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Abstract

Cultivating social relationships is a fundamental aspect of being human. Research has

shown that various neurocognitive processes support our intrinsic need to connect. A

leading theory is that loneliness drives attentional focus externally towards social threats,

potentially undermining the ability to form social ties. Consistent with this idea, neuroima-

ging studies on loneliness have implicated brain regions involved in attention and percep-

tual processing. However, few studies have examined how interactions between assem-

blies of functionally connected brain regions, or networks, are altered when experiencing

loneliness. Network interactions vary across individuals, are shaped by lived experience,

and change with age. Thus, loneliness may impact the brain’s network architecture, and

these impacts may differ for younger and older adults. In three data-driven studies com-

bining social and cognitive neuroscience with advanced network neuroscience methods,

this thesis investigates the impact of loneliness on brain network architecture and changes

with age.

Study 1 adopts a state-based approach to investigate the neural correlates of loneli-

ness. We identified converging functional brain activity and co-activation patterns during

the experience of loneliness induced by social exclusion using quantitative meta-analytic

methods. Results challenge the predominant theoretical account of a shared neural re-

sponse to social exclusion and physical pain. Findings also highlight the role of the de-

fault network is critical for supporting internally-directed cognitive processes, including

mentalizing about the thoughts and feelings of oneself and others.
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In studies 2 and 3 our focus shifted to the impact of trait loneliness on brain network

organization. Here, we investigate whether loneliness is related to differences in the in-

trinsic functional organization of brain networks that support internally (e.g., mental-

izing) and externally (e.g., perception and attention) directed neurocognitive processes.

Study 2 establishes a novel whole-brain connectomics approach examining individual

differences in resting-state functional connectivity (RSFC). Following previous work, we

explore these differences in the context of two other trait variables that impact human

sociality: meaning in life (study 2) and empathy (study 3) in a large young adult cohort

(mean age = 28.04y, n = 830). Findings from study 2 advance knowledge of the neural cor-

relates of loneliness by revealing greater RSFC between externally-directed (e.g., visual

and ventral attention) and association networks (e.g., default and frontoparietal). Loneli-

ness was also related to reduced network modularity, an organizational pattern previ-

ously implicated in poorer neurocognitive functioning.

Study 3 explores age differences in RSFC related to loneliness in younger (mean age =

22.6y, n = 128) and older (mean age = 69.0y, n= 92) adults. We show greater visual network

integration with association networks in younger adults, replicating study 2. This RSFC

pattern was age-invariant in its relationship with empathy. However, loneliness was re-

lated to both inter-and intra-network integration of association networks in older adults.

Notably, default network regions showed robust associations with loneliness that differed

with age, again showing the susceptibility of this network to the experience of loneliness.

We consider the implications of these loneliness-related differences among brain regions

involved in internally-directed mentation for normal aging and brain disease.

Collectively, these studies advance theories on the neural impacts of state and trait

loneliness by providing the first comprehensive investigation of social and brain func-

tioning spanning younger and older adulthood. The findings contribute to a broader un-

derstanding of the neural mechanisms underlying loneliness and highlight the utility of

network-based approaches for investigating fundamental principles of human sociality.
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Résumé

Les liens sociaux sont fondamentales à l’ensemble de la vie sociale humaine. Divers pro-

cessus neuronaux soutiennent notre désir intrinsèque de se connecter. Selon une théorie

dominante, la solitude détourne l’attention vers les menaces sociales dans le monde extérieur,

ce qui peut compromettre la formation de liens sociaux. Les études de neuro-imagerie

sur la solitude impliquent les régions du cerveau associées à l’attention et à la perception.

Cependant, peu d’études examinent comment l’interaction entre ces régions, ou réseaux,

est modifié lorsqu’on se sent seul. L’interaction entre les réseaux varient entre individus,

en fonction de leurs expériences et changent en fonction de l’âge. Ainsi, la solitude peut

avoir un impact sur l’architecture du réseau cérébral qui diffèrent entre les jeunes adultes

et les adultes plus âgés. Cette thèse examine l’impact de la solitude sur l’architecture

des réseaux cérébraux et les changements de ces réseaux avec l’âge dans le cadre de trois

études qui utilisent diverses méthodes avancées des neurosciences sociales et cognitives.

La première étude examine les corrélations neurales de l’état de la solitude. Nous

avons identifié une convergence d’activité cérébrale et de coactivation pendant l’état de la

solitude induite par l’exclusion sociale en utilisant des méthodes de méta-analyse quant-

itative. Les résultats mettent en question une théorie dominante qui soutient qu’il ex-

iste une réponse cérébrale commune à l’exclusion sociale et à la douleur physique. Les

résultats mettent en évidence le rôle du réseau par défaut qui est essentiel au soutien

les processus cognitifs dirigés en interne, y compris la mentalisation des pensées et des

sentiments de soi-même et des autres.
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La deuxième et troisième études examine l’impact de la solitude sur l’organisation des

réseaux cérébraux. Ici, nous cherchons à savoir si la solitude est liée à une différence dans

l’organisation fonctionnelle intrinsèque des réseaux cérébraux qui soutiennent les proces-

sus neurocognitifs internes (la mentalisation) et externes (la perception et l’attention). La

deuxième étude établit une nouvelle approche connectomique pour examiner les différences

individuelles dans la connectivité fonctionnelle. Les deux études explorent cette différence

dans le contexte d’autres variables : le sens de la vie et l’empathie chez les jeunes adultes

(âge moyen = 28,04 ans, n = 830). La deuxième étude révèle une augmentation de con-

nectivité entre les réseaux dirigés vers l’extérieur (l’attention visuelle et ventrale) et les

réseaux d’association (les réseaux par défaut et frontopariétaux). La solitude était également

liée à une réduction de modularité neurale, un modèle d’organisation précédemment im-

pliqué a la réduction du fonctionnement neurocognitif.

La troisième étude explore les différences de connectivité liées à la solitude entre les

adultes plus jeunes (âge moyen = 22,6 ans, n=128) et plus âgés (âge moyen = 69,0 ans,

n=92). Nous montrons une plus grande intégration du réseau visuel avec les réseaux

d’association chez les jeunes adultes, reproduisant les résultantes de la deuxième étude.

La connectivité était invariable selon l’âge dans sa relation avec l’empathie. Cepend-

ant, la solitude était liée à l’intégration inter- et intra-réseau des réseaux d’association

chez les adultes plus âgés. Notamment, les régions du réseau par défaut ont montré

des associations robustes avec la solitude qui différaient avec l’âge, montrant à nouveau

l’importance de ce réseau à l’expérience de la solitude.

Collectivement, ces études progressent les théories sur l’impacts neuronaux de la solitude

en fournissant la première enquête complète sur le fonctionnement social et cérébral entre

les jeunes et les adultes plus âgés. Les résultats contribuent à une meilleure compréhension

des mécanismes neuronaux qui support la solitude et soulignent l’utilité des approches

basées sur les réseaux pour étudier les principes fondamentaux de la socialité humaine.
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“Lying, thinking

Last night

How to find my soul a home

Where water is not thirsty

And bread loaf is not stone

I came up with one thing

And I don’t believe I’m wrong

That nobody,

But nobody

Can make it out here alone.

Alone, all alone

Nobody, but nobody

Can make it out here alone.”

– Maya Angelou

Excerpt from “Alone”
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Contribution to Original Knowledge

The work presented in this thesis provides original scholarship aimed at addressing cur-

rent gaps in our understanding of how state and trait loneliness impacts brain function

across adulthood. By employing advanced network neuroscience methods and mul-

tivariate analytic techniques, this work builds a deeper and broader perspective on the

neural mechanisms underlying the experience of loneliness. Through three studies, this

work provides novel insights into how brain functional organization reflects individual

and age-related differences in loneliness and how these neural differences relate to core

principles that drive and support human sociality. Summarized below are the main con-

tributions made by each study:

Chapter 2

• Using data-driven meta-analytic methods we found that the neural response to so-

cial exclusion evoked using the Cyberball task –– one of the most common paradigms

for studying social exclusion –– does not reliably activate the dorsal anterior cingu-

late. This region of the brain is reliably involved in the experience of physical pain

and more recently has been associated with feelings of social exclusion or “social

pain”.

• Instead, social exclusion reliably engages the default network, a functionally con-

nected assembly of brain regions associated with social and self-referential cognitive

processes.

viii



• These findings directly question a prominent social cognitive theory that posits a

shared neural system underlying the experience of physical pain and the affective

response to social exclusion.

Chapter 3

• Using a whole-brain connectome approach, we demonstrated that individual dif-

ferences in whole-brain resting-state functional connectivity corresponded to indi-

vidual differences in trait loneliness and meaning in life.

• Greater self-reported loneliness was associated with dense connections between de-

fault network with externally-directed perceptual networks.

• Individuals with a high levels of loneliness reported finding life less meaningful,

and the relationship between these two trait variables were dissociable at the level

of brain.

• Greater self-reported meaning in life was associated with increased connectivity

between default and limbic networks.

• Loneliness is associated with lower modularity (i.e., increased integration) brain

network organization, whereas meaning in life is associated with higher modular

network (i.e., increased segregation).

Chapter 4

• Age differences in the relationship between loneliness trait, dimensions of empathy

functioning (i.e., emotional recognition and aspects of empathy of traits) and func-

tional organization of the brain network were observed.

• Trait loneliness in younger adults was related to greater integration of the visual

network and higher order association networks. This pattern of RSFC was age-

invariant in its relationship with empathic functioning across groups.
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• The association between trait loneliness and RSFC differed between younger and

older adults. Greater integration among higher-order association networks was re-

lated to higher levels of reported loneliness.

• Different dimensions of empathic functioning varied with age. Emotional recog-

nition was characterized by greater intra- and inter-network connectivity of associ-

ation networks in both age groups. In contrast, self-reported trait empathy measures

in younger adults were associated with greater visual network connectivity with the

rest of the brain.

• Based on these age differences in associations between social function and RSFC,

we suggest that with advancing age the experience of loneliness may engage more

internally-oriented versus externally-oriented processing regions.
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Chapter 1

Introduction

1.1 General context and objectives

1.1.1 General context

In January 2018, the United Kingdom appointed the world’s first minister of loneliness in

response to growing concerns about public health-related issues related to the rising rates

of loneliness and isolation. These concerns stemmed from mounting empirical evidence

documenting the adverse effects of loneliness on mental and physical health (Cacioppo

& Patrick, 2008; Tilvis et al., 2011, Shankar et al., 2013, d’Oleire Uquillas et al., 2018),

particularly among older adults (for review see Ong et al., 2016). The global impact of

the COVID-19 pandemic on human sociality further substantiated these concerns inter-

nationally. The physical distancing and isolation measures put in place to mitigate the

spread of the virus inadvertently left many people worldwide feeling socially isolated

and yearning for social connection.

Human sociality is rooted in a fundamental need for social connection. While people

might be intrinsically motivated to form and maintain social bonds, our social needs are

sometimes left unmet, and feelings of loneliness emerge (Cacioppo & Hawkley, 2009).

Decades of social and cognitive neuroscience research have led to integrated theories on
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the emergence of human social cognitive processes (e.g., Tomasello, 1999) and the brain

systems that support human social functioning (Dunbar, 2003; Adolphs, 2009). They have

shown that a range of neurocognitive processes supports our ability to navigate complex

social environments and interact with others through synchronized activity among spa-

tially distributed brain regions. However, our understanding of how loneliness impacts

the interactions among large-scale brain networks and the implications these changes

have on social functioning across the lifespan remains poorly understood.

Converging neuroimaging evidence has demonstrated the existence of a “lonely brain,”

characterized by altered functional and structural changes in multiple brain regions (Ca-

cioppo et al., 2009, Kanai et al., 2015; Lan et al., 2016; Inagaki et al., 2016; Courtney &

Meyers, 2020; Spreng et al., 2020; Lam et al., 2021). The experience of social isolation is

theorized to influence perceptual and attentional processes resulting in hypervigilance to-

ward social threats (Cacioppo et al., 2009; Cacioppo et al., 2018). The effects of loneliness

on neurocognitive processes are mirrored by changes in the organization of functional

brain networks including diminished coupling of cognitive control networks with lower-

level visual networks that may be involved in stimulus-driven social perception (Layden

et al., 2017; Tian et al., 2017; Feng et al., 2019). Previous neuroimaging studies have iden-

tified brain regions and neurocognitive processes that are altered in lonely individuals.

However, we are aware of no previous studies that have examined these interactions in

the context of individual differences in functional brain network organization (Wang et

al., 2015, Kong et al., 2019) and changes with age (Chan et al., 2014; Geerligs et al., 2015;

Setton & Mwilambwe-Tshilobo et al., 2022). A key question then remains: How do in-

dividual differences and age-related changes in the network organization of the brain

influence the relationship between loneliness and brain function?

1.1.2 Objectives

The primary objective of the current thesis is to provide an integrative framework to char-

acterize the relationship between loneliness and brain network functional organization
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across the adult lifespan. Neuroimaging studies have been integral for identifying brain

regions underlying loneliness. However, it is also important to understand how the inter-

actions and organization of these regions are influenced by the experience of loneliness,

and how they relate to factors that impact human sociality. Furthermore, because stud-

ies investigating the neural bases of loneliness have predominantly focused on young

adult populations, little is known about how differences in brain function associated with

loneliness change as people age. Filling this gap is critical as it may reveal basic neural

mechanisms by which loneliness might affect brain function and potential implications

for neurocognitive aging in late-adulthood.

Chapter 1

The present thesis aims to expand upon previous work on the neural correlates of state

and trait loneliness by examining brain network functional organization in younger and

older adults. The objective of Chapter 1 is to introduce loneliness, synthesize the relevant

and current neuroimaging studies and theoretical accounts of the neural basis of loneli-

ness, and highlight how leveraging approaches from network neuroscience might help

address open questions on the relationship between loneliness and brain function.

Chapter 2

Loneliness is multi-dimensional, and can be experienced as a momentary feeling induced

bound to a specific social context (state loneliness). Chapter 2 presents a quantitative

meta-analytic review of the neuroimaging literature on state loneliness, focusing specific-

ally on the neural response to social exclusion. The objective of Chapter 2 is to use a

data-driven approach to identify patterns of brain activity and co-activation patterns reli-

ably engaged by the experience of social exclusion and evaluate these patterns with respect

to the leading hypothesis on associated neural mechanisms.
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Chapter 3

Feelings of loneliness can also be experienced more broadly, irrespective of social context

(trait loneliness). Contemporary neural accounts of trait loneliness suggest perceptual,

attentional, and affective processes play an important role in shaping an individual’s ex-

perience of loneliness. The objective of Chapter 3 was to investigate these neural accounts

using resting-state fMRI by examining individual differences in the relationship between

trait loneliness and whole-brain functional connectivity. Additionally, this study offers a

methodological innovation by providing a novel framework that interrogates individual

differences in the intrinsic functional organization of the brain across multiple topological

scales (inter-regional and network-level).

Chapter 4

The primary objective of Chapter 4 is to use this framework to address open questions

related to disparate findings in the functional connectivity patterns associated with two

core dimensions of social functioning: trait loneliness and empathic responding. First, we

address a contradiction in reported associations between trait loneliness and brain func-

tion in early and middle-aged adults by expanding our studies to a healthy aging sample,

thereby providing a full lifespan account of the “lonely brain.” A secondary objective of

chapter four is to examine individual and age-related differences in the patterns of con-

nectivity in association with a second key feature of sociality: Empathic functioning.

Chapter 5

Finally, the objective of Chapter 5 is to summarize the studies included in this thesis and

describe the contribution of the work to the field of social neuroscience.
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1.2 Literature review

1.2.1 Defining loneliness: a multidimensional construct

To provide guidance for the reader and delineate the scope of the current thesis, it is im-

portant to note that loneliness can be conceptualized as either a state or a trait. State loneli-

ness is dependent on a social context. For example, feeling lonely when transitioning to

college away from family and friends for the first time or being excluded by others during

a specific social context (e.g., being discriminated against in the workplace). Trait loneli-

ness is dispositional, and feelings of isolation remain regardless of the social situation one

might find themselves in. Most neuroimaging studies typically examine loneliness as a

trait through questionnaires, the most commonly used being the UCLA loneliness scale

(Russell et al., 1980). State loneliness has mainly been considered in neuroimaging studies

from a social pain perspective (Eisenberger et al., 2003). This perspective has been taken

to support the theory that loneliness is an aversive state that serves as a biological sig-

nal (similar to thirst or hunger) to motivate individuals to attend externally to others to

mend or create new bonds (Cacioppo & Patrick, 2008; Cacioppo et al., 2018). As part of

the brain’s response to perceived social isolation, it triggers implicit changes that increase

short-term self-preservation by facilitating the detection and response to social threats,

which, in the long run, can have deleterious effects (Cacioppo et al., 2018). Therefore,

studies examining social exclusion or rejection by others offer a window into the brain’s

response to state social isolation. Unless expressly stated, the studies summarized in the

subsequent sections and the target of studies in Chapters 3 and 4 focus on trait loneliness.

Loneliness is a common human emotion; however, it is also a complex and unique

experience for each individual. Loneliness is related to the quantity (number of social

contacts) and the quality of people’s social relationships (Perlman & Peplau, 1981). From

a theoretical perspective, each person’s relationships must adequately satisfy an inherent

set of social needs which, if unmet, can be distressing (Perlman & Peplau, 1981). How-

ever, each person has a different threshold for the level of social interaction they need. For
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instance, a person who is socially isolated may not necessarily feel lonely, while someone

else may have many social relationships yet still feel lonely. Loneliness is not strongly

correlated with the amount of time spent alone (Hawkley, Burleson, Berntson, & Ca-

cioppo, 2003), size of a social network, or frequency of contact (Luhmann & Hawkley,

2016), but rather by how people feel about each of these objective social measures. At

its core, loneliness is the subjective perception of social isolation. In the next section, we

briefly review why characterizing the neural determinants and impact of loneliness are

emerging as a critical public health issue. In the following sections, we focus on what

is currently known about the “lonely brain” and describe how the studies that comprise

this dissertation fill critical knowledge gaps in this area and the emerging field of social

network neuroscience more broadly.

1.2.2 The impact of loneliness on health and well-being across adult-

hood

Previous studies suggest that the distribution of loneliness across adulthood is U-shaped

—with higher rates of loneliness in early adulthood (<30 years) and late adulthood (>80

years) (Lasgaard, Friis, & Shevlin, 2016; Luhmann & Hawkley, 2016). Other studies, how-

ever, report a higher prevalence of loneliness in young adult populations (D’Agostino

et al., 2018) or find no relationship between age and loneliness (Hawkley & Cacioppo,

2007). While it is unclear whether loneliness is as prevalent or more prevalent among

younger or older adults, life transitions seem to contribute to the peaks. For example,

isolation is a risk factor for loneliness among older adults because living alone reduces

social contact and increases the likelihood of experiencing more social isolation (Luh-

mann & Hawkley, 2016). While younger and middle-aged adults also experience critical

life transitions (i.e., college, marriage/divorce) that may cause them to feel isolated from

their social network, older adults disproportionally experience an accumulation of risk

factors that contribute to loneliness (Luhmann & Hawkley, 2016). Risk factors such as
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loss of spouse (Pinquart, 2003), retirement, and the absence of high-quality social rela-

tionships (Luhmann & Hawkley, 2016) can independently contribute to loneliness. How-

ever, because these factors are often compounded in late adulthood, loneliness may be

particularly detrimental in this population segment.

Extensive research has also documented loneliness’s direct and indirect impact on

health outcomes. Loneliness is a risk factor for depression and anxiety (Cacioppo et

al., 2006; Holvast et al., 2015), hypertension, reduced physical activity, and insomnia

(Shankar, McMunn, Banks, & Steptoe, 2011; Ong, Uchino, & Wethington, 2016). In ad-

dition, in a study of 2,173 community-living healthy (non-demented) older adults from

the Amsterdam Study of the Elderly, lonely individuals were 1.64 times more likely to de-

velop Alzheimer’s disease over three years (Holwerda et al., 2014). Many of these health-

related issues are cumulative and create a negative trajectory of events that increase older

adults’ mortality risk (Hawkley & Cacioppo, 2003; Tilvis et al., 2004). However, loneliness

can also negatively influence health through indirect routes. For instance, meaning in life

is a critical component of subjective wellbeing that can be defined as the sense that one’s

life has purpose, significance, and coherence (Martela & Steger, 2016). Meaning in life

is an important protective factor related to various health outcomes, longevity, reduced

morbidity, and social engagement (Steptoe & Fancourt, 2019). Yet, lonely people are more

likely to evaluate their life as less meaningful than those with rewarding interpersonal re-

lationships (Stillman et al., 2009), thereby depriving them from this source of wellbeing.

Therefore, these studies demonstrate that loneliness is not just an aversive feeling but has

a wide-ranging implications for health and wellbeing.

1.2.3 The lonely brain: Insights from neuroimaging studies

Loneliness can be adaptive and motivate individuals to reconnect. However, it can also

lead to maladaptive changes in cognition that heighten social vigilance (Bangee, Harris,

Bridges, Rotenberg, & Qualter, 2014), biasing attention and memory for negative social

information (Gardner, Pickett, Jefferis, & Knowles, 2005; Cacioppo, Balogh, & Cacioppo,
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2015; Bangee & Qualter, 2018). Collectively, these changes impact how people process

information from their immediate social environment. According to the Evolutionary

Theory of Loneliness, the aversive feeling of loneliness activates behavioral and cog-

nitive processes, allowing people to avoid negative social situations and facilitating op-

portunities to reinstate social bonds (Cacioppo & Hawkley, 2009; Cacioppo & Cacioppo,

2018). Although the short-term effects serve an adaptive function in promoting social re-

engagement, loneliness can also trigger a maladaptive regulatory loop of cognitive pro-

cesses and behaviors that reinforces the perception of social isolation. The consequences

of these selective changes in cognition may further reinforce a negative perceptual view

of the social world, making it harder to reconnect with others (Cacioppo & Cacioppo,

2018). Thus, feelings of loneliness can have both adaptive and maladaptive consequences

on human social cognition and behavior. This theoretical account has been generally sup-

ported by neuroimaging research examining the impacts of loneliness on brain structure

and function. Here, key findings from this growing body of work are highlighted.

Impact of loneliness on brain structure in adulthood.

Although loneliness is associated with a distinct cognitive and behavioral profile, the

neural mechanisms underlying these changes are still poorly understood. Neuroimaging

studies have shed some light by linking loneliness with structural changes in the brain

(Kanai et al., 2012; Spreng et al., 2020) and have provided converging evidence implicat-

ing the default network in the experience of loneliness. The default network is a large-

scale brain network with extensive spatial overlap with the ’social brain’–– an ensemble of

brain regions involved in social cognition (Mars et al., 2012). It is implicated in various so-

cial and self-reflective processes, such as inferring others’ beliefs and intentions, perceiv-

ing and interpreting others’ emotions, and autobiographical memory (Andrews-Hanna,

2012). Lonely young adults show less grey matter volume in the left posterior superior

temporal sulcus, a region implicated in social perception (Kanai et al., 2012). Reduced

white matter density in this region was also found in addition to multiple other regions
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in the default network, such as bilateral inferior parietal lobule, dorsal medial prefrontal

cortex, and the temporoparietal junction (Nakagawa et al., 2015). More recently, a study

conducted in a middle-aged adult cohort (age range: age range 40-69) found that grey

matter volume in multiple regions of default (e.g., posterior superior temporal sulcus,

left temporoparietal junction, dorsal anterior cingulate cortex) was positively associated

with loneliness (Spreng et al., 2020).

In contrast, a study conducted on older adults (age range: 61-81) found no differences

in gray matter volume in regions of the default network but in areas implicated in emo-

tional regulation and cognitive processing (Düzel et al., 2019). These changes in brain

structure suggest that loneliness affects regions involved in social cognition across young

and middle-aged adults. However, they also indicate that loneliness’s impact on brain

structure may vary with age.

Impact of loneliness on brain function in adulthood

Brain structural architecture determines but does not entirely restrict the functional dy-

namics of the brain (Honey et al., 2007; Suárez et al., 2020). Several approaches can be

utilized to examine brain function, but only relevant studies using functional magnetic

resonance imaging (fMRI) are considered for this thesis. Early work using the task-

fMRI paradigm to investigate loneliness and brain function has provided insight into

possible mechanisms by which loneliness might contribute to changes in social and af-

fective processes (Cacioppo et al., 2009; Inagaki et al., 2016). Most notable was the first

task-fMRI study on loneliness, which compared the neural response of lonely and non-

lonely young adults as they were shown pictures of social and non-social stimuli that var-

ied in emotional valence (positive, neutral, negative; Cacioppo et al., 2009). They found

that lonely young adults showed a dampened activation within brain regions implicated

in reward processing (e.g., ventral striatum) to positive social (vs. positive non-social)

images. Lonely participants also showed decreased activation in the temporoparietal

junction when viewing negative social (vs. negative non-social) images, which was in-
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terpreted as lonely individuals being less likely to engage in social cognitive processes

that require taking on the perspective of others. In contrast, lonely participants showed

greater activation in the visual cortex in response to negative social (vs. negative non-

social) images (Cacioppo et al., 2009). This latter finding has been interpreted as evidence

of implicit hypervigilance to social threats and empirical support for the theoretical ac-

count of loneliness.

To explore how individual differences in loneliness might relate to brain function,

other researchers have used resting-state fMRI (rs-fMRI) to examine individual differ-

ences in the intrinsic functional connectivity of the brain. Without using explicit task

demands, rs-fMRI explores the spontaneous neural activity of the brain (Biswal, Zerrin

Yetkin, Haughton, & Hyde, 1995). This pattern of intrinsic neural activity between brain

regions reflects patterns of co-activation observed during task-based fMRI studies. Spe-

cifically, the co-activation of these regions that are simultaneously engaged during the

performance of a task fluctuate together during rs-fMRI and are consistent within an in-

dividual over time, and can therefore serve as a sensitive measure to predict individual

differences in behavior and cognition (Stevens & Spreng, 2014).

A few studies have used rs-fMRI to investigate the relationship between loneliness

and interactions in resting-state brain networks in young adults (Tian et al., 2017; Layden

et al., 2017; Feng et al., 2019). For instance, Layden et al. (2017) reported that loneli-

ness was related to altered resting-state functional connectivity among two neural net-

works associated with attentional processes. These included the cingulo-opercular net-

work, commonly related to sustained maintenance of task control and task goals, and the

frontoparietal network, which supports adaptive control of attention (Dosenbach et al.,

2007). Using a rs-fMRI functional connectivity analytic approach, they demonstrated that

loneliness was associated with increased within-network functional connectivity of the

cingulo-opercular network and reduced connectivity between the cingulo-opercular and

the frontoparietal network (Layden et al., 2017). These findings suggest that loneliness is

characterized by changes in connectivity strength within and between networks that sup-
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port the maintenance and flexible control of attention. More importantly, these findings

point to a putative mechanism whereby diminished top-down control of attention may

contribute to the implicit hypervigilance to social threats that characterize loneliness.

The majority of studies using rs-fMRI have been conducted in younger adults. Spreng

et al. (2020) examined whole-brain resting-state functional connectivity in a cohort of

middle-aged adults using data from the UK Biobank. This study takes a slightly different

approach than Layden et al. (2017) in that it uses a pre-define cortical atlas to divide the

cerebral cortex into discrete brain regions, each belonging to one of 7 large-scale canonical

networks (Yeo et al., 2011). This study showed that participants with higher self-reported

loneliness had greater resting-state functional connectivity within the default network. In

addition, lonely participants showed higher integration of the default with frontoparietal

and limbic networks (Spreng et al., 2020). Critically, the default network was negatively

correlated with the visual network. These findings, along with other findings associating

loneliness with changes in default networks integrity, were interpreted as evidence that

loneliness in middle age may involve more internally-directed cognitive processes.

Implications of aging on the relationship between loneliness and brain function

While the research conducted in younger adults seems to support the theoretical account

that loneliness involves brain regions and networks that support externally-directed pro-

cesses, findings from the few studies conducted with middle-aged or older adults are

not entirely consistent with this perspective (Wong et al., 2016; D’Agostino et al., 2018;

Düzel et al., 2019; Spreng et al., 2020). What seems consistent across age groups is that

the default network appears to be involved in the experience of loneliness. However,

loneliness-default network associations may differ by age. Findings from two studies ex-

emplify why the current neural account of loneliness may need to be modified to account

for how aging might alter the impact of loneliness on the brain.

One examined the relationship between individual differences in loneliness and resting-

state functional connectivity (Lan et al., 2016). They reported that increased functional
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connectivity within the lingual gyrus—a region within the default network involved in

social cognition and processing—was positively correlated with loneliness. While this

finding is consistent with the notion that loneliness alters connectivity within the de-

fault network, unlike previous rs-fMRI studies conducted in young adults (Layden et

al., 2015), no association was found between loneliness and regions of the brain involved

in attention or executive control. Similarly, a recent multimodal neuroimaging study in

middle-aged adults found that associations with loneliness converged on the default net-

work across multiple scales (grey matter morphology, white-matter microstructure, and

rs-fMRI data) across multiple scales (Spreng et al., 2020). Notably, the results looking at

whole-brain RSFC showed greater connectivity within the default network and greater

integration between the default and other higher-order association networks.

These findings suggest that loneliness is associated with changes in networks that

support internally-directed neurocognitive processes in older adults. But it is difficult to

test this hypothesis without directly comparing young and older adults. Part of the diffi-

culty in addressing this gap in the literature is that few studies have been conducted on

older adults. Several studies have demonstrated that aging is associated with weaker con-

nectivity within resting-state networks (Chan et al., 2014; Geerligs et al., 2015; Wig, 2017;

Setton & Mwilambwe-Tshilobo et al., 2022). Weaker intrinsic connectivity may reflect

relative dysfunction of the modular organization (where connectivity within a network

is strong, but between network connectivity is weak), which is a fundamental organizing

principle of the brain (Sporns & Betzel, 2016). Could these age-related differences in brain

functional organization contribute to why loneliness might differentially impact the brain

with age? If so, what might be the implications of these neural differences for sociality at

different stages of adulthood?

1.2.4 The current research

Loneliness impacts multiple neurocognitive processes and alters the functional integrity

of the networks that support these processes. Although multiple studies have investig-
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ated brain regions associated with loneliness, fewer studies have examined the functional

interactions among them and how they change with age. In the studies that comprise

this dissertation, we postulate that loneliness is a complex construct encompassing mul-

tiple neurocognitive processes. As such, examining the interactions within and between

distinct brain networks may provide a more comprehensive perspective of the neural ac-

count of this complex social construct. Network neuroscience offers an array of tools to

characterize the functional organization of the human brain (Bassette & Sporns, 2017).

Such approaches have been readily implemented to characterize complex brain networks

in various contexts, such as aging (Chan et al., 2014; Geerligs et al., 2015; Hughes et

al., 2020; Setton & Mwilambwe-Tshilobo et al., 2022), real-world social network struc-

ture (Hyon et al., 2020; Baek et al., 2022), or during social interactions (Schmälzle et al.,

2016). The current thesis combines social and cognitive neuroscience with network neur-

oscience methods across three data-driven studies (one on state loneliness and two on

trait loneliness) to advance our understanding of individual and age-related differences

in the impact of loneliness on the functional network architecture of the human brain.

13



Chapter 2

Social exclusion reliably engages the

default network: A meta-analysis of

Cyberball

Mwilambwe-Tshilobo, L., & Spreng, R. N. (2021). Social exclusion reliably engages the

default network: A meta-analysis of Cyberball. NeuroImage, 227, 117666.

https://doi.org/10.1016/j.neuroimage.2020.11766

2.1 Preface

In this chapter, we consider loneliness as a state –– a momentary experience of social isol-

ation bound to a specific social context. Here, the particular context is the experience of

social exclusion by others. A predominant theory in the field of social neuroscience is

that the neural response to social exclusion or rejection (social pain) overlaps with that of

physical pain in two key regions: the dorsal anterior cingulate (dACC) and the anterior

insula (AI). However, the involvement of these two key regions has not always been re-

producible, rendering the theory of social pain a topic of much debate. A commonly

used method to estimate the convergence of neural activity across multiple independent
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neuroimaging studies is coordinate-based meta-analysis. When this study was published,

only two studies used this data-driven method to identify reliable brain regions activated

during social exclusion across neuroimaging studies. However, no meta-analytic study

had leveraged coordinate-based meta-analytic methods to characterize the functional net-

works underlying the neural reactivity to social exclusion across neuroimaging studies.

Implementing such an approach would provide an unbiased account that does not con-

strain the brain’s response to social exclusion to individual brain regions but rather mod-

els the underlying functional networks involved. Therefore, the goal of the current study

was to conduct a quantitative meta-analysis to identify brain regions reliably activated

during the social exclusion and co-activation patterns involved in this experience of state

loneliness.

2.2 Abstract

Social exclusion refers to the experience of being disregarded or rejected by others and

has wide-ranging negative consequences for well-being and cognition. Cyberball, a game

where a ball is virtually tossed between players, then leads to the exclusion of the research

participant, is a common method used to examine the experience of social exclusion. The

neural correlates of social exclusion remain a topic of debate, particularly with regards

to the role of the dorsal anterior cingulate cortex (dACC) and the concept of social pain.

Here we conducted a quantitative meta-analysis using activation likelihood estimation

(ALE) to identify brain activity reliably engaged by social exclusion during Cyberball

task performance (Studies = 53; total N = 1,817 participants). Results revealed consistent

recruitment in ventral anterior cingulate and posterior cingulate cortex, inferior and su-

perior frontal gyri, posterior insula, and occipital pole. No reliable activity was observed

in dACC. Using a probabilistic atlas to define dACC, fewer than 15% of studies repor-

ted peak coordinates in dACC. Meta-analytic connectivity mapping suggests patterns of

co-activation are consistent with the topography of the default network. Reverse infer-
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ence for cognition associated with reliable Cyberball activity computed in Neurosynth

revealed social exclusion to be associated with cognitive terms Social, Autobiographical,

Mental States, and Theory of Mind. Taken together, these findings highlight the role of

the default network in social exclusion and warns against interpretations of the dACC as

a key region involved in the experience of social exclusion in humans.

2.3 Introduction

Exclusion from social participation is an all too common, yet psychologically painful, fa-

cet of the human experience. Being bullied by peers at school, discrimination at the work-

place, and rejection from a romantic partner are all experiences that can lead a person to

feel the sting of social exclusion. This sensitivity to social exclusion is deeply rooted in

a need for social connectedness (Baumeister & Leary, 1995; Williams et al., 2000). Con-

sequently, the brain has developed systems to efficiently recognize and respond to signs

of social exclusion across a range of situations (J. Cacioppo & Hawkley, 2009; Eisenber-

ger et al., 2003; Fisher et al., 2010; Masten et al., 2011). Due to its pervasiveness and

importance for human functioning, social neuroscientists have sought to understand the

underlying neural processes involved in reactions to social exclusion.

Previous neuroimaging studies have examined the neural correlates of social exclu-

sion. These studies vary in their approach, but one of the most commonly employed

paradigms used to evoke feelings of social exclusions in an experimental setting is the

Cyberball task. Cyberball is a computerized virtual ball-tossing game played between

the participant and other virtual players (Williams et al., 2000). The traditional Cyberball

paradigm involves two rounds: an “inclusion” round during which the ball is received

and tossed equally among all players, subsequently followed by an “exclusion” round

during which the other players no longer pass the ball to the participant, thereby elicit-

ing feelings of social exclusion. In their seminal study, Eisenberger et al. (2003) used a

Cyberball task to investigate the neural response to social exclusion. Results from this
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study showed increased activity in the dorsal anterior cingulate (dACC), anterior insula,

and right ventral prefrontal cortex during the exclusion round relative to the inclusion

round (Eisenberger et al., 2003). Critically, increased activity in the dACC and anterior

insula were shown to correlate with self-reports of social distress after exclusion. Based

on prior work demonstrating activity of the dACC during the experience of physical pain

(Rainville et al., 1997; Singer et al., 2004), this finding was interpreted to suggest that so-

cial exclusion is experienced as ‘painful’ and led to the hypothesis of overlap in the neural

circuitry underlying social pain and physical pain (Eisenberger, 2012a, 2012b; Eisenberger

et al., 2003; Lieberman & Eisenberger, 2015).

Subsequent studies have since substantiated this claim. Activation of the dACC has

been reported during Cyberball (Dewall et al., 2010; ‘I feel your pain: emotional closeness

modulates neural responses to empathically experienced rejection’, 2011; Lieberman &

Eisenberger, 2015; Onoda et al., 2010) and other social exclusion paradigms (O’Connor

et al., 2008; Sebastian et al., 2011). Similar findings have also been observed during third

person (‘I feel your pain: emotional closeness modulates neural responses to empathically

experienced rejection’, 2011; Meyer et al., 2013) or recollected experiences of social exclu-

sion (Kross et al., 2011). However, findings from several studies suggest that the dACC is

not specific to the experience of social or physical pain, but instead responds to various

cognitive and emotional events (Kragel et al., 2018; Perini et al., 2018; Somerville et al.,

2006; Wager et al., 2016). Other studies have shown that the emotional responses to so-

cial exclusion involves the subgenual subdivision of the anterior cingulate cortex rather

than the dACC (Bolling, Pitskel, Deen, Crowley, McPartland et al., 2011; Masten et al.,

2009), hinting at dissociable neural representations for physical and social pain (Woo et

al., 2014). Thus, while the dACC has been highlighted as key region within the literature,

the lack of consistent correspondence between the neural correlates of social and physical

pain have led to questions regarding the association between social exclusion and dACC.

Earlier meta-analyses of functional imaging studies aimed at identifying reliable neural

correlates of social exclusion have also provided inconclusive results. When restrict-
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ing the analysis to the anterior cingulate, one meta-analysis showed involvement of the

dACC during social exclusion (Rotge et al., 2015). Yet, when examining across studies of

social exclusion, irrespective of dACC reported activity, other meta-analytic studies have

failed to find reliable dACC activity (S. Cacioppo et al., 2013; Vijayakumar et al., 2017).

Moreover, when focusing specifically on neuroimaging studies of social exclusion using

the Cyberball task, the dACC did not emerge as a region that was reliably engaged across

29 studies (Vijayakumar et al., 2017). In contrast, more ventral anterior cingulate cortex

(vACC) as well as ventral prefrontal cortex and orbitofrontal cortex were more reliably

recruited across past meta-analyses (S. Cacioppo et al., 2013; Vijayakumar et al., 2017).

Further, regions of the default network have also been implicated in mentalizing about

the intentions of other people, both during (Bolling, Pitskel, Deen, Crowley, Mayes et al.,

2011; Onoda et al., 2010; Wagels et al., 2017) and after (Powers et al., 2013) social exclu-

sion. Therefore, engagement of this network may constitute an important component of

the intrapersonal and interpersonal processes of social exclusion (Kawamoto et al., 2015).

However, the extent to which the default network is engaged in social exclusion requires

further investigation.

The present study aims to identify areas of convergence in functional activity and co-

activation patterns of brain regions engaged during social exclusion measured during

Cyberball. Using coordinate-based activation likelihood estimation (ALE) meta-analysis

(Eickhoff et al., 2012; Eickhoff et al., 2009), we identify reliable whole-brain activation

patterns of social exclusion across neuroimaging studies using traditional and alternat-

ing (interspersed sequences of inclusion and exclusion) Cyberball designs. This study

extends prior meta-analyses on social exclusion (S. Cacioppo et al., 2013; Vijayakumar

et al., 2017) in several ways: First, we use meta-analytic connectivity modeling (MACM)

(Eickhoff et al., 2011; Laird et al., 2009) to characterize the functional connectivity pro-

file of regions identified in the ALE analysis. Second, we use Neurosynth (Yarkoni et al.,

2011) to meta-analytically decode the cognitive processes associated with the identified

neural patterns from the ALE analysis. Finally, we directly investigate whether dACC, a
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core node in the hypothesized common substrate of physical and social pain, is reliably

engaged by Cyberball. Taking this approach allows us to not only delineate brain re-

gions that have consistently been associated with social exclusion, but it can provide new

insights into putative neural networks associated with social exclusion, and decode the

psychological processes of these brain regions using valid reverse inference, in the largest

sample of studies currently available.

2.4 Methods

2.4.1 Literature search and study selection

We performed a systematic review of functional magnetic resonance imaging studies in-

vestigating the neural correlates of social exclusion using Cyberball. All articles in the

literature published from October 10th, 2003 to August 19th, 2020 were considered for

this meta-analysis. We used PubMed/MEDLINE, and PsychINFO online databases to

search for articles with abstracts, titles, and keywords using the following search string:

(social rejection OR social exclusion OR ostracism) AND (MRI OR fMRI OR functional

magnetic resonance imaging OR brain imaging). The search yielded 341 articles. Ref-

erence lists of relevant articles were manually searched for additional publications not

captured in the online database searches yielding 257 non-duplicate articles.

Studies were included if they met the following criteria: 1) used Cyberball behavi-

oral paradigm as an experimental manipulation for social exclusion; 2) were empirical

investigations (i.e. not review articles); 3) they employed fMRI; 4) reported group main

effects of an exclusion/rejection condition relative to an inclusion/acceptance condition;

5) studied healthy subjects; and 6) used whole-brain analyses with reported Montreal

Neurologic Institute (MNI) or Talairach coordinates. A flow chart illustration of the liter-

ature review and study selection process can be viewed in Fig. 2.1. Following the criteria

defined above, 53 studies were included in the present study. It should be noted that 7

studies included in our final list involved participants watching others being excluded
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(referred to hereafter as others-exclusion; (‘I feel your pain: emotional closeness modu-

lates neural responses to empathically experienced rejection’, 2011; Lelieveld et al., 2020;

Masten et al., 2011; Meyer et al., 2013; Novembre et al., 2015; Tousignant et al., 2018; van

der Meulen et al., 2017), and two studies included in combined the whole-brain results

for their clinical and healthy controls (Domsalla et al., 2014; van Harmelen et al., 2014).

Analyses excluding these 9 studies are also provided.

Figure 2.1: Caption. Flowchart of article selection, following PRISMA guidelines. Adap-

ted from (Moher, 2009).
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2.4.2 Coordinate based meta-analysis

Activation likelihood estimation (ALE) analysis

A coordinate-base meta-analysis of fMRI studies using Cyberball was conducted with

the revised version of the ALE algorithm (Eickhoff et al., 2009, 2012). The software pack-

age GingerALE (3.0.2; www.brainmap.org/ale) was used to perform two analyses on co-

ordinates from the studies identified by the literature search (Eickhoff et al., 2012; Laird

et al., 2009). Coordinates from studies reporting in Talairach space were converted to

MNI space using the FSL transformation applied in GingerALE (Eickhoff et al., 2012).

ALE computes the statistical spatial convergence of activation coordinates (foci) across

studies. The algorithm models this convergence by creating a 3-dimensional Gaussian

distribution representing the spatial uncertainty around each coordinate. The width of

the distribution is weighted by the number of participants for each study, such that stud-

ies with large sample sizes have smaller Gaussian distributions thereby reflecting a more

reliable approximation of the true activation. Once a model of the brain activation map is

computed for each study, the maps are aggregated to identify areas of spatial convergence

between activation foci that are greater than would be expected by chance.

To better control for the false-positive rates, the ALE image was thresholded using

two different thresholds. The first employed a conservative threshold (p < 0.05 FWE; 5000

permutations, p < 0.001 cluster forming threshold). A second, more liberal threshold used

a cluster forming threshold of p < 0.01, a cluster-based family-wise error (FWE) corrected

threshold of p < 0.05, and 5,000 permutations (Eickhoff et al., 2012). Significant clusters

using the more conservative threshold were then used as seeds to perform a region-to-

whole-brain co-activation meta-analysis (MACM; (Eickhoff et al., 2011; Laird et al., 2009).

Analysis

Five meta-analyses were performed using GingerALE: (1) full sample (53 studies, 1,817

participants); (2) traditional Cyberball design (29 studies, 1,021 participants); (3) adult
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samples (33 studies, 1,094 participants); (4) alternating Cyberball design (17 studies; 565

participants); and (5) studies reporting statistically significant increased self-reported dis-

tress after exclusion (20 studies; 632 participants). Other than the meta-analysis on the full

sample, all sub-analyse (2-5) did not include others-exclusion studies. For the full sample,

we also provide results omitting 9 studies (7 studies of others-exclusion; 2 studies with

combined whole brain results for healthy and clinical samples). The current recommend-

ations for ALE meta-analyses is to include a minimum of 17–20 studies to obtain sufficient

power to detect valid results from ALE analysis and to prevent results from being driven

by a single experiment (Eickhoff et al., 2016; Müller et al., 2018). All meta-analyses sat-

isfy this recommendation. To examine the effects of study design, we also performed

a contrast analysis between the traditional and alternating Cyberball design. Although

we were interested in examining the effects of age, due to the limited number of studies

for the developmental sample (n = 13), a contrast analysis between age groups was not

included due to insufficient power.

Meta-analytic connectivity modeling (MACM)

To provide a more comprehensive view of the co-activation pattern of brain regions asso-

ciated with Cyberball task, we conducted MACM analyses for each ALE clusters. MACM

allows for generating whole brain co-activation patterns for a given predefined region of

interest across a range of experimental neuroimaging tasks and paradigms. Analogous

to seed-based connectivity analysis of resting sate fMRI data, MACM assumes that re-

gions that consistently coactivate across experiments can be pooled to create a map of

functionally connected networks. Importantly, this approach is able to capture brain re-

gions which are functionally connected, but that may also be part of an indirect network

(Robinson et al., 2010). MACM leverages the BrianMap database (www.brainmap.org), a

large online repository of human neuroimaging studies, to reveal brain regions that con-

sistently activate together above chance with a given predefined region of interests across

a large set of neuroimaging experiments (Eickhoff et al., 2011; Laird et al., 2009). We
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created six different brain masks reflecting the six significant clusters obtained from the

ALE meta-analysis cluster image from the full sample. Binarized brain masks for each

cluster were generated using Nilearn (https://nilearn.github.io/index.html; (Abraham

et al., 2014) on the basis of the voxel assignment corresponding to the ALE cluster they

belong to. Sleuth (version 3.0.4, https://www.brainmap.org/sleuth) was used to search

the BrainMap database for foci within each ALE cluster mask. Searches were conduc-

ted to include studies that reported increased activation. The search criteria were lim-

ited to statistical contrasts that reported activations (i.e. task > baseline) in non-clinical

populations. Studies that reported peak activation coordinates within each significant

ALE cluster were assessed to establish each cluster’s whole-brain co-activation pattern

(cluster-level FWE< 0.05; p-value< 0.001; 5000 permutations).

2.4.3 Neurosynth cognitive decoder

After determining reliable activation patterns, we meta-analytically decoded the cognit-

ive terms associated with this resulting ALE map from the full sample of 53 studies. Neur-

osynth is a meta-analytic tool that contains a database for over 14,000 functional neuroim-

age studies. The brain activation patterns and peak signal coordinates in the database are

paired with associated cognitive terms (Yarkoni et al., 2011);

https://neurosynth.org). Taking a reverse inference approach, the Neurosynth decoder

function was used to compare the activation pattern in our ALE map with those of all

neuroimaging studies in the database. To do this, we first uploaded an unthresholded

z-statistics map to NeuroVault which is a repository for neuroimaging studies. The Neur-

osynth decoder function is an integrated feature within NeuroVault, and was used it to

compute a voxel-wise Pearson correlation coefficient between our ALE map each of the

term-based z-statistics maps extracted from Neurosynth. The cognitive profile corres-

ponding to the activation pattern from the meta-analysis was determined by identifying

the most likely cognitive terms given activation in the ALE map. This produced a list of

1,335 terms, each with a correlation score to indicates the relative strength of association
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with our ALE map. The top 20 terms (excluding all anatomical, redundant, and method-

ologic terms) were ranked by the correlation strength between the brain regions reliably

engaged during social exclusion and Neurosynth maps, and visualized as a word cloud.

The ALE map archived in NeuroVault (https://neurovault.org/collections/6199/) and

can be used to generate the complete list of terms.

2.4.4 dACC study count

To compare the frequency with which published studies report dACC peak coordinates,

we defined the boundaries of a dACC ROI using the Harvard Oxford probabilistic tem-

plate (cingulate [anterior division] and paracingulate gyri posterior to the genu of the

corpus callosum, p > 0). Foci were clustered into four categories based on the Harvard

Oxford atlas: 1) studies reporting non-dACC peaks localized outside the dACC ROI, 2)

studies reporting foci with the anatomical label dACC, but the coordinate fell outside of

the ROI, 3) studies reporting dACC peaks that fell within the ROI, and 4) studies report-

ing foci that fell within the dACC ROI but were not given the dACC anatomical label.

2.5 Results

2.5.1 Meta-analysis on the full sample of Cyberball studies

Reliable patterns of brain activity were examined in 53 studies of Cyberball, revealing

six clusters of activity (Table 2.2; Fig. 2.2). On the medial aspect of the frontal lobe, we

found bilateral activation of vACC, extending anteriorly towards the ventral and medial

prefrontal cortices. Cyberball exclusion reliably activated the right posterior insula, right

superior frontal gyrus, left IFG, left posterior cingulate cortex (PCC), and left occipital

pole. All ALE results images are archived in NeuroVault

(https://neurovault.org/collections/6199/).
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Figure 2.2: Caption. Results of cyberball social exclusion ALE meta-analysis. Brain areas

showing consistent activation during social exclusion across (a) the full sample of Cy-

berball studies included in the meta-analysis (n=53).

Similar results were also observed when using a more liberal threshold (see Supple-

mentary Figure 2.S1). When omitting the others-exclusion studies and the 2 studies that

combined the whole-brain results of their healthy and clinical samples, all clusters except

for the superior frontal gyrus remained (Supplementary Table 2.7).

2.5.2 Meta-analysis of Cyberball design

The next meta-analyses focused on Cyberball design to examine whether restricting the

analysis to studies using the traditional Cyberball design (one round of inclusion fol-

lowed by one round of exclusion) or the alternating design (repeated alternating blocks

of inclusion and exclusion) to induce social exclusion might highlight a different activa-

tion pattern than that identified using the full Cyberball sample. Across all studies using

the traditional design (n = 29; subjects = 1,021; foci = 300), ALE analysis identified a sim-

ilar pattern of convergence as observed for the full sample. Social exclusion using the
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traditional Cyberball design was associated with activity in three clusters identified in

the full sample: left inferior frontal gyrus extending to the anterior insula, left occipital

pole, and right superior frontal gyrus (see Supplementary Figure 2.S1, Supplementary

Figure 2.S2 and Supplemental Table 2.2). The alternating design (n = 17, subjects = 565;

foci = 170) was associated with the remaining two clusters identified in the full sample:

the left vACC and right posterior insula. We did additionally find a cluster in the right

central opercular cortex (see Supplementary Figure 2.S1, Supplementary Figure 2.S2 and

Supplemental Table 2.2).

Contrast analyses between the traditional and alternating designs revealed reliably

reported activity in left anterior insula for the traditional compared to the alternating

design. The right central and parietal opercular cortex showed more reliable activation in

the alternating relative to the traditional design (Supplementary Table 2.2).

2.5.3 Meta-analysis across studies of adults

To examine potential developmental effects in social exclusion, we conducted a meta-

analysis of Cyberball studies using an adult population (n = 33; subjects = 1,094; foci =

350). The adult sample showed reliable activity in PCC, posterior insula, and subgenual

and vACC (see Supplementary Figure 2.S1, Supplementary Figure 2.S3 and Supplement-

ary Table 2.3). A preliminary analysis of children (Age less than 18 years old; n = 13;

subjects = 480; foci = 121) is provided in supplemental material (Supplementary Figure

2.S3 and Supplementary Table 2.3).

2.5.4 Meta-analysis of self-reported distress

Further sub-analyses focused only on those studies where participants reported greater

subjective experience of distress following exclusion (n = 20; subjects = 632; foci = 184)

revealed similar clusters as for the full sample. Social exclusion in this sub-sample was
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associated with engagement of the vACC, and bilateral IFG (see Supplementary Figure

2.S1, Supplementary Figure 2.S4 and Supplementary Table 2.S4).

2.5.5 Functional connectivity of the derived ALE-clusters—MACM ana-

lysis

To characterize the reliable activation associated with social exclusion, we examined the

functional co-activation of the ALE map for the full sample with other brain regions. We

performed MACM analyses to obtain cluster-specific connectivity maps that represent

brain regions that coactivate with the largest and most reliable ALE cluster for the full

sample (cluster1-bilateral vACC). The co-activation based meta-analytic map for cluster

1 is shown in Fig. 3 and corresponding peak maxima are reported in Table 3. ALE ana-

lysis examining the whole-brain co-activation pattern associated with the vACC showed

co-activation with anterior and posterior cortical midline structures. Specifically, bilateral

ventromedial prefrontal cortex extending towards the subgenual portion of the pregenual

ACC, left superior frontal gyrus, and bilaterally in the PCC. The ACC cluster also coactiv-

ated with the left inferior parietal lobule, bilateral parahippocampal gyrus, and middle

temporal gyrus. Furthermore, when depicted in conjunction with Yeo 7-Network atlas

(Yeo et al., 2011), we show in Fig. 2.3 that the co-activation pattern for the ACC cluster

aligns with the default network in medial prefrontal, as well as medial and lateral parietal

cortex and temporal cortex. Supplementary Figures 2.S5-2.S9 and Supplementary Tables

2.S5-2.S9 show MACM results for clusters 5-6. MACM results images are archived in

NeuroVault (https://neurovault.org/collections/6199/).

2.5.6 Cognitive terms associated activation

To provide valid reverse inference into the cognitive processes associated with the meta-

analytic map for Cyberball, we performed functional decoding of the ALE results from

the full sample. The Neurosynth decoder function was used assess the similarity of the
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Figure 2.3: Caption. MACM map of co-activation of the vACC cluster (cluster 1) derived

from the full sample ALE meta-analysis. Results represent the brain areas that signific-

antly coactivate with brain regions that are most reliably recruited during social exclusion

(p < 0.001, FWE cluster-level corrected at p < 0.05). The functional connectivity map for

the vACC cluster is juxtaposed with outlines of the Yeo 7-Network atlas ((Yeo et al., 2011)).

MACM co-activation pattern (yellow/red) overlap with the default network and portions

the limbic network. See Table 3 for coordinates.

activation of the unthresholded ALE map with statistical maps generated for the entire

set of terms included in the Neurosynth database. The top 20 Neurosynth cognitive terms

with the highest correlation values are listed in Supplementary Table 10 and visualized as

a word cloud in Fig. 2.4. The emerging pattern of ALE activation for the full sample was

more associated with social- and self- cognition, as well as reward-related terms, such

as: social, autobiographical, referential, mental states, reward, theory mind, value. The

highest correlation was observed for the term social (r = 0.18).

2.5.7 dACC study count

Contrary to previous reports (Eisenberger, 2012a; Lieberman & Eisenberger, 2015), ALE

results for the full sample and traditional sub-sample of Cyberball studies did not show

reliable activation of the dACC. To further examine this inconsistency, we used a probab-

ilistic atlas of the dACC to quantify the number of studies with reported peak voxels in

the dACC. Less than one quarter of neuroimaging studies included in this meta-analysis
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Figure 2.4: Caption. Decoding of the ALE map for the full sample using Neurosynth de-

coder. The decoder was used to compare the unthresholded ALE map (full sample) with

statistical maps generated by Neurosynth across a wide range of terms (1,335 terms). De-

picted above is the word cloud showing the top 20 relevant cognitive terms that correlated

with the pattern of activation for social exclusion. Font size represents relative correlation

strength of that term to the full sample Cyberball meta-analytic results.

reported anatomical labels for peak coordinates as the dACC (Fig. 2.5a). Of the 14 studies

reporting dACC activity, the locations for nearly half of these studies (n = 6; Fig. 2.5a) did

not have peak voxels located within the boundaries of the dACC (Fig. 2.5b). Four studies

report coordinates within the dACC but provide a different anatomical label (e.g. medial

prefrontal cortex).

2.6 Discussion

The present study conducted a coordinate based meta-analysis of social exclusion neuroima-

ging studies using the Cyberball paradigm. Using ALE, we found that social exclusion

reliably engages bilateral vACC, right posterior insula, right superior frontal gyrus, left

inferior frontal gyrus, left PCC, and left occipital pole. Similar patterns of activation were

observed when restricting the analysis to studies to account for variable experimental

manipulations and participant cohorts. Using a MACM approach to functionally char-

acterize the pattern of co-activation from our ALE results, we demonstrate functional

covariance of brain activity consistent with the topography of the default network. Im-
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Figure 2.5: caption. Study count of reported dACC activity across all studies listed

in Table 1.(a) A qualitative assessment comparing the number of studies that reported

no peak activation in the dACC relative to studies that reported peak activation in the

dACC during Cyberball social exclusion. Using a dACC-ROI map (created from the

Harvard-Oxford probabilistic atlas) to cross-reference foci locations, studies with foci

located outside of the dACC-ROI are portrayed in dark blue; those with foci located

within the dACC-ROI in light blue. (b) Activation foci reported by studies included in

the full sample ALE analysis are plotted on the brain surface. The red shaded area repres-

ents boundaries of a dACC ROI map. Non-dACC reported foci are color-coded base on

whether they were located outside (black) or inside (yellow) of the ROI. Similarly, repor-

ted foci that were anatomical labeled as dACC located outside (pink) and inside (blue)

the ROI are shown.

plementing valid reverse inference with Neurosynth, Cyberball activity was associated

with social- and self-related cognitive terms, consistent with the functional role of the

default network in cognition (Andrews-Hanna et al., 2014). While the neural response to

social exclusion has been conceptualized within a social pain framework, strongly implic-

ating the dACC, we found no converging evidence supporting dACC activation during

social exclusion.

The meta-analysis results for the full sample indicate that several brain regions dis-

tributed broadly along the medial and lateral prefrontal cortices are consistently activated

during Cyberball. In the prefrontal cortices, we found a large bilateral ventromedial pre-
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frontal cluster including the pregenual and subgenual portions of the ACC (e.g. vACC).

The ventral sub-region of the ACC has often been implicated in studies on emotion (Somerville

et al., 2006). Increased activity in the vACC is associated with greater rejection sensitivity

(Burklund et al., 2007), self-reported distress during social exclusion (Rotge et al., 2015),

and engagement of this region may reflect emotional processing of negative emotions in-

duced by social exclusion (Bolling, Pitskel, Deen, Crowley, Mayes et al., 2011; Sebastian

et al., 2011). We also identified three additional clusters—one in the right posterior in-

sula, a second in the right superior frontal gyrus, and a third in bilateral inferior frontal

gyrus. The posterior insula is implicated in mediating sensorimotor processes of extero-

ceptive and interoceptive information (Chang et al., 2013; Craig, 2002; ‘Placebo-induced

changes in FMRI in the anticipation and experience of pain’, 2004; Uddin, 2015), the in-

ferior frontal gyrus plays a role in top-down cognitive control (Badre & Wagner, 2007),

and the superior frontal gyrus which is encompassed within the dorsal medial prefrontal

cortex commonly implicated in social-reflective tasks such as making judgements about

others (Andrews-Hanna et al., 2014). The activation of these regions during social ex-

clusion are linked to affective response and cognitive regulation of feelings of social ex-

clusion (Bolling, Pitskel, Deen, Crowley, Mayes et al., 2011; Rotge et al., 2015; Sebastian

et al., 2011). We also identified clusters in left PCC and left occipital pole. The PCC

has strong anatomical connections with ventromedial prefrontal areas, and is a core hub

of the default network (Andrews-Hanna et al., 2010). Together with the ventromedial

areas, inferior and superior frontal gyri, these regions are part of the default network and

are functionally integrated regions that support a wide range of self-generated cognitive

processes, such as mentalizing and autobiographical recollection (Andrews-Hanna et al.,

2014; Spreng et al., 2009). These default network regions are also responsive to visual

social information during goal-oriented tasks (Spreng et al., 2014).

Neural correlates of social exclusion may be impacted by differences in methodo-

logical approaches, such as task design and participant populations of social rejection.

Factors related to task design (Rotge et al., 2015; Somerville et al., 2006) and age-related
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differences in rejection sensitivity (Somerville et al., 2006), and self-reported distress (Rotge

et al., 2015) can differentially impact neural activity during exclusion. When restrict-

ing our analyses to Cyberball studies using the traditional and alternating designs, adult

sample, and studies that reported significant increases in subjective distress after exclu-

sion, we found similar clusters of activation as seen in the full sample.

Extending previous meta-analyses of neuroimaging studies using Cyberball, we con-

ducting a MACM analysis with the observed bilateral vACC cluster as a seed region. The

resulting meta-analytic functional connectivity map largely overlapped with regions of

the default network (encompassing the medial prefrontal cortex, superior frontal gyrus,

PCC, inferior parietal lobule, and hippocampus) and the orbitofrontal cortex, an extended

region of the default network (Uddin et al., 2019). These results suggest that the functional

co-activation pattern observed for this social exclusion cluster is spatially coherent with

the default network.

Our results extend prior work by demonstrating that the functional characterization of

regions reliably engaged during Cyberball coactivate with the default network which is

known to be critical for reflective cognitive processes (Andrews-Hanna et al., 2014). They

also add to a body of work linking social exclusion to a network of brain regions that

are distinct from that previously identified in the extant literature on social pain. Using

multivoxel pattern analysis, Woo et al. (2014) demonstrated that while the experience of

social rejection and physical pain may engage similar brain areas, these experiences evoke

dissociable functional connectivity patterns. When examining whole-brain network dy-

namics during Cyberball, social exclusion is associated with increased within-network

connectivity of the default network (‘Brain connectivity dynamics during social interac-

tion reflect social network structure’, 2017). The functional connectivity map derived for

the vACC cluster results is largely consistent with this finding. Furthermore, our findings

parallel results from seed-based connectivity showing increased connectivity between the

vACC and default network brain regions during social exclusion (Bolling, Pitskel, Deen,

Crowley, Mayes et al., 2011).
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Using cognitive decoding to characterize the emerging pattern of ALE activation, we

show that the cognitive processes primarily associated with the identified neural patterns

relate to both social and self-referential cognitive terms, mentalizing and mental infer-

ence, and valence terms. The decoding results showed a small association between social

exclusion task activity and ‘pain’ and ‘painful’. Overall, these terms may capture spontan-

eous situational thoughts such as, “Why are they leaving me out?”, which include mental

state attribution and self-reference, along with the emotional experience of pain. Given

that social exclusion is a complex phenomenon, this result underscores that the interplay

between social cognitive and affective processing is an important component used to nav-

igate a potentially challenging interpersonal situation. This may be particularly relevant

in light of work pointing to increased emotion regulation processes following social ex-

clusion (DeWall et al., 2011) and differential neural responsivity to positive and negative

social feedback in regions implicated in social-affective processing (i.e. vACC) (Jankowski

et al., 2018; Morese et al., 2019; Powers et al., 2013; Wagels et al., 2017). Collectively, our

results highlight the importance of the default network in the experience of social ex-

clusion by virtue of this network’s involvement in self, social and emotional processes

(Andrews-Hanna et al., 2014). Extending from this, a population neuroscience study has

implicated the default network as central to the experience of loneliness (Spreng et al.,

2020).

The neuroimaging literature on social exclusion has emphasized the role of the dACC

in social pain, particularly given the association between activation in this region and

subjective ratings of distress. The present ALE results show that social exclusion does

not reliably engage the dACC, even when we lowered the statistical threshold for sig-

nificance. One possibility for the lack of dACC engagement might be due to the task.

Our results are limited to the Cyberball paradigm, yet other types of social exclusions

paradigms have reported dACC activation (Gündel et al., 2003; O’Connor et al., 2008;

Fisher et al., 2010; Kross et al., 2011; see Eisenberger et al., 2012b for review). Different

paradigms might not evoke the same level of distress. Indeed, a prior meta-analysis on
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social exclusion did find that the Cyberball task showing less dACC activity compared to

other social exclusion tasks (Rotge et al., 2015). Taking this into consideration, when we

restricted our analysis to studies where there was a significant increase in participants’

self-reported distress, we still found no reliable dACC activity.

The dACC is often used by various studies as a region of interest, occasionally without

providing any supplementary whole-brain analysis (Chester & DeWall, 2016; Chester et

al., 2014; Dewall et al., 2010; Kashdan et al., 2014). It is possible that early observed ef-

fects (e.g. Eisenberger et al., 2003), with small samples by current standards, may have

introduced a confirmation bias towards dACC, thereby obscuring findings of other brain

regions that are more reliably recruited during social exclusion. Our findings underscore

potential bias with the misattribution of observed peaks to the dACC, alongside the rel-

atively sparse number of peaks within dACC.

The studies that report no dACC activity attribute the lack of replication to vari-

ous factors such as differences in methodological approach (modified Cyberball, event-

related design) or study population (adolescents versus adults) (Masten et al., 2011a; Mas-

ten et al., 2009; Moor et al., 2012; Sebastian et al., 2011). Others discuss their findings in

terms of support for the ventral portion of the ACC’s involvement in indexing negat-

ive affect and the dorsal portion being involved in cognitive control (Onoda et al., 2009;

Shackman et al., 2011; Wagels et al., 2017). An alternate predominant view of dACC ac-

tivation for social exclusion may have motivated bias in subsequent reports to fit their

results in the social pain framework. Indeed, some studies without whole brain dACC ef-

fects conduct additional region of interest analysis on the dACC (Asscheman et al., 2019)

or lowered the statistical threshold for significance (Bollings et al., 2011b). Analyses in-

vestigating neural correlations with self-reported distress can more directly speak to the

participant’s neural response to the experience of social exclusion. However, correlations

between distress and the dACC have been inconsistent (DeWall et al., 2012; Eisenberger,

2012a; Kawamoto et al., 2012; Masten et al., 2011; Masten et al., 2009; Moor et al., 2012;

Onoda et al., 2010; Will et al., 2015). As the field moves forward in characterizing the
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neural correlates of social exclusion, it is critically important that reliable observations of

brain activity be considered above confirmation bias.

The main advantage of taking a coordinate-based meta-analytic approach is that it

is data-driven and is considered a robust method for unbiased integration of previously

published functional neuroimaging literature. However, some important limitations should

be acknowledged. First, we pooled across neuroimaging studies using the Cyberball task

(both traditional and alternating design). We did not include studies utilizing other so-

cial exclusion paradigms. While our findings are largely consistent with previous meta-

analyses which did include analyses using other social exclusion paradigms (Cacioppo et

al., 2013; Vijayakumar et al., 2017), inferences regarding the meaning of the findings may

not be generalizable to other social exclusion paradigms (i.e. romantic rejection, viewing

visual stimuli of rejection). In pooling peak coordinates reported in published activation

tables, the shape and extent of the primary result clusters in a volume may not be well-

characterized. This will likely result in imperfect alignment of activity across studies.

However, in the absence of consistently archived results images, coordinate based meta-

analysis remains the most effective approach to amalgamating neuroimaging finds across

studies. Another important limitation is that while we did provide a sub-analysis focused

on studies where there was statistical evidence of greater subjective distress following ex-

clusion, this analysis does not directly speak to how social distress correlates with brain

activity. We recommend that future studies perform whole-brain regression analyses with

self-reported distress to more directly identify which brain regions are involved in the af-

fective response to social exclusion. Finally, the Neurosynth decoder is constrained by the

term-based maps in the database (Yarkoni et al., 2011). Neurosynth automatically extract

high frequency terms from the abstract of each study in the database, which can impact

the specificity of cognitive terms. While the terms from the cognitive decoding comple-

ment our interpretation of an association between social exclusion and default network

recruitment, we do not claim that there is a unique role for activity in any of the brain

regions identified in this meta-analysis and cognitive terms obtained from our analysis.

35



The correlation values represent how well the spatial distribution of activation associated

with each term in the database matches the reliable activation patterns of our ALE res-

ult map. Despite these limitations, Neurosynth represents a powerful tool for decoding

cognitive terms and has been shown to have high sensitivity and specificity for identify

distinct neural networks (see Rubin et al., 2017; Yarkoni et al.,2011). The functional char-

acterization results are useful for developing hypotheses that provide a better fit to the

data, and allow the field to move forward towards a better understanding of the neural

and cognitive-affective basis of social exclusion.

In summary, the current meta-analysis of Cyberball reveals a reliable pattern of brain

activation distributed across medial prefrontal cortex, inferior and superior frontal gyri,

posterior cingulate cortex and posterior insula. This pattern largely overlaps with the de-

fault network, and is associated with self-referential processes, mentalizing and valence

related terms. Together, these results provide evidence for a primary role of the default

network in the experience of social exclusion.

2.7 Data and code availability statement

All data are accessible within the studies cited in Table 2.7. Extracted coordinates are

available from either author upon request.
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Table 2.1: Cyberball studies meeting inclusion criteria.

No. Reference N Gender ra-

tio (F/M)

Age M(sd) Cyberball

design

Age group Target of

exclusion

Increased

self-

reported

distress

after exclu-

sion

N

(foci)

dACC

activity

repor-

ted

Peaks

in

dACC

ROI

1 Ascheman et al., 2019 55.0 (0/55) 10.40(0.74) Traditional Developmental Self yes 6.0 no no

2 Bach et al., 2019 21.0 (2/19) 1:38.53(6.5)

2:38.19(8.1)

Alternating Adult Self yes 9.0 no no

3 Beeney et al., 2011 20.0 (20/0) 24.6(5.8) Traditional Adult Others 9.0 yes yes

4 Bolling et al., 2011a 21.0 (6/15) 12.90(2.59) Alternating Developmental Self yesb 10.0 no no

5 Bolling et al., 2011b 23.0 (12/11) 24.0(3.81) Alternating

(picture)

Adult Self no 12.0 no no

6 Bolling et al., 2012 20.0 (9/11) 24.99 (3.91) Alternating

(picture)

Adult Self yesb 12.0 no no

7 Bolling et al., 2015 15.0 (6/9) 1:12.96(2.7)

2:12.36(4.2)

3:11.88

(3.2)

Alternating Developmental Self yesb 12.0 no yes

8 Bolling et al., 2016 20.0 (10/10) 12.61(2.5) Alternating Developmental Self yesb 12.0 no no

9 Bonenberger et al., 2015 21.0 (21/0) 22.2(3.38) Traditional Adult Self no 8.0 no no

10 Cheng et al., 2020 69.0 (36/33) 14.2(1.5) Alternating Developmental Self yesb 4.0 no yes

11 Chester et al., 2018 60.0 (38/22) 20.28(2.77) Traditional Adult Self no 19.0 no no

12 Cogoni et al., 2018 36.0 (19/17) 23.2(3.51) Alternating

(video)

Adult Self no 14.0 no no

13 Domsalla et al., 2014 20.0 (20/ 0) 1:29(2)

2:28.7(7.8)

Alternating Adult Self yesb 12.0 no no

14 de Water et al., 2017 31.0 (17/14) 14.49(1.06) Alternating Developmental Self yes 7.0 no yes

15 DeWall et al., 2012 25.0 (16/9) Undergraduate Traditional Adult Self yesb 15.0 no no
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16 Eisenberger et al., 2003 13.0 (9/4) Undergraduate Traditional Adult Self yes 4.0 yes yes

17 Falk et al., 2014 36.0 (36/0) 16.8(0.47) Traditional Developmental Self yes 6.0 no no

18 Gilman et al., 2016 42.0 (22/20) 1:21.5(1.9)

2:20.6(2.5)

Traditional Adult Self yesb 5.0 no no

19 Gonzalez et al., 2015 85.0 (45/40) 24.5(1.35) Traditional Adult Self no 6.0 yes yes

20 Gradin et al., 2012 16.0 (9/7) 1:40.87(11.72)

2:41.23(11.78)

Alternating Adult Self yesb 3.0 no no

21 Hanlon et al., 2019 25.0 (14/11) 1:33.5(6)

2:38.1(6.1)

Traditional Adult Self yes 1.0 yes yes

22 Heeren et al., 2017 23.0 (23/0) 1:24.96(6/6)

2:25.30(5.62)

Traditional

(events)

Adult Self yes 5.0 yes yes

23 Karramans et al., 2011 15.0 (20/5) 22 (19–33) Traditional Adult Self yesb 13.0 no no

24 Kawamoto et al., 2012 22.0 (19/3) 20.7(1.7) Alternating

(events)

Adult Self yes 12.0 yes yes

25 Le et al., 2020 64.0 (33/31) 47.1(16.3) Traditional Adult Self no 27.0 yes yes

26 Lelieveld et al., 2012 30.0 (16/14) 20.00(1.05) Traditional Adult Self no 3.0 no no

27 Lelieveld et al., 2020 43.0 (25/18) 20.95(1.89) Traditional Adult Others 3.0 yes no

28 Luo et al., 2016 42.0 (21/21) 1:20.38(1.7)

2:20.38(1.12)

Traditional Adult Self yes 16.0 yes yes

29 Malejko et al., 2018 17.0 (17/0) 1:23(4.26)

2:23.3(4.13)

3:28.7(4.59)

Traditional Adult Self yesb 11.0 no no

30 Masten et al., 2010 23.0 (14/9) 13.0(no sd) Traditional Developmental Self no 4.0 no no

31 Masten et al., 2011a 18.0 (9/9) 21.4(no sd) Traditional Adult Self yesb 15.0 no no

32 Masten et al., 2011b 18.0 (9/9) 20.22(no

sd)

Traditional Adult Others 5.0 no no

33 Masten et al., 2011c 17.0 (2/15) 1:14.0(2.4)

2:13.6(2.5)

Traditional Developmental Self yes 19.0 no no

34 Maurage et al., 2012 22.0 (0/22) 1:45.1(10.69)

2:

47.2(11.04)

Traditional Adult Self yes 7.0 yes yes
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35 McIver et al., 2018 45.0 (36/9) 17.7(0.60) Traditional Developmental Self yesb 11.0 yes yes

36 Meyer et al., 2013 16.0 (12/4) 21.69(2.12) Traditional

(picture)

Adult Others 7.0 yes yes

37 Moor et al., 2010 53.0 (31/22) 1:11.8(.87)

2:15.74(0.74)

3:20.38(0.85)

Traditional

(events)

Developmental Self yes 9.0 no no

38 Nishiyama et al., 2015 46.0 (29/17) 19.85(no

sd)

Traditional Adult Self yes 14.0 no no

39 Novembre et al., 2015 23.0 (23/0) 22.4(2.0) Alternating Adult Self & Oth-

ers

13.0 no yes

40 Olié et al., 2017 28.0 (28/0) 1:38.9(no

sd) 2:41(no

sd) 3:36(no

sd)

Traditional Adult Self yesb 1.0 no no

41 Onoda et al., 2009 26.0 (15/11) 21.7(1.3) Traditional Adult Self yes 2.0 no no

42 Preller et al., 2016 21.0 (9/12) 26.48(4.76) Traditional Adult Self no 26.0 yes yes

43 Puetz et al., 2016 51.0 (26/25) 1:10.6(1.75)

2:10.38(1.67)

Traditional Developmental Self yesb 2.0 no no

44 Radke et al., 2018 80.0 (40/40) 1:24.38(3.37)

2:24.69(3.85)

Alternating Adult Self no 5.0 no no

45 Sebastian et al., 2011 35.0 (35/0) 1:15.44(0.81)

2:28.70(3.91)

Alternating Developmental

& Adult

Self yes 12.0 no no

46 Tousignant et al., 2018 40.0 (20/20) 1:14.25(1.33)

2:24.25(1.97)

Alternating

(picture)

Developmental

& Adult

Others 9.0 yes yes

47 van den Berg et al., 2018 72.0 (44/28) 36.2(16.17) Alternating Adult Self no 11.0 no yes

48 van der Meulen et al., 2017 71.0 (39/32) 1:8.15(1.06)

2:8.23(0.67)

3:8.21(0.71)

Traditional Developmental Others 29.0 no no

49 van Harmelen et al., 2014 46.0 (34/12) 1:18.31(1.95)

2:18.85(0.25)

Traditional Adult Self yes 8.0 no no

50 Wagels et al., 2017 40.0 (20/20) 27.80(7.86) Alternating Adult Self no 20.0 no no
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51 Will et al., 2015 28.0 (16/12) 20.7(1.97) Traditional

(event)

Adult Self yes 13.0 no no

52 Will et al., 2016 44.0 (18/26) 14.0(0.70) Traditional

(event)

Developmental Self yes 19.0 no no

53 Wudarczyk et al., 2015 24.0 (10/14) 24.33(2.91) Alternating Adult Self yes 3.0 no no

Note: For Age M(sd), bolded items represent group(s) whose data was included in the meta-analysis. “Alternating” involves Cyberball design with alternating inclusion and exclusion

blocks. Modifications made in the Cyberball design are indicated in parentheses (e.g. using an event-related design, providing a picture of a person to represent the other Cyberball

players, etc.). “Self” involves participants being excluded while “Others” involves participants watching friends or strangers being excluded.
a There is a discrepancy between the total number of subjects listed and the gender ratio listed in this reference.
b Studies that provided average self-reported distress scores but did not perform any statistically assessment of social distress after exclusion.
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Table 2.2: Results of the full sample ALE meta-analysis.

Brain Regions Hemi x y z ALE max. Cluster Number Volume N Studies
(mm3) (foci)

vACC L -2.0 42.0 -14.0 0.03 1 5384.0 21(34)
Posterior insula R 40.0 -14.0 18.0 0.06 2 2296.0 11(15)

IFG L -48.0 34.0 -10.0 0.04 3 2264.0 11(13)
PCC/RSC L -8.0 -56.0 12.0 0.04 4 1523.0 8(8)

Occipital pole L -12.0 -94.0 4.0 0.04 5 1112.0 6(8)
SFG R 2.0 50.0 30.0 0.02 6 848.0 5(8)

Note: Results of the full sample ALE meta-analysis. For each cluster, brain region label,
hemisphere, MNI coordinates, ALE maxima , cluster size (mm3), and number of studies are
provided. vACC = ventral anterior cingulate cortex; IFG= inferior frontal gyrus; PCC = posterior
cingulate cortex; RSC = retrosplenial cortex; SFG= superior frontal gyrus; L = left hemisphere;
R= right hemisphere.

Table 2.3: Cluster 1 MACM result: clusters of functional co-activation associated with

ALE cluster 1 (vACC-medial prefrontal cortex) from the full sample ALE meta-analysis.

Brain region label, hemisphere, MNI coordinates, ALE value, and cluster size (mm3)

Brain Region Hemi x y z ALE max. Cluster Number Volume (mm3)
vACC L -2 46 -12 0.30 1 48264

dorsal PCC L -2 -52 29 0.10 2 14312
Parahippocampal gyrus L -20 -8 -20 0.10 3 5104
Inferior parietal lobule L -42 -76 34 0.08 4 5080

Parahippocampal gyrus R 22 -6 -20 0.10 5 4792
Orbitofrontal cortex L -40 24 -14 0.06 6 3408

Superior frontal gyrus L -22 32 44 0.07 7 3408
Middle temporal gyrus L -56 -10 -18 0.07 8 1488

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons
using cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space

All data were analyzed with software publicly available from http://www.brainmap.org/

and https://neurosynth.org/.
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2.11 Appendix. Supplementary materials

Supplementary Figure 2.S1: Full sample, traditional design, adult sample ALE sub-

analyses. Meta-analytic results for the full sample, traditional design, adult sample, Cy-

berball studies omitting all studies where participants observing other’s being excluded,

alternating design, and studies that reported statistically significant levels of distress after

exclusion (self-reported distress). All ALE analyses were thresholded at p< .05 using a

FWE correction at the cluster level, corrected for multiple comparisons (5,000 permuta-

tions) with a cluster forming threshold of p< .01.
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Table 2.S1: ALE analysis omitting others-exclusion studies and studies of combined

whole-brain results for healthy and clinical samples.

ALE analysis omitting others-exclusion studies and studies of combined whole-brain results for healthy
and clinical samples (n=44; 1,508 participants; 451 foci).

Brain Regions Hemi x y z ALE max. Cluster Number Volume N Studies
(mm3) (foci)

vACC R 6.0 38.0 -6.0 0.03 1.0 3440.0 15(21)
Posterior insula R 40.0 -14.0 18.0 0.05 2.0 2208.0 10(13)
IFG L -48.0 34.0 -10.0 0.03 3.0 1424.0 8(10)
PCC/RSC L -8.0 -56.0 12.0 0.03 4.0 1048.0 6(6)
Occipital pole L -12.0 -94.0 4.0 0.03 5.0 880.0 5(6)

Note.For each cluster, brain region label, hemisphere, MNI coordinates, associated ALE maxima, cluster
size (mm3), and number of studies are provided. L = left hemisphere; R= right hemisphere. x, y, z
coordinates provided in MNI space.
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Supplementary Figure 2.S2: ALE meta-analysis results for the design Cyberball sub-

analysis. Brain areas showing consistent activation during social exclusion for studies

using the traditional design (1 round of inclusion followed by 1 round of exclusion) and

alternating design (alternating rounds of inclusion and exclusion) are depicted. Regions

in green represent areas of greater activation for the traditional relative to the alternating.

Brain regions showing greater activation during the alternating compared to the tradi-

tional are depicted in purple.

54



Table 2.S2: Results from the ALE analyses of Cyberball design.

Results from the ALE analyses of Cyberball design.
Brain Regions Hemi x y z ALE max. Cluster Volume N Studies

Number (mm3) (foci)
Traditional Cyberball
Inferior frontal gyrus L -36.0 24.0 -6.0 0.03 1.0 1720.0 7(8)
Superior frontal gyrus R 4.0 46.0 32.0 0.02 2.0 1144.0 5(9)
Occipital pole L -12.0 -94.0 -6.0 0.03 3.0 888.0 5(6)

Alternating Cyberball
Ventral anterior cingulate cortex L -4.0 42.0 -14.0 0.02 1.0 1952.0 7(9)
Posterior insula R 40.0 -16.0 18.0 0.03 2.0 1888.0 7(7)
Central opercular/posterior insula R 56.0 4.0 4.0 0.02 3.0 1192.0 6(7)

Traditional > Alternating
Anterior insula L -36.0 20.0 -4.0 2.72 1.0 232.0 2(2)

Alternating > Traditional
Central opercular cortex R 56.0 2.0 8.0 3.09 1.0 696.0 3(3)
Parietal opercular cortex R 48.0 -22.0 16.0 3.54 2.0 648.0 2(2)

For each cluster, brain region label, hemisphere, MNI coordinates, associated ALE maxima, cluster size
(mm3), and number of studies are provided. L = left hemisphere; R= right hemisphere.
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Supplementary Figure 2.S3: ALE meta-analysis results for Cyberball studies where parti-

cipants reported significantly greater levels of distress after exclusion. ALE meta-analysis

results for Cyberball studies where participants reported significantly greater levels of

distress after exclusion.

Table 2.S3: ALE analysis on Cyberball studies in developmental and adult samples.

ALE analysis on Cyberball studies in developmental and adult samples. Brain region label, hemisphere,
MNI coordinates, ALE maxima, and cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume N Studies
Number (mm3) (foci)

Developmental
Middle temporal gyrus L -58.0 -30.0 -6.0 0.02 1.0 1232.0 6(6)
Inferior frontal gyrus L -44.0 32.0 -8.0 0.02 2.0 1080.0 4(6)
Inferior frontal gyrus R 38.0 34.0 -14.0 0.02 3.0 1024.0 4(5)
Posterior insula R 44.0 -14.0 8.0 0.02 4.0 928.0 3(5)
Parietal opercular cortex R 46.0 -20.0 20.0 0.02 5.0 608.0 3(3)

Adults
Posterior cingulate cortex L -8.0 -56.0 14.0 0.03 1.0 1312.0 7(7)
Posterior insula R 40.0 -14.0 18.0 0.05 2.0 1168.0 6(6)
Subgenual anterior cingulate- R 4.0 32.0 -6.0 0.02 3.0 1024.0 6(8)
Ventral anterior cingulate R 0.0 44.0 -14.0 0.02 4.0 888.0 5(5)

Note. For each cluster, brain region label, hemisphere, MNI coordinates, associated ALE maxima, cluster
size (mm3), and number of studies are provided. L = left hemisphere; R= right hemisphere. x, y, z
coordinates provided in MNI space.

56



Supplementary Figure 2.S4: ALE meta-analysis results for the adult sub-analysis. Brain

areas showing consistent activation during social exclusion in developmental (ages < 18y)

and adult samples (ages 18y+).

Table 2.S4: Distress ALE sub-analysis

ALE analysis on Cyberball studies that found greater self-reported distress levels after exclusion. Brain
region label, hemisphere, MNI coordinates, ALE maxima, and cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume N Studies
Number (mm3) (foci)

Ventral anterior cingulate R 2 26 -8 0.02 1 1544 7(7)
Inferior frontal gyrus L -42 32 -10 0.02 2 1424 5(7)
Inferior frontal gyrus R 38 34 -14 0.02 3 1400 5(6)

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons using
cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space.
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Supplementary Figure 2.S5: MACM map of coactivation of the right posterior insula

cluster (cluster 2) derived from full sample ALE meta-analysis displayed on the brain

surface.

Table 2.S5: MACM cluster 2 results

Cluster 2 MACM results: clusters of functional coactivation associated with right anterior insula cluster
(cluster 2) from the full sample ALE meta-analysis. Brain region label, hemisphere, MNI coordinates, ALE
value, and cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume
Number (mm3)

Ventromedial PFC L -2 46 -12 0.31 1 42088
Posterior insula R 40 -16 16 0.23 2 20024
Parietal operculum L -56 -24 20 0.10 3 18808
Posterior cingulate cortex L -8 -56 18 0.11 4 10888
Dorsal anterior cingulate L 0 8 44 0.09 5 7208
Lateral occipital cortex L -42 -76 32 0.08 6 4808
Amygdala L -20 -8 -20 0.12 7 3456
Amygdala R 22 -6 -20 0.10 8 3216
Thalamus R 14 -14 8 0.11 9 2840
Thalamus L -12 -16 6 0.09 10 2088
Superior frontal gyrus L -22 32 44 0.08 11 1960

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons using
cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space.
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Supplementary Figure 2.S6: MACM map of coactivation of the left inferior frontal gyrus

cluster (cluster 3) derived from full sample ALE meta-analysis displayed on the brain

surface.

Table 2.S6: MACM cluster 3 results

Results of the MACM: clusters of functional coactivation associated with left inferior frontal gyrus cluster
(cluster 3) from the full sample ALE meta-analysis. Brain region label, hemisphere, MNI coordinates, ALE
value, and cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume
Number (mm3)

Inferior frontal gyrus L -36 24 -6 0.47 1 52656
Ventral anterior cingulate cortex L -2 46 -12 0.26 2 48600
Paracingulate gyrus L -4 18 44 0.17 3 18904
Inferior frontal gyrus R 38 24 -8 0.21 4 13368
Posterior insula R 40 -16 16 0.22 5 11608
Posterior cingulate/retrosplenial cortex L -6 -56 18 0.11 6 6008
Lateral occipital cortex L -42 -76 32 0.08 7 3176
Amygdala R 22 -6 -18 0.13 8 2680
Middle frontal gyrus R 52 10 36 0.08 9 2104

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons using
cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space.
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Supplementary Figure 2.S7: MACM map of coactivation of the left posterior cingulate

cortex cluster (cluster 4) derived from full sample ALE meta-analysis displayed on the

brain surface.
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Table 2.S7: MACM cluster 4 results

Results of the MACM: clusters of functional coactivation associated with left posterior cingulate cortex
cluster (cluster 4) from the full sample ALE meta-analysis. Brain region label, hemisphere, MNI
coordinates, ALE value, and cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume
Number (mm3)

Ventral anterior cingulate cortex L -2 48 -12 0.25 1 50464
Inferior frontal gyrus L -36 24 -6 0.46 2 45768
Paracingulate gyrus L -4 14 50 0.17 3 18496
Inferior frontal gyrus R 38 24 -8 0.17 4 12288
Posterior cingulate cortex/retrosplenial cortex L -8 -56 14 0.26 5 10800
Posterior insula R 40 -16 16 0.22 6 10456
Lateral occipital cortex L -42 -76 34 0.10 7 4992
Superior temporal gyrus L -54 -42 6 0.11 8 3208
Amygdala R 22 -6 -20 0.14 9 2912
Precentral gyrus R 50 10 34 0.09 10 2552
Temporal occipital fusiform cortex L -40 -48 -22 0.10 11 2120
Superior lateral occipital cortex L -28 -64 50 0.10 12 1880

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons using
cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space.
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Supplementary Figure 2.S8: MACM map of coactivation of the left occipital pole (cluster

5) derived from full sample ALE meta-analysis displayed on the brain surface.

Table 2.S8: MACM cluster 5 results

Results of the MACM: clusters of functional coactivation associated with the left occipital pole (cluster 5)
from the full sample ALE meta-analysis. Brain region label, hemisphere, MNI coordinates, ALE value, and
cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume
Number (mm3)

Inferior frontal gyrus L -36 24 -6 0.45 1 97192
Occipital pole L -12 -92 0 0.28 2 13632
Inferior frontal gyrus R 38 24 -8 0.23 3 12104
Posterior insula R 40 -16 16 0.21 4 9600
Temporal occipital fusiform cortex L -38 -56 -16 0.12 5 6080
Paracingulate gyrus L -4 24 44 0.15 6 4808
Inferior lateral occipital cortex R 42 -72 -10 0.12 7 4504
Posterior cingulate/retrosplenial cortex L -8 -56 14 0.25 8 4408
Paracingulate gyrus L -2 18 42 0.18 9 2656
Amygdala L 22 -6 -20 0.15 10 2312

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons using
cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space.
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Supplementary Figure 2.S9: MACM map of coactivation of the right superior frontal

gyrus (cluster 6) derived from full sample ALE meta-analysis displayed on the brain sur-

face.
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Table 2.S9: MACM cluster 6 results

Results of the MACM: clusters of functional coactivation associated with the right superior frontal gyrus
(cluster 6) from the full sample ALE meta-analysis. Brain region label, hemisphere, MNI coordinates, ALE
value, and cluster size (mm3).

Brain Regions Hemi x y z ALE max. Cluster Volume
Number (mm3)

Inferior frontal gyrus L -36 24 -6 0.45 1 111880
Inferior frontal gyrus R 38 24 -8 0.23 2 17616
Posterior insula R 40 -16 16 0.21 3 9448
Posterior cingulate/retrosplenial cortex L -8 -56 14 0.25 4 9360
Occipital pole L -12 -92 0 0.27 5 8176
Temporal occipital fusiform gyrus L -38 -56 -16 0.11 6 5000
Inferior lateral occipital cortex R 42 -72 -10 0.11 7 3872
Amygdala L -20 -8 -18 0.16 8 3840
Superior lateral occipital cortex L -42 -74 34 0.10 9 3584
Middle temporal gyrus L -56 -42 6 0.07 10 3152
Lateral occipital cortex L -26 -64 50 0.12 11 3016
Amygdala R 22 -6 -20 0.15 12 2320
Occipital pole R 20 -94 0 0.10 13 2288

Note. L, Left; R, Right. MACM-cluster thresholded at p<0.001 corrected for multiple comparisons using
cluster-level FWE correction at p<0.05. x, y, z coordinates provided in MNI space.

Table 2.S10: Cognitive decoding of full sample ALE meta-analysis using Neuro-

synth.Cognitive terms with the strongest associations with the pattern of activation foci

for the full sample ALE results (top 20 terms with non-functional terms removed; see

Methods for details on term selection).

Cognitive Term r
social 0.18
Autobiographical 0.16
mental states 0.15
theory mind 0.14
mind 0.14
referential 0.14
self referential 0.14
value 0.13
reward 0.12
mentalizing 0.12
pain 0.12
autobiographical memory 0.12
painful 0.11
remembering 0.11
affective 0.10
memories 0.10
valence 0.09
comprehension 0.09
emotional 0.09
episodic 0.09
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Chapter 3

Loneliness and meaning in life are

reflected in the intrinsic network

architecture of the brain

Mwilambwe-Tshilobo, L., Ge, T., Chong, M., Ferguson, M. A., Misic, B., Burrow, A. L.,

Leahy, R. M., & Spreng, R. N. (2019). Loneliness and meaning in life are reflected in the

intrinsic network architecture of the brain. Social cognitive and affective neuroscience, 14(4),

423–433. https://doi.org/10.1093/scan/nsz021

3.1 Preface

The previous chapter used quantitative meta-analytic methods to examine the neural cor-

relates of state loneliness. It showed that the neural response to the experience of social

exclusion engaged distributed brain regions whose coactivation pattern overlapped with

the topography of the default network –– a neurocognitive network associated with cog-

nitive processes that require internally-directed mentation. The study described in the

current chapter examines whether trait loneliness is related to differences in the functional

organization of brain networks that support internally and externally directed neurocog-
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nitive processes. This work was published two years after the first resting-state fMRI

study on loneliness. Layden et al. (2017) showed that loneliness was associated with

changes in connectivity strength within and between two externally-directed brain net-

works that support both the maintenance and flexible control of attention. Their findings

are consistent with the theoretical account of trait loneliness. They suggest that a putative

mechanism characterized by diminished top-down control of attention may contribute to

neurocognitive changes that orient attentional focus externally towards the social world.

However, as described in Chapter 1, the functional organization of the brain differs

across individuals and differences in resting-state functional connectivity are meaningful

predictors of behavior. To capture these individual differences in the intrinsic functional

connectivity of the brain, we implemented a whole-brain individual connectome-based

approach. Instead of focusing on select networks as in Layden et al. (2017) using a group-

average parcellation approach, which has been shown to obscure individual-specific net-

work organization related to behavior (Chong et al., 2017; Kong et al., 2015), we used

an individualized parcellation method. This study aimed to establish a methodological

proof of concept for taking a connectome-based approach to investigate individual dif-

ferences in whole-brain network functional connectivity underlying loneliness. I applied

this methodological approach to identify differences in the intrinsic functional organiz-

ation of the brain that reflect individual differences in sociality in young adults. Here,

we focused on the relationship between two well-established interdependent behavioral

factors: loneliness and meaning in life.

3.2 Abstract

Social relationships imbue life with meaning, whereas loneliness diminishes one’s sense

of meaning in life. Yet the extent of interdependence between these psychological con-

structs remains poorly understood. We took a multivariate network approach to exam-

ine resting-state fMRI functional connectivity’s association with loneliness and meaning
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in a large cohort of adults (N = 942). Loneliness and meaning in life were negatively

correlated with one another. In their relationship with individually parcelled whole-

brain measures of functional connectivity, a significant and reliable pattern was observed.

Greater loneliness was associated with dense, and less modular, connections between de-

fault, frontoparietal, attention and perceptual networks. A greater sense of life mean-

ing was associated with increased, and more modular, connectivity between default and

limbic networks. Low loneliness was associated with more modular brain connectivity,

and lower life meaning was associated with higher between-network connectivity. These

findings advance our understanding of loneliness and life meaning as distinct, yet in-

terdependent, features of sociality. The results highlight a potential role of the default

network as a central hub, providing a putative neural mechanism for shifting between

feelings of isolation and purpose.

3.3 Introduction

Loneliness and life meaning are psychologically-bound constructs closely tied to sociality

(Lambert et al., 2013; Stillman et al., 2009; Twenge et al., 2003). As a social species, hu-

mans typically seek out social bonds and search for meaning and purpose throughout the

life-course. Indeed, both loneliness and a reduced sense of meaning are closely associated

with declines in functional capacity (Perissinotto et al., 2012), dementia onset (Boyle et al.,

2012; Holwerda et al., 2014), and mortality in later life (Boyle et al., 2009; Hill & Turiano,

2014; Holt-Lunstad et al., 2015). Despite these psychological and functional relationships,

loneliness and meaning in life (MIL) are considered to be distinct constructs and their de-

gree of interdependence remains poorly understood. Loneliness reduces the perception

of a meaningful existence (Stillman et al., 2009)—the sense that life has purpose, signific-

ance, and coherence (Martela & Steger, 2016). This association appears to be reciprocal

as MIL is strongly associated with the presence of close relationships (Ebersole, 1998;

Klinger, 1977), and previous reports show that the subjective perception of a meaningful
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life promotes social engagement and helps sustain close social bonds (steptoe2013a; Lam-

bert et al., 2013). Loneliness arises due to deficiencies in the quality or quantity of social

ties and the absence of social connectedness, in turn, diminishes MIL, suggesting that this

relationship may also be reinforcing (Baumeister & Leary, 1995). But are these constructs

opposite sides of the same coin, or are they emergent from distinct mechanisms?

Loneliness is characterized by implicit hyper-vigilance for social threats (S. Cacioppo

et al., 2016). While this can facilitate the identification of viable social partners and prevent

rejection, prolonged loneliness shifts exogenous attentional processes towards perceived

social threats (Bangee et al., 2014; S. Cacioppo et al., 2015). Altered attention to external

stimuli may affect how individuals internalize perceived information and make endogen-

ous judgments about MIL (Hicks et al., 2010). Externally-and internally-guided cognitive

processes are mediated by different neural networks and their interactions (Corbetta &

Shulman, 2002; Spreng et al., 2010). This raises the possibility that loneliness and MIL

are dissociable at the level of the brain, and subserved by distinct brain networks. In-

vestigating how individual differences in loneliness and MIL are reflected within these

neurocognitive systems may advance our understanding of their interdependence, and

how they interact to guide adaptive and maladaptive behaviors.

A growing body of neuroimaging studies have provided important insights into the

neural correlates of loneliness, reflecting changes in brain regions associated with pro-

cessing of social information. In a task-based functional magnetic resonance imaging

(fMRI) study, lonely individuals showed increased bilateral activation in the visual cortex

in response to unpleasant social images compared to unpleasant non-social images. Re-

gions implicated in reward processing (e.g. ventral striatum, amygdala) and perspective-

taking (e.g. temporoparietal junction) showed lower activation when positive social im-

ages were presented, suggesting that lonely individuals may derive less pleasure from

rewarding social stimuli (J. Cacioppo & Hawkley, 2009). Furthermore, other studies have

linked loneliness to changes in brain morphology within the default network (DN), a

neural system involved in social and self-related processes (Andrews-Hanna et al., 2014).
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Loneliness is negatively correlated with grey matter volume (Kanai et al., 2012) and white

matter density (Nakagawa et al., 2015) in the left posterior superior temporal sulcus

(pSTS). These findings indicate that loneliness may compromise the structural and func-

tional integrity of multiple brain regions.

Resting-state functional connectivity (RSFC) has been an invaluable analytic approach

for investigating the functional interactions between anatomically separate brain regions

and their relationship with behavior (Stevens & Spreng, 2014). Unlike task-based fMRI

paradigms, resting-state functional magnetic resonance imaging (rs–fMRI) is task-free

and can be used to simultaneously identify multiple functional networks correlated with

behavior. Furthermore, previous analyses of rs-fMRI data from healthy adult popula-

tions have consistently shown strong congruence between brain networks derived from

resting-state and those from task-based studies (Cole et al., 2014; Stevens & Spreng, 2014;

Tavor et al., 2016).

Prior studies have used rs-fMRI to characterize intrinsic functional brain networks

related to loneliness and MIL. Greater feelings of loneliness have been associated with

less integrated connectivity between attention networks (Tian et al., 2017), as well as in-

creased RSFC within the cingulo-opercular network, which is implicated in cognitive con-

trol (Layden et al., 2017). These intrinsic changes are consistent with behavioral reports of

associations between hyper-vigilance and loneliness (S. Cacioppo et al., 2016). An invest-

igation of the neural basis of meaning (Waytz et al., 2015) reported increased connectivity

among regions of the medial temporal lobe subsystem of the DN, implicated in auto-

biographical remembering and mental simulation (Andrews-Hanna et al., 2014). While

loneliness and MIL are correlated at the level of behavior, the analytical approaches used

to characterize the neural representation of each construct have focused on functional

connectivity of select brain regions or networks of interest, thus precluding inferences on

a whole-brain level of integrated networks that can provide insight regarding the rela-

tionship between loneliness and MIL. Here, we investigate individual differences in the

neural representation of loneliness and MIL within a single analytical framework.
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The goal of the present study was to assess how whole-brain RSFC is associated with

individual differences in loneliness and MIL. We characterized the intrinsic architecture

of brain connectivity within a large population of healthy young adults using RSFC and

individually parcellated brain regions (Chong et al., 2017), respecting that the localized

topology varies across individuals in the cortex (e.g. Stevens et al., 2015) in order to

identify the pattern of functional connectivity within and between large-scale networks.

Using multivariate partial least squares (PLS), we characterized how patterns of RSFC

relate to individual differences in perceived loneliness and MIL. This approach permits

both replication of previous RSFC patterns, and exploratory examination of behavioral

associations outside previously examined networks.

By examining the intrinsic functional connectivity underlying individual differences

in loneliness and MIL, we test two hypotheses: First, loneliness would be associated with

greater connectivity between regions that support attention, including the FPN, dorsal at-

tention (DAN), and the ventral attention networks (VAN; (Corbetta & Shulman, 2002)). In

contrast, MIL would be associated with greater connectivity within the DN. Our second

hypothesis was that these patterns of RSFC would be inversely related (i.e. individuals

with high levels of loneliness will share the same pattern of brain connectivity as those

with a low sense of MIL and vice-versa). If confirmed, this would provide support for

theoretical models of sociality suggesting that loneliness and MIL are distinct yet interde-

pendent constructs (Lambert et al., 2013).

3.4 Methods

3.4.1 Participants

Participant data were collected as part of the Human Connectome Project (HCP) 1200

subject release dataset (http://www.humanconnectome.org). Participants were excluded

if they did not meet the following criteria: (i) completed all rs-fMRI scans (REST1 and

REST2); (ii) completed all relevant neuropsychological testing for emotional well-being;
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(iii) participants with a score of 26 or below on the Mini Mental Status Examination

(MMSE)—which could indicate marked cognitive impairments. Investigations of indi-

vidual differences require large samples for adequately powered analyses. Assuming

a typical correlation of approximately .25 between brain and behavior (e.g. (Hemphill,

2003), a sample of more than 120 is recommended in order to have 95% confidence that

a correlation is greater than zero. A total of 942 healthy adults were included in the cur-

rent study (53% female; mean age: 28.04; age range: 22–37). Table 1 shows the sample

demographics.
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Table 3.1: Sample Demographics

Gender n %
Female 506 53.7
Male 436 46.3
Variable Mean s.d. Range
Age 28.04 3.45 23–37
Loneliness 50.97 8.51 37.6–82.9
Meaning & Purpose 51.91 8.73 29.4–71.6
MMSE 29.05 0.99 23–30
Neuroticism 16.42 7.34 0–43
Extroversion 30.73 6.04 10–47
Agreeableness 32.12 4.95 13–45
Conscientiousness 34.56 5.91 11–48
Openness 28.33 6.26 10–47
Positive Affect 50.22 7.83 21.9–71.6

3.4.2 Behavioral measures

Behavioral assessments of social relationships and psychological well-being in the HCP

sample included were obtained using the unadjusted scaled scores (t-scores) from the

NIH Toolbox Emotion measures (http://www.nihtoolbox.org). All behavioral measures

were treated as a continuous variable, and any references to high or low scores made are

based on our specific sampling distribution.

Assessment of loneliness

Loneliness was assessed using the Loneliness survey from the NIH Toolbox on Emotion.

This 5-item questionnaire is composed of items taken from a psychometrically validated

assessment of loneliness (Salsman et al., 2013). Participants were presented with state-

ments such as ‘I feel alone and apart from others’ (1 = Never; 2 = Rarely; 3 = Sometimes;

4 = Usually; 5 = Always).
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Assessment of meaning in life

MIL was assess using the Meaning and Purpose survey from the NIH Toolbox on Emo-

tion. This 18-item questionnaire is composed of items taken from psychometrically valid-

ated assessments of meaning and purpose (Salsman et al., 2013), and examines the extent

to which people feel like their lives matter and make sense. An example item is, ‘I have a

good sense of what makes my life meaningful’ (1 = Strongly disagree; 2 = Disagree; 3 =

Neither agree nor disagree; 4 = Agree; 5 = Strongly agree).

Assessment of personality and positive affect

Neuroticism and extroversion have been previously shown to mediate the relationship

between loneliness and dorsolateral prefrontal cortex (Kong et al., 2015), whereas person-

ality and positive affect influence people’s perception of MIL (King et al., 2006). Therefore,

to assure the specificity of our findings, we controlled for these select covariates during

our analysis. Personality measures of neuroticism, extroversion, openness, agreeable-

ness, conscientiousness, were assessed using the 60-item version of the NEO-Five Factor

Inventory. The NIH Toolbox Positive Affect Survey was used to assess participants’ levels

of positive affect during the past seven days. Participants were presented with statements

such as ‘I feel cheerful’ (1 = Not at all; 2 = A little bit; 3 = Somewhat; 4 = Quite a bit; 5

= Very much).

3.4.3 Resting-state functional connectivity

The rs-fMRI data from the HCP was used for this study. The rs-fMRI runs were acquired

for a total of 1 hour over the course of two sessions. For more details of the scan paramet-

ers, see Smith et al., (2013). Scans were processed using the HCP minimal preprocessing

pipeline, which includes normalization to the MNI-152 template (Glasser et al., 2016). FIX

ICA cleaned data was used for analysis (Glasser et al., 2016).
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To identify functional networks, we parcellated the cortex into 400 functionally-defined

regions for each individual separately. We refined the initial group parcellation developed

by Schaefer et al., (2018) so that for each subject the parcel boundaries are optimized with

respect to that subject’s rs-fMRI (Chong et al., 2017). Initialization with a common par-

cellation results in automatic correspondence between parcels across subjects. By using a

group sparsity constraint to model connectivity, we leveraged group similarities in con-

nectivity between parcels while optimizing their boundaries for each individual. We ap-

plied this approach with initialization across the entire cohort in groups of 20 unrelated

participants. Prior work on validating this approach showed improved homogeneity of

resting activity within the refined parcels (Chong et al., 2017). Additionally, comparisons

with task-based localizers showed a consistent reduction of variance of statistical para-

metric maps within the refined parcels relative to the group-based initialization indicating

improved delineation of regions of functional specialization. This method enables a more

accurate estimation of individual functional areas while maintaining consistency across

individuals with a standardized topological atlas (Chong et al., 2017)). Each parcel was

matched to a corresponding network in the 7 network parcellation by Yeo et al., (2011),

which consisted of the visual, somatomotor, dorsal attention, ventral attention, limbic,

frontoparietal, and default networks. For each participant, BOLD time-series for the two

15-min rs-fMRI scans within each session were temporally standardized (subtracted the

mean and divided by standard deviation) and concatenated. The Pearson correlation

coefficient between each pair of vertices was computed. The correlation coefficient mat-

rix was then spatially standardized and averaged within and across parcels, resulting in

a 400 x 400 functional connectivity matrix (Ge et al., 2017). The two connectivity matrices

computed from the two sessions for each participant were averaged.

3.4.4 Behavioral data analysis

Three sets of analysis were performed to examine the behavioral relationship between

loneliness and MIL in Python (https://www.python.org/). In our first analysis, we used
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the t-scores for the self-report behavioral measures and calculated the Pearson correlation

coefficient between each measures. This also allowed us to determine whether loneliness

and MIL were inversely related to one another using the NIH-emotion scales. We also

examined this association controlling for covariates (age, gender, MMSE, positive affect,

and personality measures) using partial correlation. Finally, t-tests were conducted to

identify possible gender differences in the distribution of scores between loneliness and

MIL, as well as in covariates of interest. Statistical significance was set at P < 0.05.

3.4.5 Partial Least Squares analysis

PLS was performed to quantify RSFC related to individual differences in loneliness and

MIL. PLS is a multivariate statistical technique which uses a data-driven approach to

directly measure brain-behavior relationships (McIntosh & Lobaugh, 2004; McIntosh &

Mišić, 2013). We chose this method of analysis because it allowed for inferences about in-

dividual differences in the intrinsic connectivity of large–scale neurocognitive networks.

PLS identifies linear combinations of the original variables (functional connections and

behavioral measures) that maximally covary with each other across participants. The res-

ulting patterns (termed latent variables or LVs) can be interpreted as optimally-paired

functional networks and behavioral phenotypes, respectively.

In the present study, we used PLS to examine the relationship between RSFC, loneli-

ness, and MIL. Two matrices were computed for this analysis. The X matrix was or-

ganized such that the parcellated functional connectivity matrix for each participant was

concatenated, resulting in a 942 x 400 x 400 matrix. The Y matrix consisted of the indi-

vidual scores for loneliness and MIL for all participants, creating a 942 x 2 matrix. The X

and Y matrix were centered and normalized across participants. Singular value decom-

position of the cross-correlation matrix X’Y yields several mutually-orthogonal LVs, each

composed of three elements: (i) a left singular vector, containing weights for each of the

behavioral measures; (ii) a right singular vector, containing weights for each of the func-

tional connections; and (iii) a scalar singular value. Squared singular values reflect effect
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size: they are proportional to the covariance between connectivity and behavior that is

accounted for by each latent variable. The number of latent variables is equal to the rank

of X’Y; in the present case, this is the number of behavioral measures (ii).

The significance and reliability of each LV were evaluated in permutation testing and

bootstrap resampling, respectively. We first assessed the significance of the pattern of

functional connectivity captured by a given LV using permutation tests to determine how

different the results are from chance. To do this, 500 permutation tests were computed in

which the order of the rows of one of the data matrices (X) was randomly rearranged.

Columns of the permuted matrix are then correlated with the behavioral matrix Y and

the correlation matrix is subjected to singular value decomposition as described above.

This process generates a distribution of singular values under the null hypothesis that

there is no relationship between functional connectivity and behavior. The significance of

the LV is estimated by computing the proportion of times the permuted singular values

(covariance explained) is higher than the observed singular values (significance threshol-

ded at P < .05).

To assess the reliability of weights for individual connections and behavioral meas-

ures, we used bootstrap resampling. The rows of both data matrices (X and Y) were

sampled with replacement and a resampled correlation matrix (X’Y) was re-computed.

The matrix was subjected to singular value decomposition and the process was repeated

500 times to estimate a sampling distribution for each singular vector (i.e. connection

and behavior) weight. To identify connections and behaviors that (a) make a large con-

tribution to the overall multivariate pattern and (b) are relatively insensitive as to who is

in the sample, we calculated the ratio between each weight and its bootstrap-estimated

standard error. The resulting ‘bootstrap ratios’ (BSRs) are large for connections/behaviors

that have large weights and narrow confidence intervals. If the sampling distribution is

approximately unit normal, BSRs are equivalent to z-scores. Brain network connections

were considered reliable if the absolute value of the BSR > 2 (approximately P < .05) and

were visualized using BrainNet Viewer (Xia et al., 2013). To account for potential con-
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founds, multiple regression analysis was performed on the brain connectivity scores with

behavioral scores controlling for age, gender, personality measures, and positive affect.

We also examined the extent to which network-level functional connectivity contrib-

utes to individual differences in behavior. To quantify the network-level contributions to

the connectivity pattern identified by the PLS analysis, two separate weighted adjacency

matrices were constructed reflecting the positive and negative PLS weights, respectively.

The nodes of the graph represent the 400 brain regions defined by the individual parcel-

lation scheme, and the edges represent the BSR weight for each pairwise connection. The

matrices were thresholded such that BSRs with an absolute value less than 2 were set to

0. Positive BSRs greater than 2 were set to 1, and negative BSRs less than −2 were set to

−1. The network-level functional connectivity contributions were quantified by averaging

the weights of all connections in a given network, thus generating a 7 x 7 matrix. Next,

permutation testing was applied on the full thresholded matrix by randomly re-ordering

the network labels (preserving the number of nodes originally assigned to each network)

and re-calculating the network means 1000 times to build a sampling distribution under

the null that network assignment does not contribute to the connectivity pattern. The

significance of the pairwise connections of the original 7 x 7 matrix was determined by

estimating the proportion of times the values of the sampling distribution were greater

than or equal to the original value (Shafiei et al., 2019).

3.4.6 Modularity analysis

To further characterize the pattern of connectivity identified by the PLS analysis, we quan-

tified modularity, a global network measure that estimates how well a network can be di-

vided into modules (or communities) with stronger within-module than between-module

connections (Girvan & Newman, 2002). Modular organization within a network is as a

metric of efficient information processing and relates to functional specialization (Bull-

more and Sporns, 2009). The modularity measure Q(p) for a given partition p of a graph

G can be defined as the proportion of edges in G, that fall within the same module, sub-

77



tracted from the proportion of edges that would be expected by chance. The objective of

this modular algorithm is to identify the partition p that maximizes Q. A modularity value

of Q = 0 is expected if the edges of a graph were formed randomly, while a graph with

a Q > 0.3 is generally an indicator of significant modular structure (Newman & Girvan,

2004). There are multiple methods for identifying modules, however, and here we used

an a priori mapping of nodes to the network modules defined by Yeo et al., 2011. This al-

lowed us to quantify the strength of segregation of functional networks. We sub-divided

the thresholded PLS connectivity matrix into two separate graphs: one containing just

positive PLS weights and the other the negative PLS weights. Graph theoretical ana-

lyses were performed using functions implemented using the Brain Connectivity Toolbox

(Robinson et al., 2010). Network modularity estimates were computed with a Louvain-

like fast-unfolding algorithm (Blondel˙2008), using the average modularity across 1000

runs of the algorithm.

3.5 Results

3.5.1 Descriptive data analysis

Sample characteristics for age, gender, loneliness scores, meaning in life scores, MMSE

scores, personality scores, and positive affect are displayed in Table 3.1. Pearson correl-

ation between these behavioral measures revealed a negative correlation between loneli-

ness and meaning in life (r(940) = −.45, P < .001, 95% CI = [0.53, 0.36]), which supports

previous findings (Stillman et al., 2009). Loneliness was also negatively correlated with

extroversion (r(940) = −.42, P < .001, 95% CI = [−0.50, −0.32]), agreeableness (r(940) =

−.27, P < .001, 95% CI = [−0.36, −0.17]), and conscientiousness (r(940) = −.32, P < .001,

95% CI = [−0.41, −0.22]), and positive affect (r(940) = −.47, P < .001, 95% CI = [−0.55,

−0.39]); and positively correlated with neuroticism (r(940) = .57, P < .001, 95% CI = [0.49,

0.64]) and openness (r(940) = .08, P = .01, 95% CI = [−.02, 0.18]). MIL was negatively

correlated with neuroticism (r(940) = −.43, P < .001,95% CI = [−0.51, −0.34]) and gender
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(r(940) = −.09, P = .01, 95% CI = [−0.19, 0.01]), and positively correlated with extrover-

sion (r(940) = .40, P < .001, 95% CI = [0.31, 0.49]), agreeableness (r(940) = .25, P < .001,

95% CI = [0.15, 0.34]), conscientiousness (r(940) = .35, P < .001, 95% CI = [0.26, 0.44]),

and positive affect (r(940) = .52, P < .001, 95% CI = [0.43, 0.59]). No other significant

correlations were noted between covariates.

Analyses were also conducted to determine any gender differences in behavioral meas-

ures. The means and standard deviations for loneliness, MIL, personality traits, and pos-

itive affect by gender are displayed in Supplementary Table 3.S1. While there was no

significant gender differences for loneliness in our sample, t(940) = 0.34, P = .73, d =

0.02, female participants reported higher meaning in life scores (M = 52.62, s.d. = 8.69)

than male participants (M = 51.09, s.d.= 8.71), t(940) = 2.70, P < .01, d = 0.18).

3.5.2 Intrinsic functional connectivity results

We first examined the multivariate relationship between RSFC, loneliness, and MIL us-

ing behavioral PLS. The analysis identified one significant pattern of connectivity that

reliably expressed individual differences in loneliness and MIL (loneliness r = −.10; MIL

r = .13; permuted P = .01; 17.6% covariance explained). Loneliness was found to neg-

atively correlate with the pattern of brain connectivity of LV1, whereas MIL correlated

positively with this pattern of brain connectivity (Figure 3.1C). To assure the specificity

of these results, a partial correlation analysis was used to test whether the relationship

between behavioral measures and brain connectivity scores remained significant after

controlling for age, gender, personality, and positive affect. The results remained signific-

ant for loneliness (pr(932) = −.08; P = .01, 95% CI [−0.14, −0.01]) and MIL (pr(932) = .09,

P = .003, 95% CI [0.03, 0.16]).
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Figure 3.1: Analysis revealed one significant latent variable (LV). The functional con-

nections that most reliably express the brain/behavior correlations thresholded at 95%

bootstrap ratio. The pattern of connectivity for LV1 depicted in (A) blue represent the

connectivity weights for LV1 that covary negatively with loneliness, while those in (B) red

covary positively with meaning in life (MIL). The top 2% connections are shown for each.

(C) Correlations between participants’ brain connectivity scores and behavioral measures

for LV1. Error bars indicate the 95% confidence intervals derived from the bootstrap es-

timate. Scatter plots show the relationship captured by the PLS analysis for individual

brain connectivity scores corrected for age, gender, positive affect, and personality meas-

ures as a function of loneliness (D) and MIL (E).

Figure 3.1A-B shows reliable ROIs that covary with each other. The edges connect-

ing the nodes for the negative and positive dimension of LV 1 represent the top 2% BSR

weights. Overall, the connectivity pattern for the negative expression of LV 1 showed

densely interconnected nodes when compared to that of the positive expression. Parti-

cipants with high levels of loneliness showed extensive between-network connectivity
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across the brain. Specifically, nodes located within DN, SOM, and FPN were highly inter-

connected. In addition, functional connectivity was observed between bilateral regions

in the visual network with the frontal and parietal operculum. In contrast, high levels

of MIL correlated with increased functional connectivity between regions involving the

DN and limbic network. This included bilateral connectivity between posterior parietal

regions, as well as with nodes located in the anterior regions of the FPN.

The PLS analysis identified reliable connectivity patterns that explain individual vari-

ability in loneliness and MIL. However, from the results of this analysis alone, it is dif-

ficult to gauge whether certain networks contribute more to the overall network con-

nectivity pattern than others. To address this question, we used permutation testing on

the functional covariance matrix representing the pairwise BSRs for each of the 400 brain

regions (Figure 3.2A) to examine the relative within and between network contributions

of the seven networks defined by the parcellation scheme. As shown in Figure 3.2B, the

strongest contributions to the RSFC pattern associated with the negative expression of

LV1 were from the DN and FPN. Specifically, between network connections of both the

DN and FPN with VIS, SOM, and VAN were found to contribute significantly to the over-

all connectivity pattern (DN: VIS = P < .001; SOM = P < .001, and VAN = P < .05; FPN:

VIS = P <.001; SOM = P <.001, and VAN = P <.001). For MIL, we found that both

between and within network connectivity contributed to the RSFC pattern (Figure 3.2C).

The pairwise connections that contributed the strongest were between the DN with the

LIM (P < .001) and FPN (P < 0.05); the FPN and the VIS (P < .05) and LIM (P = .001); and

between the VIS and the DAN (P < .05) and VAN (P < .01). As for the within network

connectivity, the DAN (P < .05), VAN (P < .05), LIM (P < .001), and DN (P < .01) were

found to contribute significantly to the RSFC pattern related to MIL.

3.5.3 Gender control analysis

To account for possible effects of gender, an ANCOVA was conducted to examine the

effects of gender on the PLS brain scores while controlling for age, personality, and pos-
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Figure 3.2: (A) The correlation matrix of reliable pairwise connections associated with

loneliness and meaning in life (MIL; thresholded bootstrap ratio ± 2.0 to 3.5). Significant

contributions of resting-state network pairs to the connectivity pattern for the (B) negat-

ive expression of the first latent variable (LV1) and (C) positive expression of LV1. Sagittal

and axial views of the resting-state functional connectivity pattern associated (D) loneli-

ness and (E) MIL. The colors indicate the nodes that belong to the same module and node

size is proportional to the number of edges connecting it to the network. VIS = visual;

SOM = somatomotor; DAN = dorsal attention; VAN=ventral attention, LIM = limbic,

FPN = frontoparietal network; DN = default network.

itive affect. We found that there was a significant effect of gender, F(1,933) = 30.48, P <

.001, partial eta squared = .032. We then reanalyzed the data to assess the relationship

between RSFC, loneliness, MIL, and gender. In the group analysis using PLS, the brain-

behavior correlation for both groups co-varied together. Critically, no gender interaction

was observed (see Supplementary Figure 3.S1). This suggests that the magnitude of the

association is weaker in women. However, the associations with functional connectiv-

ity are still significant when controlling for gender, in addition to neuroticism, extrover-

sion, agreeableness, conscientiousness, openness, positive affect and age; for loneliness

[pr(932) = −.08, P < .05] and MIL [pr(932) = .10, P < .005].
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3.5.4 Modularity

Having established that cohesion within and between select networks appears to play an

important role in the connectivity profiles underlying differences in behavior, we sought

to investigate the global network organization of LV1 by assessing the modular struc-

ture of the connectivity pattern. The modularity for each pattern provides a metric for

quantifying the segregation of functional networks, with higher Q indicating a stronger

segregation of functional networks. Using a pre-defined partition based on the modules

previously reported in (Yeo et al., 2011), we calculated the modularity quality index Q of

the thresholded weighted graphs representing the negative and positive BSR weights.

Graphical representations of the modular structure associated with each behavior are

shown in Figure 3.2D-E (see Figure 3.3B-C for projections on the cortical surface). The

features of community structure for loneliness and MIL differed in the number of com-

munities detected and in the distinctiveness of these communities. While the algorithm

used to examine the community structure revealed 7 modules for MIL that largely corres-

ponded with the pre-defined partition, we identified only 5 modules for the connectivity

pattern for loneliness. Specifically, nodes previously assigned to the FPN and DN appear

to be integrated with parts within the SOM and VIS networks (Figure 3.3B). Next, we

measured the mean Q to quantify the segregation of functional networks and found that

loneliness was less segregated (mean Q = 0.15) relative to MIL (mean Q = 0.58). Taken

together, these findings reflect that loneliness and MIL are characterized by differences in

modular organization of brain networks.

3.6 Discussion

Loneliness and meaning in life are important for guiding everyday behavior and sus-

taining mental health and well-being over the life course and into advanced age. Yet

their neural signatures remain poorly understood. Here we used a multivariate analytical

model to examine patterns of intrinsic functional connectivity associated with individual
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Figure 3.3: (a) the modular organization for RSFC defined by 7 network parcellation of

Yeo et al., (2011). Modular organization of the connectivity pattern associated with (b)

high-loneliness/low-meaning in life and (c) high-meaning in life/low-loneliness. Color-

coding brain regions according the module assignment in (a).

variability in loneliness and MIL in a large sample of healthy adults. There were three

primary findings. First, we identified reliable patterns dissociating whole-brain RSFC re-

lated to individual differences in loneliness and MIL. Second, we observed a core role

for default network connectivity in differentiating loneliness and meaning in life. While

default and frontoparietal interactions, among others, were associated with higher levels
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of loneliness, this pattern differed for MIL where connectivity between default and limbic

brain regions was associated with a greater sense of meaning. Finally, greater feelings of

loneliness were associated with lower modularity, or increased integration, between the

default and frontoparietal networks and more externally-oriented networks including so-

matosensory and visual brain regions. In contrast, a stronger sense of life meaning was

associated with greater modularity among the limbic and default networks.

Current theoretical models of sociality suggest that loneliness and MIL are discrete

yet interdependent, and potentially reinforcing (Lambert et al., 2013; Stillman et al., 2009;

Twenge et al., 2003). However, only a few studies have investigated the relationship

between the loss of social functioning (i.e. loneliness) and MIL, and these have primarily

employed behavioral methods (Lambert et al., 2013; Stillman & Lambert, 2013). More

recently, investigations into the intrinsic functional architecture of the brain at rest (i.e. in

the absence of explicit task demands) have demonstrated that these durable features of

brain organization can enhance our understanding of enduring features of mental func-

tion (Smith et al., 2015; Stevens & Spreng, 2014). Here we leveraged this idea to explore

patterns of functional connectivity associated with individual differences in loneliness

and MIL.

We predicted that the DN, through its role in mediating internally directed cognition,

would be associated with MIL. A greater sense of life meaning has previously been as-

sociated with increased connectivity within the medial temporal lobe subsystem of the

DN (Waytz et al., 2015). Our data complements this finding by showing increased con-

nectivity within nodes of the DN associated with higher MIL. Additionally, we observed

a robust, albeit unpredicted, pattern of connectivity within and between networks typ-

ically implicated in internally-directed cognitive processes associated with higher MIL,

including the limbic and default networks, as well cognitive control regions of the FPN.

The limbic network is involved in emotional processing, which involves monitoring, eval-

uating, and adjusting emotional reaction to align with current goals. Thus the ability to

internally reflect upon one’s affective state, may be important for a sense of meaning, par-
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ticularly when experiencing negative emotions (Kross et al., 2011). Consistent with this

idea, individuals with a clear sense of purpose in life report lower levels of negative affect

and less emotional reactivity to stressors in daily life (Hill et al., 2018).

The evolutionary theory of loneliness posits that feeling lonely is an aversive biolo-

gical signal that motivates the individual to repair or seek new social relationships, and

leads to neural changes that impact attention and processing of social information (J. Ca-

cioppo & Cacioppo, 2018). While our findings are in accordance with previous stud-

ies linking loneliness with altered RSFC in networks related to attention and executive

control (Layden et al., 2017), the results point to broader changes in brain connectivity

across multiple networks. As with MIL, the most robust associations were observed for

between network interactions, and specifically between the DN and FPN as well as net-

works implicated in more externally-directed cognition including attentional (e.g. VAN)

or perceptual (e.g. SOM and visual networks) processing. While the breadth of these

associations was not predicted, the VAN is associated with bottom-up or externally mon-

itoring for behaviorally salient features of the environment (Corbetta & Shulman, 2002),

presumably detected through connections with these perceptual systems. While we are

unable to directly confirm this with the current data, this is consistent with behavioral

accounts of hyper-vigilance for external social threat associated with loneliness. Further,

the DN has been implicated in low mood and ruminative thoughts (DuPre & Spreng,

2018), which may be elevated by a sense of loneliness. However, several methodological

considerations may account for differences between Layden et al. (2017) and the cur-

rent findings. While a whole-brain analytic approach was used in both, we examined

connectivity strength using individually-parcellated neurocognitive networks—thereby

accounting for inter-subject functional connectivity variability—rather than focusing on

standardized network parcellation schemes. Further, we used multivariate, data-driven

analytical methods and a single model approach, including MIL whereas the earlier study

focused on attention networks to test their hypotheses. Further, PLS methods allow for

identification of both within and between network connectivity strengths in a single ana-
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lytical model (McIntosh & Lobaugh, 2004; McIntosh & Mišić, 2013). Here, the between

network associations were among the most robust, and most discriminating, patterns ob-

served for loneliness and life meaning.

Our second hypothesis was based in part on recent findings that individual differences

in both positive and negative behavioral traits have been associated with a unique con-

figuration of intrinsic functional connectivity (Smith et al., 2015). Specifically, increased

connectivity within regions encompassing the DN was linked to positive behavioral traits

such as life satisfaction, and inversely related to negative behavioral traits such as per-

ceived stress (Smith et al., 2015). Similarly, by including both loneliness and MIL in a

single model, here we were able to identify a single pattern of functional connectivity

implicating the DN that was associated with these positive and negative constructs. Con-

nectivity within the DN, and its connections to the limbic network, were associated with a

higher sense of life meaning and lower feelings of loneliness. In contrast, DN connectivity

to externally-oriented attentional systems and cognitive control networks was associated

with a higher sense of loneliness, and lower life meaning.

We further examined the features of whole-brain RSFC organization related to loneli-

ness and MIL by interrogating the modular intrinsic network architecture. Increased

modularity has been associated with more efficient processing operations and is gen-

erally considered to be a marker of brain health (Bullmore & Sporns, 2009; Wig, 2017).

The intrinsic network organization of brain networks associated with loneliness was less

modular as the DN and FPN were less differentiated from externally-directed attention

and perceptual networks. As suggested above, this pattern of network dedifferentiation

may reflect increased vigilance for social threat. Consistent with this idea, less modular

brain network architecture has been associated with negative affect including depression,

as well as normal and pathological aging (Andrews-Hanna et al., 2014).

To our knowledge, this is the first study to investigate whole-brain patterns of RSFC

associated with loneliness and MIL. Both MIL and loneliness are predictors of successful

aging and an important future direction would be to examine how these patterns of in-
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trinsic brain networks change in normal and pathological aging. Future examinations will

also be necessary to explore how the connectivity patterns identified in the present study

are dynamically shaped in response to task demands that require judgments of belonging

and/or existential meaning. Further, MIL is distinct from meaning-seeking and meaning

maintenance, and these differences will need to be explored with respect to loneliness and

patterns of RSFC. This question is particularly relevant in light of past work demonstrat-

ing a distinction between the presence of meaning and the search for meaning (Heine et

al., 2006; Steger, 2012), and may have important implications for the interpretation of our

results for loneliness given that the lack of belonging could both motivate or discourage

an individual’s search for meaning.

By investigating associations between brain function, loneliness and MIL within a

common analytical framework, we were able to identify a pattern of intrinsic functional

connectivity that differentiated brain networks associated with higher MIL and lower

loneliness from those associated with lower MIL and higher loneliness. Critically, between

network interactions, particularly those involving the DN, were among the most robust

and discriminating intrinsic network markers of loneliness and MIL. Behaviorally, these

findings advance our understanding of these two constructs as distinct, yet interdepend-

ent, features of sociality (Lambert et al., 2013; Stillman et al., 2009; Stillman & Lambert,

2013). While speculative, the data also implicate the DN as a candidate network hub,

suggesting that these brain regions may provide a neural conduit for shifting between

feelings of isolation and purpose. If confirmed, these findings may inform future re-

search to design behavioral and neural intervention strategies targeted at disrupting the

reinforcing cycle of loneliness and life meaning.
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3.10 Supplementary Figures

Supplementary Figure 3.S1: The figure displays the results for the first latent variable

which identified a pattern of connectivity that reliably expressed the relationship between

loneliness and MIL (permuted p = .006; 25% covariance explained) in both female (loneli-

ness r = -0.05; MIL r = 0.10) and male (loneliness r = -0.17; MIL r = 0.13) participants.

The error bars represent the 95% bootstrapped confidence interval. The matrix is threshol-

ded to ±2 to 3.5 bootstrap ratio.
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3.11 Supplementary Tables

Table 3.S1: Means and SD of behavioral measures separated by gender

Female Male

(Mean±SD) (Mean±SD) t-test (t,p)
Loneliness 51.06±8.08 50.87±8.99 (0.34, .732)
Meaning & Purpose 52.62±8.69 51.09±8.71 (2.70, .007)**
Neuroticism 17.15±6.87 15.56±7.75 (3.33, .001) ***
Extroversion 30.75±5.93 30.71±6.15 (0.09, .925)
Agreeableness 32.97±4.64 31.13±5.11 (5.79, .001) ***
Conscientiousness 35.17±5.81 33.86±5.94 (3.43, .001) ***
Openness 27.80±6.04 28.94±6.44 (-2.81, .005) **
Positive Affect 50.44±7.85 49.96±7.81 (0.94, .346)

** p 0.01; *** p 0.001, two-tailed
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Chapter 4

Age differences in functional brain

networks associated with loneliness and

empathy

Mwilambwe-Tshilobo,L., Setton, R., Bzdok, D., Turner, G. R., Spreng, R.N. (in press). Age

differences in functional brain networks associated with loneliness and empathy. Network

Neuroscience.

4.1 Preface

Age-related changes in the associations between sociality and brain function into late

adulthood are not well understood. The previous chapter showed that in younger adults,

individual differences in the functional connectivity between externally and internally-

directed brain networks are related to trait loneliness. Interestingly, a separate study from

our lab examining neural correlates of loneliness in a large middle-aged cohort reported

that in middle adulthood, loneliness was associated with greater functional integration

of the default network with limbic and frontoparietal control networks (Spreng et al.,

2020). This divergence in RSFC-loneliness associations raised several questions regard-
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ing the completeness of the current theoretical conceptualizations from an adult lifespan

perspective. Age differences are often observed within- and between-network connectiv-

ity across the lifespan. Moreover, age-related shifts in socioemotional goals influence the

types of relationships people seek to nurture and the social cognitive processes needed

to support human sociality. Without directly comparing adults in early and middle/late

adulthood, it is unclear whether the observed differences reflect a shift in the association

between loneliness and RSFC.

4.2 Abstract

Loneliness is associated with differences in resting-state functional connectivity (RSFC)

within and between large-scale networks in early and middle-aged adult cohorts. How-

ever, age-related changes in associations between sociality and brain function into late

adulthood are not well understood. Here, we examined age differences in the association

between two dimensions of sociality –loneliness and empathic responding– and RSFC

of the cerebral cortex. Self-report measures of loneliness and empathic capacity were in-

versely related across the entire sample of younger (mean age = 22.6y, n=128) and older

(mean age = 69.0y, n=92) adults. Using multivariate analyses of multi-echo fMRI RSFC,

we identified distinct functional connectivity patterns for individual and age-group dif-

ferences associated with loneliness and empathic responding. Loneliness in young and

empathy in both age groups was related to greater visual network integration with asso-

ciation networks (e.g., default, frontoparietal control). In contrast, loneliness was posit-

ively related to within and between network integration of association networks for older

adults. These results extend our previous findings in early and middle-aged cohorts,

demonstrating that brain systems associated with loneliness, as well as empathy, differ

into older age. Further, the findings suggest that these two aspects of social experience

engage different neurocognitive processes across human lifespan development.
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4.3 Author Summary

Feelings of loneliness emerge when a person’s desire or need for interpersonal relation-

ship is unmet. This state of perceived social isolation can influence social cognitive pro-

cesses that are critical for connecting with others, such as empathy. Neuroimaging studies

have shown diverging functional connectivity patterns among functional brain networks

between lonely younger and middle-aged adults. Here, we take a targeted approach to

directly assess age-related differences in functional connectivity associated with loneli-

ness and empathic responding in younger and older adults. We find evidence that indi-

vidual differences in functional connectivity related to loneliness and empathic respond-

ing differs with age. We discuss possible mechanisms underlying these associations and

their implications for brain and social functioning across the adult lifespan.

4.4 Introduction

Forming and maintaining social bonds are among the most complex of human abilit-

ies. Sociality and the emergence of social collaboration within species have been linked

to larger brain sizes, with humans at the peak of this evolutionary continuum (Dunbar

& Shultz, 2007). Social functioning is related to functional activation and connectivity

among multiple large-scale brain systems (Mars et al., 2012; Moran et al., 2012; Mwilambwe-

Tshilobo et al., 2019; Spreng et al., 2020). The importance of sociality as a determinant of

brain health is most evident when social needs go unmet. Perceived social isolation, or

loneliness, has a significant negative impact on mental and physical health (S. Cacioppo

et al., 2014; Ong et al., 2016; Shankar et al., 2013; Tilvis et al., 2011). Lonely individuals

experience increased risk for cognitive decline (Boss et al., 2015), neuropathological bur-

den (d’Oleire Uquillas et al., 2018; Donovan et al., 2016), and Alzheimer’s disease (Wilson

et al., 2007). Although loneliness is related to adverse cognitive sequelae in age-related

brain disease, much of the research investigating the impact of loneliness on brain struc-

ture and function has been conducted in younger or middle-aged adults (see Lam et al.,
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2021 for a review). Loneliness poses significant health risks and is a burden, particu-

larly for older adults. However, its differential impact on brain function in early and late

adulthood remains largely unexplored.

Although the experience of loneliness varies between people, it emerges because one’s

need for social connection is unfulfilled (J. Cacioppo & Hawkley, 2009). The felt absence

of connection has marked effects on the cognitive and affective processing of social signals

(Bangee et al., 2014; S. Cacioppo et al., 2015). Identifying these perceptual and attentional

changes led to altered social functioning resulting from deficits in social perception ((J.

Cacioppo & Hawkley, 2009). Poor perception of social cues associated with feeling lonely

may hinder the ability to recognize and accurately interpret others’ thoughts and feelings,

both core features of empathic responding. Preliminary evidence in younger adults in-

dicates that this interaction may alter the impact of loneliness on the brain. Loneliness is

inversely related to white matter integrity in brain regions implicated in social-cognitive

processes, with higher empathy moderating this relationship (Nakagawa et al., 2015).

This finding suggests that the negative behavioral association between loneliness and

empathy may have a direct neural correlate, with each exerting opposing brain effects.

A growing body of neuroimaging studies now link individual differences in loneli-

ness (J. Cacioppo & Hawkley, 2009; Düzel et al., 2019; X. Kong et al., 2015; Layden et al.,

2017; Nakagawa et al., 2015; Wong et al., 2016) and empathy (Schurz et al., 2021; Völlm et

al., 2006) to structural and functional changes in brain regions spanning multiple neuro-

cognitive systems. Resting-state functional connectivity (RSFC) has demonstrated that

interactions among spatially distributed brain regions underlie individual differences in

loneliness (Feng et al., 2019; Mwilambwe-Tshilobo et al., 2019; Spreng et al., 2020) and

empathy (Christov-Moore et al., 2020; Katsumi et al., 2021).

However, many open questions remain regarding the neural associations between

loneliness and empathy. First, empathy is a multidimensional construct consisting of

cognitive and affective components, each with distinct neural patterns (Cox et al., 2012;

Schurz et al., 2021). Although behavioral evidence suggests that associations with loneli-
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ness vary in strength between components (Beadle et al., 2012), this finding may not ex-

tend to all aspects of empathic responding (i.e., empathic concern and perspective taking;

Kanai et al., 2015). Second, associations between empathic responding and loneliness

may change as people age. As people age, the quality of social relationships becomes

more important than quantity ((L. Carstensen, 1992). Older adults experience higher risks

for loneliness (i.e., social isolation; Steptoe, Shankar, Demakakos, Wardle, 2013; Luh-

mann Hawkley et al., 2016). Because loneliness impacts social perception (J. Cacioppo &

Hawkley, 2009), lonely older adults may have more difficulties forming meaningful social

bonds. Variability in the impact of aging on the neural correlates of cognitive and affective

components of empathy (Beadle & de la Vega, 2019) may also influence age differences in

the relationship between loneliness and empathic responding. Therefore, understanding

the role aging plays in both behaviors may provide more insights into their individual

and combined effects on the intrinsic functional connectivity of the brain.

Two studies investigating the relationship between RSFC and loneliness provide early

evidence for putative age differences in brain-loneliness associations. In a large cohort of

younger adults, Mwilambwe-Tshilobo et al. (2019) identified that loneliness was associ-

ated with greater RSFC between default network regions and visual and attention net-

works. These associations correlate with loneliness-related neural changes in externally-

directed perceptual and attention networks (Schurz et al., 2021) and support the altered

social perception hypothesis of loneliness and empathy (S. Cacioppo et al., 2015). In con-

trast, a population-based study of late middle-aged adults revealed that loneliness was

positively related to RSFC between the default network and frontoparietal control and

limbic regions, but not the visual network (Spreng et al., 2020). In addition, while higher

default network integration was negatively correlated with loneliness in young adults

(Mwilambwe-Tshilobo et al., 2019), it was positively associated with loneliness in middle-

aged adults. The authors provided evidence that loneliness in middle age may precipitate

more internally-directed cognitive processes, mediated by the default network, as lonely

individuals mentalize about desired but unmet social interactions. Combined, these two
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studies suggest a shift in the impact of loneliness from changes occurring in externally-

directed neurocognitive systems in early adulthood, to an upregulation in brain networks

associated with internally-directed mental processes in middle adulthood.

The relationship between loneliness and age is U-shaped, with peaks at 30 and 60

years of age (Luhmann & Hawkley, 2016). This relationship corresponds to the aver-

age ages in the younger and middle-aged studies described above (Mwilambwe-Tshilobo

et al., 2019; Spreng et al., 2020), raising the intriguing possibility that, while the preval-

ence of loneliness may be similar, the social, cognitive, and neural sequelae may shift

across the adult lifespan. In the present study, we directly examine how individual and

age differences in sociality–loneliness and empathic responding– relate to the intrinsic

network architecture of the brain. We focus our analysis specifically on brain regions

within six networks previously implicated in loneliness in younger and older adults

(Lam et al., 2021; Mwilambwe-Tshilobo et al., 2019; Spreng et al., 2020): visual, dorsal

attention, ventral attention, limbic, frontoparietal, and default networks. We test the pre-

diction that diverging loneliness-related RSFC patterns previously identified in young

and middle-aged adults will be observed when directly comparing younger and older

adults. Specifically, we hypothesize that younger adults will show a consistent pattern as

Mwilambwe-Tshilobo et al. (2019) characterized by greater functional integration of the

default network with visual and attention networks. In contrast, older adults will show

greater functional integration of the default network with frontoparietal and limbic net-

works that more closely aligns with the patterns observed in middle-aged adults (Spreng

et al., 2020). Consistent with research indicating that older adults prioritize close social

relationships (Carstensen, 1992) and that loneliness alters brain regions implicated in so-

cial functioning (J. Cacioppo & Hawkley, 2009; Kanai et al., 2012), we hypothesized that

the RSFC patterns positively associated with loneliness would be inversely related to em-

pathic responding and more robustly expressed in older adults than younger adults.
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Figure 4.1: Caption. Analytic workflow of individual and age differences in functional

connectivity related to loneliness and empathic responding. (1) BOLD resting-state data

were extracted from subject-specific individual parcellation in six networks of interest:

visual, dorsal attention, ventral attention, limbic, frontoparietal control, and default net-

works. (2) Functional connectivity between parcels were constructed, forming a 323×323

matrix. The lower triangle of each subject’s matrix was vectorized and arranged by group

assignment into a larger RSFC matrix. (3) Younger and older adults’ scores on behavioral

measures of loneliness and empathic responding were combined into a matrix. (4) Partial

Least Squares (PLS) was used to identify patterns of RSFC that maximally covary with

the behavioral measures across subjects. A cross-correlation matrix generated by mul-

tiplying the RSFC and behavioral matrix was submitted to singular value decomposition.

(5) Network contribution plots were used as a metric of the most reliable intra- and inter-

network connections by summarizing the inter-regional connections from the PLS matrix.
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4.5 Methods

4.5.1 Participants

Data from 220 participants were analyzed in the present study. Participants were part of

a larger cohort (Setton et al., 2022), where inclusion required both loneliness and empathy

assessments, and two resting state fMRI runs of data. Participants in the final sample in-

cluded 128 younger (Mage = 22.6 years, SD = 3.3; range = 18-34; 75% female) and 92 older

(Mage = 69 years, SD = 6.6, range = 60-89; 47% female) healthy adults recruited in Ithaca,

New York and Toronto, Canada (Table ). All participants were right handed ranging from

18 to 89 years (M= 42 SD = 23.5). All participants provided informed consent in accord-

ance with the guidelines set by the Institutional Review Board at Cornell University and

York University.

4.5.2 Behavioral Measures

Loneliness measures

Loneliness was measured using the Revised UCLA Loneliness Scale (UCLA-LS Russell,

1996). The UCLA-LS is a 20-item questionnaire that measures subjective feelings of loneli-

ness and perceived social isolation (Russell, 1996). This measure is well established within

the literature and found to be highly reliable (Russell, 1996). One of the advantages of the

UCLA-LS questionnaire is that it assesses loneliness indirectly, which diminishes poten-

tial response bias (Shiovitz-Ezra & Ayalon, 2012). For example, participants are asked to

respond to statements such as ‘How often do you feel like there is no one you can turn to?’

or ‘How often do you feel isolated from others’. Responses were provided on a 4-point

Likert scale ranging from 1 (Never) to 3 (Always). Negatively-worded items were scored

in reverse. Higher scores reflect higher self-reported loneliness.
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Aspects of empathic responding

Empathy is not a unitary concept, but rather a multidimensional construct that can be

broken down into cognitive and affective components. The cognitive components of em-

pathy describe processes that underlie the ability to understand and make inferences re-

garding another person’s mental states. The affective components of empathy describe

the emotional reaction towards the observed experiences of another. While distinctions

regarding these two behavioral processes are made within the literature, recent work sug-

gests that overlapping and unique brain activation patterns support the ability to under-

stand how other people think and feel (Schurz et al., 2021). Therefore, to ensure that our

assessment of empathic responding reflected these cognitive and affective neurocognitive

processes, participants completed a performance-based assessment of emotional recogni-

tion and two self-report questionnaires that represent subdomains of empathy along these

two dimensions:

1. The Reading the Mind in the Eyes (RMIE) task was originally conceptualized as

a theory of mind questionnaire (Baron-Cohen et al., 2001), however it has been

shown to actually measure emotional recognition and not theory of mind (Oakly

et al., 2016). We included the RMIE as a task-based measure in our analysis be-

cause emotional recognition is critical aspect of empathic responding that is also

predictive of prosociality (Bailey et al., 2020). The RMIE task consists of 36 photos

of the eye region of adults expressing different emotional states. Participants were

asked to choose one adjective from a list of four that best expresses the internal state

depicted in the photo. One point was assigned for each correct response, 0 points

for incorrect responses, and negatively-worded items scored in reverse. Individual

items were summed to give a total score of 36 with higher scores indicating higher

emotional decoding.

2. The Toronto empathy questionnaire (TEQ) is a self-report measure that primarily

assessed emotional empathy (Spreng et al., 2009). It consists of 16 items in which
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participants respond on a 5-point Likert scale ranging from 0 (Never) to 4 (Always).

Negatively-worded items were scored in reverse. Examples of items in the TEQ

include “I can tell when others are sad even when they do not say anything” and

“When I see someone being treated unfairly, I do not feel very much pity for them.”

3. The Interpersonal Reactivity Index (Davis, 1980)is a self-report questionnaire that

consists of 4 subscales that assess different aspects of empathy: (1) Perspective tak-

ing (PT), the ability to take another person’s psychological point of view; (2) Fantasy,

the ability to project one-self onto fictional characters; (3) Empathic concern (EC)¬¬,

the tendency to experience feelings of sympathy and compassion for others; and

(4) Personal distress, a measure of the aversive response one feels when observing

the negative experience of others. For this study, we only included measures of PT

and EC because we were specifically interested in assessing cognitive and affective

aspects of empathic responding that were other-focused (i.e. PT, EC) rather than

self-focused (Fantasy, Personal Distress). Each subscale had 7-items with responses

made on a 5-point Likert scale ranging from 1= “Does not describe me well” and 5=

“Describes me well”. Negatively-worded items were scored in reverse.

Covariates

Several demographic, social, cognitive, and personality variables associated with loneli-

ness and aging were included as covariates in our analyses. Demographic variables in-

cluded age, gender, and educational attainment. We also included the study site as a cov-

ariate since participants were part of a multi-site cohort study (Spreng et al., 2022). Since

our study focused on identifying age-related differences in the behavioral and neural

associations between loneliness and empathy, we needed to account for known age-

dependent factors that influence social and brain functioning. Age differences in loneli-

ness are due to differences in the distribution of risk factors. For example, older adults ac-

cumulate disproportionate risk factors contributing to loneliness (Luhmann & Hawkley,

2016), two of which are poor cognitive functioning and social isolation. Evidence suggests
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that loneliness may accelerate cognitive decline among older adults (Shankar et al., 2013;

Wong et al., 2016), and previous work highlights the need to account for the confounding

effects of objective social isolation when examining loneliness among older adults (Step-

toe et al., 2013). Age differences in loneliness may also be due to normative age-related

changes in the quantity and quality of social relationships. Aging is marked by significant

transitions in the size and composition of social relationships that lead to shrinking social

network size to prioritize close social ties (L. Carstensen, 1992). Social relationship quant-

ity and quality are negatively correlated with loneliness. However, having few high-

quality relationships is a much stronger predictor of loneliness (Luhmann & Hawkley,

2016). Thus, accounting for the quantity and quality of social relationships may be im-

portant factors in how both age groups experience loneliness. Therefore, we controlled

for objective social isolation, relationship quality, and global cognitive function measures

to account for normative social network size and cognitive declines. We used the Social

Network Index (Cohen et al., 1997), NIH Toolbox Emotion Battery, and Cognition Battery

(http://www.nihtoolbox.org]), respectively:

1. The Social Network Index is a self-report questionnaire that assesses various aspects

of social engagement with 12 different types of social relationships (e.g., spouse,

children, relative, friend, neighbor, co-worker). Participants were asked to indicate

the number of people they regularly talk to or see at least once every two weeks

for each relationship type. The total number of people identified was summed to

estimate social network size.

2. The NIH Toolbox Emotion Battery included three measures where participants were

asked to report on their perception of social support and friendship available to

them by others in their social networks (Salsman et al., 2013): (1) instrumental sup-

port: the subjective perception that others in their social network are available to

provide advice in times of need; (2) emotional support: the subjective perception

that people in their social network are available to listen to one’s concerns with un-
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derstanding and caring; and (3) friendship: the subjective perception that they have

companions/ friends available to them with which they can interact.

3. The NIH Toolbox Cognition Battery included a global composite score of overall

cognition, which was automatically computed by averaging scores across seven

cognitive function tests: the Picture Vocabulary Test and Oral Reading Recognition

Test, Dimensional Change Card Sort Test, the Flanker Inhibitory Control and Atten-

tion Test, the Picture Sequence Memory Test, the List Sorting Working Memory Test,

and the Pattern Comparison Processing Speed Test (Gershon et al., 2013). Higher

scores represent better performance.

Beyond social isolation and cognition, certain personality traits may be risk factors for

loneliness. Neuroticism is a personality trait that strongly positively correlates with loneli-

ness (Abdellaoui et al., 2019). In addition, neuroticism has been associated with cognitive

decline (D’Iorio et al., 2018). It mediates the relationship between loneliness and struc-

tural changes to dorsolateral prefrontal cortex (X. Kong et al., 2015). To account for the

potential contribution of neuroticism when examining age differences in our analyses, we

included neuroticism as a covariate. Participants completed The Big Five Aspect Scale

(DeYoung et al., 2007), which is a 100-item self-report questionnaire that assesses facets of

personality traits.

4.5.3 Behavioral Data Analysis

We first conducted an independent samples t-test to compare younger and older adults

on all behavioral measures, including covariates. This allowed us to determine whether

there were any age-related differences in self-reported loneliness and empathy. We then

performed product-moment and partial correlations analyses to characterize the associ-

ations among all behavioral measures. Next, we examined associations between loneli-

ness and each measure of empathic responding (RMIE, TEQ, IRI perspective taking, IRI

empathic concern) in the full sample and separately within each age group. All covari-
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ates were included in partial correlation models (age, gender, site, education, neuroticism,

cognitive composite score). The partial correlation analysis excluded participants with

missing data on any of the covariate measures. In addition, given that a sizable portion

of participants had missing data on the social network size measure (young adults: n =

32; older adults: n = 20), additional partial correlation analyses that included social net-

work size as a covariate were conducted only in participants with complete behavioral

data. Subjective measures of instrumental support, emotional support, and friendship

were also included. Statistical significance was set at p

4.5.4 Neuroimaging

Imaging data were acquired on a 3T GE750 Discovery series MRI scanner with a 32-

channel head coil at the Cornell Magnetic Resonance Imaging Facility in Ithaca, NY or

on a 3T Siemens Tim Trio MRI scanner with a 32-channel head coil at the York Univer-

sity Neuroimaging Center in Toronto, Canada. Scanning protocols were closely matched

across sites. Anatomical scans at Cornell were acquired using a T1-weighted volumet-

ric magnetization prepared rapid gradient echo sequence (TR=2530ms; TE=3.4ms; 7° flip

angle; 1mm isotropic voxels, 176 slices, 5m25s) with 2x acceleration with sensitivity en-

coding. At York, anatomical scans were acquired using a T1-weighted volumetric mag-

netization prepared rapid gradient echo sequence (TR=1900ms; TE=2.52ms; 9° flip angle;

1mm isotropic voxels, 192 slices, 4m26s) with 2x acceleration and generalized auto calib-

rating partially parallel acquisition (GRAPPA) encoding at an iPAT acceleration factor of

2. Two 10m06s resting-state runs were acquired using a multi-echo (ME) EPI sequence at

Cornell University (TR=3000ms; TE1=13.7ms, TE2=30ms, TE3=47ms; 83° flip angle; mat-

rix size=72x72; field of view (FOV)=210mm; 46 axial slices; 3mm isotropic voxels; 204

volumes, 2.5x acceleration with sensitivity encoding) and York University (TR=3000ms;

TE1=14ms, TE2=29.96ms, TE3=45.92ms; 83° flip angle; matrix size=64x64; FOV=216mm;

43 axial slices; 3.4x3.4x3mm voxels; 200 volumes, 3x acceleration and GRAPPA encoding).
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Participants were instructed to stay awake and lie still with their eyes open, breathing and

blinking normally in the darkened scanner bay.

Processing

Anatomical images were skull stripped using the default parameters in FSL BET (Smith,

2002). Brain-extracted anatomical and functional images were submitted to ME inde-

pendent component analysis (ME-ICA; version 3.2 beta; https://github.com/ME-ICA/me-

ica; Kundu et al., 2011; Kundu et al., 2013). ME-ICA relies on the TE-dependence model

of the BOLD signal to determine T2* in every voxel and separates the BOLD signal from

non-BOLD sources of noise. Before TE-dependent denoising, time series data were min-

imally preprocessed: the first 4 volumes were discarded, images were computed for

de-obliquing, motion correction, and anatomical-functional coregistration, and volumes

were brought into spatial alignment across TEs. The T2* maps were then used for anatomical-

functional coregistration. Grey matter and cerebrospinal fluid compartments are more

precisely delineated by the T2* map than by raw EPI images (Kundu et al., 2017; Speck

et al., 2001), which is an important consideration in aging research where enlarged vent-

ricles and greater subarachnoid space often blur these boundaries.. Volumes were then

optimally combined across TEs and denoised. The outputs of interest included: 1) spatial

maps consisting of the BOLD components, 2) reconstructed time series containing only

BOLD components, and 3) the BOLD component coefficient sets.

ME-ICA effectively removes distant-dependent motion-related artifacts in the fMRI

data (J. D. Power et al., 2018). To retain all trials and maintain the same time series length

across participants, we did not implement any additional denoising steps, such as scrub-

bing. Instead, we perform an image quality assessment on the denoised time series. In

native space, we identified and excluded participants with unsuccessful coregistration,

residual noise (framewise displacement (FD) ¿ .50 mm coupled with denoised time series

showing DVARS ¿1; (J. Power et al., 2012)), temporal signal to noise ratio ¡ 50, or fewer

than ten retained BOLD-like components. Forty participants were excluded after the im-
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age quality assessment (younger adults: n= 12; older adults: n = 28). Age group and site

differences in residual motion for included participants were assessed using FD calcu-

lated on the middle echo prior to processing. Statistical results are reported in Supple-

mentary Table .

The denoised BOLD component coefficient sets in native space, optimized for RSFC

analyses (Kundu et al., 2013), were used in subsequent steps. We refer to these as multi-

echo functional connectivity (MEFC) data. Additional measures were taken to account

for variation in the number of independent components from ME-ICA once connectiv-

ity matrices were estimated, as detailed below. MEFC neuroimages were mapped to a

common cortical surface for each participant using FreeSurfer v6.0.1 (Fischl, 2012). To

maximize alignment between intensity gradients of structural and functional data (Greve

& Fischl, 2009), MEFC data were first linearly registered to the T1-weighted image by run.

The inverse of this registration was used to project the T1-weighted image to native space

and resample the MEFC data onto a cortical surface (fsaverage5) with trilinear volume-to-

surface interpolation. This produces a cortical surface map where each vertex, or surface

point, is interpolated from the voxel data. Once on the surface, runs were concatenated

and MEFC data at each vertex were normalized to zero mean and unit variance.

Individualized RSFC parcellation

We generated participant-specific functional connectomes to examine individual differ-

ences in functional brain network organization using the Group Prior Individual Par-

cellation (GPIP; Chong et al., 2017). This approach enables a more accurate estimation

of participant-specific individual functional areas (Chong et al., 2017) and is more sens-

itive to detecting RSFC associations with behavior (e.g., (R. Kong et al., 2021; Setton

et al., 2022). The main advantage of this approach is that the correspondence among

parcel labels is preserved across participants, while the parcel boundaries are allowed

to shift based on the individual-specific functional network organization of each par-

ticipant—thus providing a similar RSFC pattern that is shared across the population.
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Starting from an initial pre-defined group parcellation atlas, GPIP first refines each in-

dividual’s parcel boundaries relative to their resting-state fMRI data. Next, the concen-

tration (inverse covariance/partial correlation) matrices from all subjects are jointly es-

timated using a group sparsity constraint. GPIP iterates between these two steps to con-

tinuously update the parcel labels until convergence, defined as no more than one vertex

changing per parcel or 40 iterations. Compared to other group-based parcellation ap-

proaches, GPIP has been shown to improve the homogeneity of the BOLD signal within

parcels and the delineation between regions of functional specialization (Chong et al.,

2017).

Using this method, we used the MEFC data from each participant and parcellated the

cortex into 400 functionally defined regions. We initialized all participants to a group

parcellation atlas developed by Schaefer et al. (2018). Each parcel was matched to a cor-

responding network in the 7 network parcellation by Yeo et al. (2011). In the present

report, we included the visual, dorsal attention, ventral attention, limbic, frontoparietal

control, and default networks given their reliable associations with loneliness across the

neuroimaging literature (Lam et al., 2021). In addition, as described in the introduction

these networks have been associated with loneliness in younger (Mwilambwe-Tshilobo et

al., 2019) and older adults (Spreng et al., 2020). While we could have excluded the soma-

tomotor network, recent evidence suggests robust age differences in RSFC (Setton et al.,

2022), which were orthogonal to the predictions tested here. For completeness, the results

for the full seven network analysis are reported in supplemental material (Supplementary

Figure 4.S1-4.S2).

Partial Least Squares (PLS) analysis

PLS is a data-driven multivariate statistical technique used to decompose relationships

between two datasets (functional connections and behavioral measures) into orthogonal

sets of latent variables that maximally covary together across participants (McIntosh &

Lobaugh, 2004). The latent variables can be interpreted as optimally-paired functional
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networks and behavioral phenotypes, respectively. We used PLS to identify age-related

differences and similarities in RSFC that were directly correlated to loneliness and em-

pathy.

Two datasets were constructed: a Y matrix containing participant’s behavioral scores

on loneliness and empathy measures, and a X matrix consisting of participants’ functional

connectomes. Each row of the Y and X matrices represents the number of participants

organized by group. The columns of matrix X correspond to the edges of the vectorized

lower triangle of the RSFC matrix. The X and Y matrices were mean centered, normalized,

and a correlation matrix (R = X’Y) was submitted to singular value decomposition (SVD)

as follows:

R = X’Y = USV’

SVD of the cross-correlation matrix X’Y produced multiple mutually-orthogonal latent

variables, each consisting of three elements:

1. A left singular vector (U) containing weights for each of the behavioral measures.

2. A right singular vector (V), containing weights for each of the functional connec-

tions that best characterize the relationship between RSFC among younger and

older adults.

3. A scalar singular value (S).

Squared singular values reflect effect sizes which are proportional to the covariance between

RSFC and behavior that is accounted for by each latent variable. The number of latent

variables is sorted in order of proportion of covariance between the RSFC and behavior

measures.

Participant-specific brain scores

For each latent variable, we derived participant-specific brain scores that assess the ex-

tent to which each participant contributes to the group covariance RSFC pattern. The

brain scores were calculated by multiplying the original matrix of participants’ functional
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connectomes (X) with the PLS-derived right singular vector (V). To account for possible

confounds in the brain-behavior correlation, partial correlations between the brain scores

and each behavioral measure was conducted controlling for covariates of no interest (age,

gender, site, education, neuroticism, and cognitive composite score). Covariates were

partialled-out of both the brain scores and behavioral measures.

Permutation tests

The significance of each latent variable was assessed using permutation testing. Rows of

X were randomly reordered and subjected to SVD iteratively, as described above. This

was done 10,000 times, creating a distribution of singular values under the null distri-

bution (McIntosh & Mišić, 2013). A p-value was computed for each latent variable as

the proportion of permuted singular values greater than or equal to the original singular

value. Critically, permutation tests involve the entire multivariate pattern and are per-

formed in a single analytic step, so correction for multiple comparisons is not required

(McIntosh & Lobaugh, 2004).

Bootstrap resampling

The reliability of the weights of individual RSFC connections and behavior were as-

sessed using bootstrap resampling (Krishnan et al., 2011; McIntosh & Mišić, 2013). The

brain-behavior correlations were calculated using 10,000 bootstrap samples. To identify

individual connections that made a statistically significant contribution to the overall

RSFC pattern, we calculated the ratio between each weight in the singular vector and

its bootstrap-estimated standard error. Bootstrap ratios are equivalent to z-scores if the

bootstrap distribution is approximately unit normal (Efron & Tibshirani, 1986). Bootstrap

ratios were therefore thresholded at values of ±1.96, corresponding to the 95% CI.
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Cross-validation

To assess the reliability of our PLS analysis, we conducted a train-test validation of the

PLS results using 5-fold cross-validation (Kebets et al., 2019). We assigned 80% of the par-

ticipant data in each age group to a train set and the remaining 20% to a test set. For each

fold, we used PLS to compute the RSFC (Utrain) and behavioral (Vtrain) singular vectors.

Then we projected the test data onto the singular vectors from the training data, allowing

us to estimate participant-specific brain scores and correlation for the test set (corr(Xtest

Utrain , Ytest Vtrain)). This was done over 5 folds, and the correlations between the test

set original X (RSFC) and Y(behavior) matrix was performed for LV1 and LV2. The sig-

nificance of the correlation was assessed using permutation tests (1000 repetitions on the

behavioral data within each group).

Supplementary control analyses

We performed three additional analyses to account for possible confounding effects of the

quantity and quality of social relationships, age, and motion on the primary PLS findings.

First, confirmed that age group differences in the relationship between loneliness and

RSFC were not due to differences in either the quantity or quality of relationships among

younger and older adult participants. Therefore, two separate partial correlation analyses

were including using social network size (quantity) and subjective measures of social

support and friendship (quality). Brain-behavior correlations for the primary PLS results

were computed and reported in Supplementary Table 4.S3 and 4.S4, respectively.

The second control analysis was performed to confirm that participants’ age did not

influence the age differences captured in the primary PLS analysis. Age was used as a

continuous variable and partialled out from the original X and Y input matrices. The two

matrices were then used to run a new PLS analysis (see Supplementary Figure 4.S5 - 4.S6

and Supplementary results). Next, we compared the covariance of each LV before and

after partialling out age (Supplementary Figure 4.S7) to evaluate whether partialling out
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age decreased the effect size, which would be indicative of the confounding influence of

age in our findings.

The last control analyses examined residual motion’s impact on RSFC in our sample.

First, two independent PLS analyses were performed: (1) examining the association between

RSFC and mean FD (pre-processing) and (2) identifying age differences in whole-brain

RSFC (no behavior). To confirm that the RSFC pattern covarying with FD was not as-

sociated with age differences in RSFC, we correlated the brain scores derived from each

PLS analysis. Relationships are plotted for the entire sample and separately for younger

and older adults (Supplementary Figure 4.S8). Finally, to account for the effects of mo-

tion on the primary PLS analysis, mean FD post-processing was included as an additional

covariate (Supplementary Table 4.S6). Results are reported in the supplementary section.

Network Contribution Analysis

In addition to assessing the contribution of inter-regional connections to the group dif-

ferences, we also evaluated the extent to which network-level RSFC within and between

functional networks contributed to group differences. Two separate weighted adjacency

matrices were constructed from positive and negative RSFC weights by quantifying the

network-level contributions to the PLS-derived RSFC pattern. For both matrices, nodes

represent parcels defined by the individual parcellation, while edges correspond to the

thresholded bootstrap ratio of each pairwise connection. Network-level RSFC contribu-

tions were estimated by assigning each parcel of the Schaefer atlas according to their

respective network label based on the assignment reported by Yeo et al. (2011) and taking

the average of all connection weights in a given network, thereby generating a 6 x 6 mat-

rix. During each permutation, network labels for each node were randomly reordered

and the mean intra- and inter- network RSFC were recalculated. This process was re-

peated 1000 times to generate an empirical null sampling distribution that indicates no

relationship between network assignment and RSFC pattern (Mirchi et al., 2019). The

mean contribution for all intra- and inter-network network connections expressed as z-
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scores relative to the permuted null model are shown in Supplementary Figure 4.S4. The

significance of the pairwise connections to the network matrix was determined by estim-

ating the proportion of times the value of the sampling distribution was greater than or

equal to the original value.

4.6 Results

We measured self-reported loneliness and used self-report measures and task perform-

ance to assess cognitive and emotional aspects of empathic responding (See Table 4.1). We

hypothesized that loneliness would be inversely related to empathic responding across

the lifespan (Beadle et al., 2012; Nakagawa et al., 2015). Further, we predicted that these

associations might be more robust in later life as the detection of social cues declines (Den-

burg & Hedgcock, 2015; Moran et al., 2012) and socioemotional goals become increasingly

salient (L. L. Carstensen et al., 1999). Next, we examined age-related differences in the as-

sociation between loneliness, aspects of empathic responding, and cortical RSFC. We ac-

quired twenty minutes of multi-echo resting-state fMRI data (Kundu et al., 2017) and ap-

plied individualized parcellation to a subset of individuals previously examined to assess

age differences in the functional architecture of the brain (Setton et al., 2022). Multivariate

PLS (McIntosh & Mišić, 2013; Schurz et al., 2021; Spreng et al., 2020) was used to identify

patterns of RSFC related to individual differences in loneliness and empathic responding,

as well as differences between younger and older adult age groups. Based on our pre-

vious findings of distinct young and middle-aged adult patterns (Mwilambwe-Tshilobo

et al., 2019; Spreng et al., 2020), we predicted robust age differences in the association

between loneliness, aspects of empathic responding, and RSFC. Specifically, we hypo-

thesized that age differences would arise within the default network and default network

interactions with other association networks implicated in internally-directed cognitive

processes (Andrews-Hanna et al., 2014).
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4.6.1 Demographics and descriptive statistics

To examine whether the relationship between loneliness and empathic responding showed

similar associations as prior studies (Beadle et al., 2012; Nakagawa et al., 2015), we first

characterized individual and age-related differences in loneliness and subdomains of em-

pathy within our cohort. The behavioral measures included self-reported loneliness, emo-

tional recognition accuracy on the RMIE task, self-reported empathy, perspective taking

and empathic concern. Additionally, we controlled for nuisance or confounding vari-

ables, including scanning site, gender, education, social network size, instrumental sup-

port, emotional support, friendship, neuroticism, and global cognition (see Methods for

full rationale). Table 4.1 summarizes the means and standard deviations of loneliness

and empathic responding measures, along with all covariates included in subsequent

analyses.
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Table 4.1: Descriptive data (mean and standard deviations) and inferential statistics for

behavioral measures in younger and older adults.

Overall Younger Adults Older Adults Significance
Demographics
n 220 128 92
Age, mean (SD) 42.0 (23.5) 22.6 (3.3) 69.0 (6.6)
Gender, n (%) F 122 (55.5) 75 (58.6) 47 (51.1)

M 98 (44.5) 53 (41.4) 45 (48.9)
Education, mean (SD) 16.1 (2.6) 15.2 (1.8) 17.5 (2.9) <0.001***

Social Measures
UCLA Loneliness Scale, mean (SD) 39.6 (9.1) 40.6 (9.4) 38.2 (8.5) 0.06
SNI Size, mean (SD) 22.5 (12.5) 23.7 (12.4) 20.9 (12.4) 0.16
Instrumental Support, mean (SD) 31.1(7.6) 31.7(8.7) 30.6(6.8) 0.3
Emotional Support, mean (SD) 33.9(5.4) 32.8(5.4) 34.7(5.4) 0.02*
Friendship, mean (SD) 31.3(6.3) 29.9(6.6) 32.3(5.9) 0.01**

Empathic Functioning
Reading the Mind in the Eyes (RMIE), mean (SD) 72.2 (10.0) 74.4 (9.8) 69.2 (9.7) <0.001***
Toronto Empathy Questionnaire (TEQ), mean (SD) 39.0 (3.9) 39.1 (4.1) 38.8 (3.6) 0.65
IRI Perspective Taking (PT), mean (SD) 2.8 (0.6) 2.7 (0.6) 2.8 (0.6) 0.18
IRI Empathic Concern (EC), mean (SD) 3.0 (0.5) 2.9 (0.5) 3.1 (0.5) 0.003**

Personality
Neuroticism, mean (SD) 2.5 (0.7) 2.7 (0.7) 2.2 (0.6) <0.001***

Cognition
NIH Cognitive Composite Score, mean (SD) 126.6 (14.4) 131.4 (14.7) 119.9 (10.9) <0.001***

Note. IRI = Interpersonal Reactivity Index, SD = standard deviation. * p< 0.05; ** p< 0.01. *** p< 0.001

Violin plots illustrating age differences on behavioral measures in each age group are

shown in Figure 4.2. Scores on the UCLA loneliness scale trended lower for older, com-

pared to younger adults (t(218) = 1.88, p = 0.06; Cohen’s d=0.26; Figure 4.2A). Younger

and older adults significantly differed on some, but not all, measures of empathy. Older

adults were less accurate at emotional recognition of others’ facial expressions based on

performance on the RMIE (t(218) = 3.94, p < 0.0001; Cohen’s d=0.54; Figure 4.2F). Older

adults reported greater empathic concern than younger adults (t(218) = -3.00, p = 0.003;

Cohen’s d=0.41; Figure 4.2I). No significant age differences were found on other measures

of empathic functioning (TEQ: t(218) = 0.45, p = 0.65; Cohen’s d=0.06; Perspective Taking:

t(218) = -1.35, p = 0.18; Cohen’s d=0.19; Figure 4.2G-H).

Neuroticism and normative cognition declines may influence the relationship between

loneliness, empathic responding, and RSFC. Therefore, we assessed age-related differ-

ences in neuroticism and global cognition based on the NIH cognitive composite score.We

also assessed whether younger and older adults differed across covariates incorporated
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in subsequent analyses. Older adults scored lower on neuroticism (t(207.79) = 5.32, p

< 0.001; Cohen’s d=0.72; Figure 4.2K) and had lower overall cognitive function (t(210)

= 6.2, p < 0.001; Cohen’s d=0.86; Figure 4.2J). Social networks tend to shrink with age,

and evidence from longitudinal work has found that objective social isolation may con-

found the effects of loneliness among older adults (Steptoe et al., 2013). To determine

whether such differences were present within our sample, we compared the network

sizes between younger and older adults and found no age difference (t(166) = 1.42, p =

0.16; Cohen’s d=0.22; Figure 4.2B). We also included measures of perceived social sup-

port and friendship to assess the quality of social relationships participants felt they had

access to. Older adults reported greater perceived emotional support (t(215) = 2.45, p =

0.02; Cohen’s d=0.34; Figure 4.2D) and friendship (t(215) = 2.83, p = 0.01; Cohen’s d=0.39;

Figure 4.2E), but no significant differences were found for instrumental support (t(215) =

-1.08, p = 0.28; Cohen’s d=0.15; Figure 4.2C).

Next, we assessed the association among all behavioral variables across the full sample

(see Table 4.6.1). Scores on the UCLA loneliness scale correlated negatively with per-

spective taking, empathic concern, social network size, instrumental support, emotional

support, friendship. Scores on the UCLA loneliness scale were positively associated with

neuroticism and cognitive function. Accuracy on the RMIE was not significantly asso-

ciated with loneliness or other empathy subdomain measures. RMIE accuracy in this

sample was positively correlated with emotional support and cognitive function. The

TEQ was correlated with perspective taking and empathic concern subscales of the IRI as

well as with participant social network size. Empathic concern was positively correlated

with perspective taking, emotional support, and friendship, and negatively associated

with neuroticism and cognitive function. Social network size was positively correlated

with friendship. Emotional support was positively with friendship. Neuroticism was

negatively correlated with emotional support and friendship, and contrary to expecta-

tion, positively correlated with global cognitive function.
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Table 4.2: Caption. Group comparison on behavioral measures. Violin plots showing the

distribution of behavioral scores in younger and older adults for (A) loneliness, (B) social

network size, (C-D) social support, (E) friendship, (F-I) empathic responding measures,

(J) global cognitive function, (K) and neuroticism. For comparisons on behavioral meas-

ures of interest (loneliness and empathic responding), although self-reported loneliness

was similar among age groups, significant age-related differences can be observed for

task-based performance of emotional recognition and in self-reported empathic concern.

RMIE= Reading the Mind in the Eyes Task; TEQ= Toronto Empathy Questionnaire. **

indicates p < 0.01. *** indicates p < 0.001.
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Table 4.2: Descriptive data (mean and standard deviations) and inferential statistics for behavioral measures in younger

and older adults.

1 2 3 4 5 6 7 8 9 10 11 12

1. Loneliness -

2. RMIE 0.07 -

3. TEQ -0.12 0.14 -

4. IRI Perspective Taking -0.16* 0.06 0.23** -

5. IRI Empathic Concern -0.20* 0 0.45*** 0.42*** -

6. Social Network Size -0.21** 0.02 0.24** 0.1 0.20* -

7. Instrumental Support -0.31*** -0.02 0.02 0.04 0.03 -0.02 -

8. Emotional Support -0.56*** 0.21** 0.11 0.16* 0.06 0.01 0.40*** -

9. Friendship -0.68*** 0.06 0.11 0.20* 0.08 0.26** 0.25** 0.59*** -

10. Neuroticism 0.46*** 0.11 0.08 -0.34*** -0.19* 0.01 -0.12 -0.31*** -0.27*** -

11. Education -0.1 -0.04 -0.06 -0.03 0.14 -0.01 0.13 -0.07 -0.12 -0.06 -

12. Cognition Composite Score 0.18* 0.40*** 0.07 -0.04 -0.15 0.06 -0.15 -0.14 -0.05 0.29*** -0.01 0.18

Note: RMIE= Reading the Mind in the Eyes Task; TEQ= Toronto Empathy Questionnaire. Social Network Size, Neuroticism, Education, and Cognition Composite Score are included as

covariates in analyses.

* indicates p < 0.05. ** indicates p < 0.01. *** indicates p < 0.001.
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4.6.2 Behavioral associations between loneliness and empathic respond-

ing in younger and older adults

Our previous results showed significant age differences on some aspects of empathic re-

sponding. We therefore examined the association between loneliness and empathy meas-

ures in both younger and older adults separately (controlling for gender, site, education,

neuroticism, and global cognitive function). The partial correlations between the gold-

standard UCLA loneliness scale and the four measures of empathic responding are shown

in Supplementary Table 4.1 for both age groups. In younger adults, loneliness was not

significantly correlated with any empathic responding measures. In contrast, loneliness

in older adults was significantly and negatively associated with TEQ, perspective taking

and empathic concern, but not accuracy on the RMIE task. Two additional partial correl-

ation correlations were performed to assess the influence of social network quantity and

quality on the behavioral associations observed in younger and older adult (Supplement-

ary Table 4.S1B. Although not all participants in the cohort completed the objective social

network size measure, we reanalyzed the associations between loneliness and empathic

responding by including social network size as a covariate and found that no significant

associations remained (Supplementary Table 4.S1C). However, when we included instru-

mental support, emotional support, and friendship as proxy measures of social relation-

ship quality loneliness across the full sample was significantly correlated with accuracy

on the RMIE while all remaining measures of empathic functioning were no longer signi-

ficant (Supplementary Table 4.S1D).

4.6.3 RSFC associations with loneliness and empathic responding in

younger and older adults

Next, we implemented a data-driven multivariate approach to identify patterns of RSFC

related to loneliness and empathic responding in younger and older adults (Figure 4.1.

RSFC was examined among the visual, dorsal attention, ventral attention, limbic, fron-
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toparietal, and default networks. Two significant LVs capturing distinct RSFC patterns

reflecting age-related differences and similarities in social behavior were observed. A

scree plot showing the covariance explained for all LVs is shown in Supplementary Fig-

ure 4.S3. Detailed results examining the impact of social relationship quantity and quality

on brain-behavior associations identified by each LV are provided in Supplementary Res-

ults 4.S1.

Age differences in RSFC related to loneliness

The first LV revealed a pattern of RSFC that dissociated younger and older adult RSFC

associated with loneliness (p = 0.04; 26.02% covariance explained; Figure 4.3). Addition-

ally, self-reported empathy covaried in both groups with a pattern of RSFC observed for

loneliness in young adults. No reliable relationship between emotional recognition on

the RMIE task and RSFC was found in either age group. To assess the specificity of the

brain-behavior correlations in each group, we performed a partial correlation analysis

controlling for the effects of gender, site, social network size, neuroticism, and cognitive

function on participants’ brain scores. Figure 4.3B-F depicts scatterplots of the relation-

ship between participant brains scores, representing the weighted values of the RSFC

pattern of the LV controlling for covariates and all five behavioral measures. Results in-

dicate that significant brain-behavior correlations for LV1 were robust, as they remained

significant after controlling for covariates in both age groups (see Supplementary Table

4.S2 for statistical results).

The contribution of each network to the pattern of RSFC of LV1 is shown in Figure 4.3G

for positive (Figure 4.3H) and negative (Figure 4.3I) associations with RSFC. The most

notable feature that emerged was a dissociation between connectivity of the visual net-

work and heteromodal association regions. This dissociation reflects the age interaction

in loneliness on RSFC. In younger adults, higher loneliness was associated with greater

connectivity of the visual network with the ventral attention, frontoparietal control, and

default networks, as well as greater limbic to ventral attention connectivity (Figure 4.3H).
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This pattern of RSFC was also associated with self-reported empathy (TEQ, perspective

taking, and empathy) in both age groups. In contrast, higher loneliness in older adults

was associated with more intra-network RSFC of attention, limbic, frontoparietal, and de-

fault networks, as well as greater RSFC between dorsal and ventral attention, and default

and limbic networks (Figure 4.3I).
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Table 4.3: Caption. PLS analysis of brain-behavior covariance for LV1. (A) Displays the

correlation between behavioral loneliness, empathic responding measures, and RSFC in

younger and older adults. Error bars show 95% confidence intervals determined by boot-

strap resampling. Scatterplots in panels B-F show correlations between participant brain

scores and behavioral measures controlling for age, site, gender, education, neuroticism,

and cognition as a function of each behavioral measure. (G) Correlation matrix of the

reliable pairwise functional connections associated with behavior. The matrix bootstrap

ratios are thresholded at ± 2 to 3. Network-level contributions to the positive (H) and

negative (I) connectivity pattern for LV1: Top matrices show the averaged squared sa-

lience weights, which reflects a summary of the connectivity pattern; bottom matrices

show significant network contribution estimated using permutation testing on the correl-

ation matrix in (G). Behaviors that correlate positively with the pattern are represented in

warm colors, and negative brain-behavior correlations in cool colors.
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RSFC related to subdomains of empathic responding

A second significant pattern revealed shared and diverging associations related to vari-

ous facets of empathic responding (p < 0.01; 16.53% covariance explained; Figure 4.4).

The brain-behavioral correlations for both groups are shown in Figure 4.4A. Across both

age groups, better performance on emotional recognition on the RMIE task correlated

positively with greater intra- and inter-network RSFC among regions in heteromodal as-

sociation cortex (Figure 4.4G). This pattern was particularly prominent within the dorsal

attention, limbic, frontoparietal, and default networks, and between default to limbic net-

works and frontoparietal to dorsal attention networks (Figure 4.4H). LV2 also captured

a RSFC pattern of age group differences in the relationship between RSFC and all em-

pathic responding measures. Younger adults with higher scores on the TEQ, perspective

taking, and empathic concern showed strong intra-network connectivity of the visual net-

work and connectivity between the visual network with the other five networks (Figure

4.4I). No significant associations between RSFC and these three self-reports measures of

empathic responding were found in older adults. When controlling for covariates of no

interest, significant brain-behavior correlations remained in younger adults for TEQ, per-

spective taking, and empathic concern (Supplementary Table 4.S2). For older adults, a

significant positive brain-behavior correlation emerged for perspective taking. Further-

more, when controlling for social network size an additional positive brain-behavior cor-

relation emerged for empathic concern in older adults. Scatterplots of the relationship

between the corrected brain scores and each behavioral measure can be found in (Figure

4.4B-F).
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Table 4.4: Caption. PLS analysis of brain-behavior covariance for LV2. (A) Displays the

correlation between behavioral loneliness, empathic responding, and RSFC in younger

and older adults. Error bars show 95% confidence intervals determined by bootstrap

through bootstrap resampling. (B-F) Scatterplots in panels B-F show correlations between

participant brain scores and behavioral measures controlling for age, site, gender, educa-

tion, neuroticism, and cognition as a function of each behavioral measure. (G) Correlation

matrix of the reliable pairwise functional connections associated with behavior. The mat-

rix bootstrap ratios are thresholded at ± 2 to 3. Network-level contributions to the pos-

itive (H) and negative (I) connectivity pattern for LV1: Top matrices show the averaged

squared salience weights, which reflects a summary of the connectivity pattern; bottom

matrices show significant network contribution estimated using permutation testing on

the correlation matrix in (G). Behaviors that correlate positively with the pattern are rep-

resented in warm colors and negative brain-behavior correlations in cool colors.

129



4.6.4 Cross-validation of PLS results

To account for overfitting from our PLS analysis, we conducted a second analysis to assess

the stability of the identified patterns (see Methods for more details). A 5-fold cross-

validation was performed on the two LVs by correlating the RSFC-behavior associations

of each LV in the training set and calculating the mean correlation across folds. The mean

correlation was strongly correlated (r = 0.54). RSFC-behavior correlations in the test set

representing 20% of the sample for the test set were lower but remained significantly

correlated across fold (r = 0.19; p = 0.003), suggesting that PLS LVs estimated from train

data were stable in the testing set.

4.7 Discussion

We explored the relationship between loneliness, empathic responding, and RSFC in

younger and older adults to delineate differences in sociality and brain function asso-

ciations. Older adults reported feeling less lonely and expressed greater self-reported

empathy. However, they scored lower on a performance-based measure of emotional re-

cognition (RMIE). Negative associations between loneliness and empathy were observed

across the lifespan, with more robust associations detected for older versus younger adults.

Predicted age differences were observed in the association between loneliness, empathic

responding, and RSFC. Brain and behavioral associations did not differ for loneliness

and empathy in younger adults. Positive associations were observed for both aspects

of sociality and RSFC between visual regions and spatially distributed brain systems.

Older adults showed a divergence in RSFC associations between loneliness and empathy.

Higher self-reported loneliness in older adults was associated with greater RSFC within

heteromodal association networks and between attention (dorsal and ventral) and the

default and frontoparietal and limbic networks. In contrast, and consistent with younger

adults, higher self-reported empathy for older adults was associated with greater visual

network connectivity to the cortex. These findings adjudicate previous reports (Mwilambwe-
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Tshilobo et al., 2019; Spreng et al., 2020) and reveal that sociality and RSFC associations

differ for young and older adults. Our findings also show that age differences are spe-

cific to loneliness and involve cortical association networks related to internally-directed

cognition and socioemotional processing.

4.7.1 Age differences in RSFC related to loneliness

We observed a difference in the relationship between RSFC and loneliness between younger

and older adults. Integration of visual and association networks was related to higher

loneliness in young. In contrast, higher loneliness in older adults was marked by lower

RSFC of visual regions and greater intra- and inter-network RSFC among higher-order

association networks. These findings support our hypothesis that age-related differences

in the association between loneliness and brain function reflect a shift from externally- to

internally-oriented processing regions, reconciling previous reports (Mwilambwe-Tshilobo

et al., 2019; Spreng et al., 2020). Importantly, no shared pattern relating loneliness to

RSFC was observed between age groups, suggesting a qualitatively different pattern in

the neural basis of loneliness across the lifespan. Although we could not test this dir-

ectly, we suggest that these differences reflect a shift in the perception and experience of

loneliness into older age.

In younger adults, integration of visual and association networks may reflect increased

social perception demands to monitor for threatening social cues or seek new opportunit-

ies for social connection (J. Cacioppo & Hawkley, 2009). In contrast, for older adults, func-

tional segregation of the visual network and increased integration within and between

higher-order association networks related to loneliness may reflect a shift towards more

internally-directed processing (cf. Spreng et al., 2020), consistent with an age-related

shift towards prioritizing socioemotional goals. Instead of searching for new social con-

tacts, older adults have smaller social networks that prioritize close social connections

(L. Carstensen, 1992). As the pursuit of new social experiences declines with age, lonely

older adults may rely more on reminiscing about past experiences (Ross & Inagaki, 2022)
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or mentalizing about future social engagements (Spreng et al., 2020). Autobiographical

recollection and future thinking are robustly related to the default network and its inter-

actions with other association networks (Andrews-Hanna et al., 2014; Schacter et al., 2012)

which closely converges with the connectivity pattern associated with loneliness in older

but not younger adults in our study. In the context of previous reports (Mwilambwe-

Tshilobo et al., 2019; Spreng et al., 2020), our findings suggest that the experience of loneli-

ness shifts over the adult lifespan. However, given that our study was cross-sectional, an

alternative explanation for the age differences found could be due to older adults exper-

iencing loneliness more chronically than younger adults. Future studies are necessary to

examine the experience of loneliness and associated cognitive, social, and neural ante-

cedents and sequelae into older age (Bzdok & Dunbar, 2020; Spreng & Bzdok, 2021).

Another possible explanation for the age differences in RSFC associated with loneli-

ness is that the healthy aging is characterized by brain network dedifferentiation (Chen

et al., 2014; Malagurski et al., 2020; Setton et al., 2022). Dedifferentiation in older adult-

hood may, in part, compensate for functional reorganization of the aging brain (Reuter-

Lorenz Cappell, 2008), although some aspects of dedifferentiation are also associated

with declining brain health, such as the accumulation of white matter hyperintensities

(Kantarovich et al., 2022). However, unlike healthy aging our findings in lonely older

adults indicate greater within-network connectivity in higher-association networks. We

previously reported reduced network modularity associated with loneliness in younger

adults (Mwilambwe-Tshilobo et al., 2019). While speculative, lonely older adults may

compensate for these age and loneliness related functional changes by increasing within-

network connectivity of higher-association networks. Future research would benefit from

disentangling the combined effects of aging and loneliness on brain functional reorganiz-

ation.

Finally, our two earlier studies reported divergent associations between loneliness and

brain function for younger and middle-aged adults. Interestingly, we only partially rep-

licated the findings from our study involving a sizeable middle-aged cohort drawn from
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the UK Biobank ((Spreng et al., 2020). Consistent with Spreng et al. (2020), loneliness

in older adults was related to greater RSFC within the default, frontoparietal control and

limbic networks, and associations between the default and limbic network. Unlike Spreng

et al. (2020), this pattern extended to greater connectivity within and among ventral and

dorsal attention networks in our older adult cohort, indicating that the impact of loneli-

ness on brain function may continue to shift beyond midlife into older age. Our findings

provide further evidence that the UK Biobank, representing a large population-based co-

hort, is a developmentally unique sample (Kiesow et al., 2021) that may not capture brain

and behavioral associations observed in early or late adulthood. Future research includ-

ing an adult lifespan sample is needed to fully characterize differences in loneliness and

brain associations across the broad continuum of adult human development.

4.7.2 Shared RSFC pattern related to empathy across age groups

We observed age-invariant associations between subdomains of empathy and RSFC, char-

acterized by greater interactions within the visual network and connections with ventral

attention, frontoparietal control, and default networks. We did not predict this robust

age-invariant association given limited evidence relating visual network functioning to

empathy (Katsumi et al., 2021; Schurz et al., 2021). We speculate that the dependence

of empathic ability on the perception of social cues (J. Cacioppo & Hawkley, 2009) may

underlie the neural patterns observed here.

Few studies have examined the neural correlates of empathy in aging. Decreased

activation in the insula and anterior/mid-cingulate (core nodes of the ventral attention

network; (Chen et al., 2014; Riva et al., 2018) have been associated with affective em-

pathy in older adults. However, recent work failed to find similar age differences (Ziaei

et al., 2021). More robust age-related brain differences have been observed for cognit-

ive empathy, specifically implicating the dorsal medial prefrontal cortex, a key node of

the default network related to social cognition ((Beadle & de la Vega, 2019; Moran et al.,

2012). Our observations suggest differing age-related trajectories in empathy and loneli-
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ness. The association between empathic functioning and RSFC was age-invariant. In

contrast, the association between loneliness and RSFC differed with age, as we report

here (Figure 3) and in other age cohorts (e.g., Mwilambwe-Tshilobo et al., 2019; Spreng et

al., 2020).

4.7.3 Differences in RSFC across dimensions of empathic responding

We included performance-based emotional recognition (RMIE) and self-reported trait em-

pathy measures, allowing us to examine how these different expressions of empathic re-

sponding relate to RSFC (Ziaei et al., 2021). As revealed in the second LV (Figure 4),

these two aspects of empathic responding are associated with divergent neurocognitive

systems, consistent with previous reports that empathic responding encompasses affect-

ive and cognitive processes (Christov-Moore et al., 2020; Schurz et al., 2021). Specifically,

we identified an age-invariant difference in the relationship between emotion recogni-

tion ability using the RMIE task and self-reported trait empathy measures. Younger and

older adults shared a common RSFC pattern associated with better performance on the

RMIE characterized by greater intra- and inter-network connectivity of association net-

works. In contrast, self-reported trait empathy measures in younger adults were associ-

ated with greater visual network connectivity with the rest of the brain. This divergence

in intrinsic network connectivity patterns may reflect functional organizational features

of brain networks that enable specialized and flexible social cognitive functioning. Recent

work on brain network interactions related to social cognitive functioning by Schurz et al.

(2020) proposes that differences in network segregation and integration may account for

differences in connectivity patterns across theory of mind and empathy tasks. Specific-

ally, interactions between the default network and attention and frontoparietal networks.

However, further evidence is needed to disambiguate differences in network interactions

underlying task versus trait-based measures of empathic responding.
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4.7.4 Behavioral associations between loneliness and empathy

Finally, while not a central aim of the current study, our behavioral findings confirmed

previous reports of an inverse association between loneliness and empathy (Nakagawa

et al., 2015) observed in younger and older adults (Beadle et al., 2012). While we used a

different self-report measure to assess affective and cognitive aspects of empathy (TEQ

versus Empathy Quotient), we also observed a negative association across the entire

sample. However, when we examined the relationship between loneliness and subdo-

mains of empathic responding separately in each age group, reliable associations were

only observed for older adults on self-report measures assessing the affective features

of empathy. This finding may reflect shifts in motivational goals that occur as people

age. Socioemotional selectivity theory states that socioemotional goals become salient for

older adults (L. L. Carstensen, 2006). This change in goal hierarchies in later life shifts cog-

nitive resources towards emotional regulation to meet heightened socioemotional needs

(Mather, 2016; Mather & Carstensen, 2005). Thus, the relationship between loneliness

and empathy may be heightened in older adulthood, reflecting the importance of main-

taining adaptive socioemotional functioning in late-life development. Our results further

underscore this point by demonstrating that aspects of relationship quality are important

factors to consider when investigating age differences related to loneliness. We show that

loneliness was inversely related to the quality of social relationships, and that controlling

for social support and friendship attenuated the association between loneliness and RSFC

in younger adults, but not older adults.

4.7.5 Conclusion

Loneliness is a modifiable risk factor associated with various health problems in older

adulthood (Ong et al., 2016). Further, the experience of loneliness is negatively related

to empathic responding, which is necessary for fostering and maintaining close relation-

ships (Morelli et al., 2017), essential for well-being (Beadle & de la Vega, 2019), and critical
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for increasing personal importance in later life (L. Carstensen, 1992). Here we examined

associations between these essential dimensions of sociality, brain function, and differ-

ences with age. Our findings revealed that the negative association between loneliness

and empathy, observable across the lifespan, was greater in older adults. While longitud-

inal studies are needed to determine causal associations, it is possible that experiencing

loneliness in later life may precipitate a cascade of adverse changes in social functioning

that could exacerbate feelings of social isolation. We also identified a pattern of age dif-

ferences in brain function that is differentially related to loneliness and empathy in older,

but not younger, adults. Extending our previous work in young (Mwilambwe-Tshilobo

et al., 2019) and middle-aged (Spreng et al., 2020) cohorts, the current results demonstrate

that loneliness impacts different neurocognitive systems across the adult lifespan. Early

theoretical accounts implicating loneliness in disordered social perception (J. Cacioppo &

Hawkley, 2009) may not fully capture the experience of loneliness in later life. Lower mo-

tivation to form new social bonds and access to a larger store of lived social experiences

may shift the impact of loneliness towards more internally-directed cognitive processes

and associated neural networks, as older adults mentalize and reminiscence to fulfill un-

met social desires. Whether and how such a shift may precipitate the adverse cognitive

sequelae associated with loneliness in later life is an important direction for future re-

search (Bzdok & Dunbar, 2020; Spreng & Bzdok, 2021).
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4.12 Supplemental Results

Behavioral and RSFC associations controlling for quantity and quality of social rela-

tionships

There is a possibility that aspects of social relationship quantity and quality may differ-

entially impact the effects of loneliness across age groups. Therefore, we wanted to ex-

amine the impact of objective and subjective characteristics of social networks in younger

and older adults. Two separate partial correlation analyses were performed using social

network size (quantity) and subjective perception of social support and friendship were

included as additional covariates (quality) as additional covariates for each LV. For LV1,

partial correlations between the PLS brain scores and behavioral measures remain signi-

ficant when social network size was included as a covariate (top section of Supplementary

Table 4.S3). When measures of relationship quality were included as covariates, all brain-

behavior associations remained significant except for the correlation between RSFC and

loneliness in younger adults which was trending (pr = 0.07; top section of Supplement-

ary Table 4.S4). For LV2, when controlling for social network size an additional positive

brain-behavior correlation emerged for empathic concern in older adults (bottom section

of Supplementary Table 4.S3). When social support and friendship measures were in-

cluded as covariates only perspective taking remained significant from the primary PLS

results. However, the brain score- RMIE association became significant (bottom section

of Supplementary Table 4.S3).

Characterizing associations between RSFC, loneliness, and empathic functioning

The RSFC data used in the primary PLS results focused on six networks: visual, dorsal

attention, ventral attention, limbic, frontoparietal control, and default. To prove a com-

prehensive assessment of the PLS results using whole-brain RSFC, we included the so-
1To account for the possibility that neuroticism may confound the age effects observed in our PLS ana-

lysis we ran the correlations excluding neuroticism. The results shown here remained consistent.
2Results remained significant when excluding neuroticism demonstrating that the age effects are not

confounded by neuroticism.
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Table 4.S1: Correlation of UCLA loneliness with empathic responding measures in

younger and older adults

Table 1A
Empathy Measure Younger Adults (n=128) Older Adults (n=92) Full Sample (n=220)
RMIE 0.05 (0.60) [-0.12, 0.22] 0.07 (0.5) [-0.13, 0.27] 0.07 (0.41) [-0.09, 0.22]
TEQ -0.03 (0.67) [-0.12, 0.14] -0.27 (0.009)* [-0.45, -0.07] -0.12 (0.14) [-0.27, 0.04]
Perspective Taking-0.07 (0.44) [-0.24, 0.11] -0.31 (0.003)* [-0.48, -0.11] -0.16 (0.04)* [-0.31, -0.01]
Empathic Concern -0.03 (0.73) [-0.2, 0.14] -0.33 (0.001)* [-0.5, -0.14] -0.20 (0.01)* [-0.34, -0.05]

Table 1B
Empathy Measure Younger Adults (n=118) Older Adults (n=87) Full Sample (n=205)
RMIE 0.10 (0.30) [-0.09, 0.28] 0.10 (0.39) [-0.12, 0.31] 0.08 (0.25) [-0.6, 0.22]
TEQ -0.08 (0.40) [-0.26, 0.11] -0.22 (0.05)* [-0.42, -0.0] -0.15 (0.04)* [-0.28, -0.01]
Perspective Taking 0.04 (0.65) [-0.14, 0.23] -0.22 (0.05) [-0.48, 0.0] -0.05 (0.46) [-0.19, 0.09]
Empathic Concern-0.03 (0.73) [-0.22, 0.15] -0.22 (0.05)* [-0.42, -0.0] -0.09 (0.19) [-0.23, 0.05]

Table 1C

Empathy Measure Younger Adults (n=89) Older Adults (n=70) Full Sample (n=159)
RMIE 0.05 (0.65) [-0.17, 0.26] 0.08 (0.55) [-0.17, 0.32] 0.06 (0.46) [-0.1, 0.22]
TEQ -0.03 (0.82) [-0.24, 0.19] -0.17 (0.19) [-0.39, 0.08] -0.09 (0.25) [-0.25, 0.07]
Perspective Taking 0.16 (0.14) [-0.05, 0.37] -0.18 (0.17) [-0.4, 0.07] 0.03 (0.72) [-0.13, 0.19]
Empathic Concern 0.04 (0.74) [-0.18, 0.25] -0.19 (0.13) [-0.42, -0.06] -0.05 (0.58) [-0.2, 0.11]

Table 1D
Empathy Measure Younger Adults (n=117) Older Adults (n=86) Full Sample (n=203)
RMIE 0.15 (0.13) [-0.04, 0.33] 0.22 (0.05) [-0.0, 0.42] 0.15 (0.04) [0.1, 0.28]
TEQ -0.01 (0.94) [-0.2, 0.18] -0.17 (0.13) [-0.38, 0.05] -0.10 (0.17) [-0.24, 0.04]
Perspective Taking 0.11 (0.27) [-0.08, 0.29] -0.08 (0.50) [-0.29, 0.15] 0.05 (0.49) [-0.09, 0.19]
Empathic Concern -0.12 (0.20) [-0.3, 0.07] -0.07 (0.55) [-0.29, 0.16] -0.07 (0.31) [-0.21, 0.07]

Note: Correlation and partial correlation values between UCLA loneliness and empathic functioning in
younger and older adults. p-values in parentheses and 95% confidence intervals in square brackets. Table
1A: Full product-moment correlations within the young and older adult cohorts. Table 1B: Relationship
between UCLA loneliness and empathic responding, controlling for gender, site, education, neuroticism,
and cognitive composite score. Table 1C: Relationship between UCLA loneliness and empathic
responding, controlling for gender, site, education, neuroticism, cognitive composite score and social
network size. Table 1D: Relationships between UCLA loneliness and empathic responding controlling for
gender, site, education, neuroticism, cognitive composite score, instrumental support, emotional support,
and friendship. For the full sample in all Tables 1B-D, age is controlled for. Note the lower sample size with
increasing number of covariates due to missing data. TEQ= Toronto Empathy Questionnaire; RMIE=
Reading the Mind in the Eyes Task. * p< 0.05; ** p < 0.01. *** p < 0.001

matosensory network. Although the patterns identified were similar to the primary PLS

results, only LV2 remained significant (LV1: p = 0.12; 25.06% covariance explained ; LV2:

p = 0.01; 16.22% covariance explained).
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Table 4.S2: Correlation between PLS brain scores and behavioral measures with covari-

ates

Group Behavior n r CI95% p-value1

LV 1
Younger Adults Loneliness 118 0.2 [0.01, 0.37] 0.04
Younger Adults RMIE 118 0.14 [-0.04, 0.32] 0.13
Younger Adults TEQ 118 0.36 [0.19, 0.51] <0.001
Younger Adults PT 118 0.33 [0.15, 0.49] <0.001
Younger Adults EC 118 0.26 [0.08, 0.43] 0.01
Older Adults Loneliness 87 -0.32 [-0.51, -0.11] <0.001
Older Adults RMIE 87 0.14 [-0.08, 0.35] 0.21
Older Adults TEQ 87 0.63 [0.47, 0.74] <0.001
Older Adults PT 87 0.66 [0.52, 0.77] <0.001
Older Adults EC 87 0.77 [0.67, 0.85] <0.001

LV2
Younger Adults Loneliness 118 -0.11 [-0.29, 0.07] 0.23
Younger Adults RMIE 118 0.06 [-0.13, 0.24] 0.55
Younger Adults TEQ 118 -0.56 [-0.68, -0.42] <0.001
Younger Adults PT 118 -0.55 [-0.67, -0.41] <0.001
Younger Adults EC 118 -0.51 [-0.63, -0.36] <0.001
Older Adults Loneliness 87 -0.09 [-0.3, 0.13] 0.42
Older Adults RMIE 87 0.48 [0.29, 0.63] <0.001
Older Adults TEQ 87 -0.01 [-0.22, 0.21] 0.96
Older Adults PT 87 0.37 [0.17, 0.55] <0.001
Older Adults EC 87 0.15 [-0.07, 0.36] 0.17

Note: Covariates include age, gender, site, education, neuroticism, and cognition composite score.
Participants with missing data on one more of the covariates were omitted from the brain-behavior
correlation analysis. TEQ= Toronto Empathy Questionnaire; RMIE= Reading the Mind in the Eyes Task;
PT = Perspective Taking; EC= Empathic Concern.

Impact of Age on RSFC

The PLS results captured an age-dependent differences in association between loneliness

and RSFC for LV1, and an age-independent association between subdomains of empathy

and RSFC. Although we control for age in the partial correlations between RSFC and

behaviors, we wanted to rule out the possibility that this result was not due to age loading

strongly onto LV1. To assess this, age was partialled out from the original X (RSFC) and Y

(behavior) matrices and repeated the PLS analysis. Similar to the initial analysis, LV1 was

significant and captured an age difference in RSFC related to loneliness between younger

and older adults (LV1: p = 0.03; explained 25.5% of the covariance; Supplementary Figure

4.S5). LV2 was also significant and captured an age-independent association between
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Table 4.S3: Correlation between PLS brain scores and behavioral measures with covari-

ates (including social network size)

Group Behavior n r CI95% p-value2

LV 1
Younger Adults Loneliness 89 0.28 [0.07, 0.47] 0.01
Younger Adults RMIE 89 0.19 [-0.03 , 0.39] 0.09
Younger Adults TEQ 89 0.25 [0.04, 0.45] 0.02
Younger Adults PT 89 0.34 [0.13, 0.52] <0.001
Younger Adults EC 89 0.19 [-0.03, 0.39] 0.09
Older Adults Loneliness 70 -0.30 [-0.51, -0.06] 0.02
Older Adults RMIE 70 0.19 [-0.06, 0.42] 0.14
Older Adults TEQ 70 0.59 [0.40, 0.73] <0.001
Older Adults PT 70 0.68 [0.52, 0.79] <0.001
Older Adults EC 70 0.77 [0.64, 0.85] <0.001

LV2
Younger Adults Loneliness 89 -0.19 [-0.39, 0.03] 0.08
Younger Adults RMIE 89 0.04 [-0.18, 0.26] 0.72
Younger Adults TEQ 89 -0.58 [-0.71, -0.41] <0.001
Younger Adults PT 89 -0.54 [-0.68, -0.37] <0.001
Younger Adults EC 89 -0.47 [-0.63, -0.29] <0.001
Older Adults Loneliness 70 -0.13 [-0.37, 0.12] 0.3
Older Adults RMIE 70 0.51 [0.30, 0.67] <0.001
Older Adults TEQ 70 0.11 [-0.14, 0.35] 0.39
Older Adults PT 70 0.44 [0.22, 0.62] <0.001
Older Adults EC 70 0.34 [0.10, 0.54] 0.01

Note: Covariates include age, gender, site, education, neuroticism, cognition composite score, and social
network size. TEQ= Toronto Empathy Questionnaire; RMIE= Reading the Mind in the Eyes Task; PT =
Perspective Taking; EC= Empathic Concern.

RSFC and empathy (LV2: p = 0.006; 17.92% covariance explained; Supplementary Figure

4.S6).

Brain-behavior correlations remained largely unchanged for both LVs. The most not-

able differences from the original results emerged for LV1 at the network level (Supple-

mentary Figure 4.S5 H-I). The positive expression of LV1 was driven solely by the con-

nectivity of the visual network, and the negative expression of LV included an additional

network interaction between the frontoparietal and dorsal attention networks. The rela-

tionship between loneliness and RSFC was still age-independent; however, unlike in the

primary analysis, the correlation for older adults was reliable. Supplementary Figure 4.S7

shows the covariance of LV1 and LV2 before and after partialling age from the X and Y

matrices. If X and Y were dependent on age, we might see a significant decrease in the
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Table 4.S4: Correlation between PLS brain scores and behavioral measures with covari-

ates (including social network size)

Group Behavior n r CI95% p-value
LV 1

Younger Adults Loneliness 117 0.18 [-0.01, 0.35] 0.07
Younger Adults RMIE 117 0.14 [-0.05, 0.32] 0.16
Younger Adults TEQ 117 0.38 [0.20, 0.53] <.001
Younger Adults PT 117 0.34 [0.16, 0.49] <.001
Younger Adults EC 117 0.26 [0.07, 0.43] 0.01
Older Adults Loneliness 86.0 -0.25 [-0.45, -0.03] 0.03
Older Adults RMIE 86.0 0.10 [-0.13, 0.32] 0.39
Older Adults TEQ 86.0 0.62 [0.46, 0.74] <.001
Older Adults PT 86.0 0.65 [0.50, 0.76] <.001
Older Adults EC 86.0 0.76 [0.65, 0.84] <.001

LV2
Younger Adults Loneliness 117 -0.17 [-0.35, 0.02] 0.07
Younger Adults RMIE 117 0.08 [-0.11, 0.26] 0.43
Younger Adults TEQ 117 -0.56 [-0.68, -0.42] <.001
Younger Adults PT 117 -0.55 [-0.67, -0.40] <.001
Younger Adults EC 117 -0.52 [-0.64, -0.37] <.001
Older Adults Loneliness 86.0 0.02 [-0.21, 0.24] 0.88
Older Adults RMIE 86.0 0.46 [0.26, 0.62] <.001
Older Adults TEQ 86.0 -0.04 [-0.26, 0.19] 0.73
Older Adults PT 86.0 0.33 [0.11, 0.51] <.001
Older Adults EC 86.0 0.11 [-0.11, 0.33] 0.32

Note: Impact of relationship quality on RSFC-behavior associations. Covariates include age, gender, site,
education, neuroticism, cognition composite score, emotional support, instrumental support, and
friendship. The last three covariates were included as measures of participants subjective perception of
the social support and companionship available to them. The PLS results remain significant in both LVs
except for the correlation between PLS brain scores and loneliness in younger adults (LV1). TEQ= Toronto
Empathy Questionnaire; RMIE= Reading the Mind in the Eyes Task; PT = Perspective Taking; EC=
Empathic Concern.

effect size for LV1 after partialling out age. We did not observe this in, suggesting that

our primary for LV2 are not due to age strongly loading to LV1.

Impact of motion on RSFC

The participants included in the present study were part of a large cohort (n = 301), for

which analyses related to the impact of motion on RSFC indicate residual motion effects

(Setton Mwilambwe-Tshilobo et al., 2022). Using mean FD calculated from the middle-

echo (TE2; before processing), they reported no age differences or interactions with mo-

tion when assessing the RSFC data of younger and older adults. To account for the possib-
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Supplemental Material 4.S1: (A) Displays the correlation between behavioral loneliness,

empathic responding measures, and functional connectivity in younger and older adults.

Error bars show 95% confidence intervals determined by bootstrap through bootstrap res-

ampling. Scatterplots in panels B-F show participant brain scores corrected for age, site,

gender, education, neuroticism, and cognition as a function of each behavioral measures.

Whole-brain functional networks are based on Yeo 7-network solution. (G) Correlation

matrix of the reliable pairwise functional connections associated with behavior. The mat-

rix bootstrap ratios are thresholded at ± 2 to 3. Significant contributions of network pairs

to the positive (H) and negative (I) connectivity patterns for LV1. Behaviors that correlate

positively with the pattern are represented in in red, negative brain-behavior correlations

in blue. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral atten-

tion, LIM = limbic, FPC = frontoparietal control, DN = default.

ility that residual motion effects did not confound the main findings in the current subset

of participants, we first conducted an ANOVA to test for age group and site differences

in FD, controlling for site, gender, education, neuroticism, and cognition (Supplementary
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Supplemental Material 4.S2: (A) Displays the correlation between behavioral loneliness,

empathy responding, and functional connectivity in younger and older adults. Error bars

show 95% confidence intervals determined by bootstrap through bootstrap resampling.

Scatterplots in panels B-F show participant brain scores corrected for age, site, gender,

education, neuroticism, and cognition as a function of each behavioral measures. Whole-

brain functional networks are based on Yeo 7-network solution. (G) Correlation matrix of

the reliable pairwise functional connections associated with behavior. The matrix boot-

strap ratios are thresholded at ± 2 to 3. Significant contributions of network pairs to the

positive (H) and negative (I) connectivity patterns for LV2. Behaviors that correlate pos-

itively with the pattern are represented in in red, negative brain-behavior correlations in

blue. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral atten-

tion, LIM = limbic, FPC = frontoparietal control, DN = default.

Table 4.S5). Results found a main effects of age group (F(1,216)=13.28, p < .001, p2=.06)

and site (F(1,216)=1.39 p = .24, p2= .01), but no interaction (F(1,216)=1.52, p = .22, p2= .01).

Follow up t-tests revealed that older adults had higher FD than younger adults (T(219)=
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Supplemental Material 4.S3: Scree plot of covariance explained for each latent variable

from the partial least-squares (PLS) analysis. Latent variables with covariance values

above the dotted line significantly captured the relationship between loneliness and as-

pects of empathic responding in younger and older adults. The first latent variable ex-

plains 26.02% of the variance and the second latent variable explains 16.53%.

-39.89, p < .001, [-1.35, -1.24], Cohen’s d = 3.7). Next, we conducted a PLS analysis ex-

amining the association between RSFC and FD. Similar to the results reported in the larger

cohort from which participants were drawn (Setton Mwilambwe-Tshilobo et al., 2022), a

significant pattern emerged representing the main effect of motion (LV1: p= 0.02; 57.98%

covariance explained; younger adults r=0.84; older adults r =0.82). In addition, we found

no significant age group or interactions (LV2: p= 0.47; 42.07% covariance explained), in-

dicating that motion was not a confound in the age group differences. Using the PLS

brain scores, we further confirmed that the RSFC pattern that covaried with FD was not

associated with age differences in RSFC by performing a partial correlation controlling

for gender, education, cognition, and site. Partial correlations between whole-brain RSFC

PLS brain scores and FD PLS brain scores were not significant (Supplementary Figure

4.S8).
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Supplemental Material 4.S4: Network contributions for LV1 and LV2 for the primary

PLS analysis expressed as z-scores relative to the permuted null model. The mean contri-

bution is computed for all intra- and inter-network connections. The top row shows the

mean (A) positive and (B) negative RSFC pattern for LV1. The matrices in the bottom row

are the mean (C) positive and (D) negative RSFC patterns for LV2. Higher values indicate

a greater than expected contributions of the network pairs to the respective PLS-derived

RSFC pattern for LV1(Figure 3G) and LV2 (Figure 4G).

Finally, to account for the possibility of residual motion impacting the primary PLS

results with loneliness and empathic functioning, we included mean FD as a covariate

in all analyses, as reported in the main text (Supplementary Table 4.S6). All results held,

suggesting they were robust to any residual motion in the data.

Table 4.S5: ANOVA results for age group and site differences on framewise displacement

Predictor Sum of Squares df Mean Squares F p Partial η2

LV 1
Group 0.04 1 0.040 13.28 <0.001 0.06
Site 0.04 1 0.004 1.39 0.24 0.01
Group x Site 0.04 1 0.004 1.52 0.22 0.01
Error 0.61 216 0.003

Note: Partial η2 indicates partial eta-squared.
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Supplemental Material 4.S5: PLS analysis of covariance between RSFC and behavior

controlling for age for LV1. The covariance pattern captured by LV1 were significant (p

= 0.03) and accounted for 25.5% of the covariance. (A) Displays the correlation between

behavioral measures (loneliness, emotional recognition, and empathic ability) and func-

tional connectivity in younger and older adults. Error bars show 95% confidence intervals

determined by bootstrap resampling. Scatterplots in panels B-F show correlation between

participant brain scores and behavioral measures controlling for site, gender, education,

neuroticism, and cognition. (G) Correlation matrix of the reliable pairwise functional con-

nections associated with behavior. The matrix bootstrap ratios are thresholded at ± 2 to

3. Significant contributions of network pairs to the positive (H) and negative (I) RSFC

patterns for LV1. Behaviors that correlate positively with the pattern are represented in

red, negative brain-behavior correlations in blue.

157



Supplemental Material 4.S6: PLS analysis of covariance between RSFC and behavior

controlling for age in LV2. The covariance pattern captured by LV2 was significant (p =

0.006) and accounted for 17.92% of the covariance. (A) Displays the correlation between

behavioral measures (loneliness, affective theory of mind, and empathic ability) and func-

tional connectivity in younger and older adults. Error bars show 95% confidence intervals

determined by bootstrap resampling. Scatterplots in panels B-F show correlation between

participant brain scores and behavioral measures controlling for site, gender, education,

neuroticism, and cognition. (G) Correlation matrix of the reliable pairwise functional con-

nections associated with behavior. The matrix bootstrap ratios are thresholded at ± 2 to

3. Significant contributions of network pairs to the positive (H) and negative (I) RSFC

patterns for LV1. Behaviors that correlate positively with the pattern are represented in

red, negative brain-behavior correlations in blue.
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Supplemental Material 4.S7: Comparison of latent variable covariance before and after

partialling out age from the PLS input matrices.

Supplemental Material 4.S8: No relationship between whole-brain PLS brain scores and

motion-related PLS brain scores. Framewise displacement (FD) was calculated on the

middle echo (TE2) prior to processing. Scatterplots show age differences in whole-brain

PLS brain scores on the x-axis and motion-related PLS brain scores on the y-axis (from the

six networks included in the primary results) across the (A) full sample, (B) in younger

adults, and (C) in older adults
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Table 4.S6: Correlation between PLS brain scores and behavioral measures controlling

for covariates (including post-processing mean framewise displacement)

Group Behavior n r CI95% p-value
LV 1

Younger Adults Loneliness 118 0.2 [0.01, 0.37] 0.03
Younger Adults RMIE 118 0.14 [-0.05, 0.32] 0.14
Younger Adults TEQ 118 0.36 [0.19, 0.51] <0.001
Younger Adults PT 118 0.33 [0.15, 0.49] <0.001
Younger Adults EC 118 0.26 [0.08, 0.43] 0.005
Older Adults Loneliness 87 -0.32 [-0.51, -0.11] 0.003
Older Adults RMIE 87 0.14 [-0.08, 0.35] 0.21
Older Adults TEQ 87 0.63 [0.47, 0.74] <0.001
Older Adults PT 87 0.67 [0.57, 0.77] <0.001
Older Adults EC 87 0.77 [0.67, 0.85] <0.001

LV2
Younger Adults Loneliness 118 -0.11 [-0.29, 0.08] 0.26
Younger Adults RMIE 118 0.06 [-0.13, 0.24] 0.54
Younger Adults TEQ 118 -0.56 [-0.68, -0.42] <0.001
Younger Adults PT 118 -0.55 [-0.67, -0.40] <0.001
Younger Adults EC 118 -0.51 [-0.63, -0.36] <0.001
Older Adults Loneliness 87 -0.09 [-0.31, 0.13] 0.42
Older Adults RMIE 87 0.48 [0.29, 0.63] <0.001
Older Adults TEQ 87 -0.005 [-0.22, 0.21] 0.96
Older Adults PT 87 0.37 [0.17, 0.55] 0.001
Older Adults EC 87 0.15 [-0.07, 0.36] 0.17

Note: Impact of residual motion on RSFC-behavior associations. Covariates include age, gender, site,
education, neuroticism, cognition composite score, and post-processing mean FD. TEQ= Toronto Empathy
Questionnaire; RMIE= Reading the Mind in the Eyes Task; PT = Perspective Taking; EC= Empathic
Concern.
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Chapter 5

General Discussion

The current thesis consists of three studies aimed at better understanding the impact of

loneliness on the functional network architecture of the brain across the adult lifespan. By

employing advanced network neuroscience methods, we characterized the relationship

between loneliness and brain network interactions at multiple spatial scales in younger

and older adults. The results from these studies provide insight into the neural mech-

anisms underlying the experience of state and trait loneliness. In addition, these results

emphasize that characterizing the complex interactions among brain regions can provide

a more nuanced perspective of how our intrinsic need for social connection influences

brain function. Finally, the current findings demonstrate that individual and age-related

differences in network connectivity can provide additional insight into the neurocognit-

ive processes that support human social interactions. In this chapter, discusses the main

contributions from these studies to the field of social network neuroscience, offer a novel

perspective of the neural basis of loneliness, and suggest future directions to address

some of the questions raised by the findings presented in this thesis.

The study reported in Chapter 2 characterized distributed brain activity and co-activation

patterns during social exclusion using the Cyberball task. Using coordinate-based meta-

analytic approaches, we found that social exclusion reliably engages the ventral anterior

cingulate and posterior cingulate cortex, inferior and superior frontal gyri, posterior in-
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sula, and occipital pole. Contrary to our hypotheses which were grounded in current the-

ories on the neural correlates of social exclusion, we found no reliable activity in the dorsal

anterior cingulate a region previously implicated in physical and social pain. Instead, the

co-activation patterns of reliable brain regions overlapped with the default network and

were associated with social and self-referential cognitive processes. Our findings call into

question the theory of a common neural system for physical pain and the affective re-

sponse to social exclusion. Taken together, the results in Chapter 2 provide new insight

emphasizing the role of the default network in the experience of state loneliness.

In Chapter 3, we implemented a novel analytic pipeline to investigate individual dif-

ferences in the intrinsic functional organization of brain networks related to two psy-

chological constructs related to human sociality–loneliness and meaning in life. In a

large cohort of young adults, we found that loneliness and meaning in life were neg-

atively correlated and that the relationship between them was dissociable when examin-

ing the functional connectivity of the brain. Individuals who reported less loneliness

found life more meaningful and showed greater connectivity between default and limbic

networks. In contrast, individuals with higher levels of loneliness showed greater in-

tegration of higher-association networks with visual, somatomotor, and ventral attention

networks. This connectivity pattern demonstrated novel results linking loneliness with

RSFC between neural networks involved in internally and externally oriented processes.

These findings suggest that being lonely may drive neurocognitive processes that reorient

attentional focus externally to facilitate the detection of negative social cues that charac-

terize trait loneliness.

Finally, Chapter 4 provides preliminary evidence that associations between loneliness

and functional network organization change over the adult lifespan. There is accumu-

lating evidence suggesting that loneliness is associated with an increased rate of cognit-

ive decline among older adults (reviewed in Chapter 1), however, very little is known

about how loneliness influences brain function in the context of aging. Our results sug-

gest that the association between loneliness and network functional organization shifts
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from greater integration of visual regions with higher-order association networks in early

adults to greater integration among higher-order association networks in late adulthood.

While additional work is needed to expand upon these age-related differences in brain

network organization related to loneliness, we hypothesize that these differences may

reflect a shift from externally-oriented processing in younger adults to more internally-

oriented processing in late adulthood.

The three studies in this thesis use network-based approaches to explore associations

between loneliness and functional brain organization across adulthood. In the remaining

subsections of this final chapter, I will discuss the common themes and questions that

have emerged from this work, and highlight potential avenues for future research.

5.1 Reframing the neural account of loneliness

The neural account of loneliness broadly supports the theoretical view that the percep-

tion of social isolation is associated with selective cognitive changes in brain regions im-

plicated in perceptual, affective, attentional, and executive processing of social stimuli.

The three studies in the current thesis provide converging evidence that the predominant

neural account of loneliness does not fully describe the functional brain alterations associ-

ated with loneliness across the adult lifespan. When examining whole-brain or network-

level interactions, we get a different understanding than accounts that target individual

brain regions in isolation. Individual brain regions are fundamental units of a distributed

system of interconnected and interactive parts that collectively give rise to an array of

complex human brain functions (Bassett & Sporns, 2017) The utility of leveraging the net-

work neuroscience approach to address social neuroscience questions is rapidly gaining

traction (see reviews (Falk & Bassett, 2017; Krendl & Betzel, 2022)). The findings reported

in Chapter 2 exemplify the benefits of a network-based approach by demonstrating how

adopting an a priori focus on specific brain regions may result in an incomplete or possibly
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even inaccurate interpretation by overlooking what may be a more reliable coactivation

pattern among brain regions.

Interactions among brain regions also vary considerably across individuals (Kong et

al., 2019; Wang et al., 2015) and with age (Chen et al., 2014; Geerligs et al., 2015; Setton

et al., 2022). The work presented in Chapters 3 and 4 illustrates why considering indi-

vidual and age differences in brain functional connectivity will be critical as research on

the neural correlates of loneliness continues to advance. The study in Chapter 3 adopts

an individualized, whole-brain connectome approach to examine functional connectivity

related to loneliness, characterizing connectivity at three levels: (1) in terms of the pair-

wise interactions, (2) the network-level interactions, and (3) the global-level topological

features. Our individualized connectome-based approach provided broader insight into

how selective cognitive changes that characterize loneliness are reflected in the brain’s

functional organization. Similar to past work examining differences in RSFC related to

loneliness (Layden et al., 2017), we found that loneliness was characterized by altered

connectivity involving the attention and frontoparietal control networks.

Nevertheless, our connectome approach allowed us to capture other aspects of con-

nectivity associated with loneliness that had not previously been reported. In Chapter 3,

these included finding a wide range of changes in connectivity between perceptual and

attention networks with frontoparietal and default networks. Crucially, we found that

loneliness was associated with lower modular organization between default and fronto-

parietal networks with externally-directed networks. These results suggest a reduction in

network specificity needed to support different aspects of cognition and behavior (e.g.,

(Petersen & Sporns, 2015; Wig, 2017). In Chapter 4, diverging connectivity patterns as-

sociated with loneliness and empathic functioning also open up a novel line of research

that could explore whether or how different social contexts influence brain network dy-

namics. Therefore, although some of our results are consistent with the current neural

account of loneliness, they also point to a need to refine the theoretical models of the

effects of loneliness on human social cognition.
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5.2 Future directions

While the current thesis contributed novel findings to the research on the neural correl-

ates of loneliness, there are many questions that still need to be address and theoretical

predictions to be test in future studies. Based on the findings reported here, below are

suggestions for several priorities for future research.

5.2.1 Integrating age into the neural account of loneliness

Age is a critical factor influencing social and brain function, yet most neuroimaging stud-

ies on loneliness focus on young adult populations. In Chapter 4, we report that that

lonely younger and older adults show diverging RSFC patterns, which may, in turn, have

implications on empathic functioning. We suggest that the age differences in brain net-

work RSFC related to loneliness may reflect a shift from externally-direct processes in

young adults, towards upregulation of brain networks associated with internally-directed

cognitive processes in older adults (e.g., mentalizing, perspective-taking, imagining). This

shift may begin in middle adulthood through increased connectivity involving the default

network (Spreng et al., 2020), and then gradually expand to encompass other higher-

order association networks. Critically, the connectivity pattern characterizing loneliness

in older adults does not align with the ETL model of hypervigilance proposed by Cacioppo

et al. (2009). If loneliness in older adults is not driving attentional focus externally, what

may be the reason for such a shift?

Considering aging in the experience of loneliness can help foster a more comprehens-

ive developmental account of loneliness as individuals transition from early adulthood

to late adulthood. Doing so will require drawing from studies and theories from the cog-

nitive aging literature to explore aspects related to neurocognitive aging and account for

how changes in socio-emotional goals contribute to the experience of loneliness, thereby

providing a more accurate characterization of the impact of loneliness on brain function.

Given the socioemotional shift towards prioritizing meaningful and emotionally gratify-
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ing relationships with age (Carstensen, 1992), lonely older adults may engage in more

internally-directed mental processes. In Chapter 4, we speculate that greater reliance on

reminiscing or mentalizing about future social interactions in lonely older adults may

contribute to the shift towards greater internally-directed networks with age. While the

study reported in Chapter 4 was not designed to test predictions about the role of men-

talizing in loneliness directly, there is evidence that neural representation of attachment

figures (mentalizing about a parent or child) is associated with greater activation of cor-

tical midline structures of the default and in the limbic network when perceived closeness

to the attachment figures is low (Laurita et al., 2019). The neural representation of familial

attachment bonds described by Laurita et al. (2019) exemplifies a pattern of activation that

closely matches the network connectivity pattern observed in lonely older adults, where

we showed greater connectivity between the default and limbic.

Implementing a network-based approach across multiple modalities of neuroimaging

data

The studies included in this thesis focused specifically on functional connectivity. How-

ever, anatomical changes associated with loneliness have also been reported (e.g., (Kanai

et al., 2012). Extending this network approach to examine structural connectivity rep-

resents an important next step in the field as the network functional dynamics of the

brain are, in part, constrained by anatomical structure (Honey et al., 2010; Suárez et al.,

2020). Research integrating both functional and structural connectivity related to loneli-

ness could enhance our understanding of age-related differences in the functional con-

nectivity patterns observed in the current study. Future work would also benefit from

incorporating task-based fMRI approaches. In Chapters 3 and 4, we used resting-state

fMRI data to generate the individualized connectomes used to examine brain network

connectivity patterns. Prior work has demonstrated that there is a larger gap in how

the default network represent the self and others in lonely individuals compared to non-

lonely individuals (Courtney & Meyer, 2020). Further, task-based studies may be more
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sensitive in predicting brain-behavior relationships when compared to resting-state func-

tional connectivity (Finn & Bandettini, 2021). Future work should test whether default

network connectivity in lonely and non-lonely individuals differs between young and

older adults. Relatedly, future work should examine the relationship between loneliness

and social exclusion/rejection. Using the Cyberball paradigm described in Chapter 2,

may be particularly useful for exploring differences in network dynamics related to state

and trait loneliness. For example, brain reactivity to social exclusion in lonely and non-

lonely individuals could be used to determine whether there is something inherently dif-

ferent at the neural level between state and trait loneliness.

5.2.2 Implications for health and well-being

Because loneliness has been associated with poor mental and physical health outcomes

(d’Oleire Uquillas et al., 2018; Ong et al., 2016; Shankar et al., 2013; Wilson et al., 2007),

studies that advance our understanding of the impact of loneliness on brain function will

have important implications for addressing public health concerns related to loneliness

and social isolation, and this may be particularly important in older adulthood, where the

implications of loneliness may be even more pronounced. The work presented in Chapter

4 underscores this point. The brain is differentially impacted by loneliness in younger and

older adulthood. However, this study was cross-sectional and only measured loneliness

at one timepoint. To further test that loneliness related changes in network functional

connectivity, future work will need to examine whether the trajectory of these changes in

brain functional connectivity change over time by using longitudinal study designs. The

older adult participants included in our studies were normally aging, without any clinical

indications of non-normative cognitive decline. It would be beneficial to implement this

connectome-based approach to compare healthy versus clinical populations and determ-

ine whether the patterns of connectivity characterizing loneliness influences the trajectory

of neurocognitive aging. Work in our lab has begun exploring these questions (Spreng &
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Bzdok, 2021). Additional research looking at other health outcomes such resilience in

response to different stressors.

Interventions aimed at reducing loneliness (e.g., improving social skills or promot-

ing social connections) have not proved efficacious (Poscia et al., 2018), especially among

older adults. A key limitation to the success of such efforts is that loneliness is a complex

and multidimensional construct. A better understanding of the behavioral and neural re-

lationship between loneliness and factors that promote or facilitate prosociality is critical

to inform more effective strategies. Chapter 3 considers meaning in life, which is a strong

predictor of well-being and inversely related to loneliness. We found that the pattern of

connectivity associated with high meaning in life was negatively correlated with loneli-

ness at the behavioral and neural level. Meaning in life may be a relatively modifiable

factor (Macia et al., 2021), feelings of loneliness can be attenuated by implementing in-

terventions to encourage introspection and foster a sense of purpose. Finally, throughout

this thesis, I stress that the experience of loneliness is specific to the individual. Future

studies should would benefit from taking a targeted approach tailored to the specific de-

terminant of loneliness of each individual. Part of the heterogeneity in loneliness is due

to factors that contribute to diversity among people (e.g., race, ethnic background, sexual

orientation, socioeconomic status). However, this diversity is not reflected within the lit-

erature on social and cognitive neuroscience, and this undoubtedly influences the neural

and behavioral conclusions drawn from these studies. Future work on loneliness would

greatly benefit from the inclusion of underrepresented groups because loneliness is a uni-

versal human experience and to ensure that findings on the neural correlates of loneliness

are more generalizable to the broader population.

5.3 Conclusion

The impact of loneliness on brain function has only recently been the subject of empirical

study. Although much work remains to improve our understanding of the neural basis of
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loneliness, the current neural account of loneliness offers a restrictive scope of processes

that are inherently variable across people. By utilizing network neuroscience methods,

this thesis provides a novel perspective that challenges this one size fits all account. Our

findings characterizing individual and age differences in brain network interactions in

younger and older adults underscore the need for a more flexible framework for under-

standing the neural basis of state and trait loneliness throughout adult life. Each of the

studies included in this thesis investigates questions about how the experience of loneli-

ness impacts brain network interactions and factors that influence our sense of connection

with the external social world at different stages of adulthood. These studies offer a novel

view of the functional organizational features that characterize the neural processes un-

derlying state and trait loneliness. In addition, this work expands on previous neuroima-

ging studies on loneliness by including an older adult cohort and exploring age-related

social cognitive changes that have important implications for social functioning in later

life.
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