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Abstract

This thesis addresses the problem of design and analysis of distributed in-network signal

processing algorithms for efficient aggregation and fusion of information in wireless sensor

networks. The distributed in-network signal processing algorithms alleviate a number of

drawbacks of the centralized fusion approach. The single point of failure, complex routing

protocols, uneven power consumption in sensor nodes, inefficient wireless channel utiliza-

tion, and poor scalability are among these drawbacks. These drawbacks of the centralized

approach lead to reduced network lifetime, poor robustness to node failures, and reduced

network capacity. The distributed algorithms alleviate these issues by using simple pairwise

message exchange protocols and localized in-network processing. However, for such algo-

rithms accuracy losses and/or time required to complete a particular fusion task may be

significant. The design and analysis of fast and accurate distributed algorithms with guar-

anteed performance characteristics is thus important. In this thesis two specific problems

associated with the analysis and design of such distributed algorithms are addressed.

For the distributed average consensus algorithm a memory based acceleration method-

ology is proposed. The convergence of the proposed methodology is investigated. For the

two important settings of this methodology, optimal values of system parameters are deter-

mined and improvement with respect to the standard distributed average consensus algo-

rithm is theoretically characterized. The theoretical improvement characterization matches

well with the results of numerical experiments revealing significant and well scaling gain.

The practical distributed on-line initialization scheme is devised. Numerical experiments

reveal the feasibility of the proposed initialization scheme and superior performance of the

proposed methodology with respect to several existing acceleration approaches.

For the collaborative signal and information processing methodology a number of the-

oretical performance guarantees is obtained. The collaborative signal and information

processing framework consists in activating only a cluster of wireless sensors to perform

target tracking task in the cluster head using particle filter. The optimal cluster is de-

termined at every time instant and cluster head hand-off is performed if necessary. To

reduce communication costs only an approximation of the filtering distribution is sent dur-

ing hand-off resulting in additional approximation errors. The time uniform performance

guarantees accounting for the additional errors are obtained in two settings: the subsample

approximation and the parametric mixture approximation hand-off.
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Sommaire

Cette thèse aborde le problème de la conception et l’analyse d’algorithmes distribuès ser-

vant à l’agrégation efficace et la fusion de l’information dans des reséaux capteurs sans

fil. Ces algorithmes distribuès servent à addresser un bon nombre d’inconvénients qu’ont

les approches de fusion centralisée telles que le point de défaillance unique, les protocoles

de routage complexe, la consommation de puissance inégale dans les noeuds de capteurs,

l’utilisation inefficace des voies de transmission sans-fil et l’extensibilité limitée. Ces in-

convénients de l’approche centralisée ont comme effet de réduire la durée de vie du reséau,

la robustesse des noeuds face aux défaillances et la capacité du réseau. Les algorithmes

distribuès atténuent ces problèmes en utilisant des simples protocoles de messageries entre

les noeuds ainsi que du traitement d’information localisé. Toutefois, pour ces algorithmes,

les pertes de précision et/ou de temps nécessaire pour effectuer une tâche peuvent être

importantes. C’est pourquoi la conception et l’analyse d’algorithmes distribuès rapide et

précis est importante. Dans cette thèse, deux problèmes spécifiques associés à l’analyse et

le conception de tels algorithmes sont abordés.

En ce qui concerne l’algorithme de consensus sur la moyenne distribuè, une méthode

d’accélération fondé sur la mémoire est proposée et sa convergence analysée. Pour les

deux paramètres importants de cette méthodologie, les valeurs optimales pour le système

sont déterminées et l’amélioration par rapport à l’algorithme de consensus de base est car-

actérisée de façon théorique. Cette caractérisation correspond aux rêsultats d’expériences

numériques et révèlent des gains importants et extensibles. Le régime distribuè d’initialisation

en ligne est conçu. Des expériences numériques révèlevent la faisabilité du régime d’initilisation

proposé ainsi qu’un rendement supérieur à plusieurs approches existantes.

Pour la méthodologie de traitement de signaux et d’information collaborative, un certain

nombre de garanties théoriques de performance sont obtenues. Ce cadre de travail consiste

à activer seulement une grappe de capteurs sans fil pour effectuer les tâches de pistage

d’objet au niveau deu chef de groupe en utilisant un filtre particulaire. La grappe optimale

est déterminée à chaque intervale de temps et le transfert du titre de chef de groupe est

réalisé au besoin. Pour réduire les coûts de communication, seulement une approximation

de la distribution du filtre est envoyé pendant le transfert de responsabilités ce qui entrâıne

des erreurs supplémentaires. Les garanties de performance uniformes dans le temps tenant

compte de ces erreurs supplémentaires sont obtenues dans deux contextes.
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Chapter 1

Introduction

1.1 Motivation

Wireless sensor networks can be very effective mechanisms for acquiring, delivering, and

processing complex data flows generated by a large variety of physical processes and en-

vironment sensing applications. Wireless sensor network (WSN) based architectures have

great potential as the foundation of cost efficient and scalable solutions for sensing appli-

cations ranging from medical data dissemination in hospitals to fire control during disaster

relief operations and military sensing and control on the battlefield [1]. There are still

many important open problems related to building efficient WSN information fusion pro-

tocols [2, 3].

The centralized data fusion protocol assumes that a centralized entity (fusion center)

gathers data captured by a WSN and performs data processing operations. The sensor

nodes thus play the role of sensing and communication devices that acquire and route data

to the fusion center. The internal signal processing capabilities available in most modern

sensor nodes are thus not used in the centralized fusion approach. Moreover, the need for

routing potentially large volumes of data acquired by the nodes in the network induces the

following issues inherent to the centralized approach. Any node has to be able to transfer

its data to the fusion center. Complex routing protocols are thus needed to establish

the required data flows and account for the node failures and channel instability. In the

centralized scenario, each node is responsible for routing data from a subset of nodes in the

network. This results in the single point of failure issue and uneven power consumption in

sensor nodes. Uneven power consumption in sensor nodes leads to early death of overloaded
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nodes and reduces network lifetime. Since each node is responsible for routing data from

a subset of nodes in the network, capacity of the network does not scale well with growing

network size.

Distributed algorithms alleviate these drawbacks by reducing communication protocols

to simple one-hop information exchanges with immediate neighbors and localizing sensing

and signal processing operations. Distributed protocols often propagate the solution based

on the acquired data instead of the raw data that are used to obtain the solution in the

centralized fusion center. Clearly, this methodology relies on the processing capabilities

available in the sensor nodes to obtain the distributed solution that is otherwise calculated

at the centralized fusion center. The distributed solutions obtained by the WSN are often

suboptimal. The nature of many distributed algorithms is asymptotic. Thus additional

errors are inevitably introduced by resorting to the more robust and simple distributed

solutions and the time required to complete a fusion task may by significant. It is therefore

important to design and analyze fast and accurate distributed algorithms with guaranteed

performance characteristics.

In this thesis we address two specific problems related to the design and analysis of

fast and localized WSN information fusion algorithms with theoretical guarantees of per-

formance. The first problem we address is the acceleration of the distributed average

consensus protocol that is known to suffer from the poor scalability of averaging time.

The second problem we consider is obtaining the theoretical approximation performance

guarantees for the leader node particle filter using occasional intermittent approximations

of two kinds: subsample approximation and parametric mixture approximation.

1.2 Synopsis

Chapter 2 provides WSN related background information and terminology. It outlines

important WSN application domains, reviews recent publications describing different as-

pects of WSN applications, and discusses challenges associated with these applications.

The last part of Chapter 2 introduces a number of foundational concepts related to the

distributed processing in wireless sensor networks and discusses WSN application domains

where distributed in-network processing can be used.

Chapter 3 presents the statement of the average consensus problem and reviews rele-

vant literature on this topic. It presents important open issues inherent to the decentralized
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solution of the consensus problem and outlines the approach that will be taken in Chapter 4

to alleviate these issues.

Chapter 4 describes the proposed technique to accelerate the convergence of asymp-

totic distributed consensus algorithms. The first part of Chapter 4 presents a general

memory-based framework for consensus acceleration based on mixture of local prediction

and the outcome of the conventional consensus iteration, discusses convergence proper-

ties of this framework, quantifies the rate of convergence and establishes the existence of

convergent solution. The second part of Chapter 4 analyzes a technique for distributed

optimization of consensus matrix based on the proposed methodology and its approximate

distributed implementation. Finally, the last section of Chapter 4 analyzes accelerated con-

sensus with short node memory based on the proposed framework and presents an efficient

distributed routine for its initialization. In this last section, the value of the optimal pa-

rameter is determined in the short node memory framework, the rate of convergence of the

improved algorithm is quantified and several results quantifying the improvement obtained

using the proposed technique are presented.

Chapter 5 presents the overview of communication constrained collaborative WSN

based distributed tracking methods and issues related to their analysis. Important con-

cepts related to non-linear filter analysis are presented in conjunction with the analysis of

collaborative particle filter based WSN framework performed in Chapter 6.

Chapter 6 investigates the performance of a collaborative WSN based target tracking

application. Within the framework of this application nodes in the WSN form a two-tier

clustered architecture. Only one cluster chosen based on the mutual information criterion

is active at any time instant and intermittent approximations of tracking statistics obtained

via in-network processing are used for cluster hand-offs. The approximation errors are in-

vestigated for this framework in two distinct settings: (1) the intermittent approximation

is obtained as a sub-sample of a particle filter approximation and (2) parametric approx-

imation is obtained from the particle approximation using a greedy mixture estimation

algorithm. For the first case we obtain a number of inequalities characterizing approxima-

tion/sampling errors and exponential inequalities revealing tail behavior of the algorithm.

For the second scenario we obtain inequalities characterizing approximation/sampling er-

rors and formulate conditions for unbiased intermittent parametric approximation. It turns

out that the frequency of intermittent approximations plays a vital role in the error charac-

terization for both approximation scenarios under consideration. We conclude the chapter
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with simulations that illustrate important practical aspects of the investigated scenarios.

Chapter 7 concludes the thesis by summarizing the problems studied in the thesis and

results obtained in the thesis and discussing the future work.

1.3 Contributions

The original contributions of this thesis can be briefly outlined as follows.

1. The memory based methodology for the acceleration of the distributed average con-

sensus algorithm based on the mixture of predictor and the outcome of standard

consensus iteration.

2. The theoretical proof of the existence of the convergent configuration of the proposed

memory based acceleration methodology.

3. The optimal value of the mixing parameter for the simplest configuration of the

proposed memory based acceleration methodology.

4. The distributed suboptimal initializations of the mixing parameter.

These results have been obtained in collaboration with Dr. Tuncer C. Aysal and appear

in1

T. C. Aysal, B. N. Oreshkin and M. J. Coates, Accelerated distributed average consensus
via localized node state prediction, IEEE Trans. Signal Process., vol. 57, no. 4, pp. 1563–
1576, Apr. 2009.

B. N. Oreshkin, T. C. Aysal and M. J. Coates, Distributed average consensus with increased
convergence rate, in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Las Vegas,
NV, pp. 2285–2288, Apr. 2008.

5. For the proposed memory based acceleration methodology, the upper bound on the

growth rate of the limiting ε-averaging time for asymptotically small values of ε has

1Dr. Tuncer Aysal proposed to use a predictor to improve the performance of the distributed average
consensus algorithm and played a supervisory role. Prof. Mark Coates played a supervisory role. Boris
Oreshkin formulated the linear predictor based accelerated distributed average consensus algorithm and
conducted mathematical analysis and numerical simulations.
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been obtained. The parameter ε quantifies the largest acceptable network-wide `2

deviation from the average after one round of distributed average consensus.

6. The study of the predictive accelerated average consensus with short node memory

and the value of the optimal mixing parameter for the short memory case.

7. The quantification of the convergence rate of the predictive accelerated average con-

sensus with short node memory.

8. The asymptotically optimal configuration of the predictor weights for the predictive

accelerated average consensus with short node memory.

9. The quantification of the average asymptotic convergence rate improvement achieved

by the accelerated average consensus with short node memory.

10. The practical distributed on-line mixing parameter initialization scheme.

These results have been submitted or will appear in2

B. N. Oreshkin, M. J. Coates and M. G. Rabbat, Optimization and Analysis of Distributed
Averaging with Memory, in Proc. 47 Ann. Allerton Conf. Comm. Control Comp., Aller-
ton, IL, Oct. 2009.

B. N. Oreshkin, M. J. Coates and M. G. Rabbat, Optimization and Analysis of Distributed
Averaging with Short Node Memory, IEEE Trans. Signal Process., under review.

11. The formulation of the Feynman-Kac formulae describing the propagation of distri-

bution flows in the distributed wireless sensor network target tracking scenario based

on the collaborative signal and information processing methodology.

12. The analysis of local weak-sense Lp approximation errors of the subsample approxi-

mation leader node particle filter.

13. The analysis of local weak-sense Lp approximation errors of the parametric mixture

approximation leader node particle filter.

2Prof. Mark Coates and Michael Rabbat played supervisory roles. Boris Oreshkin conducted mathe-
matical analysis and numerical simulations.
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14. The time uniform weak-sense Lp error bounds for the leader node particle filter with

intermittent subsample and parametric mixture approximations.

15. The exponential inequalities characterizing the probabilities of the large deviations

of distribution flows for the subsample approximation leader node particle filter .

16. The conditions that guarantee the asymptotically unbiased approximation perfor-

mance of the leader node particle filter with parametric mixture approximation.

These results appear in or have been submitted to3

B. N. Oreshkin and M. J. Coates, Analysis of error propagation in particle filters with
approximation, Ann. Appl. Probab., under review.

B. N. Oreshkin and M. J. Coates, Particle filters with approximation steps, Int. Workshop
Comp. Adv. Multi-Sensor Adapt. Process., Aruba, Dutch Antilles, Dec. 2009, to appear.

B. N. Oreshkin and M. J. Coates, Weak sense Lp error bounds for leader-node distributed
particle filters, in Proc. Int. Conf. Info. Fusion, Cologne, Germany, Jul. 2008.

3Prof. Mark Coates played a supervisory role. Boris Oreshkin conducted mathematical analysis and
numerical simulations.
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Chapter 2

Wireless Sensor Networks

2.1 Background and Definitions

Wireless Sensor Networks have great potential to form the basis of universal and efficient

sensing and fusion architectures. Due to relatively recent advances in science and technology

it has become possible to build small sensor nodes with on-board sensing, processing, and

communication capabilities. On the other hand, the development of tiny electrochemical

elements with relatively large capacities has enabled the creation of autonomous sensor

nodes that can operate in scenarios with minimal human intervention. We adopt the

following definition for a sensor node.

Definition 2.1. A sensor node is a device with on-board sensing, processing, and commu-

nication capabilities equipped with an autonomous power source.

In the minimal human intervention scenario a set of sensors nodes comprises an au-

tonomous network that can be used to monitor certain physical phenomena, interpret its

observations, and dissimilate related information flows. According to one of the definitions

from [4] a network is ‘a complex, interconnected group or system’. Thus, strictly speaking,

to form a network these devices should be interconnected by physical links to be able to

process information collaboratively since resources of a single sensor may not suffice to

accomplish complex sensing, processing, and control tasks [5–7]. There are multiple ways

to connect sensors: wires, radio transmission, optical cables, laser links, etc. Many of them

require careful installation and tuning (e.g. laser links), others need the establishment of

a costly infrastructure (according to [8] $200 additional expenditures per sensor can be
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incurred in wired networks). In many scenarios sensors are deployed without prior prepa-

ration of an infrastructure. Limited time and other resources can prevent building such an

infrastructure. In such situations using wireless radio links to build a collaborative sensor

network is an ‘inevitable requirement’ [1].

A set of sensors comprises the heart and the basic working horse of the collaborative

network. However, in most situations this set per se is not enough to make the network

usable. Sensors often serve only as sources (and/or processors, routers) with respect to the

in-network information flows. Thus it is also important to define the notion of a requestor

of information or a certain network activity.

Definition 2.2. A sink is the destination node that consumes either raw or preprocessed and

aggregated sensor measurements and often requests certain network activities or operations.

Sensors and sinks are basic elements of a sensor network. Based on the above discussion

we can introduce the following definition of a WSN consisting of these basic elements.

Definition 2.3. A wireless sensor network is a set of geographically spread sensors and

sinks equipped with radio transceivers and interconnected via wireless radio channels in

order to observe certain physical phenomena, interpret these observations and broadcast

the interpretations to sinks.

There exist a considerable number of alternative definitions (see e.g. [1,2,9,10] and ref-

erences therein). The differences in the definitions arise mainly due to explicitly including

actuators [2] or not including sinks [1] and explicitly considering inherent sensor density [9]

or geographical [10] constraints. The above definition combines many WSN features gener-

ally found and accepted in the literature, while some other aspects (e.g. possible presence

of actuators in the network) are omitted since they lie outside of the scope of this thesis.

Another important feature of Definition 2.3 is that sinks are considered to be a part of the

network (cf. [2]). While sinks are often both requestors and receivers of WSN information,

physically they may or may not be part of the network. Indeed, within the distributed sig-

nal processing framework, sensor nodes themselves are often sinks due to the algorithmic

structure of distributed computations. On the other hand, firefighters reading data from

a temperature sensing WSN are clearly not part of the WSN. However, when a firefighter

requests data from the WSN located in a forest (e.g. using a PDA [1]) this PDA becomes

a part of the WSN. Thus sinks can often be considered part of a WSN. While connected
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to WSN, sinks can provide it with feedback and instructions necessary for its configuration

or translate WSN data flows to the outside world (e.g. Internet or remote users [1]).

While Definition 2.3 and the preceding discussion clearly reflect important physical

aspects of WSNs, they cannot be employed to describe and model WSNs mathematically.

The most important WSN modeling aspect is its connectivity. A common approach to

connectivity modeling is based on graph theory. In particular, the following definition of a

graph can be adopted [11,12]:

Definition 2.4. A graph G = (V,E) consists of a set of vertices V and a set E of two-

element subsets of V defining the adjacency relations between vertices. E is called a set of

edges since (u, v) ∈ E holds for two vertices u, v ∈ V if and only if there is an edge between

v and u (v is adjacent to u).

There is a clear correspondence between the definition of a graph and the definition of

a WSN [2]. Vertices in a graph correspond to the sensor nodes and edges correspond to

wireless radio links in the related WSN. A number of graph based models for WSNs are

presented in [11]. The generality and complexity of these models vary with their ability

to represent complex connectivity and propagation effects such as fading, shadowing, in-

terference, and multi-hop transmissions. Many of the graphical models in [11] are hard

to analyze. A simpler, but more tractable, random geometric graph (RGG) model was

proposed in [13] in the context of wireless network capacity analysis. This model has often

been successfully used to analyze different performance aspects of WSN based algorithms

(see e.g. [14]) due to a large number of available theoretical results describing the connec-

tivity and information diffusion properties of WSN under this model. The definition of the

RGG model is given below (see [13–15] for details).

Definition 2.5. A random geometric graph Gd(n, r) is a graph of n nodes with connectivity

radius r obtained by placing n vertices on a d-dimensional cube uniformly at random and

connecting any two vertices if and only if they are within distance r of each other.

2.2 Challenges and Applications

The applications of WSNs include several major areas [1, 16]: event detection and classifi-

cation, tracking, estimation and function approximation, and reporting periodic measure-

ments.
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Event detection and classification includes a large number of diverse environment

tracking, industry and military applications. In these applications, sensors often make local

decisions about a phenomenon being observed and then either transmit these local decisions

to a sink or make a collaborative network-wide decision (e.g. using a decentralized proto-

col) and communicate it to a sink. For example, in [17,18] an experimental heterogeneous

two-level network was deployed along roadway in Los Alamos to investigate the potential of

distributed sensor networks for detecting radiological dispersal devices transported in vehi-

cles. A general framework for the software design of distributed event detection algorithms

was developed in [19] with the emphasis on the detection of explosion events using nodes

with temperature, light, and acoustic sensors. Performance of collaborative learning event

detection algorithms applied to fence monitoring has been investigated for varying compres-

sion levels of feature extraction algorithm [20,21]. Another intrusion detection application

is the cooperative algorithm developed by Krontiris et. al [22]. Other interesting examples

include a flood detection application with a deployment installed in Honduras [23], medical

emergency detection using custom-built motes [24], object detection in sparsely sampled

networks using a grid of TelosB nodes [25], and the Debris-flow warning system [26].

Tracking has wide applicability in the environment monitoring, security, and network

self-organization applications. In a typical tracking scenario nodes generally observe rel-

evant parameters of a target (e.g. range, bearing, velocity, etc.) and transmit this infor-

mation to the cluster head (if WSN clustering is employed), fusion center (in the case of

centralized processing) or collaboratively track a target and disseminate tracking statistics.

A centralized 25-node WSN grid acoustic array prototype using MicaZ nodes was described

in [27]. Mobile node tracking using anchor nodes and radio-interferometry principle [28] can

be used to obtain improved node location information. This information can often be used

to construct efficient routing protocols [2] or is necessary for performing accurate multi-

sensor tracking and fusion. The medical asset tracking application was reported in [29],

where mobile nodes are attached to medical equipment to decrease the time required to

find necessary equipment in a critical situation. In [30] the Debris-flow tracking system is

designed, including the prototype sensors with on-board accelerometer and omnidirectional

antenna that can be employed on the riverbank to analyze vibration information and track

Debris-flow movements. A target tracking application based on a WSN consisting of bi-

nary nodes encoding the relative target movement direction was presented in [31]. He et al.

address [32] a practical real-time security application based on the VigilNet [33] platform.
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Using field experiments and extensive simulations they provide guidelines for building the

WSN based real-time security systems using target tracking, detection, and classification

modules. Onel et al. [34] investigate theoretical aspects of surveillance network deploy-

ment. In particular, they determine the size of the network necessary to ensure required

performance characteristics (such as breach probability and coverage) and design Mutual

Information (MI) based metric for sensor scheduling.

Estimation and function approximation can be applied to learn environmental

conditions, patterns, and important features of spatio-temporal fields induced by observed

phenomena. In this scenario, each node in a dense WSN observes noisy measurements

of a spatio-temporal process. After that, using an inference routine (that can be either

distributed or centralized) important parameters or features of the spatio-temporal field

are estimated or interpolated and the resulting approximation is learned over the entire

network and/or communicated to a sink. A classical function approximation application is

the poisonous gas plume boundary estimation [9]. A practical WSN boundary estimation

algorithm was developed by Duttagupta [35] using a kernel-based regressor of the boundary

obtained from aggregates transmitted by cluster heads at every time step. The parameters

of the kernel regressor are updated from one time instant to another using the Kalman

filter, thus forming the spatio-temporal field representing the moving boundary front (and

associated confidence bounds). Zhao and Nehorai applied WSN based parameter learn-

ing (surface fitting) for centralized [36] and distributed [37] estimation to localize moving

sources with applications to security, explosive detection, and pollution control. Measure-

ment prediction based on an estimate of a model of the observed physical phenomenon can

be used to minimize the amount of data transmitted by the WSN [38,39]. Path-loss expo-

nent estimation [40] can be used for improving the performance of received signal strength

based localization techniques [41, 42]. Received signal strength based location estimators

are critical ingredients in such WSN applications as precision agriculture, water quality

monitoring, intrusion detection, inventory monitoring [42], and emergency resource estima-

tion [43] during disaster relief operations. Acoustic source direction of arrival estimation

in WSN can be used for habitat monitoring and smart environment applications [44].

The distributed consensus problem [45] belongs to the class of distributed function

approximation and estimation problems. Protocols based on the distributed consensus

paradigm can be applied to sensor fusion [46] formation control for multi-robot systems [47],

distributed load balancing [48], etc.
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Reporting periodic measurements is a typical monitoring application where each

sensor is expected to produce and convey to the sink a continuous or triggered flow of

monitoring information [16]. Remote sensors often form a group and their data are re-

layed through a wireless link to a processing center. A classical example from this area

is the pipeline monitoring application [49] where there is a need for high sampling rate,

synchronous data logging. Werner-Allen et al. [50] use this framework to monitor volcanic

activity. Here, as well as in the Debris-flow monitoring [30] event detectors are employed

to trigger data flows, however, after triggering, measurement data flows become continuous

and periodic. This concept of storing/transmitting only those readings that are informa-

tive is especially useful when data volumes acquired by the WSN are large or sensors are

deployed for long-term unattended operation. For example, in the parking lot monitoring

application [51] a network of acoustic sensor nodes detects certain events (e.g. slamming

door) localizes these events, and provides event coordinates to a camera network. The

camera network uses movement detection to improve the localization estimate, logs the

event and reports the event to a human operator.

Challenges that WSN designers have to face are tightly connected to the Quality-of-

Service metrics that their WSN designs have to satisfy within the framework of intended

application. It can be seen from the discussion of WSN applications that in many scenarios

WSNs are deployed for long-term unattended operation. Thus one of the first challenges

in WSN applications is maintainability. Self-configuration is another desirable property

of a WSN related to its ability to initialize without manual intervention at the time of

deployment. Maintainability is related to the adaptivity of the WSN. A self-configured

WSN should be able to adapt to changing environmental conditions, failing nodes, and

depleting energy sources to be able to maintain its operability over long periods of time

exhibiting fault tolerance. These concepts are closely related to one of the most important

WSN Quality-of-Service metrics: network lifetime. In the literature, there is agreement on

the following general definition of WSN lifetime [52]:

Definition 2.6. Network lifetime is the time span from the deployment to the instant when

the network is considered non-functional.

However, the instant when network is considered non-functional can be defined in differ-

ent ways based on the number of operational nodes remaining, sensor coverage, connectivity,

or estimation error (see Dietrich and Dressler [53] and Verdone et al. [2]). Often maximiza-
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tion of the network lifetime is directly related to minimizing the energy consumption within

and evenly distributing the consumption among WSN nodes. Thus one of the important

challenges in WSN designs is their energy-efficient operation.

In order to be able to design energy-efficient WSN protocols one needs to know the

energy consumption characteristics of the nodes. These characteristics are application-

dependant, however it is still possible to define general trends. A sensor node typically

consists of a sensing device, processor, and transceiver. For a typical Mica2 node, the

transceiver draws 27 mA on transmit, 10 mA on receive operation, and 1 µA during sleep

mode [54]. Typical passive sensing devices (temperature, humidity, pressure, etc.) draw

from 0.01 to 1.5 mA — and in many cases their consumption can even be ignored1 [1].

On the other hand, MPR400 processor used in the Mica2 node draws 8 mA during active

operation and < 15 µA in the sleep mode [55]. Thus in many passive sensing applications

communication and computation costs dominate power consumption. On the other hand,

it is known that the ratio of energy consumption necessary to transmit a single bit and

calculate a single instruction is often greater than 1000 [1]. Thus communication costs

often dominate power consumption in WSNs. It does not mean that computation costs

can be neglected. However, it does imply that performing reasonably complex in-network

signal processing operations reducing communication load can result in significant energy

savings, often leading to extended WSN network lifetime.

Another important aspect of WSN design is its scalability. For example, it was shown [13]

that the scalability of the capacity of the flat centralized WSN under the RGG model can

be poor. A concise definition of scalability can be found in [1].

Definition 2.7. Scalability is the ability to maintain performance characteristics irrespec-

tive of the size of the network.

Scalability issues include growing required sensor memory or processing power, number

of iterations or amount of energy spent per WSN task, capacity of the network, etc. In

practice, it turns out [1] that one of the effective means of alleviating scalability problems

in WSNs is the deployment of local or distributed algorithms (these concepts will be clar-

ified in the next section). Distributed algorithms can also eliminate the single point of

failure problem inherent to the centralized WSN algorithms [56]. On the other hand, local

1However, for active sensing applications (such as radar, sonar, or lidar) sensing power consumption
can be the dominating power load.
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and distributed WSN algorithms often employ collaboration and in-network processing (e.g.

different forms of aggregation) to reduce the amount of data being transmitted. Collabo-

ration and in-network processing also help to address another important challenge in WSN

architectures: the capabilities of a single sensor may not suffice to perform required WSN

tasks.

Finally, in the WSN based tracking applications an important aspect of the Quality-

of-Service is the estimation performance captured by the tracking or prediction error. As

a rule, in collaborative target tracking scenarios only a subset of nodes that are close (in

some sense) to the target are activated [57]. This solution resolves scalability and, to

certain extent, network lifetime issues. However, there is a trade-off between the number of

nodes activated at any given point and the estimation accuracy. Typically a larger number

of active nodes provides more information about target characteristics thus allowing for

more accurate tracking. However, larger number of active nodes requires more energy to

be spent on sensing (this amount can be considerable in the case of active sensing) and

communication of measurements. Thus an important challenge in applications of this kind

is to maintain the trade-off between tracking accuracy and sensing and communication

energy costs.

2.3 Decentralized in-Network Processing in Wireless Sensor

Networks

It was mentioned in the previous section that distributed (decentralized) WSN algorithms

can alleviate such important WSN issues as poor scalability or insufficient network lifetime

and eliminate single point of failure sources. To understand the nature of this class of

algorithms it is important to introduce related definitions. The following definition of a

distributed algorithm is based on the description provided by Lynch [58].

Definition 2.8. A distributed algorithm is the algorithm operating on a network of proces-

sors that run concurrently and independently and each of them has no global information.

Thus the important features of a distributed algorithm are that every node runs its own

part of the common code, independently of the others, and accesses only a limited amount

of the global information (information available to a centralized controller if it gatherers

all the data available in the WSN). Ideally, a decentralized algorithm achieves performance
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identical to the centralized algorithm at least asymptotically (when either time, energy, or

the number of nodes in the WSN tends to infinity). Due to the partial data access property

of a decentralized algorithm, many distributed algorithms are also local. A local algorithm

has the following definition [1].

Definition 2.9. Local algorithm is an algorithm in which a node has accesses only to its

own information and information in its neighborhood.

A sensor neighborhood is often defined as follows [11]:

Definition 2.10. The neighborhood of a node is the set of nodes (neighbors) with which

the node can establish bidirectional single-hop wireless communication.

Typical examples of decentralized algorithms include decentralized detection [59] or

decentralized parameter estimation [60] where each node makes local decisions or locally

quantizes its measurements and communicates the result to a fusion center. Graphical

model based belief propagation algorithms [61] naturally fit the distributed WSN fusion

framework since they are based on pairwise message exchanges. Distributed consensus

algorithms [45] represent the simplest instance of a message passing algorithm (in fact,

consensus propagation is a special case of belief propagation [62]). Finally, the collaborative

WSN target tracking strategy [57] that activates only the informative subset of nodes

and uses local approximations to simplify the message passing procedure combines many

important WSN data acquisition and fusion concepts: locality, decentralization, and active

data acquisition (only those nodes that ‘count’ are activated).
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Chapter 3

Distributed Consensus and

Agreement

In the distributed consensus problem, each node initially has a value, e.g., captured by

a sensor, and the goal is to calculate the group consensus value that is a function of all

initial values at the nodes in the network. The constraint is that information can only be

exchanged locally. Thus at every time instant every node only knows its own value and the

values of its neighbors, with whom it can communicate directly.

Distributed consensus algorithms have received considerable attention in the literature.

De Groot [63], Borkar and Varaiya [64], and Tsitsiklis [65] were among the first scholars that

studied distributed consensus (agreement) problems. Historically, the consensus problem

first appeared in management science and statistics [45] and then migrated to the control

community. Since then consensus based distributed agreement and estimation has been an

active research area in the control, distributed computing, and signal processing commu-

nities. This chapter outlines the general consensus framework, links it to a more specific

average consensus problem and reviews relevant literature addressing the fast (accelerated)

consensus framework.

3.1 Distributed Consensus Framework

Within the distributed consensus framework n individuals (agents) forming a set of ver-

tices V = {1, . . . , n} act together as a team to reach an agreement regarding a value of

some parameter (estimation problem) or the assignment of probabilities in a probability
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distribution (detection problem). Agents are connected via a graph G(V,E) defined by

a set of vertices V and a set of edges E. The edge between agents i, j is denoted (i, j)

and two agents i and j are connected if and only if (i, j) ∈ E. The distributed consensus

problem is non-trivial if each agent i, i = 1, . . . , n is only connected to a subset N[i] ⊂ V

such that N[i] = {j : (i, j) ∈ E} (the corresponding graph is not complete). N[i] is called

a closed neighborhood; an open neighborhood Ni of agent i, on the other hand, excludes

agent i: Ni = {j : (i, j) ∈ E, j 6= i}. Using the connectivity established via graph G(V,E)

agents work collaboratively to reach common objective generated by the agreement func-

tion. Agent i has an initial scalar measurement xi(0) and these measurements can be

stacked to form a vector x(0) = [x1(0), . . . , xn(0)]T. The agreement function is a generic

continuous and permutation invariant function of these initial values x(0), A : Rn → R.

The goal of a distributed consensus algorithm is to reach the agreement A(x(0)) iteratively

only using local information. As follows from Definition 2.9, for every agent i its local infor-

mation is enclosed in its neighborhood N[i]. The set of values comprising ith agent’s local

information at iteration t is denoted xN[i]
(t) = {xj(t) : j ∈ N[i]}. The agreement protocol is

said to reach the agreement asymptotically if ‖x(t)−A(x(0))1‖ → 0 as t→∞. The con-

cise definition of a distributed consensus problem corresponding to the above description

can be adopted from [66].

Definition 3.1 (Consensus Problem). For a given agreement function, determine a (dis-

tributed stationary) protocol, that makes the agents asymptotically reach consensus for an

arbitrary initial state.

For agreement functions of the following general structure

A(x(0)) = f

(
n∑
i=1

g(xi(0))

)
, (3.1)

f, g : R → R, the design of distributed consensus algorithms is particularly simple. In

particular, assuming that

dg

dxi
(a) 6= 0,∀a ∈ R (3.2)
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the following protocol leads to a convergent solution [66]:

xi(t) = xi(t− 1) + α
1

dg/dxi(xi(t− 1))

∑
j∈Ni

φ(ϑ[xj(t− 1)]− ϑ[xi(t− 1)]). (3.3)

Here φ, ϑ : R→ R, φ(·) is continuous, locally Lipschitz, odd and strictly increasing; ϑ(·) is

differentiable; and α > 0. protocol (3.3) thus defines a sufficiently general framework for

distributed consensus computations. For example, arithmetic, geometric, harmonic, and

order-p means are all calculable within this framework [66]. Stability conditions leading to

asymptotic convergence of the protocol are discussed in [66].

3.2 Distributed Average Consensus

3.2.1 Distributed Average Consensus Protocol

Protocol (3.3) defines a general framework for distributed consensus computations. A

simpler distributed average consensus problem boils down to the distributed computation of

arithmetic means. This problem arises, e.g., in the case of distributed parameter estimation

in white Gaussian noise, or distributed detection when it is necessary to calculate the log-

likelihood ratios represented by sums. The distributed average consensus problem can thus

be defined as follows.

Definition 3.2 (Average Consensus Problem). For the arithmetic mean agreement func-

tion, determine a (distributed stationary) protocol, that makes the agents asymptotically

reach consensus for an arbitrary initial state.

The arithmetic mean agreement function is simply

Aam(x(0)) =
1

n

n∑
i=1

xi(0). (3.4)

The protocol (3.3) for the arithmetic mean agreement function can be inferred from the

structure of the agreement function. In particular, f(x) = 1/n, g(x) = x, and ϑ(xi) =

ϑ(xj) = ϑi,j lead to the following distributed average consensus update rule:

xi(t) = xi(t− 1) + α
∑
j∈Ni

ϑi,j(xj(t− 1)− xi(t− 1)). (3.5)
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This update rule can be written in the matrix form

x(t) = Wx(t− 1). (3.6)

Matrix W is often called the consensus weight matrix. It follows from (3.5) that the

consensus weight matrix is constrained by the network topology G(V,E) as W ∈ W(V,E),

where the topology constrained set of potential consensus weight matrices is defined as

follows:

W(V,E) = {W ∈ Rn×n : Wi,j = 0 if (i, j) /∈ E} (3.7)

The general sparse structure of the distributed average consensus weight matrix can thus

be defined as follows:

Wi,j =


Wi,j = 0 if (i, j) /∈ E

Wi,j = 1− α
∑

j∈Ni ϑi,j if i = j

Wi,j = αϑi,j otherwise

. (3.8)

To make consensus protocol (3.6) completely decentralized, the distributed weight matrix

construction rule needs to be established. Several such construction rules based on the

relationship to local node degrees (the degree di of node i is the number of its immedi-

ate neighbors, di = |Ni|) are known in the distributed average consensus literature. In

particular, the Maximum Degree (MD) weight design scheme [67] is obtained by setting

α = 1/dmax and ϑi,j = 1, where dmax = maxi∈V di is the maximum degree of the graph.

Sometimes the MD scheme is initialized by setting α = 1/n, i.e. using the maximal possible

degree [68, 69]. The Metropolis-Hastings (MH) weight design scheme [67] is obtained by

setting α = 1 and ϑi,j = 1/max(di, dj).

3.2.2 Randomized Gossip Protocol

The distributed average consensus protocol outlined in the previous section belongs to

the family of synchronous protocols. In the synchronous setting, all nodes wake up at

time instant t, exchange data with their immediate neighbors and perform the consensus

update (3.5). The randomized gossip protocol, on the other hand, is the asynchronous
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protocol. In a typical asynchronous setting only one node, i, wakes up at time instant t and

selects one of its neighbors, j, randomly, according to a prescribed probability distribution

(see e.g. Boyd et al. [14] for details). These two nodes then exchange information and

update their values, xi(t) and xj(t), to their average (xi(t−1)+xj(t−1))/2. The relationship

between the performance of the distributed average consensus and the performance of the

randomized gossip protocols was investigated by Denantes et al. in [70]. The study in [70]

revealed that these protocols have similar performance in terms of the normalized time to

achieve required level of accuracy in a static network scenario. In the case of network with

link failures the distributed average consensus protocol outperformed gossiping protocol in

terms of the number of messages transmitted (communication costs) for the same prescribed

accuracy level. However, this increased robustness of the distributed average consensus

protocol comes at the cost of the need for establishing synchronization. In the rest of the

thesis we concentrate exclusively on the synchronous distributed averaging scenario.

3.2.3 Convergence of Distributed Average Consensus

The convergence conditions for the distributed average consensus protocol (3.6) were stud-

ied by Xiao and Boyd [71]. In the distributed average consensus framework the agreement

function Aam(x(0)) is equal to any element of the average vector x(0):

x(0) =
11T

n
x(0), (3.9)

Where 1 is the vector of all ones having an appropriate size (e.g. in the above equation

it has the same dimension as x(0), n × 1). The average vector is the result of applying

the ideal weight matrix (weight matrix obtained on a complete graph), J = 11T/n, to the

vector of initial states x(0). Thus the distributed average consensus protocol asymptotically

converges to its agreement function Aam(x(0)) if and only if the following holds for W ∈
W(V,E) [71]:

lim
t→∞

Wt = J. (3.10)

The necessary and sufficient conditions for this relation to hold can be summarized in the

following theorem that is cited here from [71] without a proof. Before stating this result we

introduce the definitions of the spectral radius of a matrix [72], the asymptotic convergence
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rate rasym(W) and the step-wise convergence rate rstep(W).

Definition 3.3. Let λ1, λ2, . . . , λn be the (real or complex) eigenvalues of a matrix W ∈
Cn×n. Then its spectral radius ρ(W) is defined as:

ρ(W) = max
i=1,...,n

|λi|

The asymptotic convergence rate

rasym(W) = sup
x(0)6=x(0)

lim
t→∞

(
‖x(t)− x(0)‖2

‖x(0)− x(0)‖2

)1/t

(3.11)

defines the asymptotic convergence time

τasym(W) ,
1

log(1/rasym(W))
, (3.12)

which, asymptotically, corresponds to the number of iterations required to reduce the error

‖x(t)− x(0)‖2 by a factor of e−1 [71]. The step-wise convergence rate

rstep(W) = sup
x(t)6=x(0)

‖x(t+ 1)− x(0)‖2

‖x(t)− x(0)‖2

(3.13)

quantifies the amount of guaranteed, worst-case, error contraction attained at every time

step.

Theorem 3.1 (Xiao and Boyd [71], Theorem 1). The equation (3.10) holds if and only if

1TW = 1T, (3.14)

W1 = 1, (3.15)

ρ(W − J) ≤ 1, (3.16)

where ρ(·) denotes the spectral radius of a matrix. Moreover,

rasym(W) = ρ(W − J) (3.17)

rstep(W) = ‖W − J‖2 (3.18)
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(Here ‖ · ‖2 denotes the spectral norm, or maximum singular value.)

The conditions of Theorem 3.1 are intuitive. The first condition ensures stationarity of

the protocol, i.e. the agreement function is preserved at any iteration:

Aam(x(i)) = Aam(x(j)), ∀i, j ≥ 0. (3.19)

The second condition ensures that the agreement function generates the stationary point

of the protocol, Aam(x(0))1. Finally, the last condition ensures that the associated Markov

chain is irreducible and aperiodic [71] (if W is term-wise non-negative). The distributed

MD and MH weight design schemes mentioned earlier satisfy the conditions of Theorem 3.1

and thus lead to convergent distributed average consensus protocols if the underlying graph

G(V,E) is connected [68] (in a connected graph there is a path from any vertex to any other

vertex).

Theorem 3.1 also identifies the asymptotic convergence rate rasym(W) and the step-wise

convergence rate rstep(W). Using the definition of the step-wise convergence rate rstep(W),

the error at time t can be upper bounded as follows:

‖x(t)− x(0)‖2 ≤ rtstep(W)‖x(0)− x(0)‖2. (3.20)

This relation leads to an upper bound for another important characteristic of the speed of

a distributed average consensus algorithm, namely averaging time.

Definition 3.4 (Averaging time). Averaging time is the smallest total time required to

achieve the prescribed level of accuracy ε while performing the distributed averaging opera-

tion for the worst-case initialization:

Tave(W, ε) , sup
x(0)6=x(0)

inf
t≥0
{t : ||x(t)− x(0)||2 ≤ ε||x(0)− x(0)||2} . (3.21)

For a symmetric convergent weight matrix W (e.g. symmetric weight matrices are

constructed by the MD and MH algorithms on the undirected graph G(V,E), such that

(i, j) ∈ E ⇔ (j, i) ∈ E) the spectral norm is also the spectral radius [71, 72] and thus

using (3.20) and definition of the averaging time the following upper bound on Tave can be
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obtained [14]:

Tave(W, ε) ≤ log ε−1

log r−1
step(W)

=
log ε−1

log ρ(W − J)−1
(3.22)

3.3 Accelerated Distributed Average Consensus

Boyd et al. [14] have shown that for important network topologies — such as the two-

dimensional grid or random geometric graph, which are commonly used to model connec-

tivity in wireless networks — the memoryless distributed averaging (3.6) protocol can be

prohibitively slow.

In the current literature two main approaches to accelerating the convergence of con-

sensus algorithms can be identified: optimizing the weight matrix W [14, 68, 71, 73], and

incorporating memory into the distributed averaging algorithm [69,74–78].

3.3.1 Memoryless Weight Matrix Optimization

The spectral radius of the weight matrix governs the asymptotic convergence rate in mem-

oryless distributed averaging algorithms, so optimizing the weight matrix corresponds to

minimizing the spectral radius, subject to connectivity constraints [14, 68, 71]. In the case

of symmetric weight matrix W minimizing the spectral radius is also equivalent to maxi-

mizing the step-wise convergence rate and minimizing the averaging time. Xiao et al. [71]

formulate the following fastest distributed linear averaging optimization problem:

minimize rstep(W)

subject to W ∈ W(V,E), WT = W, W1 = 1. (3.23)

It turns out that this symmetric fastest distributed linear averaging problem can be cast

as a semi-definite program with the linear matrix inequality constraint:

minimize s : s ≥ 0

subject to − sI �W − J � sI

W ∈ W(V,E), WT = W, W1 = 1, (3.24)
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where � denotes inequality with respect to the cone of symmetric positive semidefinite

matrices. The solution of this convex problem is the weight matrix with fastest asymptotic

convergence rate. The semi-definite program above can be solved efficiently using existing

numerical solvers. Furthermore, Boyd et al. [14] describe a subgradient decentralized algo-

rithm solving this problem using decentralized orthogonal iterations (DOI) [79]. Although

elegant, this approach involves substantial initialization costs: every iteration of the subgra-

dient algorithm involves performing expensive DOI operation. Moreover, the improvement

does not scale in grid or random geometric graph topologies [14] (the averaging time is

improved by a constant factor independent of network size).

3.3.2 Memory Based Consensus Acceleration

A more promising research direction is based on using local node memory. The idea of using

higher-order eigenvalue shaping filters was discussed in [77]. Distributed average consensus

protocols of the following form were considered:

x(t) =
∑
k≥1

W(t, k)x(t− k). (3.25)

Here W(t, k) is a proper n × n matrix kernel. In the first order memory based consensus

protocol the kernel of the following form was proposed:

W(t, k) = I + αA, (3.26)

where A is the connectivity matrix (Ai,j = 1 if (i, j) ∈ E and Ai,j = 0 otherwise). The

optimal value of α was determined:

α = − 2

λ2(A) + λn(A)
. (3.27)

For the second-order framework the following heuristic eigenvalue shaping filter was pro-

posed:

H(z) =
(1 + c)z−1

1 + cz−2
. (3.28)
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The eigenvalues of the second-order system resulting from (3.26) and (3.28) satisfy

λ̃ =


√
c if |λ| ≤ λ0

(1+c)|λ|+
√
λ2(1+c)2−4c

2
if λ0 ≤ |λ| ≤ 1,

(3.29)

where λ0 = 2
√
c/(1 + c). The problem of finding the optimal c was left open, and conver-

gence speed improvement was not analyzed.

In [76] Cao et al. proposed a memory-based acceleration framework for gossip algorithms

where updates are a weighted sum of previous state values (memory registers) and gossip

exchanges. However, Cao et al. [76] provide no solutions or directions for weight vector

design or optimization.

Johansson and Johansson [75] advocate a similar scheme for distributed consensus av-

eraging. The general update rule for the M -tap memory based accelerator described by

Johansson and Johansson [75] isX(t) = ΦX(t− 1)

y(t) = [I 1T ⊗ 0] X(t)
. (3.30)

Here X ∈ RnM×1 is the network-wide delay line and X(0) = 1 ⊗ z for some initialization

z ∈ Rn×1, Φ ∈ RnM×nM is the weight matrix of the memory based protocol, and y ∈ Rn×1

is the output of the distributed average consensus protocol. The Kronecker product ⊗ is

defined as usual for two matrices A ∈ Rm×n and B ∈ Rp×q:

A⊗B =


A1,1B A1,2B . . . A1,nB

A2,1B A2,2B . . . A2,nB

. . . . . . . . . . . .

Am,1B Am,2B . . . Am,nB

 . (3.31)
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Matrix Φ has the following block structure:

Φ =


β1W β2I . . . βM−1I βMI

I 0 . . . 0 0

0 I . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . I 0

 . (3.32)

Johansson and Johansson [75] investigate convergence conditions for this consensus pro-

tocol. For the asymptotic output y(t), t → ∞ to reach the desired agreement function,

Aam(z)1, the following conditions have to be satisfied:

lim
t→∞

Φt =
1

n
1(α11

T . . . αM1T),
M∑
i=1

αi = 1. (3.33)

Indeed, if the previous condition is satisfied then we have

lim
t→∞

y(t) = lim
t→∞

Φt(1⊗ z) =
1

n
1

M∑
i=1

αi1
Tz = Aam(z)1. (3.34)

The main result stating convergence conditions for the memory based accelerated dis-

tributed average consensus developed by Johansson and Johansson [75] can thus be sum-

marized in the following theorem that is cited here without a proof.

Theorem 3.2 (Memory based average consensus convergence conditions, Johansson and

Johansson [75] Theorem 1). The iteration (3.30) satisfies (3.33) if and only if Φ and α

fulfill the following conditions.

1. Φ1 = 1

2. gTΦ = gT, gT = (α11
T . . . αM1T),

M∑
i=1

αi = 1

3. ρ(Φ− 1
n
1gT) < 1

It can be shown [75] that the general matrix (3.32) satisfies the conditions specified

in Theorem 3.2 if, for some βi, such that
∑M

i=1 βi = 1, the αi satisfy the recursion αi =

α1βi+αi+1, where αM+1 = 0. To optimize the performance of the general matrix Johansson
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and Johansson [75] formulate the spectral radius optimization problem constrained by

bilinear inequalities and use standard solvers to find a numerical solution for the optimal

weight vector β. The drawbacks of this approach are threefold. First, the formulated

problem is non-convex. Second, the formulated problem is computationally demanding

and it exhibits poor scalability with respect to both the network size and the memory

size. Finally, Johansson and Johansson [75] have not presented a decentralized approach

for initializing matrix Φ (choosing the appropriate vector β).

Recently, polynomial filtering was introduced for consensus acceleration by Kokiopoulou

and Frossard [69]. In contrast to the approach of Johansson and Johansson [75], polynomial

filtering consists in periodically updating the local state value with the weighted linear

combination of the previous local states. The period is equal to the length of the polynomial

filter. In between these memory-based updates, the state vector is updated with an ordinary

consensus protocol. The order-M polynomial filtering based distributed average consensus

protocol thus has the following form:x(t) = W
M∑
i=0

αix(t−M − 1 + i) if mod (t,M + 1) = 0

x(t) = Wx(t− 1) otherwise

(3.35)

It is obvious from the previous expression that at time instances when mod(t,M + 1) = 0

holds true the performance of the polynomial filter based consensus is determined by the

following accelerated matrix:

Φ[α,W] =
M∑
i=0

αiW
i. (3.36)

Kokiopoulou and Frossard then formulate the following spectral radius optimization prob-

lem to identify optimal vector α for a given W:

minimize s : s ≥ 0

subject to − sI � Φ[α,W]− J � sI

Φ[α,W]1 = 1, (3.37)

The optimal weight vector can then be efficiently determined using numerical solvers since
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Kokiopoulou and Frossard [69] showed that the problem is convex. Kokiopoulou and

Frossard [69] also proposed a heuristic initialization of weight vector α based on the New-

ton’s interpolating polynomial. This initialization is suitable for accelerating distributed

averaging consensus on dynamic topologies, however the performance boost obtained with

this initialization is significantly smaller than that obtained with the optimal one.

The drawbacks of the polynomial filtering approach of Kokiopoulou and Frossard [69]

are as follows. The weight vector optimization program is significantly more complex than

that developed by Xiao et al. [71] for the fastest distributed linear averaging problem. The

distributed solution for the weight optimization problem has not been developed. Although

simulations definitely reveal that the polynomial filtering approach yields performance im-

provement, this performance improvement has not been analyzed and its scaling properties

are not well understood. Finally, there is no proof that the heuristic initialization based on

the Newton’s interpolating polynomial always yields a convergent consensus protocol (or,

alternatively, conditions under witch this protocol is convergent are not established).

An extreme approach to consensus acceleration is the methodology proposed by Sun-

daram and Hadjicostis in [78]. Based on the notion of observability in linear systems,

the algorithm achieves consensus in a finite number of iterations. Each node records the

entire history of values {xi(t)}Tt=0, and after enough iterations, inverts this history to re-

cover the network average. In order to carry out the inversion, each node needs to know a

topology-dependent set of weights. This leads to complicated initialization procedures for

determining these weights. Another drawback is that the memory required at each node

does not scale well: it grows with the network size.

In the next chapter the proposed methodology for the acceleration of distributed aver-

age consensus protocol will be presented. The proposed methodology avoids or alleviates

the major drawbacks of existing approaches. It scales well with the size of the network, pro-

viding substantial gains even for very large networks. The local memory requirements are

small and independent of the network size. We identify analytical expressions for the opti-

mal parameter settings for the proposed method and derive bounds on the convergence rate

improvement it provides. We also specify a fast algorithm for distributed initialization that

has very low overhead in terms of both computational and communication requirements.
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Chapter 4

Predictor Based Accelerated

Distributed Average Consensus

This chapter presents the general predictor-based distributed average consensus accelera-

tion framework, studies the convergence conditions for this framework, identifies the char-

acterization for the averaging time for the general predictor-based accelerated algorithm

and presents analytical optimization and convergence rate improvement analysis results for

the important case of the accelerated consensus with short node memory. The proof of

each presented result appears at the end of the corresponding section.

The main results of this chapter are as follows. For the general acceleration methodology

we have the following contributions.

1. The memory based methodology for the acceleration of the distributed average con-

sensus algorithm based on the mixture of predictor and the outcome of standard

consensus iteration.

2. The theoretical proof of the existence of the convergent configurations of the proposed

memory based acceleration methodology.

3. For the proposed memory based acceleration methodology, the upper bound on the

growth rate of the limiting ε-averaging time for asymptotically small values of ε has

been obtained.

For the memoryless weight matrix optimization based on the proposed methodology we

have the following results.
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1. The optimal value of the mixing parameter for the memoryless acceleration method-

ology.

2. The distributed suboptimal initializations of the mixing parameter.

3. The numerical experiments studying the convergence properties of the memoryless

weight matrix optimization.

For the proposed methodology with short node memory we have the following results.

1. The study of the predictive accelerated average consensus with short node memory

and the value of the optimal mixing parameter for the short memory case.

2. The quantification of the convergence rate of the predictive accelerated average con-

sensus with short node memory.

3. The asymptotically optimal configuration of the predictor weights for the predictive

accelerated average consensus with short node memory.

4. The quantification of the average asymptotic convergence rate improvement achieved

by the accelerated average consensus with short node memory.

5. The practical distributed on-line mixing parameter initialization scheme.

4.1 Predictor Based Accelerated Average Consensus

4.1.1 Problem Formulation

We define a graph G = (V , E) as a 2-tuple, consisting of a set V with |V| = N vertices,

where | · | denotes the cardinality, and a set E with |E| edges. We denote an edge between

vertices i and j as an unordered pair (i, j) ∈ E . The presence of an edge between two

vertices indicates that they can establish bidirectional noise-free communication with each

other. We assume that transmissions are always successful and that the topology is fixed.

We assume also connected network topologies; the connectivity pattern of the graph is

given by the n× n adjacency matrix A = [Aij], where

Aij =

{
1 if (i, j) ∈ E
0 otherwise

. (4.1)
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Denote the neighborhood of node i by Ni = (j ∈ V : (i, j) ∈ E}, and the degree of node i

by di , |Ni|.
We consider the set of nodes of a network (vertices of the corresponding graph), each

with an initial real valued scalar xi(0), where i = 1, 2, . . . , n. Let 1 denote the vector of

ones with dimension defined by the context. The goal is to develop a distributed iterative

algorithm that computes, at every node in the network, the value x = (n)−11Tx(0). In

this chapter we focus on a particular class of iterative algorithms reducing to the following

recursion

x(t+ 1) = Wx(t) (4.2)

where x(t) denotes the state vector. The weight matrix, W, needs to satisfy the following

necessary and sufficient conditions to ensure asymptotic average consensus [80]:

W1 = 1, 1TW = 1T, ρ(W − J) < 1 (4.3)

Algorithms have been identified for generating weight matrices that satisfy the required

convergence conditions if the underlying graph is connected, e.g. Maximum-degree and

Metropolis weights [68, 80].

In the next section, we describe our approach to accelerate the consensus algorithm.

The approach is based on the observation that in the standard consensus procedure [71]

the individual node state values converge in a smooth fashion. This suggests that it is

possible to predict with good accuracy a future local node state based on past and current

values. Combining such a prediction with the consensus operation thus has the potential to

drive the overall system state closer to the true average at a faster rate than the standard

consensus algorithm. Effectively, the procedure bypasses redundant states.

The next section describes the proposed acceleration methodology. The general form

of the acceleration method is first discussed and two important results characterizing the

convergence of the proposed methodology are presented. The primary parameter in the

proposed algorithm is the mixing parameter, α, which determines how much weight is

given to the predictor and how much to the consensus operator. For the general case,

we derive sufficient conditions on this parameter to ensure convergence to the average

and characterize the limiting averaging time necessary to compute the average within the

prescribed accuracy level.
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4.1.2 Acceleration Methodology

Computational resources available at the nodes are often scarce and it is desirable that the

algorithms designed for distributed signal processing are computationally inexpensive. We

are therefore motivated to use a linear predictor, thereby retaining the linear nature of the

consensus algorithm.

In the proposed acceleration, we modify the state-update equations at a node to become

a linear combination of the predictor and the value derived by application of the consensus

weight matrix:

xi(t) = αxP
i (t) + (1− α)xW

i (t) (4.4a)

xW
i (t) = Wiixi(t− 1) +

∑
j∈Ni

Wijxj(t− 1) (4.4b)

xP
i (t) = θMx

W
i (t) +

M−1∑
j=1

θjxi(t−M + j) (4.4c)

Here θ = [θ1, . . . , θM ] is the vector of predictor coefficients. The schematic diagram depict-

ing the proposed predictor-based consensus is shown in Fig. 4.1.

The network-wide equations can be expressed in matrix form by defining

WM [α] , (1− α + αθM)W + αθM−1I (4.5)

X(t− 1) , [x(t− 1)T,x(t− 2)T,x(t− 3)T, . . . ,x(t−M + 2)T,x(t−M + 1)T]T (4.6)

where I is the identity matrix of the appropriate size and

ΦM [α] ,


WM [α] αθM−2I αθM−3I . . . αθ2I αθ1I

I 0 0 . . . 0 0

0 I 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . I 0

 (4.7)

Here all the components of the block matrix are n× n. We adopt the convention that for
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Fig. 4.1 The schematic diagram depicting the proposed predictor-based con-
sensus

t < 0, x(t) = x(0). The update equation is then simply

X(t) = ΦM [α]X(t− 1). (4.8)

We adopt a time-invariant extrapolation procedure. The advantage of this approach

is that the coefficients can be computed off-line as they do not depend on the data. We

employ the best linear least-squares k-step predictor that extrapolates the current state

xi(t) of the ith node k time steps forward. Choosing higher k implies a more aggressive

prediction component to the algorithm. The prediction coefficients become (see the detailed

derivation in Appendix A.1):

θ = B†Tc (4.9)
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where

B ,

[
−M + 1 . . . −1 0

1 . . . 1 1

]T

, (4.10)

c , [k, 1]T and B† is the Moore-Penrose pseudoinverse of B. Appendix A.1 provides general

expressions for the parameters θ.

It can be seen from (4.9) that xP
i (t) is a linear combination of M previous local consensus

values. Thus the consensus acceleration mechanism outlined in equations (4.4a–4.4c) is fully

local if it is possible to find an optimum value of α in (4.4a) that does not require any global

knowledge.

4.1.3 Convergence of Predictor-based Consensus

In this section we provide a result that characterizes a range of α values that achieve

convergence to the consensus for arbitrary, finite, values of M . Let λi denote the ith

ranked eigenvalue. The main result is the following theorem:

Theorem 4.1. If W is symmetric, satisfies the conditions for asymptotic consensus (4.3),∑M
i=1 θi = 1, and

0 ≤ α < min

(
1− |λn|

−|λn|+ |θM ||λn|+
∑M−1

j=1 |θj|
,

1− |λ2|
−|λ2|+ |θM ||λ2|+

∑M−1
j=1 |θj|

)
(4.11)

then the general accelerated consensus algorithm achieves asymptotic convergence.

The first set of conditions in the theorem is satisfied by the choice of W and predictor

weights we have outlined. The condition (4.11) specifies the bounds on the mixing param-

eter α. This is only a sufficient condition for convergence, but it does indicate that there

is a range of values of α for every M that leads to asymptotic convergence. Significant

improvements in the rate of convergence are generally achieved by α values outside the

identified range due to the conservative nature of the proof.

While the previous result establishes the existence of a convergent solution for the

proposed acceleration methodology, the next result quantifies the averaging time necessary

to attain the prescribed accuracy level. As defined in Section 3.2.3, the ε-averaging time

is the time required to achieve the prescribed level of accuracy ε while performing the
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distributed averaging operation:

Tave(W, ε) , sup
X(0)6=0

inf
t≥0

{
t : ||WtX(0)− JX(0)||2 ≤ ε||X(0)− JX(0)||2

}
, (4.12)

In the case where W is symmetric, ρ(W−J) also defines an upper bound on the averaging

time (see Section 3.2.3). The update matrix we propose, (4.7), is not symmetric and it may

not even be contracting. The results of [71] do not apply for such matrices, and the spectral

radius ρ(W− J) cannot, in general, be used to specify an upper bound on averaging time.

In fact, since ΦM [α] is not symmetric, ΦM [α]t does not even converge to J as t → ∞, as

in the memoryless setting. We can, however, establish a result for the limiting ε-averaging

time, which is the averaging time for asymptotically small ε.

Before stating our first result we must introduce some notation. For now, assume we are

given a matrix Φ ∈ Rn×n with Φ = limt→∞Φt. We will address conditions for existence of

the limit below. For a given initialization vector X(0) ∈ Rn, let X̃(0) = ΦX(0), and define

the set of non-trivial initialization vectors X0,Φ , {X(0) ∈ Rn : X(0) 6= X̃(0)}. Since we

have not yet established that X̃(0) = X(0) , JX(0), we keep the discussion general and

use the following definition of the averaging time:

Tave(Φ, ε) , sup
X(0)∈X0,Φ

inf
t≥0

{
t : ||X(t)− X̃(0)||2 ≤ ε||X(0)− X̃(0)||2

}
. (4.13)

We now prove a result relating the spectral radius and the ε-averaging time for general non-

symmetric averaging matrices Φ, which we will then apply to our particular construction,

ΦM [α].

Theorem 4.2. Let Φ ∈ Rn×n be given, with limit limt→∞Φt = Φ, and assume that

ρ(Φ−Φ) > 0. Then we have for any ε ∈ (0, 1]:

lim
ε→0

Tave(Φ, ε)

log ε−1
<

1

log ρ(Φ−Φ)−1
. (4.14)

According to this result, the averaging time required to approach the average within ε-

accuracy grows at the rate at most 1/ log ρ(Φ−Φ)−1 as ε→ 0 for operators Φ. Minimizing

the spectral radius is thus a natural optimality criterion for such operators. In order to apply

the above result, we must establish that ΦM [α] satisfies the conditions of Theorem 4.2. In

doing so, we will also show that for Φ = ΦM [α], the limit ΦX(0) = JX(0), so our approach
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indeed converges to the average consensus.

We will demonstrate the applicability of Theorem 4.2 under the assumption
∑M

i=1 θi =

1. To demonstrate the applicability of Theorem 4.2 to the matrix ΦM [α] we can use

Theorem 3.2 (a result due to Johanson and Johanson [75], Theorem 1). According to

Theorem 3.2, the necessary and sufficient conditions for the consensus algorithm of the form

ΦM [α] to converge to the average are (JJ1) ΦM [α]1 = 1; (JJ2) gTΦM [α] = gT for some

vector gT = [β11
T, . . . , βM−11

T] with weights satisfying
∑M−1

i=1 βi = 1; and (JJ3) ρ(ΦM [α]−
1
n
1gT) < 1. If these conditions hold then we also have ΦM [α] = 1

n
1gT [75] implying

X̃(0) = X(0).

Condition (JJ1) is easily verified after straightforward algebraic manipulations using

the definition of ΦM [α] in (4.7), the assumption that
∑M

i=1 θi = 1, and recalling that W

satisfies W1 = 1 by design.

To address condition (JJ2), we can write the linear system induced by this condition,

gTΦM [α] = gT, and the requirement
∑M−1

i=1 βi = 1:

β1(1 + α(θM − 1)) + β2 = β1

αθM−2β1 + β3 = β2

αθM−3β1 + β4 = β3

· · ·

αθ2β1 + βM−1 = βM−2

αθ1β1 = βM−1

β1 + β2 + . . .+ βM−1 = 1 (4.15)

Rearranging the above system we obtain

βM−1 = αθ1β1

βM−2 = α(θ1 + θ2)β1

βM−3 = α(θ1 + θ2 + θ3)β1

· · ·

β1 + β2 + . . .+ βM−1 = 1 (4.16)
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Thus setting βi according to the solution of the above system,

βi =


1

1+α
∑M−2
j=1 (M−1−j)θj

if i = 1

α
∑M−i
j=1 θj

1+α
∑M−2
j=1 (M−1−j)θj

if i ≥ 2
, (4.17)

shows that (JJ2) can be satisfied by choosing the values of βi as above. It is also easy to

verify condition (JJ2) by plugging these values into the definition of g, and using the same

properties of ΦM [α], the θi’s, and W as previously.

Condition (JJ3) holds for convergent matrices ΦM [α]. Theorem 4.1 establishes the exis-

tence of non-trivial convergent configurations of the proposed matrix, implying ρ(ΦM [α]−
Φ) < 1 (stronger results are provided for the matrix Φ3[α] studied in Section 4.3). Thus

we conclude that for the properly configured matrix ΦM [α] Theorem 3.2 holds implying

X̃(0) = ΦX(0) = JX(0) and Theorem 4.2 holds establishing the limiting scaling law (4.14)

for the ε-averaging time of the memory based consensus acceleration methodology.

4.1.4 Proofs

Proof of Theorem 4.1

We commence by introducing an operator V:

V =
WM [α]

1−
∑M−2

i=1 αθi
=

(1− α + αθM)W + αθM−1I

1−
∑M−2

i=1 αθi
(4.18)

Denoting ci = αθi, we can write the first component of network-wide state recursion X(t) =

ΦM [α]X(t− 1) as:

x(t) = (1− c1 − c2 − . . .− cM−2)Vx(t− 1) + cM−2x(t− 2) + . . .+ c1x(t−M + 1) (4.19)

where we set x(t) = x(0) for any t < 0. Let us denote S = (1−c1−c2− . . .−cM−2)||V−J||
and β = S+ |c1|+ |c2|+ . . .+ |cM−2|. Here, as before, J denotes the averaging operator. The

following lemma provides the platform for the proof of the theorem, identifying sufficient

conditions on α that guarantee |β| < 1.

Lemma 4.1. If W is symmetric, satisfies the conditions for asymptotic consensus (4.3),
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∑M
i=1 θi = 1, and

0 ≤ α < min

(
1− |λn|

−|λn|+ |θM ||λn|+
∑M−1

j=1 |θj|
,

1− |λ2|
−|λ2|+ |θM ||λ2|+

∑M−1
j=1 |θj|

)
(4.20)

then |β| < 1.

Proof. Using the triangle inequality and the definitions of S and V, we can formulate a

bound on |β|:

|β| =

∣∣∣∣∣(1− c1 − c2 − . . .− cM−2)||V − J||2 + α
M−2∑
j=1

|θj|

∣∣∣∣∣ (4.21)

≤ ||(1− α + αθM)W + αθM−1I||2 + α
M−2∑
j=1

|θj|. (4.22)

The last inequality is true since by our assumption W is symmetric and thus ||V− J||2 =

ρ(V − J). We have for the first eigenvector of W, 1:

(V − J)1 =
(1− α + αθM)W + αθM−1I− (1− α

∑M−2
i=1 θi)J

1− α
∑M−2

i=1 θi
1

=
(1− α + αθM) + αθM−1 − (1− α

∑M−2
i=1 θi)

1− α
∑M−2

i=1 θi

= 0.

On the other hand, for any other eigenvector of W, v⊥1, and its respective eigenvalue λ

we have

(V − J)v =
(1− α + αθM)W + αθM−1I− (1− α

∑M−2
i=1 θi)J

1− α
∑M−2

i=1 θi
v

=

[
(1− α + αθM)λ+ αθM−1 − 0

]
v

1− α
∑M−2

i=1 θi
,

showing that the transition in (4.22) is valid. Thus if we ensure that (4.22) is true, we

guarantee that |β| < 1. We can reformulate this inequality using the symmetry of W, I, J
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and the definition of the spectral radius of a matrix:

|(1− α + αθM)λi + αθM−1|+ α

M−2∑
j=1

|θj| < 1, ∀|λi| < 1 (4.23)

Again applying the triangle inequality, we see that this relationship is satisfied if:

|1− α||λi|+ α

(
|θM ||λi|+

M−1∑
j=1

|θj|

)
< 1, ∀|λi| < 1 (4.24)

Upon expansion of the modulus |1− α|, and with algebraic manipulation, we arrive at:

0 < α < J (λi) ,
1− |λi|

−|λi|+ |θM ||λi|+
∑M−1

j=1 |θj|
, ∀|λi| < 1 (4.25)

Now, let us examine the properties of the upper bound J (λi) in (4.25). After some

algebraic manipulations the derivative of J (λi) for the two cases λi > 0 and λi < 0 takes

the following form:

∂

∂λi
J (λi : λi > 0) =

1−
∑M

j=1 |θj|(
−λi + |θM |λi +

∑M−1
j=1 |θj|

)2

∂

∂λi
J (λi : λi < 0) =

∑M
j=1 |θj| − 1(

λi − |θM |λi +
∑M−1

j=1 |θj|
)2

(4.26)

Taking into account the fact that
∑M

j=1 |θj| ≥ 1 we can make the following conclusion:

∂

∂λi
J (λi : λi > 0) ≤ 0, ∀λi

∂

∂λi
J (λi : λi < 0) ≥ 0, ∀λi

(4.27)

Thus J (λi) is nondecreasing when λi < 0 and non-increasing when λi > 0. Hence if for

any λj, λk, and λi satisfying |λj| > |λi| and |λk| > |λi| there exists an α∗ such that

0 < α∗ < min (J (λj),J (λk)) (4.28)
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then 0 < α∗ < J (λi) and (4.11) follows. To ensure that such α∗ always exists for any

|λj| < 1 and |λk| < 1 we note that J (λj) > 0, ∀|λj| < 1. This follows because 1−|λj| > 0.

Moreover,

−|λi|+ |θM ||λi|+
M−1∑
j=1

|θj| ≥ −|λi|+ |λi|
M∑
j=1

|θj| (4.29)

≥ −|λi|+ |λi| = 0. (4.30)

We now present the proof of Theorem 4.1.

Proof of Theorem 4.1. We first show that if the conditions of the theorem hold, then the

average is preserved at each time step. To do this, it is necessary and sufficient to show that((
1−

∑M−2
i=1 ci

)
V +

∑M−2
i=1 ciI

)
1 = 1 and 1T

((
1−

∑M−2
i=1 ci

)
V +

∑M−2
i=1 ciI

)
= 1T. We

have:((
1−

M−2∑
i=1

ci

)
V +

M−2∑
i=1

ciI

)
1 = (1− α + αθM)W1 + αθM−1I1 + α

M−2∑
i=1

θi1 (4.31)

=

(
1− α + α

M∑
i=1

θi

)
1 = 1 (4.32)

The proof of the condition 1T
((

1−
∑M−2

i=1 ci

)
V +

∑M−2
i=1 ciI

)
= 1T is analogous and

omitted.

We now show that x(t) converges to the average Jx(0). Our method of proof is induc-

tion. We show that ||x(t)− Jx(0)||2 ≤ β`+1||x(0)− Jx(0)||2 where ` = b(t− 1)/(M − 1)c.
Lemma 1 implies that if the assumptions of the theorem are satisfied then |β| < 1, so the

limit as t and consequently ` approaches infinity is 0. Initially, we show that the result

holds for ` = 0, or equivalently, t = 1 . . .M − 1. We have, using the triangle inequality and
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employing the fact that (V − J)J = 0:

||x(1)− Jx(0)||2 =

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(Vx(0)− Jx(0)) +

M−2∑
i=1

ci(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(V − J)(x(0)− Jx(0)) +

M−2∑
i=1

ci(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣
2

≤

((
1−

M−2∑
i=1

ci

)
||V − J||2 +

M−2∑
i=1

|ci|

)
||x(0)− Jx(0)||2

= β||x(0)− Jx(0)||2

Similarly:

||x(2)− Jx(0)||2 =

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(Vx(1)− Jx(0)) +

M−2∑
i=1

ci(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣
2

(4.33)

≤

(
1−

M−2∑
i=1

ci

)
||V − J||2||x(1)− Jx(0)||2 +

M−2∑
i=1

|ci|||x(0)− Jx(0)||2

(4.34)

≤ ||x(0)− Jx(0)||2

(
β

(
1−

M−2∑
i=1

ci

)
||V − J||2 +

M−2∑
i=1

|ci|

)
(4.35)

≤ β||x(0)− Jx(0)||2, (4.36)

where to obtain the last inequality we use the fact that |β| < 1. Using the same observations
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we can show the following for any t such that 2 < t < M :

||x(t)− Jx(0)||2 =

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(Vx(t− 1)− Jx(0)) (4.37)

+
t−1∑
i=2

cM−i(x(t− i)− Jx(0)) +
M−1∑
i=t

cM−i(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣ (4.38)

≤

(
1−

M−2∑
i=1

ci

)
||V − J||2||x(t− 1)− Jx(0)||2 (4.39)

+
t−1∑
i=2

|cM−i|||x(t− i)− Jx(0)||2 +
M−1∑
i=t

|cM−i|||x(0)− Jx(0)||2

(4.40)

≤ ||x(0)− Jx(0)||2

(
β

(
1−

M−2∑
i=1

ci

)
||V − J||2 + β

t−1∑
i=2

|cM−i|+
M−1∑
i=t

|cM−i|

)
(4.41)

≤ ||x(0)− Jx(0)||2

((
1−

M−2∑
i=1

ci

)
||V − J||2 +

M−2∑
i=1

|ci|

)
(4.42)

≤ β||x(0)− Jx(0)||2, (4.43)

By almost identical manipulations, we can show that if the result holds for ` − 1 and

t = (`− 1)(M − 1) + 1, . . . , (`− 1)(M − 1) +M − 1, then it holds for ` and t = `(M − 1) +

1, . . . , `(M − 1) +M − 1.

Proof of Theorem 4.2

The following definition will be used below:

||Φ||X(0) ,
||Φ(X(0)− X̃(0))||2
||X(0)− X̃(0)||2

. (4.44)

The limit limt→∞Φt = Φ exists if and only if (see [81]) Φ can be expressed in the form

Φ = T

[
Iκ 0

0 Z

]
T−1 (4.45)
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where Iκ is the identity matrix of dimension κ, Z is a matrix with ρ(Z) < 1 and T is an

invertible matrix. It follows that in the limit we have [75],

Φ = lim
t→∞

Φt = T

[
Iκ 0

0 0

]
T−1. (4.46)

By linear algebra, ΦΦ = ΦΦ = Φ and ΦtΦ = Φ. Using these facts it is straightforward

to show that (Φ − Φ)t = Φt − Φ, implying that (Φ − Φ)t(X(0) − X̃(0)) = X(t) − X̃(0).

Taking the norm of both sides we have

||X(t)− X̃(0)||2 = ||(Φ−Φ)t(X(0)− X̃(0))||2 = ||(Φ−Φ)t||X(0)||(X(0)− X̃(0))||2,
(4.47)

and therefore Tave(Φ, ε) = sup
X(0)∈X0,Φ

inf
t∈N

{
t : ||(Φ−Φ)t||X(0) ≤ ε

}
. Given any X(0) ∈ X0,Φ,

it follows that ‖(Φ−Φ)t‖X(0) ≤ supX∈X0,Φ
‖(Φ−Φ)t‖X. Moreover,

sup
X∈X0,Φ

‖(Φ−Φ)t‖X ≤ ε (4.48)

implies that

‖(Φ−Φ)t‖X(0) ≤ ε. (4.49)

Let C(Φ, ε) denote the set of t for which (4.48) holds, and let B(X(0),Φ, ε) denote the

set of t for which (4.49) holds. Since (4.48) implies (4.49), C(Φ, ε) ⊆ B(X(0),Φ, ε), and

consequently, inf B(X(0),Φ, ε) ≤ inf C(Φ, ε), from which it follows that Tave(Φ, ε) ≤ t∗(ε),

with

t∗(ε) , inf C(Φ, ε) = inf

{
t : sup

X∈X0,Φ

‖(Φ−Φ)t‖X ≤ ε

}
. (4.50)

By the definition of t∗(ε) in (4.50):[
sup

X(0)∈X0,Φ

||(Φ−Φ)t
∗(ε)||1/t

∗(ε)
X(0)

]t∗(ε)
≤ ε, (4.51)

and so, noting that by the definition of the induced norm, sup
X(0)∈X0,Φ

||(Φ − Φ)t||X(0) =
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||(Φ−Φ)t||2, after taking the logarithm on both sides of (4.51), we have1

t∗(ε) ≥ log(ε)

log ||(Φ−Φ)t∗(ε)||1/t
∗(ε)

2

. (4.52)

Since [72] ρ(Φ−Φ) ≤ ||(Φ−Φ)t
∗(ε)||1/t

∗(ε)
2 for any t∗(ε), it follows that t∗(ε) ≥ log(ε)/ log ρ(Φ−

Φ), from which it is clear that t∗(ε)→∞ as ε→ 0.

Now, by the definition of t∗(ε) in (4.50) we also have ||(Φ−Φ)t
∗(ε)−1||2 > ε, implying

(t∗(ε)− 1) log ||(Φ−Φ)t
∗(ε)−1||1/(t

∗(ε)−1)
2 > log(ε), (4.53)

and thus

Tave(Φ, ε) ≤ t∗(ε) <
log(ε)

log ||(Φ−Φ)t∗(ε)−1||1/(t
∗(ε)−1)

2

+ 1. (4.54)

Dividing through by | log(ε)|, taking the limit as ε→ 0, and moving the limit on the right

under the log, we obtain

lim
ε→0

Tave(Φ, ε)

| log(ε)|
< lim

ε→0

−1

log ||(Φ−Φ)t∗(ε)−1||1/(t
∗(ε)−1)

2

+ lim
ε→0

1

| log(ε)|

<
−1

log lim
ε→0
||(Φ−Φ)t∗(ε)−1||1/(t

∗(ε)−1)
2

. (4.55)

Since t∗(ε)→∞ as ε→ 0 (see above), we may employ Gelfand’s formula [72], limt→∞ ||(Φ−
Φ)t||1/t = ρ(Φ−Φ), to complete the proof:

lim
ε→0

Tave(Φ, ε)

| log(ε)|
<

1

log ρ(Φ−Φ)−1
. (4.56)

1Since we are interested in asymptotic behavior of the type ε→ 0, there is no loss of generality in suppos-
ing that ε is sufficiently small so that the following holds: log(ε) < 0, log sup

X(0)∈X0,Φ

||(Φ−Φ)t∗(ε)||1/t∗(ε)
X(0) < 0,

and log sup
X(0)∈X0,Φ

||(Φ−Φ)t∗(ε)−1||1/(t∗(ε)−1)
X(0) < 0
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4.2 Memoryless Distributed Matrix Optimization

In this section we analyze the case when the algorithm (4.4) is based only on the current

node states. For this case, we derive the mixing parameter that leads to the optimal

improvement of worst-case asymptotic convergence rate. Evaluating the optimal value

requires knowledge of the second-largest and smallest eigenvalues, which can be difficult

to determine. We therefore derive a bound on the optimal α value which requires less

information; setting α to this bound results in close-to-optimal performance.

The predictor under consideration is a one-step extrapolator based on the current node

state and the result of the standard consensus operator, i.e., k = 1 and M = 2. According

to the expression for the predictor weights provided in the previous section, θ = [−1, 2]T,

so xP
i (t) can be expressed as follows:

xP
i (t) = 2xW

i (t)− xi(t− 1). (4.57)

We can estimate the gradient of the state with respect to time as ∇̂xi(t) , xW
i (t)−xi(t−1).

Thus (4.57) can be rewritten as:

xP
i (t) = xW

i (t) + ∇̂xi(t). (4.58)

The one-step predictor hence updates the current state in the gradient direction, to within

estimation error.

Substituting (4.57) into (4.4a) we obtain the following expression for xi(t):

xi(t) = α(2xW
i (t)− xi(t− 1)) + (1− α)xW

i (t) (4.59)

= xi(t− 1)((1 + α)Wii − α) + (1 + α)
∑
j∈Ni

Wijxj(t− 1). (4.60)

This can be written in matrix form as:

x(t) = Φ2[α]x(t− 1) (4.61)

where Φ2[α] is the weight matrix (as a function of α):

Φ2[α] = (1 + α)W − αI (4.62)
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It is obvious from the previous equation that the predictor based weight matrix Φ2[α] has

the same eigenvectors as W and its eigenvalues are related to the eigenvalues of the original

matrix W via the relationship:

λi[α] = (1 + α)λi − α i = 1, . . . , n (4.63)

The following proposition describes some properties of the weight matrix Φ2[α]. We show

that if the original weight matrix W satisfies the conditions necessary for asymptotical

convergence, then Φ2[α] also guarantees asymptotical convergence to consensus under some

mild conditions.

Proposition 4.1. Suppose W satisfies the necessary conditions for the convergence of the

standard consensus algorithm. Moreover, let λ1 ≥ λ2 ≥ . . . ≥ λn denote the eigenvalues

associated with eigenvectors u1,u2, . . . ,un and let λi[α] denote the ranked eigenvalues of

Φ2[α]. Then Φ2[α] satisfies the required convergence conditions if

0 ≤ α <
1 + λn
1− λn

. (4.64)

The proof of Proposition 4.1 implies that the eigenvalues of the predictor based weight

matrix Φ2[α] experience a left shift with respect to the eigenvalues of the original weight

matrix W when α > 0. Moreover, it is easy to show that the ordering of the eigenvalues

does not change during the shift:

λi ≤ λj ⇒ λi[α] ≤ λj[α] (4.65)

for all i, j, α ≥ 0, where i and j are associated with some eigenvectors ui, uj of W. The

second largest and the smallest eigenvalues of matrix Φ2[α] always correspond to the second

largest and the smallest eigenvalues of matrix W, and their values are always smaller. Using

this property, together with the definition of spectral radius, it is possible to formulate the

problem of optimizing the mixing parameter to achieve the fastest asymptotic worst-case

convergence rate as a convex optimization problem. In the following subsection, we outline

this formulation and provide the closed-form solution.
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4.2.1 Optimization of The Mixing Parameter

Recall that α is the mixing parameter that determines the relative influences of the standard

consensus iteration and the predictor in (4.4a). In the following, we consider optimization

of α to achieve the fastest possible worst-case asymptotic convergence rate for the M = 2,

k = 1 case of the accelerated consensus algorithm. The optimal value of the mixing

parameter is provided in the following theorem.

Theorem 4.3. The M = 2, k = 1 case of the proposed accelerated consensus algorithm has

the fastest asymptotic worst-case convergence rate if the value of the mixing parameter α

equals the following optimum value:

α∗ =
λn + λ2

2− λn − λ2

(4.66)

where λi denotes the eigenvalues of the weight matrix W.

As expected, the optimal mixing parameter α∗ satisfies the following:

α∗ <
1 + λn

1− λ2 + 1− λn
(4.67)

<
1 + λn
1− λn

(4.68)

where both the first and second lines follow from the fact that 0 ≤ λ2 < 1, respectively.

We can conclude that the optimal mixing parameter satisfies the required convergence

conditions for all cases.

Remark 4.1. Algebraic manipulations lead to the following equality:

|λn[α∗]| = λ2 − λn
2− λ2 − λn

= λ2[α∗]. (4.69)

The optimal mixing parameter thus induces a shift in the eigenvalues so that the magnitudes

of the second-largest and smallest eigenvalues of Φ2[α] are balanced. A similar effect is

observed in the optimization conducted in [71]. It should be noted however, that even with

the optimal choice of α the proposed algorithm for M = 2 case cannot outperform the global

optimization proposed in [71].
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4.2.2 Convergence Rate Analysis

To see to what extent the proposed one-step extrapolation algorithm yields performance

improvement over the conventional consensus procedure, we consider the ratio of the spec-

tral radius of the corresponding matrices. This ratio gives the lower bound on performance

improvement:

γ[α] ,
ρ(W − J)

ρ(Φ2[α]− J)
=

λ2

max{λ2[α], |λn[α]|}
(4.70)

The following proposition considers the provided convergence rate improvement over the

standard consensus algorithm when the optimal mixing parameter is utilized.

Proposition 4.2. In the optimal case, i.e., when α = α∗, the performance improvement

factor is given by

γ[α∗] =
λ2(2− λ2 − λn)

λ2 − λn
. (4.71)

Proof. Substituting α∗ into (4.70) and taking into account the fact that |λn[α∗]| = λ2[α∗],

after some algebraic manipulations, yield the expression for γ[α∗].

Proposition 4.2 provides the expression for the asymptotic convergence rate resulting

from the matrix optimization based on the proposed methodology. Although this expression

indicates that the gain can be significant, there is no guarantee that any gain is achieved.

For example, if λ2 = −λn we have γ[α∗] = 1 indicating the absence of gain. In Section 4.3 we

analyze a much more general instance of the predictor based accelerated average consensus.

The guaranteed and significant performance gain is proved for this more general setting.

4.2.3 Suboptimal Choice of Mixing Parameter

Although (4.66) provides an expression for the optimum mixing factor resulting in the

fastest asymptotic convergence rate, the calculation of this optimum value requires knowl-

edge of the second and the last eigenvalues of matrix W. This in turn either requires

knowledge of W or some centralized mechanism for calculation and distribution of the

eigenvalues of W. In many practical situations such information may not be available.

Therefore it is of interest to derive a suboptimum setting for α that results in less perfor-

mance gain but requires considerably less information at each node.
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Proposition 4.3. The memoryless (M=2) predictor based distributed average consensus

has asymptotic worst-case convergence rate faster than that of conventional consensus if

the value of mixing parameter is in the following range:

0 < α ≤ α∗. (4.72)

Proof. The asymptotic worst-case convergence rate of algorithm (4.4) is faster than that

of conventional consensus algorithm if and only if γ[α] > 1 ⇒ ρ(Φ2[α] − J) < ρ(W − J).

We can rewrite this condition in the following form:
λ2(1 + α)− α

λ2
< 1

α(1− λn)− λn
λ2

< 1
(4.73)

indicating that {
α(λ2 − 1) < 0

α < λ2 + λn
1− λn

. (4.74)

Observing that λ2 − 1 < 0, dividing the first part of (4.74) by λ2 − 1 and subtracting the

same expression from the denominator of the second part we obtain the tightened version

of (4.74):

0 < α <
λn + λ2

2− λn − λ2

(4.75)

Finally, noting that the right hand side of this expression is equal to α∗ concludes the

proof.

We strive to identify a setting for α that guarantees an improvement in the convergence

rate but does not require global knowledge of the weight matrix. Based on Proposition 4.3,

if we lower-bound α∗, then setting α to this lower-bound will guarantee improvement in

convergence rate. In order to lower-bound α∗, we need to lower-bound λ2 + λn. The next

proposition provides such a bound in terms of the trace of the weight matrix W.

Proposition 4.4. If the weight matrix W satisfies the convergence conditions and its

eigenspectrum is a convex function of the eigenvalue index, namely,

λi ≤
n− i
n− 2

λ2 +
i− 2

n− 2
λn, 2 ≤ i ≤ n (4.76)
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then

λ2 + λn ≥ ξ ,
2(tr(W)− 1)

n− 1
(4.77)

where tr(·) denotes the trace of its argument.

Proof. Recall that the sum of eigenvalues of a matrix is equal to its trace:

n∑
i=1

λi = tr(W) (4.78)

Noting that λ1 = 1 and rearranging the summation give

n∑
i=2

λi = tr(W)− 1. (4.79)

Since, by assumption, the eigenspectrum is a convex function of the eigenvalue index, we

have:
(λ2 + λn)(n− 1)

2
≥

n∑
i=2

λi (4.80)

Substituting (4.79) into (4.80) results in the desired bound.

Proposition 4.4 leads to an upper bound for a setting of the mixing parameter α in

order to achieve convergence at an improved rate:

α ≤ ξ

2− ξ
, Λ(ξ). (4.81)

The advantage of this setting is that it is much simpler to calculate the trace tr(W)

in a distributed fashion than derive the eigenvalues λ2 and λn, as required for determining

the optimum mixing parameter. The lower bound depends linearly on the average of the

diagonal terms of the matrix W, which can be calculated using a standard consensus

procedure. Although the result is useful and leads to a simpler mechanism for setting the

mixing parameter, the convexity assumption is strong.

Under the assumption of the positivity of the eigenvalues of W another bound can be

obtained.

Proposition 4.5. If the weight matrix W satisfies the convergence conditions and its
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eigenvalues satisfy λi ≥ 0,∀i ≥ 1, then we have

λ2 + λn ≥
tr(W)− 1

n− 1
. (4.82)

Proof. The proof follows the lines of the proof of Proposition 4.4 and uses the fact that

under the current assumption λ2 +λn ≥ λi,∀i ≥ 2 and thus (λ2 +λn)(n−1) ≥
∑n

i=2 λi.

4.2.4 Random Geometric Graphs: Choice of the Mixing Parameter

We now consider the special, but important, case of random geometric graphs, which can

act as good topological models of wireless sensor networks, one of the promising application

domains for consensus algorithms. For this case, we show that there exists an asymptotic

upper bound Λ(ξ∞) for α that can be calculated off-line. The random geometric graph is

defined as follows: n nodes (vertices) are distributed in an area D according to a point

process with known spatial distribution px,y(x, y). Two nodes i and j are connected, i.e.

Aij = 1, if the Euclidean distance ri,j between them is less then some predefined connectivity

radius rc. The indicator function I{r2
i,j ≤ r2

c} = 1 whenever r2
i,j ≤ r2

c holds.

We consider weight matrices W constructed according to a rule of the following form:{
Wij = I{r2

i,j ≤ r2
c}L(di, dj), i 6= j

Wij = 1−
∑N

j=1,j 6=iWij, i = j
(4.83)

where L(di, dj) is some function of the local connectivity degrees di and dj of nodes i and

j satisfying:

n∑
j=1

I{r2
i,j ≤ r2

c}L(di, dj) = 1

|L(di, dj)| < 1

(4.84)

Let us introduce random variables ζi,n defined by:

ζi,n =
n∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj) . (4.85)

Assume that L(di, dj) is chosen so that these variables are identically distributed with mean
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E{ζi,n} = E{ζ} and covariance structure satisfying

∑
n∈N+

σn
n

√
Rn−1 +

σ2
n

n2
<∞ (4.86)

where Rn and σn are defined as follows:

Rn ,
1

n2

n∑
i=1

n∑
j=1

E{(ζi,n − E{ζi,n})(ζj,n − E{ζj,n})} (4.87)

σ2
n , E{(ζi,n − E{ζi,n})2} (4.88)

For such a graph and weight matrix, the following theorem provides an asymptotic upper

bound on the value of mixing parameter α in terms of the expectation E{ζ}.

Theorem 4.4. Let W be the n×n weight matrix constructed according to (4.83). Suppose

L(di, dj) is chosen so that the random variables ζi,n defined by (4.85) are identically dis-

tributed with finite mean E{ζ} and covariance structure satisfying (4.86). Then the lower

bound on λ2 + λn given by Proposition 4.4 almost surely converges to

ξ∞ , lim
n→∞

ξ = 2(1− E{ζ}) a.s. (4.89)

and defines an asymptotic upper bound on α as n→∞ given by the following expression:

α ≤ Λ(ξ∞) =
ξ∞

2− ξ∞
a.s. (4.90)

The above result relies on the assumption that L(di, dj) satisfies the conditions discussed

above. The following proposition states that this assumption holds for the popular max-

degree weight design scheme [68]. The max-degree weights are very simple to compute

and are well suited for distributed implementation. In order to determine the weights, the

nodes need no information beyond their number of neighbors.

Proposition 4.6. If the weights in the weight matrix W are determined using the max-

degree weight approach, then assumptions of Theorem 4.4 hold and the asymptotic bound

ξ∞ on λ2 + λn satisfies:

ξMD
∞ = 2(1− p) a.s. (4.91)
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and

Λ(ξMD
∞ ) =

1− p
p

. (4.92)

where p is the probability that two arbitrary nodes in a network are connected.

We note that p can be analytically derived for a given connectivity radius if the spatial

distribution of the nodes is uniform (see Appendix A.2). Proposition 4.6 implies that

for a random geometric graph with max-degree weights α should be chosen to satisfy

α ≤ (1 − p)/p. This result indicates that for highly connected graphs, which have a large

value of p, a small α is desirable. For these graphs, standard consensus achieves fast

mixing, so the prediction becomes less important and should be assigned less weight. In

the case of a sparsely connected graph (small p), a large α is desirable. For these graphs,

the convergence of standard consensus is slow because there are few connections, so the

prediction component of the accelerated algorithm should receive more weight.

4.2.5 Numerical Examples

In our simulation experiments, we consider a set of n nodes uniformly distributed on the

unit square. The nodes establish bidirectional links to each other if the Euclidean distance

between them is smaller than the connectivity radius,
√

log n/n. Initial node measurements

are generated as x = θ + n where θ = 1 and n is Gaussian distributed with σ = 1. Then,

we regularize the data such that the average of all the values, x, equals to 1. All simulation

results are generated based on 500 trials (a different random graph is generated for each

trial).

First, we compare the asymptotic convergence time (3.12) results of the algorithm we

propose for the theoretically analyzed M = 2 and k = 1 case, against the algorithms

presented in [71]. Fig. 4.2 compares the convergence times of the algorithms for the M = 2

and k = 1 case as a function of the number of nodes in the network. In Fig. 4.2(a),

the maximum-degree weight matrix is used as the consensus operator for the standard

and accelerated consensus algorithms; in Fig. 4.2(b), the MH weight matrix acts as the

consensus operator. It is clear from Fig. 4.2 that although our algorithm is extremely

simple and does not require any global optimization, it achieves performance improvements

approaching those of the optimum algorithm from [71]. It outperforms the best constant

algorithm when used in conjunction with the MH weight matrix. When MD is utilized

in the proposed algorithm, its asymptotic convergence time is very similar to that of the
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(a) The convergence times for algorithms based
on maximum-degree weight matrices as a func-
tion of the number of nodes in the network.
Following algorithms were simulated. Stan-
dard Consensus (MD): 4; Accelerated consen-
sus with optimal α (MD-O2): +; Accelerated
consensus with suboptimal α (MD-S2): ×; Ac-
celerated consensus with asymptotic subopti-
mal α (MD-SA2): ◦; Best Constant [71] (BC):
♦; and Optimal Weight Matrix [71] (OPT): �
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(b) The convergence times for algorithms
based on MH weight matrices as a function
of the number of nodes in the network. The
following algorithms were simulated: Standard
Consensus (MH): 4; Accelerated consensus
with optimal α (MH-O2): +; Accelerated con-
sensus with suboptimal α (MH-S2): ×; Best
Constant [71] (BC): ♦; and Optimal Weight
Matrix [71] (OPT): �

Fig. 4.2 The asymptotic convergence time versus the number of nodes in
the network. In (a), the standard and accelerated consensus algorithms are
derived from the maximum-degree weight matrix; in (b) they are derived from
the MH weight matrix.

optimized best constant approach from [71] for the optimal choice of α. Fig. 4.2(a) also

suggests that the asymptotic upper bound on α derived for a random geometric graph

with maximum-degree weight matrix is applicable when n is as low as 20. The two curves

corresponding to the bound based on the trace of weight matrix (4.81) (represented by ×)

and the asymptotic upper bound developed in Proposition 4.6, (4.90) (represented by ◦)
are almost indistinguishable.

Since the performance of all algorithms is superior when the MH weight matrix is

employed, the remainder of our simulations focus on this case. Fig. 4.3 shows the mean

squared error (MSE) as a function of time for the standard, accelerated, best-constant and

optimal weight matrix consensus algorithms. Three versions of the accelerated algorithm

are depicted, including the M = 2, k = 1 case with optimal and suboptimal α, and the

M = 3, k = 1 case. The number of nodes is 25 in Fig. 4.3(a) and 50 in Fig. 4.3(b).

The formal methodology for choosing α in the setting M = 3 will be developed in
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(a) MSE as a function of time step when the
number of nodes n = 25
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(b) MSE as a function of time step when the
number of nodes n = 50

Fig. 4.3 Mean-squared-error (MSE) versus time step for the proposed and
standard consensus algorithm. The left panel depicts the results when the
number of nodes in the network n = 25, and the right panel depicts the
results when n = 50. The following algorithms were simulated. Standard
consensus (MH): 4; Accelerated consensus, M = 2 with optimal α (MH-O2):
+; Accelerated consensus M = 2 with suboptimal α (MH-S2): ×; Accelerated
consensus M = 3 (MH-O3): B; Best Constant (BC): ♦; and optimal weight
matrix (OPT): �

Section 4.3. For the comparative purposes we present the following results based on the

empirical selection of α: for each trial, we evaluate the MSE for each value of α ranging

from 0 to 1 at intervals of 0.1 and chose the α that results in the lowest MSE at time step 50.

We have observed that the random generation of the data has very little influence on the α

value that is selected; it is the random graph and hence the initial W matrix that governs

the optimal value of α. This suggests that it is possible to develop a data-independent

procedure to choose an optimal α value. Fig. 4.3 indicates that the accelerated consensus

algorithm with M = 2 and k = 1 achieves step-wise MSE decay that is close to that

obtained using the optimal weight matrix developed in [71]. The accelerated algorithm

with M = 3 and k = 1 significantly outperforms the optimal weight matrix [71] in terms

of step-wise MSE decay. The M = 3 case permits much more accurate prediction, which

leads to the significant improvement in performance.

In the following Section 4.3 we analyze the case M = 3: we derive the analytical

expression for the asymptotically worst-case optimal α and analyze the improvement in

the performance that can be obtained using the proposed methodology. It turns out that
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in the more interesting case M = 3, we can obtain a significant gain that scales well with the

size of the network and we can derive theoretical guarantees of performance improvement.

4.2.6 Proofs

Proof of Proposition 4.1

In order to ensure asymptotical convergence, we need to prove the following properties:

Φ2[α]1 = 1, 1TΦ2[α] = 1T, ρ(Φ2[α]− J) < 1 (4.93)

It is clear from (4.62) that Φ2[α] has the same eigenvectors as W. Eigenvalues of Φ2[α]

are connected to the eigenvalues via (4.63) and we conclude that λ1[α] = 1. Thus the two

leftmost equations in (4.93) hold if W satisfies asymptotic convergence conditions. Now,

let us consider the spectral radius of Φ2[α]− J defined as ρ(Φ2[α]− J):

ρ(Φ2[α]− J) , max{λ2[α], |λn[α]|}. (4.94)

For α ≥ 0, the eigenvalues experience a left shift since λi[α] = α(λi − 1) + λi and (λi − 1)

is always negative. It is also straightforward to see that λi < λj ⇒ λi[α] < λj[α], ∀i, j.
This implies that λn[α] < λ2[α] < 1, so to ensure that ρ(W−J) < 1, we just need to make

sure that λn[α] = α(λn − 1) − α > −1. Rearrangement leads to α < 1+λn
1−λn , the condition

expressed in (4.64).

Proof of Theorem 4.3

We need to show that α = α∗ is the global minimizer of ρ(Φ2[α]− J). Hence we define the

following optimization problem:

α∗ = arg min
α
ρ(Φ2[α]− J) = arg min

α
max
i 6=1

(|λ(i)[α]|). (4.95)

However, this problem can be converted into a simpler one:

α∗ = arg min
α

max(|λn − α(1− λn)|, |λ2 − α(1− λ2)|) (4.96)
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since λn[α] is the smallest and λ2[α] is the largest eigenvalue of (Φ2[α]−J). Let us introduce

f(α) = λn − α(1− λn) and g(α) = λ2 − α(1− λ2). Clearly |f(α)| and |g(α)| are piecewise

linear convex functions, with knots occurring where f(α) = 0 and g(α) = 0. Let these

knots be αf = λn/(1− λn) and αg = λ2/(1− λ2). Since λn < λ2 the magnitude of slope of

f(α) exceeds that of g(α) and αf < αg. Consider h(α) = max(|f(α)|, |g(α)|), which is also

piecewise linear and convex with knots α− and α+ occurring where f(α−) = g(α−) and

f(α+) = −g(α+) respectively. Since h(α) is piecewise linear and convex with h(∞) = ∞
and h(−∞) =∞ its global minimum occurs at one of the knots. It follows that the knots

of h(α) satisfy α− < αf < α+ < αg. The fact that |g(α)| is decreasing if α < αg implies

g(α+) < g(α−). Hence the global minimum of h(α) occurs at α = α+. Thus solving

f(α+) = −g(α+) for α+ gives the solution for α∗ = α+

Proof of Theorem 4.4

By the construction of the weight matrix W (4.83) we can transform the expression for ξ

(4.77) as follows:

ξ =
2

n− 1
(tr(W)− 1)

=
2n

n− 1

1

n

n∑
i=1

(
1−

n∑
j=1,j 6=i

Wij

)
− 2

n− 1

=
2(n− 1)

n− 1
− 2n

n− 1

1

n

n∑
i=1

n∑
j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)

= 2− 2

n− 1

n∑
i=1

ζi,n. (4.97)

In order to obtain the last equality we have used the definition (4.85). Note that I{r2
i,j ≤ r2

c}
is a Bernoulli random variable; denote the probability P{I{r2

i,j ≤ r2
c} = 1} by p. Note that

an analytical expression for p can be derived if the nodes are uniformly distributed (see

Appendix A.2); for other distributions, numerical integration can be employed to determine

p.

We require that L(·) is such that the ζi,n are identically distributed with finite mean

and (4.86) holds. It is straightforward to show that both mean and variance of random
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variables ζi,n are bounded under our assumptions (4.84) on L(di, dj):

|E{ζi,n}| =

∣∣∣∣∣E
{

n∑
j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)

}∣∣∣∣∣
≤ sup

∣∣∣∣∣
n∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)

∣∣∣∣∣ = 2. (4.98)

The transition involves moving the expectation outside the modulus, replacing it by a

supremum, and then application of the bounds in (4.84). Moreover,

σ2
n = E{(ζi,n − E{ζi,n})2}

≤ E{ζ2
i,n}

= E

{
n∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)
n∑

k=1,k 6=i

I{r2
i,k ≤ r2

c}L(di, dk)

}

≤ sup

∣∣∣∣∣
n∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)

∣∣∣∣∣ sup

∣∣∣∣∣
n∑

k=1,k 6=i

I{r2
i,k ≤ r2

c}L(di, dk)

∣∣∣∣∣ = 4. (4.99)

Taking into account (4.98) and (4.99), we can consider the following centered square

integrable random process:

χi,n = ζi,n − E{ζi,n}, i = 1 . . . n (4.100)

We note that if the correlation function of this random process satisfies ergodicity as-

sumptions implied by (4.86), we can invoke the Strong Law of Large Numbers stated by

Poznyak [82] (Theorem 1) to show that

1

n

n∑
i=1

χi,n −→ 0. a.s. (4.101)

In turn, this along with the assumption E{ζi,n} = E{ζ} implies that according to (4.100)

1

n− 1

n∑
i=1

ζi,n −→ E{ζ}. a.s. (4.102)
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Combining (4.102) with (4.97) leads us to the following conclusion:

ξ∞ = lim
n→∞

{
2− 2

n− 1

n∑
i=1

ζi,n

}
= 2(1− E{ζ}) a.s. (4.103)

Finally, noting (4.81) concludes the proof.

Proof of Proposition 4.6

Recall that the maximum degree weight design scheme employs the following settings:

L(di, dj) , n−1 for (i, j) ∈ E and i 6= j and Wii = 1 − di/n (see Section 3.2.1, page 19;

and [68,69]). With these choices, ζi,n takes the following form:

ζi,n =
1

n

n∑
j=1,j 6=i

I{r2
i,j ≤ r2

c} (4.104)

Taking the expectation of ζi,n gives us:

E{ζi,n} =
1

n

n∑
j=1,j 6=i

E{I{r2
i,j ≤ r2

c}} =
n− 1

n
p, 0 ≤ p ≤ 1 (4.105)

Now, consider the double averaged [82] correlation function (4.87) of the random process

defined in (4.100)

Rn =
1

n2

n∑
i=1

n∑
j=1

E{(ζi,n − E{ζi,n})(ζj,n − E{ζj,n})}

=
1

n2

n∑
i=1

n∑
j=1

E

{(
1

n

n∑
k=1,k 6=i

I{r2
i,k ≤ r2

c} −
n− 1

n
p

)(
1

n

n∑
`=1,` 6=j

I{r2
j,` ≤ r2

c} −
n− 1

n
p

)}

=
1

n4

n∑
i=1

n∑
j=1

n∑
k=1,k 6=i

n∑
`=1,` 6=j

E
{
I{r2

i,k ≤ r2
c}I{r2

j,` ≤ r2
c}
}
− (n− 1)2

n2
p2

Let us examine the quadruple sum in (4.106). There are four possible cases to analyze:

1. i = j and k = `: The number of occurrences of this event is n(n−1). The expectation
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can be evaluated:

E
{
I{r2

i,k ≤ r2
c}2
}

= p2 + p(1− p) = p (4.106)

2. i = j and k 6= `: The number of occurrences of this event is equal to n(n− 1)(n− 2).

It is not necessary to evaluate the expectation directly. It is sufficient to note that this

expectation corresponds to the probability of three arbitrary nodes in the network

being connected. This probability is less than or equal to the probability of two

arbitrary nodes being connected. For some p′ such that 0 ≤ p′ ≤ p(1− p), we have:

E
{
I{r2

i,k ≤ r2
c}I{r2

i,` ≤ r2
c}
}

= p2 + p′ (4.107)

3. i 6= j and k = `: This case is analogous to the preceding case.

4. i 6= j and k 6= `: The number of occurrences of this event is equal to n(n − 1)(n2 −
3n + 3). The expectation is easy to evaluate using the independence of the random

variables involved. The expectation corresponds to the probability of two independent

randomly selected pairs of nodes being connected:

E
{
I{r2

i,k ≤ r2
c}I{r2

j,` ≤ r2
c}
}

= p2 (4.108)

The above analysis leads to the following bound on the double averaged correlation

function:

Rn =
1

n4

(
n(n− 1)(p2 + p(1− p)) + 2n(n− 1)(n− 2)(p2 + p′)

)
− (n− 1)2

n2
p2

=
(n− 1)2

n2
p2 − (n− 1)2

n2
p2 +

n(n− 1)

n4
p(1− p) +

2n(n− 1)(n− 2)

n4
p′

<
p(1− p)
n2

+
2p′

n

<
p(1− p)
n2

+
2p(1− p)

n

= p(1− p)2n+ 1

n2
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Now we can use (4.109) and (4.99) to show that the series (4.86) converges. Indeed,

∑
n∈N+

σn
n

√
Rn−1 +

σ2
n

n2
<
∑
n∈N+

2
√

2
√
p(1− p)√

n(n− 1)
+

4

n2
. (4.109)

The series on the right hand side of (4.109) converges, which implies the convergence of

the series in (4.86).

Since (4.86) is satisfied, we can apply Theorem 4.4 with (4.105) to derive (4.91). The

result (4.92) follows immediately from the definition of Λ(ξ) in (4.81).

4.3 Accelerated Average Consensus with Short Node Memory

The simplest case of local memory is two taps (a single tap is equivalent to storing only the

current value, as in standard distributed averaging), and this is the case we consider in this

section. For two taps of memory, prediction at node i is based on the previous state value

xi(t− 1), the current value xi(t), and the value achieved by one application of the original

averaging matrix, i.e. xW
i (t+ 1) = Wiixi(t) +

∑
j∈NiWijxj(t). The state-update equations

at a node become a combination of the predictor and the value derived by application of

the consensus weight matrix (this is easily extended for predictors with longer memories;

see [74, 75]). In the two-tap memory case, we have:

xi(t+ 1) = αxP
i (t+ 1) + (1− α)xW

i (t+ 1) (4.110a)

xW
i (t+ 1) = Wiixi(t) +

∑
j∈Ni

Wijxj(t) (4.110b)

xP
i (t+ 1) = θ3x

W
i (t+ 1) + θ2xi(t) + θ1xi(t− 1). (4.110c)

Here θ = [θ1, θ2, θ3] is the vector of predictor coefficients.

The network-wide equations can then be expressed in matrix form by defining

W3[α] , (1− α + αθ3)W + αθ2I, (4.111)

X(t) , [x(t)T,x(t− 1)T]T, (4.112)
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where I is the identity matrix of the appropriate size, and

Φ3[α] ,

[
W3[α] αθ1I

I 0

]
.

Each block of the above matrix has dimensions n×n. We also define x(−1) = x(0) so that

X(0) = [x(0)Tx(0)T]T. The update equation is then simply X(t+ 1) = Φ3[α]X(t).

For the two-tap memory case, the predictor coefficients based on the least-squares design

described in Section 4.1.2 are identified as θ = B†Tc, where

B ,

[
−2 −1 0

1 1 1

]T

, (4.113)

c , [1, 1]T. This choice of predictor coefficients satisfies the technical conditions on θ in

Theorems 4.1 and 4.2: θ1 + θ2 + θ3 = 1. This choice of predictor coefficients also implies

θ3 ≥ 1, θ2 ≥ 0.

4.3.1 Convergence of the Accelerated Distributed Average Consensus with

Short Node Memory

The scaling properties of the averaging time for the general weight matrices were identified

in Theorem 4.2. In order to apply this result, we must establish that Φ3[α] satisfies the

conditions of Theorem 4.2. In doing so, we will also show that (i) for Φ = Φ3[α], the

limit Φ3[α]X(0) = JX(0), so our approach indeed converges to the average consensus,

and (ii) that the limiting averaging time is characterized by a function of ρ(Φ3[α] − J),

which motivates choosing α to optimize this expression. (Recall, in this setting J is the

2n× 2n matrix with all entries equal to 1/2n.) Note that in the following proposition, the

conditions on θ are technical conditions that ensure convergence is achieved. Three factors

motivate our belief that these are not overly-restricting: (i) these conditions are satisfied

if we employ the least-squares predictor weights design strategy of Section 4.1.2; (ii) the

conditions are relatively natural for a linear predictor that is based on an estimate of slope;

(iii) in Section 4.3.3 we show that the choice of weights does not have a significant effect

on the convergence properties. The condition on α is necessary for Φ3[α]t to have a limit

as t→∞, as will be established in Section 4.3.7 (see page 83).
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Proposition 4.7. Let Φ3[α] be defined as in (4.113) and assume that W satisfies condi-

tions (4.3) for asymptotic convergence, θ1 + θ2 + θ3 = 1, θ3 ≥ 1, θ2 ≥ 0, and α ∈ [0,−θ−1
1 ).

Then:

(a) Φ3[α] = limt→∞Φ3[α]t exists, with Φ3[α]X(0) = JX(0) for all X(0) defined in (4.112),

(b) ρ(Φ3[α]−Φ3[α]) > 0, and

(c) lim
ε→0

Tave(Φ3[α],ε)
log ε−1 < 1

log ρ(Φ3[α]−J)−1 .

4.3.2 Optimal Mixing Parameter

According to the previous result, the averaging time required to approach the average

within ε-accuracy grows at the rate at most 1/ log ρ(Φ3[α]−J)−1 as ε→ 0. Minimizing the

spectral radius ρ(Φ3[α]− J) is thus a natural optimality criterion. The following theorem

establishes the optimal setting of α for a given weight matrix W, as a function of λ2(W),

the second largest eigenvalue of W.

Theorem 4.5 (Optimal mixing parameter). Suppose W satisfies conditions (4.3) for

asymptotic convergence and assume θ3 + θ2 + θ1 = 1 and θ3 ≥ 1, θ2 ≥ 0. Suppose further

that |λn(W)| ≤ |λ2(W)|, where the eigenvalues λ1(W), . . . , λn(W) are labeled in decreasing

order. Then the solution of the optimization problem

α? = arg min
α
ρ(Φ3[α]− J) (4.114)

is given by the following:

α? =
−((θ3 − 1)λ2(W)2 + θ2λ2(W) + 2θ1)− 2

√
θ2

1 + θ1λ2(W) (θ2 + (θ3 − 1)λ2(W))

(θ2 + (θ3 − 1)λ2(W))2

(4.115)

Here the conditions on θ are the same as in Proposition 4.7. The condition on the

weight matrix, |λn(W)| ≤ |λ2(W)|, significantly reduces the complexity of the proof. Most

distributed algorithms for constructing weight matrices (e.g., MH or max-degree) lead to

W that satisfy the condition, but they are not guaranteed to do so. We can ensure that the

condition is satisfied by applying a completely local adjustment to any weight matrix. The

mapping W 7→ 1/2(I + W) transforms any stochastic matrix W into a stochastic matrix
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with all positive eigenvalues [14]; this mapping can be carried out locally, without any

knowledge of the global properties of W, and without affecting the order-wise asymptotic

convergence rate as n→∞.

4.3.3 Convergence Rate Analysis

We begin with our main result for the convergence rate of two-tap predictor-based acceler-

ated consensus. Theorem 4.6 indicates how the spectral radius of the accelerated operator

Φ3[α] is related to the spectral radius of the foundational weight matrix W (in terms of

upper bounds on these quantities). Since the asymptotic convergence time is governed by

the spectral radius, this relationship characterizes the improvement in convergence rate

that can be obtained.

Theorem 4.6 (Convergence rate). Suppose the assumptions of Theorem 4.5 hold. Suppose

further that the original matrix W satisfies ρ(W−J) ≤ 1−Ψ(n) for some function Ψ : N→
(0, 1) of the network size n. Then the matrix Φ3[α?] satisfies ρ(Φ3[α?]− J) ≤ 1−

√
Ψ(n).

Proof. According to the discussion in the proof of Theorem 4.5 (see page 83), we have

ρ(Φ3[α?]− J)

= λ∗2(Φ3[α?])| = (α?|θ1|)1/2

=

[
−((θ3 − 1)λ2

2(W) + θ2λ2(W) + 2θ1)− 2
√
θ2

1 + θ1λ2(W) (θ2 + (θ3 − 1)λ2(W))

(θ2 + (θ3 − 1)λ2(W))2 |θ1|

]1/2

.

In order to prove the claim, we consider two cases: λ2(W) = 1 − Ψ(n), and λ2(W) <

1−Ψ(n).

First, we suppose that λ2(W) = 1−Ψ(n) and show that ρ(Φ3[α?]−J)2−(1−
√

Ψ(n))2 ≤
0. Denoting Ψ(n) = δ and substituting λ2(W) = 1− δ and θ1 = 1− θ2 − θ3, we obtain

ρ(Φ3[α?]− J)2 − (1−
√

Ψ(n))2 = −
(√

δ − 1
)2

×
(θ3 − 1) (δ2 − δ) + 2

√
δ (θ3 + θ2 − 1)− 2

√
δ (θ2 + (2− δ) (θ3 − 1)) (θ3 + θ2 − 1)

[(2− δ)δ + 1](1− θ3)− (1 + δ)θ2 − 2
√
δ (θ3 + θ2 − 1) ((θ3 − 1)(2− δ) + θ2)

.

It is clear from the assumptions that the expressions under square roots are non-negative.

Furthermore, the denominator is negative since 1− θ3 < 0, θ2 > 0 and δ ∈ (0, 1). Finally,
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note that (θ3 − 1) (δ2− δ) ≤ 0 and 2
√
δ (θ3 + θ2 − 1) ≥ 0. Thus, to see that the numerator

is non-positive, observe that

[
√
δ (θ3 + θ2 − 1)]2 −

[√
δ (θ2 + (2− δ) (θ3 − 1)) (θ3 + θ2 − 1)

]2

= (δ − 1)δ(θ3 − 1)(θ3 + θ2 − 1) ≤ 0. (4.116)

Thus, we have ρ(Φ3[α?]−J)2−(1−
√

Ψ(n))2 ≤ 0, implying that ρ(Φ3[α?]−J) ≤ 1−
√

Ψ(n)

if λ2(W) = 1−Ψ(n).

Now suppose λ2(W) < 1 − Ψ(n). We have seen in Lemma 4.3 that α∗i [λi(W)] is an

increasing function of λi(W), implying α∗2[λ2(W)] ≤ α∗2[1− Ψ(n)]. Since ρ(Φ3[α?]− J) =

(α?|θ1|)1/2 = (α∗2[λ2(W)]|θ1|)1/2 is an increasing function of α∗2[λ2(W)], the claim of theorem

follows.

In order to explore how fast the spectral radius, ρ(Φ3[α?]− J) =
√
−α?θ1, goes to one

as n→∞, we can take its asymptotic Taylor series expansion:

ρ(Φ3[α∗]− J) = 1−

√
2(θ3 − 1) + θ2

θ3 − 1 + θ2

√
Ψ(n) +O(Ψ(n)). (4.117)

From this expression, we see that the bound presented in Theorem 4.6 correctly captures

the convergence rate of the accelerated consensus algorithm. Alternatively, leaving only

two terms in the expansion above, ρ(Φ3[α∗]− J) = 1− Ω(
√

Ψ(n)), we see that the bound

presented is rate optimal in Landau notation.

We can also use (4.117) to provide guidelines for choosing asymptotically optimal pre-

diction parameters θ3 and θ2. In particular, it is clear that the coefficient γ(θ2, θ3) =√
[2(θ3 − 1) + θ2]/[θ3 − 1 + θ2] should be maximized to minimize the spectral radius ρ(Φ3[α?]−

J). It is straightforward to verify that setting θ2 = 0 and θ3 = 1 + ε for any ε > 0 sat-

isfies the assumptions of Theorem 4.5 and also satisfies γ(0, 1 + ε) > γ(θ2, 1 + ε) for any

positive θ2. Since γ(0, 1 + ε) =
√

2 is independent of ε (or θ3) we conclude that setting

(θ1, θ2, θ3) = (−ε, 0, 1 + ε) satisfies the assumptions of Theorem 4.5 and asymptotically

yields the optimal limiting ε-averaging time for the proposed approach, as n→∞.
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4.3.4 Processing Gain Analysis

Next, we investigate the gain that can be obtained by using the accelerated algorithm in the

M = 3 case. We consider the ratio τasym(W)/τasym(Φ3[α∗]) of the asymptotic convergence

time of the standard consensus algorithm using weight matrix W and the asymptotic

convergence time of the proposed accelerated algorithm. This ratio shows how many times

fewer iterations, asymptotically, the optimized predictor-based algorithm must perform to

reduce error by a factor of e−1.

If the network topology is modeled as random (e.g., a sample from the family of random

geometric graphs), we adopt the expected gain G(W) = E{τasym(W)/τasym(Φ3[α?])} as a

performance metric, where Φ3[α∗] is implicitly constructed using the same matrix W. The

expected gain characterizes the average improvement obtained by running the algorithm

over many realizations of the network topology. In this case the spectral radius, ρ(W−J),

is considered to be a random variable dependent on the particular realization of the graph.

Consequently, the expectations in the following theorem are taken with respect to the

measure induced by the random nature of the graph.

Theorem 4.7 (Expected gain). Suppose the assumptions of Theorem 4.5 hold. Suppose

further that the original matrix W satisfies E{ρ(W − J)} = 1 − Ψ(n) for some function

Ψ : N→ (0, 1) of the network size n. Then G(W) = 1/
√

Ψ(n).

Proof. First, condition on a particular realization of the graph topology, and observe from

the definition of τasym(·) that

τasym(W)

τasym(Φ3[α?])
=

log ρ(Φ3[α?]− J)

log ρ(W − J)
. (4.118)

Next, fixing ρ(W − J) = 1− ψ, where Ψ(n) = E{ψ}, and using Theorem 4.6, we have

τasym(W)

τasym(Φ3[α?])
≥ log(1−

√
ψ)

log(1− ψ)
. (4.119)

Let f(ψ) = log(1−
√
ψ)/ log(1− ψ). Taking the Taylor series expansion of f(ψ) at ψ = 0,

we obtain

f(ψ) =
1√
ψ

+
1

2
− 1

6
ψ1/2 − 1

20
ψ3/2 − . . . . (4.120)
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Noting that ψ > 0 we conclude that the following holds uniformly over ψ ∈ [0, 1]: f(ψ) ≤
1√
ψ

+ 1
2
. At the same time, taking the Taylor series expansions of the numerator and

denominator of f(ψ), we obtain

f(ψ) =

√
ψ + ψ

2
+ ψ3/2

3
+ ψ2

4
+ ψ5/2

5
+ . . .

ψ + ψ2

2
+ ψ3

3
+ . . .

. (4.121)

Noting that 1/6 + 1/3 = 1/2, 2/15 + 1/5 = 1/3, we can express this as

f(ψ) =
1√
ψ

√
ψ + ψ

2
+ ψ3/2

3
+ ψ2

4
+ ψ5/2

5
+ . . .

√
ψ + ψ3/2

6
+ ψ3/2

3
+ 2ψ5/2

15
+ ψ5/2

5
+ . . .

, (4.122)

and using the fact that 1/2ψ ≥ 1/6ψ3/2, 1/4ψ2 ≥ 2/15ψ5/2 , . . . uniformly over ψ ∈ [0, 1],

we conclude that f(ψ) ≥ 1√
ψ

. Thus, 1√
ψ
≤ f(ψ) ≤ 1√

ψ
+ 1

2
. Finally, observe that ∂2

∂ψ2ψ
−1/2 =

3/4ψ−5/2 > 0 if ψ > 0, implying that 1/
√
ψ is convex. To complete the proof we take the

expectation with respect to graph realizations and apply Jensen’s inequality to obtain

E
{

τasym(W)

τasym(Φ3[α?])

}
≥ E

{
1√
ψ

}
≥ 1√

E {ψ}
. (4.123)

We note that there is no loss of generality in considering the expected gain since, in the

case of a deterministic network topology, instead of taking the expectation with respect to

a non-trivial graph distribution, we can operate with the distribution in the form of delta

function and results will still hold since they are based on the deterministic derivations in

Theorems 4.5 and 4.6.

For a chain graph (path of n vertices) the eigenvalues of the normalized graph Laplacian

L are given by λi(L) = 1 − cos(πi/(n − 1)), i = 0, 1, . . . , n − 1 [83]. It is straightforward

to verify that for the MH weight matrix a similar expression holds: λi(WMH) = 1/3 +

2/3 cos(π(i− 1)/n), i = 1, 2, . . . , n. Thus, in this case, ρ(WMH − J) = 1/3 + 2/3 cos(π/n).

For large enough n this results in ρ(WMH − J) ≈ 1 − π2

3
1
n2 + O(1/n4). Using the same

sequence of steps used to prove Theorem 4.7 above without taking expectations, we see that

for the chain topology, the improvement in asymptotic convergence rate is asymptotically

lower bounded by n; i.e., G(W) = Ω(n). Similarly, for a network with two-dimensional grid



4 Predictor Based Accelerated Distributed Average Consensus 68

topology, taking W to be the transition matrix for a natural random walk on the grid (a

minor perturbation of the MH weights) it is known [84] that (1−λ2(W))−1 = Θ(n). Thus,

for a two-dimensional grid, the proposed algorithm leads to a gain of G(W) = Ω(n1/2).

This discussion suggests that the following result may also be useful in characterizing

the improvement in asymptotic convergence rate obtained by using the proposed algorithm.

Corollary 4.1. Suppose that assumptions of Theorem 4.7 hold and suppose in addition

that ρ(W− J) = 1−Θ( 1
nβ

) then the improvement in asymptotic convergence rate attained

by the accelerated algorithm is G(W) = Ω(nβ/2).

4.3.5 Initialization Heuristic: Decentralized Estimation of λ2(W)

Under our assumptions, the optimal value of the mixing parameter depends only on the

values of predictor coefficients and the second largest eigenvalue of initial matrix W. In this

section we introduce a decentralized procedure for estimating λ2(W). Since we assume the

predictor weights, θ, and weight matrix W are fixed and specified, this is the only parameter

that remains to be identified for a fully decentralized implementation of the algorithm.

Estimation of λ2(W) is a straightforward exercise if we employ the method of DOI proposed

for distributed spectral analysis in [79] and refined for distributed optimization applications

in [14].

Algorithm 1 presents the proposed specialized and streamlined version of DOI, which

is only used to calculate the second-largest eigenvalue of the consensus update matrix W.

The main idea of DOI is to repeatedly apply W to a random vector v0, with periodic

normalization and subtraction of the estimate of the mean, until vK = WKv0 converges to

the second-largest eigenvector of W. Then, we estimate the second-largest eigenvalue by

calculating ||WvK ||/||vK || for a valid matrix norm ‖·‖. Previous algorithms for DOI [14,79]

have normalized in step 6 by the `2 norm of vk, estimated by K iterations of consensus, and

step 9 previously required an additional K iterations to calculate ‖WVK‖2 and ‖vK‖2. In

addition, because the initial random vectors in [14,79] are not zero-mean, these algorithms

must apply additional consensus operations to eliminate the bias (otherwise vK converges to

1). Previous algorithms thus have O(K2) complexity, where K is the topology-dependent

number of consensus iterations needed to achieve accurate convergence to the average value.

For example, for a random geometric graph, one typically needs K ∝ n.

The main innovations of Algorithm 1 are in line 2, which ensures that the initial ran-
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Algorithm 1: Spectral radius estimation (Input: foundational weight matrix W)

Choose random vector v ;1

Set v0 = Wv − v ; Generate zero-mean random vector2

for k = 1 to K do3

vk = Wvk−1 ; Apply W to converge to second-largest eigenvector4

if k mod L = 0 then5

vk = vk/||vk||∞ ; Normalize by supremum norm every L iterations6

endif7

endfor8

Let λ̂2(W) = ‖WvK‖∞/‖vK‖∞ ;9

dom vector is zero mean, in line 6, where normalization is done (after every L applications

of the consensus update) using the supremum norm, and line 9, where the supremum

norm is also used in lieu of the `2 norm (based on the Gelfand’s formula [72] we have

limK→∞ ‖WvK‖∞/‖vK‖∞ = ρ(W−J)). The maximum entry of the vector vK can be cal-

culated using a maximum consensus algorithm, wherein every node updates its value with

the maximum of its immediate neighbors: xi(t) = maxj∈Ni xj(t− 1). Maximum consensus

requires at most n iterations to converge for any topology; more precisely it requires a num-

ber of iterations equal to the diameter, D, of the underlying graph, which is often much

less than n (and much less than K). Equally importantly, maximum consensus achieves

perfect agreement. In the algorithms of [14,79] each node normalizes by a slightly different

value (there are residual errors in the consensus procedure). In Algorithm 1, all nodes

normalize by the same value, and this leads to much better estimation accuracy. Taken

together, these innovations lead to an algorithm that is only O(K) (with the appropriate

choice of L). In particular, the complexity of Algorithm 1 is clearly O(K + DK/L + D).

Choosing L ∝ D (assuming that λ2(W)D � ∆, where ∆ is machine precision) we ob-

tain an O(K) algorithm. The proposed initialization algorithm has significantly smaller

computation/communication complexity than the initialization algorithm proposed for the

distributed computation of the optimal matrix in [14].

4.3.6 Numerical Experiments and Discussion

This section presents simulation results for two scenarios. In the first simulation scenario,

network topologies are drawn from the family of random geometric graphs of n nodes [13].
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(a) Slope initialization
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(b) Spike initialization

Fig. 4.4 MSE vs. iterations for 200-node random geometric graphs. The
algorithms compared are: optimal weights (Opt): +; MH weights (MH): 4;
proposed method with oracle λ2(W) and MH matrix (MH-Proposed): �; pro-
posed with decentralized estimate of λ2(W) (MH-ProposedEst): ×; acceler-
ated consensus, with oracle λ2(W) and optimal matrix (Opt-Proposed): �.
(a) Slope initialization. (b) Spike initialization.

In this model, n nodes are randomly assigned coordinates in the unit square, and links

exist between nodes that are at most a distance
√

2 log n/n. (This scaling law for the

connectivity radius guarantees the network is connected with high probability [13].) Two

models for the initial node measurements, x(0), are considered. In the “Slope” model, the

initial value xi(0) at node i is just the sum of its coordinates in the unit square. In the

“Spike” model, all nodes are initialized to 0, except for one randomly chosen node whose

initial value is set to one. All simulation results are generated based on 300 trials (a different

random graph and node initialization is generated for each trial). The initial values are

normalized so that the initial variance of node values is equal to 1. The second simulation

scenario is for the n-node chain topology. Intuitively, this network configuration constitutes

one of the most challenging topologies for distributed averaging algorithms since the chain

has the longest diameter and weakest connectivity of all graphs on n nodes and information

must diffuse across this distance. For this topology, we adopt analogous versions of the

“Slope” and “Spike” initializations to those described above; for the “Slope”, xi(0) = i/n,

and for the “Spike”, we average over all possible locations of the one.

We run the algorithm n times with different initializations of the eigenvalue estimation

algorithm to investigate the effects of initializing α? with an imperfect estimate of λ2(W).
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(a) Random geometric graph
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(b) Chain

Fig. 4.5 MSE vs. iteration for 200-node topologies, Slope initialization. The
algorithms compared are: optimal weights (Opt): +; polynomial filter with
3 taps (MH-PolyFilt3): 5 and 7 taps (MH-PolyFilt7): .; proposed method
with oracle λ2(W) and MH matrix (MH-Proposed): �; proposed method with
decentralized estimate of λ2(W) (MH-ProposedEst): ×.

In simulations involving the calculation of averaging time (according to the definition in

(3.21)) we have fixed the required accuracy of computations, ε, at the level −100 dB (i.e.,

a relative error of 1× 10−5). For prediction parameters, we use (θ1, θ2, θ3) = (−ε, 0, 1 + ε),

ε = 1/2, as these were shown to be asymptotically optimal in Section 4.3.3. We compare

our algorithm with two memoryless approaches, the MH weight matrix, and the optimal

weight matrix [71]. MH weights are attractive because they can be calculated by each node

simply using knowledge of its own degree and its neighbors’ degrees. We also compare to

two approaches from the literature that also make use of memory at each node to improve

the rate of convergence: polynomial filtering [69], and finite-time consensus [78].

To investigate the effect of initialization on the performance of the proposed algorithm,

we first plot the MSE decay curves as a function of the number of consensus iterations t

for network size n = 200, RGG topology and different initializations. Figure 4.4 compares

the performance of the proposed algorithm with the algorithms using the MH or the opti-

mal matrix [71]. It can be seen that our decentralized initialization scheme does not have

a major influence on the performance of our approach, as the method initialized using a

decentralized estimate for λ2(W) (the curve labeled MH-ProposedEst) and the method ini-

tialized using precise knowledge of λ2(W) (labeled MH-Proposed) coincide nearly exactly.



4 Predictor Based Accelerated Distributed Average Consensus 72

50 100 150 200
20

30

40

50

60

70

80

90

100

110

 N

T
av

e

 

 

MH−PolyFilt3
Opt
MH−PolyFilt7
MH−Proposed

(a)

50 100 150 200
1

1.5

2

2.5

3

3.5

4

4.5

5

 N

T
av

e(W
) 

/ T
av

e(Φ
)

 

 

MH−Proposed
MH−PolyFilt7
Opt
MH−PolyFilt3

(b)

Fig. 4.6 Averaging time characterization, random geometric graph topolo-
gies. The algorithms compared are: optimal weights (Opt): +; polynomial
filter with 3 taps (MH-PolyFilt3): 5, and 7 taps (MH-PolyFilt7): .; proposed
method with oracle λ2(W) and MH matrix (MH-Proposed): �. (a) Averaging
time as a function of the network size. (b) Ratio of the averaging time of the
non-accelerated algorithm to that of the associated accelerated algorithm.

The procedure discussed in Section 4.3.5 provides a good estimate of λ2(W) (to within 10−3

maximum relative error for a 200 node RGG). It is also clear that the proposed algorithm

outperforms both the memoryless MH and optimal weight matrices. In this experiment we

fixed K = 2n and L = 10. Note that the results in Figure 4.4 and all subsequent figures

do not account for initialization costs. The initialization cost is relatively small. For the

200-node RGG it is equal to about 3n = 600 consensus iterations (if we bound the diame-

ter of the 200-node RGG by 20). If we desire a relative error of 10−3, our algorithm gains

approximately 70 iterations over memoryless MH consensus, based on Fig. 4.4(b). For this

desired accuracy, the initialization overhead is thus recovered after less than 10 consensus

operations.

Figure 4.5 compares the MSE curves for the proposed algorithm with two versions of

polynomial filtering consensus [69], one using 3 taps and the other using 7 taps. We see

that in the RGG scenario, our algorithm outperforms polynomial filtering with 3 memory

taps and converges at a rate similar to that of the 7-tap version of polynomial filtering2.

2Calculating optimal weights in the polynomial filtering framework quickly becomes ill-conditioned
with increasing filter length, and we were not able to obtain stable results for more than 7 taps on random
geometric graph topologies. Note that the original paper [69] also focuses on filters of length no more than
7. We conjecture that this ill-conditioning stems from the fact that the optimal solution involves pseudo-
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Fig. 4.7 Averaging time characterization, chain topology. The algorithms
compared are: optimal weights (Opt): +; polynomial filter with 3 taps (MH-
PolyFilt3): 5, and 7 taps (MH-PolyFilt7): .; proposed method with oracle
λ2(W) and MH matrix (MH-Proposed): �. (a) Averaging time as a function
of the network size. (b) Improvement due to the accelerated consensus: ratio
of the averaging time of the non-accelerated algorithm to that of the associated
accelerated algorithm.

Decentralized calculation of topology-adapted polynomial filter weights also remains an

open problem. We conclude that for random geometric graphs, our algorithm has superior

properties with respect to polynomial filtering since it has better error performance for the

same computational complexity, and our approach is suitable for completely distributed

implementation. Moving our attention to the chain topology only emphasizes these points,

as our accelerated algorithm significantly outperforms even 7-tap polynomial filtering. Note

that decentralized initialization of our algorithm also works well in the chain graph scenario.

However, to obtain this result we have to increase the number of consensus iterations in

the eigenvalue estimation algorithm, K, from 2n to n2. This increase in the complexity of

the distributed optimization of accelerated consensus algorithm is due to the properties of

the power methods [85] and related eigenvalue estimation problems. The accuracy of the

second largest eigenvalue computation depends on the ratio λ3(W)/λ2(W), and this ratio

inversion of a Vandermonde matrix containing powers of the original eigenvalues. Since, for random
geometric graph topologies, eigenvalues are not described by a regular function (e.g., the cosine, as for
the chain graph) there is a relatively high probability (increasing with n) that the original weight matrix
contains two similar-valued eigenvalues which may result in the Vandermonde matrix being ill-conditioned.
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Fig. 4.8 MSE at the point when finite time consensus of Sundaram and
Hadjicostis has enough information to calculate the exact average at all nodes.
The algorithms compared are: optimal weights (Opt): +; polynomial filter
with 3 taps (MH-PolyFilt3): 5, and 7 taps (MH-PolyFilt7): .; proposed
method with oracle λ2(W) and MH matrix (MH-Proposed): �. (a) Random
geometric graph. (b) Chain topology.

increases much more rapidly for the chain topology as n grows than it does for random

geometric graphs.

To investigate the robustness and scalability properties of the proposed algorithm,

we next examine the averaging time, Tave(Φ3[α∗]), as defined in (3.21), and the ratio

Tave(W)/Tave(Φ3[α∗]), for random geometric graphs (Fig. 4.6) and the chain topology

(Fig. 4.7). We establish through simulation that the scaling behavior of the ratio that

can be measured experimentally matches very well with the asymptotic result established

theoretically for the processing gain, τasym(W)/τasym(Φ3[α∗]). We see from Fig. 4.6 that in

the random geometric graph setting, the proposed algorithm always outperforms consensus

with the optimal weight matrix and polynomial filter with equal number of memory taps,

and our approach scales comparably to 7-tap polynomial filtering. On the other hand, in

the chain graph setting (Fig. 4.7) the proposed algorithm outperforms all the competing al-

gorithms. Another interesting observation from Fig. 4.7 is that the gains of the polynomial

filter and optimal weight matrix remain almost constant with varying network size while

the gain obtained by the proposed algorithm increases significantly with n. This linear

improvement with n matches well with the asymptotic behavior predicted by Theorem 4.7.

Finally, we compare the proposed algorithm with the linear observer approach of Sun-
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daram and Hadjicostis [78], which works by remembering all of the consensus values, xi(t),

seen at a node i (unbounded memory). After enough updates, each node is able to perfectly

recover the average by locally solving a set of linear equations. To compare the method

of [78] with our approach and the other asymptotic approaches described above, we deter-

mine the topology-dependent number of iterations that the linear-observer method must

execute to have enough information to exactly recover the average. We then run each of

the asymptotic approaches for the same number of iterations and evaluate performance

based on the MSE they achieve. Figure 4.8 depicts results for both random geometric

graph and chain topologies. For random geometric graphs of n ≥ 100 nodes, we observe

that the proposed algorithm achieves an error of at most 10−12 (roughly machine preci-

sion), by the time the linear observer approach has sufficient information to compute the

average. For the chain topology the results are much more favorable for the linear-observer

approach. However, the linear observer approach requires significant overhead to determine

the topology-dependent coefficients that define the linear system to be solved at each node.

Additionally, the linear observer approach does not scale well to large networks, since the

amount of memory at each node grows with the size of the network. The approach proposed

in this chapter only uses one extra memory tap per node, regardless of network size.

4.3.7 Proofs

Proof of Proposition 4.7

Proof of part (a). In Theorem 1 in [75], Johansson and Johansson show that the necessary

and sufficient conditions for the consensus algorithm of the form Φ3[α] to converge to the

average are (JJ1) Φ3[α]1 = 1; (JJ2) gTΦ3[α] = gT for vector gT = [β11
Tβ21

T] with weights

satisfying β1 + β2 = 1; and (JJ3) ρ(Φ3[α] − 1
n
1gT) < 1. If these conditions hold then we

also have Φ3[α] = 1
n
1gT [75] implying X̃(0) = X(0). Condition (JJ1) is easily verified

after straightforward algebraic manipulations using the definition of Φ3[α] in (4.113), the

assumption that θ1 + θ2 + θ3 = 1, and recalling that W satisfies W1 = 1 by design.

To address condition (JJ2), we set β1 = 1/(1 + αθ1) and β2 = αθ1/(1 + αθ1). Clearly,

β1 + β2 = 1, and it is also easy to verify condition (JJ2) by plugging these values into the

definition of g, and using the same properties of Φ3[α], the θi’s, and W as above.

In order to verify that condition (JJ3) holds, we will show here that ρ(Φ3[α]− 1
n
1gT) =

ρ(Φ3[α] − J). In Section 4.3.7 we show that ρ(Φ3[α] − J) < 1 if α ∈ [0,−θ−1
1 ), and thus



4 Predictor Based Accelerated Distributed Average Consensus 76

condition (JJ3) is also satisfied under the assumptions of the proposition. To show that

ρ(Φ3[α] − 1
n
1gT) = ρ(Φ3[α] − J), we prove a stronger result, namely that Φ3[α] − 1

n
1gT

and Φ3[α] − J have the same eigenspectra. Consider the eigenvector vi of Φ3[α] with

corresponding eigenvalue λi(Φ3[α]). This pair solves the eigenvalue problem, Φ3[α]vi =

λi(Φ3[α])vi. Equivalently, expanding the definition of Φ3[α], we have[
W3[α] αθ1I

I 0

]
vi = λi(Φ3[α])

[
I 0

0 I

]
vi. (4.124)

We observe that (4.124) fits a modification of the first companion form of the linearization

of a Quadratic Eigenvalue Problem (QEP) (see Section 3.4 in [86]). The QEP has general

form (λ2M + λC + K)u = 0, where u is the eigenvector associated with this QEP. The

linearization of interest to us has the form:[
−C −K

I 0

][
λu

u

]
− λ

[
M 0

0 I

][
λu

u

]
= 0. (4.125)

The correspondence is clear if we make the associations: M = I, C = −W3[α] and

K = −αθ1I, λ = λi(Φ3[α]) and vi = [λi(Φ3[α])uTuT]T. Eigenvectors vi that solve (4.124)

thus have special structure and are related to ui, the solution to the QEP,

(λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0. (4.126)

Because the first and third terms above are scaled identity matrices and the definition of

W3[α] (see (4.111)) also involves scaled identity matrices, we can simplify this last equation

to find that any solution ui must also be an eigenvector of W.

We have seen above, when verifying condition (JJ1), that 1 is an eigenvector of Φ3[α]

with corresponding eigenvalue λi(Φ3[α]) = 1. Likewise, we know that3 W1 = 1, and so

this agrees with the structure of vi identified above. Observe that, from the definition of

g and because β1 + β2 = 1, we have ( 1
n
1gT)1 = 1. Thus, (Φ3[α]− 1

n
1gT)1 = 0. Similarly,

recalling that J = 1
2n

11T, we have J1 = 1, and thus (Φ3[α]− J)1 = 0. By design, W is a

doubly stochastic matrix, and all eigenvectors u of W with u 6= 1 are orthogonal to 1. It

follows that ( 1
n
1gT)vi = 0 for corresponding eigenvectors vi = [λi(Φ3[α])uTuT]T of Φ3[α],

3We abuse notation here, using 1 to denote the vector of all 1’s, where the dimension is not explicitly
indicated but should be clear from the context.
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and thus (Φ3[α] − 1
n
1gT)vi = Φ3[α]vi = λi(Φ3[α])vi. Similarly, Jvi = 0 if vi 6= 1, and

(Φ3[α]−J)vi = λi(Φ3[α])vi. Therefore, we conclude that the matrices (Φ3[α]−Φ3[α]) and

(Φ3[α]− J) have identical eigenspectra, and thus ρ(Φ3[α]− 1
n
1gT) = ρ(Φ3[α]− J).

In Section 4.3.7 we show that ρ(Φ3[α]−J) < 1 if α ∈ [0,−θ−1
1 ), and thus the assumptions

of the proposition, taken together with the analysis just conducted, verify that condition

(JJ3) is also satisfied. Therefore, the limit limt→∞Φ3[α]t = Φ3[α] = 1
n
1gT exists, and

Φ3[α]X(0) = JX(0) for all X(0) defined in (4.112).

Proofs of parts (b) and (c). In the proof of Theorem 4.5 (see below), it is shown that

ρ(Φ3[α] − J]) ≥ −αθ1. Thus, if α > 0 and θ1 < 0, then part (b) holds. The assumptions

θ1 + θ2 + θ3 = 1, θ3 ≥ 1, and θ2 ≥ 0 imply that θ1 ≤ 0, and by assumption, α ≥ 0. If α = 0

or θ1 = 0, then the proposed predictive consensus scheme reduces to memoryless consensus

with weight matrix W (and the statement follows directly from the results of [14,71]). Thus,

part (b) of the proposition follows from the assumptions and the analysis in Theorem 4.5

below. By proving parts (a) and (b), we have verified the assumptions of Theorem 4.2 above.

Applying the result of this Theorem, together with the equivalence of ρ(Φ3[α]− 1
n
1gT) and

ρ(Φ3[α]− J), gives the claim in part (c), thereby completing the proof.

Proof of Theorem 4.5

In order to minimize the spectral radius of Φ3[α] we need to know its eigenvalues. These

can be calculated by solving the eigenvalue problem (4.124). We can multiply (4.126) by

uTi on the left to obtain a quadratic equation that links the individual eigenvalues λi(Φ3[α])

and λi(W3[α]):

uTi (λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0

λi(Φ3[α])2 − λi(W3[α])λi(Φ3[α])− αθ1 = 0. (4.127)

Recall Φ3[α] is a 2n × 2n matrix, and so Φ3[α] has, in general, 2n eigenvalues – twice as

many as W3[α]. These eigenvalues are the solutions of the quadratic (4.127), and are given

by

λ∗i (Φ3[α]) =
1

2

(
λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

)
λ∗∗i (Φ3[α]) =

1

2

(
λi(W3[α])−

√
λi(W3[α])2 + 4αθ1

)
. (4.128)
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With these expressions for the eigenvalues of Φ3[α], we are in a position to formulate the

problem of minimizing the spectral radius of the matrix (Φ3[α]−J), α? = arg min
α
ρ(Φ3[α]−

J). It can be shown that this problem is equivalent to

α? = arg min
α≥0

ρ(Φ3[α]− J) (4.129)

The simplest way to demonstrate this is to show that ρ(Φ3[α] − J) ≥ ρ(Φ3[0] − J) for

any α < 0. Indeed, by the definition of the spectral radius we have that ρ(Φ3[α] − J) ≥
λ∗2(Φ3[α]) and ρ(Φ3[0]− J) = λ2(W) since Φ3[0] = W. Hence it is enough to demonstrate

λ∗2(Φ3[α]) ≥ λ2(W). Consider the inequality λ∗2(Φ3[α])− λ2(W) ≥ 0. Replacing λ∗i (Φ3[α])

with its definition, (4.128), rearranging terms and squaring both sides gives αθ1 ≥ λ2(W)2−
λ2(W)λ2(W3[α]). From the definition of W3[α] in (4.111), it follows that λ2(W3[α]) =

(1−α+αθ3)λ2(W)+αθ1. Using this relation leads to the expression α(θ1+(θ3−α)λ2(W)2+

θ1λ2(W)) ≥ 0. Under our assumptions, we have θ3 − 1 ≥ 1, θ2 ≥ 0 and θ1 ≤ 0. Thus

θ1 + (θ3− 1)λ2
2 + θ2λ2 ≤ θ1 + θ3− 1 + θ2 = 0. This implies that if α < 0, the last inequality

holds leading to λ∗2(Φ3[α]) ≥ λ2(W). Thus for any α < 0 the spectral radius ρ(Φ3[α]− J)

cannot decrease, and so we may focus on optimizing over α ≥ 0.

Now, the proof of Theorem 4.5 boils down to examining how varying α affects the

eigenvalues of Φ3[α] on a case-by-case basis. We first show that the first eigenvalues,

λ∗1(Φ3[α]) and λ∗∗1 (Φ3[α]), are smaller than all the others. Then, we demonstrate that

the second eigenvalues, λ∗2(Φ3[α]) and λ∗∗2 (Φ3[α]), dominate all other pairs, λ∗j(Φ3[α]) and

λ∗∗j (Φ3[α]), for j > 2, allowing us to focus on the second eigenvalues, from which the

proof follows. Along the way, we establish conditions on α which guarantee stability of the

proposed two-tap predictive consensus methodology.

To begin, we reformulate the optimization problem in terms of the eigenvalues of Φ3[α].

We first consider λ∗1(Φ3[α]) and λ∗∗1 (Φ3[α]). Substituting λ1(W3[α]) = (1−α+αθ3) +αθ2

we obtain the relationship
√
λ2

1(W3[α]) + 4αθ1 = |1 +αθ1| and using the condition θ1 ≤ 0,

we conclude that

λ∗1(Φ3[α]), λ∗∗1 (Φ3[α]) =

{
1,−αθ1 if 1 + αθ1 ≥ 0⇒ α ≤ −θ−1

1

−αθ1, 1 if 1 + αθ1 < 0⇒ α > −θ−1
1 .

We note that α > −θ−1
1 implies |λ∗∗1 (Φ3[α])| > 1, leading to divergence of the linear

recursion involving Φ3[α], and thus conclude that the potential solution is restricted to the
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range α ≤ −θ−1
1 . Focusing on this setting, we write λ∗1(Φ3[α]) = 1 and λ∗∗1 (Φ3[α]) = −αθ1.

We can now reformulate the problem (4.129) in terms of the eigenvalues of Φ3[α]:

α? = arg min
α≥0

max
i=1,2,...n

Ji[α, λi(W)] (4.130)

where

Ji[α, λi(W)] =

|λ∗∗1 (Φ3[α])|, i = 1

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) i > 1.

We now state a lemma that characterizes the functions Ji[α, λi(W)].

Lemma 4.2. Under the assumptions of Theorem 4.5,

Ji[α, λi(W)] =

{
α1/2(−θ1)1/2 if α ∈ [α∗i , θ

−1
1 ]

1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
if α ∈ [0, α∗i )

(4.131)

where

α∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)− 2

√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))

(θ2 + (θ3 − 1)λi(W))2

(4.132)

Over the range α ∈ [0,−θ−1
1 ], Ji[α, λi(W)] ≥ J1[α, λ1(W)] for i = 2, 3, . . . , n.

Proof. For i = 2, 3, . . . n, the eigenvalues λ∗i (Φ3[α]) and λ∗∗i (Φ3[α]) can admit two distinct

forms; when the expression under the square root in (4.128) is less then zero, the respective

eigenvalues are complex, and when this expression is positive, the eigenvalues are real. In

the region where the eigenvalues are complex,

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1

2

[
λi(W3[α])2 + ı2

(√
λi(W3[α])2 + 4αθ1

)2
]1/2

= α1/2(−θ1)1/2. (4.133)

We note that (4.133) is a strictly increasing function of α. Recalling that λi(W3[α]) =

(1 + α(θ3 − 1))λi(W) + αθ2 and solving the quadratic λi(W3[α])2 + 4αθ1 = 0, we can

identify region, [α∗i , α
∗∗
i ], where the eigenvalues are complex. The upper boundary of this
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region is

α∗∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1) + 2

√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))

(θ2 + (θ3 − 1)λi(W))2

(4.134)

Relatively straightforward algebraic manipulation of (4.132) and (4.134) leads to the fol-

lowing conclusion: if λi(W) ∈ [−1, 1], θ2 ≥ 0 and θ3 ≥ 1, then 0 ≤ α∗i ≤ −θ−1
1 ≤ α∗∗i . This

implies that (4.133) holds in the region [α∗i ,−θ−1
1 ].

On the interval α ∈ [0, α∗i ), the expression under the square root in (4.128) is positive,

and the corresponding eigenvalues are real. Thus,

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|)

=
1

2


∣∣∣λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

∣∣∣ if λi(W3[α]) ≥ 0∣∣∣−λi(W3[α]) +
√
λi(W3[α])2 + 4αθ1

∣∣∣ if λi(W3[α]) < 0,

or equivalently, max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) = 1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
.

These results establish the expression for Ji[α, λi(W)] in the lemma.

It remains to establish that J1[α, λ1(W)] is less than all other Ji[α, λi(W)] in the

region α ∈ [0,−θ−1
1 ]. In the region α ∈ [α∗i ,−θ−1

1 ], we have −αθ−1
1 ≤ 1, implying that

α1/2(−θ1)1/2 ≥ −αθ1 = J1[α, λ1(W)]. In the region α ∈ [0, α∗i ), note that λi(W3[α])2 +

4αθ1 > 0⇒ |λi(W3[α])| ≥ 2(−αθ1)1/2, which implies that

1

2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
≥ 1

2

(
2(−αθ1)1/2 + 0

)
≥ (−αθ1)1/2 ≥ −αθ1 = J1[α, λ1(W)], (4.135)

thereby establishing the final claim of the lemma.

The previous lemma indicates that we can remove J1[α, λ1(W)] from (4.130), lead-

ing to a simpler optimization problem, α? = arg min
α≥0

max
i=2,3,...n

Ji[α, λi(W)]. The following

lemma establishes that we can simplify the optimization even further and focus solely on

J2[α, λ2(W)].

Lemma 4.3. Under the assumptions of Theorem 4.5, Ji[α, λi(W)] ≤ J2[α, λ2(W)] and

α∗i [λi(W)] ≤ α∗2[λ2(W)] for i = 3, 4, . . . , n over the range α ∈ [0,−θ−1
1 ].
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Proof. Consider the derivative of α∗i [λi(W)] in the range λi(W) ∈ [0, 1]:

∂α∗i [λi(W)]

∂λi(W)
=

1

(θ2 + (θ3 − 1)λi(W))3 ×

[
[4θ1 (θ3 − 1)− θ2 (θ2 + (θ3 − 1)λi(W))]

+
θ1

(
−θ2

2 + 4θ1 (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2
)√

θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))

]

It is clear that the multiplier outside the square brackets in the first line above is positive

in the range λi(W) ∈ [0, 1]. Furthermore, the first summand is negative. Under the

conditions θ2 ≥ 0, θ3 ≥ 1, it can be established that the second summand is positive and

exceeds the first summand in magnitude. We conclude that the derivative is positive, and

thus α∗i [λi(W)] is an increasing function over λi(W) ∈ [0, 1]. This implies that α∗i [λi(W)] ≤
α∗2[λ2(W)] for any λi ≥ 0.

Algebraic manipulation of (4.132) leads to the conclusion that α∗i [−λi(W)] ≤ α∗i [λi(W)]

for λi(W) ∈ [0, 1]. This implies that for negative λi, we have α∗i [−λi(W)] ≤ α∗i [λi(W)] ≤
α∗2[λ2(W)]. We have thus shown that α∗i [λi(W)] ≤ α∗2[λ2(W)] for any 3 ≤ i ≤ n under the

assumption |λn(W)| ≤ λ2(W).

Next we turn to proving that Ji[α, λi(W)] ≤ J2[α, λ2(W)] for any 3 ≤ i ≤
n. We consider this problem on three distinct intervals: α ∈ [0, α∗i [λi(W)]), α ∈
[α∗i [λi(W)], α∗2[λ2(W)]) and α ∈ [α∗2[λ2(W)],−θ−1

1 ]. From the condition α∗i [λi(W)] ≤
α∗2[λ2(W)] and (4.131) it is clear that on the interval α ∈ [α∗2[λ2(W)],−θ−1

1 ]

we have Ji[α, λi(W)] = J2[α, λ2(W)] = α1/2(−θ1)1/2. On the interval α ∈
[α∗i [λi(W)], α∗2[λ2(W)]) we have Ji[α, λi(W)] = α1/2(−θ1)1/2 and J2[α, λ2(W)] =
1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
. From (4.135), we see that Ji[α, λi(W)] ≤

J2[α, λ2(W)].

On the first interval α ∈ [0, α∗i [λi(W)]), we examine the derivative of Ji[α, λi(W)] w.r.t.

λi(W):

∂Ji[α, λi(W)]

∂λi(W)
=

1 + α(θ3 − 1)

2

 λi(W) + α (θ2 + (θ3 − 1)λi(W))√
(λi(W) + α (θ2 + (θ3 − 1)λi(W))− 4α (θ2 + θ3 − 1))2

+ sgn [λi(W) + α (θ2 + (θ3 − 1)λi(W))]

)
(4.136)
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We observe that the multiplier 1+α(θ3−1)
2

is positive, and the expression under the square root

is positive because α ∈ [0, α∗i [λi(W)]). Additionally, λi(W) + α (θ2 + (θ3 − 1)λi(W)) ≥ 0

under the assumption λi(W) ≥ 0 and θ2 ≥ 0, θ3 ≥ 1. Thus ∂
∂λi(W)

Ji[α, λi(W)] ≥ 0 for

any λi(W) ≥ 0 and we have Ji[α, λi(W)] ≤ J2[α, λ2(W)] for any 0 ≤ λi(W) ≤ λ2(W).

Finally, we note from (4.131) that Ji[α, λi(W)] is an increasing function of |λi(W3[α])| =
|(1 + α(θ3 − 1))λi(W) + αθ2|. Thus, to show that Ji[α,−λi(W)] ≤ Ji[α, λi(W)] for

0 ≤ λi(W) ≤ λ2(W) it is sufficient to show that | − (1 + α(θ3 − 1))λi(W) + αθ2| ≤
|(1 + α(θ3 − 1))λi(W) + αθ2|. Under our assumptions, we have

|(1 + α(θ3 − 1))λi(W) + αθ2|2 − | − (1 + α(θ3 − 1))λi(W) + αθ2|2

= 4(1 + α(θ3 − 1))λi(W)αθ2 ≥ 0. (4.137)

This implies that Ji[α, λi(W)] ≤ J2[α, λ2(W)] on the interval α ∈ [0, α∗i [λi(W)]), indicat-

ing that the condition applies on the entire interval α ∈ [0,−θ−1
1 ], which is what we wanted

to show.

The remainder of the proof of Theorem 4.5 proceeds as follows. From Lemmas 4.2

and 4.3, the optimization problem (4.114) simplifies to: α? = arg min
α≥0
J2[α, λ2(W)]. We

shall now show that α∗2 is a global minimizer of this function. Consider the derivative of

J2[α, λ2(W)] w.r.t. α on [0, α∗2):

∂

∂α
J2[α, λ2(W)] =

2θ1 + (θ2 + (θ3 − 1)λ2(W)) (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))√
4αθ1 + (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))2

+ (θ2 + (θ3 − 1)λ2(W)) sgn [λ2(W) + α (θ2 + (θ3 − 1)λ2(W))] .

Denote the first term in this sum by ϕ1(λ2(W), α) and the second by ϕ2(λ2(W), α). It can

be shown that |ϕ1(λ2(W), α)| ≥ |ϕ2(λ2(W), α)| for any λ2(W) ∈ [−1, 1] and α ∈ [0, α∗2) by

directly solving the inequality. We conclude that the sign of the derivative on α ∈ [0, α∗2)

is completely determined by the sign of ϕ1(λ2(W), α) for λ2(W) ∈ [−1, 1]. On α ∈ [0, α∗2),

the sign of ϕ1(λ2(W), α) is determined by the sign of its numerator. The transition point

for the numerator’s sign occurs at:

α+ = −2θ1 + λ2(W)(θ2 + (θ3 − 1)λ2(W))

(θ2 + (θ3 − 1)λ2(W))2
,
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and by showing that α+ ≥ −θ−1
1 , we can establish that this transition point is at or beyond

α∗2. This indicates that ϕ1(λ2(W), α) ≤ 0 if α ∈ [0, α∗2). We observe that J2[α, λ2(W)]

is non-increasing on α ∈ [0, α∗2) and nondecreasing on α ∈ [α∗2,−θ−1
1 ) (as established in

Lemma 4.2). We conclude that α∗2 is a global minimum of the function J2[α, λ2(W)],

thereby proving Theorem 4.5 and establishing J2[α?, λ2(W)] = |λ∗2(Φ3[α?])| =
√
−α?θ1.

Note that the last argument also implies that J2[α, λ2(W)] ≤ λ2(W) on α ∈ [0, α∗2] and

J2[α, λ2(W)] < 1 on α ∈ (α∗2,−θ−1
1 ) since J2[α, λ2(W)] is non-increasing on the former

interval, it is non-decreasing on the latter interval and J2[−θ−1
1 , λ2(W)] = 1. This fact

demonstrates that the matrix Φ3[α] is convergent if α ∈ [0,−θ−1
1 ) in the sense that we have

ρ(Φ3[α]− J) < 1.

4.4 Summary

We have presented a general, predictor-based framework to improve the rate of convergence

of distributed average consensus algorithm. The convergence properties of the general

predictor based consensus acceleration framework were studied in the first section of this

chapter and the existence of the convergent configuration of the proposed framework was

established. For the convergent configurations of the proposed acceleration methodology

the scaling properties of the ε-averaging time were studied and the upper bound on its

asymptotic growth rate was established. For two special cases of the proposed methodology

a detailed analysis was performed.

For the first case of memoryless weight matrix optimization the optimal value of the

mixing parameter maximizing the asymptotic worst-case convergence rate was obtained.

The associated convergence rate improvement was quantified. It turned out that in the

memoryless case there is no guarantee that the improvement can be obtained. However,

simulations revealed that in many scenarios the memoryless weight matrix optimization

does yield a significant improvement within the proposed framework. The suboptimal

choices of the value of the mixing parameter were proposed for the on-line optimization

of the proposed algorithm in the memoryless case. Our simulation results indicated that

with these simple suboptimal initializations the proposed algorithm provides significant

convergence speed gain.

For the second, more interesting, case of the short node memory we have also derived the

optimal value of mixing parameter resulting in the fastest asymptotic convergence rate. The
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convergence rate analysis yielded the theoretical performance improvement guarantees. For

a chain topology on n nodes, this lead to a factor of n improvement over standard consensus,

and for a two-dimensional grid, our approach achieved a factor of
√
n improvement, in terms

of the number of iterations required to reach a prescribed level of accuracy. We believe that

this result applies to the general class of distributed averaging algorithms using node state

prediction, and shows that, even in its simplified form, accelerated consensus via prediction

provides considerable processing gain. We concluded that this gain, measured as the ratio

of the asymptotic averaging time of the non-accelerated and accelerated algorithms, grows

with increasing network size. Numerical experiments confirmed our theoretical conclusions.

The naive implementation of the proposed framework requires the knowledge of the network

topology. To make the proposed acceleration framework more practical we proposed an on-

line initialization scheme based on the distributed calculation of the spectral radius of the

foundational weight matrix. Numerical experiments confirmed the feasibility of the on-line

implementation of the accelerated algorithm with nearly optimal properties based on the

proposed distributed on-line initialization scheme. Our numerical experiments also revealed

the superior performance of the proposed approach with respect to several acceleration

methodologies in the literature.
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Chapter 5

Distributed Tracking with

Communication Constraints

One of the major concerns in distributed WSN tracking is the maintenance of the appropri-

ate tradeoff between tracking performance and network lifetime. If a centralized approach

is used to process measurements from the sensors and in scenarios where Gaussian ap-

proximation is justifiable, one of the following well-established tracking algorithms can be

used to obtain acceptable performance guarantees: the extended Kalman Filter [87,88], the

Gaussian sum filter [89] or grid-based filters [90]. However, if better performance guarantees

are required in the situation where the class of approximated dynamics and/or observation

models is substantially non-linear and non-Gaussian, different particle filter based trackers

can be used [91]. In WSN applications, there are two major disadvantages: particle filters

are generally more computationally demanding [92], and communication of measurements

or a particle filter representation to the fusion center can require the transfer of the large

volumes of data, which is often undesirable [65]. Centralization introduces a single point

of failure and can lead to high, unevenly distributed energy consumption because of the

heavy communication cost involved in transmitting the data to the fusion center.

Distributed algorithms, such as the distributed particle filtering algorithms proposed

in [93, 94], address the aforementioned problems. These algorithms decentralize the com-

putation or communication so that a single fusion center is not required. Multiple particle

filters run concurrently at different sensor nodes and compressed data or approximate filter-

ing distributions are shared between them. These distributed algorithms, while mitigating
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some of the inherent problems of centralization, can be computationally expensive, be-

cause multiple nodes are required to perform computation throughout the entire tracking

procedure.

In the collaborative distributed scenario, the node performing the particle filtering (the

leader node) changes over time along with the associated subset of nodes performing sensing

tasks. This scheme was proposed in [6, 57, 95] and refined in [96, 97]. In attempting to

alleviate the communication cost of transmitting all particle values when the leader node

is exchanged (which can involve thousands of bits), the filtering distribution is often more

coarsely approximated, either by transmitting only a subset of the particles or by training

a parametric model. In the next chapter we perform the approximation error analysis of

the leader node scheme when coarse approximations of the filtering distribution are used

during leader node exchanges.

The current chapter provides an overview of the collaborative WSN based tracking

scheme (leader node scheme) and introduces particle filtering concept. It also outlines

important ideas related to the analysis of the particle filter performance, and presents rele-

vant material describing sample based and mixture based random approximation analysis

principles.

5.1 Sensor Collaboration and in-Network Processing for Target

Tracking

The collaborative signal and information processing (CSIP) framework was discussed in a

series of papers [6, 57, 95]. It is based on adaptively activating (managing) clusters in a

WSN to maintain the network lifetime/tracking accuracy trade-off. Sensor management

strategies within this framework typically take into account a combination of factors in-

cluding sensor utility functions and activation costs. In this section WSN sensing model

and optimal Bayesian estimation is first reviewed to facilitate later exposition of the CSIP

methodology.

5.1.1 CSIP Sensing Model and Optimal Bayesian Estimation

An abstract graph based WSN model suitable for analyzing CSIP framework can be spec-

ified as follows. A set of leader nodes (cluster heads) is defined as a set of vertices
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L = {1, 2, . . . , L}. Similarly, a set of sensor nodes is defined as S = {1, 2, . . . , S}. It

is often assumed that leader nodes have more advanced processing and communication

capabilities and are thus responsible for performing signal processing and data routing

operations while sensor nodes can measure certain physical quantities and transmit mea-

surements to the associated leader node. However, in the case of homogenous WSN any

sensor can potentially be included into the set of leader nodes and then L ⊆ S. The set

of wireless links among members of leader node set L and sensor node set S forms the

set of edges E where a pair (`, s) ∈ E if and only if nodes ` ∈ L and s ∈ S are adjacent

(connected by a direct wireless link). The underlying graph G(L,S,E) is thus induced by

this connectivity structure.

Within the centralized WSN tracking framework all the nodes are active during the

tracking task and optimal sequential Bayesian estimation is viable. Within this framework

at every time instant t ∈ N sensor nodes collect measurements yS
t = {yst}Ss=1 and route

them to the fusion center. The fusion center then performs tracking operation based on

the probabilistic model induced by the general Markovian state-space representation

Xt = ft(Xt−1, %t), (5.1)

Y s
t = gst (Xt, ζ

s
t ) ∀s ∈ S. (5.2)

Here (5.1) is the target dynamics equation with Xt ∈ Rdx being the target state vector,

ft : Rdx → Rdx being the nonlinear diffusion map, and %t being the system (excitation)

noise. The measurement equation (5.2) describes network-wide measurement process with

Y s
t ∈ Rdsy being the sth sensor measurement vector, gst : Rdx → Rdsy being its nonlinear

measurement function, and ζst being the random measurement noise.

Within the Bayesian framework, the above state-space model is represented in terms

of underlying probability density functions and the optimal Bayes recursion is employed

to track the posterior distribution of the state of a target. In particular, target dynamics

equation (5.1) is completely characterized by the conditional probability density function

(pdf) pXt|Xt−1(xt|xt−1) and the initial target pdf pX0(x0). The measurement equation, on the

other hand, generates the probabilistic measurement model pY S
t |Xt(y

S
t |xt). The following
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network-wide Bayesian recursion (see e.g. Gordon et al. [98]):

pXt+1|Y S
1:t

(xt+1|yS
1:t) =

∫
pXt+1|Xt(xt+1|xt)pXt|Y S

1:t
(xt|yS

1:t)dxt, Predict (5.3)

pXt+1|Y S
1:t+1

(xt+1|yS
1:t+1) =

pY S
t+1|Xt+1

(yS
t+1|xt+1)pXt+1|Y S

1:t
(xt+1|yS

1:t)∫
pY S

t+1|Xt+1
(yS
t+1|xt+1)pXt+1|Y S

1:t
(xt+1|yS

1:t)dxt+1

, Update (5.4)

specifies the optimal two-step rule for updating posterior pdfs. Here yS
1:t denotes the mea-

surement sequence acquired by the entire network during time steps 1, . . . , t. The two-step

predict/update structure of the rule naturally fits the state-space framework description of

the target evolution and measurement acquisition. The prediction step identifies current

likely positions of a target given the distribution obtained through the previous measure-

ments by marginalizing over all the movements this target can make. The update step

reduces the uncertainty induced by the random dynamics of the target and previous noisy

measurements by incorporating the most recent set of measurements obtained by the WSN.

Although the centralized Bayesian approach is optimal in terms of tracking performance

its drawbacks are clear. The fact that the entire network is kept running during tracking

exercise inevitably induces network lifetime issues. The need to route the entire set of

network measurements yS
t (which can be large in e.g. image processing applications) to the

fusion center at every time step raises concerns related to scalability, inefficient bandwidth

usage, and uneven power consumption. Besides, the optimal Bayesian recursion can be

computed exactly for a relatively small subset of tracking problems (e.g. linear and Gaus-

sian). Thus the design and analysis of approximate, distributed (localized) WSN based

tracking strategies employing in-network processing techniques is necessary. In the next

chapter we analyze the approximation performance of one such strategy, called Collabo-

rative Signal and Information Processing (CSIP). In the rest of this chapter this strategy

and analysis framework necessary for obtaining theoretical guaranties for its performance

are reviewed.

5.1.2 Collaborative Bayesian Estimation in a Wireless Sensor Network

The CSIP tracking protocol alleviates the drawbacks of the optimal Bayesian approach

identified in the previous section by activating only a subset of sensor nodes at any time

instant. The CSIP sensing/tracking protocol can be summarized as follows. A user (sink)
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initiates the tracking exercise by querying the nearest node in the WSN (node Q). The sink

can ask WSN to periodically send updates about the estimate of the state of the target [95]

and supply the WSN with its prior belief regarding the current position of the target. Node

Q identifies the first subset of active sensor nodes according to the prior information about

the location of the target and activates this subset by sending a corresponding request to

the cluster head. After the initiation of the track, at every iteration, the current cluster

head activates its cluster of sensor nodes (these sensors will be called satellite sensors),

acquires information that they sense and updates the tracking statistics (e.g. posterior

pdfs) by modeling the target dynamics and incorporating the current set of measurements.

Based on the current tracking statistics of the target and the appropriate quality metric,

current cluster head makes an assessment as to whether it is capable of tracking the target

or if another cluster head (with its associated set of satellite sensors) could perform better.

The cluster head hand-off is thus performed whenever necessary. At the same time, the

current cluster head may send the tracking update to the sink.

In the CSIP approach the cluster head is often called the leader node since it leads

the associated set of satellite nodes by performing complex signal processing and sensor

management tasks. Moreover, the CSIP approach is often referred to as the “leader node”

approach since the main idea behind CSIP is to use the localized in-network signal pro-

cessing within the cluster head (leader node). Thus the terms “CSIP” and “leader node”

will be used interchangeably in the rest of the thesis.

This tracking scenario is depicted in Fig. 5.1. A leader node (depicted by big circles)

is responsible for performing local tracking operations (e.g. running a particle filter) based

on the data acquired by the satellite nodes (depicted by small circles). The leader node

fuses the data gathered by the satellite nodes in its neighborhood; and employing a sensor

management (selection) routine performs a leader node hand-off when necessary. The hand-

off (decision) rule is constructed in such a manner that the position of the leader node follows

(on the average) the position of the region where most informative measurements can be

acquired. In many situations this results in the leader node following the position of the

target (depicted by the squares in Fig. 5.1 — the colors of the squares correspond to the

colors of the corresponding active nodes).

In the ideal situation, assuming that the current leader node can transmit its entire

posterior pdf to the next leader node (this is only possible if the pdf has finite dimensional

parametric representation), the corresponding predict/update CSIP Bayes recursion can
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Fig. 5.1 The CSIP distributed filtering setting
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be written as follows

p
Xt+1|Y

S1:t
1:t

(xt+1|yS1:t
1:t ) =

∫
pXt+1|Xt(xt+1|xt)pXt|Y S1:t

1:t
(xt|yS1:t

1:t )dxt, (5.5)

p
Xt+1|Y

S1:t+1
1:t+1

(xt+1|yS1:t+1

1:t+1 ) =
p
Y

St+1
t+1 |Xt+1

(y
St+1

t+1 |xt+1)p
Xt+1|Y

S1:t
1:t

(xt+1|yS1:t
1:t )∫

p
Y

St+1
t+1 |Xt+1

(y
St+1

t+1 |xt+1)p
Xt+1|Y

S1:t
1:t

(xt+1|yS1:t
1:t )dxt+1

. (5.6)

At every time step t every leader node `t ∈ L only has access to a collection of satellite

nodes in its local neighborhood, N[`t] = {s ∈ S : (s, `t) ∈ E} (cf. the definition of the

neighborhood in Section 2.3). This fact is reflected in the recursion (5.5)–(5.6) through the

introduction of the time-varying sequence of active sensor subsets (active neighborhoods)

S1:t = {Si}ti=1 (cf. the centralized Bayes recursion (5.3)–(5.4)) such that St = N[`t].

The set of measurements yS1:t
1:t collected by the sequence of active neighborhoods is thus

yS1:t
1:t = {ysii ∈ Rd

si
y : 1 ≤ i ≤ t, si ∈ Si} a subset of the set of all the measurements yS

1:t that

can potentially be acquired by the entire WSN.

Due to the local structure of the CSIP data acquisition and processing methodology,

CSIP significantly alleviates the scalability, network lifetime, uneven power consumption,

and inefficient bandwidth utilization issues associated with the centralized optimal Bayes

approach. However, these benefits come at the cost of reduced tracking quality. The two

most important factors influencing tracking quality reduction are as follows.

The first factor is the information loss: only a subset of sensors are activated at any

given time-slot. Thus only a portion of the available information is acquired at any time

instant potentially leading to a reduced tracking quality. In many situations these losses

are small since the informativity of measurements is unevenly spread across the WSN. A

small subset of sensors often provides most of the available information at a particular

time instant. The influence of the first factor on the tracking performance is minimized

by identifying the most informative subset of sensors St+1 to be activated for the next

measurement [96]. The selection is generally based on an objective function that combines

a utility function ϕU(·) measuring the utility of activating the subset St+1 and a cost

function ϕC(·) measuring the cost of activating this subset [6]:

Υ(p
Xt|Y

S1:t
1:t

(xt|yS1:t
1:t ),St+1) = βϕU(p

Xt|Y
S1:t
1:t

(xt|yS1:t
1:t ),St+1) + (1− β)ϕC(St+1). (5.7)

The cost function typically measures communication costs involved in activating subset
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St+1, the utility function typically measures the information utility of incorporating mea-

surements from sensors in the set St+1, and β determines the relative importance of utility

and cost. Several information utility functions were proposed in [95]: Euclidean distance

(nearest neighbor rule), Mahalanobis distance, and entropy based utility functions. It turns

out that the performance of CSIP is best when entropy based measures of utility are used in

the utility function. An example of the entropy based utility function is the mutual informa-

tion I(Xt+1, Y
St+1

t+1 |yS1:t
1:t ). This utility function measures the amount of information that the

set of measurements Y
St+1

t+1 (that has not yet been realized) from the subset St+1 can provide

about the state Xt+1 given the values yS1:t
1:t of all the previous measurements. More complex

utility functions incorporating multi-step selection strategies and energy constraints can be

constructed [96]. The calculation of the MI utility I(Xt+1, Y
St+1

t+1 |yS1:t
1:t ) is often reasonably

simple and is based on the knowledge of posterior p
Xt|Y

S1:t
1:t

(xt|yS1:t
1:t ) (or its approximation),

target dynamics pXt+1|Xt(xt+1|xt), and sensor characteristics p
Y

St+1
t+1 |Xt+1

(y
St+1

t+1 |xt+1). The

MI based leader node selection rule can be formulated is follows:

`t+1 = arg max
`∈L

I(Xt+1, Y
N[`]

t+1 |yS1:t
1:t ). (5.8)

This criterion is known to work well when the estimation accuracy is the only objective [96].

The second factor influencing tracking quality reduction is the additional approximation

errors: the hand-off of information to a new leader node is required whenever the leader

changes. This involves either transmitting the tracking statistics or their approximations.

Even assuming that the CSIP Bayes recursion can be approximated appropriately (e.g. us-

ing a particle filter), the volume of data to be transmitted during hand-offs can be too large.

Thus additional approximations have to be made. The effect from these additional approx-

imations has to be accounted for when the goal is to reach low bandwidth consumption

(and communication cost).

In the next chapter this effect will be analyzed. We will consider two different hand-off

settings. In the first setting a random subsample from the particle approximation of the

filtering distribution is sent during leader node hand-off. This type of approximation will be

called a subsample approximation or non-parametric approximation. In the second setting a

parametric mixture estimated from the particle approximation of the filtering distribution

is sent during leader node hand-off. This type of approximation will be called a parametric

approximation.
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5.2 Particle Filtering for Target Tracking

The calculation of the optimal Bayes recursion is not always possible in closed form. There-

fore there is a need to approximate this calculation. One such approximate scheme is the

particle filter [91]. A particle filter maintains a set of “particles” that are simply candidate

state values of the system (for example, the position and velocity of the object). The filter

evaluates how well individual particles correspond to the dynamic model and the set of

observations, and assigns weights accordingly. The set of weighted particles provides a

point-wise approximation to the filtering distribution, which represents the posterior prob-

ability of the state. This approximation allows one to form estimates of the state values

and hence track the state.

The major idea behind the particle filter1 is the following Monte Carlo (MC) approxi-

mation of an arbitrary pdf [101]:

p̂N(x) =
1

N

N∑
i=1

δ(x− ξi), (5.9)

where δ(·) is the Dirac delta function and {ξi}Ni=1 is a set of independent and identically

distributed (i.i.d.) samples from p(x). For a measurable function ϕ : X → R the empirical

expectation

∫
ϕ(x)p̂N(x)dx =

1

N

N∑
i=1

ϕ(ξi), (5.10)

converges to the true expectation almost surely as N →∞ [102]:∫
ϕ(x)p̂N(x)dx→

∫
ϕ(x)p(x)dx a.s. (5.11)

motivating the use of empirical MC sums as consistent random approximations of the true

integrals in the Bayes recursion (5.5)–(5.6). The underlying assumption behind the MC

approximation is that the pdf p(x) is known (or can be sampled from). In the practi-

cal situation, this implies knowing the posterior distribution pXt|Y1:t(xt|y1:t), the quantity

1Particle filters go by several names reflecting different aspects of the sample based sequential filter-
ing density approximation and propagation: bootstrap filter [98], sequential Monte Carlo methods [91],
condensation [99], and interacting particle systems [100].
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that one has to calculate. To bypass this difficulty a statistical technique known as im-

portance sampling is used [103]. The application of this technique only requires that the

pdf pXt|Y1:t(xt|y1:t) can be evaluated, point-wise, at candidate state locations (particle lo-

cations). This is a much weaker requirement than the knowledge of the pdf, or the ability

to sample from it directly. Thus to be able to apply the MC approximation methodology,

one has to assume that pX0:t|Y1:t(x0:t|y1:t) can be approximated in the form:

pX0:t|Y1:t(x0:t|y1:t) ≈
N∑
i=1

witδ(x− ξi0:t), (5.12)

and importance sampling can be used to obtain the samples ξi0:t. The importance sampling

can be applied to approximate a target density, p(x), if the target density can be evaluated

point-wise and there exists a pdf, q(x), known as the proposal density that is easy to sample

from and the support of the proposal density contains that of the target density. Then the

empirical approximation

p(x) ≈
N∑
i=1

wiδ(x− ξi), (5.13)

can be obtained by sampling from q(x) and setting the weights as wi = p(ξi)/q(ξi) (weights

wi are often referred to as importance weights). In the context of approximating Bayes

recursion the proposal density has the general form [101] qXt|X0:t−1,Y1:t(xt|x0:t−1, y1:t) and

the importance weights in (5.12) become:

wit = wit−1

pYt|Xt(yt|ξit)pXt|Xt−1(ξ
i
t|ξit−1)

qXt|X0:t−1,Y1:t(ξ
i
t|ξi0:t−1, y1:t)

. (5.14)

In the important special case when only the marginal filtered density pXt|Y1:t(xt|y1:t) is

required at every time step t, the optimal importance density becomes simpler [104]:

qXt|X0:t−1,Y1:t(xt|x0:t−1, y1:t) = qXt|Xt−1,Yt(xt|xt−1, yt).
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The expression for importance weights changes accordingly:

wit = wit−1

pYt|Xt(yt|ξit)pXt|Xt−1(ξ
i
t|ξit−1)

qXt|Xt−1,Yt(ξ
i
t|ξit−1, yt)

. (5.15)

The algorithm based on the above weight update is known as the sequential importance

sampling algorithm. The sequential importance sampling algorithm is known to suffer

from the degeneracy problem: the unconditional variance of particle weights grows over

time indicating that eventually only a small subset of candidate states represents the ac-

tual evolution of the observed dynamical system [105]. To overcome this issue either the

optimal importance density with zero conditional weight variance [104] or the resampling

approach [106] can be used.

The structure of the optimal importance density is known to be:

qXt|Xt−1,Yt(xt|ξit−1, yt) =
pYt|Xt(yt|xt)pXt|Xt−1(xt|ξit−1)

pYt|Xt−1(yt|ξit−1)
. (5.16)

The expression for the associated importance weights then contains the integral of the

numerator above:

wit = wit−1

∫
pYt|Xt(yt|xt)pXt|Xt−1(xt|ξit−1)dxt, (5.17)

which is an obvious drawback since the integral can only be evaluated in special

cases [101, 107]. In other cases, suboptimal sampling techniques have to be used. The

examples of typical suboptimal sampling techniques are sampling from the prior [108] and

the auxiliary variable sampling [109]. A common approach of avoiding degeneracy prob-

lem for suboptimal choices of the proposal density is resampling [98]. For example, in the

case of sampling from prior, qXt|Xt−1,Yt(xt|ξit−1, yt) = pXt|Xt−1(xt|ξit−1), the expression for the

unnormalized importance weights is particularly simple:

wit = wit−1pYt|Xt(yt|ξit). (5.18)

Before resampling the importance weights are normalized, w̃it = wit/
∑N

j=1w
j
t and the re-

sampling is performed from this weighted sample such that the new resampled sample
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{ξ̃it}Ni=1 satisfies

P{ξ̃jt = ξit} = w̃it. (5.19)

The particle filter that employs resampling at every step is generally referred to as the

sampling importance resampling particle filter [98]. In the sampling importance resampling

filter the normalized weights are simply

w̃it =
pYt|Xt(yt|ξit)∑N
j=1 pYt|Xt(yt|ξ

j
t )
, (5.20)

since the resampled weights have equal weight 1/N . Other variants of resampling based

filters employ resampling step only occasionally, when the so-called effective sample size

(the number of particles with significant weights) drops below certain threshold [106].

In the next section the important results from the particle filter stability analysis liter-

ature will be reviewed and the general framework for analyzing the performance of particle

filters will be presented.

5.3 Stability Analysis of Particle Filtering Algorithms and

Feynman-Kac Formulae

The analysis of approximation error propagation and stability of non-linear Markov filters

has been an active research area for several decades. In [110] Kunita studied the asymp-

totic behavior of the error and stability of the filter that has an ergodic signal transition

semigroup with respect to the initial distribution. Ocone and Pardoux [111] addressed the

stability of linear filters with respect to a non-Gaussian initial condition and examined

the stability of non-linear filters in the case where the signal diffusion is convergent. The

important conclusion drawn by Ocone and Pardoux based on results in [110, 111] is that

if the signal diffusion is stable with respect to its initial condition then the optimal filter

inherits this property and it is also stable with respect to the initial condition.

Although interesting, the results in [110, 111] address the optimal filtering scenario,

and more relevant to our study is the analysis of approximately optimal filters (especially

particle filters). Important results concerning the stability of particle filters have been

developed over the past decade [100,112–119].
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The Feynman-Kac semigroup approach to the stability analysis of particle filters has

been described and developed by Del Moral, Miclo and Guionnet in [112–114]. The authors

study the stability properties of general non-linear Feynman-Kac semigroups under a variety

of assumptions. The Dobrushin contraction coefficient of the underlying Markov chain

plays a central role in the analysis. In [113], Del Moral and Miclo formulate the conditions

for the exponential asymptotic stability of the Feynman-Kac semigroup and bound the

Lyapunov constant and Dobrushin coefficient. One of the applications of these results is

a time-uniform upper bound on the error of interacting particle systems. In [114], Del

Moral provides an extensive analysis of the properties of Feynman-Kac semigroups. His

analysis forms the basis for our study in the next chapter, particularly in the case of the

subsampling approximation leader node particle filter.

Stability analysis for particle filters is frequently built on relatively strong assumptions

about the mixing and ergodicity properties of the underlying Markov transitions of the

signal (target state). There have been some efforts to relax these types of assumptions.

In [116, 117], Le Gland and Oudjane study the stability and convergence rates for particle

filters using the Hilbert projective metric. In [116], they relax the signal mixing assump-

tions by employing a specific, “robust” particle filter architecture with truncated likelihood

functions. In [117], the mixing assumption is applied not to the Markov kernel governing

signal diffusion, but to the non-negative kernel that governs the evolution of the parti-

cle filter. This kernel combines the effects of the Markov transitions and the likelihood

potentials, so mixing behavior can arise from either of these two components.

The papers cited thus far addressed the analysis of particle filters with fixed population

size (number of particles). In the subsampling approximation leader node particle filter, the

number of particles varies over time. Crisan et al. examine the stability of branching and

interacting particle systems in [100]; in these systems the population size also varies, because

at each time step a particle generates a random number of offspring. The population size

forms a positive integer-valued martingale with respect to the filtration and the properties

of the resulting particle filter depend on the initial number of particles. The variation in

the number of particles is clearly very different from that of the subsampling approximation

leader node particle filter, so the results are not directly applicable.

Thus far we have discussed previous work that has addressed particle filter stability

when the error arises due to the sampling approximation. The sampling error is dependent

on the resampling schemes, and Douc et al. have provided theoretical results that allow
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various resampling schemes to be compared [119]. Other work has considered additional

sources of error. Vaswani et al. analyzed the performance of a particle filter in the case of

signal model mismatch (when the true underlying Markov transitions differ from the model

used to update the filter) [118]. They showed, using the same assumptions as in [117], that

the particle filter is stable if the mismatch persists for only a finite interval of time.

Le Gland et al. propose and analyze the kernel-based regularized particle filter

in [115, 117], and this work is the most closely related to our study of the parametric

approximation particle filter. From an algorithmic standpoint, there are also similarities

with the Gaussian sum particle filter [120], but the theoretical analysis of this filter is

less developed. The regularized particle filters described in [115,117] incorporate a step in

which the N -sample point-wise density approximation is replaced by a continuous density

approximation, using a kernel-based density estimation approach. During resampling, N

particles are generated by sampling from this continuous density. The practical benefit of

this approach is the increase in the diversity of the particle system, eliminating the poten-

tial for degeneracy and improving the stability of the algorithm. Le Gland et al. provide

uniform convergence results for the regularized particle filters. Although there is some

similarity to the parametric approximation particle filter we analyze, the purpose of the

approximation is very different. It is not performed intermittently to reduce computation

or communication cost, but rather is performed every time step with a complex model (N

components).

5.3.1 Feynman-Kac Formulae

In order to conduct stability analysis in the next chapter, we need to introduce slightly more

rigorous mathematical notations. Let (Et, Et), t ∈ N be a sequence of measurable spaces.

The target state vector evolves according to a non-homogeneous (discrete-time) Markov

chain Xt with transitions Mt+1 from Et into Et+1. We denote by X ′t = X[0:t] the historical

path process associated with Xt, and use M ′
t to denote the Markov transitions of the path

process. Associated with a measurable space of the form (E, E) is a set of probability

measures P(E) and the Banach space of bounded functions Bb(E) with supremum norm:

||h|| = sup
x∈E
|h(x)|. (5.21)
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We define a convex set Osc1(E) of E-measurable test functions with finite oscillations:

osc(h) = sup(|h(x)− h(y)|; x, y ∈ E) (5.22)

Osc1(E) = {h : osc(h) ≤ 1} (5.23)

For any h ∈ Bb(E) it is also possible to define the following:

||h||osc = ||h||+ osc(h). (5.24)

In order to simplify the representation, we define for a measure µ ∈ P(E),

µ(h) =

∫
E

h(x)µ(dx)

and for the Markov kernel from (Ei−1, Ei−1) to (Ei, Ei):

(µi−1Mi)(Ai) =

∫
Ei−1

µi−1(dxi−1)Mi(xi−1, Ai).

Thus the composite integral operator from (Ei, Ei) to (Et, Et), Mi,t = Mi+1 . . .Mt, has the

form:

(Mi+1 . . .Mt)(xi, dxt) =

∫
E[i+1:t−1]

Mi+1(xi, dxi+1) . . .Mt(xt−1, dxt).

In the next chapter we adopt the methodology developed in [114] to analyze the be-

havior of filtering distributions arising from (5.1) and (5.2). This methodology involves

representing the particle filter as an N -particle approximation of a Feynman-Kac model.

In the remainder of this section, we describe how this representation is performed; for a

much more detailed description and discussion, please refer to [114].

The evolution of the unconditional signal distribution in (5.1) is completely defined by

the Markov transition kernel M(·, ·) and the initial signal distribution µ0:

Pr{Xt ∈ dxt|Xt−1 = xt−1} = Mt(xt−1, dxt) (5.25)

According to (5.25), the signal distribution at time t, with respect to the sequence of



5 Distributed Tracking with Communication Constraints 100

random variables X1, . . . , Xt, can be written as follows

Pµ,t(d(x0, . . . , xt)) = µ(dx0)M1(x0, dx1) . . .Mt(xt−1, dxt) (5.26)

defining the filtered probability space(
Ω =

t∏
i=0

Ei,Ft,F∞,Pµ

)
, (5.27)

where the family of σ-algebras has the following property: Fi ⊂ Fj ⊂ F∞ for any i ≤ j

and F∞ = σ(∪i≥0Fi).
On the other hand, bounded and non-negative potential functions Gt : Et → [0,∞)

characterize the time-varying properties of a measurement device. This leads to the fol-

lowing definition of the unnormalized prediction Feynman-Kac model, for ht ∈ Bb(Et) and

t ∈ N.

γt(ht) = Eµ0

(
ht(Xt)

t−1∏
i=0

Gi(Xi)

)

=

∫
E[0:t]

ht(xt)
t−1∏
i=0

Gi(xi)Pµ0,t(d(x0, . . . , xt)) (5.28)

where Eµ0 denotes expectation with respect to the distribution of an Et-valued Markov

chain Xt with transitions Mt. The normalized prediction Feynman-Kac model is then:

ηt(ht) =
γt(ht)

γt(1)
(5.29)

The idea behind Feynman-Kac formulae based analysis is to define an operator Φt acting

from P(Et−1) to P(Et) — the distribution update operator that maps ηt−1 ∈ P(Et−1) to

ηt ∈ P(Et), and then analyze the stability of the filtering model described by the sequence

of operators Φ1, . . . ,Φt by studying the properties of the semigroup formed by this sequence

of operators. Intuitively, the Markov kernel describing unconditional signal evolution and

the potential functions describing measurement process constitute the ingredients of the

Feynman-Kac operator. The formal definition of this operator is as follows.

The Boltzmann-Gibbs transformation Ψt reflects the effect of the likelihood function
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at time t on the normalized prediction model. The transformation Ψt maps the set of

probability measures on Et onto itself, i.e. Ψt : ν ∈ Pt(Et) 7→ Ψt(ν) ∈ Pt(Et). For a

particular measure ν,

Ψt(ν)(dxt) =
1

ν(Gt)
Gt(xt)ν(dxt). (5.30)

This transformation is used to construct the non-linear operator Φt : P(Et−1) → P(Et),

which is used to update the predictive posterior distribution from time step t − 1 to time

step t:

ηt = Φt(ηt−1) (5.31)

This operator combines the fitness assessment described by the likelihood function Gt−1

and the diffusion step described by the Markov kernel Mt

Φt(ηt−1) = Ψt−1(ηt−1)Mt (5.32)

The repeated application of this operator, Φt(ηt−1)t≥1, results in the semigroups Φi,t, i ≤ t

associated with the normalized Feynman-Kac distribution flows ηt.

Φi,t = Φt ◦ Φt−1 ◦ . . . ◦ Φi+1 (5.33)

The semigroup Φi,t describes the evolution of the normalized prediction Feynman-Kac

model from time i to time t:

ηt = Φi,t(ηi) (5.34)

and can be formally defined through the Feynman-Kac formulae

Φi,t(ηi)(ht) =
Ei,ηi{ht(Xt)

∏t−1
j=i Gj(Xj)}

Ei,ηi{
∏t−1

j=i Gj(Xj)}
. (5.35)
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Here Ei,ηi is the expectation with respect to the measure Pi,ηi :

Pi,ηi(·) =

∫
Ei

ηi(dxi)Pi,xi(·), (5.36)

and Pi,xi is the probability distribution of the shifted chain (Xi+t)t≥0 with the respective

expectation Ei,xi defined as follows:

Ei,xi{hi,t(Xi, . . . , Xt)} =

∫
Ei+1:t

hi,t(xi, . . . , xt)Mi+1(xi, dxi+1) . . .Mt(xt−1, dxt). (5.37)

The semigroup Φi,t is related to Gi,t : Ei → (0,∞), potential functions on Ei, and

Pi,t : P(Ei) → P(Et), Markov kernels from Ei to Et. In particular, Gi,t is defined as the

expectation of the composite potential constructed based on the data acquired over steps

i, . . . , t− 1 with respect to the shifted chain Mi+1 . . .Mt:

Gi,t(xi) = Ei,xi

{
t−1∏
j=i

Gj(Xj)

}
, (5.38)

and Pi,t is defined by the Feynman-Kac formulae as follows:

Pi,t(ht)(xi) =

Ei,xi

{
ht(Xt)

t−1∏
j=i

Gj(Xj)

}

Ei,xi

{
t−1∏
j=i

Gj(Xj)

} . (5.39)

The Boltzmann-Gibbs transformation

Ψi,t(ηi)(hi) =
ηi(Gi,thi)

ηi(Gi,t)
(5.40)

and the semigroup Φi,t

Φi,t(ηi) = Ψi,t(ηi)Pi,t (5.41)

can then be represented via these two quantities.
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Feynman-Kac formulae and Bayesian framework

It is convenient to draw parallels between the Feynman-Kac description of the filtering

process discussed above and the Bayesian formulation of the sequential filtering process. In

particular, the integral operator, Mt(xt−1, dxt), describing the evolution of signal diffusion

is most naturally related to the state transition density (assuming one exists):

Mt(xt−1, dxt) = pt(xt|xt−1)dxt.

On the other hand, the measurement equation compactly described by the potential func-

tion Gt(xt) in the Feynman-Kac framework is directly related to the likelihood function

pt(yt|xt) in the Bayesian framework:

Gt(xt) = pt(yt|xt).

We can then see how the diffusion step within the Feynman-Kac framework is related

to the prediction step within the Bayesian framework:

Φt+1(ηt) =

∫
Et

Ψt(ηt)(dxt)Mt(xt, dxt+1) Feynman-Kac (5.42)

pt+1(xt+1|y1:t) =

∫
Et

p(xt|y1:t)pt+1(xt+1|xt)dxt Bayes (5.43)

Thus the operator Φt+1 generates the normalized predictive posterior distribution,

ηt+1(dxt+1) = Φt+1(ηt)(dxt+1) = pt+1(xt+1|y1:t)dxt+1 using the Markov diffusion

Mt(xt, dxt+1) = pt+1(xt+1|xt)dxt+1. On the other hand, the Boltzmann-Gibbs transfor-

mation Ψt(ηt)(dxt) = pt(xt|y1:t)dxt generates the normalized posterior distribution using

the update step analogous to that of the Bayes model:

Ψt(ηt) =
Gt(xt)ηt(dxt)∫
Et
Gt(xt)ηt(dxt)

Feynman-Kac (5.44)

pt(xt|y1:t) =
pt(yt|xt)pt(xt|y1:t−1)∫

Et
pt(yt|xt)pt(xt|y1:t−1)dxt

Bayes (5.45)

Here we recognize that the normalization constant ηt(Gt) has the meaning of evidence

at time t, pt(yt|y1:t−1), within the Bayes framework. We conclude that the Feynman-Kac
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formulae are directly related to the predict-update Bayesian recursion. The difference

between the two formulations lies in the fact that the Feynman-Kac formulae describe the

evolution of distributions, while the Bayesian framework describes the evolution of the

corresponding densities (assuming that these densities exist).

N-particle approximations

A particle filter can be defined by developing an N -particle approximation to the Feynman-

Kac model. This approximation consists of N path particles:

ξ′kt = (ξki,t)0≤i≤t ∈ E ′t = E[0,t] i ∈ 1, . . . , N

The particle approximation of the prediction Feynman-Kac model is defined as:

ηNt =
1

N

N∑
k=1

δξkt,t

The N -tuple ξt represents the configuration at time t of N particles ξkt , and resides in

the product space EN
t . The particle filter then involves a two-step updating process:

ξt ∈ EN
t

selection−→ ξ̂t ∈ EN
t

mutation−→ ξt+1 ∈ EN
t+1

The selection stage consists of selecting randomly N particles ξ̂kt . This random selection

is achieved by setting, with probability εtGt(ξ
k
t ), ξ̂kt = ξkt ; otherwise a random particle ξ̃kt

is chosen with distribution
∑N

k=1
Gt(ξkt )∑N
j=1Gt(ξ

j
t )
δξkt , and ξ̂kt is set ξ̂kt = ξ̃kt . During the mutation

phase, each particle ξ̂kt evolves according to the Markov transition Mt+1.

Alternatively, a particle filter can be described by defining a random sampling operator.

Let the sampling operator SN : P(E)→ P(EN) be defined as:

SN(η)(h) =
1

N

N∑
i=1

h(ξi) . (5.46)

where (ξ1, . . . , ξN) is the i.i.d. sample from η. With this notation, the standard particle
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filter can be expressed using the recursion

ηNt = SN(Φt(η
N
t−1)). (5.47)

5.3.2 Regularity Conditions and Particle Filter Stability

It was mentioned previously that the stability of Markov filters (and thus the associated

particle approximations) is related to studying the stability of semigroups Φi,t. We now

cite an important result, due to Del Moral [114], describing error propagation for a general

non-linear operator Φi,t:

Proposition 5.1 (Del Moral [114], Proposition 4.3.7). For any 0 ≤ i ≤ t, µi ∈ P(Ei), and

ht ∈ Bb(Ei) with osc(ht) ≤ 1, respectively ||ht|| ≤ 1, there exists a function h
(µi)
i,t in Bb(Ei)

with osc(h
(µi)
i,t ) ≤ 1, respectively ||h(µi)

i,t || ≤ 1, such that for any ηi ∈ P(Ei) we have

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤ β(Pi,t)
||Gi,t||osc

ηi(Gi,t)
|(ηi − µi)(h(µi)

i,t )| (5.48)

and respectively

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤ β(Pi,t)
2||Gi,t||
ηi(Gi,t)

|(ηi − µi)(h(µi)
i,t )| (5.49)

This result describes the propagation of one-step approximation error through the non-

linear operator Φi,t. It reveals the link between the initial error at time i and the propagated

error at time t through the properties of potential functions Gi,t and the Dobrushin con-

traction coefficient β(Pi,t) ∈ [0, 1] defined as follows:

β(Pi,t) = sup{||Pi,t(xi, ·)− Pi,t(yi, ·)||tv;xi, yi ∈ Ei}, (5.50)

Where the total variation norm defined for any µ, ν ∈ P(E) has the following form:

||µ− ν||tv = sup{|µ(h)− ν(h)|;h ∈ Osc1(E)}. (5.51)

The properties of the two quantities, Gi,t and β(Pi,t), can be further studied through

the introduction of regularity constants on Mt and Gt. To ensure that the Markov kernel

Mt is sufficiently mixing the following regularity condition is introduced in [114]:
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• (M)m There exists an integer m ≥ 1 and some sequence of numbers εi(M) ∈ (0, 1)

such that for i and xi, yi ∈ Ei we have

Mi,i+m(xi, ·) = Mi+1Mi+2 . . .Mi+m(xi, ·) ≥ εi(M)Mi,i+m(yi, ·)

The regularity condition imposed on likelihood functions Gt takes the following form:

• (G) There exists a sequence of strictly positive numbers εt(G) ∈ (0, 1] such that for

any xt, yt ∈ Et
Gt(xt) ≥ εt(G)Gt(yt)

If assumptions (G) and (M)m hold then according to Proposition 4.3.3. [114] β(Pi,t)

can be bounded as follows:

β(Pi,t) ≤
b(t−i)/mc−1∏

k=0

(
1− ε(m)

i+km(G,M)
)
, (5.52)

where ε
(m)
i (G,M) = ε2i (M)

∏i+m
k=i+1 εk(G). Furthermore, according to the same Proposition

4.3.3. [114] and under the same assumptions, we have the following:

Gi,t(xi)

Gi,t(yi)
≥ εi(M)

m∏
k=i

εk(G) (5.53)

These expressions can be used to bound the contraction coefficients in Proposition 5.1.

To see how the step-wise error bound in this proposition is related to the total N -particle

approximation error it is necessary to examine the following decomposition [114]:

ηNt − ηt =
t∑
i=0

[
Φi,t(η

N
i )− Φi,t(Φi(η

N
i−1))

]
. (5.54)
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Indeed, upon expanding the above expression we obtain2:

t∑
i=0

[
Φi,t(η

N
i )− Φi,t(Φi(η

N
i−1))

]
= Φt,t(η

N
t )− Φt,t(Φt(η

N
t−1)) + Φt−1,t(η

N
t−1)− Φt−1,t(Φt−1(ηNt−2)) + · · ·

+ Φ1,t(η
N
1 )− Φ1,t(Φ1(ηN0 )) + Φ0,t(η

N
0 )− Φ0,t(Φ0(ηN−1))

= ηNt − Φt(η
N
t−1) + Φt(η

N
t−1)− Φt−1,t(η

N
t−2) + · · ·

+ Φ1,t(η
N
1 )− Φ0,t(η

N
0 ) + Φ0,t(η

N
0 )− Φ0,t(η0)

= ηNt − ηt. (5.55)

Thus using the triangle inequality and Proposition 5.1 the total particle filtering error can

be bounded as follows

E|[ηNt − ηt](ht)| ≤
t∑
i=0

β(Pi,t)
||Gi,t||
ηi(Gi,t)

E|[ηNi − Φi(η
N
i−1)](hi)|

≤
t∑
i=0

b(t−i)/mc−1∏
k=0

(
1− ε(m)

i+km(G,M)
)
ε−1
i (M)

m∏
k=i

ε−1
k (G)E|[ηNi − Φi(η

N
i−1)](hi)|.

(5.56)

The analysis of the total particle filtering error can now be reduced to the analysis of the

step-wise (local) N -particle approximation errors |[ηNi −Φi(η
N
i−1)](hi)|. By the definition of

the sampling operator, SN , this local N -particle approximation error has the form

|[ηNi − Φi(η
N
i−1)](hi)| = |[SN(Φi(η

N
i−1))− Φi(η

N
i−1)](hi)|. (5.57)

The errors of this type can be bounded using the following lemma related to Khinchine,

Bürkholder, and other similar inequalities.

Lemma 5.1 (Del Moral [114], Lemma 7.3.3). For any p ≥ 1 and sequence of E-measurable

functions (hi)i≥1 with finite oscillations such that µi(hi) = 0 for all i ≥ 1 we have

√
NE{|m(X)(h)p|}

1
p ≤ d(p)

1
pσ(h) (5.58)

2By convention [114], Φ0(ηN
−1) = η0.
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where the following definitions are used

m(x)(h) =
1

N

N∑
i=1

hi(x
i) and σ2(h) =

1

N

N∑
i=1

osc2(hi) (5.59)

and finite constants d(p) are given by the following:

d(2p) =
(2p)!

p!
2−p, (5.60)

d(2p− 1) =
(2p− 1)!

(p− 1)!
√
p− 1/2

2−(p−1/2) (5.61)

The combination of the above results, namely, Lemma 5.1 to bound the local approxima-

tion errors, Proposition 4.3.3. [114] to bound the contraction of the operator Φi,t, Propo-

sition 5.1 to decouple the contraction of the operator and the approximation error, and

decomposition (5.54) to split the total approximation error into the sum of local terms

yields the following important result.

Theorem 5.1 (Del Moral [114], Theorem 7.4.4). For any t ≥ 0, p ≥ 1, and ht ∈ Osc1(Et),

we have

√
NE

{
|[ηNt − ηt](ht)|p

}1/p ≤ 2d(p)1/p

t∑
i=0

ri,tβ(Pi,t) (5.62)

for the sequence of finite constants d(p) defined in Lemma 5.1. In addition, suppose that

conditions (G) and (M)m hold true for some integer m ≥ 1 and some pair parameters

(εt(G), εt(M)) such that ε(G) = maxi≤t εi(G) and ε(M) = maxi≤t εi(M). Then we have the

uniform estimate

sup
t≥0

sup
ht∈Osc1(Et)

√
NE

{
|[ηNt − ηt](ht)|p

}1/p ≤ 2d(p)1/pm

ε3(M)ε2m−1(G)
(5.63)

Here ri,t = supxi,yi∈Ei(Gi,t(xi)/Gi,t(yi)) is the parameter measuring the relative oscilla-

tions of the potential functions.
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5.4 Greedy Maximum Likelihood Mixture Estimation

In the next chapter the approximation error of the CSIP based WSN tracking algorithm

(leader node particle filter) will be analyzed. The two settings, non-parametric and para-

metric hand-off (leader node exchange) will be discussed. In the parametric case, the

approximation involves forming a parametric approximation to the density. The mixture

model is a powerful parametric approximation that is able to represent complex general

multi-modal probability density functions [121]. A parametric mixture model of a (target)

probability distribution is a convex combination of probability distributions with unknown

parameters that come from a certain (approximation) class. The parametric mixture model

estimation problem consists of estimating the parameters and weights of probability dis-

tributions comprising the model. The estimation problem can be solved by optimizing the

empirical cost function (e.g. likelihood function) based on the available data (samples from

the target distribution). This, exact, empirical mixture estimation problem, however, is in-

tractable since the empirical cost function is often non-convex and the approximation class

may be too large [122]. The suboptimal, greedy, algorithms provide alternative efficient

numerical solutions to the exact empirical mixture estimation problem (see [121, 123] and

references therein).

To perform the estimation of the Np-component mixture used during the parametric

leader node hand-off operation we propose to use the greedy maximum likelihood (GML)

mixture density estimation algorithm introduced by Li and Barron in [124]. The attractive

features of the greedy maximum likelihood algorithm [124] discussed in the following section

are threefold. First, the algorithm simplifies the maximum likelihood density estimation

procedure. Instead of facing the Np-mixture estimation problem we only have to solve

Np 2-mixture estimation problems [124]. Second, there are several papers (see e.g. [124]

and [125]) that develop bounds on approximation and sampling errors of this algorithm in

terms of KL-divergence. Finally, it was shown [124] that the performance of the greedy

algorithm converges to that of the exact mixture estimation algorithm as N and Np become

large.

5.4.1 Algorithm Description

The probability density estimation problem consists of estimating an unknown probability

density given the i.i.d. sample {xi}Ni=1 from this density [126]. The greedy procedure for
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the maximum likelihood mixture density estimation with the cost induced by the Kullback-

Leibler divergence was proposed by Li and Barron [124]. The analysis of this framework

appears in [124] and [125]. The analysis of a more general approximation framework with

an arbitrary convex cost function appears in Zhang [127].

As before, let (E, E) be a measurable space. Denote λ a σ-finite measure on E . Through-

out this section it is assumed that the underlying distribution has a density if its Radon-

Nikodym derivative with respect to λ exists.

Within the GML framework proposed by Li and Barron [124] the discrepancy between

the target density f and its estimate is measured by the Kullback-Leibler (KL) divergence.

For any two measures ν and µ on E KL-divergence can be defined as follows:

D(ν||µ) =

∫
E

log
dν

dµ
dν (5.64)

We will also abuse notation by writing KL-divergence for two arbitrary densities f and g

in a similar fashion:

D(f ||g) =

∫
E

log
f(x)

g(x)
f(x)dλ(x) (5.65)

Consider the following class of bounded parametric densities:

H =

{
φθ(x) : θ ∈ Θ ⊂ Rd, a ≤ inf

θ∈Θ,x∈E
φθ(x), sup

θ∈Θ,x∈E
φθ(x) ≤ b

}
(5.66)

where 0 < a < b <∞ and Θ defines parameter space. In the setting where the leader node

hand-off is accomplished using parametric approximation, we are looking for a sequence of

mixture density estimators of the filtering densities. The approximation is restricted to a

class of discrete Np-component convex combinations of the form:

CNp = convNp(H) =

{
g : g(x) =

Np∑
i=1

αiφθi(x), φθ ∈ H,
Np∑
i=1

αi = 1, αi ≥ 0

}
(5.67)

As Np grows without bound, CNp converges to the class of continuous convex combinations:

C = conv(H) =

{
g : g(x) =

∫
Θ

φθ(x)P(dθ), φθ ∈ H
}

(5.68)
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The general framework for the greedy approximation of arbitrary cost functions is dis-

cussed in [127]. The particular instance of this more general framework is the GML for

mixture approximation (see [125] and [124]). Algorithm 2 summarizes the computational

routine used to implement the sequential greedy maximum likelihood procedure.

Algorithm 2: Greedy Maximum Likelihood (GML)

Given g1 ∈ H1

for i = 2 to Np do2

Find φθi ∈ H and 0 ≤ αi ≤ 1 to maximize the function:3

(θ∗i , α
∗
i ) = arg max

αi,θi

N∑
j=1

log((1− αi)gi−1(xj) + αiφθi(xj))
4

Let gi = (1− α∗i )gi−1 + α∗iφθ∗i5

endfor6

5.4.2 Local Error Analysis

The following notation is introduced to facilitate presentation. Assuming that f is a target

density and g ∈ C we denoteD(f ||C) = infg∈C D(f ||g), the least possible divergence between

a target density, f , and a member g from the class of continuous convex combinations

C. Furthermore, assuming that the target density f is known, the analytical estimator

gNp ∈ CNp can be obtained by solving the following greedy recursion for i = 2 . . . Np (see

Algorithm 2):

(θ∗i , α
∗
i ) = arg max

αi,θi

∫
x∈E

log((1− αi)gi−1(x) + αiφθi(x))f(x)dx.

Alternatively, ĝNp ∈ CNp is an empirical Np-mixture estimator constructed using Algo-

rithm 2 based on a sample from the target density, f . The following theorem (see [124])

reveals an important general property of GML algorithm.

Theorem 5.2 (Li and Barron [124], Theorem 2). For every gC(x) ∈ C

D(f ||gNp) ≤ D(f ||gC) +
γc2

f,C

Np

. (5.69)
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Here,

c2
f,C =

∫ ∫
Θ
φ2
θ(x)P(dθ)

(
∫

Θ
φθ(x)P(dθ))2

f(x)dx, (5.70)

and γ = 4[log(3
√
e) + supθ1,θ2∈Θ,x∈E log(φθ1(x)/φθ2(x))]

One of the consequences [124] of Theorem 5.2 is the following relationship between an

arbitrary gC(x) ∈ C and the empirical GML algorithm output ĝNp ∈ CNp :

1

N

N∑
i=1

log ĝNp(xi) ≥
1

N

N∑
i=1

log gC(xi)−
γc2

f,C

Np

. (5.71)

Clearly, it also follows directly from Theorem 5.2 that D(f ||gNp) ≤ D(f ||C) +
γc2f,C
Np

. Thus

Theorem 5.2 establishes a strong formal argument that shows that the GML density es-

timate converges to the best possible maximum likelihood estimate as Np grows without

bound.

A stronger result for the empirical estimator ĝNp satisfying the following general rela-

tionship

N∑
j=1

ĝi(xj) ≥ arg max
αi,θi

N∑
j=1

log((1− αi)ĝi−1(xj) + αiφθi(xj)), (5.72)

appears in [125] (the GML estimator is the estimator satisfying (5.72) with equality).

Theorem 5.3 (Rakhlin et al. [125], Theorem 2.1). For any target density f such that

a ≤ f(x) ≤ b for all x ∈ E and ĝNp being either the maximizer of the likelihood over Np-

component mixtures or more generally any sequence of density estimates satisfying (5.72),

E{D(f‖ĝi)} ≤ D(f‖C) +
c1

Np

+ E
{

c2√
N

∫ b

a

log1/2N (ε,H, dN)dε

}
(5.73)

where c1, c2 are constants (dependent on a, b) and N (ε,H, dN) is the ε-covering number3

of H with respect to empirical distance d2
N(h1, h2) = 1

N

∑N
i=1(h1(xi)− h2(xi))

2.

3The ε-covering number, N (ε,H, dN ), is the smallest number of sets of radius ε whose union contains
H.
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One of the goals of the next chapter will be connecting the existing results on the

performance of the GML in terms of the KL-divergence to its performance in terms of

Lp error metric. For this purpose, for a collection of bounded measurable functions H we

define the Zolotarev seminorm [114] on P(E)

||µ− ν||H = sup{|µ(h)− ν(h)|;h ∈ H} (5.74)

We will rely on several important results. In particular, the Rademacher sequence (εi) of

independent random variables taking values in {−1,+1} and P{εi = 1} = P{εi = −1} =

1/2 will be used along with the general form of the comparison inequality for Rademacher

processes (see [128], p. 112) presented below.

Theorem 5.4 (Ledoux and Talagrand [128], Theorem 4.12). Let F : R+ → R+ be convex

and increasing. Let further ϕi : R→ R, i ≤ N , be contractions4 such that ϕi(0) = 0. Then,

for any bounded subset T in RN

EF

(
1

2

∥∥∥∥∥
N∑
i=1

εiϕi(ti)

∥∥∥∥∥
T

)
≤ EF

(∥∥∥∥∥
N∑
i=1

εiti

∥∥∥∥∥
T

)
(5.75)

We will also use the Orlicz norm [114,129] πψp(Y ) of a random variable Y defined as

πψp(Y ) = inf{C > 0 : E{ψp(|Y |/C)} ≤ 1} (5.76)

and associated with a nondecreasing convex function ψp(x) = ex
p − 1. The sub-Gaussian

inequality (see Corollary 2.2.8 in [129]) implies for a class of nonnegative and bounded

functions ‖h‖ ≤ b,∀h ∈ H:

Eεπψ2(‖SNε (µ)‖H) ≤ C√
N

∫ b

0

√
log(1 +D(ε,H, dN))dε. (5.77)

Here C is a universal constant [129] and SNε is the generator of the Rademacher process

(with xi being the i.i.d. samples from µ and εi being the i.i.d. Rademacher random

4the function ϕ : R→ R is a contraction if we have |ϕ(x)− ϕ(y)| ≤ |x− y|,∀x, y ∈ E
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variables, P{εi = 1} = P{εi = −1} = 1/2, independent of xi):

SNε (µ)(h) =
1

N

N∑
i=1

εih(xi). (5.78)

The empirical semimetric defined for h1, h2 ∈ H is simply

d2
N(h1, h2) =

1

N

N∑
i=1

(h1(xi)− h2(xi))
2 (5.79)

and D(ε,H, dN) is the packing number — the maximum number of ε-separated points in

H.



115

Chapter 6

Analysis of the Leader Node Particle

Filter

This chapter examines the impact of approximation steps that become necessary when a

particle filter is implemented in the leader node resource constrained framework described

in detail in the previous chapter. This particle filter performs intermittent approximation

for the leader node hand-off, either by subsampling the particles or by generating a para-

metric approximation. For this algorithm, time uniform bounds on the weak sense Lp error

and associated exponential inequalities are derived. The theoretical analysis is motivated

by numerical experiments exploring the approximation performance of the leader node tar-

get tracking algorithm. The relationship of the theoretical results to the error bounds is

investigated.

6.1 Leader Node Particle Filtering with Intermittent

Subsampling

In this section we concentrate on analyzing the variant of the leader node particle filter

that employs subsampling to approximate the particle cloud during leader node hand-

off operation. We first present the algorithmic description of the leader node filtering

framework and then develop a detailed signal model for this framework. Finally, we discuss

how the general Feynman-Kac operators outlined in the previous chapter can be adopted

for the analysis of the leader node framework and present our analysis results. The results
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presented in this section serve as a basis for the analysis of the parametric approximation

leader node particle filter presented in Section 6.2.

6.1.1 Algorithm Description

Suppose as before that L = {1, 2, . . . , L} is the set of leader node labels and every leader

node with label ` ∈ L has a set of satellite nodes S` that take measurements and transmit

them to the leader node. The number of such satellite nodes in the vicinity of the leader

node ` is |S`|. The state-space model describing the target evolution and measurement

process at every leader node is then a simple modification of the general state-space model

described in Section 5.1.1:

Xt = ft(Xt−1, %t) (6.1)

Y j
`t

= gj`t(Xt, ζ
j
`t

) ∀j ∈ S`t (6.2)

Here Xt ∈ Rdx is the target state vector, ft : Rdx → Rdx is the nonlinear diffusion map, and

%t is the system noise; Y j
`t
∈ Rdjy is the jth sensor measurement vector, gj`t : Rdx → Rdjy is the

nonlinear measurement function, and ζj`t is the measurement noise. Thus the target motion

model is the same at every leader node and the measurement process may be different.

Denote by δt a binary variable which indicates whether a subsampling approximation is

performed at time-step t. In our analysis, we will assume that this variable is the outcome

of a decision function based on the set of particles {ξkt−1}Nk=1 and observations y
S`t
t at the

current time-step. Similar results could be obtained should the decision function be of a

more general nature (for example, based on either the entire history of the particle filter,

(ξ′k)Nk=1, and/or the entire history of measurements y
S`1:t
1:t ). We define δ0(·, ·) = 0, and we

assume there exist probabilities:

E{δt} = P{δt = 1} = qt

The expectation is with respect to the Monte-Carlo (MC) sampling, measurement noise and

the possible target trajectories. The value of qt characterizes the frequency of subsampling

approximation at time-step t.

Recall from Chapter 5 that ηt denotes the normalized predictive posterior distribution at

time instant t and ηNt denotes its N -particle approximation. The subsample approximation
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leader node particle filter can then be expressed as:

Φ`t(η
N
t−1)⇒ ηNb

t −→ ηNb
t ⇒ ηNt if δt = 1, (6.3)

Φ`t(η
N
t−1)⇒ ηNt if δt = 0 (6.4)

Here the implication sign ⇒ represents a sampling operation and the right arrow −→
denotes the communication process. N is the number of particles used by the leader node

for the particle filter computations and Nb is the number of particles in the sub-sampled

particle cloud used for the leader node hand-off. Using the sampling operator SN defined in

the previous chapter the subsample approximation particle filter can further be expressed

as:

ηNt = SN ◦ SNb(Φ`t(η
N
t−1)) if δt = 1,

ηNt = SN(Φ`t(η
N
t−1)) if δt = 0 (6.5)

If δt = 1, the current leader node `t determines the next leader node `t+1 (through a

sensor management algorithm, see e.g. [96]), and calculates the Nb-particle approximation

to the current predictive posterior distribution, ηNt , by sub-sampling the output of the

standard N -particle propagation step. Finally, the leader node `t transmits ηNb
t to the next

leader node `t+1, which recovers the N -particle approximation by up-sampling. If δt = 0,

the current leader node performs standard particle propagation.

6.1.2 Feynman-Kac Formulae and Regularity Conditions

Assuming that in every leader node neighborhood S` observation noises, ζjt , j ∈ S`t , in

(6.2) are independent1 the composite potential function at leader node `t can be written

via the product of the individual potential functions of satellite nodes, Gj
`t

:

G`t =
∏
j∈S`t

Gj
`t
.

1The assumption of independence among the sensor observations is not necessary for the error analysis
performed in the chapter but is adopted because it allows for a concrete discussion and concise presentation
of results.
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Then the propagation of the leader node Feynman-Kac model is described by the pair of

prediction-update operators. Since prediction operator is only concerned with the dynamics

of the target, it coincides with the Markov kernel in (5.25). On the other hand, the

Boltzmann-Gibbs transformation has the following product form

Ψ`t(ηt)(dxt) =

∏
j∈S`t

Gj
`t

(xt)ηt(dxt)

ηt

( ∏
j∈S`t

Gj
`t

) .

Thus the unnormalized Feynman-Kac model in the leader node setting is

γt(ht) = Eµ0

ht(Xt)
t−1∏
i=0

∏
j∈S`i

Gj
`i

(Xi)


=

∫
E[0:t]

ht(xt)
t−1∏
i=0

∏
j∈S`i

Gj
`i

(xi)Pµ0,t(d(x0, . . . , xt)) (6.6)

Corresponding multi-step potential functions G`i,`t can be written as follows:

G`i,`t(xi) = Ei,xi


t−1∏
k=i

∏
j∈S`k

Gj
`k

(Xk)

 . (6.7)

This leads to the following expression for Markov kernels P`i,`t

P`i,`t(ht)(xi) =

Ei,xi

{
ht(Xt)

t−1∏
k=i

∏
j∈S`k

Gj
`k

(Xk)

}

Ei,xi

{
t−1∏
k=i

∏
j∈S`k

Gj
`k

(Xk)

} . (6.8)

The Boltzmann-Gibbs transformation can be expressed as:

Ψ`i,`t(ηi)(hi) =
ηi(G`i,`thi)

ηi(G`i,`t)
,
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and the Feynman-Kac semigroup Φ`i,`t as:

Φ`i,`t(ηi) = Ψ`i,`t(ηi)P`i,`t .

Leader Node Setting Regularity Conditions

The regularity conditions for the Feynman-Kac semigroups describing the evolution of

filtering distributions in the leader node particle filter can be formulated based on the

material of Section 5.3.2 and Proposition 5.1.

In particular, using the following reasoning we can obtain a result intermediate between

(5.48) and (5.49). Recall that, for some positive function ϕ : E → R+, the norm || · ||osc is

defined as ||ϕ||osc = ||ϕ|| + osc(ϕ), where || · || denotes the supremum norm and osc(ϕ) =

sup(|h(x)− h(y)|; x, y ∈ E). Then:

||ϕ||osc = ||ϕ||+ osc(ϕ) = ||ϕ||+ sup
x,y∈E

|ϕ(x)− ϕ(y)|

≤ ||ϕ||
(

1 +
1

||ϕ||
sup
x,y∈E

∣∣∣∣1− ϕ(y)

ϕ(x)

∣∣∣∣ |ϕ(x)|
)

≤ ||ϕ||
(

1 +
||ϕ||
||ϕ||

sup
x,y∈E

∣∣∣∣1− ϕ(y)

ϕ(x)

∣∣∣∣)
≤ ||ϕ||

(
2− infy∈E ϕ(y)

supx∈E ϕ(x)

)
The following variant of Proposition 5.1 summarizes the above conclusions.

Proposition 6.1. For any 0 ≤ i ≤ t, µi ∈ P(Ei), and ht ∈ Bb(Ei)2 with osc(ht) ≤ 1 there

exists a function h
(µi)
i,t in Bb(Ei) with osc(h

(µi)
i,t ) ≤ 1 such that for any ηi ∈ P(Ei) we have

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤ β(Pi,t)
||Gi,t||
ηi(Gi,t)

[
2− infyi∈Ei Gi,t(yi)

||Gi,t||

]
|(ηi − µi)(h(µi)

i,t )|

To use this proposition in the leader node approximation error analysis we need to

impose regularity conditions on the components of semigroups Φ`i,`t . In particular, in

Section 5.3.2 we have seen that to ensure that the Markov kernel Mi is sufficiently mixing,

the regularity condition [114] imposed on Markov diffusions takes the following form:

2Recall that P(Ei) is a set of probability measures and Bb(Ei) is the Banach space of bounded functions
associated with the measurable space Ei.
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• (M)m There exists an integer m ≥ 1 and some sequence of numbers εi(M) ∈ (0, 1)

such that for i and xi, yi ∈ Ei we have

Mi,i+m(xi, ·) = Mi+1Mi+2 . . .Mi+m(xi, ·) ≥ εi(M)Mi,i+m(yi, ·)

Since the signal model is assumed to be known at the leader nodes, the Markov diffusion

kernels Mi are the same for all leader nodes. Thus the assumption (M)m does not change

in the leader node framework. However, for the convenience of presentation the following

time uniform mixing assumption will be adopted:

• (M)
(m)
u There exists an integer m ≥ 1 and strictly positive number εu(M) ∈ (0, 1)

such that for any i ≥ 0 and xi, yi ∈ Ei we have

Mi,i+m(xi, ·) = Mi+1Mi+2 . . .Mi+m(xi, ·) ≥ εu(M)Mi,i+m(yi, ·)

We have also seen in Section 5.3.2 that the regularity condition imposed on likelihood

functions Gt to bound their oscillations takes the following form in the case of an arbitrary

Feynman-Kac semigroup Φi,t:

• (G) There exists a sequence of strictly positive number εt(G) ∈ (0, 1] such that for

any xt, yt ∈ Et
Gt(xt) ≥ εt(G)Gt(yt)

In the leader node particle filter setting the modification of this assumption imposed on

the composite potentials in the vicinity of every leader node can be formulated:

• (G)`t There exists a sequence of strictly positive numbers ε`t(G) ∈ (0, 1] such that for

any sequence of leader nodes `t and xt, yt ∈ Et

G`t(xt) ≥ ε
|S`t
|

`t
(G)G`t(yt)

Indeed, (G)`t holds assuming that (G) holds for every likelihood function in the neighbor-

hood of `t-th leader node at time step t and we have

ε`t(G) = min
j∈S`t

ε`t,j(G),
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where ε`t,j(G) satisfies (G) for Gj
`t

. Finally, we formulate a uniform condition (G)u, where

uniformity is over leader nodes and time:

• (G)u There exists a strictly positive number εu(G) ∈ (0, 1] such that for any `, t and

xt, yt ∈ Et
G`t(xt) ≥ εKu

u (G)G`t(yt)

Indeed, (G)u holds if (G)`t holds uniformly over time and we take εu(G) = inf
t≥0

min
`t∈L

ε`t(G)

and Ku = max
`∈L
|S`|.

Using these assumptions we can apply Proposition 4.3.3. [114] to the leader node

Feynman-Kac semigroup. Then under assumptions (G)`t and (M)m the corresponding

Dobrushin coefficient can be upper bounded as follows:

β(P`i,`t) ≤
b(t−i)/mc−1∏

k=0

(
1− ε(m)

`i+km
(G,M)

)
,

where ε
(m)
`i+km

(G,M) is a sequence of constants depending on the sequence of leader nodes

selected at time instances between i and t:

ε
(m)
`i

(G,M) = ε2i (M)
i+m∏
k=i+1

ε
|S`k

|
`k

(G).

If, however, assumptions (G)u and (M)
(m)
u hold, then we have time uniform estimates for

this sequence of constants:

ε
(m)
`i

(G,M) ≥ ε2u(M)ε(m−1)Ku
u (G),∀`i

and the estimate for the Dobrushin contraction coefficient changes accordingly:

β(P`i,`t) ≤
(
1− ε2u(M)ε(m−1)Ku

u (G)
)b(t−i)/mc

.

We further note that in the general case and according to Proposition 4.3.3. [114] oscillations
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of potential functions have following estimates under assumptions (G) and (M)m:

Gi,t(xi)

Gi,t(yi)
≥ εi(M)

m∏
k=i

εk(G)

Applying this estimate to the leader node case under assumptions (G)u and (M)
(m)
u we

obtain the following two time uniform estimates:

infxi∈Ei G`i,`t(xi)

||G`i,`t ||
≥ εu(M)εmKu

u (G)

||G`i,`t ||
ηi(G`i,`t)

≤ ε−1
u (M)ε−mKu

u (G)

Thus Proposition 6.1 implies that in the case of leader node and under assumptions (G)u

and (M)
(m)
u the error propagation in the sequential Feynman-Kac filter can be characterized,

with the abuse of notation hi = h
(µi)
i,t , as follows:

|[Φ`i,`t(ηi)− Φ`i,`t(µi)](ht)| ≤
(
1− ε2u(M)ε(m−1)Ku

u (G)
)b(t−i)/mc 2− εu(M)εmKu

u (G)

εu(M)εmKu
u (G)

|(ηi − µi)(hi)|

(6.9)

These results will be applied to the analysis of the leader node approximation error prop-

agation. The next section presents the analysis of local errors arising during particle

(sub)sampling.

6.1.3 Local Approximation Error Analysis

We have previously seen that the true filtering distribution and itsN -particle approximation

at time t can be related as follows [114]:

ηNt − ηt =
t∑
i=0

[
Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
. (6.10)

This demonstrates that by combining (6.10) and (6.9) the global approximation error,

ηNt − ηt, can be related to the sequence of local approximation errors ηNi − Φ`i(η
N
i−1), i =

0, . . . , t. Recall that ηNi = SN(Φ`i(η
N
i−1)). This implies that E{ηNi |Fi−1} = Φ`i(η

N
i−1)
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and we are therefore interested in the analysis of the errors of the form [SN(P ) − P ](h)

for some P ∈ P(E) and h ∈ Bb(E). Thus we proceed with the analysis of these local

approximation errors that will later be related to the global approximation error using the

above decomposition.

Local Lp error bounds

Lemma 5.1 provides bounds for the weak Lp error of the approximations of the form

SN(P ) − P . This result can be further tightened and generalized for an arbitrary non-

integer p ≥ 0 with a sequence of constants c(p) that are smaller in magnitude than d(p).

The following lemma provides such a generalization.

Lemma 6.1. Suppose P ∈ P(E), then for any p ≥ 1 and a E-measurable function h with

finite oscillations we have

E{|[P − SN(P )](h)|p}
1
p ≤ c(p)

1
p
σ(h)√
N
,

where c(p) is3

c(p) =

{
1 if 1/2 ≤ p ≤ 1

2−p/2pΓ[p/2] if p > 1

and Γ[·] is the Gamma function.

Proof. Since E{[P − SN(P )](h)} = P (h) − P (h) = 0, we have from Chernov-Hoeffding

inequality:

P{|[P − SN(P )](h)| ≥ ε} ≤ 2e
− 2Nε2

σ2(h)

We note that

P{|[P − SN(P )](h)|p ≥ ε} = P{|[P − SN(P )](h)| ≥ ε1/p}

3Although Lemma 6.1 only applies for p ≥ 1, we also define c(p) over the range 1/2 < p < 1, because
of its use in conjunction with Theorem 6.4 where p is allowed to take values in this extended range.
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and we have from the Chernov-Hoeffding inequality:

P{|[P − SN(P )](h)| ≥ ε1/p} ≤ 2e−2Nε2/p/σ2(h)

Next we recall the following property:

E{|[P − SN(P )](h)|} =

∫ ∞
0

P{|[P − SN(P )](h)| ≥ ε}dε

And finally we obtain:

E{|[P − SN(P )](h)|p}
1
p =

[
2

∫ ∞
0

P{|[P − SN(P )](h)| ≥ ε1/p}dε
] 1
p

≤
[
2

∫ ∞
0

e−2Nε2/p/σ2(h)dε

] 1
p

=
[
σp(h)p(2N)−

p
2 Γ
[p

2

]] 1
p

Noting that since according to Lemma 5.1, d(1) = 1, we can use c(1) = 1 instead of

c(1) = 2−1/2Γ[1/2] =
√
π/2, completes the proof.

We note that the sequence of constants c(p) provides tighter error bounds than the

sequence d(p): c(p) ≤ d(p). The comparison of the bounds presented in Lemma 6.1 with

the bounds in Lemma 5.1 is outlined in the Appendix B.1.

Local moment generating function

The following theorem provides a bound on the moment generating function of the empir-

ical measure m(X). It is used in Section 6.1.4 to obtain exponential inequalities for the

subsample approximation leader node particle filter. The result employs Lemma 6.1 to

tighten Theorem 7.3.1 of [114] that is based on Lemma 5.1. For a comparison of the two

bounds see Appendix B.2.

Theorem 6.1. For any sequence of E–measurable functions (hk)k≥1 such that µk(hk) = 0

for all k ≥ 1 and σ(h) <∞, we have for any ε

E
{
eε
√
N |m(X)(h)|

}
≤ 1 + εσ(h)

(
1−

√
π

2
+

√
π

2
e
ε2

8
σ2(h)

[
1 + Erf

[
εσ(h)√

8

]])
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Proof. We first utilize the power series representation of the exponential:

E
{
eε|m(X)(h)|} =

∑
n≥0

εn

n!
E {|m(X)(h)|n}

= ε0E
{
|m(X)(h)|0

}
+ εE {|m(X)(h)|}+

∑
n≥2

εn

n!
E {|m(X)(h)|n}

Utilizing Lemma 6.1 we have:

E
{
eε|m(X)(h)|}
≤ 1 +

εσ(h)√
N

+
∑
n≥2

εn

n!
σn(h)n(2N)−n/2Γ [n/2]

= 1 +
εσ(h)√
N

+
∑
n≥2

[
εσ(h)

(2N)1/2

]n
Γ [n/2]

(n− 1)!

= 1 +
εσ(h)√
N
− εσ(h)

√
π√

2N
+
εσ(h)

√
π√

2N
e
ε2σ2(h)

8N

[
1 + Erf

[
εσ(h)√

8N

]]
Choosing ε = ε

√
N and rearranging terms completes the proof.

The following corollary containing a more tractable variation of the previous theorem

can be useful for deriving the exponential inequalities for the particle approximations of

the Feynman-Kac models.

Corollary 6.1. For any sequence of E–measurable functions (hk)k≥1 such that µk(hk) = 0

for all k ≥ 1 we have for any ε

σ(h) <∞ =⇒ E
{
eε
√
N |m(X)(h)|

}
≤
(

1 +
√

2πεσ(h)
)
e
ε2

8
σ2(h)

Proof. The proof is straightforward since supx Erf(x) = 1, 1 −
√
π/2 < 0 and e

ε2

8
σ2(h) ≥

1.

We note that the simplified estimate of the moment-generating function in Corollary 6.1

is much tighter than the bound in Theorem 7.3.1 of [114] for asymptotically large deviations

ε while the more complex bound in Theorem 6.1 is uniformly tighter over the range of ε.
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6.1.4 Time Uniform Error Bounds and Exponential Inequalities

We now analyze the global approximation error for the leader node particle filtering with

intermittent subsampling. We first present a theorem that specifies a time uniform bound

on the weak-sense Lp error.

Theorem 6.2. Suppose assumptions (G)u and (M)
(m)
u hold. Suppose further that P{δi =

1} ≤ qu for any i ≥ 0 and 0 ≤ qu ≤ 2/3. Then for a positive integer χ such that N = χNb,

t ≥ 0, p ≥ 1 and ht ∈ Osc1(Et) we have the time uniform estimate

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu,mc
1/p(p)√
N

(
q1/p
u

√
χ+ (1− qu)1/p

)
where the constant εu,m is:

εu,m =
m(2− εu(M)εmKu

u (G))

ε3u(M)ε
(2m−1)Ku
u (G)

. (6.11)

Proof. We begin by applying Minkowski’s inequality to (5.54)

E
{∣∣[ηNt − ηt](ht)∣∣p} 1

p ≤
t∑
i=0

E
{∣∣[Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

and then applying Proposition 6.1:

t∑
i=0

E
{∣∣[Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

≤
t∑
i=0

E
{∣∣∣∣β(P`i,`t)

||G`i,`t||
ηi(G`i,`t)

[
2− infyi∈Ei G`i,`t(yi)

||G`i,`t ||

]∣∣∣∣p ∣∣[ηNi − Φ`i(η
N
i−1)
]

(hi)
∣∣p}1/p

.
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Furthermore, applying (6.9) we have:

t∑
i=0

E
{∣∣[Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

≤ 2− εu(M)εmKu
u (G)

εu(M)εmKu
u (G)

×
t∑
i=0

(
1− ε2u(M)ε(m−1)Ku

u (G)
)b(t−i)/mc E{∣∣[ηNi − Φ`i(η

N
i−1)
]

(hi)
∣∣p}1/p

.

Next we analyze each individual expectation comprising the sum above. In particular,

using the structure of the algorithm defined in (6.5) and the definition of sampling operator

introduced in (5.46) we can rewrite the terms under the above sum in the following explicit

way:

E
{∣∣[ηNi − Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p (6.12)

= E
{∣∣[δiSN ◦ SNb(Φ`i(η

N
i−1)) + (1− δi)SN(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p

Grouping the terms and using Minkowski’s inequality again we conclude the following:

E
{∣∣[ηNi − Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p ≤ E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p

+ E
{∣∣(1− δi) [SN(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p .

Adding and subtracting δiS
Nb(Φ`i(η

N
i−1)) in the first term on the right and applying

Minkowski’s inequality again we have:

E
{∣∣[ηNi − Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p (6.13)

≤ E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− SNb(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

+ E
{∣∣δi [SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p

+ E
{∣∣(1− δi) [SN(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p

We see that each error term comprising the sum splits into three individual terms, describing

the approximation paths the leader node algorithm can follow at time i. If N = χNb then

the N -particle approximation after subsampling can be recovered from the Nb-particle
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approximation without error by replicating the Nb-particle approximation χ times. Thus

the first term in (6.13) is zero.

The analysis of the remaining two terms is similar. We first concentrate on the second

term. Recall that δi = δi({ξji−1}Nj=1, Y
S`i
i ). Thus given the σ-algebra Fi−1 introduced in

(5.27) and the realization of the current measurement, Y
S`i
i = y

S`i
i , the output of the

decision rule is independent of the sampling error, [SN(Φ`i(η
N
i−1)) − Φ`i(η

N
i−1)](hi). We

exploit this Markovian nature of the decision rule and apply Lemma 6.1 to the conditional

expectation rendering the following bound:

E
{∣∣δi [SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p}1/p

(6.14)

= E
{
δiE
{∣∣[SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p ∣∣∣Fi−1, Y

S`i
i = y

S`i
i

}}1/p

≤ c1/p(p)√
Nb

q
1/p
i

Combining the analysis results for all three terms we obtain:

E
{∣∣[ηNi − Φ`i(η

N
i−1)
]

(ht)
∣∣p}1/p ≤ c1/p(p)

(
q

1/p
i

1√
Nb

+ (1− qi)1/p 1√
N

)

We note that the expression in brackets has the form ϕ(qi) = q
1/p
i (α+ β) + (1− qi)1/pα for

some β > α ≥ 0. For p ≥ 1, ϕ(qi) has maximum at qi = qmax with

qmax =
1

1 +
[
α+β
α

]p/(1−p) .
We have that ϕ(qi) is non-decreasing on qi ∈ [0, qmax] and non-increasing on qi ∈ (qmax, 1].

Noting that [(α + β)/α]p/(1−p) is increasing in p we obtain:

qmax ≥
1

1 +
[

α
α+β

] ≥ inf
β:β>α

1

1 +
[

α
α+β

] = 2/3.

Thus if qu ≤ 2/3 ≤ qmax then for any i ≥ 0 we have the time uniform estimate:

E
{∣∣[ηNi − Φ`i(η

N
i−1)
]

(ht)
∣∣p}1/p ≤ c1/p(p)

(
q1/p

u

1√
Nb

+ (1− qu)1/p 1√
N

)
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Finally, noting [114] that:

t∑
i=0

(
1− ε2u(M)ε(m−1)Ku

u (G)
)b(t−i)/mc ≤ m

ε2u(M)ε
(m−1)Ku
u (G)

(6.15)

we complete the proof of theorem.

The result can be generalized to cases where N is not an integer multiple of Nb, at the

expense of a slight loosening of the bound.

Corollary 6.2. Suppose the assumptions of Theorem 6.2 apply, except we allow any integer

Nb < N . Then for any t ≥ 0, p ≥ 1 and ht ∈ Osc1(Et) we have the time uniform estimate

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu,mc
1/p(p)

(
q1/p
u

[
1√
N

+
1√
Nb

]
+ (1− qu)1/p 1√

N

)
where the constant εu,m is defined as in (6.11).

The corollary follows by allowing for sampling error to arise in the first term in (6.13):

E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− SNb(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p ≤ c1/p(p)√

N
q

1/p
i .

and incorporating this error bound throughout the rest of the proof of Theorem 6.2.

Corollary 6.3. Under the same assumptions as Theorem 6.2, we have for any p ∈ N,

0 ≤ qu ≤ 1 and ht ∈ Osc1(Et) the time uniform estimate

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu,mc
1/p(p)√
N

(
quχ

p/2 + (1− qu)
)1/p

(6.16)
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Proof. Starting with (6.12), we perform a different error decomposition:

E
{∣∣[ηNi − Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p (6.17)

= E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)

+ (1− δi)
[
SN(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p} 1

p

≤ E
{
δpi |
[
SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)|p

+

p−1∑
k=1

(
p

k

)
δki (1− δi)p−k|

[
SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)|k

× |
[
SN(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)|p−k

+ (1− δi)p
∣∣[SN(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)
]

(hi)
∣∣p}1/p

.

We observe that δi(1 − δi) = 0 and that if N = χNb for integer χ, we can reconstruct an

N -sample representation from the Nb sample with no additional error. Thus:

E
{∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣p} 1

p ≤ E
{
δi
∣∣[SNb(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣p

+ (1− δi)
∣∣[SN(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣p}1/p

.

Applying the same conditioning as in (6.14) and utilizing Lemma 6.1

E
{∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣p} 1

p ≤

(
qic(p)

N
p/2
b

+
(1− qi)c(p)

Np/2

)1/p

=
c(p)1/p

√
N

(
qiχ

p/2 + (1− qi)
)1/p

(6.18)

We note that χ ≥ 1 and qiχ+ (1− qi) ≤ quχ+ (1− qu) under the assumption qi ≤ qu. The

final step in the proof involves applying (6.15) as in the proof of Theorem 6.2.

The intuitive implication of Theorem 6.2 and Corollary 6.3 is that rare approximation

events have limited effect on the average error performance of the subsample approximation

particle filter. The L2 error bound for the standard particle filter is the same as (6.16) of

Corollary 6.3 taken with p = 2, except for the term (quχ+ (1− qu))1/2. This expression thus

quantifies the performance deterioration, in terms of L2 error bounds, due to the subsample

approximation step. If the compression factor, χ, is χ = 10, and subsample approximations
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occur with probability 0.1, then the deterioration of the root mean-square performance

captured, in terms of bounds, by the factor (0.1× 10 + (1− 0.1))1/2 is around 40%. The

communication overhead, on the other hand, represented by the total number of particles

transmitted during leader node hand-off, is reduced by a factor of 10. The compressed

particle cloud exchanges are most efficient in scenarios where the targets being tracked have

slow dynamics and the density of leader nodes is relatively low (both implying rare hand-off

events), but the tracking accuracy requirements and leader-to-leader communication costs

are high.

Theorem 6.3 below provides the exponential estimate for the probability of large devia-

tions of the approximate Feynman-Kac flows associated with the subsample approximation

particle filter. Before proceeding to Theorem 6.3 we state a technical lemma.

Lemma 6.2. Let X and Y be real random variables taking values in X ⊆ R and Y ⊆ R
and let the joint distribution of these variables be PX,Y (d(x, y)). Then for any ε ∈ R we

have:

P{X + Y ≥ ε} ≤ P{X ≥ ε/2}+ P{Y ≥ ε/2}

Proof. Let us define subsets Xx≥y ⊆ X , Xx≥y = {x ∈ X : x ≥ y, y ∈ Y} and Xx<y = X c
x≥y,

Xx<y = {x ∈ X : x < y, y ∈ Y}. Denote by 1cond the indicator function, taking value

1 where the condition cond holds and 0 elsewhere. Now write the explicit expression for

P{X + Y ≥ ε}:

P{X + Y ≥ ε} =

∫
Y

∫
X

1x+y≥εPX,Y (d(x, y))

=

∫
Y

∫
Xx≥y

1x+y≥εPX,Y (d(x, y)) +

∫
Y

∫
Xx<y

1x+y≥εPX,Y (d(x, y))

Since 1x+y≥ε ≤ 12x≥ε on Xx≥y and 1x+y≥ε ≤ 12y≥ε on Xx<y we have

P{X + Y ≥ ε} ≤
∫
Y

∫
Xx≥y

1x≥ε/2PX,Y (d(x, y)) +

∫
Y

∫
Xx<y

1y≥ε/2PX,Y (d(x, y))

≤
∫
Y

∫
X

1x≥ε/2PX,Y (d(x, y)) +

∫
Y

∫
X

1y≥ε/2PX,Y (d(x, y)),

and the claim of lemma follows.
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Theorem 6.3. Suppose assumptions (G)u and (M)
(m)
u hold. Suppose further that P{δi =

1} ≤ qu for i ≥ 0 and 0 ≤ qu ≤ 1. Then for any Nb < N , t ≥ 0 and ht ∈ Osc1(Et) we have

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤

(
1 + 4

√
2π
ε
√
N

εu,m

)
e
− Nε2

2ε2u,m

+ qu

(
1 + 4

√
2π
ε
√
Nb

εu,m

)
e
− Nbε

2

2ε2u,m

Proof. Using the triangle inequality in (5.54) we have

∣∣[ηNt − ηt](ht)∣∣ ≤ t∑
i=0

∣∣[Φi,t(η
N
i )− Φi,t(Φi(η

N
i−1))

]
(hi)

∣∣
Following the methodology presented in Theorem 6.2 and denoting ωi =(

1− ε2u(M)ε
(m−1)
u (G)

)b(t−i)/mc
and a = 2−εu(M)εmKu

u (G)

εu(M)εmKu
u (G)

we have:

∣∣[ηNt − ηt](ht)∣∣ ≤ a
t∑
i=0

ωi
∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣ .

Using the structure of the algorithm defined in (6.5) and the definition of sampling operator

introduced in (5.46) we obtain the following (similarly to Theorem 6.2):

∣∣[ηNt − ηt](ht)∣∣ ≤ a
t∑
i=0

ωiδi
∣∣[SN ◦ SNb(Φi(η

N
i−1))− SNb(Φi(η

N
i−1))

]
(hi)

∣∣
+ a

t∑
i=0

ωi(1− δi)
∣∣[SN(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣

+ a

t∑
i=0

ωiδi
∣∣[SNb(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣

= Z1 + Z2,
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where

Z1 = a
t∑
i=0

ωiδi
∣∣[SN ◦ SNb(Φi(η

N
i−1))− SNb(Φi(η

N
i−1))

]
(hi)

∣∣
+ a

t∑
i=0

ωi(1− δi)
∣∣[SN(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣

Z2 = a
t∑
i=0

ωiδi
∣∣[SNb(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣

Noting that

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤ sup

t≥0
P {Z1 + Z2 ≥ ε}

and applying Lemma 6.2 we have:

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤ sup

t≥0
P {Z1 ≥ ε/2}+ sup

t≥0
P {Z2 ≥ ε/2} .

Now applying Markov inequality we conclude:

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤ sup

t≥0
P
{
eτ1Z1 ≥ eτ1ε/2

}
+ sup

t≥0
P
{
eτ2Z2 ≥ eτ2ε/2

}
≤ sup

t≥0
e−τ1ε/2E

{
eτ1Z1

}
+ sup

t≥0
e−τ2ε/2E

{
eτ2Z2

}
Next we apply the exponential series expansion

E
{
eτ1Z1

}
=
∑
n≥0

τn1
n!

E{Zn
1 } (6.19)

and use the fact that according to the following conditioning argument and Lemma 6.1 we
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have

E{Zn
1 }1/n = (E{Zn

1 |δi = 1}P{δi = 1}+ E{Zn
1 |δi = 0}P{δi = 0})1/n

≤ a
t∑
i=0

ωiE
{(
δi
∣∣[SN ◦ SNb(Φi(η

N
i−1))− SNb(Φi(η

N
i−1))

]
(hi)

∣∣
+ (1− δi)

∣∣[SN(Φi(η
N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣)n}1/n

= a

t∑
i=0

ωi
(
P{δi = 1}E

{∣∣[SN ◦ SNb(Φi(η
N
i−1))− SNb(Φi(η

N
i−1))

]
(hi)

∣∣n |δi = 1
}

+ P{δi = 0}E
{∣∣[SN(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣n |δi = 0

})1/n

≤ a
t∑
i=0

ωi(qic(n)N−n/2 + (1− qi)c(n)N−n/2)1/n

=
c1/n(n)√

N
a

t∑
i=0

ωi.

Noting that a
t∑
i=0

ωi ≤ εu,m we have:

E{Zn
1 } ≤ εnu,mc(n)N−n/2

Substituting this into (6.19) and employing the same simplifications as in the proofs of

Theorem 6.1 and Corollary 6.1 we obtain:

e−ετ1/2E
{
eτ1Z1

}
≤
∑
n≥0

(
τ1εu,m√
N

)n
c(n)

n!
e−ετ1/2

≤

[
1 +

τ1εu,m√
N

+
∑
n≥2

(
τ1εu,m√

2N

)n
Γ(n/2)

(n− 1)!

]
e−ετ1/2

≤
(

1 +
√

2π
τ1εu,m√
N

)
e
τ21 ε

2
u,m

8N
−ετ1/2
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Choosing τ1 = 2εN
ε2u,m

we have

e−ετ1/2E
{
eτ1Z1

}
≤

(
1 + 4

√
2π
ε
√
N

εu,m

)
e
− Nε2

2ε2u,m

Similar analysis yields

e−ετ2/2E
{
eτ2Z2

}
≤ qu

(
1 +
√

2π
τ2εu,m√
Nb

)
e
τ22 ε

2
u,m

8Nb
−ετ2/2,

which after choosing τ2 = 2Nbε
ε2u,m

results in:

e−ετ2/2E
{
eτ2Z2

}
≤ qu

(
1 + 4

√
2π
ε
√
Nb

εu,m

)
e
− Nbε

2

2ε2u,m .

This completes the proof.

6.2 Leader Node Particle Filtering with Intermittent Parametric

Approximations

In this section we analyze the error behavior of a particle filter that incorporates inter-

mittent parametric mixture estimation of the filtering density. Recall that (E, E) is a

measurable space and λ is a σ-finite measure on E . Throughout this section it is assumed

that the underlying distribution has a density if its Radon-Nikodym derivative with respect

to λ exists.

It is assumed that with the sequence of the approximate filtering distributions,

Φi(η
N
i−1)(dxi), there exists an associated and well-behaved sequence of approximate filtering

densities 1
dxi

Φi(η
N
i−1)(dxi) so that the mixture density estimation problem is well-defined.

The main result of the section, constituted in Theorem 6.5, is a time uniform, weak-sense Lp

error bound characterizing the expected behavior of the parametric approximation leader

node particle filter.
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6.2.1 Parametric Approximation Leader Node Particle Filter Algorithm

For this algorithm, the binary variable δt now indicates whether a parametric approximation

is performed at time-step t. Again we assume that it is the outcome of a decision function

based on the set of particles {ξkt−1}Nk=1 and observations Y
S`t
t at the current time-step. When

it employs parametric approximation, the leader node particle filter can be represented as

follows.

Φ`t(η
N
t−1)⇒ ηNt V η̂

Np

t −→ η̂
Np

t ⇒ ηNt if δt = 1,

Φ`t(η
N
t−1)⇒ ηNt if δt = 0

Here the V represents the local distribution parametric approximation process and Np

is the number of the components in the mixture. As before, ⇒ represents an N -particle

sampling operation and −→ represents communication between leader nodes. Thus the

second particle filter we define relies upon a parametric approximation of the distribution

Φi(η
N
i−1) based on a particle set (a sample from this distribution).

Denote by WNp : P(E) → P(ENp) an operator that represents a parametric mixture

approximation procedure that involves Np mixture components (we will provide a concrete

example below). The parametric approximation particle filter can then be expressed in a

compact form:

ηNt = SN ◦WNp(Φ`t(η
N
t−1)) if δt = 1,

ηNt = SN(Φ`t(η
N
t−1)) if δt = 0 (6.20)

Consider the following class of bounded parametric densities:

Hi =

{
φθi(x) : θi ∈ Θi, ai ≤ inf

θi,xi
φθi(xi), sup

θi,xi

φθi(xi) ≤ bi

}
where 0 < ai < bi < ∞ and Θi ⊂ Rdi defines the parameter space, and inf and sup

are taken over Θi and Ei. In the setting where the intermittent approximation during

leader node hand-off is accomplished using parametric approximation, we are looking for a

sequence of mixture density estimators of the filtering densities. We thus define the class

of bounded parametric densities, φθi(x), indexing it by time-step i to emphasize that the

parameterization can be time-varying. The approximation is restricted to a class of discrete



6 Analysis of the Leader Node Particle Filter 137

Np-component convex combinations of the form:

CNp,i = convNp(Hi) =

{
g : g(x) =

Np∑
j=1

αi,jφθi,j(x), φθi,j ∈ Hi,

Np∑
j=1

αi,j = 1, αi,j ≥ 0

}

As Np grows without bound, CNp,i converges to the class of continuous convex combinations:

Ci = conv(Hi) =

{
g : g(x) =

∫
Θ

φθ(x)Pi(dθ), φθ ∈ Hi

}
The general framework for the parametric greedy approximation of arbitrary cost func-

tions is discussed in [6]. The GML Algorithm 2 is a particular instance of this more general

framework proposed by Li and Barron [124]. The GML algorithm for mixture approxima-

tion is based on the greedy KL-divergence cost function minimization over classes of the

type CNp,i.

To link the Li and Barron’s [124] GML maximization framework in Algorithm 2 to the

minimization of KL-divergence we recall that if ν is a known distribution and µ is the

KL-based fit to this distribution, the KL-divergence minimization problem can be written

as follows (assuming that the corresponding densities exist):

min
µ∈P(E)

D(ν||µ) = min
µ∈P(E)

∫
E

log
dν

dµ
dν

= min
µ∈P(E)

[∫
E

log
dν

dλ(x)
dν −

∫
E

log
dµ

dλ(x)
dν

]
= max

µ∈P(E)

∫
E

log
dµ

dλ(x)
dν

In practice ν itself is unknown, but a sample from this distribution may be available.

The approximation of the true expectation with respect to ν above by the expectation

with respect to its empirical counterpart, SN(ν), leads to the maximum likelihood density
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estimator:

min
µ∈P(E)

D(ν||µ) = max
µ∈P(E)

Eν log
dµ

dλ(x)

≈ max
µ∈P(E)

ESN (ν) log
dµ

dλ(x)

= max
µ∈P(E)

N∑
i=1

log
dµ

dλ(x)
(xi)

Thus the error committed by resorting to the suboptimal GML Algorithm 2 consists of

three contributions.

First, there is the error associated with the limitations of the approximation class C:
even the best possible µ ∈ C will have non-zero D(ν||µ) if ν /∈ C. We will call this the

approximation bias. Second, there is the error associated with the greedy optimization of

the KL-cost function. We will call it the approximation error. Third, the error caused by

approximating the true expectation by its empirical counterpart will be called the estima-

tion error. In the following we analyze these errors for the one-step approximation and

then link the results of the analysis to the overall error of the parametric approximation

particle filter.

6.2.2 Local Approximation Error Analysis

The attractive features of Algorithm 2 are threefold. First, the algorithm simplifies the

maximum likelihood density estimation procedure. Instead of facing the Np-mixture esti-

mation problem we only have to solve Np 2-mixture estimation problems [124]. Second,

there are several bounds on approximation and sampling errors of Algorithm 2 in terms of

KL-divergence (see [124] and [125]). Third, it was shown [124, 125] that the performance

of the greedy algorithm converges to the performance of the optimal mixture estimation

algorithm as N and Np become large. Thus if these conditions hold, the results obtained

for the parametric approximation particle filter that uses GML are also applicable if other

density estimators are employed.

The goal of this section is to extend the existing results and perform the Lp error

analysis of the GML algorithm. The next result reveals the Lp error bound characterizing

the average performance of the GML algorithm. One of the components of the bound is

the packing number D(ε,H, dN), which is the the maximum number of ε-separated points
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in H (the class of parametric density functions) under the empirical semimetric dN .

Theorem 6.4. Suppose ĝNp ∈ CNp is constructed using Algorithm 2 and ĜNp ∈ P(E) is the

distribution associated with ĝNp. Suppose further that there exists density f associated with

the target distribution F ∈ P(E). Then for any h ∈ Bb(E) with ||h||osc ≤ 1, N,Np ∈ N,

and p ≥ 1 we have:

E
{
|[ĜNp − F ](h)|p

}1/p

≤
√

2

[
8

a
√
N

(
2c2/p(p/2)

+(p/4)!CE
∫ b

0

√
log (1 +D(ε,H, dN))dε

)
+
γc2

f,C

Np

+D(f ||C)
]1/2

where C is a universal constant4.

Proof. Using Pinsker’s inequality,
∫
|f − g| ≤

√
2D(f ||g), [130] we have

E
{
|[ĜNp − F ](h)|p

}1/p

= E
{(∫

E

[ĝNp(x)− f(x)]h(x)dx

)p}1/p

≤ ||h||E
{(∫

E

|ĝNp(x)− f(x)|dx
)p}1/p

≤ E
{(√

2D(f ||ĝNp)
)p}1/p

=
√

2
[
E
{
D(f ||ĝNp)p/2

}2/p
]1/2

Now, suppose p ≥ 2. The following decomposition can be used to analyze the previous

expression:

D(f ||ĝNp) = D(f ||ĝNp)−D(f ||C) +D(f ||C)

Denoting g∗ = arg ming∈C D(f ||g) we have the following modification of the decomposition

4See [129] for details.
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proposed by Rakhlin et al. in [125]:

D(f ||ĝNp)−D(f ||C) = −
∫

log ĝNp(x)F (dx) +

∫
log g∗(x)F (dx)

= −
∫

log ĝNp(x)F (dx) +
1

N

N∑
i=1

log ĝNp(xi)

+
1

N

N∑
i=1

log g∗(xi)−
1

N

N∑
i=1

log ĝNp(xi)

+

∫
log g∗(x)F (dx)− 1

N

N∑
i=1

log g∗(xi)

Applying (5.71) to the middle term we see:

D(f ||ĝNp)−D(f ||C) ≤ |[F − SN(F )](log ĝNp)|+ |[F − SN(F )](log g∗)|+
γc2

f,C

Np

By the definition of D(f ||C) it follows that D(f ||ĝNp)−D(f ||C) ≥ 0 and thus we conclude:

∣∣D(f ||ĝNp)−D(f ||C)
∣∣ ≤ 2 sup

g∈C

∣∣[F − SN(F )] (log g)
∣∣+

γc2
f,C

Np

This allows splitting the effect of approximation and estimation errors by applying

Minkowski’s inequality (since p ≥ 2):

E
{
D(f ||ĝNp)p/2

}2/p
= E

{∣∣D(f ||ĝNp)−D(f ||C) +D(f ||C)
∣∣p/2}2/p

≤ 2E

{[
sup
g∈C

∣∣[F − SN(F )] (log g)
∣∣]p/2}2/p

+
γc2

f,C

Np

+D(f ||C).

The next step of the proof makes use of a symmetrization argument. Recall that SNε

is the generator of the signed Rademacher measure. Using the symmetrization lemma (see

e.g. Lemma 2.3.1 in [129] or Lemma 6.3 in [128]) we deduce:

E

{[
sup
g∈C

∣∣[F − SN(F )] (log g)
∣∣]p/2}2/p

≤ 2E

{[
sup
g∈C

∣∣SNε (F ) (log g)
∣∣]p/2}2/p
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Denoting κ = g − 1 and using the fact [122] that ϕ(κ) = a log(κ + 1) is a contraction and

ϕ(0) = 0, we apply the comparison inequality (Theorem 5.4), observing that [·]p/2 is convex

and increasing for p ≥ 2 and κ is a bounded function:

E

{[
sup
g∈C

∣∣SNε (F ) (log g)
∣∣]p/2}2/p

= E

{[
1

2

2

a
sup
g∈C

∣∣SNε (F ) (a log(κ+ 1))
∣∣]p/2}2/p

≤ 2

a
E

{[
sup
g∈C

∣∣SNε (F ) (g − 1)
∣∣]p/2}2/p

≤ 2

a
E

{[
sup
g∈C
|SNε (F )(g)|

]p/2}2/p

+
2

a
E
{
|SNε (F )(1)|p/2

}2/p

Using Lemma 6.1 we have:

E
{
|SNε (F )(1)|p/2

}2/p
= E


∣∣∣∣∣ 1

N

N∑
i=1

εi

∣∣∣∣∣
p/2


2/p

≤ 2c2/p(p/2)√
N

On the other hand, we have for any g ∈ C and corresponding φθ ∈ H:

|SNε (F )(g)| =

∣∣∣∣∣ 1

N

N∑
i=1

εig(xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
i=1

εi

∫
θ∈Θ

φθ(xi)P(dθ)

∣∣∣∣∣
=

∣∣∣∣∣
∫
θ∈Θ

1

N

N∑
i=1

εiφθ(xi)P(dθ)

∣∣∣∣∣
≤
∫
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

εiφθ(xi)

∣∣∣∣∣P(dθ)

≤ sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

εiφθ(xi)

∣∣∣∣∣
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Thus we have

E

{[
sup
g∈C
|SNε (F )(g)|

]p/2}2/p

≤ E

{[
sup
g∈H
|SNε (F )(g)|

]p/2}2/p

We next relate the Lp norm of the empirical process above with the associated Orlicz

norm [114, 129] πψp(·). In particular, by Hoeffding’s inequality the Rademacher process

SNε (F )(g) is sub-Gaussian for the semimetric dN [129]. Using the fact that E{Xp}1/p ≤
(p/2)!πψ2(X) (see e.g. Lemma 7.3.5 in [114] or [129], p. 105, Problem 4) we deduce:

EEε

{[
sup
g∈H
|SNε (F )(g)|

]p/2}2/p

≤ (p/4)!Eπψ2(sup
g∈H
|SNε (F )(g)|)

In addition, since SNε (F )(g) is sub-Gaussian, we have for some universal constant C (see

Proof of Corollary 2.2.8 in [129]):

Eπψ2(sup
g∈H
|SNε (F )(g)|) ≤ C√

N
E
∫ b

0

√
log (1 +D(ε,H, dN))dε

Combining the above we have:

E
{
|[ĜNp − F ](h)|p

}1/p

≤
√

2

[
8

a
√
N

(
2c2/p(p/2)

+(p/4)!CE
∫ b

0

√
log (1 +D(ε,H, dN))dε

)
+
γc2

f,C

Np

+D(f ||C)
]1/2

Finally, suppose 1 ≤ p < 2. In this case using Jensen’s inequality we have:

E
{
D(f ||ĝNp)p/2

}2/p ≤ E
{
D(f ||ĝNp)

}
Thus the above analysis applies if we choose p = 2 and the proof is now complete.

Corollary 6.4. Suppose that the assumptions of Theorem 6.4 hold. Suppose in addition



6 Analysis of the Leader Node Particle Filter 143

that f ∈ C then we have for any p ≥ 1:

E
{
|[ĜNp − F ](h)|p

}1/p

≤
√

2

[
8

a
√
N

(
2c2/p(p/2)

+(p/4)!CE
∫ b

0

√
log (1 +D(ε,H, dN))dε

)
+ 4 log(3

√
e(b/a))

(b/a)2

Np

]1/2

Proof. The proof follows from the fact that under the additional assumption we have

D(f ||C) = 0. Furthermore, we note that under this assumption c2
f,C ≤ (b/a)2 and

γ = 4 log(3
√
e(b/a))

6.2.3 Time Uniform Error Bounds

In this section we present a result specifying time uniform error bounds for the leader

node particle filter performing intermittent parametric approximation. The result links

the properties of Markov transitions Mi(xi−1, dxi) and error bounds for the parametric

GML approximation (Theorem 6.4) with the propagation of approximation errors through

the Feynman-Kac operators. It is based on the following observations. For an absolutely

continuous Markov kernel with the associated density pi(xi|xi−1), we can write [114]:

Mi(xi−1, dxi) = Pr{Xi ∈ dxi|Xi−1 = xi−1} = pi(xi|xi−1)dxi = pϑi(xi)dxi,

where we explicitly assume that the structure of the kernel Mi can be captured by a set of

parameters ϑi ∈ Θi ⊂ Rdi (these parameters include the state-value xi−1). We can further

define a class Mi of such densities:

Mi =
{
pϑi(xi) : ϑi ∈ Θi ⊂ Rdi

}
.

Thus if Mi is such that pϑi(xi) ∈Mi andMi ⊆ Hi then the assumption (M)
(m)
u is satisfied

with m = 1 and εu(M) = a/b, yielding for any xi−1, yi−1 ∈ Ei−1:

Mi(xi−1, ·) ≥
a

b
Mi(yi−1, ·)

Furthermore, using the definitions of the one-step Boltzmann-Gibbs transformation and

the associated Feynman-Kac operator we see that the distribution at time i is related to
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the distribution at time i− 1 as follows:

ηi = Φi(ηi−1) = Ψi−1(ηi−1)Mi

=

∫
Ei−1

Mi(xi−1, dxi)Ψi−1(ηi−1)(dxi−1)

=

∫
Ei−1

Mi(xi−1, dxi)
Gi−1(xi−1)ηi−1(dxi−1)

ηi−1(Gi−1)
.

Thus for an absolutely continuous Markov kernel with pϑi(xi) ∈ Mi we can rewrite the

previous equation with a suitable change of measure:

ηi(dxi)

dxi
=

∫
Θi

pϑi(xi)P(dϑi).

This implies that for an N -particle approximation ηNi−1 we have that ηi(dxi)
dxi

∈ convN(Mi)

and, as N grows without bound, we have ηi(dxi)
dxi

∈ conv(Mi). Thus the performance of the

GML approximation algorithm is determined by the properties of Markov transition kernel

Mi(xi−1, dxi) and the class of approximating densities Hi. In particular, for an absolutely

continuous Markov kernel with pϑi(xi) ∈ Mi and a sufficiently rich class Hi, such that

Mi ⊆ Hi we have asymptotically unbiased approximation:

D

(
ηi(dxi)

dxi

∣∣∣∣∣∣C) = 0.

The preceding discussion can be summarized in the form of a concise assumption:

• (H)u: The Markov kernels associated with the target dynamics are absolutely contin-

uous and can be expressed in the form Mi(xi−1, dxi) = pϑi(xi)dxi. The class of den-

sities associated with Mi is defined as Mi =
{
pϑi(xi) : ϑi ∈ Θi ⊂ Rdi

}
. For each Mi

there exists an approximation class Hi and strictly positive numbers au = infi≥0 ai,

bu = supi≥0 bi satisfying 0 < au < bu <∞ such that for any i ≥ 0 we have

Mi ⊆ Hi and hence Mi(xi−1, ·) ≥
au

bu

Mi(yi−1, ·)

The following result describes the analog of Theorem 6.2 for the case of a parametric

approximation particle filter using the GML algorithm.
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Theorem 6.5. Suppose assumptions (G)u and (H)u hold. Suppose further that P{δi =

1} ≤ qu for any i ≥ 0 and 0 ≤ qu ≤ 1. Then for any Np, N ≥ 1, t ≥ 0, p ≥ 1 and

ht ∈ Osc1(Et) we have the time uniform bound

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu

[
c1/p(p)√

N
+ q1/p

u

[
16

a
√
N

(
2c2/p(p/2)

+C(p/4)! sup
i≥0

E
∫ bi

0

√
log (1 +D(ε,Hi, dN))dε

)
+ 8 log(3

√
e(b/a))

(b/a)2

Np

]1/2
]

where the constant εu is:

εu =
2− (au/bu)εKu

u (G)

(au/bu)3εKu
u (G)

.

Proof. Using the same argument as in Theorem 6.2 we have

E
{
|[ηNt − ηt](ft)|p

}1/p

≤ 2− εu(M)εKu
u (G)

εu(M)εKu
u (G)

t∑
i=0

(
1− ε2u(M)

)(t−i) E
{∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣p}1/p

.

Based on the Minkowski inequality we have the decomposition for each individual expec-

tation comprising the sum above:

E
{∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣p} 1

p

≤ E
{∣∣∣δi [SN(ĜNp)− ĜNp

]
(hi) + (1− δi)

[
SN(Φi(η

N
i−1))− Φi(η

N
i−1)
]

(hi)
∣∣∣p} 1

p

+ E
{∣∣∣δi [ĜNp − Φi(η

N
i−1)
]

(hi)
∣∣∣p} 1

p

Using the same conditioning argument as in Theorem 6.2 and applying Corollary 6.4 based
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on the assumption (H)u to the second term we have:

E
{∣∣∣δi [ĜNp − Φi(η

N
i−1)
]

(hi)
∣∣∣p}1/p

= E
{
δiE
{∣∣∣[ĜNp − Φi(η

N
i−1)
]

(hi)
∣∣∣p ∣∣∣Fi−1, Y

S`t
t

}}1/p

≤ q
1/p
i

√
2

[
8

ai
√
N

(
2c2/p(p/2) + (p/4)!CE

∫ bi

0

√
log (1 +D(ε,Hi, dN))dε

)
+ 4 log(3

√
e(bi/ai))

(bi/ai)
2

Np

]1/2

Applying Lemma 6.1 and the same conditioning argument as in Theorem 6.3 to the re-

maining term we have:

E
{∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣p}1/p ≤ c1/p(p)√

N

+ q
1/p
i

(√
2

[
8

ai
√
N

(
2c2/p(p/2) + (p/4)!CE

∫ bi

0

√
log (1 +D(ε,Hi, dN))dε

)
+ 4 log(3

√
e(bi/ai))

(bi/ai)
2

Np

]1/2
)

We conclude that since qi ≤ qu then for any i ≥ 0 we have the time uniform estimate:

E
{∣∣[ηNi − Φi(η

N
i−1)
]

(hi)
∣∣p}1/p ≤ c1/p(p)√

N

+ q1/p
u

√
2

[
8

au

√
N

(
2c2/p(p/2) + (p/4)!C sup

i≥0
E
∫ bi

0

√
log (1 +D(ε,Hi, dN))dε

)
+ 4 log(3

√
e(bu/au))

(bu/au)2

Np

]1/2

This along with a variation of (6.15) with m = 1 and the fact that according to assumption

(H)u, εu(M) ≥ au/bu, completes the proof of theorem.

The above theorem provides an error bound for the parametric approximation particle

filter (using the GML algorithm to perform approximation) that is similar in structure to

that specified for the subsampling approximation particle filter. The error bound consists

of two distinct contributions, one corresponding to the normal operation of the filter and
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the other capturing the impact of the parametric approximation operation. The theorem

establishes a sufficiency requirement on the sequence of approximating classes Hi leading

to the asymptotically unbiased approximation of distribution flows: as both the number

of particles N and the number of terms Np in the mixture approximation increases, the

approximate particle filter distribution converges, weakly, to the exact distribution. The

requirement is that the Markov transition kernel must have an associated bounded density

and this density must be a member of the class Hi. This implies that the class Hi should

be sufficiently reach to represent the properties of the Markov kernel Mi. This condition is

reminiscent of the modeling assumptions that underpin Gaussian sum particle filtering (see

e.g. [120]), where the premise is that the filtering density can asymptotically be represented

as an infinite sum of Gaussians.

6.3 Numerical Experiments

In this section we present the results of numerical experiments exploring the performance of

the leader node particle filter. The experiments provide an example of how the subsampling

and parametric approximation particle filters can be applied in a practical tracking problem.

They provide an opportunity to compare the performance of the two algorithms and to

examine whether practical behavior is similar to that predicted by the theoretical analysis.

The Simulation Set Up

We adopt the following information acquisition and target movement models. The state of

the target is two-dimensional with dynamics [97]

Xt = Xt−1 + r0([cosϕt; sinϕt]) + ut.

Here r0 is a constant (we set r0 = 0.02) and ϕt, ut are independent and uniformly distributed

ut ∼ U [0, 1], ϕt ∼ U [−π, π]. Kl = 20 leader nodes and Ks = 200 satellite nodes are

distributed uniformly in the unit square. A satellite sensor node j with coordinates sj =

[s1,j, s2,j] can transmit its measurement to any active leader node within the connectivity

radius rc. The connectivity radius is set to rc =
√

2 log(Ks)/Ks (note that if every node can

be a leader node, Kl = Ks, the resultant network topology is a random geometric graph).

We assume that any active leader node can transmit an approximation of its posterior
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representation to any other potential leader node.

The measurement equation of every satellite sensor is the binary detector [131] capable

of detecting a target within radius rd with probability pd and false alarm rate pf :

P{Y j
t = 1|Xt} =

{
pd if Xt ∈ X j

d

pf if Xt /∈ X j
d

,

where the detection region X j
d of satellite sensor j is defined as X j

d = {x : ‖x− sj‖2 ≤ rd}.
To perform sensor selection step we use the mutual information (MI) criterion [6]:

`t+1 = arg max
`t+1∈L

I(Xt+1, Y
S`t+1

t+1 |yS`1:t
1:t ) (6.21)

Here y
S`1:t
1:t denotes the entire history of measurements, and the random variable Y

S`t+1

t+1

denotes the (potential) set of measurements at time t + 1 by the set of satellite sensor

nodes (S`t+1) of a candidate leader node `t+1. The calculation of the mutual information in

the multiple sensor framework is generally a computationally demanding exercise. In the

binary sensor framework, the calculations can be simplified using an efficient approximation

(see Appendix B.4 for details).

Williams et al. pointed out in [96] that the application of the one-step mutual informa-

tion criterion for sensor selection can result in undesirable leader node bouncing (frequent,

unnecessary hand-off). To prevent this, Williams et al. proposed a computationally de-

manding finite-time horizon dynamic program [96]. In our simulations we use a simpler

randomized algorithm to control the leader node exchange rate. In this algorithm the cur-

rent leader node flips a biased coin with the probability of the flip outcome being 1 equal

to λ. If the outcome is 1 then the current leader node calculates the mutual information

criterion. It then determines if the current particle representation should be transferred to

a new leader node that is more likely to make informative measurements. If the outcome

is 0, then no calculations are performed. With this approach, the computational load for

each leader node is significantly reduced and the communication overhead can be regulated

by the choice of λ. However, the value of λ should be tailored depending on the application

(as the mobility of the target increases, leader node hand-offs must be considered more

frequently). In our experiments we fix λ = 1/5.

We consider two leader node particle filtering algorithms, with one employing non-
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parametric approximation (subsampling) and the other using parametric approximation.

To create a subsample for transmission in the non-parametric framework we use the gen-

eral residual resampling scheme [119]. The parametric leader node particle filter is im-

plemented using the GML algorithm with Np components. Each component consists of a

two-dimensional Gaussian density with diagonal covariance matrix. The mean vector and

covariance matrix are estimated using the particle representation available at the current

leader node. To implement the GML algorithm we used the standard MATLAB nonlinear

optimization routine fmincon (see Appendix B.3 for details of the implementation).

Leader Node Communication Costs Calculation

In the following we make a number of non-restrictive simplifying assumptions. First, data

routing in the WSN is implemented using the greedy geographic routing algorithm described

by Dimakis et al. in [132]. Second, only the satellite nodes participate in the data routing

during data exchanges. Third, the dimensionality of measurements acquired by the satellite

nodes is the same for all the nodes comprising the network.

The communication costs of the leader node particle filter algorithm at every iteration

consist of three contributions. First, the cost of communicating the raw data from the

satellite nodes to the corresponding active leader node. Second, the cost of routing the

tracking update from the current active leader node to the sink. Third, the cost of the

leader node hand-off. This can be summarized in the following formula:

Ctot = Craw + Cupd + Cho. (6.22)

The cost of routing the raw data, Craw = Drawd`, is equal to the product of the dimen-

sionality of the measurement, Draw, and the number of active satellite nodes (the degree

of the active leader node, d`). In our setting, the satellite nodes and the current active

leader node form a random geometric graph with connectivity radius rc =
√

2 log(Ks)/Ks.

For sufficiently large Ks we have, with high probability, that a random geometric graph

is regular (see Boyd et al. [14], Lemma 10). Thus the degree of the active leader node,

according to Lemma 10 in [14], is at most d` = O(logKs), with high probability. This

implies that

Craw = DrawO(logKs). (6.23)
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The cost of sending the tracking update, Craw = DupdRupd is equal to the product of the

dimensionality of the update, Dupd, and the number of hops, Rupd, necessary to route the

update to the sink. It was shown by Dimakis et al. in [132] that the hop-wise communication

cost of the greedy geographic routing, in the random geometric graph setting, is at most

O(
√
Ks/ logKs). This results in

Cupd = DupdO

(√
Ks

logKs

)
. (6.24)

The average cost of the leader node hand-off is Craw ≤ quDhoRho, where Dho is the di-

mensionality of hand-off; Rho is the hop-wise communication cost of the hand-off; and, as

before, qu is the upper bound on the probability of hand-off. For the greedy geographic

routing of the leader node hand-off we have, as previously, Rho = O(
√
Ks/ logKs) and

thus

Cupd = quDhoO

(√
Ks

logKs

)
. (6.25)

The total communication cost of every iteration of the leader node particle filter is thus

Ctot = DrawO(logKs) +O

(√
Ks

logKs

)
(Dupd + quDho). (6.26)

In the centralized scenario, every satellite node has to route its raw data to the fusion

center an thus the total communication cost of the centralized tracking assuming the greedy

routing strategy is

Ctot = DrawO

(
K

3/2
s

log1/2Ks

)
. (6.27)

Thus in the random geometric graph scenario and for large networks, the implementation

of the leader node tracking protocol results in the order of Ks improvement in terms of the

communication costs involved in transmitting the data to the sink.
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Fig. 6.1 Performance (RMSE) of different fusion schemes versus time. Error
bars show lower and upper quartiles. (a) 5 denotes the scheme with fixed
leader node selected at initialization, ◦ denotes the centralized scheme using
the entire set of measurements from all sensors at every step. (b) � denotes the
scheme with leader node selected using approximate Mutual Information (MI)
criterion and non-parametric (subsampling) approximation with Nb = 10; �
denotes the scheme with leader node selected using approximate MI criterion
but no subsampling approximation (Nb = 300)

Results

In the following we report the simulation results obtained using the set-up discussed above.

All results are achieved using 5000 Monte Carlo trials, and in each trial a new trajectory

of the target is generated.

We first demonstrate that the discussed sensor selection procedure (leader node ex-

change rule) has good information fusion properties. Fig. 6.1 depicts the performance in

terms of Root Mean Squared Error (RMSE) between the true position of the target and

its estimate using different information diffusion schemes. The first scheme denoted by

5 corresponds to the situation when the leader node is selected at the initialization and

is fixed throughout the tracking exercise. The second and third schemes denoted by �

and � respectively correspond to non-parametric leader node algorithms using Nb = 10

and Nb = 300 particles for communications respectively. The fourth scheme denoted by

◦ corresponds to the centralized scenario when all the measurements available from every

sensor at every time step t are used to track the target. Note that the baseline particle filter
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uses N = 300 particles5 in all scenarios (so the Nb = 300 case corresponds to no subsam-

pling). We can see from Fig. 6.1(a) that the centralized scheme has the best performance

in terms of RMSE. However, it is only marginally better (cf. Fig. 6.1(a) and Fig. 6.1(b))

than the leader node scenario without compression (N = Nb = 300). This highlights the

effectiveness of the leader node particle filtering method and confirms that leader node

selection based on the approximate mutual information is a valid approach. Compared to

the centralized scheme, the communication and power consumption costs are significantly

decreased since only a small subset of nodes is activated at any particular time step.

The leader node particle filter that uses a very small number of transmitted particles

(Nb = 10) performs comparably well. This suggests that there are practical scenarios where

a particle filter can incorporate aggressive approximation to reduce communication over-

head without incurring a significant penalty in tracking accuracy. The fixed leader node

approach performs poorly, because the activated sensors only provide useful information

when the target is nearby. As the target moves further away, the particle cloud approx-

imating the filtering distribution becomes very diffuse, and tracking accuracy is 4 times

worse than that of any of the other schemes.

In the next set of results, we explore the approximation error, i.e. the error induced

by both sampling and the additional parametric/subsampling approximations. The RMSE

combines both approximation error and estimation error resulting from the inaccuracy

and/or ambiguity of the measurement information. We can estimate a Root Mean Squared

Approximation Error (RMSAE) by calculating the error between a candidate particle filter

and an “ideal” reference particle filter. As our reference filter, we employ a particle filter

that uses N = 3000 particles, with no approximation during hand-off. For each of the 5000

Monte Carlo trials, we apply this reference filter to the generation of location estimates.

The approximation error for our test filters is measured relative to these estimates rather

than the true locations.

Figure 6.26 depicts the deterioration of the approximation performance as a function of

(a) varying number of transmitted particles for the subsampling approximation leader node

5This value was selected after experimentation with multiple values of N because it provides sufficient
accuracy without inducing unnecessary computational overhead. The primary purpose of the simulations
is to examine the impact of the approximation steps.

6The additional random variation in Fig. 6.2 compared to Fig. 6.1 is due to the subtraction of the
reference filter estimates and the division by the approximation error of the leader node without compression
(N = Nb = 300).
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(b) Parametric leader node particle filter

Fig. 6.2 Deterioration of performance as a function of (a) varying number
of transmitted particles for the subsampling approximation leader node par-
ticle filter; and (b) varying number of transmitted mixture components for
the parametric approximation leader node particle filter. The performance
deterioration is measured as the ratio of the Root Mean Squared Approxima-
tion Error (RMSAE) averaged over 5000 Monte Carlo trials of the candidate
particle filtering algorithm with intermittent approximation (subsampling or
parametric) to that of a leader node particle filter that performs no approxi-
mation (Nb = 300).

particle filter; and (b) varying number of transmitted mixture components for the paramet-

ric approximation leader node particle filter. The performance deterioration is measured

as the ratio of the RMSAE averaged over 5000 Monte Carlo trials of the candidate leader

node particle filtering algorithm with intermittent approximation (subsampling or para-

metric) to that of a leader node particle filter that performs no approximation (Nb = 300),

i.e. uses Nb = N = 300 particles during hand-off. Figure 6.2(a) shows how the approx-

imation performance is affected as the number of particles in the subsampling step (Nb)

changes; Figure 6.2(b) provides similar results for the parametric approximation method

as the number of components in the mixture model (Np) is varied.

Fig. 6.2 indicates that the performance of the leader node particle filter has interesting

dynamic structure. In particular, in the time period t ∈ [1, 50] we can see an articu-

lated transient behavior (see Fig. 6.2(a), Nb = 10 in particular). The transient in these

curves arises because the particle representation of the target location density is initially

highly dispersed and multi-modal, making it relatively difficult to approximate using either
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(b) Parametric leader node particle filter

Fig. 6.3 Box-plots showing the relationship between deterioration of approx-
imation performance and compression factor. The performance deterioration
is measured as the ratio of the Root Mean Squared Approximation Error
(RMSAE) of the candidate particle filtering algorithm with intermittent ap-
proximation (subsampling or parametric) to that of a leader node particle
filter that performs no approximation (Nb = 300). The compression factor,
defined in Section 6.3, is the ratio of N to the number of values transmitted
during leader node exchange (Nb or 2.5Np). The boxes show lower quartile,
median and upper quartile of the 5000 Monte Carlo trials. Whiskers depict
1.5 times the interquartile range and capture most of the extreme values, and
the + values denote outliers extending beyond the whiskers.

a subsampling or parametric method with a small number of particles/mixture compo-

nents. However, as time progresses (t ∈ [51, 100]) the particle representation of the target

becomes more localized and closer to unimodal, so approximation performance improves

significantly. Qualitatively, the performance deteriorates gracefully with respect to the ex-

tent of the compression during hand-off (reduction in number of particles or components),

as theoretically predicted in the previous sections.

For the final performance analysis, we define a compression factor as the ratio of the

number of particles used during regular particle filter computations to the number of values

transmitted during the hand-off. For the subsample approximation case, this is simply
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N/Nb. In our case of a Gaussian mixture, variance information is transmitted in addition to

the locations of the Gaussians and the mixture weights, so the factor is 2N/5Np. Figure 6.3

presents a box-plot depicting performance deterioration (ratio of approximation error of

the leader node with Nb < N and the leader node with Nb = N) versus the compression

factor. Both the median and the maximal deviations of the performance deterioration scale

smoothly with changing compression factor. Parametric approximation clearly outperforms

subsampling.

For the subsampling case, Theorem 6.2 and Corollary 6.3 provide an analytical bound

on the expected approximation error. The curve based on these results is depicted in

Figure 6.3(a) and provides a meaningful characterization of the expected performance de-

terioration. Indeed, the theoretical prediction based on the factor (quχ+ (1− qu))1/2 from

Corollary 6.3 closely coincides with the maximal performance deterioration observed for

each compression factor. For comparison purposes, we include a similar characterization

derived based on a simple worst-case assumption that the subsample approximation parti-

cle filter performs only as well as a particle filter that uses Nb particles at all times. The

characterization based on the bounds developed in this chapter clearly provides a better

indication of the performance deterioration.

6.4 Applicability of Results

Throughout the chapter, we motivated the theoretical analysis by considering the concrete

example of the “leader node” particle filter [57], an algorithm that has been proposed for

collaborative distributed tracking in sensor networks. Below we outline two other examples

to illustrate that the analyzed problem arises in several practical settings and hence the

analysis results presented in the this chapter can be easily generalized and applied in other

contexts.

Example 1: Tracking with delayed measurements

In wireless sensor networks, packet losses can lead to measurements arriving out-of-order

to a node performing tracking. Incorporating delayed measurements into a particle filter

is important, because they can be highly informative and improve tracking performance.

One of the simplest, and most effective, strategies is to run the particle filter again from the

time-step corresponding to the delayed measurement. This strategy can be hampered by
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the limited memory of most sensor network devices, which means it is impossible to store

full particle representations for multiple time-steps. The alternative is to store an approx-

imation, either a subsampled set of particles, or a parametric representation, for previous

time-steps. When the particle filter is run again, it is initialized by sampling from the ap-

proximated distribution. The effect is equivalent to injecting intermittent approximations

(subsampling or parametric) into the particle filter.

Example 2: Real-time tracking with computational constraints

When real-time tracking is performed on an embedded processor with computational limi-

tations, it can be important to adjust the time devoted to particle filter computation. For

example, consider a mobile robot that employs a particle filter to track its position and at

the same time conducts iterative strategic planning of its motion in order to reach a target

location. The goal can be achieved more efficiently (in less time and with less energy ex-

penditure) if there is an adjustment of the computational time devoted to each of these two

tasks. The adaptive particle filter proposed in [133] and the real-time particle filter of [134]

adjust the number of particles at each time-step based on an estimate of the complexity of

the filtering distribution (assigning fewer particles for simple distributions). Through these

schemes, the accuracy of the position estimation can be preserved, but more time can be

devoted to motion planning. The adaptation of the number of particles is an example of

the subsampling approximation that we analyze in this chapter.

6.5 Summary

This chapter presented the analysis of the leader node particle filter that performs intermit-

tent approximation whenever hand-off occurs. Such approximation steps become necessary

when particle filters are deployed on resource-constrained WSN platforms, where the re-

source can be energy, memory or computational power. The main results have the form

of upper bounds on the expected Lp error of the leader node particle filter that occasion-

ally employs either subsampling or parametric approximations in order to execute sensor

management tasks (leader node hand-offs). The important conclusion of our analysis is

that these approximation steps do not induce instability, and moreover, the frequency of

the approximation steps significantly affects the extent of performance degradation. If the

approximation steps are rare, then the compression can be very high (very few subsamples
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or very few mixture components) and the average approximation error remains reasonable.

Numerical experiments indicate that the bound for the subsample approximation particle

filter provides a meaningful characterization of practical performance.
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Chapter 7

Conclusions

This thesis explores the potential of in-network signal processing techniques applied to

building efficient distributed information fusion and aggregation protocols for application

in wireless sensor networks (WSNs). The performance of information fusion and aggrega-

tion protocols is measured in terms of WSN performance metrics such as network lifetime,

communication and bandwidth load requirements, and estimation (tracking) accuracy. The

centralized approaches to information fusion in WSNs provide the best possible estimation

accuracy, however, they often suffer from the need to transfer undesirably large quanti-

ties of data through the entire network and uneven power consumption in sensor nodes.

These factors lead to the reduced network lifetime under most network lifetime metrics

and inefficient use of communication channels, leading to reduced network capacity. Dis-

tributed algorithms alleviate these drawbacks using smart in-network processing and data

aggregation protocols. However, for such algorithms the reduction in estimation accuracy

and/or the increase in time required to complete a particular fusion task may be significant.

Therefore, the design and analysis of fast and accurate distributed information fusion al-

gorithms with guaranteed performance characteristics is important. In this thesis, we have

addressed two specific problems associated with the analysis and design of such distributed

algorithms.

Predictor Based Accelerated Distributed Average Consensus

The distributed average consensus algorithm solves the problem of finding the arithmetic

mean of the values captured by the sensors comprising a WSN using local pairwise mes-
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sage exchanges. The memoryless distributed average consensus is known to suffer from

the poor scalability of the averaging time required to compute the arithmetic mean within

a prescribed level of accuracy. In Chapter 4, we have proposed and analyzed the local,

memory based acceleration methodology for the distributed average consensus algorithm.

In particular, we proposed a simple general predictive methodology for the acceleration of

average distributed consensus algorithms. The methodology consists of mixing the predic-

tion of the local state value at every node with the outcome of the conventional consensus

iteration. The key parameter of the methodology is the mixing weight, which determines

the influence of the prediction component. We have studied the convergence properties of

the proposed framework and identified the existence of parameter configurations that en-

sure convergence. For these convergent configurations of the algorithm we have quantified

the limiting averaging time growth rate for the asymptotically small `2 deviation of the

distributed computation result from the result obtained via centralized computation. For

two important cases of the proposed algorithm we have identified the optimal value of the

key mixing parameter and studied the improvement achieved in the convergence rate of the

accelerated algorithm compared to its baseline, non-accelerated, variant.

In the first, memoryless, acceleration setting we observed significant performance im-

provement and studied the extent of this improvement via simulation. However, our theo-

retical results imply that this simplest configuration of the proposed acceleration methodol-

ogy is not guaranteed to provide improvement. There exist conventional distributed averag-

ing consensus algorithms for which no further improvement in the memoryless accelerated

framework is possible (e.g. the fastest consensus averaging matrix). We proposed a number

of suboptimal distributed initialization schemes for our proposed memoryless acceleration

framework. These initializations can be useful due to their simplicity in situations when

other distributed average consensus solutions (e.g. the fastest consensus averaging matrix)

may not be available due to the complexity associated with their on-line initialization.

Observing the drawbacks of the memoryless acceleration methodology, we moved one

step further and analyzed a more complex instance of the proposed framework involving the

predictor based on one tap of memory. We have performed thorough analysis of this second

setting and identified the optimal value of the mixing parameter resulting in the fastest

worst-case asymptotic convergence rate. The analysis of the convergence rate provided

theoretical guarantees for the amount of the improvement. The results indicate that the

proposed one-tap memory predictive consensus acceleration procedure is guaranteed to



7 Conclusions 160

reduce the convergence time of any conventional distributed averaging consensus algorithm.

Another important conclusion was that the amount of the improvement grows with the size

of the network implying good scalability properties of the proposed algorithm. We have

quantified the improvement for a number of important network topologies.

Observing that the optimal setting of the mixing parameter requires knowledge of the

second largest eigenvalue of the foundational weight matrix, we have devised a simple dis-

tributed scheme for its on-line initialization. We have conducted simulations that confirmed

our theoretical derivations and revealed that the on-line initialization of the mixing param-

eter results in almost optimal performance of the proposed accelerated methodology. We

have compared the performance of our proposed algorithm with the performance of several

other accelerated algorithms in the literature and concluded that the proposed algorithm

has superior performance characteristics with respect to these algorithms. We have thus

accomplished the important task of designing an accelerated distributed average consen-

sus algorithm with significantly improved convergence time and guaranteed performance

characteristics.

Analysis of the Leader Node Particle Filter

The second half of the thesis explores the approximation performance of the leader node

particle filter tracking architecture. The leader node particle filter prolongs the network

lifetime by activating only a subset of nodes at any particular time instant. The activated

nodes transmit their measurements to the cluster head, the leader node, and the leader

node performs tracking operations based on the local measurements. The best subset of

active nodes are determined, at every time step, using mutual information based criterion.

The current filtering distribution is sent to the new leader node whenever a hand-off oc-

curs. Periodically, an update is sent to the requestor of the tracking information. This

methodology improves scalability and wireless communication channel usage efficiency by

performing computations and measurement transmissions in the localized fashion. To fur-

ther reduce the communication costs, a compressed (approximate) representation of the

current filtering distribution is sent during leader node hand-offs. This approximation ex-

ercise inevitably induces additional errors in the particle filtering recursion. In Chapter 6,

we have examined these additional approximation errors.

We have considered two types of errors associated with different filtering distribution
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approximation techniques. The first approximation method is subsampling, when only

a subset of particles is sent during the leader node hand-off. The second approximation

method is parametric mixture approximation when a mixture model estimated from the

set of particles is sent during the leader node hand-off. To analyze the approximation error

propagation in the leader node particle filter, we utilized the Feynman-Kac distribution

flow modeling approach. We have modified the existing models applicable to conventional

particle filters to fit the leader node framework and used suitable regularity conditions to

obtain time-uniform error bounds for the weak-sense Lp errors of the leader node particle

filter.

In the first scenario of subsample approximation leader node particle filter, we have

extended currently available local Lp sampling error analysis results by finding tighter

bounding constants. We then linked these results to the contractions of Feynman-Kac

semigroups and obtained the time-uniform Lp error bounds and exponential inequalities

for probability of large deviations characterizing the deterioration of approximation per-

formance resulting from the additional approximations during leader node hand-offs. Our

results reveal that the additional approximation error is characterized by the probability of

the leader node hand-off. Thus in the scenarios when leader node hand-offs do not happen

often, considerable compression can be applied without significantly affecting overall ap-

proximation performance. The additional subsample approximation can thus be efficiently

used to reduce communication costs of leader node hand-offs.

In the second scenario of the parametric mixture approximation leader node hand-off, we

have characterized the time-uniform Lp error bounds and obtained similar results. We have

used the greedy maximum likelihood mixture estimation framework to obtain the mixture

representation used during hand-off. We have extended the existing results by obtaining the

local Lp error bounds for the error of the greedy maximum likelihood mixture estimation

algorithm applied during the leader node hand-off. We then used Feynman-Kac framework

to study the propagation of these local errors. We have formulated the requirements on

the components of the mixture leading to the asymptotically unbiased approximation of

filtering distribution during leader node hand-off and identified the upper bound on the

rate, at which the approximate leader node particle filter distribution converges to the true

leader node Feynman-Kac flow. Our numerical experiments revealed that the parametric

approximation leader node particle filter performs better than the subsample approxima-

tion leader node particle filter. The numerical experiments also demonstrated that the
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subsample approximation leader node particle filter error bounds provide useful characteri-

zation of the average performance deterioration observed during experiments. We have thus

solved an important problem of establishing theoretical guarantees for the approximation

performance of the leader node particle filter, an efficient distributed tracking algorithm

implemented within the collaborative sensing framework.

Future Work

In Chapter 4, we have designed and analyzed an accelerated distributed average consensus

algorithm with improved convergence time. However, we have only derived the optimal

solution for two configurations of the proposed predictor based methodology. A promising

research direction is the analysis of the more general configurations of the predictor in-

cluding arbitrary predictor lengths. An intriguing question is the analysis of the predictor

based consensus with quantization noise. In this setting, nodes exchange quantized data

and thus an extra noise term is added to the consensus state vector at every iteration.

The important questions are how the introduction of memory affects noise propagation

in the consensus framework and whether it is possible to minimize the undesirable noise

accumulation by varying the parameters of the proposed predictor based framework.

In Chapter 6, we have analyzed the additional approximation errors of the leader node

particle filter. Our results can be extended in several ways. First, we believe that for the

parametric approximation scenario a tighter bound characterizing the additional approxi-

mation error could be obtained. Our current results are based on the relationship between

the Kullback-Leibler divergence and the Lp error and the analysis of the expectation of

the powers of the Kullback-Leibler divergence. Perhaps, the adaptation of a more direct

analysis of the Lp error would yield a better bound. The challenge here is the design of

a suitable error decomposition. Second, a promising research direction is the analysis of

the additional approximation errors of the parametric approximation leader node particle

filter for more general mixture approximation schemes. Our current results are based on

the analysis of the greedy maximum likelihood mixture estimation algorithm. Third, our

analysis only explores the behavior of the additional approximation errors induced by the

information compression during hand-off that occurs in the leader node protocol. The total

error induced by the leader node protocol, when compared to a centralized particle filter

collecting measurements from all available sensors, also includes the additional estimation
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error associated with activating only a subset of nodes in a WSN. The important extension

of our current work is thus the exploration of the behavior of this additional estimation

error for reasonable choices of the underlying network topology (e.g. a random geometric

graph or a grid).
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Appendix A

A.1 General Expressions for Predictor Weights for Arbitrary M

and k

In this appendix we present the expressions for the predictor weights θ in (4.9) as a function

of algorithm parameters and previous states for the case of arbitrary M and k.

First, we present the rationale behind the design of weights θ. As shown in Fig. A.1,

given the set of previous values at some time instant t0 and node i, xi(t0 −M + 1 : t0) =

[xi(t0 −M + 1), xi(t0 −M + 2), . . . , xi(t0 − 1), xW
i (t0)]T we would like to design the best

linear least squares approximation to the model generating the available data. Then using

the approximate model we would like to extrapolate the current state k time steps forward.

The easiest way to do this is to note that the approximate model of the form x̂i(t) = at+ b

with a and b being the parameters of the linear model can be rewritten in the matrix form

for the set of available data:

x̂i(t0 −M + 1 : t0) = Bt0−M+1:t0ψ. (A.1)

Here

Bt0−M+1:t0 =


t0 −M + 1 1

t0 −M + 2 1

. . . . . .

t0 − 1 1

t0 1

 and ψ = [a, b]T (A.2)
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Fig. A.1 Linear approximation to the model generating available data com-
prising linear predictor

Using the standard least squares technique we define the cost function

I(ψ) = (xi(t0 −M + 1 : t0)− x̂i(t0 −M + 1 : t0))T(xi(t0 −M + 1 : t0)− x̂i(t0 −M + 1 : t0))

(A.3)

= (xi(t0 −M + 1 : t0)−Bt0−M+1:t0ψ)T(xi(t0 −M + 1 : t0)−Bt0−M+1:t0ψ) (A.4)

and find the optimal approximate linear model ψ̂ as the global minimizer of the cost

function:

ψ̂ = arg min
ψ
I(ψ) (A.5)

Taking into account the convexity of the cost function and equating the derivative of I(ψ)

with respect to ψ to zero we get the solution:

ψ̂ = (BT
t0−M+1:t0

Bt0−M+1:t0)
−1BT

t0−M+1:t0
xi(t0 −M + 1 : t0). (A.6)

Now, given the linear approximation of the model generating current data, we extrapolate
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the current state k steps forward using Bt0+k = [t0 + k, 1]:

xP
i (t0 +k) = Bt0+kψ̂ = Bt0+k(B

T
t0−M+1:t0

Bt0−M+1:t0)
−1BT

t0−M+1:t0︸ ︷︷ ︸
θT(t0)

xi(t0−M +1 : t0). (A.7)

Finally, noting the time invariance of predictor weights θ(t0), that is θ(t0) = θ(0),∀t0, we

substitute Bt0−M+1:t0 and Bt0+k by their time-invariant analogs B and c as defined in (4.9).

Second, we need an expression for the pseudoinverse B†. From the definition of B in

(4.10) we can derive the inverse of BTB in closed form:

(BTB)−1 =
2

M(M + 1)

[
6

M−1
3

3 2M − 1

]
(A.8)

The expression for the pseudoinverse B† follows immediately:

B† = (BTB)−1BT =
2

M(M + 1)

[
−6(M−1)
M−1

+ 3 −−6(M−2)
M−1

+ 3 · · · 3

−M + 3− 1 −M + 6− 1 · · · 2M − 1

]
(A.9)

This results in the following expression for predictor weights:

θ = B†Tc =
2

M(M + 1)



(
−6(M−1)

M−1
+ 3
)
k −M + 3− 1(

−6(M−2)
M−1

+ 3
)
k −M + 6− 1

...

3k + 2M − 1

 (A.10)

A.2 Probability That Two Arbitrary Nodes Are Connected

In this section we present the calculation of the probability that two randomly selected

nodes in a sensor network with connectivity radius rc and sensors uniformly distributed

pxi,yi(xi, yi) = 1, xi, yi ∈ [0, 1] in a normalized square area D such that D = {x, y|x, y ∈
[0, 1]} on the plane are connected. As was mentioned before, this probability can be eval-

uated using integral of the form

p =

∫
S
pxi,yi(xi, yi)pxj ,yj(xj, yj)dxidyidxjdyj (A.11)
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where the set S is defined as follows

S = {(xi, yi, xj, yj)| (xi − xj)2 + (yi − yj)2 ≤ r2
c ; xi, yi, xj, yj ∈ [0, 1]} (A.12)

To facilitate calculation of the integral (A.11) given the set of integration limits (A.12) we

can divide this problem into two parts: rc ≤ 1 and 1 < rc ≤
√

2. Note also that random

variables x and y can be introduced:

x = xi − xj, y = yi − yj. (A.13)

It is obvious that due to the fact that pxi,yi(xi, yi) is uniform, the joint distribution of x, y

is triangular:

fx,y(x, y) =

1
4
(1− |x|)(1− |y|) if (x, y) ∈ [−1, 1]

0 otherwise
. (A.14)

Hence the integral in (A.11) can be reformulated into double integral:

p =

∫
√
x2+y2<rc, (x,y)∈[−1,1]

fx,y(x, y)dxdy. (A.15)

Due to the symmetry of the problem we can consider only a positive quadrant during the

calculation of (A.15). In the case rc ≤ 1 it reduces to the following:

p = 4

rc∫
x=0

(1− x)

√
r2c−x2∫

y=0

(1− y)dydx =
1

2
r4
c −

8

3
r3
c + πr2

c . (A.16)
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On the other hand, when 1 < rc ≤
√

2 we can reformulate (A.15) as follows:

p = 1− 4

1∫
y=
√
r2c−1

(1− y)

1∫
x=
√
r2c−y2

(1− x)dxdy

= −1

2
r4
c +

8

3
r2
c

√
r2
c − 1− 2r2

c +
4

3

√
r2
c − 1

− 2r2
c arcsin

(√
1− 1

r2
c

)
+ 2r2

c arcsin

(
1

rc

)
+

1

3
. (A.17)



169

Appendix B

B.1 The Comparison of Local Approximation Error Bounds

It is relatively straightforward to see why the sequence of constants c(p) provides tighter

bounds in Lemma 6.1 than the sequence d(p) in Lemma 5.1. For example, for the even

p = 2n the ratio of the two sequences is

d(2n)

c(2n)
=

(2n)!2−n

n!(2n)Γ(n)2−n

=
(2n− 1)!

n(n− 1)!Γ(n)
=

Γ(2n)

nΓ(n)Γ(n)

=
1

nB(n, n)
. (B.1)

Here B is the beta function. B(n, n) is a quickly decaying function. In particular, for

large n Stirling’s approximation gives a simple expression for beta function, B(n, n) ∼√
2πn−1/22−2n+1/2, yielding the large n Stirling’s approximation for (B.1):

d(2n)

c(2n)
∼ 1√

2πn
22n−1/2.

This shows that c(p) grows much slower with p than d(p). This improved nature of con-

stants c(p) results in better estimates of moment generating function in Theorem 6.1 and

Corollary 6.1, and better exponential inequality in Theorem 6.3. The comparison of the

bound in Lemma 5.1 with the bound in Lemma 6.1 is provided in Fig. B.1 for the Lp error

of the N -sample mean estimator in the case of uniform random variable distributed over
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Fig. B.1 Comparison of bounds in Lemma 5.1 and Lemma 6.1 for the Lp
error of the N -sample mean estimator of the uniform random variable dis-
tributed over the interval [0, 10]. Sample size, N = 1000.

the interval [0, s]. We verify that in this case the function that we are analyzing is:

E{|[P − SN(P )](h)|p}
1
p = E

{∣∣∣∣∣ 1

N

N∑
i=1

h(xi)−
∫
h(x)P (dx)

∣∣∣∣∣
p} 1

p

= E

{∣∣∣∣∣ 1

N

N∑
i=1

(xi − µ)

∣∣∣∣∣
p} 1

p
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We conclude that our test function has the following form in this setting: h(xi) = xi and

oscillations of this function can be estimated straightforwardly:

σ2(h) =
1

N

N∑
i=1

osc2(hi)

=
1

N

N∑
i=1

sup{|hi(xi)− hi(yi)|;xi, yi ∈ Ei}2

=
1

N

N∑
i=1

sup{|xi − yi|;xi, yi ∈ [0, s]}2

=
1

N

N∑
i=1

s2 = s2

Hence we have in this case σ(h) = s and the bound from Lemma 6.1 takes the form:

E{|[P − SN(P )](h)|p}
1
p ≤ c(p)1/p s√

N
. On the other hand, applying Lemma 5.1 gives:

E{|[P − SN(P )](h)|p}
1
p ≤ d(p)1/p s√

N
. Fig. B.1 depicts the two bounds plotted for different

values of p and compares it with the actual errors observed during simulations. We used

the following settings to obtain this plot: N = 1000, s = 10.

B.2 The Estimates of the Moment Generating Function

In this appendix we show how the impact of improved constants in Lemma 6.1 can be used

to improve the estimate of the moment generating function in Theorem 7.3.1 [114]. We

now state the Theorem 7.3.1.

Theorem B.1 (Del Moral [114], Theorem 7.3.1). For any sequence of E–measurable func-

tions (hi)i≥1 such that µi(hi) = 0 for all i ≥ 1 we have for any ε

σ(h) <∞ =⇒ E
{
eε
√
N |m(X)(h)|

}
≤ (1 + εσ(h)) e

ε2

2
σ2(h)

We note that the simplified estimate of the moment generating function in Corollary 6.1

is much tighter than the bound in Theorem B.1 for asymptotically large deviations ε

while the more complex bound in Theorem 6.1 outperforms the one in the Theorem B.1

uniformly over the range of ε. The comparison of the bounds obtained in Theorem B.1

and Theorem 6.1 with the empirical estimate is provided in Fig. B.2. The test setup is the



B 172

same as in Appendix B.1 The parameters of the simulation can be summarized as follows:

scale parameter, s = 10, number of i.i.d. samples, N = 100, averaging is performed over

M = 10000 trials, ε ranges from 0 to 1. Similar results are obtained in other settings.
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Fig. B.2 Comparison of bounds in Theorem B.1 and Theorem 6.1 for the
moment generating function of N -sample mean estimator of the uniform ran-
dom variable distributed over the interval [0, 10]. Sample size, N = 100.

B.3 GML Implementation Details (Objective Function and Its

Derivatives)

In this section we present the derivatives of the objective function of the GML algorithm.

As was mentioned earlier, the injection of this information into the numerical optimization

routine results in a significant (two times) acceleration of the GML speed. Assuming that

{ξ(j)}Nj=1 is the current particle set, φθi comes from the class of two-dimensional Gaussian

densities with diagonal covariance matrix

φθi(ξ
(j)) =

1

2πσ2,iσ1,i

e
−

(ξ(j)1 −µ1,i)
2

2σ2
1,i

−
(ξ(j)2 −µ2,i)

2

2σ2
2,i
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and ith-step GML objective is written as follows (according to Algorithm 2)

Ji = −
N∑
j=1

log[αiφθi(ξ
(j)) + (1− αi)gi−1(ξ(j))]

we can calculate the following set of the first- and second-order derivatives necessary to

construct gradient and Hessian for the non-linear optimization routine at iteration i. The

acceleration is achieved by evaluating the expensive exponential terms

Vi,j = e

(ξ(j)1 −µ1,i)
2

2σ2
1,i

+
(ξ(j)2 −µ2,i)

2

2σ2
2,i , 1 ≤ j ≤ N

only once per GML iteration and vectorizing the code with respect to the terms of the type

(ξ
(j)
1 − µ1,i) and

((
ξ

(j)
1 − µ1,i

)2

− σ2
1,i

)
.

∂Ji
∂µ1,i

=
N∑
j=1

−αi
(
ξ

(j)
1 − µ1,i

)
σ2

1,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))

∂Ji
∂µ2,i

=
N∑
j=1

−αi
(
ξ

(j)
2 − µ2,i

)
σ2

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))

∂Ji
∂σ1,i

=
N∑
j=1

−αi
((

ξ
(j)
1 − µ1,i

)2

− σ2
1,i

)
σ3

1,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))

∂Ji
∂σ2,i

=
N∑
j=1

−αi
((

ξ
(j)
2 − µ2,i

)2

− σ2
2,i

)
σ3

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
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∂2Ji
∂µ2

1,i

=
N∑
j=1

αi

(
αiσ1,i + 2Vi,jπgi−1(ξ(j))(1− αi)

((
ξ

(j)
1 − µ1,i

)2

− σ2
1,i

)
σ2,i

)
σ3

1,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

∂2Ji
∂µ1,i∂µ2,i

=
N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
ξ

(j)
1 − µ1,i

)(
ξ

(j)
2 − µ2,i

)
σ1,iσ2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))

2

∂2Ji
∂µ1,i∂σ1,i

=
N∑
j=1

2αi

(
ξ

(j)
1 − µ1,i

)(
αi +

Vi,jπgi−1(ξ(j))(1−αi)
((

ξ
(j)
1 −µ1,i

)2
−3σ2

1,i

)
σ2,i

σ1,i

)
σ3

1,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

∂2Ji
∂µ1,i∂σ2,i

=
N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
ξ

(j)
1 − µ1,i

)((
ξ

(j)
2 − µ2,i

)2

− σ2
2,i

)
σ1,iσ2

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

∂2Ji
∂µ2

2,i

=
N∑
j=1

αi

(
αiσ2,i + 2Vi,jπgi−1(ξ(j))(1− αi)σ1,i

((
ξ

(j)
2 − µ2,i

)2

− σ2
2,i

))
σ3

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

∂2Ji
∂µ2,i∂σ1,i

=
N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
ξ

(j)
2 − µ2,i

)((
ξ

(j)
1 − µ1,i

)2

− σ2
1,i

)
σ2

1,iσ2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

∂2Ji
∂µ2,i∂σ2,i

=
N∑
j=1

2αi

(
ξ

(j)
2 − µ2,i

)(
αi +

Vi,jπgi−1(ξ(j))(1−αi)σ1,i

((
ξ
(j)
2 −µ2,i

)2
−3σ2

2,i

)
σ2,i

)
σ3

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2
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∂2Ji
∂σ2

1,i

=
N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
((

ξ
(j)
1 − µ1,i

)2

− σ2
1,i

)((
ξ

(j)
2 − µ2,i

)2

− σ2
2,i

)
σ2

1,iσ
2
2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))

2

∂2Ji
∂σ1,i∂σ2,i

=
N∑
j=1

2αi

(
ξ

(j)
2 − µ2,i

)(
αiσ2,i + Vi,jπgi−1(ξ(j))(1− αi)σ1,i

((
ξ

(j)
2 − µ2,i

)2

− 3σ2
2,i

))
σ4

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

∂2Ji
∂σ2

2,i

=
N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
ξ

(j)
1 − µ1,i

)((
ξ

(j)
2 − µ2,i

)2

− σ2
2,i

)
σ1,iσ2

2,i (αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j)))
2

Gradient and Hessian calculated using the above formulae can be inserted into any stan-

dard non-linear optimization routine to boost its performance. Note that as we mentioned

above, for more efficient operation, the exponential terms should be evaluated only once

for every iteration of the non-linear optimization routine — during the evaluation of the

objective function.

B.4 Approximate Calculation of the Leader Node Selection

Criterion

In this section we show how to efficiently calculate the approximate information based

leader-node selection criterion based on the definition (6.21). We first note that from the

relationship between the mutual information and conditional entropy, I(X, Y |Z = z) =

H(Y |Z = z)−H(Y |X,Z = z) we have

I(Xt+1, Y
S`t+1

t+1 |yS`1:t
1:t ) = H(Y

S`t+1

t+1 |yS`1:t
1:t )−H(Y

S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) (B.2)
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Second, recalling our assumption of the conditional independence of the measurements we

can see

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) =

∑
j∈S`t+1

H(Y j
t |Xt+1, y

S`1:t
1:t ) (B.3)

Using the definition of the conditional entropy (where y
S`1:t
1:t is the sequence of measurements

that has already been realized [96])

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) = −

∑
j∈S`t+1

∫
log p(yjt+1|xt+1, y

S`1:t
1:t )p(xt+1, y

j
t+1|y

S`1:t
1:t )dxt+1dyjt+1

= −
∑

j∈S`t+1

∫
log p(yjt+1|xt+1, y

S`1:t
1:t )p(yjt+1|xt+1, y

S`1:t
1:t )p(xt+1|y

S`1:t
1:t )dxt+1dyjt+1

Since the true predictive density p(xt+1|y
S`1:t
1:t ) is unknown we have to use its Monte-Carlo

approximation consisting of the set of diffused (predictive) particles {ξ(i)
t+1}Ni=1. This results

in the following efficient approximation of the above integral:

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) = −

∑
j∈S`t+1

1

N

N∑
i=1

∫
log p(yjt+1|ξ

(i)
t+1)p(yjt+1|ξ

(i)
t+1)dyjt+1

According to our sensor model, the likelihood function can be represented as follows:

p(yjt+1|ξ
(i)
t+1) = p

yjt+1∆j
i

d (1− pd)(1−yjt+1)∆j
ip
yjt+1(1−∆j

i )

f (1− pf )(1−yjt+1)(1−∆j
i ), (B.4)

where ∆j
i = 1

ξ
(i)
t+1∈X

j
d
. Straightforward calculation gives

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) = −

∑
j∈S`t+1

qj(pd log pd + (1− pd) log(1− pd))

+ (1− qj)(pf log pf + (1− pf ) log(1− pf )).

Here qj = 1
N

∑N
i=1 ∆j

i is the average number of particles in the detection region of sen-

sor j. Thus we have constructed an efficient Monte-Carlo approximation to the second

summand in the expression for the mutual information between the predicted state Xt+1
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and the measurements arising in the neighborhood of the leader node `t+1. The first sum-

mand, H(Y
S`t+1

t+1 |yS`1:t
1:t ) is much more difficult to approximate directly using Monte-Carlo

technique. One form of decomposing this term [96]

H(Y
S`t+1

t+1 |yS`1:t
1:t ) =

|S`t+1
|∑

j=1

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) (B.5)

implies that for a general measurement model the evaluation complexity grows exponen-

tially in the size of the neighborhood |S`t+1 |. This is because the sequence of measurements

Y 1:j−1
t+1 is unknown and averaging over all possible cases is required. Our experiments re-

vealed that approximating this term using Monte-Carlo sampling of possible measurements

is also inefficient. However, for sensors with uninformative (noisy) measurements the fol-

lowing approximation can be used

H(Y
S`t+1

t+1 |yS`1:t
1:t ) =

|S`t+1
|∑

j=1

H(Y j
t+1|y

S`1:t
1:t )

The intuition behind this approximation can be explained as follows. We can represent

each term in the decomposition in the following way:

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) = −

∫
log

[∫
p(yjt+1|xt+1)p(xt+1|y1:j−1

t+1 , y
S`1:t
1:t )dxt+1

]
(∫

p(y1:j
t+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1

)
dy1:j

t+1

If measurements Y 1:j−1
t+1 are uninformative with respect to the current predictive density

p(xt+1|y
S`1:t
1:t ) their incorporation will not significantly affect the density and the following

will hold p(xt+1|y
S`1:t
1:t ) ≈ p(xt+1|y1:j−1

t+1 , y
S`1:t
1:t ). In our particular setting a measurement

Y j
t+1 is uninformative (according to the likelihood model (B.4)) if all the particles are either

simultaneously inside or outside the detection region X j
d of sensor j. This implies that ∆j

i

is same for all i and, consequently, the updated weight of every particle does not depend

on the realization of measurement Y j
t+1. Such a measurement can be excluded from mutual

information calculation without affecting the accuracy of calculation. We observed in our

simulations that when the particle representation of predictive density becomes localized
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most of the sensors in the neighborhoods of leader-nodes become uninformative and we in-

troduced the approximation p(xt+1|y
S`1:t
1:t ) ≈ p(xt+1|y1:j−1

t+1 , y
S`1:t
1:t ) into the calculation of the

mutual information. This resulted in a significant simplification (dimensionality reduction)

of calculations:

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) ≈ −

∫
log

[∫
p(yjt+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1

]
(∫

p(y1:j
t+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1

)
dy1:j

t+1

= −
∫

log

[∫
p(yjt+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1

]
(∫

p(yjt+1|xt+1)p(xt+1|y
S`1:t
1:t )dxt+1

)
dyjt+1.

Furthermore, using Monte-Carlo representation of predictive density we can approximate

the inner integral:∫
p(yjt+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1 ≈ qjp

yjt+1

d (1− pd)1−yjt+1 + (1− qj)py
j
t+1

f (1− pf )1−yjt+1

Finally, calculating the outer integral we obtain:

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) ≈ −(qjpd + (1− qj)pf ) log(qjpd + (1− qj)pf )

− (qj(1− pd) + (1− qj)(1− pf )) log(qj(1− pd) + (1− qj)(1− pf ))

Thus according to (B.2), (B.3) and (B.5) we have the following approximate expression for

the calculation of mutual information:

I(Xt+1, Y
S`t+1

t+1 |yS`1:t
1:t ) =

|S`t+1
|∑

j=1

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t )−H(Y j

t+1|Xt+1, y
S`1:t
1:t )

≈
∑

j∈S`t+1

−(qjpd + (1− qj)pf ) log(qjpd + (1− qj)pf )

− (qj(1− pd) + (1− qj)(1− pf )) log(qj(1− pd) + (1− qj)(1− pf ))

+ qj(pd log pd + (1− pd) log(1− pd))

+ (1− qj)(pf log pf + (1− pf ) log(1− pf ))
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Note that this is an extremely fast approximation since its complexity is proportional to

N |S`t+1| operations as opposed to the exponential complexity of exact calculation, which

is proportional to N2|S`t+1
|.
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