
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

DESIGN AND IMPLEMENTATION OF A

FRAMEWORK FOR IMMERSIVE

ENVIRONMENTS IN A SHARED CONTEXT

Yves Boussemart

Department of Electrical and Computer Engineering

McGill University, Montréal

October 2004

A thesis submitted to McGill University in partial

fulfilment of the requirements of the degree of

Master of Engineering

© YVES BOUSSEMART, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12588-8
Our file Notre référence
ISBN: 0-494-12588-8

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

À mes parents.

Abstract

This thesis presents the framework used in our research group - the Shared Reality

Environment Lab - for use in our spatially immersive setups. Our main interest is the

application of virtual reality techniques in the context of computer-mediated human

to human communication and collaboration. The purpose of this architecture is to

allow users to quickly develop remote collaborative applications without the need to

manage low level operations. The framework is comprised of multiple independent

components: the Qave graphies engine, user trackers, sound spatializer, coherence

server, communication library and overlapping projectors interface. Sorne components

were already implemented when this work started and the contributions of this thesis

are the graphics engine, the coherence server as weIl as the integration of the other

components in that framework.

Résumé

Cette thèse présente l'infrastructure mise en place spécifiquement pour le "Shared Re­

ality Environment Lab". Cette dernière a pour vocation de gérer les environnements

immersifs de notre laboratoire. L'intérêt principal de notre recherche est d'exploiter

les possibilités offertes par les univers de synthèse dans un contexte de communica­

tion et de collaboration entre individus. Le but de l'architecture présentée ici est de

permettre à des développeurs de créer des applications collaboratives pour les espaces

virtuels, sans avoir à se préoccuper des tâches sous-jacentes. Cette infrastructure en

tant que telle est composée de différents modules indépendants: le moteur graphique

Qave, les processus de suivi des utilisateurs, le module de spatialisation sonore, le

serveur de cohérence, la librairie de communication, et finalement le système de pro­

jections redondantes. Certains de ces modules étaient déjà en place au début de

ce travail, nous y avons contribué par l'ajout du moteur graphique, du serveur de

cohérence et par l'intégration des différents modules dans l'infrastructure décrite.

Acknowledgments

First and foremost, l want to thank my parents for supporting me throughout my

studies, and for giving me the opportunity to see aIl that l've seen and learnt by

traveling in so many different countries. Secondly, l want to thank my supervisor,

Prof. Jeremy R. Cooperstock for his time and effort involved in helping me with this

Master's thesis. l also gratefully acknowledge his financial support. l also want to

sincerely extend my appreciation to Prof. Marcelo Wanderley for his counseling and

for aIl the stimulating discussions we had. Of course, l have to thank aIl the member

of the SRE Lab, past and present, for their invaluable camaraderie, insights and

friendship. l want to express special gratitude to Frank, both Mikes (Woz and Perez)

and Nadia for the (very) ungrateful work of proof-reading my thesis and helping me

fight against the English grammar. FinaIly, l want to thank my closest friends on

this continent, Seb, Darius, Le, Kristin anct-so many others for always reminding me

that there is so much to learn outside of school. Special thoughts go to my friends

from France, Belgium and Denmark, we'll meet up sooner or later.

TABLE OF CONTENTS

Abstract .

Résumé

Acknowledgments . .

LIST OF FIGURES

LIST OF TABLES .

CHAPTER 1. Introduction

1.1. Research Problem . .

1.2. Contribution of the Thesis

1.3. Design Goals ..

1.4. Research Setups

1.5. Sample Applications.

1.6. Thesis Overview ...

CHAPTER 2. Literature Review

2.1. Virtual Reality Background.

2.1.1. Definition

2.1.2. Virtual Reality System Components .

2.1.3. Applications in Research, Industry and Arts

ii

iii

v

VI

1

1

2

5

7

8

10

11

11

11

14

15

2.2. Desktop-based Virtual Reality

2.3. Head-Mounted Display for Virtual Reality

2.4. Projection-Based Virtual Reality .

2.4.1. Single Screen

2.4.2. Spatially Immersive Environment

CHAPTER 3. Qave Engine

3.1. Rendering Thread . .

3.1.1. OpenGL Background

3.1.2. Coordinate System .

3.1.3. Viewports and Off-Axis Projection

3.1.4. Rendering Program Flow.

3.1.5. Configuration File. . . .

3.1.6. Video Stream Blending .

3.2. Communication Thread .

3.3. Model Object .

3.4. Simulator Mode

3.5. Results

CHAPTER 4. WorldServer....

4.1. Object and World Models .

4.2. Transaction Model ..

4.2.1. Operation Modes

4.2.2. Message Proto col

CHAPTER 5. Tracker and Spatialized Audio.

5.1. Image Processing and Message Dispatching

5.2. Tracker Data for Spatialized Audio

TABLE OF CONTENTS

17

17

19

19

19

23

26

27

30

30

34

35

36

38

38

41

43

49

50

51

52

52

56

57

59

v

CHAPTER 6. Conclusions and Future Work

6.1. Conclusions

6.2. Future Work

REFERENCES . . .

TABLE OF CONTENTS

63

63

64

65

VI

LIST OF FIGURES

1.1 Framework Overview

1.2 SRE Setup Physical Dimensions.

1.3 Qave Rendering with User's Rand.

2.1 Sword of Damocles

2.2 General Overview of a VR System

3.1 Qave Threads

3.2 Vertex Coordinate Transformations

3.3 Perspective Projection Frustum

3.4 Coordinate System in SRE .

3.5 Viewports in Qave

3.6 Off-Axis Projection in the SRE

3.7 Rendering Loop

3.8 Video Embedding Examples in the SRE

3.9 Qave Performance for the 1 Viewport Configuration.

3.HQave Performance for the 3 Viewports Configuration

3.11Performance Comparison between Qave and CAVELib on Onyx2

4

7

9

12

14

24

27

29

31

32

33

34

38

44

45

47

LIST OF FIGURES

3.1Performance Comparison between Qave and CAVELib on a P4

4.1 Communication Protocol

5.1 Ttacker and Dispatcher Pro cesses

5.2 LocalizerQ DSP Architecture (with the authorization of Zeep.com)

5.3 Spatializer Information Flow

47

55

58

60

62

viii

LIST OF TABLES

3.1 Pre-defined Qave Remote Calls

3.2 Object Structure Data Fields

3.3 Keyboard Override Key-List.

4.1 Object Attributes. '"

4.2 Qave Clients Attributes.

4.3 WorldServer Command List ..

5.1 LocalizerQ Command List Sample.

39

41

42

51

51

53

61

CHAPTER 1

Introduction

"1 hear, l forget; l see, l remember; l do, l understand."
-P.R. Halmos

1.1. Research Problem

The concept of virtual reality (VR) is compelling because it marks a radical

shift from the viewing paradigm used in conventional computer graphics. Instead of

viewing an application through a 2D porthole, such as a screen, the user of a VR

system becomes immersed in a virtual space through a combination of software and

hardware, effectively transcending the boundary between the real and virtual world.

In effect, this allows the user to "go through the looking glass" and discover another

reality.

VR is a field that has been maturing rapidly over the past few years, as the

increase in computing power and the advance in display technology have made it

much more accessible not only to the academic world but also to industry and the arts.

The primary objective of the Shared Reality Environment Lab (SRE Lab) at Mc Gill

University is to facilitate human-human communication and collaboration through the

use of VR techniques. A prototype three-walled projection-based spatially immersive

environment was constructed for that purpose.

1.1 RESEARCH PROBLEM

A new project has recently begun in our research group, in which the goal is to

offer a higher resolution display in a multiply overlapping front-projection environ­

ment. Being able to use two immersive spaces simultaneously is valuable because

it allows the investigation of issues related both to network (e.g. low latency al go­

rithms, dynamic video bandwidth adaptation) and collaboration (e.g. importance of

gaze awareness or avatar realism). Furthermore, additional ongoing research in the

SRE Lab pertains to user interfaces for such immersive setups. Our main goal is

to provide an untethered, purely walk in and use environment. This is another im­

portant consideration for this work. For all these reasons, it is desirable to have a

consistent framework that can be adapted to both our spaces.

The purpose of the framework is to support applications of remote collabora­

tion between our two distinct research setups (see Section 1.4). Besides specifie

component-Ievel design requirements, there were two main overarching guidelines

we tried to follow. Firstly, the framework should allow the creation of applications

that rely on an user interface that is as natural as possible. In that sense, the user

should not have to don any special apparatus before being able to experience and

interact with the environment. Secondly, the architecture should be flexible in the

sense that specifie me chanis ms or algorithms are likely to change as the research effort

progresses. The framework thus divides the different tasks in distinct modules. These

modules communicate through a network layer thus providing a layer of abstraction

between the internaIs of each component. For example, a tracking component may

be upgraded with a newer detection algorithm, but as long as the communication

interface (that is both message syntax and rate) is respected, the other components

need not know about the change.

2

1.2 CONTRIBUTION OF THE THESIS

1.2. Contribution of the Thesis

The work presented here is based on the framework that was previously used

in conjunction with CaveLib as the graphies renderer. Our main contributions were

to provide a lightweight alternative to CaveLib, and extend the original framework

capabilities by adding audio spatialization to the virtual scene along with the ability

to share a common virtual world among multiple nodes. Providing a coherent repre­

senation of the world between locations allows users to see the changes made to the

world by another remote participant. Therefore, multiple distant users are able to

work concurrently as if they were present in the same physical space.

Figure 1.1 shows an overview of the complete framework, which consists of mul-

tiple independent parts:

• Qave: The rendering engine, which mns the User Application.

• Trackers: Vision-based user tracking system.

• Sound Spatializer: Creates a 3D point source for the remote sound and

simulates the acoustics of the scene.

• WorldServer: Maintains the world coherence between multiple Qaves, and

allows for collaborative work.

• ServerLib: Network Library used for all message passing and video stream­

ing between different Qaves.

• Multiply Overlapping Projection System: Takes the framebuffer of a Qave

and splits it over multiple comput ers while providing for dynamic shadow

detection and removal.

3

1.2 CONTRIBUTION OF THE THE SIS

SRE

QaveEngine

, /:

:.~

QaveEnginc

User,4,pplicatvn

Video Grabbers

Video Grabbers

Trackcrs

'--__ ~ Multiply Ov~~~f!:ng Projection

Trackc:rs

SOWld
Spatializer

Microphone

FIGURE 1.1. Framework Overview

Microphone

Sound
Spatializer

As mentioned, parts of the infrastructure were already in place before the design

started, namely the Trackers,l ServerLib2 and sound spatializer.3 The Multiply Over­

lapping Projection System is currently still in development. 4

The contributions of this thesis are:

IThe trackers were developed mainly by Stéphane Pelletier and currently being updated by members
of our research group
2ServerLib was developed by J. R. Cooperstock
3The Sound Spatializer was developed by Zack Settel, http://www.zeep.com 4
4The Multiply Overlapping Projection System is supported by Daniel Sud and Maria Nadia Hilario

1.3 DESIGN GOALS

• The Qave rendering engine, which manages the displays

• The WorldServer, which allows for collaboration to take place

• The modification and adaptation of the Trackers for use in this framework,

which provide the engine with user data

• The adaptation of the Sound Spatializer, which provides an immersive au­

ditory space

• The communication protocols between these modules.

1.3. Design Goals

The central component of this thesis is the Qave, i.e. the graphics engine. Based

on the specifie setups available and the global research interests of the SRE Lab, a

li st of design goals was established. These goals will be referred to as (DG) in the

rest of this thesis.

(DGI) Unix Compatibility: Both our environments have different display setups

and computing facilities, which will likely be upgraded in the future. In

terms of operating systems, the engine must be able to run on at least Irix

and Linux.

(DG2) Immersive: The engine must be able to make use of the three-screened

spatially immersive display of our original environment, as well as the large

screen display in our new setup.

(DG3) Dynamic Perspective Correction: Compensating for the users' position

in the environment so as to constantly give them a correct perspective

of the synthetic world. The latency between the user movement and the

perspective update should be minimal.

(DG4) Simulator Mode: The user application can be tested without needing to

run on the actual immersive hardware. In that mode, the Qave should not

5

1.3 DESIGN GOALS

rely on tracker data, and thus should have an alternate mode of input that

can emulate external sensors.

(DG5) Tracker Information: The ability to receive and process data from the

Trackers. The data stream usually comes through the network as ServerLib

messages. There should be as small a latency as possible between the time

a message arrives and the time the displayed world updates accordingly.

(DG6) Coherence Data: Receiving and sending data to other Qaves through

the WorldServer in order to maintain a coherent view of the world. More

importantly, this allows for collaborative work to take place between Qave

users.

(DG7) Remote Video: Embedding a remote video stream in the virtual scene.

Video input usually comes from a framegrabber as a ServerLib binary

stream.

(DG8) Extensible: Easily modifiable by other researchers. Easy access to the

native OpenGL layer, and thus providing flexibility for future development.

As for the WorldServer, the main design goals were:

(DG9) Coherence: Rold a unique coherent representation of the world shared by

clients.

(DG 10) Data Propagation Protocol: Messages exchanged between the clients

should be in human readable format for easy auditing purposes. While this

somewhat limits the potential for optimizations, the bandwidth used should

be kept as low as possible by avoiding to transmit unnecessary information.

In summary, this thesis presents a general and modular VR framework consist­

ing of multiple components: an immersive graphical engine, coherence server, and

trackers, allowing for interaction and audio spatialization.

6

1.4 RESEARCH SETUPS

1.4. Research Setups

Our original setup, the SRE, is a spatially immersive environment (IE) which

uses the three sides of a 1.82m5 cube (see Figure 1.2) as display surfaces.

1.8m

Left Sereen Front Screen RighI Sereen

Mounting Hardware

@. Speaker

FIGURE 1.2. SRE Setup Physical Dimensions

In that prototype space, three XGA projectors are used for monos copie rear­

projection, providing a total resolution of 3072x768 pixels. Our choiee of monoscopy

over stereoscopy was motivated by our design goal of a walk in and use system, which

precludes extraneous gear such as stereoscopie goggles or data gloves. This choice is

also motivated by the fact that head-coupling is more effective than stereopis for the

3D perception of the scene, as shown by Ware et al. [IJ. The hardware renderer is a

Silicon Graphies Onyx2.

The prototype SRE is equipped with eight speakers located at each corner of the

cube. Multiple sound sources can be spatialized to create the illusion that they origi­

nate from arbitrary locations in 3D space. This allows sound streams to be localized

5The exact length is 6 feet.

7

1.5 SAMPLE APPLICATIONS

consistently with the screen position of the distant participants. For example, remote

users' voices can be heard moving from left to right and up and down as they move

accordingly. Additionally, the spatializer can emulate the acoustic characteristics of

different rooms such as a highly reverberant chur ch or an open field, thereby providing

a more effective immersion in the synthetic environment.

In our second instantiation of the SRE, our setup involves creating a large display

surface composed of the entire 7x2m back wall of that room, as weIl half of the adjacent

side walls, where six SXGA projectors render a coherent seamless image. This requires

the geometric calibration of each projector and intensity bIen ding in overlapping

regions. However, a user standing between a projector and the wall may create a

shadow on the display. These shadows can be automatically detected [2]. Occlusions

can then be removed by selectively increasing the intensity of other projectors covering

that region. The adopted approach,6 is similar to that of the Metaverse [3]. This

environment also employs eight speakers (four along the top of the front wall and

another four along the top of the back wall), allowing for bi-directional spatialized

communication between our two setups.

1.5. Sample Applications

An initial sample application was implemented and is used throughout this thesis

to illustrate the rendering engine and the overall framework capabilities. This appli­

cation is a computer-aided, immersive collaborative tool for object manipulation. As

such, it allows the users to jointly move and rotate objects in a virtual scene.

The user's hand is represented by a synthetic hand-model (see Figure 1.3). This

improves the on-screen feedback and the degree of engagement of the user. Although

an arrow or a crosshair with greater precision could have been used instead, allowing

6This work is conducted by Daniel Sud and Maria Nadia Hilario.

8

1.5 SAMPLE APPLICATIONS

users to see on the screen a synthetic hand directly controlled by their real hands in­

creases the degree of immersion. Poupyrev et al. have evaluated those two interaction

paradigms, and have noted that displaying a virtual hand more closely simulates real

world interactions, thereby increasing the familiarity of the interface for the user [4].

There is a direct sense of embodiment (or self-representation) as lisers realize that the

movements of the virtual hand on the screen are analogous to those of their hands.

FIGURE 1.3. Qave Rendering with User's Rand

This application was chosen as it clearly illustrates the different functions of all

the components of the Qave framework. Moreover, the interaction paradigm of object

selection and manipulation is sufficiently generic that it can be adapted to numerous

applications in other fields. Further, the possibility of bringing a remote participant

into the synthetic world allows for collaborative work to take place.

9

1.6 THESIS OVERVIEW

Rioux et al. have implemented a more sophisticated application [5, 6] using the

proposed framework. A bimanual interface for object manipulation in immersive

spaces using pieglass widgets was developed.

1.6. Thesis Overview

The next chapter presents background information on virtual reality as well as an

overview of significant work in that field. Chapter 3 describes in detail the design and

implementation of the Qave rendering engine. Chapter 4 discusses the WorldServer

application that allows for different Qaves to render the same consistent world. Chap­

ter 5 presents the modifications made to the trackers that were needed for integration

in the framework, along with an overview of the sound spatializer structure and the

communication proto col adopted between the trackers and the spatializer. Finally,

Chapter 6 concludes this thesis and highlights sorne possible research directions for

the future.

10

CHAPTER 2

Literature Review

"The Guide is definitive. Reality is frequently inaccurate."
-Douglas Adams

Much progress has been achieved recently in the field of virtual reality. In this

chapter, we first provide background information on that field (Section 2.1), and then

present sorne of the most relevant previous works. Because the framework described

in this thesis is aimed to be used with spatially immersive environments, we partition

previous VR projects by display paradigms into three categories: desktop-based VR

(Section 2.2), HMD-based VR (Section 2.3) and projection-based VR (Section 2.4),

with a special emphasis on the latter.

2.1. Virtual Reality Background

2.1.1. Definition. The term "virtual reality" (VR) was introduced by Ivan

Sutherland in the 1960s [7, 8]. Sutherland's ide a was for us ers to wear a device on

their head that would place a small screen in front of each eye. The first prototype,

built in 1968 and dubbed "Sword of Damocles," was the first head-mounted display

(HMD) ever built (see Figure 2.1). It consisted of two CRTs mounted alongside each

ear to generate monoscopic wire-frame images displayed on a pair of half-silvered

2.1 VIRTUAL REALITY BACKGROUND

mirrors directly in front of the user's eyes. The system was suspended from the

ceiling (hence its name) by a mechanical arm that had two functions: to support the

weight of the displays and compute the user's gaze direction. The image displayed

on the screens was updated according to the user's gaze and the application running

on the system.

FIGURE 2.1. Sword of Damocles

Thirty-five years later, the term VR is broadly used to encompass a range of

technologies, from HMDs to single screen 3D stereo imaging or to spatially immersive

environrnents. The definitions of the term "virtual reality" vary greatly frorn author

to author, but aIl usually share at least five cornrnon features:

(1) Interactivity. An interactive system reacts to input from the user. In

other words, the VR system must be user-centered. This level of interaction

allows the user to feel transparently connected to the environment in the

sense that the environment responds directly to its stimuli. In our case,

the study of interaction involves Human Computer Interactions (HCI) in

an immersive context.

12

2.1 VIRTUAL REALITY BACKGROUND

(2) Immersion. VR applications must be perceptually immersive, in the sense

that the system must convey sensory cu es to users that they are surrounded

by the application.

(3) Engagement. The degree to which the user feels involved in the environ­

ment is its engagement. For most applications, being able to engage the

user is the most difficult aspect of the problem, since the system is only as

engaging as it is convincing. To be convincing, the system must lead the

user to the point of suspension of disbelieJ, where the user will accept the

synthetic environment as real. Because of technologicallimitations,l most

VR spaces do not currently reach that point.

(4) Multi-Sensory. To be engaging, a VR system needs to involve the users'

senses with congruent stimuli. ldeally aIl five senses should be engaged, but

due to technological limitations the ones usually involved are the visual,

audit ory and sometimes haptic.

(5) Synthetic. The computer system must synthesize a dynamic environment

in real time.

More formally, a generally accepted definition of virtual reality is provided by

Cruz-Neira [9J: "Virtual Reality refers to immersive, interactive, multi-sensory, viewer­

centered, three-dimensional, computer-generated environment and the combination of

technologies required to build these environments." As a side note, the term "virtual

environment" is often used as a synonym for "virtual reality system," but presents

the advantage of avoiding philosophical conundrums regarding the use of the concept

of "reality."

lThe main limitations are display technoogy and computer processing power.

13

2.1 VIRTUAL REALITY BACKGROUND

2.1.2. Virtual Reality System Components. It is worthwhile to describe

what composes a generic VR framework. Figure 2.2 presents an overview of the

different components commonly used in a VR system.

VRSystem

Other VR Systems

FIGURE 2.2. General Overview of a VR System

A VR environment relies both on software and hardware to immerse the user in

a synthetic world. The hardware receives the data (typically user position and user

input) from trackers and other sensors. It then transmits the data to the application

which in turns feeds multi-modal stimuli back to the user, effectively conveying the

feeling of being in a virtual world. Multiple VR systems may be linked through a

network to render a coherent world for aIl the participants, thus allowing them to

share their work and collaborate.

14

2.1 VIRTUAL REALITY BACKGROUND

2.1.3. Applications in Re sear ch , Industry and Arts. VR systems are

useful for the research community. In particular, researchers in the field of super­

computing are usually faced with tremendous amounts of data. The analysis of such

solution sets on regular CRTs or LCDs is typically difficult because the researcher can

only display and visualize a small portion of the information at a time. Spatially im­

mersive environments are then useful because they provide larger display real-estate.

Off-the-shelf LCD or CRT displays typically have a diagonal size of 60cm, i.e. a sur­

face of O.2m2 . Spatially immersive environments, on the other hand, normally use

multiple projectors to covers areas as large as 12m2
• A vailable resolution for pro­

jectors is limited, so there is a trade-off between large real estate and pixel density.

However, it has been suggested that the use of such large display surfaces allow for

better data visualization and thus interpretation [10J.

Today, academic research in VR is still dynamic and significant projects related

to this thesis will be described in the next sections. VR systems have started to be

used outside of academia and have pervaded into industry and art exhibits [11, 12J.

For example, a field in industry where VR is starting to show great promise is

automobile design. In the early days, designers and engineers would sketch proofs by

hand before creating a full-sc ale model of a car. These full-scale models traditionally

were made out of clay or plaster. Needless to say, making such large models was time

consuming and expensive. However, it clearly was a necessary step as design fiaws may

remain undiscovered in drawings or small-scale models As designers and engineers

started to use increasingly powerful computer assisted design (CAD) packages to

speed up the design process, the hand-drawn sketches disappeared. Building a new

full scale model for every design iteration, on the other hand, was still a necessity.

A major industry player using such VR systems is General Motors [llJ. GM

replaced the clay with spatially immersive projection systems. In these environments,

the full-scale models can be rendered immediately from the CAD representation.

15

2.1 VIRTUAL REALITY BACKGROUND

System users can then view the model in 3D, rotate it about aIl axes and modify

the design on the fLy. Ultimately, a full scale model must still be constructed, but

aIl the major design decisions will have been based on a synthetic model of the car,

.hence saving time and money during the process. Furthermore, by networking similar

systems together, designers from aIl over the world can collaboratively work on the

car, while being physically separated by thousands of kilometers.

This feature is usually referred to as telepresence, defined as creating the illu­

sion that remote participants are present in the physical space of the local user [13].

Goebbels and Lalioti [14] argue that immersive environments are successful at over­

coming sorne of the problems of sharing and collaborating over distance. Projection­

based systems in particular allow for more natural collaboration metaphors to be used

in a recreated face-to-face communication. This is mainly due to three factors: shared

physical context, screen size (hence displayed size of the remote user's body) and gaze

awareness, the latter being critical for effective human-human communication [15].

The entertainment industry, always concerned with creating multisensory experi-

ence, was one of the first to use VR systems to provide a more stimulating experience

to its clients. Museums, as cultural and educational institutions, have also started to

benefit from the technological innovations available to the entertainment industries

and academia. These venues, traditionally hesitant to use cutting edge computing

tools, are starting to use VR to attract visitors. Recent such projects include the

Hayden Planetarium's 400-seat system at the American Museum of Natural History2

in New York and the spatially immersive environments installed at Ars Electronica in

Austria3 and the Foundation of the Hellenic World in Greece [12J. Although these are

still costly, fixed, semi- or fully-immersive installations; scaled down versions of such

2http://www.amnh.org/rose/haydenplanetarium.html
3http://www.aec.at/

16

2.3 HEAD-MOUNTED DISPLAY FOR VIRTUAL REALITY

systems should be able to enter smaller museums or even schools in the foreseeable

future.

2.2. Desktop-based Virtual Reality

Desktop-based environments are the most basic of VR systems as their display

setup usually consists only of the computer monitor. Beeause such a display offers

a restrieted field of view, the visual interface is often enhanced by stereoscopie gog­

gles, which increase the feeling of immersion but require sorne form of head tracking

to provide the correct parallax information. Workstations for which the display is

coupled with head-tracking (and sometimes hand-tracking) along with stereographic

goggles are usually known as fish tank VR environments [1]. Another good example

of such a desktop-based system is described by Deering [16]. The main advantage

of such systems is availability, as they can usually be built from off-the-shelf compo­

nents at a reasonable cost. Conversely, desktop-based VR suffers from a low degree

of immersion due to its limited field of view.

2.3. Head-Mounted Display for Virtual Reality

HMD devices place a pair of screens directly in front of each of the user's eyes.

UsuaIly, a helmet worn by the user supports the display and contains aIl the hardware

required to mn the screens. Because the displays coyer aIl of their field of view, us ers

can seemingly be removed from their surroundings, which can potentially be replaced

by a completely synthetic world. If the user can see through the goggles, computer­

generated information may be overlayed onto the physical world, in which case the

HMD is used in an augmented reality (AR) context (see [17] for an example of AR

and its applications).

Historically, HMDs were the precursor of aIl VR environments. Since the 1960s,

considerable efforts have been devoted to improve HMD systems. Most of these efforts

17

2.3 HEAD-MOUNTED DISPLAY FOR VIRTUAL REALITY

were undertaken by the military for flight simulation purposes [18] at a time when

display technology was not capable of providing sufficient resolution and refresh rate.

More recently, Butterworth et al. created a 3D surface modeling system that uses a

HMD as display [19].

The general agreement is that the main advantage of HMDs lies in their large

field of view and the resulting sense of immersion for the user. The trade-offs are that

HMDs are highly invasive because the displays must be located as close to the eyes as

possible, and that their use can cause motion sickness. There are two main causes for

such simulator sickness: update latency and non-coherence of somatosensory senses

of body movement. An example of the latter is when us ers move in the virtual

world while their bodies stay stationary. A solution for this problem would be to

have the users walk on a treadmill-like device, but technical issues4 make it less than

ideal. Paush et al. have shown that the update latency between head movements and

synthetic world changes (also known as end-to-end latency) causes a sens ory conflict

because the visual information is not consistent with vestibular information [20]. The

issue of lag can be alleviated by using predictive Kalman filters to anticipate the he ad

movements, thereby reducing user errors by an order of magnitude [21, 22]. Similarly,

Richard et al. have studied the effect of display update rate on the manipulation of

virtual objects, and it has been found that for reasonable interaction the minimum

rate is 14Hz [23]. Even though the advances in the technology tend to alleviate these

problems, HMDs are usually limited by lower resolution and the weight of the helmet

that must be worn by the user. For instance, a usual SVGA (800x600) HMD usually

weighs about 200g,5 while an SXGA (1280x1024) one usually weighs about 1kg.6

As of late, fewer projects use HMDs as it has been shown that large displays are

usually less invasive and more cost-effective immersive systems [24, 25].

4The main issues are noise from the mechanical parts and limitation in displacernent speed.
5http:j /www.vrealities.com/5dt.htrnl
6http://vresources.jump-gate.com/ articles/vre_articles / analyhrnd/ analysis.htrn

18

2.4 PROJECTION-BASED VIRTUAL REALITY

2.4. Projection-Based Virtual Reality

The use of projectors to display the synthetie world has multiple advantages, the

main one being the physieal size of the dis play obtained at a reasonable cost without

the need for invasive devices. The two possible configurations are single and multiple

screens, the latter usually allowing for better spatial immersion.

2.4.1. Single Screen. The simplest projection-based VR system is an ex-

tension of the fish tank paradigm, where one uses a single large screen display ta

cover the whole field of view of the user (as opposed to using a sm aller computer

screen). Czernuszenko et al. have created two such setups, the Immersadesk and the

Infinity Wall [26], whieh use head-tracking and stereoscopie goggles as in desktop­

based VR. The Infinity Wall uses a fully vertical front-projected display; whereas the

rear-projected screen of the Immersadesk is angled at 45 degrees from the horizontal

so that us ers can look downward as weIl as forward. When the user stands close, this

system covers a 110 degree horizontal field of view. The Immersadesk also features

hand-tracking through the use of a magnetic sensor. The Responsive Workbench [27]

is another illustration of single screen VR, but differs from the previous systems in

that it uses the tabletop paradigm, where the dis play is back-projected onto a horizon­

tal surface. Because objects can be physically placed on the display, the Responsive

Workbench affords the use of widgets and other augmented physical objects as input

deviees. Recently, Ishii et al. have taken the idea of the Immersadesk and augmented

for use with phicons, or physieal ieons. The resulting system is the metaDESK[28].

2.4.2. Spatially Immersive Environment. Spatially immersive environ-

ments have received considerable attention since Cruz-Neira et al. developed the

CAVE Automatie Virtual Environment [9] (CAVE). These usually consist of sev­

eral large screens onto which information is projected. In the case of the CAVE,

the sides of a cube - and potentially the floor and the ceiling - serve as projection

19

2.4 PROJECTION-BASED VIRTUAL REALITY

surfaces. Each one of the displays is tiled in that they together provide a seamless

omni-directional view of the virtual scene. Further, the CAVE uses stereopsis to ren­

der 3D information within the user's space. The head of the user must be tracked in

or der to provide the correct perspective as the user moves about in the space. That

is, perceptually, the user sees the virtual scene in a consistent manner as if it were

real.

Many toolkits have been developed that aim to take advantage of CAVE-like

spaces. Sorne are designed to run on single machines (usually supercomputers), while

others use a cluster-based approach.

2.4.2.1. Single Computer Rendering. The original CAVE system uses the CAVELib [9]

development environment to render the synthetic world. CAVELib provides a low-

level API for creating VR applications. It handles the setup and initialization of the

processes, and provides access to various input devices. Each display is managed

by a different process, thus making the use of shared memory necessary. The main

limitation of CAVELib is that it forces the user to deal with shared-memory issues.

The library's main strength is its level of acceptance, as CAVELib has been used in

multiple projects over the years [29, 30].

Other development environments have been created based on the same principle,

such as VR-JUGGLER [31], ALICE [32] or AVOCADO [33]. Both AVOCADO

and ALICE are interesting in that they distribute the processing of the information

between multiple comput ers but rely on one machine to do the actual rendering.

The main problem with single computer rendering is cost. The price of high-end

visualization systems tends to be several orders of magnitude higher than that of

regular PCs while being much harder to upgrade when outdated. For this reason,

many newer toolkits tend to favour clustered rende ring techniques.

2.4.2.2. Clustered Rendering. Off-the-shelf PCs are usually used as the com-

puting nodes of a cluster, which, unlike the processor grid of a supercomputer, does

20

2.4 PROJECTION-BASED VIRTUAL REALITY

nat need to have rigid topological constraints. Clusters were first developed for dis­

tributed number crunching applications, especially in fields such as physics, chemistry

or military applications. However, using clusters for inherently interactive applica-

tions such as VR presents a new set of challenges. VR systems need to be able to

receive input, pro cess application data and produce output at least 10 times per sec­

onds in order to keep from degrading the sense of immersion [34]. Original cluster

hardware and software were not designed for closely synchronized multiprocessing. In

fact, the purpose of clusters is to provide extremely fast communication between the

computing nodes, but not with the outside world. Conversely, the main concern for

interactive applications is not only frame rate, but also responsiveness of the system.

Data must go through the network to reach aIl the nodes, hence adding sorne latency.

Additionally, one must add a specific layer to coordinate the load balancing. 7 This

further increases the latency.

One of the first projects to use clusters for rendering, not only for data processing,

was Net Juggler [36]. It was built on top of VR-Juggler and uses MPI [37] (Message

Passing Interface) for the communication between the cluster and the VR setup.

Net Juggler relies on high-end PC graphics cards along with SoftGenlock [38] to

synchronize the displays. The graphics primitives are intercepted and broadcast to

the node controlling the appropriate display. Cluster Juggler [39], another layer on

top of VR Juggler, has the same purpose but relaxes the requirements (for example

that aIl nodes should have identical hardware) on the cluster back-end. Many other

projects use the same princip le to create an affordable yet powerful cluster-based

rendering system, for example Chromium [40], a low level system for manipulating

streams of graphics API commands on clustered workstations; blue-c [41] and X­

Rooms [42], which are both complete VR setups with display surfaces and dedicated

7Static partioning across processors (i.e. static load balancing) is sub-optimal and outperformed by
ail others dynamic schemes (such as Grid-Bucket or KD-Split) for rendering systems [35].

21

2.4 PROJECTION-BASED VIRTUAL REALITY

clustered graphies engine; and more recently JINX [43], whieh is a cluster-based data

browser for VR environments.

Clustered rendering is thus attractive for the computer power and the rendering

speed it can achieve at a reasonable cost. On the other hand, it requires more effort

to synchronize an the nodes and may introduce higher latency due to the network

transport of information between the nodes.

22

CHAPTER 3

Qave Engine

"Who are you going to believe, me or your own eyes?"
-Groucho Marx

The Qave graphics engine is the centrepiece of this thesis. lt is responsible for

rendering the virtual world, which usually consists of pre-designed models in a tex­

tured environment. In or der to achieve a good sense of engagement, the synthetic

world must not only change dynamically with as little lag as possible in response to

direct user input, l but also compensate for the user's position as to render the correct

perspective. In other words, the renderer must be able to modify the synthetic world

based on information received from independent tracking sources.

In our framework, the user information obtained from distinct pro cesses is trans-

mitted through the network using the ServerLib library, which allows message passing

between applications registered with a nameserver, and provides support for binary

data (such as video) streaming. On the send-side, ServerLib offers both blocking and

non-blocking socket 1/0. In the blocking case, the sender waits until it has received

acknowledgment that the last sent packet has been received. In the non-blocking

1 Examples of direct user input are object selection and displacement.

CHAPTER 3. QAVE ENGINE

1 Qave Engine

Communication
Handler Thread

Entry Point

User and Coherence Data

-------,

--\s-
Tracking System /'"""-i ~ /'"""-i ,-__ Di_SP_l._Y_--, /'"""-i ,--G_r_ap_h_iC_H_ar_d_w_ar_e-, "'-.,.--J ~ "'-.,.--J Surface(s) "'-.,.--J _ (FrameBuffer)

FIGURE 3.1. Qave Threads

case, the sender transmits the data packets without waiting for such an acknowl­

edgment. Similarly, both blocking and non-blocking socket 1/0 is available on the

receiving side. A timeout value is required in both cases but can be set to 0, thereby

effecting a polI. However, polling is inefficient in its use of system resources, and

24

CHAPTER 3. QAVE ENGINE

thus, ill-favoured for applications with bounded constraints of responsiveness. It was

therefore decided to use blocking 1/0 on the receiving end. Blocking 1/0 also implies

certain constraints, as the execution of the program must staIl until a packet of data

is received or a timeout occurs. The Qave engine mostly receives data, and as such,

its graphics branch could have been implemented as a timeout handler. However,

since the OpenGL main loop is non-terminating, it will never cede control unless ex-

plicitly preempted, thereby resulting in deadlock. To avoid staIling issues, the engine

spawns two distinct threads, 2 one for the graphies renderer and the other one for the

communieation handler.

A thread is an encapsulation of the fiow of control in a program where aIl data

except for stack and registers is shared. Threads can run concurrently by sharing the

processor time. For the Qave engine, these characteristics imply that any update made

by the 1/0 thread will be available transparently to the rendering thread without the

need to staIl when not receiving data. This allows Qave to achieve both high frame­

rate and low latency to user input (DG2).3 Figure 3.1 shows an overview of the work

division and data fiow between the two threads and the outside world. It must also be

mentioned that such a multi-threaded design is quite common for high-performance

graphies engines [31, 32, 33].

What makes this engine different from others is that it was purposefully designed

to be a performant lightweight alternative to CaveLib that could be run in both our

environments. The native OpenGL layer is accessible to the programmer, who can

then directly use optimization techniques at the rende ring level (such as hidden surface

removal for example). Because of its simpler internaI structure, Qave is usually able

to perform better than its commercial counterpart CaveLib.

2To be more specifie, POSIX threads (also known as pthreads) were used. Pthreads ensure a broad
eompatibility among UNIX based-platforms.
3The engine must be able to make use of the three-sereened spatially immersive display of our
original environment, as weIl as the large sereen display in our new setup.

25

3.1 RENDERING THREAD

It must also be noted that newer frameworks are viable alternatives both to

CaveLib and the one we present here. Chronium [40] in particular is interesting in

the sense that it allows the use of a computer cluster where the rendering load is split

between the nodes. Scalability -in terms of number of nodes in the cluster- is also

notably good. The downside is that Chronium, in its current form, can only render

pre-Ioaded data. This means that major features of our proposed extended framework

such as live video blending and texturing are not supported. Other frameworks such as

blue-c [41] or X-Rooms [42] are also practical alternatives, but they both necessitate

customized hardware (such as glass panels with liquid crystal layers in the case of

blue-c). This is a requirement that we wanted to avoid.

In the remainder of this chapter, we present the architectural and implementation

issues from the different parts of the engine. Section 3.1 goes over the design ratio­

nale of the graphics rendering thread while Section 3.2 describes the communication

thread. Section 3.3 provides details concerning our model list. Finally, Section 3.4

describes the simulator extension that was developed alongside the Qave engine in

order to facilitate its use. The simulation mode allows the program to be run on a

regular PC without having to use the SRE's immersive setup.

As mentioned in Chapter 1, a sample application was developed to demonstrate

the potential of the framework. References to that application will be made through­

out this chapter in order to better illustrate the function of each component.

3.1. Rendering Thread

The rendering thread is responsible for displaying the appropriate data to the

user. The renderer relies on the OpenGL library to interact with the graphics hard­

ware. The OpenGL Utility Toolkit,4 (GLUT) was used to simplify the initialization

pro cess of OpenGL and hide the low-Ievel platform-related specifics. GLUT and

4See http://www.opengl.org/resources/libraries/glut.html for more details

26

3.1 RENDERING THREAD

OpenGL are both available for many operating systems,5 and because the graphies

part of the Qave engine only relies on these two libraries, adapting the engine to work

with other supported platform is feasible (DG1).

3.1.1. OpenGL Background. OpenGL was introduced in 1992, and has now

become the standard application programming interface (API) for 2D and 3D graphies

applications. To date, OpenGL rendering performance is commonly regarded as the

standard benchmark to compare the processing power of different video hardware

subsystems.

3.1.1.1. Modelview and Projection Matrix. OpenGL draws primitives, which

are points, line segments, or polygons. Primitives themselves are defined by a group

of one or more vertices. A vertex defines a point, an endpoint of a line, or a corner

of a polygon where two edges meet. Data (consisting of vertex coordinates, colours,

normals, texture coordinates, and edge fiags) is associated with a vertex, and each

vertex and its corresponding data are processed independently, in order, and in the

same way. OpenGL relies on two matrices convert vertex data to raster data: the

Modelview and the Projection matrix.

8 ModelView Matrix C> Projection Matrix

m
Object __ Eye

Coordinates Coordll1ates

C> Perspective Division C> Viewport
Transformation

Normalized

---.... Deviee
Coordinates

----III Window
Coordinates

FIGURE 3.2. Vertex Coordinate Transformations

Figure 3.2 illustrates the coordinate system conversion performed at each vertex

transformation. In the OpenGL pipeline,6 a point is normally represented as a column

5Supported operating systems for GLUT and OpenGL so far are: Linux, Irix, Solaris, MacOS X,
Windows 9XjMejNT j2000jXP
6See Section 2.1 of the Blue Book [44] for more information on the rendering pipeline

27

3.1 RENDERING THREAD

matrix with four elements:

where x, y, z are the non-homogenous coordinates and w is the homogeneity scaling

factor. Having the coordinat es in a homogenous reference system makes it easier to

write 4x4 matrix transformations for scaling, rotating and translating.

The first matrix of interest is the Modelview matrix. Its raIe is to transform

object coordinates to eye (or camera) coordinates. In more practical terms, it is the

matrix that is used to manipulate objects in the scene. Inversely, the Modelview

matrix can be used to simulate a camera moving through the scene. The Modelview

matrix is initially an identity matrix, on which three operations can be applied:

scaling, rotation and translation. The or der of the transformation is important as

matrix multiplications are not commutative. The pre-multiplication and the post­

multiplication of two matrices will (generally) give different results. An easy way

to see this is to realize that a rotation followed by a translation is quite different

from a translation followed by a rotation. By convention, OpenGi usually uses

the column major notation and post-multiplies matrix operations. Note that this

convention is simply notational, as post-multiplying column-major matrices pro duces

the same result as pre-multiplying row-major matrices. More practically, this means

that the order of the transformations called will actually be performed backwards by

the pipeline. For example, if the programmer specifies first a rotation then a scaling

and finally a translation, the rendering pipeline will first process the translation, then

the scaling and finally the rotation.

The other matrix of interest is the Projection matrix. The purpose of this ma­

trix is to take a volume of 3D space and Hatten the objects within it onto a plane,

corresponding to the screen. In other words, it converts the vertex data from eye

28

3.1 RENDERING THREAD

coordinates7 to clip coordinates. 8 There are two kinds of projection: orthogonal and

perspective. In the orthogonal case, objects are projected along the normal of the

projection plane. This is the simplest form of projection, and it does not allow for

depth to be conveyed. As such, its main use is to write data at a fixed location

in sere en coordinates. Perspective projection, on the other hand, allows for depth

information to be rendered, in which case all vertex data belonging to an enclosed

volume of space defined by six clipping planes (called the frustum) is projected onto

a 2D plane, the viewport.

3.1.1.2. Frustum. By convention, OpenGL creates a view volume with the eye

at the origin. The view rectangle is sitting at a depth of z = -near, with its edges

defined by x =left, x =right, y =bottom and y =top planes, and the far clipping

plane at z = -far (see Figure 3.3). In mathematical terms, the perspective projection

matrix obtained is the following:

>1
far

FIGURE 3.3. Perspective Projection Frustum

7The eye coordinate system is the reference in which the view vector coincides with the z-axis.
8The clip coordinate is the defines the space in which the object outside of the viewing frustum are
discarded.

29

3.1 RENDERING THREAD

near 0 0 0

0 near 0 0

2far*near
(3.1)

0 0 far+near
- far-near far-near

0 0 -1 0

It is not, however, the exact matrix that is used in the pipeline. On top of per-

spective projection, OpenGL also performs a translation that shifts the scene sym­

metrically around the origin, and a scaling to make the transformed x and y val­

ues fall in [-1,1] for clipping efficiency. This amounts to a translation by a vector

[_ left+tght bottom+top 0] T and a scaling by factor . 2 on the x axis and 2
2' nght-left top-bottom

on the y axis. Simple matrix algebra provides the formulation that is actually used:

2near 0 right+left 0 right-left right-left

0 2near tOE+bottom 0 top-bottom top-bottom (3.2)
0 0 far+near 2far*near

far-near far-near

0 0 -1 0

3.1.2. Coordinate System. Because of the physical characteristics (see Fig-

ure 1.2) of the immersive space, the engine was designed with the following coordinate

system: the origin is on the fioor at the center of the setup, and the coordinates follow

a right-handed base (Le. with positive x pointing to the right, positive y pointing

up and positive z pointing toward the back of the room). The scaling is in feet, Le.

displacing an object by 1 unit in OpenGL displaces it by 1 foot in user space (see

Figure 3.4).

3.1.3. Viewports and Off-Axis Projection. In our original SRE setup,

the rendering hardware takes care of splitting the single graphies channel into three

distinct feeds for the projectors. This split is transparent to the developer, who can

30

3.1 RENDERING THREAD

TOPVIEW SIDEVIEW

Front Wall Top

(-4, *, -4) (*,4,4)
(*,6, -4)

.... __________ (*,2,-4)

(4, *, 4)

y :

l (*,0,0) :
------------~- - - - - - - - - - -----_ ...

Z Floor

FIGURE 3.4. Coordinate System in SRE

consider what is projected on the three physical screens as being a single large win­

dow.9 Because each screen must render the appropriate perspective for the user, that

window must be split into three viewports that correspond to the physical screens. A

viewport specifies an area of the frame buffer to use for rendering. The generic call

to create a viewport in OpenGL is:

glViewport(GLint x, GLint y, GLsizei width, GLsizei height)

In our case, the appropriate call is the following:

glViewport ((N*window_width)j3, 0, window_widthj3, window_height);

where N is an integer between 0 and 2 denoting the viewport number. Figure 3.5

shows the standard viewport configuration in the SRE, where the resolution used is

3072x768 pixels.

Once the viewports have been created at the appropriate positions in the frame-

buffer, the rendering loop must compute the correct projection matrix to be used in

these viewports. As opposed to desktop-based systems, one significant characteristic

9 As for our new setup, different options are still being explored for multiply overlapping projection,
so in the meantime we use a single projector to display the world.

31

3.1 RENDERING THREAD

OpenGL Sereen eoordinates

y (0,0) (\024,0) (2048,0)

Left S ereen, Front Screen, RighI Sere en
ViewportO Viewportl Viewport2

(3072,768

FIGURE 3.5. Viewports in Qave

of spatially immersive environments is that the user should be able to look and move

around while remaining immersed perceptually in the synthetic world. Since the user

is not constrained to a specifie location in the physical space, the viewpoint does not

necessarily lie on the normal axis of the projection plane,10 as it normally would in a

single screen environment. This means that the data displayed must be adjusted for

the user's perspective, with a technique called off-axis projection.

As noted by Cruz-Neira et al. [9], the general projection matrix then becomes:

1 0 0 0

0 1 0 0

-~
(3.3)

hx 1 1
-hz-D hz-D -hz-D

hxD hyD
0 hz

hz-D hz-D hz-D

where hx , hy , hz are the coordinates of the user's head and D is the distance from

the origin to the projection display,u (see Figure 3.6) The matrix 3.3 provides a

correct frustum for the front viewport, and must be adapted for the two others. As

the user moves within the space, the frusta are updated in real-time to provide a

correct perspective of the synthetic world (DG3).

lOIn our case, the projection plane corresponds to the actual walls.
11 More specifically for our configuration, distance D is half the length or width of the room, that is
3 feet.

32

3.1 RENDERING THREAD

~,,'\"" Front Wall

'. , ,
:~eft Viewing Frustum '. , ,

~
, ,

, ,
....... ~'

... -- ... -;, \

- /' ta

~~l
-- , ' -- ' , ~ ___ -. -- p.,y.iS ~" ,

'ect\o!\
, .:s

l'fO) , , bJ)

, ~
, ,

~, ~
, , Head Position

, , (h x, hy, hz) , , , ,
, ,

IJ
, ,

, ,
, ,

E >1< > 0 0

~,
~,
t>,'

FIGURE 3.6. Off-Axis Projection in the SRE

The general OpenGL calI to create a viewing frustum is (see Figure 3.3):

void glFrustum(Gldouble left, Gldouble right, Gldouble bottom, Gldouble top, Gldou­

ble near_val, Gldouble far_val)

In the SRE context, the appropriate calI for the centre frustum is:

glFrustum(qaveJeft - headpos.x, qave_right - headpos.x, qave_bottom - headpos.y ,

qave_top - headpos.y, ABS(qave_front - headpos.z), far)

where qavej'ront, qave_back, qaveJeft and qave_right are the wall locations, whereas

headpos(x,y,z) are the coordinates of the user's head. Calls for the other two frusta

are slight variations of the ab ove , where the coordinate system is permuted from

(x,y,z) to (-z,y,x) for the right frustum and (z, y, -x) for the left frustum.

33

3.1 RENDERING THREAD

3.1.4. Rendering Program Flow. As shown in Figure 3.1, once the initial-

ization steps are completed, Qave spawns the 1/0 and the rendering threads. The

rendering thread runs the GLUT main loop until the program is terminated. As

opposed to normal OpenGL applications, where one simply sets the perspective and

draws the objects, immersive environments with multiple displays require a slightly

different approach because the projection parameters can change dynamically.

Compute the changes to be
applied on the synthetic world
based on most recent user data

-Set Left Viewport -Set Centre Viewport -Set Right Viewport
-Set Correct Off-Axis -Set Correct Off-Axis -Set Correct Off-Axis
Projection for Left Screen Projection for Front Screen Projection for Right Screen
-Draw abjectS -Draw abjects -Draw abjects

FIGURE 3.7. Rendering Loop

As can be seen in Figure 3.7, the rende ring loop will compute a new set of viewing

frusta based on the latest available user position at every frame. Once the new frusta

are computed, they are rotated to match to the corresponding physical screen.

For each viewport, the next step consists of determining the changes to be made

on the world. More importantly, this step is where the potential developer is expected

ta take over and define the actual application in terms of abject interactions and

events. World updates can be triggered either by user information, or by remote

coherence data. Note also that because the user position is updated in another thread,

the renderer always assumes it has the latest set of position data at its disposaI. Due

to current tracker limitations, the user data consists of the coordinat es of the head

and one hand of the user. From that information we can determine where the user is

34

3.1 RENDERING THREAD

pointing. 12 The distance between the head and the hand can be thresholded thereby

praviding a clutch mechanism akin to a click on a mouse. This allows for an easy

grab-like gesture. Within the scope of our sample application, once we know the angle

of the user's pointing gesture, we cycle through a list of all select able objects in the

scene to determine if the user actually points to an item. If an item is found and if

the distance between the head and the hand exceeds a certain threshold, the object

is considered to be selected. In our sample application, the model then follows the

hand movements until released.

Ultimately, more refined user information is needed to create a ri cher interaction.

Sequences of hand or finger postures could be interpreted as gestures with a specific

semantic and syntax. Such gestures could be used for more sophisticated bimanual

contraIs, such as grauping or resizing. Non-obvious instructions, relating for example

to object texturing or lighting, could be assigned to sequences of gestures. Such a sys­

tem would require the precise detection of both hands along with the associated finger

posture. Temporal information would also be needed to define the gesture bound­

aries. Further, an adequate parser and interpreter would be required to determine

whether the gesture is meaningful and intentional.

3.1.5. Configuration File. The configuration file allows changing core Qave

characteristics at run-time without the need to recompile the application. It is com-

prised of two parts: the first one is the Qave configuration while the second one is an

initial list of models to be loaded at initialization time (see Section 3.3). The Qave

configuration parameters are:

• Window width and height. This allows the resizing of the main window so

that higher resolutions can be used in the future.

12The exact target of the pointing gesture cannot be determined as a 3D point, but the general
pointing direction can be estimated by tracing a line from the user's head to his hand.

35

3.1 RENDERlNG THREAD

• Viewport Number. This switch indicates how many viewports are used

during the rendering. More specifically, it determines whether the engine

will run in immersive mode, in which case the number of viewport is 3, or

in simulator mode (see Section 3.4), if the viewport number has any other

value .

• Screen positions in the Qave coordinate system. These determine where the

screens are placed, and thus affect the frustum computation. Note that the

screens are assumed to be orthogonal to each other; more specifically that

the left and right screen are z-axis aligned while the front screen is x-axis

aligned.

After the Qave configuration variable, the user can define a list of models to be

initially loaded at run-time. This is useful for including new models without the need

to recompile the application. The syntax to include a model is:

<modeLname> <modeLid>

The modeLname is the name of the file containing the model data, while the modeUd

is a unique identifier (that is there could be multiple objects from the same model

file) .

3.1.6. Video Stream Blending. As mentioned in Chapter 1, remote collab­

oration and telepresence are two fields of great interest. It has been shown that the

quality of the remote user's representation is "crucial in situations where problems

need to be solved", and that "the use of video enhances the collaboration" [14]. It

is thus important for the Qave to support video embedding in the synthetic world.

Furthermore, Garau et al. have shown that the quality of a semi-photorealistic or

photorealistic avatar played an important role for gaze inference [15] in computer

36

3.1 RENDERING THREAD

mediated human-human interactions. Gaze inference and awareness is a very impor­

tant non-verbal cue which normally allows the identification of the interlocutors in a

discussion.

Technically, we rely on the ServerLib binary data transport to receive the video

stream. At every framebuffer swap, we take the most recent video frame received and

extract a texture from that data (DG7). For better immersion, the incoming video

frames usually go through a background removal process. This isolates the distant

users from their physical surroundings. Pixels marked as background are then treated

as transparent during the texture creation. The obtained texture is then pasted on

a transparent polygon. This allows the blending of the remote video in the synthetic

scene (see Figure 3.8).

A transparent physical material, such as the one on which the incoming video

is pasted, shows objects behind it as unobscured and does not reflect light off its

surface. To correctly render the transparent material, we must make use of the

blending function in OpenGL:

void glBlendFunc(GLenum sfactor, GLenum dfactor)

where sfactor and dfactor respectively specify how the source and destination blending

factors are computed. In our case, we set sfactor to GL_SRC_ALPHA and dfactor to

GL_ONKMINUS_SRC_ALPHA. With these settings, the incoming colour is modified

by its associated a value13 and the destination colour is modified by (1 - a). The

sum of these two colours is then written back into the framebuffer, hence creating

a translucent polygon. Because of this mechanism, correct results for transparent

rendering are only guaranteed if the primitives are sorted and rendered from back to

front with depth testing enabled.

13The Cl! value of a pixel determines its level of transparency.

37

3.3 MODEL OBJECT

FIGURE 3.8. Video Embedding Examples in the SRE

3.2. Communication Thread

The communication thread manages aIl data input and output. The thread st arts

a ServerLib Server that can accept messages from other applications (DG5). For

the message passing mechanism to work properly, the Qave must register with a

nameserver. The nameserver receives the registration data, stores the IP addresses of

its clients and associates them with a unique ID. Once the registration is successful,

the application sends the nameserver a list of commands (along with the associated

parameters) it can accept. If another registered application tries to calI an invalid

(Le. undeclared) function, an error will occur and no message will be transmitted to

the target application.

Qave has a set of pre-defined commands that are required for core functionality.

These commands are normally invoked either by a tracker or by the WorldServer.

A developer can easily add commands by declaring them in the command li st and

defining ad hoc caIlbacks (DG8). The predefined commands are listed in Table 3.1.

3.3. Model Object

OpenGL is a powerful vertex-based rende ring library, but creating complex object

by hand is tedious as one has to define aIl the vertices along with lighting and material

data. Qave provides built-in support for automating the pro cess and allowing for

38

3.3 MODEL OBJECT

setpersan pas <persan Sets the position values for head (in tracker coordinate
na> <valuel> < ... > system). This function is normaUy used by a tracker.

laakat eye<xyz> Sets the position values for direction of user look (in
center<xyz> Qave coordinate system), with eye<xyz> being the eye

point coordinate and center<xyz> being the position
of the reference point. This caU is the equivalent of
calling a gluLookAtO. This function is only defined in
simulation mode, where the user can change the view
orientation of the single viewing frustum.

tauch <xyz> Sets position values hand (in Qave coordinate system).
This caU is often used to quick debugging purposes. It is
easier to use than the sethandpos because it takes values
in Qave coordinates.

sethand pas <persan Sets the position values for hand (in tracker coordinate
na> <valuel> < ... > system). This fun ct ion is normaUy used by a tracker.

receivevidea 1 Receive video frames for personl. This starts the recep-
tion of the remote video stream.

share <madeLid> Instruct Qave to be coherent with its representation of
model <modelJd> with other Qaves. This caU is used
in the context of the WorldServer.

update Updates the data about a shared object. "*,, may be
< madeLid><xyz- used as dan't cares. Updates targeting a non-shared ob-
pas> < raLmatrix> <xy -ject are ignored.
scale>

reqUpdate Requests an update about a shared object. This caU is
<madeLid> usuaUy made by the WorldServer.

getviewerpas Prints the position of head and hand to stdout in Qave
coordinat es

TABLE 3.1. Pre-defined Qave Remote CaUs

39

3.3 MODEL OBJECT

pre-designed models to be imported in the scene as Wavefront14 objects. Wavefront

OBJ (object) files15 are used by Wavefront's Advanced Visualizer application to store

geometric objects composed of lines, polygons, and free-form curves and surfaces.

OBJ files are extensively supported in the CAD industry, and converters to and from

other model formats are widely available.

Robbins16 wrote a OBJ importer for OpenGL which has been adapted for use in

Qave. In particular, Qave uses an array of object structures, where each node in the

list maintains its own set of data (see Table 3.2). The reason why we maintain aIl the

model information in a data structure is that it allows the processing of aIl the world

updates before the actual rende ring takes place. A batch function then reads the

information from the data structures and renders aIl the models with the appropriate

ModelView matrix transformation. This speeds up the rendering pipeline. This also

allows for greater synchronism among the objects because aIl the world updates are

processed within a smaller time frame. 17 Such a structure also makes it easier to

manage the coherence data obtained from the WorldServer (DG6)(see Chapter 4).

Note that the rotation data is not recorded in the angle-axis format but in full

matrix representation, thereby easing the processing of subsequent rotations applied

to a model. Note finally that Qave provides two ways of manipulating the orientation

of the models. One can set an absolute angle that the model should have; in this

case the rotation matrix in the data structure is simply overwritten. Alternatively,

one can use an incremental angle change, in which case the old rotation matrix will

be multiplied with the matrix representation of the increment.

14 See http:j jwww.alias.comjengjindexJlash.shtml for more details
15See http:j jwww.dcs.ed.ac.ukjhomejmxrjgfxj3djOBJ.spec for the full format specifications
16http:j jwww.pobox.comj~nate
17This is particularly evident if an object is moved with respect to another one while an update
changes the location of the reference, in which case the update will not affect the object already
rendered.

40

3.4 SIMULATOR MODE

clicked Determines if the object is being clicked on.

shared Determines if the object is being shared.

x, y,z Position in 3D of the model.

roLmatrix Rolds the full 4 by 4 rotation matrix.

modeLid Contains the object unique id string.

xscale, yscale, zscale Contains the scale along the x, y and z axis.

pmodel Pointer to the structure containing the actual vertex
data of the object as weIl as its filename and other data.

TABLE 3.2. ObJect Structure Data FIelds

3.4. Simulator Mode

Instead of making use of the immersive setup, it is often useful to preview a

scene on a regular computer (DG4). Regular PCs are much more common and easier

to setup than a full-ftedged immersive environment. When in simulator mode, the

engine uses an alternative core rendering loop adapted for use on single screen setups.

The simulator mode is thus an integral part of the graphies renderer, and not, as is

the case for other engines [45], a completely separated application. This allows the

developper to verify the correctness of his application in the same engine that would

be used in an immersive setup. Consequently, to start the simulator, one does not

need to recompile or launch a different application, but sim ply to edit a configuration

file (see Section 3.1.5) and change the number of viewports. At that point, the

rendering will not be made on three viewports but on one. This is the equivalent

of only rendering the front display in the immersive case. Because we use on-axis

41

3.4 SIMULATOR MODE

projection in that configuration, we can make use of the built-in OpenGL perspective

caUs to simplify the projection matrix computation.

Note also that since the simulator actuaUy is the same program, it is also possible

to render the scene in immersive mode on a single screen. In that case, the view will

be skewed because the projection matrices will not be adequate for the single-screen

environment. On the other hand, this aUows the developper to have the exact preview

of the immersive scene on a regular PC.

Of course, the simulator should not have to depend on the trackers present in

the immersive setup to process user input. A keyboard control override scheme is

used to displace the hand of the user and to manipulate the objects in the scene. To

obtain maximum flexibility, the keyboard override can be triggered on or off. If it is

off, the simulator will pro cess the data coming from the trackers. The controls are

summarized in Table 3.3.

up, down, left, right Control the hand position in the z and x axis respec-
arrow tively.

page up, page down Control the hand position in the y axis

F12 Triggers the keyboard override

END Triggers an action (click)

a,d, s, w When an object is selected, controls the rotation along
the y and the x axis respectively

q, z Control the uniform (that is along aU the axis) scaling
of the model

TABLE 3.3. Keyboard Overnde Key-LIst.

42

3.5 RESULTS

3.5. Results

Performance analysis of software can be done using three different methods: mea­

surements, simulation and analysis [46]. The measurement method uses direct timing

of the software. The simulation method performs the analysis on programs created to

simulate the execution of the software being tested. The analytical method involves

creating mathematical models to represent the software and extrapolate from the

behavior of that model. The peformance analysis method presented in this section

is based on the measurement method, because the software is in a fully workable

condition.

The Qave engine was tested on different configurations for performance bench­

marking. For analytical purposes the results of Qave are compared with those of

CAVELib, the engine that previously drove our setups. The running variable used

was the scene complexity, evaluated in terms of number of lit triangles in the scene.

Triangle count is a commonly used complexity metric as it is the basie atomie pro cess­

ing unit for graphics processors. The performance was measured in frames per sec­

onds (fps) for different scene complexities. Frames per second is the most significant

figure for graphies engine capability. Other measures (such as the number of poly­

gon/seconds drawn) are also sometimes used, but have less correlation with reallife

performance. AlI scenes were rendered using double-buffering, which is the typieal us­

age scenario for Qave. Single-buffering often pro duces fiiekering in the display as the

framebuffer is getting drawn while being written. Flickering, of course, is detrimental

to the immersive experience.

A sample scene consisting of a textured fioor and three identically textured walls

was used as our basic world. To this world we then added different OBJ models18 to

vary the complexity parameter.

The specifications of the machines used are:

18The number of triangle in each model is known in advance.

43

3.5 RESULTS

• Bach: SGI Onyx2, 2 R12000 processors at 400MHz, 256MB of main mem­

ory, InfiniteReality2 "KONAL" graphies engine with 8 channels and 64MB

of video RAM. OS: IRIX 6.5

• Watcher: PIlI 850MHz, 256MB of RAM, with a Matrox G400 with 32MB

of video RAM. OS: Linux, kernel 2.4.25

• Scarlatti: P4 2.6GHz, 512MB of RAM, with an NVIDIA FX5200 128MB

of video RAM. OS: Linux, kernel 2.4.20

For our first benchmark, we tested the Qave engine in two different configurations

for each machine:

• 1 viewport configuration, thus giving a total resolution of 1024x768 pixels

• 3 viewports configuration, with a total resolution of 3072x768 pixels

Figures 3.9 and 3.10 show the framerate vs. the number of colored triangles rendered

of that first benchmark.

Performances in 1 Viewport Mode

100

90 A

80
...... ,,'â.

70 "'''-''''
'\

60 __ PIII 850Mhz
CI)

50 ~ \ -lI--SGIOnyx a.

'\ Il.

40 \ -Ir- P4 2.6GHz

30 '\ \
20

.......... '-......,

~ '-..:::::-
10

-c:::~~ __ . -
0

,\'ô'à ",'ô ro'à fi:J"> ,\'ô ~ "Il> ,\'0 ~ ,,'ô <0'1; ,\OJ ,,~ ~f> ,\,,>"-' ,,~ .,,,-,"-'
" " " "-' ,,'" ...

Number of Triangles

FIGURE 3.9. Qave Performance for the 1 Viewport Configuration

First, note that the first and second data points for the framerate of the higher-end

PC in the single viewport configuration are off the chart and have been omitted both

44

3.5 RESULTS

Performances in 3 Viewports Mode

60

50
'\

\
III ~ \ "C
§ 40

\ ~. u __ P1II850Mhz
" CI)

G; 30

\ ""
--11"-' SGI Onyx

c.
III ----.. -._-~ --a- P4 2.6GHz

" E 20
~ :::::I..-._ .• -._---~ "\. u.

10
T

~
0

"rJ> ().'O ra'O 'l>'" ~ fol::> f;.j":J ,\'0 tV ,,'l> ().'O ~
,,'0 ,,'0'1) ~" ,,'13 ,\'lJ '0'0 ,...t>< {:vI::> ,\1::>'" "",...t>< .!:?",'l; " " " " '"

Number of Triangles

FIGURE 3.10. Qave Performance for the 3 Viewports Configuration

in Figure 3.9 and 3.12 for legibility purposes. Their respective values are 950fps and

128fps. Such high framerate is due to heavy optimization of the graphies hardware

for simple scenes at low resolution.

Notice also that the maximum framerate that can be obtained on our SGI config-

uration at a refresh rate of 50Hz is 25 frames per second. There is such a limit because

we use double buffering during our rendering, and the Onyx needs the vertical sync

(VSYNC) enabled ta ensure a consistent display on the three screens. Because of

that constraint, the Infip.iteReality engine has to wait until the next refresh cycle to

swap the buffers. Hence, the consequence of the waiting time due to buffer swap is

that the framerate in double buffered mode is a multiple of 50 (i.e. the refresh rate).

The framerate is thereby quantized, with the maximum framerate being 25fps, the

next ones being 16.6, 12.5, 10 and so forth. It is of interest to note that regular PC

graphies cards will also exhibit such quantization if the VSYNC setting is enabled, in

which case, similarly to the Onyx, the framerate will be a multiple of the framebuffer

refresh rate. This is important in making performance comparisons, as the Onyx is

impaired in its ability to compete with other architectures on scenes of modest or low

45

3.5 RESULTS

complexity, Le. the scenes in whieh the performances is bounded entirely by graphics

card refresh limitation.

The most interesting result of this first benchmark is that both PCs usually offer

a higher framerate when the scene is simple, but the performance of the low-end

PC degrades markedly to fall below that of our SGr when the scene contains more

than 20000 triangles. That quiek degradation is notably due to the limited onboard

memory and the slow speed of the video cardo On the other hand, the high-end

PC manages to keep higher framerates than the SGr in aIl the tested cases. This

shows that current off-the-shelf PCs can indeed perform as well as older specialized

visualization computers.

The other interesting result is that the low end PC actually performed better

than the Onyx for simple scenes. Such a result is probably due to the hard-coded

framerate limit of the Onyx (25fps).

The minimum framerate usually considered as acceptable for interactive systems

is 10fps [34J. From the data shown in Figure 3.10, we can determine the most complex

scene that can be rendered in the Qave in three viewports mode with acceptable

framerate should not contain more than 50000 lighted triangles on an SGI. The same

figure also holds for our higher-end PC, which by no means is the most performant PC

available. One can speculate that a top-of-the-line processor and a mat ching graphies

card could easily outperform the Onyx.

The second test compares the performance of Qave and CAVELib. Both programs

were run on the Onyx2 (see Figure 3.11) and on a P4 running Linux (see Figure 3.12).

On the Onyx2, both programs were set to use three viewports for a total resolution

of 3072x768 pixels. On the P4, one viewport and a resolution of 1024x768 were used.

Figure 3.11 shows that CAVELib and Qave have similar performance on the

Onyx. Because of quantization effects, both engines exhibit performance degradation

46

3.5 RESULTS

18

16
Ul
"0 14 c
0

12 u
Q)
r/) 10
Qi
c. 8
Ul

6 Q)

E œ 4
u.

2

0

Performance Comparison on Onyx2 Irix System

- - - - -
'" '" \.. \.. ... -

\
~
\,
~ ------.

A,,'O'O ~'O 'J.,'O'O "Oj'1; 'Oc:? Oj'O<:::J 'b<-:,":J ~'O rC- "Oj ~'O ~
,," ,,'0 (\ (\ ,(\ ,,~ '1;" ~'1;<:::J A,,<:::J'1; "",,~ ,,<-:,'1;'1;

Number of Triangles

___ CaveLib

-+-Qave

FIGURE 3.11. Performance Comparison between Qave and CAVELib on Onyx2

Perfomance Comparison on P4 Linux System

100

90

80
en

70 'C
C
a
(J 60 III

(J)

Q; 50
c.
en 40 III
E

30 ~
LL

20

10

...
~
~

\
\
\
~
~

----- ... ~ -0

Number of Triangles

FIGURE 3.12. Performance Comparison between Qave and CAVELib on a P4

at around 18000 lit triangles, with Qave providing a slightly better performance,

overall, to that of CaveLib on the SGI.

When running under Linux (see Figure 3.12), Qave proves to be a much better

performer than CAVELib, reaching framerates up to four times higher. This dramatic

47

3.5 RESULTS

difference under Linux is probably due to the fact that CAVELib was specifically

designed to take advantage of the SGr platform, notably in terms multi-processing

and shared memory; under Linux, such optimizations were not available.

Taking again the 10fps limit as the usability limit, Figure 3.12 shows that CAVELib

on Linux can process a maximum of 21000 triangles. Qave, on the other hand, can

go as high as 150000 triangles, seven times more. Given the fact that our new setup

will use regular PCs running Linux for rendering, the Qave is clearly the preferred

solution.

To summarize, Figures 3.9 and 3.10 compare the performance gradient of the

Qave engine on different configurations, while Figures 3.11 and 3.12 show how Qave

and CAVELib compare on similar setups. The first set of data shows that Qave sc ales

nicely with more powerful PCs, both in single- and three-viewports modes. Further,

this data also suggests that for scenes of relatively modest complexity Qave performs

better on off-the-shelf PCs than on our SGr platform. The second set of data shows

that the our newly implemented Qave engine performs better than its predecessor,

CAVELib. This is notably true when both platforms are benchmarked on PC systems.

On the Onyx2, the increase in peformance can mostly be seen by a larger range of

data at whieh the graphies engine renders at a structurally-bound top speed, which,

in most cases, is lower than what can be achieved on a reasonably recent Pc. This is of

particular significance for the research community as it shows that today's consumer­

level PCs can outmatch older specialized graphies workstations. Most recent research

in VR platform now use clustering methods to reach even higher framerates with

complex scenes. Such methods are usually complex to setup and require multiple

machines. Our results show that for relatively simple scenes, a regular PCs is more

than capable of rendering for immersive spaces.

48

CHAPTER 4

WorldServer

"The multitude which is not brought to act as a unit y, is con­
fusion. That unit y which has not its origin in the multitude is
tyranny."
-Blaise Pascal

The WorldServer's purpose is to maintain information about a coherent world

that can then be broadcast to different Qaves. Each Qave uses that information to

synthesize its own rendering of the same world. Sharing a coherent space notably

allows distant users to collaborate as if they were in the same physical location.

A client/server model was used for the implementation of the transactions, where

the server acts as a middleware and holds the world data which is then transmitted

to clients. Another paradigm for maintaining the world coherence among Qaves is to

adopt a peer-to-peer architecture, whereby each Qave directly talks to aIl the other

Qaves. Such a paradigm is a reasonable solution for a pair or a small number of

Qaves, but it does not scale weIl when the number of peers increases. With this

transaction model, conflict resolution is a non-trivial issue. 1

For example, a conflict could occur if multiple users located at diflerent nodes

decide to simultaneously throw a sheet of paper on the same stack. In a peer-to-peer

lConflict occurs if two or more Qaves end up rendering a different world.

4.1 OBJECT AND WORLD MO DELS

model, each Qave represents its own sheet as being at the bottom of the stack because

it receives the data concerning the other sheets after it has rendered its own sheet.

Clearly, the world is not in a consistent state anymore, as each user sees a different

reality. A non-trivial arbitration among aH the peers must then take place in order

to have aH the Qaves agreeing on a state as being what is real. In a client / server

model, all the Qaves send notice to the WorldServer that they have put a sheet of

paper on the stack. Then, the WorldServer makes the decision of the sheet ordering

(most likely, but not necessarily, based on message arrivaI order) and broadcasts that

decision to aH the Qaves, thereby maintaining the world in a coherent state with

minimal effort. Each Qave receiving the update contradicting its own version of the

world will experience a temporary out-of-sync world before the update arrives, but

that situation is much more desirable than having to resolve a conflict to determine

which peer has the correct representation of the scene.

In Section 4.1, we describe the world data model, while in Section 4.2 we go over

the transaction model and the communication protocol between the different modules

of the framework.

4.1. Object and World Models

TheWorldServer maintains data structures holding the position, orientation and

scale of objects in the world (DG9). The Qaves are responsible for rende ring their own

local environments and the coherence paradigm we use is that only the necessary data

is explicitly shared. More specificaHy, any module may initiate the sharing of objects

which will then be coherent among aH the Qaves. As such, Qave users may initiate

the sharing of an object themselves, or another pro cess or script might declare the

share automaticaHy at launch time. Ensuring completely similar worlds then requires

running the same application on aH the Qaves. However, Qaves that are sharing

data have no formaI requirement to do so. This scheme provides maximum flexibility

50

4.2 TRANSACTION MODEL

x, y,z Position in 3D of the model.

roLmatrix Rolds the full 4 by 4 rotation matrix.

modeUd Contains the object unique id string.

xscale, yscale, zscale Contains the scale along the x, y and z axis.

id WorldServer local object number id.

TABLE 4.1. ObJect Attnbutes.

x, y, z Contains the 3D position of the Qave III the virtual
world.

id Contains the local WorldServer id for the client.

qave_name Contains the name that was registered to the nameserver
of the client

TABLE 4.2. Qave Chents Attnbutes.

and adaptability, as Qaves might not all have the same rendering capacities and

might prefer to render a plain background instead of a complex scene to maintain

performance and responsiveness. Table 4.1 shows the attributes maintained for each

object in the WorldServer. Note that these attributes are essentially a subset of those

of objects in a Qave (see Table 3.2).

In addition to object positions, the WorldServer also maintains information about

the registered client Qaves, as is shown in Table 4.2.

4.2. Transaction Model

The transactions follow a client/server model. The ServerLib is again used to

support the low-Ievel message passing.

51

4.2 TRANSACTION MODEL

4.2.1. Operation Modes. WorldServers can operate in one of two modes

for message broadcasting: synchronous or asynchronous. In synchronous mode, the

server blocks after each message send out until an acknowledgment from the recipient

is received. This is a useful mechanism to prevent Qaves from being overwhelmed by

messages if the WorldServer broadcasts too many updates too fast. The downside

of the synchronous mode is that there is a potential loss of performance in terms of

update propagation speed. Further, it may not scale well when the number of clients

increases. In summary, this mode pro duces a slower update rate, and should be used

when it is known that a client might get flooded by updates.

In asynchronous mode, the WorldServer simply broadcasts the updates to all the

Qaves as soon as it cano It is the mode that offers the lowest update latency, and its

use is recommended if the Qaves can support the higher update rate. It must also

be noted that message creation is event-based. This means that unless a Qave has

something to broadcast, no world update will be sent out.

4.2.2. Message Protocol. The main guideline used while designing the

message protocol was that objects in Qaves should not be connected unless they

are explicitly shared. This means that two Qaves may be running totally dissimilar

environments containing many different objects, and only share a few. The sharing

of the objects is triggered by sending a message containing the object ID to the

WorldServer. Anyone may send such a message (Le. sharing may be initiated at

startup by a script, or on-the-fly by clients themselves), and the WorldServer will then

broadcast the appropriate instructions to all its registered clients (DG10). Explicitely

declaring the shared object requires a bit more setup and initialization than forcing

the sharing of the whole world data, but greatly enhances the flexibility.

As was described in the object models (see Table 4.1), each object is identified

by a string that must be unique within the scope of the local Qave. For example, one

52

4.2 TRANSACTION MODEL

register < qave_name> Registers a qave in the world and responds with
and id number.

share < madeLid> Instruct all the registered Qaves to be coherent
with their representation of model <modeUd>.

update < madeL id> < xyz- Updates and broadcasts the data about a shared
pas> < roLmatrix> < xyz-scale> object.

reqUpdate Requests client <qave_name> to send the server
< qave_name>< madeLid> an update about model modeUd.

TABLE 4.3. WorldServer Command LIst.

Qave could not have two objects with id "object_l", but two separate Qaves could

both use the string as an identifier. Objects having the same id between Qaves can be

linked together to exhibit the same properties at all times. This is normally the case

when users run the same program or use the same object section of the configuration

file. Table 4.2.2 describes the command list that the WorldServer uses.

Figure 4.1 shows an example of the message protocol used to register a number

of Qaves and share data about objects. A typical scenario is the following. We have

two Qaves, A and B. Assume that these Qaves want to share two objects, obj_l and

obj_2. Qave A and B register with the WorldServer by sending the messages register

QaveA and register Qave8 respectively. The WorldServer then fills the client list with

information given by the Qaves. Qave A initiates the sharing of obj_l by sending the

message share obj_l. Qave B does the same with obj_2. At that point, Qave A and B

share two objects, and update messages are sent to the WorldServer when the user of

a Qave makes changes to either one of these objects. Each message is then broadcast

by the WorldServer to aU the registered Qaves.

A third Qave, C, registers. After having updated its client list, the WorldServer tells

Qave C that two objects are already being shared and supplies Qave C with data

53

4.2 TRANSACTION MODEL

updates about obj_l and obj_2. The user of Qave C can then collaborate with the

other us ers by manipulating obj_l and obj_2.

It is important to note that in general the generation of update messages should

be kept event-based (as opposed to being a constant stream of updates regarding all

the objects for example) in order to limit the bandwith usage (DGlO). On the other

hand, a stream of updates would be transmitted during a continuous move to ensure

the correct position of the object throughout the who le motion. Such a motion would

indeed create a notable fiow of data. In that case, network congestion might lead

to a lower rate of update messages as the WorldServer would block waiting for the

complet ion of the transmission to all clients. This in turn may lead to desynchroniza­

tion between clients. Another option to minimize bandwidth would be to sample the

continuous motion at discrete points in time and perform an interpolation between

these points. This, however, might result in a loss of granularity in the gesture and

create additionallag as the next update point is needed to perform the interpolation.

54

c..n
c..n

t,j

o
c:::
;:>::1
trl ..,.
f-'

Cl
o
S

~
(=î"

~
C>
~

'l:J ...,
o
M­
O
(")

S.

22 1 ww':=< 1 2
: register OaveA .. : }

1 • 1

1 register QaveB "1
Qave Registration

1

Ishare obj _I}
1 _ share obi 1:
1 1

Object 1 Sh.ring

1 1 share obL2

:- I~~----'--'-· -:}

, • >L' '>L" o,~"""~
1 1

1- -:} upd.te ob
L

2: Object 2 Upd.tes

1

! .. register QaveC !

: share obi 1 _ :

1

Qave C Registration
t update obi .. '

1 share obL 2 1

1 -1
1 1
! update obj 2 .. !

1 1
1_ I---------------...!!I~~ '01

upd.te ob; 1 : upd.te ob;

Il

}". , U"~"
1

1

1 .. update obi...! 1

1

f"
tv

~

~
Z
UJ.
>
~
>-< o z
~ o
t::)
trl
r-<

CHAPTER 5

Tracker and Spatialized Audio

"A gesture cannot be regarded as the expression of an individual,
as his creation (because no individual is capable of creating a
fully original gesture, belonging to nobody else), nor can it even
be regarded as that person's instrument; on the contrary, it is
gestures that use us as their instruments, as their bearers and
incarnations."
-Milan Kundera

From the outset, one of our main design goals has been to avoid the introduction

of any special equipment that must be worn by the user, for instance, stereo goggles,

data gloves, and other tethered tracking devices. Instead, we aim to perform aIl our

tracking and gesture analysis entirely through the use of video processing techniques.

This allows for a more direct and immersive experience of the synthetic world.

The main role of the tracker is to provide information pertaining to user's ges­

tures. In our current version of the tracker, this means data about one head and one

hand. The head position data is used for the off-axis projection computations (see

Section 3.1.3). It can also be sent out to a remote Qave, where the incoming sound

stream can be spatialized thereby being coherent with the position of the avatar of

the distant user.

5.1 IMAGE PROCESSING AND MESSAGE DISPATCHING

The tracking system is covered in Section 5.1, while Section 5.2 describes the

sound spatialization system.

5.1. Image Processing and Message Dispatching

Our tracking system is comprised of two distinct processes. The first one is in

charge of the video processing (i.e. the actual tracking) while the other is in charge of

dispatching the tracker data to clients. The dispatcher uses ServerLib to communicate

with other applications. Our current user tracking algorithm is based on the view

from a ceiling-mounted camera. It employs differencing between the current frame

and an average reference image of the background.1 The tracker can also forward

processed video frames (i.e. background removed) to a Qave, where it will then be

blended in the virtual scene. Both tracker and dispatcher were originally written by

Stéphane Pelletier, and were adapted for use in this framework. Two main changes

were applied.

First, the communication mode was set to synchronous between the Qave and

the dispatcher. Because the tracking update rate is higher than the Qave framerate,

positional updates could overwhelm the renderer in asynchronous mode. By making

sure that the Qave sends out a reply message when an update has been received, we

ensure that fresh data is transmitted while avoiding overfiooding the socket buffer of

the receiver.

Secondly, we wanted the possibility of transmitting the position of the head of

the user to the audio spatialization system, where it could be used to compute the

correct output for each speaker. The spatializer accepts data from the network in the

Open Sound Control (OSC) format,2 and a special OSC interface was implemented

in the dispatcher to permit the transmission of data to the spatializer.

lThe background image is generated prior to any users entering the space.
2See http://www.cnmat.berkeley.edu/OpenSoundControl/ for more details on OSe.

57

Tracker

5.1 IMAGE PROCESSING AND MESSAGE DISPATCHING

Position
Data

Qavel

Position
Data

Dispatcher

Position
Data

Qave2

FIGURE 5.1. Tracker and Dispatcher Processes

Ultimately, head- and hand-tracking should be accomplished by multiple cameras

distributed around the environment. So far, due to implementation limitations, we

only use a single overhead camera, which, in conjunction with the tracker, allows for

a single hand and a single head tracking. Sinee only one user can enjoy a correct

perspective view at any time, being limited to single head detection is a fair assump-

tion. Conversely, the ability to track multiple hands is an extension that could prove

very beneficial, as bimanual interactions can greatly enrich the gestural vocabulary.

Several studies [47, 48, 49, 50, 51] have illustrated the benefits of well-designed

58

5.2 TRAC KER DATA FOR SPATIALIZED AUDIO

bimanual tasks. Not only does bimanuality aid in speed and efficiency, but the struc-

ture of the task can be made more complex without significant loss of performance.

Kinesthetic feedback provided by the muscles in our arms and hands offers addition al

subconscious information to the user [52] so that less computer-generated feedback

is required and in turn, the cognitive load imposed on the user is reduced.

With respect to our tracker, it is thus important to detect and follow multiple

targets. As such, members of our research group are currently exp~rimenting with new

tracking algorithms, whieh could then subsume the present tracking system. Those

algorithms notably involve CONDENSATION [53] and skin-color based detection.

5.2. Tracker Data for Spatialized Audio

The sonification of immersive environments is gaining an increasing amount of

attention. Researchers acknowledge that effective immersion in a virtual environment

implies more than filling the user's field of view with coherent data. As noted by Naef

et al. [54], audit ory perception offers a powerful complement to the visual channel.

Gary Kendall et al. [55] describes the advantage of 3D sound as the quality of "being

there." With 3D audio, one loses the feeling of having the sound being mediated by

the speakers. Instead, one directly perceives the sonie environment.

As was mentioned, the SRE is equipped with eight speakers located at each

vertex of the cube (see Figure 1.2). Multiple input sources3 can then be spatialized.

The spatialization process is performed by the LocalizerQ.4 The LocalizerQ uses time

delays, intensity differences and cross-talk cancellation to provide a 3D sound space.

It consists of seven processing units (see Figure 5.2) :

(1) The Doppler simulator: performs pitch based shifting based on the accel-

eration of the sound source in relation to the listener

3For example, a typical sound source is a stream from a remote location.
4The LocalizerQ was developed by Zack Settel, http:j jwww.Zeep.com.

59

5.2 TRACKER DATA FOR SPATIALIZED AUDIO

In-pij-tI1 •• 4

FIGURE 5.2. LocalizerQ DSP Architecture (with the authorization of Zeep.com)

(2) The distance simulator: performs amplitude attenuation based on the dis­

tance to the listener

(3) The surround panner: pans (equal-power) the simulated sound.onto the

speaker array

(4) The reverb engine: simulates a reverberant sound field and excites it with

the simulated sound source

(5) The early refiections: calculated based on the actual position of the source

(6) The height manager: positions the sound in the z axis

(7) The listener position: controls the global output energy balance

Figure 5.3 presents an overview of how the spatializer integrates in the framework.

The dispatcher can send the head position obtained from the tracker to the spatializer.

The spatializer uses this information in the listener position processing unit, which

creates the illusion of a static audio point source as the user moves about in the space.

60

5.2 TRACKER DATA FOR SPATIALIZED AUDIO

/Pan/PanX, Y,Z Controls the position of the sound source in 3D

/Pan/Length, Width Controls the size of the virtual sound space

/Listener/PanX, Y Indicates the position of the listener in the space

/Pan/OutputGain Controls the overall volume of the sound source

TABLE 5.1. LocahzerQ Command LIst Sample.

The LocalizerQ receives command in the OSC format, and Table 5.2 shows a subset5

of the parameters (in OSC format) that can be passed to the LocalizerQ.

The concept of spatialized sound is not new one, nor is its implementation. How­

ever, the ability to associate a 3D sound source to a dynamic object on the screen is

an important feature for user engagement in the virtual world. As noted by Hollier

et al., spatial audio has a vital role to play in enhancing speech communication per­

formance and naturalness in synthetic spaces by giving directionality to individual

sound sources and providing feedback about the virtual space in which the user is

located [56]

50ther parameters that have not been listed here for conciseness control the reverberation factors
of the virtual room.

61

5.2 TRACKER DATA FOR SPATIALIZED AUDIO

ServerLib
Video Frames Protocol

1

Image Processing Dispatcher

ose
Camera Protocol

L---"i
topvicw SpatializerQ

6

/ FireWire

/
2

MOTU828

4

" 8

~
8

Speaker 1 to 8

FIGURE 5.3. Spatializer Information Flow

62

CHAPTER 6

Conclusions and Future Work

6.1. Conclusions

The proposed framework has been successfully used both for our initial applica­

tion and by the other members of our research group [6, 5]. The overall goals of

flexible immersive rendering and the integration of coherence between multiple Qave

clients were achieved, thereby allowing collaboration between users in remote immer­

sive environments. Distant users can also be blended in the synthetic scene both

through video and spatially coherent audio streams. This is an important feature

that benefits computer mediated human-human interactions.

In particular, the Qave engine, which was specifically designed for the SRE frame­

work, has proven to be faster than the previously used CAVELib, especially under

Linux. Another important point is that the Qave engine only uses widely available

APIs, and can be run on virtually any Unix-based platform. This allows Qave to run

both our VR setups. Additionally, the engine architecture is simple enough that

it can be extended by other researchers, which means that other components can be

easily integrated in the engine. Furthermore, the simulation mode makes it faster

and easier for the application programmers to see the progress of their work.

6.2 FUTURE WORK

Finally, the inherent modularity of the framework means that any one component

may be upgraded in the future without disrupting the rest of the system.

6.2. Future Work

The framework was designed to be flexible and easily upgradeable module by

module. For the Qave engine, an interesting expansion would be to support more 3D

file formats, especially those that include animation data. A logical extension would

then be to add support for some sort of scripting language that could pre-define the

interactions between objects. Further, our trackers need to be improved to detect and

follow multiple targets with great accuracy. The integration of multiple camera views

into an accurate 3D model would be very helpful in that task. Such a 3D model could

be used to determine the posture of tracked users. Camera view integration in turn

requires good backgroundjforeground segmentation along with the precise calibration

of the different cameras. Additionally, being able to recognize fine grained gestures

involving, for example, hand rotations or finger movements would greatly enhance the

range of possible actions of the users, and hence their control over the virtual scene.

When detected, hand and finger postures could also be applied to the hand model,

providing the user with a greater sense of familiarity with the synthetic world. These

challenges all constitute active research projects in our laboratory.

Regarding the framework as a whole, the use of a faster networking library such,

as Bronto,l could lead to better video framerate of the remote user and potentially

faster message passing between clients. This in turn would result in a better sense of

immersion for the user and hence in a potentially richer interaction between remote

participants. Finally, as with all frameworks, the most interesting part is application

development, which, we hope, will further knowledge in fields such as bimanuality in

immersive environments and telepresence.

1 Bronto is developed by Stephen P. Spackman, see http:j jultravideo.mcgill.edujtechnicalj for more
details.

64

REFERENCES

[1] C. Ware, K Arthur, and K S. Booth, "Fish tank virtual reality," in Pro­

ceedings of the SIGCHI conference on Human factors in computing systems,

pp. 37-42, ACM Press, 1993.

[2] M. N. Hilario and J. Cooperstock, "Occlusion detection for front-projected in­

teractive displays," in Proceedings of Pervasive 2004, (Vienna, Austria), April

2004.

[3] C. Jaynes, W. B. Seales, K Calvert, Z. Fei, and J. Griffioen, "The Meta­

verse: a networked collection of inexpensive, self-configuring, immersive en­

vironments," in Proceedings of the workshop on Virtual environments 2003,

pp. 115-124, ACM Press, 2003.

[4] 1. Poupyrev, S. W. andd M. Billinghurst, and T. Ichikawa, "Egocentric ob­

ject manipulation in virtual environments: Empirical evaluation of interaction

techniques," in Proceedings of Eurographics, vol. 17, 1998.

[5] Y. Boussemart, F. Rioux, F. Rudzicz, M. Wozniewski, and J. R. Cooperstock,

"A framework for 3D visualization and manipulation in an immsersive space

using an untethered bimanual gestural interface," in Proceedings of the ACM

Symposium on Virtual Reality Software and Technology, ACM Press, Novem­

ber 2004.

REFERENCES

[6] F. Rioux, F. Rudzicz, and M. Wozniewski, "The modellers' apprentice - the

toolglass metaphor in an immersive environment," in Proceedings of the 18th

British HCI Group Annual Conference, September 2004.

[7] 1. Sutherland, "The Ultimate Display," in Proceedings of IFIP Congress,

pp. 506-508, 1965.

[8] 1. Sutherland, "A head mounted three dimensional display," in IFIPS Confer­

ence Proceedings, pp. 757-764, 1968.

[9] C. Cruz-Neira, D.J.Sandin, and T. DeFanti, "Surround-screen projection­

based virtual reality: the design and implementation of the CAVE," in Pro­

ceedings of SIGGRAPH '93, pp. 135-142, ACM Press, 1993.

[10] B. Wei, C. Silva, E. Koutsofios, S. Krishnan, and S. North, "Visualization

research with large displays," IEEE Computer Graphies and Applications,

vol. 20, pp. 38-44, July-August 2000.

[11] D. Guilford, "Virtual Design: as clay fades, GM shifts toward digital imagery,"

July 2004. http://www.autoweek.comj.

[12] A. Gaitatzes, D. Christpoulos, A. Voulgari, and M. Roussou, "Hellenic cul­

tural heritage," in Proceedings of the 6th international conference on Virtual

Systems and Multimedia, 2000.

[13] S. J. Gibbs, C. Arapis, and C. J. Breiteneder, "TELEPORT - towards immer­

sive copresence," Multimedia Syst., vol. 7, no. 3, pp. 214-221, 1999.

[14] G. Goebbels and V. Lalioti, "Co-presence and co-working in distributed col­

laborative virtual environments," in Proceedings of the lst international con­

ference on Computer graphies, virtual reality and visualisation, pp. 109-114,

ACM Press, 200l.

[15] M. Garau, M. Slater, V. Vinayagamoorthy, A. Brogni, A. Steed, and M. A.

Sasse, "The impact of avatar realism and eye gaze control on perceived quality

of communication in a shared immersive virtual environment," in Proceedings

66

REFERENCES

of the conference on Human factors in computing systems, pp. 529-536, ACM

Press, 2003.

[16] M. Deering, "High resolution virtual reality," in Proceedings of the 19th an­

nual conference on Computer graphics and interactive techniques, pp. 195-202,

ACM Press, 1992.

[17] S. Feiner, B. Macintyre, and D. Seligmann, "Knowledge-based augmented re­

ality," Commun. A CM, vol. 36, no. 7, pp. 53-62, 1993.

[18] T. Furness, Harnessing Virtual Space, pp. 4-7. Society for Information Display

Digest, 1988.

[19] J. Butterworth, A. Davidson, S. Hench, and M. T. Olano, "3DM: a three

dimension al modeler using a head-mounted display," in Proceedings of the

1992 symposium on Interactive 3D graphies, pp. 135-138, ACM Press, 1992.

[20] R. Pausch, T. Crea, and M. Conway, "A literature survey for virtual envi­

ronments: military fiight simulator visual systems and simulator sickness,"

Presence: Teleoper. Virtual Environ., vol. 1, no. 3, pp. 344-363, 1992.

[21] R. Azuma and G. Bishop, "Improving static and dynamic registration in an

optical see-through hmd," in Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pp. 197-204, ACM Press, 1994.

[22] J. Liang, C. Shaw, and M. Green, "On temporal-spatial realism in the virtual

reality environment," in Proceedings of the 4th annual ACM symposium on

User interface software and technology, pp. 19-25, ACM Press, 1991.

[23] P. Richard, G. Burdea, G.Birebent, D. Gomez, N. Langrana, and P. Coif­

fet, "Effect of frame rate and force feedback on virtual object manipulation,"

Presence: Teleoperators and Virtual Environments, vol. 5, no. 1, pp. 95-108,

1996.

[24] E. Patrick, D. Cosgrove, A. Slavkovic, J. A. Rode, T. Verratti, and G. Chiselko,

"Using a large projection screen as an alternative to head-mounted displays

67

REFERENCES

for virtual environments," in Proceedings of the SIG CHI conference on Human

factors in computing systems, pp. 478-485, ACM Press, 2000.

[25] E. Lantz, "The future of virtual reality: head mounted displays versus spatially

immersive displays (panel)," in Proceedings of the 23rd annual conference on

Computer graphies and interactive techniques, pp. 485-486, ACM Press, 1996.

[26] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, and M. D.

Brown, "The ImmersaDesk and Infinity Wall projection-based virtual reality

displays," SIGGRAPH Comput. Graph., vol. 31, no. 2, pp. 46-49, 1997.

[27] W. Kruger, C.-A. Bohn, B. Frohlich, H. Schuth, W. Strauss, and G. Wesche,

"The Responsive Workbench: a virtual work environment," Computer, vol. 28,

no. 7, pp. 42-48, 1995.

[28] B. Ullmer and H. Ishii, "The MetaDESK: Models and prototypes for tangible

user interfaces," in ACM Symposium on User Interface Software and Technol­

ogy, pp. 223-232, 1997.

[29] J. Leigh, A. E. Johnson, T. A. DeFanti, and M. D. Brown, "A review of

tele-immersive applications in the CAVE research network," in VR, pp. 180-,

1999.

[30] Paul Rajlich, "CAVEQuake." http:j jbrighton.ncsa.uiuc.eduj rvprajlichjcaveQuakej.

[31] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira,

"VR Juggler: a virtual platform for virtual reality application development,"

in Proceedings of the Virtual Reality 2001 Conference (VR '01), p. 89, IEEE

Computer Society, 200l.

[32] R. Pausch, "ALICE." http:j jwww.alice.orgj.

[33] H. Tramberend, "A vocado - a distributed virtual environment framework,"

1999.

[34] R. Held and N. Durlach, "Telepresence, time delay and adaptation," pp. 232-

246, 1993.

68

REFERENCES

[35] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh, "Load bal­

ancing for multi-projector rende ring systems," in HWWS '99: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphies hardware,

pp. 107-116, ACM Press, 1999.

[36] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raffin, "Net Jug­

gler: running VR Juggler with multiple displays on a commodity component

cluster," in Proceedings of the IEEE Virtual Reality Conference 2002, p. 273,

IEEE Computer Society, 2002.

[37] W. Gropp and E. Lusk, "The Message Passing Interface (MPI) standard.,"

1999. http://www-unix.mcs.anl.gov/mpi/.

[38] J. Allard, V. Gouranton, G. Lamarque, E. Melin, and B. Raffin, "Softgen­

lock: active stereo and genlock for PC cluster," in Proceedings of the Joint

IPT/EGVE'03 Workshop, (Zurich, Switzerland), May 2003.

[39] A. Bierbaum and C. Cruz-Neira, "ClusterJuggler: A modular architecture for

immersive clustering," in VR-Cluster'03- Workshop on Commodity Clusters for

Virtual Reality, IEEE Virtual Reality Conference 2003, March 2003.

[40] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and

J. T. Klosowski, "Chromium: a stream-processing framework for interactive

rende ring on clusters," in Proceedings of the 29th annual conference on Com­

puter graphies and interactive techniques, pp. 693-702, ACM Press, 2002.

[41] M. Gross, S. Wurmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller­

Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. V. Moere, and

O. Staadt, "blue-c: a spatially immersive dis play and 3D video portal for

telepresence," ACM Trans. Graph., vol. 22, no. 3, pp. 819-827, 2003.

[42] K. Isakovic, T. Dudziak, and K. Kchy, "X-rooms," in Proceeding of the seventh

international conference on 3D Web technology, pp. 173-177, ACM Press,

2002.

69

REFERENCES

[43] L. P. Soares and M. K. Zuffo, "JINX: an X3D browser for VR immersive

simulation based on clusters of commodity computers," in Proceedings of the

ninth international conference on 3D Web technology, pp. 79-86, ACM Press,

2004.

[44] O. A. R. Board and D. Shreiner, GpenGL 1.4 reference manual (Blue Book).

Addison Wesley Professional, 2004.

[45] E. Frécon and M. Stenius, "Dive: A scaleable network architecture for distrib­

uted virtual environments.," Distributed Systems Engineering Journal, vol. 5,

pp. 91-100, September 1998. Special Issue on Distributed Virtual Environ­

ments.

[46] R. K. Jain, The Art of Computer Systems Performance Analysis: Tech­

niques for Experimental Design, Measurement, Simulation, and Modeling. Wi­

ley, April 1991.

[47] W. Buxton and B. Myers, "A study in two-handed input.," in Proceedings

of the SIG CHI conference on Human factors in computing systems, vol. 27,

pp. 321-326, 1986.

[48] K. Hinckley, R. Pausch, D. Proffitt, and N. Kassell, "Two-handed virtual ma­

nipulation," ACM Transactions on Computer-Human Interaction (TOCHI),

vol. 5, no. 3, pp. 260-302, 1998.

[49] A. Leganchuk, S. Zhai, and W. Buxton, "Manual and cognitive benefits of

two-handed input: An experimental study," ACM Transactions on Computer­

Human Interaction, vol. 5, no. 4, pp. 326-359, 1998.

[50] P. Kabbash, 1. MacKenzie, and W. Buxton, "Human performance using com­

puter input devices in the preferred and non-preferred hands," in Proceedings

of SIG CHI conference on Human factors in computing systems, pp. 474-481,

1993.

70

REFERENCES

[51] R. Balakrishnan and G. Kurtenbach, "Exploring bimanual camera control and

object manipulation in 3D graphies interfaces.," in Proceedings of ACM CHI

1999 Conference on Human Factors in Computing Systems, pp. 56-62, ACM

Press, 1999.

[52] R. Balakrishnan and K. Hinckley, "The role of kinesthetic reference frames

in two-handed input performance," in ACM Symposium on User Interface

Software and Technology, pp. 171-178, 1999.

[53] M. Isard and A. Blake, "CONDENSATION - conditional density propagation

for visual tracking," 1998.

[54] M. Naef, O. Staadt, and M. Gross, "Spatialized audio rendering for immersive

virtual environments," in Proceedings of the A CM symposium on Virtual reality

software and technology, pp. 65-72, ACM Press, 2002.

[55] G. Kendall, "Directional hearing and stereo reproduction," October 2002.

http:j jmusie.northwestern.edujclassesj3DjpagesjsndPrmGK.html.

[56] M. P. Hollier, A. N. Rimell, and D. Burraston, "Spatial audio technology for

telepresence," pp. 40-56, 1999.

71

