

''t -1
~ 2ri!!!l -21ti..:L.AB),lU1Vl- L- e Me 21l' Je

k=-'':f

_ IDFT {e-2ri2:àB),lU~Vl} (4.14)

AJ -1 ';{-1
P~ - L e2ri(~~2:AB),lu~eVl) _e27riW L e2ri(i~n2:àB),lU~OV1)

k=-AJ k=-~

'~-1- E (_1)ke21ri~ e-21ri~AB),lU~Vl

k=-~
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• IDFT {(_1)ke-22rii;r~B.VU~Vl}- (4.15)

f-l
22ri( m_~A.BÀ2U2V.2)

~-l
22ri( m+~~BÀ2U2V.2)

q~ - L e N 211' t + L e N :hr l

l=-f l=-~

~-l

e2ml; COS ('Y~BÀ2U2Vl2)- 2 L
l=-f

- IDFT {cos ('Y~BÀ2U2Vl2)} (4.16)

lf-l ~-l

q; L 2m( !!!_.:l..~BÀ2U2U2) E 'lm( !!!+.:l..~BÀ2U2U2)- e N 211' l_ e- N 211' t

l=-l!: l=-f

:r-1

e2m''; sin (r~BÀ2U2Vl2),- -2i L
l=-f

- IDFT {sin ('Y~BÀ2U2Vl2)} (4.17)

we get:

• PSFo,o = pl ql 1 p2 q2 (4.18)m,n m n ï m n

In order ta compute the PSF for an arbitrary point (mo, no), the equations (4.14) ta

(4.18) are madified ta take the following farm:

p~
{ 2lrmg1l: _'l ·~~BÀ1U1Vl}- lOFT e N e -'"211' Je

p~ - IDFT {e 2lr~gk (_1)ke-21riir~BÀ1U~Vl }

q~ {~ }- IDFT e .v cos ('Y~BÀ2U2\tl2)

'l IDFT {e 2"';ot sin (;~BÀ2U2Vl2)}q;;, -

PSFTno,no - p~q~ +p~q~m,n

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

•
We note that this decomposition actually involves only three ID DFT's since pl

and p2 are simply related by a N /2 circular shift. Figs. 4.6 and 4.7 shows an example

of these vectors.
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An interesting side effect of this decomposition of the kemel is that the first term,

plql' represents the main peak of the PSF, while the second term, p2q 2' corresponds

to the ghost component.

Figures 4.4 and 4.5 show the singular value decomposition of a typical k-space

trajectory and Fig. 4.8 displays the decomposition of a typical EPI PSE into vertical

and horizontal components.

4.4 Implementation of 2D correction

4.4.1 Bo map processing

Since the Bo map is essentially a phase image, wc have seen before that it is affected. by

full-scale noise in background regions. In other words, the field map is meaningless in

the background regions and its value must not be considered in the image correction.

However, the field map is generally different from zero in the neighbourhood of the

interface between the image and the background. An expeditious way of handling this

would be to set the field map to zero in regions where the magnitude image is smaller

that a certain threshold value. However, this creates discontinuities in the field map

that translate ioto artifacts in the reconstructed images. An alternative approach

is to perform a 2D spline fitting on the field map, where only the meaningful field

map values are considered and to let the splines extend over the background region.

This produces a Bo map with the correct value over the regions where there is signal

and which is continuous at the object boundaries. Furthermore, such fitting helps to

reduce the field map noise.
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Figure 4.4: Line component of the EPI k-space trajectory.

The k-space trnjectory, because of its particular form in EPI, can be approx­
imated by a rnnk-2 matrix, i.e., it can be expressed as a sum of two outer
products U1/~Vil + U2kV21. This figure shows the components depending on
k, the Une index of the trnjectory matrix. Ut accounts for the time inc:reuse
during the "descent" of k-space. U2 describes the fact that the direction of
k-space tmversal is altemated at every k-space line.
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Figure 4.5: Column component of the EPI k-space trajectory.

This figure shows the components depending on l, the column index of the
tmjectory matrix. Vi is constant, meaning thaf the phase aCC'nJal along any
column of the k-space trajectory is the sarne. V2 reflects the non-unifoTm
sampling pattern that is usee! for every line of k-space. The non-uni/aTm
sampling is necessary ta obtain equally spaced k-space samples when data
are acquired in the presence of a non constant readout gmdient.
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Figure 4.6: lVIain component of the EPI point spread function.

Because the k-space trajectory is a rank-2 matrix, the EPS PSF can he aIso
approximated with a mnk-2 matrix (details in the text). The PSF is com­
pletely determined by the four vectors: Plm, P2m, qln and Q2n. The prnduct
PlmQln corresponds to the main component of the PSF, i.e. that which ac­
counts for the distortion in the phase encoding direction.
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Figure 4.7: Ghost component of the EPI point spread function.

The product P2m1l2n represents to the ghost component of the PSF, i.e. that
which accounts for the N /2 ghost component in the readout direction.
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Figure 4.8: The two components of the EPI PSF

The decomposition of the EPI t:rojectory allows the EPI PSF to he separated
in two components: the main part and the ghost part. The main point in
performing this separation is to speed up the computation of the 4D kernel.
It may he computed in 3 ID FFTs instead of 1 2D FFT.
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4.4.2 4D kernel computation

Since the column of the kemel A is formed by the EPI PSF corresponding to a

given image location, it was computed column-wise using the rank-2 approximation

discussed above. In order ta make it sparse, the negligible elements of the PSF, based

on a fixed threshald, were set ta zero. This threshold, which may be considered as

a free parameter of the correction method, allows the sparsity, Le. the number of

non-zero values in the sparse kemel, to be adjustcd. The implications of the choice

of this threshold will be discussed in the next chapter. The detailed algorithm to

compute the 4D kernel is given in Fig. 4.9.

compute the matrices U, S, and V, the SVD of the k-space trajectory.

for (i = 0 ta J.V - 1)

for (j = 0 to N - 1)

- compute the vectors pl, p2, ql, q2 from Eq. (4.19) to (4.22)

- compute PSF for pixel (i,j) using Eq. (4.23)

- reshape the PSF into a column vector

- discard elements of PSF smaller than threshold

- store in sparse form in the column i + N j of the sparse matrbc A
end for j

end for i

Figure 4.9: Algorithm for the computation of the 4D kemel Â
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4.4.3 Solution of the 4D linear system

4.5. ID CORRECTION APPROXIMATION

Once the sparse 4D kemel is ohtained, the CG method may he applied to the normal

equations

ÀtM'=ÀtÀM, (4.24)

where the tilde again refers to the rescanned versions of the 4D kemel and the 2D

images. This is done by slightly modifying the standard CG algorithm (2.83) as

follows:

b - Xc =1\1'

ro - At(b - Axo)

Po - ro

• qn - AtAPn

r'nrn
Qn -

p'qn

Xn+t - Xn +onrn,
(4.25)

rn+l - r n - onAqn,

/3n+l
~+lrn+l-

r'nrn

Pn+l - rn+l + .Bn+ldn

We stress again the fact that the matrix À t Â never needs to he computed explic­

itly, hecause the product qn = AtAPn can be computed as two sparse matrix-vector

multiplications, Le. qn = At(APn).

•
4.5 ID correction approximation

The goal of this section is to demonstrate that, under small field inhomogeneity condi­

tions, the 20 correction can he approximated by a series of 10 corrections. A similar
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analysis was recently independently reported by Kadah and Hu [54].

The particular form of the EPI PSF suggests that, in the case where field offsets

are relatively small, one dimensional processing can be performed on each column

of an image. This approximation, conceptually corresponding to the case where the

"ghost" part of the PSF is ignored, has many advantages. First, the solution of the

large 4D linear system is replaced by a set of smaller and more manageable 2D linear

•
ClIAPTER.. EPI CORRECTION AS AN IMAGE RESTORATION PROBLEM ••5. 10 CORRECTION APPROXIMATION

systems.

The 4D tensor equation (Eq. 4.1) can he simplified by making the approximation

that tk,l depends only on k. Eq. (4.1) then becomes

M-l N-l

Sk.l = 2: L Im,ne-21ri( k~+~+2:ABnl.ntk).
m=O n=O

(4.26)

Performing an inverse DFT with respect to l, we obtain:

• Sk' , =,n

N-l M-l N-l 2 '(kn1 Un-n'). ".'I.B t)L L L lm,ne- 1rl M"+ .v T'h~ n1.n k

l=O m=O n=O

l~t-l N-l N-l,L L Im.ne-2ri(~+2:ABm.ntk) L e-21ri(n~; )1

m=O n=O l=O

M-l N-L
~ ~ l e-2ri(k~+2:ABnl.ntk)~
~ ~ m~' Un~

m=O n=O
M-L
~ l . e-21ri( ~.:;'+2:àBn1.n'tk)
~ m.n' •
m=O

(4.27)

which can he expressed in matrix form as

Sn = KnIn, n = o... N - l, (4.28)

•

where Sm and lm are the m th column of S~ and I mn respectively and Kn is the

AtI x AtI matrix defined by:

(4.29)

This approximation effectively decouples the MN x MN tinear system into N tinear

systems of size M x M.
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As in the 4D case, Eq. (4.29) may be expressed in terms of the distorted image by

performing a ID inverse DFT with respect to k on both sides of the equation, leading

•
CHAPTER ·t. EPI CORRECTION AS AN IMAGE RESTORATION PROBLEM

to:

In = AnIn, n = o... N - 1

·t.5. ID CORRECTION APPROXIMATION

(4.30)

•

where An = FtKn, and F is the discrete Fourier Transform matrix Fmn = e-27l'i~;.

The t represents the hermitian transposition (complex conjugation plus transposi­

tion).

This recasting of the 2D problem into a series of 10 problems allows us ta look at

the use of the conjugate gradient method for 10 correction. Because of the simpler

form of the 10 problems, analytical expressions for the kemel may be obtained. To

show this, we rewrite the matrix K in terms of a quantity ~m which corresponds to

the pixel shift in pixel unîts.

-2 .k(rn-r.e._l
K km = e '" N , k,m = -N/2 ... N/2-1. (4.31)

It is useful to adopt the convention that the vectors and matrices are - .Nj2-based,

Le., that their first index is - N /2. The reason for this choice is that K km does not

have the circular symmetry (Le. Kk+N,m+N =ft K km ) as is the case for the discrete

Fourier transform matrix.

The matrix A is the Discrete Fourier transform of K and can be written:

N/2-1 ,

Am'm = L K kme21ri
'"/;

k=-N/2

N/2-1 ,
~ 2 .k!m. -m.-.e.m.l
L.. e'" N •

k=-NI2

(4.32)

•
An analytical expression for the elements of the matrix A can be derived by explicitly

performing the inverse DFT: Using the fact that the summation can he expressed as
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a gcomctric progression of the form

N-l 1- r N
~rk _

~ 1-r
k=O

wc can write

4.S. ID CORRECTION APPROXIMATION

(4.33)

.4m'm
1 - 2,"(ml-m-~m.)

-1ri(m'-m) ,"~m e
- e e -1-_-e-::-21r~i"':""(m~/:---m--~~:-m.~)--:'/N':'7

1 -2'"~m.
-1ri(ml -m) ,"~m - e

- e e -1-_-e-21r-i(-m-'--m-)/-N-e---2-1r1-.~-m.-/-N

-1ri(ml-m-~m)/N sin(1i'(m' - m - Am))
- e .

sin(1i'(m' - m - A m )/N)
(4.34)

•

Wc may check that whcn thcre is no field inhomogeneity, Am = 0 and Eq. (4.34)

gives Amlm = 5m /m , Le. the reconstructed and measured images are related by the

identity matrL~.

Because of the fonn of the normal equation 4.24. it is also useful to consider the

related problem

K'S = K'KM = PM with P = K'K = AtA. (4.35)

Using a procedure similar to that leading to equations (4.34) it can be shown that

the elements of P are given by:

Pm.'m =
, 1 1 - e2,"(~,",-~",)

-1ri(m -m +~m'-~'"}
e -1--e"':""2lrl-·-:-(m~':---m~}/~N~e~2:-1r~i(~~-'"-'--~-:--m-:-) /~N

_ e-1n(m/-m'+~,"I-~}IN sin(1i'(m' - m + AmI - Am))
sin(1r(m' - m + AmI - Am)/N)

(4.36)

•

The closed form solutions (4.34) and (4.36) allow the matrices A and AtA = P to

he computed directly, without a 2D DFT. Moreover, it has the advantage of allowing

the matrix A to be obtained efficiently by computing only the clements close to the

diagonal.

Fig. 4.10 give an example of how the different matrices may appear.
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m

•

f,.\.........' __
I .....~•.

'~~-

K A A' A/A
Figure 4.10: Various matrices involved in ID correction.

Rlustration of the matrices K from Eq. (,s.3I), A /rom Eq. (4.34), A' and
A'A = P /rom Eq. (4.36) computed /rom the ID Gaussian field map shown
on the top gruph. Although it may he difficult to intuitively understand the
meaning of K 1 it is much clearer to look at its Fourier Tro.nsform A which
relates the distorted and ideal images. The curved diagonal of A reftects the
fact that the ideal becomes distorted when transfonned by A. One can also
see how the conjugate phase methods, which attempt to C01Tect by multiplying
the distorted image by the complu conjugate of A, A', undoes the effect of
the matrix A regarrling to pixel displacement. The matrix A'A represents the
relationship between the conjugate phase reconstruction and the Ideal image,
and shows how the two images differ in amplitude.

4.5.1 Solution of the 2D linear systems

•
In the case of ID processing, the linear system

(4.37)

88



is solvcd for every column of the EPI image. The matrices An are computed using

equation [4.34]. The fact that A has a closed form expression allows the computing

requirement to be relaxed. by considering only a certain number of the matrix elements

on each side of the main diagonal.

It was found in practice, that in bath 20 and 10 cases, a small number of iterations

(2-3) was sufficient ta yicld a good solution. Not ooly did a larger number of iterations

not help to significantly reduce the error r it may actually increase it and produce

artifacts in the reconstructed image. The next chapter considers this point furthcr.

•
CIIAPTER 4. EPI CORRECTION AS AN IMAGE RESTORATION PROBLEM ·1.6. SL'"MMARY

•

•

4.6 Summary

This chapter has exposed the mathematical fondations undcrlying the core of the

thcsis. First, the EPI imaging equation problem was stated in terms of a 4D tensor

equation. The EPI imaging process was aIso studied~ and its point-spread function

was shown to exhibit ghosting artifacts, in addition to the expected geometrical shift

in the phase encoding direction.

The solutions of system of equation representing the EPI imaging process was

shown to be practically achievable by transforming it in such a way as ta get a sparse

linear system. A full 20 correction method, based on the solution of the sparse

linear system by the Conjugate Gradient algorithm, was developped, along with a

computational simplification based on the low-rank charaeteristics of the EPI k-space

trajectory.

Finally, it was demonstrated that the 4D tensor equation decouples into a set

of smaller 2D problems when the k-space trajectory is approximated as varying in

one direction ooly. A special case of above full 20 algorithm was derived from this

simplification, learling to a 10 algorithm.
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Chapter 5

Computer simulations and

techniques comparisons

• 5.1 Introduction

•

This chapter investigates various aspects of the application of the CG-based correction

method presented in the previous chapter, by means of computer simulations and

compares the performance of different correction methods under different imaging

conditions in the context of EPI imaging. Although these simulations Can not take

al! aspects of an actual situation into account, they have the advantage of allowing

the specific effects of various parameters to be observed.

The first section, (Section 5.2), introduces various aspects of the simulations. The

Results and Discussion sections (Sections 5.3 and 5.4) are separated in two parts. The

first deals with simulations performed to evaluate the impact of certain parameters of

the CG method on the quality of the reconstruction. The second section presents a

comparison, again by computer simulations, of the different Bo-map based methods.
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• 5.2 Methods

5.2. METflODS

•

•

5.2.1 Analytic phantom

In real experiments, it is often difficult to evaluatc the performance of correction

techniques due to the absence of an absolute "gold standard" against which to com­

pare the results. In simulations, this gold standard is gjven a-priori and simulated

experimental data are derived frOID it.

In this whole chapter, the reference image (Le. the "goId standard") is an analytic

phantom (Fig. 5.1). It cornes from an idealized analytic object known at infinite

resolution. In this case, the object is a circle, with smaller squares inside. Because the

continuous Fourier Transform of those shapes is known analytically, one can calculate

the exact k-space signal that such an object would generate. The analytical phantom

image is then obtained by evaluating the analytic Fourier Transform of the object

onto a rectangular discrete grid (which is equivalent to sampling the k-space signal

of the object) and performing and inverse discrete Fourier transform (DFT) on this

discrete data set. The analytic phantom used in this chapter was sampled onto a

64 x 64 grid.

The advantage of using an analytic phantom, instead of an a-priori sampIed image,

is that the truncation (ringing) artifacts in the analytic phantom refiects more closely

what is observed on an actual NIR image.

5.2.2 EPI k-space trajectory

AlI simulations in this chapter assume the following parameters for the EPI sequence:

Echo time of TE = 35ms, total acquisition time Tacq = 61ms. The readout period

for a single line of k-space is T = 960ps. So, the bandwidth per pixel in the readout

direction is liT ~ 1kHz and the effective bandwidth in the phase encoding direction

91



•
CflAPTER 5. COMPl:TER SIMULATIONS AND TECHNIQUES COMPARlSONS

300

225

1"'-'
150

75

o

5.2. METROOS

•

•

Figure 5.1: Analytic phantom used in the simulation

The analytic phantom is computed by evaluating the analytic Fourier Trnns­
fOTTTL of an object (in this case a circle with squares inside) onto a rectangular
discrete grid of64 x 64 points, and perfonning an IFFT of this set of discrete
data. This image is considered as the "gold standarr/." in the simulations of
this chapter.

is liTacq ~ 16Hz.

The readout gradient ïs constant, except for the ramp up and ramp down portions

that are sinusoïdal. In order to keep a constant sampling distance hetween k-spacc

points, the ADC sampling timing must he non-uniform during the non-constant por­

tions of the readout gradient (ramp-up and ramp-down portions). This is taken into

account in the k-space trajectory matrix.

5.2.3 Simulation of EPI images

Given a Bo-map and a k-space trajectory, a simulated EPI image can he obtained hy

using the EPI imaging equation (4.1). Note that in distorted EPI image simulations,

the kemel need Dot he explicitly stored in memory, so ail the kemel values are used

in the computation of the simulated EPI image. Fig. 5.2 shows three examples of

simulated EPI images. The detailed algorithm for the computation of simulated EPI

images is displayed in Fig. 5.3. The k-space trajectory is described in section 5.2.2.
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Analytic phantom

5.2. METIIOCS
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•

Figure 5.2: Simulated EPI images and Bo maps used in the simulations

Each of the simulations in this chapter uses one of the Bo field maps above
(left, B, C and D). For each field map, a corresponding simulated EPI image
(right, B, C and D) is computed from the analytic phantom (A) using the
algorithm of Fig. 5.3. The k-space tmjectory described in Section 5.2.2 is
used for aIl simulations. The field map is composed of two Gaussian blohs
with opposites amplitudes and different FWHM.
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input: 1

B

t

output: r

The }vI x N undistorted image.

The }vI x N Bo map.

The }vI x N k-space trajectory.

The J.\;/ x N simulated EPI image.

•

•

for (k = a to J.\;I - 1)

for (l = 0 to lV - 1)

S'(k~ l) = 0

for (m = 0 to lvI - 1)

for (n = 0 to lV - 1)

S'(k, l) = S'{k~ l)+

lem. n) * exp {-27ri * (km/}VI + ln/N + B(m~ n) * tek, l))}

end for n

end for m

end for l

end for k

return l' = 2D IFFT (S')

Figure 5.3: Algorithm for the calculation of the simulated EPI image.
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5.2.4 Validation methodology

5.2. METliODS

•

•

The experiments described in this chapter consist of correcting simulated distorted

EPI images. Once the correction is done, one is interested in quantitatively comparing

the corrected image and the original gold-standard (Le. the analytic phantom). Since

the presence of field inhomogeneity manifests itself as two distinct effects on an image,

namely geometrical distortion and intensity distortion (section 2.2.3), it would be

instructive to decouple the two effects on the distorted image and measure the amount

of correction of the two cffects separately. However, such a procedure is not easy to

design and may introduce sorne artificial bias in the measurement of the amount

of correction. Because of this, we use a much simpler metric, the root mean square

(RJ.\iIS) difference between the simulated image and the corrected image. Note however

that this has the disadvantage of giving only a global measure of correction, regardless

of the relative importance of geometrical versus intensity effects. Wc nevertheless

believe that such a mcasure is meaningful as the ultimate goal of distortion correction

is to produce a corrected image that is as close as possible ta the image that would

have been obtained had the field been perfectly homogeneous. ~Iorcover, this measure

can be made more robust and significant by computing the R1\tIS difference only over

pixels that have significant intensity, and in the present case, wc fixed the threshold at

10% of the maximum pixel value, eliminating the contribution of background pixels

in the measure. A negative aspect of this measure is that it is sensitive to any bias

that may be introduced by a correction method. However, the reader will be able

to check in the Results section (5.3) that the RMS differences give a good indication

of how different two images are from each other and generally agrees with the visual

perception of "closeness" .
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~Iore precisely, the measure of correction error is given by:

RMS Difference = ~2 ~~ (Ilph(i,j)l-11corr(i,j)1)2
1 J

5.2. METlIOOS

(5.1)

•

•

where lph(i,j) and Icorr(i,j) are the complex values of the analytic phantom and the

corrected image at pixel (i,j) respectively, and where i,j run over the pixel positions

that have a significant signal intensity (larger than 10% of the maximum intensity of

the analytic phantom).

5.2.5 Implementation orthe CG algorithm for EPI correction

2D

The 2D Conjugate Gradient method is implemented in two steps: The first is the

computation of the sparse matrix representing the 4D kemcl À from the field map

and the k-space trajectory, using algorithm shawn in Fig. 4.9. One free parameter

of the kemel computation is the threshold at which values are considered sufficiently

small to be ignored. The number of clements in the sparse kemel increases as this

threshold is reduced. This parameter has direct effects on the computational cast

of the CG iterations because the sparse matrix-vector multiplication cost is directly

proportional to the number of non-zero elements in the sparse matnx. In addition, it

clearly has direct implications on the memory storage requited for the kemel. One of

the simulations presented. in this chapter investigates the effect of this parameter on

the reconstruction.

The second step is to apply the modified CG algorithm (4.25) using as input the

kemel À computed as described above and the distorted image reshaped into a column

vector Mf. Then the iterations in Eq. (4.25) are performed, leading to an estimate of

the correct image.
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In some implementations of the CG algorithm, the iterations are performed until

a condition on the residual is met, e.g. until the residual is smaller than a predeter­

mined tolerance. This approach may lead to unpredictable computation times since

the convergence may differ depending on the condition number of the linear system.

In the implementation used in this thesis, the number of iterations is fixed, which

ensures a predictable computation time. ~Ioreover, depending on the nature of the

linear system! the desired tolerancc may not he achievable. Note, that the number of

iterations directly affects the computational cost of the CG solution.

The total computational cost of the whole correction process, Le. kemel compu­

tation and CG iteratioos, is thercfore determincd both by the sparsity of the kemel

and the number of itcrations. For the correction of one EPI image only, the kemel

computation time is much larger than the timc required for the CG iterations. Since

the kernel computation time is independent of cither of the two parameters. the total

computation time is only weakly affccted by them. On the other hand, when correc­

tion is applied to a large set of images all sharing the same k-space trajectory and Ba

map, for instance in a ~IRl study, then the number of iterations may be the most

important factor determining the total correction time.

•

•

CHAPTER 5. COMPL"TER. SlMULATIONS AND TECUNlQUES COMPARISONS 5.2. METRODS

•

ID

The ID version of the CG algorithm, like the 2D version, is performed in two steps.

The main difference is that the ID version is applied to every column of the distorted

image to yield the corrected image.

For every column (or row, depending on the phase encoding direction) of the

image, the matrix Amlm is computed according to Eq. (4.34), and the system of

equations (4.30) is solved with the modified Conjugate Gradient algorithm (4.25).

Because the matrix ArnIm is close to ·diagonal, some computing time may he saved hy
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only computing the elements in a diagonal band. One of the simulations presented

later will give an idea of the influence of the width of the diagonal band.

•
CUAPTER 5. COMPUTER SIML"LATrONS AND TECfINIQl:ES COMPARlSONS 5.2. METHODS

5.2.6 Noise and EPI images

ln the simulations that compare the different correction methods, the effect of noise

in the distorted input image is evaluated. Following the discussion in Chapter 2 on

noise in ~IRI, complex Gaussian noise is added to the distorted simulated EPI image.

The level of noise is adjusted in the simulations by changing the standard deviation

of the noise added. The standard dcviation cr of the noise to be added to an image

for a given target SNR is:

where < m > is the mean image magnitude over the non-background regions.•
<m>

(j = SNR !
(5.2)

•

The SNR definition is gÏven be Eq. (2.36). This relationship is valid when the image

intensity is large because in this case, the noise obeys the Rician distribution which

tends to the normal distribution with standard deviation cr with the signal amplitude

goes to infinity. We note that violations of the Gaussian assumption of the signal

noise distribution may cause an error in the estimation of the complex noise variance

required for a given magnitude SNR, but does not imply that the noise distribution

in the magnitude image is wrong.

5.2.7 Noise and Bo map

In one of the simulations to he described later in this chapter, noise is added to the Bo

field map. Because in a Ieal situation the Bo map is derived from the phase difference

hetween two images acquired with different echo times (see Section 2.4), the Bo map

noise is stated in terms of the SNR of one or another of the two images.
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The Bo map noise is computed as follows: First the phase noise is computed from

Eq. (2.67), with the value of (j determined by Eq. (5.2). Note that this phase noise

does not have the same probability distribution depending on the position. The phase

noise in background regions is uniformly distributed between -'Ir and tr, and normally

distributed in regions where there is signal. Second, the phase noise is converted

into frequency by multiplying with the factor v'2/(2tr ~t) where At is the ccho time

difference of the field mapping sequence. We assume the value ~t = 4.48ms. The J2
factor arises because the Bo map is obtained from a difference of two phase image and

the standard deviation of the phase difference is J2 timcs larger than the standard

deviation of the individual phase images.

•
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•

•

5.2.8 Computer hardware

AIl simulations in this chapter were performed on a PC equippcd with an Intel Pcn­

tium 180 ~IHz processor and 128 ~IB of RA~I, rwming the LinlLX ~Iandrake 7.0

operating system. The simulations were performed in the ~Iatlab version 5.3 (The

~Iathworks, ~IA, USA) envrronment. Sorne algorithms, especiaily those involving in­

tensive explicit looping, were coded in C (mex functions), but cailed from Nlatlab.

The ~Iatlab and C source code for ail algorithms used in this chapter, together with

the scripts running the simulations are included as an appendix.
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• 5.3 Results

5.3. RESULTS

•

•

5.3.1 Effect of CG parameters

2D

Simulations have been performed in order to investigate the effect of two important

parameters of the CG method: the number of iterations, and the number of elements

retained in the sparse kemel. In each case, the simulated EPI images and correspond­

ing Bo maps shown in Fig. 5.2C were used.

In the first simulation, 5 reconstructions where performed using a unique kemel

matrix, but with different numbcrs of iterations (0, 1, 2, 3 and 4). Results arc shown

in Fig. 5.4.

In a second simulations, 5 reconstructions where performed with a fixed number

of iterations (3), but different numbers of non-zero clements in the kemel matri"<.

Rcsults are shawn in Fig. 5.5. The kemel density factor is defincd as the percentage

of non-zero elements in the kemel with respect ta the kernel maximum size, Le., if n

is the number of non-zero elements, the sparsity factor is (100n/N4) %. For instance,

a sparsity factor of 1% for a matrix size of 64 x 64 means that the number of non-zero

elements in the sparse kemel is 1/100 * 644 = 167772.

ID

Simulations were aIso run in a similar fashion ta that described above, but with the

ID version of the algorithm. In the first (Fig. 5.6), the distorted EPI image was

reconstructed with different numbers of iterations (0, 1, 2, 3 and 4). In the second

(Fig. 5.7), the number of iterations was kept fixed, but the width of the diagonal

band of Am'm was set to 2, 4, 8, 16 and 32.
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Figure 5.4: Effect of the number of iterations in the 2D CG algorithm.

Five reconstructions were performed urith the same kernel, but with ditTer­
ent numbers of CG iterations (center row). The difference images between
the reconstructed images and the analytic phantom together with the RMS
differences is shoum on the bottom row.
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Figure 5.5: Effect of the sparsity level of the kemel in the 2D CG algorithm.

Five reconstructions were performed with the same number of itemtions, but
wïth kernels having different numbers of non-zero elements. The difference
images between the reconstrueted images and the analytie phantom together
wïth the RMS differenees is shown on the bottom row. The sparsity factor
is defined as the percentage of non-zero elements in the ke1Tlel with respect
to the kenlel size, i.e., if n is the number of non-zero elements, the sparsity
factor is (100n/N4) %.
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Figure 5.6: Effect of the number of iterations in the 10 CG algorithm

Five reconstructions were performed with the same kemel, but with differ­
ent numbers of CG Iterations (center row). The difference images between
the reconstrocted images and the analytic phantom together with the RMS
differences is shown on the bottom TOW•
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Figure 5.7: Effect of the sparsity of the kemel in the ID CG algorithm.

Five reconstructions were perfonned with the same number of iterntion81 but
with kernels with a diagonal band having different widths. The difference
images between the reconstructed images and the analytic phantom (bottom
row) together tUith the RMS differences is shown on the bottom row. The
sparsity factor is defined as the percentage of non-zero elements in the kernel
with resPeCt ta the kernel size1 i.e. 1 if n is the number of non-zero elements1

the sparsity factor is (100nIN4) %
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5.3.2 Comparison between the different methods for EPI cor­

rection

•
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•

•

In this section, we describe simulations whose goal was to evaluate the relative perfor­

mance of the different correction methods in EPI. The aspects studied are the effect

of noise on the input EPI images and the effect of noise in the Ba map.

On the distortion correction methods simulated

The methods compared are Conjugate Gradient (CG), Conjugate Phase (CP) Pure

Geometrie Interpolation (PGI), Intensity Corrected Geometrical Interpolation (ICGI)

and K-Space Correction (KSC).

As discussed in the literature review chapter (section 3.1.1)., the PGI and ICGI

methods do not take the sinc-like aspect of the PSF into account. As a consequence,

it was found that the performance of thosc methods can he significantly degraded for

small matrix sizes due to partial volume effects. This can he improved however by

interpolating the distorted profile over a smaller pixel size prior to the application of

those correction methods [48]. For tms reason, we implemented the two methods in

two different manners: ODe where the correction was applied directly to the distorted

image profile (labelled as PGI and ICGI), and the other were the correction was

applied on a sinc-înterpolated distorted profile (lahelled as SI-PGI and SI-ICGI).

The resulting corrected profiles were interpolated back to the original pixel size after

correction.

To summarize, the different correction methods compared are:

• 20 Conjugate gradient (CG2D)

• 10 Conjugate gradient (CGID)

• 2D Conjugate phase (CP2D)
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• K-space correction (KSC)

• Pure Geometrie Interpolation (PGI)

• Sine Interpolated Pure Geometrie Interpolation (SI-PGI)

• Intensity Correeted Geometrieal Interpolation (ICGI)

• Sine Interpolated Intensity Corrected Geomctrical Interpolation (SI-leGI)

•
CHAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.3. RESULTS

•

•

Effect of image noise

The purpose of these simulations is to evaluate the effect of noise in the EPI image

upon the correction process. Each correction method is applied to a distorted EPI

image to which noise was added. The EPI image SNR in the simulations are 00 (no

noise), 70, 50, 30 and 10. ~Ioreover, each simulation was performed with different

levels of distortions (B, C and D on Fig. 5.2). In arder ta reduce and assess the effect

of statistical fluctuations, the simulations were run 10 times for cach level of image

noise, and the RMS differences were averaged. The details of these simulations are

shown in Fig. 5.8.

Figs. 5.9, 5.10 and 5.11 show the quantitative results of the simulations for each

distortion levels. Figs. 5.12 to 5.20 showexamples of corrections at image noise levels

00, 70, and 50, and at different levels of distortion.
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5.3. RESULTS

Field map
%25, %50, ±75 Hz 1

1 1

- - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - -~ - - - - - - - - - - - - - - - - - . ~ - - - - - - - - - -
i ,

1 1

1

+ complex gaussian noise 1

, ISNR = lof, 70,50,30,10 i

RMS difference

•
•

Corrected
EPI image

..

,
Noisy Simulated
EPI image

Apply correction method
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Figure 5.8: Simulations of the effect of EPI image noise

A simulated distorted EPI was computed /rom an analytic phantom image, a
k-space trajectory matrix and a field map. Then, the following was repeated
10 times: Noise was added to the simulated EPI image and fonned a noisy
EPI image~ Then the various correction methods were applied to the noisy
EPI image, using the k-space trajectory and the field map used previously
for the creation of the simulafed EPI image. Finally, the C01Tf!cted image
was compared with the original analytic phantom by computing the RMS
difference between the two images.
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Effect of nol.. on EPI Image

5.3. RESt."LTS
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Figure 5.9: Effect of EPI image noise. l\'Iaximum Bo amplitude = ± 25 Hz.
RMS difference between images cOfTected UJith the different methods and the
analytic phantom. The small lines on top of the bars represent the standard
deviation over 10 identical trials. Sorne of them are tao small to be visible
on the graph.
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Figure S.lO: Effect of EPI image noise. Maximum Ba amplitude = ± SO Hz.

RMS difference between images cOfTected with the different methods and the
analytic phantom. The small lines on top of the bars represent the standard
deviation over 10 identical trials. Sorne of them are too small to he visible
on the graph•
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Effect of noiR on EPI i.....

Maximum Bo map amplitude: 75 Hz
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Figure 5.11: Effect of EPI image noise. Maximum Bo amplitude = ± 75 Hz.
RMS difference hetween images cOfTected UJith the different methods and the
analytic phantom. The smalllines on top of the bars represent the standard
deviation over 10 identical trials. Some of them are tao smalt ta he visible
on the graph•
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Figure 5.12: Correction with EPI s~~=oc, and BD max. amplitude = ± 25 Hz.

The images on top are the analytic phantom image (top left), the simulated
EPI (top center) and the B o field map (top right). The images in the left
part of the figure are the images reCOWJtnJcted with the various cOfTeCtion
methods (see 5.3.2). The images in the right portion of the figure represent
the difference between the reconstructed images and the analytic phantom.
A perfect correction would yield a zero difference image. The numbers close
the the difference images are the RMS efTOTS for the respective methods.
The grayscale map of the difference images rnns from -25 ta +25. The next
figures are built on the same model.
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Figure 5.13: Correction with EPI SNR=70, maximum Bo amplitude = ± 25 Hz.

112



•
CII.\.PTER s. COMPCTER SIMULATIONS AND TECl1NIQUES COMPARISONS S.3. RESULTS

300 -

~2S 1-
150

75

75

~:. -l''~
-75

•

CG2D

CP2D

P(jl

S(-PGI

Reconstructions

CGIO

KSC

ICOI

SI-ICOI

CGm
1.84

CPlD
6.87

P(jl
S.JS

SI-POl
2..04

Düferences

CGIO
1.96

KSC
3.44

Icm
S.31

SI-ICGt
2..03

•

Figure 5.14: Correction with EPI S:NR=50, maximum. Bo amplitude = ± 25 Hz.
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Figure 5.15: Correction with EPI SNR=oo, maximum Bo amplitude = ± 50 Hz.
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Figure 5.16: Correction with EPI SNR=70, maximum Bo amplitude = ± 50 Hz.
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Figure 5.17: Correction with EPI SNR=50, maximum Bo amplitude = ± 50 Hz.
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Figure 5.18: Correction with EPI S:NR=oo~ maximum Ba amplitude = ± 75 Hz.
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Figure 5.19: Correction with EPI SNR=70, maximum Bo amplitude = ± 75 Hz.
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Figure 5.20: Correction with EPI S~"R=50! maximum Bo amplitude = ± 75 Hz.
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Effect of Bo map noise

The purpose of these simulations was ta eva1uate the effect of Bo-map noise on the

correction process. Each correction method was applied to a distorted noiseless sim­

ulated EPI image, with noisy Bo maps. The Bo map SNR in the simulations were 70

and 50. In these simulations, the noise was added to the Bo map, according to the

description in Section 5.2.7, and was then spline-smoothed. The simulations were run

10 times for each level of Bo map noise, and the R.!tIS differences were averaged. The

dctails of these simulations are shown in Fig. 5.21. The need for processing the Bo

map may he bcttcr appreciated by 100king at Fig. 5.25, whcre a reconstruction was

pcrformed with a Bo map that was not processed at all (only the background values

were masked), or at Fig. 5.26, where the field map had the meaningless background

pixels masked out.

Fig. 5.22 shows the quantitative results of the simulations for each method and

each noise level. Figs. 5.23 and 5.24 show examples of corrections at Bo noise levels

50 and 10.

•

•

•
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Figure 5.21: Simulations of the effect of Bo map noise

A simulated distorted EPI was computed /rom an analytic phantom image~ a
k-space tmjectory matrix and a field map. Then, the following was repeated
10 times: Noise was added to the Bo map according to the description of
section 5.2. 7. The resulting noisy Bo map was then spline-smoothed and the
various cOrTeCtion methods were applied to the EPI image, using the k-space
tmjectory and the spline-smoothed field map. Finally, the C01Tf!.cted image
was compared wïth the original analytic phantom by computing the RMS
differenœ between the two images.
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Figure 5.22: Effect of Bo map noise

RMS difference between images cOfTected with the different methods and the
analytic phantom. The small lines on top of the bars represent the standard
deviation over 5 identical trials.
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Figure 5.23: Correction with Bo S~'"R=lO, maximum Bo amplitude = ± 50 Hz.

The images on top are the analytic phantom (top left) and the simulated EPI
(top right). The images in the lower left part of the figure are reconstructed
tUith the various correction methods (see 5.3.2). The images in the lower
right portion of the figure represents the difference between the reconstructed
images and the analytic phantom. A perfect c01Tection would yield a zero
difference image. The numbers close the the difference images are the RMS
e1TOrs for the respective methods.
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Figure 5.24: Correction with Bo SNR=50! maximum Bo amplitude = ± 50 Hz.
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Figure 5.25: Correction with a noisy, unprocessed Bo map.
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Figure 5.26: Correction with a noisy, maslœd Bo map.
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5.4. DISCUSSION

•

•

5.4.1 Eff'ect of CG parameters

Figure 5.4 shows how the CG2D correction performs with different numbers of itera­

tions. The 0 iteration case, which corresponds to the conjugate phase reconstruction,

shows complete correction for distortion, but reveals important intensity errors. The

most interesting fact is that with only one CG iteration, this intensity error almost

completely disappears. Performing more iterations does little to improvc the recon­

struction, as seen by the slow decrease of the RL\tIS errors after the first and the

subsequent iterations. From the RJ.\lIS errors, we can conclude that using 2 or 3 iter­

ations is a good compromise betwccn computation time and the level of correction.

The number of clements retained in the sparsc kemel has a less obvious importance,

as demonstrated by the fact that each reconstruction in Fig. 5.5 has a re1atively small

Iù\;18 error. However. using a larger number of elements helps to reduce the Bo

induced ghost artifacts. as the difference images show. Note that the actual density

needed for adequate ghost reduction depends on the amplitude of field inhomogeneity.

Another important point is that for a larger matrix size (e.g. 128 x 128) smaller density

(relative to the matrix size) may he needed for the same amount of ghost reduction

because the matrix size is proportional to N4 while the number of significant values

in the kemel increases roughly as N 2 •

In the ID version of the CG correction method, the effect of the number of itera­

tions is similar to that observed in the 20 version of the method (Fig. 5.6). Again 2

or 3 iterations seems ta be the best choice.

The width of the diagonal band in the kemel for CGID reconstruction has in­

teresting consequences (Fig. 5.7). When it is smaller than the maximum amount of

distortion (measured in pixels), important artifacts appear on the reconstructed image
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(see reconstruction for widths 2 and 4 in Fig. 5.7). However, as long as the width of

the central band of the kemel extends beyond the maximum distortions in the imagc,

correction is near complete. Note that, since smaller widths have computation time

advantages, the optimal width of the diagonal band depends on the level of distortion

in the image to be corrected.

•
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•

•

5.4.2 Comparison between the different methods for EPI cor-

rection

Effect of EPI image noise

Several conclusions may he drawn from Figs. 5.9, 5.10 and 5.11. The CG methods

perform better than the other methods in high SNR situations, with a small advan­

tage for thc CG2D method, due to the to its ability, unique among ail the methods

compared, to reduce ghosting artifacts, which cao he seen on the diffcrence images

of the rcconstruction examples of Figs. 5.12 to 5.20. This advaotage of the CG2D

method tends however to disappear at lower image SNR, when the artifact hecomes

overwhelmed by the noise.

One cao also see that the &\'IS error of those methods increases faster as the EPI

image noise level increases compared ta other methods, suggesting a higher sensitivity

to image noise. We note that 50-70 is a typical SNR for a 64 x 64 EPI image.

The graphs of Figs. 5.9 and 5.10 also show that the sinc interpolated version

of the PGI and IeGI method perform significantly better than the version using

no interpolation. The CP2D and KSC methods have much larger errors than the

others, due to the fallure to account for intensity errors for CP2D, and to incomplete

distortion correction, especially in large distortion situations, in KSC.

We also note that the performance of the SI-CGI and SI-ICGI is similar ta CGID
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in small distortion situations (Fig. 5.9) but gets worse as the amount of distortion

increases.

In large distortion situations (50-75 Hz), there is a region in the image that any

method fails to properly correct (Figs. 5.15 to 5.20). This region corresponds to

where the gradient of the Bo map is the largest and in a direction which causes a

compression of the distorted image. In these regions, the distortion is 50 large that

some information is permanently lost, sincc many image points are mapped to a

unique spatial location. Just above this region is another of high Bo inhomogeneity

gradient, but which causes the image to he stretched. CGID and CG2D correct for

this strctching while other methods fail ta do 50. One interesting fact is that in large

distortion situations, the reconstructions with the sinc-interpolated methods (SI-PGI

and SI-ICG!) present an important artifact in the high Bo inhomogeneity gradient

region, making the total R.~IS error larger than the non intcrpolated versions of the

samc algorithms (Fig. 5.20). This behaviour is due to the presence of the high

frcquency components t in this region of the image, which cause the sine-interpolation

ta fail.

The results of the simulation on Bo map noise (Fig. 5.22) demonstrates the effec­

tiveness of the spline smoothing procedure performed on the Bo map prior to recon­

struction. At a Bo SNR of 50 and 30, the residuals are very similar for aIl methods.

The situation is quite different when the Bo map is not processed. as shawn on Fig.

5.25, since the RJ.\1S errors are significantly larger than in Figure 5.24. The situation

is not improved by masking out the noise background in the field map (Fig. 5.26).

•

•

CHAPTER 5. COMPUTER. SIMULATIONS AND TECHNIQUES COMPARISONS 5.4. DISCUSSION

•
5.4.3 General Discussion

The simulation presented in this chapter did not consider systematic errors in the

computation of the field map. Probably the most important factor is the distortion
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5.4.4 Conclusion

of the field map itself. In the case of EPI, distortions of the image are severa! times

larger than the distortion of the field map, so they can he safely ignored. In the case

of GE imaging however, the distortion of the field map may he of the same order

of magnitude as that affccting the image ta be corrccted. Sekihara [96) has shawn

that this effect can he attenuated by correcting the distortion in the field itself before

correcting the image. According to thcir report, this sort of bootstrapping procedure

seems to correct for effects related to the geometrica! discrepancy hetween the field

map and the corrected image. Another way ta minimize the effect of distortion in the

field map is ta acquire it with a large handwidth sequence, Le. a high readout gradient.

The SNR price to be paid for this increased handwidth is minimal considering that

the field map need ooly be acquired at low resolution, and smoothing cao be applied

to reducc the noise without affccting the nature of the field map.

•

•

CIIAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.4. DISCUSSION

•

This chapter described in detail severa! computer simulations having the goal to in­

vestigate the behaviour of the Conjugate Gradient based correction methods under

different operating conditions, and ta compare these methods with other Bo map

hased methods.

The first group of simulations allowed the optimal values for the parameters of

the CG correction methods to he determîned. The convergence of the CG methods

was found ta he fast~ and a small number of CG iterations are usually needed for

achieving satisfactory reconstruction.

In summary, the following conclusions may he drawn. The CG based methods

provide more optimal solutions, in the Rl\'IS sense, than the other methods. CG2D

could partially correct for Bo inhomogeneity induced ghosts artifacts. AIl other ID

methods failed in this respect, since they do not take this component of image degra-
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dation into account. Moreover, CG-based methods, 10 and 2D, cao better correct

severe distortions that appear as a stretching of the image. The situation is different

when the distortion compresses the image. The explanation in that severe compres­

sion of the image may result in a 10ss of information, which translates as many-to-one

mapping t and numerical singularities in the kemel. It may be possible to somewhat

improve the reconstruction of near-singular compressed image regions by using many

more iterations! but even then. the noise sensitivity of the imaging equation must be

somehow controlled, by using preconditionning for instance. Severe stretching dis­

tortions on the other hand, do not in general cause the kemel ta he singular! and

CG-based methods can correct for them.

The practical significaoce of ghost reduction in EPI images is not obvious because

of the reIatively small amplitude of those artifacts. They cao he safely ignored in

simple diagnostic applications where qualitative aspects of the image are considered.

The situation may he differcnt in applications, such as ~IRI! wherc quantitative.

statistical image analysis plays and important role and the significant signals are the

result of small differences hetween images.

•

•

•

ClIAPTER 5. COMPUTER SIMULATIONS AND TECHNIQUES COMPARISONS 5.4. DISCUSSION
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Chapter 6

Application to real data

The objective of this chapter is to illustrate and demonstrate the use of the Conjugate

Gradient method for the correction of rea! EPI images and anatomical gradient echo

images.

6.1 Methods

6.1.1 EPI imaging

The practical implementation of the CG gradient method is the same as that presented

in the previous chapters. It involves the measurement of a Bo map, which is acquired

at the same spatial resolution and geometry as the EPI image to he corrected.

6.1.2 3D anatomical imaging

The tbeory developed in the previous chapters, more specifical1y the ID correction

procedure, can be applied to anatomical 3D imaging with few modifications. In this

case, the main aspect to he addressed is the computing time.

The distortion caused by static field inhomogeneity in 3D Fourier imaging bas
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an effect only in the frequency encoding (readout) direction. Hence, a N x M x S

volume. wherc IV, }.il and S refer to the dimensions in the frequency encoding, phase

encoding êUld 3D partition directions respectively, can he corrcctcd from the effect of

Ba inhomogcncity by performing }.il x S ID corrections along the frequency encoding

direction.

The assessrnent of the distortion correction is more difficult in gradient echo imag­

ing duc ta the much smaller distortions typically observed. In order to evaluatc the

distortion correction by the CG method, a pair of image volumes acquired in the

same geometry and at the saIne spatial resolution were acquired. One of the two

acquisitions used a large readout bandwidth (520 Hz/pixel) while the other, a small

bandwidth (32 Hz/pi.xcl). Because of the relationship between readout bandwidth

and distortion. one may cxpect the distortion on the high bandwidth sequence ta be

around 16 timcs smaller (520/32). Then, the correction can be applied on the low

bandwidth data. and the result compared ta the high bandwidth image considered as

the ··gold standard". The high and low bandwidth imaging sequences are displayed

in Fig. 6.1.

•

•

CUAPTER 6. APP:'ICATION TO REAL DATA 6.2. REStJLTS

•

6.2 Results

6.2.1 Correction of real EPI images

The CG and CP correction methods were applied to real blipped EPI images of a

phantom and of a volunteer's head (matrix size = 64 x 64, TE = 35 ms, Tacq = 61

ms) on a Siemens Vision 1.5 T scanner. Non-uniform sampling of the signal was

performed in order ta obtain equally spaced points in k-space. This non-uniform

sampling has been taken into consideration in the calculation of the kemel in Eq.

(4.1). No phase correction was applied to the EPI raw data.
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Figure 6.1: High and low bandwidth gradient-echo 3D imaging sequences.

Image sequences used far the gradient echo example. Two data sets, with dif­
ferent bandwidths, were acquired with a gradient-echo sequence. The inverse
of the total readout durotion is the bandwidth per pixel.

A normal spin echo sequence (matrix size = 64x64, TEl/TE2/TR = 10/14.48/400

ms), interleaved. with a second sequence having the echo shifted by ~t = 4.480 ms,

was used to generate the Bo map (Fig. 6.2). The Bo field map was obtained by

subtracting the phases of the two acquisition. With this value of ~t, water and

fat protons, although precessing at different rates, demonstrate the same relative

phase at TE and TE+at, which makes the phase difference observed between the

two acquisitions dependent upon static field inhomogeneity only and not to chemical

shift [46}. We found that, for this example, phase unwrapping was not required.

We note that, although the acquired field map is itself subject to distortion due ta

field inhomogeneity, the magnitude of these distortions is negligible compared ta the

distortions affecting the EPI image.
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For the acquisition of both the phantom and the valunteer head data, the field

map was fitted with 2D splines in order ta minirnize noise effects.
•

CHAPTER 6. APPLICATION TO REAL DATA 6.2. RESULTS

In both the CG2D and CP2D methods, the 4D kemel needs ta he computed. This

took araund 5 minutes for this example. The CG iterations, performed for the CG2D

method, took a few sec~s to ccnolete.

• •~ 1 i

•

•

Slïce selection l.......1-_-=--= r--!-,-- _- U
r--
~.

Phase encoding __~~__--------~l---- -----

Frequency encoding ----'- ----' -'-_~_~__~ ~

Figure 6.2: Bo field mapping sequence.

In this sequence~ two data sets are acquired in an interleaved manner. The
first acquisition is a standard spin-echo. The second echo is acquired asym­
metrically UJith respect to the spin-echo signal, with a time difference between
the spin-echo and the gradient echo equal to Ât. The Bo map is obtained
/rom the difference 01 the phase images t!&rf> resulting from the reconstruction
01 the two data sets. At any point 01 the image, the frequency offset with
respect to the nominal resonance frequency is given by ÂI = ÂcP/(21rt!&t).

6.2.2 Results of correction of a 3D flash image

Two volumetrie data sets, with a matrix pradueing isotropically resolved voxels of 1 x

1 x l m.m3
t were acquired with bandwidths 32Hzfpixel and 520Hzfpixel respectively.

For the high bandwidth sequence TRfTE = 11.6/5.2 ms and for the low bandwidth
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Spin-echo image Field map

6.2. RESULTS

204

Corrected images

CPID

SE - EPI SE - CP2D SE-CG2D

CGIO

CG2D

•

Figure 6.3: CP and CG reconstructions of the EPI image of a phantom.

The top images show a spin-echo image of the phantom along with a mw
and a processed field map. The center images, are an EPI image of the
sarne phantom (leftJ and the reconstruction with the CPID, CP2D~ CGID
and CG2D methods. In the bottom images, the difTerence between the spin
echo image and the EPI image, CP2D and CGID COfTections respectively is
displayed•
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Spin-echo image Field map

6.2. RESULTS

125

Corrected images

•

EPI image
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CGID
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Figure 6.4: Distortion correction on a volunteers head EPI image.

The top images show a spin-echo image of the volonteer's head along wïth a
mw and a processed field map. The center images, are an EPI image of the
same volunteer's head (left) and the reconstruction with the CPID, CP2D,
CGID and CG2D methods. ln the bottom images, the difference between the
CG2D and CPID CO'f'Tections is displayed.
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sequence, TR/TE = 40.4/19.6 ms.

A 3D gradient-eebo BO map sequence was also acquired (TR/TE = 52/5.2 ms)

with a 2 x 2 x 2 mm2 resolution.

Fig. 6.5 shows the result of CG reconstruction of an image of the 3D flash ac­

quisition. The comparison is qualitative here, but the difference images display some

reduction of the distortion of the Low bandwidth image compared to the high band­

width image. The correction of the whole volume with the CGID method took ap­

proximatcly 2 hours.

•
ClL\PTER. 6. APPLICATION TO REAL DATA 6.3. DtSCtJSSION

•

•

6.3 Discussion

6.3.1 EPI

The EPI examples, shows that both the CG and CP mcthods significantly reduce

the geometrical distortions. ~Ioreover, the CG mcthods. as opposed to CP, can be

seen to also correct for intensity errors. This intcnsity correction is more obvious on

the phantom image, because of its fiat intensity profile. This is boume out by the

simulations.

These two examples do not show the difference between ID and 2D processing.

This is because other factors cause N /2-ghosting that masks the BO inhomogeneity

related ghost artifacts. Among these factors, wc mention ADC offset and eddy cur­

rents, because they can induce non-ideal effects that affect differently odd and evcn

k-space lines.

The in-vivo experiment (Fig. 6.4) demonstrates again that the best performance

is achieved by the CG1D and CG2D approaches. The intensity correction provided

by CG method can he seen on the difference image CG2D - CPID.

138



•
CIlAPTER 6. APPLICATION TO REAL DATA

HW =32 Hz, original BW = 32 Hz, corrected BW=520Hz

6.3. DISCUSSION
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Figure 605: Distortion correction a flash acquisition with the CGlD methodo

The top left image is taken from a 3D data set acquired with small bandwidth,
while the top right image is acquired with a large bandwidth. Because the
inverse relationship between bandwidth and distortion, the large bandwidth
sequence is e:r:pected to represent the reality more closely than the law band­
width image. The Top centre image is the cOfTected low bandwidth image.
The bottom images show the difTerent between the low and high bandwidth
images belore and after CGID con-ection.

6.3.2 Gradient-echo imaging

The simulations for EPI have shown that the ID version of CG reconstruction per­

forms in a manner similar to the sinc-interpolated geometric interpolation methods.

This points out the fact that using CG for ID problems may he overkill, particularly

in the case of small distortion, considering the significantly longer processing time re-
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quired. We nevertheless present an example of CG correction on a real gradient-echo

acquisition. with the purpose of demonstrating the the general applieability of the

CG correction method to this kind of data.

In the case of 3D imaging, for a 1 mm isotropie resolution, the acquisition time

for a 256 x 256 x 128 scan can be of the order of 15 minutes. Because the duration

of the acquisition alone is considerable, the associated field map should be acquired

as fast as possible. The easiest way to measure the field map quickly is to reduce the

spatial resolution. For a factor of 2 or 4 reduction in spatial resolution, the scan time

is reduced by a factor of 4 or 16, to around 4 or 1 minutes respectively. Furthermore,

since the field map is inherently a low frequency function, and that it undcrgoes further

smoothing for noise reduction (e.g. spline fitting, low-pass filtering) , the penalty for

measuring a field map with lower resolution than the image to be corrected appears

to be small. Nloreover, from the simulation results that have shown that the CG

methods are somewhat sensitive to field map noise. using the lower spatial resolution

field map has the additional advantage of presenting a higher SNR.

•

•

CIIAPTER 6. APPLlCATION TO REAL DATA 6.4.. SUMMARY

•

6.4 Summary

This chapter demonstrates the practieal application of the CG based methods, both

on EPI images and a gradient-echo image. In the case of EPI image correction, both

the CP and CG methods reduced the geometrical distortion equally weil. ~Ioreover,

the ability for the CG methods to better compensate for intensity inhomogeneity

than CP methods, as observed in the simulations of the previous chapter, was clearly

demonstrated in the phantom EPI example. These example do Dot show, however,

the advantage of full 2D correction versus ID processing, because Bo inhomogeneity

induced ghost artefact were Dot the most important ghost artifact on these images.
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For gradient-echo correction, the ID CG and CG methods were applied. In order

to somewhat assess the distortion correction, two data sets were acquired: one with

small bandwidth and relativeley large distortion, and one with large bandwith and

little distortion. The second data set was used as a reference against which the CG

correction of the first data set was compared. Results showed an improvement of the

geomtrical accuracy after the correction.

•

•

•
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Chapter 7

Conclusions

This thesis has dealt with the issue of distortion and image restoration in ~IRI. Geo­

metrical distortion is often more difficult to identify than other artifacts, and thereforc

may not be readily appreciated. Small amounts of distortion are virtually impossible

to distinguish visually without relying on an external rcfercnce~ but can cause localiza­

tion eITors that can reach several miIlimeters. Obviously this cxtreme precision is not

needed in every applications but one must always be suspicious. Bo inhomogeneity

induced ghosting artifact in EPI images, although usually very sma1l, can nevertheless

have important consequences~especially in ~IRI studies, where time-varying patterns

of pixel intensity that are barely larger than the noise level are considered [60~ 58, 32].

Beyond the diagnostic applications, ~IRI is increasingly being considered as an

aid for therapeutic purposes, such as ~m Image-Guided surgery or radiotherapy

[85, 31, 6], because of its ability to exhibit anatomical and functional characteris­

tics complementary to those obtained from other imaging modalities. This is where

the geometric accuracy is essential and the issue of geometrical distortions in NIR

images arises.

Radio-therapy is a field where MR images are increasingly relied upon. Computed

142



Tomography (CT) already plays an important role in this field, because the electronic

density of tissues can be directly obtained from the CT images, allowing treatment

planning software to perform tissue inhomogeneity corrections and compute a more

accurate dose distribution. In spite of this, ~IR may be of great utility as a guide to

determine the extent of regions to treat and this is where ~IR distortion becomes a

concem. With the advent of I~IRT (Intensity ~IodulatingRadio-Therapy) [110, 86},

dose distributions can be tailored with much more precision than with conventional

static tcchniques and the issue of the accurate delimitation of the region to be treated

needs to be addressed even more.

Still in the domain of radio-therapy, ~IR has heen used for some time as a tool for

relative dosimetry [30, 16, 79}. It is particularly useful in applications where 3D dosc

distributions arc needed and difficult to obtain by other means, sucb as curie-therapy,

where radioactive sources are inserted into the patient, and can also he an esscntial

tool for the quality assurance of complicated dynamic trcatment techniques. Because

the spatial dose distribution is inferred from the NIR scans of a volume of Fricke gel,

any geometrical and intensity distortions in these images will result in errors on the

measured dose distribution.

•

•

CfIAPTER 7. CONCLUSIONS 7.1. TIIESIS SUMMAR.Y

•

7.1 Thesis Summary

The thesis begins by introducing the main motivations and objectives for this work.

Correction of distortion in EPI images and anatomical imaging (sucb as 3D gradient

ecbo) are identified as the main objectives.

The second chapter presents a summary of ~IR imaging theory, from basic physical

theory to imaging principles. Concepts needed throughout the thesis, sucb as EPI

imaging, Bo field mapping, the mathematics and physics of distortion, and Conjugate
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Gradient method, were aIso brieflyexplained.

Chapter 3 reviews the main published distortion correction methods, focusing on

Bo-map based methods. The relevance of the Bo-map based methods over the others

for distortion correction of dynamic EPI data and large anatomical data sets have

been discussed.

The fourth chapter begîns the mathematical analysis of the EPI distortion proh­

lem, and showed that in EPI, because of the particular k-space trajcctory, the artifacts

induced by Bo inhomogeneity are more complicated than in normal2D or 3D Fowier

imaging. In addition to the usual distortion, ghosting artifacts are present. The

formalism for the proposed 2D correction method is developed together with a sim­

plification of the computation process based on the low rank of the k-spacc trajectory

matrix. For cases where the distortions are approximately or truly one dimensional,

the ID specialization of the method is aIso derived, allowing the computational com­

plexity of the correction problem ta be dramatically reduced from a large AI'J.V x At[N

problem to N small A-f x }.If problems.

Chapter 5 presents the main results of the thesis, based on computer simulations.

The goal of this chapter is two-fold: it allows the effect of different parameters involved

in the Conjugate Gradient reconstruction in 10 or 20 to be studied, as weil as the

different Bo-map based methods to be compared. This chapter discusses in detail

the various aspects of the simulations and presents results in both quantitative and

qualitative forms.

A few examples of the application of the CG-based correction methods on actual

MR scans are shown in Chapter 6. The objective is to demonstrate that these tech­

niques are applicable to real-life problems, and discusses the particularity of applying

the correction methods on real data. The problem of the validation of the correction

in a real situation was not addressed in detail however.

•

•

•
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In Appendix A are included the ~Iatlab source code of the main functions that

constitute the implementation of the ID and 2D CG methods, together with that of

other Bo map based methods. We believe that it is important that rcsults of this thesis

can be accurately reproduced, used and, doubtlessly, improved by other researchers.

Due to the nature of numerical computations, where small differences in implemen­

tation may cause notable changes in the rcsults, the only way to ensure that the

implementation of algorithms found in this thesis is clear for everybody is to include

the source code. The possibility of implementation errors are unfortunately always

possible (although rigorous verification and testing can minimize this possibility) and

submitting the source code is a way ta eventually unmask thcse bugs. Beyond bugs,

the possibility that the algorithms have not been fully optimized is even more likcly,

if not certain. Considering the substantial computation effort nœded to apply some

of thesc algorithms, optimization may make a non negligible differencc when using

them in a clinical environment.

•

•
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•

7.2 Main findings

The inverse problem approach was first suggested by Kadah and Chu [54} in order

to correct for ID distortion problems, Le. when the image degradation is only in

one direction. We have gone further by implementing a 2D version of this correction

approach, which can potentially eliminate second order ghosting artifacts, in addition

to geometrical distortion.

The 2D implementation of the inverse problem method involves a very large

system of equations. For example, a 4096 x 4096 system of equations is required

for the 2D correction of a modest 64 x 64 image. The storage requirement for

such a linear system in complex form and double precision is 4096 x 4096 x 2 x
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8(hytes)/1024(hytes/kB)/1024(kB/MB) = 256MB. For a 128 x 128 image size, the

full storage requirement would be of 4Gb. Therefore, direct methods of solutions

(pseuso-inversc, SVD, Gaussian elimination) are not practical for this sort of problem

due to the size of the equation systems involved.

In this thesis! approximations and computational methods were developed to make

the 2D restoration problem practically achievable in the case of the hlipped, single­

shot EPI sequence, with modest computer hardware and in reasonable times. The key

element of this simplification is to recognize that the equation system representing

the imaging process is sparse whcn expressed in image space. This fact allows the

useful information in the kemel of the system of equations to be stored in many fcwer

clements than At[2 x N2, for a kI x N image size.

We have found that the most computationally intensive part of the 20 correction

is the computation of the sparsc kcmel. Chapter 4 showed that the complcxity fol"

the calculation of the kemel cao be rcduced by exploiting the low-rank characteristic

of the EPI blipped sequence k-space trajectory.

The inverse problem method is more elegant and mathematically rigorous, but is

more time consuming that other more direct approaches. It was found that the power

of the inverse problem approach could potentially be beneficial in EPI image restora­

tion. But even in this case, other factors prcvented us from clearly demonstrating

this benefit in-vivo. Furthermore, CG hased methods have been shown to better deal

with large distortions that stretch parts of an image. When distortion appears as a

compression of the image, information may he irretrievably lost and CG methods may

fail, like the other methods, to correct the image.

•

•

•
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• 7.3 Future Work

7.3. Ft:Tt.:RE WORK

•

•

A numbcr of important issues have not been addressed in this thesis. This section

identific~ ~on1{' of thcm and suggests avenues of investigation.

7.3.1 In-Vivo Experimental validation: MR tagging

The absolute in-vivo validation of a distortion correction technique is not an easy

problem duc to the fact that ""reality" may not be known. For this purpose, the use of

tagging sequences. such as Spatial NIodulation of ~Iagnetization(SPA~I~I) [2,68, 114]

and DANTE sequences [711 may be considered. The principle is to apply a tagging

pulse that produce a pattern of parallel strips, or a grid, on top of the imaged object.

before each rcpctition of a normal acquisition sequence. The geometrical distortion

then appcars as a defonnation of this strip pattern. Two or three strip patterns cao

be applied in sequence so as to form a two-dimensional of thrce-dimensional grid.

Tagging methods sucb as these have been used for other reasons than the assessment

of geometrical distortion. for instance motion measurement [82, 3] and estimation of

in-vivo spatial rcsolution [104].

7.3.2 Field map acquisition and processing

The essential element of the CG method, and many other reconstruction methods

is the field map. Whichever method is used, the correction can be ooly as good

as the field map is accurate and representative of the rcal static field distribution.

Consequently, an important part of the improvement of Bo-based correction methads

relies on the field map acquisition and processing side.

It has been shawn that the CG method is somewhat sensitive ta the noise in the Bo

field map, and that some pracessing must he performed in order to reduce its noise
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7.4 Concluding remarks

prior reconstruction. The best approach we have found so far is to perform spline

smoothing on the field map. However, this can be time and memory consuming for

large data sets. It would he interesting to consider other field-map processing meth­

ods, and particularly edge preserving noise-reduction methods, such as Anisotropie

Diffusion [44], or Wavelet Packet Filtering [Ill} which may be considered for such a

task.

Another aspect of field map processing that has not been addressed in this work

concerns phase unwrapping [46, lOI}, which is necessary when the magnitude of the

field map exceeds the dynamic range allowed by the field map sequence. This problem

is not as simple as it may seem for complicated images containing small regions

isolated from the rest of the image. Furthermore, the low resolution of the field map

can complicate the task of accurately detcrmining where phase wraps occur.

•

•
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•

NIRI imager technology improves every day. l\'Iagnctic field homogencity is constantly

improving, gradient fields are increasingly more linear and stable. One factor that

cannot be improved is the subject dependent susceptibility induced field inhomogene­

ity. Better shimming can improve the situation, but high order shims are need.ed to

take the full complexity of subject-induced field inhomogeneity into account. With

the improvement of the technology, such subject dependent factors may likely become

the dominant effects as the other design-rclated factors are red.uced. On the other

hand, the tremendous increase in computing power may suggest that methods that

are ignored today, because of their large computing cost, may find sorne applications

in the future.

While NIR technology continues to improve, Nffi imaging is being applied in in-
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creasingly difficult conditions. For instance, interventional ~IRI [43, 61] uses open

magnets where it is difficult to obtain good field homogeneity. In such circumstances,

image correction methods may have an important role in the future, considering that

the processing power is likely to improve as welle

In this thesis, we have added a new method to an already large set of correction

approaches. Since no single correction method or imaging sequence will ever solve

ail the problems encountered in the complex reality of NIRI, a variety of available

options is the best guarantee that magnetic resonancc imaging will continue to evolve

and improvc as a diagnostic. trcatment support and basic rescarch modality. Wc

modestly hope that this work will contribute to this evolution.

•

•

•
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Appendix A

Source code

A.1 CG 2D algorithm

BO: MxN BO map (Hz)

traj: EPI trajectory (s)
thresh: sparsity threshold (% of maximum value)

trajeetory

MxNxKxN 4D sparse kernelA:

function A = kerne14d(BO. traj. thresh)
%
%A = kerne14d(BO. traj. thresh)
%
% Computes the 4D EPI kernel from a BO map and a k-space
%
% Input:
%
%
%
%Output
%

•
%get image dimensions
(M.N] = size(BO);

% compute singular value decomposition of the k-space trajectory
[U,S.V] = svd(traj);

%allocate space for sparse matrix
A=sparse(M*N.M*N);

•
y. loop over image pixel coordiDates
for (jj=-N/2:N/2-1)

for (ii=-M/2:M/2-1)
y. computes the rank-two decamposition of the EPI PSF
[ul.u2,v1.v2] = psf_dec{U.S.V.BO(ii+M/2+1.jj+N/2+1).ii.jj);
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APPENOIX A. SOURCE CODE

1. computes PSF
PSF = ul*vl+u2*v2;

1. set elements smaller than threshold to zero
PSF(abs(PSF}<thresh/l00) = 0;

1. compute column index in the 4D kernel
rr = (ii+M/2}+(jj+N/2)*N+l;

1. fill up one column of the 4D kernel
A(:,rr) = sparse(PSF(:»;

end;
end;
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M= size(U,l);
N = size(V,l);

SiDgular value decomposition of the k-space
trajectory matrix. [U,S,V] = svd(traj)
Local field inhomogeneity
Pixel location

A.l. CG 20 ALGORITIIM

i.e.

main PSF component column vector
ghost PSF component column vector
main PSF component row vector
ghost PSF component rowvector

dB
[m,n]

APPENOIX A. SOURCE CODE

funetion [pl,p2,ql,q2] =psf_dec(U,S,V,dB,m,n)
%
y. [pl,p2,ql,q2] = psf_dec(U,S,V,dB,m,n)
%
% Computes the rank-two EPI PSF decomposition,
% the 4 vectors pl,p2,ql and q2 such that
%pl*ql + p2*q2 = PSF
%
% Input: [U, S ,Vl
%
%
%
%
% Output: pl
% p2
% ql
% q2
%
Y.

•

•

Ul = U(:,l);
U2 = U(: ,2) ;
Vl = V(: ,1) ;
V2 = V(: ,2) ;
Sl = 5(1,1);
S2 = S(2,2};
k = (-M/2:M/2-1)J/M;
1 = (-N/2:N/2-1)/N;

pl = fftshift(ifft(fftshift(tmpl»};
p2 = fftshift(pl)j

•

tmpl = cos(2*pi*(dB*S2*02(1)*V2J».*exp(-2*pi*i*l~);

ql = fftshift(ifft(fftshift(tmpl}»j
tmp2 = -i*sin(2*pi*(dB*S2*U2(1)*V2J}).*exp(-2*pi*i*l*D)j
q2 = fftshift(ifft(fftshift(tmp2)})j
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Nx1 solution vector x

MxN Matrix A
Mx1 Constant vector b
Number of iterations

Solves A'A x = A' b
with the conjugate gradient method.
A'b is taken as the initial guess.

A.l. CC 20 ALCORlTHM

function X = cg2(A,b.nit)
1.
y. X = cg2(A.b.nit)
y.
1­
1­
Y.
1­
Y. Input: A
y. b
1. nit
1.
y. Output: X

y.

•

•

tol = 1e-4;
x=A'-b;
ii = 0;
r = A'-(b-A-x)j
d = r;
delta_new = r'*rj
delta_old = delta_newj

for ii=l:nit
q = A'-(A*d);
alpha = delta_Dew!(d'*q)j
x = x+alpha*d;
r = r-alpha-q;
delta_old = delta_new;
delta_new =r'-r;
beta = delta_nev/delta_oldj
d = r+beta-dj

end;
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• A.2 ID CG algorithm

A.2. 10 CG ALGORITHM

NxN matrix

Nx1 distortion vector (in pixel units)
Width of main diagonal.

A

delta
ndiag

function A = A_mat(delta.ndiag)
%
% A = A_mat(delta.ndiag)
%
% Computes the A matrix for 1D correction
%
% Input:
%
%
% Output:
%

%get vector dimension
N = length(delta);

•
% set default value for ndiag
if (nargin==1)

ndiag=N;
end;

% allocate space for kernel A
A =zeros(N);

% loop over elements
for (ii=O:N-1)

for (jj=circ_ind([round(ii-ndiag!2):roundCii+ndiag!2)] .N»
tmp = ii-jj-delta(ii+1);
tmp2 = tmp/H;
if (tmp-=O)

s = sin(pi*tmp)!sin(pi*tmp2);
else

s = N;
end;
A(ii+1.jj+l) = expC-pi*i*tmp2)*s;

end;
end;
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funetion undist = CG_1D(dist,BO,traj,nit,ndiag)
1.
1. undist = CG_1D(dist,BO,traj,nit)
1.
1. Applies the CG lDethod to all columns of an image.
1.
1. Input: dist MxN distorted image
1. SO MxN field lDap (Hz)

1. traj MxN k-space trajectory (s)
1. nit number of CG iterations
1. neliag width of diagonal band of the kernel
1.
y. Output: undist MxN corrected image
1.

1. get image dimensions
(K,K] = size(dist);

y. set defaults
if nargin < 5

neliag = M/4;
end
if nargin < 4

nit = 3;
end

1. allocate space for corrected image
undist = zeros(M,N);

1. loop over columns
for jj=l:N

y. effective bandwidth
SV = l/(traj(K,jj)-traj(l,jj»;

'le compute kernel
A = sparse(A_mat(BO(:,jj)/BW,ndiag»;

1. apply CG on column
undist(:,jj) = cg2(A/M, dist(:,jj), nit);

end;
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APPENDlX A. SOURCE CODE

• A.3 PGI and SI-PGI algorithms

A.3. PCI AND SI-PCI ALCORITUMS

Weis, J. and Budinsky, L., Simulation of the influence of
magnetic field inhomogeneity and distortion correction
in MR imaging.
Magnetic Resonance Imaging 8(4), pp 483-9, 1990.

MxN corrected profile

Mx1 distorted profile
Mx1 pixel displacement vector (in pixel units)

dist
delta

M = length(dist);
undist = zeros(M,l);
for ii=2:M-1

L = ii-0.5+0.5*(delta(ii-l)+delta(ii»;
R = ii+0.5+0.S*Cdelta(ii)+delta(ii+l»;
IIp = round(L);
Irp = round(R);
% make sure indices are valid
if CIlp<l) IIp = 1; end;
if (llp>M) IIp = M; end;
if CIlp<l) IIp = 1; end;
if Clrp>M) Irp = M; end;
Dl = L-Cllp-0.5);
Dr = R-Clrp-0.5);
n = lrp-Ilp+l;
if n>l

undistCii) = (l-Dl)*distCllp) + Dr*dist(Irp);
for(kk=Ilp+l:lrp-l)

undist(ii) = undist(ii)+dist(kk);
end;

else
undist(ii) = (Dr-Dl)*distCIlp);

end;
end;

function undist = PGI(dist,delta)
y.
y. undist = PGl(dist,delta)
y.
y. Implementation of the Weis's correction method
y.
y. Input:
y.
y.
%Output: undist
y.
y.
y. REF:
y.
y.
y.
y.

•

•

156



•

•

•
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undist(l) ; dist(l);
undist(M) ; dist(M);
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A.3. PGI AND Sr-pGI ALGOIUTHMS

MxN corrected image

MxN dis'torted image
MxN field map CHz)
MxN k-space trajectory Cs)
number of points for sinc interpolation

Input: dist
BO
traj
nin't

APPENDLX A. SOURCE CODE

function undist = PGI_l0(dist.BO.traj.nint)
y.
y. undist = PGl_1DCdist.BO.traj.nint)
y.
7- Applies the PGl method to all columns of an image.
7-
7­
7­
7­
Y.
Y.
% Output: undist
7-

•

7- ge't image dimensions
[M.N] = sizeCdist)j

•
% se't defaul't: no in'terpolation
if Cnargin < 4)

nint = Mj
end;

% allocate space for corrected image
undist = zerosCM.N)j

% loop over columns
for jj=l:N

y. effec'tive bandvidth
BV = l/C'trajCM.jj)-traj(l.jj»;

y. interpolation
if (nint > M)

% interpolates to nint points
dist2 = interpftCdist(:.jj).nint)j
B02 = BO_interp(BO(:.jj)/BW.Dint)j

y. apply PGl on interpolated data
tmp = PGI(abs(dist2).B02);

•
7- interpolate back to original size
undist(:.jj) = interpft(tmp.M);

1. no interpolation

158



•

•

•
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elseif (nint == M)
undist(:,jj) = PGI(abs(dist(:,jj)), BO(:,jj)/BW);

y. not a good idea
else

error( 'PGl_1D: invalid interpolation parameter')
end;

end;
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REt:": Sekihara, K. and Kuroda, H. and Komo. H., Image restoration from
non-uniform magnetic field influence for direct Fourier NMR imaging.
Phys. Hed. Biol. 29(1). pp. 15-24. 1984

A.3. pel AND SI-PGI ALGORITUMS

MxN correeted profile

Mx1 distorted profile
Mx1 pixel displacement vector (in pixel units)

undist

dist
delta

APPENDIX A. SOtrRCE CODE

function undist = ICGI(dist,delta)
y.
y. undist = ICGI(dist,delta)
y.
y. Implementation of the Intensity Compensated Geometrieal Interpolation
y. method.
y.
y. Input:
y.
y.
y. Output:
y.
%
Y.
Y.
Y.

•

•
H = length(dist);
undist = zeros(M.1)i
for ii=1:M-1

g = ii+delta(ii)i
Ip = floorCg);
y. make sure Ip is fine
if (Ip<l) Ip = 1; end;
if Clp>M-1) Ip = M-1i end;
o =g-Ip;
undist(ii) = ( (l-D)*dist(Ip) + D*dist(Ip+1) ) * ...

( 1+ delta(ii+1)-delta(ii) );
end;
undistCM) = distCM);
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A.3. PCI AND SI·PCI ALCORITHMS

MxN eorrected image

MxN distorted image
MxN field map (Hz)

MxN k-space trajectory (s)
number of points for sine interpolation

Input: dist
BO
traj
nint

APPENDIX A. SOURCE CODE

funetion undist = ICGI_1D(dist,BO,traj,nint)
1.
1. undist = ICGI_1D(dist.BO,traj,nint)
1.
1. Applies the IeGI method to all eolumns of an image.
1.
1.
1.
1.
1.
1.
'l. Output: undist
1.

•

1. get image dimensions
[M,N] = size(dist);

•
1. set default: no interpolation
if (nargin < 4)

nint = Mi
end;

% alloeate spaee for eorreeted image
undist = zeros(M,N);

'l. loop over eolumns
for jj=l:N

1. effective bandwidth
8W = l!Ctraj(M.jj)-traj(l.jj»;

y. interpolation
if (nint > M)

% interpolates to nint points
dist2 = interpftCdist(:,jj).nint)i
802 = BO_interp(BO(:,jj)/BW,nint);

y. apply ICGI on interpolated data
tmp = ICGI(abs(dist2).B02);

•
7. interPOlate baek to original size
undist(:,jj) = interpft(tmp,M)i

1. no interpolation
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elseif (nint == M)
undist{:.jj} = ICGI(abs(dist(:.jj}}. BO(:.jj}/BW);

•

•

•

APPENDIX A. SOURCE CODE

%not a good idea
else

error('ICGI_1D: invalid interpolation parameter')
end;

end;
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• A.4 KSC algorithm

.\.4. KSC ALCORlTHM

MxN corrected profile

Mxl distorted profile
Mx1 pixel displacement vector (in pixel units)

undist

dist
delta

function undist = KSC(dist,delta)
y.
y. undist_tm = KSC(dist,delta)
y.
y. Implementation of the K-Space Correction method (fourier version)
y.
y. Input:
y.
y.
y. Output:
%
y.
Y. REF: Weisskoff R.M. et al., Correcting Gross Distortion on
y. Echo Planar Images, Proceedings of llth Ann meeting SMR p.411 (1992)
Y.

•
M = length(dist);

% compute synthetic data
k = fftshift«0:(M-l»J-M/2)j
m = CO: CM-l) ) j

k_synth = exp( -2*pi*i*k*(m-delta')/M) * distj

y. reconstruet undistorted image
'le phase correction on reconstructed image because k=-M/2 -> t=O in

'le the trajectory
'le exp(2*pi*i*delta/2)
y. no need to compute this factor if only the magnitude corrected
y. image is wanted
y. undist = ifft(k_synth).*expC2*pi*i*delta/2)j
undist = ifft(k_synth)j
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MxN corrected image

APPENDOC A. SOURCE CODE

MxN distorted image
MxN field map (Hz)

MxN k-space trajectory (s)

•

•

•

function undist = KSC_lD (dist •BO. traj)
1.
Y. undist = KSC_1D(dist.BO.traj)
1.
1. Applies the KSC method to all columns of an image.
1.
1. Input: dist
1. BO
1. traj
1.
y. Output: undist
1.

1. get image dimensions
[M.N] =sizeCdist)j

1. allocate space for corrected image
undist = zeros(M.N);

1. loop over columns
for jj=l:N

1. effective bandwidth
BW = l/(traj(M.jj)-traj(l.jj»;

1. apply KSI on column
undist(:.jj) = KSC(dist(:.jj).BO(:.jj)/BW)j

endj
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• A.5 Analytic phantom

A.5. ANALYTIC PfIANTOM

FOVx = parx(l}; Nx = parx(2};
FOVy = pary(l); Ny = pary(2);
dx = FOVx/Nx;
dy = FOVy/NYi
dkx = l/Nx/dx;
dky = l/Ny/dy;

(intensity)

[FOVx, Nx]
[FOVy, Ny]
Radius of the circle
[x,y] of the center
Multiplicative factor

(Nx)x(Ny) matrix representing the k-space
sample of the object.
for a FOV of CFOVx}c(FOVy)

center:
int:

fUDc~ion samples = circle2D(parxtparytrO,center,int)
%
% samples = circle2D(parx,pary,rO.center,int)
7.
7. Returns the samples of the 2D Fourier transform of a circle
7. at the positions kx t ky.
7.
7. Input: parx :
7. pary:
7. rO:
7.
7.
7.
%Output samples:
%
7.
7.

•
[let, ky] = meshgrid( -1/2/dx:cllct:l/2/dx-dkx, 1/2/dy:-dky:-l/2/dy+dky) i
r = sq~(kx.~2+ky.-2);

ind_orig = find(r=aO)i
r(ind_orig) = 1;
samples = zeros(size(let»i
samples = int*rO*besselj(1.2*pi*rO*r)./ri
samplesCind_orig) = tnt*pi*rO-2;

7. offcenter
samples = samples.*exp(2*pi*i*CcenterCl}*kx+center(2)*ky»;
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A.S. ANALYTIC PHANTOM

[FOVx, Nx]
[FOVy, Ny]
a and y dimensions of the rectangle
[x,y] of the center
Multiplicative factor (intensity)

(Nx)x(Ny) matrix representiDg the k-space
sample of the objecte
for a FOV of (FOVx)c(FOVy)

center:
int:

APPENDIX A. SOURCE CODE

function samples = rect2D(parx,pary,dim,center,int)
y.
y. samples = circle2D(parx,pary,dim,center,int)
y.
y. Returns the samples of the 2D Fourier transform of a rectangle.
y.
y. Input: parx :
y. pary:
y. dim:
y.
y.
y.
y. Output samples :
y.
y.
y.

•

•
FOVx = parx(l); Nx = parx(2);
FDVy = pary(l); Ny = pary(2);
dx = FOVx/Nx;
dy = FOVy/Ny;
dlct = l/Nx/dx;
dky = l/Ny/dy;
[a, ky] = meshgrid( -1/2/dx:dkx: 1/2/dx-d1ct, 1/2/dy:-dky:-l/2/dy+ciky) ;

epsilon = 0.0001;
ind_orig = find(a==O)j
kx(ind_orig) =epsilon*ones(size(k%(iDd_orig»);
ind_orig = find(ky-aO)j
ky(ind_orig) = epsilon*ones(size(ky(iDd_orig»)j
samples = zeros(size(kx»j
samples = int*sin(pi*dim(1)*kx)./(pi*kx).*sin(pi*dim(2)*ky)./(pi*ky)j

1. offcenter
samples = samples.*exp(2*pi*i*(center(1)*kx+center(2)*ky)};
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% 2D analytical phantolD test
7.
7.
7.
7.
7.

clear all;

7. imaging parameters
FOVx = 256;
FOVy = 256;
Nx = 64;
Ny = 64;
Radius = 110;
T = 2*Radius/sqrt(2)*O.98;
Width = la;
Gap = la;

1.%%%1.1.1.%%1.1.1.1.1.1.1.1.1.1.%

N_squares = floor( (T+Width)/(Width+Gap) )
T = N_squares*(Width+Gap)-Gap;

% phantom background
k_space = circle2D([FOVx Nx].[FOVy Ny] .Radius.[O 0].1);

A.S. ANALYTIC PHANTOM

•

% squares
for ii = l:N_squares
for jj = l:N_squares

disp([' ... computing square' num2str(ii). ',', num2str(jj), , ... ']);
centerx=-T/2+Width/2+(ii-l)*(Gap+Width);
centery=-T/2+Width/2+(jj-l)*(Gap+Width);
k_space = k_space + •••

reet2D ([FOVx Nx] • [FOVy Ny] • [Width Width] , [centerx centery] ,2) ;
end;

end;

y. reconstruet
phantolD = fftshift(fft2(fftahift(k_space»);

167



APPENOIX A. SOURCE CODE

• A.6 EPI image simulation

A.6. EPI IMAGE SIMLï.ATlON

MxN simulated EPI image

MxN image
BO field map in Hz
k-space trajectory in s

epi:

BO:
im:

traj:

function epi = simulate_epi Cim, BO. traj)
y.
y.
y. epi = simulate_epiCundist_im, BO, traj)
y.
y. Compute a simulated EPI image
y.
y. Input:
y.
y.
y.
y. Ouput:
y.
[M,N] = size(im);

•
k = zeros(size(im»j
[ll,kk] = meshgrid(-N/2:N/2-1,-M/2:M/2-1);

y. loop over the pixels of the image
for ii = -M/2:H/2-1

for jj = -N/2:N/2-1
k = k + im(ii+M/2+1,jj+N/2+1>*

exp ( -2*pi*i*(ii*kk/M + jj*ll/N +
BOCii+M/2+1,jj+N/2+1)*traj) );

end; Y. jj
end; Y. ii

y. reconstruct ep1 ~age

epi = fftshift(ifft2(fftshift(k»);
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• A.7 K-space trajectory

A.7. K-SPACE TRAJECTORY

d = (TR-t(N)/le3)/2j

(us)

MxN matrix whose element traj(i,j)
represents the time at which
point (i,j) of k-space vas sampled.
UDits of traj are in seconds.

file name
number of k-space lines
size of the raster file
time to read one k-space line
time the readout begins (us)

traj:

ADC_raster_file:
M:
N:
TR:
offset:

function traj = make_traj(AOC_raster_file, M, N, TR, offset)
y.
y. traj = make_traj(AOC_raster_file, M, N. TR, offset)
y.
y. Makes an EPI k-space trajectory from a raster file
y.
7. Input:
y.
y.
y.
7.
7.
Y. Output:
y.
y.
y.
y.

•
T = offset;

y. make k-space trajectory
for ii=1:2:M

T = T+d;
traj(ii,:) = T+t/le3;
T z traj(ii.N)+2*d;
trajCii+l,:) = T+fliplr(t)/le3;
T = traj(ii+l.l)+d;

end;

traj=traj/le6; 7. change units for seconds
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.include <stdio.h>

.include <string.h>

.include <math.h>

.include "mex .h"

void mexFunction(
int nlhs, mxArray -plhs 0 ,
int nrhs, const mxArray -prhs 0
)

{

char tmp_striDg[100] ;
char -file_Dame;
FILE- f;
iDt tmp, i, bufleD, N;
double- tmp_vect;
int- tmp_vect2;

A.7. K·SPACE TRAJECTORY

•

•

/- Check for proper Dumber of arguments -/
if (nrhs != 2) {

mexErrMsgTxe(lI read_adc_raster requires tvo input arguments .•');
}

if (nlhs != 1) {
mexErrMsgTxt(lIread_adc_raster requires one output argument.");

}

/- get file Dame */
buflen = (mxGetM(prhs[O])~GetN(prhs[O]» + 1;
file_Dame = mxCalloc(buflen, sizeof(char»;
mxGetString(prhs[O], file_Dame, buflen);

f = fopen(file_name,"r");

if (!f) mexErrMsgTxt(IIread_adc_raster: cannat open file\n");

N = -mxGetPr(prhs[l]);
tmp_vect = mxCalloc(N,sizeof(double»;
tmp_vect2 = mxCalloc(N,sizeof(int»;

while(!feof(f» {
fscanf (f , "%s Il , tlllp_string) ;
if (!strcmp(tmp_striDg, "Entry_Values: "» breaki
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}

for (i=Oj i<Nj i++) {
fscanf (f, "Y.d" ,ettmp_vect2[i]) j
tmp_vect[i] = (double)tmp_veet2[i];

}

plhs[O] = mxCreateDoubleMatrix(l,N,mxREAL)j
mxSetPr(plhs[O] ,tmp_vect);

returnj

}
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• A.8 Support functions

A.8. SCPPOR:r FUNCTIONS

Field map are typically obtained from the difference betveen
the phase of two images. The parameter sn is the Signal-ta-noise
ratio of the two images generating the field map.

MxN noise matrix

MxN magnitude image
sn of one of the magnitude image
image mask

n

mask)

SNR. mask)

Mag
sn
mask

function n = BO_noise(mag.
y.
y. n = BO_noise(mag. sigma.
y.
y. Creates BO map noise
y.
y. Input:
y.
y.
%
% Output
1-
y.
Y.
Y.
Y.

•
y. compute standard deviation
sigma = mean(abs(mag(mask»)/SNR;

y. phase noise in background: uniformly distributed between -pi and pi
n_ph = (rand(size(mag»*2*pi-pi);

y. phase noise in signal regions: normally distributed
y. vith std dey = sigma/Mag
n_ph(mask) = randn(size(mask»*sigma./mag(mask);

y. because 2 phase images are subtracted. the noise standard deviatioll
y. is sqrt(2) larger.
dt = 4480e-6;
n = n_ph/2/pi/dt*sqrt(2);
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functioD d = rms_diff(a,b,mask)
y.
y. d = rm8_diff(a,b,mask)
y.
y. Computes the RMS difference betveen two images
y.
y. Input: a First image
y. b Second Image
y. mask Image mask over which the difference is evaluated.
y. See image_mask functioD.
y.
y. Output: d RMS difference
y.

•
APPENDIX A. SOCRCE CODE A.S. SCPPOJU FCNCTIONS

•

•

[M,N] = size(a);
d=sqrt( sum( ( abs(a(mask» - abs(b(mask» ) .-2 ) /M/N);
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A.S. SUPPORT F't."NCTlONS

Image mask, i.e. indices for which abs(im) >= th
Background muk, i.e. indices for which
abs{im) < th

Image
Threshold in percent of maximum image value.

bk

APPENDIX A. SOURCE CODE

funetion [m,bkl = image_mask(im,th)
%
% [m, bk] = image_mask{im, th)
%
%Computes the image and background mask for an image based on a threshold.
%
y. Input: im
y. th
Y.
% Output: m
y.
y.
%

•

%convert threshold in absolute pixel value
thpercent =max(im(:»*th/l00;

•
y. compute image make
m = find( abs{im(:» >= thpercent );

y. find backgound muk as the complement of image mask
bk = setdiff(l:length(im(:».m)J j

if (length(m)+length(bk»-=length(im(:»
error( J image_mask: Abnormal image mask calculationJ)

end
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A.8. SUPPORX FUNCTlONS

2D Gaussian

Size of the 2D gaussian
Full Width at Half maximum in pixel units
Centerex,cy

APPENDIX A. SOURCE CODE

funetion g = gauss(M.N.FWHM.cx.cy)
%
y. g = gauss(M,N,FWBM.cx,cy);
y.
%Creates an MxN Gaussian centered at the origin.
%
y. Input: M,N

% FVWM
%
%
% Output: g
%

•

•

% set default values
if (nargin=3)

cx = 0;
cy = 0;

end;

y. compute variance
a = FWHM-2/4/1og( 2 );

[x,y] = meshgrid(-N/2:N/2-1.-M/2:M/2-1);
g = exp( - ( (x-cx).*(x-cx) + (y+cy).*(y+cy»/a );
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function ind = circ_ind(x.H);
y.
y. ind = circ_ind(x.N)
y.
y. Circular index in the range l:N. i.e. circ_ind(x+n*H.N} = x if l<=x<=N
y.
%Input: x Index
y. N range
%
%Output: ind Index
%

•
APPENDIX A. SOURCE CODE A.8. SUPPORT FUNCTIONS

•

•

ind = mod(x-l.N)+l;
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APPENODC A. SOCRCE CODE

nintxl interpolated field map

Nxl field map
Size of interpolated field map

• function B02 z BO_interp(BO,nint);
y.
y. B02 = BO_interp(BO,nint)
y.
y. Performs cubic interpolation on a 1D field map
y.
y. Input: BO
% nint
%
Y. Output: 802
y.

y. get BO map dimensions
N = length(BO);

A.S. SCPPORX FUNCTIONS

•

•

y. perform cubiD interpolation
B02 = interpl(1:N,BO,1:N/niDt:N+1-N/nint,'*cubic')*nint/N;

y. replace NaN values by 0
B02(isnan(B02»=O;
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