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The intranuclear cascad~' is aq approximate microscopie model of 
ti 1 ·'-loft'f"lr{-.t-

heavy-ion collisions in which thè ._space-timè evolution of the 

nucl eons i s followed'~ as they coll ide wi th one another. Thi s 

madel is used,: (a) ta test 

.J:pe twa-fireball model; (b) 

the validity of simpà.er models as 

ta est.imate. the 'validity "of the, 

assumptian of chemical eguilibrium and. ta calculate 'tne total 

pion production cross-sections; (<:;:) ta investigate 'the average " . V • _._~, \. 
primordial charge- multiplicity and the number of "participants 

as a 

La 

fb;'~ction of the beam energy • 
} 

cascade in tr,anucléaire , . est ( 

approx ima tif des coll isions des 

-:-----

un 
, .. " 

madele, m"icroscopique 

ions lourds dans 1 eguel 

l"évolution des nucléons dans l'espace et, le temps est suivié 

au fil des c~l~sions: Ce modèl e es't ut il i sé pour: (a) faire 

des études compara ti ves avec d'a utt'es mod ~les pl us 5 imple's 

comme le modèle des deux boules de . feu; (b) étudie~ la val idité 

de l' hypot]"lèse de l'équil,ibre chimique et calculer 

efficace totale pour"'la production de ,pions; ('c) 

la section 

calculer la 

m~ltiplicité moyenne des particules 

'\ 
aussi le nombre de participants en 

collision. 

chargées primordiales et· 

fonction de l' énerg ie de , 

. . ' J 
-: i i i 
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A cascata intranUcle~r é um modé'lo aproximado 
. ., . 

mlcroscoplCO da 

colis~o 'de ions pes~dos no quaI a evol uçao dos nucleons no 

espafo e 

entre si. 

~' 
no tempo e acompanhada a medida que sofrern coli sees 

\ 

Esse modêlo é utilizado para: (a) estudar a validade 

de outros modêlos mais simples coma 0 modêlo das duas bolas de 

fogo; (b) estudar a V~lidade da hipotese do equili'brio qurmicé 

e calcular 0' coef iciante de di fusao tota 1 par a a 
Iii 

calcular amuIt iplicidade méd ia das pions; (c) 

produçao de 

.. partlculas 

carregadas prIln~rd iais "1 e também 0 n6mero de participantes erri· 

fun~â'o'. da energia de cOlisao-. 
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l - INTRODUCTION 

1.! Heavy-i_on physics. 

The original motivation fo~ the study of heavy ion collisions 

was the possibility of observing unusual states of nuclear 

matter, Gwhich could possibly lead to the detection -of sorne 
r' ' 

novel phenomena. There were speculations a decade ago about 

the possible existence of exotic phenomena, such as density 
.. "" l, , 

isomers, pion condensates (Migd~1~78), the quark-gluon' plasma 
;.t 

" (Shury?k-80), and also about the equation of state for nuc:lear 

; ... m'a t ter (Boguta-82). 
~. ~ 

Al &hough the ~riginal expectations pave 
,-a J 

, } 

'). 

not.yet been met, the last few years saw rapid progress both in 

the experimental and the6retical domains • 
• r 

Machines th1ft had 
- ":) - .-

already become obsolete' in the fiëld of 

elementary particle phy~ics gained a new lease on life when .. , 
L _ . the-y ~ere. converted to heavy ion research. Th~ centers of 

peutron stars and supernov~s are thought to contain nuclear . . 

( 
matter greatly compressed at high derisities. Laboratory~data, 

however, only became availàble when the Bevalac (Berkeley, USA) 

~nd the Syncrophasotron, (Dubna, USSR) went on str.eam in their 

J • - 1 -
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new roles to accelerate heavy ions. Since thèn other machines 

were adap~ed ~o heavy ion res~arch (CERN SC, Saclay), new ones 

have been built' (Saturne'II and GANIL in France, the Michigan 

State Sdperconducting Cyclotron, USA), and o~hers are planned 

or under construction (SIS in Darmstadt, Germany, the Numatron 

in Nagoya, Japan, TIS in Moskow, USSR, the VENUS proposal in 

Berkeley, USA) (Nagamiya-82). The study of heavy ions has been 
• 

transformed from a curiosity,ten years ago,into a major field 

of nuc1ear science today. 

The field of heavy ions is norma11y divided into different 

energy regimes, where different phenomena become dominant 

changi~q the underlying physics. 
\ 

recognized (Faes$le~-83): 

The following regions are 

(a) Heavy iqn atomic ,physios (E < 10 A.Mev) • 

It ts cqncerned, with such topics as the formation of 

short-1 i ved superheavy nuclear qùasi-molecu1es in a 

uranium-uranium collision which results in ~he emission of . 

one or more positrons of atomic origin (Backe-83). 

Fusion-evaporation reactions (~oeckl-83) are used to 

produce nuclei far from the region of 'beta stability; the 

production of e1ements 107 and 109 through compound-nuclear 
" 

reactions f~llowed by one neutron evaporation has . been 
\ . 

particularl.y successful. One may hope sO'ôn to reach the 
_r 

expectéd region âf long-lived heavy elements with 112,to 

114 protons (Fae~sler-83). 

2 -
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Cb) Nuclear physics near the Coulomb barrier (4 - '2Q A.Mev) 

High s~in states present 

nuclear structure physics , 
a great deal a, interest 

(Henning-83) as the shell 

for 

and 

Coulomb energies become comparable with tHe rotational 
. . 

energi~s. The nuclear shape changes as a funct~on of the 

spin states and one can measure' its relaxation times 

(Norenberg-~3). Under certain conditions (Ngo-83) the 

collision can lead to 'fu'sion of the two nuclei with the 

subsequent formation of a compound nucleus or fast- fission. 

(c) Nuclear physics near the/ sound barrier (30 - 200 A.Mev) • 
2-

Before the completion pl'the Superconducting Cyclotron ~t 

M.S.U. t~ study .6f the intermediate region was only 
.k 

possible at ~he CERN Synchrocyclotron (Faessler-83). This 
J 

is a tradsition regiqn 
1 

from low energy phenomena to the 

relativis~ic high ener~y reactions and where one expects to . 
/ 1 

see nuclear matter off its ground state density at moderate 

tempera tures 

coex is'tence 

, 
~ 

and entropy (Stocker-83) • The 
.;-l{ 

of noc\foa_r., 1 iquid and gas phases 
., 

possible 

has been' 

considered (Gelbke-S'3); , one can also di;;tinguish between ' • . " 
central fusion~like reactions and the peripheral ones. 

Lynen's data may indicate the existence of pot spots in 

this energy region (Faessler-83). Experimental data arw 

available on pion production below th~ free nucleon-nucleon ~ 

scattering threshold (Jakobsson-83) • The low and 

intermeâiate energy regions arf! being actively stu,died by a 

larg~ number of physicists (Faessler-83). 

- 3 -
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(d),' The partie ipant-specta tor reg ion (0.2 4.0 A. Gev) • 

Th i s is th~ Bevalae physi cs reg ion, and the one most 

~thouroughiy ,'tud ied
o 

resul ting in a great abundance of data 

and theoretiical models. The reaction mecha~ism in this 
! 

1 
region i;y;often thought to be divided into two stages 

CWarwick-82); first a fast energy deposition accompanied by 
1 -the emfion of fast light particles, 

. 
which is normally 

ass~ci ed with the partièipants; it is followed by a 

second 1 slow stage characterized by the disassembly of the 
1 . 

excited spectator residues. The participants consist of 

the overlapping portions of the projectile and target 

nucleons that are mutual1y s'wept' dur ing the 'col1 is ion. One 

can also distin~uish between high multipli~ity central 

events and peripheral ones; in the'case of the central 

events where one ion is small and the othêr one large the 

accuracy of the clean-cut participant-spectator picture has 

been questioned (Warwick-82). This Thesis is concerned 

exclusively with this energy region. 
",,' 

(e) The quark-gluon plasma region CE > 5.0 A.Gev) • 

Little experimental data are available in this last region, 

mostly from the analysis of cosmic raJLs (Gy~~ssy-83). It 

is' supposed that as more energy is brought into the 

interaction region hamronjc matter will finally begin to 
/'''~ 

boil off; QCD P5edicts the deconfinement of h~dronic' matter ~ 

~·o into a plasma of quarks and gluons at high energy densities 

(Specht-83).- Obviously the studyof this region is, of 

interest °both to nuclear - anà particle physic8, thus 

4 -
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bringing' the se two fields toge.ther again. 

1.2 The participant-spectator region., 

L 
.. 

A great amount of data~ mostly from the Bevalac at the Lawrence 

Berkeley Laboratory, has already been accumulated with 
1 

projectiles from protons to argon nuclei ,and, energ ies rangïng 

from 50 to 2~OO A.Mev. The'projectiles used a~e being ext~nded 

to include the whole periodic tablé, and while most of thè data 

obtained up to now consisll!l of inclusive measurements 

(Warwick-B3), the results of more sophisticated 4~ exclusive 

experiments are already available and collision energies are 

expected to reach 20~A.Gev (Nagamiya-B2). 

The experimental procedures begin by completely stripping the 

projectile atoms from their atomic electr~ns. The resulting 

iOQs are then accelerated and made to collide with a stationary 

target.'The reaction products can be detected in a strèamer 

chamber or altèrnatively-in counter 'experiments. 

" ~ 
Stream'er chamber photographs provide a very vivid view of the 

results of the collision. Therr one can easily ideritify 

periphe"ral 'collisions characterized by . a forward jet in the 

direction of the beam arising from the fragmentation of the 

projectile. Less peripheral. collisiohs ~how a large number of 

5 
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1 
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j~ts at wide.angles but still presen~·the·forwardjet as in the 

first cas~. Finally there are central collisions where the 

number of jets is much larg'er and the forward jet may disaPFar 

;\> 
entirely (Nagamiya-82). 

,) .. 1 

\ 

1\'/ , , 

Counter experiments reveal a similar picture: in the rapidity 

and transver·se momenta plane . (y,plo/mc) target ... like fra«gments 

are clustered around the 
1 

targeb rapidity (Yt"O) whereas 

-
projectile-like fragments appear around the point (~/O). These~ 

are regarded respectively as the target and projectile 

spectators. In violent coll;sions a large number of fragments 

are_ spread in the reg ion between these twa .paints. Such 

fragments are associated with the participants. Experimentally 

the projectile spectators are confined to a . very narrow angle 

around the direct~on of the bea~; the target spectators can be 

disti.~guished from the participants by their,smail momenta. The .. 
~erml momentum ~270 Mev/c) sets the scale, in a somewhat 

,-

arbi t"'rary manner, between large and small momentum tran,sfers 

~ih~s differentiating the participants fram the spectators. 

'. MOS~ data are presented in the form . of inclusive 

cross-sections, in which one chosen reaction product is 

measured to the exclusion ~f aIl others that may be present. P 

Inclusive cross-section for particles (protons~ pions, .. etc. ) 
-~ 

and campos'1tes (deuterons, tritons, He-~" He-4, etc.l are, 

found throughout the literature. These are assumed to come from 
. , 

the participants (Gasset-77, Sandoval-80, Nagamiya-81, 

Manko-B2, Sandoval-80a). 
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Theoretical developments are keeping the pace wi th th~ 

av&lanche of data. One would expect that a comprehensive·th~ory' 

of nuclear coll is ions' on Quantum should 
~ 

be based 

'. Chromodynamics, which is generally believed to be the correct 

theory of strong interactions. But until' the mathematical 

difficulties of this theory are overcome, if ever, we must 

content ourselves with phenomeqological models. Thé great 

complexity of the problems precludes their,direct solution in 

fundamental terms. As a result Many different models have been 

proposed which succeed to explain certain aspects of the data, 

but not others. Sometimes they complement each oth~r in their 

ranges of application or compete while 
< ---

incorporating mutually 

cont~adictory assumptions. 

VariQus models are available to explain the data in the Bevalac 

region: thermodynamic models, intranuclear cascades, 

hydrodynamic models~ 'cl ass ical equa~ions of motion, 

rows-on-rows model, and others. Of aIl these models, the 

thermodynamic model can claim to be the Most widely used (Das 

Gupta-81). Most existing models in this region are formulated' 

in semi-cl~Js,ical terms. The part ial wave sums are replaced by 

integrati~~s over impact parameters; the amplitudes for two 
/ 

partial waves or impact 'parameters do not Interfere. At the 

nucleon-nucleon level, however, a quantum mechanical 

description is essential. The semi-classical description may 

find sorne support from the very high relative momenta of the 

heavy-ions and their constituents, and the short wavelengths 

compared with the characteristic distances of the syste~. 
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(Fraenkel-82). 

'­. 

T,here are aiso final state, inter~' ons. These interactions 

i nvol ve the coalescence of. nucleons t,9' orm composi tes such as'. 
• u ~ .. '<' 

deuterons, alpha-particles, -etc., and aIso, the Coulomb-

inter.~.ç~ions that can cha.nge tl}e shape of the spectra quite 

noticeably for charged pions and to a Iesser ~xtent for ,protons 

(Libbrecht-79, Cugnon-SI). 

At Iow energies one can as a first approximation ignore the 

production of' pions and relativistic effects'and attempt the 

integration of Newton's classical equations of motJon 

(Bodmer-SI). The method, originally developed for the problems 

of moleçular dynamics, is restricted to non-relativistid 

e~ergies (Fraenkel-82). The number of degrees of freeQom is 

fi~ed so that pion production cannat be inciudeq in the meth?d 

(Fraenkel-82) • 

For high energy cOllisions the nuclear me an field is 

unimportant and collisians between nuciei can be regarded as 

hard scattering between nucleons. This approximation is the 

basis for the intranuclear cascade model, the direct knock-out 

model, and the rows-on-rows model (Fraenkel:"S2). 'Ph.e ,direct 

,knock-out 'model is the long mean free path limit ,of the 

intranuclear cascaQe model; the rows-on~ro~ model is a'linear ' 

cascade using the Glauber theary ta take advantage of the 

forward peaked nucleon-nucleon cross-sections at high energies 

(Fraenkel-82). 
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In the' limi t af very small mean free paths one has the, 

p 

... 
hyd~odynamical model; ideal flu1ds are described by the Euler 

equations, and viscosity and thermal conductivity are included 

in the Navier-Stokes equation; potential, effects can be 

accounted for through the nuclear equation of state. The 
, , 
.' 

hydrodynamical model is possibly valid only, for c~ntral 

collisions of large nuclei 'where high densities and local 

equilibrium are attained (Fraenkel-82). 

The thermodynami~ model incorporates geometrical concepts 

lead ing to t.he part icipant-spectator picture.-T+ie ..participants 
.ft> 

from the target and the projectile are assumed to fuse 
1 ~ 

and form a fireball. AlI points of the available pha 

are equally probable for, the participants (Das Gupta':"', i). When 
( ),'7 

there is a large number of particles the grand-canonical 
, " :( 

ensemblè.provides a suitable approximation (Jennings-82). 

The present situation is dful of'the famous parable about 

the elephant,and the en blind men. comparing the assumptions 
\ 

and the results of thS. various models among each' other and the 
\ 

data, one can gain a dà~per insight into their limitations and 

strengths, and thus r~ach a better understanding of the 

underlying Physics. 
1 , 

" , 
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1.3 Scope of original work in thYs Thesis. 

In chapter 2 we continue with a more detailed review of the 

theoretical models and other items that are directly relevant 
) 

for this Thesis~ The or ig i'nal work in this Thesis is found in 

chapters 3, 4" and 5, Appendices 7.2.3, 7.3, 7.4; 7.5, and . 7.6, 

with the summary "and the _nal conclusions in chapter: 6'. 

is concerned with the question ,of thermal 
, \ 

equilibration in the fireball type models. Chapter 4 deals with 

the 'valid i ty of the assumption of ':"mical equilibrium in heaVy~ 
ion coll isions in connecti'on wi th the total cross""'\'section for 

the production of pions.' In chapter 5 we study the average ~ 
primo~dia{ '.'êh'arge multiplicities and the validity of the '", 

participant-sp~ctator picture as a function of the beam energy. 

(a) Fireball, type models'. 

Cugnon et al, using a ca~cade code, compute the f~nal 

»nucleon transverse momentum and rapid~ty'distributions for 
.. 

the central collision of two calcium-like nuclei, where 

complete isospin degeneracy is assumed '(Cugnon-,81'k. 

Relativistia Maxwell-Boltzmann fits to these distributions 
/ 

_yield,--àH-ferent transverse and rapid i ty temperatures/ .. /The 

exist~nce Qf the se two different temperatures raises doubts 
/ 

about thermal equilibration in the collision. 

We demonstrate, usi ng the two- :f;i,reball mO'ç3el, tha t two 

temperatures are obtained quite naturally if there are two 

sources moving with respect"to their center of maSSe The 

- 10 -
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.addi tional assumption of a 

tO-~ireball 
radial collective flow 

• (Siemens":"79) model (Gale-83) lead& ta 

transverse and rapidity temperatures in very 

agreement with tbose obtained by Cugnon et al~ 
, . .,. , 

.. 'r\ t 
'cf 

(b) Pion production and chemical equilibrium. \ 
" /~~ ".. Il 

We study t thé total inclusive pion cross-section in the ~ 

.' cascade mod"el and the attainment of chemical equ'ilibrium. A 

detailed description of the intranuclear cascad
17 

,is given 
\' 

later~ sufficé it to mention here that it in~udes, among 

others, 'the following channels for harJ ~ollisions: 

rate of production of deltas is equal to its rate of 

l~ ___ We have chernical ----- equil ibr i um. I.n the 
'-

thermodynamic model (described 1er) the production of the 

deltas is calculated assuming chemic equilibrium. There 
" 1 

has been much debate whether chemka ''-..., equilibrium is 

reached in heavy ion collisions. 

The cascade model éa~cul,t}pn~ begin 

given opposite initial momenta and 
1-,,1 • 

as the two nuclei are 

touch each otheJ:'. In 

subsequent times the nucleons and the deltas produced 

undergo hard collisions. There is an initial diving phase 

followed by the stage of compression; the number of ~eltas ~ 
y 

is initially zero and then begins to 
'" 

increase. For medium 

mass nuclei at about 800 A.Mev the collisions are over in 

about 25 fm/co In the model, the number of deltas will not 



( change after the collisions cease. 
!; 

one'question is whether the number of deltas approaches its 
Q 

chemical equilibrium value. We investigqte this 
\,-

by 

artificially confining the baryons within a~ sphericai 

cavity at the point of maximum compression and 1etting the 

system evo1 ve for a long time. The number of deI tas 

f1uctuate about a final steady value; this value agrees 

with the thermodynamic prescription. This number, however, 

is not far from the number of deltas obtained from an usual 

cascade cal cu1at i on (wi thout the ar ti f ic ia1 reflecting 

- wall) where the system di sassembles in about 30 fm/c. 

Thus for medium mass nuclei and for central collisions (for 

which this test wa~ done) the cascade mode1 pred i ction 

should not be very different from· the thermodyna~ic 

prediction. For non-zero impact parameters, however, the 

number of par tic ipan ts is sma1ler and chemicai 

equi1ibration is unlikely. Thus it is useful to compute the 

inclusive pion production cross-sections (thi s invo1 ves 

integrating over a11 impact parameters) using the cascade 

mode1. Usuai cascade model codes employ simple 

parametrized versions of the nucleon-nucleon cross-sections 

and are val id only for N = Z systems. An extended ver sion 

devised for this work is applicable to non symmetric 

systems. This is described in a'later, chaRter. This is 

essential because much more'data are available for N 1 z 
>, 

systems. We use a1'80 more accurate nuc1eon-nucleon 

- 12 -
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sensi ti v i ty 0 f the final resul ts on the nucleon-nucl eon 

. d h th t f h' 1 '1 'b' ~ Input a ta.' T ere are 0 er tes s or c em Ica equl I ~ l~ , 

that can be devised. These are discussed in c~rl. 

'" -------------------------------~ 
" (c) Average multiplicities and geometry. 

The participant-spectator model is commonly used in 

relativisti~ h~avy-ion collisions. In model , the 

overlapping parts of the two quclei for a given impact 

parameter form the participants. T~e aon-overlapping parts 
• > 

form the target and projectile spectators. The 

participants undergo violent collisions and aIl of the 

nucleons are liberated, although sorne still come out in 

small cl usters such as deuterons, tr i tons, etc. The 
<J 

spectators are only slightly excited and th~fore do not 

produce many charged tracks. AlI the pions must invar iably 

come from the partic ipants. 

The average multiplicity is the avèrage number of charged 

particies produced' in the heavy-ion 
• 

reaction • The; 

qalculation of this number in the participant-spectator 

model requires an integration over aIt impact parameters. 

Another commonly used concept is the associated 

multiplicity. Sandoval et al, for e~ample, measured the 

~ultiplicity in coinc~dence with the det~ction·of a proton 

in a telescope placed at ninet~degrees wi th respect to the 

beam direction. These experiments measured the assC(c i 

mul tipI ic i ties for a var iety of projectiles and 

"""" "'-------- .... ---_ .... ----



~ 1 

( 

. , 
many energ ies • For a fixed proj ectHê ..... and 

\ e . , 
eombination t~e ,associated multiplicity increases with the 

• 
beam eriergy and the claim was made ;that this result. is 

inconsistent with the participant-spectator model. 

We show that the associated multiplicity experil!lents do not" 

obviously rule out the validity 'of the clean cut' geom'etry •. 

Sorne other dynam ic model for pion 'and compas i te production 

has ta be invoked along wi~h the clean eut geometry in 

order to compare with the experimental data. The lack ,of 

agreement could bè due to the dynam±ê~i assu~PtiO'~s~ and not -
ù • 

to t<he geometr lcal assumpt ions. We show thà t the s implest 
, --

fÏreba,ll model, which uses the clean cut gêometry, f its the 

exper imen tal data -Bu-j:te weIl al though fanc ier model s do not 

tare that welle 

On~/has therefore to look for other experimental data to 

check the validity of the geometrical asssu~ptions. Sorne 

experiments by Nagamiya et al can be used, for this purpose. 

These experiments (to be described later) do show 'sorne 

evidence of a beam energy depe~ence which is obviously 

absent in a geometrical-model. Sorne more sop~isticated 

model is needed. 

c 

We use a Glauber type model ta calculate the average number 

of participants as a function of the beam energy. The i~put 

for this model is the nucleon-nucleon cross-section whieh 

is energy dependent~' The exper imental' trends , ~ are 

- 14 -
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reproduced al,tp.ough the calculated value" of the dependence 

'on the beam energy is less than the ex~erimèntal value. 
~ . 

Lastly, we~use the cascade model to define the participants 

and this model gives an ~dequat, eiplanation of ihe 

exp~rimental data. 
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2 - THEORETICAL MODELS 

2.1 The th~rmodynamic firebal1 model. 

2.1.1 Introduction. 

The application of thermodynamics to sub-atomic phenomena date~ 

back to 1950 when E. Fermi (Fermi-50) deve10ped a statistFcal 

,\ model for the I!'ul tiple production of pions in high energyl 

nuc1~on-nucleon collisions. He assumed tnat. in such a collision 

the energy in their center of mass is ;'ei.eased into a small 

volume surrounding the two nucleons ànd_~aistributed among the 

various degrees of freedom available in this volume according 

to statistical 1aws until upon exp~nsion the system is 

converted into particles that f1y out in a~l directions. More 

recently the fireba1l model for relativistic collisions of 

heavy ions (Westfa11-76) was proposed a10ng somewhat similar 

lines and with 'the addition of geomefd;ca1 concepts. 
" 1 

Geometry leads to, the participant-spectatot picture. Those 
. 

nucleons which 1 ie in the overlapping regions of the two 

collïd ing nuciei interact strongly wi th one another and are 



'. 

therefore called the participants; the non-overlapping r~gions 

do not interact with each other an~ proceed alori~ their 
, 

or igina 1 traj ector ies to form "the spectators. The part ic ipaqts 
, 

. will concern us most as they are the seat of the most violent 

hadronic collisions and where high nuclear densities and high 

temperatures are expected. The proj ectile and .. target 

participants are assumed to fuse completely forming a fireball. 

AlI the energy in the center of mass frame of the participants 

is available for thermalization. High number of collisions make 

aIl po i nts of the etai lable phase ~space equally probable. 

Ther~ is experimental evidence- for multiple nucleon-nucleon 

collisions (Na.gamiya-82) and also for the importance o~ single >, 

nucleon-nucleon coll ision processes. After pass ing through the 
, 

point of maximum compression and h igh density the fi reball 

.expands until the densi ty b~comes sb low that ,aIl inter actions 

cease~ Beyond this freeze out point it continues. to expand as a 

non-interacting' gas. The freeze out density 'e. is ·usually 

assumed to be lower than the normal nuclear densi ty and usùally 

in the r.ange between 0.04 and '0.08 nucleons/fm'. 

The number· of participants can be calculated by numerical 

integration (Goss~t-77) under the assumption of straight line­

geometrical cuts or a.lternatively ohe can use Glauber theory té 

the same effectt (Glauber-70). The clean cut separation between 

participants and spectators is obviously an idealization. Some 

nucleons are· likely to scatter at large angles 50 that it is 

reasonable to expect sorne degree of communication across the 

boundary surface. In. the case of central eollisions of light 

- 17 .... 
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projeetiles,with heah' targe~s the valididy of the straight 

geometrical eut is questioned (Gutbrod-82). We shall return to 

this problem'later in chapter 5. 

protons, composites (d~uterons, tritons, alpha-particles, etc.) 

and other particles' originàting' from the fireball reach the 

detectors. If we -limit ourse,lves to collision energies up to 

about 2.0 A .Gev then the only ?ther particles important en.ough 

ta be included in the model are the pions. It;o is generally 
. 

assumep that the pions are formed in the ·f:lreball mostly 
1 

thro~gh the creation and the decay of the d$lta resonanees 

(Kapusta-77, Cugnon-80). The produe~ion of lambda hyperons and 

K-mesons is negligible below 2.0 A.Gev. At the critical 

densiti when aIl interactions cease, the surviving deltas 

finally_ decay into pions and nucleons. ': Pions, : qel tas and 

composi t~s are incl uded into the fi,reball ,model through the 

further assumpt ion of chemical equi.l ibr i um (Mekj ian-77). The 

fi reball tnen, is assumed to be a hot gas in thermal and 

chemieal equilibrium (Das Gupta-7B). 

"2.1.2 The Maxwell-Boltzmann limite 

When the fireball reaches the critical ~e,nsity fc. we can apply 

the thermodynamics of a non-interoacting ga,s. A phase spa ce 

ca1culation' is usually considerèd very difficuft. The 
of ,,~ • . 

canonical or the grand '~canonica1 ensembles provide su i table 
J 

aprox imat ions in most cases (Jenn ings- 81) for systems with a 

large numbér of particles and for detected particle momenta 

- 18 -
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below Lb Gev/c. 

For a given impact parameter b, the baryon number B (b) and the 

chargè Q(b) of the fireball are determined by geometry and its 

energy E (b). and veloci.t'y v (b) are obtained by kinematics 

(Kapusta-77) • R~lati v istic mechanics is used throughout. Each 

hadronic species in the fireball is distributed. according. to 
... 

the Iaws of quantumstatistics~ in momentum space' we have: 

(2.1.1) 

_. '1" 

where mL is the rnqSS, p-~ the ch~mical potential, V (b) is the 

fi reball vol ume corresponding to the ,cr i tical dens i ty fer T is 

the temperature, and the particle mul ttipl ici ty factor is 

g\ = (2 l ~ + I) (2 Si. + I). Here S\. is the spin and Ii is the 

isospin.' Natural uni ts' 1't=c=k=l are used. This expression 

reduces in the limit of high temperatures to a relativistic 

Maxwell-'Sol tzmann di str ibution: 

) 

'tl 
(2.l.2) 

, 
Upon integration (Appendix ins the total number of 

part icles n; (b) : 
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and the total energy E~ (0): 

Here KI and Kz. are mod ified Bessel 

(2.1.4) 

functions sometimes ca1led 

the- McDonald func€lons (Abramowitz-68). 

The assumption of chemical equilfbrium provides the means ta 

calculate the chem:iccal potentials for all other species present 

in the fireball (Reif-65) as a function of the proton and 

neutron potentials, e. g. , for a given react ion 

a,A,+ az.A~ = aJA& then, one ,has the relation 

a'f' + a2., /4" :: a., ,.,. The unknown quanti ties (the fireball 

temperature T, the, cr i Hcal volume V, the proton chemical 

potential JAr and the neutron chemical potentia1 ,."') are found 

by solving the system of equations (Kapusta-77) % 

" 
'. , 

Eth)-=- ~ )1~tb)E~(b) (2.1.5) 

'" 

;, 

20 -
1 

~ 
~'--_____ "~--"--~._~ ___ j_, _ ..... '_ ....... -.... z ... ,""', .... , ......... ..----

.' 



( 

.... -:..y ... ' 

( \ 

Q lb)-=:, ~ )\·~tb) Qi(b') (2.1.6) 

~ 

(2.1.7) 

(2.1.8) 

The c~oss-sections in ~the laboratory frame are obtained by 

making' use of the Lorentz invariance of Ed)n(/dp~, where 

E %. = rn~ + pl , and integra t;ing over aIl the impact parameters 
'" 

(Das Gupta-Bi) : 

( 

(2.1.9) 

The contr ibutions to the pion and nuçleon cross-sections from 

the decay of the deltas (Kapusta-77) are obtained by evaluati'ng 

the integral (~ppendix 7.2): . 

... ' 

(2.1.10) 

..... " 



,1 

... 

, ' . 

" 

momentum in the rest frame of' the deI ta, and 
/ 

± 
,Eb, = mâ(Eo,E 1: 

' 2-
Po p)/mi.. 

; 

2.1.3 The phase space approx ima t~. 

sometimes i t is necessary to do a full ph~ase space calculati.on 

(Oas Gupta-al). The incl\,'~s ive cross-sect ion's are then 9 i ven by 
,..-

- the ratio of two phase space integ:rals (Forest-SO'): 
f 

\, 

(2.1.11) 

where b and Tt are given by: 

(2.1.12) 

" 

and 

(2.1.13) 

A good approx imation method (Jennings-81) is available, which 

is based on the saddle point inversion of the Laplace 

• 
\' - 22 
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transform. T-he Laplace transform of the phase spaee integral 

is formally identieal to the grand, canonical partition 

function. It is very easily "âbtained. -The results are more 

general, but one recovers the grand canon ical resul tË, wi \h the. 

add i t ional assumpt ion that the saddle po ints of the numer ator 

and the denominator are approx imately the same. 

2.1.4 Extensions of the, fireball model. 

The fireball model reproduees the· ma in fea tures of p-roton 

spectra rather well for the c01!-'i8ions of,heavy ions. Proton 

speetra for the collisions of carbOn on carbon -show signs of 

ani so~ropy in the' cente-r of mass frame, wh i le the fi r~bal1 

• model pred icts spher ically symmetric distributions (Das 

Gupta-78a). The -fireball model also overestimates the pion ., 

cross-sect ions by at least a factor of 2. These d i serep-~nc ies 

with the experimental data motivate;d fùrther studies and new 

elabor~tions of the basic model, sueh as, the firéstreak model, 

the two-fireball model, the implosion-explosion model and the 

two- fireb~ll/blast-wavemodel. 

(a) The fi restreak model. 

In thi s model the partie ipants are div ided into a number of 

tubes that thermalize independently of one another 

(Myers-78). It is mainly a further e1aboration of the 
t 

geometr ical concepts. Th i s·-model conserves angular momentum 

explic i t!y whereas the fi reba1! model s do not (Gosset-78). 

This feature only becomes important for coll i s ions wi th 

- 23 - t 
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energies above 1.0 A.Gev ih the laboratory. It predicts 

wi th success the nucleon and the composite spectra 

(Gosset-78) , but the' tri ton . crqss- sect i ons are grossly 

incor rect, wh i le the pion cross-sect ions are not improved 
~'" , 

over the slmple fireball predictions (Das Gupta-SI). The 

firestrea~ model will not interest us any further:i,.n this 

thesis. 

(b) The two-fireball model. 

The two- fireball model" (Das Gupta-78) introduces collect ive 

motions ta account for the strong an i sotropy shown by the 
, 

proton cross-sections in the collisions of light ions. The 

fundamental idea of this model is that the participants are ~ 

not stepped comptet.ely in their center of mass frame dl1ring 
~ , 

the coll ision. Instead they are only' slowed down by sorne 

transparency factor. This means that a fraction pf their . 
energies is not availab1e for 

the form of collecti ve 

therrna1ization and rernain in 
\ , 

translational motions. The 

one-fireball model i~ recoveted as the masses of th~ ions 
Jf 

i ncrease and the transparency factor approaçbes zero. , The 

parameters in this model are determined by s'olving 

e~,:ions 2.1.5 to 2.1.8 

fireball (Appendix 7.1.2). 

in the rest fr ames "ci'f "". 
each 

.Î(' 
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(c) The implosion-explosion model. ~ 

, . 

This model introduces fireball explos-ions that c~eat~a 
blast wave of nucleons and pions, in the form of collecti ve 

outward radial flows (Siemens-79). The particles near the 

surface of a hot and dense fireball face an anisotropie 

environment. The randomness of their kinetic energies is 

thus reduced and eventually the whole mass acquîres an 

. average outward rad ial veloc i ty v,... Thermal energy i s 

coqverted to work. -More energy for the expl.osion cornes from' 

the elastic forces between nU8leons (compressional forces), 

from the reabsorption of pions, and the de-excitation of 

resonances (Siemens-79). 

The distlZ ibutions for each hadronic species in ,the frame of 

the fireball are calculated from the basic assumption that 

in a spherically expanding fireball there is a local 

Maxwell-Bol tzmann distribution for each frame moving 

radially outward with'j the averàge velocity Vr • Using again 

the Lorentz invariance of th-e product 
~ '~ , 

E d n~/ dp, we 
.. 

obtain the momentum 'c!Jïstributions in the fireball frame: 

where A is a normalization ,ponstant, 

X\ =\rVrp/T, and x 2 = 'irE/T (Appendix 7.1'.3). 

(2.1.14) 

v" t' 

The paramet'~rs are obtained as before from the equations 
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2.1.5 to 2.1. 8 for. the conserv,ed quan ~s. Siemens and 

Rasmussen fifid that about one half of the available energy 

appears as trans1ational kinetic energy of expansion in.the 
t 

collisions of neon on sodium fluoride at 800 A.Mev. This 

model 1eads to lower apparent· pi0t? temperatures, as 
1 -suggested by the experimenta~ data· (Siemens-79). 

(d), The two-fireball/blast-wave model. , . 

In this model the cross-sections for pions, proton~ and 

deuterons are constrained from the beginnïng ,·to their 

correct valuls., This amounts to fixing two ratios: 'tYp/c:fc;l 
, 

and ,Ql4R. These are . .-obtained by varying the two parameters 

of the fi reball model: the cr i tical dens i ty te and the 

temperature T (Gale-83). 
\ 

The temperature T is adjusted by reducing the amount of 

energy that is available for thermalization. This, of 

course, requires the introduction of collective motions. 

According1y, translational collective motion is simulated 

by using two fireballs. But this is not enough, so that it , 

is also necessary to introduce radial collective flows of 

the type used in the implosion-explosion model. 

A relatjvely.large portion of the energy goe5 into the 

radial expansion making this effect far more important th~n 

~ the translational collective flows. The latter, how~ver, 

are still necessary to account for the anisotropy of the 

spectra in the center of mass frame of the participants. In 
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chapter 3-~cOrriî)are -the pred ictions of th is model.wi th the ~ 
~--" resul ts' of the-da-SC-adeciliu-iadons. ~-:. 0 

. ~-

, ~'. 

, . 
2.2 The i ntranucl'ea;r cascade model. 

2.2 :fl~t~oduction. 

---

l 
'< 

. :\<.4 

----

The cascade model has been used i.n recent years' wi th great 

success. Onè might . say ,that i t is neither a model nor a 

theory, but a simulation. One important characteristic of the 

cascade model i s the absence of aàjustable parameters. 1 t i5 a 

microscopie model, and the only input data needed are the 

nucl'eon-nuc1eon cross-sections. Thus each collision. is tr'eated 
1 

according to the experimental 
. .' -----~-nucleon-nueleon cre>ss-sectlons .! __ ~.- __ 

bu't between -coills ions all the hadronic spec ies present follow 

classieal f1:ee paths. 

-There are m~ny. diffetent cascade model:D, alrnosf; as many as __ 

-------- , there are researehers in this field, and they do not form a 

single approach. ALI 
l' 

cascade rnodels, however, can be gràuped 

into two categories: in the first one the collision is 

described ap a series of binary nucleon-nucleon 
~ , 

't 

eOllt,Si?ns; t~e~_ 
i', - -----~ 

other describes the inter action of a coll idi ng nucleus .wi th a.:,. 

medium characterized by la mean free path, the proced ure i s 

repeated wi th the other nucleus, and the resul ts are 

J ' 

- 27 -
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symmet~.i.zed in the end (Cugnon-82), In this·~thesis we will 'be 

eXc::lusivelY concerned with first type,. 
ft • ". 

" 

, 

The cal!cade model has been used. in the range of 200 A.M~ 
~-~~~ ~~~---- '- ~ 

2.0 'A. Gev. A colliding nucleon must'· 'bé" able - to resolve }~'. . :::---

individually the nucleon~, in ~her nucleus for a' Clas-s~ 
CI ~ ----

descr iption to be val,id: '1'hi s meàns tha.t the' De Brqglie 
, c 

.wavelengths must be smalL,corllpa-red';. .. wi th the nuclear d imens i0ns, 
-----~ 

anq that sets the lowè,r. l',im!--t of apP,licability. Above 
- ~';,$I':.-'.. J 

2.0 A.Gev one has t~C}~ ~~e producti'.ion of o~h.er hadronic., 

spec ies besides the pions and tHe deI tas, but ul1:;,imately if i5 

the need to Incl ude the qU;Hk \ de9re~s of fr."~at-Irl-gller ,_ 
\ -

'energies that may set,·-the' upper lim~1:s. ~_9?-.nai,tions of 
" 

, -

validity are stil-l d~~.9;-bLe-~(Cm1no-n-82) . " 
~ 

,----------." . 
, .:f ~ J 

... ) \ i 

other approacHes closely rela ted tq the cascade are the rows qn " " 
~ 

rows and tl:le cl"ear knock-out mode). s. The rows on· rows model~:' 
'- . 

based on Glauber theory-, 'is e5sentiallY.8 one. dirnensionëfl 

cascade, but it disr.eg-ai:'ds the space evolution of the system; -------. __ ~eons" i nteract wi chi n tubes of cross- secti ons (SN,.)' and the 
-----------,------- '" ..' . , 

~ . tubes- do not interact with each other (Hufner-77). The clear 

,'~-----------=--kn;ck-out mod'el puts in evidence the importance of the first, 
----

hard scattering as opposed to multiple scatterings. The 

! 
I-

I 

f " 
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càmputa tional effort, lies in the possi'qility of calculating 

non-obse1:vabl e quanti ti es, such as the maximum densïtie5 

reached in the collisions, or in the calculations of 

off-equilibrium situations, ~ fluctuations, and finite' particle 
f''''~ 

number effects (Cugno,n-S 2) • 

2.;.2 General~ description. 

In the simplest oascade "nlodel each nucleus is represented by a 

collection oi hard sphe1:es of radius :R ~= (~/'9;~/'l and' the time 

evolution of the system ~ollows' a classical deterministic path, 

which amounts to the solution of the Classical Equations of 

Motion (NÇlgamiya-S2). This approach reproduces the qualitative 
f;~ 

"trenis:-? of the data, the largest disere'panc ies being at forward 

angles and low e.ene-"tgies of the detected particles. Such a 

'.' ~,. simple model is restricted' to low coll ision energies where pion 

production is not a significant
Ô 

factor. 

) 

,- -
We presen tr a gener al descripti.on ba'sed mainly on the Cugnon 

Monte .Carlo mode~s (Cugnon-SO,' Cugnon-SI). The calcqlation 

follows the collision of two identical nuelei in theiI" center 
; .. . 

of rltass system. Relativistic mechanics i5 used. ::' Complete 

is~.spin "â'egen'e~acy is ,a.ssumed So that only on~ ehargeless, type 
: 

of nucleon, of pion, and of delta a,re considered. ' This 
. 

simpli fying aFsumption ~stricts sorne resul ts ta charge 
\ . 

symmetric systems. Appendix 7.7 
1 .:. ~ 

presents the mathematical 

details of 'a simple ~rsion of the Cugnon code that we have 

used in this 'work. In chapter 4 we describe an ~xtended version 

- 29 
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of this code where we . / h Introduce t e 

~ 

iso~pin formalism 

1 
,1,.,. 
that 

aHows the study of non-syrnmetr ic systems, and also new rev ised 

nucleon-nucleon cross-sections. Much of the experimental data . 
available is for the collisions of unequal nuclei with'N 1 z. 

Each nucleus is represented by a sphere of radius 1.12 ~~ 

where A is the mass number. point-like nucleons 'are assigried 

positions according to a random uniform dist~ibution in the 

target and, the projectile rest frames. The " nucleons are also 

assigned -random initial Fermi motion (Cugnon-BI). If field 
" 

effects are not included a,t the same time there is the , 
inconvenience that the nuclei disassemble spontaneously even in 

the absence of any collision. For this reason . the simple 

version used in this work dOel?_,tot incl ude the initial Fermi 
, 

motion, since we also do not int'roduce field effects. Although 

Fermi motion and field effects are 'importan t physical 

~ characteristics of nuclei they do not affect ~ignificantly the 

results we are interested in this Thesis. Binding energy ls 

neglected in sorne models (Cugnon~80, Cugnon-BI). Cahay et al 

(Cahay-82) introduce field effects using both scalar and vector 

po~entials. Mean field and Pauli blocking effects have also 

been introduced in the context of the Boltzmann equation 

(Bertsch-84)~ Pauli principle effect~ are mockéd approximately 

by ~orbidding soft collisions when the total center of mass 

energy of two colliding nucleons i5 below 1895 Mev (C~9non-al) • 

Single pion production in nucleon-nucleon collisions is 

introduced via the formation and decay of the delta res~nances. 

, - 30 -
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The deltas are bsually a~sumed to have a mass distribution 

(Cugnon-BI). The beh9vi~r of the deltas in compressed nuclear 

matter and their cross-sections are uncertain. The elastic 

A + A -a. A + A and N + 6 ... N + A cross-sections are assumed 

to be the same as for the nucleons in free space. The inelastic 

N + Il .... N + N cross-sections are obtained by detailed balance , 

from the corresponding N '+ N + N + t, cross-sections. Cugnon 

et al (Cugnon-BI) assumes a delta 1ifetime much larger than the 

collision time: the surviving deltas at the end of the 

collision determine the number of pions. This model of the 

delta behavior is retained in the version of the code used 

here. Other cascade codes, such as the Berkeley one, include 

further channel s: once formed the de1 ta can decay in ta a-

nucleon and a pion, which can subsequently be absorbed by 

another nucleon ta forro another delta. The final pion 

mul tiplic i ties are not affected ,strong 1y by the add i tion of 

these other channels. 

The nuclei are Lorentz boosted,to the desired collision energy. 

The calculations begin by allowing aIl the nucleons to move 

freely with their initial momenta. Their positions and momenta 

are updated at regular time intervals. When two n~cl~ons pass 

each other at their closest ,distance- of- approach, and this 

distance is below a minimum value, the pair is allowed to 

scatter. The different channels available are chosen by Monte 

Carlo of the ratios of the corresponding 

cross-sections. The calculations continue until the number of 

collisions falls below a pr~determined value or until a time 
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limit is reached (Cugnon-BO). Each cascade run is repeated 

with different random numbers from thirty to fort y times in 

order to obtain sufficient statistics to calculate the average 

values of tbe quanti ties of interest. we introduced into the' 

simple version of the code the of the s~andard 
• 

deviations of the means. o 

2.2.3 Sorne results of the cascade. 

Inclusive proton cross-sections reproduced in the 
, 

carbon on carbon, neon'~n neoo, argon systems at 

800 A.Mev, bu~-f.I there is a discrepancy in the pion 

cross-seétions (Cugnon-BO). For the system calcium on calcium 

at BOO A.Mev the average number of collisions is 3 and that for 

neon on uranium at 250 A.Mev is about 5 (Cugnon-82). 

The calculations have also been analysed . in terms of 
-

interacting cluster~: me~bers of different clusters interact 

only weakly with one another, the cut off being the Fermi 

momentum (Cugnon-Bla). The separation between participants and , 
spectators appears to follow ciosely the clean-cut geometricai 

,picture, implying smaii tran_~verse momentum t'ransfers propably 
f 

due to the forward-peaked nucléon-nucleon cross-sections 

(Cugnon-82) • 

The participants, usually divided into 2 ' or 3 c-lusters, are 
,-

subjec~ to strong 'compression and high temperatutes for a very 
1 

1 

short time and expand rapidly irtdicating a possible blast wave 
. 1 

/ 
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(Cugnon-82). The existence of a sidesplash and of a strong 
"-

ShOCk, _wave are ,pred iCfèd 

_at 250-~.Mev (cugnOn-~l). 

for the collisions of neon on nickel 

! J • 

1 

2.3 1hermal and chemical equilibria. 

Tpe cascade model offers the 0pP9rtunity ta study the evolution, 

of a relativistic heavy-ion collision (Cugnon-81)~ Cugnon et al 

studied the central collisrqn-s-__ of two calcium-like nuclei in 

the energy range 0.4 - 3.0 A.Gev to investigate if the system 

reqches thermal equilibrium at sorne time during the collision: 

(a) ~he matter density evolution is plotted both in the beam 

directiôn and in the transversal plane. The matter- density 

here is defined as the baryon number density. The cascade 
-

calculation shows that at 1.0 A.Gev the nuclear matter is 

compressed in the be'am direction, gradually passing', through 

a maximum at about 8 ~m/c, when the shape of the system is , 

quite oblâte, then decompre~ses very fast !,ecoming 

explosive in aIl directions. This picture is qualitatively 

the same at 2.0 A.Gev, but aIl phases are shortened as the 

energy increases. ~t the point of maximum compression the 

system is significantly slowed down, but the nucleons have 

large random velocities. 

(b) Rapidity and transverse morne~tum distributi~ns of the 
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ba~~ns sho; clear changes from the initial ones. The fiqal 

spectra appear not ta be fully thermalized showin~ remnants 

~ of trye initial opposite flows. The spectra are fit with 
" 

relativistic Maxwell-Boltzmann distributions to extract 

transverse and longitudinal temperatures. 'The lat?er are 

found to be systematically higher than the former, 

indicating the possibl~ 1ack of thermal equilibration of 

the system. The asymmetry parameter defi ned as 

(2.3.1) 

. 
i.e., the 'ratio of the expected values of the squares of 

the transverse and the parallel momenta in the cente,r of 

mass trame of the system, is equal ta 2 for complete 

th~rrnai equilibration. The calculated values in the cascade 

~mpdel are much Iower and closer to l, indicating again the 

possible lack of thermal equilibration of the system. 

(c) 'Pion rnultiplicities ~re overestimated. The pion spectra 

yield different trqnsverse and longitudinal temperatures, 

bath lower than the corresponding cnes for the baryons, 

indicating again the possible lack of thermal 

equilibration. 

;.. 

'We return to thi5 problem in chapter 3, where were cômpare the 
Qi,! , 

results obtained by Cugnon et al with the two-fireball/blast 
, 

wave mOdel and show that these resul~s can be reproduced very 
- ~' . 
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closely by' the thermodynamic model with collective flows. 

One of the basic assumptions of the ~herm?dynamic model is tha~ 1 

the participants reach chemical equilibrium at sorne point 

during the collision (Mekjian-77) ~ This simplifying assumption 

has been the subject of much investigation by various authors. 

One study (Cugnon-Sl) investigates the time evolution of the 
, 

number of deltas and the pion multiplicities within the 

framework of the intranuclear cascade. Tney find that the 
1 

number of deltas~ Încrease almost linearly during the diving 

phasè, remains almost constant during the phase of maximum 

compression, and ~hen decrease slowly as the system expands. 

At the stage of maximum compression the equilibrium number of 

deltas (Appendix 7.S.I) is given roughly by 

(2.3.2) 

They conclude that the final pion multiplicities contain 

information from this stage of quasi-equilibrium before the' 

system decompresses. 

. 
Another study of' the chemical evolution ·in an expanding 

fireball (Cugnon-83) shows that the chemical a.bundances ma-y be 

veryI~ from their equil ibrium values. The model used assumes 
.,. /f:r 

a sp~Yical' fireball, characterized by a single temperature, 

where the abundanc~s are determined from the equation for 

chemical evolution: 
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(2.3.3) 

as the fireball i8 al10wed to expand with a ~ate consistent 

with the cascade ca1culations. V ls the fireba1l votume, p~ is 

the.particle density for species i, L~ and Gt are the loss and 
-

"gain terms respectively. In a fast!expan,ion the reaction rates 

can be quite different from their eq~ilibrium values. 

Equi1ibrium rate calcu1ations (Har~!~-84) show'that thermal and 

chemical equilibrium are closely approached during the stage of 

maximum compression and that the pion plus delta abundanèes at 

this stage become the final observed pion multiplicity. 

In chapter 4 we define careful1y the equilibrium situation 
1 

w~thin the intranuclear cascade code and show that the 
, 

participants can approach chemical equi1ibration very closely 

at the stage of ~aximum compression. 

2.4 Average multiplicities and geometry. 

Multiplicity means the number of charged particles emerging 
~ 

from an event (collision). The ana1ysi~ of individual events 

can be perfor~ed eith~r by using a streamer chamber, 

photographie emulsions, or other 41 detectors. 

It ls necessary to distin~uish between the primordial charges 
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and /the measured charges. Suppose that, the projectile 

contri~utes Q\ pro~ons and N, neutrons ,;... and the target 

contributes Q2 protons and N~oneutrons, to the participants. In 

other word s, the ". . partlclpants have Q = Q, + Q~ primordial 

protons, and N = NI + N~ primordial neutrons. As a result of 

the collisïon one"'would see a number of proton t:racks, of 

deuteron tracks, etc., as weIl as pions. From t~ princi~le of 

charge conservation we ha~~: 

, . 
In a multiplicity experiment one measures typically instea~ nt, 

+ ntA. + nb + n3Jl.e+ n~k"+ + n ..... + n".' It is then clear that yh~ 
measured multiplicity is a function both of the' geomet~and 
the dynamical assumptions regarding the produ~~~ of 

composites and also of pions. The average chargeomuI'tiplicity 

is given by (Gosset-77): 

... 

where nc::. (b) = nf(b) +"?d (b) + nf,(b) 
\ . 

n .. ( bl". 
·fI 

Gutbrod et al (Gutbrod-78) 

(2.4.2) 
n 

measured the associated 

charged particle multiplicity, which is defined as the number 

af charged particles measured only when there is at the sarne 

time the d~tection of a charged particle at 90 degree to the 

beam direction in the laboratory . frame. The t/rigger pai:.ticle 
<.0 .. 
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can b~ a proton or any other charged light "fragment. This eputs 

an extra bias towards cent~al collisions since in such 

collisions more charged particles are produced and hence there 

is a greater probability of having a charged particle at 90 

degrees. The asso'ciated charged particle mul tipI ici ty thus 

,measures (Cecil-79): 

(2.4.3) 

, 

The rise of the associated multiplicity with the beam energy 

for the same projectile-target combination has been advanced as 

a proof that the simple geometrical clean-cut 

participant-spectator mqdel fails ~Gutbrod-78, Sanaoval-80). 

It is now cl~ar thàt the associated multiplicity tests a 

combination' 'of. gepmetr.ical and dynamical assumptions, since the 

numbe'r of charged particles depenqs not only upon the 

primordial charges but also upon the model employ~d for 
, , 

composi te and p,ion productions. In order to test the geometry '. 

alone we have ta compare primordial charge cross-sections. It 

is calculated following equation 2.4.1 (Nagamiya-81): 

O'"~ -= t'~t cr: (2.4.4) 
L. 

~ 
. -
l 

n 

Assuming the collidin9 ions to be spheres of constant density 
,," 

the simple çeometrical model gives a v,ery s,im~le answer for the 
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pr imord ial charge cross- sec'tion: 

(2.4.5) 

r 
The data of Nagamiya et al (Nagamiya-81) can be used l' to test 

the constancy of thiry figure. This data, however, is not 'always 

sufficient oecause )the cross-sections for positiye pions are 
1\ ~;~ 

not measured in sorne cases. Nonetheless it is obvious that 

~Zl.\'S"i ·:",has some . dep~ndence on' the incident beam energy, ang 
; 

hence the participant-spectator model has to be exam'ined more 

carefully. This model may still be valid, but the independence 

pf the straight line geometry on the incident energy assumed 

previously may have to be given up. 

Tpe cascade model supports the participant-spectàtor picture of 
. 

high'energy collisions. This is clearly seen in the collision 
" ' 

of two calcium-like nuclei at 1.0 A.Gev (Cugnon-SI) from the 

contour plots of the matter density in the reaction plahe. 

However, there is no clean-cut separation between the 

r participants~nd the spectators as the former continue to 

expand. 

The equidensity curves can be fitted weIl by the sum of a 

central Gaussian and two Lorentz-contractèd Gaussians 

(Cugnon-Bl): 

1 
- 39 '-
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where Ap' r., XI' z, ' a are adj ustable parameters, "'( i s the 

Lorentz factor for the center of mass of the nuclei, and A is 

the total nucleon number. A~ is fairly constant, ro , z" a are 

linear functions of the time, and XI increases slowly. The 

spectator velocity 2;, is close to the velocity of the nuclei 

'" 
before the coll i sion. The increase of xI ind Ica tes a small 

sidesplash (Cugnon-al). The nurnber of participants Ap is always 

srnaller than its clean-cut geornetrical counterpart. ~ 

A simi~ar equation holds for the nuclear charge d~nsity, 

(Cugnon-80a) showing expansion velocities o! about O.4c for the 

participants. Again the participant charge is less than that 
, 

calculated from the clean-cut geornetry. This . time-dependent 

nuclear charge distribution is used to calculate the finai 
. 

state Coulomb distortion of the pion and the nucleon spectra 

(Cugnon-80a) • 

The participants are further analysed in terms of clusters 

(Cugnon-8Ia) • Mernbers of the sarne cluster are linked by 

violent interactions, whereas the connection between members of 

9ifferent clusters Is very weak. An interaction is ~iass.ified 

as violent l'f the four-momenturn transfer Is larger than a cut 

off value, which Is typically t~ken as the Fermi momentum. 

Central events contain on the aYerage about 3 clusters, . , 
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" 3 THERHAL'EQUILIBRIUM' 

" • ... 
\1 Introductioll. 

. 
we address the problem of thermal eguilibration 

, , 

( 

, . 
01 

in heàvy- ion 

collisions by comparing ·tw~ models with'~undametitally diff~rent 

basic assumptionlf': the thermodynamic fireball model; and the 

intranuêlear cascade model. The' first qne represents a 

macroscopic approa~h u whi le the later is a microscopie model. 

The thermodynamic models contain as a basic postulate the 

" 
assumption that the participants can be desèrib~d at ~he 
~' l) 

freeze-out point as a non-interacting relativistic gas in 

thermal· and chemic~l equilibrium; they may also. include 

radial collective flows. .. The cascade models longitudinal apd 

ort the other hand contain no assumption or constraint regarding 

conditions for equilibrium of any kind, limiting itself to . 

follow the individual interactions of its constituents to the 

final stage of the' collision. This feature of the cascade 
" , 

models mak~ th~m particularly suitabae for the description of 

off-equilibrium situations. ~ 

The' resul ts of the cascade calculations resemble the 
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experimental data in the 'sense that they present the same 
.J~ 

complexity and requ~re extensive treatment before one can 

e:xtrac~ some physical results from them; it is also difficult 

to trace'~ 'calculated result to a particular physics input.' It 

is us~ful therefore to compare this model with ~simpler more 

transp~rent m~delsr s~h~as the thermodynamfc fireball models. 

Cugnon et al (Cugnon-SI) examine 

calcium-like nuclei, where cotnplete 

the collisions 0\ two 

charge degenerac} is 

~ssumed, at zero impact parameter (b = 0) for various collision 

ènerg ies. Only chargeless nucleons and chargeless delta 

resonances are included in the calculations. 

pions"are produced from the subsequent decay of 
1<'1 

The~chargeless 

trye deI tas a t 

the f~eeze out stage of the collision. The cascade code 

(Cugnon-SI) already described i'ri Chapter 2 incl'udes the init)al 
, 

Fermi motion of the nucleons, but does not take into account 

ariy field ~ffects'at ~he same time. This way the nuclei tend to 

d issipate even in the absence of any collision, but th,is . '. 

expansi~n is slow enough tQ have only a minor influence on the 

results • 

Cugnon et al, ·using their y;; cascade code, calculated' the final 

~ rapidity and perpendicular momentum 
f' 

dN/dp,L' both for baryons (nUcle?,l\s 

distributions, dN/dy and 

pl us d'el tas) . and for pions 
;l' 

in the center 9f mass frame of the two nuclei. The rapidity of 

a ,part,icle has a very simple tran~,formation pro~erty between 
. . ~~. . 

dlfferent Lorentz frames, WhlCh makes lt a popular varlable to 
. .. 

replace the parallel momentum PlI • In relativistic mechanics the 
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rapid i ty y along 'an axis i s de'f ined as 

(3.1.1) 
\ 

,for, a' particle of energy E and momentum p with projection P, 
§ 

along the axis and p.... in the perpendicular plane. It can be 

shown immed iate1y, using the Lorentz transformation for the 

energy-mornenturn o~ a particle, that the rapidities in tW9 ,. 
different frames are connected by the relation: 

(3.1.2) 

G where Vç is the relative veloci~ the two frames. 

They fit the se distributions with appropriate relativistic 

Maxwell-Boltzmann curves and extract rapidity and perpendicular 

rnomentum ternperatures. Different températures, result in each 

case (Table 3.4.1) • The uncertainties in the rapidity 

tempera tures are betw'een 20 and 30 Mev, and in the 

perpend icular momentum temperatures,are açout 10 Mev. These 
(! 

results are c.learly conflicting with the predictions of the 

one-fireball model. This model predicts ~ single temperature 

(T.a." Ty) • 
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3.2 Fireball type models. 

We stud"y the collisions of two calcium-like nuclei at zero 

impact parameter (b = 0) for the proj ectile ehergy of 

1.0 A.Gev, using fireball type models. Likewise, we include 

on1 y '.chargeless nucleons and chargeless ael tas in the models; 

in the freeze out stage of the collisions the delta-s are 

allowed to deeay into nucleons and pions. The formation of 

composi tes is a1so not taken into account so that the resul ts 

may be comparable wi th the cascade model ca1culations' of Cugnon 

et al. 

In t,he simple one-fireball model eaeh hadronic species '-is 

d~stributed according to a relati v istic Maxwell-Bol tzmann, 

distribution: 

where mi: is the particle mass, J4-~ i8 the chemica1 potential, V 

is the fireba1l volume correspond.ing to the freeze out density 

P,c.' T is the fi reba11 temperature, and the. mul tipI ie i €y factor 

gi = (21, + 1) (2S~ + 1) tak'es into açcoun,t the partiele spin Si 

and the i sospi n Ii. There are three unknown par ameter s: the 

nucleon chemical potential 113' tJ:le fireball temperature T, and 

. ''' .. \ 
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the fireball volume V. The chemi~~ potential of the deltas is 
, 

obtained from the nucleon chemlcal potential by the law of 

chemical equil ibr i um, for example, the reaction 

N+N~N+b leads to the relation tA = r~ for the deI ta 

chemical potential. The unknown parameters are deterrnj.ned by 

solving the system of equations 2.1.5 te 2.1.8 for the 

cons'erved quanti ties (the energy E of the fireball, i ts charge 

Q, and i ts baryop number B), and the freeze out d"ensi ty le.. 
, 

The rapidity distribution 'is obtained from the relativist ic . 
Maxwell-Boltzmann gistr ibu'ti on in· momentum ,'space by 

~ .. tral'lsform.ing the variables (p , p) to (E, y), and integratl ng 
, ~ ~ 

over the"-par t icle energy (Ae,pend ix 7.3): 

The perpendicular momentum distribution is obtained likewise 

from the Maxweil-Bolj::.zmann distribution in momentum space I;>y , 

direct -integration oVer the ." parallel 

(Append-ix 7.4): 

Here K, and" K1 are modified Bessel functions 

MacDonald functions. 

"'~---""-'-"'<-~"'-~-'''''M''~_''''' ______ _ 
1 

i 

momentum 

(3.2.3) 

known as the 
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These two forms can be .used to extract the rapidify and the 

perpendicular momentum temperatures ,by a least ~quares fit to 

the corresponding distributions obtained from other models such 

as the .cascade, the 

two-fireball/b1ast-wave models._ 

3.3 The two-fireba11 model. 

r 
two-fireball , and the 

The simple one-fireball model ptedicts spherica11y symmetric 

distributions. However, the spectra from 'the collisions of 

1ight nuclei, such as carbon on carbon, show signs of 

anisotropy in thÉ!ir center of mass frame. This means that the .... 

tà--rget and the projectile participants are slowed down .; 

significantly during the collision but still present remnants 

of their initial collective flows a10ng the collision axi--s. 

Such a situa~n can be suitably represented by assuming that 

two fireballs are formed instead of only one, such that they 

retain some of their initial momenta before the collision. The 

momenta after the collision is related to the momenta before 

-the collision by the 50 called tr ansparency factor 

(Append i x 7.1. 2) : 

(3.3.1) 

, 
where P, is the initial momentum of the nuclei before' the 

(. 

. ----------"" 

-1--.... '--· .... ,------;----------. .,..., _____ ....... ~ __ -""-.h--
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( COllision. and P-+ is the fireball momentum, both in their center 

of mass frame. The transparency factor e is a function of the 
'i\ 

average number of nucleon-nucleon collisions during the 

reaction (Appendix 7.1.2): 

e (3.3.2) 

Here ~ is the av~rage number of nucleon-nucleon c collisions 

that a nucleon suffers during the reaction. 

\ 
The introduction of collective translational flows into the 

firebaii model reduces the degree of symmetry of the momentum ,c 

di stribut ions,. In particular, we can, expect different 

properties alo~g the collision axis and its transverse plane. 
"-

Thus the two-fi rebail model can lead ta di fferent apparent 

°long i tud inal (rapid i ty) and transverse.temperatures as we shall 

see below. The basic features of the cascade calculations. are 

already apparent in ~he two-fireha11 model. 

==== , 
We produce a two-fireball calculation at 1.0 A.Gev and zero 

impact parameter, including only nucleons and deltas. The pjons 

are obtained from the decay'of the deltas in the free2e-out 
.J 

stage as in the Cugnon code. The two..-fireball model assumes 

that each fireball is in thermal and ch~mical equilibrium with 

a relativistic Maxwell-Boltzmann distribution holding for each 

on~ of the hadronic species present. Hele the parameters 

(cnemical potentials, temperaturei volume, freeze out density) 
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; b 

are defined in the rest frames of each fireball. There is a 

single temperature for both fireballs and it d~es not~atter if 

the two fireballs are separated from each other physically in 

space or note Equations 2.1.5 to 2.J:.8 for the conserved 

quantities are written in the frames of each fireba11 for 

simplicity. The thermodynarnica1 ca1culation isessent'ta11y 

" 
identical to the cpse of the one-fireball mode1, but now the. 

energy a~ailab1e for thermalization is reduced by the amount 

that remains as collective translational motion a10ng the 

èo1lision axis. 

) 'l 
The Lorentz invar iance of Ed n,/dp allows us to calou1ate the 

rapid i ty distribution in the center of mass of the two 

fireballs. A change from the cylindrical coordinates (n Po) 
!:'.l. ' " 

to (E ,y) leads to the integral (~ppendix 7.3.2): 

00 

~1i ) 
'1 

o.v-; cAu.~ 
E *" clE*" - E -

~ .. - ~~ (3.3.1) 
- ~~'(~ 

'MiU~"If 

The starred variables refer to quantities in the center of mass 
1 

frame, and' the others to the fireba11 frame. Each hadronic 

species in the firebal1 is distributed according to the 
J , ....... -

Maxwell-Boltzmann law. Transform the variables in the f~reball 

frame to the center of mass frame, introduce the notation 

49 
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o 

(3.3.2) 

integrate and add together the distr ibutions for each fireball. 

We get finally (Appendix 7.3.2): 
'. 

(3.3.3) 

The surv iv i ng deI tas at the freeze-out stage decay i nto 
\, 
nucleons and pions. The pion rapidity distribution is obtained 

fr~. ëquation 3.3.1, where now 'the integrand contains the pion 

distri.bution Ed~n;/dp' in the fireball (Appendix 7.,2): 

(3.3.4) 

where we use tne notation 
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(3.3.5) 

W!AE~ ~;j: -;:. ['4~. _}:t_ ct;!: t.~ l (3.~.6) ~'Xf "f\ ~f" .. 

, " 

<..o~ -

The integral above 

and the results 

distribution. 

--
, 

e.Xtf- ~6~~ of ~~\ 
<\>± eil 1 ~-- - (3.3.7) 

,*,~1' '*(T \ 

is evaluated nurnerically for each fireball 
t . 

are added together to produce the final 

The perpendicular momentum distribution i5 calculated by 

projecting the Maxwell-Bolt~mann distribution into the 

perpend icular plane. Thi s ia achi=ved by in tegrating over the 

parallel momenturn. Since the perpendicular rnomentum ia not 
." 

affecte. by the Lorentz transformation we can write 
• 

(Append i x 7.4) : 
" 

(3.3.8) 

The joint distribution for the two fireballs is: 
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(3.3.9) 

The sarne rea,soning goes a1so for the ,decay products of the 

deltas, but here again the integration must be evaluated 

numerically. The perpendicular mornentum distribution for the 
,-

pions is (Appendix 7.4.2): 

c\w 1 -
-'t'''''' 

'" 
l r''''~ - r \ 

.' 

(3.3.10) 

where we sub~titute p 

We calculate the rapid i ty and perpend icu1ar momentum 

distr ibut i ons for the baryons add ing together the d istr ibutions 

for the nucleons and the deI tas. We compare them with the 

corresponding Maxwell-Boltzmann forms (equations ;.2.1 and 

3.2.2) and determinf the temperature.parameters in th~ curves 

by the least squares method. We do the corresponding 

calculati on,s for the pion d istr ibut ions. Different r apid i ty 

and perpendicular momentum temperatures ~ resul t, ln each case, 

both for the baryons and for the pions (Table 3.4.1). Thi s 

predicÙon of di'fferent temperatures indicates only that sorne 
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( 
longitudinal pollective flow remained after the collision; the 

:'- ::.. 

lower pion tem(>eratures, however, are due to a kinerrrati'c effect 

refl~cting the smaller pion mass. 

3.4 The two-fireball/blast-wave model. 

The two-fireball model above reproduces the main features of 

the Cugnon cascade yielding different 1 transverse . and 

longitudinal temperatures both for ,tpe baryons and for the 

pions. The Cugnon cascade predicts a transverse temperature of 

100 Mev (93 ~ev for t~e two-fireball, model) and a rapidity 

temperature of 130 Mev (117 Mev for the two-fireball mOdel). 

For, the pions we have ai Mev (84
0 

Mev) and 100 Mev (116 Mev) in 

the same order respectiveïY. 

'The two-fireball model (like the one-fireball model) has the 

deficiency that the number of pions preqicted is too high. Thè 

number of deuterons and protons are given qui te adequately by 

the model. Now the number of pions and deuterons depend (in the 

therrnodynamic model) upon -two pa~arneters: the freeze out 

density f~ and ,the ternperature T. In earlier calculatio~~ (Das 

Gupta-79) in the two-fireba11 mo~e1 the value ,Of ~ was' taken 
lo.~ v 

equal to 0.12 fm '. The value of T was not an adjustable 

parameter; it depended upon the beam energy. NO~ aIl of the 

bearn energy in the center of mass was converted into thermal 

energy; sorne' longitudinal velocity remained and tne energy 
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associated with this longitudinal velocity was not available 

for thermal i zation. The final long Hud inal vel oc i ties are not 

really free parameters of the model; they can be ded uced from 

'high energy pp data and in any case, the exper'imental data on 

proton anisotropy put severe 1 imi ts on the amount of 

longitudinal ve+oclty that remains. 

To resolve the problem of overestimation of pion production one 

can take the foilowing pGint of view: the two determining 
- , . ~ . 'I quanti ties fc- a..nd T in the two-fi.reball model can be fixed from 

~the known experimental ratios o;;/~~ and ~/<;r''l\'. Since the1:e was 

never any di fficul ty in obta ini~g the correct crp thi s would 
" , 

mean that one has the correct total cross-sections for protons, 

deQterons and pion's r, the three most copious spec les produced in 

the Bevalac energy' regime. 

" ! 
The temp~rature so deduced is Iess than the tempexature 

~btained in the original two-fireball model. This means that 

some of the oeam energy is transformed into c:?llec~ive energy 
, < , 

which is other than longitudinal velocity. Following Siemens 

and Rasmussen, this Ls taken to be an outward constant radial 
.~ ç • 

velocity in each of 'the two fireballs.' 

,~ 

The part~cles near the surface of a hot and dense fireball face 
, 

an a~isotropic environment and consequently the randomness of 
i, • 

their kinetic energies is reduced resulting in a net collec~ive 

outward radial flow with an average radial velocity Vr • The 

basic assumption here i9 that there i9 a Maxwell-Boltzmann 
". 
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distribution for each hadronic species in the f!.!eball in all 

frames moving radia~ly outwards with the expansio,n velocity Vr • 
1 

'3 3 
The Lorentz invariance of the product Ed n:/dp allows us to 

ob ta i n---;th-e ~mentum ~stributions in the rest frames of the 

• 
fireballs (Appendix 7.1.3): 

, ~ t}." y Q.)J.~(T ' , l: -z2. , 

d\\.~ ,'\:n [( 'l~ -~"t l)~'- (l.~ t~ ~ \)ë 'J a.. 
---:;= 

~\'X.z. 
(3.4.1) 

~ 

Here the g.amma factor Yy = 1/ ~1 - V;, 
, 

x~ = YrE/T. 

The introduction of both translati10nal and rao ial flows, }nto 

the fireball model allows for the reduction of the amount of 
~:2\ " 

energy that ~ is available for thermalization, thus permit'ting 

the variation of the temperature parameter of thé model. As it 

turns out,. the rad ial explos i on consumes far more energy- than 

the translational flows. The latter, though less importan~, is­

still necessary to account for the cen~er of mass anisatropy of 

·the spectra in the coll is ions of lighter ions. 

l, 

The calculational procedures here are entirely_a~Ilalogolls __ t<? __ t~~ __ ,~ __ 

case of the· two-fireball model, but now each hadronic species' 

follows the Maxwell-Bol tzmann d istr ibution in each rad i;{l .frame 
1 • 

moving' with the rad1.al velacity Vr- or equivalently the 

calculated distribution of equation 3.4.1 ab ove in the ftrebàl1 

" 

j.,~ , 

j , 

r' 

~ 
"' 

, 

-' 

'V. 

, .' , 

J 1 ~ 
" 1 

-4- ___ _ 

" 

,1 
,1 

, 
( 

}i. 
~ 
' . . , 
1 

frames. Equa tions 2.1. 5 to 2.1.8 for the conserved quanti: ties :J 

'can be written in the radial frames for simplicity. 'l'he 
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par~meters'· of the model are then defi ned in any of the infïni te 

number of the~e 
.. 

frameS".; 

ava ilable for thermal i'Za tian -in the rad ial 
} 

The ~ne't'gy 

'sconne~t;a 

,,' to~.....e.n.e-~9Y or---t:ne coll i sion in the center -of m~S's frame of 
---,~-- " 

" 

.. 

the. two fi reballs 
J 

s~quence Lorentz of by the two 
, 0 

transformations :' 

; . 

... 
'" 

whe~e y is the gamma facto:t: between the center of mass frame 
~ Yr connecta and ,the ,frame of each fireball , , and, the frame of 

~ il> 

one fireball and any of its radial frames. The fr.é!-ction of 

kinetic energy 'committed ta the radial expansion is takèn from 
• 

calculations,- with thfs model for the case of '--Ar + Kel at 

It amounts t'o 41% of the ~:mergy of the 
\, " 

coll ision, whi ch produces ·a val ue ,of 94% for . the' radial gamma 

factor ,,~. 

The rapidity distribution in the f~ame of one fireball i5 

obta'ined by changin~ the variable~. (Pl. ,p\\) ta (E,y). and 

in tegrati.ng over the etrêYêJY: 

(3.4.3) 

Tb~ ~istribution of each hadronic species is given by equation 

3.4.1 instead of the Maxwell-Boltzmann (Appendix 7.3.3}: 
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, 
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(3.4.4) 

mi /T, and X 1.. = IrE/T. The distribution in 

the center of ma5S frame i5 obtained by noting that dy* ::: dy 

and evaluating numeric~lly the integral above for each fireball 

using the appropriate value of the rapidity in each case: 

The rapidity distribution for the pions < i s evaluated 

numerically for each fireball with the appropriate value of the 

rapidityas above and added t,?gether (Appendix 7.3.3): 

(3.4.6) 

where the d istr ibution of the deI tas in the fi reball frames i 5 

- 9 i ven agai n by the same equa t ion 3.4.1 above. 

The calculation of the perpendicular momentum distr ibution i5 
., 

entirely analogous to the case of the two-fireba11 model above, 

except that one has to use t~ë, appropriate dis,tributi'ôns for 
'1-

this model in the inte9r~nds. Using equation 3 $.4.1 into 

equation,3.3.8 we get: 

'" 
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( 

'., 

with x = \ The 

integra1 is evaluated nume-rical1y. 

The pion distribution is obtained by from equation 3.3.8 using 
'-'" , 

3.4.1 into 2.1.10= 

Et 1 

) ((l.-~ t;)l'- (X;i+x,"-I)i.'~:'J 
E­

h 

The doùb1e in.tegral is eval uated numer ica11y. 
",--'-." 

We calcu1ate the rapidity and perpendicular 

(3.4.8) 

momenturh 

distributions in this model and extract the temperature· . . , 

parameters by fitting the corrèsponding curves in the 

one-fireba11 model by a 1east squafes method~ The apparent . 
temper,atures in the cénter of mass rise and the' difference 

between pions and nucleons is accentuated. The predictions of 

this model for the transverse temperature is 112 Mev CI00 Mev 

for the cascade) and for the rapidity temperature is 132 Mev 

(130 Mev for the cascade) in the c~se of the bar~ons. For the 
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pi ons we get 88 Mèv (82 Mev) and 117 M,ev (100 Mev) in the same 

order respectively. The quantitative agréement between the 

cascade and the fireball models is greatly improved in the case 

of the baryons, with the addition of the outward radial 

collective flows ta each fireball. The apparent. pion 

temperatures do not improve over the two-fireball 'model 

predictions (Table 3.4.1) • 

. cugnon et al calculate the asymmetry parameter Y to further o 

test the degree of thermalization of the participants. The 

asymmetry parameter is defined as the ratio of the expected 

values of the squares of the perpendicular and of the parallel 

momenta in the center of mass frame of th-e participants: , 

(3.4.9) 

For a system of particles with entirely random momenta the 

value of the asymmetry paiameter should be very close to its 

theoretical value~ which is equa1 to 2.0. 

It is obvious that <~lZ> 1: <~> so we can do the eval,uSltipn in 

the rest frame of the fireba1l: 

-c> ..d 

<ri'> ~ ~ tir) à,.. )lt7,-", +1)1'- ~.+):,-tI)ix.;i'X"'t (3.4.10) 
~)f, X',x~ 

We a1so need 

1,;) '-N . 

ta evaluate <b~~> in order ta ca1culate the 
1"" 
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asymmetry ratio Y. We have (Appendix 7.5.3): 

( 

(3.4.11) 

---------
Noting that El = m~ + p" .;' p.~ we obtain finally: 

1. .1.. " ' 

'f (3.4.12) 

....----
The onl~ quant\ty left to calculate in th~S 

in the fireba11~rame. We have: c' 

- -\ 

express}on i5 < f\~> 

(3.4.13) 

o 

from which we get: 

./ 

(3.4 .• 14) 

so t~at wi~h the appropriate distribution for this mode1 

.' 1 



( 

( 

(3.4.15) 

cl" Thi s double integral is eval uated numer ically. 

The Cugnon cascade predicts a value of 1.2 for the asymmetry 

parameter o for the baryons, while our own calculation produces a 

value of 1.7 using this version of the fireball modela The 

reason for this discrepancy may be that our rapidity and 

perpendicul~r momentum distributions are fit extremely weIl 

(Figure 9.2) by the Boltzmann curvesi on the other hand the 

distributions obtained from the cascade code show deviations 

from a perfect Boltzmann distribution. 

\ 

\ 
TABLE 3.4.1 Rapidity and trans~erse temperatures. 

Comparison of the rapidity and tra~sver'se temperatures 
for the system calcium on calcium at 1.0 A.Gev. 

'.. T1.(N) 'Ty(NI> T.l.(1\) Ty(t\) 

Cascade (Cugnon-SI) 100 13~ 82 100 
, 

Two-fireball 93 117.\ . 84 116 

Two-fireba1l/blast-wave 112 132 88 117 

rn~onclusion we may say that the two-fireball/blast-wave mode! 

reproduces the different longitudinal and transV'erse 

temperatures obtained from the ~ascade model, calculations. 

These different temperatures result from residual longitudinal 

motions 1eft after the collision and. are futher enhanced by the 
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collective radial flows resulting from the blast in each of the 

two fireballs. These collective flows coexist with thermal 

equilibrium in the fireballs. Tt shows that the r,ésults of the 

cascade calculations do not necessarily imply the ~ack of 

thermal equilibration in the collision, b~t only' that the 

exi.tence of collective motions must be - properly taken into 

account. 

\ 

( 

( 

r', 

- , 
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4 - PION PRODUCTION 'AND CHEMICAL EQUILIBRIUM 

4.1 Introduction. 

In chapter 3 we saw that thermal equil ibration of the 

participants is not in conflict with the results of the cascade 

calculations of Cugnon et al. Now we investigate the attainment 

of chemical equil ibration for the number, of del tas wi thin the 

framework of the intranuclear cascade. A description of the 

cascade code is presented in section 4.2 and also in the 

Appendix 7.7.' We modify this code by introducing the i~ospin 

formalism so that i~ ~an be applied to the study of 

charge-asymm~tric systems. This ~xtendeq version af the code is ... 

systems. We also introduce ~ew 

available now are f.or- N ;. ',Z 
~' 

revised average total 

important because MoSt of the data , 

q 

nucleon-nucleon cross-sections from experimental data. 
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4.2 The cascade co~e. 

4.2.1 The simple version. 

The basic cascade cçde us~d in this work is a simple version of 

the Bertsch-Cugnon code. The calcu1ation follows the collision 

of two identical nuclei in their center of mass system. 

Relativistic' mechanics is used throughout. The' mathematica1 
'. 

details of the cal~uiations in the code are relegated to 

Appendix 7.7. The original version of this code assumes 

complete isospin degeneracy 50 that only one charg~~ss type of 

nucleon, " of pion, and of deI ta are considered. This 

simplifying assumption restricts sorne results ta charge 
) 

symmetric systems. Much of the experimental data avail~ble, 
, 

however, ls concerned with the collisions of unequal and 

non-syrnmetric nuelei with N ~ Z. We expanded the original 

version to allow for the collisions/of unequal nuelei, and also 

introduced the.~ isospin formalism into the code to permit the 

study of the collisions of charge-asymmetric systems. 

Eaeh nucleus is represented by a sphere of Y3 radius 1.12 A , 

where A is the mass number. Polnt-like nucleons are assig~ed 

random positions inside the spheres representing the colliding 

nuelei in their rest frames. This simple version does not 

inelude-the initial Fermi motion, since we also do not 

introquce field effects. Although Fermi mot on and field 
. 

effects are important'physical characteristics of nuclei they 

do not affect significantly the - results we ar interested in 
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this Thesis. Pauli princip1e effects are mocked approximately 

by forbidding soft collisions when the total center of mass 

energy of two colliding nuc1eons is be10w 1B95 Mev (Cugnon-BI). 

Single pion production in nucleon-nucleon collisions is 

introduced via the, formation and decay of the delta resonances. 

The deI tâs are assumed to have a mass di str ibut ion (Cugnon-"'B--l-h-___ _ 
~ ~ 

The behavio; of' the deltas in compressed nuclear matter apd 

their cross- sections are uncertain. The elastic 

0. + 6. -> 1:. + 6 and N + A -1) N +l> crO'~s-sections are assumed 

to be the same as for the nucleons in free sppce. The inelastic 

N' + b -'> tg + N cross-sections are obtained by detailed balance 
~ 

r~OIJ) the corresponding N + N -+ N + 6. cross-sections. Cugnon 

(cu~[on-B1) assumes a delta lifetime much larger than 

collision time: the surviving deltas at the end' of 

the 

the, 

collision determine the, number of pions. This model of th~ 

delta behavior is, retained in the version of the code used 

her~. 

The nuclei are Lorentz boosted to the desired collision 'ener'g'Y. 
l 

The calculations begin by al~8wing aIl the pucleons to move 
') 

freely with their initial momenta. Their positions and momenta 

are updated at regular time interva~~~ When two nucleons pass 

each oth~r at their closest distance of appro~ch, a~d this 

distance is below a minimum value, the pair is allowed to 
. 

scatter. The different channels available are chosen by Monte 

Carlo sampling of the ratios of the corresponding 

cross-sections. The calculations continue until a time limit 

- 65 -

-; , 



~, 
l, 

" 

------

( 

is r'eached. By this time 

essentia11y dropped to zero. 

the Q\!mber of coll isions has­

Each c~scade run is repeated with 

differ~nt random numbers from thirty to fort y times. in order to 
; 

obta~sufficient statistics to calcu1ate the average values of ---the quantities of interest. We ,iqtroduced into the simple 

ver~ion of the code the ca1cu1ation of the standard de~iations 

of the means. 

4.2.2 The isospin formalisme '-"" 
We use the iso~pin formalism to calculate the branching ratios 

and cross-sections when ,the charge state~ of the nucleons and 

the deI tas are int·roduced into the cascade code. 

The nuc1eon hds spin J = 1/2 and ~sosp!n I = l/2~ the delta 

resonance h~s J = 3/2 an~t1 =N3/2. A pair of nucleons ~an be in 
" 1 

the state 1 = 1 o.r l = 0, while the pa,ir deI ta-nuc1eon can have 
, 7, ( 

I = 2 or I = 1. 'Isospin consè~vati9~ then, allows only the 

/ ! 
coupl ing of the I = ''"1 states. / The branch\1)g ratios are 

obtainec;l in the usual. way from t~e Clebsch-Gordan coeffl"C-ieOJ:~: 

/' 
cr l p~ -.. é f )i'4 cr- CI :cl) 

/ 
(4.2.1) 

/ 
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~1f systems the average matrix element 

------------ '1 • . 

is: 

_/ 1 ( \r, \: ) ~ . cr- = - 0' \ .Ir - ~, + - 0"' """ tr' "0:: - cr ' 
do ;;";;1: 4 

1 
We therefore pefine O"?' 4 0ji,,/3, where 

, / 

. j/ ( .. " 

.. 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

(4.2.7) 

1 
1 

.{ 
\ 
1 , 
l 
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(4.2.8) 

in order ~b recover the results before. the introduction of 

isospin. 
/ 

~( 

The inverse reactions are obtained by usi~ the reciprocity , \ 

relation: /~ 1 / 

;ç cr (Nt. ... N,.l) ~ ~ t!~5 <l'(~~~ / . 
/ 

~ , 

where the identity j~Jld' the spin factors are taken i,t'lto, 

The branching ratios are obtained again by the conservat' 
------ -

of 

isospin: 

... >// 
/ 

~ 
\ 

/ 

1 
(4.2.10) 
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l cr . (4.2.12) 

" 

(4.2.13) 

(4.2.14) 

(4.2.15) 

- - - - -- --'--------..,,---
------ --1--

The pairs i\++:p JJ. and ~n are forbidden by,tsospin conservation 

to decay into two.nucleons. 
" 

4.2.3 N-N c.ross-section Slata. 

We also i,ntroduce 
--------=­
into the code 

" 

" 
_. - '1 

more accurate exper imental 

total (e1astic and 
" 

inelastic) 'nucleon-nucleon 'cross-sections 

(App'endix 7.6). ,The experimental data was eval ua ted for 

accuracy and reliability. 01d data were discarded. The final 

selection wa~ then smoothed and interpolated with cubic spline 

subroutines (IMSL-79). A simplified 

\ 
\ 

•• • QI.. "'i'H , ... , t • 

.'""'". ./ 

. 
parametrization is also 

.:. 
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used 'in the pre1irninary ca1cu1ations in this , chapter and a1so 

to test the sensitivity of the results to the cro'ss-s~ct'ion 

inputs. 

" 
4.3 Chemical equilibrium. 

4.3.1 pre1imina~ies. 

If we have a reactio,n N + N = X + N where X is an excit'ed/'state 
" 

of N with a definite excitation energy and spin- isosptn, theIL-
" 

the 1aw of chemica1 equilibr ium dictates that;: 

(4.3.1) 

Here 9)( and g~ ar~ th~degen~racies of X and N r~spective~y. 
~ 

The assumption invo1ved is that there is sufficient time for 

eqpi1ibration. Most chemica'f re.actions, wil'l take place in a 

container where exper irnentSll,Y the :.;eactants' can be léft for a 

very long time • .. 
In heavy-ion reactions the situation is quite complicated. 

There is no wall wit:hin which the reactants can 'be kept for 'an 
et 

arbitrarily lon~ time. For medlum mass nuclei, collisions fall 

off after a t ime of 20 fm/c. For pion product ion through del ta, 

the deltas have a mass distribution so that the simple formula 
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writt.ten above i6 not °directly applicable".'· ,For cascade .. 
~î) 

calculations, the temperature is not given a priori; it has to ' .. 
~ be deduced following a somewhat arbitrary p~oc~dure. 

" To ~liminate the complication of continùous mass distribution 
o 

we fits~ study the population of a fictittous excitation in the 

nucleon a t an excitation energy of 20 Mev ,wi th spin 3/2 a1'ld 

isospin 3/2. We sh~ll inappropriat~1y calI it a "delta" for 
, 

fac ility of ex.pxession .• A smal1 excitation ,energy should 

increase the numbers of "dei tas" required . for' the 

eq'u i librg tion. The only reactions considered in our 
ç, 

calculations are: N + N .... N + N, N + N,~ N + A, and • 
"-

4+A'~À+A •. The cross-sections", are assumed to be the- same as 

101 .. 

the average nucleon-nucleon c~oss-sections, but the inelast·ic , ' , 
cross-sections are adj usted to be consi stent wi th an exc i tation 

of,20 Mev and are also scaled by a factor of 1.15. This factor 

increases the reaction.rates without affecting the conditions 

of e qu il i b r i um •. The elastic cross-séctions' were also adapted 

by removing the minimum collision en erg y restriction used to -

account appraximately fOf 
• 

low 'exci ta tian energy of 

the Pauli pri~iple, because ~of the 

the "deltas". (~ore specifical;ly we 

modify the simplified "'parametrization 

(7.6.'3) as follows: 

o .O/S T ((5- 1. ff9i)a 

\ 

\' . 
pf equations' (1.6.2') and 

" 

(4.3.2) 
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(4.3.3) , 

The cross-sections for the inverse reactions are calculated 

u,sing the reciprocity relation; 

We ~an estimate th~ temperature of the colliding system in two 
-

different method$, which are both based on the assumption of 

thermal equilibrium while tlfe second one contains in. addition 

" " 
the assumption of chemical equilibration: 

(a) The first method is used by experimentalists to extract a 

tempe;ature from, the spectra obtained from the data. It 

consists in fitting an exponential curve to the tail''-of the 

spectra, and i t depends only on the assumption that the 

system obeys a Maxwell-Bol tzmarln distr ibut ion (Append ix 

, "7.,8.,2). We' apply this procedure to the results of' cascade 

calcul~tions, where we use the pucleon spectra integrated 

over aIl directions to' improve the sta ti stics (Fig ures 9.3 

'to 9.6)., 

1 

(b) estimated from the chemiçal " The temperature can be 
• 

equilibrium constant K calculated as the ratio of "deltas" 
1. 

,'to nucleons in" any stage of the collision in the cascade 

codè' (Appendix 7.8.1) according ta the-eq.l.U!.tion: 

" 
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Thi s simple expression appl ies only if the resonance mass 

distribution has a single constant value. 

We apply these methods to the 

800 A.Mev with masses varying 

co'lliSions of ide~tical ~Uc1ei at 

from A = 20, to A =' 80, as shown 

in table 4.3.1 be1ow. For a system in th~ma1 and chemical 
~ 

equilibrium the se two estilJ\ates of the temperat:ure should be 

ide!1tica1. Their difference indicates the '. lack of chemical 

equil ibration. 

TABLE 4.3.1 The chemical eq~i1ibrium cohstant. 

, . 
Fireba11 temperatures from the chemlcal equilibrium constant 
and from au exponential fit to the tail of the distribution. 

Mass Number nNn~ '1QJtt TK 
20 0.84 ;1:0 .02 58.3 12.6 

40 1.()76*O .018 64.2 14.9 

60 1.169:tO .015 63.~ 15.9 

80 1·. 053t.O .011 66/.3 14.6 
1 

~ , 
The examination of the table above shows that: / 

1-., 

(1) the two temperatures calculated by methods (fi) and (b) are 

always surprisingly different from one another. The 

'temperature from the exponential fit to the tail of the 

momentum distribution i5 always higher than the, one , 

73 

1 

' 1 • 

•• 



obtained from the chemical equilibrium constant. This 

di fference seems to ind ica te a departure from chem ical 

equil ibra tion. The temperature of the system can be 

determined from a thermodynamic fi reball calculat i on, 

following the usual procedure includ ing only nucleons and 

"deI tas". For the coll ision of two ~ = 40 nuclei the 

--~ one- fi reball model-yreld-s-- a temperatuJe T = 99 Mev, and the 
, -: 

two-fireball model gives T = 92 Mev. Both' models predict a 
. .,/ 

, r' ratio of about 3.34 in sharp contrast to the value of 1.08 

" , 

~ , 
.' 

" 

Î'rom the intranuclear cascade (Table 4.3.1)'. The 

sensitivity of the tempera ture on changes in the 

equilibrium constant (ratio of "deltas" to n~cleons) can be 
'. 

evaluated fram equation 4.3.4. The differential of' 'P with 

respect to K leads to: 

then If:' K = 1.0, 

T = 80.AK. We see 

T = 10·ÂK, 
\ 

tha tif 

(4.3.5) 

and if K = 3.0, then 

the equilibrium constant 

determination varies by only one uni t the tempera~ure can 

va,r'y, between 10 Mev to 80 Mev. Thus" even if the number of 
'. .\ , 

"deI tas" is approx imately equal to, but lower than 
" 

the 

equilibrium value, the predicted temperature can be very 

different. 

(2) As the masses of the colliding nuclei increase the 

t~rnperatures from rnethods (a) and (b) seem to rnove towards 

. , 
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limiting values suggesting that the size of the system 

becomes - immaterial after a certaip val'ue and does not 

improve the conditions for ~he achievement of equilibrium • 

....... .,-"' .. 1 
)/ ... 

Could we have ever reached chem1cal equll ib~/,j in the 

intranuclear cascade calculations? ls the time sca;Xe Joo short? 
r~ )/ 

Is it possible that thr~eature which preventsjthe attainmènt 

of chemical equilibrium is the quick disas~embly of the 
;f 

reactants? We study these questions by artifi~ially confining 
ii Il 

the system (for A = 40 on A = 40) inside a sph~ical containèr 

wall. As the collision takes place and the two nuclei 

interpenetrate each other, the container has'its rad jus reduced· 

to the extent that the system allows during the compression 
-'" .. stage. When the ml.nlmUm radius is reached, it is the~eafter 

mé!-inta ined constant. The particnes confined . to this vol.ume are 

reflected whenever 

energy and mornentum 

'-
they reach~ walls, 

(~ppendix 7~3) , and are 

whi1e conserving 

then allowed to 

continue the i r in teractions over a long per iod of time. This 

wa'y a steady state condition is reached in which the numbers of 

nucleons and "deI tas" fluctu~ te 1 i ttJe around their average 

'Val ues. The equi 1 ibr i um constant (K = ntl/n~) is fol1owed. up to· 
r 

70 frn/c for one single rune At 30 fm/c its value is a1,ready 

'over 3.0, from there on it f1uctuates between 2.8 and 4.7. 

These val ues- are more comparable wi th the pred Ictions of t'he' 

one or two fireball 'models strongly suggesting, tha~ the 

conditions for chemical equilibration have been reached.here. 

J". J It,lS important ta note that small changes in the equilïbrium 
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constant K can lead to large changes in the estimated 

temperature. Therefore one could say now tha tif chemical 

equilibrium is not attained in the collision, at the stage of 

maximum compression the àeviation from equilibrium can be 

small. The assumption of ~rmal equilibration is / ·very good, 

but the assumption of chemical equilibrium is only 

approximatelx realized by the system. Our preliminary steps 

show that the system deviates from chemical equilibration and 

we can express ~he conditions for equilibrium in the cascade 

model by confining the participants to a fixed volume. 
'\\ 

4.3.2 Calcium on calcium. 

We now study the system calcium on calcium at 977 A.Mev and 

. \. 
b = 0 ~mpact parameter. The experlmental data (Sandoval-80) for 

, ' 
argon on potassiam chloride at 977 A.Mev shows 2.35~O.07 

negative pions, which we can.estimate. ta be equivalent to --
3 x 2.35 = 7.05 deltas. The two ~ireball model predicts for 

this case 15.5 d~ltas, roughly twice as many. 

The intranuc1ear cascade (Figure 9.7) shows that the number of 

deltas increases steadily during the col+ision up to the stage 

of.maximum compresion' of the system, whe,re it\reaches the value 

of 17.3, and after that it begins to fali slowly during the .,> 
u 

expansion phase, down to 14.5 deltas at 22 fm/co In a second 
. 

cascade calculation we constrain the reacting system to the 

smailest volume it attains during the compression stage and 

foilow its evotution up to 30 fm/co Here th,e number of deI tas 
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increases even more than in the prev ious case 'and fl uctuates 

between 20 and 22 after about 16 fm/co This is approximately 

the number of deltas that would have existed in equilibrium if 

the system had not started ta di'ssipate itself tOo' soon. 
t 

Another run of the cascade code shows that if the system is 

constrained as before and tben allowed to expa'nd freely after 

20 fmlc the number of deI tas beg ins to fall aga in after the 

attainment of equilibrium down tç> 17.5 at 40 fm/c. 

\ 
Wei can see that the number . of deI tas in this coll i sion reaches . , 

" ~ \ ,{ 

about 8"0% of the "egu il ibr i um value dur ing the stage o,f maximum 

compression. After tha t the number of deI tas falls off 
" r 

gradua1ly as a result of the aaiabatic expansio-n until it 
1 , 

reaches the point where there are no more interactions and the 
" 

,system dissolves' completely. This reduction of the number of 

, deI t~.s 

of thi 
\ 

is here seen clearly as 

fireball. 

the resu1t of adiabatic cooling 

\ 
We have.shown clearly above using the,intranuc1ear cascade code 

that the attainment of chemica1 egui! ibrium for the calcium on 
i , 

calcium system at ~77 A.Mev and zero impact parameter is only a 

fi'fst \orde'r al?pro'x imation dur ing "the ~tage .of .maximurit 

compre sion. Although thermal equilibriurn can be reali·zed very 

fast, 't séems that the attainment of cgemical equilib\"ation 

takes substantially longer and the fireball alreaÇly beg ns to 

decay b'efore that can' happen. 

1 

\ . 
t' 
î, 

r 
1 

, 

1 
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4.4 Pion cross-sections. 

In the case 0 f the central coll isions of nuc1e i of medi um 

masses the. cascade and the thermodynamic model s produc~ 

somewhat sim'Uar pred ict,ions. When the number of partie ipants 

is sma11,:' as for example in the cë;lse of 'col1isfons with 

non-zero impact p'arameters, chernica1 equilibration is doubtfu1. 

It is therefore very usefu1 to compute the inclusive pion 

production cross-sections, which invo1ves integrations over aIl 

impact parameters, using the éascade code. Here w~ use the 

extended version containing the i sospi n formal ism and 

completely revis-ed nucleon-nucleon cross-section data. We also, 

use a simpl i fied parametr i zation o"f nucleon-nucleon 

cross-sectiobs for the purpose of testi se~sitivity of 

cross-section input the calcula ~rd resul ts toc changes in 

data. 

• 1. " ... ~ ;-

Table 4.4.1 shows the pt.ed ictions of the in tranuclear cascade 

for the pion cross~èctions and' compares them wi th the 

experiÏnental data. In aIl' cases the incl us ive pion 

cross-sections are overestimated by approximately a hctor of 

two. The sensi ti vi ty 0 f the resul ts ,to th~ input cross-sections 

is tested with a simpler parametrlzed version o'f the N-N 

cross-sections. Table 4.4.2 shows the compar i son for central 
. 

coll isions only. The di screpancy reported for central 

coll i sions (Stock-82) !!emai ns al so in the impact par:ameter 

aVèraged~ialculations • 
~. -

\ 78 

, . 

----~------



( 

'. 

, ( 
l , 
l " 
) 

" 
i 

Id 14 

\ 
\ 

TABLE 4.4.1 Total inclusive pion,cro~s-sections. 

Comparisen of the predictions of the cascade code wi th 
the experimenta1 data "for the total inclusive pi,on 

cross- sectiops. The exper imenta1 data are from Naga~iya-8l. 

Nuc1ei Energy 

C+C 

C+Pb 

Ne+NaF 

A.Mev 

800 

800 

400 

~~( b~rn) 
experlment 

.16=.05 

o-,_(barn) 
theory 

.30:t:.06 

2. 70± .,41 

.117:1:.025 

~~(b~rn) 
exper Iment 

~ ... (barn) 
theory 

. NEHNaF 800 

1.17-*.35 

.086.:1:.026 

.4lt.12 .72±.11 

, . 
1 

Ne+Cu 

Ne+Cu 

Ne+Pb 

400 

800 

400 

Ne+Pb , 800 

Ar+KCl 800 

.89=.27 

-.3~.li 

2.10=.63 

1.4-t.4 

l.80~.23 

• 78~.19 

4.79;1;.53 

2.23;1;.16 

.21±.06 

1.37±..41 

.30±..09 

1. 78= .'24 

.59;1;.20 

'2.911,:.42 

TABLE 4.4.2 Sensitivity to the cross-section data. 

Mean multiplicities in central collisions of Ar + KCl $howing 
the sensitivity to the N-N cross-section parametrization 
(Figure 9.1). The experimenta1 data are from Sandoval-80. 

-
Energy (1\1\- > 
A.Mev empir ical 

<7'1\- > <l'tr> 
actual simp e 

data parametr. parametr. 

360 0.20±.01 0.50:1:.11 0.75:1:.08 

556 0.79 •• 03 2.00:l:~16 2.~6±.11 

772 1. 58:b 05 3.75;1:..23 3.88i.17 
• 

977 2.35t.07 4.63:i;.~27 5.07t..15 
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5' - AVERAGE MULTI-PLICI'l'IES AND GEOMETRY 

! 
S·Vlntroduction. 

~Multiplicity here is defined as the number of charged particles 
.' 

emerging from an event (collision). The primordial charge i5' 

defined ,as the numb~r of protons from both the proj ectile and 

the target that become parti~ipants during the collision .• The 

measured charges must be distinguished from the primordial 

charges. As a result of the collision a number of tracks become 

visible due to protons, deuterons, tritons, He-3, He-4, and 

heaviex fragments, as weIl as positive and negative pions. The 

theoretical multiplic~ty is not ~only a .function of the 

geometrical ,assumptions of the model (number of participants) 1 

but also of the dynamical 
,> 

assump(iruls _regatrding the production , ' 

of 'composites and the pions. 

The average charge multiplicity involves aIl impact parameters 

and is given by (Gosset-77): 

\ - 80 -
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<-M> = ------- ,(5.1.1) 

-" 
where ne (b) = nt~b) + n~Jb) + n~(b) + nJ~b) + 

, 
n...-(b) • Gutbrod et al int-roduced the confep~ of associated 

multiplicity (Gutbrod-78): aIl the charged- pa~tic~es ~ng 
, 

from an event are measured in coincidence with the detection of 

a cha~ged particle at 90 degrees to the beam direction in the 

laboratory frame. The trigger particle can be a proton or any 

other charged 1ight fragm~nt. In central collisions, that lS in 
,? 

those collisions with small impact paramèters, a larger number 

of charged particles are· produced _ thus increasing . the 

probability of having one of' them reaching the detectot at 90 

degrees. Therefore the assoc iated mul tipI icit:y has a strong 

b,ras in favor of the more central collisions, and is given by 

( Cec il-7 9 ) : 

(~o.) -= 
j ["t('b) -'1 ~ (!, \:,) 2" \,c1L," 

,S !~ (\, '0) ~'t,& 
1 t has. been found experimentally (Gutbrod-78) 

(5.1.2) 

that the 

associated multiplicity is ~ function of t~e beam energy for'a 

given projectile and target combination. This result has been 

advanced as a proof that the ~straight clean-cut 

participant-s~~ctator geometry fai~s for 'the more central 

collisions (Gutbrod-79, Sandoval-80) • The assoc i a ted 

multiplicity, however, tests a combination of geometrical and 
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dynamical assumptions, since the number of charged particles , 

depends not only upon the primordia~ charges but also upon the 
\ 

, model 'employed for composite and for pion pro~uctions. If the 

geometrical properties alone 'ar.e to be tested, we have to 

compare primordial charge cross-sections, which are given by: 

/ 

(5.1.3) 

--
where n~(b) = n~(b) + na.(b) + n-b(b) + 2 (n'3keb) + n+Nlb» + ••• + 

nqt(b) - n,e (b). .The participant-spectator picture may still be 

yalid, but the independence of the number of participants on 

the collision energy assumed previously may have to be given 

up. 

/ 
1 

/ 
1 

5.2 F~reball type models.\ 

r 
Both the one-fireball and the two-fireball n'Îodels overest,imate 

the pion cross-sections by a factor of two or more. The 

two-fireball/blast-wave mOdel, however, is constrained from the 

beginning to produce the correct pjon cross-sections. This 

model is also consistent with the results of the Cùgnon 

cascade, as we have seen in, chapter 3. Therefore it is an 

interesting model to use in the investigation of the 

multiplicities. 

j~ 
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In the two-fireball/blast-wave model the critical densityand 

the .temperature aré adjustable pararneters.' These paramete'rs are 

varied so that the ratios of the cros~-sections of protons to 

deuterons, and of protons to pions ~an be constra i ned to thei-r-

experimental values. The translational collective flows 

account ;Qr the anisotropy of the spec~a in the center of rnass 

frame of the participants and at the same time reduces thé 
Il 

amount of ,energy that is available for thermalization. As it 

turns out, the arnount of energy in translatioq,al motion does 

not reduce sufficiently the temperature of the fi reballs so 

that the ratios of the cross-sections can coincide w'ith their 

experimental values. Therefore it is also necessa ry to 

introduce radial collective flows of the type considered in the 

implosion-explosion model. It is argued that the particles near 

the sU1;face of a dense and hot fireball face an anisotropie 

env~ronment which induces a reduction in the randomness of 

th~r kinetic energies 50 that th~y acquire an average outward' 

radial v-elocity Vro , 

One of the basic assumptions of the two-fireball/blast-wave 

model is that each hadronîc species follows a Maxwell-Bol tzmann 

d istr ibution in each one 0 f the inf i ni te number of radial 

frames moving with the velocity Vr. One can show using the 

Lorentz invariance of the product Ed~ nl/dp' that in the rest 

frame _,of each fireball i t l eads to the following d istr ibution 

(Append ix 7.1): 
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with The 

therroodynam ic' calcu1at ion in 

equations 2.1.5 to 2.1.8 for 

thi~ model consi~ts in ,SOlVi7 

th'e conserved quanti ties (the 

baryon number B, the charge Q, Jhe energy E), and the cri t ica~ 
1 

densi ty pc of the fireballs to determine the parameters of ttre 
, 

model (the chemical potential s, the temperature, and the vol ume 
-, 

of the 1ireb~lls) • The calcuLations take their simplest form 

in the radial frames of the fireballs~ where the 
1 

,Maxwell-Bol tzmann distribution can be used' directly. The 
o 

parameters of the model are then defined in the-se frames. The 

energy of the collision" in the center of mass system ls 

connected to the energy ava i lab1e for' thermal i zati on in the 

radiallYI expand ing frames. by two successsive Lorentz 

transforbat ions: 

, \ 
E.. ~_.- f" 

T" Y... r .(5.2.2) 

where 'Y connects the center of mass and the fireball frames" 
. 

and r;. connects the fireball and the radial frames. 

Nearly 40% of the energy of the collision 9ges into t,he radial: 
v 

e'Xpans ion making thi s effect far more important than the 

tr.n~latiOnal' collecti ve flows. The 

(1 ' 
la ter become even less 
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import~nt as the masses of the cOlliding ions increàse and the 

transparency factor approache$ zeto. This means that in 

practice we are essentially working with the 1 

implosion/explosion modèl in the cases where at least one of 

colliding ions is a medium size nucleus or heavier. 

We produce several calculations with th~s model for difrerent 

val ues of the cri tical densi ty and the' fraction f of the energy . " 

available for thermaliza tion ln the radial frames. This , , 

fractiol:) fis . iden tical wi th the rad ial gamma factor in 

equation 5.2.2. We use the data of Nagamiya et al (Nagamiye-81) 

for the collisions of neon on lead at 400, 800, and 2100 A.Mev. 

The best fitting values of the energy fraction f and the 

freeze-out,density,po are shown in the Table 5.2.1 below: 

TABLE 5.2.1 Energy fraction and critical density. 

Radiàl energy fracÙon and freeze-out densi ty 
determined in the two-fireball/blast-wave model. 

E (A.Mev) 

2100 

800 

400 

f(%) 

52.5 

50.0 

33.0 

0.05 

0.03 

The value of the freeze-out' density for the collis,ion at 
• 

2100 A.Mev is found to be only slightly lower than the normal 

nuclear density. This i5 the number that best fits the data and 

i t may be an ind ica t ion of the breakdown of the valid i ty of 

this model at these energies. An examination of the table shows 

la clear correlation between the collision energy 

~ 'e; "" J 44,,44. ii.!'!.., g 

, ,­
\ 

and both the 
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( .. radial ~nergy fraction 

'1 
,J 

f and the- freeze-out 

Qualitatively one, could say that . as the collisiorl energy 
1 

Il 
increases so does the violence of the explosion with a1possible 

1 
consequence tha t the chemical equi,librium is frozen ft h'igheJ:" 

1 
1 

1 

de~sitie$ as the expansion times are reduced. 

These resul ts can nolil be 

multiplicities and compare 
) 

, 
• 

used 

" with 

to .calculate. the!1 average 

the da ta of Gutbr d et al 

(Gutbrod;;:'78); the resul ts are shown in Table 5.2.2 bel, w: 

-. \ 

multiP{i~itiesl TABLE 5.2.2 Average associated 

'Il the lower energies, but grossly underestimates the fig'ures at .J: , 

t'he h~9.her energies. ls is obvious that ,the model fail~ here~ 

It is also interesting to know the pred lctions of the simple 

'one-fi reball model. In this model the Maxwell-Boltzmann 
, 

distr ibution holds in the rest' frame of the fireball. The 

calculations are iden'tical but simpler than in the previous 

• -' 86 -
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case~'. H'ere aU the ):ne.r-gy of th~-,.~Ol1iSiOn i5 ava ilable ·for 

tne~malization. purprisin.g}~ this ~el can repr od uce the 

.experimental aàta,t quite w;il (Cecil-79) when the free'ze out. 
'1;, Il''' 

aensi ty is chosen equal to. 0.12 nUClrn/fm': The tesul ts of 

·Qur calculations are .shown 1-n Tab,le 5.2.3: 

, , 

" 

We are 

TABLE 5.2j3 Average associated multiplicities. 

, Average associated mul tipI ici t ies in' the 
one-fireball model (.fc.= 0 .12 nucleon/-f~J). 
The experimental data are from Gutbrod-78. 

Theory Data 

Ar + U 0.40 A.Gev 39' 25 
LOS' A.Gev 60 55 

'He + U 0.40 A .• Gev 7 5 
1.05 A.Gev 10 10 

, 
Ne. + U 0.25 A.Gev 22 12 

0.40 A.Gev 24 19 
1.05 A.Gev 36 34 
2.10 A.Gev 53 ,~9 

Ne + Au 0.40 A.Ge'+1- 23 20 
2.10 A.Gev 51 59 

Ne + Ag 2.10 A.Gev 43 ' 42 

Ne + Al . 0.40 A.Gev Il ' Il 
2'.10 A.Gev 23 20 

Ar + Ca 1.05 A.Gev 27 24 

He +" Al 0.40 A'.Gev 4 4 
J 

left with the task of explaining this success 

. ' ,~ 

of the 

one-firebal1 model part icular ly above the 1.0 
) 

A.Gev collision 
J 

energ ies. Tt is possible that for coll ision energ ies above 

l.0 A.Gev compress ion and expansion ,may not take place at aIl, 

as suggested by Sobel et al (Sobel-75). The valid i ty of the 

st'raight cut g~omet~ ical assumption at the lower energ ies has 
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been questioned by Nagamiya and Gyulassy (Nagamiya-82). We see 

that the one-ftreball madel- can explain-<·the energy dependence ' 
,r.-~ 

'f- ,Ji 
of the associa ted mul ti pl ic Hies mucl4~:·t)'et ter ~ than i ts more 

... 
elaporate version~ th~ two-fireball/blast-wave mod~l. The 

former overestimates the ,number of pions by at least a factor 
Q 

, 
D 'of two, w,hile the latter is constrained from the beginning ,ta' 

• > .u 

the ..correct pion cross-sections. Also the total amount of 
. 

energy available for thermalization in the one-fireball model 

. is definitely la~ger than in the two-fireball/blast-wave ciodel 

where Sorne 40% of the cOl,1 i sion energy i s t ied up in" the 

collective radial expansion; this irnplies much'higher fireball 

ternperatures in the sirnple:r:: model. And th.is combination of 

h~gher~ fireball temperatures and the overesyimation of the 

nurnber of pions both . contr ibute to produce a much higher 
.""-

pred~ction of the associated multiplicities in the one-fireball 

model. This is.the most' likely explanation of its appa~ent 

success. 1 • 

The nurnber of ~articipants i5 calculated here using the 

assumption of a clean-cut straight geometrYi but as we 
, 

men tioned befor'è, the val id i ty 0 f thi s assumpt ion cannot be 

rej ected or accepted on the bas i 5 0 f these resul ts. The 

calculations above for botb models test a combination of 

geometrical and dynamical assumptions, and we cannat separate 

their contributions from one another. That requires the 

measurement of the primordial charge cross-sections, that 

depend solely on the geometry of the coll Ïsion. We could say 

that it is unfortunate that the numbers of pions (positlve and 

... 88 -
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negative) are not r~ported separeqe1y from the other particles 

in Gutbrod-78. 

5.3 primordial charge cross-sections. 

f-.., ... 

We leave temporarily the topic of associate~ mu+tipli?ities and 

look 'at the data pertaini~ng to primordial 'chatge 

" cross-sections. -This cross-section iS Q 'defined in equation 

5.1.3' and can be obtained from the data of Nagamiya et al 

(Na~amiya-81). The data are shown in Tab1-e 5.3-.3. ,As we 

'ment i oned before, in a str ict ge~r ica1. model the pr imo.r<~ ial 

cha~,ge cross-section is i1;depend~nt of the beam e.Ii.ergy. The 
, -. 

experimental data clearly indic~te sorne energy dependence. We 

therefore look for an improvement to the geometrical overlap 

mode1. \ 

A Glauber type model 'seems worth pursuing here.,This mode1 aiso 

assumes straight 1ine trajectories, but the number of nuc1eons 
1 

participating now· upon the nucfeon-nucleon 

cross- sect i on. 1 n the 1 relevant energy r ange cons idered here" 

the nucleon-nucleon cross-section increases 'w~th energy (Table 

5.3.1) so that one has sorne ~ope' of getting the energy 

dependence seen in Table s.3.i. 
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TÀBLE 5.3.1 Average total 'N-N cross-sections. 

Average total nucleon-nucleon cross-st:!ctions 
calculated from parametr i zed exper imental data. 

'The incident kinetic energy per nucleon El(. corres'ponds 
to the nucleon-nucleon center of mass energy E 

E\C,.(Mev) Eq",(G~V) CJt-1N (barn} 
r-

250 1.997 33.37 

400 2.066 29.93 

800 2.241 42.59 

, 1050 2.343 43.67 

2100 2.731 42.75 

t 

" 

We derive the formula used for this ca1culatioQ now. Let 
" 

nucleon be iQdident on a targe't. at an impact parameter -b. 

a 

At; 

this impact parametei the nucleon has to go o 

1 
through an amount 

" J of mat~~r given by 

(5.3.1) 

. ' 
i5, the nuclear density function, and z 'f5 the 

direction of motion of the incident proton. 

tha~1a i twill emerge on the other 5ide i5 

D , 

-:- O"'NN ~i; (b) 
/ '. ~/I E2., , 

The probabi li ty 

"(5.3.2) 

"The~e~ probab il Lt y th~t Jt becomes a participant is then 

,~ . 
. --

" ' 

'. 
/ 

'r 

~, 

• < 
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(5.3.3) 

Now'suppose that the proton in questiop belongS' to a projectile 
< 

nucleus. The protons, in the projectile are not localized, but 

cari' be descr ibed in terms ·of their projecteq,J densi ty ~p(S) in 

the perpendicular plane to the direction of the collision, and 
, - . S lS 

plane: 

the distance from the center . ' 

, 
of the proj ec tile in thi s 

t! 

(5.3.4) 

, 
Each, proton in the projectile nucleus can be approximated by an 

average dens i ty as ",,~(i) /Ap' We""";must have 

, (5.3.5) 
'\-

T,tfe probability of having Z participant protons from the 

projectile i5 

(5.3.6) 

with Pb given by: .'\ , -. 
- 91 -.. 

11\ ( 

\ 
, 1 

J', 

, 
.' , 

ï 
1 
f 
1 
i~ 
'1 

~ 
- j 

,> 

1 , 
, , 

-----_.-_._-., . -------- ___ ''l''III):j; -.I;1't''''''\Ji. __ ~"'''""T"-~'''--- __ ------~-.-



, 
r 

, ( 

(~ 

, . 
l ' 

, , 

(5.3.7)' 

'P-!-(b) is normalized as can ea~ily be verified by summipg over Z 

and using Newton's binomial theorent-. NOw the aveAge number of [l, ' 'f CI 

~articipani protons from the ~~ojectile is 

" - ' 

1 " 

"which is easily summed by noting 'that 

or .. 

where we le,t x = 1 P", y = Pb' and n = Zt. 
t? 

l-l~~lh) - ~~ l' -?~) 
è 

(5'.3.,8 ) 

(5.3.9) 

'. 

J 

(5.3.10) 

Then 

(5.3.11) 

Therefore tpe average pr imord ia 1 charge cross-sect ion for the" 

proj ect ~ le is 

" 

1 .. 
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~_ 0: (G')'= ~ \ cl~_ (l.~'~" ') , ' ) lt - . 
l, 

.Similarly, we \obtain the average primordial 
\ 

the trarget: 

.. 
where 

(5.3.12) 

cros,-section for 

(5.3.13) 

(5.3.14) 

'. The total average pr imord ial cha'rge cross-section i5 the 

sum 

(5.3.15) 

" The aver age number "a! part icipants f,~bm the proj.ect ile should 
----......~---

not show much change as a' fUl1~tion of 'the coll isioo enet~y. but 
o , 

those from the target are expected to be much more sens i ti ve. 

This follows from equation 5.3.2, if the target is much ~arger 

t.l'ian the projectile. 

Much work has been done in the past on the parametrization of 

the projected nuclear density functioo ~(s) = JP(.S,Z)dZ, where 
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a realistic nuc1ear density distribution. A very 
, 

accu~ate parametrization is given -below (Ceci~-80): 

where 

) :l P (~- .2)Y" ) 

l c.. P i" e~ ( ,. - a ) (5.3.16) 

(5 .. 3.17) 

and the val ues 0 f the parameters are presented in Table 5.3.2,. 

.' 

,(, 

~ 

TABLE 5.3.2 Projected nuclear densities.· 

Paramete~s for the projected nuc1ear densities 
(from G. Cecil, M.Sc. Thesis, McGill University 1980) 

,.. p (fm- 3 ) 
, 

Nuc1e'us Ro (fm) R (frn) 

He-4 1.3823 1.1415 0.22456, 

Ne-20 2.7417 2.3976 0.17335 
\ 

Ar-40 3.4147 2.9923 0.18102 \ 
'=~ 
.' Cu-~~' 4.1704 3.7749 0.17217 

'" Pb-20B \ 6.5918 6 .. 2B07 0.15900 

U-238 ]6.7282 6.3108 0.16951 

T.hé primordial charge cross-sections for the collisions of neon 

on 1ead are ca1cu1ated using the Glauber type theory described If 

abov.e. The results are presented in Table 5.3.3. The 
. . 

pred ictions of the {1.i reball models wi th straight clean-cut 

geometry are shown at the,same tirne for comparison • . ' . 

-- . ---~---_._~--~-~--_. -.!--;-------------_._..:._-~- -
~/ 
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TABLE'5.3.3 primordial charge cross-sections. 

Primodial charge cross-sections (barns) for neon on lead. 
The experimental data are from Nagamiya-81. The experimental 

value at 2.1 .A.Gev was estimated fram the dal:a. 

Energy Fireball Glauber Exp. 
(A.Mev) modeis . type data 

'400 43.3 42.7 31.1 

·0 800 43.3 46.3 48.6 

2100 43.3 49.0 56.1 

Compar i ng wi th the da ta we reach the conel usion tha t wh il e the 
" 

Glauber typ~ theo ry d oes show tha t the pr imord i al charge 

cross-secti ons increases with the collision energy 1 the 

predictions are still too fIat. 

Now we turn attention again to the associated multiplicities. 
~ ~ 

The Glauber type theory ca·n also be used to calculate only the 

number s 0 f par ~ic ipah t sand specta tors (Nag amiya-B2) thus 

replac i ng the stra ight cut geometry in the fi reball mode!. 

Although the Glauber type theory is based on straight line 

geametry 1 the changes in the nucleon-nucleon total 

cross- secti ons wi th the coll i sion eherg ies lead ta changes in 

the numbers of participants and spectatars as a function of the 

energy. Table 5.3.4 shows the resul ts for the system neon on . 

uranium at an impact parameter b = 0.36 fm. 
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TABLE 5.3.4 Numbers of participants. 
. 

Number of participants from the Glauber type ,theory' 
for the coll ision of neon on uranium at b = 0.36 frn. 

t 

Energy Glauber Straight 
(A .Mev) type ~eometry 

250 86".7 85.2 

400 84.6 85.2 
, 

1050 94.6 85.2 

Z100 94.8 85.2 

We note that the number of participa9ts is 
\ . 

approxlmate1y the 

same below 1.0 A.Gev' and ,increases by about 10% at higher 

energ ies. 50 we can expect sorne increase in the'multiplicities 
• f 

at the higher energies and practically tIO change at th~ lower 

ones. These changes, however, are not enough ta exp,lain the 

data. Table 5.3.5 shows the one- fi reball model resul ts when the 

caiculationf"af the numbers of participants is based on the 

Glauber type theory. A compar i soh wi th Table 5.2.3 shows very 

1ittle change • 

. TABLE 5.3.5 Av,erage associated multiplicitie,. 

Average associated multiplicities in the one-firebalt 
model (~= 0.12 nucleons/fm" ) wi th the number of 

par,tIc ipants from the GIa uber type theory. 
The experimental data are from Gutbrod-78. 

Theory Data 

Ar + U 0.40 A.Gev 38 25 
1.05 A.Gev 63 55 

He + U 0.40 A.Gev ~I 5 5 
1.05 A.Gev 9 10 

Ne + U 0.25 A.Gev 21 12 
0.40 A.Gev 23 19 
1.05 A.Gev 38 34 -
2.10 A.Gev 56 59 
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The associated multl:pl id t i~s calculated in the 

two-fireb~lll/blast-wave model is too flat compared wi th the 

ex pe r iman ta Ida ta. The one-fireball model prea4.cti'on of the 

'associated multiplicities is good, but this model ovèrestimat~s 

the number of pions by a factor of two. For the primordial 

charge cross- sections the fireball type model s pred ict a 

constant value independent of the collision energYi this is a 

consequence of the straight clean-cut geometry. The Glauber 

type theQry produces a much Cbetter energy dependence, but _ i t i s 

still too"flat comp~red with the experimental data. 

5.4 The. cascade model and geometry. 

The numbers of the participants ~nd the spectatofs are perhaps 

best determined in the cascade model. We use here the same 

code already descr ibed in sect i on 4.2 of Chapter 4. The code 

follows the collis ion of two nucl"ei in the nucleon-nucleon 

center of mass system. Relativistic mE[!chanics is used 

throughout. We extended the ,original . ' version of the code by 

introducing the isospin formalism ta allow for ,the' coll isions 

of charge asymmetric systems, and al so, used cornpletély rev ised ~ 

average total nucleon-nucleon cross-section pa~ametrizations. 

point-llke nucleons 

spheres of rad ii 

are assigned random posi tians inside the 
\ 

'!) 
1.12 A , where A is the Imass number, 

\ ' 
\ 

represent i ng the coll id ing nucle i ln their re'st fr ames. This 

.. 

, . 

" 

\ 

---------~---- -
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yersion does not incl~de the initial Fermi motion nor an~ field 

e~fects. These important ~hysical characteristics of nuclei do 

qot affect significantly the results we are interested in this 
l 

Thesis. Pauli principle effècts are mocked approximately by 

forbidding soft collisions when fthe total center of mass energy 

of two qolliding nucleons is below 1895 Mev (Cugnon-Sl). 

Single pion prodüction in nucleon-nucleon collis-ions is 

introduced via the formation and ~ecay of the deI ta resonances, 

that are assumed to have a mass· distribution. The elastic 

A-+ A ...... t:> + ~ and N + b. -'Jo N + A cross-sections are assumed 

to be the same as for the nucleons in free space. The inelastic 

N + A ~ N + N cross-sections are obtained by detailed balance 

from the ~orresponding 
... 

N+N .. N+Â. cross-sections. The 

delta lifetime is assumed to be much larger than the collision 
, 

time,: 'the surviving deltas at the end of the collision 

determine the number of pions. 

... 
~t 

-
.. The nucleons in each" nucleus are assigned initial equal and 

! 

bpposite" ~omenta to L~rentz boost them to the desired collision 

energy. As the cascade begins their positions, and momenta are 

updated at regular time intervals. When two nucleons pass each 
. 

other at t~eir closest dist~nce of approach, and this distance 

is below a ~ min imum value, the ,pa ir is allowed to scat ter • The 

different channels ayailable are chosen by Monte G~rlo sampling 

'of the $tios of the correspond ing cross-sections. We use the 
/' 

.fsospin formalism to \ calculate the branching ratios and their , 
côr respond ing cross- sections. The nucleon has spin J, = 1/2 and 
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isospin l = 1/2; the de! ta resonance has J = 3/2 and" l = 3/2. A' 

pair of nucleons can be in the' state l = 1 or l = 0, while the 

pair de1ta-nuc1eon can have 1=2 or l = 1. Isospin 

conservation then, a110ws only the coupling of the l = 1 

states. The ca1culations are finished by the time that the ~ 

number of collisions fal1s practically to zero. Each cascade 

run is repeated with different random num~e~s from thirty to 

fort y times in order to ~btain suffici~nt statistics to 

~alculate the average values of the quantities of intere.t and 
"1' 

their standard deviations. 

At the end of the collision" those nucleons that did not suffer 

any interaction at aIl have a final momentum equal to its 

initial value. At first it would seem that this fact co~ld 

provide a suitab1e criterion to decide if a nucleon was a 

participant or a spectator. A preliminary ca1culation, shows 

that this criterion grossly ov~restimates the number of 
't 

participants and 1eads to erroneous resu1~s. A. less stringent 

criterion is necessary here. The nucleons can suffer soft or 

hard collisions and that c?uld provi~e another criter~on to 

ca1cu1ate the number of participants. It remains to define 

what we mean by soft and hard coli isions, and we can do this by J l' 

comparing the initial and the final momenta. But since the 
" 

nucleons loose their identities in the interactions this:9annot 

be a one to one comparison, and therefore we-look only at the 

nucleons at the end of the cascade calculation. 

A nucleon is ~ounted as a spectator if i~s final momentum does 
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not differ either from the initial momenta of the projectile 

nucleons or from the initial momenta of the targét nucleons by 

more than a prescribed amount; otherwise it is a participant. 

The surviving delta resonances at the end of the casc~de are . 

always participants. The decay of' ,,\the surviving ~el tas res~l t 

in the final pion multiplicities and it is recognized that 

these ~an only come from the p~rticipants. 

We ~hoose the momentum change cut off as the Fermi momentum in 

an und isturbed nuclèUs. This choice is qui te reson'able in view 

of the'fact that the nucleons in undisturbed nuclei suffer 

interactions with a mome~tum transfer of the order of the Fermi 

momentum or less. However, the usé of the Fermi mornemtum as a 

cut off value may seem a little artificial in view of the 

absence of Fermi motion in the cascade code ,used. 

Nevertheless, it may be the only available choice which will 

not be ~ntirely arbitrary. 

""---. 
This criterion for defining the participants in the cascade 

code affects directly th~ calculated multiplicities because it 

eliminates from counti~g 
ok 

aIL the ---specta,tor charges. The 
\ • t 

absence of field effects implies that the model is incapable of 

predictlng the production of composites. At the end of the 

simulation runs.the only species p~esent are the protons, the 

neutrons and the deltas th~t decay into pions. The primordial 

charge cross-section is thett calculated as 

" 
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\j~ -= ~ -t- ()\l T - CS'-,r­ (5.4.1) 

The four-momentum change between the finJ .fou~-momentum· p and 
,{" 

the initial four-momentum Po is 

The eut. off value to is calculated assuming a three-momentum 

change of qo = 270 Mev/~, which is the ,Fermi momentum in an' 

undisturbed nucleus: 

~' 

- - f. \ S )( l() Ge. \S" 20. 
('5.4.2) 

\. 
A three-momentum cha~ge larger than qo corresponds to a 

four-momentum change smaller than to. Therefore if i > to th~ 

partic1e is . assumed to have been a speètator. .The particles 

rose-t"'heir identities duiing ,an jnteraction and that makes it 

impossible to tell if originally it came from the projectile or 

the target. Therefore it is necessary to test for changes in 

théir momenta with resp,eçt to the initial momenta of the target 

and the ~rojectile. In the ~as~ of 

parl:ic1es are automatically defined 
• 

ine~astic iQteraFtions the 

to·be participants. ~hé . -

nutger of participa'nts for the reaction of· neon on le'ad are 

shown in Table 5.4.1 below. 
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TABLE 5.4.1 Numbers of participants. ' 

Number of participants for the collision of ryeon on"lead 
6alculated in the cascade model~ The straight clean-cut 

geometrical calculation is shown for comparison. 

b(fm) 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

l 

400 A.Mev 

65.3*-1.1 

63 .3;f:l.l 

61.8:1:1.0 

54.8:1:0.9 

45.7*1.2 

34.7:1:1.0 

24.0:l:1~1 

13.9*-0.8' 

4.1;1;0.6 

~!; 

" 
80'0 "A.Mev 

Q 

92 ~ 0*-1. 4 

88.6~1.4 

82.8*-1.4 

76.2*-1.3 

48.2±1.2 

36 .1:H. 6 

17.3;1:.1.4 

8.4±0.8 

Geometry . 
---- ~~-

Si.2 

78.9 

74.8 

67.9 

55.3 

40.6 

26.2 

13.9 

4.9 

,;-----

Examination of these results show that the numbers of 

, participants depend quite clearly on the oollision energies. 

For the collision, at 800 A.'Mev the numbers of participants in 

the cascade model are only slight1y higher th~n the 

corresponding geometrical resu1ts and ,follow them closely. At 

400 A.Mev however, the number of participants is much. smaller. 

This is a rather p1easing result •. The primordial charge 

cross-sect1ons are presented in Table 5.4.2. Another cascade 
'. 

, calculation using a cut off momentum, of 300 Mev/c is preeented 

at the sarne time to illustrate the sensitivity of ,the 

primordial charge cross-sections to change~ in the value of the 

cut off momentum. 
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TABLE 5.4.2 Primordial charge cross-sections. 

Primordial charg~ cross-sections (barns) in ~he 
cascade model for the system neon on leafr •.. 
The experimental data are from Nagamiya-8~.· 

E (A.Mev) Cascade Cascade Ex.periment 
1 

(q =.27G~v/c) (q~ =. 30Gev/c) ... i~'i 

• 
400 

(, 
36.7±1.8 29.lt.l.6 3l.l't20% 

800 SO.l;t2.2 41.St2.1 48.6t20% . 
~ 

These re'sul ts. are in close agre~mënt with the experimental data 

within their margins of errors, and show the correct dependence 

on the collision energy. The primordial charge cross-sections b 

depend only on the geometry.of the collision in the sense· ehat 
, , 

they~reflect exactly the numbers of participants. If the number 

of participants were independent of the collision energy then 

the primordial charge cross-sections would be a constant 

function. Both the firetlall type models with.their. straight 

clean-cut geometry, and the Glauber type theory do not produce. 

the correct collision energy dependence. 

The sU'Ccess of the cascade code in thïs regàrd still leaves 

sorne questions unanswered. What would be the effect of the 

initial Fermi motion and the field effects? The total 

inclusive pion cross-sections are overestimated in the cascade 

model by about a factor of 2 as in the simple one-fireball 

model. This is another· point of weaknéss of these results. 
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6 - SUMMARY AND CONCLUSIONS 

. 
We ~egan the presentation of this work with a general overview 

of the f i,eld of hea"vy- ion physi cs •• There we saw tha t i t is a 

new~~ianch of nuclear science that evolved in the past ten 

years into a major field of research. Dèspite its recent 

origins one ca~ distinguish different areas. characterized.by a 

range of collisio~ energies where different physical phenomena 

---become predominant. 

1 
" 

Thè so-called participant-spectator region, als9 known as the 

Bevalac physics region, extends roughly from 200 A.Mev to 

4.0 A.Gevi this Thesis i'8 solely concerned with this region. 

It is characterized by two stages: a fast energy deposition 

stage associated with the participants, and a slow stage 

associated with the spectators. In a somewhat simplistic way 
, 

one could say that the participants are formed by the 

overlapping portions of the projectile and 'the target nucleons 

that are mutually swept during the collision. 

> 

A great amount of data and theoretical models are available in 
1 

the participant-spectator region. There are thermal models, 

intranuclear cascades, hydrodynamic mode1s and man y others. 

o 1 
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" This proliferation of different models is obviously due to the 

great difficulty in / approaching the problem in- fundamental 

terms and the limitations of each model. Most models have been 

formulated within a semi-classical framework around which one 

can àttempt to introduce quantum ":~s. The support for a ' 

. .:;emi-classical descriptio,n cornes mal'nl'y ")rom the relative high 

momenta of the colliding ions and small w~velengths compared 

wi th' ·the characteristic distances of the system. The 

thermodynamic model and the intranuclear cascades are among the 

most ~uccessful approaches in expla~ning 'the data c'ollected so 

far in this region. 

Thermodynamics was first applied to sub-atomic phenomena by 

Enr ico Fermi in the early fi ft ies, and mo're' c' recently wi th the, 

add i tion of geometr.ical concepts i \" forms the basis of the 

thermodynamic fireball model of heavy-ion collisions. Geometry 
,1 ," 

leads to the participant-spectator pictu;e; these'are evaluated 

numericallY assuming straight geometrical clean cuts or using 
, . 

Glauber theory, which gives almost identical results. The 

-participants are assumed to fusé completely to form a fireball 

where ooth thermal and chemical equilibrium are achieved, thus 

allowing the 'calculation of cross-sections or multiplicities 

that can be compared with the experimental data. The firebaLI 
'\ 

"\ ~xpands and when aIl interactions freeze , the ideal gas 
'--

thermodynamic·s is applied. Extentions and elaborat·ions of this 

model have been introduced. One can çonsider two fireballs' tro 

represent the residual collective motions in the longitudinal 

direction. One can also introduce collective outward radial 

- 105 -
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/ 
flows to repres,ent the fireball :Xplosions resul~ing ,from the 

anisotropie environment faced by' hot and dense fireballs. 

of 

The 
.-' 

intranuclear casc~de m~be neither 

1 a ' simulation •. 'I~ a microscopie ~model" with6ut any 

a ~odel nor a theory 

but 

~djustable . parameters using only the total ~last ic ~nd J 

inelastic nucleon-nucleon cross-sections as inputs, and has ~ 
\ 

been used in the range from 200 A.Mev to 2.0 A.Gev! The main 

advant~ges of ~tiis "model~ are the possibility of calculati~g 

non-observable quantities ~uch as the maximum densities reached 

d uring the col,l ision, pff-equi 1 ibri um si tua tions, 

and finite partiele number effe~ts. 

The first '~t of this Thesis is concerned with the question of 
"-

thermal equilib~ation in heavy-ion collisions. This prob1em is 

addressed by eocip~ring ~he results of two model s: the 

thermodynamic fireba~l model including longitudin~l and radial ~ 
/, 

/r' 
,/ 

collective flows, and the intranuclear cascade of Cugnon et al. 

Cugnon et al calculated the final rapidity and perpendicular 

momentum distributions for the collisions of two calcium-like 

nuclei at zero impact parameter. These distrlbutions 
c, 

were fit 

with appropriate Maxwell-Boltzmann curves leading to different 

transverse and longitudinal temperaturei, thus conflicting with 

the results of the one-fireball model. We show in this Thesis 

that the two-fireball model reproduces the basic features of 

their dllculations, and the agreement is greatly improved when 

collective radial flows are added to the fireball model. There 

is however, a discrepancy in the asymmetry ratios. This we 
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believe is probably due to theaeviatiops of ,the resu1ts of the 

intranuc1ear cascade from a . perfec~ Maxwell-Boltzmann 
> 

di~tribution. We may say in conclusion that the results of ~he 

cascade'calcu1ation of Cugn9n et" al are in good agreement with , 
. 

the predictions of the the~m~dynarnic 
/' 

two-fireba~l/blast{wave 

model. ·The.lat~er contain~ the implicit as~umption of thermal 

equilibration. Therefore we.can say that thermal equilibriurn 

is reached during the collision of the two calciurn-like nuclei 

. in the Cugnon .câscade. 

The related question of chernical equilibration has been 

investigated before by other authors under varying assurnptions • 

The thermodynarnic fireball models assume thj~t' 'chernic,al 

equilibrium along with thermal equilib~ium is achieved by the 

participants during th~ collision. In the cascade model the 

final number of deltas (and therefore also of pions) depends on 

its rates of production and absorption. There is chemical 
, 

equilibrium if the two rates are equal. There has been rnuch 

debate on the question of chemical equilibration in heavy-ion 

collisions and sorne disagreement stil1 exists on this matter. 
1 !A -.J 

We study thi S problern us i ng the in trariuclear ca'scade. The basic 

code is extended by the introduction of the isospin formalisrn. 

This is necessary because rnuch of the experirnental data 
-

available is for non-syrnmetric systems N ~ z. At th~ sarne tirne 

the total elastic and inelastic nucleon-nucleon experimental 
, , 

cross:",SElC tion data i s rev ie\\1ed to prad uce a new parametr i za ti'bn 

for the cascade code. The sensitivity of the end tesults in 
1 ~ ., 

(> • 
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l 
the cascade, calculat·ions to ~haJ;lges in 

il r .. 
the cross-section 

'parametrizations is evaluated by comparing calculattons using 
o 

<fi' • 
th~o ~ctual ~ross~s~ction parametrization 

~ , with ,calcul~tions 

" ~~tng a simplified parametrization. 
'(') 

" . 
We do a prelim~~ary calculation of central collisions of equal 

nuclei uaing th~ cascade code. In a further investigation we . ' 

" 

arti f ictially co'nf i ne the pa rtic ipants into a, uspher ical cav i ty 

~ at the stage of maximum compression. That situation defines a 
.( 

.. 

condition of chemical equilibrium. It shows-that during the 

stage of maximum compression in the normal cascade calculation 
... 

the system closely approaches chemical equi l_ibr'ium .-I~t could 

~ttaln the condition of chemica~ 

dissipat~'~uch too soon. 

; 

equilibration if it did not 
J' 

Iil view of the positive results from this preliminary . 
simplified calculation, we can study an actual collision. We 

, 

define the situation of c~emical equilibration for the' case of 
'" 

v 

~n' actual . system by placing it inside a container wall that 

al!ows i t to"'evol ve con t i nuously in a corfstant vol ume.. At la ter 

times, beyond the point' where chemical equilibration is 
<> 

atta~ned, the container wcifl is removed to allow the system to 

expand freefy. The 'comparison with the normal cascade 

1 cal'culation::o ShO~~" clearly that t,he system . appr~aches chemical 

equilib1:iu'm within"20% at the stage of maximum compression. 
~. 

( 

The cascade modei thermodynamic ' fireball modèl are 

consistent with one from the point of view of thermal 
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and chemical equilibration. But chemical equilibrium is a 

rougher approximatiorf. Particularly in the case of peripheral 

coll i s ions, .where the number s of partie ipants are very small 

cornpared \ti th collisions at zero impact parame ter , the 

attainment of "cttemical equilibrium is very questionable. The 

calculation of the total inclusive pion cross-sections involves 

an integration over aIl the impact parameters; therefore the 

êomparison with the results for zero impact parameter alone is 

an indication of the extent to which the participants in 

peripheral collisions deviate from equilibrium. In aIl cases we 
'. 

find that the predicted number of pions is always overestimated 
~ 

by about a factor of two. The introduction of tne' isospin 

in this formaI ism in . the cascade code was ,very instrument,al 

~alculation because the available data contains mostly charge 

asymmetric systems (N 4 Z). A new parametrization of the to~al 

" " (elastic· and ipelastic) nuclf=o~n-nucleon cross-section • is used 

in the J same wr:;:. t'est this calculatiOh,- and 
" 

time the; at 

sensitivity of the' end resu~ts by . 'using a sim1llified' 
/ , 

parametriza~ion for these cross-~ections. 

The two-fireball/blast-wave model is successfu~ in ~.,prodUC~ng. 

the results of the intranuclear cascade. It i5 now ln~erestlng 

to calculate its 
-f 
pred ictions for the average associated 

~ mul tipI ici t ies. The thermal 'mode~s usually overest ima te the 

nurnber of., pions by at least a' factor of two 1 but 'this model 

constrains from the beginning the pio~ cross-sections to their 

correct experimental val~es. This is done by varying two 

parameters of the model: the firebail temperature and the 
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freeze out density. The temperature of the fireball can be 
, 

reduced by the introduction of collective degrees of freedo~ 

repr~sented in the model by two firebal1s rnoving in opposite 

directions ànd py radial explosions in each fireball. About 40% 

of the collision energy is consumed by the radial explôsions • 

. These two parameters are determined by fitting the ratios of 

protons to deuterons and the ratio of protons to negative pions 

to the experirnental data of Nagamiya et al for the collisions 

of neon on lead at 400, 800 and 2100 A.Mev. The model 
. 

overes t irna tes the associated 

energies, but as the. energy 

mu1tiplicities at 
~"'" 

lower 

of the collision increases the 
"l 

, 
calculated results fall progressively much shorter 

<'lt> 

of the 

, exper imental resul ts. The one-fireball model predicts the 

experimental results correctly in general. The experimental 

'data on associated multiplici~ies does not report the 

cr0ss- secti on for piqns, s~para~ely so that we cannat test' for 
.~ o \ 

'" the primordial charge cross-sectiohs. The associa ted 

multiplicity tests a combina tion of' geometr·ical 
'-, ,G # 

and dynam i.cal 
" 

assumpt ions which cannot 'be disentangled~~ wherea~ the 
, 

primordial charg~ cross-septioqs depend,on ~he geometry alone. 
,~ 

r 
We observed . tha t' the average total nucleôn-nucleon 

croSs-sections increases by more than'" 40% when the collision 

energy increases from 400 A.Mev ta k.05 A.Gev. Assuming a 

$tràight 1 ine tr~ ectory for 

theory predicts that,the numbers 

the nucl e~ns", a, ,(-Glauber type 
• 1 w 

of particip?nts d~pend on the 
o , 

energy of the collision through the tQtal nucleon-nu~leon 
~ , . 

'cross- sections. our calculations based on -the Glauber type 
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theory produced some energy'dependence of the primordial charge 

~ ~ . 
cross-sections, but not enough ta explain the experimental .. , 

data. 
\ 

The intranuclear cascade provides an alter~ative model ta study 
\ . 

the primordial charge cross-sections. We define a ~riterion to 

determine the ,) number of paroticipant~ based on the change 

between the final and the inttial rnomenta of the particles. 

Because' ..t:he particles lose their iden t i ties dur ing the 

interactions i t is necessary ta éonsider'both 
) . the projectile 

• aFld the target momenta. The change in momentum i~ taken to"be 

equal to the Fermi mornentum of an updisturbed nucleus. At 
~ ",,"-

800 A.M~V the numbers of partici~ants obtained i~ this ~ay are 

" higher tha~,the corresponding numbers cdlculated in the clean 

1 

geometry; at 400 A.Mev on, the other hand, the figure/, are 

substantially ~maller. T.he primordial charge cross-sections for 

the collisions of neon on lead reproduce the right energy 

:f 

dependence and also agree with the experimental data within -ithe ~~-

error 1 imi'ts. 

... 
The intranuclear cascade code overestirnates by a factGr of two 

the total inclusive pion cross-sections. These results ate not 

- affected by t,he cri ter ion for defining the number of 

participants in terms of the Fermi mornentum because aIl deltas 

~ in, the freeze-out stage are regarded as part ic ipan ts. - Sorne 

authors (Stock-82, Harris-84) have attempted to interpret the 

overestimati9n of the number of pions as the result of the 

absence of "cornpressional effects in the intranuclear cascade 
~ 

- 111 -

-



'. 

( 
, .. 

n 
( 

, . ( 

l~ , '$l:r) 

1 
-1 

'\. 
and develop from that an estima te of the equation of stat~~' for 

" nuclear' matter. 

Tbi s very interesting _ resul t was obta ineâ wi th a cascade code 

that did not include in the calculation the ini tial Fermi 

m9tion of the nucleons, nor did it include any field effects; 

, the Pauli principle is on'1y approximately taken into .. account .by 
"'" 

forbidding soft collisions~,. The formation of composites is 

also excluded ~rom the model. It would be, highly desirable to 

complete this study by doing a calcula tion wi th a more complete 

cascade code. 
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7 - APPENDICES 

7.1 Thermo,dynamic calculations. 

The thermodynamic calcu1ations consist in finding the solutions 

of the'equations for the conserved quantities (equations 2.1.5 

to 2.1.8) ana1ytically if possible, or numerically in most 

cases. 

7.1.1 The one-fireball mode1.' 
. ~ 

A relatïvistic Maxwell-Boltzmann distribution (equation 2.1.2) 

is assumed valid in the frame of the firebal1 for each one of 

the hadronic species present. The number of particles n, Cb) in 

the fireball is obtained immediately as a function of 

parameters to be determined later: y 

(7.1.1) 

The fiqt integration is done immediately, ànd 'for the second 
\ 

one we use the change of variables: 
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(7.1.2) 

~; . f .. .-
, (, 

and integrate by parts once: 

(7.1.3) 

The int"egral abov'e is proportional to the MacDonald function 

K 2.(l1Ii /T) (Abramowi tz-68) : 

,0 

f(-t~~) 't(~~) 
"t\ Va (r(~)~ 

(7.1.4) 

for \) = 2 and z = llIi1I.T. Direct substitution now 1eads to 

equa t ion 2.1.3: 

(7.1.5) 

The total énèrgy E \. (b) for • each kind of particle in the 

fireo-all is obtained by evaluatiilg the integral: 

--

.. 
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'usl'lng again the same change-of variable (7.1.2) we get: 

" . . 
- ~', 

. 4. ~; Ir . ~ ~ ~ b ' 
&;(6 ~ ~ j,"1J ;~~ j e. T . (\+<,..;.~~) ~ \,,jJ; 

C) 

(7.1.6) 

(7.1.7) 

The first integral is proportional to K, (ml/T) and the second 

one ta Kz.{m,/T); substitution leads to equation 2.1.4: ... 

7.1.2 The two-fireba1l model. 

AlI that has been saîà above in section 7.1.1 is dir~'ctly 
, 

applicable in thi s case, but now in each af the' fi reballs' re-st 

frames. The temperature and the chemical potentials are nuw 

defined in these two frames. -Equations 2.1.5 to 2.1.8 for'the 
" 

conserved quant i ties a~e wri tten in the center of mass frame of 
-

the two fireballs. The number of each hadronic species is an 

inv~riant, but the energies in th-e center of mass frame are 

connected to the energies in each fireball rest frame by a 
1 • 

~o~entz transformation: 
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(7 .1.~J) 

where E~ (b) is given by equation 7.1.8. 

(( 

If (E-"li) and (€f:~) are the target (projectile)"participant 

four-momerita respectively before and after the collision (Oas 
• 

Gupta-7 8 )~ 1 then: 

(7.1.10) 

The one-fireba1l model 1s recovered as the masses of the ions 

increase. 'and the' transparency factor e approaches zero. In 

genetal it can be calëU1ated (Das Gupta-79) as: 

(7.1.11) 

where ~ 'Ch) is the average number of collisions that a 

projectile ( target) nucleon 5uffers with the ta.rget 

(projectile) nucleu~; it i5 calculated as the ratio of - the ~ 

average "length traver~eÇl by. a nucleon in the other nucleus 

Î(b), and the nucleon mean free path in the collision (Oas 

Gupta-79) • For normal nuclearmatter we have ~ = 1.8 fm (oas 

Gupta-79). Two colliding spherical nuclei with constant density 

. and sharp surfaces of radii RI and ~t have the nucleon mean 
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0.1.12) 

o 

At the impact parameter b = 0: 
ft t. 

~ )~ ) (~"--x.%_",)~ 
o (7.1.13) 

we obta in a'fter ,an' elementary integration the value 

1(0) = 3R/2, for two equal nuclei of radius R. 

7.1.3 The implosion-explosion model. 

Consider a > reference frame mov ing -rad ially outwards wi th 

respect to the rest frame of the fireball. There ia an infinite 

number of such radial frames. The basic assumption is that in a 

neighborhood of each one of' them the const i tuents of the 

fi reball' obey a local relativistic Ma~wel1-Boltzmann 

1 
distribution. The objective is to determine the resulting 

distributions in the firebal1 rest frame. 

We make use again of the Lorentz invariance of the product 

Ed'3 n/ dP" and take the average over aIl the radial directions: 

1 
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E 'Il" E-1~ -- -= -
6f~ ~l ~ 

0 

:~" ~/t ~~~t:(iErfT 
\b,"~ " liP (7.1.14) 

() J\jl 
i ' 

But E ("' = l' t (E ..., V, P cos'&); then 

• 

The integration can be carried oùt by elementary means and we 
'\ 

finaliy arrive at Eg. (2.1.16): /~ 

where A x = ..,... 

(7.1.16) 

; . 

The limiting value of equation 7.1.16 when v,.~O is obtained by 

noting that'l .. ..,l, x,- 0, and x2.~ E/T: 

.. (7.1.17) 

which is the Maxwell-Boltzmann distribution in the rest frame 
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of the fireball. 
-, 

.. 

7.1.4 The two-fireball/blast-wave ~odel. 

The thermodynamic calculations take their simPle~for~.if 
equatiops 2.1.5 to 2.1.8 for tVcc;>nserved 9uantities are 

written in the expànding frame~ of each fireball, where the 

Maxwell-Boltzmann distributions are assume te) be val id; rh thïs 

case the equations developped above for the one-fireball model 

are applicable, but no~ the temperatu~e -and the chemical 

potentials are defined in the expanding radial frames. If, the 
, 

calculations are done in the rest frames of the fireba11s, then 

the distribution of equa'tion 2.1.16 must be useÇ! 
! 

and it is 
.,. ~r .. " 

necessary to resort4to numerica1 methods much sooner. 

The cr i t ical density pc. and the temperature are',· adj ustable 

parameters to fit the experimental ratios of the cross-sections 
, 

The temperature is a function of the amount 

of energy that i6 avai1able for 'therma1ization, 50 that the' 
... 

velocity of radial expansion V~ is ultimately the adjustable 

par arneter in th i 5 case. The energy ava ~lable for thermal i zation 

" in the radially expanding frames is related by a Lorentz 

transformation to the firebal1 res1: frames: 

\ -
Til 

(7.1.18) 

where X .. is the gamma factor bet~en these two frames. 
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7.2 Decay··of the deltas • 

.. 

In the·two-body decay of a delta resonance the distribution of 
1 

one daughter particle in the rest frame of the fireball arises 

from i ts distr ibution in the rest frame of the deI ta and the 

distribution of t}le delta in the rest frame of the fireb?ll: 

. 
o 

(7.2.1) 

In t}:le rest frame of the deI ta eàèh d~ughter particle is 

distrlbuted as (Kapusta-77, Das Gupta-SI): 

(7.2.2) 

). a a , 
whereEo~ = m t + Po' We integrate overall the momentum space 

to éheck the(nOrmal ~z'a tion constant: 

(' 4i c:IÔ 

~. -c= 2. ~~..Q. ( 
\ A«) ) 

CI 

lb 

= ( 0 l t;;\_~) . ~ 1;' ,_ ,.E .. ' ol6' "" \ 
) 1::' ~~ - 'Mt'" 
o 

(7.2.3) 

as expected. In the fireball frame the deI ta has a veloei ty 

...a. "" :L" "'1 V / e E m;' + p", and b. = PA ",,' energy ~ = .. ~ = E6 /m.d.' The energy E' 
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'of the daughter partic1e in the delta' frame is related to t'ts 

ene$gy E in the firebaI1 frame by a Lorentz t r ans f 0 rm a t ion ': ., 

(7.2.4) 

" 

Choose .a coord inate system wi th th along the direction 

of motion of the daughter then equa'tion 
. ' 

7.2.1 

becomes': 

(7.2.5) 

,First we integrate over the angular var' ables, noting that 

(7.2.7), 
! ' 

conditlon ' 

that E" = E1:)\ ' as required by the angular integration ovet the 

\-function-. Then, from equation,7.2.4: 
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which 1eads to a Seco'nd degree equation in E6,: 

with a discriminant 

which for cos Q = tJ. 9 ives the resul t 

-.. 

ç:-t _ 
~ -' 

7.2.1 The one-fireba1l m~del. 

, 
<J. 'i <l , 

.. 

• (7.2.8) 

(7 .2.9.) __ ~ 

(7.2.10) 

(7.~) 

In the one-fireba11 model the delta resonances are assumed to 

obey a relativistic "Max~el1-Boltzmann distrib'ution; we can thus 

proceed to complete the integration of equation 7.2.7:' 

1 ,. 
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c 

, ' ',.. ,-

1 

.. 

' .. . . ' 

• 
(7.2.12 ). 

\ ' 
and arr ive after some elementary algebra 'a t the resut t: ' 

" 

ci~ E --'";. 
~J 

~ . 

f1 (7.2.1'3 ) 

" '\ 

" , 
7.2.2 The two- fireba,l1 moçel. 

t"" • -
Equation 7 .2.13 above' holds in the frame of each fireoo11. The 

left hand side, which is Lorentz invariant, can be written in 

their center . ~ 
o! mass ,frame. The 

-;-j 
energy and momentum in the 

. right, hand side are expressed in terms of center of mass 
.. 

quanti t i es 'ey" a Lorentz transformati on. Then the' resu1ts are 
. 

added togettler: 

" . ' 
0..3 

. j' l::~ i' r~ .. 
E.*~ E:Jf:' ~~ ~ - + 
~ \ ~il 2 

~~~. 
(7.2.14) 

'\ 
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7.2.3 The 

Wé start again from equation 7.2.7 now written in tl1e rest 

frameso of ~a7h fireba11, but the distribution of the d~9J;as' l:S 
t _V~,~F,f" 

given by equation 7.1.16. We get for each fireba11;' 

( ~IJ+ ' 

'" '};" ~l', J'Ir ( '[ (~._~ t l) t>': ('12 ~ ~ w) ~ ~ -Ql'eJf. 
~;)"y"y . ~_ ' '. ~~2-

~Â ../ 

(7.2.15.) 

wi th x, = Tt; Y'~E: - mi /T, a~d x,. = Y,.EA/T. The integration 

has to. be don~ numerica11:y here ('IMSL-79). "'The rest of the 
, ~ 

calculations are idehtical to "tne 'case of the two-fireba11 

model. 

" "' . 

7.3 The rapidity distributions. 

\lThe rapidity y is defined a10ng an axis as . " . 

(7.3.1) 
1 

for a partic1e of energy E and momentum P with projection P" 
a10ng the axis and Pl i~ '1' the perpend icu1ar pl~ne • The 

variables (P.1.,P,,) and (B,y) are connected by tne tr ansformati on 
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, (7.3.2) 

and i ts inverse 

1 

, (7.3.3) 

wi th a Jacobian 

.. 

,(7.3.4) 

The followin9 'relation halds: 

(7~-3.5) 

. 
7.3.1 The one-fireball model. 

Using cylind'rical coordinates (P..l' ~ ,P,,) we integrate the 

rel a t i v"ist ic Maxwell-Bol tzmann di str ibut ion wi th respect to the 

angular variable, ,transforrn to the new variables (E,y) and 

integrate over the energy; we obtain the rapidity distributiori 

.' 
" , 
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, 

(7.3.6) 

-- (7.3.7) 

The lower 1imit of integration corresponds to p~ = 0, which 

. 1 . ~ ï.. 2 2.. a. t .!) h . \ ft lrop les E = m. + p = ml' + E. anrry, or E = mtS:0s y. A er 
~ ~ 

integrating 'we get: 

(7.3.8) 

TP~s , equation can~ be expressed in terms· of the pumber of 

~~tic1es ~t(b) using,equation 7.1.5. We get: 

l' 

"VI ~L'o) .\ ~ . l' ~ l ~ ~\.~ ... \yl e-:.Jr ~ - 'A\;tW..If~ 
~Yft~ ~'1 K'2(~) ~ J.-

(7.3.9) 

t"l 
1.3.2 The- two-fireball mode1. 

.~ 

In the center of mass frame Qf the two fir'eba11s we can write: 

,~ 

~ 

.o'-... >::t 

. 
1 

J 
.\ 
'\ 
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( 
(. 

(7.3.10) 

," 

and using equation 7.3.5 we get 

(7.-3.11) 

Therefore 

(7.3.12) 

.. 
, 

Now assume that the particles in the fireball frame ,follow a 

. Maxwell-Boltzmann distribution and use the Lorentz 

transformation: 
, \ 

(7.3.13) 

(7.3 • .1 4 ) 

~ere V denotes the volume associated with each fireball. 

( Introduc~ the notat{on 
" , 

" 
1 

---__________ ~,_, -·-. _________ ·~~ ____ -.~---4--"--------~ 

. " 
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.. 
( 

(7.3.15) 

to simplify the - equation. Integrating and adding the 

distributions for each fireball together we qet finally: 
0" 

.11,\,\' fA , _ --"'-l\* 

(7.3.16) 

The ,same result May be obtained more simply by noting that 
1';1 

, 1 , If 

~ ~ -= l 4 -1:* 4- ~, ~ -+ l l.... \ -+ J ~ 
~ J ~,f_~:"\ ;l J .\ -\J~ 

~ .. 
(7.3.17) 

" so that dyJlf = dy, and we can wrÙ:e: 

, 0 

1 
\ 

i 

where each term on the right-ha~d-side is obtained from 

( 
equation 7.3.8 by s~bstituting the iQdicated value of the 

argument. The end result is again ~quation 7.3.16 above. , 
" 
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When the surv i v ing deI tas a t '10 t4 ,freeze-out point decay into 

nucleons and pions their distributions are obtained from 

equation 7.3.12, where now the integrand contains the 

" l distribution Ed ni/dp from' equation 7.2.13 for the decay 

products: 

(7.3.19) 

we use the notation 

. 
,=' [(~i:E."')~_ 'tA~1.]}ll. (7.3.20) 

(7.3.21) 

Equation 7.3.19 is evaluated 

subroutine DCADRE (IMSL-79). 

numerically using the integration 

The results for the two fireball 
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are added together:. 

(7.3.23) 

7.3.3 The two-fireballjblast-wave model. 

We write equation 7.3.6 in the rest frames of each fireball 

where now the distribution 7.1.~6 is used in'the integrand:. 

(7.3.24) 

with x, = y"v,iE~ - mi.,~ jT, and xl, = yyE/T~ The distribution in 

the center of mass frame is obtained from equation 7.3.18: 

For each species from the decay of the deltas in the rest frame 

of each firebal1 we get from equations 7.2.7 and 7.3.6: .. 
/' 

(7.3.26) 

where the distribution of the d&1tas is given again by equation 

. , 

7.1.16. The evaluation of the doub1è integral is done J 

, 
'~ 

: ~ < 

_____ -..,,........ __ - _____ ...-........ _-c.;;... ~.--- - -.-._-
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( 

numerical1y (IMSL-79). Equation 7.3.25 is used to get the 

final distribufion in ~he center of mass frame. 

7.4 The perpendicu1ar momentum distributions. 

7.4.1 The one·fireball mode1~ 

Take again cylindrica1 coordin'ates and integrate over ~ and 

p~ : 

(7.4.1) , 

, 
Change variables to p, The integrand is an . 

even function; then 

(7.4.2) 

Integrating once by parts we find that the resulting Integral 
, 

is also expressib1e in t..,erms of the MacDon~lQ function 
o 

Finally: 
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This equa~ion can be expressed in yterms of 

partiales n~(b) using equation 7.1.5. We get: 

7.4.2 The two-fireba11 model. 

the number 'of 

(7.4.4" 

We start agairi with equation 7.3.10 and integrate over the 

paral1e1 mom~nturn p": 

(7.4.5) 

Change the variable of intègration from the center of mass 

system to the firebal1 frame: 

(7.4.6) 

\ 

1 

t 
1 
J 
1 
j 

~ 
! 
~ . j 

1 
, 

" 

> 
J 

'., 

t • pd ;Ii d j AF' !è' • ir'P'i11: 

__ -_-__ 1_3_2 __ -_______ ~Jl 



This integration is the" same as 

Maxwell-Boltzmann case, and we get 
, ' ./ 

fi reball. Finally for 
,/ 
both,: 

For the products of the~deCay of 

7.2.13 in equation 7.4.5: 

.. -, 

where we substitute 

(7.4.7) 

in equation 7.4.1 for the 

equation 7.4.3 for each .-

(7.4.8) 

the de! tas we use equation 

and 
2 

E = 

(7.4.9) 

The 

integration must be done numerica11y and we use again ' the 

subroutine DCADRE (IMSL-79). 

'lJ 

(' 

. ' 
I------------·--·~~~ 
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7.4.3 The two-fireball/biast-wave mode1. 

The calculations heré are entire1y anaiogous, exc~pt that one 

has to use ~he approprlate distributi~n~ for this mode1 in the 

~ntegrands. VSing equation 7.1.16 into equation 7.~.7 we get: 

(7!4.IO) 

wi th 1 ~/, ;:: x~ = lyJrnf + P!1. + p; /T. The 
~ , 

integral is evaluated nurnerica1ly using DCADRE (IMSL-79). 

o 

The distributi0n for each species from the decay of the deI tas / 
/ 

is obtained by plugging 7.2.7 into 7.4.7 and using 7.1.16: / / 

/ 

/ 

/ 
/ 

/ 
/ 

(7.4.11) 

The double in~~gral is evaluated using the subroutine D~LIN 
1 

(IMSL-79) • 

We are also interested in the evaluation of < tt~· It is 

obvious that < ~~z.> = < ,! > so we can do the eva1uation in the 

rest frame of the fi reba11: 
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(7.4.12) 

using equation 7.4.~: 

(7.4.13) 

and p1ugging equation 7.1.16: 

For the Y~ecay products from the de1t~s we g~t from equation 

7.4.13 using equation 7.2.7: 

(7.4.15) 

wi th x, 
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7.5 The parallell momentum distributions. 

7.5.1 The one-fireball model. 

We obta in ." the 
• l .. ~ 

dn,' /dp. 
&\ 

distribution by taking cy1indrica1 

coord inates (P.L' 4» 'Pa) ~nd integrating over ; and PJ. : 

" 

(7.5.1) 
o 

Cha'n9~ variables to P,L = lm! + ~. sinh -t; then: 

" 

and fina11y 

(.7.5.3) 
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7.5.2 The two-fireball model. 

In the center of mass frame of the two fireballs we can write 

equation 7.3.9 and integrate over the perpendicular mornenturn 

• '" ~ eo 3, 
cl~: \.§ ~ p.6J)~ ~ ~( ~ ~ b,tU 
'~ ~ ~ ) ~ db~ \1. - -\.\. ,) et" clf' ,.1: --,"" 
~~ -1 0 

o 

(7.5.4) 

.~ 
Convert all quantities to the cente~ of mass frame: 

(7.5.5) 

and then 

(7.5.6) 

Change the variable of integration 

.. ' 

(7.5.7) 

.' 
then: 
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(7.5.8) 

and now after an elementary Integration we get: 

., _ (7.5 .. 9) 

Finally for the two firebàlls: 

(' 

-= ~ IJ i.:l e!r lfi -Tf i "fo? ~ il'> . 
l~~I~ ,,' 

(7.5.10) 

where V is the volume of each fireball. 

7.~.3 The two-fireballjblast-wave model.~ 

The ca1culations here are entirely analogous. Using the 

distribution from equation 7.1.16 into equation 7 .. 5.4: 

i j , 
1 
; ('} 
\ 
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with X, = 4YrVr (p: t' Vç:,E*)/T , x'l. = YY'.,(# ± V~p:)/T, and 

,È* = (m~ + p' + P"")Yz.. The integration is done numeri,cally. 
L j. 1\ 

, 
The distri~ution from the decay of the deltas is obtained QY . 

p1ugging equatio.n 7.2.7 into equation 

7.1.16': 

7.5.4 anp using equation 
Cl 

\ 

wi th x \ = 'l'r V'fl E! 2.ml IT 1 X:z = 'Y1' E. IT, and 

E~ = (m? ~ p~~+ p~~'. The double integra1 ~s done numerica11y 
I~ \.".&-

using DBtIN (IMSL-79). 

" We a1so want to evaluate <D4(t.> 
III 

asymmetry rat:io Y. We 'have: 

in order 

--c .. , 
to calcu1ate the 

,(7.5.13) 

Using a Lorentz tran~formation to the fireba11 rest frame 

p* = ~ (p ;1;. v~ E) 0 we 9 et: 
" " r o 
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(7.5.14) 

• since <P" E> = 0 when summed over both fireba11s. Nôting 

tha t E' = m?' + p'l. + p." we ob ta i n fi na 11 y: 
1. ~ " ' ., 

/ 

The asymmetry ratio is then: 

(7 .5.16 ) 

\. 

The value of <pl> ls ca1culated in Appendix 7.4.3. 

7.6 Nuc1eon-nucleon scatteririg cross-sections~' 

,. 
7.6.1 E1astic a,nd inelastic cross- sections • 

N~utron-proton cross-sections in the energy region ,200 Mev -

1.0 Gev have been measured since the early 1950' s. Total 
, 

cross-sections suffered from large systematic errors, and it is 
<1 '. 
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only in the ~970's w~th the availability of better machines and 

detector systems that we have more accurate measu~~ments 

(Dieterle-77). 'Traditi'c>nally'n-p 
-::6"' 

,/ 
cross-sections were obtained 

ind irectly from p-p ,and p-d measurements. Now good quaI i ty 

secondary neutron beams have become available ~t the new 

facilities-. Saclay, for example, p'roduces a monoenergetic 
1 

neutron beam by stripping deuterons with protons •. Accordingly 

we reject aIl the data that ,was measured pr~or to 1970. We use 

the CE~~HERA compilation (Flaminio-79) and the .,measurements 
1 

dlilne by Devlin et al (Devlin-73)·, which they claim: 

" ••• has ~igh statistical precIsIon and good 
momentum resolution. The statistical accuracy of 
the data is between 0.2% and 0.7% and the total 
systematic uncertainty is believed. to be even 
less" . 

, Proton-proton cross-sections have always been much more easily 

measured than the corresponding neutron-proton~ross-sections. 

As it would "be expected the data contains fewe~ systematic 

errors. Most of the data is clustered along a weIl defined 

curve. The LandQlt-Bornstein .(Hellwege-73) compilations are 

used. It presents a na~rower selection from which more 

uncertain data has b~en eliminated. 

( 
, 

'More speciflcally the sourc'es of the data and their energy 

ranges are summar i zed below. Mere {i d~notes the center of mass 
.' 

energ les.-, 
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TABLE 7.6.1 Sources of~s-section data; 

The sources of data for each type and energy, range. 

p-p total: 1.995 <[5 < 2.997 Gev (Hellwege-73, pag,e 9) 

p-p elastic: 1.955 <(S < 2 .061 Gev ( He Il weg e - 7 3 , page 9) 
2.075 crs < 2.981 Gev (He1lweg~-73 , page 15) 

'1, 

n-p total: 1.998 <JS < 2.858 Gev (Devlin-73',J, Table iv) 

n-p e1astic: 1.998 <Js < 2.043 Gev (Devlin-73, ,Tàble iv) , 
2.323 <'rs < 4.111 Gev ( F 1 am in i 0'- 7 9 , page .83) 

The n-p and p-p cross-sections are treated with the cubic 

interpolation IMSL subroutine , ICSV~q. Average 

nucleo.n-nuc1 eon cross-sections are calcula ted as the ar ithmet ic 

average between the 'p-p and n-p'cross-sections. The inelastic 

cross-sections are obtained by difference between the total and 

the e1astic. The average curves are parametr i zed ,agai n us i ng 

the sarne subroutine.The value of the cubic spline aproxim~tion 

for the 'cross-seC"tion~ at the center of mass energy(S is given 

by an expression of· the type: 

where wi,(lS)= (S - z(1), and we must have z(i) < rs < z(i+1) •. 

The._~. parameters for equation 7.6.1 are listed in 'the tables 

below: 

J, 

1 

l 
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TABLE 7.6.2 N-N in~lastic cross-sect ions. 

Cubic spI ine pararoetrization of the inelastic cross-sections. 

cCi,l) cCi,2) c(i,3) yCi) z Ci) 

-338.07763 1582.2971 -1653.8394 20.812821 1.8800 
96.614842 589.00714 -3334.73.71 3.2776453 2.0802 
67.298960 

, 
-800.13229 "4109.8799 19.12177~ 2.2191 

17.397228 157.92819 -1429.7512 21.448271 2.2968 
"22.613541 -50.667749 42.191495 22.503403 2.3454 

2.8400 

TABLE "7:6.3 N-N e1astic cross-sections • . 
-~ 

Cubic spline parame~rization of the elastic cross-sections. 
, 

c(i,l) c '( i ,2) , c(i,3) y(i) z ( i) 

-500.84952 2695.6847 -5603.0369 62.729973 1.8900 
-73.930420 300,.97468 -619.75450 29.8875-7-6 2.0325 
-39.198997 161.27893 -430'.52425 25.7690'23 2.1076 
-19.212680 14 .• 0396~ 9 .. 009·9979 22.758478 2.2,f16 
-14.378134 18.1049 O' -15.804888 20.217122 2.3720 

2.83'00 

~. L. Hatch (Hatch-79) . presents a another parametrization of 

the average nuc1eon-nuc1eon cross-sectioqs that groduceS curves 

very sim ilar to our We also use a sirop1 i f ied 

parametrization ~o test sensitivity of the results to a 

change in cross- section. hi s siropl ified . parametr i zatio'n, for 

the inelastlc cross-setion . 

(7.6.2) 

and ~or {~e elast fc is 
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(7.6.3) 

The elastic, inelastic and total cross-sections, both in the 

simplified parametrization and the actual one appear in Figure 

9.1. 

7.6.2 Elastic differential cross-sections. 
1 

The elastié differential cross-sections are assumed to be the 

same as for diffraction scattering, with an exponential form 

(Perl-74) : 

( 
. b(~).!; 

- ~e (7.6.4) 

.. 

where t = -2p~(1 - cose) is the four-momentum transfer 

O· , 2 ~ ( > t > - P = t o )' and 

. (7.6.5) 



( 

( 
1 

, , 

7.7 The intranuclear cascade code. 

7.7.1 The basic code. 

In this appendix we give a detai1ed description of the cascade 

code' tha t we have used. It is a simple versi on of the 

Bertsch-Cugnon code; it assumes the complete isospin degeneracy 

of aIl species in#~e model, and more sophisticated ,features 

such as, Fermi motion, Pauli blocking and field effects are not 

Incl uded. We modi fied this code to allow for the coll isions of 

unequal nuclei and introduced the isospin formalisme 

, (a) Preliminaries. 

rnitia1ly each nucleus is represented by a sphere. centered 

on the' 

b = 2 x. 

coordinates (x_ ,O,Zp) and 

is the impa~t parameter, 

(-x.,o,-z~), where 

V, 
'~-b = 1.12 At and 

are the target and projectile radii 

respectively. The nucleons are assigned random positions 

inside each sphere a):cording to a uniform distribution: 
/ 

,/ 

(7;.7.2) 
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( 

, 
GGUBFS (W) is subroutine that generates a random number 

uniformily dfstributed in the- interval (0,1) where W is a 

• seed'. Every time this function is 'm:YQked it returns a 

new seed which is automatica11~ used in each os.ubsequent 

call. 

Each nuc1eon is then assigned i ts posi tion in cartesian 

coodjnates: 

(7.7.4) 

(7.7.6) 

Here y is the Lorentz factor.-Each nucleus receives a~ 

Lorentz boost along the z-axis with a momentum Po or -p~ in 

the nuc1eon-nucleon center. of roass corresponding to the , 
,J _, 

projectile kinetic energy: 
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o 

(7.7.7) 

1 

where m ~ i s the nuc1eon mass, t, 

~ 
i s the proj ectile kinet i c 

energy per nucleon. 

(b) Start the simulation 0; the collision. 
p 

At the beg il1nig of each time interval Â t the program 
-' 

ca1cu1atés the distances R·· 
\~ 

and the center· of mass 

energies siS between aIl pairs (i,j~ of baryons: 
,', 

(7.7.8) 

~ (7.'7.9) 

If the distance for a pair is below 1.7 fm and their_ center 
-

of mass ~mergy s- is 
~ 

above 3.61 Gev, then the pair is a good 

cand idate for scatter ing. By forbidding N-N scattering 

be10w 3.61 Gev, which corresponds to about 50 Mev ~inetic 

energy, the Pauli principle is upheld approximately in the 
" 

early stages of the collision. 

The distance between the pair (i,j) in their center of mass 

( frame at any time t between t:wo collisions is obtaineq by a 
, 

Lorentz transformation: l 
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.... 0 

Q~ (t)" r~l ~5' \n--~l) ~\ ~ f~ t}l({\-~'\-h~-~)~1 (7.7.101 

At the start of the time interval ~t, we get: 

,'/'-" 
N.\-

' ... 

(7.7.11) 

The ind i vidua 1 momenta of the pai ris aga i n obtained by a 

Lorentz transformation: 

(7.7.12) 

which reduces to: 

(7.7.13) 

If the c0l!lponent of R~.f.,) in the direction of the momenta, 

"7.7.14) 

~s larger than 1.32 fm t];le pair will ~ot approach each 

other close eneugh for scattering to oceur. This '"distance 

corresponds te the maximum total N-N cross-section 

crl3H = 55 mb. 
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The distance of approach at one half the', time interval At: 

( li ,,) 

(7.7.15) 

" is also required to be sma,l1er than b ~ • 

(e) A seattering oocurs. 

The average elast ic and. inelastic cross- secti ons <5"'at, and 
. 

cr-~ are determined as a function of the center of mass 

en~rgy s of ,the pa i r,. The cho ice of one particular channel 
( 
lS now determined by draw~ng a random number. ,~, uniforr:nily 

distributed in the interval (0,1). The interval (0,1) is 
. J''''.,' 

di vided into 3 subintervals "/ .,' (0, (T'dl tr.> •. d , 
" ( (l.d.! 0;, .. ' lO",u-+&"',VfJi .. ), (ll1ü +O'-",,) /cr-t'~, 1). If t, falls in the 

last bin no scatter'ing taJ(es place at a11. 

If x\ falls in the first bin the' elastic ~hannel is chosen. 

The four~momentum transfer t i s obta ined integ rating 

equation 7.6.4 in the intervals (t, ,t~ = _2p'2. and (O,t l ) 

ratio.l'This ratio is ia chosen by drawing 

number : 

'and taking the 
1 

another random 

(7.7.16) 

The elastic soatter ing angle is: 
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P.7.l7) 

When the random number x falls in tbe second bin there are 

three possibilities.: 

(i) If the center of-mass energy s is be10w the threshold 

for the production of deltas, or if the pair is made up,of 

two deltas there is no possibility of ine1astic scattering. , -

,} .... " 

"(ii) If both members of the pair are nucleons' one delta is 

produced with a mass (Ba1doni~~2): 

-
'W\,";: ~ C ~ - ~. OIS) + 1. \)1-t ~ , . ~ 11 \ 

4 . Q 

(7.7.18) 

and linear momentum: 

(7.7.19) 

(iii)"If there is one delta an~ one nuc1eon, the d~lta is 

de-excited into a nucleon, with a cross-section calcu1ated 

from detailed balance: 
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\ . 

l'· 

1 
,1 

( 

( 

o-A ';' l if ') cr· g y~ L 

.,' (7.7.20) 

.. 
where 

y-= J. Sil .) - - Thf.,\ (7.7.21) 4. 

The scattering angle ~, is chasen so th~ caseS. is 

distributed at random and.uniformily between -1 ~d 1. The 
- . 

azimuthal angle ~s .. is chosen at random for aIl the cases 

above, th us vialating the cansevation af angular momentum 

here. 

, 'IJ 
The new momentum coordinates are calculated as a function 

of the old and the new angles (Sect i on 7.7.3): 

(7'.7.22) 

" 

(7.7.23) 

• 1~ 
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c, 
0 .. 

If 

(7.7.24) j 

(d) Update momenta and coordinates. 

The new momenta for- each particle, that scattered ~ccording 

to the scheme of item (c) , are converted back to the 
..... 

or ig inal frame using the same equaJon (7.7.13) with ~Il 
replaced -

by - ~~'. The new updated coordinates 

-
r~ (t-+b\:;'::. ~~lt~ + 1.. ~\: 

~t 

(e) Statistics. 

then bècome: 

(7.7.25) 

The procedure described above is is repeated for' each time 

interval until the number of collisions falls below a 

specified value or until a total preset time 1 imit is 

reached. This s imulat ion of one nucleus-nucleus collision 

is repeated a number of times sa that the average values of 

the physical quantities of interest can be calculated atong' 

wi t~ thei r standard deviati ons. 

/ 
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, , 

7.7.2 The kinematics 'of scattering apgles. 

Assume that a unit vector Ç' is defined by the angles (~,~) in 

a given coord'tnat~ system (x ,y,z) • 
,... 

The vector r represents the 

direction of mot ion of a part icle before scatter iQg takes 

place. After sca ttering the vector ~ is transf ormed into a unit 

vector~' defined by a change in direction by the scattering 
" 

angle ~S' .which determines the momentum transfer, and a1so by l' 

an arbitrary angle ~~ .around the direct~on of 't. We have: , " 

r 
l 

(7. 7 .26) , ... , 
; ' 

, 1 
l 
" 
1 

~ . 
and;rl is given by: 

~ 
;> • -, , 
~ 
j 

l, 
i 
1 

(7.7.27) ' ..... 
" 

' .... , 
L 

, 1~ 

l 
t-

-j 
.. ~ 

Expressing the vectors and the operator,s'in the' sp.herical 
t \ 

\ , , 
1 

bas i s: i 
j 
! 
! 

) 

, (~1 ~ \ ~ l ?;c. (!) ,(7.7.28) ~=fa. ) - in ) , 

.\ 

, 
': , 

l 
1 

j 

i 

and carrying out sorne algebrp, we finally arrive at the ~ , 
~ 

equations 7.7.22. to 7.7.2) ~ 
" 

t , 

l , ~ 
~-

" 
':1. . 
" 
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( 
7.8 Chemical-equi1ibrium calculations. 

/' 

7.8.1 The ~qui1ibrium constant.' " 

The number of particles in a system ~n thermal equilibriurn can 

be calculated from the Maxwell-Bo1tz~ann distribution. In the 

non-relativistic limit èquation (2.1.2) gives: <, 

(7.8,.1) 

, \ 

(7.8.2) 

( 

The integtal ab.ove ois tabulated and, ~qua1s Ji' /4. TherefO're, 

,,7 . 

(7.8.3) 

Now when the reaction N + N # N + A in the system achieves , 

chemical equilibrium, the equilibrium constant K ls calculated 

equat.ion (7.8.3)' to ~h of the species present, 
'J 

\ . by applying 

and we get: 

j 
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t 

l ( 

t 

1 

(7.8.4) 

Entering the numerica1 va1ùes into the above expression 
1 • 

(g» = 16, g~ =- 4, ml) = 958 Mev, and Mf,) = 938 Mev), we get: 

(7.8.5) 

The corr~sponding relativistic result is obtained simi1arly 

from equation (2.1.3), and we get: 

(7.8.6) 

7.8.2 The exponential fit to the spectra. 

For a syste~ in thermal equilibrium we ~an write equati~n 

(~.1.2) for the momentum distribution: 

(7.8.7) 

But 

- 155 -

l 

l 

i 

\ 

1 
" 

l 



/ 

( 

. : ~\ 
,~ 

r1~ = f .ËcŒ : (7.8.8) 

,. 
and we can write it as: 

\ -
(7.8.9) ~ Q.Jl.l/T ~- t /, 

~ .. " 
Plotting the léft hand sida of the above expression against the 

'?,. 

energy E we obtain an expon~ntjal burve, from which an estimate 
~~ _ .. 

~ of the temperature 9f the system ls extracted. 

In the non-relativistic limit equation (7.8.9) is reduced to 

the form: 

l cÂv..~ _ - -EdJE. (7.8.10) 

which is again an exponential curve as a function of the energ~ 
g 

E. 

7.8.3 Kinematlcs in a spherical container. 
... 

Assume that a particle of momentum P = (P, ,P,.,P1 ) hits the 

internaI surface of a sphere at the point 
... 

Determine its momentum Q = (Q, ,Q~,Ql) after the collision 
.4 

takes place. 
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f 
-1 
; 

l 
1 

( 

( 

( 

.-
We write the momentum P in terms of its component~ parallel and 

... 
perpendicular to the position vector r: 

(7.8.11) 

This is transformed after the collision by reversing the 

component of the momentum perpendicular to the surface: 

(7.8.12) 

-Q - (7.8.13) 

so that we final1y get in term of the components: 

û,: . 
~ \- ) (7.9.14) 

This resùl t i,s incorporated into the cascade code in order bto 

confine the participants into a spherical volume over a period 
~ 1 

of time to establish the conditions for chemical equilibrium. t 
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9 - FIGURES 

Figure 9.1 Nucleon-nucleon average cross-sections. 

Curves' A, Band C represent the average N-N cross-sections. A 

1s the total cross-section; B the inelastic cross-section and C 

the elastic cross-section. These were. obtained frorn the nn and 

np experirnental cross-.ection data by a proce~s of least square ~ 

srnoothing and' interpolation. The dotted curves A', B' and C' 

are sirnplified pararnetrizations used to test the sènsitivity of 
,.. 

the end results. 
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"Figure .9.2 Rapidity and perpendicular momentum. 

Rapidity and perpendicular momentum distribution curve fits to 

relativistic Maxwell-Boltzmann distributions for the case of 

Ca-40 on Ca-40 collisions at l~O A.Gev and zero impact 

parameter. The points were calculated with the 

two-fireball/blast-wave mod.l and the solid lines represent the 

best curve fits. ,/ 
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;Figure 9.3 Temierature in the cascade (A""20"). , " 
• 'Q 

. 
Température qetermination by fitting an exponentialo curve to 

the tail of the energy distribution obtained from the casca.de 

calculation of the collisions at 800 A.Mev of nuclei with mass 

equal to 20. -
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Figure 9.4 Temperature in the cascade (A=40). 

Temperature deterrnination by fi tting an exponential curve to 

the tail of the energy distribution obtained from' the cascade 

calculation of the collisions at 

equal to 40. 
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Figure 9.5 

T'emperature 

the tail of 

) 

.~., 

Temperat~e in the cascade (A=60). 
( . 

determination by fit~ an exponential curve ta 

the energy distribution obtained from theocascade 

calculation of the collisions at 800 A.Mev of nuclei with mass 

equal ta 60. 

, \ 

- 168 -

1---, -.-~---_._--------:-----""""'~ 

} 1 

, 
! , , 

1 
1 

l 



( . \ 

( 

. ' 

i • 
1 • 
1 

,/ 

1 dN --
pEdE A=60 

500 
/ 

200 

100 

50 

20 

2 

j 
" 

.: 

r 
; 
, 
, 

1 
. i. 

l-
, 

1 
\ 
l 

I 

1~--~----~----~--~~~--~ 
.1 .2 .3 .4 .5 

/E - m (Gev) 
- . 

....... p - -- ---.--_._---~-.,..------

-- " , 



( 

. '. 

, 
! 

/ 

Figure 9:6 Tempera ture in the cascade (A=80). 

, 

Temperature determination by fitting an exponential curve to 

the tail of the energy distribution obtained from the cascade ,/ 
./ 

-" 

calculation of the collisiéfjs at 800 A.M"ev oLnuc.lei with mass 

equal to 80. 
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. Figure 9.7 .Number of deltas in the cascade. 

The time evolution of the' number of deltas for tne sy'stem', 

calcium on calcium at 977 A.Mev and zero impact parameter. 

Curve A represe~ts a normal cascade rune Curve B shows the 

number of deltas "a function of time when the participants are 

confined in a fixed volume at thê point, 'of maximum compression. 

Curve C is the same as curve B, but at the time 20 fm/c the 

constraining wall is removed and the participants are allowed , 
to expand ~reely. 
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Figure 9.8 Participants: 'Geometr'y x Glauber type. 
1 

Curves A and B represent the number of part i'cipants as a 

. function of the impact parameter b for the system neon on lead. 

Curve A was calculated using the straight clean-cut geometry. 

Curve B was calculated using the Glauber type theory for a 

collision energy of 2.1 A.Gev. 
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