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ABSTRACT : .

! ) .
The non-divergent barotropic vorticity equation is integrated

numerically in order to investigate a potential resonance mechanism
¢

‘for Rossby waves b6n a shear flow in the presence of a nonlinear

critical layer. The numerical model, which uses a mixture of

”*

spectral and finite element techniques, simulates the propagation .
t
of a weakly forced Rossby wave on a semi-infinite beta plane, ‘ "‘

It is found that a large amplitude response can be obtained by

"tumng" the geometry of the flow and that there is an associated
g 8 y :

[

increase in the thickness of the critjcal layer. The logarithmic
' ")
phase shift is also investigated, It appears to develop an

imaginary part as the nonlinearities come into force.
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RESUME

v ‘ 1

7 Afin’ d'étudier un mécanisme de résonnance pour les ro

)

ondes de Rossby en présence d'une couche critique non-linéaire,

l'équation non-divergente du tourbillon barotrope est salutionnée 2a

P

r ‘

I'aide d'un modele numérique. Le . modele numérique, qui se sert
de la méthode spectrale et des €léments finis, simule la propagation

d'une onde de Rossby faiblement entretenue 2 la frontiare nord, sur

! (
’

un plan beta semi-infini, On démontre qu'une réponse de grande

amplitude peut etre obtenue en Ghangeant la géométrie de )

l'écoulement et que ceci correspond 2 une augmentation de 1'épaisseur

de la couche critique. On étudie aussi le '"logarithmic phase shift',

Une partie imaginaire semble se développer quand les termes non-

’
n

\ B

. - . . )
linéaires deviennent importants.
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CHAPTER 1. INTRODUCTION . .

‘v

/

The main objective of this thesis is to investigate a potential
resonance mechanism for Rossby waves on 3 shear flow in the
presence of a nonlinear critical layer. : ‘

Although synoptic scale waves are largely responsible for the
day to day variations in the weather, the planetary scale waves
play a major role in steering the syno;?tic waves and thus controlling

the weather on the longer time scales. Despite the importance of

-the planetary waves there are still many aspects of their behavior

which are poorly understood and poorly forecast. One such phenomenon
is the amplification of nearly stationary high pressure systems which
deflect travelling cyclones from their usual paths and often result
in singnifica.nt weather anomalies. Recently it has been argued (Tung,
1977) that a theory of resonant statiolna.ry waves could account for
the creation of such 'blocking patterns'. /

The classical resonance phenomenon arises from linearized
theory and occurs when one of the normal modes in a phy&:ica/)l
systém is forced in some way. However, there are some diffictlties
in applying linearized resonance theory to the atmosphere, The
prime candidates for atmospheric forcing are the land-sea thermal
contrasts and the topographic forcing -- both of which are geographically
fixed and hence have zero forcing frequency. The linearized, steady,
inviscid version of the equation gc;verning the propagation of Rossby

waves has a singularity where the Doppler shifted fréquency of the °

disturbance vanishes. This location is called the 'critical level®
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and, 1in the case of zeko f?rcing frequency, is the line separating
the westerlies .from the e:é.sterlies. ;,In order to overcome the local
failure of the simplified governing equation it is necessary to re-
introduce at least one of the neglected processes -- namely: time
dependence, viscosity, 01: nonlmearit)‘r_. The region (surrounding the
critical level) in which these processes are important is called the
"critical layer',. Thus the flow can be divided into three regions -~
two regions (one north of the critical layer and one sout};) in which
the linearized, steady, inviscid equation 1s a good approximation,

’
and the critical layer in which some of these processes must be

retained. One of the main objectives of critical layer research has
been to connect the solutions nort‘h of tl:le critical Ylayer to the solutions
to the south by examining the processes within the critical layer.
Many of the results of this research have been expressed in terms
of the '"logarithmic phase shift", § , which is rg:laiceod to the resonance
problem by the fact that its real part must be zero if the system is
to have a normal mode. It has bieen found that if vis‘cosity‘ (see Lin,
1967) or time dependence (Dickinson, 1970) is re-introduced & assumes .
the value AT and,‘ consequently, no normal modes are allowed if the
linearization assumption is reta;ined. Thus the classi.céd resonance
mechanism 1is precluded. X
The only hope of having normal modes rests with the norlirear-
ities, Various researchers have re-introduceii nonlinearities by using
perturbation techniques appropriate for small disturbances, with €
frequently being a small parameter proportidnal to the perturbation
ami;htude. Using this approach Benney and Bergeron (1969) and Davig

(1969) four’ld“that for steady flows the relative importance of viscous
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and nonlinear effects in the critical layer is given by a parameter
A= v/ Ybeing the kinematic coefficient of viscosity), © has

the value 0 in the limit as A goes to zero. Haberman (1972) studied

the étéady problem for the full range of A and found € as a smooth |

" function of Ac , which depends on A and the perturbation amplitude

at the critical level, with & = 0 for Ac = 0 and & = - as A.—vrco

in keeping with the previously mentioned steady state results,
Some of the difficulties which dccurred in the above nonlinear analyses

Q

have been resolved recently by Brown and Stewartson (1978). The

conclusions concerning the behavior of & remain unchanged -- in

partjcular its' real part is zero in the steady, nonlinear, inviscid
limit, F

The effect of time dependence on the nonlinear problem has

also been examined. Warn and Warn (1978) used perturbation techni-
ques to derive 2 time \dependent, nonlinear, inyiscid critical layer

equation which they solved numerically and found that € is a function

u

of the slow time scale ( = e"‘t. Stewartson (1978) obtained analytic'A .

1

solutions to the critical layer equation under certain limiting ¢onditions.

v

Béland (1976) has also studied time dependence by taking a fully
' N %
numerical approach, His results for a series of integrat&lo'ns of the

"

time dependent, -inviscid problem for small amplitude disturban‘ces
are; in accord wit;x Warn and ‘Warn's findings and also show that
ma:ny of the previous steady state results can be obtained from éhe
initial value problem. Béland (1978)"examinedr the effect of viscositY
and showed that long time iniegr'atiozis could also produce results in

qualitative agreement with the steady state obeha.v'u")r reparted by

Haberman. Thus it has been shown that nanlinearities, whether

- -

ki /

E@i’* do -~



in the. steady state or time dependent problem, can produce a log-

arithmic phase shift with a zero real part -- which is a _.necessary
i

condition for the existence of normal modes.

. The existehce of normal modes does not in itself guarantee

that resonance will occur -- the normal modes appear only in a

' C ‘nfionlinea.r problem and ‘the conclusions of linear theory (for example,
' that forcing a normal mode'will produce a resogance) must be used
with great-caution. fI‘ung (1977) investigated resonance ‘u’éing a time
dependeni, damped, linear model with the critical 'layer treated as

i
i ) a reflecting surface. Nevertheless, it still has not been demonstrated
! o that a large response can actually be prod\‘lc‘ed in a transient, nonlinear,
' . viscous problem. Furthermore, it is not clear how thc; critical layer
b should behave during the evolution of any such resonant response./‘
'These are the two main points examined in this thesis.
\;I‘o focus attention on the nonlinear mechanism and fac/i\liﬁié.te /

ez
5
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interpx‘etati.or}‘ we use a s/i,mple model which contains ‘the essential
dynamics and i;ln'which the role of the nonlinearities is easily identified.
Many of the reéults quoted above have been 'found using techniques’
which are not appropriate for lé.rge amplitude disturbances: Such
technigues could become invalid as the wave resonates and consequently
;i' D we turn to a numerical approach which \is free of thegg: limitations.
Specifically, the no;xadivergent barotro{oic vorticity equation is modelled
using a mixture of spectral and finite element teéhniques. This

model is similar to the one used by Béland with the main change

‘ being the replacement of the standard finite differences by the finite

elemeht method. Variable resolution can be accurately incorporated -

P

e

in the finite element method, leading to increased computational
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efficiency by resolving the' short scales of motion in the eritical
‘ -
layer without requiring. unnecessarily high resolution elsewhere. )
! A
' In this thesis we restrict ourselves to initial, shear 11&ws 'ﬁ(yf i ‘

T

i

that are monotonic in y so that steady. waves possess only one

critical layer. We also exclude the special case in which the |

.
- s Y ave -
gradient of the mean absolute vorticity ﬁ-i—g—;—: also vanishes at the

! /
critical level. . :
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CHAPTER 2. THEORETICAL FORMULATION
I

\

2.1 The rﬁodel equations

We shall study the evolution of two-dimensional Rossby waves

generat;ad by a small stationary forcing (proportional to ¢ ) in mid-
latitudes and propagating southward in the semi-infinite domain '

-0 < yé_lym on an initial shear flow U(y). The beta plane approx'-
mation will be made and the flow will be periodic in x which corresponds

to a latitude circle. The governing equation is the non-dimensional,

non-divergent barotropic vorticity equation

&V +}FVT3 5V +/31LL RRANS (2..1).
Tis the streamfunction, related to the longitudinal and transverse
. - - . \
velocity components through u = —"Iy, v = Tx’ ﬁ is the gonstant
beta plane parameter and V) is the kinematic coefficient of viscosity,
The non-dimensional quantities are related to their dimensional

&
(primed) counterparts by ‘ ,

'(7cw3,t\) = (2 /L,, %'/L) Ust“/;_x)

~—

(T, B, = (T/wD), Lp' /15, Lo/ (215)

where L and Ug are typical length and velocity scales determined by

the background velocity profile and Lx = Q. cos ﬁo with Q being the
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mean radius of the ea}]rth and ¢o a typical latitude. . Thus x will

8
vary from 0 to 27 around a latitude circle. Also

- ™ 3* .
TRt ia T oam o *= L/,

\ Y_
The initial conditign is taken to be ‘%(x,y, 0) = —‘f NS, ‘and the
northern boundary condition is a stationary sinusoidal forcing of. the

transverse velocity for integral wavenumber 53 o

/'\Ix('l) Yy t) = - 2€ & sin(&a)

b

simulating the presence in mid-latitudes of a weak Rossby wave
which will propagate southward. Introducing the _pei'turbation

‘streamfunction E_ and perturbation vorticity @ such that

: 9_ | |
Y = - j ulg)ds - é@l%,.!j)t)
C- v (22)
resuits in | ‘

§+:+ ’Q(b)g%.*.(ﬁ—%—z-‘g.) @% + & (@x g‘i"@\:\‘ gx)

\

2. 3u

with initial and northern boundary conditions

3&(%“};0) =0
: B, = -2k sin(®x)  (2.4),

a—

The term -y cd-i---"{--3 appears on the right hand side of equation (2.3)
% .

because -[‘3 Tile)dE is not an-exact solution of the steady linear

viscous equation.



. Notice that € is a measure of the strength of the nonlinearities in

; equation (2.3). The unbounded domain in y will be simulated by '
\ using a finite‘computational domain VISYSY,, together with a radiation

condition at Y- This will be discussed in the next chapter.

5
{
7

p . .
Y 2.2 Critical layers and resonance

The ateady, linearized, inviscid version of equation (2.3) is

< + i M”(b) _a where ' denotes fh_ .
r Ulw) \ 3
¥ §- ﬂ(y)eikx then | v

dde , (E=UN _ agi) -0

e = (2.5)

A p
This equation has a regular singularity at a value Y. Where E(i{r‘) =

and .using the method of Frobenius it is possible to find solutions

o

il

af P + by Bfs)  moy,
TG Pols) F b Bs) yluc

= (u-u. (6~ T) 2 4. - (2.6)
Bz (3-50) = s (T4t |

1“uc/ 2 1 2

Foon = EE) g la-a) (2.7).

Uy (B-UNU: 3 (B (y-u, )
¢b,k: |+ {«%’-f “‘m, + -2 ———-—)}(___‘ﬂ b)
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The subscript ''c¢'" denotes evaluation at Yo Notice that different

coefficients are allowed north and south of y_ and that § pcontains
a term (y-y )in fy-y l which vamshes at y_ but produces a ln]y y l
behavior when differentiated. Thus Sba;&rc) = 0, '¢b’p(lyc) = 1, but %b,k

has a logarithmic- singularity at Ve and hence equation (2.5} cannot

describe the flow at Yoo the "critical level" for this model. To

overcome this failure it is necessary to)| re-introduce at least one
of the neglected processes (time depemdence, nonlinearity, or visé%sity)
in the vicinity of Vs which is referred to as the '"critical layer',
Thus the flow can be divided into threfe regions; the critical layer
and two '"outer regions' to the north and south where akgb a’&y) + Yi¢béy)
are good approximations., A main goal of critical layer research has
been to fin\d connecttion formulae relating a;, ai, b&-, an‘d kb; by
examining Q:;he processes within vthe‘a crifical layer. The available
results provide a description of many of the salient aSpécts‘ of the
critical layer evolution and suggest a potential resonance mechamsm
for Rossby waves.

In all cases it has been found that one.connection formula is

b}t\ = bi, while the relation between a; and ap; depends upon which

process dominates the critical layer. Defining

ooz = [ad = ¢ B-0) po (o)

o
the steady, linearized, ihviscid solution can be written a‘.s . W
G = af dp) + B )
&
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@ is called the "logarithmic phase shif "and its real/part' G‘R can

be related to the jump in the Reynolds stress LR] acrLss the critical
\

layer via

ue| LR
24 (8- U¢) Ip)? :

'The early phase in the evolution of the initial value problem
is described by linear inviscid processes as examine<fl by Dickinson
(1970), with the thickness of the critical layer decreasing like 1/t

and fF assuming the value -[. If no other ,process s present the

critical layer continues to collapse and as t-» o the gingularity of

the steady problem is recovered. If viscosity is domijnant,” for t ~O(‘U-'/3)
the thicknébs will equilibrate at O(v"3). & will remain at-7 and the -

) stéady, linear, viscous state described by Lin (1967) Wwill result,

1f nonlinearities (as opposed to viscosity) are present {6 is found

-

to be a function of the long time scale T-= é'/’{; (Stewalrtson, , 1978;

Warn and Warn, 1978). The thickness eguilil?ra’tes ‘at 0fe '/‘) with €&

vanishing as T-»00 as in the steady, nonlinear state eximined by

-
~

(2.9).

s
o

f
b
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Benney and Bergeroﬁ (1969) and Davis (1969). When all three
processe@s are present the relative importance of the viscosity and

nonlinearity is given by 7\ = 1)/63/1, the cube of the ratio of the

.respective layer thicknesses, and,t@g steady state value of ® is a
N /

function of the g;arax\*p‘hgter /Ac (proportional to ,7\/ \?fé) which varies
smoothly from -"Wﬁof R;’H‘o to 0 for d¢ = 0 (Ha:berman,' 1972/;
Béland, 1978),) These results can be combined to provide some
insight into a‘potentiia.l resonance mechanism for Rossby waves, but
first it should be mentioned that the thickness of the steady nonlinear
critical layer is actually O(G'/zlwvz) where &“has been assumed to be
0O(1) in the preceding discussion. .

Consider a wind profile T(y) =y, together with the "long wave

limit" Je2f2] & Iﬂ/jl . Then equation, (2.5) becomes : e

. Lon0, e

which is a transformed Bessel's equation (Dickinson, 1968). It

is possible to identify the Bessel function solutions with linear com-

binations of ¢a’g), and '¢b,g)' T}}us for y>0

¢ = {%eré(zawnp-l)}ﬂ Ji(2Jsg) —kT Yi(2JBv)

* ¢

and for y<0 ?

t

b= § H0-20-0p) - % TG Fas)+2h fBy Ki(25m)

Here (§ is Euler's constant, ' For a bounded solution as y~> - 00 the

H t
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coefficient of Il (2\,‘@&3) must be zero, Also using definition (2.8)

S
1

the so%ution for y>0 becomes
(w) = by Jpo { (6T (2JBY) - Y, (2Jeg )} (2.0)

Thus’ d)(y) is proportional- to bﬂ( which 15 “determined from the forcing'

boundafy condition (2.4) in the north, thatis, ¢(ym) =1, or

) , D '
b, = —— 2.

R a6 EsR) - T (1 Bum ) (2-12)
If the \combination ﬁym is chosen such that Y' (1J—p—3‘m) = 0 and &0 .

as in the nonlinear limit, equations (2,11) and (2.12) show that QS(y)

would become unbounded; that is, a resonance would result.’ Ve is

t.he distancé between the forcing boundary and the critical level, so
changing jBym.to produce a large b«k vould be interpreted as looking

for a resonance by ''tuning' the geometry-of the flow. This strongly
suggests that it should b:a possible to resonantly excite a wave with

a nonlinear critical layer. Notice also that ifra complex e'ylis

allowed, 'e'=9R+L'9 , bk becomes l\lnbounded if G'R’—'O and O =T 2Jf9m .
As will be seen later, G'I could play‘an important role in the ‘:r‘ (LJ_B—H:A ’
resonance mechanism. Since the thickness of the critical layer is
O(e“‘/znhll/g_) the region in’ which the nonlin.earities are important will
expand to occupy the whole klow, implying that the concept of a
critical layer‘lwill eventually break down. I-_I.ence we turn to a
numerical solution of the full equation (2.3) in order to study this

process, The investigation will not be restricted to the long wave

limit which has just been considered here for illustrative purposes.

a
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CHAPTER 3, NUMERICAL FORMULATION °

N

3.1 =x-discretization N

The periodicity in x is exploited by using Fourier series

»

representations in x:°

N o i
¢ x,u,e) = ‘<;:_ Palut) €

€l y,e) = ‘? qn(mﬂ et

*
Note that, because ® and § are real, ¢.n(y’t) = ¢n(y,t) and
g_n(y, t) = gi(y, t) where * denotes complex conjugate. Using

the ‘orthogohality propert‘y of the '™ equations (2.2) and:(2.3) lead to

e s {00 - §5) b3+ B 1 (4G 2h)

f=- N+ {

— €, _ " 4% o

= v B'j D~ &t g ) —;’- -d—g‘a ("3'- l)

and - ﬂn — oIn? th = gn e r “(3' 2)
L dYy2,

‘Here % is the Kronecker delta. The initial and fogcing conditions

become

)
o

' ¢n(‘j)0)

On (Bmt) = d4 .

¢
9

At the southern boundary Y, @ radiation condition of the type presented

-,

o
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by Béland and Warn (1978) is applied. It allows only outward propa-'
g A .

gating energy {1.e., away from the source) and assumes that
\

{1) the boundary is far enough away from the critical layer for

the flow to- be linear and inviscid,

. ’ (ii)  the initial wind profile U(y) is constant beyond this boundary, and
? (1ii)

E(x,y,O) = 0 beyond this boundary.

o

/
In a form appropriate to this model it is, for steady waves with T<0
S 3
s a ' -_..-Ddd) —— (D{zﬁl - '_'f—_ )/Z ¢n = O
dvy s U
fo e )
and for transient waves :
v ' ‘a . t )
80— wn @y = = [ G0,0) Wo(2-T) dT
. where \'\/ (g) V2, "C"’l(U.'— 2?:.“1)& . .‘ PR
" T 2x ) {J‘(Z%ng)*‘x(—i;ﬁg) -
J , *
3.2 t-discretization ’
|
; Lett = j At where At 1s the timestep interval and j is the
| ‘ i) and €y |
timestep index. Define ¢n(y) and ,gn(y) by
s
qsh(‘ﬁfl‘-) = 4)“(%)55{:) = ¢, ()
- G = oS
€rlust) = Gy, $ak) = &ly) .- ’
N\
' A centered time scheme will be used and hence it will be necessary \
to, 1aig the calculation of the viscous terms to ensure numerical -
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stability. Thus the time discretized versions of equations (3,1)

and (3.2) are

S -8y - _ 0 i eStyr (8 )4)”@}
2 At
| e z La{gémaen-ﬂ g!og,wtah.;}

! ‘\ ! :-N+n
: ‘ “
+v{d1§ ! — o2 n(\g}g 5023%—3
. 5 4 S+ ' S+ o
and %3-%" —  xX2np? ¢nsﬂ(b) = §n+ (4) o (3.3)
e

The northern boundary condition becomes

5+‘l n ; .
¢) ww) = é;Lk é . t

Whlle the steady radiation condition at Y1 takes the forrn

v
P

.o

4 )
%73— (w) - (o2 *.% ) </5n”'(5,)

Using a trapezoidal® apprommatmn for the integral in the transient

§
rad1at10n condltlon glves

.H" '
4) . .( -
(359"%.) ~ (stn — ¢ At) By () = *“t{ AV 2 4>( ““)

where W; :‘Wn(l At). By using asyniptotic expansions of the Bessel
. functions it has been possible to derive an efficient approximation

to the transient radiation condition. This approximation is presented

\

, in the appendix.

[CIST



written as a finite series

k2
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3.3 y-discretization

One of the most important features, of this model is the use . |

; ‘

of finite elements in y. In the critical layer the scales of motion
. - ' N ™

become very short and require high resolution for adequate sirmnulation

[
while in the rest of the domain the solution remains smooth. It is

3
P

therefore desirable to use a numerical scheme which can easily and

0 - !

accurately incorporate variable- resolution. One such scheme is

v

provided by the finite element method, - ‘

s
[

To apply the method to the current problem it is necessary to

7
7

know how. to

(i) represento functions in terms of Iinite elements, tooe
(iii differentiate,
(iii) multiply, and
(iv) solve the Jdiagnostic boundazy. value éroblem‘ (equa”{i:m 3.3).

A brief description of each of th?se procedures follows. For more
detail on these andsrelated applications of the finite element method

see Sthniforth and Daley (1977) and Staniforth and Mitchell (1977,  °
1978). : '

“ v

Y

(i) To represent a function in terms of finite elements :

'

Suppose u(y) is a function defined on ylsyé VM and ﬁ(y) 'is

the approximation to u(y). In the finite element method {i(y)_ is

P

?

.M '
A . N
Uy = Z ume™®) -

a

.

P—
£

g

=0
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wKe¥& The—e'(y) are piecewise defined polynomials which only interact

locally, leading to sparse matrices whose structure' can be exploited

.to prodyce efficient numerical schemes. Once the em(y) ,asi-é chosen,
/-

\
determining the coefficients u_ determines G(y). To find the M

unknowns LIERERTA Y it is necessary to impose M independent constraints.

The accuracy of the scheme and complexity of the matrices dépe‘nd

on the degree of‘the polyzi?mials chosen t:o;' the em(y). uWe choose

the el“n(y) to be the "chapgau ‘functions" depicted in f.igur;a 1 which lead

to simple matrices (generally tri-diagona.i) while providing hig—h'a.ccuracy )

(fourth order over re'gions of uniform mesh length)., Each chapeau

function has the value 1 at its central mesh point, decays linearly to
zero as the adjacent mesh points are approached, and remains zero
beyond. Note that e‘m(yk)p=6}: (ti‘le Ktronecker delta fur;'ction). 'The
u are determined by theM“interpolatory cor;;lit%aints" ,

C U‘(fﬁﬁ.) = a(lﬁk) - ‘5'“’“ CM(%!Q = h1£=| u’%ﬂ{ﬁ: Ug .

Thus the approximation ﬁ(y) fits u(y) exa:ctly at the mesh points y_. It
is an,ea,sy matter to show that for V< y<yk+l u(y)o‘is a linear inter-

§
polation between mesh.point values u,_ and uk:;‘ as shown in figure 1. .

° \
o

(iil) To differentiate :

\ Assuming uty) is a known function, the problem is to find w(y)
o ¥ . N .

approximating w(y) = % To do this, write M

\ W) = < Ume™

u‘%) - m= m (5)

where the u  are as given in (i);and the W, are M unknown coefficients,

A M ‘v
Wily) = v.’;':;f‘wmae () )

Substituting these gives - \

o
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. A
Wiy — -‘}-g— = E(w)

where E(y) is the error- resulting from the approxim;.tions. The w
can now be determined by irgposihg the Galerkin (or orthogonality) -

constraints -
& b \jM ’ A - ﬁM . v
A J0 ) & . b _
XM {W‘(k;;) - ;5} € ) Alj’- i'ﬁ(t_g} e iy = 0,

, (9M m &
1 . m & —— A - fs )
that is E W | € '(w) e (w) Chﬁ S U £| -;—g’— e (y) d‘j 0]

= 4, m=1

N T g ?&M 3 g ’P&h’i n ( )ﬁ\
Mz UJ—M - m= l:) ™ , ’ 3,4.
Ym Yy
' A N M ™
wmere PP [efy dpdy wna BEN- f ) 27 4y .
4) . 3

»

Since k assumes the values 1;...,M, (3.4) is a system of M equations

vt

~ for the M unknowns W and can conveniently be written in matrix
‘ m ) .

form. The fact that the e (y) are zero for yZ Ym+1 ©F yéym_l

means that Pkm = Pl;m = 0 unless m = k-1,k,or k+l. The resulting

matrices are tri-diagonal and this fact can be exploited to produce

~
efficient solution schemes (Gaussian elimination for the tri-diagonal

problem, see Ahlberg et al., 1967, p. 14). With hy_ representing
Yrs1 - Vi the matrix form of w(y) = du/dy is ‘
Kfa"#; Ww) = (27 1 {u,)
RE 0 ||w| o |Eed 0 ||
\‘l@ﬂ\h&;ﬁm wr S AT '
| 6 \3\ N ;4 1\\1\ UlA
0 N \.h\‘%ﬂ Wi 0 \0\“%" Uy
\ e b ) sy | - STz T) lum ),
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(i1i) To multiply : \

) N
Assuming u(y) and v(y) are known, we want to find w(y) approx-
imating w(y) = u(y) v(y). Write

A M M A ) i Ll ‘
Uty 2 W €7y | Oy = Z Uy €ly) ) a0d V)= 5 V€ (1)

where the u and v, are as given in (i}. and we want to determine

the: M unknown coefficients L Proceeding as before,

Im L
[ { l:r(lﬁ) — Bly) l?r(\g)} 5’4(5) o{':): 0

9y
M ' M M Iyl
leads t &m = L ™
eads o Z, P e, = f. ) Uy Q" vm
where the Pkm are the same as in (3.4) and
Q = e ly) ely) e () duy .
\ By © ¢
Evaluating ‘the integrals gives
Q11! =,}l Q112 . gl2l _ gl22 b :
4 . 12
QMMM _ by ) QMM-DM | (MM(M-1) _ nM(M-1)(M-1) _h
4 12
while for k = 2,..., M-1 QXI™ 15 given by
‘ | Qe el
, m ' k + <8
' h-1 ha-
k-1 Jﬁ- i 0
& | hao [Matha| ha
3 Z 12
h h
0 4 | g
ﬁa,“ : 2 | 12
KIm

with Q = 0 otherwise.

/

—
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(iv) To solve the diagnostic boundary value problem :

S+1 : - ~
On e e \
dchﬁl *h? n ‘(Lﬁ) = g\n ‘(‘3) . (3/-3)

The forcing boundary condition 1s imposed at Y = Yy and can be
written as

¢ (w) = a+ib

for appropriate values of the real constants  and Y . S
The radiation boundary condition is imposed at Yy and can be .
written as
a6 - :
2 (o) — (m- (8) dolv) = C +id

for approprlate values of the real constants /f(, g€ , C, and d .

Writing

BaT () = ULy + oty

SH1, . .
Sy = Ry + 50w
and. A = £ allows Separation into a pair of real boundary value

problems
(A) %%—;izl - >\Z M(‘ﬁ) =. f‘(‘ﬁ) :
. \

with boundary conditions ULKAM) =q,

! / and %_U@(ldl)‘i._rn (ﬂ%) - g ’U'(lﬁ,) = C
1 N .
I R R

with boundary condijtions V(WY = \)

d

W d“s

Note that these problems are‘coupled through the boundary conditions

and é—"[(g\)ﬁ -fvz () +EUm) = d.

at‘( yl. ‘ “ 2 /
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Consider problem (A) : ’ : "

s

. | |
i - Wuy = rey

Multiplying be e (y) and integrating gives ,
Y

Om 2
f,j ﬁ e (‘3\4‘3 >\f Ulw) e (s)du_\, = S riy) e 03)&«3
) \ﬁ\

Doing an integration by parts ot the first térm,

3
The southern boundary condition (at Yl) can be written as

<4

W) = om U+ 5 +

and combining these results gives

Ym

: &
S %‘7‘5%&*&“{M(alne«r(n.w@ e % dy

Un sa” I
~ﬁvg.mae%®d5 = ‘f ") efendy . (3:5)

9

The finite element achem'eg presented up to this point have been
accurate te fourth order,'m hk over regions with constant hk and
to second order over regions of varying hk (see Cullen, 1976, and
section 7.2 of Strang and Fix for a discussion of errors in the-

finite element method) If we use "

. ,\ N R N\
. - - -Z e
Wyy 2 Ul = Z: b €70Y 5 Tl T Hy) = 5., € )
in equation (3.5) it is found that the solutions are only second order
accutrate over regions of constant hk' The desired fourth order A

accuracy can be maintained by introducing parabolic approximations

G(y), Q(y) for functions u(y) and r(y) in eqdation (3.5) : .

I Ym
2 9{ _ old _ & _ 4 .
J— ‘"‘3%‘1 elyndy = I AT;C%M) 51 (Lg.) /ﬂ‘ %% %Es dy.
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\ Gy = 'f‘a‘"‘ (%)2 + U\p:‘{] ~L(‘3*‘M )1} ij-\éljé{jﬂ{

J'Uh\

1

uk{ - (%2"&)2} ‘4' My (B,;:“)l 3;&5‘;5 éﬁﬁ;'

= . @) otherwise, /
with a similar scheme for Ir\(y). This is the one-dimensional equiv~
alent of the method given in appendix B of Staniforth’ and Mitchell

(1978). Evaluating the resulting integrals, equation (3.5) becomes,

for k = 1 - c
B e A L N G T €m—,—;h+“‘r e
for k = 2,...,M—I

R ‘
(hk|_>‘1 ha- ') u(fb. ) _{hﬁ__l * hk\Jr—Az'[S;: (h&-;"—h&)} *LL&

1 .h — g s
+( )l 4 ) uf’lH - *%L{’ rk~; +’E (hﬁ-v""})a\r&.;- b‘% rﬁ.m‘-l .

As an M h equation use the nor}:hern boundary condition u(yM)

:uM:Q.‘

A similar procedure for problem (B) gives another set of M
oo

equations, so we have a total of 2M equations for the 2M unknown
coefficients up, N VRS TEL Y and the problem is solv‘ed. It
can be expressed as /he following almost tri-diagonal matrix problem

for which an efficient solution algorithm exists (Gaussian elimination

for the almost tri-diagonal problem, see AHlberg et al., 1967, p. 15).

-+
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(1 | Y fw) (R,
20 12223 [ \
L\L\ L\ U R1

NN N | ‘ '
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NN N :
NN l ’
h \";l\Mﬁz'lhﬂl ]
L L e Up-r Rea
e  — 0,_‘..0; et et m— — [ SE—— __u_f’ﬁ = é—-q__
N T R
L MMz Up-i ' SM-: : 3
I N NN -
| NN N .
| NN .
1 AR
| \23 212
ey g
J \ 1) ug' J
l 5 . ‘
(o +XFhen) %= - By
bo-1 1 32 ha-
T A* e )
RA " ! 2 &
= - *—l: +—‘;)‘;+-R —l_f(hﬁ-u“—hﬂt)} > ,&: 2 :’..)M*l
&+l _ 1 _ Y2 kg B |
L ha A T2

/ .
T rh o % kb, + C Re= hk At n.(hﬂ ‘lrh")r‘ﬁh

_ 5
= ES' + —l—'z- Sz'i‘d. Sﬁ- h:zlsk '+J—(h +kj,_) +~ /-

This completes the numerical formulation of thé problem,
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CHAPTER 4. EXPERIMENTS

i

3
\

In this chapter we will present details of two sets of experiments
using the numerical model described in the previous chapter. The
first set deals with the dependence of the logarithmic phase shift

on fhe relative strengths of \nscosny and nonlmeanty, while the

second set inyestigates the potential nonlinear critical layer resonance °

mechanism for Rossby waves which was suggested in the latter part

of chapter 2. \

4.1 Selection of parameters

’

! ’

Among the quantities to be Spec1f1e.d are the 1n1t1a1 wind profile
TG(y), the non-dimensional time step mterval At, NW the n_umber
of waves in the xldirection, k the wavenumber of the forced wave,
h(y) the ;;'rofjle of mesh lengths in the y-direction, and the values
of the non-dimensional paramelters X, /5, e, '\)‘. |
The initial wind profile of figure 2 was used for all the exper-

H

iments. Throughout most of the domain Tllis linear with a zero at
y = 0. For y<-é the profile is'a hyperbolic tangent function

which asymptotes to a constant value (-1). T is therefore in the
class of ‘profiles asgumgd'in the derivation of the radiation’ condition,
The value of B was always chosen to ensure that 3 - %%_} 0

everywhere in thé domain, thus excluding the possibility of baro-

tropic instabilities.

IR,

LN

Y TS
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The mesh length profiles are ‘shown in f1gu!re 3. In the majority
of runs proifile (A) \was used. Here the mesh length has a constant
value of .02 in the vicimty of the critical 1ayer[and increa‘ses to .1
and .2 to thke north and south\. Tests confirmed that varying the
resolution 1n this way did not introduce significant error., It is
found that. the ampl.itude of the soliltlon decreases rapidly ta the
south of the critical 1ayer\and this probably accounts for the fa.ct
that a lower resolution can be tqler;ted in that region. Using
proiile (A) 2t is possible to cover -1,5<€y<2.5 with slightly less
than 100 mesh points, while using a uniform resolution c;f .02 would

require 200 points. This results in a considerable saving while

retaining the desiredsaccuracy in ‘the critical layer. In profile (B)

" the region of uniform® Migh resolution is extended to the northern

boundary. This was used in a few of the resonance experiments

to ensure that the expanding critical layer would be adequately

Y
0

resolved and also to facilitate undistorted contouring of the output
fields,

In\'%rlably o was chosen to be .4, k was 1, while the number
of waves 1'h the x—directior% (NW) varied from 1 for the lidearized
runs up to 20 1in the most nonlinear case. At was generally .035

e

which 1s sormewhat less than the limit required for computational

-

stability, [ was always in the range 1.2 to 2.0, with the central

“value of 1.6 corresponding to a choice of length scale L = 1000 km,

and velocity scale U_ = 10 m/s at a latitude of 45 degrees. In
' A\

the nonlinear runs the transient radiation condition was imposed on

\ ’
' a

wavenumbers 1-3 while the steady condition was used for higher
wavenumbers, The forcing at the northern boundary was switched on

linearly over the first 100 timesteps. )
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Significant parameters for the experiments to be described |
- 3 ]
here are ¥ and € , or the combination A = ’l)/é /2 which gives’

a measure of the relative importance of the viscous and nonlinear wl

effects. The values of A4 and € vary considerably and will be

" iy )
indicated in the more detailed description of the experiments.

4.2 The logarithmic phase shift

‘We shall now describe the experiments performed to investigate
the dependence of the logarithmic phase shift on the relative strengths
of viscosity and nonlinearity. Recall that the analysis of t:he steady
state prgbiem suggested \tha.t it should be possible to resonax:ltly
excite a Rossby wave ;Pz:ov}ided that|the logarithmic phase shift =~

tends to zero, -

For our wind profile"‘.the expression (2.9) for the real part

of € becomes ' .‘ E R-]
Y TIINE :

%

where EP\] denotes the jump in the Reynolds stress across the critical

s

layer.
| . ' ; s
Haberman (1972) analysed the dependence of G'R on VM and & ~

for the steady problem and obtained: G,\ as a function of AC. which,

i

for the present case, is given by "

"\ ‘ ?\ o
B(21bg)) 2 -

For the steady problem it can be shown that the Reypolds stress
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. ' is constant outside the critical layer, being zero Below the la.yer'“ AN
e . for the wind profile and ‘southetn bou-ndaxiy condition used here.
Therefore [R] is given by R evaluated at ‘any point above the
. \ .
. ctitical 1ayer.° . g '
In our model, however', these quanti{ips will be functions' of
: " time. Warn and Warn (1978) show that in the time dependent non- .

’

linear problem a first approximation to the coefficient of the forced

- > . . \A e ; w‘ ’ ’ ‘I
wave B, (y,t] is given by A (T) ¢a»!<‘y’ B (T) Py () where T €'t

is a slow time scale. That ‘i‘é‘, the role of b, in the steady problem

is played by Bk(T) = ¢>k(0, t) in the time dependent problem and

[ Reiv)]
aﬂkl%@uﬁ

' A() 3”‘/2‘%(06\3/2‘ | , R

where [Rk(t)] is the jump across the critical layer in the Reynolds i

accordingly- we define

Op &)

stress ‘of the forced wave. The Reynolds stress can be expressed
) . *
as R“k‘ = -2 Im(¢k¥§- ) with Im( ) denoting the imaginary part. .
In the numerical integrations it was found %hat, at any given time,

‘Rk showed some dependence on y, decaying quickly to zero below

e

the critical layer and varying slightly about an easily identifiable

A g
2

\ mean value above the layer. Because of this behavior it was

N -

decided to take [Rk(t):] "as the y-avei'age of the values of Rk above

the critical layer at time t., '

W
=
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"In figure 4 the evolution of e’R(t) is presented for sixl different

3=
runs. Haberman's analysis neglected the term correSpoildmg to ;—Ld “

: 3
K “ m equation (2.3}, and this term was also removed from our model a
;g‘ e for runs 1,2,3, and 4. - The values°df the relevant para\\meters are
gs i “ given in the following table : ‘ ‘
) " TABLE.1 : Loganthrmc phase shift rum; _ -
L © -\ RuN A e N N By,
| o 1. o  ——  2.16x100% * 1 160  2.24
L ST 4 L0016  2.56x107% . 4 1.60  2.24
: 3 2 '.0(116 128x107t 4 1.60° 2.24
; ﬂ o ‘ 4 Y .0036 2.16x10% 4 1.60 2.24.
AR s s Lo06s  2.56x107% 8 143 2.24
B _— 6 5 Loo6a | z.56x100t 8 1.60 - '1.54

i \ Runs 1 through 4 became steady by t ~100, while runs 5 and 6

“ ' showed shght osc111at10n in time and were mtegfated to t ~200
h in order to have at least ond complete oscillation--- the steady
E‘ o state value then-being taken as the mean over the oscillation. The
:
4

steady values of, O and the correSpOndmg values of A are plotted

~

as the dots (numbered according to run) gn figure' 5. The solid

3 -
e IRy

J'-line is the curve presented by Haberman (his figure I) while the

: ’ ‘ crosses mark the point,s’ recently repor’ted by Béland (1978, ms

l% - figure' 10). The three sets of results show good gualitative agreement
despite the fact that Haberman neglected certam wave interactions

A
i
F ‘ (t,hose not involving the primary wave) and it appears from recent

v

work . that these are important (Brown and Stewartson, 1978; Stewartson,

5 ¢
)
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_1978; Warn and Warn, 1978)., 1If all ‘interactions are included it -

"~ seems that €& may algo depend on the geometry of the flow (in addition
to Ac) and have an imaginary part. As will be shown in the next
section, the complex nature of € may be of particular relevance t;)

the Rossby wave resonance mechanism.

4.3 Resonance experiments

»

Equation (2.11) shows that, in the long wave limit for a flow

with'a linear mean wind profile, the linearized steady state solution
* is proportional to 9{ = sﬁ(O). . This suggests taking q_’gk(o,t) as a o
measure of the response in the time dcependent nonlinear problem,

so we define the normalized response

e

r= q’gz(o)t\ \ (4'|\)

Prv (0) \

where ¢k\)(0) is the steady state value for a corresPonding linearized
run -- the linearization yielding vidcosity as the controllingu mechanism
"in the criti(?al layer, !
Our analysis for steady léng waves indicated that by changing
Bym it might be possible to excite a free wave if nonlinearities
dominate the critical layer. Experiments were performed to test
, this hypothesis. For the first group of resonance experiments A had
the value .5 (& = .0064, W = 2.56x10”%), and NW was 8. Only

p and y_ changed from run to run as given in the following table :
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TABL’E 2 : Resonance runs
RUN B RV AYm \
1 1,561 2.243 3.50
| 2 1.910 1.256 2.40
3 1.831 . 1.256 2.30 :
S 4 1.791 1.256 1 2.25 y ,
; 5 1.751 1,256 2.20
6 1.671 1.256 2.10
7 1.592 1.256.  2.00 |
’ 8 1.512 1.256 1.90
9 1.433 1,256 1.80
10 1.353 1.256 1.70

Figure b consists of curves, numbered according ‘to run,

giving the evolution of the normalized response for the different

7

_ values of /QyM, Figure 6(A) gives the curves as hﬁyM decreases

from a value of 3,50 to a value of 2.20,’ while figure 6(B) shows
the curves as BYM continues to decrease b/eyond 2.20 to reach

a value of 1.70 in curve 10. The abscissa chosen for these curves

- v a 1
1s T = E'/’-t, the time scale of the nonlinearities (Warn and Warn, °

'1976). These curves confirm the hypothesis that a large amplitude

response can be produced with the coxrect geometry and a nonlinearl
cAritical layer. Run 1 is definitely non-resonant -- during the whole
integration the response stays within 5 per cent of its initial value.
How‘everf as 43YM decreases it is possible to ‘produce larger and
la:rger responses, with the near resonant runs 4 and 5 giving

sevenfold amplifications by the ends of the integrations. Notice

L]
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that, with the exception of run 1, none of the Icurves in ﬁéure 6(A)
indicdtes that;a steady state has bgen reach;ed‘. As BYM corltinues
to decrease beyond its '"resonant'" value of 2,25 or 2,20, \smalnler
and smaller responses are obtained at the end of the integrations
as shown by fxgure 6(B). These curves also reveal a somewhat
unexpected feature -- curves 6 through ,io cross curve 5 during
the integration; that is, the run which eventually has the largést -
response in this set is initially thJ slowest growing. Efforts to
explain this behavior led to a closer examination of the role of the
logarithmic phase shift in the resonance. mechanism:

For the steady, linear, inviscid.problem the forcing boundary

condition ﬁ(ym) = 1 gives

\ G Fefar) + % Pofam) = 1.

The decaying nature of the solution as y-—» - requires Qh q %{

o~

where 3 is a real constant, Combining these with the definition

of‘ € (equation 2,8) leads to
by = o
C(u+le)

where for the wind profile used here

bafum) 5 4= Defs)t 98den)
IB ‘*,;{*‘6) . . )8¢b£'3m)

Replacing a by ¢k(0 t) again yields the time dependent analogue

B (o) = | . @)

C{u + com}
Substituting into equation (4.1), taking ©(t) = &(t) + ¢ € (t), and

i
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" This equation shows that the response

_33_x

using the fact that © = -y in\ the linearized case gives

(4.3)

ill be large if G'I(t) approaches
K as Gk(t) approaches zero. Separating\ equation (4,2) into real
and imaginary parts leads to

?

\ (0,0} .
O1) = U + ) Ro § Bul0y)3

Im{ o0}
where (ﬁﬁ(o)t) = @L{ ¢Q(0)t)} + C d/Wl {¢¢4(0)t)} .

-

61 (t) can be calculated using this egnation, since 4 can be found

from a linear run and GR(t) can be calculated as described in section
. a
4.2.
' Using this'me?thod the values of €, were calculated for runs
e

2,5, and 7 of figure 6. The evolutions of € and ©p are given

in figure 7, where the horizontal lines in the lower frame give the

~

corresponding values of J| . Notice that there is very little difference

in the evolution of €g for the three'runs, particularly flp to T = 10,

. . ]
indicating that the response [T is largely controlled by 6r . Runs

/

5 and 7 show very similar evolutions of €, but have significantly

different values of . It is [ -©Or which appears in equation (4.3)

e

and this quantity ‘goes to zero at T = 9.5 for run 7 but doesn't
vanish until T = 14 for run' 5. Thus it is JA - 6 which explains

the fact that the response for run 7 initially grows faster and exceeds

the response for run 5 by the greatest amount at T=2o9,5.. However,

A

\

- Lt
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run 5 has the largest response eventually because [l- 81 and Op
are simultaneously small towards the end of the run. On the other

hand, )y -&r remains large for run 2 throughout the entire integration

and hence 1ts response stays relatively small. °

)

' 1

N N
Figure 8 presents the evolution of the normalized reSponse‘

for two additional runs. In curve 1 the integration time for one

P2

‘of the resonant runs (run 4 of f1gf1re 6) was extended to see if the

_.response would continue to grow rapidly or settle down. The number

s

of waves, NW, was increased to 10 and resolution profile (B) of
figure 3 was used. As can be seen in the figure, the response

attains a value near 8 by the end of this run. To investigate the

o

effect of larger nonlinearities a run was performed with A = .1

! (€= .01, ~=10"%,

\

Ym T l2.20, and NW ={ 20, The reéponse“
is given in curve 2 of figure 8. The 1integration was carried out
to T 2 8.5, by which time it was evident‘that more than 20
‘ waves would be required to proceed ‘furt'her. A éomparison of
curves 1 (for whléh A= .5) and 2 ( A = .1) shows that the growth
of a large response is faster when the ;onlinearities are more dom-
inant, Further reduction.n A was attempted, but it was found that
much higixer resolution would,be Arequired. It would be desirable

to implement a more efficient numerical scheme (e.g., the fast

fourier transform) before pursuing this issue,
4

n
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\

Figures 9 and 10 show the evolution of the total streamfunction
and absolute vortic1t§ patterns, respectively, for a I:esonant case |
(curve 1 of figure 8). Resolution profile (B) 'of figure 3 was used
and y covers the range -.6 to +.9 in these patterns. The stream-
function field shows the ''cat's eye'' structure which is characteristic
Gof flows in the vicimty of critical layers, and the associéted absolute
vorticity field exhibits the typical ”rolhné up”\and development of.
intense gradients beginning near the edges of the cat's‘ eye. Notice
that, as suggested at the end of chapter 2, the critical layer spreads
out as the response grows. The vxn/idth of the critical layer can
" be taken as the width of the region containing closed streamfunction
contours. ~This region is fairly narrow in the early stages as
shown by figure 9(A) and n a nonresonant case {e.g., curve 1 or
é of fig;n'e 6) the critical layer would not become much wider than
this. However, the layer expands considerably in this resonant

case to occupy a large portion of the total flow by the end of the

run, as shown in figure 9@3).
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It is also intefesting to look at the total streamfunction and
absolute vorticity fields for a run which is not quite resonant but
is nearly steady in the latter stages. This is done in figures 11
and 12 which correspond to curve 10 of figure 6. The patterns are
s}omewha.t less intense than those just examined f;)r the resonant

3

case and they also demonstrate an additional feature. The Prandtl-

’

Batchelor theorem (Batchelor, 1956) requires that the vorticity in

the cat's eye be uniform in the steady state. Notice that this appears

.

'to be the case in figures 12(C) and 12(D).’
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. ' ' CHAPTER 5. DISCUSSION

14 o

In the foregoing it has been demonstrated that, with the correct

geometry\aln'd' a nonlinear critical layer, it is possible to obtain a
large res[Lonse for weakly forced Rossby ‘;vaves. 1t ha‘s also been !
found that during the amplification the critical layer expands to become

a significant feature in th; total flow pattern. Consequently, any

scheme which attempts to model e(*,uch a resonance will have to‘

a:dec%uately siymulate the nonlinear critical lz_xye\r -~ in particularl

Ve
it appears that' it is a serious oversimplification to treat a critical

layer as a reflecting surface in a linearized model, .
¢

The curves in figure 6(B) display an unexpected feature -- Q
for these runs the most resonant case is initially the slowest growing.
It appears that this behavior can be explained by the evolution of the

i

imaginary part of the logarithmic phase shift. . H
It has also been shown (figure 8) that the 'time scale required

to achieve a large respor;se 18 strongly dependent on the relative

strengths of thé viscosity and nonlinearity. By changing from A= .5

to A =,.1 the time requ}red to produce a sevenfold amplification | \ :

4
¢

is decreased by a factor of two. Even for A = .1, however, the

v

time scale is very long compared to scales typical of synoptic N
meteorology processes, For example, choosing Us = 20 m/s,

L = 500 km,, & = .01 and = .4 would give a dimensional time ’
of 60 days corresponding to T = 8 in-figure 8. Béland (1978) ’ y .
found that changing from é~0(10-2) to € =.1 reduced the time k

scale for a related nonlinear process from 60 days to about a week,

’
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: i
' This is an encouraging result but preliminary experiments indicate
( that for € = .1 the resolution requirements in the resonahce problem
dre somewhat prohibitive. A more efficient method (e.g., the fast
. fourier transform) for calculating the nonlinear term would help- :
v y
in this regard. ’
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APPENDIX : Approximationto the Transient Radiation Condition

f

The transient form" of the southern boundary condition is’

. o t
%ﬁa (,£) — =N @, (w,t) = - jo LA Wyl-t) dt -
Y “ . . '
- = - I(‘l:) ﬁ

“where

A?n

Wi (€) = _@- ~in(d- 755 ) ‘ T (A
N g e 20‘ C ‘ il&%—n‘g)+(3—o §>}, ‘.

' Let T be afixed value of T and ¢n(y,’E’) be the associated piece

-

of streamfunction '"history'", The weight given to this history in the
integral I(t) is Wn(t- T), which will be different for each value of
t; that is, the emphasis given to a particular piece of history changes

ag time goes.on. This means that I(t) cannot be accumulated, but

—

must be re—evalulated at each new time step -- a requirement which
is very demanding on both execution time and storage for ﬁn(y, T).

Hence there is good reason to look for an approximation to I(t} in

¢

«which at least a part of the integral can be accumulated, This can °

be achieved as follows :

.

S \\ . . |

write L () = f Pn (4,0) Wn(e-T) dT f%(s,ﬂ Nn(-t)dT .

. o e —v i
(R) : ®)

In term (A), r <t-T<t; that is, the argument of t e (:veighting

function is larger than r. Using the asymptotic forrms of Bessel

e A AT

functions JO and Jl for large arguinents leads to
x -k

it




o e e o L e =

-55-
\ (Qt)«dﬁ (K-m) = hin(t-T) ( Y-
Nn ﬁ'm—_‘(t-c)'/z. {e o + O )0

where we assumed '2“29" A O(l).
. B

A\

Using a Taylor series expansion

) (t—t)"/z _ t,,—'/z (1 -

c L | f-1 'L.
Soeef = ) ote)n)]

/

—~t/2
)

ey

where A, = lx

1 : :
] ARH :(I—E-p-)i‘j,yves

_mu( 'C)
Wi (&£-T) V/B” (“"f/ﬁz {Z A (’CQ' 0({t }{ ’ (t’C)

This result allows term (A) to be approximated as

W

. L .
B ‘l+() Cnut ﬁ] cnud T,
}T:r ﬁ___&_z_e "’ T ,f ¢ A, CYT e d7T.

Notice that t and T have been separated and the integrals can be
accumulated as time goes on. Thus a suitable approximation to

v

I(t) ie given by this approximation to term (A) plus term (B). .

Evaluation of I(t) w1thout makmg this approx1ma.t10n requires
'storage and integration over an interval of length t. Eval’«xtlon of
the approximated version is much more efficient as it requires storage
and integration over an interval of length r for term (B) plus a’

small overhead proportional to L for the approximation to term (A).

To test the approximation, two linear viscous runs were done

for wavenumber 1 over 3000time steps. In the first run I(t) was

2

) -~
% B
i

evaluated without making the preceding approximation, while in the

P L

2
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. i
second the approximation to I(t) was used with r corresponding to

200 time steps and L = 20. The execution time, excluding calculation

of the radiation condition, :was about 30 seconds, Time spent

calculating the radiation condition was about 17 seconds for the
first run and 3 seconds for the second. The resulting values of

the vorticity after 3000 time steps are given in table A. Comparing
A

f i

the results demonstrates that the approximation does not introduce

significant error, even'though it yields a considerable saving in

; \

execution time and storage requirements.
‘ |
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TABLE A :
* No approximation
to Ift)
VORTICITY
Y AMPLTTUDE PHASE (DEG)

2-C4J .5b00¥t’U0 179.620

AR s TCb24E400 =1764730

1e863 sBOISEE+DD ~1624499

© lebud e IBILIE VD =152, 094

lewa s eBOODHIECUD ~]138.910

/ iv¢oo BCULLIE+0D ~141.2Y1
leuysd 01493900 +0) =118.392

o371 «9BTRIECDD ~117.203

» 894 «19053E¢UY =95,787

w0l - s 14291E+U]  <«674921

v lun olJb73E‘Ul -651.118

21 HI W 2UDTTE+D) 66199

2045 -2’“46&‘”1 “880019

' -bUf oZUDZbE*U] -115l158
25U el11clYE+U] =5G9.4487

«32u +31278E+U1  =Tu.lbe

sn Y .2“J9dt*01 ~10be&5U

@ sl .1DJ7“EOU] '39-996
| e UV W4UDTZ2E+U] ~-63.891
s 36U 1COIBCE+U] ~1004633

edecu 020073E’OJ -220220

a2y W56 130E+U)  ~=57.404

v Ot} 029057E*U] ~93.U9b

LUV Jaolylee0) ‘70151

Telou fJUTB4E+D]  =50.349

ﬂ-lBU .JQZUJL*UI '82.5“6

suny .léd20t*02 7921

s UGy o 312HYE*UZ2  =43,743

oVl +0I670F U2 15.6b0

‘ \ -.usu W 2DI9IE+U2 -157.543
-suny 2110226402 130.741

-l J11829E40]  =31.292

-s1nU nb““b’t*Ol 4457-686

~slJV e 30340 +V] 1244123

~ar4y J11Bl6EYVU]  ~36.124

=-elny LB lubr+l] =~15H,691]

=32V 2i2b4E+V]l  1)17.507

~edb ob2cbob ¢V ~37.,570

. : —.qya : 1124798 +U] =14K,118
’096U .lJJd“t‘Ul 147.974

LR WBBT73E+0U0 101.046
~e2n? -620515‘00 “ 89.,05] .

- -.0u8" 4O IBUE+VUD  131.367
-ol3n 4D lpE+UD -]126.13V

{ - : -.Jcu «21310e+U0  132.808
-lsiby «luv2it+uo 56.585

-1.55¢ 20371 +u0 104,169

[

Vortléxty after 3000 time stepé

With approximation

to I(t)
VURTICITY
amMpPLITUUE  PHASE (DEG)
«S1HRYEAIUG  179.626
o7CbC3E‘UO -1760730
.Bbibjt'UO ’1621499
«GoJdunt +U0 =]1952.0%3
«60366e+00 =138.910
abBeUaDI+ LT =164).291
0193905’01 -118-393
«e 95707 +V00 =117.205
«1Y053c+l] =vy5.784
«l4dG sVl ~6T749c4
13674t s0)  =pl.122
«2UD 73k +U])] -gp.202
«2lu4lpsU]l  «38,021 °
e2Ud2hz*vl ~115.]100
.1l§dUtOU1 *DQ.QVC
«312l0r+V]l =~70.lba
«2439YE V] ~]106,4482
e« 10373E V] =40.000
D7t V] -=63.492
«20713E+01 ~100.635
-20U7JE‘U1 -22'2d3
eD0labr*VU}l  =57,405
«27bbdE+U] ~=93.]00
«40l IvE+V] -7.182
e GUIDuE sVl  =Sp,35V
e 34204k U] =32,549
e 13219 +02 T.920
.31&09&’02 -4307“3
e300 +VU2 753660
« 25499EwU2 ~157,542
e 1lU22r+U2 130,742
« L/B25E+U]1 =31.2Y06
e S4469E+0] ~157,687
s Jo345E+U]1 124,125
e llvleg+V]l =36,133
«2B/8TE+UY ~1S8,690
e 21283 +V]) 117.513 .
2+ 85283+ =357.,583 -
albelErU} ~-148.116
« 1332440 147.981
2 BoldbbE+00 101,054
» H2UTIE+VUD 89.,05vY
sHbJ8UE+V0  131.379
e 2u4627E+U0 ~1264.133
»213156+00 132.842
» 1UBSUE U0 564633
_ e2U336E+V0 104,371
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