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ABSTRACT 

1 

The non-divergent barotropic vorticity equation is integrated 

numerically in or~er ta inves tigate a potential resonance rnechanism 

. for Rossby wav~s bn a shear flow in the presenc<? of a nonlinear 

critical layer. The numerical model, which uses a mixture of 

spectral and imite element technique.s, simulates the propagation 

of a weakly ·forced Rossby wave on a semi-inimlte beta plane. 

It 15 iound' that a large amplitude re5ponse can be obtained by 

"tumng" the geometry of the flow and that there is an as so~iated 

increase in the thickness of the crit!cal layer. The logarithmic 
'1 

phase shift i9 also investigated. It appears to develap an 

irnaginary pal-t as the nonlmearities come inta force. 
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RESUME 

--

7 Afin' d'étudier- un méèanisme de résonnance pour les 

ondes de Rossby en présence 4' une couche critique non';"linéaire, 

l'équation non-diver'gente du tourbi'llon barotrape est solutionnée à 
, " 

l'aide d'urt modèle numérique. Le \modèle numénque, qui Se sert 

Qde la méth~~~ spectrale et des éléments finis', simule la propagat~on 

d'une ondé de Rossby' faiblement entretenue à la frontière nord, sur 

un plan beta semi-infini. 0:0 démontre qu'une réponse de g~ande 

amplitude peut etre a,btenue en shangeant la géométrie de 

/ 

! 

l'écoul~mént et que ceci èorrespond à une augmentation de l'épaisseur 

d.e la couche critique. On étudie aussi le "logarithmic phase shift". 

Une partie imaginaire semble se développer quand les termes non-

linéaires deviennent importants. 
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GHAPTER 1. INTRODUCTION, 

The main objective o~ this thesis is to investigate a potential 

resonance mechanism for Rossby waves on a. shear flow in the 

presence of a nonlinear critical layer. 

Although synoptic scale waveS are largely responsib1e for the 

day to day variations in ~he weather, the planet~ry scale waves 

play a major role in steering the synoptic waves and thus controlling 

the weather on the longer time scales. Despite the importance of 

-the planetary waves there are still many aspects of their behavior 

which are poorly understood and, poorly forecast. One such phenomenon 

is the amplification of nearly stationary high pressure systems which 

deflect travelling cyclones from their usual paths and often result 

in significant weather anomalies. Recently it has been argued (Tung, 

1977) that a theory of reBonant stationary waveS could account for 

the creation of such 'lblocking patterns". 

1 

The clas sical resonance phenomenon arises from linearized 
/) 

theory and occurs when one of. the normal modes in a physical 
\ 

system is forced in sorne way. However, there are sorne diffictlties 

in applying linearized reSonance theory to the atrnosphere. The 

prime candidates for atmospheric forcing are the land-sea thermal 

contrasts and the topographie forcing -- both of which are geog'l'aphically 

fixed and hence have zero forcing frequency. The linearized, steady, 

inviscid vers'ion of the equation governing the propagation of Rossby 

waves has a singularity where the Doppler shifted frequency ?f the 

disturbance vanishes. This location is called the "critical level" 
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and, in the case of zet-o forcing frequency, is the line' separating 

the westerlies ,from the easterlies. . In .arder to overcome the local 
, " 

faillIre of the sîmplified governing equation. it is necessary to re-

introduce at least one of the neglected processes namely, time 

'. 

dependence, viscosity, or nonhnearity. The region (surrounding the 

critical level) in which these processes are, important is cal~ed the 

"critical layer"" Thus the flow can be dlvided into three regions --' 

two regions (one north of the critical layer and One south) in which 

the linearized, steady, inviscid equation 15 a good approximatioh, 
, 

and the critical layer in which sorne of these processes must be 
H,'; 

retained. One of the mam objectives of critical layer research has 

been to connect the solutions north of the c'ritical layer to the solutions 

to the south by examining the processe~ within the critlcal layer. 

Many of the results of this research have been expressed in terms 
1 0 

of the "logatithmic phase shiftl t
, &, which i's rrlated to the resonance 

\. problem by the Jact that its real part must be zero if the system is 

to have a normal mode. ,It has been found that if vis cosity (see Lin, 
i 

1967) or ti~e dependence (Dickmson, 1970) is re-introduced .g. ass~mes ,\ 

the value ;-1f and, consequently, no normal modes are allowed if the 

linearization assumphon is retained. Thus the classical resonance 

me/chanism is prec1uded. 

T,h'e only hope of having normal modes rests with the nor>HTlP"r-

ities. Various researchers have re-introduced nonlinearities by using 
. 

perturbation techniques appropr,iate for smaU dis,turbances, with G: 

frequently being a smaU p~rameter proportional to the perturbation 

amphtude. Using this approach Benney and Bergeron (1969) and Davis , , 

(1969) found.that for steady flows the relative importance of viscous 

1 .f 
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, ' 

and nonlinear effects in th.e critical layer i5 given by a. pararneter 

À ::: '))k~/Z. ("being the kinernatic coefficient of viscosity) , e- has 

the value a in the limit as À goes ta zero. Haberrrtan (1972) studied 

the st~ady problem for the full range of A. and found -& as a smooth 

- function ~f ~c, which depends on ;1.. and the perturbation amplitude 
1 

at the critical level, with &::: 0 for Àc.::: 0 and 17- ;:: -1T as i\c. -9' CO 

in keeping with the previously mentioned steady state results, 

Sorne of the <;lifficulties which dccurred in the above nonlineal' analyses 

have been resolved recently by Brown and Stewartson (1978), The 

conclusions concerning the behav~or. of ~ remain unchanged -- in 

partjcular Hs' real part is zero in the steady, nonlinear, inviscid 

limit. 

The effect of time dependence on the nonlinear problem has 
'0 

also been examined. Warn and Warn (1978) used perturbation techni-

ques ta derive a time \dependent, nonlinear, inyiscid critical layer 
) 

equatio,n which they solved numerically and fou~d that ,'ft' is a function 
. " 

of the slow time 5 ca-le r::: e'ht. Stewartson (1978) ol;>tained analyti~. 

solutions to the critical layer equation under certain limiting èonditions, , 

Béland (1976) .has aiso 'studied time dependence by taking a fully 

numerical approach,' 
• 11., 

His re~3Ults for a series of integrah~ns of the 

time depez;de'nt, ,inviscid problem for smaU amplitude disturbances 

are. in accord with Warn and Warn' s findings and aIse "show that 

many \?f the previous steady state results ca~ be ebtained from the 

\ initial value problern. B~land (1978)"exp.rnined the effect cif viscosity 

/ and snowed that long ti~e lntegrations could aiso pro duce r,esults in 

qualitative agreement with the steady state obehavior reported by 

Haberman. Thus it has been shawn that nanlinearities, whether 

o , 
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in the. steady state or time dependent problem,. can produèe a log-

-
arithmic phase shift with a zero real part -- which iB' a .necessary 

l' • 

condition for the existence of normal modes. 

The existehc~ of normal modes does not in itself guarantee 

that "resonance will occur - - the normal' modes appear only in a 
, . 
~onlinear problem and the conclusions of linear theory (for example, 

that forcing a normal mode will produce a resonance) must be used 
, -4< " • 

with great' caution. 'l'ung (1977) investigated resonance \lsing a time . 
dependent, damped, linear model with the criticai 'layer treated as 

a reflecting surface. Never.theless, it still has not been demonstrated 

that a, large response can actually be prod~c'ed in a tra,nsient, nonlinear 1 

viscous problem. Furthermor~, it is not clear ho,W t,he critical layer 

should behave du ring the evolution of any such resonant response. 

These are the two main poi:nts examined ln this thesis. 
\ . 

To focus attenti~n on the nonlinear, mechanism and facilÙàte 
1 

interpretatior;'- we uSe a si.mple model which cantains the essential 
... 

dynamics and in 'which the role of the nonlinearities, i5 easily identtiied. 
, " 

Many of the results quoted above have been found uaing techniques' 

which are not appropriate for large amplitude disturbances: Such 

teclmiques could becorne, invalid aB the wave resonates and consequently 
\ ' 

we turn to a numerical approach which is free of the~~. limitations. 

\ 

Specifically, thè non,divergent barotropic vorticity equation lS mode~led '! 

using a mixture of spectral and fi~ite element techniques. This 

model i5 similar to the one used by Béland with the main change 

, being thé replacement of the standard finite, diffe'rences by the finite 

element method. Variable r~solution can be accuratel(" incorporated 

in the finite element method, leading to increased computational 

'1\ , 
" " 

'-~ , 
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efficieney by resolving the: short Beales of motion in the éritical 

layer without requiring, unneeessarily high resolution els.ewhere. 

ln this tq.esis we restrict ourselves ta initial.' shear nJbws ü(yj 

that are monotonie in y so that steady_. waves posvsess only one 

critical layer. We also exclude the special cas e in which' the 

cl~-
gradient of the mean absolute vor.ticity fo-;r;? also vanishes at the 

çritical level. 
\ 
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CHAPTER 2. THEORETICAL FORMU~ATION 
1 

2.1 The model equations 

We shall study the evolution. of two-dimensional Rossby waves 

generated by a small stationary forcing (proportional to ~) in mid-

latitudes and propagating southward in the semi-infinite domain 

-CXJ<y~y on an initial shearflow ü(y). Th~ beta plane approx­
m 

mation will be m'ade and the flow will be periodic i,n x which corresponds 

to a latitude circle. The governing equation is the non-dimensional, 

non-divergent barotropic vorticity equation 

y is the streamfunctlOn, related ~o the longitudinal and transverse 

velocity components through u = -t
y l V = y)(' f3 is the Fonstant 

beta plane parameter and 1'> i5 the kinematic coefficient of vis cosity. 

The non-dimensional quantities/ are related to their dimensional 

(primed) counterparts by 
1 

where Land U· are typical length and velocity Bcates determined by 
s ~ 

the background velocity profile and Lx = a cos Po with Cl. being the 

(~.\) . 



.'if 

-7-

mean radius of the earth and tPo a typical lati'tude. ,Thus x will 
a 

o 
vary from 0 ta 21T around a latituçle circle. Also 

o{.= L /~ 

The initial conditi~n is -taken to b~ f (x. y. 0) = -' f :\"Ü(~)J~ 'and the 

northern boundary condltlon is a stationary sinusoïdal forcing of, the 

transverse veloclty for integral wavenumber 1. 

sim.ulating the presence ln mid-latitudes of a weak Rossby wave 

which wil~ propagate southward. lntroducing the _perturbation 

'streamfunctlon ! and perturbation vorticity S such that 

re8ultS in 

f l1 uLs) d li, T 6 ~('X-J'~) 1: ) 

~,::. V 2. i (2.2) 

~-l:+ lI(~)S~+(/!-'f.ffi.) ~:o: + Ge (ÏÉ" Sç 1i~)x) 
, '12.. Ç" _ JL d3u 

-U é ~~ 

with initial and northern boundary conditions 

~(t,l.)~)o) 0 

. 1. ~ ~ - 2 ~ Ci i Y) (Oç x) 
3-

The term -11,1; d lA appears on the right hand side of equation (2.3) 
(: d ~~ 

because - {~u(~)ag is not an -exact solution of the steady linear 

vis cous equation. 

r 
1 

1 

~\ 
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, 1 Notice that G is a me as ure of the strength of the nonlinearities in 

equation (2.3). The unbounded do main in y will be simulated by 

using a finite computational domain Yl~ Y!::Y
m 

,together with a radiation 

condltion at YI' ThIs will be discussed lU the next chapter. 

( 

2. 2 Cri~ical layers and resonance 

The steady, lineanzed, inviscid version of equation (2.3) iB 

f3 - lA II(~) ~ 

5 'X. + ~'X 0 where 1 denotes ~. 
U.(~) 

If l == 1A. (y)e
ikx 

then.. 
(> 

d~f/J~ + ( @ - tA "(~) - o-."LA7.) ~= CI 
d~'l., lJ.(~) 

\ , 

This equation has a regular .singularity at a value y c whe!"e iï(~ = 0 

and,using the method of Frobenius it is possib}~ t()_find solutions 

4j[ lj) ,- Qt. ~af~) ,+ b;" 4>rJ ':J ) ~>jc. 

=- ~ ~o.,~~) .+ t; cjJ,,*~ ) lj Ljc 

where 

~~",,:: (~-~c..') - (B- lA~) (l) -!je. ') '4 + (2.h) 
'2. ~'c. 

Pb~= [&{~l + ~Y' (p- U~')U~' :3 (13~~~ Ys (~;()Z + + -12. l-Ut' 2.. Uc 

+ (~_ (AIl) 
~Q;~ DM l '3 - ~ c \ (2..7). 1; 

iA~ 
.' 
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) 

The subscript' "c" denotes evaluation at y. Notice that different 
c 

coefficients are allowed north and south of y c and that Pb-Acontains 

a term (y-y c)ln Iy-y cl which vanishes at y c but produces a ln l y-y c \ 

behavior when differentiated. Thus f<3;br c) = 0, ,~bA~ c) = 1, but ~b)~ 

has a logarithmic- singularity at y and hence equation (2.5) cannot 
c 

describe the flow at y • the "cntical c . for this model. To 

ov'ercome thiS failure it is necessary to re-introduce at least one 

~ 

of the neglected proceS seS (time depe ence, nonlinearity, or visèosity) 

in the vicinityof y • which is referre to as the "critical layer", 
c 

Thus the flow can be di vided into thr e regions j the c ritical ~ayer 

-t- ri.. ' -t If.. 
and twq "outer regions" to the northand south where ~'+'aJcy} + ~'t'~y) 

are good approximations. A main goal of critical layer research has 

been t? fin~ conneétion formulae relating a~. a~. bA' an~ ~ by 
~ , , 1 

examining the processes within the criHcallayer. The available 

results provide a description of many of the salient aspects of the 

critical layer evolution and su'ggest a potential resonance mechamsm 

for Rossby waves. ' 

In aU cases it has been found that' oneA connection formula is 
• 

+ - '1 l' b + - h bj\ = b~ 1 Whl e the re ahon etween aJt and ~ depends upon whic 

process dominates the critical layer. Defining 

( ((3 - (Ii:) 
1 lAlc) 

1 

the steady, linearized., iflvis cid solution can be written as 

, 
" 

~ 
, 

1\ 

i(~) +- ~oJl)) b~ ~bA~) - "Q~ + 
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where 

(1 + ~ .. 

with the unde~standing. that for y<. y , " , c 

\ . 

h (~r Ljc.) -= t1vv, llj-~c) + t. é- S~~ UYe.) " 
'. 

~ 
/' 

t)- 1~ called the "logarithmic p~ase ~rnd 
be related ta the jurnp in the ReynoJ-ds stress 

layer via: 

, ( 

its realj part' -e-R, can, 

CR] acrbss the critical 
'\ 

~- (2:'1) •. 

The early phase in the evolution of the initial v lue problem 

is described by linear inviscid processes as examine~ by Dickinson 

(1970), with the thicknes s of the critical layer decrea ing like lIt 

and fr assuming 'the value -1f. If no other .process s prèsent the 

critical layer continues to collapse and as t..,. IX) the ingularity of 

) -V,) the 'steady problem is recovered. If viscosity is dom nant,' for t ",O(v 3 

the thickne~s will equilibrate at 0('\)'13). ~ will rem in at-TI and the " 

steady, linear, viscous state describ~d by Lin' (1967) i11 result. 
. , 

If nonlinearitie~ (as opposed to viscosity) are present 

ta be a function aï the long tiI?e scale L = G,'Izi: (Stewartson, " 1978; 

Warn and Warn, 1978). The thickness. e~uili~M1ies 'at' O(~\lz) with e-
vanishing ,as 1:'-}cU as in the s teady, nonlinear state e mined by 

, ' 
l ' 



• 
-11-

" 

Benney and Bergeron (1969) and Davis ('1969). When aH three 

processe\ are present the relative iml'iortance of the viscosity and 
, , 

nonlinearity is given by À =: 1)~3h., the cube of the ratio, of' the 

,respective layer thicknesses, i;!.nd,tkl~ steady state value of -& is a 
'''~'17 1 

function of the parawter ~c. (proportional to ,Ill \~~a) which varies 
, l " 

smoothly from -1f for i\t:'" CO to 0 for ft" = 0 (Haberman,' 1972; 

Béland, 1978) ,1 These results can' be combined to provide some 
). .. 

insight into a potential :r;esonance mechanism for Rossqy waves, but . , 

flrst it should be mentioned that the thickness of the steady nonlinear 

cti~i.cal layer is actually O(f'/z IW'/Z) where ~-has been assumed to pe 

0(1) in the preceding discussion. 

Consider a wind Rrofile ü(y) = .. y, together with the "long wave -

Then equation, (2.5) becomes 
, , ., 

+ o 

which is a transformed BeB~el' s equation (Dickinson, 1968). It 

• is possible to identify the Bessel funchon solutions with linear com-

Thus for y>O 

and for y< 0 

Hère 0 is Euler' s constant. • For a bourided solution as y--'>' - CO the 

: / 
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coefficlent of Il (2..J-~~) must be zero. Also using definition (2.8) 

the solution for y> 0 becomes 

Thus' CP(y) i8 proportional- to bk which' 15 'determined from the forcing' 

boundary conditlOn (2.4) in the north, that'is, ~(Ym) =1, or 

J(3Ijrt'j [ i tt-Ji (2.JJ3 ~"' ) -1T ~ (1.,Jf3 ~; )j • 

If the \combination fo y m i8 chosen such that YI (1..Jptjl"l]) = a and &~O 

as in the nonlinear limit, equations (2.11) and (2.12) show that P(Y) 

would become unboundedj that is, a reSonance would result: Y is 
m 

, the distance between the forcing boundary and the critical level, sa, 

changing .foy m . ta produce a la:r;ge b~ 'Çould be inte rpreted as looking 

for ,a resonance by "tuning" the geometry' of the flow. This strongly 

sugge~ts that it should be possible ta resonantly' excite a wave' with 

a nbnlinear critical layer. Notice also that if a complex -Er i8 
, ' 

allowed, -€r=frRTi&I' bk becomes ~nbounded if &R=O and -&r-= -'TfYI(2..~mJ • 
,. Ji (z..Jï3~", ) 

As will he seen later, -&I could play an important raIe in the • 

re~onance mechanism. Since the thickne's s of tQe critical layer ia 

.O(~'121 ~I'h) the region in' which the nonlinearities are important will 

expand to occupy the whole flow, irnplymg that the concept of a 

crihcal layer ,will ~ventually break down. Hence we turn ta a 

numerical solution of the full equation (2.3) in order to study this 

process. The investigation will not be restricted to the long wave 

limit which has just been considered here fot; illustrative purposes. 
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CHAPTER 3. NUMERICAL FORMULATION 

3.1 x-discretization 

e / - , 

The periodicity in x is exploited by usmg Fourier series 

represent;atioI),S in x:' 

Note that, because ~ and ç are real, P-n (y, t) '" ~~(y, t) and 

P (y, t) = ~~ (y, t) where *" d. enotes complei9;: conJugate'. Using :>-n n 

the 'orthogonality property of the e inx equations (2.2) and' (2.3) lèad to 

:::: 1) 
( à~S., _ o(4Y)J. ~ ) _ ci ~ ..:Y.. d3û (3",) '2Ij"l.. . 1') D é d!1 3 

and a~~ 0('2..~~ cjJt) ~V) ,(3,2) ,-1') - f 

, (3 'jl, 

1 
'Here d}\ is the Kronecker delta. The initial and fo:tcing conditions 

besome 

" 

~r')(~)C) 0 

~() (lj~lt) d.fo. 
t) 

At the southern boundary YI a radIation condition of the type presented 

..... ~ '. 
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by Béland and Warn (1975) is applied. It allows only outward propa-' 

gatmg energy (I.e., away from the source) and assumes that 
\ 

~ 

(1) the boundary is far enough away from the critical layer for 

the flow to' be hnear and inviscid, 

(ii) the initial wind 'Proirle u(y) is constant beyond this boundary, and 

(lii) ~(x, y, 0) :: 0 beyond this boundary. 1 

In a 'farm appropriate to this model it is, for, steady waveS with Ü":::' 0 ,: 

and for transient waves 

• 
3.2 t-discreti,zation 

Let t = j Ât where At lS the timestep interval and j is ,the 

~j(y) and .~ j(y) by timestep index. Define 
n n 

/ . 1 ' 
~h (\~~)'>t ') :. ~Iî ( ~ ) .ÜJ-:. ) . ~Yl (Ij) 

. 
~h (~)+.) -' ç~(~\.s&t) C;~(~) 

A centered time scheme will be used and hence it will be ,necessary 

tO,lag the calculation of the viscous terms to ensute numerical 

, 
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( 

stability. Thus the Ume discretized versions of equations (3.1) 

and (3..2) are 

, ~ ~+\I(~) - S-J-I('J) _ 

2..ôt 
- LV) riA ~}('J)t- (t'-~) ~~l'))} 

" 
- E ~ le [- ~f(')) d~ n-P. - ~1(~~ d4L.r 1 

g=-N+n ~ d~ 

+ "\J { dJ~~-' - .(' r? ~~) (~) 1- s.~~ ~3~.. ,. 

1 

and 

The northern boundary condition becomes 

while the steady radiation condition at YI takes the fo~m 

1~ .ù(,~,) - (d.~,,>2 ~ ~ ) 'l, rp"St-, ("",)- O. 

Using a tr~pezoidal" approximation for the integral in the transient 

radiation c~ndition gives 

f ' 
" 

, . 
, . 

~~~ ~ ,)" - (0( '1 - i. 1: t;:) i!t-I( ~,) = - 6t [4>:(~,) ~!t ~ i. ~!(~.) W~·i):~ 
alj . , 2. ' t::. l , 1 

l 
where W =. W (1 Il t). By uSi,ng asymptotic expansions of the Bessel ·n n 

, functions it has been possible to derive an efflcient ,appro'ximation 

, , 

to the_ ti'ansient radiation condition. This appr~ximation is presente4 

in the appendix. 

.- . 
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3.3 y-discretization 

One of the most important features. of this model is the use 
/ , , 

of finite elements in y. In the critical layer the scales of motion' .. 
become very short and require high resolution for adequate simulation, 

~ , 

~ 

while 'in the rest of the domain the solution remains smooth. It is ' 

therefore desirable to use a nurperical scheme which ca~ e!lsily and 
- 1 

accura-tely incorporate variable' re~olution. One such scheme i5 

provided by the fin~te ~lement method. 

To apply the method to the, cm:rent pr.oblem it is necessary ta 

know how, to 

• 
(i) represent functions in terme of nnite elements, 

(Hl differentiate, 

(iii) 
ù 

multiply. and 
, 

(iv) solve th~ diagnostic boundal."Y, value problem (equaÎion 3.~). 

A brief description of each ~f these procedures follows. For more 

detail on these and ... related applications of the finit~ element method 

See S~~nifo~th and Daley (1977) and StanifoOrth and Mitchell (1977. 

1978) • 

(i) 'Fa represent a function in terms of fini te elements 

A ' 
Suppose u(y) is a function defined on y 1 ~ Y ~ Y M and u(y} ie .. , A-

the app.ro~mat_ion ta u(y). In the finite elemént method u(y) is. 

.written as a finite series 

, 

____________ .~ __ ~_, 0_.0_" 

", ' 
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').~m ~ 
wlller6-Lue-e (y) are piecewise defined polynomials which only interact 

locally, leading to sparse matrices whos'e structure' ca~ be exploited 

,to p~Odtf-ce efficient n~rperical schemes. ,Once the ein(y) ,at~ chosen, 

determining the coefficients u determines ~(y). T~ find'~h'~ M 
m 

\ 

unknowns u l' ... , u
M 

it is neces sary to impos e M independ~nt cons traints. 

The a5curacy of the scheme and com~lexity of the matrices de pend 

on the degree of the polynomials 
~ ./ 

" m 
chos en fo r the e (y) • We choQse 

m 
the e, (y) to be the "chapeau 'functions ll depicted in figure 1 which lead 

'\ '. . - , 

te simple matrices (generally tri-diagonal) while pro-:iding rugh accuracy 

(fourth order over re~ions of uniform mesh length). Each chapeau 

function. has the value 1 at its central mesh point, decays linearly ta 

zero as the adjacent mésh points are approached, and remains zero 

beyond. 
\"'1 - , 

Note that e,m(Yk)D =~A. (the Kronecker delta function). 

u m are determined by the "interpolatory constraints" 

, ", M "" tJI -ID t'i\ 
UC'1I\.) :. U{'1tar,) = ~ LtW\ c: (u 11.) :; ~ U".,6' ~ :: 

• ~ .. I -)~ I/I'j-I 
Uk • 

The 

Thus the approximation ~(y) fits u(y) e~ctly at th,e mesh points y;n" It 

is an ea,sy matter to show that for Yk< Y<Yk+l u(y) is a linear inter-
a , 

polation between mesh.point values u
ok 

and uk:? as shown in figure 1. . 
\ 

(H) To differentiate 

Assuming uty) is a known function, the problem is to find ~(y) '\' ,', ~~ \' 

. . . () du T d approxlmating w y = -d' 0 0 

M y" 
A '<).., 
W(~) -= [; J lVr'f'\ e l~) 

() 

tMs, 

o 

where the um are as gi ven in (i)/,: and the w mare M unknown coefficients. 

Substituting these gives \ 

Î 

f 
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\' 

\ 

\ 

~+2. ' %-1 ~M 

FIGURE 1 
\ 

"CHAPEAU" BA5IS FUNCTIONS' . 
, \ 

~. 

'.: 

. , '\~ . . , 
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,-
-

where E(y) is the errpr~ resulting ftom the approximations. The w 
m 

can now be determined by i~posing the Galerkin (or orthogonality) 

or 

and" 

Since k assumes the val~es 1;: ... M, (3.4) is a system of M eqûations 
, ! 

" 
for the M ul'lknowns w • and can conveniently be written in matrix 

m 

form. 
m . . 

The fact that the e (y) are zero for y~ y +1 or y ~ y 1 ' m m-

means that pkm = ifm = 0 unless m = k-1,k,or k+1. The resulting 
y 

mabices are tn-diagonal and. thïs fact can be exploited to produce 
/' 

efficient solution schemes (Gaussïan elimination for the tri-diagonal 

problem, see Ahlberg et al.. 1967. p. 14). With h k representing 

Yk+1 - Yk the matrix form ,of weyl '= du/dy is 

Ef~ , , 
Wj -'2 1'" 

.h!- \'1+"1 ~ . 0 lJi ' , 0 b, ~"- "- --2: 0 "1: 

\., \. '\. 
, ( 

\. "" 
h!:J hR_,.f.h. hit 

, 
'-,'\. " , 

Wjt -- <:1-6 3 (; ;;z. 2.. 

'\. " \. 
1 '\..'" 

0 '\. '\ ~ 
J 0 " '\. " W'M-I 02' 

hM.::! , hM.:.1 1 1 
l.ÜM -- ï:" 

" . 3 2. 

, \ 

Ul 

U2, 
1 

1 

lt~ 
1 
1 

I..tM-J 

~M 
• 
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\ 

(hi) To multiply : 

f · /'. 
Assuming u(y) and v(y) are known, we want to lnd w(y) approx-

imating w(y) = ~(y) v(y). Write 

J\ "" M " M "" \,J1':») :;' ~ 1 I.ü"" e (~).) U.C~) = ~/J.t-t'\ e ~')) ) and 

where the u and v are as given in (it. and we want ta determine 
m me 

the- M unknown coefficients w . PToceeding as before 7 ru . 
Ij . 

f '" { '" " .... 1· 4 1 0 loFe':)) - V.l~) "V(~) e (~) <Â j -:: 
~I 

M M K ,,~ 
z. ""P ~ M =:E:..;C U Q JI<,. ..., "V 
hl:: 1 w--...... 1.= l "'-= 1 J.. M 

leads to 

km where the P are .the same as in (1'.4) and 

5
~M. az. 

e (~) 

~I 

Evaluating -the integrals gi ves 

Q.. rA' 
e Lt:)) e llj) d~ . 

~ 

QM(M-l)M;: QMM(M-l) :: QM(~-l)(M-l) = hM _1 
12 . 

whîle for k = 2, ... , M-l Qklm 1S given by,-

~. ~-\ Y< ~+I , 
Â-J' ~ h~-, 0 

l?- -n:-
.~ ~ hA-l+ hi\ ..hA... 

1:4 4 1.2-

~+l 1 
0 ~ ~ 

)2. 12 . ~ 

1 

with Qklm = 0 other'fise. 

. .. "' ... • 1 
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(iv) To solve the diagnostic boundary value problem 

:l'he forclng boundary condition 15 .imposed at y == Y and can be M 
wntten as 

for appropriate values of the real constants Q and b 

The radiation boundary conditlOn is imposed at YI and can be 

written as 
j+' 

. ~I'l (~,) - ('Yi - (~) CPr, (Lj,) ~ C + <. d 
for appropriate values of the real constants fr(, S , C • and d . 
\Vritmg 

, cP~+1 (~) 

s~tl (~) 

and· i\ = O<r) allows separation into a pair of real boundary value 

problems 

(A) 

with boundary conditions Ut ~M) = Q, 

and c , 

('8) 

with boundary conditions '\ï (L;) M) .. 
and 

d . 

Note that these problems are \coupled through the boundary conditions 

'il 
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Consider problem (A) 

k Multiplying be e (y) and integrating gives 

Doing an integratiop. by parts dIh the first term, 

f~~ ~ 0". ~ 1 ('3M A. 
~~~ e l'J) d ~ :=. dM ~ L~M) - dl f (~I) - ~ ~ d~'. \~ 

tj, 1;) ,l) lj l 'J 
The southern boundary condltion (at YI) can be written as 

~ (~,) -= .. ~ Ll(~ + 3<1r('C>,) + ( 
and' combining these resul~s gives 

r t dtA' a. { } 0M ~ (t~H) - 61 'Y{ lJ..l\jl) +- S''\r(~I)+C 

'- ~~ flj~(Al~) e4c~) a~ 
'j 1 • 

J", fH 
~I 

(3.5) 

, ' \ 
The flmte element schemes presented qp to this point have beeT). 

accurate ta four th arder, in hk over regions with cons,tant hk and 

to second order over regions of varying hk (see Cullen, 1976, and 

section 7.2 of Strang and Fix for a discussion of errars in the· 

finite element method). If we use 
A • M M 

Lt..(lA')::' ()(~) = ~ u."",e (~)' 
J ~~ l ' 

in equation (3.5) it ~s found that the solutio~s are 'only second ,order 

accurate over regions of co~stant h k , The desired fourth order 
, 

accu':x:acy can be maintained by introducing 'pëlJrabolic approximations 
1· 

,. ,. 
u(y), r(y) for functions u{y) and r(y) in equation (3:5) : 
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1\ ('~-Ijp., ) Z + 
ultII J~:~~ )'} LA(~) -::: tA 

'jA-\~ ~ ~ ~A A.-, hA-, ' 

UA { 1- (\~A r] +-' ~+l' (~~;U-) L lJk ~ ') ~ ~J.J..I 

- D otherWlse, -
with a similar scherne A 

This is the' one-dlmensional equiv-for r(y). 

aIent of the method given in appendix· B of Sta,niforth' and Mitchell 

(1978). Evaluating the resulting integrals, equation, (3. 5) becomes, 

for k ::: l : 
, . 

- (i- 1- ~~ I~ ~I +-l'r() U, 
l , 

+(-L_''l...h)11 _C'v,::..:2:. r ,+hr +r 
, 1), Il 1"2. ,'-\2. ,:>,)2. 12 2 '-

for k = 2, ... ,M-I : 

(ÇI-'>t2 ~~~I) ~~_I -{n~_1 i- h'A,+-~2J~ (~~-I+hJk)} tt~ 

.. 
th . 

As an M equation us~ the northern boundary condition u(YM) = u
M 

= Q .• 

A similar procedure for problem (B) gives another set of M 

equatlOns, so we have a total of 2M equatlOns for the 2M unknown 

coefficients u l' ... ,uM' v l' . ~ . ,vM and the problem is sol ved. It 

can be expressed as fhe following almost tri-diagonal matrix problem 

for which an efficient solution algorithm exists (Gaussian elimination 

for the almost tri-diagonal problem, see AliJberg et al.. 1967, p. 15). 
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o 
------ ------'---

o 
where 

010 ~ 
"'-1 M , 

l 111-\ M-I 
L. l~·I,M-2.. 

l " " ~ " '\. "-, " "-
""" " '\.. "-C:3 t:1. t:' 

~2..'el 

- (1 '1.5' ) LI! = - - +~ -n,+':Y( 
~ 1 /2. .' 

lh 
Lh. 
• 
• 

• 

• 

• 

• 

This completes the numerical fo~mulation of t,h~ problem. • ' 

\ 

\ 
r, 

I~> ' 

) 

• 
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CHAPTER 4. EXPERlMENTS 

ln this chë\.pter we will present details of two Sets of experiments 

using the numerical model described in the previous chapter. The 

tirst set deals with the dependence of the logarithmic phase shift 
, 

on the relative 8'trengths of 'viscosity and nonlinearity, while the 

second set in estigates the potential nonlin~ar critical layer reSonance 

mechë;nism fa Rossby wave8 which WC\-S suggested in the latter part 

of chapter 2 . 

4.1 Selection of parameters 

Amtmg the quantities to be specified are the initial wind profile 

ü(y), the non-dimension9-1 Ume step interval ~t, NW the number 

o{ ,waves in the x:direction, k the wavenumber of the force~ wave, 

11(y) the prof,ile of mesh lengths in the y-direction, and the values 

of the non-dimensional parameters 0<., f3, €, 'Ù,' 

The initial wind profÙe of figure 2 was used fo r aH the exper-

iments. Throughout m()st of the domain Ü ls linear with a zero at 

y = O. For y <:. - i the profil~ i6 'a hyperbolic tangent function 

which asyh1ptotes to a constant value (-1). u is therefore in the 

class of profiles as~um~.d· in the derivation of the radiation condition,. 

The value of {3 was always chosen to ensure that '13 -~ > 0 

, everywhere in thè domain, thus excluding the possibility of baro-

tropic instabilities. 

• 1 

,\ 

1 
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The rr::esh length profiles areshown m f1gu~e 3. In the majority 

of runs proflle (A) was used. 

';a1"ue of .02 lU the vicmlty of 

and .~ ta t~e north and south. 

Here the mesh length has a constant 

the critical layer 1 and increa's~s ta .1 

1 
Tests conftrmed that varymg the 

resolutlO!'l ln thlS way did not introduce si'gniftcant e,rror. It is 

• fot.:nd that. the amplitude of the solution decre5ises rapidly' ta the 

south of the criiical layer and thlS probably accounts for the iact 

that a lower resolution can be tolerated in that reglOn. Using 

pro flle (A) lt is possible ta caver -1. 5~y~ 2.5 with slightly less 

than 100 rr:esh pOints, whil~ usmg a uniforrn resolutlOD of .02 would 

requlTe 200 ?omts: ThIs results in a cons id~rable sa vmg while 

retalmng t~e desired. accuracy m'the critical layer. In 'proille (B) 

t~e reglOn 0: unifo rm· lügh resolutlon is exte:pded to the northern 

boundary. Th1s was used in a few of the resonance experiments 

to ensure that the expanding entical layer would be adequately 

resol,"ed a::è. a150 to factlitate undistorted contounng of the output 

fle Ids. 

In\'ana~ly oc:.. \Vas cllosen to be .4, kwas l, while the numbe1" 

of \va\"eS 1h the x-directio1',l (NW) varied irorn 1 for the liriearized 

rU:::lS up to 20 ln the most ilonhnear case. Ô. t was generally .035 

whlch 15 E;ior::ewhat less than the limit required for computational 

stability. {:3 was always in the range 1.2 ta 2.0, with the central 

""alue of 1.6 eorresponqmg ta a ehoice of length Beale L = 1000 km. 

and veloclty seale U = la mis at a latitude of 45 degrees. In s 

the nonlinear runs the transient radiation condliion was imposed on 

wavenumbers 1-3 while the steady condition was used for higher 

wavenumbers. The forcing at thè northern boundary was switched on 

hnearly over the first 100 timesteps. 
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S~gnificant parameters for the exyeriments ta be described 1 

here are "\}' and E , or the combination i\ = '"Ù~3/::L whlch ~ives' 

a measure of ~he re~ative importance of the vis cous and nonlinear 

effects. The values of ~ and E v.,'fry considerably and will be 
, Cg / \ ' 

indicated in the more detailed de~cription of the experiments. 

-

4.2 The logarithmic phase shift 

We shall now describe the experiments performed ta investigate 

the dependence of the logarithmic phase shift on t'he relative strengths 

of viscosity and nonlinearity. Recall that the analysis Qf the steady 

state problem suggested that it should be possible to resonantly 
, , 

excite a Rossby wave ,provided that\ the logarithmic phase slJ.ift . , 
tends ta zero. 

" For our wind profile : the expression (2.9) for the real part 

of a becomeB CR] 

where D\) denotes the jump in the Reynolds stress across the critical 

layer. 
9 

Habe rman (1 9 7~) anal ys ed the dependence of ttR o~, '\) and, é 

for the steady proble,m and obtainep., ~It,. as a function of Ac. which, 

for the present case, is given by ~) 

• 1 --
• 

For the steady problem it can be shawn that the Reypolds stress 

" 1 '-..1 
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1 = -2:11 

is constant outside the critical layer r being z<ero below the layer' 

for the wind profile and 'southern boundary condition used here. 

Thèrefore [RJ is given by R evaluated at any point above the 

ctitical layer. 
, 

In our model, however, these quantiti~s will ,he functions of 
. 

time. Warn and Warn (1978) show .that in the time dependent ~on- , 
. , 

linear problem a firat approximation to the coefficient of the forced 
, ,,' t V.z 

wave ~ k(y', t)' i5 given by A~('r} ~a, k(y} tfl\(~) ~b, k(Y) where =ii t 

is a slow time scale. That 'iS, the role of b
k 

in the s~eady problenl 

ia pla~ed by Bk('L) ~ . Pk(O, t) in the time dependent probleIl) and 

accordingly- we define 
[ l~{t)J 

-e:. R (-\::) = 
"2.~ ~ 111\(o.)t.)1~ 

(\, (1:.) 1\ - ï 3 /.z. k ' 1 r&. (0) t) , 3/,,-
, 

where [R
k

(t8 iB the jump ,across the critical layer in the Reynolds 
~ 
l, 

st:ress' 'of )he' forced wave. The Reynolds stress ca..n be expr~ssed 
'/, ,1,* 

as Rk = -2 lm( ~ k ~ ) with lm( ) denoting the imaginary part. 
'. a~ 

In the numerical integrations it' was found that, at any given time, 

" "Rk showed sorne depend.ence on y, decaying quickly to zero below 

the critical layel" and v;~rying B1ight~y about ap. easily identifiable 

mean value above the layer. Because of this behavior it was 

d~~ided to take [Rk(~Ù . as~ the y-averag~ of the values of Rk above 

, the criti~al layer at tirne t., 
, , 

'. 

. , , 

, " 

.~ 
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. -In figure ;t. the evolution of fr({(t) ~5 presented fo! six' different 

rune. Haberman's analysis neglected the 

~n equation (2. 3), ~nd this term was also 

, 3-
term corresponding to ~ e 

, ~ c;,;; d'1? 
removed from our mOdel 

1\. \\ lor runs 1,2,3, and 4. - The values ,adf the relevant parameters are 

g,iven in the following table' : 
/ 

TABLE, 1 Logarithmic phase shift runs 

\ RUN 

L 

2 

~ 

4 

,5 
'IIi 

6 

4 

2 

.5 

,E 

" .0016 

.0016 

.00-36 

.0064 
c 

.0064 

\) 

°_4 
2.16xIO 

2. 56xIO -4 

1.28x10 -4 

, ""4 
2'.16x10 

2.56x10 -4 

, 
6 -4 2.5 xiO 

NW F3 > 

• 1 1.60 

'~ 1.60 2.,24 

1 1.60' 2.24 

4 J.60 2.24. 
a 

8 1.43 2.24 

8 1.60 1.54 
! 

Run~ 1 through 4 became Bteady by t .....,100. while rùns 5 and 6 

s ho\~ed' slight oscillation in tiIIl'e and were integrated to t,""'::" 200 

in order to have' at least on~ complete oscillation-.: the steady 

s,ta~e value tben"being taken a( the, mean over the oscillat~on. The, 

steady values oC &11. and ,the corr~sponding values of <te. are plotted 

as the dots (numbered according to run) rn figuré 5. The BoUd 
, 1 

!ine is the curye presented by Haberman (his figure 1) whi;le the 

crosses mark the point.s recently reported by B~land (l'978.his , . 
figure' 10). The three sets of ~esults show good qualitative agreement~ 

qespite the fact that Hab~rt~lan ~eglected c:ertain wave interactions 

(those not involving the prim~ry ~av~) and it appears from recent 
1 

work, that these are importânt (Brown" and Stewartson, 1978; Stewartson, 
,-

, 1 

J' 

1 7 

, ;' 
1 , 

, 
l, 

1. 
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/ 

1978; Warn and Warn, 1978). If aU interactions are included it 

seems that -e- may aisa depend on the geometry of the flow (in addition 

ta Ï\c.) and have an im,aginary part. As will be shawn in the next 

section, the complex nature of -e- may be of partlcular relevance to 

t,he Rossby wave resonance mechanism. 

4.3 Resonance experiments 

Equation (2.11) s,hows that, in the long wave limit for a flow 

with a ltnear mean wind profile, the lineanzed steady rtate solution 

is proportional to ~ = ~O} .. This ,s.uggests taking 
o 

~k(O, t) as a 
, 

measure of the response in the time dependent nonlinear problem. 

sa we define the normalized response 

/ 

r (4-.1) 

where 4>k»(O} is the steady state value for a corres?onding linearized 

run -- the linearization yielding vi~cosity as the controlling m'echanism 

, in the critical layer. 

Our analysis for steady long waves indicatéd that by changing 

f3y m it might be possible to excite a free wave if nonlinearities 

dominate the critical layer. Experimente were performed to test 

this hypothesis. For the first group' of resonance experiments i\. had 

'. -4 the value .5 (€ = .0064, 1)' = 2.56xlO ), and NW was 8. Only 
, 

f3 and y m changed from run to run as gi ven in the foUowing table 

.' 

'1 
,~ 

.~ ",.. 

" 
• 
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TABLE 2 Resonance runs 

RUN f3 YM f3 YM 

1 1.561 2.243 3.50 

2 1. 910 1. 256 2.40 

3 1. 831 1. 256 2.30 

4 1. 791 1. 256 1 2.2;; 

5 1.751 1.256 2.20 

6 1. 671 1. 256 2.10 

7 1.592 1. 256, 2.00 

8 1. 512 1. 256 l. 90 

9 1.433 1. 256 1.80 

10 1.353 1. 256 1. 70 

Fig,ure 6 consists of curves, numbered accarding 'to run, 

glving the evolutian of the narmabzed response ,fa):" the different 

values of #YMI ;Figure 6(A) glves the curveS as f!>Y
M 

decreases 

from a value of 3.50 ta a value of 2.20,' while figure 6(B) shows 

the curves as f3YM continues ta decrease b'eyond 2.20 to reach 

a value af 1. 70 in curve 10. The abscis5a chasen fa r these curves 

, \ ''1 " 
15 rc ::: € ~t, the time scale of the nanlinearities (Warn atad Warn, 

'1976). These curveS confirm the hypothesis that a large amplitude 

response can be produced with the co~ect geametry and a nonli;near 

critical layer. Run 1 i5 dehnitely nan-resonant - - during the whole 

integration the response stays within 5 per cent of its initial value. 

How'ever! as f3 YM decreases it i8 possible ta "produce larger and 

" larger responses, with the near resonant runs 4 and 5 giving 

sevenfold amplifications by the ends of the integrations. Notice 

\~ 
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that, with the 'exception of run l, none of the curves in figure 6(A) 
< 

indicates tha\ a steady state has been reached'. As (3y M continues 

to decrease beyond Hs "resonant" value of 2.25 or 2.20. smaJler 

and smaller resp,o.nses are obtained at the end of the integrations 

as shown by flgure 6(B). These curves abo reveal a somewhat 

unexpected feature -- curves 6 through ,10 cross curve 5 during 

the integration; that is, thb run which ev'entually has the largest' 

response in this set is initial1y~ thJ slowest grawing. Efforts to 

explain this behavior led to a closer examination of the role of the 

logarithmic phase 'shlft in the resonance, mechanism'; 

For' the steady, linear, inviscid. problem the forcing boundary 

condition ~ (y m) = l gi ve s 

\ , 

The decaying nature of the solution as y~ -00 requires 

where ~ is a real constant. 

of -6- (equation 2.8) leads to 

Combining these with the definition 
./ 

.1 

where for the wind profile ~sed here 

C f3 ~~k~~) " ~ 
tP~,~w,) t- 9 4i4~~) 

f1 tPb)~':)m) 
Replacing ~ ~k(O, ~} by ag,ain yields the time dependent éj.nalogue 

• 

C {M + i -G{t.) 1 
(4-.2) 

Substituting into equation (4.1). taking -&(t) = e,,(~) t (6:r,(t), and 

, _= .J'.tt , t t' t' ..... ~'ll 

, ,. 
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using the fact t'hat e = -7f ln the linearized case gives 

r7.. Lt'2.. t 1/''l.... 
(4.3) = 

~r 

{ M - ttr(t.)} Z + { trR ~!:.Ü <. 

, This equation shows that the re5p~nae ill be large if &I.(t) approaches 

j{ as &~ (t) appro~ches zero. Separatin equation (4.2.) into real 

and imaginary parts leads to 

&I(~) M ~(è) 
\ Re [4J..cD)t)} , 

+ 1 

çrrn. [ ~A(O,t:)] 

CP~(D)+:') ~ { 9'3JêlO)t:)} + . a/Wl [ ~Pt(o)t)} where ::: ( # 

&:z: (t) can he calculated using this eq\1ation, sinèe ).{ can he fouzid 

from a linear run and t7
R

(t) can he calcula'ted as described in section 
(} 

4.2. 

Using this' method the values of trI were calculated for runs 
Gt 

2,5, and 7 of figure 6. The evolutions of eR and '6:.t: are given 

in figure 7, where the hO-rizontal lines in the lower frame give the 
, 

cQrresponding value;s of JI. Notice that there is very little difference 

v / (;) q-
in the evolution ,of fr~' for the three runs, particularly up ta L = 10, , 
indicating that the response r is large~y controlled by trI' Runs 

5 and 7 show very similar evplutions of et, hut have &ignificantly 

different values of J.(. It is ~ - frI which appears in equa.tion (4.3) 

and this quantity' goes ta zero at t ;, 9.5 for run' 7 but doesn't 

vanisn u~til t' = 14 for run' 5. Thus it is }J.. -, er. which explains 

the fact that the reaponse for run 7 initially grows faster and exceeds 
. 0 

,the response for run 5 by the greates t amount at 't';, 9.5. \ However, 
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run 5 has the largest response eventually because 11- $r and -ep'" 

are s imultaneously' s mall towards the end of the run. On the other 

hand, M. -ê:l: remains large for run 2 throughout the entire integration 

and hence 1ts response sta'ys relatively smaU. 

" ... , 
Figure 8 presents the evolution of the normalized response 

for two addltional runs. In cJ,Irve '1 the inte'gratlOn time for one 

'of the resonant runs (run 4 of flg~re 6) was extendyd ta see if the 

,response would continue to grow rapidly or settle down. The number 

of waveS, NW, was mcreased ,to 1'0 and resolution proflle (B) of 
1 

figure 3 was used. As can be Seen in the figure, the response 

attains a value near 8 by the end of ihis rùn. ,To investlgate the 

effect of la-rger nonhneanties a run was performed wlth 7\ = ,1 

(E = .01, 
-4 "\) = 10 ), 

1 
YM = 2.20, and NW = 20. 

1 
The response. 

is gi ven in curve 2 of flgure 8. The mtegration was carried out 

ta t"';; 8,5, by which tlme it was evident that mOre than 20 

• r 

waves would be required to proceed further. A compar~son of 

curve!3 1 (for wllich À = • 5) and 2 ( i\. = • 1) shows that the growth 

of a large response is 'faster when the nonlinearities are more dom-

inant.. Further reduction ,in i\ was attempted, but it was found tpat-

muc,h higher resolution would be required. It would be desirable 

to impIe ment a more efflcient numerical s cheme (e. g., the fas t 

fourier transform) before pursuing this issue. 
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Figures 9 and 10 show the evolution of the total streamfilnction 

and ab~olute vorticlty patterns, respectively, for a resonant case 

(curve l 01 figure 8). Resolution profile (B) 'of figure 3 was used 

and y covers the ,range -.6 to +.9 in these patterns. The str~am-

function field shows the "cat's eye" structure which is characteristic 

of flows in the vicimty of cntical layers, and the associated absolute 

vorticity field exhibits the typical flrolhng Upfl and development of, 

intense gradients beginning near the edges of th~ cati seye. Notice 

that, as suggested at the end of chapter 2, the cntical layer spreads 

out as the response grows. The width of the critical layer can 

be taken a's the width of the region containing closed streamfunction 

contours. . This region is fauly narrow in the early stages as 

shawn by fIgure 9(A) and ln a nonresonant caSe (e. g., curve l or 

2 of figure 6) the critical layer would not become much wider than 

this. However, the layer expands consideràbly in this resonant 

~ase ta occupy a large portion of the total flow by the end of the 

, 
run, as s hown in flgure ~). 
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'. 

!t is also inte;esting to look at the total streamfunction and 

ab,solute yortîcity fields for a run which is not quite resonant but 

is nearly s te a d'y ln the latte! stages. This is done in figures Il 

and 12 which correspond to curve 10 of figure 6. The patterns are 

son:ewhat less intense than those just examined for the resonant 
1 ~ 

caSe and they aiso demonstrate an additional feature. The prandtl-

Batchelor theorem (Batchelor, 1956) requîres that the vorticity in 
1 

~ t~e catI seye be uniform in the s teady sta,te. Notice tl~at this appears 
, , 

to be the caSe in figures 1<2(C} and 12(D). ) '1' 

• 1 
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CHAPTER 5. DISCUSSION 

In the foregoing it has been demonstrated that, with the co rrect , 
geometry \ a~d' a nonlinear criticàl layet, it is pos sible to obtain a 

large res~onse for weakly foreed Ros sby ~ave8. It has a180 been 

found that du ring the amplification the cr,itical layer expands ta' become 

â signiftcant feature in the total_flow pattern. Consequently, any 

scheme which éj.ttempts ta lTtlodel sueh a reSonance will have to 
l' 

adeque.tely simulate th~ nonlinear critical laye,r -- in particular 
, 1 

/' 

it appyars that' it is a serious oversimplifieation to treat a tritical 

layer as a reflecting surface.in a linearized model. 

The' curves in hgure 6(B) display an unexpeeted feature 

for these runs the most resonant case is initially the slowest growing. 

lt appears that this behavior can be explained by the evolution ot the 

imaginary part of the logarithmic phase shift. 

It has also beeI1 shown (hgure 8), that the' time Beale' require? 

te achieve a large response IS strangly dependent on the relative 

strengths of the vis cosity and nonlinearity. By changing from i\. = .5 

to t... = \ . 1 the Ume required to produce a sevenfold amplification 
., 

is decreased by a factor of two. Even for À. = '. l, however, the 

time s cale is very long compared ta scales typieal of synoptie 

meteorology proeesses. For example, choosing U = 20 rn/s, , s 

L = 500 km., t: = .01 and 0<.:: .4 would give a dimensional time 

of 60 daya corresponding to 'l = 8 in-figure 8. Béland (1978) 

-2· ;-
found tha~ changing from l .... O(lO ) to c = •• 1 reduced the Ume 

Bcale for a relat~4 nonlinear process from 60 days tc) about a week. 

, .. 
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This is an encouraging result but .preliminary expe riments indlcate \, 

that for E = .1 the resolution ;requirements in the reSonance 'problem 

àre somewhat prohibitive. A more efficient method (e.g., the fast 

,fo'urier transform) fo'r calculating the nonlinear term would help' 
" 

in this regard, 
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APPENDIX Approximation .to the Transient Radiation Condition 

, 
The tr<an.sient form'-' of the southern boundary condItion is' 

I(c) 

! where 

Let f be a fixed value of 'C and ~ (y, 1:) be the associated piece n 

o.f streamfunction "history". \ 
The weight given to this history in the 

integral I(t) is W (t- f), which will he different for each value 01 n 

t; that is. the emphasis given to a particular piece of history changes 

aS time goes, on. This means that I(t) cannat he accumulated, hut 
~ 

must be re-evaluated at each new time step -- a requirement which 
" \, ' 

is very demandirig on both executiqn time and storage for ~ (y, t). 
~ .. , n 

Renee ther,e is good reason to look for an approximation ta I(t} in 

,which at least a part of the integral can he accumulated. This can :' 
,'.. \ 

he achieved as follows : 

: t-r 
I (t) =: l ~r'J (lj/:) Wo(t: -~) Jt 

o 
Write 

CA') 
In te rm (A). r ~ t- 't 6 t; that is. the argument 

function is larger than r. Using the asymptotic for s of Bes sel 

functions JO and J 1 for ~arge a;g~tnents leads to 

, 
" 
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f - (h~(t-t) 
Ce. T 

where we as sumed 

Using a Taylor series expansion 

where Al ;: l~ 

Tgis result allows term (A) to be approximated as 

, r;;;1 (-I+() 
Jt;t:r t V2. 

-i nü t L 
e .z... 

0.-=/ 

Notice that t and 'C' have been separated and the integrals can be 

accumulated as time goes on. Thus a suitable approximation to 

I(t) ie- glyen by this approximation to term (A) plus term (B). 

Evaluation of I(t) without making this approximation require s 

. storage q.nd integration over an interval of le~gth t. Evalttion of 

the approxim4-ted ver'sion is much more efficient as it requîres sto~age 

and integrati:on over an interval?f length r for term (B) plus a' 

smaU overhead proportional to L for the appro:ximati~n to term (A). 

To test the approximation, two linear vis cous runs were done 

for wavenumber lover 3000 time steps. In the first run I(t) was 

evaluated ~ithout making the preceding approximation, while in the 

j 
'1 

" 
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second the approximation to l(t) was used with r corresponding to 

200 time steps and L = 20. The execution time, excluding calculation 

of the radiation condition, 'was about 30 seconds. Time spent 
, 

calculating the radiation condltion was about 17 seéonds for the 

fir'st run and 3 seconds for the second. The resulting values of 

the vorticity after 3000 time steps are given in tabl,e A. Comparing 

the results demonstrates that the approximation does not introduce 

.significant error, even' though it yields a considerable saving in 

execution time and ,storage requirements. 
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1 

TABLE A Vorhclty ,after 3000 

y 

i.e .. " 
è. • 0'4 J , 

1 • 04-' 

J • b ... j 

1 ..... 3 
l.c:,o 
1.V-i-J 
dll 
• trq,+ 
101U 
1 7,<- t} 
.6'1'+ 
.040 
.bùè. 
.:JbU 
.::l2LJ , 

'''!:lU 
... 4U 

, ... v Li 

,"bU 
.jé::v 
.1:':<0 

• C"+ tl 
• .::'uu 
.loU 

~ • 12 u 
.\JAU 
• \J'tu 

-.VlJl.i 

-.U4V 
-.u-'u 
-. l cv 
- • l,:,U 
-.(.JV 
-.1':.4U 

-.è-:.v 
-.32'.) 
,- • .l61 

-'~i~-' 
-.41':>\.1 

-.:JI.i~ 

-.::ln! 
-.~4è' 

-. h., 
-.-ji;LJ 

-!o1b.j 
-l.::lSè. 

No approxlmation 
to I(t) 

VU~TI C TT y 
A Mr'L 1 T UUE PHA~E (ù[(,) 

• S .L·o t1 't 1:. + u 0 l1Y.6è.o 
.7ébC'+E.+UO "'17h.7)\) 
.b~biE+OO -}62.499 
.9t!J4JE+UO -,1 52 • 0 9 't" 

.~O~bJt.·VU -13~.910 

.11t::ù41E.·OO -}41.2'11 
• 1 ... J9 JE.. 0 l '-1 Us. 392, 
.~67édE+OO 

.1Ytl5JE·lil 
,1'+è.IJIE.+U1 
.1"jb7JE+U1 
.2\)';)77E.+U1 
.2 T44bE.+Ul 
.2Uot~E,.Ul 

.1101IjE+U1 

.3L278t:.+U} 

.2",Jl.Jot+Ul 

.lbJ74E+Ul 

.'+V':l7tE,+U1 

.2bI6t::E.+Ul 

.2bU73~+O.l 

.SbD::>t.+Ul 

.2':10:'7(+U1 

.4.:s141E+Ul 

.9 (J rs,,+ E + U 1 

.j*tOJt.+Ul 

.1.,;)è20l:.+02 

.31ètS'iE+U2 

.6.,;)070[+02 

.2:>.J9~E.+U2 

.11U2èE+U2 

.1/ tl29E. +U 1 
• ~"'<+b/t:.+Ul 
.Jt>.J4ot.+ Ul 
.11016t:+01 
.èt}/46t.+Ul 

o·21èb<+I:.+Ul 
.b::>è!:<:>t+OO 
• 1 :,47 9E + u 1 
.1"3èLtt:.+Ul 
.8tSi::73t:.+UQ 
.bëO~lE.+UO 

• '+b.JbllE +UO 
.c''+t>loE+UO 
.213bt.+UO 
.1u':Ic'il+UO 
.c'V?71t.+ U O 

-117.2u3 
-95.7tH 
-67., 9è 1 
-61.l1B 
-66.199 
-138101~ 

-115.158 
-~9.4b7 

-7u.loè 
-106.40U 
-)9.9Y6 
-63.891 

-100.633 
-22.220 
-57.4U4 
-93.u9b 
-7.1bl 

-50.349 
-82.546 

7.'i21 
-43.743 

7,5.6bU 
-157.543 

13{).741 
-31.292 .. 

jJ57.6Bb 
124.123 
-36.1~4 

-bE'-.b91 
11'7.:'u7 
-37.5'u 

-14t<.1l8 
147.974 
101.046 

'c 89.0~1 " 
131.361 

-1è.6.13U 
132. tiUa 
56.Stj5 

104.169 

\ 
\ 

time steps 

With approximation 
to I(t) 

VtJRT ICI Tt 
, AMrL 1 T uùF' PHA~E lDEGI 

• ~:d(~>::' '1 t + U ;; 179.61:b 
.7cbc::E+UQ -176.730 
.B:;,l~jt+\JO -162.499 
.9dJ4:>[+ÙQ -b2.0'iJ 
.tl?:J6br:.+ UQ -138.9'1 u 
.béU4::,t:+\JO -141.2~1 
.14J9UE.+Ol -118.3'13 
.9bldlt.+uQ -117.20~ 
.11.)<j'::dc.+ u l -,.t5.78d 
.1,+c<tlt.+ u1 -67.'-jc:.4 
.lJb74!:..Ul -6}.122 
.2u:'701:.+U1 -66.2u2 
• 2 f'<+ '+ 1 t. • U 1 -a8.0'21 "" 
• 2Ud~/:n.· VI -115.100 
.1l~è.lJt·Ul -':l9.4'iè. 
.310oi+Ul -70.1b4 
• 24J9'1e.· U l -}Ob.4tjë 
.loJ7Jt+vl -40.00U 
o 4~ ':l 7c:' t. • U l -63.t!9~ 

.2071::131:.*01 -lOO.63~, 

.20Ù7JI:°u1 -22.21:3 

.::>olJ::'t.+Ul -57.4U~ 

• 2'1b':ldE + u 1 -93.100 
.4013'jE,+u1 -7.1H2 
.'iub'<-!:.+Ul -5u .J~U 
.34tu4t+Ul -t32.549 
.lJèlljt:+U2 7.9èo 
o Jlèb~E.+U2 -43.743 

,.o.lo/tlt.+V2 15.6tiO 
.2'::lJ99t:. ... U2 -157'.542 

ù 

.11Ucèt.+Vè 130.74è 

.llt!<~t+ul -J1.2'Jb 

.54'+b~t:+Ol -151.687 
~30J4:'E.+Ul 124.125 
.11t116E.+Ul -36.133 
.2t1f47E+U1 -158.,690 
.2!ètjJt.+Ul 117.5lJ 
.8::>è.t;Jt.+Vü -.31.583 " 
.1~ .. b!E+Ul -148.116 
.1j,j~"+t:.+Ul 147.981 
.60266E+OO 101.054 
.b~01JE.+UO 89.0:'-; 
• 4b :itl ù t.+ U{J 131.379 
.2'tb27E:.+OO -126.133 
.21,jl~E:.+OO 132.842 
.1utiYUf.+UO 56.633 
.20336f.+UO ,104.371 
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