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The intranuclear cascade is an approximate microscopic model of
74 ¥ - .’*kwiz-

heavy-ion collisions in which thé space-time evolution of the
nucleons is followed "as they collide with one another. This
model is wused: (a) to teét the validity of simpler models as

o _the two-fireball to estimate. the 'validity "of the

model; (b)
assumption of chemical equilibrium and. to calculate tHe total

pion production cross-sections; (?} to investigatqhthe average
~/ 4 ;

primordial charge multiplicity and the number of -participants

as a fuhction of the beam energy.
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La cascade modéle.
g

s ] e .
intranucleaire microscopique

%

approximatif des collisions des ions 1lourds dans 1lequel

1'évolution des nucléons dansvl'espace et-le temps est suivie

au fil des cql;%sions.“ Ce modele e$t utilisé pour: (a) faire

des études comparatives avec d'autres mod&les plus 5imples

comme le modéle des deux boules de feu; (b) &tudier la validité

-

de l'hypotpése de 1'équilibre chimique et calculer la sectionh

efficace totale pour“la production de .pions; (c) calculer la

multiplicité moyenne des particules chargées primordiales et -

Y

» aussi le nombre de participants en fonction de l'énergig de

o collision.
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A cascata intranucleir & um mod&lo aproximado microscdpico da
| ’

-

colis¥o de ions pesados no qual a evolug‘a"o dos nucleons no

espago e no tempo &€ acompanhada a medida que sofrem colisGes
) | ; .
entre si., Esse modélo & utilizado para: (a) estudar a validade

de outros mod€los mais simples como o mod&lo das duas bolas de

fogo; (b) estudar a v%lidade da hipdtese do equilibrio qufmico

e calcular o‘coeficiépte de difusfio total para a produgio de

' \ o
pions; {c) calcular a multiplicidade média das partfculas

carregadas primordiaisa e tamb&m o nlmero de participantes em

fung80, da energia de colis¥o.
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1l - INTRODUCTION

1.1 Heavy-ion physics. .

The original motivation for the study of heavy ion collisions
was the possibility of observing unusual states of nuclear

matter, 'which could possibly lead to the detection of some

[ R .
novel phenomena. There were speculations a decade ago about
s .

the possible existence of exotic phenomena, such as density
isomers, pion condensates (Migdal-78), the quark-gluon plasma

hED

vf(Shuryak-ao), and also about the equation of state for nuclear

g“ﬁatter (Boguta-82) . Alfhough the gqriginal expectations have
’dx; ) ' :

-

/4\\\3pd the Syncrophasotron. (Dubha, USSR) went on stream in their

3

nét,yet been met, the last few years saw rapid progress both in

the experimental and thedretical domains.

- 7

Machines th&t had already become obsolete’ in the fféid of
elementary ?article _physics gainéé- a neﬁ lease on 1life when
they were converted to heavy ion researéh. The centers of
heutron stars and supernovas are thought to conéain nuqleér
matter greatly ‘compressed at high dersities. Laborat&rﬁgdéta,

however, only became available when the Bevalac (Berkeley, USA)

v

.

;

-3
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° . - .
e . . e i
) ,
.



new roles to accelerate heavy ions. Since thén other\machineé
were adapted to heavy ion research (CERN SC, Saclay), new\ones
have been built (Saturne II and_GANIL in France, the Michigan
State Superconducting Cyclotron; USA),'and others are planned
or under constrqgtion (SIS in Darmstadt, Germany, the Numatron
in Magoya, Japan, TIS in Moskow, USSR, the VENUS proposal in
Berkeley, USA) (Nagamiya-82)..The study oflheavy ions has been
transformed from a curiosity.ten years ago.Ento a major field
of nuclegr science today. |

The field of heavy ions is normally divided into different
energy regimes, where differént phenomena become dominant

changing the under}ying physics. The following regions are

recognized (Faesgle§-83):

(a) Heavy ion atomic physics (E < 10 A.Mev).
It is concerned, with such topics as the formation of

short-lived superheavy nuclear quasi-molecules in a

uranium-uranium collision which results in the emission of .

one ot mére positrons of atomic origin (Backe—Bg).
Fusion-evaporation reactions (Roeckl—B?) are used to
produce nuclei far from the region of 'beta stability; the
produgtion of elements 107 and 109 through compound-nuciear
reac%ions followed by one neutron evaporation has - been
particularly successful. One may hopg éoﬁn to reach the

£
expectéd region of long-lived heavy elements with 112 to

114 protons (Faessler-83).

'
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(b) Nuclear physics near the qOulomb barrier (4 - 20 A.Mev).

High spin states present a great deal dﬂ interest for
nuclear‘ structure physics (Henning-83) as the shell and
Coulomb energies bgcom: comparable yith tife rotational
energies. The nuclear shape changes as a function ofatﬁe
spin states and ‘one can measure ' its Trelaxation times
(ﬁorenberg-83). Under certain conditiogs (Ngo-83) the
collision can lead to ‘fusion of the two nuclei with the
subsequent formation of a compound nucleus or fast fission.
Nuclear physics near thglsound barrier (30 L 200 A.Mev) .

Before the completion ;%ﬂthe Superconducting Cyclotron at
M.S.U. tgp study .6f the intermediate region was only
possible ;ﬁ the CERN Synchrocyclotron (Faessler-83). This
is a tra?gition region from low energy phenomena to the
relativistic high energy reactions and where one expects to
see nuclear mattéé off its ground state density at moderate
temperatures anﬁ éntropy‘ (Stogker—8§5. The pSSSibIé
coexistence of dﬁikeaxﬂ liquid and gas phases @aé been’
considered (Gelbke-§3); . one can also distinguish between
centfﬁl fusion-like reactions and the peripheral ones.
Lynen's data may indicate the existence of hot spots in
this energy region (Faessler-83). Experimental data are
availa$1e on pion productién below the free nucleon-nucleon
scattering threshold (Jakobsson-83). ' The low and
intermediate energy regions are being actively studied by a

largé number of physicists (Faessler-83).

[P OR - - - B [P - rattes e 2
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(d)

(e)

d

The participant-spectator region (0.2 - 4.0 A.Gev).

This is the Bevalac physics region, and the one most
chourougﬁiy gfudieq‘resulting iﬁ a great abundance of data
and theoreﬁécal models. The reaction mechapism in this
region \i;/gften thought to be divided into two stageé
(ﬁarwick—82); first a fast energy deposition'accom?anied by
the emislion of fast 1light particles, 'ﬁhich is normally
associated with the participants; it is followed by a
secondgslo; stage ,characterized by the digassembly of the
excited spectator residues. The participants consist of
the overlapping portions of the projectile and target
nucleons thatware mutually éweéf*during the ‘collision. One
can also distinguish between high multiplicity central
events and peripheral ones; in tge‘case of the central
events Qhere one ion}is small and the othe; one large the
accuracy of the rclean-cut participant-spectator picture has

been questioned (Warwick-82). This Thesis is concerned

exclusively with this energy region.

The quark-gluon plasma fegion (E > 5.0 A.Gev) .

Little experimental data are available in this last region
'

mostly from the analysis of cosmic rays (Gyulassy-83). It

is® supposed that as more energy is brought into the

interaction region hadronic matter will finally begin to
S .
boil off; QCE predicts the deconfinement of hqdronic’matter

into a plasma of quarks and gluons at high energy densities
(Specht-83) .- Obviously the study of this region is, of

interest °both to nuclear - and particle physics, thus

: \ ’ ‘ ./
. - X -

—_———
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bringing these two fields together again.’
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1.2 The participant-spectator region.

[

. : %
A great amount of data, mostly from the Bevalac at the Lawrence

Berkeley Laboratory, ( has already been accumulated with
projectiles from pfotons to argon nuclei pnd. energies rangi;g
from 50 to 2100 A.Mev. The'projectilés used are being exﬁénaed
to include the whole éeriodic table, and while most of thé data
obtained up to now consi'ﬁ.‘lb of iAclusive ' méasurements
(Warwick-83), the results of more sophisticatéd 43 exclusfve

experiments are already available and collision energies are

expected to reach 20 A,Gev (Nagamiya-82).

The experimental procedures begin by completely stripping the
pfojectile atoms from their atomic electrons. The resulting
ions are then accelerated and made to collide with a stationary
target. The reaction products can be "detected in a streamer

chamber or altérnatively in counter ‘experiments.

1
)

Streamer chamber photographs provide a very vivid view of the

.results of the collision. There one can easily identify

périphérallcollisions characterized by A a forward jet in the

direction of the beam arising from the fragmentation of the

projectile. Less peripheral.  collisions -show a large number of

]
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jéts at wide.angles but still preSenﬁ°the‘forward,jet as in the’
first case. Finally there are central collisions where the
number of jets is much larger and the forward jet may disap'gar

entirely (Nagamiya-82). .
A N .

Y R

Counter experiments reveal a similar éictuxe: in the rapidity
and transverse momenta plane »(y,gL/mcf target-like fragments

are clustered around the ., target rapidity\ (¥, +0) whereas

projectile~like fragments appear around thé‘point (y?,O). These~” .

are regarded respectively as the target and projectile
spectators. In violent collisions a large number of fragments
are_ spread in the region between these two points. Such
fragments are associated with the participants. Experimentally
the érojectile spectators are confined to a . very narrow angle

around tlhie direction of the beam; the target spectators can be

*7

distinguished from the participants by their small momenta. The
Eermif momentum (270 Mev/c) sets the scale, in a somewhat

arbitrary manner, between large and small momentum transfers

"thus differentiating the participants from the spectators.

Moszhk\data are presented in the form . of inclusive
cross-sections, in which one chosen reaction product Iis
measured to the exclusion of all others tha; may be present.
Inclusive cross-section for particles (protons} piong, ‘étc.)
and composites (deuterons, triténs,( He;%d He-4, etc.) are

found throughout the literature, These are assumed to come from

" the participants {Gosset-77, Sanéoval-so, Nagamiya-81,

Manko-82, Sandoval-80a).

i
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Theoretical developments are keeping the pace with the

¥

avalanche of data. One would expect that a comprehensive:thegory"

collisions- based on Quantum

of nuclear should be
‘\

9

Chromodynamics, which is generally believed to be the correct .

theory of strong interactions. But wuntil’ the mathematical
difficulties of this theory are overcome, if ever, we must
content ourselves with phenomenological models. Thé great

-

complexity of the problems precludes their direct solution in -

fundamental terms. As a result many different models have been
9

proposed which succeed to explain certain aspects of the data,

but not others. Sometimes they complement each other in their

ranges of application or competevzpile incorporating mutually

conteadictory assumptions.

'

Various models are available to explain the data in the Bevalac

region: thermodynamic models, intranuclear cascades,
hydrodynamic models, ‘classical equations of motion,
rows—on-rows model, and others., Of all these models, the

thermodynamic model can claim to be the most widely used (Das

GupEa—Bl). Most existing models in this region are formulated

in semi—clafs;cal terms. The partial wave sums are replaced by
integrations over impact parameters; the amplitudes for two
g

partial waves or impact -parameters do not interfere. At the

nucleon-nucleon level, however, a quantum mechanical

-

description is essential. The semi-classical description may

support from the very high relative momenta

find some of the i

heavy-ions and their constituents, and the short wavelengths
compared with the characteristic distances of the system.
-7 -

e e e e



B s vy
> N

. T ey

e bRy AW T e

r—

s

AN
ot

g TR

O U ——

To

(Fraenkel-=82).

o

ions. These interactions’

There are also final state inter

involve the coalescence of_nucleon§ to

orm composites such as .
deuterons, alpha-particles, -etc., and also,6 the Coulomb-
interagtions that can change the shape of the spectra quite
noticeably for charged pions and to a lesser extent for protons

(Libbrecht-79, Cugnon-81).

At low energies one can as a first approximation ignore ihe
production of: pions and relativistic effects and attempt the
integration of Newton's classical equations of motion
(Bodmer—Bl).'The method, originally developéd for the problems
"of molecular dynamics,' is restricted to non-relativistid
energies (Fraenkel-82). The number of degrees of freedom is

fixed so that pion production cannot be included in the method

(Fraenkel-82).

For high energy collisions the nuclear mean field |is
unimportant and collisiens between nuclei can be regarded as
hard scattering between nucleons. This approximation is the

basis for the intranuclear cascade model, the direct knock—oht°
¥

model, and the rows-on-rows model (Fraenkel-82). Phe direct

)

knock-out “model is the 1long mean free path limit of the

intranuclear cascade model; the rows-on-rows model is a linear -

,cascéde using the Glauber theory to take advantage of the

forward peaked nucleon-nucleon cross-sections at high energies

(Fraenkel-82).




L R
.

In the 1limit 6f very small mean free paths one has the.

hydrodynamical model; ideal fluids are described by the Eulér
equations, and viscosity and thermal conductivity are included
in the Navier-Stokes equation; potential effects can be

accounted for through the nuclear equation of state. The

[3

hydrodynamical model 1is possibly valid only for central
collisions of large nuclei ‘where high densities and 1local

equilibrium are attained (Fraenkel-82).

The thermodynamic model incorporates geometrical concepts

leading to the participant-spectator picture.™Mhe-participants
»

from the target and the projectile are ?ssumeq to fuse
and form a fireball. All points ofhthe available phase space
are equally probable for, the pérticipants (Das GupEaE
there 1s a 1large number of particles the grand-canonical
° ehsembigﬁprovides a suitable approximation {Jenninﬁs-az).
) .
The presenthituation is re "dful of 'the famous parable about
the elephant .and the en blind ﬁen. Comparing the assumptions
and the results of thétvarious models among each other and the
data, one can gain a déeper insight into theitr limitations and

strengths, and thus repach a better understanding of the

underlying Physics.

.
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1.3 Scope of original work in this Thesis.

~

In chapter 2 we continue with a more detailed review of the
theéretical models and other items that are directly relevant
for thislThegis; The original work in this Thesis is found in
chapters 3, 4, and 5, Appendices 7.2.3, 7.3, 7.4, 7.5, and 7.6,
writh the summary  and the @nal conclusions in chapter 6.
Chgbter 3 is concexned with the question of  thermal

equilibration in the fireball type models. Chapter 4 deals with

A

the validity of the assumption of ehemical equilibrium in heav;\\\\\\\\\

ion collisions in connection with the total cross-section for

-

the production of pions. ' 1In chapter 5 we study the average

- . -

primogdiaf-géharge multiplicities and the wvalidity of the

participant-spectator picture as a function of the beam energy.

Y

Se

(a) Fireball type models.

, Cugnon et al, wusing a cascade code, compute the. final
ynucleon transverse momentum and rapidity-‘distributions for
the central collision of gﬁo c§1cium—like nuclei, where
complete isospin degeneracy is é;sumed \(CugnonﬂSIr.
Relativistic. Maxwell-Boltzmann fits to these distributiong
yield @éifferent transverse and rapidity temperaturesﬂ/fg;
existence of these two different temperatures raises doubis

s
about thermal equilibration in the collision.

s

We demonstrate, using the two-fireball mddel, that two

temperatures are obtained quite naturally if there are two

sources moving with respect’to their center of mass. The

v
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.additional assumption of a radial collective flow

) *(Siemens-79) to \;;;\fwe<£}reball model (Gale-83) leads to

=

transverse and rapidity temperatures in very close-

EN
7

; . agreement with those obtained by Cugnon et al.

A

* .

. Ea !

(b) Pion production and chemical equilibrium. . , N
4 . » » -

: ""'i)r ' . s . .
We study ' the total inclusive pion cross-section in the:

,4

: ‘cascade model and the attainment of chemical equilibrium. A

detailed description of the intranuclear cascadg} is given

Y

\
latery suffice it to mention here that it in?Judes, among
: ,1 . [}
Y others, °the following channels for hard collisions:

N+N~-~N+A , and N FA==N + N.

— i
TTTTre——

absorp have chemical equilibrium, In the

thermodynamic model (described\i er) the production of the

deltas is calculated assuming chemic equilibrium, There

%:, has been much debate whether chemica equilibrium is

/

- ’ reached in heavy ion collisions.
}

v ’ ~,

fhe cascade model c¢alcul tépns'begih 'as the two nuclei are
given opposite initialgmomenta and touch each other. 1In
subsequent times the nucleons and the .deltas produced
undergo hard collisions. There is an iniéial diving phase
- . followed by the stage of compression; the number of deltas
is initially zerg aQ§ then begins to increase. For medium
{ - mass nuclei at about 800 A.Mev the collisions are over in

about 25 fm/c. In the model, the number of deltas will not

- 11 -
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change after the collisions cease. 5
.1

.

One‘question is whether the number of deltas approaches its

o

chemical equilibrium value. We investigq?e this by
artificially confining the ©baryons within /;y spherical
cavity at the point of maximum compression and letting the
system evolve for a long time. The number of deltas
fluctuate about a final steady value; this value agrees
with the thermodynamic prescription. This number, however,
is not far fréﬁ the number of deltas obtéinedlfrom an usual

cascade calculation (without the artificial reflecting

wall) where the system disassembles in about 30 fm/c.

v
1

t

-

fhus for medium mass nuclei and for central collisions (for
which this test was done) the cascade model prediction
should not be very different from- the thermodynahic
prediction. For non-zero impact parameters, however, the
number of participants is smaller and chemical
equilibration is unlikely. Thus it is useful to compute the
inclusive pion production cross-sections (this involves
integrating over all impact parameters) using the cascade
model. ¢ Usual cascade model codes employ simple
parametrized versions of the nucleon-nucleon cross-sections
and are valid only for ﬁ = 2 systems. An extended version
devised for this work is applicable to non symmetric
systems. This is described in a later , chapter. This Iis
essential because mucp more  data are available for N # 2

e

systems. We use also more accurate nucleon-nucleon

- 12 -
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(c)

- particles produced  in the  heavy-ion reaction. The
- +

cross=section data taken from experiments. We examine the
sensitivity of the final results on the nucleon-nucleon

input data. There are other tests for chemical equilibri

e
//
e
N e

that can be devised. These are discussed in CEEEEEI/Z:

Average multfblicities and geometry.

The participant-spectator model is commonly used in
relativistic heavy-ion collisions. 1In ??}s model the
overlapping )Larts of the two nuclei for a given impact
parameter form the participants. The éon-overlapping parts
form the target and projectile spectators. The
participants undergo violent collisions and all of the
nucleons are liberated; although some still come out cin
small clusters suchq as deuterons, tritons, etc. The

spectators are only slightly excited and thgﬁ%fore do not

produce many charged tracks. All thebpions must invariably

" come from the participants. ’ —

——

- //
4

The average multiplicity 1is the avérage number éf charged
calculation of this number 1in the participant-spectator
model requires an integration over all impact parameters.
Another coﬁﬁénly used concept’ is the associated
multiplicity, Séndoval et al, for example, measured the
hultiélicity in coiné}éence with tbe 'detéction°of a proton

in a telescope placed at ninet¥’degrees with respect to the

beam direction. These experiments measured the assqu ted

multiplicities for a variéty of projectiles and targe at
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many energies. For a fixed projectﬁlé“’ana _‘garget

T %

combination tneuassbéiated multiplicity‘ increases with the

beam energy and the claim was made ;hat this result is

inconsistent with the participant-spectator model.

. - ,ox

We show that the associated multiplicity experiments do not’

3 »

obviously rule out the validity of the clean cut‘géometry..

Some other dynamic model for pion and composite production
has to be invoked along wiLh the clean cut geometry in

order to compare with the experimental data. The lack of

e

[

agreement could bée due to the éynamiﬁél assumptioﬁs;aﬁd not -

to the geometrical assumptions.‘We show that the simplest

fireball model, which uses the clean cﬁt agaﬁetry, fits the

experimental data guite well although fancier models do not.

fare that well.

)

One-has therefore to look for other experimental data to

check the validity of the geometrical asssumptions. Some

-+

experiments by Nagamiya et al can be used for this purpose.

These experiments (to be described later) do show '~ some

evidence of a beam energy deperdence which is obviously
absent 1in a gedmetrical»model. Some more sophisticated

model is needed.
_ ,
We use a Glauber type model to calculate the average number

of participants as a function of the beam energy. The input

N

for this model is the nucleon-nucleon cross—-section whieh

is energy dependent. The experimental trends are

A
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Lastly, we-use the cascade model to define the participants
and this model gives an -adequate e%planation of <¢he
expérimental data.
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rebroduced although the calculated value of the dépendence

‘on the beam energy is less than the experimental value.
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-~ 2 - THEORETICAL MODELS

2.1 The thermodynamic fireball model.

2.1.1 introduction.

The application of therﬁodynamics to sub-atomic phenomena dates -

back to 1950 when E. Fermi (Fermi-50) developed a statistixcal
model for the multiple production of pions 1in high energy’

nucleon-nucleon collisions. He assumed that, in such a collision

!

the enérgy in their center of mass is feleased into a small
volume surrounding the two nucleons énd&distributed among the
various degrees of freedom available in this volume according

to statistical laws until upon expansion the system Iis

[

converted into particles that fly out in all directions, More

reéently the fireball model for relativistic collisions of

”
A

heavy ions (Westfall-76) was proposed along somewhat similar

“

lines and with the addition of geome"r%cal concepts,

: °

Geometry leads to. the participant-spectator picture. Those
nucleons which 1lie in the overlapping reéions of the two

colliding nuclei interact strongly with ocne another and re

- 16 -
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therefore called the participants; the non-overlapping regions
do not interact with each other and proceed aloﬁ§ their
original trajectories to form ithe spectators. The participéqts
'will concern us most as they are the seat of the most violent
hadronic collisions and where high nuclear densities and high
temperatures are expected. The projectile and "~ target
participants are assumed to fuse completely forming a fireball.
All the energy in the center of mass frame of the participants
is available for thermalization. High number of collisions make
~ .
all points of the {§wailable phaseéspace equally probable.
There is experimental evidence  for muitiple nucleon-nucleon
collisions (Nagamiya-82) and also for the importance gf siﬁgle
nucleon-nucleon collision processes.'After passing thggugh the
point of maximum compression and high densit§ the fireball
expands until the density becomes sb low that-all interactions
cease, Beyond this freeze out point it continues. to expand as a
non-interacting gas. The freeze out déhsity ,,, is Tusually
assumed to be lower tﬁan the normal nuclear density and usually

in the r.ange between 0,04 and'Q.OB nucleons/fm’.

The number of participants can be calculated by numerical
in;egration (Gosset~77) under the assumption of strai&ht line
geometrical cuts or‘a;ternatively ohe can use Glauber theory to
P the same effect £Glauber-70). The clean cut separation‘getween
« participants and spectatorslis obviously an idealization. Some
nucleons are-« likely to scatte; at large angles so that it is
reasonable to expect some degree of communication across the

boundary surface. In. the case of central eollisions of light

" . ) ) - 17 -
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projectiles‘with hea§y targets the valididy of the straight

geometrical cut is questioned (Gutbrod-82). We shall return to

s

this problem - 'later in chapter 5.

<

Protons, composiées (deuterons, tritons, alpha-particles, etc.)
and other Qaré&cles‘originéting from the fireball reach the
detectors. If we Tlimit oursé;ves to collision energies dp'to
about 2.0 A.Gev then the only other particles important enough
to be included in the model are the pion;. Iﬁ is generally
. ‘
assumed that the pions are formed in the @ireball mostly
through the creation and the decay of the dé;ta resonances
(Kapusta-77, Cﬁgnon-BO). The production of lambda hyperons and
K-mesons }s negligible below 2.0 A.Gev. At the critical
density when all interactions cease, the surviving deltas
finally decay into pions and’ nucleons. --Pions, °deltas and
composites are included into the fireball ,Wodel through the
further assumption of chemical quuilibrium (Mekjian-77) . The

fireball then, is assumed to be a hot gas in thermal and

chemical equilibrium (Das Gupta-78).

i

2.1.2 The Maxwell-Boltzm;nn limit. : ‘

When the fireball reaches the critical éepsity fL we can apply
the t%ermodynamiCS of a non-interacting gas. A phése space
calculation is usually "considered very difficult. The
éaﬂonical or the graﬁdégcanonical ensembles pr&vide suitable

aproximations in most cases (Jennings-8l) for systems with a

large numbeér of particles énd for detected particle momenta

- 18 -
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below 1.0 Gev/c. ‘ c

For a given impact parameter b, the baryon number B(b) and the

charge Q(b) of the fireball are determined by geometry and its

-

energy E(b)., and velocity v(b) are obtained .by kinematics

(Kapusta-77). Reﬁativistic mechanics is used throughout. Each
hadronic species in the fireball 1is distributed. according. to

the laws of quantum statistics; in momentum space we have:

~

3 . ' P ’ -1 '
dw _ g.v}(ﬁ)[_’e(\)wﬁ\: —plT ‘] ‘ (2.1.1)
dps - (2eP <

i ¥ .
where m; is the mass, };; the chemical potential, Vv(b) is the
fireball volume corresponding to the ,critical density Pt' T is
the temperature, and the particle multiplicity factor |is

g;= (213 + 1)(25; + 1). Here s; is the spin and I; is the

isospin,. Natural units fi=c=k=1 are used. This expression

reduces in the limit of high temperatures to a relativistic

Maxwell-Boltzmann distribution:

T }
3. . a. . _

A - 9‘ V(b)' 2!‘"/‘l"‘ e

aLP‘ @3y )

%

+ Vg

> ®
(2.1.2)

Upén integration (Appendix 7.1) one o ins the total number of

particles n;(b):

- 19 -
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n:(b)= Z«:(b) hifT ""T K. ( /T) (2.1.3)

and the total energy E; (b):

9:9(b) pife "~
E;(b)= 2—272 e”m?T[tl.(gr“)*

—“:1-:- K,_(—“—“{)] (2.1.4)

~

N
Here Kl-and K, are modified Bessel functions somet%mes called
the McDonald funcﬁiqns (Abramowitz-68).
The assumption of chemical equilfbriuh provides the means to
calculate the chemical potentials for §ll other species present
in the fireball (Reif-65) as a function of the proton and
neutron potentials, €.9., for a given . reaction
N
a A+ a,h, = a,h; then, one  -has the relation
3 M, * agfa = a,f;. The unknown quantities (the fiieball
temperature T, the critical volume V, the proton chemic;l
potentiallfkf and the neutron.chemical potential }L”) are found

by solving the system of equations (Kapusta-77):

E(b)= Z“'\U”E:(H o (2.1.5) |




£ . 2"

Q)= Z (5Y @ (b (2.1.6)

14

O Zn mam

ec \\(5\ i“ Q’) (2.1.8)

The cross-sections in gthe laboratory frame are obtained by

making' use of the Lorentz invariance of Ed’ni/dps, where

EZ = m:' + p" , and integrating over all the impact parameters
“~

{Das Gupta-81)

du. S}

0093 Zvb ds (2.1.9)

-

The contributions to the pion and nugleon cross-sections from
the decay of the deltas (Kapusta-77) are obtained by evaluating

the integral (Appendix 7.2): '

gl T
at’n. b) my am(b\E je.
3 - X d~ A (2.1.,10)
0‘? QPOF PA
A

i
.

- L= 3
were 1 refers to pion or nucleon, E,,; and ?o are its energy and

- 21 -
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momentum _in the rest fra}ne of
‘ 2
Ez‘ = mA(E°.\E 4 P° p)/mz_.

2.1.3 The phase space apprOximati.ef.

the

deli:a ’ ’and

Sometimes it is necessary to do a full phase space calculation

(Das Gupta-8l) . The inclusive cross-sections a

b1

re then given by

o

- the ratio of two phase space integrals (Forest-80):
, ¢

v

d\t. (b) Tt
s p* D

where & and TG are given by:

(2.1.11)

B

(25,
b - Z@,,),]f 0 fi(e-5 )

...

(P J=t J ) Bo,z‘u:a;‘ °88,in,' 5.~'J.Z: , d;f’J

» o -

and

o 4

T = Tl ] J{(zsw) Jg@; 5 () geJ(B.)]_

8(0 i ,,.L, ')"ga,zu.n.-'as,zv.'a.-"g 4 3/’.»"

A good approximation method (Jennings-81)

N

is

is based on the saddle point inversion

(2.1.12)

b 3

(2.1,13)

available, which

of the Laplace

- 22 --




transform. The Laplace transform of the phase space integral

is formally identical to the grand . canonical partition

function. It is very easily Obtained. -The results are more

general, but one recovers the grand canonical resultg,wigp the..

additional assumption that the saddle points of the numerator

[

and the denominator are approximately the same.

. ’ , o

2.1.4 Extensions of the.}i:eball model.

'The fireball model reproduces the ﬂmain“feature§\ of proton
spectra rather well for the coliﬁSions of-heavy ioﬁs. Proton
‘;pectra for the ;ollisions of carbon on carbon -show signs of
anisotfopy in the' centeér of mass frame, while the fireball
model predicts épﬁerically symmetric distribhlions (Das
Gupta-78a) . The fireball model also overestimates the pion
cross-sections by at least a factor of 2. These discrepﬁncies
with the expefiﬁental data motivated further studies and new

elaborations of the basic model, such as, the firestreak model,

the two-fireball model, the implosion-explosion médel and the

two—fireball/blast-ﬁd?é“model.
(a) The firestreak model.
In this model the participants are divided into a number of

tubes that thermalize independently of one another

&

F]

(Myers-78). It is mainly a further elaboration of the

3

geomefrical concepts. This-model conserves angular momentuﬁ
éxplicitly whereas the fireball models do not (Gosset-78).

This feature only becomes important for collisions with

A}

- 23 -
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(b)

o

energies above 1.0 A.Gev ih the laboratory. It predicts
with success the nucleon and the composite spectra
(Gosset-78), but the triton ~cr§ss—sections are grossly
incorrect, while the pion cross-sections are not imp?éved
over the s'imple fireball predictions (Bas quta-al). The
firesgreak médel will not intérest us any further in this

thesis.

The two-fireball model.
The two-fireball model™(Das Gupta-78) introduces collecéive

motions to account for the strong anisotropy shown by the
8
proton cross—-sections in the collisions of light ions. The

fundamental idea of this model is that the participants are

a

not stopped compietely in their center of mass frame during
the collision. Instead they are only- slowed down by some
transparency factor. This means that a fraction pf their

energies is not available for thermalization and remain in

1

the form of"collpctive translational motions. The

one-fireball model is recovered as the masses of the ions
)r)" '
increase and the transparency factor approaches zero. , The

. parameters in this model are determined by solving

wive - .

quftions 2.1.5 to 2.1.8 in the rest frames of each

fireball (Appendix 7.1.2).
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(c) The implosion-explosion model. :

This model introduces fireball explosions that creaté;,‘

blast wave of nucleons and pions in the form of collective

"

outward radial flows (Siemens-79). The particles near the

surface of a hot and dense fireball face an anisotropic
environment. The randomness of their kinetic energies is

thus reduced and eventually the whole mass aciuires an

-

.average outward radial wvelocity V.. Thermal energy 1is

:

converted to work. More energy for the explosion comes from

the elastic forces between nucleons (compiessional forces),
from the reabsorption of pions, and the de-excitation of
resonances (Siemens-79). ’

The distributions for each hadronic species in the frame of
the fireball are calculated from the basic assumption that
in a spherically expanding fireball there 'is 'a local
Maxwell-Boltzmann distribution for each frame moving
radially outwaré with, the average veloc1ty Vr' U51ng agaln
the Lorentz invariance of the product E d n/ dp we
obtain the momentum'éﬁstributions in the fireball frame:

1
1

3 ~Xz
B A ‘ o _
O(;‘?(i} = g‘:;z [’(rx’ ‘Zp ﬂ)éx— (Xz_ +x,+«)ea‘} (2.1.14)

3

where A is a normalization ,constant, T} = 1/$1 - Vf‘,

= (Vrp/T, and x, = Y.E/T (appendix 7.1.3).

The parameters are obtained as before from the equations

- 25 -
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2.1.5 to 2.1.8 for the conserved quan;&é?%s. Siemens And
Rasmussen find that about one ha}f of the available energy
appears as translational kinetic energy of expansion in.the
collisions of neon on sodium fluoride at 800 A.Mev. This
model leads  to lower apparent - pion tempe}atures, as

PNt

saggested by the experimental data-(siemens—79).

The tyo-?&reball/hlast-Wave model.

In this model the cross-sections for pions, protons and
deuterons are constrained from the beginning --to their
correct valggs.‘ This amounts to fixiqg two ratios:'ob/d;
and Fﬁ/da. fhese are.obtained by vérying the two parameters

of the fireball model: the critical density f‘ and the

. temperature T (Gale—833.

‘.

The temperature T is adjusted by° reducing the amount of

a

energy that 1is available for thermalization. This, of

course, requires the introduction of collective motions.

Accordingly, translational collective motion is simulated

by using two fireballs. But this is not enough, so that it

is also necessary to introduce radial c¢ollective flows of

the type used in the implosion-explosion model.

A relatively large portion of the energy goes into the

radial expansion making this effect far more important than
the translational <collective flows. The latter, howgver,
are still necessary to account for the anisotropy of the

spectra in the center of mass frame of the participants. In

&
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theory, but a simulation. One important characteristic of the

3\ B ' .
chapter 3:§%/c6ﬁ§ére the predictions of this modelewith the o
- B . / ~
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results of the-cdascade calculations. . ;

-
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2.2 Thélintpanuclea;”cascade model.

5

-

2 M -
. ™

v — o’
P R i
[ e o

2.2.1 Introduction, : DR
: ]
The cascade model has been used in recent years with great

success., One might . say  that it is neither a model nor a

A

cascade model is the absence of adjustable parameters, It is a L.

microécopic model, and the only input data needed are the

nucleon-nucleon cross—s?ctions. Thus each collision.is treated
I

RS

-

according to the experimental nucleon-nucleon cress-sections, —-7 _

but between-collisions all the hadronic species piesant follow

*

classical free paths. o

-There are mgny different cascade models, almost as many as I

B

) ) i
there are researchers in this field, and they do not form a

, »
single approach. All cascade models, however, can be grouped o

into two categories: in the first one the collision is

'
— e

described as a series of binary nucleon-nucleon coll%éions; the

other describes the interaction of a colliding nucleus with a.
medium characterized by |a mean free path, the procedure |is ;

repeated/ with the other nucleus, and the results are

© %
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, . symmetrized in the end (Cugnon-82), In thissthesis we will be \

exclusively concerned with first type.

> " ¥,

@,

&’
i : ’

The cascade model has been used. in the range of 200 A.Mev to —

s

2.0 A.Gev. A colliding nucleon must- 'bé  able - to resolve

: . ] B ) / L
o ™ individually the nucleons, in t/h,s//o;:her nucleus for a classical. .

% \ o ,,,-r“""’y ‘ . . e - ‘
N description to be valid. This means that™ the  De Broglie T .

[
y -

~wavelengths must be sma<l/l/eoﬁ>§red‘frwith the nuclear dimensions,

and that sets the _lowé-r. ~ limit of appulicabili"cy. Above

2.0 A.Gev one has tcgyj.éer/’ the production of other hadronic,

\ [ - o
& A

species besides the pions and thHe deltas, but ultimately it is

. - . the need tofinclude the quark |degrees of er‘ A

FEE—

. . \ -
‘energiesb that may set ~the upper limi}jgs. The#ggpaiwtion”s of

U

{ N ' validity are still deb/é;g,ble%ﬂugﬁ?ﬁ-h) . .« - -

”/ ) N \
s

_— v
ar -

e T ‘
o d Y

// Other approacles closely related tc\j\ the cascade are the ‘rows on - {
. - - \ N ol

rows and the clear knock-out models. The rows on- rous model - v
based on Glauber theory, " 1is essentially:a one. dimensionéfl

cascade, but it disregards the space evolution of the systenm;
7 ° ;
,/h/nﬁc/léons"interact within tubes of cross-sections G, and the
//' » . . . . " ' .

, 4 - tubes.do not _interact with each other (Hufner-77). The clear

-~ knock-out model puts in evidence the importance of the first
" hard scattering as opposed to multiple scatterings. The

' _ hydrodynamical model requires high densities and small mean i

" free paths (Stocker-83), and the fireball model does not i

L d

‘ ( ‘ include the time factor at all. % . y

! . I e a §
. © b 3

- The distinct advantage of the cascade model, despite its great L
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éémputational effort, 1lies in the possibility of calculating’
non-observable quantities, such as the maximum densities
reached in the collisions, or,; in the calculations of
off-e.quilibrium situations, , fluctuations, and finite- particle

o
number effects (Cugnon-82).

2.25.2 General- description. -
In the simplest cascade 'model each nucleus is represented by a

collection of hard spheres of radius R *= (GH/W')V" and the time

- evolution of the system follows a classical deterministic path,

which amounts to the solution of the Classical Equations of
Motiog__ (Nagamiya-82). This apprdach reproduces the qualitative
»trené(‘si::of the data, the largest discrepancies being at forward
angles and low gene-'égies‘ of the detected particles. Such a
simplg model is restricted to low collision energies where pion

. : ' « ot & 3
production is not a significant factor.

We préseng: a general description based mainlyRon the Cugnon
Monte .Carlo models (Cugnon-80, Cugnon-81). The calculation

follows the collision of two identical nuclei in theix center

. : :
of mass system, Relativistic mechanics 1is used. <Complete

isq*'spin g"egen.eracy is .assumed so that only one chargelessf type .

A% 1Y

of nucleon, of pion, and of delta are considered.’ This
N B
simplifying agsumption fhestricts some results to charge

|

symmetric sxstéms. Appendix 7.7 presents the mathematical

det;ails of "a simple wersion of the Cugnon code that we have

used in this ‘work. In chapter 4 we describe an @xtended version
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of this code where we introduce the isospin formalism that

allows the study of non-symmetric systems, and also new revised
nucleon-nucleon cross-sections. Much of the experimental data

available is for the collisions of unequal nuclei with'N # 2.

Each nucleus is‘represented by a sphere of radius 1.12 1&3,
where A is the mass number. Point-like nucleons are assigned
positions according to a random uniform 'distxibution in the
target and .the projectile rest frames. The nucleons are also
aséigned ‘random initial Fermi motion (Cugnon-8l1). If field
effects are not included at the same time there is the
?nconvenience that the nuclei disassemble spontaneously even in
the absence of any collision. For this reason ' the simple
version used in this work does__not include the initial Fermi
motion, since we also do not inﬁ%oduqe field effects. Although

Fermi motion and field effects are ‘important physical

characteristics of nuclei they do not affect sighiﬁicantly the

‘results we are interested in this Thesis. Binding energy is

neglected in some models (Cugnon;BO, Cugnon-8l). Cahay et al
(Cahay-82) introduce field effects using both scalar and vector
potentials. Mean field and Pauli blocking effects have also

been introduced in the context of the ' Boltzmann equation

(Bertsch-84)., Pauli principle effects are mocked approximatély

by forbidding soft collisions when the total center of mass

energy of two colliding nucleons is below 1895 Mev (Cugnon-81).

Y

- — .
-
ki

Single pion production in nucleon-nucleon collisions is

introduced via the formation and decay of the delta resonances.

- | . - 30 -
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~ The deltas are usually assumed to have a mass distribution
(Cugnon-81) . The behavior of the deltas in compressed nuclear
matter and éheir Eross—sections are uncertain. Thé elastic
D+ D »A+A and N +A » N +A cross-sections are assumed
to be the same as %or the nucleons in free space. The inelastic
N +A4 »N + N cross-sections aré\obtained by detailed balance
from the corresponding N'+ N N + cross-sections. Cugnon
et al (Cugnon-8l) assumes a delta lifetime mﬁch larger than the
collision time: the surviving deltas at the end of the
collision determine the number of pions. This model of the
delta behavior is retained 1in the version of the code used
here. Other cascade coaes, such as the Berkeley one, include
further channels: once formed the delta can decay into a
nucleon and a pion, which can subsequently ‘Be absorbed by
another nucleon to form another delta. The £inal pion
multiplicities are hot affected strongly by the addition of
these other channels,. . .

The nuclei are Lorené; boosted to the desired collision energy.
The calculations begin by allowing all the nucleons to move

freely with their initial momenta. Their positions and momenta

are updated at regular time intervals. When two nucleons pass

each other at their closest distance  of approach, and this

distance is below a minimum value, the pair is allowed to
scatter. The different channels available are chosen by Monte
Carlo sampling of the ratios of tﬁeL corfesponding
cross-secéions. The calculations ?ontinue until the number of

collisions falls below a prgdétermined value or until a time

‘ - 31 -
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limit is reached (Cugnon-80). Each cascade run is repeated
with different random numbers from thirty to forty times in

order to obtainusuﬁficient statistics to calculate the average

values of the quantities of interest. Wefintroduced into the

-

simple version of the code the calculatiion of the standard

deviations of the means.,

2.2.3 Some results of the cascade.

Inclusive proton cross-sections are}, well reproduced in the

carbon on carbon, neon-on neopn, and argon on argon systems at
800 A.Mev, buty” there is a discrepancy in the pion
cross~sections (Cugnbn-BO). For ﬁhe system calcium on calcium
at 800 A.Mev the average number of collisions is 3 and that fo;

1

neon on uranium at 250 A.Mev is about 5 (Cugnon-82).

The calculations have algo been analysed . in terms of
interacting clusters: members of different clusters intéract
only weakly with one another, the cut off being the Fermi
mOméntuq (Cugnon-8la). The separation between participants and
spectétors appears to follow closely the clean-cut geometkiqal
‘picture, impl&ing small transverse momentum transfers“probably
due to the forward-peaked nucleon-nucleon cross-séctions

(Cugnon-82) .

The participants, wusually divided into 2 or 3 clusters, are
subject to strong"compressién and high temperatu#es for a very

short time and expand rapidly indicating a possi&le blast wave
N "“\
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(Cugnon-82). The existence of a sidesplash and of a strong
shock wave are predic ed for the collisions of neon on nickel
—.at 250-A.Mev (Cugnon-41) . -

[

/ -

i

?
2.3 Thermal and chemical equilibria.

The cascade model offers the opportunity to study the evolution

of a relativistic heavy-ion collision (Cugnon-8l1): Cugnon et &l
studied the central collisions._of two calcium-like nuclei in
the energy range 0.4 - 3.0 A.Gev to investigate if the system

.

reaches thermal equilibrium at some time during the collision:

(a) The matter density evolution is plotted both in the beam
direction and in the transversal plane. The matter.- density
here is defined as the baryon number density. The cascade
calculation shows that at 1.0 A.Gev the nucle;r matter is
compressed in the beam direction, gradually passing"through
a maximum at about 8 fm/c, when the shape of the system is
quite oblate, then decompresses very fast becoming

" explosive in all directions. This picture is qualifatively
the same at 2.0 A.Gev, but all phases are shortened a? the
energy increases. At the point. of maximum compression the

system is significantly slowed down, but the nucleons have

large random velocities. “

(b) Rapidity and transverse momentum distributions of the

€
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barions show clear changes from the initial ones. The final
spectra appear not to be fully thermalized showing remnants
of the initial opposite flows. The spectra are fit with

relativistic Maxwell-Boltzmann distributions to extract

transverse and lqngitudinal temperatures. 'The latter are
found to be systematically higher than the formex,
indicating the possible lack of thermal equilibration of

the system. The asymmetry parameter defined as

(2.3.1)
N ,

:

i,e., the ‘;atio of the expected values of the sguares of

- the transverse and the parallel - momenta in the center of

mass frame of the system, is equal to 2 for complete

thermal equilibration. The calculated values in the cascade

'

3m9de1'ate much lower and closer to 1, indicating again the

possible lack of thermal equilibration of the system.

4 T

(c)*Pion multiplicities dre overestimated. The pion spectra
yield different transverse and longitudinal temperatures,

both lower than the corresponding ones for the baryons,

indicating again the possible lack of thermal

equilibration. ‘ :

®

~

* H ~
Py

We return to this problem in ‘chapter 3, where were cOmpare the .

results obtained by Cugnon et al with the two-fireball/blast

wave model and show that these results can be reproduced very

.
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closely by the thermodynamic model with collective flows.

One of the basic assumptions of the thermodynamic model is that

the participants reach chemical equilibrium at some point
during the collision (Mekjian-77)., This simplifying assumption
has been the subject of much investigation by various authors.
One study (Cugnon-81) investigates the time evolution of the

number of deltas and the pion multiplicities within the

w

framework of the intranuclear cascade. They find that the
i . )

number of deltas' increase almost linearly during the diving

t

|

phasé, remains almost constant during the phase of maximum

compression, and then decrease slowly as the system expands.

At the stage of maximum compression the equilibrium number of

deltas (Appendix 7.8.1) is given roughly by

Noe f4 0 (s -wy)fr (2.3.2)
Ny | \

s

They conclude that the final pion multiplicities contain

information from this stage of quasi-equilibrium before the-

system decompresses,

Another study of' the chemical evolution 4in an expanding
fireball (Cugnon—83i shows that the chemical abundances may be
very’ﬁég from thgir equilibrium values. The model used assumes
a sp%%fécal' fireball, characteriéed by a single temperature,
where the abundances are determined from the equation for

chemical evolution:

o iyt o — % e a PO e o
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A

as the fireball is allowed to expand with a rate consistent
with the cascade calculations. V is the fireball volume, P‘ is
the particle density for specieé i! L. and G; are the loss and
‘gain terms respectively. In a fasi/éxpan§ion the reaction rates

can be quite different from their e&hilibridm values.

Equilibrium rate cglcuiations (Har;iL—84) show'that thermal and
chemical equilibrium are closely approached during the stage of
maximum compression and that the pion plus delta abundances at

this stage become the final observed pion multiplicity.

In chapter 4 we define carefully the equilibrium situation
)
within the intranuclear cascade code and show that the

participants can approach chemical equilibration very closely

at the stage of maximum compression.

)

N Ut

A

2.4 Average multiplicities and g;ometry. Z
Multiplicity means the number of charged particles emerging z

ZIom an event (collision). The analysis of individual events ?

' can be pe&formed eith;r by using a streamer chamber, ;

/ photographic emulsions, or other 4f detectors. . :

&

R PR

It is necessary to distinguish between the primordial charges
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and ~the measured charges. Suppose that. the projectile
contributes Q, protons and N, neutrons,.” and the target
contributes Qp protons and N, neutrons, to the participants. In
other words, the paréicipants have Q = Q, + Q; primordial
protons, and N = N, + No primordial neutrons. As a result of
the collision oné\\yould see aA number of proton tracks, of
deuteron tracks, etc., as well as pions. From t@ﬁ principle of

charge conservation we have:

Q = -Y‘?i'“d.‘\’“_k'f':)(’)\‘)“{"'mk}'\'+Y‘“.,"X“" (2.4.1)

In a multiplicity experiment one measures typically instead Np .

' 3 //
t my + N+ ong Nyt ... Nt D It s then clear that the
measured multiplicity is a function both of the geomet;y/;nd
the dynamical assumptions regarding the produésié; of
composites and also of piong. The average charge multiplicity

is given by (Gosset-77):

§ e (b 2ol

(HS = | | K\ (2.4.2)

Vawb db | .

where ng (b) = no(b) +.ny(B) + ny(b) & ny(b) + ... + n 4b)

n“be. Gutbrod et al &(Gutbrod-78) measured the associated

charged particle multiplicity, which is defined as the number

of charged particles measured only when there is at the same

time the detection of a charged particle at 90 degree to the

beam direction in the laboratory - frame. The trigger particle

- 37 -
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can be a proton or any other charged light'fragme;t. This puts
an extra bias towards centxal collisions since 1in such
lcollisions more charged particles are produced and hence there
is a greater probability of having a charged particle at 90

degrees. The assoctated chérged particle multiplicity thus

.measures (Cecil-79):

Moy = (2.4.3)

The rise of the associated multiplicity with the beam energy

for the same projectile-target combination has been advanced as
a proof that the simple geometrical clean-cut
participant-spectator mqdel fails {Gutbrod-78, Sandoval-80).

-~
It is now clear that the associated multiplicity tests

]

combination 'of, geometrical and dynamical assumptions, since the

a

number of charged particles depe?ds not only upon 'the
primordial charges but also upon the model employed for
c;mposite and pion ﬁroducéions. In order to test the geometry
alone we have to compare primordial charge cross-sections. It

is calculated following equation 2.4.1 (Nagamiya-81):

- ‘ (2.4.4)
O‘Q = z fzt N
- -

.

~

Assuming the colliding ions to be spheres of constant density

the simple geometrical model gives a vgré simple answer for the
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primordial charge cross—section: .

.2 '
Oa = n'f.,"(Z-? A-\n{z'f‘ %.,t A—;{‘> (2.4.5)

The dila of Nagamiya et al (Nagamiya-8l) can be used’ to test
the constancy of thi7 figure. This data, however, is not ‘always
sufficiegt because {the cross-sections for positive pions are
not measured in 'égme cases. Nonetheless it 1is obvious that
Z?isyuihas some ’depéndence 6n‘ the incident beam energy; angd
ﬁence the participant-spectator model has to be examined more
carefully. This model may still be wvalid, but the independencg

of the straight line geometry on the incident energy assumed

previously may have to be given up.

The cascade model subports the participant-spectator picture of
high'enérgy collisions. This is clearly seen in the collision
of two calcium-like nuclei ag 1.0 A.Gev (Cugnon-8l1) from the
contour plots of the matter density in the reaction plahe,
However, theie is no clean-cut separation between the
participants™ and the spectators as the former continue to
expand.

The equidensity curves can be fitted well by the sum of a
central Gauésian and .two Lorentz-contracted Gaussiaqs

(Cugnon-81):
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i

where AP' Ly X, , 2 , a are adjustable paramefers, XY is the

Lorentz factor for the center of mass of the nuclei, and A is

the total nucleon number. AP is fairly constant, r,, z, , a are

linear functions of the time, and x, increases slowly. The

spectator velocity 2z, is close to the velocity of the nuclei

v

before the collision. The increase of x, indicates a small
sidesplash (Cugnon-8l1). The number of participants Ap is always

smaller than its clean-cut geometrical counterpart.

A similar equation holds for the puclear charge density
(Cugnon~-80a) showing egpansion velocities of about 0.4éofor the
participaﬁfs. Again the participanE charge is less than that
calculated from the clean-cut —éeometry. This ,time-dependent
nuclear chaige distribution 1is used to calculate the final

state Coulomb distortion of the pion and the nucleon spectra

(Cugnon-80a),

The participants are further analysed in terms of clusters

¥

(Cugnon-81la). Membefs of the same cluster are linked by

violent interactions, whereas the connection between members of

different clusters is very weak. An interaction 1is classified

as violent if the four-momentum transfer is larger ‘than a cut

3
v

off value, which 1is typically taken as the Fermi momentum.

Central events contain on the q&eragq‘ about 3 clusters,
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3l Introduction., C . -
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# °

We address the problem of thermal equilibratipn in heavy-ion

collisions by comparing two models with’fundamedtally different

'

basic assumptions: the thermodynamic fireball model, and the
'f intranuclear cascade model. The' first one represents a
macroscopic appranhLthile the later is a microscopic model,

The thermodynamic models contain as a basic postulate the

-~ ; o

assumption that the participants can be described at the
K /

freeze-out point as a non-interacting relativistic gas in
J 1

thermal and chemical equilibrium; ' they may also include
longitudinal and radial collective flows. The cascade models

onh the other hand contaiﬁ no assumption or constraiﬁt regarding

E - conditions for equilibrium ‘of any kind, 1limiting itself to)

= B follow the individual interactions of ité constituents to the
final stage of the collision. This feature of the cascade
model s nake thém particularly suitable for the descripéion of

\ ' ) .

off-equilibrium situvations. »

The ~ results of the cascade calculations resemble the
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, experimental data in the »seﬁse that they present the same
'"i . cémplexity and require extensive treatment “Qefgge dgne can
éx&rac; some physical results from them; it 1is also difficult
to trace %'Ealculated result to a particular physics input.- It
is useful therefore to compare this model with ’“simpler more
transparent models, such.as the thermodynamfc fireball models.

s

9
]

e

Cugnon et al (Cugnon-8l1l) examine the collisions o two
c

calcium-1like nuclei, where coﬁplete charge degenera is

D

‘assumed, at zero impact parameter (b = 0) for various collision

energies. only chargeless nucleons " and ch5£geless delta
resonances aré included in the calculations. The. chargeless
pions are produch from the sugsequent decay of the deltas at
{ ; the freeze out stage of the collision. The cascade code
- (Cugnon-81) already describéd in Chapter 2 includes the initial
Fermi motion of thewnucleons, but does not take into account
ﬁady field ‘effects ‘at the same time. This way the nuclei tend to
' _ dissipate even in the absence of any collision, but ‘gnis
expansion fs slow enough to h;ve only a minor influence on the

» results. | '

| -~ .

Cugnon et al, using their s cascade code, calculated - the final

¢ rapidity and perbendicular momentum distributions, dN/dy and

L}

dnN/dp, , both for Fbaryons (nucleons plus épltas) -and for pions

in the center of mass frame of the two nuclei. The rapidity of

&

a particle has a very simple tranggormation property between
L different Lorentz frames, which makes it a popular variable to

f replace the parallel momentum p, - In relativistic mechanics the
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rapidity y along an axis is defined as

Y. = ‘o:'ng Exh : C(3.1.1)

E—h \

»

for a partiéle of energy E and momentum p with projection Py

$
along the axis and P, in the perpendicular plane. It can be

shown immediately, using the Lorentz transformation for the

energy-momentum of a particle, that the rapidities in two
Y * e
different frames are connected by the relation:

¢

* |+\)¢ ' (3.1.2)
=4 4+ L :

where Ve is the relative velocity/g; the two frames.
They fit these distributions with appropriate relativistic

Maxwell-Boltzmann curves and extract rapidity and perpendicular

- momentum temperatures. Different températures; result in each

case (Table 3.4.1). The uncertainties in the rapidity
temperatures are between 20 and . 30 Mev, and in the
perpendicular momentum temperatures-are about 10 Mev. These
results are clearly conflicting withathe predictions of the

one-fireball model. This model predicts a single temperature

(Ty= 7)) -
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3.2 Firgball typé models,

We study the collisions of two calcium-like nuclei at zero
impact parameter (b =0) for the projectile energy of
1.0 A.Gev, ﬁsing fireball type models. Likewise, we ipclude
only .chargeless nucleons and chargeless deltas in the modelé;
in the freeze out stage of the collisions the deltas are
allowed to decay into nucleons and pions., The formation of
composites is also not taken into account so that the results
may be comparable with the cascade model caléﬁlations’of Cugnon

et al. . ..

In the simple one-fireball model each hadronic species "is

distributed according to a relativistic Maxwell-Boltzmann

distribution:

O\\H L }\fr ‘IKMJ‘-\-P ‘ i }.2.1)

TS (Slw)’

where m: is the particie mass, }L: is the chemical pot;ntial, V.
is the fireball volume corresponding to the freeze out dénsity
P" T is the fireball temperature, and the~mu1tiplici§y factor
g; = (21; + 1)(28; + 1) takes into account the particle spin §;

and the 1isospin Ij. There are three unkno&n parameters: the

nucleon chemical potential /u“, the firepall temperature T, énd

- -
-~
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the fireball volume V. The éhemieg} potential of the deltas is
obtained from the nucleon cheniical ﬁotential by the law of
chemical equilibrium, as for example, the reaction
N +N-=>N+A leads to the relation }#A =/*A for“ the delta
chemical potenfial, The unknown parameters are determjned by
solving the system of equations 2.1.5 to 2.1.8 for the
consérved quantities (the energy E of the fireball, its charge

- Q, and its baryon number B), and the freeze out density /E.

‘

L4

The rapidity distribution ‘is obtained from the relativistic
Makwell-Boltzmann  distribution in. momentum i\space by
transforming the variables (RL' p“) to (E, y), and integrat?ﬁg

over the“particle energy (Appendix 7.3): .

N dn.  WT a2 castig) 4} e ,;,M,:, '
‘ 0\‘} Qw’K(“V\[C ‘{\ ] w’y \ 3,2.2)

~

The perpendicular momentum distribution is obtained 1likewise

from the Maxwell-Boltzmann distribution in momentum space by
. ¥ u N +

"

direct ~integration over the “parallel  momentum p,

(Appendix 7.4):

B L S v R €3 "2 MK

) AR Wi, ()

Here K, and’ K, are modified Bessel functions known as the

MacDonald functions.
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These two forms can be .used to extract the rapidify and the

perpendicular momentum temperatures .by a least squares fit to

the corresponding distributions obtained from other models such
]

as the _cascade, the two-fireball, and the

two-fireball/blast-wave models..

3.3 The two-fireball model.
- /
The simple one-fireball model ptedicts spherically 'symmetric
distributions. However, the spectra from 'the collisions of
light nuclei, ;such as carbon on carbon, show signs of
anisotropy in tﬁéir center of mass frame, This means that the
téfget and the projectile participants are slowed down
. significantly during the éollision but still present remnants
of their initial collective flows aloﬁé the collision axis.
Such a situa;;Bn can be suitably represented by assuming that
two fireballs are formed instead of only one, such that they
retain some of their initial momenta beforelthe collision. The
momenta after the collision is related to the momenta before
~tﬁe collision by the so called transparency factor

(Appendix 7.1.2):

%

- Py = e.P; (3.3.1)

where %: is the initial momentum of the nuclei before the
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(J ~ collision and E; is the fireball momentum, both in their center
of mass frame. The transparency factor e is a function of the
aJérage number of nucleon-nucleon collisions during the

. reaction (Appendix 7.1.2):

0.4Y 40.6)3
.55 ! (3.3.2)

i

e

Here ¥ is the average number of nucleon-nucleon- collisions

IR

that a nucleon suffers during the reaction.

The introduction of <collective translational flows into the

”fireball yodel reduces the degree of symmetry of the momentum
| distributions., In particular, we can expect different
properties alopg\Fhe collision axis and its transverse plane,
Thus the two-fireball model can 1lead to different apparent
lohgitudinal (rapidity) and transverse .temperatures as we shall

see below. The basic features of the cascade calculations are

already apparent in the two-fireball model.

~\‘Q 1 - :
We produce a two-fireball calculation at 1,0 A.Gev and =zero

impact parameter, including only nucleons and deltas. The pions
are obtained from the dicay‘of the deltas in the freeze-out
stage as in the Cdgnon code. The two-fireball model assumes
that each fireball is in thermal and chemical equilibrium with

.

a relativistic Maxwell-Boltzmann distribution holding for each
4

77\\\\\\\\\\\one of the hadronic species present. Here the parameters

(chemical potentials, temperature, volume, freeze out density)

3w et sl

) ~ | | - 48 - i
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are defined in the rest frames of each fireball., There is a
single temperature for both fireballs and it does not gnatter if
the two fireballs are separated from each other physically in
space or not. Equations 2.1.5 to 2.1.8 for the conserved
quantities are written in the frames of each fireball for

simplicity. The thermodynamicaf” calculation is essentially

9

identical to th§ case of the one~fireball model, but now the.

energy available for thermalization is reduced by the amount
that remains as collective translational motion along the

Al

collision axis.

The Lorentz invariance of Ed}n,;/dp3 allows us to calculate the
rapiditf distribution in the center of mass of the two
fireballs. A change érom the cylindrical coordinates (%_'R\)
to (E,y) leads to the integral (éppendix 7.3.2):

El

0a
%
An, aw Al
iy ) B £ 3.3
. v E_w‘.\{
. Mﬂxﬂmy‘

The starred variables refer to quantities in the center of mass
frame, and' the others to the fireball frame. Each hadronic
species in the fireball 1is distributed according to the

Maxﬁell-géltzmann law. Transform the variables in the fireball

frame to the center of mass frame, introduce the notation '

. . - 49 -
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473 = Coth y* 1 Vg wule y¥ (3.3.2)

integrate and add together the distributions for each fireball,

We get finally (Appendix 7.3.2):

i
dw  _ Ve T3 % u:mb*ﬂy— § -
e B et
Eg\’;ﬁ‘p é%‘f‘q’,

. o A (‘“:ir-ﬁ’* \S

(3.3.3)

e

The surviving deltas at the freeze-out stage decay into
¢ . :
nucleons and pions. The pion rapidity distribution is obtained
frgm equation 3.3.1, where now ‘the integrand contains the pion

distribution Ed’n;/dp’ in the fireball (Appendix 7.2):

) y LR
P

w &M EX Ml
I " hteiy () 35

where we use the notation
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o3

Wbo 4,2 WaELl x} |
e (3.3.6)
[w\‘*'r - w T YE)

[

X W ?., B TR TR - k
(s A - —_— (3.3.7)
ex{;’ '){. 7T $'E ‘

The integral above 1is evaluated numerically for each fireball

and the results are added together to produce the final

E g

distribution.

The perpendicular momentum distribution is calculated by
projecting the Maxwell-Boltzmann distribution into the
perpendicular plane..This is achieved by integrating over the

parallel momentum. Since the perpendicular momentum is not

~

affected by the Lorentz transformation we can write
o

(Appendix 7.4): —

' dM.{ 2 % J\‘\
—— T L (3.3.8)
‘M’i . P.x dg* E\\ :

- ‘ o~

The joint distribution for the two fireballs is: - o
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The Same reasoning goes also for the decay products of the

deltas, but here again the integratioh must be evaluated

distribution for the

»

numerically. The perpendicular momentum

pions is (Appendix 7.4.2):

o4 MAEO;
- E
dw;, _ G,V Pajr ¥ \ Lo TwAT
I ‘“_a 'QJ PL E ) . ~"v"f‘
] > :
, | N
“ T W E‘ N . 2 . -
[ & ( 2 ‘;‘E +T>%ME_- Mal ol YaRE | (3.3.10)
P Lowh wWT W WeT
where we substitute p = (p:' + p\:\)""1 and E“:f;: m? + pg'.
‘ | o
We calculate the rapidity and perpendicular momentum

" distributions for the baryons adding together the distributions

for the nucleons and the delt;s. We compare them withh the
corresponding Maxwell-Boltzmann forms (equations ;.2.1? and
3.2.2) and determinf the temperature_parameters in th%gg curves
by the least squares metﬁod. We do the correspondiné
calcu}ations for the pion distributions. Different rapidity
and‘perpendicular momentum temperatures reéGIEffn each case, i

both for the baryons and for the pions (Table 3.4.1). This

prediction of different temperatures indicates only that some




[P G

longitudinal collective flow remained after the collision; the

lower pion temperatures, however, are due to a kinematic effect

reflecting the smaller pion mass.,

",

3.4 The two-~fireball/blast~wave model.

The two-fireball model above reproduces the main features of
the Cugnon c?scadé yielding differeﬁt yltransverse " and
longitudinal temperatures both for .the baryons and for ‘the
pions. The Cugnon cascade predicts a transverse temperature of
100 Mev (93 Mev for the two-fireball. model) and a rapidity
temperature of 130 Mev (117 Mev for the two-fireball model).
For, the pions we have 82 Mev (84, Mev) and 100 Mev (116 Mev) in

the same order respectively.

‘The two-fireball model (like the one-fireball modél) has the
defiéiency that the number of pions predicted is too high. Tﬁé
number of deuterons and protons are given quité adequately by
the model. Now the number of pions and deuterons depend (in the
thermodynamic model) upon “two parameters: the freeze out
density f° and the’temperature T. in garlief calculatioqf (Das
_Gupta—79) in tt;e two-fireball m.og\el the value of P¢ was’ taken
equal to 0.12 ﬁ?z'. VThe value of T was nat an adjustable
parameter; it depended upon the beam energy. Not all of the
beam energy in the center of mass was converted into thermal

energy; some longitudinal velocity remained and the energy

’
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. . . /
associated with this longitudinal velocity was not available
for thermalization. The final 1longitudinal velocities are not
really free parameters of the model; they can be deduced’from
"high energy pp data and in any case, the experimental data on
proton anisotropy put severe limits on the  amount of

longitudinal velocity that remains.

“

To resolve the problem of overestimation of pion production one

can take the following point of view: the two determining
-y} ) N B N R ” N

*fquantitles fc,and T in the two-fireball model can be fixed from

~the known experimental ratios Q/G‘& and Q‘P/G‘K. Since there was

never any difficulty in obtaining the correct U} this would

[t

mean that one has the correct total cross-sections for protons,

deyterons and pions, the three most copious species produced in

the Bevalac energy:-regime. )

The ’température so deduced 1is 1less than the temperature

¥

obtained in the original two-fireball model. This means that

some of the beam energy is transformed into collective energy

which is other than longitudinai velocity. ﬁollowing Siemens
and Rasmussen, this 1is taken to be an outward constant radial
veloc;ty in each of Q%e two fireballs.: a =
The particles near the surface of a hot andjaé?se fireball face
an anisotropic environment and consequently ?he randomness of
their kinetié energies is reduced resulting iA'a net collective

outward radial flow with an average radial velocity V.. The

basic assumption here is that there is a Maxwell-Boltzmann

- “ S SR - S

v

P ekl

L

e e

T
L

o 4K
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‘can be written in the radial frames for simplicity. The

distribution fo; each hadronic species in the fireball in all ‘
frames moving radia;lj outwards with the expansign velocity V.. : /%"‘
The Lorentz invariance of the product Edang/dpé allows us to
obtain—the -momentum distributions in the rest frames of the

fireballs.(Appéndix 7.1.3):

e , Wifr ) 2y N
d\\\-\ %\\JYfQ x —l s <
= - - \
3 TR [(Za-z« )™= (T2 4% +1)e ) xx, (4D

Here the gamma factor W} = 1/]1 - V?, X, = 7}pr/T, and X
X, = ‘\(rE/;I'. |

Th; introduction of both translational ‘and radial flows'}nto
the fireball model allows for the reduction of the amount of
energy thatigis availéﬂle for thermalization, thus permitting
the variation of the temperature parameter of the quel. As it
turns out, the radial explosion consumeé far more energy than
the éranslational flows. The latter, though less important, fs'

still necessary to account for the center of mass anisotropy‘of_

e

‘the spectra in the collisions of lighter ions,

4

IR

u', r

¢

The calculational procedures here are entirely«qgalogOQ§“;gQ;thw‘

oo

case of the - two-fireball model, but now each hadronic species-

follows the Maxwell-Boltzmann distribution in each radiéﬁrﬁrame

T R A N

moving with the rad%al velocity Ve or equivalently the [
calculated distribution of equation 3.4.1 above in the fireball

]
‘ 3

frames. Equations 2.1.5 to 2.1.8 for the conserved gquantities g

s
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.; availablélfor thermali%ation in the radial : ig

_ﬂ__gw_;Q,shh_ené;gy—of““fﬁé”531lision in the center .of mass frame of
the . two fireballs by the sequehce of two Lorentz
transformations: - e

. Ny \ l\\_,
. \ ¥ . -
E,=— —"-E (3.4:2)
T [ X .
i Ye Y 2

”~
oy

parameters’ of the model are then defined in any of the infinite
number og‘ these entirely equivalent frames., The energy

/"—"/{ T
connected

[

-

o

where Y’ is tHe gamma factor between the center of mass frame

»

frame of each fireball, ' and. Y, connects the frame of

)

frames.

andixhe

one fireball "and any of its radial The fraction of

kinetic energy committed to the radial expansion is taken from
»

cdlculations. with this model for the case of - Ar + KCl at

! v

800 A.Mev (Gale-83). It amounts to 41% of the energy of the

collision, which produces ya valueiof 94% for .the radial gamma

factor Y.
The rapidity distribution in  the frame of one fireball is
obtained by changing the variabies (p, »p,) to (E,y) and
% R integrating over the emeryy:
® @
. ‘ : S 3 ]
dn, An u
LR E e a dE (3.4.3)
oy coly
W tabay
( Thé distribution of each hadronic species is given by equation

3.4.1 instead of the Maxwell-Boltzmann (Appendix 7.3

Q

.3): ¥

H
s
f v
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with x, = erjEm - m% /T,nand X, = Y,E/T. The distribution in
the center of mass frame is obtained by noting that dy¥ = dy

and evaluating numerically the integral above for eachbfireball

using the appropriate value of the rapidity in each case:

e Sty Eihg) oo

The rapidity distribution for the pions . is evaluated
numerically for each fireball with the appropriate value of the

rapidity as above and added together (Appendix 7.3.3):

0d E+ , 3
. « E . . -
i‘:"\ = “:A’; S% d.h‘ E d-EA (3.4.6)
. R Oy — W s :

T ey g

where the distribution of the deltas 1in the fireball frames is

S

"given again by the same equation 3.4.1 above.

k) ) »
<

<
N i

The calculation of the perpendicular momentum distribution is
en£ire1y analogous to the case of the two-fireball model above,
except tha} one has to use thgﬂappropriate. dié@ributiéns for
this model in the integrands. Using equation 3g¢4.1 into

equation 3.3.8 we get: ’ .o s

-




LRl

' [
\ ’

!

ﬁ . VY, P/ K
a:qb % : E S[-@-l x’“)?— (’Xz+x‘+\)ex'} Qx\if_

(3.4.7)

- ' 1 -
with X, = “hvvlgf‘+gf /T~ Xy = «“{m; + ptd + pi /T, The

integral is evaluated numerically.

_The pion Qistribution is obtained by from equation 3.3.8 using

3.4.1 into 2.1.10:

4 b

%MDP_L‘ }kA/rS\r | My

. l. .
£ J 2
< dfl \L“} +?“‘J“A.*? *?“
+ .
{ EA I : )
| X | X7 xR
4 B (R N P e
L ’ - X%Xq
. EI Ca
The double inteqral is evaluated numerically.
/‘\ . .
We calculate the rapidity and perpéndicular
& . - . .
distributions in this model and extract the temperature -
parameters by ' fitfing the corresponding curves
one-fireball model by a 1least squazes method., The
temperatures in the center of mass rise and the difference
between pions and nucleons is accentuated. The predictions of
this model for the transverse temperature is 112 Mev
( . for the cascadef and for the rapidity temperature

i

TR e -

=

(3.4.8)

momen tun

in the

apparent

(100 Mev

is 132 Mev

. (130 Mev for the cascade) in the case of the baryons, For the

»
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, asymmetry parameter is defined as the

7

I~

' !
L

pions we get 88 Mév (82 Mev) and 117 Mev (100 Mev) in the same
W

order respectively. The quantitative agreement between the

cascade and the fireball models is greatly improved in the case

of the baryons, with the addition of the outward radial

collective flows to each fireball. The

'

apparent. pion

temperatures do not improve over the two-fireball "model

predictions (Table 3.4.1).

- Cugnon et al calculate the asymmetry parameter Y to further-

test the degree of thermalization of the participants. The

ratio of the expected

~values of the squares of the perpendicular and of the parallel

momenta in the center 9f mass frame of the participants:

P>

\/ - . - (3.4.9)

< N>

For a system of particles with entirely random momenta the

value of the asymmetry parameter should be very close to its

theoretical value, which is equal to 2.0, ‘

It is obvious that <Eiz> = <t:'> so we can do the evaluation in

the rest frame of the fireball:

~

o " ,
. ; 2 - 2, : X[ 5%, .
<:2> - %—%QP/TSEL&TLZY(yt.‘zN\“)Q - (x.z"'x!'\")l ]Q_I‘ﬁjr;‘- (3.4.10)
. Q - ‘

We also need to evaluate <F§z> in order to calculate the
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asymmetry ratio Y. We have (Appendix 7.5.3):

—_

—_— .
#a Lo 2 a
=y [:(h) *Ve < E )»-_\ (3.4.11)
- ‘//_ N -
Noting that E:1 = mf + PL ;'gf, we obtain finally:
2
Y — :’<?‘L >' (3.4012)
- o 2 s a
YLORE> 4 (Wl L)
The only quantity left to cafgulate in this expressjon is < ?:>
in the fireball frame, We have: B
& T o, i
W, CZ \
AP, \ ou‘>" f.n i (3.4.13)
n
o o

from which we gef:

< %\‘» Dghd'f §° 5 by (3.

3

so that w}th the appropriaﬁe distribution for this model
) a9
~
Gy = BEER T dp
ﬂ\ ‘?n ?L
v

r—od -
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. {(Zz"?‘«r’(\)ﬂ” ('.IQ-Q-XH'\)'Q ] &‘\’-z_ (3.4.15)

©

This double integral is evaluated numerically.

The Cugnon cascade predicts a value of 1.2 for the as?mmetry
parameter- for the bar&ons, while our own calculation produces a
value of 1.7 using this version of the fireball model. The
reason for this discrepancy may be that our rapidity and
perpendicu%gr momentum distributions are fit extremely well
(Figure 9.2; by the Boltzmann curves; on the other ﬂhand the

distributions obtained from the cascade code show deviations

from a perfect Boltzmann distribution.

. . KN

\
TABLE 3.4.1 Rapidity and transkerse temperatures,

Comparison of the rapidity and tr;&sveISe temperatures
for the system calcium on calcium at 1.0 A.Gev.

. : Tl}N) TY(N) TL(ﬂ) Ty(ﬂ)
Cascade (Cugnon-81) ’ 100 130 . 82 ( 100
Two-fireball ) 93 117 84 116

Two-fireball/blast-wave 112 132 88 ‘ 117

In-conclusion we may say that the t&o—fireball/blast-wave model
reproduces the different longitudinal and transverse
temperatures obtained from the ‘cascade model . calculations.

These different temperatures result from residual longitudinal

motions left after the collision and. are futher enhanced by the
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collective radial flows resulting from the blast in each of the
two fireballs. These collective flows coéxist with thermal
equiiibrium in the fireballs., It shows that the results of the
cascade calculations do not necessarily imply the lack of

thermal equilibration in the collision, but only that the

existence of collective motions must be - properly taken into

.

account,

B
5




4.1 Introduction,.

In chapter 3 we saw that thermal equilibration of the
participants is not in confiict with the results of the cascade
calculations of Cugnon et al. Now we investigate the attainment
of chemical equilibration for the number. of deltas within the
framework of the intranuclear cascade. A description of the
cascade code is presented in section 4.2 and also in the
Appendix 7.7. We modify this code by introducing th? iéospin
formalism so that it <can be applied to the study of
charge-asymmetric systems.‘This extended version of the code is

important because most of the data available now are for N #.Z

systems. We also introduce new revised average total

[4
nucleon-nucleon cross-sections from experimental data.

R R

L
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4.2 The cascade cé?e.

4.2.1 The simp}e version.

The basic cascade code used in this work is a simple version of
the Bertsch-Cugnon code. The calculation follows the céilis@on
of two identical nuclei in their center of mass system.
Relativistic  mechanics is used throughout. The: mathematical
details of the calculations in the codeuare relegated to
Appendix 7.7. The original version of éhis che assumes

complete isospin degeneracy so that only one chargé1éss type of

nucleon, - of pion, and of delta are considered. This

simplifying assumption restricts some results to charge
symmetric systems. Much of the experimental data avaiﬁable,
however, 1is concerned with the coilisions of unequal and
non-symmetric nuclei with N # Z. We expanded the original
version to allow for the collisions’of unequal nuclei, and also
introduced the-‘isospin formalism into the code to permit the
study of the collisions of charge-asymmetric systems.

Each nucleus 1is represented by a sphere gf radius 1.12 Qﬁ ’

where A is the mass number. Point-like nucleonS are assigned

random positions inside the spheres repiesenting the colliding

nuclei in their rest frames. This simple version does not

include the initial Fermi motion, since we| also do not
introduce field effects. Although Fermi motion and field
effects are important ‘physical characteristics pf nuclei they

do not affect significantly the “results we ar interested in

- 64 -
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this Thesis. Pauli principle effects are mocked approximately
by %orbidding soft collisions when the total center of mass

energy of two colliding nucleons is below 1895 Mev (Cugnon-81).

v

o

Single pion pioduction in nucleon-nucleon collisions is
introduced via the. formation and decay of the delta resonances.
The deltas are assumed ﬁo have a mass distribution (Cugnonsgiﬁw\\,f
The behavior of the deltas in compressed nuclear matter and
their cross-sections are uncertain. The elastic
A+8 >»A+A and N +A -»N +BH cross-sections are assumed
to be the same as for the nucleons in free space. The &nelastic
N+A N +N cross-sections are obtained by detailed bélance
from the cyorresponding N+ N=N+A ¢ross-sections. Cugnon
(Cug?on—Bl)) assumes a delta 1lifetime muc@ larger than the
collésion time: the surviving deltas at the end’' of the
collision determine the number of pions., This model of the
,éelta behavior is. retained in the version of the code used

.

here.

Y

The nuclei are Lorentz boosted to the desired collision'enefgy.

The calculations begin by al%gwing all the nucleons to move - 4
Y

freely with their initial momenta. Their positions and momenta

are updated at regular time intervaLg} When two nucleons pass

each other at their closest distance of approach, and this

distance 1is below a minimum value, the pair is allowed to

P

scatter, The different channels available are cﬁosen by Monte
Carlo | sampling of the ratios of the corresponding

cross-sections. The calculations continue until a time limit

4
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is reached. By this time the number of collisions has
essentially dropped to éero. Each cgscade run is repeated with
diffesﬁnt random numbers frém th}rty to forty tiAes.in order to
obta?ﬁ/sufficient statistics to calculate the average values of
the EE;;tities of interest. We .introduced into the simple
version of the cééé thg calculation of the standard dewiations

of the means.

4.2.2 The isospin formalism. ~r
We use the isospin formalism to calculate the branching ratios

and cross-sections when the charge states of the nucleons and

the deltas are introduced into the cascade code,

The nucleon has spin J = 1/2 and isospin I = 1/2; the delta
resonance has J = 3/2 anér} =#3/2. A pair of nucleons <can be in
2’ 1 ;

the state I = 1 or I = 0, while the pair delta-nucleon can have

, -
I1 =2 orl=1, 'Isospin cons§§vatipn then, allows only the
. . . . \
coupling of the I =1 states. The branching ratios are
. 1

[

obtained in the usqaloway from %Pe Clebsch-Gordan coe?ficieggi:
" _ /Xl _
G(PP"A+?> "/Z T(I=1) (4.2.1)
1 a"\}l .

./




) U(H’"‘N*"‘)f ‘,:’: "'(1°\) : (4.2.2)

| o(.{m—sw*n)v/—% S‘(lf-\) (4.2.3)

0‘(?’!\—» A°y) = —-:: c‘(1= \3 ,';(4..2.4>

{ o‘(m*n-:A%’)';—(gv ‘0‘(1=|> - (4.2.5)

o

/‘/
_ w/y’f systems the average matrix element is:
- \// ) ; »
= Ut bt 3
(y-_-__‘-(g‘..,- o'l \3“':" | (4.2.7)
2 3 30 4T 40'

. | ,
We therefore define T = 4Tpy/3, where

. // /
>

-
f
St v, Pt S T S b .-
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o Can = 2 (U“V * W“*) (4.2.8)

t

in order to recover the results before. the introduction of

4
isospin. )
P
/

—

The inverse reactions are obtained by using the reciprocity

relation: . ) / , 0
- S

Foamn) = h(E Vo (a0)

1

The branching ratios are obtained again by the conservati

isospin: | /
+4 V= 2%
. G‘(L\ 'n—s??\" ’4'0‘ | e
ua«a—-:—-l-A.J-.;..o..m../-\1—141—-4-.4-1-.:-1..,-.;‘4 ‘ I’ {
-;..:-u:u-aql-‘»_u..m4<1-a-.~.~,..~.,,-u-1-.r-a-
:+ b—1 ‘ ~ | u
(= =3 wam
‘ | . 3
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O'(A*n —a?h) = —5{ S.  (4.2a2)

,C.S'(AOF—'»?V\) _ _\3’6’. : (4.2.13)

T (& > ) 2'% T (4.2.14)
- 3~ .
O‘(Ap — Y = z 0 (4.2.15)
I ———

The pairs lf*b and & n are forbidden by.isospin conservation

to decay into two nucleons.

-

o

4.2.3 N-N cross-section data. -

\s\“th

2,

2 . e £
We also introduce into the code more accurate experimental

total (elastic and inelastic)'nucleon-nucleon ‘cross-sections

(Appendix 7.6) . - The experimental data was evaluated for

accuracy and reliability. 0ld data were discarded. The final
selectfon was then smoothed and interpolated with gubic spline

subroutines (IMSL-79). A simplified parametrization is also
' “ 2

¢ | —_ -
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used 'in the preliminary calculations in this . chapter and also
) ¥ ) '

to test the sensitivity of the results to the cross-section

P

inputs. e o

2

4.3 Chemical equilibriam.

.

4.3.1 preliminaries. ' , .-

“ t

- If we have a reaction N+ N = X + N where X is an excited’state

of N with a definite excitation energy %nd spin-isospin, then

the law of chemical equilibrium dictates that

' | | -
v & =\~§§~ e ’/T : ©(4.3.1)
T it* \)

Here gx and gy are the degeneracies of X and N respectively.
13
The assumption involved is that there is sufficient time for

equilibration. Most chemical reactions will take place in a

container where experimentﬁl;& the reactants can be léft for a
very long time. * -
» ,

2

In heavy-ion reactions the situation is quite complicated.
There is no wall within which the‘Areactants can be kept for an
afBitrarily long time. For medium mass nuclei, collisions fall

off after a time of 20 fm/c. For pion production through delta,

the deltas have a mass distribution so that the simple formula

¢
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is not ‘°directly applicable. "

written above -For cascade
v -~ i f—oD 7
calculations, the temperature is not given a priori; it has to

-

.. be deduced following a somewhat arbitrary procedure.

To -eliminate the complication of continuous mass distribution

<

we first study the population of a fictitious excitation in the

nucleon at an excitation energy of 20 Mev .with spin 3/2 and

isospin 3/2. We shall inappropriately call it a "delta" for

facility of expression. A small excitation .energy should

increase the numbers of "deltas" required for’
éduilibrqtion. The only reactions considered in our
v a [
calculations are: N+ N-»N + N, N + N-$ N + A, ,and
.

A+ &2 +4A. The cross-sections, are assumed to be the same as
. ‘ L] . 0
the ‘average nucleon-nucleon cross-sections, but the inelastic

. - v ¢

cross-sections are adjusted to be consistent with an excitation

of 20 Mév and are also scaled by a factor of 1.75. This factor

increases the reaction.rates without affecting the conditions

of equilibrium., The elastic cross-sections were also adapted

by removing the minimum collision energy restriction used to’

account aﬁproximatsly for the Pauli Pri3§ip1e, because -of the

the "deltas".
t .
modify the simplified~parametrization of egquations (7.6.2) and

low ‘excitation energy of _More spécificaily we

o

(7.6.3) as follows:

‘ \

26 (f -1.89¢) A \
. Np = - :

~ 0.olS+([§—I,791)‘
o |

(4.3.2)
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T Oge = + 40 (4.3.3)
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The c¢ross-sections for the inverse reactions are calculated

using the reciprocity relation:

We can estimate the temperature of the colliding system in two
different methods, which are both based on the assumption of
thermal equilibrium while tHe second one contains in addition

the assumption of chemical equilibraéion:

\

3
¢

(a) The first method is used by experimentalists to extra?t a
temperature from. Ehe.spectra ‘qbtained from the data. It
consists in fitéing an exponential curve fo the tail~of the
spectra, and it depends only on the assumption that the
system 6beys a Maxwéll-Boltzmaﬁh distribution (Appendix

' »?.8{2). We'aﬁély this procedure to the results of’ cascade
'calculétions, where we use the nucleon spectra integrated
over all direétions to’ improve the statistics (Figures 9.3

to 9.6) . .

'

(b) The temperature can be estimated from the chemical

equilibrium constant K calculated as the ratio of "deltas"
‘to nucleons in“éhy stage of the collision in the cascade

code (Appendix 7.8.1) according to the-equation:

f - -~ !
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This simple expregsion applies only if the resonance mass

distribution has a single constant value. .

We apply these methods to the coldisions of ideqtical nuclei at
809 A.Mev with masses varying from A = 20, to A ='80, as shown
i;ﬂ table 4.3.1 b&lbh. For a sysfem in thé&mal and chemical
equilibrium these two estimateé of the temperature should be

identical. Their difference indicates the - lack of chemical

equilibration.

TABLE 4.3.1 The chemical equilibrium conhstant.

Pireball temperatures from the chemical equilibrium constant
and from an exponential fit to the tail of the distribution,

Mass Number nA/n” TQ"? Tk
20 0.84 £0.02 58.3 ° 12.6
40 1.076%0.018 64.2 14.9
60 1.169%0.015 63.5 15.9
80 © 1.053£0.011 663 14.6

b ,
The examination of the table above shows that: 2

by,

(1) the two temperatures calculated by methods (a) and (b) are
always surprisingly different from one another. The

“temperature from the exponential fit to the tail of the

momentum distribution is always higher than the . one

3




e

~ one-fireball model "yields a temperature T

o

(2)

If“K = 1.0, then T = 10.AK, and if K

obtained from the chemical equilibrium constant, This
difference seems to indicate a departure from chemical
equilibration. The teméégature of the system can be
determined from a thermodynamic “fireball calculation,
following the usual procedure including only nucléons and

"deltas"™. For the collision of two A 40 nuclei the

99 Mev, and the

"two-fireball model gives T = 92 Mev. Both' models predict a

ratio of about 3.34 in sharp contrast to the value of 1.0§/
From the intranuclear cascade (Table 4.3.1). The
sensitivity of the temperature on changes in the
equilibrium constant (ratio of "deltas" to nqcieons) can be
evaluated from equation 4.3.4. The differential of * P with

respect to K leads to:

) AT = . AK (4.3.5)

3.0, then

T = 80. AK. We see that if the equilibrium eonstant
determination varies by only one unit the temperature can
vary between 10 Mev to 80 Mev. Thus: even if the number of

AY
"deltas"™ is approximately equal to, but lower than the

N

equilibrium value, the predicted temperature can be very

diffgrent. h

o

As the masses of the colliding nuclei increase the

tempeiatures from methods (a) and (b) seem to mo&e towards

v "74 -
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limiting values suggesting that the size of the system
becomes -immaterial after a certain value and does not

improve the conditions for the achievement of equilibrium.

J >

s . . ’/ .
Could we have ever reached chemical equillbgfu in the
1

intranuclear cascade calculations? Is the time scale too short?
- 4

Is it possible that the/feature which prevents#%he attainment
A |'{‘ V
of chemical equilibrium is the quick disas%emhly of the

reactants? We study these questions by artifi@ﬁally confining
4

- the system (for A = 40 on A = 40) inside a sph&;icai container

wall, As the collision takes place and the two nuclei

interpenetrate each other, the container has its radius reduced-

to the extent that the system allows during the compression
sgége. When-ithe minimum radius is reached, it is*the;eafter
maintained constant. The particles confined  to this voLum; are
réflected whenever they reaéh ekﬂwalls, while conserving
eAergy and momentum (Appendix 75 .3),‘and are then allowed to
continue their interactions over a long period of time. This
wé& a steady state condition is reached in which the numbers of
nucleons and "deltas" fluctuate little around their average
‘values. The equilibrium constant (K = n,/ny) is followed.;p ém
70 fm/c for‘ one'single run. Af 30 fm/c its value is already

‘over 3.0, from there on it fluctuates between 2.8 and 4.7.

These values are more comparable with the predictions of the’

\

one or two fireball ‘models strongly suggesting . that the

conditions for chemical equilibration have been reached -here.

&

'Y

It’is important to note that small changes in the equiribrihm

1
A
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constant K can lead to large changes 1in the estimated
temperature, Therefore one could say now ‘that if chemical
equilibrium is not attained in the collision, at the stage of
maximum éompression the deviation from equilibrium can be
small. The assumption of qggrmal eqguilibration is/-very good,

but the assumption of chemical equilibrium is  only

approximatelg realized by the system. Our preliminary steps

show that the system deviates from chemical equilibration and .

[t

¢ .
we can express the conditions for equilibrium in the cascade

model by confining the paftic{Pants to a fixed volume,

A

o

4.3.2 Calcium on calcium.

We now study the system calcium on calcium at 977 A.Mev and
b=0 ;mpact parémeter.ﬁThe experiﬁental data (Sandoval-B0) for
argon \Bn potassium chloride at 977 A.Mev shows 2.35%£0.07
negative pions, which we éan-estimate\ to be equivalen;ﬂ to
3 x2.35 =7.05 deltas. The two”fifeball model predicts for

\

this case 15.5 deltas, roughly twice as many.

o

The intranuclear cascade (Figure 9.7) shows that the number of

deltas increases steadily during the collision up to the stage
of maximum compresion of the system, where it reaches the value
of 17.3, and after that it begins to fall slowly during thg
expansion phase, down to 14.5 deltas at 22 fm/c. I% a second

i

cascade calculation we constrain the reacting system to the

smallest volume it attains during the compression stage and

follow its evofution up to 30 fm/c. Here the number of deltas

\
- .

o
;
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increases even more than in the previous case 'and fluctuates
between 20 and 22 after about 16 fm/c. This is approximately
the number of deltas that wouid have ex}sted in equilibrium if
the system had not. started to dissipate itself 'tod soon.
Another run of the cascade éode shows that ig éhe system is
constrained as before and then allowed to expand freely after
20 fm/c the number of deltas begins to fall again after the

attainment of equilibrium down to 17.5 at 40 fm/c.
We can see that the number 'of deltas in this collision reaches

| !

about 80% of the ‘equilibrium value durigg the stage of maximum
compressioq. After that the number of deltas falls off
gra@ually a;’a result of the adiabatic expansion until it
reaches the point where there are no more interactions and tng
 system dissolves - completely. This reduction of the ‘numBér of
.deltas is here seen clearly as the result of adiabatic cooling
of the fireball.
\

We have. shown clearly above using theﬁintranuclear cascade code
that the attainment of chemical equilibrium for the calcium on
calciu& system at’%77 A.Mev and zero impa&t parameter is only a
ff%st ordér agprdximation during the staée .of maximum

cbmpre'sion. Although thermal equilibrium can be realized very

fast, it seems that the attainment of chemical equilibration

takes/substantially longer and the fireball already begins to

decay before that can’ happen.

<
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averagedgipalculations.,
= ~

4.4 Pion cross-sections.

In the case of the central collisions of nuclei of medium

masses the» cascade and the thermodynamic models produce

somewhat similar predictions. When the number of participants

is small, ' as for example in the case of ‘collisions with
non-zero iﬁpact paramete;s, chemical equilibration is doubtful.
It 1is therefore very uséful to compute the inclusive pion
production cross-sections, which involves integrations over all
impact parameters, using the céscaden code., Here we use the

extended version containing the isospin formalism and

completely revised nucleon-nucleon cross-section data. We also-

use a simplified parametrization of he nucleon-nucleon

12

cross-sections for the purpose of testi g e sensitivity of

the calculated results to changes 'in the] cross-section input

data.

pY

-

Table 4.4.1 shows fﬁé predictions of the intranuclear cascade

for the pion crossZSections and  compares them with the
experihéntal " data. In all + cases the inclusive pion

cross-sections are overestimated by approximately a factor of

&

two. The sensitivity of the results to thé input cross-sections
is tested with a simpler parametrized version of the N-N
cross-sections. Table 4.4.2 shows the comparison for central

collisibns onl&. The discrepancy reported for central

collisions (Stock-82) remains also in the impact parameter

PR g %P VOO IC T TR
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TABLE 4.4.1 Total inclusive pion,cro%s—sections.
Comparisen of the predictions of the cascade code with
e the experimental data "for the total inclusive pipn
cross-sections. The experimental data are from Nagamiya-81,

~(barn) a -(barr})

Nuclei Energy O'v(barn) Tyt(barn)
A .Mev exper iment %heory exper iment theory
C+C . 800 .16%.05 .30£.06
C+Pb 800 1.174.35 2.70%+.41
Ne+NaF 400 .086%.026 117,025
.Ne+NaF 800 .41%.12 .72¢.11
Ne+Cu 400 .14% .04 +30£.09
Ne+Cu 800 .89+.27 1.804.23 JTT+.23 1.78+.24
Ne+Pb 400 v39%.,12 .78%,19 .21% .06 .59%.,20 —
' Ar+KcCl 800 1.4%.4 2.23%.16
(.
: ! TABLE 4.4.2 Sensitivﬁty to the cross-section data. ’//AW
J ' Mean multiplicities in central collisions of Ar + KCl showing ,
the sensitivity to the N-N cross-section parametrization "
(Figure 9.1). The experimental data are from Sandoval-80.
: Energy My-> <ny-> <Ng->
. A.Mev empirical actual simple
' data parametr. parametr. .
360 0.20%.01 0.50.11 0.75%.08
556 0.79+.03 2.00£:16 2.56%.11
7172 1.58%.05 3.75&.23 3.88%.17 R
977 2.35¢.07 4.63227 5.07+.15 -
> : i
»
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5 - AVERAGE MULTIPLICITIES AND GEOMETRY

5.1/;ntroduction .

.Multiplicity here is defined as the numbér of chzgged particles
emerging from an event (collision). The primordial charge ié
defined -as the number of protons from both the projectile and
the target that become parti?ipants during the colli;}on, The
measured charges must be distinguished from the primordial
charges. As a result of the collision a number of tracks beéomé
‘visible due to protons, deuterons, tritons, He-3, He-4, and
heavier fragments, as well as positive and negati;e pions. The
theoretical multiplicity is not -only a .function of the

geometrical assumptions of the model {number of participants),

but also of the dynamical a§sumpﬁigns,regafding Eke production

. of composites and the pions.

\

The averagé charge multiplicity invplves all impact parameters

-

and is given by (Gosset-77):

P
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Y

where ne (b) = n‘,gb) + nA(b) + n,l_(b) + n,uib) + ... 0+ n“‘gb) +
nwib). Gutbrod et al introduced _the coﬁgept of associated
multiplicity (Gutbrod-78): all the chargedv partic%es gmefazng
from an event are measufed in coincidence with the detection of

a charged particle at 90 degrees to the beam direction in the

q

laboratory frame. The trigger particle can be a proton orx any‘

[

other charged light fragment. In central collisions, that is in

?hose coilisions with small impact baramétefs, a larger number
of charged éarticles are: produced thus fincreasing . the
probability of having one o£~them reaching the detectot at 90
degrees. Therefore the associated multiplicity has a ‘strong
bias in favor of the more central collisibns, and 1is given by

(Cecil-79): ’ ‘ 4

RECEIE-1 ASTHETRN.
(Ma) = (5.1.2)

40 (% vy emtane

It has been found experimentally (Gutbrod-78) that the
associated multiplicity is a function of the beam energy for-a
given brojectile and target combination. This result has been

advanced as a éroof that the straight clean-cut

participant-sgectator geometry fails for /the more central

collisions (Gutbrod-79, Sandoval-80) ., The associated

multiplicity, however, tests a combination of geometrical and
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% .
dynamical assumptions, since the number of charged particles

depends not only upon the primordial charges but also upon the

, model employed for composite and for pion productions. If the
geometrical properties alone "are to be tested, we have to

compare primordial charge cross-sections, which are given by:

7/

‘\ O = %Y\Q (\») Awbdb (5.1.3)
f N

—

where ng(b) = ny(b) + ny(b) + ny(b) + 2(ny(B) + ny(b)) + ... +

nwgb) - n“_(b). _The participaht-spectator picture may still be

valid, but the independence of the number of participants on

the collision energy assumed previously may have to be given

%
up. :

/ C

i

| A oo ‘.11:
5.2 Fireball type models.) e

' LY
Both the one-fireball and the two-fireball models overestimate

the pion cross-sections by a factor of two or more. The

two-firebéll/blast-wave model, however, is constrained from the %

beginning to produce the correct pion cross-sections. This

model is also consistent with the results of the Cugnon

_cascade, as we have seen in chapter 3. Therefore it is an

interesting model to use in the investigation of the

multiplicities. s

-+ i BBl T oA e e R

T e el




A o

- In the two-fireball/blast-wave model the critical density and

- - the temperature aré adjustable parameters.' These parametérs ére

. varied so that the ratios of the cross-sections of protons to

déuterons, and of<protons to ‘pions can be constrained to their-

experimuental values. The translational collective flows

account for the anisotropy of the spectra in the center of mass

framg/ Qf the particip-ants and at the same time reduces the

amount of . energy that is available for thermalization. As it

turné out, the amount of energy in translational motion does

not reduce sufficiently the tempeiature of the fireballs so’

"~ that the ratios of the cross-sections can coincide v;ith their

- experimental values. Therefore it 1is also necessary to

introduce radial collective flows of the type considered in the

(' , implosion-explosion model. It is argued that the péréicles near

the surface of a dense and hot fireball fac‘e an ahisotropic-

environment which induces a reductiom in the randomness of

ths,ir kinetic energies so that they acquire an average outward®
radial velocity V.. -

t
°

v

One of the basic assumptions of the two-fireball/blast-wave

model is that each hadronic species follows a Maxwell-Bol tzmann

distribution in each one of tﬁe infinite number of radial
frames moving with the velc;city Ve. One can show using the
Lorentz invariance of the product E:disn;/dp3 that in the rest
frame_,of‘each fireball it leads to thé following distribution

(Appendix 7.1):
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dv. _ TNl x -n] g X ¢

d“ T - '% ' {(h—x‘*\)e 2 (lz-klr\'\)e et (5.2.1) .

o\P‘_ 1L % u XXz oo
with” Yo = 11 - vg, x, - 1;vakT' ~and x, = Y, E/T. The

thermodynamic: calculation in’ this/. model consists in solvin

equaf:ions 2.1.5 to ‘2.1.8 for the conserved qu'antitievs (t;he
baryon number B, the charge Q, the energy E), and the critical
{

density P, of the fireballs to determine the parameters of tHe

model (the chemical potentials, the temperature, and the volume

<y

of the firebélls). . The calculations take their simplest form
fireballs, where the

in the radial frames of the

|
Maxwell-Boltzmann distribution can be used * directly. The
parameters of the model are then defined in these frames. The
energy of the collision. in the center of mass system is

thermalization in the

connected to the energy available for’

- >
radia11y| expanding frames by - two successsive Lorentz
transformations: , ' Y

» - " . {f
. A

v
,(5.2.2)

the center of mass and the fireball frames,

A

where 'Y connects

and Tv connects the fireball and the radial fr;mes_‘».

-

Nearly 40% of the energy of the collision goes into the radial
expansion making this effect far more ifﬁportant than the

translational collective flows., The later become even less

| : ,
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important as the masses of the éoiliding ions incretse and the

transparency factor approaches zero. £ This means that in

practice we are essentially working °~ with ' the ’

!

implosion/explosion model in the cases where at least one of

o

colliding ions is a medium size nucleus or heavier.

We produce several calculations with this model for different
values of the critical égnsity and the- fraction f of the energy
available »for nthermalization in the radial frames. This
fractiopﬂ f is .identical with the rad&al gamma factor in

equation 5.2.2, We use the data of Nagamiya et al (Nagamiya-81)

for the collisions of neon on lead at 400, 800, and 2100 A.Mev. -

The best fitting values of the energy fractfon' f and the

-

e

freeze-out density»{)° are shown in the Table 5.2.1 below:

TABLE 5.2.1 Energy fraction and critical density.

Radial energy fraction and freeze-out density
determined in the two-fireball/blast-wave model,.

3

E (A.Mev) £(%) fe (fm°)
2100 52.5 0.14
. 800 50.0 . 0.05

400 33,0 0.03

1

The value of the freeze-out density for the collision at

2100 A.Mev is found to be only slightly lower than the normal

0

nuclear density. This is the number that best fits the data and
it may be an indication of the breakdown of the wvalidity of

this model at these energies. An examination of the table shows

/a clear correlation ' between the collision energy and both the

W{thu&mu i ALl S
LhE,
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radial energy fraction f and the freeze-out Pensity.

Qualitatively one- could say that -as the collision energy

fI
increases so does the violence of the explosion with afpossible

|

consequence that the chemical equilibrium is frozen at higher

densities as the expansion times are reduced,

» ¢
L]
|

‘ |

to .calculate the

]
f

These results c¢an now be used average

multiplicities and compare with the data of Gutbrod et al

(Gutbrod<78); the results are shown in Table 5.2.2 below:

TABLE 5.2.2 Average associated multiplicities.
Average associated multiplicities in the
two-fireball/blast-wave model.
The experimental data are from Gutbrod-78.

Theory Data

Ar + U : ,

400 A.Mev (f=33%, f=0.03) 37 25
- 1.05 A.Gev (£f=51%, P¢=0.06) 43 55
Hé + U

1.05 A.Gev (f=51%, f‘=o.06) '8 10
Ne + U /

400 A.Mev (£=33%, Pk=0.03) 23 18 |

1.05 A.Gev (f=51%, p¢=0.06) 27 33

2.10 A.Gev (f=52%, 9.=0.14) 33 58

. I M

I
We see that the model overestimates the experimental results at

the lower energies, but grossly underestimates the ﬁighres at

the higher energies. Is is obvious that the model fail# here:
/

It is also interesting to know the predictions of the simple

one-fireball model. In this model the Maxwell-Boltzmann

distribution holds in the rest frame of the fir;ball. The

calculations are identical but simpler than in the previous

{W‘ PRPPTTI PP FE PRSI ER S
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.experimental data  quite w

-our calculations are .shown in Table 5.2.3:

o e
. .
'
-
.t

case.. Here all : energy of the- coll151on is available +for
e

thermalization, pr151;?} this model can reproduce the

density is chosen equal to 0.12 nuc?yOn/fm . The #esults of

TABLE 5.2.3 Average associated multiplicities.

Average associated multiplicities in- the
one-fireball model (f= 0.12 nucleon/fi?).
The experimental data are from Gutbrod-78.

) . Theory Data
Ar + U 0.40 A.Gev 39 25
1.05 A.Gev 60 55
. He + U 0.40 A.Gev 7 5
1.05 A.Gev 10 10
Ne + U 0.25 A.Gev_ = 22 T12
. 0.40 A.Gev 24 19
1.05 A.Gev 36 34
2.10 A.Gev 53 .59
Ne + Au 0.40 A.Geyy 23 20
: ‘ 2.10 A.Gev 51 59
Ne + Ag 2.10 A.Gev 43 - 42
Ne + Al 0,40 A.Gev 11" 11
- . . 2.10 A.Gev 23 20
Ar + Ca 1.05 aA.Gev 27 - 24
He + Al - 0.40 A.Gev 4 4

=4

We are left with the task of explaiﬁing this success of the
one-fireball model particularly above the 1.0 AfGev éollision
energies. It 1is possible that for collision energies above
1.0 A.Gev compression and expansion may not take place at all,

as suggested by Sobel et al (Sobel-75). The validity of the

sEiaight cut ébomet;ical assumption at the lower energies has

\
1
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been questioned by Nagamiya and Gyulassy (Nagamiya-82). We see

that the one-fireball model can explainftge energy dependence
. \4;
of the associated multiplicities much; ‘Better “than its more

Al

elapora%e vérsion} the two-fireball/blast-wave model. The

v

former overestimates the number of pions by at least a factor

‘0of two, while the latter is constrained from the beginninghto‘

|

tﬁe leérrect pion cross-sections. Aalso the total amount of

energy available for thermalization in the one-fireball model

“is definitely larger than in the two-fireball/blast-wave model

where gome 46% of the collisiqn energy jis gied up in . the
collective radial expansion; this implies much higher fireball
temperature; in the simpler,model. And this combination of
ﬁigherg fireball temberéfuresv and the overestimation of the

a3

number of pions both _ contribute to produce a much higher
N .
prediction of the associated multiplicities in the one-fireball

model, This 1is-the most' likely explanation of 1its apé;:ent
success., .

The number of.'participants is calculated here wusing the
assumption of a clean-cut straight geomeéry; but as we
mentioned before, ' the validity of this assumptionvcannot be
rejected or accepted on the basis of these results. The
calculations above for both models test a‘ coﬁbination of
geometrical and dynamical assumptions, and we cannot separate
their contributions from one another. That requires the
measqremenp of the rprimordial charge cross-sections, that

depend solely on the geometry of the collision. We could say

that it is unfortunate that the numbers of pions (positive and

’
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negative) are not reported separetely from the other particleé

in Gutbrod-78.

~

5.3 Primordial charge cross-sections. - .
&"‘ ' ’ -

I3

-

' We leave temporarily the topic of associated multiplicities and

look at the data pertaining to  primordial “charge
cross-sections, This cross—‘section.iso defined in equation
5.1.3 and can be obtained from the déﬁa of Nagamiya et al
(Nagamiya-81) . The data are éhown; in Table 5.3.3. és we

i

mentioned before, in a strict gedﬁh§rical.model the primordial

charge cross-section is iﬁdependent of the beam energy. The

experimental data clearly indicqté some energy dependence. We

s "

therefore look for an improvement to the geometrical overlap

~

model.

-

A Glauber type model seems wortﬁ pursuing here.. This model also
assumes straight line tr;jectories, but the number of nuclebns
participating  now  *depend upon f'thg ﬁucléon;nucleon
cross-section. In the ‘relevant energy rahgé considered here
the nucleon-nucleon croés—sec;i&n inc¢reases ‘w@th energy (Table
5.3.1) so that one has some que' of getting the energy

dependence seen in Table 5.3.3.
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TABLE 5.3.1 Average total N-N cross-Sections.

Average total nucleon-nucleon cross-sections
calculated from parametrized experimental data.
‘The incident kinetic energy per nucleon E, corresponds
to the nucleon-nucleon center of mass energy E .

E, (Mev) EcM(G%v) O (Parn)
250 1.997 33.37 ;
400 . 2.066 29.93 )
\ 800 . 2.241, 42,59 _
\ 1050 2.343 43.07
¢+ 2100 2.731 42,75

/_6\~. . -
N f

. . ¢
. We derive the formula used for this calculation now. Let a

 pucleon be igéidént on a target at an impact parametér ‘b. At
. ) ;
this impact parameter the nucleon has to go through an amount

j of matter given by ’ ’

; ‘E,b(b S f;;(b %3 d2 ,, (5.3.1)

@ ! B o ' t
where kabvz) is. the nuclear density function, and z I's the
]

-

direction of motion of the incident proton. The probability

v
3

that it will emerge on the other side is

-0 b
L S NNEE(’? (5.3.2)

" Therefore the probability that it becomes a participant is then
" S o«
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' Now suppose that the proton in quesltiop belongs to a projectile
é nucleus. The protons in the projectile are not lfacalized, but
can be described in terms of their projectei} density };P('s‘) in

& @

. the perpendicular plane to the direction of the collision, and

S

§ is the distance from the center of the prbjectile in this

;

"plane:

9

. (5.3:4)

p (3,2)dz

Y

Jr
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P
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L3

Each proton in the projectile nucleus can be approximated by' an

P

average density as 'E,P(‘é‘)/AP. We~must have ‘

-

> .

(e L4

¢

; | , %Ey(-ﬂc’; = Ap ( © ' (543.5)

s .

o

Thte probability of having 2 participant protons from the
’ ) © . oo fo

projectile is

o

<

P%(b\': (2_; (\"P\a\z ?;?’% | (5.3.6)
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° \P%(b) is normalized as can easily be verified by summing over Z

and using Newton's binomial theoreﬂ' Now the avefége number of

-~ part1c1pant protons from the BrOJectlle is . ) ) \

| z Z%%(M = 3_ (?2\2 (\i?b)%[?éf . (5.3.8)
. G N

“which is easily summed by not{ng that

-
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- | z.-—a—(mw\—r—z Z(—,,)XM " "' (5.3.9)
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1@0&(9{-&'\1) = %(M};ﬂx 4 (5.3.10)

where we let x =1 - P = P and n = Z,. Then
| B’ Y T T W }

-~ ) o

Tk = 2,00-) | s
Z ‘ ‘
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v

2 .
( Therefore tpe average primordial charge cross-section for the ™

’ pro;ect;le is
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.Similarly, we %

\:btain the average primordial
the target:

cross—-section for

U&(Q\= %3, SAZS (‘/”Eb) |

(5.3.13)
whéré ’
. Y \ Z T "'Ghéz; (g)
, ?\D‘ = Tv As ’E,,t(S*\a)e ' (5.3.14)
The total average primordial charge cross-section is the i
sum ' ‘
' !
U%\(Q\—: O",(G)Jr Spla) (5.3.15)
ﬁ ]

. . . .
The average number 'of participants fEbm the projectile should

those from the

¥

not show much change as a fuﬁ?tion of the collision energy; but
target are expected to be much more sensitive.

This follows from equation 5.3.2, if the target is much larger
than the projectile.

»
Much work has been done in the past on

the parametrization of
the projected nuclear density function E(s)

SPQS,z)dz, where

i it st 3 e
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P(s?é[\is a realistic nuclear density distribution. A very

accurate parametrization is given‘beléw (Ceci}—SOj:

. \
“ ( )2?’(&1"25/2', s <R
58 = A A (5.3.16)
1¢vF€c1@’Q),° sk
where )
t«h . . “/ i‘
. e =2 (R2-R3Y2 Cz=(—§—’\n (5.3.17)

and the values of the parameters are presented in Table 5.3.2.

TABLE 5.3.2 Projected nuclear densities.’

Parameters for the projected nuclear densities
(from G, Cecil, M.Sc. Thesis, McGill University 1980)

7 Nucleus R, (fm) R (£m) 7)' (fm > )
He-4 1.3823 1.1415 0.22456 «
Ne-20 2.7417 2.3976 0.17335 \
" . Ar-40 ' 3.4147 . 2.9923  0.18102 \
. 'c/\ : \
. -7 cuby - 4.1704 3.7749 0.17217
.. : \
Pb-208 \ 6.5918 6.2807 0.15900 |
U-238 16.7282  6.3108 0.16951 \

\

The primordial charge cross-sections for the collisioné of neon
on lead are calculated using the Glauber type theory described
above. i The results are presented 1in Tab}e 5.3.3. ‘The
éredictions of the (iireball mogels w%th straight clean-cut

geometry are shown at the.same time for comparison,

1
I3
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TABLE'5.3.3 Primordial charge cross-sections.

Primodial charge cross;sections (barns) for neon on lead.
The experimental data are from Nagamiya-8l. The experimental
value at 2.1 .A.Gev was estimated from the data.

Energy Fireball Glauber Exp.

(A.Mev) models - type data

? - ‘400 ' 43.3 | - 42.7 31.1
A 800 43.3 46.3 48,6

2100 43.3 49.0 56 .1

-

Comparing with the data we reach the conclusion that while the
Glauber type theory does show that the primordial charge

cross—-sections increases with the ¢ollision eriergy, the

S

predictions are still too flat.

-

r

Now we turn attention again to the associated hultiplicities.

o b
The Glauber type theory can also be used to calculate only the

3

numbers of participants and spectators (Nagamiya-82) thus
replacing the straight <cut geometry in the fireball model.

Although the Glauber type thecry 1is based on straight 1line

N 1

geometry, the changes in the nucleon-nucleon total

cross-sections with the collision ehnergies lead to changes in

the numbers of participants and spectators as a function of the

energy. Table’ 5.3.4 shows the results for the system neon on .

uranium at an impact parameter b = 0.36 fm. -

’

o
'
0
u
I
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TABLE 5.3.4 Numbers of participants. "

Number of participants from the Glauber type.theoiy‘

for the collision of neon on uranium at b = 0.36 fm.
, 7 t

Energy Glauber . Straight

(A.Mev) type Geometry
" 250 ‘ 86°.7 85.2
, 400 84.6 ; 85.2
1050 '94.6" 85,2

2100 94 .8 85.2

We note that the number of participants is apprégimately the’

same Dbelow 1.0 A.Gev' and_ .increases by about 10% at higher

3
L

energies. So we can'expect éome iqc;ease in the'mu%tiplicities
at the higher energies and practically fio change at the lower
ones. These changes,’however, are not egough toc explain the
daté. Table 5.3.5 shows the one-fireball model results when the
calculation® of the numbers of participants is based on the
Glauber type theory. A comparisoh with Table 5.2.3 shows very
little change. |

L

. TABLE 5.3.5 Average associated multiplicitieg.

Average associated multiplicities in the one-fireball
model (L = 0.12 nucleons/fm> ) with the number of
participants from the Glauber type theory.

The experimental data are from Gutbrod-78.

Theoéy Data

Ar + U 0.40 A.Gev 38 25
1.05 aA.Gev ‘ 63 55

He + U 0.40 A.Gev % 5 5
1.05 A.Gev 9 10

Ne + U 0.25 A.Gev 21 12
0.40 A.Gev . 23 19

1.05 A.Gev 38 34"

, 2.10 A.Gev . 56 © 59
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The associated multiplicities calculated in ' the
two-fireball/blast-wave model is too flat compared with the

experimental data. The one-fireball model preddiction of the

‘associated multiplicities is good, but this model ovérestimates

the number of pions by a factor of two. For the primordial
charge cross-sections the fireball type modéls predict é
constant value independent of the collision energy; this is a
consequenée of the straight clean-cut geometry. The Glauber

type theqQry produces a much better energy dependence, but it is

still too flat compared with the experimental data.

]

5.4 The cascade model and geometry.

The numbers of the participants and the spectators are perhaps

. best determined in the cascade model. We use here the same

code already described in section 4.2 of Chapter 4. The code

follows the collision of two nuclei in the nucleon-nucleon

. center of mass system. Relativistic mechanics is used

- y

throughout. wWe extended the,original version of the code by
introducing the isospin formalism to allow for .the collisions
of charge asymmetric systems, and also used completely revised

average total nucleon-nucleon cross-section parametrizations.

Point-like nucleons are assigned random poéitioPs inside the

Y
spheres of radii 1.12 AA

representing the colliding nuclei in their rest frames. This

! -
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( version does not include the initial Fermi motion nor any. field

i
|
|
%
;

PY ™

k/// - effects. These important physical characteristics of nuclei do

not affect significantly the results we are interested in this
: Thesis. Pauli principle effécts are mockeé approximately by
y forbidding soft collisions when 4he total center of mass energy

of two colliding nucleons is below 1895 Mev (Cugnon-8l).

Single pion proddiction in nucleon-nucleon collisions is

' " introduced via the formation and decay of the delta resonances,

that are assumed to have a mass. distribution. The elastic
s A+D -A+A and N +p -»N +A cross-sections are assumed

to be the same as for the nucleons in free space., The inelastic
$

N + AN + N cross-sections are obtained by detailed balance -

3

( . from the <orresponding N+ N =N+A cross~sections. The
delta lifetime is assumed to be much larger than the collision

timéa' the survibing deltas at the end of the collision
determine the number of pions.

—

. //‘
. The nucleons in each - nucleus are assigned initial equal and
.: . opposite momenta to Lgfentz boost them to the desired collision
energy. As the cascade begins their positions.and momenta are
updated at regular time jnte;vals. When two nucleons pass each
oéher at their closest distance bf_approach, and this distance
is below a yminimum value, the .pair is allowed to scattgr. The
! different channels available are chosen by Monte Carlo sampling
\ ‘of the ratios of the corresponding cross-sections. We use the
é g ] ' ) isospin formalism to \qflculafg the branching ratios and t?eir

corresponding cross-sections. The nucleon has spin J = 1/2 and

- L) ) o
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isospin I

pair of nucleons can be in the' state I = 1 or I 0, while\the
pair delta-nucleon can have I = 2 or I =1. 1Isospin
conservation then, allows only,;he coupling of the I =1
states. The calculations are finished by the time that the
number of collisions falls practically to zero. Each cascade
run is repeated with different random numbers from thirty to
forty times in order to obtain sufficient statistics to
‘calculate the average values of Ehe guantities of interest?fnd
Qheir standard deviations. . '

/

li

1/25 the delta resonance has J = 3/2 and' I = 3/2. A"

s

At the end of the collision . those nucleons that did not suffer

any interaction at all héve a final momentum equal to its
initial value. At first it would seem that this fact could
provide a suitable criterion to decide if a nucleon was a
participant or a speétatqr, A preliminary calculation shows
that ‘tﬁis criterion grossly overestimates the number of
participants and leags to erroneous rgsults. A. less stringent
criterion is nécessary here. The nucleons can suffer soft or
hard collisions and that could provide another criterkon to

calculate the number of participants. It remains to define

i

what we mean by soft and hard collisions, and we can do this by j

comparing the initial and the final momenta. But since the
nucleons loose their identities in the interactions thiﬁﬂpannot
be a one to one bomparison, and therefore we-look only at the

nucleons at the end of the cascade calculation.

A nucleon is counted as a spectator if its final momentum does

@
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not differ either from the initial momenta of the projectile

" nucleons or from the initial momenta of the targeét nucleons by

more than a prescribed amount; otherwise it is a participant.
The surviving delta resonances at the end of the cascade are
always participants. The decay of’ .the surviving q;ltaé reéglt
in the final pion multiplicities and it |is recogﬁized that

these can only come from the participants.

2

¢

We ghoose the momentum change cut off as the Fermi momentum in
an undisturbed nucleus. This choice 1is quite resonable in view
of the‘fact that the nucleons in wundisturbed nuclei suffer
interactions with a momentum transfer of the order of the Fermi
momentum or less. However, the use of the Fermi momemtum as a
cut off value may seem a little artificial in view of the
absence of Fermi motion in the cascade code | used.
Nevertheless, it may be the only available choice which will

not be entirely arbitraiy.

S

™

—.

This criterion for defining the participants in the cascade

code affects directly the calculated multiplicities because it

&

eliminates from counting all the Tspectator charges. The

\ vt -
absence of field effects implies that the model is incapable of

predicting the production of composites. At the end of the

simulation runs.the only species present are the protons, the

neutrons and the delt&s that deéay into pions. The primordial

charge cross-section is them calculated as

. .

N Lt TS
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Ogq = Ué + Cg+ = Cg- oo (5.4.1)

The four-momentum change between the final, four-momentum p and

the initial four-momentum p_, is g : w

.

L=(p-py = a(W-8ETD) RER §

“

The cut. off value tg 1is calculated assuming a three-momentum
change of g, = 270 Mev/c, which 1is the ,Fermi momentum in an-

undisturbed nucleus:

\ 2
£,= 2w (m- Eq,) = -F15x13" Gev? (5.4.2)

- W s
A threé—momentum charfge largér tha& d, corresponds to a
four-momentum change smaller than tg. Thefefore if ¢ > to the’
particle is . assumed to have 'been‘a spectator. The particles

Iose their identities during an interaction and that makes it :

impossible to tell if originally it came from the projectile or

R

the target. Therefore it is necessary to test for changes in

s vl

’

their momenta with respect to the initial momenta of the target ‘
and the ‘projectile. 1In thé case of inelastic interagtions the //
particles are automatically defined to-be participants. The
nu%ger of participants for thé reaction of neon on nlehd a?e

shown in Table 5.4.1 below.
L] ‘f*‘
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Number of participants for the collision of

-/

TABLE 5.4.1 Numbers of participants.’

neon on’ lead

calculated in the cascade model. The straight clean-cut
geometrical calculation is shown for comparison.

©

b (£fm) 400 A.Mev 860’A.M§v Geometrxf;
1.0 65.3¢1.1 92.041.4 81.2
2.0 63.3:1.1 88.641.4 78.9
3.0 - 61.841.0 82.841.4 74.8 .
4.0 - 54.820.9 76.241.3 " er.9
5.0 45.741.2 6l.6£1.3. 55.3
6.0 34.741.0 T 48.221.2° 40.6
7.0 24,0411 36.11.6 ‘0 26.2 |
8.0 13.9£0.8" 17.3x1.4 — 13.9
9.0 4.1x0.6 8.420.8 4.9
N ‘ Ys
Examination of these results show that the numbers of

. participants depend quite clearly on the collision energies.

For the collision. at 800 A.Mev the numbers of participants in

the cascade model are only slightly higher than the

corresponding geometrical results and follow them closely. At

400 A.Mev however, the number of participants is much smaller.

This is a rather pleasing result. The primordial <charge

cross-sections are presented in Table 5.4.2. Another cascade

[

calculation using a cut off momentum, of 300'Mev/c is presented

at the same time to illustrate the sensitivity of .the

primordial charge cross-sections to changes in the value of the

cut off momentum. : . .

%,




4

TABLE 5.4.2 Primordial charge cross-sections.

Primordial chargé cross-sections (barns) in ‘the
cascade model for the system neon on lead. , -
The experimental data are from Nagamiya-81.

(

E (A.Mev) Ccascade Cascade Expériment\‘
’ (q_=.27va/c) (qb=.30Gev/c) e
400 < 36.7+1.8 29.1t1.6 31.1420%
800 , 50.122.2 41.5t2.1u 48.6+20%
. . ’

These results are in close agreemént with the expefimental data
within their ﬁargins of errors, and show the correct dependence
on the collision energy. The primordial charge cross:sections
depend only on éhe E;ometry of; the collisioé in the‘sense-that
theyfrgflect exactly the numbers of participants. If the number
of participants were independent of the collision energy then

the primordial charge cross-sections would be a constant

function. Both the firebBall type models with .their . straight

cleahfcut geometry, and the Glauber type theory do not pfoduce-

the correct collision energy dependence.

The success of the cascade code'in thi's regéra still leaves
some questions unanswered. What would be the ‘effect of the
initial Fermi motion and the field effects? The total
inclusive pion cross-sections are overestimated in the cascade

model by about a factor of 2 as in the simple one-fireball

model. This is another: point of weakness of these results.

- 103 -
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6 - SUMMARY AND CONCLUSIONS

-
-

We began the presentation of this work with a general overview
of the field of heavy-ion physics. There we saw that it is a
new.branch of nuclear science that evolved in the past ten
yeags into a major field of research. ﬁespite its recent
origins one can distinguish different areas. characterized:by a
ranée of collision energies where different physical phenoﬁéna
. . o
become predominant. ’ ’ -

S

Thé so-called participant-spectator region, also known~ as the
Bevalac physics region, extends roughly £from 200 A.Mev to
4,0 A.Gev; this Thesis is solely concerned with this region.
It is characterized by two stages: a fast energy deposition
stage associated with the partiéipants, and a slow s;age

associated with the spectators. In a somewhat simplistic way

.,

one could say that the participants are formed by the
overlapping portions of the projectile and the target nucleons

that are mutually swept during the collision.

o

A great amount of data and theoretical models are available in
4
the participant-spectator region. There are thermal models,

intranuclear cascades, hydrodynamic models and many others.

LS
-

o
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This proliferation of different models 1is obviously due to the

-
‘tm‘

great difficulty in 7 approaching the problem in- fundamental

£
ey
i
¥
5
f?
i
<
<
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§
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V

terms and the limitations of each model. Most models have been
formulated within a semi-classical framework around which one

s. The support for a

can attempt to introduce quantum effe

°

' semi-classical description comes mainly rom the relative high )

momenta of the colliding ions and small wavelengths compared

°

) o N PR SR e RN S R EAR S
o

' . with' “the characteristic distances of the system. The

iy : thermodynamic model and the intranuclear cascades are among the

most éucceésful approaches in explaining the data collected so

. far in this region.
Thérmodynamics was first applied to sub-atomic phenomena by

oo Enrico Fermi in the early fifties, and moEéd'iecently with the,

addition of geometrical concepts iﬁs.forms the basi§ of the,
thermodynamic fireba}l model of heavy-ion coflisions. Geometry
: 8 : leéds to the participant-spectator picture; these-are evaluated
dumericglly assuming straight geometrical clean cuts or usipg

- Glauber theory, which gives almost identical results. The

. .participants are assumed to fuse completeiy to form a fireball

where both thermal and chemical equilibrium are achieved, thus

allowing the ‘calculation of cross-sections or multiplicities

Yok w o

that can be compared with the experimental data. The fireball .
g‘ﬁgxpands and when all inte;actions freeze , the ideal gas’ :
N thermodynamics is applied. Extentions and elaboratioqé of this
model have been introduced. One can consider two fireballs to ;

', ‘ represent the residual collective motions in the longitudinal

direction. . One can also introduce <collective outward radial

H . , ° N
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flows to represent the fireball explosions resulting .from the

anisotropic environment faced by hot and dense fireballs,

<
°

" .
The intranuclear cascade @gy/ie neither a .model nor a theory
£ .- g : )
but a simulation. It/({;/a microscopic "model" without any

adjustable - parameters using only the total elastic and

inelastic nucleon-nucleon cross-sections as inputs, and has ,
1

been used in the range from 200 A.Mev to 2.0 A.Gev: The main
advantages of this "model™ are the possibility of caléulatihg
nén—observable quantities such as the maximum densities reached
during the collision, off-equilibrium situations, fluctuafions,

Al

and finite particle number effects. -

~

~ ' ¢

N -

The firSt\Piiﬁ of this Thesis is concerned with the question of
. ~ '

thermal equilibxgtion in heavy-ion collisions. This problem is

addressed by comparing the results of two models: the

thermodynamic fiiebéll model including 1longitudinal and radial

P
-5

Ve
. a I’
collective flows, and the intranuclear cascade of Cugnon et al.

Cugnon et al calculated the final rapidity and perpendicular
momentum distributions for the collisions of two calcium-like

nuclei at zero impact parameter. These distributions were fit

—_— -

with appropriate Maxwell-Boltzmann curves leading to different
transverse and lonéitudinal temperatures, thus conflicting with
the results of the one-fireball model. We show in this Thesis
that the two-fireball model reproduces the basic features of
their c®lculations, and the agreement is greatly improved when
collective radial flows are added to the fireball model. There

is however, a discrepancy in the asymmetry ratios. This we

n
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believe is probably due to the deviations of the results of the

intranuclear cascade from a ., perfect Maxwell-Boltzmann
R .

distribution. We may say in conclusion that the results of the

®

cascade ‘calculation of Cugnon et’al are in good agreement with

the predictions of the thermodynamic two-fireball)blastgwave
. . / . “
model. 'The.latter containsy the implicit assumption of thermal

equilibration. Therefore we can say that thermal equilibrium

is reached during the collision of the two calcium-like nuclei

‘in the Cugnon .cascade.

The related question of chemical equilibration has been
investigated before‘by other authors under varying assumptioné.
The thermodynamic fireball models assume that ~ chemical
equilibrium along with thermal équilibrdum is achieved by the
participantf during the collision. In the cascade model the
final number of déltas (and therefore also of pions) depends on

its rates of production and absorption. There is chemical

[

1
equilibrium if the two rates are equal. There has been much
debate on the question of chemical equilibration in heavy-ion

collisions and some disagreement still exists on this matter.
' v v
We study this problem using the intraruclear cascade. The basic

» L3

code is extended by the introduction of the isospin formalism.

This is necessary because much of the experimental data

[}

available is for non-symmetric systems N # 2Z. At the same time

el

the total elastic and inelastic nucleon-nucleon experimental

cross-section data is reviewed to produce a new parametrization

for the cascade code. The sensitivify of the end _results in

o
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. the cascade. calculations to c¢hanges in the cross-section

b

‘parametrizations is evaluated by comparing calculations using

o °o“ i o . . . N .
the', gctual cross-section parametrization with -calculstions

a
°

’ l& 13 ° 1] . 1] »
using a simplified parametrization.
2 v .

#»
. @
P

We do a preliminary calculation of central collisions of equal

.

nuclei usin? the cascade code. In a further invesﬁigation wé
artifictially confine the participants into a,Gspherical cavity
ag the stagé of maximum compression. That situation defines a
condition of chemical equilibrium., 1It shpws-that during the

stage of maximum compression in the normal cascade calculation

¢

”

the system closely approaches chemical equilibrium. It could
a T d

attain the condition of chemical equi}ibration if it did not

»

dissipate much too soon.

>

In view of the positive results from this preliminary
simplified calculation, we can study an actqél collision. We
define the(gétuation of Ehemical equilibration for the'case of
an’ actual _system by placing it inside a coglainer wall that

allows it to 'evolve continuously in a corstant volume.. At later

-

times, beyond the point' where chemical equilibration is

attained, the containeq wdll is removed to allow the system to

a

expand freely. The 'comparisonn with the normal cascade

[

. . . [}
calculations show clearly that the system  approaches chemical

equilibrium within®20% at the stage of maximum compression.
. @ﬁ,’ .

The cascade model épd the thermod§namic- fireball model are

;

-

consistent with one aag:her from the point of view of thermal l

(/ . - 108 -
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and chemical equilibration. But chemical equilibrium is a
rougher approximatioﬁﬁ Particularly in the case of peripheral
collisions, .where the numbers of participants are very small
compared with collisions at zero impact parameter, the
attainment of ,clemical equilibrium 1is very questionable. The
calculation of the total inclusive pion cross-sections involves
an integration over all the impact parameters; therefore the

comparison with the results for zero impact parameter alone is

an indication of the extent to which the participants in

peripheral collisions deviate from equilibrium, In all cases we

find that the predicted number of pions is always overestimated

by about a factor of two. The introduction of the' isospin

©

formalism in ' the cascade code was  very instrumental in this

calculation because the available data contains mostly charge

asymmetric systems (N # Z). A new parametrization of the total

» o \

(elasticrand 1inelastic) nucleopn-nucleon cross-section is used

o N

in thi§ calculation,- and at the ]same time we, test the -

a

sensitivity of the" end results by .using a simplified

o
@

parametrization for these cross-sections.

o

N
[

‘4

The two-fireball/blast-wave modél ié successful in reproducing
the results of the intranuclear cascade. It isanéw iSEeresting
to calculate its 4predicti;ns for the average associated
multiplicities. The thermal ‘models usually overestimate the

number of, pions by at least a factor of two, but : this model

constrains from the beginning the pion cross-sections to their

parameters of the model: the fireball temﬁerature and the

+

" correct experimental valies. This is done by varying two
4 o

N gt are
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freeze out density. The temperature of the fireball éan be
reduced by the introduction of collective degrees of freedo%
represented in the model by two fireballs moving in opposite
directions and by radial explosions in each fireball. About 40%

of the collision energy is consumed by the radial explosions.

-These two parameters are determined by fitting the ratios of

protons to deuterdms and the ratio of protons to negative pions
to the experimental data of Nagamiya et al for the collisions

of neon on lead at 400, 800 and 2100 A.Mev. The model

o ’ . o . e
overestimates the associated multiplicities at the lower

energies, but as the energy of the collision increases  the

-

calculated regults fall progressivel§ much shorter 5% the

Y

experimental results. The one-fireball model predicts the
experimental results correctly in general. The experimental

data on associated multiplicities does not report the

cross-section for pions séparately so that we cannot test for

» @il
Ay A

the primordial charge cross-sections, The associated

multiplicity tests " a combination of geometrical and dynamical

N 8

assumptions 1which cannot  Dbe disentangledq7 whereasg the

primordial charge cross-sections depend’oh the geometry alone.
. 2

r . v - ’
We observed - that the average total nucledn-nucleon

°

cross~sections increases by more than ' 40% when the collision

v

energy increases from - 400 A.Mev to k.05 A.Gev. Assuming a

stréight line tﬁggectory for the nucleons, a j«Glauber type
«a i '

theory predicts that-the numbers of participants dgﬁend on the

energy of the collision through‘%;he tatal nucleon-nutleon

3 5

‘cross-sections. Our calculations based on -the Glauber type

v - 4
<* . °
D ¢ -

N | j L ' - 110 -

o




e WA

s v s e e W AP s me

theory produced sé&e energy dependence of the primordial charge
s >4 . .

L N a
cross-sections, but not enough to explain the experimental

. .
data. . -
n 1]
. . o ‘
-

The intranuclear cascade provides an alterpnative model to study

the primordial charge cross-sections. We define a ¢riterion to
determine the ' number of panticipant§' based on the change

between the final and the injtial momenta of the particles.
L 3

Because ' +£he particles lose their identities during the,

interactions it is necessary to ’consider“both the projéctile
and the target momenta. The change in momentum is taken to-be

equal to the Fermi momentum of an undisturbed nucleus., At

i
~

800 A.Mev the numbers of particigants obtained in this Way are

higher thh.the correspondiné numbers cdlculated in thg clean
geometry; ét 400 A.Mev on the other hand, the figures ware
substantially smaller. The primordial charge cross-sections for
the collisions of neon on lead reproduce the right energy
dependence and also agree with the experimental éata within sthe

error limits,

v

<

The intranuclear cascade code overestimates by a facter of two
the total inclusive pion cross-sections. These results are not
affected by the criterion for defining the number of

participants in terms of the Fermi momentum because all deltas

o

in, the freeze-out stage are regarded as participants. . Some
authors (Stock-82, Harris-84) have attempted to interpret the

overestimation of the number of pions as the result of the

. “

absence of 5compressional effects in the intranuclear cascade
3 . N
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and develop from that an estimate of the equation of staté?for

n )

nuclear matter., e .

This very interesting .result was obtained with a cascade code

that‘ did not include in the calcﬁlation the initial Fermi

- mption of the nucleons, nor did it include any field effects;

;thg Pauli principle is only approximately taken into, account .by

®

forbiddihg soft collisions, . The formation ‘of composites 1is
also excluded from the model. It would be highly desirable to

complete this study by doing a calculation with a more complete

cascade code,




7 - APPENDICES

¢

7.1 Thérmoﬁynamic calculations,

&

?
*

- The thermodynamic calculations consist in finding the solutions
‘ of the-equations for the conserved gquantities (equations 2.1.5
to 2.1.8) analytically if possible, or numerically in most

£

cases.

v

7.1.1 The one-fireball model.

A relativistic Maxwell-Boltzmann distribution (equation 2.1.2)

is assumed valid in the frame of the fireball for each one of

v o the hadronic spécies present. The number ;f particles n;(ﬁ) in
the fireball is obtained immediately as a function of

b

4 parameters to be determined later:

[ ]
u { .
v J - = w": 2
N (_B) - }—\1 O_P‘/T Sdﬂ S e Al *? Pzd.f (7.1.1)

! I3

The first integration 1is done immediately, and ' for the second

one we use the change of variables: .

et s e e . SN




~

Lﬂ: e Y (7.1.3)

The integral above is proportional to the MacDonald function
» . !

Kz(m;‘/T) (Abramowitz~68):

,w ‘ g

-zeght -+
SQ Gk ok = va z) %"’v&) (7.1.4)
’ » ,“/2 (.a_(a)

for ® =2 and z = m{/T. Direct substitution now leads to

equation 2.1.3:

'V\ (L) = ‘L }N/Tw\ Tk, (w;/'\') (7.1.5)

The total energy E((b) for 'each kind of particle in the

fireball is obtained by evaluatihg the integral:

.

4% ol ,
- 0\3.' 2 _
AOMPEAL L S

o (> . "
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‘ N T A > 12 : |
- R o J(W e 1 L Y‘,\? (7.1.6)
o

aw?

-

‘Uéﬁng again the same change. of variable‘(7.1.2) we get:

N\

E () = MTB o T

o)

(H%«»H:Byuu,?'calk (7.1.7)

The first integral 1is proportional to K‘(mi/T) and the second

one to Kp(mg/T); substitution leads to equation'2.1.4:

s

E(b) = %—W\-’Z_QP&/TW?T[K&“() kz(“hﬂ (}1.8)

7.1.2 The two-fireball model.
All that has Dbeen sai®@ above in section 7.1.1 is directly
applicable in this case, but now in each of the-fireballs' rést

frames, The temperature and the chemical potentials are now

defined in these two frames. Equations 2.1.5 to 2.1.8 for'the

© conserved quantities are written in the center of mass frame of

the two fireballs. The number of each hadronic species is an

invariant, but the energies in the center of mass frame are

connected to the energies in each fireball rest frame by a °

{ .
Lorentz transformation:

!

1

, ’ : - 115 -

’
L

S

AT N e M




L]

o by
YY) = : =
‘J-\— ‘[Q&Lb)/Eo(B3]

Q@

where E; (b) is given by equation 7.1.8.

(7.i.9)

&
If (E;,Y;) and (éi,% ) are the target (projectile)vparticipant

four-momenta respectively before and after the collision (Das

Gupta-78),, then:

-

’2&(\)) = C(M. P,’_

The one~fireball model 1is recovered as the masses of

(7.1,10)

the ions

increase, and the transparency factor e approaches zero. In

general it can be caldéulated (Das Gupta-79r as:

-

0.4% 4 0.619(b)

]

~

e(b) = o.s5s

where V(b) is the average number of c¢ollisions

projectile (target) nucleon suffers with the

o

(7.1.11)

that a

} target

(projectile) nucleus; it 1is calculated as the ratio of -the

average ‘length traversed by, a nucleon in the other
T(b), and the nucleon mean free path in the «collision

Gupta-79) . For normal nuclear matter we have A = 1.8

Gupta-79) . Two colliding spherical nuclei with constant

"and sharp surfaces of radii R, and R, have the nucleon

)

nucleus

(Das
fm (Das
density

mean

- 116 -
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free path (Das Gupta-@Q)Aat the impact parameter b given by:

Yw X2 . A | )5 n
;2344( S [R«atq)—x’_'ya[?«zcﬂ}' (\9-35)1} dx '
by = =2 ':'“ o — ‘/}l (7.1.12)
Vo ST -22]"da
0 * ]

At the impac£ parameter b = 0:

kX
2 oy Y (x4 o

t

Lio) =

(7.1.13)

S:&QE%QEziﬂ“ﬁ&Lm\\j

we obtain after .an' elementary inéegration the value

1(0) = 3rR/2, for two equal nuclei of radius R.

,

7.1.3 The implosion-explosion model.

Consider a " reference frame moving ~fadially outwards with

respect to‘the rest frame of the fireball. ?here is an infinite

number of such radial frames. The basic assumption is that in a

neighborhood of each one of "them the constituents of the

fireball - obey a local relativistic Maxwell-Boltzmann
4

distribution. The objective 1is to determine the resulting

distributions in the fireball rest frame.

. /’

We make wuse again of the Lorentz invariance of the product

Ed’n/dp’ and take the average over all the radial directions:
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e du_ | \aoe dm o
3 A% 3
A ° v

GV ki
. - ‘ M T ) "'Ef/T
( - \B\["L XMABE,Q.W (7.1.14)
o .

But E ¢ = '{‘(E = VP cos®); then

“ Y.
%\}Y Q -.%( \’( bﬂe)
E v S(E \ \7(&63 o\(mse) (7.1.15)
3 3
0"? - bw
- (v}
0 The ipéegration can bet carried out by elementary means and we

3

finally arrive at Eq. (2.1.16):

3, —%
d‘; _ Afo z
d’?‘ Q Q(Z.)'--z

[(21—71 -H’Q.I'—- (;c,_-\-.l, -H)Ek'] (7.1.16)

where A(= gLV(b)e,“/T/BW P X = Y‘.va/T, Xo = 'YVE/T.

5
-

The limiting value of equation 7.1.16 when V‘.-—->0 is obtained by

noting that' Y,.-1, x,=~ 0, and x,-> E/T:

o

(7.1.17)

which is the Maxwell-Boltzmann distribution in the rest frame
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of the fireball.

7.1.4 The t@o-fireball}blast-ﬁa&e'modél. .
The thermodynamic palculations take their simpleiﬁéformxjif
equations 2.,1.5 to 2,1.8 for Qha’chserved guantiiies are
written in the expanding £frames of each fi;eball, where the
Maxwell-Boltzmann distributions are assume to be valid; in this
case the equations developped above for the one-firebali model
are applicable, but now the temperature -and the chenmical
potentials are defined in the expand}ng radial frames. If, the

calculations are done in the rest frames of the fireballs, then

the distribution of equation 2.1.16 must be used and it is

o o

¢
necessary to resort+to numerical methods much sooner.

t 4

S

The critical density P‘ and the temperature are --adjustable
parameters to fit the experimental ratios of the cross-sections

%/6‘* and G'V/G;‘. The temperature is a function of the Jmount

of energy that is available for "thermalization, so that the ’

™

velocity of radial expansion V, is ultimately the adjustable
parameter in this case. The energy available for thermalization
in the }adially expanding frames is related by a Lorentz

transformation to the fireball rest frames:
E L e
- S— . ) (7-1.18)

where \; is the gamma factor betﬂ?en these two frames.
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= 2 : A _ .
Vo = By/% s enexrgy E; = my + p%, and Y, = E,/m,. The energy E

7.2 Decay of the deltas.

%
[

In the - two-body decay of a delta resonance the distribution of
one daughter particle in the rest frame of the fireball arises
from its distribution in the rest frame of the delta and the

distribution of the delta in the rest frame of the firebgll:

3 3 3 '
: dwn., sdn,  d > -
B s R e 7 (7.2.1)
W J o Ay T .

In the rest frame of the delta each daughter particle is \

digtributed as (Kapusta-77, Das Gupta-81l):

3. ,
E‘dn‘:: l S(E“'Eui) , (7.2.2)

M>  Axy,

. 3 X
where Eg,; = m} + p:. We integrate over all the momentum space

&

w

to check thjfﬁormaliiation constant: - ‘ .
L :
\A % S(E"Ed) % T
n g =
- o 1
[ o]

»

B(C\'E\}\3 \]E\a

E‘\} S w? g wg \ (7.2.3)
B W

o

as expected. In the fireball frame the delta has a velocity
2

R e R A R i ot

So oo

S
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energy E in the fireball frame by a Lorentz transformation:

‘0of the daughter particle in the delta’ frame is related to its ’

e

=V (e r-'GA._\SB = (EBE —"\5&-‘;)/1\«5 ” ‘(’/“.2.4)‘

-

Choose a coordinate system with th

of motion of the daughter pgrtié; then equation 7.2.1

becomes?

3 .
E d“\ - \ SS(E“'EQ'\ dy&
4

Ap* - 4w, A

B(m-@b )
\7E/ ocse))

) (E\—E,.ﬂ =

where cos B-' = (E,E - rn&EV'L)/pA p:

N e
S S%A NN % I EadEs (127
o> Joe ALY ? C

/!

The limits of integrat?n’r’x E:f are obtained from the condition

that E'" = Ey , as required by the angular integration over the

%-funétion. Then, from equation,7.2.4:
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which leads to a second degree equ%tion in Byl
A (
2 .4 : 2 (-2 '
&E —\aztoSeXEA—l(WAEh E) By + Wy (E,;-\ngg,ze\ =0 (7.2.9) =

with a discriminant .

r(‘) 2 ,
A = 4wy (Ee:" S \’lmza) b TSN S (7.2.10)

< -

which for cos® = %1 givés the result

& = %"; e x ?oP) » (7.2,10)

3

7.2.1 The one-fireball model.
In the one-~fireball model the delta resonances are assumed to
obey a relativistic .Maxwell-Boltzmann distriﬁution; we can thus

proceed to complete the integration of equation 7.2.7:

n b b o

P




ot A

AR s

)“

' 7.2.2 Theutwo—firéball model. ‘ " o o

E. dE
QTB 2&5? Q;w}? e~ é s i
A ) : C

»
. ow,
[ .
2,

and arrive after some elementary algebré'at the result: ¢

N ‘jA T(ﬁ"w)

(7.2;I3)

w o~

Equatlon 7.2.13 above hoids in the frame of each fireball, The

left hand side, whlch is Lorentz invariant, can be written in

-

their center of mass frame. The energy and momentum in the

; right. hand side are expressed in terms of center of mass

quantities by’ a Lorentz transformation. Then the results are

«
N

added together:' ¢

o 3 , . ’ ‘ .
. ’ 1 *d“& - E* d\\ & E* & 'Fl\ ’

- “ _ ?;%E ck?*} ‘Jﬁfa

(7.2.14)

T car i . - —

' n EQT . N
: 3 ‘ ’ A
edn _ W jl\leh/"'s Q-EA/T : (7.2.12)
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7.2.3 The tworffrébaTUMave model.

-

for a Oparticle of energy E

along the axis

'

and Py

variables (p, »P,) and (B,y) are connected by the transformation

" the

We start again from equation 7.2.7 now written in the rest
frames of e‘ac{h fireball, but the distribution of the deltas' is
given by equation 7.1.16. We get for each f{ireballf .
[ i &' “
2
An, VM 7h e %
EO\P' = BYWhe [(Zz X+ €L (’zzmw)aj e (7.2.15)
3% ¥
b? - y
A .
with x, = ]‘,v { :/T, and Xy = Y\.EA/’I‘. The integratio,n
' has to be done numerically here (‘IMSL—79?. """I;‘he rest of the
calculations are idehtical tof’tﬁe ‘case of the two-fireball
model,
S . ®
. ” ,, )
7.3 The rapidity distributions. .
£, ‘ !
‘iThe rap‘idity y is defined along an axis as - - Ty
Eab i o
Y = 5 (7.3.1)
0 E-Yy u '

2

and momentum p with projection p“

perpendicular plane. The

=~

R T

e L L

e i e e ©

e e e e b
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| 3 ™My ?.L* ?\\ > \“ ;) q"z

(7.3.2) -
) W *Yﬁ*h Py
'% , and its inverse .
S ) ‘/’. s i
S T » = anmda (7.3.3) ¢
\ L %‘“\1 o h !
\ M .o . J (}(
. .- ?5
with a Jacobian ' i *
) - er. * |
= — Y N 1;‘?; (7.3.4) ;-
AEN) by (BT wiaiyyt o

)
: T
, .
N u 5 - ©
L - ) . i
¥ : . .

. The following relation holds: ‘ » . s

’ ’ 4? = —— . d& o, d

\ ‘ ? o\?_\_ ) wz\‘ | | (7:3.5) .

- | {

4 C- ;

. q

& +© 7.3.1 The one—f‘irebal} model. ‘ }

‘ Using cylindrical coordinates (p_l p g{; ,p“) we int':egrate the
relativistic Maxwell-Boltzmann dist-:ributioq with respect to the :

. angular variébie, ‘transform to the new variables (E,y) and
T integrate over the energy; we obtain the rapidity distribution Z

; ( dng/dy: a . . o {
. . - ;

‘ | - : ‘ - 125°-
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- & . &k: =%
. dw AE = ,
W ol y S R SR : (7.3.6)
! W, Cshay

m .
i -V Q}""/'W -€
- X 3 Fes e

3 2
4vd gy | ,
W Loty

(7.3.7)

o

The lower 1limit of integration corresponds to p, = 0, which

\
implies E:L = m'.}+ pa = m?'+ El tanhzy, or E = mjcosh y. After
o ;

integrating 'we get:

R : - W; LS
M=2:J# D (B by ] o7 (f ‘) (7.3.8)
N

This . equation can® be exp&:essed in terms . of the pumber of

@rtlcles n (b) using equatlon 7.1.5. We get:

o

A _ “‘U’)T# (H “‘%W‘)] Tg‘“ ) (7.3.9)
M 2nd umz(% -

2.3.2 The two-fireball model.

In the center of mass frame of the two fireballs we can write:

&

ppu-
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‘
2

>
v
J da ] E dl £
——“—‘o\lg“"= an, 0\\"' ~ C (7.3.10)
=T d.?‘ S
and using equation 7.3.5 we get
. .
. *£1 ¥ 5 %
2edn E"__dE_zéﬂ - ap g di EYAE LS -
) - -
2 IR A K
Therefore . ’
o0 3 |
[ ’
dw _ _;D'E, \ EE*&*&
A“* wﬁ\"*x df& (7.3.12)
hl%\{* .
Now assume that the particles in the fireball frame follow a
" Maxwell-Boltzmann distribution  and use  the Lorentz
transformation:

i \ .

(7.3.13)

E =Y;(E*$Q¢YIS‘YF E*(\*%M\q*) ‘

51\1@*“/* ¥ (1£4cdmuby¥) g-ycé‘(wamw) o

» T ot (7.3.14)
M (@ Wiy ety #

: i
Here V denotes the volume iate

associated with each fireball.
Introducé the notation

LT |
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dpt = vy x \SFM\\“ | (7.3.15)

to.

to simplify the - equation. Integrating and adding the
distributions for each fireball together we get finally:

)

. | Ve
%N ej“/tlz {(w,,ﬂ\i@ ,e'-?"m%

da¥ TRy (VT T T

u&k' -

‘ (\m‘f;d)" S AS :
| e (7.3.16)

The .same result may be obtained more simply by noting that,

o
QL)E -\-’{u Y+ -%L} :}\’FF (7.3.17)

“~. so that dy*’= dy, and we can write:

%‘;\_{'\,‘_ %" (“ﬂ\i%i‘)%%{‘—» -\—%(‘P‘f -‘]—'-\_'_OTF\> (7.3.18)

..\-

s

¢

where each term on the right-hand-side is obtained from
equation 7.3.8 by substituting the indicated value of the
1 % >

5

argument. The end result is again equation 7.3.16 above.

- 128 -

5
3
5
i
i
4




L

\
X

; ( . When the ‘surviviné deltas atautéé freeze-out point decay into
‘ nucleons and pions their distributions are obtained from
‘ - equation 7.3.12, where now the integrand contains the

{ distribution Ed‘n;/dp3 from® equation 7.2.13 for the decay

products:

&\«f _ 0)-‘.\121“/1 g[<M&Ed¢iE‘+T) WaT .
M* 4“1\“41\(" ‘ Mia - ?OX' .
Wby ¥

.(d*—\»)ﬂ-y&(oﬁ-r&t)‘gemﬁé (7.3.19)
wé

N | where we use the notation

¢ ] \\ yl

e ’X, [kd:t e*)’ ] - (7.3.20)

- -
| 02 QW\’[-—X:} — M QJLE*} (7.3.21)
, A A .

§
P : Equation 7.3.19 is evaluated numerically using.the integration 2

‘ ) subroutine DCADkE (IMSL-79). The results for the two fireball
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are added together: :

A\A\. dm P
m - d\{* w‘.wz (7.3.23)

7.3.3 The two-fireball/blast-wave model.

We write equation 7.3.6 in the rest frames of each fireball -

where now the distribution 7.1.16 is used in‘'the integrand:.

.

. jfr ;>
Loy &\m : g{(lz-l\ L (Iﬁ—LH)Q ;(Q ’E dE  (7.3.20)

with x, = var{E‘ -rns /T, and x, = YyE/T. The distribution inL

the center of mass frame is obtained from equation 7.3.i8:

\W—

e e oo

For each species from the decay of the deltas in the rest frame
of each fireball we get from equations 7.2,7 and 7.3.6:
8 T /
dw. _ Twa S Ede S &g E, dE
A

dy " Ty ) Terwe ) gy T .
° Wy CY

where the distribution of the deltas is given again by equation

7.1.16. The evaluation of the double integral is done
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%

numerically (IMSL-79). Equation 7.,3.25 is used to get the

final distribution in the center of mass frame.

7.4 The perpendicular momentum distributions.

-

7.4.1 The one-fireball model.

Take again cylindrical coordinates and integrate over 4.6 and

Py *
L)
.ZAAA_A'.— = J,q A'n: =
- ) G

+ (7.4.1)

e

. . > Va . .
Change variables to p‘1 = (’“L + p‘\.smh t. The integrand is an -

even function; then

LV e
WY.L ® / ' . (’-G'ak'\dk' (7.4.2)

o
Z.
'
>
Vi <&
P
» ]F\
——
v
z
had ¥
+
P\’
]

Integrating once by parts we find that the resulting integral
is also expressible in terms of the MacDonald function

——————rm——— e]
K, (\mi’+ p:/T) . Finally:

3
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V r‘—"‘ [

.é’.&.\. P % ?.L W\a'\'?f / K\ (-ET' wlz+?i ) (7.4.3)
iL N . o

This equation can be expressed in ytérms of the number ' of

!

particles n; (b) using equation 7.1.5. We get:

dw M ( - J + 1) K, ( W *YL> (7.4.4)

szx VM -V Kz 3

©

7.4.2 The two-fireball model.
We start again with equation 7.3.10 and integrate over the

parallel momentum p :

*0{“; ’ ‘x-
- = L} Yx. B-E;‘ —d\? o\y\\ (7.4.5)
E.L ,
— K

Change the variable of integration from the center of mass

system to the fireball frame:

F\\* = Y¢ (?\’-*- \}‘._E) 1 dY*-—- Edy\\ (7.4.6)
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o pa

P -

' ® 3,

i;':" = Q'R?_:S -%:’;_d‘ﬂ | | (7.4.7)
L .

This integration is the Same as in equation 7.4.1 for the
Maxwell-Boltzmann case, and we get equation 7.4.3 for each
g > )

/
fireball., Finally for both:

e K o N
i‘;\": e\"\‘é}h T?:'-l\\\’* (i k\ L‘%W") (7.4.8)
X , .

g

For the products of thek?decay of the deltas we wuse equation

7.2.13 in equation 7.4.5:

) df" w* P 4 = '
Wl (MELE \ Walp M T .
T (e g e | s

" 2
where we substitute p = (p:‘+'p\"')y’ and E = mi;+ p". The

integration must be done numerically and we use again - the

subroqtine DCADRE (IMSL-79).
b

Y

Spa b e
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7.4.3 The two-fireball/blast-wave model.
The calculations heré are entirely analogous, except that one
has to use the appropriate distributions,, for this model in the

“4ntegrands. Using equation 7.1.16 into equation 7.4.7 we get:

-3
) . ] ’./T ‘ ! - —x 1
b BV om0
A :

with x/, = ‘{,v, pf‘"+p" /T, Xp = YYJmf' + p:" + p2 /T. The

[~

[+ .
integral is evaluated numerically using DCADRE (IMSL-79).

/

The distributien for each species from the decay of the deltas//

is obtained by plugging 7.2.7 into 7.4.7 and using 7.1.16: //

/
o> /

dw QA“A’{’iQP‘/TS S .//

"y L1 A INERH ‘v AvEiap
T | .
: y 3 . = .2
o R[@rl\‘kﬂe - (7.,4-);,+0¢7’} 2 EA"\EA - (7.4.11)
’ Xy Xa . )
o1 :

The double integral is evaluated using the subroutine DBLIN

(IMSL-79).

We are also interested in the evaluation of <?:">. It 1is

obvious that <P:z> = < f) so we can do the evaluation in the

rést frame of the fireball:

'
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. 2 ) ' .' ’
{p¥ey = ?\g? I’;.Jl? (7.4.12)

Using equation 7.4.1:

o0

ey =ﬂghﬂdﬁg "’\’“ (7.4.13)

»)

and plugging equation 7.1.16:

(?“ _‘J-.VQh /TS?L&TLS[(;:Z-);“)Q (Z,4x:t02 Je dﬁn 4.14)

- Lo

-_""'T"‘"-a--z.'-f
with x, = Y}V} Ql + p{ /T, Xq = Y'J:;i + 3& *Rf /T.

For the ydecay products from the deltas we get from equation

7.4.13 using equation 7.2.7:

A 4o
<oy = 3‘"‘\"”/73?3*1 \
. : Ay :
R A n«nJ Wi
gA't'
S[(lz—xﬂ)z’(‘—(hu\ We Je X2 EAJJEA (7.4.15)
E_ o 4
with x, = VyViBy/Ts %g = YeE4/T.
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7.5 The parallell momentum distributions.

! 7.5.1 The one-fireball model.
We obtain ” the dnl-/dp“ distribution by taking cylindrical

coordinates (p.L, [y ,p‘) and integrating over <P and P *

(‘” 3
dw, dw,
_..“_ - Q“ > "‘"“"’; ?—LA?,LC W
i 5
/
° ) 2, .2
( _ G:eT %é'—i—“ﬁ"“h*’f:
’ 4xd P, A, (7.5.1)
o -

Cha'nge variables to p, =, m-‘t + p'1 .sinh t# then:
; L t "

: 9
: | T3
du: &M a [ WAt ekt :
.—-‘l“‘- = i____—-\;ia (M?*Q“s e_T Y“ M-\-_.J:(M{") (7.5.%)
o & ‘\
L and finally
- WA S ALY ,
| - n &\’ ¢ 5 (‘T+\‘\\n;a-\‘f’) e t (7.5.3)
z P 4w '
S
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( 7.5.2 The two-fireball model,
In the center of mass frame of the two fireballs we can write

equation 7.3.9 and integrate over the pefpendicular momentum

o g s 1 12T an ot e d G e AR AT VR AR
-

Py:

dwe °25!-2 &n o eant = 2z i dn,

AT = Bg dg> ?xdﬂ B dp o ‘?-\”M-L (7.5.4)
W o
N

Convert all quantities to the center of mass frame:

€= (E"‘ +Ng Sf\(“)  (7.5.5)
and then
RV % [Feva®) .
0\“?‘-.: B Ye (BN *)e, ( \H‘ \’;*{’-& (7.5.6)
2 ""
mf\\ %) ® g’

Change the variable of integration

L

‘ 3 : - S
! \sw\{.‘.ﬁ Wl = oLt (7.5.7)

then:
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d 4N ey o St
.;%._; - %_1@ D b‘f(.\olm\\‘:t‘iﬁ\ﬁ)e T xAlaw) (7.5.8)
* |

and now after an elementary integration we get:

dws

WT =(h 2 Yevebh) e
d«,w = %Q‘*{r a [J’“\?* wz"‘ %Fi\h; Y\\*] Q.T'h{“ ,T L (7.5.9)

Finally for the two fireballs:

- {

e _ 3&\){“&‘%(}‘"“"‘5*?&“
M e o

| . ¥ ¢ "
. E(Mt :‘_-‘ﬂn;’*?{'\t@\n!@ri\k - !E_\T)rﬂ‘—‘M 3"\}‘_ 4 ‘j (7.5.10)

where V is the volume of each fireball.

7.5.3 The two-fireball/blast-wave model..
The calculations here are entirely analogous. Using the

distribution from equation 7.1.16 into equation 7.5.4:
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. owith xy =YY vy (p\r £ Ve E¥) /T,

T e

A\\\ ffv}\l }\/TSU-_t\_)__Y_\XKI,-Im\e (.xz+xm x]e R (7.5.11)

\ °

XXy

’

w= YV (E & vep¥)/T, and

¥ = (mf + g: + éwsnh The integration is done numerically.

4

The distriBution from the decay of the deltas is obtained by .

plugging equation 7.2.7 into equation

..

7.1.16%

Q) ' ;:

&,MT (\1\‘_¥) 2 I B[(h— R
dpy g%, . € N1

\
: - a - %
with . X = Y}VkSEA —mL./T, l

. B¥

using DBLIN (IMSL-79).

-

7.5.4 and using equation
A :

(oAt ]e &‘EAU 5. 12)—

LyXq

Xo =Yy EA/T, and

= (mf + g:1+ E:W‘. The double integral is done numerically

Pl
[ 4

We also want to evaluate < ‘l in order to calculate the
asymmetry ratio Y. We ‘have:
. - ’ 400 g
u*a_ " a-“\ ( & *2
- 7.5.13
< 1 >‘ ;S %Xv “; \ \ ( )
- od

Using a Lorentz transformation to

=Y (P, % Ve E) ‘we get:

R e - JE— . -

|

the fireball rest frame
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<?\,\"> = Y;[< "3) * °F<E1>] ’ (7.5.14)

since <p“E> =0 when summed over both fireballs. NOting
that E) = m?'+ p: + p“", we obtain finally:

L] w <
/

<{’:’>=7’[(‘WF)<\%> +\3;(m?'*4?:))} L2058

k]

The asymmetry ratio is then:

=~
. IR
\/ > (7.5.16)
<R > Y f( )R> + U (W ()] 1
The value of <p}> is calculated in Appendix 7.4.3. '
B .%
‘ié
%
7.6 Nucleon-nucleon scattering cross-sections.’ Ce :

w

[}

ECS

7.6.1 Elastic and inelastic cross-sections.
Neutron-proton cross-sections in the energy region 200 Mev -
1.0 Gev have been measured since the early 1950's. Total

cross-~ sectlons suffered from large systematic errors, and 1t is
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only in the 1970's with the availability of better machines and

detector systems that we have more accurate measurements
(Dieterle-77). rraditionally n-p créss—sections wereﬁﬁbtained
inditectly frbﬁ p-p and p-d measurements. Now good quality
secondary neutron beams haVe'bec;me available at ‘the new
facilities., BSaclay, for example, produces a monoen?rgetic
neutr&n beam by stripping deuterons with protons. Accordingly
we reject all the data that was measured prijor to 1970. We use
the CERﬁCHERA‘ compilation (Flaminio;79) ?Pd the measurements
dene by Dtein et al (Devlin-73), which they claim:

"...has high statistical precision and Vgood

momentum resolution. The statistical accuracy of

the data is between 0.2% and 0.7% and the total
systematic wuncertainty is believed. to be even

less". T

" Proton-proton cross-sections have always been much more easily
measured than the correSponding'neutron-proton\gross-sections.
As it would | be expécted the data contains fewef' systematic
errors. Most of the data is cluste;ed along a -weli defined
curve. The Landolt-Bornstein (Hellwege-73) compilations are
used. It presents a narrower selection from which more
uncertain data has been eliminated. v

(’ -
‘More specifically the sources of the data and their energy

-

ranges are summarized below. Herels denotes the center of mass

» '

energies.:

.
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N
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TABLE 7.6.1 Sources of§§E§§s-section data,

°

The sources of data for each type and energy range.

p-p total: 1.995 <f§ < 2,997 Gev (Hellwege-73, page 9)

p-p elastic: 1.955 <(8 < 2.061 Gev (Hellwege-73, page 9)
~ 2.075 <J8 < 2.981 Gev (Hellwege-73, page 15)

n-p total: 1.998 <{s < 2.858 Gev (Devlin-fﬁi Table iv)

n-p elastic: 1.998 <fs < 2.043 Gev (Devlin-73, Table iv)
. ) 2.323 <Js < 4.111 Gev (Flaminio-79, page 83)

__The n-p and p-p cross-sections are treated with the cubic
R B

ggpline interpolation IMSL subroutine  ICSVKU. Average
nucleén—nucleon'créss-sections are calculated as the arithmetic
average between the p-p and n-p cross-sections. The inelastic
cross-sections are obtained by difference between the total and
the elastic. The average curves are parametrized again using
the same subroutine.The value of the cubic spline aproximation
fpr the cross-sectiong at the center of mass energy({s is given

by an expression of the type:

»

}

S6 = {le (iR iy« e (i wi® « e WA - (7.5.1)

’

E)

where w;®)={3 - z(i), and we must have z(i) <[s < z(i+1)..

The . parameters for equation 7.6.1 are listed in'the tables

S—

below:

e i




X TABLE 7.6.2 N-N inelastic cross-sections.
Cubic spline parametrization of the inelastic cross-sections.
c(i,l) c(i,2) c(i,3) y(i) z(i)

-338.07763 1582,2971 -1653.8394 20.812821 1.8800
96 .614842 589.00714 -3334.7371 3.2776453 2.0802
67.298960 ' -800.13229 '4109.8799 19.121772 2.2191
17.397228 157.92819 -1429.,7512 21.448271 2.2968
‘22.613541 -50.667749 42.191495 22.503403 2.3454

B— - - 2.8400

TABLE 7.6.3 N-N elastic cross-sections.

—

Cubic spline parametrization of the elastic cross-sections.
- [ 4
c(i,l) c(i,2) «c(i,3) y(i) z(i)

-500.84952 2695.6847 -5603.0369 62.729973 1.8900
-73.930420 300.97468 -619.75450 29.887576 2.0325
-39.198997 161.27893 ~-430-.52425 25.769023 2.1076
-19.212680 14.0396389 9.0099979 22.758478 2.,2216
-14.378134  18.104950° -15.804888 20.217122 2.3720

- 2.8300

-R. L. Hatch (Hatch-79) .presents a another parametrization of

the average nucleon-nucleon cross-sections that produces curves

very similar to our wn. We also use a simplified
parametrization to test the sensitivity of the results to a

change in cross~-section. This simplified parametrization, for

the inelastic cross-setion is
‘ SN

et ~

N Qo(ﬁ—ab\s\z
Q. )= : , (7.6.2)
“®) ‘0,015 + ([8-2.018)

and for éhe elastic is

a

2

N
N\ L

: o ,
3 Lo
d i 3 - .
of o : N 3
§ N \“}..4 o . O o Lt
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.S |
g, ({s) = : + 0 6.
a - | +ios (J5- 1,2993) . (763

The elastic, inelastic and total cross-sections, both in the
simplified parametrization and the actual one appear in Figure

9.1.

c

7.6.2 Elastic differgntial cross-sections.

) - ' . /
The elastic differential cross-sections are assumed to be the
same as for diffraction scattering, with an exponential form

(Perl-74):

a4 _

a: do _ @eb(ﬁ)-k

(7.6.4)

where t = -Zpa(l - cos@) is the four-momentum transfer

2

(0> ¢t>=2p" =t ), and

L [2.65 (F 4\.%6)]"
L+ 2065 (Vs -1, 966Y]°

(7.6.5)

b(f%) =
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7.7 The intranuclear cascade code.

7.7.1 The basic code. v ‘

In this appendix we give a detailed ﬁesc;iption of the cascade
code' that we have wused. It is a simple version of the
Bertsch-Cugnon code; it assumes the complete isoséin degeneracy
of all species intzﬂe model, and more sophisticated features
such as Fermi motion, Paul@ blocking and field effects are not
included. We modified this code to allow for the collisions of

unequal nuclei and introduced the isospin formalism.

% (a) Preliminaries.

Initially each nucleus is represented by a sphere. centered

on the coordinates (x.,O,zP) and (—x.,O,-z*), where
{
b=2x, Iis the impact parameter, 2y = 1.12 Aé’ and
) Y
z?\= 1.12 A: are the target and projectile radii

respectively. The nucleons are assigned random positions

inside each spheri/gccording to a uniform distribution:

i

! -

/1 5
Ty = {}P

2. (‘SG“KS(W)]VB (7.7:1)

g Uesd; = |- 2.0 GGudks (W)

(727.2)
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- uth-; 2w Geures (WY ) \ (7.7.3)

GGUBFS (W) 1is subroutine that generates 'a random number

uniformily di'stributed in the interval (0,1) where W is a

*seed'. Every time this function is ‘Thyoked it returns a

¢

new seed which is automatically used in each subsequent

call,

Each nucleon 1is then assigned its position in cartesian

coodinates:
X, = V;WJGICGS¢; T Xo . (7.7.4)
. Yo = W wnd; sed; | L (7.7.5)

2, = 1 (‘fl-(;ﬁ@“. + {i‘tg ) (7.7.;)

Here Y is the Lorentz factor. -Each nucleus receives a,
Lorentz boost along the z-axis with a momentum Py ©Or -P, in
the nucleon-nucleon center of mass corresponding to the

o
projectile kinetic energy:

N " - 146 - -
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(b)

where ™y is the nucleon mass, t, is the projectile kinetic

#

energy per nucleon.,

Sfart the simulation 65 the collision, _—
At the beginnig of each time interval At Ehe program
calculatés the distances R\S and the center of mass
energies S‘S between all pairs (i,j) of baryons: j
]
T, z 2 [ a.\2T/2
Vn) = {(X\*'{\\‘* (‘(i“m - @ -) ] (7.7.8)
o = L«"’E,Q - Y:*ﬁ,)\ . (7.7.9)
1f the distance for a pair is below 1.7 fm and their center
of mass energy SS is above 3.6l Gev, then the pair is a good
candidate for scattering, By forbidding N-N scattering
below 3.61 Gev, which corresponds to about 50 Mev kinetic
energy, the Pauli principle is upheld approximately in the
early stages of the collision. , - g

£

-

The distance between the pair (i,j") in their center of mass

frame at any time t between two collisions is obtained by a.

o

Lorentz transformation:
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by = —%W»L . (7.7.7)
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Q\‘j (= Y;j(?.) (ﬁ ""257 %}( %‘ q‘{(ﬁ-?}\— Ft) (ﬁ-?)).%‘.\.] (7.7.10) |

4t

At the start of the time interval &t, we get:

K i_’s(u\ = 5'—0@&3{?}-‘{,\% + (¥ -—75 \ (7.7.11)

The individual momenta of the pair is again obtained hy a

Lorentz transformation:

]

?\5 =%SF}%§'PUE1%§*[E'E€“%] (7.7.12)

b

which reduces to:

-
——

?3 = YQ&S-\\?\“ %;:;' V‘je‘:ﬁ’\} +‘§\‘ (7.7.13)

If the component of ﬁ.h)in the direction of the momenta,
np f .

)}

. bzs = \ Téij (05 A -&-‘%: \ . %7.7.14)
Y

is larger‘than 1.32 fm the pair will q\hot approach each

other close enough for scattering to occur. This distance

corresponds to the maximum total N-N cross-section

GM= 55 mb, -

L
PS4
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(c)

The distance of approach at one half the. time interval At:
g (iff..} '

ot Ly AL , '

is also required to be smaller than by .

3

A scatte‘ring occurs.

The average elastic and . inelastic cross-sections Gg and
O are determined as a‘func;-tiOn o:f the center of mass
energy s of the pair. The choice of one pérticular c—hannel
is now determined by drawing a random number .x, uniformily

distributed in the interval (0,1). The interval (0,1) is

=

divided into 3 subintervals _ ¢ :\‘(0, oa/a;w) ,A
g

( G/ (Tett6)/ Op )+ ((8y405,) /Ty s 1) - TE X., falls in the

last bin no scattering takes place at all.

1f Xy falls in the first bin the elastic channel is chosen.
The four-momentum tra\nsfer t/: is obtained integrating
equation 7.6.4 in the intervals (t\ vty = —2p7' ) and (0,t;)
‘and taking the ratio.| This ratio is is " chosen by drawing

another random number ¥/ : . .
bog Lis)te -
t b | (V-2 ,
I e A4 (7.7.16)
The elastic scattering angle is: _ Rt
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(7.7.17)

Q&S 95 = - L\/é»
when the random number x falls in the second bin there are

three possibilities:

below the threshold

(i) 1f the center of mass energy s is
for the production of deltas, or if the pair is made up of
two deltas there is no possibility of inelastic scattering.

Xt

W g

+
‘(ii) If both members of the pair are nucleons one delta is

produced with a mass (Baldoni-62)

¢

) .
‘ Wy 3 ('s—Q.olS)M.O?? € \.23\ (7.7.18)
B [v)
and linear momentum:
"> Ya
(s Y ) 40%‘%’)3 (7.7.19)
JA 35[ &”

(1ii) 1€ there is one delta and, one nﬁcleon, “the delta is

de-excited into a nucleon, with a cross-section calculated

from detailed balance: :

g

o, @
%
:

5
i3
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eV,
Ty = .‘.Q—\ o, - (7.7 .20)
NN
‘wheré
) 2
-\)'-‘ J%— my (7.7.21)

The scattering angle e; is chosen so tth\ cost is
distributed at random and uniformily between -1 and 1. The
azimuthal angle 43"is chosen at random for all the cases

above, thus violating the consevation of angular4momentum

here.

s

P
The new momentum coordinates are calculated as a function

of the old and the new angles (Section 7.7.3):

V= ?(-M,M W 454 (0% Cud + w}sg;g)} (7.7.22)

+

. Q{MM‘*N‘-&M(mm,w,m&,s&g)] 7725
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(d) Update momenta and coordinates.

(e)

wit-}ns their standard deviations.

The new momenta for- each particle, that scattered according

to the scheme of item (c), are converted back to the
-l

original frame using the same equat/i}on (7.7.13) with {b._\‘

replaced by - (53 The new updated coordinates “then bécome:

T (k+dby = F,(8) + I A (1.7.25)
18
S p

.

Statistics.

The procedure described above is- is repeatedh for each time
interval wuntil the number of collisions falls below a
specified value or unti} a total preset time limit is
reached. This simulation of one nucleus-nucleus collision

is repeated a number of times so that the average values of

the physical quantities of interest can be calculated along’
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7.7.2 The kinematics of scattering angles.

Assume that a unit vector ? is defined by "the angles (& ,t‘?) in
a given coord’inaté systﬂem (x,y,i) . The vector ? represents the
direction of motion of a particle before scattering /takes
place. After scattering the vector T is transformed in‘to a unit

vector ' defined by a change in direction by the scattering

angle Qs , which determines the momentum transfer, and also by‘_

an arbitrary angle é‘ .around the direction of T. We have:

°

.= B3y b
& Q\ Y Q“‘\’Bii

. -t = ,‘ (7.7.26)
&L
and ,x' is given by:
Y \’
A -14Ty - 183, -4 Ja “95-39 A - :
~ Yy =e e. ‘e e z (7.7.27)
‘ C
Expressing the vectors and the operators'in the - spherical
basis: ‘ - ’ T
' \ \ \ Q
k== \0 = —=\9| , t= |! (7.7.28)
R I BT - Mo )

°

and carrying out some algoebra, we finally arrive at the

equations 7.7.22. to 7.7.24, . .

%
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7.8 Chemical ‘equilibrium calculations.

o~
£

7.8.1 The equilibrium constant. - >
The number of particles in a §System in thermal equilibriuﬁ can
be calculated from the Maxwell-Boltzmann distribution. In the

non-relativistic limit equation (2.1.2) gives:

PRV oo b*/@wT -
.V . -W =P /Xwm

- & _Q\S e -W\Q plag = (7.8:1)
Q o o7

3
\

-
GV B k(X
‘_,35';# (#mT) Sf e

(7.8.2)

The integral above is tabulated and -equals fﬁ/%. Therefore,

or .

~
U ‘ -
’ . ..L | - ;'
W = i‘___\i (RMEV\% 3 "'()“ ) (7.8.3)
§w® :

E]

Now when the reaction N + N @ N + A in the system achieves

chemical equilibrium, the equilibrium constant K is calculated

J

by applying equation (7.8.3) to géqs? of the species present,
and we get: : ' . { s

&
(\
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Entering the numerical values into the above expression

(gD = 16, g'.s = 4, my = 958 Mev, and my = 938 Mev), we get:

K= P.P.'_ N A e'-Q«O/T (7.8.5)
- . 'hh) -

The corresponding relativistic result 1is obtained similarly

from equation (2.1.3), and we get:

K (q5§[T3 ‘

S e
K= =2 » 4.2 (7.8.6)
e - K, @3t/7)

7.8.2 The exponential fit to the spectra.

For a system in thermal equilibrium we ‘can write equation

(2.1.2) for the momentum distribution:

il ~El’r
@W—S | dﬂ\)d)‘:

(7.8.7)

But
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g = pEde -

I

and we can write it as:

- A - MQN/T Q'E/T (7.8.9)

E (g-w? JE w3

Plotting the left hand side of the above expression against the
%

energy E we obtain an exponén;ial curve, from which an estimate

a Of the temperature of the systeﬁ is extracted.

In the non-relativistic limit equation (7.8.9) is reduced to

the form:

_L O\VLC w\
£

¢ e (7.8.10)

which is again an exponential curve as a function of the energy
) :

E.

7.8.3 Kinematics in a spherical container.

Assume that a particle of momentum ; = (P, ,P, ,Py) hits the
internal surface of a sphere at the point T = (x‘,xz,xs).
Determine its momentum 6 = (Q|anpQ3) after the collision

takes place.
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We write the momentum P in terms of its components parallel and

perpendicular to the position vector T:

-

P RoL«[3- 60

2] (7.8.11)

<=t

This 1is transformed after the collision by reversing the

component of the momentum perpendicular to the surface:

wh

Q =-($~F\%z+[$-(?-ﬂ% (7.8.12)

v
-

&= p-2000%,

t

(7.8.13)

.

so that we finally get in term of the components:
: 3 |
) [] '
2, ?_f‘o % !

n 1 (7.8.14)
é
e ~

Q. = v -

This result is incorporated into the cascade code in order to

confine the participants into a sphericai volume over a period

of time to establish the conditions for chemical equilibrium,
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9 - FIGURES

Figure 9.1 Nucleon-nucleon average cross-sections.

Curves A, B and C represent the average N-N créss-sections. A
is the total cross-section; B the iAelastic cross-section and C
the elastic cross-section. These were. obtained from the nn and
np experimental cross-gsection data by a process of least square
smoothing and * interpolation. The dotted curves A','B' and C'
are simplified pagametrizations used to tgs; the sensitivity-df
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Figure 9.2 Rapidity and perpendicular momentum,

7

Rapidity and perpendicular momentum distribution curve fits to

relativistic Maxwell-Boltzmann distributions for
Ca-40 on Ca-40 collisions at 1.0 A.Gev and
parameter. The points were ' calculated
two-fireball/blast-wave model and the solid lines

best curve fits.
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Figure 9.4 Temperature in the cascade (A=40).
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Temperature determination by fitting an exponential curve to
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the tail of the energy distribution obtained from'the cascade
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F&gure 9.5 Temperature in the cascade (A=60). -
!

Temperature determination by fit{ing an éxpogential curve to
the tail of the energy distribution obtained from the-cascade
calculation of the collisions at 800 A.Mev of nuclei with mass

equal to 60.
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Figure 9.6

Temperature in the cascade (A=80).

Temperature determination by fitting an exponential curve to

the tail of

the energy distribution obtained from the cascade .-
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calculation of the collisions at 800 A.Mev of.nuclei with mass

equal to 80,
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Figure 9,7 Number of deltas in the cascade. .

- v

The time evolution of the ' number of deltas for the system

v
¢

calcium on calcium at 977 A.Mev and zero impact parameter,
Curve A represents a normal cascade run. " Curve B shows the
number of déltas -a function of time when \the participants are
céﬁfined in a fixed volume at the poiq&ﬁbf maximum compression,
Curve C 1is the same as curve B, but at the time' 20 fm/c the
constraining wall is removed and the participants are alloxfd

o

to expand freely.
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Curve B was calculated wusing the Glauber type theory for a
collision energy of 2.1 A.Gev. .
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Figure 9.8 Participants: Geometry x Glauber type.

3

Curves A and B represent the number of partfcipants as a

- function of the'impact parameter b for the system neon on lead.

Curve A was calculated using the straight clean-cut geometry.
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