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Abstract 

This thesis presents the framework used in our research group - the Shared Reality 

Environment Lab - for use in our spatially immersive setups. Our main interest is the 

application of virtual reality techniques in the context of computer-mediated human 

to human communication and collaboration. The purpose of this architecture is to 

allow users to quickly develop remote collaborative applications without the need to 

manage low level operations. The framework is comprised of multiple independent 

components: the Qave graphies engine, user trackers, sound spatializer, coherence 

server, communication library and overlapping projectors interface. Sorne components 

were already implemented when this work started and the contributions of this thesis 

are the graphics engine, the coherence server as weIl as the integration of the other 

components in that framework. 



Résumé 

Cette thèse présente l'infrastructure mise en place spécifiquement pour le "Shared Re­

ality Environment Lab". Cette dernière a pour vocation de gérer les environnements 

immersifs de notre laboratoire. L'intérêt principal de notre recherche est d'exploiter 

les possibilités offertes par les univers de synthèse dans un contexte de communica­

tion et de collaboration entre individus. Le but de l'architecture présentée ici est de 

permettre à des développeurs de créer des applications collaboratives pour les espaces 

virtuels, sans avoir à se préoccuper des tâches sous-jacentes. Cette infrastructure en 

tant que telle est composée de différents modules indépendants: le moteur graphique 

Qave, les processus de suivi des utilisateurs, le module de spatialisation sonore, le 

serveur de cohérence, la librairie de communication, et finalement le système de pro­

jections redondantes. Certains de ces modules étaient déjà en place au début de 

ce travail, nous y avons contribué par l'ajout du moteur graphique, du serveur de 

cohérence et par l'intégration des différents modules dans l'infrastructure décrite. 
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CHAPTER 1 

Introduction 

"1 hear, l forget; l see, l remember; l do, l understand." 
-P.R. Halmos 

1.1. Research Problem 

The concept of virtual reality (VR) is compelling because it marks a radical 

shift from the viewing paradigm used in conventional computer graphics. Instead of 

viewing an application through a 2D porthole, such as a screen, the user of a VR 

system becomes immersed in a virtual space through a combination of software and 

hardware, effectively transcending the boundary between the real and virtual world. 

In effect, this allows the user to "go through the looking glass" and discover another 

reality. 

VR is a field that has been maturing rapidly over the past few years, as the 

increase in computing power and the advance in display technology have made it 

much more accessible not only to the academic world but also to industry and the arts. 

The primary objective of the Shared Reality Environment Lab (SRE Lab) at Mc Gill 

University is to facilitate human-human communication and collaboration through the 

use of VR techniques. A prototype three-walled projection-based spatially immersive 

environment was constructed for that purpose. 



1.1 RESEARCH PROBLEM 

A new project has recently begun in our research group, in which the goal is to 

offer a higher resolution display in a multiply overlapping front-projection environ­

ment. Being able to use two immersive spaces simultaneously is valuable because 

it allows the investigation of issues related both to network (e.g. low latency al go­

rithms, dynamic video bandwidth adaptation) and collaboration (e.g. importance of 

gaze awareness or avatar realism). Furthermore, additional ongoing research in the 

SRE Lab pertains to user interfaces for such immersive setups. Our main goal is 

to provide an untethered, purely walk in and use environment. This is another im­

portant consideration for this work. For all these reasons, it is desirable to have a 

consistent framework that can be adapted to both our spaces. 

The purpose of the framework is to support applications of remote collabora­

tion between our two distinct research setups (see Section 1.4). Besides specifie 

component-Ievel design requirements, there were two main overarching guidelines 

we tried to follow. Firstly, the framework should allow the creation of applications 

that rely on an user interface that is as natural as possible. In that sense, the user 

should not have to don any special apparatus before being able to experience and 

interact with the environment. Secondly, the architecture should be flexible in the 

sense that specifie me chanis ms or algorithms are likely to change as the research effort 

progresses. The framework thus divides the different tasks in distinct modules. These 

modules communicate through a network layer thus providing a layer of abstraction 

between the internaIs of each component. For example, a tracking component may 

be upgraded with a newer detection algorithm, but as long as the communication 

interface (that is both message syntax and rate) is respected, the other components 

need not know about the change. 

2 



1.2 CONTRIBUTION OF THE THESIS 

1.2. Contribution of the Thesis 

The work presented here is based on the framework that was previously used 

in conjunction with CaveLib as the graphies renderer. Our main contributions were 

to provide a lightweight alternative to CaveLib, and extend the original framework 

capabilities by adding audio spatialization to the virtual scene along with the ability 

to share a common virtual world among multiple nodes. Providing a coherent repre­

senation of the world between locations allows users to see the changes made to the 

world by another remote participant. Therefore, multiple distant users are able to 

work concurrently as if they were present in the same physical space. 

Figure 1.1 shows an overview of the complete framework, which consists of mul-

tiple independent parts: 

• Qave: The rendering engine, which mns the User Application. 

• Trackers: Vision-based user tracking system. 

• Sound Spatializer: Creates a 3D point source for the remote sound and 

simulates the acoustics of the scene. 

• WorldServer: Maintains the world coherence between multiple Qaves, and 

allows for collaborative work. 

• ServerLib: Network Library used for all message passing and video stream­

ing between different Qaves. 

• Multiply Overlapping Projection System: Takes the framebuffer of a Qave 

and splits it over multiple comput ers while providing for dynamic shadow 

detection and removal. 

3 



1.2 CONTRIBUTION OF THE THE SIS 
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FIGURE 1.1. Framework Overview 
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As mentioned, parts of the infrastructure were already in place before the design 

started, namely the Trackers,l ServerLib2 and sound spatializer.3 The Multiply Over­

lapping Projection System is currently still in development. 4 

The contributions of this thesis are: 

IThe trackers were developed mainly by Stéphane Pelletier and currently being updated by members 
of our research group 
2ServerLib was developed by J. R. Cooperstock 
3The Sound Spatializer was developed by Zack Settel, http://www.zeep.com 4 
4The Multiply Overlapping Projection System is supported by Daniel Sud and Maria Nadia Hilario 



1.3 DESIGN GOALS 

• The Qave rendering engine, which manages the displays 

• The WorldServer, which allows for collaboration to take place 

• The modification and adaptation of the Trackers for use in this framework, 

which provide the engine with user data 

• The adaptation of the Sound Spatializer, which provides an immersive au­

ditory space 

• The communication protocols between these modules. 

1.3. Design Goals 

The central component of this thesis is the Qave, i.e. the graphics engine. Based 

on the specifie setups available and the global research interests of the SRE Lab, a 

li st of design goals was established. These goals will be referred to as (DG) in the 

rest of this thesis. 

(DGI) Unix Compatibility: Both our environments have different display setups 

and computing facilities, which will likely be upgraded in the future. In 

terms of operating systems, the engine must be able to run on at least Irix 

and Linux. 

(DG2) Immersive: The engine must be able to make use of the three-screened 

spatially immersive display of our original environment, as well as the large 

screen display in our new setup. 

(DG3) Dynamic Perspective Correction: Compensating for the users' position 

in the environment so as to constantly give them a correct perspective 

of the synthetic world. The latency between the user movement and the 

perspective update should be minimal. 

(DG4) Simulator Mode: The user application can be tested without needing to 

run on the actual immersive hardware. In that mode, the Qave should not 

5 



1.3 DESIGN GOALS 

rely on tracker data, and thus should have an alternate mode of input that 

can emulate external sensors. 

(DG5) Tracker Information: The ability to receive and process data from the 

Trackers. The data stream usually comes through the network as ServerLib 

messages. There should be as small a latency as possible between the time 

a message arrives and the time the displayed world updates accordingly. 

(DG6) Coherence Data: Receiving and sending data to other Qaves through 

the WorldServer in order to maintain a coherent view of the world. More 

importantly, this allows for collaborative work to take place between Qave 

users. 

(DG7) Remote Video: Embedding a remote video stream in the virtual scene. 

Video input usually comes from a framegrabber as a ServerLib binary 

stream. 

(DG8) Extensible: Easily modifiable by other researchers. Easy access to the 

native OpenGL layer, and thus providing flexibility for future development. 

As for the WorldServer, the main design goals were: 

(DG9) Coherence: Rold a unique coherent representation of the world shared by 

clients. 

(DG 10) Data Propagation Protocol: Messages exchanged between the clients 

should be in human readable format for easy auditing purposes. While this 

somewhat limits the potential for optimizations, the bandwidth used should 

be kept as low as possible by avoiding to transmit unnecessary information. 

In summary, this thesis presents a general and modular VR framework consist­

ing of multiple components: an immersive graphical engine, coherence server, and 

trackers, allowing for interaction and audio spatialization. 

6 



1.4 RESEARCH SETUPS 

1.4. Research Setups 

Our original setup, the SRE, is a spatially immersive environment (IE) which 

uses the three sides of a 1.82m5 cube (see Figure 1.2) as display surfaces. 

1.8m 

Left Sereen Front Screen RighI Sereen 

Mounting Hardware 

@. Speaker 

FIGURE 1.2. SRE Setup Physical Dimensions 

In that prototype space, three XGA projectors are used for monos copie rear­

projection, providing a total resolution of 3072x768 pixels. Our choiee of monoscopy 

over stereoscopy was motivated by our design goal of a walk in and use system, which 

precludes extraneous gear such as stereoscopie goggles or data gloves. This choice is 

also motivated by the fact that head-coupling is more effective than stereopis for the 

3D perception of the scene, as shown by Ware et al. [IJ. The hardware renderer is a 

Silicon Graphies Onyx2. 

The prototype SRE is equipped with eight speakers located at each corner of the 

cube. Multiple sound sources can be spatialized to create the illusion that they origi­

nate from arbitrary locations in 3D space. This allows sound streams to be localized 

5The exact length is 6 feet. 

7 



1.5 SAMPLE APPLICATIONS 

consistently with the screen position of the distant participants. For example, remote 

users' voices can be heard moving from left to right and up and down as they move 

accordingly. Additionally, the spatializer can emulate the acoustic characteristics of 

different rooms such as a highly reverberant chur ch or an open field, thereby providing 

a more effective immersion in the synthetic environment. 

In our second instantiation of the SRE, our setup involves creating a large display 

surface composed of the entire 7x2m back wall of that room, as weIl half of the adjacent 

side walls, where six SXGA projectors render a coherent seamless image. This requires 

the geometric calibration of each projector and intensity bIen ding in overlapping 

regions. However, a user standing between a projector and the wall may create a 

shadow on the display. These shadows can be automatically detected [2]. Occlusions 

can then be removed by selectively increasing the intensity of other projectors covering 

that region. The adopted approach,6 is similar to that of the Metaverse [3]. This 

environment also employs eight speakers (four along the top of the front wall and 

another four along the top of the back wall), allowing for bi-directional spatialized 

communication between our two setups. 

1.5. Sample Applications 

An initial sample application was implemented and is used throughout this thesis 

to illustrate the rendering engine and the overall framework capabilities. This appli­

cation is a computer-aided, immersive collaborative tool for object manipulation. As 

such, it allows the users to jointly move and rotate objects in a virtual scene. 

The user's hand is represented by a synthetic hand-model (see Figure 1.3). This 

improves the on-screen feedback and the degree of engagement of the user. Although 

an arrow or a crosshair with greater precision could have been used instead, allowing 

6This work is conducted by Daniel Sud and Maria Nadia Hilario. 

8 



1.5 SAMPLE APPLICATIONS 

users to see on the screen a synthetic hand directly controlled by their real hands in­

creases the degree of immersion. Poupyrev et al. have evaluated those two interaction 

paradigms, and have noted that displaying a virtual hand more closely simulates real 

world interactions, thereby increasing the familiarity of the interface for the user [4]. 

There is a direct sense of embodiment (or self-representation) as lisers realize that the 

movements of the virtual hand on the screen are analogous to those of their hands. 

FIGURE 1.3. Qave Rendering with User's Rand 

This application was chosen as it clearly illustrates the different functions of all 

the components of the Qave framework. Moreover, the interaction paradigm of object 

selection and manipulation is sufficiently generic that it can be adapted to numerous 

applications in other fields. Further, the possibility of bringing a remote participant 

into the synthetic world allows for collaborative work to take place. 

9 



1.6 THESIS OVERVIEW 

Rioux et al. have implemented a more sophisticated application [5, 6] using the 

proposed framework. A bimanual interface for object manipulation in immersive 

spaces using pieglass widgets was developed. 

1.6. Thesis Overview 

The next chapter presents background information on virtual reality as well as an 

overview of significant work in that field. Chapter 3 describes in detail the design and 

implementation of the Qave rendering engine. Chapter 4 discusses the WorldServer 

application that allows for different Qaves to render the same consistent world. Chap­

ter 5 presents the modifications made to the trackers that were needed for integration 

in the framework, along with an overview of the sound spatializer structure and the 

communication proto col adopted between the trackers and the spatializer. Finally, 

Chapter 6 concludes this thesis and highlights sorne possible research directions for 

the future. 

10 



CHAPTER 2 

Literature Review 

"The Guide is definitive. Reality is frequently inaccurate." 
-Douglas Adams 

Much progress has been achieved recently in the field of virtual reality. In this 

chapter, we first provide background information on that field (Section 2.1), and then 

present sorne of the most relevant previous works. Because the framework described 

in this thesis is aimed to be used with spatially immersive environments, we partition 

previous VR projects by display paradigms into three categories: desktop-based VR 

(Section 2.2), HMD-based VR (Section 2.3) and projection-based VR (Section 2.4), 

with a special emphasis on the latter. 

2.1. Virtual Reality Background 

2.1.1. Definition. The term "virtual reality" (VR) was introduced by Ivan 

Sutherland in the 1960s [7, 8]. Sutherland's ide a was for us ers to wear a device on 

their head that would place a small screen in front of each eye. The first prototype, 

built in 1968 and dubbed "Sword of Damocles," was the first head-mounted display 

(HMD) ever built (see Figure 2.1). It consisted of two CRTs mounted alongside each 

ear to generate monoscopic wire-frame images displayed on a pair of half-silvered 



2.1 VIRTUAL REALITY BACKGROUND 

mirrors directly in front of the user's eyes. The system was suspended from the 

ceiling (hence its name) by a mechanical arm that had two functions: to support the 

weight of the displays and compute the user's gaze direction. The image displayed 

on the screens was updated according to the user's gaze and the application running 

on the system. 

FIGURE 2.1. Sword of Damocles 

Thirty-five years later, the term VR is broadly used to encompass a range of 

technologies, from HMDs to single screen 3D stereo imaging or to spatially immersive 

environrnents. The definitions of the term "virtual reality" vary greatly frorn author 

to author, but aIl usually share at least five cornrnon features: 

(1) Interactivity. An interactive system reacts to input from the user. In 

other words, the VR system must be user-centered. This level of interaction 

allows the user to feel transparently connected to the environment in the 

sense that the environment responds directly to its stimuli. In our case, 

the study of interaction involves Human Computer Interactions (HCI) in 

an immersive context. 

12 



2.1 VIRTUAL REALITY BACKGROUND 

(2) Immersion. VR applications must be perceptually immersive, in the sense 

that the system must convey sensory cu es to users that they are surrounded 

by the application. 

(3) Engagement. The degree to which the user feels involved in the environ­

ment is its engagement. For most applications, being able to engage the 

user is the most difficult aspect of the problem, since the system is only as 

engaging as it is convincing. To be convincing, the system must lead the 

user to the point of suspension of disbelieJ, where the user will accept the 

synthetic environment as real. Because of technologicallimitations,l most 

VR spaces do not currently reach that point. 

(4) Multi-Sensory. To be engaging, a VR system needs to involve the users' 

senses with congruent stimuli. ldeally aIl five senses should be engaged, but 

due to technological limitations the ones usually involved are the visual, 

audit ory and sometimes haptic. 

(5) Synthetic. The computer system must synthesize a dynamic environment 

in real time. 

More formally, a generally accepted definition of virtual reality is provided by 

Cruz-Neira [9J: "Virtual Reality refers to immersive, interactive, multi-sensory, viewer­

centered, three-dimensional, computer-generated environment and the combination of 

technologies required to build these environments." As a side note, the term "virtual 

environment" is often used as a synonym for "virtual reality system," but presents 

the advantage of avoiding philosophical conundrums regarding the use of the concept 

of "reality." 

lThe main limitations are display technoogy and computer processing power. 

13 



2.1 VIRTUAL REALITY BACKGROUND 

2.1.2. Virtual Reality System Components. It is worthwhile to describe 

what composes a generic VR framework. Figure 2.2 presents an overview of the 

different components commonly used in a VR system. 

VRSystem 

Other VR Systems 

FIGURE 2.2. General Overview of a VR System 

A VR environment relies both on software and hardware to immerse the user in 

a synthetic world. The hardware receives the data (typically user position and user 

input) from trackers and other sensors. It then transmits the data to the application 

which in turns feeds multi-modal stimuli back to the user, effectively conveying the 

feeling of being in a virtual world. Multiple VR systems may be linked through a 

network to render a coherent world for aIl the participants, thus allowing them to 

share their work and collaborate. 

14 



2.1 VIRTUAL REALITY BACKGROUND 

2.1.3. Applications in Re sear ch , Industry and Arts. VR systems are 

useful for the research community. In particular, researchers in the field of super­

computing are usually faced with tremendous amounts of data. The analysis of such 

solution sets on regular CRTs or LCDs is typically difficult because the researcher can 

only display and visualize a small portion of the information at a time. Spatially im­

mersive environments are then useful because they provide larger display real-estate. 

Off-the-shelf LCD or CRT displays typically have a diagonal size of 60cm, i.e. a sur­

face of O.2m2 . Spatially immersive environments, on the other hand, normally use 

multiple projectors to covers areas as large as 12m2
• A vailable resolution for pro­

jectors is limited, so there is a trade-off between large real estate and pixel density. 

However, it has been suggested that the use of such large display surfaces allow for 

better data visualization and thus interpretation [10J. 

Today, academic research in VR is still dynamic and significant projects related 

to this thesis will be described in the next sections. VR systems have started to be 

used outside of academia and have pervaded into industry and art exhibits [11, 12J. 

For example, a field in industry where VR is starting to show great promise is 

automobile design. In the early days, designers and engineers would sketch proofs by 

hand before creating a full-sc ale model of a car. These full-scale models traditionally 

were made out of clay or plaster. Needless to say, making such large models was time 

consuming and expensive. However, it clearly was a necessary step as design fiaws may 

remain undiscovered in drawings or small-scale models As designers and engineers 

started to use increasingly powerful computer assisted design (CAD) packages to 

speed up the design process, the hand-drawn sketches disappeared. Building a new 

full scale model for every design iteration, on the other hand, was still a necessity. 

A major industry player using such VR systems is General Motors [llJ. GM 

replaced the clay with spatially immersive projection systems. In these environments, 

the full-scale models can be rendered immediately from the CAD representation. 

15 



2.1 VIRTUAL REALITY BACKGROUND 

System users can then view the model in 3D, rotate it about aIl axes and modify 

the design on the fLy. Ultimately, a full scale model must still be constructed, but 

aIl the major design decisions will have been based on a synthetic model of the car, 

.hence saving time and money during the process. Furthermore, by networking similar 

systems together, designers from aIl over the world can collaboratively work on the 

car, while being physically separated by thousands of kilometers. 

This feature is usually referred to as telepresence, defined as creating the illu­

sion that remote participants are present in the physical space of the local user [13]. 

Goebbels and Lalioti [14] argue that immersive environments are successful at over­

coming sorne of the problems of sharing and collaborating over distance. Projection­

based systems in particular allow for more natural collaboration metaphors to be used 

in a recreated face-to-face communication. This is mainly due to three factors: shared 

physical context, screen size (hence displayed size of the remote user's body) and gaze 

awareness, the latter being critical for effective human-human communication [15]. 

The entertainment industry, always concerned with creating multisensory experi-

ence, was one of the first to use VR systems to provide a more stimulating experience 

to its clients. Museums, as cultural and educational institutions, have also started to 

benefit from the technological innovations available to the entertainment industries 

and academia. These venues, traditionally hesitant to use cutting edge computing 

tools, are starting to use VR to attract visitors. Recent such projects include the 

Hayden Planetarium's 400-seat system at the American Museum of Natural History2 

in New York and the spatially immersive environments installed at Ars Electronica in 

Austria3 and the Foundation of the Hellenic World in Greece [12J. Although these are 

still costly, fixed, semi- or fully-immersive installations; scaled down versions of such 

2http://www.amnh.org/rose/haydenplanetarium.html 
3http://www.aec.at/ 
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systems should be able to enter smaller museums or even schools in the foreseeable 

future. 

2.2. Desktop-based Virtual Reality 

Desktop-based environments are the most basic of VR systems as their display 

setup usually consists only of the computer monitor. Beeause such a display offers 

a restrieted field of view, the visual interface is often enhanced by stereoscopie gog­

gles, which increase the feeling of immersion but require sorne form of head tracking 

to provide the correct parallax information. Workstations for which the display is 

coupled with head-tracking (and sometimes hand-tracking) along with stereographic 

goggles are usually known as fish tank VR environments [1]. Another good example 

of such a desktop-based system is described by Deering [16]. The main advantage 

of such systems is availability, as they can usually be built from off-the-shelf compo­

nents at a reasonable cost. Conversely, desktop-based VR suffers from a low degree 

of immersion due to its limited field of view. 

2.3. Head-Mounted Display for Virtual Reality 

HMD devices place a pair of screens directly in front of each of the user's eyes. 

UsuaIly, a helmet worn by the user supports the display and contains aIl the hardware 

required to mn the screens. Because the displays coyer aIl of their field of view, us ers 

can seemingly be removed from their surroundings, which can potentially be replaced 

by a completely synthetic world. If the user can see through the goggles, computer­

generated information may be overlayed onto the physical world, in which case the 

HMD is used in an augmented reality (AR) context (see [17] for an example of AR 

and its applications). 

Historically, HMDs were the precursor of aIl VR environments. Since the 1960s, 

considerable efforts have been devoted to improve HMD systems. Most of these efforts 
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were undertaken by the military for flight simulation purposes [18] at a time when 

display technology was not capable of providing sufficient resolution and refresh rate. 

More recently, Butterworth et al. created a 3D surface modeling system that uses a 

HMD as display [19]. 

The general agreement is that the main advantage of HMDs lies in their large 

field of view and the resulting sense of immersion for the user. The trade-offs are that 

HMDs are highly invasive because the displays must be located as close to the eyes as 

possible, and that their use can cause motion sickness. There are two main causes for 

such simulator sickness: update latency and non-coherence of somatosensory senses 

of body movement. An example of the latter is when us ers move in the virtual 

world while their bodies stay stationary. A solution for this problem would be to 

have the users walk on a treadmill-like device, but technical issues4 make it less than 

ideal. Paush et al. have shown that the update latency between head movements and 

synthetic world changes (also known as end-to-end latency) causes a sens ory conflict 

because the visual information is not consistent with vestibular information [20]. The 

issue of lag can be alleviated by using predictive Kalman filters to anticipate the he ad 

movements, thereby reducing user errors by an order of magnitude [21, 22]. Similarly, 

Richard et al. have studied the effect of display update rate on the manipulation of 

virtual objects, and it has been found that for reasonable interaction the minimum 

rate is 14Hz [23]. Even though the advances in the technology tend to alleviate these 

problems, HMDs are usually limited by lower resolution and the weight of the helmet 

that must be worn by the user. For instance, a usual SVGA (800x600) HMD usually 

weighs about 200g,5 while an SXGA (1280x1024) one usually weighs about 1kg.6 

As of late, fewer projects use HMDs as it has been shown that large displays are 

usually less invasive and more cost-effective immersive systems [24, 25]. 

4The main issues are noise from the mechanical parts and limitation in displacernent speed. 
5http:j /www.vrealities.com/5dt.htrnl 
6http://vresources.jump-gate.com/ articles/vre_articles / analyhrnd/ analysis.htrn 

18 



2.4 PROJECTION-BASED VIRTUAL REALITY 

2.4. Projection-Based Virtual Reality 

The use of projectors to display the synthetie world has multiple advantages, the 

main one being the physieal size of the dis play obtained at a reasonable cost without 

the need for invasive devices. The two possible configurations are single and multiple 

screens, the latter usually allowing for better spatial immersion. 

2.4.1. Single Screen. The simplest projection-based VR system is an ex-

tension of the fish tank paradigm, where one uses a single large screen display ta 

cover the whole field of view of the user (as opposed to using a sm aller computer 

screen). Czernuszenko et al. have created two such setups, the Immersadesk and the 

Infinity Wall [26], whieh use head-tracking and stereoscopie goggles as in desktop­

based VR. The Infinity Wall uses a fully vertical front-projected display; whereas the 

rear-projected screen of the Immersadesk is angled at 45 degrees from the horizontal 

so that us ers can look downward as weIl as forward. When the user stands close, this 

system covers a 110 degree horizontal field of view. The Immersadesk also features 

hand-tracking through the use of a magnetic sensor. The Responsive Workbench [27] 

is another illustration of single screen VR, but differs from the previous systems in 

that it uses the tabletop paradigm, where the dis play is back-projected onto a horizon­

tal surface. Because objects can be physically placed on the display, the Responsive 

Workbench affords the use of widgets and other augmented physical objects as input 

deviees. Recently, Ishii et al. have taken the idea of the Immersadesk and augmented 

for use with phicons, or physieal ieons. The resulting system is the metaDESK[28]. 

2.4.2. Spatially Immersive Environment. Spatially immersive environ-

ments have received considerable attention since Cruz-Neira et al. developed the 

CAVE Automatie Virtual Environment [9] (CAVE). These usually consist of sev­

eral large screens onto which information is projected. In the case of the CAVE, 

the sides of a cube - and potentially the floor and the ceiling - serve as projection 

19 



2.4 PROJECTION-BASED VIRTUAL REALITY 

surfaces. Each one of the displays is tiled in that they together provide a seamless 

omni-directional view of the virtual scene. Further, the CAVE uses stereopsis to ren­

der 3D information within the user's space. The head of the user must be tracked in 

or der to provide the correct perspective as the user moves about in the space. That 

is, perceptually, the user sees the virtual scene in a consistent manner as if it were 

real. 

Many toolkits have been developed that aim to take advantage of CAVE-like 

spaces. Sorne are designed to run on single machines (usually supercomputers), while 

others use a cluster-based approach. 

2.4.2.1. Single Computer Rendering. The original CAVE system uses the CAVELib [9] 

development environment to render the synthetic world. CAVELib provides a low-

level API for creating VR applications. It handles the setup and initialization of the 

processes, and provides access to various input devices. Each display is managed 

by a different process, thus making the use of shared memory necessary. The main 

limitation of CAVELib is that it forces the user to deal with shared-memory issues. 

The library's main strength is its level of acceptance, as CAVELib has been used in 

multiple projects over the years [29, 30]. 

Other development environments have been created based on the same principle, 

such as VR-JUGGLER [31], ALICE [32] or AVOCADO [33]. Both AVOCADO 

and ALICE are interesting in that they distribute the processing of the information 

between multiple comput ers but rely on one machine to do the actual rendering. 

The main problem with single computer rendering is cost. The price of high-end 

visualization systems tends to be several orders of magnitude higher than that of 

regular PCs while being much harder to upgrade when outdated. For this reason, 

many newer toolkits tend to favour clustered rende ring techniques. 

2.4.2.2. Clustered Rendering. Off-the-shelf PCs are usually used as the com-

puting nodes of a cluster, which, unlike the processor grid of a supercomputer, does 
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nat need to have rigid topological constraints. Clusters were first developed for dis­

tributed number crunching applications, especially in fields such as physics, chemistry 

or military applications. However, using clusters for inherently interactive applica-

tions such as VR presents a new set of challenges. VR systems need to be able to 

receive input, pro cess application data and produce output at least 10 times per sec­

onds in order to keep from degrading the sense of immersion [34]. Original cluster 

hardware and software were not designed for closely synchronized multiprocessing. In 

fact, the purpose of clusters is to provide extremely fast communication between the 

computing nodes, but not with the outside world. Conversely, the main concern for 

interactive applications is not only frame rate, but also responsiveness of the system. 

Data must go through the network to reach aIl the nodes, hence adding sorne latency. 

Additionally, one must add a specific layer to coordinate the load balancing. 7 This 

further increases the latency. 

One of the first projects to use clusters for rendering, not only for data processing, 

was Net Juggler [36]. It was built on top of VR-Juggler and uses MPI [37] (Message 

Passing Interface) for the communication between the cluster and the VR setup. 

Net Juggler relies on high-end PC graphics cards along with SoftGenlock [38] to 

synchronize the displays. The graphics primitives are intercepted and broadcast to 

the node controlling the appropriate display. Cluster Juggler [39], another layer on 

top of VR Juggler, has the same purpose but relaxes the requirements (for example 

that aIl nodes should have identical hardware) on the cluster back-end. Many other 

projects use the same princip le to create an affordable yet powerful cluster-based 

rendering system, for example Chromium [40], a low level system for manipulating 

streams of graphics API commands on clustered workstations; blue-c [41] and X­

Rooms [42], which are both complete VR setups with display surfaces and dedicated 

7Static partioning across processors (i.e. static load balancing) is sub-optimal and outperformed by 
ail others dynamic schemes (such as Grid-Bucket or KD-Split) for rendering systems [35]. 
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clustered graphies engine; and more recently JINX [43], whieh is a cluster-based data 

browser for VR environments. 

Clustered rendering is thus attractive for the computer power and the rendering 

speed it can achieve at a reasonable cost. On the other hand, it requires more effort 

to synchronize an the nodes and may introduce higher latency due to the network 

transport of information between the nodes. 
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CHAPTER 3 

Qave Engine 

"Who are you going to believe, me or your own eyes?" 
-Groucho Marx 

The Qave graphics engine is the centrepiece of this thesis. lt is responsible for 

rendering the virtual world, which usually consists of pre-designed models in a tex­

tured environment. In or der to achieve a good sense of engagement, the synthetic 

world must not only change dynamically with as little lag as possible in response to 

direct user input, l but also compensate for the user's position as to render the correct 

perspective. In other words, the renderer must be able to modify the synthetic world 

based on information received from independent tracking sources. 

In our framework, the user information obtained from distinct pro cesses is trans-

mitted through the network using the ServerLib library, which allows message passing 

between applications registered with a nameserver, and provides support for binary 

data (such as video) streaming. On the send-side, ServerLib offers both blocking and 

non-blocking socket 1/0. In the blocking case, the sender waits until it has received 

acknowledgment that the last sent packet has been received. In the non-blocking 

1 Examples of direct user input are object selection and displacement. 
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FIGURE 3.1. Qave Threads 

case, the sender transmits the data packets without waiting for such an acknowl­

edgment. Similarly, both blocking and non-blocking socket 1/0 is available on the 

receiving side. A timeout value is required in both cases but can be set to 0, thereby 

effecting a polI. However, polling is inefficient in its use of system resources, and 
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thus, ill-favoured for applications with bounded constraints of responsiveness. It was 

therefore decided to use blocking 1/0 on the receiving end. Blocking 1/0 also implies 

certain constraints, as the execution of the program must staIl until a packet of data 

is received or a timeout occurs. The Qave engine mostly receives data, and as such, 

its graphics branch could have been implemented as a timeout handler. However, 

since the OpenGL main loop is non-terminating, it will never cede control unless ex-

plicitly preempted, thereby resulting in deadlock. To avoid staIling issues, the engine 

spawns two distinct threads, 2 one for the graphies renderer and the other one for the 

communieation handler. 

A thread is an encapsulation of the fiow of control in a program where aIl data 

except for stack and registers is shared. Threads can run concurrently by sharing the 

processor time. For the Qave engine, these characteristics imply that any update made 

by the 1/0 thread will be available transparently to the rendering thread without the 

need to staIl when not receiving data. This allows Qave to achieve both high frame­

rate and low latency to user input (DG2).3 Figure 3.1 shows an overview of the work 

division and data fiow between the two threads and the outside world. It must also be 

mentioned that such a multi-threaded design is quite common for high-performance 

graphies engines [31, 32, 33]. 

What makes this engine different from others is that it was purposefully designed 

to be a performant lightweight alternative to CaveLib that could be run in both our 

environments. The native OpenGL layer is accessible to the programmer, who can 

then directly use optimization techniques at the rende ring level (such as hidden surface 

removal for example). Because of its simpler internaI structure, Qave is usually able 

to perform better than its commercial counterpart CaveLib. 

2To be more specifie, POSIX threads (also known as pthreads) were used. Pthreads ensure a broad 
eompatibility among UNIX based-platforms. 
3The engine must be able to make use of the three-sereened spatially immersive display of our 
original environment, as weIl as the large sereen display in our new setup. 
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It must also be noted that newer frameworks are viable alternatives both to 

CaveLib and the one we present here. Chronium [40] in particular is interesting in 

the sense that it allows the use of a computer cluster where the rendering load is split 

between the nodes. Scalability -in terms of number of nodes in the cluster- is also 

notably good. The downside is that Chronium, in its current form, can only render 

pre-Ioaded data. This means that major features of our proposed extended framework 

such as live video blending and texturing are not supported. Other frameworks such as 

blue-c [41] or X-Rooms [42] are also practical alternatives, but they both necessitate 

customized hardware (such as glass panels with liquid crystal layers in the case of 

blue-c). This is a requirement that we wanted to avoid. 

In the remainder of this chapter, we present the architectural and implementation 

issues from the different parts of the engine. Section 3.1 goes over the design ratio­

nale of the graphics rendering thread while Section 3.2 describes the communication 

thread. Section 3.3 provides details concerning our model list. Finally, Section 3.4 

describes the simulator extension that was developed alongside the Qave engine in 

order to facilitate its use. The simulation mode allows the program to be run on a 

regular PC without having to use the SRE's immersive setup. 

As mentioned in Chapter 1, a sample application was developed to demonstrate 

the potential of the framework. References to that application will be made through­

out this chapter in order to better illustrate the function of each component. 

3.1. Rendering Thread 

The rendering thread is responsible for displaying the appropriate data to the 

user. The renderer relies on the OpenGL library to interact with the graphics hard­

ware. The OpenGL Utility Toolkit,4 (GLUT) was used to simplify the initialization 

pro cess of OpenGL and hide the low-Ievel platform-related specifics. GLUT and 

4See http://www.opengl.org/resources/libraries/glut.html for more details 
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OpenGL are both available for many operating systems,5 and because the graphies 

part of the Qave engine only relies on these two libraries, adapting the engine to work 

with other supported platform is feasible (DG1). 

3.1.1. OpenGL Background. OpenGL was introduced in 1992, and has now 

become the standard application programming interface (API) for 2D and 3D graphies 

applications. To date, OpenGL rendering performance is commonly regarded as the 

standard benchmark to compare the processing power of different video hardware 

subsystems. 

3.1.1.1. Modelview and Projection Matrix. OpenGL draws primitives, which 

are points, line segments, or polygons. Primitives themselves are defined by a group 

of one or more vertices. A vertex defines a point, an endpoint of a line, or a corner 

of a polygon where two edges meet. Data (consisting of vertex coordinates, colours, 

normals, texture coordinates, and edge fiags) is associated with a vertex, and each 

vertex and its corresponding data are processed independently, in order, and in the 

same way. OpenGL relies on two matrices convert vertex data to raster data: the 

Modelview and the Projection matrix. 

8 ModelView Matrix C> Projection Matrix 

m 
Object __ Eye 

Coordinates Coordll1ates 

C> Perspective Division C> Viewport 
Transformation 

Normalized 

---.... Deviee 
Coordinates 

----III Window 
Coordinates 

FIGURE 3.2. Vertex Coordinate Transformations 

Figure 3.2 illustrates the coordinate system conversion performed at each vertex 

transformation. In the OpenGL pipeline,6 a point is normally represented as a column 

5Supported operating systems for GLUT and OpenGL so far are: Linux, Irix, Solaris, MacOS X, 
Windows 9XjMejNT j2000jXP 
6See Section 2.1 of the Blue Book [44] for more information on the rendering pipeline 

27 



3.1 RENDERING THREAD 

matrix with four elements: 

where x, y, z are the non-homogenous coordinates and w is the homogeneity scaling 

factor. Having the coordinat es in a homogenous reference system makes it easier to 

write 4x4 matrix transformations for scaling, rotating and translating. 

The first matrix of interest is the Modelview matrix. Its raIe is to transform 

object coordinates to eye (or camera) coordinates. In more practical terms, it is the 

matrix that is used to manipulate objects in the scene. Inversely, the Modelview 

matrix can be used to simulate a camera moving through the scene. The Modelview 

matrix is initially an identity matrix, on which three operations can be applied: 

scaling, rotation and translation. The or der of the transformation is important as 

matrix multiplications are not commutative. The pre-multiplication and the post­

multiplication of two matrices will (generally) give different results. An easy way 

to see this is to realize that a rotation followed by a translation is quite different 

from a translation followed by a rotation. By convention, OpenGi usually uses 

the column major notation and post-multiplies matrix operations. Note that this 

convention is simply notational, as post-multiplying column-major matrices pro duces 

the same result as pre-multiplying row-major matrices. More practically, this means 

that the order of the transformations called will actually be performed backwards by 

the pipeline. For example, if the programmer specifies first a rotation then a scaling 

and finally a translation, the rendering pipeline will first process the translation, then 

the scaling and finally the rotation. 

The other matrix of interest is the Projection matrix. The purpose of this ma­

trix is to take a volume of 3D space and Hatten the objects within it onto a plane, 

corresponding to the screen. In other words, it converts the vertex data from eye 
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coordinates7 to clip coordinates. 8 There are two kinds of projection: orthogonal and 

perspective. In the orthogonal case, objects are projected along the normal of the 

projection plane. This is the simplest form of projection, and it does not allow for 

depth to be conveyed. As such, its main use is to write data at a fixed location 

in sere en coordinates. Perspective projection, on the other hand, allows for depth 

information to be rendered, in which case all vertex data belonging to an enclosed 

volume of space defined by six clipping planes (called the frustum) is projected onto 

a 2D plane, the viewport. 

3.1.1.2. Frustum. By convention, OpenGL creates a view volume with the eye 

at the origin. The view rectangle is sitting at a depth of z = -near, with its edges 

defined by x =left, x =right, y =bottom and y =top planes, and the far clipping 

plane at z = -far (see Figure 3.3). In mathematical terms, the perspective projection 

matrix obtained is the following: 

>1 
far 

FIGURE 3.3. Perspective Projection Frustum 

7The eye coordinate system is the reference in which the view vector coincides with the z-axis. 
8The clip coordinate is the defines the space in which the object outside of the viewing frustum are 
discarded. 
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near 0 0 0 

0 near 0 0 

2far*near 
(3.1) 

0 0 far+near 
- far-near far-near 

0 0 -1 0 

It is not, however, the exact matrix that is used in the pipeline. On top of per-

spective projection, OpenGL also performs a translation that shifts the scene sym­

metrically around the origin, and a scaling to make the transformed x and y val­

ues fall in [-1,1] for clipping efficiency. This amounts to a translation by a vector 

[ _ left+tght bottom+top 0] T and a scaling by factor . 2 on the x axis and 2 
2' nght-left top-bottom 

on the y axis. Simple matrix algebra provides the formulation that is actually used: 

2near 0 right+left 0 right-left right-left 

0 2near tOE+bottom 0 top-bottom top-bottom (3.2) 
0 0 far+near 2far*near 

far-near far-near 

0 0 -1 0 

3.1.2. Coordinate System. Because of the physical characteristics (see Fig-

ure 1.2) of the immersive space, the engine was designed with the following coordinate 

system: the origin is on the fioor at the center of the setup, and the coordinates follow 

a right-handed base (Le. with positive x pointing to the right, positive y pointing 

up and positive z pointing toward the back of the room). The scaling is in feet, Le. 

displacing an object by 1 unit in OpenGL displaces it by 1 foot in user space (see 

Figure 3.4). 

3.1.3. Viewports and Off-Axis Projection. In our original SRE setup, 

the rendering hardware takes care of splitting the single graphies channel into three 

distinct feeds for the projectors. This split is transparent to the developer, who can 
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FIGURE 3.4. Coordinate System in SRE 

consider what is projected on the three physical screens as being a single large win­

dow.9 Because each screen must render the appropriate perspective for the user, that 

window must be split into three viewports that correspond to the physical screens. A 

viewport specifies an area of the frame buffer to use for rendering. The generic call 

to create a viewport in OpenGL is: 

glViewport( GLint x, GLint y, GLsizei width, GLsizei height ) 

In our case, the appropriate call is the following: 

glViewport ((N*window_width)j3, 0, window_widthj3, window_height); 

where N is an integer between 0 and 2 denoting the viewport number. Figure 3.5 

shows the standard viewport configuration in the SRE, where the resolution used is 

3072x768 pixels. 

Once the viewports have been created at the appropriate positions in the frame-

buffer, the rendering loop must compute the correct projection matrix to be used in 

these viewports. As opposed to desktop-based systems, one significant characteristic 

9 As for our new setup, different options are still being explored for multiply overlapping projection, 
so in the meantime we use a single projector to display the world. 
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FIGURE 3.5. Viewports in Qave 

of spatially immersive environments is that the user should be able to look and move 

around while remaining immersed perceptually in the synthetic world. Since the user 

is not constrained to a specifie location in the physical space, the viewpoint does not 

necessarily lie on the normal axis of the projection plane,10 as it normally would in a 

single screen environment. This means that the data displayed must be adjusted for 

the user's perspective, with a technique called off-axis projection. 

As noted by Cruz-Neira et al. [9], the general projection matrix then becomes: 

1 0 0 0 

0 1 0 0 

-~ 
(3.3) 

hx 1 1 
-hz-D hz-D -hz-D 

hxD hyD 
0 hz 

hz-D hz-D hz-D 

where hx , hy , hz are the coordinates of the user's head and D is the distance from 

the origin to the projection display,u (see Figure 3.6) The matrix 3.3 provides a 

correct frustum for the front viewport, and must be adapted for the two others. As 

the user moves within the space, the frusta are updated in real-time to provide a 

correct perspective of the synthetic world (DG3). 

lOIn our case, the projection plane corresponds to the actual walls. 
11 More specifically for our configuration, distance D is half the length or width of the room, that is 
3 feet. 
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FIGURE 3.6. Off-Axis Projection in the SRE 

The general OpenGL calI to create a viewing frustum is (see Figure 3.3): 

void glFrustum( Gldouble left, Gldouble right, Gldouble bottom, Gldouble top, Gldou­

ble near_val, Gldouble far_val) 

In the SRE context, the appropriate calI for the centre frustum is: 

glFrustum( qaveJeft - headpos.x, qave_right - headpos.x, qave_bottom - headpos.y , 

qave_top - headpos.y, ABS(qave_front - headpos.z ), far) 

where qavej'ront, qave_back, qaveJeft and qave_right are the wall locations, whereas 

headpos(x,y,z) are the coordinates of the user's head. Calls for the other two frusta 

are slight variations of the ab ove , where the coordinate system is permuted from 

(x,y,z) to (-z,y,x) for the right frustum and (z, y, -x) for the left frustum. 
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3.1.4. Rendering Program Flow. As shown in Figure 3.1, once the initial-

ization steps are completed, Qave spawns the 1/0 and the rendering threads. The 

rendering thread runs the GLUT main loop until the program is terminated. As 

opposed to normal OpenGL applications, where one simply sets the perspective and 

draws the objects, immersive environments with multiple displays require a slightly 

different approach because the projection parameters can change dynamically. 

Compute the changes to be 
applied on the synthetic world 
based on most recent user data 

-Set Left Viewport -Set Centre Viewport -Set Right Viewport 
-Set Correct Off-Axis -Set Correct Off-Axis -Set Correct Off-Axis 
Projection for Left Screen Projection for Front Screen Projection for Right Screen 
-Draw abjectS -Draw abjects -Draw abjects 

FIGURE 3.7. Rendering Loop 

As can be seen in Figure 3.7, the rende ring loop will compute a new set of viewing 

frusta based on the latest available user position at every frame. Once the new frusta 

are computed, they are rotated to match to the corresponding physical screen. 

For each viewport, the next step consists of determining the changes to be made 

on the world. More importantly, this step is where the potential developer is expected 

ta take over and define the actual application in terms of abject interactions and 

events. World updates can be triggered either by user information, or by remote 

coherence data. Note also that because the user position is updated in another thread, 

the renderer always assumes it has the latest set of position data at its disposaI. Due 

to current tracker limitations, the user data consists of the coordinat es of the head 

and one hand of the user. From that information we can determine where the user is 
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pointing. 12 The distance between the head and the hand can be thresholded thereby 

praviding a clutch mechanism akin to a click on a mouse. This allows for an easy 

grab-like gesture. Within the scope of our sample application, once we know the angle 

of the user's pointing gesture, we cycle through a list of all select able objects in the 

scene to determine if the user actually points to an item. If an item is found and if 

the distance between the head and the hand exceeds a certain threshold, the object 

is considered to be selected. In our sample application, the model then follows the 

hand movements until released. 

Ultimately, more refined user information is needed to create a ri cher interaction. 

Sequences of hand or finger postures could be interpreted as gestures with a specific 

semantic and syntax. Such gestures could be used for more sophisticated bimanual 

contraIs, such as grauping or resizing. Non-obvious instructions, relating for example 

to object texturing or lighting, could be assigned to sequences of gestures. Such a sys­

tem would require the precise detection of both hands along with the associated finger 

posture. Temporal information would also be needed to define the gesture bound­

aries. Further, an adequate parser and interpreter would be required to determine 

whether the gesture is meaningful and intentional. 

3.1.5. Configuration File. The configuration file allows changing core Qave 

characteristics at run-time without the need to recompile the application. It is com-

prised of two parts: the first one is the Qave configuration while the second one is an 

initial list of models to be loaded at initialization time (see Section 3.3). The Qave 

configuration parameters are: 

• Window width and height. This allows the resizing of the main window so 

that higher resolutions can be used in the future. 

12The exact target of the pointing gesture cannot be determined as a 3D point, but the general 
pointing direction can be estimated by tracing a line from the user's head to his hand. 
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• Viewport Number. This switch indicates how many viewports are used 

during the rendering. More specifically, it determines whether the engine 

will run in immersive mode, in which case the number of viewport is 3, or 

in simulator mode (see Section 3.4), if the viewport number has any other 

value . 

• Screen positions in the Qave coordinate system. These determine where the 

screens are placed, and thus affect the frustum computation. Note that the 

screens are assumed to be orthogonal to each other; more specifically that 

the left and right screen are z-axis aligned while the front screen is x-axis 

aligned. 

After the Qave configuration variable, the user can define a list of models to be 

initially loaded at run-time. This is useful for including new models without the need 

to recompile the application. The syntax to include a model is: 

<modeLname> <modeLid> 

The modeLname is the name of the file containing the model data, while the modeUd 

is a unique identifier (that is there could be multiple objects from the same model 

file) . 

3.1.6. Video Stream Blending. As mentioned in Chapter 1, remote collab­

oration and telepresence are two fields of great interest. It has been shown that the 

quality of the remote user's representation is "crucial in situations where problems 

need to be solved", and that "the use of video enhances the collaboration" [14]. It 

is thus important for the Qave to support video embedding in the synthetic world. 

Furthermore, Garau et al. have shown that the quality of a semi-photorealistic or 

photorealistic avatar played an important role for gaze inference [15] in computer 
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mediated human-human interactions. Gaze inference and awareness is a very impor­

tant non-verbal cue which normally allows the identification of the interlocutors in a 

discussion. 

Technically, we rely on the ServerLib binary data transport to receive the video 

stream. At every framebuffer swap, we take the most recent video frame received and 

extract a texture from that data (DG7). For better immersion, the incoming video 

frames usually go through a background removal process. This isolates the distant 

users from their physical surroundings. Pixels marked as background are then treated 

as transparent during the texture creation. The obtained texture is then pasted on 

a transparent polygon. This allows the blending of the remote video in the synthetic 

scene (see Figure 3.8). 

A transparent physical material, such as the one on which the incoming video 

is pasted, shows objects behind it as unobscured and does not reflect light off its 

surface. To correctly render the transparent material, we must make use of the 

blending function in OpenGL: 

void glBlendFunc( GLenum sfactor, GLenum dfactor ) 

where sfactor and dfactor respectively specify how the source and destination blending 

factors are computed. In our case, we set sfactor to GL_SRC_ALPHA and dfactor to 

GL_ONKMINUS_SRC_ALPHA. With these settings, the incoming colour is modified 

by its associated a value13 and the destination colour is modified by (1 - a). The 

sum of these two colours is then written back into the framebuffer, hence creating 

a translucent polygon. Because of this mechanism, correct results for transparent 

rendering are only guaranteed if the primitives are sorted and rendered from back to 

front with depth testing enabled. 

13The Cl! value of a pixel determines its level of transparency. 
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FIGURE 3.8. Video Embedding Examples in the SRE 

3.2. Communication Thread 

The communication thread manages aIl data input and output. The thread st arts 

a ServerLib Server that can accept messages from other applications (DG5). For 

the message passing mechanism to work properly, the Qave must register with a 

nameserver. The nameserver receives the registration data, stores the IP addresses of 

its clients and associates them with a unique ID. Once the registration is successful, 

the application sends the nameserver a list of commands (along with the associated 

parameters) it can accept. If another registered application tries to calI an invalid 

(Le. undeclared) function, an error will occur and no message will be transmitted to 

the target application. 

Qave has a set of pre-defined commands that are required for core functionality. 

These commands are normally invoked either by a tracker or by the WorldServer. 

A developer can easily add commands by declaring them in the command li st and 

defining ad hoc caIlbacks (DG8). The predefined commands are listed in Table 3.1. 

3.3. Model Object 

OpenGL is a powerful vertex-based rende ring library, but creating complex object 

by hand is tedious as one has to define aIl the vertices along with lighting and material 

data. Qave provides built-in support for automating the pro cess and allowing for 
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setpersan pas <persan Sets the position values for head (in tracker coordinate 
na> <valuel> < ... > system). This function is normaUy used by a tracker. 

laakat eye<xyz> Sets the position values for direction of user look (in 
center<xyz> Qave coordinate system), with eye<xyz> being the eye 

point coordinate and center<xyz> being the position 
of the reference point. This caU is the equivalent of 
calling a gluLookAtO. This function is only defined in 
simulation mode, where the user can change the view 
orientation of the single viewing frustum. 

tauch <xyz> Sets position values hand (in Qave coordinate system). 
This caU is often used to quick debugging purposes. It is 
easier to use than the sethandpos because it takes values 
in Qave coordinates. 

sethand pas <persan Sets the position values for hand (in tracker coordinate 
na> <valuel> < ... > system). This fun ct ion is normaUy used by a tracker. 

receivevidea 1 Receive video frames for personl. This starts the recep-
tion of the remote video stream. 

share <madeLid> Instruct Qave to be coherent with its representation of 
model <modelJd> with other Qaves. This caU is used 
in the context of the WorldServer. 

update Updates the data about a shared object. "*,, may be 
< madeLid><xyz- used as dan't cares. Updates targeting a non-shared ob-
pas> < raLmatrix> <xy -ject are ignored. 
scale> 

reqUpdate Requests an update about a shared object. This caU is 
<madeLid> usuaUy made by the WorldServer. 

getviewerpas Prints the position of head and hand to stdout in Qave 
coordinat es 

TABLE 3.1. Pre-defined Qave Remote CaUs 
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pre-designed models to be imported in the scene as Wavefront14 objects. Wavefront 

OBJ (object) files15 are used by Wavefront's Advanced Visualizer application to store 

geometric objects composed of lines, polygons, and free-form curves and surfaces. 

OBJ files are extensively supported in the CAD industry, and converters to and from 

other model formats are widely available. 

Robbins16 wrote a OBJ importer for OpenGL which has been adapted for use in 

Qave. In particular, Qave uses an array of object structures, where each node in the 

list maintains its own set of data (see Table 3.2). The reason why we maintain aIl the 

model information in a data structure is that it allows the processing of aIl the world 

updates before the actual rende ring takes place. A batch function then reads the 

information from the data structures and renders aIl the models with the appropriate 

ModelView matrix transformation. This speeds up the rendering pipeline. This also 

allows for greater synchronism among the objects because aIl the world updates are 

processed within a smaller time frame. 17 Such a structure also makes it easier to 

manage the coherence data obtained from the WorldServer (DG6)(see Chapter 4). 

Note that the rotation data is not recorded in the angle-axis format but in full 

matrix representation, thereby easing the processing of subsequent rotations applied 

to a model. Note finally that Qave provides two ways of manipulating the orientation 

of the models. One can set an absolute angle that the model should have; in this 

case the rotation matrix in the data structure is simply overwritten. Alternatively, 

one can use an incremental angle change, in which case the old rotation matrix will 

be multiplied with the matrix representation of the increment. 

14 See http:j jwww.alias.comjengjindexJlash.shtml for more details 
15See http:j jwww.dcs.ed.ac.ukjhomejmxrjgfxj3djOBJ.spec for the full format specifications 
16http:j jwww.pobox.comj~nate 
17This is particularly evident if an object is moved with respect to another one while an update 
changes the location of the reference, in which case the update will not affect the object already 
rendered. 
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clicked Determines if the object is being clicked on. 

shared Determines if the object is being shared. 

x, y,z Position in 3D of the model. 

roLmatrix Rolds the full 4 by 4 rotation matrix. 

modeLid Contains the object unique id string. 

xscale, yscale, zscale Contains the scale along the x, y and z axis. 

pmodel Pointer to the structure containing the actual vertex 
data of the object as weIl as its filename and other data. 

TABLE 3.2. ObJect Structure Data FIelds 

3.4. Simulator Mode 

Instead of making use of the immersive setup, it is often useful to preview a 

scene on a regular computer (DG4). Regular PCs are much more common and easier 

to setup than a full-ftedged immersive environment. When in simulator mode, the 

engine uses an alternative core rendering loop adapted for use on single screen setups. 

The simulator mode is thus an integral part of the graphies renderer, and not, as is 

the case for other engines [45], a completely separated application. This allows the 

developper to verify the correctness of his application in the same engine that would 

be used in an immersive setup. Consequently, to start the simulator, one does not 

need to recompile or launch a different application, but sim ply to edit a configuration 

file (see Section 3.1.5) and change the number of viewports. At that point, the 

rendering will not be made on three viewports but on one. This is the equivalent 

of only rendering the front display in the immersive case. Because we use on-axis 
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projection in that configuration, we can make use of the built-in OpenGL perspective 

caUs to simplify the projection matrix computation. 

Note also that since the simulator actuaUy is the same program, it is also possible 

to render the scene in immersive mode on a single screen. In that case, the view will 

be skewed because the projection matrices will not be adequate for the single-screen 

environment. On the other hand, this aUows the developper to have the exact preview 

of the immersive scene on a regular PC. 

Of course, the simulator should not have to depend on the trackers present in 

the immersive setup to process user input. A keyboard control override scheme is 

used to displace the hand of the user and to manipulate the objects in the scene. To 

obtain maximum flexibility, the keyboard override can be triggered on or off. If it is 

off, the simulator will pro cess the data coming from the trackers. The controls are 

summarized in Table 3.3. 

up, down, left, right Control the hand position in the z and x axis respec-
arrow tively. 

page up, page down Control the hand position in the y axis 

F12 Triggers the keyboard override 

END Triggers an action (click) 

a,d, s, w When an object is selected, controls the rotation along 
the y and the x axis respectively 

q, z Control the uniform (that is along aU the axis) scaling 
of the model 

TABLE 3.3. Keyboard Overnde Key-LIst. 
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3.5. Results 

Performance analysis of software can be done using three different methods: mea­

surements, simulation and analysis [46]. The measurement method uses direct timing 

of the software. The simulation method performs the analysis on programs created to 

simulate the execution of the software being tested. The analytical method involves 

creating mathematical models to represent the software and extrapolate from the 

behavior of that model. The peformance analysis method presented in this section 

is based on the measurement method, because the software is in a fully workable 

condition. 

The Qave engine was tested on different configurations for performance bench­

marking. For analytical purposes the results of Qave are compared with those of 

CAVELib, the engine that previously drove our setups. The running variable used 

was the scene complexity, evaluated in terms of number of lit triangles in the scene. 

Triangle count is a commonly used complexity metric as it is the basie atomie pro cess­

ing unit for graphics processors. The performance was measured in frames per sec­

onds (fps) for different scene complexities. Frames per second is the most significant 

figure for graphies engine capability. Other measures (such as the number of poly­

gon/seconds drawn) are also sometimes used, but have less correlation with reallife 

performance. AlI scenes were rendered using double-buffering, which is the typieal us­

age scenario for Qave. Single-buffering often pro duces fiiekering in the display as the 

framebuffer is getting drawn while being written. Flickering, of course, is detrimental 

to the immersive experience. 

A sample scene consisting of a textured fioor and three identically textured walls 

was used as our basic world. To this world we then added different OBJ models18 to 

vary the complexity parameter. 

The specifications of the machines used are: 

18The number of triangle in each model is known in advance. 
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• Bach: SGI Onyx2, 2 R12000 processors at 400MHz, 256MB of main mem­

ory, InfiniteReality2 "KONAL" graphies engine with 8 channels and 64MB 

of video RAM. OS: IRIX 6.5 

• Watcher: PIlI 850MHz, 256MB of RAM, with a Matrox G400 with 32MB 

of video RAM. OS: Linux, kernel 2.4.25 

• Scarlatti: P4 2.6GHz, 512MB of RAM, with an NVIDIA FX5200 128MB 

of video RAM. OS: Linux, kernel 2.4.20 

For our first benchmark, we tested the Qave engine in two different configurations 

for each machine: 

• 1 viewport configuration, thus giving a total resolution of 1024x768 pixels 

• 3 viewports configuration, with a total resolution of 3072x768 pixels 

Figures 3.9 and 3.10 show the framerate vs. the number of colored triangles rendered 

of that first benchmark. 
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FIGURE 3.9. Qave Performance for the 1 Viewport Configuration 

First, note that the first and second data points for the framerate of the higher-end 

PC in the single viewport configuration are off the chart and have been omitted both 
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Performances in 3 Viewports Mode 
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FIGURE 3.10. Qave Performance for the 3 Viewports Configuration 

in Figure 3.9 and 3.12 for legibility purposes. Their respective values are 950fps and 

128fps. Such high framerate is due to heavy optimization of the graphies hardware 

for simple scenes at low resolution. 

Notice also that the maximum framerate that can be obtained on our SGI config-

uration at a refresh rate of 50Hz is 25 frames per second. There is such a limit because 

we use double buffering during our rendering, and the Onyx needs the vertical sync 

(VSYNC) enabled ta ensure a consistent display on the three screens. Because of 

that constraint, the Infip.iteReality engine has to wait until the next refresh cycle to 

swap the buffers. Hence, the consequence of the waiting time due to buffer swap is 

that the framerate in double buffered mode is a multiple of 50 (i.e. the refresh rate). 

The framerate is thereby quantized, with the maximum framerate being 25fps, the 

next ones being 16.6, 12.5, 10 and so forth. It is of interest to note that regular PC 

graphies cards will also exhibit such quantization if the VSYNC setting is enabled, in 

which case, similarly to the Onyx, the framerate will be a multiple of the framebuffer 

refresh rate. This is important in making performance comparisons, as the Onyx is 

impaired in its ability to compete with other architectures on scenes of modest or low 
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complexity, Le. the scenes in whieh the performances is bounded entirely by graphics 

card refresh limitation. 

The most interesting result of this first benchmark is that both PCs usually offer 

a higher framerate when the scene is simple, but the performance of the low-end 

PC degrades markedly to fall below that of our SGr when the scene contains more 

than 20000 triangles. That quiek degradation is notably due to the limited onboard 

memory and the slow speed of the video cardo On the other hand, the high-end 

PC manages to keep higher framerates than the SGr in aIl the tested cases. This 

shows that current off-the-shelf PCs can indeed perform as well as older specialized 

visualization computers. 

The other interesting result is that the low end PC actually performed better 

than the Onyx for simple scenes. Such a result is probably due to the hard-coded 

framerate limit of the Onyx (25fps). 

The minimum framerate usually considered as acceptable for interactive systems 

is 10fps [34J. From the data shown in Figure 3.10, we can determine the most complex 

scene that can be rendered in the Qave in three viewports mode with acceptable 

framerate should not contain more than 50000 lighted triangles on an SGI. The same 

figure also holds for our higher-end PC, which by no means is the most performant PC 

available. One can speculate that a top-of-the-line processor and a mat ching graphies 

card could easily outperform the Onyx. 

The second test compares the performance of Qave and CAVELib. Both programs 

were run on the Onyx2 (see Figure 3.11) and on a P4 running Linux (see Figure 3.12). 

On the Onyx2, both programs were set to use three viewports for a total resolution 

of 3072x768 pixels. On the P4, one viewport and a resolution of 1024x768 were used. 

Figure 3.11 shows that CAVELib and Qave have similar performance on the 

Onyx. Because of quantization effects, both engines exhibit performance degradation 
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FIGURE 3.12. Performance Comparison between Qave and CAVELib on a P4 

at around 18000 lit triangles, with Qave providing a slightly better performance, 

overall, to that of CaveLib on the SGI. 

When running under Linux (see Figure 3.12), Qave proves to be a much better 

performer than CAVELib, reaching framerates up to four times higher. This dramatic 
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difference under Linux is probably due to the fact that CAVELib was specifically 

designed to take advantage of the SGr platform, notably in terms multi-processing 

and shared memory; under Linux, such optimizations were not available. 

Taking again the 10fps limit as the usability limit, Figure 3.12 shows that CAVELib 

on Linux can process a maximum of 21000 triangles. Qave, on the other hand, can 

go as high as 150000 triangles, seven times more. Given the fact that our new setup 

will use regular PCs running Linux for rendering, the Qave is clearly the preferred 

solution. 

To summarize, Figures 3.9 and 3.10 compare the performance gradient of the 

Qave engine on different configurations, while Figures 3.11 and 3.12 show how Qave 

and CAVELib compare on similar setups. The first set of data shows that Qave sc ales 

nicely with more powerful PCs, both in single- and three-viewports modes. Further, 

this data also suggests that for scenes of relatively modest complexity Qave performs 

better on off-the-shelf PCs than on our SGr platform. The second set of data shows 

that the our newly implemented Qave engine performs better than its predecessor, 

CAVELib. This is notably true when both platforms are benchmarked on PC systems. 

On the Onyx2, the increase in peformance can mostly be seen by a larger range of 

data at whieh the graphies engine renders at a structurally-bound top speed, which, 

in most cases, is lower than what can be achieved on a reasonably recent Pc. This is of 

particular significance for the research community as it shows that today's consumer­

level PCs can outmatch older specialized graphies workstations. Most recent research 

in VR platform now use clustering methods to reach even higher framerates with 

complex scenes. Such methods are usually complex to setup and require multiple 

machines. Our results show that for relatively simple scenes, a regular PCs is more 

than capable of rendering for immersive spaces. 
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CHAPTER 4 

WorldServer 

"The multitude which is not brought to act as a unit y, is con­
fusion. That unit y which has not its origin in the multitude is 
tyranny." 
-Blaise Pascal 

The WorldServer's purpose is to maintain information about a coherent world 

that can then be broadcast to different Qaves. Each Qave uses that information to 

synthesize its own rendering of the same world. Sharing a coherent space notably 

allows distant users to collaborate as if they were in the same physical location. 

A client/server model was used for the implementation of the transactions, where 

the server acts as a middleware and holds the world data which is then transmitted 

to clients. Another paradigm for maintaining the world coherence among Qaves is to 

adopt a peer-to-peer architecture, whereby each Qave directly talks to aIl the other 

Qaves. Such a paradigm is a reasonable solution for a pair or a small number of 

Qaves, but it does not scale weIl when the number of peers increases. With this 

transaction model, conflict resolution is a non-trivial issue. 1 

For example, a conflict could occur if multiple users located at diflerent nodes 

decide to simultaneously throw a sheet of paper on the same stack. In a peer-to-peer 

lConflict occurs if two or more Qaves end up rendering a different world. 
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model, each Qave represents its own sheet as being at the bottom of the stack because 

it receives the data concerning the other sheets after it has rendered its own sheet. 

Clearly, the world is not in a consistent state anymore, as each user sees a different 

reality. A non-trivial arbitration among aH the peers must then take place in order 

to have aH the Qaves agreeing on a state as being what is real. In a client / server 

model, all the Qaves send notice to the WorldServer that they have put a sheet of 

paper on the stack. Then, the WorldServer makes the decision of the sheet ordering 

(most likely, but not necessarily, based on message arrivaI order) and broadcasts that 

decision to aH the Qaves, thereby maintaining the world in a coherent state with 

minimal effort. Each Qave receiving the update contradicting its own version of the 

world will experience a temporary out-of-sync world before the update arrives, but 

that situation is much more desirable than having to resolve a conflict to determine 

which peer has the correct representation of the scene. 

In Section 4.1, we describe the world data model, while in Section 4.2 we go over 

the transaction model and the communication protocol between the different modules 

of the framework. 

4.1. Object and World Models 

TheWorldServer maintains data structures holding the position, orientation and 

scale of objects in the world (DG9). The Qaves are responsible for rende ring their own 

local environments and the coherence paradigm we use is that only the necessary data 

is explicitly shared. More specificaHy, any module may initiate the sharing of objects 

which will then be coherent among aH the Qaves. As such, Qave users may initiate 

the sharing of an object themselves, or another pro cess or script might declare the 

share automaticaHy at launch time. Ensuring completely similar worlds then requires 

running the same application on aH the Qaves. However, Qaves that are sharing 

data have no formaI requirement to do so. This scheme provides maximum flexibility 
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x, y,z Position in 3D of the model. 

roLmatrix Rolds the full 4 by 4 rotation matrix. 

modeUd Contains the object unique id string. 

xscale, yscale, zscale Contains the scale along the x, y and z axis. 

id WorldServer local object number id. 

TABLE 4.1. ObJect Attnbutes. 

x, y, z Contains the 3D position of the Qave III the virtual 
world. 

id Contains the local WorldServer id for the client. 

qave_name Contains the name that was registered to the nameserver 
of the client 

TABLE 4.2. Qave Chents Attnbutes. 

and adaptability, as Qaves might not all have the same rendering capacities and 

might prefer to render a plain background instead of a complex scene to maintain 

performance and responsiveness. Table 4.1 shows the attributes maintained for each 

object in the WorldServer. Note that these attributes are essentially a subset of those 

of objects in a Qave (see Table 3.2). 

In addition to object positions, the WorldServer also maintains information about 

the registered client Qaves, as is shown in Table 4.2. 

4.2. Transaction Model 

The transactions follow a client/server model. The ServerLib is again used to 

support the low-Ievel message passing. 
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4.2.1. Operation Modes. WorldServers can operate in one of two modes 

for message broadcasting: synchronous or asynchronous. In synchronous mode, the 

server blocks after each message send out until an acknowledgment from the recipient 

is received. This is a useful mechanism to prevent Qaves from being overwhelmed by 

messages if the WorldServer broadcasts too many updates too fast. The downside 

of the synchronous mode is that there is a potential loss of performance in terms of 

update propagation speed. Further, it may not scale well when the number of clients 

increases. In summary, this mode pro duces a slower update rate, and should be used 

when it is known that a client might get flooded by updates. 

In asynchronous mode, the WorldServer simply broadcasts the updates to all the 

Qaves as soon as it cano It is the mode that offers the lowest update latency, and its 

use is recommended if the Qaves can support the higher update rate. It must also 

be noted that message creation is event-based. This means that unless a Qave has 

something to broadcast, no world update will be sent out. 

4.2.2. Message Protocol. The main guideline used while designing the 

message protocol was that objects in Qaves should not be connected unless they 

are explicitly shared. This means that two Qaves may be running totally dissimilar 

environments containing many different objects, and only share a few. The sharing 

of the objects is triggered by sending a message containing the object ID to the 

WorldServer. Anyone may send such a message (Le. sharing may be initiated at 

startup by a script, or on-the-fly by clients themselves), and the WorldServer will then 

broadcast the appropriate instructions to all its registered clients (DG10). Explicitely 

declaring the shared object requires a bit more setup and initialization than forcing 

the sharing of the whole world data, but greatly enhances the flexibility. 

As was described in the object models (see Table 4.1), each object is identified 

by a string that must be unique within the scope of the local Qave. For example, one 
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register < qave_name> Registers a qave in the world and responds with 
and id number. 

share < madeLid> Instruct all the registered Qaves to be coherent 
with their representation of model <modeUd>. 

update < madeL id> < xyz- Updates and broadcasts the data about a shared 
pas> < roLmatrix> < xyz-scale> object. 

reqUpdate Requests client <qave_name> to send the server 
< qave_name>< madeLid> an update about model modeUd. 

TABLE 4.3. WorldServer Command LIst. 

Qave could not have two objects with id "object_l", but two separate Qaves could 

both use the string as an identifier. Objects having the same id between Qaves can be 

linked together to exhibit the same properties at all times. This is normally the case 

when users run the same program or use the same object section of the configuration 

file. Table 4.2.2 describes the command list that the WorldServer uses. 

Figure 4.1 shows an example of the message protocol used to register a number 

of Qaves and share data about objects. A typical scenario is the following. We have 

two Qaves, A and B. Assume that these Qaves want to share two objects, obj_l and 

obj_2. Qave A and B register with the WorldServer by sending the messages register 

QaveA and register Qave8 respectively. The WorldServer then fills the client list with 

information given by the Qaves. Qave A initiates the sharing of obj_l by sending the 

message share obj_l. Qave B does the same with obj_2. At that point, Qave A and B 

share two objects, and update messages are sent to the WorldServer when the user of 

a Qave makes changes to either one of these objects. Each message is then broadcast 

by the WorldServer to aU the registered Qaves. 

A third Qave, C, registers. After having updated its client list, the WorldServer tells 

Qave C that two objects are already being shared and supplies Qave C with data 
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updates about obj_l and obj_2. The user of Qave C can then collaborate with the 

other us ers by manipulating obj_l and obj_2. 

It is important to note that in general the generation of update messages should 

be kept event-based (as opposed to being a constant stream of updates regarding all 

the objects for example) in order to limit the bandwith usage (DGlO). On the other 

hand, a stream of updates would be transmitted during a continuous move to ensure 

the correct position of the object throughout the who le motion. Such a motion would 

indeed create a notable fiow of data. In that case, network congestion might lead 

to a lower rate of update messages as the WorldServer would block waiting for the 

complet ion of the transmission to all clients. This in turn may lead to desynchroniza­

tion between clients. Another option to minimize bandwidth would be to sample the 

continuous motion at discrete points in time and perform an interpolation between 

these points. This, however, might result in a loss of granularity in the gesture and 

create additionallag as the next update point is needed to perform the interpolation. 
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CHAPTER 5 

Tracker and Spatialized Audio 

"A gesture cannot be regarded as the expression of an individual, 
as his creation (because no individual is capable of creating a 
fully original gesture, belonging to nobody else), nor can it even 
be regarded as that person's instrument; on the contrary, it is 
gestures that use us as their instruments, as their bearers and 
incarnations." 
-Milan Kundera 

From the outset, one of our main design goals has been to avoid the introduction 

of any special equipment that must be worn by the user, for instance, stereo goggles, 

data gloves, and other tethered tracking devices. Instead, we aim to perform aIl our 

tracking and gesture analysis entirely through the use of video processing techniques. 

This allows for a more direct and immersive experience of the synthetic world. 

The main role of the tracker is to provide information pertaining to user's ges­

tures. In our current version of the tracker, this means data about one head and one 

hand. The head position data is used for the off-axis projection computations (see 

Section 3.1.3). It can also be sent out to a remote Qave, where the incoming sound 

stream can be spatialized thereby being coherent with the position of the avatar of 

the distant user. 



5.1 IMAGE PROCESSING AND MESSAGE DISPATCHING 

The tracking system is covered in Section 5.1, while Section 5.2 describes the 

sound spatialization system. 

5.1. Image Processing and Message Dispatching 

Our tracking system is comprised of two distinct processes. The first one is in 

charge of the video processing (i.e. the actual tracking) while the other is in charge of 

dispatching the tracker data to clients. The dispatcher uses ServerLib to communicate 

with other applications. Our current user tracking algorithm is based on the view 

from a ceiling-mounted camera. It employs differencing between the current frame 

and an average reference image of the background.1 The tracker can also forward 

processed video frames (i.e. background removed) to a Qave, where it will then be 

blended in the virtual scene. Both tracker and dispatcher were originally written by 

Stéphane Pelletier, and were adapted for use in this framework. Two main changes 

were applied. 

First, the communication mode was set to synchronous between the Qave and 

the dispatcher. Because the tracking update rate is higher than the Qave framerate, 

positional updates could overwhelm the renderer in asynchronous mode. By making 

sure that the Qave sends out a reply message when an update has been received, we 

ensure that fresh data is transmitted while avoiding overfiooding the socket buffer of 

the receiver. 

Secondly, we wanted the possibility of transmitting the position of the head of 

the user to the audio spatialization system, where it could be used to compute the 

correct output for each speaker. The spatializer accepts data from the network in the 

Open Sound Control (OSC) format,2 and a special OSC interface was implemented 

in the dispatcher to permit the transmission of data to the spatializer. 

lThe background image is generated prior to any users entering the space. 
2See http://www.cnmat.berkeley.edu/OpenSoundControl/ for more details on OSe. 
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5.1 IMAGE PROCESSING AND MESSAGE DISPATCHING 
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FIGURE 5.1. Tracker and Dispatcher Processes 

Ultimately, head- and hand-tracking should be accomplished by multiple cameras 

distributed around the environment. So far, due to implementation limitations, we 

only use a single overhead camera, which, in conjunction with the tracker, allows for 

a single hand and a single head tracking. Sinee only one user can enjoy a correct 

perspective view at any time, being limited to single head detection is a fair assump-

tion. Conversely, the ability to track multiple hands is an extension that could prove 

very beneficial, as bimanual interactions can greatly enrich the gestural vocabulary. 

Several studies [47, 48, 49, 50, 51] have illustrated the benefits of well-designed 
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bimanual tasks. Not only does bimanuality aid in speed and efficiency, but the struc-

ture of the task can be made more complex without significant loss of performance. 

Kinesthetic feedback provided by the muscles in our arms and hands offers addition al 

subconscious information to the user [52] so that less computer-generated feedback 

is required and in turn, the cognitive load imposed on the user is reduced. 

With respect to our tracker, it is thus important to detect and follow multiple 

targets. As such, members of our research group are currently exp~rimenting with new 

tracking algorithms, whieh could then subsume the present tracking system. Those 

algorithms notably involve CONDENSATION [53] and skin-color based detection. 

5.2. Tracker Data for Spatialized Audio 

The sonification of immersive environments is gaining an increasing amount of 

attention. Researchers acknowledge that effective immersion in a virtual environment 

implies more than filling the user's field of view with coherent data. As noted by Naef 

et al. [54], audit ory perception offers a powerful complement to the visual channel. 

Gary Kendall et al. [55] describes the advantage of 3D sound as the quality of "being 

there." With 3D audio, one loses the feeling of having the sound being mediated by 

the speakers. Instead, one directly perceives the sonie environment. 

As was mentioned, the SRE is equipped with eight speakers located at each 

vertex of the cube (see Figure 1.2). Multiple input sources3 can then be spatialized. 

The spatialization process is performed by the LocalizerQ.4 The LocalizerQ uses time 

delays, intensity differences and cross-talk cancellation to provide a 3D sound space. 

It consists of seven processing units (see Figure 5.2) : 

(1) The Doppler simulator: performs pitch based shifting based on the accel-

eration of the sound source in relation to the listener 

3For example, a typical sound source is a stream from a remote location. 
4The LocalizerQ was developed by Zack Settel, http:j jwww.Zeep.com. 

59 



5.2 TRACKER DATA FOR SPATIALIZED AUDIO 

In-pij-tI1 •• 4 

FIGURE 5.2. LocalizerQ DSP Architecture (with the authorization of Zeep.com) 

(2) The distance simulator: performs amplitude attenuation based on the dis­

tance to the listener 

(3) The surround panner: pans (equal-power) the simulated sound.onto the 

speaker array 

(4) The reverb engine: simulates a reverberant sound field and excites it with 

the simulated sound source 

(5) The early refiections: calculated based on the actual position of the source 

(6) The height manager: positions the sound in the z axis 

(7) The listener position: controls the global output energy balance 

Figure 5.3 presents an overview of how the spatializer integrates in the framework. 

The dispatcher can send the head position obtained from the tracker to the spatializer. 

The spatializer uses this information in the listener position processing unit, which 

creates the illusion of a static audio point source as the user moves about in the space. 
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5.2 TRACKER DATA FOR SPATIALIZED AUDIO 

/Pan/PanX, Y,Z Controls the position of the sound source in 3D 

/Pan/Length, Width Controls the size of the virtual sound space 

/Listener/PanX, Y Indicates the position of the listener in the space 

/Pan/OutputGain Controls the overall volume of the sound source 

TABLE 5.1. LocahzerQ Command LIst Sample. 

The LocalizerQ receives command in the OSC format, and Table 5.2 shows a subset5 

of the parameters (in OSC format) that can be passed to the LocalizerQ. 

The concept of spatialized sound is not new one, nor is its implementation. How­

ever, the ability to associate a 3D sound source to a dynamic object on the screen is 

an important feature for user engagement in the virtual world. As noted by Hollier 

et al., spatial audio has a vital role to play in enhancing speech communication per­

formance and naturalness in synthetic spaces by giving directionality to individual 

sound sources and providing feedback about the virtual space in which the user is 

located [56] 

50ther parameters that have not been listed here for conciseness control the reverberation factors 
of the virtual room. 
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FIGURE 5.3. Spatializer Information Flow 
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CHAPTER 6 

Conclusions and Future Work 

6.1. Conclusions 

The proposed framework has been successfully used both for our initial applica­

tion and by the other members of our research group [6, 5]. The overall goals of 

flexible immersive rendering and the integration of coherence between multiple Qave 

clients were achieved, thereby allowing collaboration between users in remote immer­

sive environments. Distant users can also be blended in the synthetic scene both 

through video and spatially coherent audio streams. This is an important feature 

that benefits computer mediated human-human interactions. 

In particular, the Qave engine, which was specifically designed for the SRE frame­

work, has proven to be faster than the previously used CAVELib, especially under 

Linux. Another important point is that the Qave engine only uses widely available 

APIs, and can be run on virtually any Unix-based platform. This allows Qave to run 

both our VR setups. Additionally, the engine architecture is simple enough that 

it can be extended by other researchers, which means that other components can be 

easily integrated in the engine. Furthermore, the simulation mode makes it faster 

and easier for the application programmers to see the progress of their work. 



6.2 FUTURE WORK 

Finally, the inherent modularity of the framework means that any one component 

may be upgraded in the future without disrupting the rest of the system. 

6.2. Future Work 

The framework was designed to be flexible and easily upgradeable module by 

module. For the Qave engine, an interesting expansion would be to support more 3D 

file formats, especially those that include animation data. A logical extension would 

then be to add support for some sort of scripting language that could pre-define the 

interactions between objects. Further, our trackers need to be improved to detect and 

follow multiple targets with great accuracy. The integration of multiple camera views 

into an accurate 3D model would be very helpful in that task. Such a 3D model could 

be used to determine the posture of tracked users. Camera view integration in turn 

requires good backgroundjforeground segmentation along with the precise calibration 

of the different cameras. Additionally, being able to recognize fine grained gestures 

involving, for example, hand rotations or finger movements would greatly enhance the 

range of possible actions of the users, and hence their control over the virtual scene. 

When detected, hand and finger postures could also be applied to the hand model, 

providing the user with a greater sense of familiarity with the synthetic world. These 

challenges all constitute active research projects in our laboratory. 

Regarding the framework as a whole, the use of a faster networking library such, 

as Bronto,l could lead to better video framerate of the remote user and potentially 

faster message passing between clients. This in turn would result in a better sense of 

immersion for the user and hence in a potentially richer interaction between remote 

participants. Finally, as with all frameworks, the most interesting part is application 

development, which, we hope, will further knowledge in fields such as bimanuality in 

immersive environments and telepresence. 

1 Bronto is developed by Stephen P. Spackman, see http:j jultravideo.mcgill.edujtechnicalj for more 
details. 

64 



REFERENCES 

[1] C. Ware, K Arthur, and K S. Booth, "Fish tank virtual reality," in Pro­

ceedings of the SIGCHI conference on Human factors in computing systems, 

pp. 37-42, ACM Press, 1993. 

[2] M. N. Hilario and J. Cooperstock, "Occlusion detection for front-projected in­

teractive displays," in Proceedings of Pervasive 2004, (Vienna, Austria), April 

2004. 

[3] C. Jaynes, W. B. Seales, K Calvert, Z. Fei, and J. Griffioen, "The Meta­

verse: a networked collection of inexpensive, self-configuring, immersive en­

vironments," in Proceedings of the workshop on Virtual environments 2003, 

pp. 115-124, ACM Press, 2003. 

[4] 1. Poupyrev, S. W. andd M. Billinghurst, and T. Ichikawa, "Egocentric ob­

ject manipulation in virtual environments: Empirical evaluation of interaction 

techniques," in Proceedings of Eurographics, vol. 17, 1998. 

[5] Y. Boussemart, F. Rioux, F. Rudzicz, M. Wozniewski, and J. R. Cooperstock, 

"A framework for 3D visualization and manipulation in an immsersive space 

using an untethered bimanual gestural interface," in Proceedings of the ACM 

Symposium on Virtual Reality Software and Technology, ACM Press, Novem­

ber 2004. 



REFERENCES 

[6] F. Rioux, F. Rudzicz, and M. Wozniewski, "The modellers' apprentice - the 

toolglass metaphor in an immersive environment," in Proceedings of the 18th 

British HCI Group Annual Conference, September 2004. 

[7] 1. Sutherland, "The Ultimate Display," in Proceedings of IFIP Congress, 

pp. 506-508, 1965. 

[8] 1. Sutherland, "A head mounted three dimensional display," in IFIPS Confer­

ence Proceedings, pp. 757-764, 1968. 

[9] C. Cruz-Neira, D.J.Sandin, and T. DeFanti, "Surround-screen projection­

based virtual reality: the design and implementation of the CAVE," in Pro­

ceedings of SIGGRAPH '93, pp. 135-142, ACM Press, 1993. 

[10] B. Wei, C. Silva, E. Koutsofios, S. Krishnan, and S. North, "Visualization 

research with large displays," IEEE Computer Graphies and Applications, 

vol. 20, pp. 38-44, July-August 2000. 

[11] D. Guilford, "Virtual Design: as clay fades, GM shifts toward digital imagery," 

July 2004. http://www.autoweek.comj. 

[12] A. Gaitatzes, D. Christpoulos, A. Voulgari, and M. Roussou, "Hellenic cul­

tural heritage," in Proceedings of the 6th international conference on Virtual 

Systems and Multimedia, 2000. 

[13] S. J. Gibbs, C. Arapis, and C. J. Breiteneder, "TELEPORT - towards immer­

sive copresence," Multimedia Syst., vol. 7, no. 3, pp. 214-221, 1999. 

[14] G. Goebbels and V. Lalioti, "Co-presence and co-working in distributed col­

laborative virtual environments," in Proceedings of the lst international con­

ference on Computer graphies, virtual reality and visualisation, pp. 109-114, 

ACM Press, 200l. 

[15] M. Garau, M. Slater, V. Vinayagamoorthy, A. Brogni, A. Steed, and M. A. 

Sasse, "The impact of avatar realism and eye gaze control on perceived quality 

of communication in a shared immersive virtual environment," in Proceedings 

66 



REFERENCES 

of the conference on Human factors in computing systems, pp. 529-536, ACM 

Press, 2003. 

[16] M. Deering, "High resolution virtual reality," in Proceedings of the 19th an­

nual conference on Computer graphics and interactive techniques, pp. 195-202, 

ACM Press, 1992. 

[17] S. Feiner, B. Macintyre, and D. Seligmann, "Knowledge-based augmented re­

ality," Commun. A CM, vol. 36, no. 7, pp. 53-62, 1993. 

[18] T. Furness, Harnessing Virtual Space, pp. 4-7. Society for Information Display 

Digest, 1988. 

[19] J. Butterworth, A. Davidson, S. Hench, and M. T. Olano, "3DM: a three 

dimension al modeler using a head-mounted display," in Proceedings of the 

1992 symposium on Interactive 3D graphies, pp. 135-138, ACM Press, 1992. 

[20] R. Pausch, T. Crea, and M. Conway, "A literature survey for virtual envi­

ronments: military fiight simulator visual systems and simulator sickness," 

Presence: Teleoper. Virtual Environ., vol. 1, no. 3, pp. 344-363, 1992. 

[21] R. Azuma and G. Bishop, "Improving static and dynamic registration in an 

optical see-through hmd," in Proceedings of the 21st annual conference on 

Computer graphics and interactive techniques, pp. 197-204, ACM Press, 1994. 

[22] J. Liang, C. Shaw, and M. Green, "On temporal-spatial realism in the virtual 

reality environment," in Proceedings of the 4th annual ACM symposium on 

User interface software and technology, pp. 19-25, ACM Press, 1991. 

[23] P. Richard, G. Burdea, G.Birebent, D. Gomez, N. Langrana, and P. Coif­

fet, "Effect of frame rate and force feedback on virtual object manipulation," 

Presence: Teleoperators and Virtual Environments, vol. 5, no. 1, pp. 95-108, 

1996. 

[24] E. Patrick, D. Cosgrove, A. Slavkovic, J. A. Rode, T. Verratti, and G. Chiselko, 

"Using a large projection screen as an alternative to head-mounted displays 

67 



REFERENCES 

for virtual environments," in Proceedings of the SIG CHI conference on Human 

factors in computing systems, pp. 478-485, ACM Press, 2000. 

[25] E. Lantz, "The future of virtual reality: head mounted displays versus spatially 

immersive displays (panel)," in Proceedings of the 23rd annual conference on 

Computer graphies and interactive techniques, pp. 485-486, ACM Press, 1996. 

[26] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, and M. D. 

Brown, "The ImmersaDesk and Infinity Wall projection-based virtual reality 

displays," SIGGRAPH Comput. Graph., vol. 31, no. 2, pp. 46-49, 1997. 

[27] W. Kruger, C.-A. Bohn, B. Frohlich, H. Schuth, W. Strauss, and G. Wesche, 

"The Responsive Workbench: a virtual work environment," Computer, vol. 28, 

no. 7, pp. 42-48, 1995. 

[28] B. Ullmer and H. Ishii, "The MetaDESK: Models and prototypes for tangible 

user interfaces," in ACM Symposium on User Interface Software and Technol­

ogy, pp. 223-232, 1997. 

[29] J. Leigh, A. E. Johnson, T. A. DeFanti, and M. D. Brown, "A review of 

tele-immersive applications in the CAVE research network," in VR, pp. 180-, 

1999. 

[30] Paul Rajlich, "CAVEQuake." http:j jbrighton.ncsa.uiuc.eduj rvprajlichjcaveQuakej. 

[31] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira, 

"VR Juggler: a virtual platform for virtual reality application development," 

in Proceedings of the Virtual Reality 2001 Conference (VR '01), p. 89, IEEE 

Computer Society, 200l. 

[32] R. Pausch, "ALICE." http:j jwww.alice.orgj. 

[33] H. Tramberend, "A vocado - a distributed virtual environment framework," 

1999. 

[34] R. Held and N. Durlach, "Telepresence, time delay and adaptation," pp. 232-

246, 1993. 

68 



REFERENCES 

[35] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh, "Load bal­

ancing for multi-projector rende ring systems," in HWWS '99: Proceedings 

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphies hardware, 

pp. 107-116, ACM Press, 1999. 

[36] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raffin, "Net Jug­

gler: running VR Juggler with multiple displays on a commodity component 

cluster," in Proceedings of the IEEE Virtual Reality Conference 2002, p. 273, 

IEEE Computer Society, 2002. 

[37] W. Gropp and E. Lusk, "The Message Passing Interface (MPI) standard.," 

1999. http://www-unix.mcs.anl.gov/mpi/. 

[38] J. Allard, V. Gouranton, G. Lamarque, E. Melin, and B. Raffin, "Softgen­

lock: active stereo and genlock for PC cluster," in Proceedings of the Joint 

IPT/EGVE'03 Workshop, (Zurich, Switzerland), May 2003. 

[39] A. Bierbaum and C. Cruz-Neira, "ClusterJuggler: A modular architecture for 

immersive clustering," in VR-Cluster'03- Workshop on Commodity Clusters for 

Virtual Reality, IEEE Virtual Reality Conference 2003, March 2003. 

[40] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and 

J. T. Klosowski, "Chromium: a stream-processing framework for interactive 

rende ring on clusters," in Proceedings of the 29th annual conference on Com­

puter graphies and interactive techniques, pp. 693-702, ACM Press, 2002. 

[41] M. Gross, S. Wurmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller­

Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. V. Moere, and 

O. Staadt, "blue-c: a spatially immersive dis play and 3D video portal for 

telepresence," ACM Trans. Graph., vol. 22, no. 3, pp. 819-827, 2003. 

[42] K. Isakovic, T. Dudziak, and K. Kchy, "X-rooms," in Proceeding of the seventh 

international conference on 3D Web technology, pp. 173-177, ACM Press, 

2002. 

69 



REFERENCES 

[43] L. P. Soares and M. K. Zuffo, "JINX: an X3D browser for VR immersive 

simulation based on clusters of commodity computers," in Proceedings of the 

ninth international conference on 3D Web technology, pp. 79-86, ACM Press, 

2004. 

[44] O. A. R. Board and D. Shreiner, GpenGL 1.4 reference manual (Blue Book). 

Addison Wesley Professional, 2004. 

[45] E. Frécon and M. Stenius, "Dive: A scaleable network architecture for distrib­

uted virtual environments.," Distributed Systems Engineering Journal, vol. 5, 

pp. 91-100, September 1998. Special Issue on Distributed Virtual Environ­

ments. 

[46] R. K. Jain, The Art of Computer Systems Performance Analysis: Tech­

niques for Experimental Design, Measurement, Simulation, and Modeling. Wi­

ley, April 1991. 

[47] W. Buxton and B. Myers, "A study in two-handed input.," in Proceedings 

of the SIG CHI conference on Human factors in computing systems, vol. 27, 

pp. 321-326, 1986. 

[48] K. Hinckley, R. Pausch, D. Proffitt, and N. Kassell, "Two-handed virtual ma­

nipulation," ACM Transactions on Computer-Human Interaction (TOCHI), 

vol. 5, no. 3, pp. 260-302, 1998. 

[49] A. Leganchuk, S. Zhai, and W. Buxton, "Manual and cognitive benefits of 

two-handed input: An experimental study," ACM Transactions on Computer­

Human Interaction, vol. 5, no. 4, pp. 326-359, 1998. 

[50] P. Kabbash, 1. MacKenzie, and W. Buxton, "Human performance using com­

puter input devices in the preferred and non-preferred hands," in Proceedings 

of SIG CHI conference on Human factors in computing systems, pp. 474-481, 

1993. 

70 



REFERENCES 

[51] R. Balakrishnan and G. Kurtenbach, "Exploring bimanual camera control and 

object manipulation in 3D graphies interfaces.," in Proceedings of ACM CHI 

1999 Conference on Human Factors in Computing Systems, pp. 56-62, ACM 

Press, 1999. 

[52] R. Balakrishnan and K. Hinckley, "The role of kinesthetic reference frames 

in two-handed input performance," in ACM Symposium on User Interface 

Software and Technology, pp. 171-178, 1999. 

[53] M. Isard and A. Blake, "CONDENSATION - conditional density propagation 

for visual tracking," 1998. 

[54] M. Naef, O. Staadt, and M. Gross, "Spatialized audio rendering for immersive 

virtual environments," in Proceedings of the A CM symposium on Virtual reality 

software and technology, pp. 65-72, ACM Press, 2002. 

[55] G. Kendall, "Directional hearing and stereo reproduction," October 2002. 

http:j jmusie.northwestern.edujclassesj3DjpagesjsndPrmGK.html. 

[56] M. P. Hollier, A. N. Rimell, and D. Burraston, "Spatial audio technology for 

telepresence," pp. 40-56, 1999. 

71 


