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ABSTRACT 

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder that 

accounts for 60-80% of the 50 million dementia cases worldwide. The most widely accepted risk 

factor for developing AD is age. The distinction between aging and AD is particularly crucial during 

the early stages of disease progression since this is when intervention is most likely to be effective. 

However, there is a lack of biological markers capable of identifying early-stage AD, limiting 

opportunities for diagnosis and treatment. Comprehensive characterization of aging and disease 

processes in relevant animal models represents one promising avenue towards developing options 

for diagnosis and treatment. In particular, longitudinal preclinical studies that employ techniques 

with high translational potential to clinical studies, such as non-invasive neuroimaging techniques, 

would enable identification of homologous biomarkers across species.  

The content of this thesis describes the application of whole-brain MRI and localized MRS 

to investigate age- and sex-related changes in neurochemistry and neuroanatomy in a commonly 

used rat model of aging (the Fischer 344 rat), and the subsequent integration of these techniques 

with behavioural testing in a transgenic rat model developed on a Fischer 344 background to 

distinguish the effects of aging versus Alzheimer’s disease pathology on neuroimaging and 

cognitive markers. Chapters 1 and 2 provide a general introduction and background information 

on the current state of knowledge regarding the impact of age and AD pathology on brain structure 

and tissue chemistry, as well as the neuroimaging and statistical methods used to investigate these 

neurobiological changes. Chapter 3 presents a published study examining age- and sex-related 

changes in hippocampal biochemistry in the Fischer 344 rat. Age was associated with prominent 

differences in metabolites implicated in anaerobic energy metabolism, antioxidant defenses, and 

neuroprotection, as well as numerous macromolecule changes. Chapter 4 builds upon the previous 

study of highly localized effects of aging by examining whole-brain volumetric changes associated 

with age and sex, again in the Fischer 344 rat. This publication identifies age- and sex-related 

volume changes in regions such as the cortex, hippocampus, cingulum, caudoputamen, and nucleus 

accumbens, which are implicated in memory and motor control circuits frequently affected by aging 

and neurodegenerative disease. Chapter 5 incorporates the techniques and knowledge developed 

in earlier chapters by applying the same neuroimaging techniques in combination with behavioural 

testing in a transgenic model of Alzheimer’s disease developed on a Fischer 344 background, the 
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TgF344-AD rat. The TgF344-AD model demonstrated impaired spatial reference memory by 4 

months of age, followed by neurochemical abnormalities by 10 months and major structural 

changes by 16 months, many of which were similar to findings in human Alzheimer’s disease 

subjects. A mild influence of sex was also seen on neuroimaging and cognitive markers. Finally, 

Chapter 6 provides a discussion and summary of the relevance of these findings. Altogether, this 

thesis describes the application of highly translatable neuroimaging techniques to identify multiple 

neurobiological features influenced by age-, sex-, and pathology throughout the lifespan of two 

relevant rat models. This thesis therefore provides support for the use of MRI and MRS in rodent 

models in vivo to develop markers of pathological change which may be used to improve age- and 

disease-related outcomes in humans.   
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RÉSUMÉ 

 La maladie d'Alzheimer (MA) est une maladie neurodégénérative progressive et irréversible 

qui représente 60-80 % des 50 millions de cas de démence dans le monde. Le facteur de risque 

primaire pour la MA est l'âge. La distinction entre le vieillissement et la MA est particulièrement 

cruciale aux premiers stades de la maladie, car c'est à ce moment-là qu'une intervention a le plus de 

chances d'être efficace. Cependant, on manque de marqueurs biologiques capables d'identifier les 

premiers stades de la MA, limitant les possibilités de diagnostic et de traitement. La caractérisation 

complète du vieillissement et des processus pathologiques dans des modèles animaux pertinents 

représente une voie prometteuse vers le développement d'options de diagnostic et de traitement. En 

particulier, les études précliniques longitudinales qui utilisent des techniques à fort potentiel de 

transfert vers les études cliniques, telles que les techniques de neuroimagerie non invasif, 

permettraient d'identifier des biomarqueurs homologues entre les espèces.  

Cette thèse décrit l'application de l’imagerie par résonance magnétique (IRM) du cerveau 

entier et de la spectroscopie par résonance magnétique (SRM) localisée pour étudier les 

changements neurochimiques et neuroanatomiques liés à l'âge et au sexe dans le rat Fischer 344, et 

l'intégration ultérieure de ces techniques avec des tests comportementaux dans un modèle de rat 

transgénique développé sur un fond de Fischer 344 pour distinguer les effets du vieillissement par 

rapport à la pathologie de la MA sur la neuroimagerie et les marqueurs cognitifs. Les chapitres 1 

et 2 fournissent une introduction générale et des informations sur l'état des connaissances 

concernant l'impact de l'âge et de la pathologie de la MA sur la structure du cerveau et la chimie 

des tissus, ainsi que sur les méthodes de neuroimagerie et de statistique utilisées pour étudier ces 

changements neurobiologiques. Le chapitre 3 présente une étude publiée qui examine les 

changements liés à l'âge et au sexe dans la biochimie de l'hippocampe chez le rat Fischer 344. L'âge 

a été associé à des différences importantes dans les métabolites impliqués dans le métabolisme 

énergétique anaérobie, les défenses antioxydantes et la neuroprotection, ainsi qu'à de nombreuses 

modifications des macromolécules. Le chapitre 4 s'appuie sur l'étude précédente des effets très 

localisés du vieillissement en examinant les changements volumétriques du cerveau entier associés 

à l'âge et au sexe, toujours chez le rat Fischer 344. Cette publication identifie les changements de 

volume liés à l'âge et au sexe dans des régions telles que le cortex, l'hippocampe, le cingulum, le 

caudoputamen et le noyau accumbens, qui sont impliquées dans les circuits de mémoire et de 
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contrôle moteur fréquemment affectés par le vieillissement et les maladies neurodégénératives. Le 

chapitre 5 intègre les techniques et les connaissances développées dans les chapitres précédents en 

appliquant les mêmes techniques de neuroimagerie en combinaison avec des tests 

comportementaux dans un modèle transgénique de la MA. Le rat TgF344-AD a montré une 

altération de la mémoire de référence spatiale à l'âge de 4 mois, suivie d'anomalies neurochimiques 

à l'âge de 10 mois et de changements structurels majeurs à l'âge de 16 mois. Une légère influence 

du sexe a également été observée sur la neuroimagerie et les marqueurs cognitifs. Enfin, le chapitre 

6 présente une discussion et un résumé de la pertinence de ces résultats. Cette thèse décrit 

l'application de techniques de neuro-imagerie transférables pour identifier des caractéristiques 

neurobiologiques influencées par l'âge, le sexe et la pathologie dans deux modèles de rats pertinents. 

Cette thèse soutient donc l'utilisation de l'IRM et de la SRM dans des modèles de rongeurs in vivo 

pour développer des marqueurs de changement pathologique qui peuvent être utilisés pour 

améliorer les résultats liés à l'âge et à la maladie chez les humains. 
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CONTRIBUTION TO ORIGINAL KNOWLEDGE 
 
Chapter 3 

○ Prior to this publication, longitudinal characterization of neurochemical change with age 
had not been performed in the Fischer 344 rat, despite this strain being both a commonly 
used model for studying aging and for the development of transgenic rat models, 
(including the TgF344-AD rat model of Alzheimer’s disease)  

○ Prior to this publication, longitudinal quantification of individual macromolecule 
resonances with age had not been reported at the preclinical or clinical level 

○ Proper handling of macromolecule resonances improves quantification accuracy of 
metabolites, suggesting our results may be more accurate and/or reproducible than those 
generated without sufficient handling of the macromolecular signal 

○ Given our use of an expanded neurochemical profile, this manuscript provides the most 
extensive assessment of change in brain tissue chemistry with age in a rodent model to 
date 

○ Prior to this publication, characterizing the influence of sex on neurochemistry over the 
lifespan had not been performed in any rat model of aging (only in C57BL6 mice)   

○ This manuscript provides support for the use of MRS to detect brain neurochemical 
abnormalities with age in vivo, providing insight into the many biochemical processes 
affected by aging that could be used as aging biomarkers and/or targetted by interventions 
to improve age-related disease outcomes in humans  

 
Chapter 4 

○ Prior to this publication, longitudinal exploration of age-related change in neuroanatomy 
had not been performed in a mixed-sex cohort of Fischer 344 rats. This manuscript 
examines age-related change at both the voxel-wise and regional level in 120 brain 
volumes  

○ Prior to this publication, characterizing the influence of sex on neuroanatomy over the 
lifespan had not been performed in any rat model of aging 

○ The findings in this manuscript demonstrate that while there are several distinctions 
between neuroanatomical change with age in the Fischer 344 rat compared to humans, 
there are many more similarities 

○ This manuscript provides support for the use of MRI to detect volumetric change with age 
as well as the use of rodent aging studies for developing homologous biomarkers across 
species  

 
Chapter 5 

○ While the TgF344-AD rat model has been examined extensively since its emergence in 
2013, we are the first to examine disease-dependent changes in neuroanatomy and the full 
neurochemical profile  
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○ Ours is also the earliest assessment of cognitive function in this model and we detected 
impairment in spatial reference memory at an earlier stage than previously reported  

○ Given our multimodal and longitudinal approach, we were able to capture the 
chronological appearance and progression of multiple features of disease pathophysiology, 
providing insight into the many processes comprising disease progression 

○ The additional examination of sex effects in this model contributes to our overall 
understanding of the interaction between sex and pathology on several highly translatable 
potential markers of disease progression (brain tissue chemistry and volume) 

○ The findings in this manuscript demonstrate that the TgF344-AD model recapitulates 
major features of human AD and contribute to its validation as a highly relevant model for 
preclinical AD research 

○ The neuroimaging techniques employed here are highly translatable to the study of other 
transgenic models of disease as well as to human clinical studies 

 
In summary, Chapters 3 and 4 provide novel baseline information on neurochemical and 

neuroanatomical change with age and sex in the Fischer 344 rat, upon which future research on 
age-related pathologies or interventions can build. This is particularly true for researchers using the 
TgF344-AD rat model which was developed on a Fischer 344 background. Chapter 5 builds on 
this knowledge with the characterization of neuroimaging and cognitive markers of disease 
progression in the TgF344-AD rat relative to wildtype littermates. This is the first study to 
document the chronological order of appearance and longitudinal progression of cognitive, 
neurochemical, and neuroanatomical abnormalities in this model. Finally, it is important to note 
that the neuroimaging techniques employed throughout the three manuscripts are highly 
translatable to the study of other transgenic models of disease, as well as to human clinical studies. 
This thesis therefore provides support for the use of MRI and MRS for detecting structural and 
biochemical abnormalities which may be used to develop biomarkers or therapies for the 
improvement of age- and disease-related outcomes in humans.   
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CONTRIBUTION OF AUTHORS 
 
 The original work in this thesis spans Chapters 3, 4, and 5. For each manuscript, I led the 
experimental design, data collection, analysis, visualization of results, and interpretation under the 
incredible guidance and supervision of Dr. Jamie Near, and with considerable input from co-
supervisor, Dr. M. Mallar Chakravarty, in the final year of my degree. In particular, it was my 
decision to intentionally examine the influence of sex in our studies, and to perform the methods 
development required to incorporate macromolecules into the neurochemical basis set used in 
Chapters 3 and 5. It was also my decision to include behavioural testing and immunofluorescence 
analyses in Chapter 5; I was responsible for identifying and piloting an appropriate cognitive 
testing paradigm, deciding which tissue markers to stain for and analyze, and supervising the 
students who optimized the staining and stereology protocols. While I wrote the first draft of each 
manuscript and incorporated edits from co-authors and peer reviewers, each study features a 
number of co-authors whose contributions (listed below) were integral to the completion of the 
work.  
 
Chapter 3: Caitlin F. Fowler, Dan Madularu, Masoumeh Dehghani, Gabriel A. Devenyi, Jamie 
Near. Longitudinal quantification of metabolites and macromolecules reveals age- and sex-related 
changes in the healthy Fischer 344 rat brain. Neurobiology of Aging, 101:109-122, 2021. 

○ Dan Madularu: performed approximately half of the in vivo scanning and provided guidance 
on data analysis  

○ Masoumeh Dehghani: responsible for pulse sequence development and implementation for 
detection of macromolecules 

○ Gabriel A. Devenyi: supported statistical analyses and guided data visualization 
○ Jamie Near: supported pulse sequence implementation and supervised the study 
○ All authors: provided critical or conceptual support and provided suggestions for the 

manuscript 
 
Chapter 4: Caitlin F. Fowler, Dana Goerzen, Dan Madularu, Gabriel A. Devenyi, M. Mallar 
Chakravarty, Jamie Near. Longitudinal characterization of neuroanatomical changes in the Fischer 
344 rat brain during normal aging and between sexes. In Press at Neurobiology of Aging, available 
online October 16, 2021. https://doi.org/10.1016/j.neurobiolaging.2021.10.003 

○ Dana Goerzen (co-first author): performed MRI preprocessing, registration, and analysis, 
and contributed to the methods section of this manuscript 

○ Dan Madularu: performed approximately half of the in vivo scanning and provided guidance 
on data analysis 

○ Gabriel A. Devenyi: provided support on MRI preprocessing, registration, and analysis, and 
guided statistical analyses 

○ M. Mallar Chakravarty: provided guidance on interpretation and presentation of results, and 
offered suggestions on the contents of the manuscript 
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○ Jamie Near: Supervised the study and provided guidance on conceptualization and 
interpretation of results. He also significantly contributed to manuscript editing   

○ All authors: provided critical or conceptual support and provided suggestions for the 
manuscript 

 
Other related co-authored publications: Dana Goerzen, Caitlin F. Fowler, Gabriel A Devenyi, 
Jurgen Germann, Dan Madularu, M. Mallar Chakravarty, Jamie Near. An MRI-derived 
neuroanatomical atlas of the Fischer 344 rat brain. 10:1-13, 2020. Nature Scientific Reports.  

 
Chapter 5: Caitlin F. Fowler, Dana Goerzen, Gabriel A. Devenyi,  Dan Madularu, Katrina 
Cruickshank, Augustine Vinh-Phuc Pham, Kristin Ellerbeck, Kristi Drudik, Naguib Mechawar, 
Maria Antonietta Davoli, M. Mallar Chakravarty, Jamie Near. Neurochemical and cognitive 
changes precede structural abnormalities in the TgF344-AD rat model. Submitted to Brain 
communications, November 2, 2021.  

○ Dana Goerzen: performed MRI preprocessing, registration, and analysis 
○ Gabriel A. Devenyi: provided expertise and guidance on statistical analyses, data 

visualization, and interpretation of results 
○ Dan Madularu: provided guidance on project design and technical support for behavioural 

tests 
○ Katrina Cruickshank: responsible for optimizing immunofluorescence and stereology 

protocols  
○ Augustine Vinh-Phuc Pham: performed immunofluorescence experiments and stereology 
○ Kristin Ellerbeck: performed immunofluorescence and stereology 
○ Kristi Drudik: responsible for establishing initial perfusion and immunofluorescence 

protocols  
○ Naguib Mechawar: provided expertise, laboratory access, and materials for 

immunofluorescence experiments 
○ Maria Antonietta Davoli: provided guidance and support for immunofluorescence 

experiments 
○ M. Mallar Chakravarty: supported statistical analysis and editing of the manuscript 
○ Jamie Near: provided guidance on study conceptualization, data analysis and interpretation, 

and editing the manuscript. He also obtained funding for and supervised this study  
○ All authors: provided critical or conceptual support and provided suggestions for the 

manuscript 
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CHAPTER 1: INTRODUCTION 
 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses an 

enormous challenge to healthcare systems worldwide. It is the most common cause of dementia, a 

form of memory loss and impaired thinking that interferes with daily life. Dementia and 

Alzheimer’s disease are not a normal part of aging, but they do primarily affect the elderly 

population (Jack et al. 2007). As a result of the aging global population, there are currently 50 

million people with dementia worldwide—a number that is expected to reach 152 million by 

2050—and of these, AD cases comprise 60 to 80% (Patterson 2018). These numbers are particularly 

distressing when there continues to be a lack of effective therapies to even modify disease 

progression, let alone cure it. In the last twenty years, only four drugs have been approved for AD 

patients, and they do not modify disease progression; they simply treat some of the symptoms. 

Efforts to understand and characterize AD have existed since the first case study by Dr. Alois 

Alzheimer in 1906. So why, after 115 years of research, are we still unable to accurately diagnose 

and treat this increasingly common disease?   

One reason is that diagnosis is complicated by the close association between AD and age. 

It is still unclear if AD is a form of accelerated aging or if phenoconversion to AD is a result of 

completely separate processes and some causative factor. We do know that aging is the primary 

risk factor for AD, with a spike in the incidence rate after the age of 60 (Kawas et al. 2000). Many 

of the cellular and molecular mechanisms that are altered during aging such as mitochondrial 

bioenergetics, antioxidant capacity, and the inflammatory response are also dysfunctional in AD 

(Farooqui and Farooqui 2009). It is equally, if not more, challenging to disentangle the effects of 

aging versus AD using cognitive impairment as a marker of disease progression because many 

aspects of cognition affected by AD, such as executive function and episodic memory, also decline 

during healthy aging (Herrup 2010; Fjell et al. 2014). Finally, even accumulation of amyloid protein 

is frequently found in approximately one-third of cognitively normal, otherwise healthy, elderly 

people (Morris et al. 2010). Improving our understanding of the processes and features 

characterizing normal aging are necessary to understanding and identifying pathological aging 

trajectories such as AD.  

A second, closely related, reason is the difficulty in identifying appropriate biological 

markers, or biomarkers, of disease progression, thus limiting our ability to detect AD at early stages. 
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Aspects of Alzheimer’s disease pathology can occur up to decades before onset of cognitive 

symptoms (Jack et al. 2010; Jack et al. 2013; Bateman et al. 2012), which could provide a critical 

opportunity for therapeutic intervention. Recent advances in neuroimaging now allow for in vivo 

detection of Alzheimer’s disease hallmarks, including amyloid-β (Aβ) plaques, neurofibrillary 

tangles (NFTs) composed of hyperphosphorylated tau, and neurodegeneration, which manifests as 

atrophy, neuronal loss, and gliosis (Jack et al. 2010). However, despite the existence of various 

imaging and fluid biomarkers of these hallmarks (Leuzy et al. 2018; Tarawneh 2020), the results of 

clinical trials using these biomarkers have been underwhelming. Two major reasons for the lack of 

success are likely that interventions are not targeting the right disease processes, or they are not 

being administered at the right time (Sperling et al. 2011), both of which are a result of inadequate 

disease biomarkers. Additionally, AD presentation and progression can occur differently in men 

and women, further muddying disease recognition and appropriate treatment (Mazure and 

Swendsen 2016). Therefore, there is a need to better characterize aspects of disease progression and 

to expand the list of current disease biomarkers, with the aim of identifying markers that are altered 

early in disease progression, reflect features other than just major hallmarks, and can detect sex-

related differences, if they are present.  

Two tools may prove particularly useful for biomarker development: animal models, which 

can be designed to express specific pathological features and studied under tightly controlled 

conditions; and magnetic resonance (MR) techniques, which provide a unique window into a 

variety of processes taking place in the brain. The Fischer 344 rat and the TgF344-AD rat are 

particularly important models in the context of studying aging and AD. The Fischer rat is the most 

commonly used model in aging research (Gallagher et al. 2011) and is also frequently used as a 

background strain for the generation of transgenic models. One such transgenic model is the 

TgF344-AD rat (Cohen et al. 2013), a model of Alzheimer’s disease developed on a Fischer 344 

background that spontaneously develops tau pathology as an apparent result of progressive Aβ 

accumulation, similar to how the process happens in humans (Jack et al. 2010; Selkoe and Hardy 

2016). Not only does the TgF344 AD-model represent a significant advancement for preclinical 

AD research, but the numerous advantages of studying rats over mice—they are physiological and 

genetically closer to humans, display a richer behavioural phenotype, and have larger brains 

(Ellenbroek and Youn 2016)—make the TgF344-AD rat a particularly salient option for preclinical 

biomarker development.    
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Neuroimaging techniques such as MR imaging (MRI) and spectroscopy (MRS) represent 

powerful options for the development of biomarkers of aging and AD. MRI and MRS enable non-

invasive, longitudinal assays of brain structure and tissue chemistry and the techniques themselves 

are highly translatable between preclinical and clinical studies (Gao and Barker 2014; Frisoni et al. 

2010; Mueller et al. 2006). MRI detects structural abnormalities which are one of the last 

pathological features to appear before overt cognitive impairment, so MRI-detectable change in 

volume is considered a mid- to late-stage disease marker (Jack et al. 2013; Bateman et al. 2012). 

MRS can quantify up to 27 individual metabolites and macromolecules, providing a detailed survey 

of brain tissue biochemistry (Fowler et al. 2020; Ross and Sachdev 2004). Quantification of this 

many neurochemicals allows for the identification of numerous forms of metabolic dysfunction that 

may occur at various stages throughout both aging and AD progression (Camandola and Mattson 

2017). MRI and MRS have been used to study aging and AD in humans and rodents, but 

longitudinal studies in relevant models such as the Fischer 344 and TgF344-AD rats are still 

lacking. There is therefore insufficient knowledge regarding the understanding and evolution of the 

neurobiological changes that occur during aging and AD, as well as few homologous biomarkers 

across species, limiting our ability to improve age- and disease-related outcomes.  

To summarize, a major challenge to the swift advancement of options for AD diagnosis and 

treatment has been a lack of biomarkers that can distinguish the effects of normal aging from those 

manifesting due to pathology, specifically at an early stage of the disease. The issue can thus be 

thought of in two parts: first, we must accurately characterize and understand the baseline processes 

underlying normal aging; and second, we need a more comprehensive understanding of the earliest 

processes occurring in AD and what the longitudinal trajectories of their identifying markers look 

like. Only once these issues have been addressed will researchers be able to distinguish early-stage 

AD from aging, expand the list of therapeutic targets, and identify the most effective time for 

intervention. 

 

Specific Objectives of the Thesis: The overarching goal of this thesis is to investigate the effects 

of age and sex on brain volume and tissue chemistry, and to differentiate these effects from those 

initiated by the presence of Alzheimer’s disease pathology. These investigations were performed in 

a commonly used model of aging, the Fischer 344 rat, and subsequently in a transgenic rat model 

of AD developed on a Fischer 344 background, the TgF344-AD rat. Additionally, we assessed 
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disease-dependent change in cognitive function throughout the lifespan in order to determine the 

chronological order in which dysfunction occurs in cognition, neuroanatomy, and neurochemistry 

in the TgF344-AD model. This comprehensive investigation allowed us to specifically address the 

following questions:  

 

1. How do age and sex affect hippocampal tissue chemistry throughout the adult rat lifespan? 

2. How do age and sex influence brain volume trajectories throughout the adult rat lifespan? 

3. Does the TgF344-AD rat model recapitulate major cognitive, neurochemical, and 

neuroanatomical features of human Alzheimer’s disease and in what chronological order 

do these pathological changes appear?  

4. How does sex influence the pathological features of AD in the TgF344-AD rat model? 

 

This thesis comprises an introduction (Chapter 1), a comprehensive background section 

(Chapter 2), three separate chapters which address the above research questions (Chapters 3, 4, 

5), and a discussion section (Chapter 6) that integrates and contextualizes the relevance of the 

knowledge generated in the three previous chapters. The background section introduces the reader 

to relevant aging and AD literature, including details on rodent models and existing AD biomarkers, 

and highlights the current gaps in knowledge addressed in this thesis. It also covers fundamentals 

of the neuroimaging and statistical techniques applied throughout the thesis.     

 
 
 
 
 
 
 
 
 
 
 

 



 

 

24 

CHAPTER 2: BACKGROUND 

2.1. Alzheimer’s disease   

2.1.1 Disease hallmarks  

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder 

responsible for between 60 and 80% of all dementia cases worldwide (Patterson 2018). AD presents 

as gradual dysfunction in memory, thinking, and behaviour. This encompasses difficulty with 

language, remembering people’s names and faces, planning and decision-making, and 

understanding spatial relations, to changes in mood, personality, and emotional regulation. On a 

molecular level, AD is a disorder marked by the misfolding and aggregation of two specific 

proteins. The disease is characterized by neuritic plaques composed of aggregated amyloid-β 

protein (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. The 

presence of both proteinopathies in post-mortem tissue is still required for pathological diagnosis 

(Jack et al. 2010; DeTure and Dickson 2019).  

Aβ is a small peptide generated by the cleavage of an aptly-named single-transmembrane 

protein called amyloid precursor protein (APP) that is expressed in both neural and non-neural cells 

alike. APP is cleaved by β-site APP-cleaving enzyme (BACE) and the catalytic component of γ-

secretase known as Presenilin-1 (PS1), or its homologue, Presenilin-2 (PS2), generating Aβ 

peptides of 38, 40, or 42 amino acids long, depending on the cleavage site of γ-secretase. Being the 

most hydrophobic of the peptides generated, Aβ42 has the highest propensity to form oligomers and 

aggregate. Aβ oligomers themselves can cause neuronal injury, but depending on the level of 

oligomerization and aggregation, Aβ proteins can also form extracellular plaques ranging from 

“diffuse” to “dense-core” plaques, with dense-core plaques being the most neurotoxic (Haass and 

Selkoe 2007; Selkoe 2011). Dense-core plaques are also frequently referred to as “neuritic” plaques 

because dystrophic neurites occur within and around these amyloid deposits (Selkoe 2001).  

While Aβ plaques are extracellular protein aggregates, neurofibrillary tangles (NFTs) exist 

in the intracellular space, specifically within neurons. NFTs are aggregates of paired helical 

filaments (PHFs) composed of hyperphosphorylated tau protein. Tau is a protein that binds to and 

stabilizes microtubules (MTs), which are key structural and functional elements in axons that 

support neurite differentiation and growth, as well as axonal transport (Barbier et al. 2019; Hanes 
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et al. 2009). The binding of tau to MTs is regulated by the activities of several tau kinases and 

phosphatases which regulate the state of tau phosphorylation (Iqbal et al. 2005). In the event of 

hyperphosphorylation, as is the case in AD, tau dissociates from MTs, causing MT instability and 

depolymerization leading to cytoskeletal disruption, particularly regarding axonal transport of 

organelles and vesicles containing proteins and neurotransmitters (De-Paula et al. 2012). Tau then 

aggregates within the intracellular space of neurons, forming NFTs which cause neuronal and 

synaptic dysfunction (Selkoe 2001; Haass and Selkoe 2007).  

The accumulation of amyloid and tau pathology occurs in distinct spatiotemporal patterns 

(Figure 2.6.1). Aβ accumulation initially occurs in regions that have neuronal populations with 

high energy demands, such as limbic and association cortices, and can begin to accumulate 10-20 

years before symptom onset (Ossenkoppele and Hansson 2018). This is known as Stage A, 

according to initial staging of amyloid deposits by Braak et al (Braak and Braak 1997). Aβ 

pathology then spreads to the entire neocortex, allocortex, and the brainstem (Stage B), before 

eventually reaching the cerebellum (Stage C) (Hampel et al. 2021; Selkoe and Hardy 2016; Braak 

and Braak 1997). However, the distribution pattern and density of amyloid deposits has traditionally 

been seen as less informative and less capable of differentiating between neuropathological stages, 

whereas NFTs exhibit a more characteristic distribution pattern originally described by Braak et al. 

in the early 90s. Abnormal tau protein is detectable first in the transentorhinal (temporal lobe) and 

entorhinal regions (stages I-II), with some authors postulating that hyperphosphorylated tau first 

accumulates in the locus coeruleus and basal forebrain (Giorgi et al. 2019; Braak et al. 2006). NFTs 

then spread to the limbic allocortex (including the hippocampus) and adjoining neocortex (stages 

III-IV), and then in the isocortex, including the secondary and primary fields (stages V-VI) (Braak 

and Braak 1995; Braak and Braak 1991).  

 
2.1.2 The amyloid cascade hypothesis  

The process by which these pathological features result in dementia was proposed 30 years 

ago and coined “the amyloid cascade.” It is a formal hypothesis of disease progression in which 

accumulation of Aβ triggers a series of downstream events that ultimately result in the 

neurodegeneration and cognitive decline associated with AD (Selkoe 1991; Hardy and Allsop 1991) 

(Figure 2.6.2). It has been shown that changes in Aβ metabolism (rate of production, ratio of Aβ42 

to Aβ40, and degradation/clearance) have direct neurotoxic effects on surrounding neurons while 
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simultaneously promoting the formation of Aβ oligomers and plaques (Hampel et al. 2021). 

Numerous studies have indicated that Aβ accumulation can occur up to decades prior to the onset 

of cognitive symptoms (Jack et al. 2013; Hampel et al. 2021; Bateman et al. 2012). The amyloid 

cascade proposes that as Aβ concentration (oligomers or plaques) increases, progressive and 

permanent changes in synaptic structure and function occur: synaptic spine loss, neuritic dystrophy, 

and impairments in long-term potentiation takes place, in combination with local inflammatory 

responses (microglial and astrocytic activation), altered neuronal ionic homeostasis (primarily 

calcium) and oxidative injury due to Aβ- and calcium-induced increased production of free radicals 

(Goodman and Mattson 1994; Haass and Selkoe 2007). Aβ-induced changes to kinase and 

phosphatase activity resulting in tau hyperphosphorylation, oligomerization, and formation of 

NFTs, leading to disruptions in axonal transport and neuronal function. Finally, the cascade 

culminates in widespread synaptic and neuronal dysfunction and cell death, leading to progressive 

dementia (Selkoe 1991). Given the progressive nature with which these pathological features 

manifest and/or accumulate, AD is considered a biological-clinical continuum that spans preclinical 

(pathology exist but the individual is asymptomatic), mild cognitive impairment (MCI: more 

pathology, some cognitive complaints), and dementia stages (Hampel et al. 2021). It is the major 

biological components of this cascade—amyloid, tau, and neurodegeneration—that have become 

the focus for biomarker development. 

 

2.1.3 Current AD biomarkers  

Since 1984, a conclusive AD diagnosis has required the presence of two features: a clinical 

phenotype of progressive dementia, comprised of impaired function in multiple cognitive domains 

(primarily episodic memory) to the point of interference with daily functioning; and specific 

neuropathological changes, including both intraneuronal neurofibrillary tangles and extracellular 

neuritic plaques, which are typically accompanied by synaptic loss and/or neurodegeneration 

(McKhann et al. 1984; Jack et al. 2018; McKhann et al. 2011). Since neuropathological 

examinations can only be performed after death, “probable AD” diagnoses can be made based on 

clinical presentation combined with the in vivo detection of AD hallmarks via neuroimaging 

(positron emission tomography, PET, or MRI) or fluid (blood and CSF) sampling techniques 

(Dubois et al. 2010; McKhann et al. 2011). However, given that cognitive dysfunction is one of the 

last features of AD to appear after up to decades of underlying brain pathological changes at the 
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cellular and molecular level (Jack et al. 2013; Bateman et al. 2012), it is not useful as a marker of 

early stages of the disease. Instead, biological (as opposed to symptom-based) criteria using 

neuroimaging and fluid biomarkers have been developed for staging across the entire disease 

spectrum (Jack et al. 2018; Jack et al. 2016). Importantly, this approach theoretically allows for 

identification of AD neuropathological change during preclinical stages when people are 

asymptomatic in an attempt to better identify individuals at risk of progressing to clinical AD 

dementia and the time at which preventative treatment might be most effective (Sperling et al. 2011; 

Dubois et al. 2010; McKhann et al. 2011; Jack et al. 2018).    

The most recent framework for AD biomarkers includes three general groups of biomarkers: 

1) amyloid (A), reflected by increased cortical amyloid PET ligand binding or low CSF Aβ42, which 

correlate with fibrillar Aβ deposits in post-mortem brain tissue (Tapiola et al. 2009; Ikonomovic et 

al. 2008); 2) fibrillar tau (T), reflected by elevated CSF phosphorylated tau (P-tau) and increased 

cortical tau PET ligand binding, both of which correlate with NFT burden in brain tissue at autopsy 

(Buerger et al. 2006; Schöll et al. 2016); and 3) neurodegeneration or neuronal injury (N), indicated 

by increased CSF total tau (T-tau), hypometabolism detected by fluorodeoxyglucose 18F (FDG) 

PET, and specific patterns of MRI-detectable brain atrophy involving the medial temporal lobes, 

paralimbic, and temporoparietal cortices (Jack et al. 2018). However, of the biomarkers for 

neurodegeneration, MRI-detectable atrophy within medial temporal regions, including the 

hippocampus and entorhinal cortex, is the most established and validated, and is also the biomarker 

most closely associated with conversion from MCI to AD dementia (Leuzy et al. 2018; Frisoni et 

al. 2010; Jack et al. 2010). It is also now possible to detect brain-specific proteins in blood, with 

plasma tau, neurofilament light protein, and Aβ showing promise as candidate blood biomarkers 

(Nakamura et al. 2018; Dage et al. 2016; Mattsson et al. 2017). Plasma phospho-tau217 (tau 

phosphorylated at threonine 217) in particular has similar accuracy to established CSF- and PET-

based measures, and has been shown to be elevated in PS1 mutation carriers as early as 20 years 

prior to symptom onset, supporting its application in early detection (Palmqvist et al. 2020). Blood 

draws are considerably easier than lumbar punctures for CSF and therefore a blood-based biomarker 

would have significant advantages. Additionally, abnormally high blood homocysteine, low plasma 

levels of the obesity-related hormone leptin, have recently been identified as risk factors for AD 

pathogenesis (Weiner et al. 2017). However, additional work is required to further optimize these 

assays, validate findings in diverse populations, and examine their role in clinical care, so they are 
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not currently as widely used as neuroimaging or CSF biomarkers. Based on both the amyloid 

cascade and experimental evidence, it is generally accepted that there is a temporal order to the 

appearance of abnormalities in AD biomarkers, although the manifestation and progression of each 

is heavily subject-dependent (Figure 2.6.3). CSF Aβ42 and amyloid PET binding are altered first, 

followed by CSF tau and FDG PET, then MRI-detectable atrophy. The last stage is characterized 

by the appearance of clinical symptoms where individuals progress from mild cognitive impairment 

(MCI) to AD dementia  (Jack et al. 2013; Masters et al. 2015; Weiner et al. 2017).  

It is important at this point to note that the generation of Aβ itself is not purely pathological 

but normally occurs as part of regular cellular metabolism (Selkoe 2001). Prior to oligomerization, 

Aβ monomers may even have neuroprotective effects (Giuffrida et al. 2009). Similarly, under 

normal conditions, tau is highly soluble and binds to neuronal MTs rather than forming aggregates. 

So what causes the shift towards pathological protein aggregation in AD?  

 
2.1.4 Age: a major player in sporadic but not familial AD 

An initiating factor in AD pathogenesis is relatively clear for the approximately 1 to 5% of 

cases that fall under the category of familial AD (FAD). This form of AD is inherited in an 

autosomal dominant manner and is characterized by early symptom onset between 40 and 65 years 

of age (average age ~ 45 years), which is why it is also often referred to as “early onset” AD (Selkoe 

2001; DeTure and Dickson 2019). The early age of onset is a result of mutations in genes involved 

in Aβ production, specifically APP, PS1, and PS2. Mutations in PS1 and PS2 genes alter the 

proteolytic process of APP such that the Aβ42 variant of Aβ is produced more frequently than Aβ 

peptides of other lengths, while mutations in the Aβ region of the APP gene increase the propensity 

of the Aβ peptide to oligomerize and aggregate (Haass and Selkoe 2007). It is this gradual increase 

in the steady-state levels of Aβ that is thought to initiate the amyloid cascade leading to downstream 

accumulation of tau, neurodegeneration, and manifestation of cognitive impairment. Conversely, 

despite tau being a pathological protein in AD, mutations in genes regulating the production of tau 

do not appear to cause familial AD. The microtubule-associated protein tau (MAPT) gene is one 

such example: mutations in MAPT are associated with frontotemporal dementia, which is a disorder 

characterized by widespread NFT formation but not amyloid deposits (Masters et al. 2015). The 

ability for APP and presenilin mutations to cause downstream tau pathology but not vice versa 



 

 

29 

supports the view that Aβ accumulation is an early pathological event upstream of tau 

phosphorylation and tangle formation. 

For the 95% of AD cases that are considered “sporadic” or late-onset (80-90 years of age), 

the initiating factors are unknown (Masters et al. 2015; Mawuenyega et al. 2010). Some researchers 

believe the majority of AD cases will eventually prove to have a genetic determinant of some kind 

(Selkoe 2011), while others suggest that AD is likely the consequence of multiple interacting 

pathologies (Villeneuve et al. 2015). The most prevalent genetic risk factor for sporadic cases is 

inheritance of one or two alleles of the ε4 allele of ApolipoproteinE (ApoE), which increases Aβ 

oligomerization and reduces Aβ clearance from the brain, predisposing people to AD in over 40% 

of cases (Selkoe and Hardy 2016; Kline 2012). Recently, new genetic risk factors were identified, 

primarily affecting three main processes that contribute to aspects of Aβ homeostasis: cholesterol 

metabolism, inflammation/the brain’s innate immune system, and endosomal vesicle recycling, 

supporting the concept that Aβ accumulation may be the consequence of an earlier, initiating event 

(Jones et al. 2010; Lambert et al. 2013; Selkoe and Hardy 2016). There are also modifiable risk 

factors for AD that have been identified, including midlife hypertension, midlife obesity, physical 

inactivity, depression, smoking, and low educational attainment (Masters et al. 2015).  

Of all of the non-genetic risk factors, age plays the largest role. Aging is a multifactorial 

physiological process characterized by gradually reduced biological function at the molecular, 

cellular, and histological level: our ability to learn and form memories deteriorates, our motor 

functions are reduced, the structural complexity of our brain cells decreases, and our homeostatic 

mechanisms fail, all of which increase vulnerability to age-related diseases and death (Herrup 2010; 

Hou et al. 2019; Azam et al. 2021). Age is the primary risk factor for neurodegenerative diseases 

such as AD, with an estimated prevalence of AD between 10 and 30% in people over 65 years of 

age (Masters et al. 2015). Understanding the aging process may therefore facilitate our 

understanding of and development of treatments for age-associated diseases such as AD. Given the 

commonality of neurodegenerative disease in the elderly population, AD is often argued to be a 

natural consequence of aging and that all people over 90 years of age will show some level of 

preclinical, prodromal, or clinical AD. However, post-mortem studies indicate that the prevalence 

of AD increases with age but then tapers off after 98 years of age (Masters et al. 2015). This 

information provides us with two possible interpretations: 1) AD is a natural consequence of the 

aging process but some individuals are resilient to disease development and/or progression due to 
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a variety of factors that provide adequate protection; or 2) AD is not simply a form of accelerated 

aging but rather, follows a pathological trajectory that is eventually distinct from the aging process. 

In either case, at some undetected point in time, the processes that underlie the normal aging process 

become pathogenic. It is this need for early distinction from the aging process that we run into the 

limitations presented by the current AD biomarkers.   

 
2.1.5 Limitations of existing biomarkers 

 Despite the extent to which the current AD biomarkers have revolutionized how we 

understand and currently identify AD, there are still numerous caveats that support the need for 

additional biomarkers to complement those in the current biomarker model (Jack et al. 2013). First 

and most importantly, the etiology of AD remains to be elucidated. While Aβ accumulation is 

clearly an early event, several studies point to Aβ being necessary but not sufficient to cause 

progression to AD dementia (Villeneuve et al. 2015). For example, up to one third of cognitively 

normal individuals have significant Aβ burden in the absence of neurotoxicity in post-mortem brain 

tissue (Nelson et al. 2009; Herrup 2010), and there is a lack of coherence between amyloid burden 

and cognitive impairment (Doig et al. 2017). Additionally, promising drugs have been developed 

that successfully bind to and remove Aβ from the brain (primarily monoclonal antibodies such as 

solanezumab), or reduce amyloid production by inhibiting gamma- and beta-secretase (such as 

semagacestat and avagacestat), but these therapies did not significantly improve cognitive 

symptoms in clinical trials (De-Paula et al. 2012; Doody et al. 2014; Volloch and Rits 2018; Maia 

and Sousa 2019; Sperling et al. 2011), suggesting factors other than Aβ accumulation are at play. 

It is important to note that monoclonal antibody, aducanumab, was recently approved by the US 

Food and Drug Administration, despite insufficient evidence of cognitive improvement, and with 

the added high risk (~40%) of developing brain swelling (Knopman et al. 2021; Mullard 2021; 

Tampi et al. 2021), indicating that the scientific community is still in search of safe treatment that 

effectively slows cognitive decline. Finally, there is significant variability between individuals 

regarding disease manifestation and rate of progression, suggesting contribution from additional 

environmental, genetic, and epigenetic factors, as well as comorbidities, to vulnerability or 

resilience to AD (Bocancea et al. 2021; Villeneuve et al. 2015; Mattson and Magnus 2006). As 

such, it is likely that there are pathological events occurring “upstream” of Aβ that play an 

important, possibly larger, role in AD pathogenesis.  
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Second, several biomarkers used for diagnosis and monitoring of disease progression are 

not specific to AD (Jack et al. 2018; Nelson et al. 2009). CSF T-tau increases in neurodegenerative 

conditions without tau pathology and is therefore reflective of general as opposed to AD-specific 

neuronal damage (Masters et al. 2015). MRI-detectable atrophy indicating neurodegeneration is 

also not specific to AD; atrophy occurs in Parkinson’s disease, dementia with Lewy bodies, 

synucleinopathies, and numerous other disorders (Nelson et al. 2009; Grothe et al. 2014). Finally, 

NFTs are found in frontotemporal dementias, some prion diseases, and other brain diseases, in 

addition to in AD (Nelson et al. 2009). Not only are many of these markers not specific to AD, but 

several of them have been identified in cognitively normal individuals (amyloid deposition (Morris 

et al. 2010; Bateman et al. 2012), NFTs (Braak and Del Tredici 2011)), and/or throughout the aging 

process (atrophy (Fjell and Walhovd 2010)), increased CSF tau (Nakai et al. 2021)) further 

complicating definitive diagnosis.  

Finally, given the obvious complexity of AD and lack of success in targeting the amyloid 

accumulation process, it is likely that any effective intervention will be a combination therapy 

targeting multiple disease pathways. As such, the list of potential target mechanisms and their 

respective biomarkers needs to be expanded. For example, investigators have proposed alternative 

models of the disease process including early dysfunction in neuronal cell cycle control (Yang et 

al. 2003; Kruman et al. 2004), progressive oxidative damage (Zhu et al. 2006), reduced calcium 

homeostasis (Bezprozvanny and Mattson 2008; Green and LaFerla 2008), neuroinflammation 

(Ferreira et al. 2014; Heneka and O'Banion 2007; Krstic and Knuesel 2013), and loss of 

mitochondrial function (Swerdlow et al. 2014), all of which also become dysfunctional with age, 

further implicating the aging process with AD (Hou et al. 2019; Santiago et al. 2017; Franceschi et 

al. 2018). The implication of mitochondrial dysfunction with disease etiology and progression is a 

particularly convincing hypothesis that nicely incorporates other AD-associated phenomena, 

including increased oxidative stress and inflammation, all processes that yield several candidate 

biomarkers (Swerdlow et al. 2014). However, none of these processes have been pursued as 

potential biomarker options or disease-modifying targets.  

In summary, it is clear that our understanding of and biological markers for the 

pathophysiological events comprising AD is incomplete, particularly at the earliest stages of the 

disease. We must also improve our understanding of the processes that occur as part of aging and 

how they tie aging to neurodegeneration. These gaps in knowledge limit our ability to accurately 
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distinguish early AD from aging and unnecessarily restricts the list of potential therapeutic targets. 

2.2. Animal models as investigative tools for aging and AD research 

2.2.1 Genetic basis of rodent models and the benefits of rats over mice 

To address these important gaps in knowledge, we turn to preclinical research in animal 

models, specifically rodents. Mice (Mus musculus) and rats (Rattus norvegicus) are the most widely 

used models in biomedical research because they are genetically similar to humans, available in 

many standard or knock-in and knock-out strains, relatively easy to handle and inexpensive to 

house, and their genetics are extremely well-characterized (Lanz et al. 2020; Mitchell et al. 2015). 

Additionally, unlike human clinical studies, environmental and genetic influence can be tightly 

controlled, resulting in less variable data. Finally, an added benefit of using rodent models is their 

shorter lifespan compared to humans (approximately 20-26 months (Chesky and Rockstein 1976)), 

which greatly facilitates longitudinal studies, providing more power to detect neurobiological 

changes. All of these factors result in rodent studies being particularly well-suited for the creation 

of pre-clinical platforms for the development of biomarkers and evaluation of novel therapeutics. 

Historically, mice have been used more than rats due to greater availability of genetic 

engineering tools developed in and designed for mice (Ellenbroek and Youn 2016). However, with 

the recent development of tools for altering the rat genome, other factors become more important 

when choosing between mice and rats to answer specific scientific questions, such as physiological, 

anatomical, biochemical, and pharmacological differences. For neuroscience research in particular, 

while mice have the benefits of being smaller and easier to house, and more readily available genetic 

modification techniques exist for them, rats may be preferred over mice for several reasons. First, 

rats have larger brains, which results in better spatial resolution for non-invasive magnetic 

resonance (MR) techniques such as structural MR imaging, (MRI) functional MRI (fMRI), and MR 

spectroscopy (MRS), which are frequently used in preclinical neuroscience research. Second, rats 

are genetically more similar to humans than mice regarding CNS metabolism and circuitry, 

meaning they are better models for studying basic brain function and metabolism, as well as human 

brain diseases (Lanz et al. 2020). In fact, there are several mouse models of AD that do not develop 

pathology to the same extent as their rat equivalents (TTg2576 mouse vs Tg6590 rat), despite 

expressing the same genetic mutations (Ellenbroek and Youn 2016). Finally, rats are significantly 



 

 

33 

more social than mice, are easier to handle, generally require less training, and exhibit more 

complex behaviour (Lanz et al. 2020; Gallagher et al. 2011). These factors make rats the preferred 

model for a variety of cognitive tests to characterize brain function, which is particularly important 

for studies on aging and neurodegeneration because the major clinical symptom is often cognitive 

dysfunction. The studies discussed in this thesis take advantage of all of these benefits by employing 

the Fischer 344 rat and the TgF344-AD rat to study aging and AD, respectively. 

 
2.2.2 The Fischer 344 rat as a model of aging  

The Fischer 344 rat is an inbred strain that has been provided by the National Institute on 

Aging (NIA) since its inception in 1974 and is considered the most commonly used rat model for 

aging research (Gallagher et al. 2011). Several studies on the longevity of this strain have been 

conducted, with an average lifespan of approximately 24 months (Chesky and Rockstein 1976; 

Masoro 1980). This relatively short lifespan, and thus short timeframe over which cohorts can be 

bred, aged, and studied, is one of the reasons they are used so frequently in aging research. 

Additionally, the inbred nature of the Fischer strain, as opposed to outbred strains like the Wistar 

rat, ensures a minimum of genetic variability (Gallagher et al. 2011). While the lack of genetic 

diversity can also be considered a downside as it does not completely replicate the diversity inherent 

to the process of human aging (or disease), it remains important to study inbred strains such as the 

Fischer rat because of their frequent use as background strains for transgenic models of disease (e.g. 

TgF344-AD model of AD (Cohen et al. 2013), HIV-1 model of HIV infection (Vigorito et al. 2015), 

Rag1-knockout immunodeficient rat (Ménoret et al. 2013)). As such, characterizing strain-specific 

effects of aging in the Fischer rat will provide a baseline with which to compare aging research in 

other strains to determine if findings from one genetic/biological background can be generalized to 

another, while also permitting a deeper understanding of the effects that occur when aging and 

transgene insertion are compounded, as is the case with transgenic models.  

 

2.2.3 The TgF344-AD rat model: a major advancement for preclinical AD research  

Early-stage disease characterization in transgenic animal models of AD represents one 

promising avenue towards the development of new biomarkers and intervention approaches at a 

clinical level. While transgenic models of AD have existed since the mid 1990s, rodent models that 



 

 

34 

fully recapitulate the neuropathological features of human AD have been lacking (for reviews, see 

(Do Carmo and Cuello 2013; Shineman et al. 2011)). The identification of mutations in APP, PS1, 

and PS2 genes in human FAD have led to the generation of numerous AD rodent models via 

insertion of human transgenes into the mouse or rat genome. These Aβ overproducing rodents are 

considered “gold standard” models of FAD, but the majority do not display robust tauopathy or 

neuronal loss—two major hallmarks of AD—unless additional human transgenes are expressed that 

are not associated with FAD. One example is the 3xTg-AD rat (Oddo et al. 2003), a triple transgenic 

model harbouring PS1M146V, APPSwe, and tauP301L mutations which replicates most major features 

AD with the exception of hippocampal neuronal loss (Nakai et al. 2021), but requires the expression 

of a tau mutation which is not associated with human FAD to do so. Another rat model that has 

become more commonly used as of late is the McGill-R-Thy1-APP rat; this is the only model 

capable of producing extensive amyloid pathology with a single transgene, but it fails to develop 

tau pathology (Leon et al. 2010).  Rodent models of sporadic AD exist and neuropathology develops 

as a result of expressing variants of genes known to be strong genetic risk factors, such as APOE 

and TREM2 (“triggering receptor expressed on myeloid cells” which mediates inflammatory 

responses (Foidl and Humpel 2020)). However, neither of these models of sporadic develops tau 

pathology or widespread neuronal loss (Nakai et al. 2021).    

As such, the generation of the TgF344-AD rat, a model of Alzheimer’s disease developed 

on a Fischer 344 background (Cohen et al. 2013), represents a major advancement for preclinical 

AD research. This model displays progressive Aβ deposition, tauopathy including NFTs, gliosis, 

neuronal loss, and cognitive impairment, despite only expressing mutant human APP (APPswe, 

KM670/671NL) and PS1 (ΔE9) genes (Morrone et al. 2020; Chaney et al. 2021; Cohen et al. 2013; 

Berkowitz et al. 2018). As such, this rat recapitulates the major neuropathological features of AD 

via the same genetic modifications as in human FAD. Interestingly, the insertion of the same 

transgenes in a mouse do not result in the same extensive pathology. Tg-APPswe/PS1dE9 mice 

show progressive amyloid pathology, cognitive deficits, and some tau pathology (Jankowsky et al. 

2001; Liu et al. 2008), but they do not display NFTs or frank neuronal loss, and they display fewer 

soluble oligomeric Aβ species than the TgF344-AD rat (Do Carmo and Cuello 2013). It is theorized 

that the reason tau pathology forms in the TgF34-AD rat but not the comparable mouse model is 

that rats, like humans, have six isoforms of the tau protein, whereas mice only have 3 (Liu and Götz 

2013). All six isoforms are affected by abnormal post-translational modifications in AD, and 
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hyperphosphorylation of these tau isoforms is a major driver of tangle formation, supporting the 

presence of NFTs in rats but not in mice (Hanes et al. 2009). Therefore, in addition to the 

recapitulation of other major AD hallmarks, the TgF344-AD rat is unique in its ability to develop 

extensive tau pathology and NFTs without insertion of a human tau transgene, making it a 

particularly salient option for preclinical biomarker development. 

2.3 Fundamentals of neuroimaging techniques for preclinical biomarker 

development  

Neuroimaging techniques such as MRI and MRS represent a powerful means of detecting 

and monitoring neurobiological changes in vivo at the preclinical and clinical level. Structural MRI 

is used to obtain a detailed three-dimensional anatomical picture of the brain’s soft tissue and is 

frequently used in a quantitative manner to determine if there are volume changes reflecting 

underlying neuronal atrophy or hypertrophy (Bobinski et al. 2000). MRI scans are composed of 

tens of thousands of voxels whose signals come from protons in water and represent the bulk 

properties of the tissues being imaged. MRS is a method used to detect and quantify a wide range 

of neurochemicals in living brain tissue, providing key information about brain metabolism and 

function (Gao and Barker 2014). MRS spectra are obtained from a single, larger voxel within the 

brain, and are typically composed of signals from protons on multiple brain metabolites. Variants 

of MRS do exist for mapping of neurochemicals throughout the whole brain (i.e. MR spectroscopic 

imaging), and for observation of other (non-proton) nuclei, but these methods are beyond the scope 

of this thesis). Each metabolite is identified by one or more spectral peaks, each with a characteristic 

chemical shift and signal multiplicity (peak-splitting pattern). Both methods can be applied 

repeatedly with no side effects, facilitating longitudinal studies of brain structure and biochemistry. 

MRI and MRS protocols can be performed using the same scanner and equipment and are guided 

by the same basic principles of nuclear magnetic resonance (NMR), though with a few method-

specific differences.  

 

2.3.1 Fundamentals of nuclear magnetic resonance for MRI and MRS acquisition 

The MR scanner consists of several sets of coils that generate and receive the MR signal, 

including magnet coils, three gradient coils, shim coils, and radiofrequency coils (Figure 2.6.4). 
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The magnet coils are used to generate a strong, constant magnetic field (B0), measured in Tesla (T), 

which interacts with protons in the subject’s tissue (Plewes and Kucharczyk 2012). Gradient coils 

representing the x, y, and z directions generate their own magnetic field and are superimposed on 

top of B0 in such a way that the main magnetic field strength varies along the direction of the 

gradient field. The magnitude and direction of field strength variation are used to localize the MR 

signal (Elmaoğlu and Çelik 2011). Shim coils are used to correct for subject-dependent 

susceptibility effects on the main magnetic field; “shimming” is the process of adjusting the current 

in the shim coils to make the magnetic field as homogeneous as possible, which is critical for 

obtaining good spectral resolution and image quality. Finally, radiofrequency (RF) coils exist 

within the main MR system that generate their own magnetic field (B1) and are used to both transmit 

RF energy into and receive RF signal back from the tissue of interest (Currie et al. 2013). For 

neuroimaging, separate RF transmitter and receiver coils are often used to simultaneously maximize 

the transmit RF field uniformity/coverage and the receive sensitivity to signals emitted from brain 

tissue. The majority of MR techniques measure signals from protons in hydrogen nuclei (1H), which 

are present in the highest concentration in human tissue relative to other nuclei such as deuterium, 

sodium, or phosphorus (Plewes and Kucharczyk 2012).      

MRI and MRS are based on the fundamentals of NMR which is the study of the magnetic 

properties and energies of nuclei, specifically the stimulated absorption and emission of 

electromagnetic radiation (de Graaf R.A., 2007). NMR itself is based on the concept of nuclear 

spin. A charged particle (such as a proton) spinning around its axis creates an electric current which 

generates a small magnetic field, also known as a magnetic moment, which has both an amplitude 

and direction. The magnetic moments of protons in tissue are typically randomly oriented, and thus 

the spins cancel each other out, resulting in a net magnetic moment (M0) of zero. However, when 

an external magnetic field (B0) is applied, two phenomena occur: the magnetic moments align either 

with (parallel) or against B0 (antiparallel), and they experience a torque (rotational force) that causes 

the spins to rotate or “precess” about the magnetic field, similar to the movement of a spinning top 

(de Graaf 2018). The rate of precession (number of precessions per second, ω0, also known as the 

Larmor frequency) is proportional to the strength of B0 and is determined by the Larmor equation: 

ω0=γB0, where γ is the specific gyromagnetic ratio of the nucleus (hydrogen is 42.6 MHz/T) and 

B0 is the strength of the magnetic field (Currie et al. 2013). Upon exposure to B0, more magnetic 

moments will align parallel to B0, as it is the lower, and thus preferred, energy state, resulting in an 
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M0 parallel to B0. The sum of the magnetic moments of an ensemble of nuclei is called the 

magnetization, or M0, and in equilibrium it is oriented parallel to the applied magnetic field (along 

the z-axis). In order to detect an NMR signal, the magnetization vector must be perturbed  by 

applying an additional magnetic field (B1) in the form of a short duration radiofrequency pulse 

oriented perpendicular to the  B0 field (Elmaoğlu and Çelik 2011) (Figure 2.6.5).  

The energy from the RF pulse is transferred to the protons themselves, causing some of the 

protons to move into the higher energy state (antiparallel to B0), reducing longitudinal 

magnetization. At the same time, protons become synchronized and begin to precess in phase 

(instead of with random phases). As a result, the net magnetization vector tips away from B0 into 

the transverse (xy) plane, generating transverse magnetization (Currie et al. 2013; de Graaf 2007). 

Energy transfer can only occur if the RF pulse has the same frequency as the precessional frequency 

of the protons, and thus RF pulses are set to the Larmor frequency. Additionally, the RF pulse can 

be set to tip M0 away from B0 at any desired angle, though the most common are 90° excitation into 

the transverse plane or inversion into the -z axis by a 180° pulse. Following the radiofrequency 

pulse some components of the magnetization are tipped into the transverse (x-y) plane. Once the 

RF pulse is turned off, the protons go through a process known as relaxation as they release the 

energy from the RF pulse. They begin to fall out of phase with each other, resulting in reduced 

transverse magnetization (T2 relaxation), while also returning to the lower energy state parallel to 

B0, which increases longitudinal magnetization (T1) back to its original value (Plewes and 

Kucharczyk 2012). These two processes occur simultaneously and independently: T1 relaxation is 

the process in which protons exchange energy with their surroundings (known as the lattice) to 

return to their lower energy state, and is also referred to as spin-lattice relaxation; T2 relaxation is 

the process in which phase coherence decreases due to exchange of energy between proton spins 

resulting in slowly fluctuating magnetic field variations (inhomogeneity) in tissue, and is therefore 

also known as spin-spin relaxation (Currie et al. 2013; Elmaoğlu and Çelik 2011). T2* (T2 star) 

relaxation is a related process that also describes the process by which transverse magnetization 

decreases, but it is a result of the combined effect of T2 relaxation and dephasing as a result of B0 

inhomogeneity.  

As a result of T1, T2, and T2* relaxation, the magnetic moment moves from the transverse 

plane back to the longitudinal plane, following a spiraling path with constantly changing magnitude 

and direction. This process generates an electrical signal known as a free induction decay (FID) in 
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a receiver coil placed in the transverse plane (Gruber et al. 2018). The FID has the greatest 

magnitude immediately after the RF pulse is switched off and then decreases with time as relaxation 

occurs (Figure 2.6.6). The frequency of the FID is constant, and thus the signal takes the form of a 

sine wave (or a superposition of sine waves) with decreasing amplitude at a rate described by T2*. 

180° refocusing pulses are used to compensate for the rate of signal decay; the pulse rephases the 

magnetic moments of the protons, resulting in a temporary gain in signal intensity at time echo time 

(TE) termed the spin echo (SE) (Currie et al. 2013). A pulse sequence with multiple 180° refocusing 

pulses results in a chain of spin echoes, each of lower intensity than the first as a result of T2 

relaxation effects. The curve connecting the spin echo amplitudes is the T2 curve, whereas the T2* 

curve is generated when refocusing pulses are not used and thus signal decay is very fast (Plewes 

and Kucharczyk 2012). Pulse sequences are typically designed to take advantage of the inherently 

different relaxation rates within different tissues (grey matter, white matter, CSF, blood) and/or 

different neurochemicals in order to increase signal contrast (Plewes and Kucharczyk 2012).  

In the case of both MRI and MRS experiments, the NMR (also called MR) signal originates 

from the entirety of the magnetized tissue, so in order to form MR images or spectra, it is necessary 

to localize and spatially encode the signal. These two steps are where the acquisition methods differ 

between MRI and MRS, so each will be discussed separately.  

 
2.3.2 Specifics of MR image acquisition 

Localization of signal acquisition for MR images is performed via slice selection. Slice 

selection is achieved by using a frequency selective RF pulse containing a specific range of 

frequency components (defined by a bandwidth) in combination with a magnetic field gradient of 

a chosen strength (to define the slice thickness) (Currie et al. 2013). This results in selective 

excitation of protons within a specific slab in space and leaves spins outside of this range unaffected. 

Spatial encoding for MRI is performed via a combination of frequency- and phase-encoding, both 

of which take advantage of gradient coils within the bore of the scanner. Gradient coils generate 

magnetic field gradients that alter the overall magnitude of the B0 field in such a way that the 

intensity of the magnetic field becomes a linear function of position. To obtain three-dimensional 

spatial information, gradients are applied in the x, y, and z directions. Application of a new gradient 

magnetic field (phase-encoding gradient) in the y-direction is performed immediately after the 

excitatory RF pulse to make some protons precess faster than others depending on their position 
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within the gradient, resulting in spin phases that vary linearly over the phase-encode direction. A 

frequency-encoding gradient is applied after and perpendicular (x-direction) to the phase-encoding 

gradient, which causes the protons to rotate at different frequencies depending on their position 

within the gradient (Elmaoğlu and Çelik 2011; Plewes and Kucharczyk 2012). Therefore, provided 

the strength of the magnetic field is known, the position of an NMR signal can be determined simply 

by measuring its frequency and phase. This two-dimensional information is stored in a raw data 

matrix called “k-space” or “Fourier space”(Currie et al. 2013). The MR signal data stored in k-

space can be converted to an MR image by applying the Fourier transform along each spatial 

dimension.  The Fourier transform is a mathematical technique that decomposes a signal in the time 

domain (the FID) into a sum of sine waves of different frequencies, phases, and amplitudes in the 

frequency domain. The end result is a gray-scale MR image with various structures and/or tissues 

distinguished by differences in image contrast.   
  
2.3.3 MR image processing and quantification 

 Small animal MRI is a unique method for detecting and monitoring altered brain structure 

in vivo. Its non-invasive nature and high tissue contrast have resulted in extensive use for studying 

normal development, aging, and numerous disease states. In particular, the development of several 

widely used preprocessing and analysis pipelines (Friedel et al. 2014; Tustison et al. 2014; 

Jenkinson et al. 2012), has facilitated quantification of longitudinal neuroanatomical change, with 

demonstrated success in preclinical studies (Rollins et al. 2019; Kong et al. 2018) and with equal 

applicability to human MRI data. Structural image analysis can be performed in several different 

ways (for a detailed review, see (Lerch et al. 2017)), two of which—deformation-based 

morphometry and volumetric analysis—will be discussed below.     

 Deformation-based morphometry (DBM) is an approach that examines macroscopic 

neuroanatomical change, that is, quantifies sizes and shapes across multiple voxels as opposed to 

within voxels (microscopic), and boasts the advantage of not requiring segmentation of a priori 

regions of interest (Gaser et al. 2001; Ashburner et al. 1998). This technique deforms each brain 

scan until it matches either a study average or a common space, and then uses the amount and 

direction of deformation (deformation field or vector) required to fit each scan to the average or 

template brain image to determine the amount of volume change at each voxel (Mietchen and Gaser 

2009). DBM can be performed using cross-sectional data to detect group differences, or 



 

 

40 

longitudinal data to detect temporal variations in brain morphology. The process underlying the 

generation of deformation fields is image registration, which is the transformation that maps one 

image into the space or coordinate system of another. Image registration happens in multiple steps. 

In this thesis, image registration was performed using a least squares fit function (LSQ), of which 

there are two types: LSQ6 and LSQ12, denoting 6 and 12 degrees of freedom, respectively. First, 

linear rigid registration, LSQ6, is performed, which involves three translations and three rotations 

(hence 6 degrees of freedom). Second, an affine (or linear) LSQ12 fit is performed, which includes 

the translations and rotations from LSQ6 as well as scaling in the x, y, and z direction and shearing 

over the xy, xz, and yz planes. Finally, non-linear registration is performed which involves non-

uniform deformation of an input image to the target (Friedel et al. 2014; Ashburner et al. 1998). 

Once all images are in the same stereotaxic space, differences between the input and template 

images can be determined on a voxel-to-voxel level by examining the deformation fields required 

to achieve the transformations. It is these deformations that can be used to calculate volume changes 

by way of the Jacobian determinant, which specifies the volume of the unit-cube, or voxel, after the 

deformation  (Chung et al. 2001; Lepore et al. 2006).  

For longitudinal data, there are a few additional steps that are required to obtain meaningful 

volume measurements. The two-level-model-build pipeline (Friedel et al. 2014) (Figure 2.6.7) is 

an incredibly useful tool for co-registration of images from a longitudinal dataset, where each 

subject has multiple images. First, a subject-specific average is generated by interactive group-wise 

registration that aligns all images from a given subject to each other (from time point 1, 2, etc). This 

permits meaningful statistical comparison across all timepoints for a given subject. Then all subject-

specific averages are registered together using the same iterative group-wise registration process to 

create a population average (Friedel et al. 2014). This process creates deformation fields for each 

subject at each timepoint, which can be used to estimate the Jacobian determinant at each voxel. 

Two sets of Jacobian determinations are generated by the co-registration process: the absolute 

Jacobian, composed of the sum of the linear and non-linear mappings, reflects the global changes 

in voxel volume; and the relative jacobian, which is composed solely of the non-linear 

transformations, reflects local or relative changes in voxel volume (Chung et al. 2001; Chung et al. 

2003).      

 Volumetric analysis focuses on examining specific regions or structures of interest defined 

by segmentation, which can be performed manually or using automatic segmentation algorithms. 
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Manual segmentation is an extremely labour-intensive process that requires highly trained 

anatomists to manually define regions of interest in each slice of a brain scan based on anatomical 

priors (Despotović et al. 2015). The volume of a region is then estimated based on the number of 

voxels within the region and the scan resolution. Given the length of time required to manually 

segment brain regions, this method is not particularly scalable to large studies, and it is also prone 

to errors. As a result, manual segmentation is more frequently used in small studies or to develop 

brain atlases (Goerzen et al. 2020; Dorr et al. 2008) that are then used in automatic segmentation 

algorithms (Chakravarty et al. 2013; Lerch et al. 2017).     

 Automatic segmentation algorithms aim to segment brain scans into distinct, non-

overlapping regions, often making use of a manually segmented atlas. A combination of linear and 

non-linear image registration and/or tissue classification based on image features is performed to 

align an image with the atlas. Once registration is complete, segmentation of the atlas can be 

transferred to the target image via label propagation, multi-atlas methods, or probabilistic 

techniques (Despotović et al. 2015). For a review on these atlas-based segmentation techniques, 

please see (Cabezas et al. 2011). In this thesis, label propagation was used and regional volumes 

were calculated by multiplying the Jacobian determinant with the voxel volume at each voxel, 

resulting in absolute and brain-size-corrected volumes generated from the absolute and relative 

Jacobians, respectively (Lerch et al. 2017).    

 
2.3.4 Specifics of MR spectra acquisition 

 In single-voxel MRS, spatial localization is used to remove unwanted signals from outside 

the ROI (such as extracranial lipids) and to achieve more meaningful spectra, as different tissue 

types can have unique metabolic profiles (Juchem and Rothman 2014). There are multiple pulse 

sequences for volume selection but the Point Resolved Spectroscopy sequence was applied in this 

thesis and will therefore be discussed here. The PRESS sequence is a double spin-echo sequence 

consisting of three slice-selective RF pulses (90°, 180°, 180°) in three orthogonal planes which 

isolates the signal to the intersection of the three planes (the voxel) (de Graaf 2007). 

 In contrast to an MR image wherein the frequency of signal varies as a function of position, 

in an MR spectra the frequency of the signal varies only as a function of chemical shift. This 

frequency shift is a result of the chemical environment surrounding the proton emitting the signal, 

meaning that nuclei within the same molecule can absorb energy at different resonant frequencies 
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depending on what other nuclei are around them (Juchem and Rothman 2014; Dona et al. 2016). 

The phenomenon is caused by shielding of nuclei from B0 by surrounding electrons, thus reducing 

the magnetic field experienced by the nucleus. The effective magnetic field (B) experienced by a 

nucleus is expressed as B=B0(1-σ), where σ is the shielding coefficient, measured in parts per 

million (ppm). The resulting resonant frequency, accounting for the chemical shift, is given by 

ω0=γB0(1-σ). For example, the CH3 and CH2 protons in lactate experience different magnetic fields 

due to differing chemical environments, and thus CH3 and CH2 show up as separate peaks, despite 

the signals coming from the same nuclei, i.e. hydrogen. The separation of these signals provides 

direct information regarding the chemical environment of nuclei, thus aiding in the identification 

of compounds. Additionally, the integrated resonance area (under the peaks) are directly 

proportional to the concentration of each set of nuclei (i.e. CH3 contains 3 hydrogens, CH2 contains 

2 hydrogens), making NMR a quantitative technique (Juchem and Rothman 2014).  

 J coupling (also known as spin-spin coupling or scalar coupling) is another phenomenon  

that provides additional information as to the identity of a specific molecule. J coupling describes 

a phenomenon whereby the spin of one nucleus affects the spin of another nucleus through their 

chemical bonds, and thus “sharing” of electrons (Juchem and Rothman 2014; de Graaf 2018). It is 

J coupling that results in the splitting of peaks into doublets, triplets, etc., depending on how many 

J-coupled spins a nucleus is interacting with. For a detailed description on peak splitting, please see 

(de Graaf 2018).    

As a result of chemical shift and J-coupling, combined with the fact that the MRS signal 

comes from up to 27 metabolites and macromolecules (Mlynárik et al. 2008; Fowler et al. 2020), 

the resulting FID signal is composed of layers upon layers of signals, each with their own frequency 

and amplitude. This is where the Fourier Transform is again applied, resulting in conversion of the 

FID signal into the frequency domain, known as an NMR spectrum. In this form, each 

neurochemical can be identified based on its unique frequency (ppm) and splitting pattern.  

 

2.3.5 Quantification of the MRS signal  

Quantification of the complex NMR signal is challenging for a number of reasons, but 

particularly because of the overlapping resonances and complex splitting patterns of the many 

metabolites underlying the signal (Figure 2.6.8). One of the most commonly used algorithms for 

spectral fitting is LCModel (Linear Combination of Model spectra) developed by Provencher et al. 
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(Provencher 1993; Provencher 2001). LCModel, as the name implies, fits the NMR signal using a 

linear combination of metabolite basis function, whereby the weighting or scaling of each 

metabolite’s basis function reflects its concentration. This method requires advanced prior 

knowledge about the chemical shift and splitting patterns of expected metabolites (Govindaraju et 

al. 2000; Behar and Ogino 1991). The information is then incorporated into the spectral fitting 

process in the form of simulated basis functions (i.e. Lorentzian or Gaussian curves), with chemical 

shifts and peak splitting patterns specific to each metabolite, simulated using the study’s pulse 

sequence parameters (Near et al. 2020). Recently, basis sets have been developed and implemented 

to handle the underlying macromolecule signal, both to improve metabolite quantification and to 

quantify the macromolecule resonances themselves (Považan et al. 2018; Lee and Kim 2017; 

Lopez-Kolkovsky et al. 2016; Snoussi et al. 2015). Quantification can be performed relative to a 

major peak in the spectrum (typically total creatine) or in absolute units wherein concentrations are 

referenced to the water peak obtained in a separate scan. Total creatine has been shown to change 

with age, sex, and in some pathologies (Fowler et al. 2020; Duarte et al. 2012; Haga et al. 2009; 

Zhang et al. 2009), so referencing to water is more common (Near et al. 2020). For details on the 

complexities of spectral quantification, including preprocessing, please see the following expert 

consensus papers (Near et al. 2020; Lanz et al. 2020; Kreis et al. 2020).   

Currently, up to 21 individual metabolites and 7 macromolecules are quantifiable in the 

rodent brain at high magnetic fields (≥7T) (Fowler et al. 2020; Mlynárik et al. 2008; Duarte et al. 

2012). Metabolites visible in the 1H MRS spectra include total choline (tCho: sum of 

glycerophosphocholine, GPC, and phosphocholine, PCh), N-acetylaspartate (NAA), myo-inositol 

(Ins), total creatine (tCr: sum of creatine, Cr, and phosphocreatine, PCr), glutamine (Gln), glutamate 

(Glu), lactate (Lac), taurine (Tau), glutathione (GSH), and gamma-amino butyric acid (GABA). 

Several of the most commonly quantified metabolites will be discussed briefly below, as well as in 

the context of aging and AD in section 2.3.7.  

 

2.3.6 Interpretation of the neurochemical profile  

N-acetylaspartate (NAA): NAA is a nervous-system specific metabolite synthesized from 

L-aspartate and acetyl-coenzyme A (acetyl CoA) in neurons, and is present in the brain in 

concentrations of 10mM or higher, making it extremely prominent in the NMR signal. Since NAA 

is synthesized exclusively in neuronal mitochondria, and thus is localized in neurons, axons, and 
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dendrites, NAA has traditionally been used as a marker of neuronal density (Gao and Barker 2014; 

Moffett et al. 2007). More recently, NAA has also been proposed as a marker of neuronal 

dysfunction, specifically neuronal mitochondrial dysfunction, rather than reflecting just neuronal 

loss, due to the discovery that the synthesis of NAA from aspartate and acetyl CoA by brain 

mitochondria is energy-dependent (stimulated by ADP) and is regulated by aspartate synthesis in 

mitochondria (Clark 1998; de Graaf 2018; Moffett et al. 2014). A role for NAA in the maintenance 

of myelin, particularly during development, is also likely: within oligodendroglia in the developing 

brain, hydrolysis products of NAA are used for fatty acid and sterol synthesis which are the building 

blocks for myelin lipid synthesis (Moffett et al. 2007; Clark 1998; McKenna et al. 2012). Finally, 

NAA also serves as a precursor for the most concentrated neuroactive peptide in the human brain, 

N-acetylaspartylglutamate (NAAG) (Moffett et al. 2014). In summary, NAA is a highly reliable 

marker of neuronal health that may also reflect several different metabolic processes, so 

interpretation in the context of other metabolic changes is important for a full understanding of what 

alterations in NAA may indicate.  

Total Creatine (tCr): tCr consists of a sum of creatine (Cr) and phosphocreatine (PCr), 

both of which (in combination with ATP) play an important role in tissue energy metabolism (de 

Graaf 2018). Through the actions of creatine kinase (CK), an N-phosphoryl group from 

phosphocreatine can be reversibly transferred to ADP to generate ATP, creating Cr in the process. 

This process is particularly crucial in neurons due to their high and readily changing energy 

demands, and a number of reports emphasize the importance of maintaining the CK/PCr/Cr system 

for normal brain function due to the role of PCr and CK as an energy buffer amd as an energy 

shuttle from mitochondria to energy utilizing sites (Andres et al. 2008; Béard and Braissant 2010; 

de Graaf 2018). tCr is frequently used as an internal reference, but this should be done with caution 

as a number of studies have indicated changes with age, sex, and some pathologies (Fowler et al. 

2020; Haga et al. 2009). PCr and Cr resonances can occasionally be separated at 7T and above but 

are frequently reported together due to high correlation (representing high spectral overlap) between 

the two during fitting (de Graaf 2018; Marjańska et al. 2019).   

Total Choline (tCho): after NAA and tCr, the most prominent resonance in proton MRS 

spectra from brain tissue arises from protons within cytosolic choline-containing compounds, 

phosphocholine (PCh) and glycerophosphocholine (GPC). Given the difficulty in separating the 

two resonances, they are often reported as a sum (de Graaf 2018). Choline-containing compounds 
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such as GPC and PCh are thought to reflect membrane turnover due to their involvement in 

phospholipid synthesis and degradation pathways as breakdown products of phosphatidylcholine 

(Graff-Radford and Kantarci 2013). As such tCho is proposed as a metabolic marker of cell density 

and membrane integrity. However, given the downstream effects of cell membrane breakdown and 

thus loss of homeostasis, increased tCho may also reflect myelin breakdown, inflammation, gliosis, 

and neurodegeneration (Hammen and Kuzniecky 2012; Klein 2000).  

  Myo-inositol (Ins): Ins is a simple sugar alcohol with estimated brain tissue concentrations 

of approximately 6mM (Best et al. 2014). The exact function of Ins is not known but many roles 

for it have been suggested. Ins is primarily localized in glial cells and has traditionally been 

considered as a marker of glial cell proliferation and/or activation (Brand et al. 1993; Harris et al. 

2015), though a few studies have disputed this (Murray et al. 2014; Pardon et al. 2016). It was 

recently proposed as a surrogate marker of neuroinflammation in AD (Kantarci and Goldberg 

2016), and has also demonstrated a very strong relationship with Aβ plaque pathology, leading 

others to suggest its use as a proxy for Aβ burden (Murray et al. 2014; Voevodskaya et al. 2019), 

and even as a risk marker of preclinical AD when combined in a ratio with NAA (Waragai et al. 

2017; Godbolt et al. 2006; Kantarci et al. 2002; Kantarci and Goldberg 2016). Ins is also an organic 

osmolyte in CNS tissue, whereby Ins efflux from neurons and glia (particularly astrocytes) takes 

place via a volume-sensitive organic osmolyte channel (Harris et al. 2015). This channel regulates 

efflux of osmolytes such as Ins and Taurine (Tau) as a response to cell swelling and osmotic stress 

(Best et al. 2014), and as such, intracellular Ins concentrations increase as a response to extracellular 

hypertonicity (Lee et al. 1994). Some intracellular Ins acts as a precursor for second messengers 

(mainly phosphatidylinositol, PI, and inositol phosphates, InsP, (Gonzalez-Uarquin et al. 2020)) 

formed by the phosphoinositol cycle, which is involved in cellular regulation and signal 

transduction, particularly insulin and lipid signalling and glucose metabolism (Ross and Sachdev 

2004; Gao and Barker 2014; Bevilacqua and Bizzarri 2018). For example, Ins interacts directly 

with insulin target tissues and has been shown to induce insulin sensitivity (Chhetri 2019). Finally, 

Ins has been shown to promote antioxidant effects (Jiang et al. 2009; Hoffman-Kuczynski and Reo 

2004), though this requires further investigation. 

Glutamate (Glu) and Glutamine (Gln): Glu is a nonessential amino acid with multiple 

metabolic roles and is the most abundant amino acid in the brain (Ross and Sachdev 2004). It is the 

major excitatory neurotransmitter in mammalian brain; a precursor for the major inhibitory 
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neurotransmitter, GABA; and also contributes to the synthesis of small molecules such as GSH. 

Glu is typically present in the brain at concentrations between 6-12.5 mM and appears in all cell 

types, with the largest pool within glutamatergic neurons (de Graaf 2018). Glu is also part of the 

Glu-Gln neurotransmitter cycle: in glutamatergic neurons, glutamate acts as an excitatory 

neurotransmitter and is released into the synaptic cleft. Glu interacts with post-synaptic receptors 

and is then taken up by astroglia, where it is synthesized into the amino acid Gln by Gln synthetase. 

Gln is then transported back to the glutamatergic neuron whereby it is converted back to Glu by 

glutaminase (de Graaf 2018). A similar pathway exists between GABAergic neurons and astroglia, 

where Gln is transported from astroglia to the GABAergic neuron, converted into Glu for use in the 

tricarboxylic acid cycle (TCA) and/or converted to GABA for inhibitory neurotransmission before 

re-uptake back into the astroglia. It has been proposed that MRS-detectable Glu primarily reflects 

the concentration of Glu within the intracellular compartment (Gao and Barker 2014), and as such, 

Gln may be a more accurate measure of Glu-Gln cycling (Ross and Sachdev 2004). Despite being 

present in both neurons and astroglia, Gln is primarily localized in astroglia, and appears at a 

concentration of 2-4 MM. Glu and Gln are typically only distinguishable at field strengths of 7T 

and above and so are frequently reported as a sum, referred to as Glx (Gao and Barker 2014).   

Macromolecules (MM): proton spectra obtained at higher magnetic fields and/or using 

sequences with short echo times (TE) display significant contributions from high molecular weight 

molecules known as macromolecules (MM) (de Graaf 2018). Due to the strong contribution of MM 

to the overall signal, proper handling is important to achieve accurate metabolite measurements and 

improve reproducibility (Hofmann et al. 2002). Approximately 10 MM resonances can be identified 

in most proton spectra. Behar and colleagues identified that individual resonances represent signals 

from methyl and methylene resonances of cytosolic protein amino acids, such as leucine, isoleucine, 

valine, threonine, alanine, etc., though exact attribution of amino acids to peaks has not been 

possible (Behar and Ogino 1993; Behar et al. 1994). It has been proposed that increased MM 

content may reflect increased free fatty acids or higher visibility of cytosolic proteins after cell 

death (Saunders et al. 1997). However, given the complexity of attributing cellular or molecular 

change to specific MM peaks, changes in the MM signal may be more useful as an overall 

biomarker of health or pathology rather than being indicative of a particular mechanism.    

In summary, given the amount of biochemical information that can be obtained from a 

single, non-invasive scan, MRS is a particularly useful tool for the study of aging and 
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neurodegenerative disorders where comprehensive and longitudinal characterization of brain tissue 

chemistry could be used to develop diagnosis or therapeutic efficacy criteria at the preclinical or 

clinical level. MRS may complement MRI for these applications given that MRI-detectable volume 

changes typically occur in older populations and/or in mid-to-late stages of AD, whereas MRS may 

inform on a multitude of processes affected by aging or neurodegeneration at varying points 

throughout the lifespan.  

2.4 Implementation of MRI and MRS in aging and AD research: findings 

and gaps in knowledge 

2.4.1 Application of structural MRI to study the aging brain 

Thanks to its excellent safety profile, non-invasive nature, excellent soft tissue contrast, and 

widespread availability, MRI has been used extensively to study aging in humans. A recent review 

of 56 studies of brain volume indicated both grey matter and white matter volume decline with age, 

particularly in frontal regions, though white matter volume may decrease at a slower rate 

(MacDonald and Pike 2021). In particular, volume loss in the hippocampus, amygdala, caudate, 

putamen and cerebellum have been identified, with more moderate effects in the globus pallidus 

and thalamus (Raz and Rodrigue 2006; Raz et al. 2005). Overall brain size is generally stable from 

the 20s through the mid-50s, and then slowly declines with increasing age as a result of loss of 

axonal fibers and neuronal shrinkage (Sowell et al. 2004; Scahill et al. 2003). Cortical thinning is 

also observed in most regions of the brain but with slightly higher rates in the frontal lobes (Sowell 

et al. 2004; Raz and Rodrigue 2006). In addition, increases in ventricular size and CSF volume are 

one of the most notable features that change with age, particularly in the lateral ventricles 

(MacDonald and Pike 2021; Raz and Rodrigue 2006; Pfefferbaum et al. 2013). Other reviews 

support most of these findings (Fjell and Walhovd 2010; Walhovd et al. 2005).  

Due to a variety of challenges, the majority of aging studies in humans are cross-sectional 

group comparisons or cross-sectional continuous study designs which frequently suffer from cohort 

effects and do not allow for examination of non-linear volume changes with age, a phenomenon 

that has been observed in aging rodents (Kong et al. 2018) and in humans (Pfefferbaum et al. 2013; 

Tullo et al. 2019). Additionally, and with a few exceptions (Tullo et al. 2019; Raz and Rodrigue 

2006), most human studies do not examine subcortical structures, limiting our understanding of 
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smaller-scale changes in brain structure with age. This may be partly because of lower spatial 

resolution that is attainable on preclinical scanners, which typically operate at 1.5 to 3T. Preclinical 

aging studies in rodents can adequately address these limitations. 

Interestingly, despite the non-invasive nature of MRI facilitating longitudinal studies, few 

preclinical studies have been performed that take advantage of a longitudinal paradigm and those 

that have were all performed in mice (Reichel et al. 2017; Maheswaran et al. 2009; von Kienlin et 

al. 2005; Oberg et al. 2008), which are genetically less similar to humans than rats (Ellenbroek and 

Youn 2016). Additionally, the vast majority of studies examining longitudinal neuroanatomical 

change have done so during development or adulthood (Spring et al. 2010; Sumiyoshi et al. 2017; 

Casas et al. 2018; Qiu et al. 2018), disregarding the aging brain. Of the studies examining the aging 

rodent brain, several findings were generally consistent, both relative to each other and to human 

aging studies: hippocampal volume decreased (Driscoll et al. 2006; Maheswaran et al. 2009; 

Hamezah et al. 2017; Reichel et al. 2017), ventricles increased (von Kienlin et al. 2005; Oberg et 

al. 2008; Maheswaran et al. 2009; Hamezah et al. 2017), the medial prefrontal cortex, 

caudoputamen, and thalamus decreased, and the corpus callosum, corticospinal tract, and fornix 

system increased (Maheswaran et al. 2009). One finding that was contrary to human studies but 

was consistently reported in rodents was an overall increase in absolute brain volume with age 

(Gaser et al. 2012; Maheswaran et al. 2009; von Kienlin et al. 2005; Oberg et al. 2008). This finding, 

as well as a report of increased dentate gyrus volume with age (Alexander et al. 2020), require 

further investigation. Finally, two additional limitations to these studies are the limited number of 

brain regions examined—despite high spatial resolution facilitating the delineation of more 

structures—and the exclusive use of a single sex, with the exception of the study by Oberg et al. 

(Oberg et al. 2008).  

Gap in knowledge #1: Significant work has been done to study the aging process in humans 

using MRI, but longitudinal studies are lacking due to the long timeframe over which the studies 

must be conducted. In a preclinical setting, while these longitudinal paradigms are feasible, the 

majority of studies have been conducted during development or adulthood, disregarding the aging 

brain, or aging studies have been conducted but in a cross-sectional manner. To our knowledge, a 

longitudinal examination of neuroanatomical change with age has not been performed in any aging 

rat cohort. In particular, the field is lacking aging studies that examine many brain regions across 

the brain and are performed in both sexes.  
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2.4.2 Application of single-voxel MRS to study aging  

In comparison to examination of the whole brain via structural MRI, single-voxel MRS 

provides a more localized look at changes taking place in the brain as a result of aging or AD. Just 

as structural MRI allows for measurement of numerous brain structures, MRS can quantify many 

different neurochemicals, providing a comprehensive survey of tissue biochemistry at a point in 

time, or longitudinally, within an isolated area of the brain. When MRS is applied in humans, 

typically only the major resonances, such as NAA, tCho, tCr, and sometimes Ins, are quantified due 

to low scanner strength (1.5 to 3T) and thus low spectral resolution. Comprehensive reviews of age-

related brain metabolite changes in the human brain show that NAA tends to decrease, while tCho 

and tCr tend to increase, but there are many studies within these reviews that indicate no change in 

these metabolites (Haga et al. 2009; Cleeland et al. 2019). Studies that examined Ins reported an 

increase with age (Cleeland et al. 2019; Ross et al. 2006). These changes, which have also been 

observed at higher field strengths (7T) are generally thought to reflect reduced neuronal viability 

(NAA), increased cell membrane turnover (tCho), altered energy metabolism (tCr), and increased 

gliosis, osmotic stress, or altered cell signalling  (Marjańska et al. 2017), all phenomenon shown to 

be altered during the aging process (Camandola and Mattson 2017; Mattson and Magnus 2006; 

Mattson and Arumugam 2018). 

Preclinical systems mainly operate at 7 to 9.4T with scanners going as high as 17.2T, 

providing significantly better spectral resolution which allows for identification of up to 21 

metabolites. Several authors have characterized neurochemical change with age in mice and rats, 

though with inconsistencies between studies. In one of the only longitudinal MRS studies of aging 

in rodents, Duarte et al. identified reductions in many hippocampal metabolites, including GABA, 

Glu, Asp, (involved in neurotransmission), Glc, Lac, tCr (involved in energy metabolism), 

ascorbate (Asc, anti-oxidant), phosphoethanolamine (PE), and NAA, along with increased tCho 

(latter three involved in membrane metabolism) in male and female C57BL/6 mice from 3 to 24 

months (Duarte et al. 2014). In a cross-sectional examination of hippocampal metabolism, 22 

month-old male Fischer rats demonstrated decreased ascorbate, aspartate, phosphoethanolamine, 

and increased total choline relative to 2-months old rats, similar to the above study, but additional 

increases in Glc, Gln, Ins, and NAAG were also reported (Harris et al. 2014). Cross-sectional 

studies using high-resolution magic angle spinning nuclear magnetic resonance support increased 

Ins and Lac in older rats (male and female Sprague-Dawley rats, 1 to 24 months old) (Zhang et al. 
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2009), as well as reduced Asp and NAA (male Long Evans rats, 4 to 30 months old) (Paban et al. 

2010), but opposing effects were also reported, such as reduced tCho (Paban et al. 2010). Finally, 

in contrast to the majority of the aforementioned studies, in a cross-sectional analysis of female 

Fischer 344 x Brown Norway hybrid (FBNF1) rats between 3 and 24 months, Driscoll et al. 

identified stable concentrations of NAA, tCho, and tCr with age (Driscoll et al. 2006). While many 

of the neurochemical changes identified in these studies reflect known age-related changes in 

neurotransmission (e.g. Glu, GABA), energy metabolism (Glc, Lac, tCr), cell membrane turnover 

(tCho, PE), and oxidative stress (Asc) (Camandola and Mattson 2017), there are also significant 

inconsistencies that would be best addressed by a longitudinal study that examines neurochemical 

change in both sexes, in brain regions relevant to age-related disorders, and using techniques that 

appropriately account for the macromolecule signal.   

At higher fields, the contribution from underlying macromolecules (MM) is larger, which 

requires proper handling for accurate metabolite quantification (Hofmann et al. 2002), but also 

provides an opportunity to quantify the MM resonances themselves and gain more insight into the 

biochemical status of the brain tissue during aging. Only two reports exist that discuss individual 

MM changes with age, and they are both in aging human populations, whereby increases in MM 

resonances at 1.7, 2.0, and 3.9 ppm were reported (Hofmann et al. 2001; Marjańska et al. 2017). 

MMs have been successfully quantified in the rat brain but not in the context of aging (Lopez-

Kolkovsky et al. 2016; Lee and Kim 2017; Cudalbu et al. 2012).  

Gap in knowledge #2: Despite MRS facilitating longitudinal studies, many preclinical 

studies are still performed cross-sectionally. As such, longitudinal investigations of neurochemical 

change with age in the rat brain have not yet been performed. Additionally, changes in individual 

MMs with age have not been documented in either humans or rodents, particularly not in 

conjunction with the rest of the neurochemical profile. 

  

2.4.3 Detection and monitoring of AD using MRI and MRS 

MR-detectable volume loss indicating neurodegeneration in specific brain regions is already 

an accepted biomarker for Alzheimer’s disease and can be used to support a clinical diagnosis of 

AD (Pini et al. 2016; McKhann et al. 2011). Volumetric measurement of the hippocampus and 

entorhinal cortex specifically are currently the best-established biomarkers for Alzheimer’s disease 

(Teipel et al. 2013; Leuzy et al. 2018; Frisoni et al. 2010; Pini et al. 2016). While decreased medial 
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temporal lobe (MTL) volume loss is also a feature of aging, the extent of the decrease is larger in 

MCI and AD patients (Leuzy et al. 2018; Kantarci and Jack 2003). Compared to normal aging, 

individuals with MCI demonstrate accelerated atrophy in whole brain volume, temporal gray 

matter, and orbitofrontal and temporal association cortices (including the hippocampus), as well as 

further ventricular atrophy (Driscoll et al. 2009). Additionally, annualized rates of hippocampus 

volume loss correlate with progression of clinical diagnoses from MCI and AD dementia (Jack et 

al. 2000), and structural brain changes have also been shown to accurately reflect Braak stages of 

NFT deposition (Frisoni et al. 2010). Finally, it is important to note that histopathological analyses 

confirm that MR-detectable volume loss is representative of tissue atrophy as a result of 

microstructural changes (dendritic and axonal loss), neuronal loss, or reduction in size, though the 

exact cellular cause of atrophy may differ by region (Frisoni et al. 2010; Bobinski et al. 2000).  

Studies in transgenic models generally reflect the MTL atrophy found in human AD but 

with some exceptions. The 3xTg and APP/PS1 models appears to recapitulate the hippocampal 

atrophy reported in humans (APP/PS1:(Lau et al. 2008; Oberg et al. 2008)), along with reductions 

in the cortex, cerebellum, and olfactory bulbs (3xTg: (Güell-Bosch et al. 2020)), as well as 

decreased fornix, fimbria, and entorhinal cortex volumes (3xTg: (Kong et al. 2018)). The McGill-

R-Thy-1-APP rat also demonstrates hippocampal atrophy, specifically between 9 and 16 months of 

age (Parent et al. 2017). However, there are also conflicting reports: for example, the TgCRND8 

model demonstrates reduced hippocampal volume as early as 9 weeks prior to significant amyloid 

deposition, but the volume stabilized by 12 weeks (Allemang-Grand et al. 2015), while APP/J20 

mice actually demonstrated hypertrophy in hippocampus and dentate gyrus volumes (Badhwar et 

al. 2013), and the TgF344-AD rat did not show any hippocampal atrophy by 18 months, but did 

have reduced volume in the Raphe nuclei, mesencephalic reticular formation, and cerebral peduncle 

(Anckaerts et al. 2019). Further complicating the preclinical AD literature, only some authors noted 

increased ventricular volume in transgenic rats relative to WT controls (Oberg et al. 2008), while 

others reported a decrease (Kong et al. 2018; Lau et al. 2008). Many of these transgenic models 

differ in terms of background strain, number and type of mutations, and even species, which likely 

contributes to the inconsistencies reported here. In order to obtain results that are closer to those 

reported in humans, studies may need to focus on rat models as opposed to mouse models. Rate of 

disease progression is significantly slower in the TgF344-AD rat or the McGill-R-Thy1-APP rat as 

compared to the aforementioned mouse models, which more closely mimics disease progression in 
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humans. This may be partly a result of the closer genetic relationship between rats and humans than 

that of mice and humans. Additionally, the larger brain size in rats may provide better spatial 

resolution and thus more accurate quantification of brain structural volumes. However, it is 

important to note that neurodegeneration-related atrophy is one of the last features to appear before 

the onset of cognitive symptoms (Jack et al. 2013; Gordon et al. 2018), significantly reducing its 

potential for detecting disease early into disease progression.  

This is where MRS in combination with MRI may prove particularly useful. MRS is one of 

the most extensively studied MR techniques for AD diagnosis (Kantarci and Jack 2003); simply the 

ratio of NAA/Ins has been shown to distinguish clinical confirmed AD patients from healthy 

individuals with a sensitivity of 83% and a specificity of 98% (Shonk et al. 1995). Other than the 

NAA/Ins ratio, the most commonly quantified metabolites are NAA, tCho, and tCr, which are the 

easiest to distinguish on an MR spectrum, and occasionally Ins. There appears to be a temporal 

order in which these major metabolites become disrupted, one that may both support and 

complement structural MRI findings. Several studies using cross-sectional sampling schemes have 

demonstrated elevated Ins early on in disease progression, suggesting some level of gliosis or 

neuroinflammation, and then decreased NAA—thought to reflect neuronal viability—in more 

advanced cases of AD when a cognitive diagnosis of dementia was made (Kantarci et al. 2000; 

Pfefferbaum et al. 1999; Murray et al. 2014), potentially aligning with findings of MRI-detectable 

neurodegeneration towards the later stages of the disease. tCho has also been shown to be increased 

in elderly populations and in patients with MCI and AD (Marjańska et al. 2019), as has tCr 

(Pfefferbaum et al. 1999), suggesting these two markers may be altered somewhere in the middle 

of Ins and NAA.  

Preclinical studies in transgenic rodent models generally replicate these findings while 

providing additional metabolic insight as a result of higher spectral resolution. Similar to findings 

in human AD studies, increased Ins followed by decreased NAA were reported by authors studying 

the 3xTg mouse (Choi et al. 2014), the Tg2576 mouse (Marjanska et al. 2005), and the 

APPswe/PS1M146L mouse (Oberg et al. 2008), while others reported altered Ins but no change in 

NAA (Forster et al. 2013; Güell-Bosch et al. 2020), or decreased NAA in the absence of altered Ins 

(Dedeoglu et al. 2004; Chaney et al. 2018; Kuhla et al. 2017). Some authors have also reported 

increased tCho (Chaney et al. 2018), decreased Glu (Marjanska et al. 2005; Oberg et al. 2008; 

Forster et al. 2013), increased tCr (Forster et al. 2013), decreased GSH (Dedeoglu et al. 2004), and 
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both increased (Dedeoglu et al. 2004) and decreased Tau (Güell-Bosch et al. 2020) at a variety of 

ages in transgenic mouse models, indicating widespread biochemical disruption throughout disease 

progression. Findings in rat models of AD are more sparse and less consistent. Chaney et al. 

reported only decreased hippocampal NAA by 18 months in the TgF344-AD rat but no other 

significant metabolic changes (Chaney et al. 2021). Nilsen et al. demonstrated lower Glu, GABA, 

NAA, and tCho along with increased Ins and Tau by 9 months in the McGill-R-Thy1-APP rat, but 

then only Tau was increased at 12 months (Nilsen et al. 2012). Much of the inconsistencies between 

studies can be attributed to the differences between transgenic models, which are generated using 

a plethora of different mutations and background strains, and thus present with variations and 

differing rates of progression of underlying neuropathology (for reviews see (Do Carmo and Cuello 

2013; Drummond and Wisniewski 2017)). For example, it has been shown that Tau rather than Ins 

tends to increase with age in mouse models only harbouring an APP mutation (Dedeoglu et al. 

2004; Marjanska et al. 2005), whereas Ins increases in mice with both APP and PS1 mutations 

(Güell-Bosch et al. 2020; Choi et al. 2014; Oberg et al. 2008), suggesting some effect of PS1 

mutations on organic osmolytes. This specific example aside, not all rodent models recapitulate the 

full spectrum of neuropathological features, and thus cannot be expected to mimic the 

neurochemical profile of an individual with AD. In addition, several of these studies were only 

conducted in one sex, leading to potentially biased results. Despite these limitations, when 

performed in an appropriate rodent model, in both sexes, and in a longitudinal fashion, MRS 

provides a comprehensive analysis of biochemical changes taking place in the brain, and given the 

non-invasive nature of the technique, can establish a temporal order to these metabolic processes.            

Gap in knowledge #3: Longitudinal characterization of neurochemistry and neuroanatomy 

in rodent models that recapitulate the full spectrum of AD neuropathology are lacking. The TgF344-

AD rat model meets this requirement but changes in brain structure and the full neurochemical 

profile have yet to be documented. Additionally, these features have not been examined in 

conjunction with cognitive testing, limiting the understanding of when AD features manifest 

relative to one another in this model.  

In summary, despite all of the previous work using MR techniques to study aging and AD, 

there are still major gaps in knowledge hindering the proper understanding, diagnosis, and 

management of pathological aging trajectories. Preclinical studies in rodents using MRI and MRS 

facilitate longitudinal assessments of brain structure and tissue chemistry, yet longitudinal 
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paradigms studying change with age and AD are still lacking. Longitudinal examination combined 

with the additional biochemical information and higher spatial resolution available at higher 

magnetic fields used in preclinical studies could be used to identify and better understand processes 

that become dysfunctional with age or AD, as well as to further distinguish aging from AD. Finally, 

an important component to developing an accurate understanding of age- and AD-related changes 

in neuroanatomy and neurochemistry is the intentional examination of the influence of sex, a factor 

that a majority of researchers have previously failed to take into account.   

 
2.4.4 MR-detectable sex differences in aging and AD 

 While age is the primary risk factor for AD, female sex is the second, with women 

(particularly post-menopausal women) accounting for two out of three AD patients over the age of 

60 (Rahman et al. 2019). In addition, age of onset, manifestation, and rate of progression of AD-

related features can differ between men and women (Rahman et al. 2019; Barnes et al. 2005). For 

example, neurodegeneration and cognitive decline in particular occur more rapidly for women once 

a diagnosis is suspected (Podcasy and Epperson 2016; Barnes et al. 2005). Additionally, a study by 

Buckley et al. indicated greater tangle burden in women than in men with comparable Aβ levels, 

suggesting an earlier onset of AD pathophysiology (Buckley et al. 2018). There has therefore been 

emphasis placed on identifying sex-specific differences in disease etiology, manifestation, and 

progression in an effort to develop strategies for prevention, detection, and management of AD that 

appropriately address the influence of sex. Further, given the interaction between age and sex in 

conferring risk for AD, examining the influence of sex during the aging process is just as critical as 

doing so in individuals along the AD continuum. The effect of sex on neuroanatomy and 

neurochemistry during both aging and AD will be briefly discussed below, though it should be 

noted that MR studies on these topics are limited.    

Brain volume loss as a result of age differs between men and women, with men generally 

showing greater age-related changes. Women experience more substantial hippocampal loss and 

increases in the parietal lobe with age, whereas age-related whole-brain volume loss and increases 

in the frontal and temporo-parietal lobes occur in men (Coffey et al. 1998; Cowell et al. 1994; 

Murphy et al. 1996). However, more recent reports have indicated that hippocampal and entorhinal 

cortex loss occurs more drastically in men (Armstrong et al. 2019; Driscoll et al. 2009), so the sex-

related effects of age on hippocampal volume may require further investigation. Grey and white 
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matter loss occurs in men and women but both appear to decline more quickly in men (Cosgrove et 

al. 2007; Pfefferbaum et al. 2013; Armstrong et al. 2019). Age-related change in CSF volume also 

appears to differ by sex, whereby ventricular hypertrophy was more pronounced in men, 

particularly in the lateral ventricles (Pfefferbaum et al. 2013; Sullivan et al. 2004; Gur et al. 1991). 

Finally, there are very few reports on the interaction between age and sex on subcortical volumes 

other than the hippocampus, but the ones that do exist indicate similar rates of atrophy between 

men and women in volumes such as the thalamus and caudate (Sullivan et al. 2004; Choi et al. 

2020). 

Interestingly, while there are numerous reports indicating that women are disproportionately 

affected by AD in terms of both disease prevalence and severity, few studies have actually 

examined the effect of sex on neuroanatomical change during AD. In the few publications that 

address this topic, it has been shown that women with AD experience more overall brain atrophy 

than men (Filon et al. 2016), and even women in preclinical stages of AD show more severe frontal 

grey and white matter atrophy than men (Mosconi et al. 2017). Additionally, a significant 

interaction between sex and CSF-Aβ42 on longitudinal hippocampal atrophy was identified by 

Koran et al., indicating faster atrophy in women than men despite less pathology (Koran et al. 2017). 

Faster hippocampal atrophy in women with AD was also confirmed by another study (Ardekani et 

al. 2016).  

Regarding preclinical literature on these topics, while studies exist examining the influence 

of sex on neuroanatomical change during normal development or adolescence (Qiu et al. 2018; 

Spring et al. 2010; Sumiyoshi et al. 2017), there is a complete lack of similar studies in aging rodent 

populations. It goes without saying that this is a major gap in knowledge that needs to be addressed 

in order to better understand sex-specific effects of AD on brain anatomy. 

  Similarly, there is a relative dearth of information regarding sex differences in 

neuroanatomy in transgenic rodent models. Of the preclinical MRI studies mentioned in section 

2.4.3, five of eight included both male and female mice but only three intentionally examined the 

influence of sex on neuroanatomical volume. Lau et al. did not detect any effect of sex on voxel-

wise measures of volume in APP/PS1 mice (Lau et al. 2008), and no sex-dependent difference in 

hippocampal volumes were present in the McGill-R-Thy1-APP model (Parent et al. 2017). 

However, Kong et al. did report positive age by sex interactions for several regions in the 3xTg 

mouse brain, including the 3rd ventricle, hippocampus, and caudal entorhinal cortex, and negative 
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age by sex interactions in the fimbria amygdalo-hippocampal region (Kong et al. 2018), suggesting 

that the presence of tau pathology may be required for sex effects on neuroanatomy to occur. Given 

that sex differences exist in other aspects of AD pathophysiology in transgenic models, such as Aβ 

deposition (Carroll et al. 2010) and cognitive function (Berkowitz et al. 2018; Saré et al. 2020), it 

is highly likely that sex modifies the effect of AD pathology on rodent brain anatomy in at least 

some transgenic models but additional research is required to confirm this theory. 

Regarding the influence of sex on the neurochemical profile with age and during AD, there 

are only a few publications at both the clinical and preclinical levels that explore this topic using 

magnetic resonance spectroscopy. In aging C57BL/6 mice, striatal Tau was shown to be 

considerably lower in female mice than their male counterparts, and was hypothesized to be due to 

estrogen receptors being involved in taurine uptake (Duarte et al. 2014). There were additional sex-

dependent effects on tCr, ascorbate, Glc, Lac, Ala, PE, and Asp, but the trajectories in male versus 

female mice were not shown or described further. Another study demonstrated a more substantial 

decrease in hippocampal GABA with age in female C57BL/6 mice than in male mice (Roy et al. 

2018). In humans, Glu concentration in the anterior cingulate cortex has been shown to be lower in 

men but to decrease with age more quickly in women (Hädel et al. 2013). Finally, in a study by 

Marjanska et al. in a healthy aging cohort, Gln differed between sexes when ages and regions were 

pooled but not otherwise (Marjańska et al. 2017). 

In individuals with AD and in transgenic models, there are similarly few reports. An MRS 

study by Watanabe et al. in a cohort of healthy controls, MCI and AD patients, there were no 

significant metabolite differences between men and women (Watanabe et al. 2010), while another 

report noted lower NAA in male AD patients relative to male controls, but no difference in female 

patients versus female controls (Colla et al. 2003). The few MRS studies in transgenic models of 

AD indicate some sex-specificity in the neurochemical profile. Hippocampal GABA was shown to 

have a different temporal pattern of change between male and female Tg2576 mice (Roy et al. 

2018) and a study by van Duijn et al. demonstrated faster age-related decline of NAA and Tau in 

female APP/PS1 mice versus males. A cross-sectional study by Nilsen et al., indicated male-

specific decreases in Glu, NAA, and tCho in the McGill-R-Thy1-APP rat model relative to WT 

controls, while female McGill-R-Thy1-APP rats were shown to have higher NAA and Ins than their 

transgenic male counterparts. There is obviously little consistently between these studies, both 



 

 

57 

within and between species, prompting further investigation into the compound effect of sex and 

pathology on the neurochemical profile. 

Gap in knowledge #4: The influence of sex on neurochemistry and neuroanatomy during 

aging remains a sorely understudied topic, particularly at the preclinica level, and is important for 

understanding the influence of sex in the presence of pathology. Subsequently, the interaction of 

age, genotype, and sex on neuroanatomy and neurochemistry have not be explored in the TgF344-

AD rat.  

2.5 Statistical analysis methods   
 
2.5.1 Univariate analysis tools for longitudinal data  

 As mentioned throughout this thesis, neuroimaging methods lend themselves to longitudinal 

study designs, with individuals being tested at multiple time points. These longitudinal paradigms 

provide comprehensive and complex biological data, offering crucial insight into the temporal 

dynamics of biological processes. Additionally, compared to a cross-sectional approach, repeated 

measures designs offer superior statistical power by reducing the confounding effect of between-

subject variability (Thompson et al. 2011). With this added complexity comes the need for more 

sophisticated statistical approaches to properly model and interpret the data.  

The use of linear mixed-effects (LME) models is becoming increasingly common for 

analysis of longitudinal biological data and is by far the best available option. LME models use 

linear regression to describe the trajectory of a response variable over time in a given population, 

whereby the trajectory is expressed as a linear combination of independent variables (Bernal-Rusiel 

et al. 2013; Bates et al. 2015). They extend traditional linear models by combining fixed and random 

effects as predictor variables. Fixed effects are typically the variables of interest or grouping factors 

(e.g. genotype, sex, treatment) which are expected to have an effect on the response variable, while 

random effects are other grouping factors for which you are trying to control (e.g. litter, subject) 

but are not part of the study’s primary hypotheses. Choosing which predictor variables and 

interactions to include should be done in a way that it reflects a specific a priori hypothesis 

(Harrison et al. 2018). Optimal model selection can also be performed via tools such as Akaike 

Information Criterion (AIC), which provides a goodness-of-fit score that reflects a balance between 

simplicity (fewer variables) and adequate modeling of variance (Akaike et al. 1973; Burnham and 
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Anderson 2004). For example, one of the linear models employed in Chapter 5 predicts 

neuroanatomical volume using a model that includes a quadratic age term interacting with 

genotype, sex as a categorical variable, and a random effect of subject. This model examines how 

neuroanatomical trajectories change over time in response to genotype while controlling for the 

influence of sex and allowing subjects to have their own intercept.   

Inclusion of random effects allows for explicit modelling of non-independence in the data 

that comes from repeated sampling in the same subject or natural hierarchical clustering that results 

from the study design itself (litter-specific effects, for example) (Harrison et al. 2018; Fitzmaurice 

and Ravichandran 2008). Modelling of the random effects structure improves estimation of the 

fixed effects and reduces the probability of false positives and false negatives (Harrison et al. 2018). 

LMEs permit the incorporation of random intercepts, which allows subject means to vary but 

assumes all subjects have a common slope for a given fixed effect, as well as random intercepts 

combined with random slopes, which allows the subject means and slopes to vary (Harrison et al. 

2018; Pinheiro and Bates 2000). However, it should be noted that random effects models require 

quite a lot of data in order for the random intercept term to be accurately estimated, limiting their 

applicability in smaller datasets. Additionally, LMEs offer the distinct advantage of being 

compatible with unbalanced data which frequently occur in longitudinal paradigms due to subject 

non-compliance or lack of availability (clinical studies) or attrition (preclinical studies) (Pinheiro 

and Bates 2000). Other statistical methods frequently require exclusion of subjects if they do not 

complete all time points in the study, which results in biased estimates (Fitzmaurice and 

Ravichandran 2008).  

Commonly used alternatives to LMEs include repeated measures analysis of variance, and 

cross-sectional general linear model-based analysis of summary measures (such as percent or 

absolute difference) (Garcia and Marder 2017). However, these two approaches are not optimal for 

longitudinal data as they do not appropriately model the covariance structure of repeated 

measurements, cannot handle missing data (which is a common feature of longitudinal studies), and 

cannot take advantage of the information that exists in the intra-subject variance (Bernal-Rusiel et 

al. 2013; Garcia and Marder 2017). As such, for longitudinal neuroimaging studies such as those 

performed in this thesis, LME models that include predictors of interest while controlling for other 

categorical variables and random effects offer the best practical and theoretical approach, providing 

adequate statistical power and meaningful interpretation. 
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2.6 Chapter 2 Figures   
 

 
 

Figure 2.6.1 The pathological evolution of Alzheimer’s disease  
 
(A) Amyloid plaques and neurofibrillary tangles spread through the brain as the disease progresses.  
(B) Spatial distribution of neuropathological features occurs according to Braak Stages A-C and 
Stages I-VI for amyloid and tau deposition respectively. Top row. Amyloid deposition typically 
precedes that of tau and occurs first in the frontal and temporal lobes, hippocampus, and limbic 
system. Bottom row. Neurofibrillary tangles and neuritic degeneration start in the medial temporal 
lobes and hippocampus and eventually spread to other areas of the neocortex. Figure and caption 
adapted with permission from Springer Nature, Nature Reviews Molecular Cell Biology, 
“Alzheimer’s disease” by (Masters et al. 2015).  
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Figure 2.6.2 The amyloid cascade hypothesis 
 
The sequence of major pathological events resulting in Alzheimer’s disease dementia proposed by 
the amyloid cascade hypothesis. The curved blue arrow indicates that Aβ oligomers may directly 
injure the synapses and neurites of brain neurons, in addition to activating microglia and astrocytes. 
Unmodified figure and caption used with permission from EMBO Press, EMBO Molecular 
Medicine, “The amyloid hypothesis of Alzheimer’s disease at 25 years” by (Selkoe and Hardy 
2016).  
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Figure 2.6.3 Temporal model of AD biomarkers 
 
A hypothetical model of the temporal ordering of main Alzheimer’s disease biomarkers. The 
threshold for the first detection of biomarkers associated with pathophysiological changes is 
denoted by the black horizontal line. The gray area denotes the zone in which abnormal 
pathophysiological changes lie below this biomarker detection threshold. In this model, the 
occurrence of tau pathology can precede Aβ deposition in time, but only early on at a sub-threshold 
level. Aβ deposition occurs independently and rises above the biomarker detection threshold 
(purple and red arrows) prior to the manifestation of abnormalities in CSF tau (blue arrows; thought 
to be induced by Aβ deposition), MRI and FDG-PET (dark blue arrow), and cognitive function 
(green arrow). Cognitive impairment is shown as a range that depends on the individual’s risk 
profile. Figure and caption adapted with permission from EMBO Press, EMBO Molecular 
Medicine, “The amyloid hypothesis of Alzheimer’s disease at 25 years” by (Selkoe and Hardy 
2016).  
 
 



 

 

62 

 
 

Figure 2.6.4 Coils comprising an MR machine 
 
Schematic demonstrating the relative positions of the different magnet coils comprising the MR 
machine. The subject is positioned within the bore of the machine and is surrounded by coils that 
lie concentric to each other and in the following order: main magnet coils, gradient coils, and 
radiofrequency (RF) coils. For neuroimaging, an additional RF coil is placed around the subject’s 
head to improve signal to noise ratio. Figure and caption adapted with permission from BMJ 
Publishing Group Limited, Postgraduate Medical Journal, “Understanding MRI: basic MR physics 
for physicians” by (Currie et al. 2013). 
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Figure 2.6.5 Recovery of longitudinal magnetization following a 90° 
radiofrequency pulse 
 
(A) Protons aligned with B0 produce a sum vector with longitudinal magnetization. (B) When an 
RF pulse is switched on, longitudinal magnetization decreases and transverse magnetization 
propagates. Alternatively, it can be said that the sum magnetization ‘tilts’ to the side. An RF pulse 
that abolishes longitudinal magnetization to zero while inducing transverse magnetization is called 
a 90° (saturation) pulse as the sum magnetization vector is seen to tilt or flip 90°. Immediately 
following an RF pulse, protons precess in phase in the transverse plane, depicted by a single vector 
(arrow) in the lower circle. (C) After the 90° RF pulse, protons fall out of phase (now multiple 
vectors in the lower circle), transverse magnetization decreases, and longitudinal magnetization 
begins to recover. During this process, the whole system continues precessing and so the sum 
vectors takes a spiraling motion. (D) Recovery of longitudinal magnetization is called T1 relaxation 
and loss of transverse magnetization is called T2 relaxation. Figure and caption adapted with 
permission from BMJ Publishing Group Limited, Postgraduate Medical Journal, “Understanding 
MRI: basic MR physics for physicians” by (Currie et al. 2013). 
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Figure 2.6.6 T1, T2, and T2* relaxation 
 
(A) T1 curve: plotting the recovery of longitudinal magnetization over time following the switching 
off of a radiofrequency (RF) pulse results in a T1 curve. (B) T2 curve: A 180° refocusing pulse acts 
to ‘combat’ the effects of external magnetic field inhomogeneity by rephasing the protons. This 
results in a temporary gain in signal intensity at time echo time (TE) termed spin echo. A sequence 
of 180° pulse results in a chain of spin echoes. Each subsequent echo will be of lower intensity due 
to T2 effects. A curve connecting the spin echo intensities is the T2 curve. (C) T2* curve: this curve 
results when 180° refocusing pulses are not used. The signal decays much faster due to T2* effects. 
TR, repetition time. Unmodified figure and caption used with permission from BMJ Publishing 
Group Limited, Postgraduate Medical Journal, “Understanding MRI: basic MR physics for 
physicians” by (Currie et al. 2013). 
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Figure 2.6.7 Two-Level model build pipeline 
 
Schematic of the two-level registration paradigm that creates both subject and population averages. 
All scans per subject are registered to create a subject-specific average. All subject averages are 
then registered to create a population average for the whole study. Figure used with permission 
from Frontiers in Neuroinformatics, “Pydpiper: a flexible toolkit for constructing novel registration 
pipelines” by (Friedel et al. 2014). 
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Figure 2.6.8 Example of a neurochemical spectra obtained at 7T and basis functions 
used for quantification. 
 
The MR signal can be deconstructed into a series of basis functions which are fit via linear 
combination to determine the concentration of each neurochemical. The original signal is shown in 
black (7.8 Hz water linewidth), with the fit and residual shown in blue. The basis functions of all 
neurochemicals are shown below, whereby each neurochemical has a unique chemical shift 
(frequency, ppm) and peak splitting pattern used to identify it. Original figure created by the author, 
Caitlin Fowler. 
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CHAPTER 3: LONGITUDINAL QUANTIFICATION OF 
METABOLITES AND MACROMOLECULES REVEALS AGE- 
AND SEX-RELATED CHANGES IN THE HEALTHY FISCHER 
344 RAT BRAIN 

3.1 Preface 

The work presented in Chapter 3 represents the first longitudinal characterization of age-

related neurochemical change in the Fischer 344 rat, despite this strain being frequently used for 

studying aging and for development of transgenic rat models of disease. This gap in knowledge was 

identified when planning the TgF344-AD rat publication and we noted baseline changes in the 

background strain of this model, the Fischer 344 rat, had not yet been documented. We chose to 

also develop methods for quantification of individual macromolecule resonances, as proper 

modelling of these signals improves metabolite quantification and can provide more information 

on biochemical abnormalities than if the standard metabolite profile were used.  

To characterize longitudinal changes in the neurochemical profile of the Fischer 344 rat, 

magnetic resonance spectroscopy scans were performed on a 7T preclinical Bruker system at 4, 10, 

16, and 20 months, with spectra acquired from the dorsal hippocampus. Male and female rats were 

used to explore the influence of sex on brain neurochemistry. The quantification of macromolecules 

required the development and implementation of an inversion recovery pulse sequence to acquire 

a metabolite-nulled spectrum, and then parameterization of the signal to identify and characterize 

9 individual macromolecule peaks. Basis functions for these peaks were simulated and incorporated 

into the traditional neurochemical profile such that 18 metabolite peaks and 9 macromolecule peaks 

were quantified in each rat at each time point.  

 This study addresses the question of how age and sex influence hippocampal tissue 

chemistry throughout the life span. The benefits of answering this question are two-fold. First, 

abnormalities in the neurochemical profile provide incredible insight into the neurobiological 

processes associated with normal aging, and we anticipate that many of these findings can be 

translated to human aging populations. Second, these findings provide a baseline for studies 

performed in transgenic models of disease, in which the effects of age and pathology are 

compounded. These two outcomes will contribute to better identification of age-related diseases, a 

critical step towards providing better care for our aging population.  
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3.3 Abstract 

Normal aging is associated with numerous biological changes including altered brain 

metabolism and tissue chemistry. In vivo characterization of the neurochemical profile during aging 

is possible using magnetic resonance spectroscopy, a powerful non-invasive technique capable of 

quantifying brain metabolites involved in physiological processes that become impaired with age. 

A prominent macromolecular signal underlies those of brain metabolites and is particularly visible 

at high fields; parameterization of this signal into components improves quantification and expands 

the number of biomarkers comprising the neurochemical profile. The present study reports, for the 

first time, the simultaneous absolute quantification of brain metabolites and individual 

macromolecules in aging male and female Fischer 344 rats, measured longitudinally using proton 

magnetic resonance spectroscopy at 7T. We identified age- and sex-related changes in 

neurochemistry, with prominent differences in metabolites implicated in anaerobic energy 

metabolism, antioxidant defenses, and neuroprotection, as well as numerous macromolecule 

changes. These findings contribute to our understanding of the neurobiological processes associated 

with healthy aging, critical for the proper identification and management of pathological aging 

trajectories. 

3.4 Introduction 

Aging is associated with impairments in numerous physiological pathways including 

antioxidant production, inflammatory response, and cerebral glucose metabolism, with further 

exacerbation seen in neurodegenerative disorders (Miccheli et al., 2003; Ravera et al., 2019; Yin et 

al., 2016). The medial temporal lobe, particularly the hippocampus, has a well-documented role in 

learning and memory consolidation, and is particularly vulnerable to the aging process and 

neurodegenerative disease (Bettio et al., 2017; Schuff et al., 1999; Van Hoesen et al., 1991). 

Improving our understanding of the neurobiological processes associated with healthy aging within 

the hippocampus may aid diagnosis, monitoring, and treatment of age-related neurological diseases 

such as dementia.  

Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique that 

provides unique insight into brain metabolism in vivo, permitting longitudinal examination of the 

neurochemical profile. These neurochemicals can serve as biomarkers of specific cellular and 
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molecular mechanisms, in the context of both health and pathology (Ross and Sachdev, 2004). For 

example, N-acetylaspartate (NAA) and myo-Inositol (Ins) are thought to reflect altered neuronal 

viability and gliosis, respectively, and have been reported to change over the course of normal aging 

(Cleeland et al., 2019; Haga et al., 2009; Harris et al., 2014), as well as in Alzheimer’s disease 

(Marjańska et al., 2019; Nilsen et al., 2014). MRS has been used to characterize altered tissue 

chemistry in normal brain development and aging, disease, and therapeutic intervention in mice 

(Choi et al., 2014; Duarte et al., 2014; Marjańska et al., 2014), rats (Harris et al., 2014; Paban et al., 

2010; Zhang et al., 2009), and humans (Emir et al., 2011; Murray et al., 2014), reflecting changes 

in underlying physiology and supporting its use as a translational tool in neuroscience research.  

Quantification of at least 18 neurochemicals in the rodent brain is feasible with in vivo 1H 

MRS at 7T and above, providing a wide array of potential biomarkers of specific cellular and 

molecular changes (Duarte et al., 2014; Harris et al., 2014; Mlynárik et al., 2006; Pfeuffer et al., 

1999).  Molecular changes observed with MRS may reflect altered energy metabolism, 

inflammation, or antioxidant capacity, processes which are affected by aging (Febo and Foster, 

2016; McKenna et al., 2012). In addition to brain metabolites, broad macromolecule (MM) 

resonances are also detected with 1H MRS, and have been shown to change with age, brain region, 

and pathological conditions (Behar et al., 1994; Hofmann et al., 2001; Seeger et al., 2003). The MM 

peaks have previously been assigned to cytosolic proteins and mobile lipids (Behar and Ogino, 

1993), and contribute strongly to the overall signal (Cudalbu et al., 2012; Považan et al., 2018).   

Historically, the vast majority of MRS studies have focused exclusively on quantification 

of metabolite levels, while relatively few have sought to selectively measure the MM contribution. 

Generally, this has been achieved via inversion recovery (IR) experiments to suppress the 

metabolite signals. The resulting metabolite-suppressed spectrum is then used as a basis to quantify 

the overall MM contribution in a standard MRS analysis. However, this approach does not allow 

for quantification of the individual MM components (Craveiro et al., 2014; Cudalbu et al., 2012).  

Alternatively, parameterization of the IR-derived MM signal into components has emerged 

as a viable option for quantifying individual MMs; this process has been successfully applied to 

MRS and MRSI data obtained in humans from 1.5T and 7T (Otazo et al., 2006; Považan et al., 

2018; Seeger et al., 2003), and in rats at 9.4T and 17.2T (Lee and Kim, 2017; Lopez-Kolkovsky et 

al., 2016). Age-related change in MM concentration has been investigated in humans, but either the 

MM signal was quantified as a single entity (Marjańska et al., 2018), or individual MMs were 



 

 

71 

quantified, but not longitudinally (Hofmann et al., 2001). To our knowledge, no preclinical studies 

have characterized longitudinal changes in individual MMs with age. Thus, the goal of this study 

was to assess longitudinal changes in both metabolites and individual macromolecules in the 

hippocampus of Fischer 344 rats to provide new insight into cellular mechanisms and biomarkers 

associated with healthy aging. 

3.5  Materials and Methods 

3.5.1 Animals  

Homozygous Fischer 344/NHsd wildtype (WT) male and female rats (henceforth referred 

to as Fischer) were obtained from Envigo Laboratories (Madison, WI, United States; order code: 

010) and bred within the Animal Care Facility at the Douglas Hospital Research Centre. Rats were 

weaned on postnatal day 21 and housed in pairs on a 12 hour light-dark cycle with ad libitum access 

to food and water. All animal procedures and experiments were performed in accordance with the 

guidelines of the McGill University Animal Care Committee and the Douglas Hospital Research 

Centre Animal Care Committee. 

Neurochemical profiles were measured longitudinally, with scans at 4-, 10-, 16-, and 20-

months of age, covering the majority of the adult rat lifespan. A total of 30 rats were included in 

the study. 12 of 30 rats were scanned at only the 4- and 10-month timepoints due to being part of a 

separate treatment  study thereafter. Additionally, 2 females died prior to the 16-month time point 

and 5 males died prior to the 20-month time point, all of natural causes, and one scan at 10-months 

was discarded due to low SNR. As such, the final number of scans for the four time points were 30 

(15 males, 15 females),  29 (14 males, 15 females), 16 (7 males, 9 females), and 11 (3 males, 8 

females), respectively (see Supplementary Table 3.13.1). The imbalance in the number of subjects 

scanned per time point was accounted for in the statistical analysis by applying a mixed effects 

linear model.  

 

3.5.2 1H-MRS data acquisition - metabolites  

MRS data were acquired at the Douglas Centre d’Imagerie Cérébrale using a 7 Tesla Bruker 

Biospec 70/30 scanner (Bruker, Billerica, MA, United States) with an 86 mm volumetric birdcage 

coil for transmission and a four-channel surface array coil for signal reception (Bruker). The level 
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of anesthesia (1-4% isoflurane in oxygen gas) was adjusted to maintain a breathing rate between 

50-70 breaths per minute throughout the procedure and warm air (37 ℃) was blown into the bore 

of the scanner to maintain a constant body temperature (SA Instruments, Inc., monitoring system, 

Stony Brook, NY, United States). 

   Coronal and sagittal T2-weighted MR images were acquired using a Rapid Acquisition with 

Relaxation Enhancement (RARE) sequence (TR = 2049 ms, TE = 10.8 ms, RARE factor = 6, 

effective echo time = 32.4 ms, FOV = 32 x 22.5 mm, matrix size = 256 x 180, resolution = 125 μm 

non-isotropic, 1m26s70ms acquisition time) to guide placement of a region of interest for localized 

magnetic resonance spectroscopy in the right lateral dorsal hippocampus (~31 μL volume, see 

Figure 3.9.1). Voxel positioning was based on anatomic landmarks. Automated localized 

shimming was performed using the FASTMAP method (Gruetter, 1993) (ParaVision 5.1, Bruker). 

Specifically, 1st and 2nd order shims were first optimized on a 5x5x5 mm3 voxel, followed by 1st 

order-only shimming on a smaller, local 3.5x3.5x3.5 mm3 voxel (average water linewidth 9.92 ± 

1.03 Hz), both surrounding the region of interest. In vivo 1H-MRS scans were then acquired from a 

2.5x3.5x3.5 mm3 voxel using the PRESS sequence (Point Resolved Spectroscopy) with a total 

acquisition time of 13m0s0ms (TR = 3000 ms, TE = 11.12 ms, 2048 acquisition data points, spectral 

width = 4006 Hz) in combination with outer volume suppression. 256 averages were acquired with 

VAPOR water suppression (Tkacˇ et al., 1999) and 8 averages were acquired without water 

suppression for eddy current correction and as a reference for absolute metabolite quantification, 

described in the Supplementary Methods 3.11.4.  

 

3.5.3 1H-MRS data acquisition (macromolecules) and parameterization  

“Metabolite-nulled” spectra were acquired in eight Fischer rats at 10-months of age using 

PRESS localization (TR = 3000 ms, TE = 11.12 ms, 512 averages, 2048 acquisition data points, 

spectral width = 4006 Hz) preceded by an IR module consisting of a 4th order hyperbolic secant 

adiabatic full passage (AFP) inversion pulse (pulse duration =1.0 ms, bandwidth = 6982.0 Hz, 

inversion time = 800 ms), for a total acquisition time of 25m48s0ms. The eight macromolecule 

spectra were aligned, summed, and scaled in FID-A (Simpson et al., 2017) to generate an average 

metabolite-nulled spectrum for parameterization. For details on spectral processing in FID-A, see 

Supplementary Methods 3.11.2. Due to variability in longitudinal relaxation times of metabolites, 

a single inversion time is unlikely to produce a macromolecule spectrum wherein all metabolites 
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are completely suppressed (Cudalbu et al., 2012). To identify the residual metabolite peaks in our 

MM spectrum, two additional MM scans were obtained with the same inversion time (TI=800 ms) 

and scan parameters as above, but with a long TE (40 ms). Minor residual peaks of NAA (2.00 

ppm, inverted; 2.69 ppm), tCr (3.93 ppm), Glu (2.36 ppm), Gln (2.53 ppm), and Tau (3.41 ppm, 

inverted) were visible and accounted for during the parameterization process.  

Iterative parameterization of the MM spectrum was performed in jMRUI using the 

AMARES fitting tool (Naressi et al., 2001; Stefan et al., 2009; Vanhamme et al., 1997). For full 

details on the MM parameterization methods, see Supplementary Methods 3.11.2.   

 

3.5.4 Generation of metabolite and macromolecule basis spectra 

The FID-A Simulation toolbox (github.com/CIC-methods/FID-A, version 1.0, (Simpson et 

al., 2017) in MATLAB (R2012a, The MathWorks, Inc., Natick, Massachusetts, United States) was 

used to simulate all metabolite and macromolecule basis functions for LCModel analysis. 

Simulations took into account the exact PRESS refocusing pulse waveforms that were used 

experimentally (Mao et al., 1988), as well as the actual TE and TR, and metabolite spin systems 

were based on previously published chemical shifts and J-coupling constants (Govindaraju et al., 

2000). Metabolites were simulated with Lorentzian lineshapes and linewidths of 2 Hz. 

Macromolecules were simulated using Gaussian lineshapes, with linewidths and frequencies based 

on jMRUI AMARES output (see Supplementary Table 3.13.2 for MM basis set simulation 

parameters). The neurochemical basis set consisted of 18 simulated metabolite resonances and 9 

macromolecule basis functions: alanine (Ala), aspartate (Asp), creatine (Cr), γ-aminobutyrate 

(GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glycerophosphocholine (GPC), 

glutathione (GSH), lactate (Lac), myo-Inositol (Ins), N-acetylaspartate (NAA), N-

acetylaspartylglutamate (NAAG), phosphocholine (PCh), phosphocreatine (PCr), 

phosphoethanolamine (PE), serine (Ser), taurine (Tau), MM0.89, MM1.20, MM1.39, MM1.66, MM2.02, 

MM2.26, MM2.97, MM3.18, and MM3.84.  

 

3.5.5 Data processing and quantification 

Spectral preprocessing was performed in FID-A, and consisted of removal of motion 

corrupted scans and spectral registration to correct frequency and phase drift errors (Simpson et al., 
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2017). Spectra were analyzed using the linear combination analysis method LCModel (version 6.3, 

Stephen Provencher Inc, Oakville, Ontario, Canada) using simulated basis functions as described 

above. Soft constraints on concentration ratios were specified for individual MM resonances, based 

on AMARES amplitudes (see Supplementary Table 3.13.2). Fitting was performed over the 

spectral range of 0.2 to 4.2 ppm. The unsuppressed water signal measured from the same volume 

of interest was used as a reference signal for absolute quantification. 

For each scan, the matrix of correlation coefficients between the metabolite concentrations 

was extracted from LCModel’s  detailed output . If the average correlation between a pair was less 

than -0.3, we chose to also report those metabolites as a sum (Provencher, 2019, 1993). Therefore, 

we included the following sums in our neurochemical profile: GPC+PCh (total Choline, tCho), 

Cr+PCr (total creatine, tCr), and Tau+Glc. We also report summed NAA+NAAG (tNAA) and 

Glu+Gln (Glx) and the ratios of PCr to Cr, Glu to Gln, Asp to Glu, and NAA to Ins.  

 

3.5.6 Application of correction factors for absolute quantification 

For absolute quantification of metabolites and macromolecules, we applied a quantification 

formula  as described in Supplementary Methods 3.11.4, Supplementary Equation 2. The  

formula accounted for T1 and T2 relaxation constants of water and measured neurochemicals, and 

assumed an NMR-visible water concentration of 43300 mM based on the fact that our voxel 

contained mostly grey matter, (Ernst et al., 1993). The values of each term in the quantification 

formula are listed in Supplementary Table 3.13.3. All neurochemical concentrations are reported 

in mmol/L.  

 

3.5.7 Exclusion criteria  

The Cramer-Rao lower bound (CRLB) provided by LCModel was used as a measure of 

reliability of neurochemical quantification on a per-metabolite basis. We employed a strict cut-off 

of 30% CRLB averaged across all scans, which resulted in the removal of GABA, Serine, and 

MM3.18 from our analysis. See Supplementary Table 3.13.4 for details on metabolite CRLB across 

the four time points. These exclusion criteria are based on recommendations by Kreis et al., wherein 

excluding individual samples with high CRLB is unadvisable as it biases the mean estimated 

concentrations of cohort data (Kreis, 2016). 
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3.5.8 Statistical analysis 

Metabolites were analyzed using linear mixed effects modeling in R (version 3.6.3, 

tidyverse_1.3.0, lme4_1.1-21, lmerTest_3.1-0) with the fixed effect variables defined by age and 

sex, and rat ID as a random effect. AIC comparison showed that six neurochemicals (Glc, Gln, Glu, 

Tau+Glc, Asp/Glu, and Glu/Gln) were best modelled with age expressed as a second order natural 

spline as opposed to a linear term; this higher order age term examines both linear and curvilinear 

change with age. Our study was underpowered to assess the presence of an age by sex interaction 

so we tested for a main effect of sex by collapsing across the 4 time points. The fixed effect of water 

linewidth (water.lw), estimated from the water unsuppressed data using FID-A , was included to 

control for the effect of linewidth on metabolite concentration estimates (Bartha, 2007). A 

weighting factor of the inverse absolute CRLB for each metabolite (metabolite.sdab) was included 

to account for differences in fitting reliability between samples, and allowed us to include all 

observations with CRLB <999. All continuous variables were z-scored so that coefficients (betas, 

or effect sizes) for each fixed effect would be standardized. As such, the standard betas indicate 

how many standard deviations metabolite concentration has changed per standard deviation 

increase in the predictor variable (age or sex). The full linear model is shown below.  

𝑙𝑚𝑒𝑟(𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒) ∼ 	𝑎𝑔𝑒 + 𝑠𝑒𝑥	 + 𝑤𝑎𝑡𝑒𝑟. 𝑙𝑤 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡), 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = !
"#$%&'()$#.+,%&

 (1) 

Due to the number of comparisons, we used the False Discovery Rate method (Benjamini 

and Hochberg, 1995) to control the family-wise type I error rate at 5% for the main effects of age 

and sex. Both p- and q- (FDR-corrected) values are presented in Table 3.10.1. A fixed effect was 

considered significant when q < 0.05. Finally, observed power analysis was performed for each 

metabolite using the CRAN package, SIMR (R version 3.63, simr_1.0.5, (Green and MacLeod, 

2016) to ensure our results from a relatively small sample size were generalizable to a larger 

population. See Supplementary Methods 3.11.5 for details, and Supplementary Tables 3.13.8 

and 3.13.9, for power analysis results for age and sex, respectively.  

3.6 Results  

3.6.1 Quantification using an expanded neurochemical profile 
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A representative NMR spectra from a female rat brain at 16-months shows the excellent 

spectral quality consistently obtained in this study (Figure 3.9.1). All linewidths were well under 

the 0.1 ppm (30.3 Hz at 7T) full-width half-max (FWHM) considered essential for in vivo 1H MRS 

spectra (Forster 2012). See Supplementary Table 3.13.5 for details on spectral linewidth and SNR. 

Figure 3.9.1 also shows the 18 metabolite and nine macromolecule basis functions used by 

LCModel to fit each spectrum. With the exclusion of high-CRLB metabolites GABA, Ser, and 

MM3.18, the following compounds comprised the neurochemical profile used to evaluate changes 

with age and differences between sexes: Ala, Asp, Cr, PCr, Glc, Gln, Glu, GSH, Ins, Lac, NAA, 

NAAG, PE, Tau, tCho (GPC+PCh), tCr (Cr+PCr), Glx (Glu+Gln), tNAA (NAA+NAAG), 

Tau+Glc, Glu/Gln, PCr/Cr, NAA/Ins, Asp/Glu, MM0.89, MM1.20, MM1.39, MM1.66, MM2.02, MM2.26, 

MM2.97, MM3.18, and MM3.84. All 31 neurochemicals were quantified with high reliability: 20/31 

and 30/31 neurochemicals displayed average CRLBs of < 10% and < 20%, respectively, with only 

Alanine, at 21.5%, displaying a CRLB greater than 20%. See Supplementary Table 3.13.4 for 

details on metabolite CRLB. 

All metabolite concentrations were well within ranges previously reported in the rat brain 

by numerous authors whose quantification methods incorporated MMs (Harris et al., 2014; Lopez-

Kolkovsky et al., 2016; Pfeuffer et al., 1999). As individual MMs have not yet been quantified in 

rodent brain, we compared our macromolecule concentrations to those cited in a study by Snoussi 

et al, wherein MMs in healthy adults were quantified in the range of 5-20 mmol/kg, which is in 

good agreement with our findings (Snoussi et al., 2015).  

 

3.6.2 Metabolite and macromolecule concentrations are altered with age 

The levels of 15 of 31 neurochemicals changed significantly with age in Fischer rats (Table 

3.10.1), after FDR correction at 5%. Change in concentration of metabolites, metabolite ratios, and 

macromolecules with age are shown in Figures 3.9.2, 3.9.3, and 3.9.4, respectively. We observed 

significant linear reductions in concentration with age for GSH (β = -0.335), Glu/Gln (β = -1.363), 

and NAA/Ins (β=-0.254), as well as a negative curvilinear relation with age for Asp/Glu (β = -

1.491). Concentration increased linearly with age for Glc (β=1.872), Lac (β = 0.355), Ins (β = 

0.363), NAAG (β = 0.329), MM0.89 (β = 0.331), MM1.20 (β = 0.380), MM1.66 (β = 0.357), MM2.02 

(β = 0.423), and MM3.84 (β = 0.290), and a positive curvilinear relationship was seen for Glu/Gln 
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(β = 1.023). Absolute concentrations and % change, along with linear model results, are shown in 

Supplementary Tables 3.13.6 and 3.13.7, respectively.   

 

3.6.3 Male and female Fischer rats exhibit differences in brain tissue chemistry  

9 of 31 neurochemicals showed significant differences between male and female Fischer 

rats after FDR correction at 5% (Table 3.10.1). Differences in concentration of metabolites, 

metabolite ratios, and macromolecules between sexes are shown in Figures 3.9.5, 3.9.6, and 3.9.7, 

respectively. The concentration of PCr was significantly increased in females relative to males 

(β=0.817), as was tCr (β=0.652), the ratio of PCr/Cr (β=0.659), MM1.39 (β=0.592), MM2.02 

(β=0.593) and MM2.97 (β=0.792). Glc (β=-0.953), Tau+Glc (β=-0.915), and MM1.20 (β=-0.654), 

were decreased in females relative to males. Absolute concentrations of each metabolite collapsed 

across timepoints and split by sex, as well as linear model results, are shown in Supplementary 

Tables 3.13.6 and 3.13.7, respectively. 

3.7 Discussion 

 
The present study reports, for the first time, the simultaneous absolute quantification of 

metabolites and individual macromolecules in the aging rat brain, measured longitudinally using 

high field 1H-MRS. The addition of modelled macromolecule resonances to the standard array of 

metabolites measured by 1H-MRS not only expands the number of potential biomarkers available 

for detecting pathological changes in brain tissue metabolism, but also improves metabolite 

quantification (Hofmann et al., 2002). Using this expanded basis set of 31 neurochemicals, we 

identified age- and sex-related changes in tissue chemistry in the hippocampus, a brain region with 

a well-documented role in age-related  cognitive decline (Bettio et al., 2017; Morrison et al., 2000; 

Schuff et al., 1999). 

 

3.7.1 Comparison with Previous Studies 

Reproducibility of metabolite quantification and consistency between studies depends on 

proper handling of the MM signal. For example, Hofmann et al. reported that inclusion of an MM 

spectra as a basis function for quantification resulted in considerably lower concentrations for 
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metabolites such as Gln, Glu, and PE, with differences of 0.6 to 1.5 mmol/kg, while also reducing 

the estimated error margin for all major metabolites (Hofmann et al., 2002). Methodological 

differences in handling of the MM signal may therefore play a large role in the differences between 

studies regarding reports of metabolite changes with age and sex or gender (Hofmann et al., 2001) 

and may explain some of the discrepancies between our study and those published previously.   

Previous attempts at modelling MM components in proton MRS spectra have been made. 

In 2003, Seeger et al. first proposed parameterizing a metabolite-nulled spectrum for inclusion into 

the quantification basis set (Seeger et al., 2003); they adequately modelled the MM contribution in 

human brain spectra acquired at 1.5T using only four broad MM components, based on resonances 

identified by Behar in 1994 (Behar et al., 1994). As MM contributions become more resolved at 

higher field strengths, additional components and more strict fitting constraints are needed to 

prevent overestimation of overlapping metabolite concentrations (Cudalbu et al., 2012; Pfeuffer et 

al., 1999; Považan et al., 2018).  

In recently published human MRSI data at 7T, Povazan et al. employed direct spectral fitting of 

nine individual MMs, while Snoussi et al. used the sum of 19 Gaussian lineshapes to fit MM spectra 

acquired using single-voxel MRS at 3 and 7T (Považan et al., 2018; Snoussi et al., 2015). In rat 

brain at 9.4T, authors Lee and Kim proposed parameterization of the MM baseline using 25 

components directly from short echo time spectra (Lee and Kim, 2017), while Lopez-Kolkovsky et 

al. used 32 resonances to parameterize MM rat brain spectra acquired at 17.2T (Lopez-Kolkovsky 

et al., 2016). 

In the rat brain at 7T, nine to ten distinct MM resonances are visible, similar to those 

identified in the human brain at 7T (Považan et al., 2018; Snoussi et al., 2015). Although preclinical 

studies are attractive due to the expanded metabolic profile available at high fields and the large 

number of available disease models, little work has been done regarding preclinical quantification 

of both metabolites and MMs with age and between sexes.  

 

 3.7.2 Change in metabolite concentrations associated with healthy aging 

We chose to study the hippocampus based on the established relationship between cognitive 

decline and decreased hippocampal structural integrity, both in aging and in neurodegenerative 

disease (Bettio et al., 2017; Van Hoesen et al., 1991). Age-related cognitive deficits are associated 

with impaired cerebral glucose metabolism and energy balance, with further exacerbation seen in 
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neurodegenerative disorders (Miccheli et al., 2003; Mosconi, 2013; Ravera et al., 2019; Yin et al., 

2016). Specifically, aging induces a shift from aerobic to anaerobic energy metabolism, resulting 

in increased oxidant production, decreased tricarboxylic acid cycle (TCA) activity, and 

compromised electron transport and oxidative phosphorylation (Dong and Brewer, 2019; Miccheli 

et al., 2003; Yin et al., 2016). MRS reflects these changes, as many of the compounds comprising 

the NMR-visible chemical profile are involved in energy metabolism.    

         Here, we report prominent age-related alterations in metabolites implicated in anaerobic 

energy metabolism, antioxidant capacity, and neuroprotection, as well as numerous macromolecule 

changes. Previous clinical and preclinical MRS studies of age-related changes have produced mixed 

findings, particularly for the more commonly reported metabolites such as NAA, tCho, and tCr. 

Some of the differences between studies may be attributed to reporting metabolite ratios instead of 

absolute concentrations, different handling of the underlying MM signal, or the study of single sex 

cohorts (for reviews, see (Cleeland et al., 2019; Febo and Foster, 2016; Haga et al., 2009).  

We detected linear increases in Ins (β=0.363), Gln (β = 1.040), Glc (β=0.324), Lac 

(β=0.355), and NAAG (β=0.329) with age, as well as a positive curvilinear relationship between 

age and Glu/Gln (β = 1.023). Linear decrease in concentration with age was seen for GSH (β=-

0.335), Glu/Gln (β = 1.363), and NAA/Ins (β = -0.254), as well as a negative curvilinear relationship 

between age and Asp/Glu (β = -1.491). Age-related increases in Ins and Gln, and decreased GSH, 

are in good agreement with previous studies (Emir et al., 2011; Gruber et al., 2008; Harris et al., 

2014; Paban et al., 2010; Zhang et al., 2009), while reports of altered Glc, Lac, and NAAG have 

been more mixed (Dong and Brewer, 2019; Duarte et al., 2014; Harris et al., 2014; Marjańska et 

al., 2017; Miccheli et al., 2003; Paban et al., 2010). Despite differences between studies, the 

neurochemical changes that we report are consistent with the known occurrence of Glc 

hypometabolism and mitochondrial dysfunction with age, resulting in a shift towards anaerobic 

energy metabolism, decreased antioxidant capacity, and an increased inflammatory response 

(Camandola and Mattson, 2017; Godbout and Johnson, 2009; Miccheli et al., 2003; Yin et al., 

2016). 

Glutamine - Synthesized primarily in astrocytes from synaptic Glu, Gln is an important 

intermediate in energy metabolism via the TCA cycle and malate-aspartate shuttle (Best et al., 2014; 

McKenna et al., 2012). Increased Gln with age, often accompanied by decreased Glu, has been 

proposed to reflect a relative increase in the astrocyte population with age (David et al., 1997), 
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and/or increased citric acid cycle flux (Boumezbeur et al., 2010). Additionally, 13C-MRS studies 

have demonstrated that changes in the Glu-Gln cycle track closely with the rate of glutamatergic 

neuronal activity, as well as astrocytic glycolysis, such that uptake of Glu increases glycolysis-

generated ATP (furthering Glu uptake, and thus Gln synthesis), and lactate (Best et al., 2014; Sibson 

et al., n.d.). Given our findings of Gln increasing linearly with age, linear and curvilinear 

relationships for Glu/Gln, increased lactate, glucose, and myo-inositol, and trending changes in Glu 

and PCr/Cr, all of which will be discussed below, we conclude that altered Gln and Glu/Gln are 

likely reflecting many interconnected metabolic processes affected by age. It should be noted that 

Gln and Glu were best fit using a second order age term, so a trend towards curvilinearity was also 

shown for both individual metabolites.  

Myo-Inositol - Ins is found at high concentrations in astrocytes, which, along with 

microglia, have been reported to display a more reactive phenotype with age (David et al., 1997). 

It has been proposed that increased Ins levels reflect an elevated inflammatory profile, possibly 

partly in response to increased oxidative damage with age (Best et al., 2014; Godbout and Johnson, 

2009). As Ins is derived from D-Glucose-6-phosphate (D-G6P) – the first intermediate formed 

during glucose catabolism via glycolysis (Bevilacqua and Bizzarri, 2018; Zhang et al., 2009) – it 

also plays an important role as a metabolic precursor to the phosphoinositol (PI) cycle, which is 

involved in signal transduction and cellular regulation, and whose activity has been reported to 

decrease with age (Akintola and van Heemst, 2015; Frazier et al., 2020). As such, our finding of 

increased Ins in aged rats could be associated with a number of cell processes affecting neuronal 

survival and function, including increased glial cell reactivity and decreased PI cycle activity.  

Glucose - Glc hypometabolism and mitochondrial dysfunction resulting in decreased 

energy production are known features of aging that are often further exacerbated in 

neurodegenerative disorders (Camandola and Mattson, 2017; Frazier et al., 2020; Miccheli et al., 

2003; Mosconi, 2013; Yin et al., 2016). Given the expected reduction in Glc utilization with age, 

our finding of increased Glc is unsurprising, and in agreement with a cross-sectional study 

performed in male Fisher rats (Harris et al., 2014). While Glc was best fit by a second order age 

term, only the linear increase with age, as opposed to the curvilinear relationship with age, was 

deemed significant by the model. 

Lactate - Lac is an essential intermediate of Glc metabolism. The glycolytic pathway 

produces two pyruvate molecules, which then participate in either a) aerobic metabolism via 
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oxidation of pyruvate to acetyl-CoA for entry into the TCA cycle and oxidative phosphorylation, 

or b) anaerobic metabolism via reduction of pyruvate to Lac. With age, the pool of nicotinamide 

adenine dinucleotide (NAD and NAD+) available for oxidative reactions decreases and Glc 

metabolism shifts from aerobic to anaerobic (Camandola and Mattson, 2017; Dong and Brewer, 

2019; Yin et al., 2016). This shift results in less pyruvate being routed towards the TCA cycle, and 

more towards reduction into Lac via lactate dehydrogenase (LDH), particularly because LDH 

activity increases with age as a result of oxidative stress (Dong and Brewer, 2019; Ravera et al., 

2019). Increased pyruvate reduction to Lac ensures the cytoplasmic pool of NAD+ is being 

regenerated, which is necessary for maintaining a high glycolytic rate to produce ATP (Camandola 

and Mattson, 2017; McKenna et al., 2012). As such, our finding of increased Lac fits well with 

known age-related metabolic changes, as well as our finding of increased Glc and decreased GSH, 

the latter of which will be discussed below.     

Glutathione - GSH is an important endogenous antioxidant involved in reducing reactive 

oxygen species and preventing cellular damage. Production of GSH is coupled with that of 

ascorbate, another CNS antioxidant, wherein both compounds are reduced by NADP+ as part of 

the pentose phosphate pathway (Camandola and Mattson, 2017; McKenna et al., 2012). Reduced 

oxidative capacity and impaired mitochondrial respiration is consistent with age-related deficits in 

antioxidant capacity and therefore the decrease in GSH that we see with age (Emir et al., 2011; 

McKenna et al., 2012). This finding fits with that of increased Lac - likely through increased LDH 

activity triggered by oxidative stress - as an attempt to compensate for impaired mitochondrial 

energy metabolism. Lastly, increased oxidative damage and stress with reduced antioxidant 

capacity can trigger glial cell reactivity, which may be reflected by the increased Ins in our aged 

rats (Godbout and Johnson, 2009). 

N-acetylaspartylglutamate - NAAG is the most abundant neurotransmitter in the CNS, is 

derived from NAA and Glu, and, like its precursors, is primarily localized in neurons (Benarroch, 

2008). It acts as a neuromodulatory agent to down-regulate neurotransmitter release via 

metabotropic Glu receptors, as well as to provide protection to neurons exposed to high Glc 

conditions (Benarroch, 2008; Berent-Spillson et al., 2004). Given our finding of increased Glc, as 

well as this paper’s description of generally detrimental age-related processes in the brain, the role 

of NAAG as a compensatory neuroprotective agent and its subsequent increase with age is a 

reasonable inference. 
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Other frequently reported metabolites such as tCr and NAA do not change significantly with 

age in the Fischer rat brain, though PCr and PCr/Cr trend towards a decrease (q=0.056). A decrease 

in PCr/Cr has been reported by others (Duarte et al., 2014; Harris et al., 2014; Miccheli et al., 2003) 

and is proposed to reflect increased PCr to Cr conversion, and thus phosphate donation, in an 

attempt to maintain cellular ATP supply (Best et al., 2014; McKenna et al., 2012); this is consistent 

with our findings suggesting energy impairment in aerobic metabolism pathways. Additionally, the 

process of regenerating PCr from Cr is reported to be hindered in the presence of reactive oxygen 

species, which fits well with our finding of reduced GSH, and thus reduced antioxidant capacity 

and depletion of the PCr pool (Béard and Braissant, 2010). These results also support the argument 

that care should be taken when reporting metabolite ratios to total creatine (Duarte et al., 2012; 

Haga et al., 2009; Zhang et al., 2009). NAA has previously been reported to either decrease or 

remain unchanged in older populations relative to young (Duarte et al., 2014; Hädel et al., 2013; 

Harris et al., 2014; Marjańska et al., 2017; Miccheli et al., 2003; Zahr et al., 2013), so our finding 

of unchanged NAA is consistent with at least some of the reports.  

Finally, additional trending changes with age include Glu (both linear and curvilinear 

relationships), and Asp, as well as a significant curvilinear relationship with age for Asp/Glu. Since 

Asp and Glu feed into the TCA cycle, changes in these metabolites are typically interpreted as 

altered TCA cycle activity and impaired mitochondrial bioenergetics (Benarroch, 2008; Dong and 

Brewer, 2019; Yin et al., 2016). An additional time point may have furthered the trending decreases 

with age that report here.    

  

3.7.3 Characterization of changes in individual macromolecule resonances with age 

         We report increased MM signal in five of the nine MMs that were quantified. Increased 

MM signal with age in humans has previously been described wherein the greatest MM differences 

associated with age occurred for the 1.7 and 2.0 ppm MM resonances, and a notable increase was 

observed at 3.9 ppm (Hofmann et al., 2001; Marjańska et al., 2018). This is in agreement with our 

results, wherein the largest increase occurred in MM2.02 (β=0.423), followed by MM1.20 (β=0.380), 

MM1.66 (β=0.357), MM0.89 (β=0.331), and MM3.84 (β=0.290). Due to the fact that the broad peaks 

are likely representative of overlapping multiplets from various amino acids within different 

proteins, the exact composition of each MM resonance is not known, making it challenging to 

determine the origin of increased MM signal with age (Behar et al., 1994; Behar and Ogino, 1993; 
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Marjańska et al., 2018; Považan et al., 2018). That said, it has been proposed that increased MM 

signal at 0.9 and 1.3 ppm reflect increased free fatty acids, while the increase at 2.0 ppm is thought 

to be due to higher visibility of cytosolic proteins after cell death (Saunders et al., 1997). Due to its 

complexity, it is not possible to determine which proteins within the MM signal are changing with 

age. As such, the global pattern of MM peaks changes may be more useful as an overall biomarker 

of health or pathology as opposed to being indicative of a particular mechanism. 

 

3.7.4 Presence of sex-specific effects in Fisher rat hippocampus 

To date, very little work has been done on the characterization of sex differences in the 

neurochemical profile with age, despite age-related neurodegenerative (and other) disorders such 

as Alzheimer’s disease differring in prevalence and symptom presentation between sexes 

(Komoroski et al., 1999; Mazure and Swendsen, 2016; Wickens et al., 2018). In a longitudinal study 

of C57BL6 mice, sex differences were identified for many metabolites, including ones for which 

we also report effects of sex (e.g. Glc and tCr), though the direction of these differences was not 

noted by the authors (Duarte et al., 2014). In humans, Hadel et al. described higher hippocampal 

total creatine in females (significant in our data) and lower glutamate in males (Hädel et al., 2013). 

We also found significant differences between sexes for NAA/Ins and PCr/Cr, which, to our 

knowledge, have yet to be reported in aging literature.   

      Several of the main effects of sex in our study come from the individual MM resonances at 

1.20, 1.39, 2.02, and 2.97 ppm, wherein all but MM1.20 were increased in females relative to males. 

To our knowledge, only a single study by Hofmann et al. has attempted to elucidate sex-specific 

patterns in the MM signal and they reported no differences between genders in humans (Hofmann 

et al., 2001). However, given that the study by Hoffmann et al was conducted at 1.5T, it is likely 

that the MM peaks were simply not well-resolved enough to detect differences due to sex, and that 

at higher field strengths sex-specific patterns might emerge.  

Regarding the origin of the neurochemical differences between males and females that we 

report, the current methodological approach does not provide adequate information to define the 

underlying mechanism(s). However, at the neuroendocrine level, the main difference between the 

sexes after puberty is the diverging concentration of gonadal hormones estrogen and testosterone. 

This distinction becomes particularly important during the aging process; estrogens (estradiol, 

estrone, and estriol) are available to receptors in male brains throughout their lifespan via 
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aromatization of testosterone, whereas they are  unavailable in the brains of post-menopausal 

women not using estrogen replacement (Gillies and McArthur, 2010; Rasgon et al., 2001). Most 

relevant to our work, an elegant study in Sprague-Dawley rats demonstrated that by 16-months all 

female rats were classified as perimenopausal  (i.e. reduced estrogen regulation), and that this 

perimenopausal stage was associated with altered hippocampal gene expression profiles with roles 

in insulin signalling, glucose metabolism and mitochondrial function, inflammation, and redox 

balance (Yin et al., 2015). These metabolic changes might be quantifiable by testing for an age by 

sex interaction, which we were not powered to perform.  

Overall, additional work is required to understand sex differences in the neurochemical 

profile, and future studies should continue to consider both sexes, separately and together, 

particularly in the context of pathology and treatment. In particular, a reproduction of the detailed 

gene expression analysis study by Yin et al. in conjunction with MRS data acquisition throughout 

the male and female lifespan would be extremely informative.  

 

3.7.5 Limitations 

There are several limitations of this study that need to be considered. First, the lower number 

of subjects at our last two timepoints does reduce our overall power. To ensure we were adequately 

powered for generalization to a larger population, we ran a simulated post-hoc power analysis and 

present all results, along with their calculated power, for the reader to interpret. We also examined 

sex effects collapsed across all time points rather than examining age by sex interactions, for which 

we were underpowered. We recommend that future studies be designed to assess age by sex 

interactions as they are likely more informative than examining a main effect of sex. 

         Second, we chose to use water as a reference without correcting for a possible decrease in 

brain tissue water content with age (Chang et al., 1996; Duarte et al., 2014), which may have 

resulted in an overestimation of metabolite concentrations towards the later time point. However, 

given available literature values and the age of the animals in our study, water content would likely 

have decreased by only a small amount, or approximately 3-5%. As shown in Supplementary 

Table 3.13.6, the significant age-related changes that we report are accompanied by percent 

differences ranging from -12% to 48.9% between timepoints 4 and 1, with the smallest percent 

difference at -5.5%. This is with the exception of metabolites modelled using a second order age 
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term, for which percent difference is not as meaningful a metric for describing change as the effect 

sizes quoted in the main text. It should also be noted that a change in water content would drive 

increases with age similarly across all metabolites, while we report both age-related increases and 

decreases in metabolite concentrations. As such, we are confident that variation in water content is 

not the dominant driving factor behind the age-related metabolic changes that we observe. 

Additionally, it was important that we use water referencing as opposed to creatine referencing 

because altered creatine has been reported with age and disease state, and between brain regions, 

muddying the waters for interpretation (Jansen et al., 2006; Pfefferbaum et al., n.d.). Our own data 

supports this decision; total creatine trends towards a decrease with age (p=0.094), and is 

significantly altered between male and female rats. For these reasons we chose to report metabolite 

concentrations referenced to water as opposed to creatine.  

         An additional well-known limitation to MRS studies is the possibility of altered relaxation 

effects with age which may affect metabolite quantification. The measurement of relaxation 

constants for each neurochemical, including water, is an extremely time-consuming process and 

therefore not frequently performed, particularly as it is influenced by field strength, age, and brain 

region (Kreis et al., 2005; Marjańska et al., 2018). Due to a lack of literature values for relaxation 

constants for either water or neurochemicals, specifically in the rat brain, at ages relevant to our 

study, correcting for age-associated differences in T1 or T2 was not possible, and therefore we 

cannot rule out the possibility that this may have affected the observed metabolite changes.  

         However, in an attempt to minimize the impact of relaxation effects with age on our 

concentrations, we used a long relaxation time (TR=3s) and short echo time (TE =11 ms). Given a 

TE of 11ms, if the water T2 decreased by 10% in older rats (from 49.13 ms to 44.19 ms), it would 

decrease water signal intensity by 2.7%, resulting in metabolite concentration estimates that appear 

2.7% higher. In the case of a 10% increase or decrease in water T1 in older rats - reports of altered 

water T1 values with age have been more mixed (Hagiwara et al., 2020; Kupeli et al., 2020; 

Watanabe et al., 2013) - this would result in a 3.1% change in the apparent metabolite concentration. 

The magnitude of possible relaxation effects on apparent metabolite concentration is smaller than 

the percent differences that we report in this study. Additionally, since metabolites such as NAA, 

Cr, and choline have shorter T1s and longer T2s than that of water (Marjańska et al., 2017; Otazo 

et al., 2006), the effect of changing metabolite relaxation rates on the metabolite estimates would 

be even smaller. It is clear that a study measuring T1 and T2 of water and major metabolites at 
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several ages throughout the rodent lifespan would be of great benefit to the MRS community, and 

a means towards better standardizing the work in this field.  

While we did not measure the age-specific relaxation constants for all neurochemicals, we 

did measure T1 and T2 relaxation of water in a separate cohort of 10-month Fischer rats to account 

for relaxation effects specific to our rat strain, acquisition parameters, and region of interest. We 

also corrected for non-age associated relaxation effects in metabolites and macromolecules by 

applying correction factors derived from relaxation constants in the literature (see Supplementary 

Table 3.13.3). 

         Finally, in comparison to the use of a single-component MM spectrum, the parameterization 

process of a MM spectrum is lengthy and may be subject to overfitting during the quantification 

process if soft constraints are not properly implemented. The complexity of the process can be a 

deterrent for researchers looking to include individual MMs in their basis set. As such, we have 

included extensive methods and supplementary material describing our process, in the hopes that 

other authors will find it helpful for their own studies.  

3.8 Conclusion  

 
The present study reports, for the first time, the simultaneous absolute quantification of 

metabolites and individual macromolecules in the aging Fischer rat brain, measured longitudinally 

using high field 1H-MRS. The addition of modelled macromolecule resonances to the standard array 

of metabolites measured by 1H-MRS not only improves metabolite quantification, but also expands 

the number of potential biomarkers available for detecting pathological changes in brain tissue 

metabolism. Using this expanded basis set of 31 neurochemicals we identified age- and sex-related 

changes in tissue chemistry in the hippocampus. The most prominent differences were in 

metabolites implicated in anaerobic energy metabolism, antioxidant defenses, and neuroprotection, 

as well as numerous macromolecule changes. 
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3.9 Chapter 3 Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.1  
A. Localized 1H-MRS spectra from the hippocampus of a 16-month old female rat acquired using 
a PRESS pulse sequence at 7T. The spectrum was processed using the FID-A toolkit which includes 
removal of bad averages,  frequency drift correction, and zero-order phasing using the creatine 
peak. Metabolites included in the basis set are shown and assigned as follows: Alanine (Ala), 
Aspartate (Asp), Creatine (Cr), Gamma-aminobutyric acid (GABA), Glucose (Glc), Glutamine 
(Gln), Glutamate (Glu), Glycerophosphocholine (GPC), Glutathione (GSH), Myo-inositol (Ins); 
Lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartyl glutamate (NAAG), Phosphocholine 
(PCh),  Phosphocreatine (PCr), Phosphoethanolamine (PE), Serine (Ser), Taurine (Tau), 
Macromolecule (MM). B. A representative RARE image shows placement of the volume of interest 
for spectroscopy.   
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Figure 3.9.2 Age-dependent change in metabolite concentrations in the hippocampus 
of Fischer rats. 
1H-MRS spectra were acquired longitudinally in rats aged 4-, 10-, 16-, and 20-months old, and an 
effect of age was determined using linear mixed effects modelling with FDR correction. Each rat 
is depicted by an individual data point. The line of best fit and 95% confidence interval (shaded)  is 
shown and represents the linear model used to fit the data. Significant effects of age were seen for 
Glucose (Glc), Glutathione (GSH), myo-Inositol (Ins), Lactate (Lac), and N-
acetylaspartylglutamate (NAAG). * indicates significant effects of age at q < 0.05.  
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Figure 3.9.3 Age-dependent change in brain metabolite ratios in Fischer rats  
1H-MRS spectra were acquired longitudinally in rats aged 4-, 10-, 16-, and 20-months old, and an 
effect of age was determined using linear mixed effects modelling with FDR correction. Each rat 
is depicted by an individual data point. The line of best fit and 95% confidence interval (shaded) 
are and represent the linear model used to fit the data. Significant effects of age were seen for the 
ratio of N-acetylaspartate to myo-inositol (NAA/Ins). * indicates significant effects of age at q < 
0.05. 
 

 
 
Figure 3.9.4 Age-dependent change in macromolecules in Fischer rats  
1H-MRS spectra were acquired longitudinally in rats aged 4-, 10-, 16-, and 20-months old, and an 
effect of age was determined using linear mixed effects modelling with FDR correction. Each rat 
is depicted by an individual data point. The line of best fit and 95% confidence interval (shaded) 
are shown and represent the linear model used to fit the data. Significant effects of age were seen 
for MM0.89, MM1.20, MM1.66, MM2.02, and MM3.84. * indicates significant effects of age at q < 0.05. 
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Figure 3.9.5 Differences in hippocampal metabolite concentrations exist between 
male and female Fischer rats 
1H-MRS spectra were acquired longitudinally in rats aged 4-, 10-, 16-, and 20-months old. A main 
effect of sex was determined using linear mixed effects modelling with FDR correction using data 
collapsed across all four timepoints. Lines of best fit and their 95% confidence intervals are shown 
(shaded) and represent the linear model used to fit the data. Data corresponding to males and 
females is shown in teal and red, respectively. Significant effects of sex were seen for Glucose 
(Glc), Phosphocreatine (PCr), total Creatine (tCr), and Taurine+Glucose (Tau+Glc). * and # 
indicates significant effects of age and sex, respectively, at q < 0.05. 
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Figure 3.9.6 Differences in brain metabolite ratios exist between male and female 
F344 rats.  
1H-MRS spectra were acquired longitudinally in rats aged 4-, 10-, 16-, and 20-months old. A main 
effect of sex was determined using linear mixed effects modelling with FDR correction using data 
collapsed across all four timepoints. Lines of best fit and their 95% confidence intervals are shown 
(shaded) and represent the linear model used to fit the data. Data corresponding to males and 
females is shown in teal and red, respectively. Significant effects of sex were seen for the ratio of 
Phosphocreatine to Creatine (PCr/Cr). * and # indicates significant effects of age and sex, 
respectively, at q < 0.05. 
 

 
 
Figure 3.9.7 Differences in brain macromolecules exist between male and female 
F344 rats 
1H-MRS spectra were acquired longitudinally in rats aged 4-, 10-, 16-, and 20-months old. A main 
effect of sex was determined using linear mixed effects modelling with FDR correction using data 
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collapsed across all four timepoints. Lines of best fit and their 95% confidence intervals are shown 
(shaded) and represent the linear model used to fit the data. Data corresponding to males and 
females is shown in teal and red, respectively. Significant effects of sex were seen for MM1.20, 
MM1.39, MM2.02, MM2.97. * and # indicates significant effects of age and sex, respectively, at q < 
0.05. 

3.10 Chapter 3 Tables 

 
 Main effect of age  Main effect of sex 

 Std. Beta ± SE q value Std.Beta ± SE* q value*  Std. Beta ± SE q value 

Ala -0.092  ±  0.106 0.497    -0.289  ±  0.238 0.330 

Asp -0.222  ±  0.106 0.078    0.108  ±  0.238 0.702 

Cr 0.147  ±  0.102 0.230    -0.406  ±  0.244 0.167 

Glc 1.872  ±  0.344 <0.001 -0.147 ± 0.314 0.702  -0.953  ±  0.226 0.002 

Gln 1.040  ±  0.422 0.045 -0.599 ± 0.355 0.156  -0.226  ±  0.253 0.494 

Glu -0.663  ±  0.384 0.153 0.663 ± 0.324 0.083  0.185  ±  0.236  0.555 

GSH -0.335  ±  0.100 0.006    0.331  ±  0.239 0.257 

Ins 0.363  ±  0.100 0.003    -0.022  ±  0.246 0.944 

Lac 0.355  ±  0.101 0.004    -0.033  ±  0.226 0.913 

NAA -0.005  ±  0.102 0.959    0.444  ±  0.234 0.444 

NAAG 0.329  ±  0.098 0.006    -0.479  ±  0.223 0.074 

PCr -0.231  ±  0.099 0.056    0.817  ±  0.227 0.003 

PE -0.214  ±  0.102 0.078    -0.500  ±  0.232 0.074 

Tau -0.244  ±  0.105 0.056    -0.177  ±  0.253 0.593 

Glx 0.022  ±  0.098 0.872    0.172  ±  0.236 0.587 

tCho 0.089  ±  0.093 0.872    0.473  ±  0.212 0.064 

tCr -0.176  ±  0.104 0.156    0.652  ±  0.231 0.018 

tNAA 0.064  ±  0.103 0.641    0.358  ±  0.230 0.192 

Tau+Glc 1.407  ±  0.355 0.002 -0.677 ± 0.300 0.063  -0.915  ±  0.219 0.002 

Asp/Glu 0.236  ±  0.433 0.687 -1.491 ± 0.352 0.001  0.120  ±  0.233 0.120 

Glu/Gln -1.363  ±  0.357 0.003 1.023 ± 0.308 0.006  0.278  ±  0.236 0.346 
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NAA/Ins -0.254  ±  0.090 0.018    0.480  ±  0.224 0.078 

PCr/Cr -0.216  ±  0.092 0.056    0.659  ±  0.215 0.014 

MM0.89 0.331  ±  0.094 0.004    0.097  ±  0.209 0.702 

MM1.20 0.380  ±  0.080 <0.001    -0.654  ±  0.206 0.012 

MM1.39 0.113  ±  0.097 0.346    0.592  ±  0.222 0.035 

MM1.66 0.357  ±  0.097 0.003    0.050  ±  0.236 0.872 

MM2.02 0.423  ±  0.079 <0.001    0.593  ±  0.174 0.005 

MM2.26 0.177  ±  0.093 0.108    0.459  ±  0.236 0.108 

MM2.97 -0.051  ±  0.098 0.689    0.792  ±  0.253 0.012 

MM3.84 0.290  ±  0.093 0.010    -0.226  ±  0.22 0.425 

 
Table 3.10.1 Change in neurochemical concentrations with age and sex in Fischer 
rats  
 
Std.Beta. represents the standardized beta or coefficient value for the variable of sex or age in the 
linear model used for analysis, and is accompanied by the standard error (SE). Q-value is the FDR-
corrected p-value obtained for each fixed effect. Q-value < 0.05 is denoted in bold. Six metabolites 
were best fit using a second order age term; the linear effect of age, in addition to the second order 
effect of age, are included, with the second order Std.Beta and q value denoted by *. Abbreviations: 
Alanine (Ala), Aspartate (Asp), Creatine (Cr), Gamma-aminobutyric acid (GABA), Glucose (Glc), 
Glutamine (Gln), Glutamate (Glu), Glycerophosphocholine (GPC), Glutathione (GSH), Myo-
inositol (Ins); Lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartyl glutamate (NAAG), 
Phosphocholine (PCh),  Phosphocreatine (PCr), Phosphoethanolamine (PE), Serine (Ser), Taurine 
(Tau), total Choline (tCho), total Creatine (tCr), Glx (Glu+Gln), Macromolecule (MM). 
 

3.11 Supplementary Methods 

3.11.1 Quality Control 

Each spectrum was visually inspected for quality before and after post-processing with FID-

A. The full-width at half-max (FWHM) of the water unsuppressed spectrum and the signal-to-noise 

ratio (SNR) of the NAA peak in the water suppressed spectrum were extracted from each spectrum 

using an in-house MATLAB (R2012a) script (below) in conjunction with the FID-A toolkit 

(relevant commands: op_getSNR, and op_getLW). Average linewidth and SNR for each timepoint 

are shown in Supplementary Table 3.13.5, alongside values for estimated spectral FWHM and 
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SNR for water suppressed data provided by LCModel. Quality control resulted in the discarding of 

a single spectrum at the second time point due to SNR lower than 25, reducing the number of scans 

from 30 to 29. 

 
3.11.2 Processing of macromolecule spectra 

MM scans were obtained in 8 Fischer rats from a separate cohort at 10-months of age 

(313.8 ± 11.7 days). First, 1H-MRS scans were acquired after FASTMAP shimming and a water 

reference scan. Next, “metabolite-suppressed” spectra were acquired using PRESS localization 

preceded by an inversion recovery (IR) pulse with an inversion time  (TI) of 800 ms. In each rat, 

the metabolite-suppressed IR scan was acquired immediately after the 1H-MRS scan in order to 

avoid re-shimming the instrument.  

  For each rat, water unsuppressed data, water suppressed data, and macromolecule data 

were imported into the FID-A processing toolbox (version 1.0) in MATLAB (R2012a). Within 

each dataset, transients were averaged and a zero-order phase shift correction was applied, using 

the phase of the NAA peak within the metabolite spectra. The NAA peak was also used to 

determine the frequency shift, and both the determined frequency and phase shifts were then 

applied to the water suppressed and macromolecule data. The eight macromolecule spectra were 

then aligned, summed, and scaled to generate an average metabolite-nulled spectra, for 

parameterization. 

 

3.11.3 Parameterization of the macromolecule spectrum 

Parametrization of the MM spectrum was performed in jMRUI using the AMARES fitting 

tool (Vanhamme, van den Boogaart A, and Van Huffel S 1997; Stefan et al. 2009; Naressi et al. 

2001). The water peak was manually removed from the averaged MM spectrum using HLSVD 

(Hankel-Lanczos singular value decomposition (Pijnappel et al. 1992) in jMRUI and first order 

phasing was performed. Then, prior knowledge of the chemical shifts of ten MM resonances of 

interest was used as the input in the initial phase of modeling using Gaussian functions, wherein 

the subscript denotes the frequency (in ppm) at which the resonance appears: MM0.89, MM1.20, 

MM1.39, MM1.66, MM2.02, MM2.26, MM2.97, MM3.18, MM3.84, and MM4.27 (Považan et al. 2018; Otazo 

et al. 2006; Lee and Kim 2017). The MM peak at 4.27 ppm was parameterized but later omitted 

from basis set simulations due to proximity to the water peak.  
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As suggested by Craveiro, et al., residual metabolite signals within the MM spectrum can 

be better accounted for by including advanced prior knowledge of the residual peaks in the fitting 

process (Craveiro, Cudalbu, and Gruetter 2012; Craveiro et al. 2014). Constraints were therefore 

manually set for the frequency, phase, and linewidth of residual metabolite peaks (NAA, tCr, Glu, 

Gln, and Tau), and modelled using Lorentzian functions. Soft constraints on the overall and relative 

phase, frequency, and linewidth of all peaks were modified iteratively to achieve minimal fitting 

residuals (Supplementary Figure 3.12.1).  

 
3.11.4 Determination of Water and Metabolite Relaxation Constants for Absolute 

Quantification 

T1 and T2 water relaxation constants for use in absolute quantification were measured 

experimentally in a subset of Fischer rats (n=7) at 10-months of age. The T2 relaxation constant of 

water was determined by acquiring a series of non-localized water spectra in the same region of 

interest described above, using the PRESS sequence (TR = 5000 ms, 8 averages) without water 

suppression and with varying echo times (12, 20, 30, 40, 50, 70, 90, 120, 150, 200, 300, and 500 

ms). Mono-exponential fitting of the T2 curves provided an estimated water T2 of 49.13 ms. To 

determine the T1 relaxation of water, a series of non-localized water spectra were acquired using 

the PRESS sequence (TR = 5000ms, TE=12 ms, 8 averages) preceded by a 4th order hyperbolic 

secant adiabatic full passage (AFP) inversion pulse (pulse duration = 1.0ms, bandwidth =  6982.0 

Hz). A series of inversion times (TI) (25, 94, 261, 273, 660, 910, 1160, 1409, 1660, 2160, 3160, 

and 4160 ms) was acquired, with an additional scan performed without the inversion pulse to 

determine maximum signal intensity. The average maximum signal intensity of water at different 

inversion times (S(TI)) across the 7 rats were fitted versus their corresponding TIs using the 

equation below (Dehghani et al. 2020) resulting in an estimated water T1 of 1491ms.  

 

𝑆(𝑇𝐼) 	= 	𝑆(𝑇𝐼'--) 	 ∙ 	
(!		0(!	1	⍺)∙#56("#$/#&)) 	1	⍺∙#56("#(/#&))

(!	0	#56("#(/#&))
	,  (1) 

 

where α represents the factor for the flip angle of the inversion pulse, and S(TIoff) represents the 

signal intensity at TE of 12 ms without inversion. 
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To approximate the T1 and T2 constants of individual metabolites at 7T, we used the curve 

fitting toolbox in Matlab (R2020b, The MathWorks, Inc., Natick, Massachusetts, United States) 

with polynomial degree =1 to fit relaxation constant values obtained by de Graaf et al. for tCho, 

tCr, Glx, NAA, and macromolecules, at 4 and 9.4T(de Graaf et al. 2006). This equation consisted 

of a simple y = m*x + b format, wherein y was the relaxation constant, and x was the field strength. 

Once an equation had been derived by the curve-fitting tool, we used x=7 to determine the projected 

relaxation constant at 7T, for tCho, tCr (also applied to Cr and PCr individually), Glx (also applied 

to Glu and Gln, individually), NAA (also applied to NAAG), and MMs. For relaxation constants in 

metabolites not specifically measured by de Graaf, we used the average across calculated metabolite 

relaxation constants. This process of extrapolating from literature values obtained at 4T and 9.4T 

was performed as there are no existing reported relaxation constants at 7T for both metabolites and 

macromolecules. We are not the first authors to do this: in 2006, Otazo and colleagues extrapolated 

from data derived at 1.5, 3, and 4T to obtain an estimate for relaxation constants for 7T (Table 2, 

(Otazo et al. 2006). The input and output values for the curve fitting tool for each metabolite are 

reported in Supplementary Table 3.13.3. 

The following equation was used to account for the T1 and T2 relaxation constants of water, 

metabolites and macromolecules. Supplementary Equation 2, modified from Dhamala et al., 

(Dhamala et al. 2019), also includes a correction factor to account for the fact that our voxel 

contained primarily grey matter (with an NMR-visible water concentration of 43300 mM) as 

opposed to the default for white matter used by LCModel (35880 mM). All relaxation constants 

and the subsequent correction factors applied, are summarized in Supplementary Table 3.13.3.   

 

𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒. 𝑎𝑏𝑠	 = 	 +)78%()*+
+)78%(,-.

	× 𝑊𝐶𝑂𝑁𝐶9:,-.	 ×
	(#56"#//#-,-.)	∙	(!0#56"#(/#&,-.)	
(#56"#//#-)*+)	∙	(!0#56"#(/#&)*+)

 ,

 (2) 

 

where metabolite.abs is the absolute concentration of a given metabolite. 
signalmet/signalH2O is the ratio of metabolite signal to water signal, as determined using LCmodel. 
This value is returned by LCModel when the parameters WCONC, ATTH2O, and ATTMET are 
all set to 1, and water scaling is on.   
WCONCGMH2O is the LCModel parameter specifying the tissue water concentration in grey matter 
(43300 mM) (Ernst, Kreis, and Ross 1993). 
TE is the echo time of the experiment (TE = 11.12 ms) 
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TR is the repetition time of the experiment (TR = 3000 ms) 
T2H2O is the measured water T2 relaxation time at 7T (49.13 ms) 
T2met is the projected metabolite T2 relaxation time at 7T (Supplementary Table 3.13.3) 
T1H2O is the measured water T1 relaxation time at 7T (1491 ms)  
T1met is projected metabolite T2 relaxation time at 7T (Supplementary Table 3.13.3)  
 

3.11.5 Retrospective Power Analysis 

Retrospective power analyses to determine if the absence of an effect was due to lack of 

power are typically not advised, as there is a direct relationship between observed power and p-

values (Hoenig and Heisey, n.d.). However, we are attempting to do the opposite and demonstrate 

that the effects we do see in our relatively small sample size are, in fact, generalizable to a larger 

population, i.e. given the variability within our dataset, if the data are simulated x number of times, 

how often is the effect size of interest statistically significant. This is particularly important because 

our dataset has a large reduction in subjects at the last two timepoints. As such, power calculations 

were performed in SIMR using Monte Carlo simulations (n=1000) and produced a calculated power 

and 95% confidence interval for the fixed effects of sex (collapsed across timepoints) and age for 

each metabolite. Traditionally 80% power is considered adequate, though as this is a somewhat 

arbitrary cut-off (Bacchetti 2010) we present all results (Table 3.10.1, Supplementary Tables 

3.13.8 and 3.13.9), including the observed power and effect size (standardized beta) for each 

metabolite, for the reader to interpret as they wish.  

 

3.11.6 Age- and sex-dependent neurochemical changes over 3 vs 4 timepoints 

To ensure our results were not being driven by the last time point wherein we have the 

fewest subjects (and therefore, the least power), we also analyzed all data from time points 1 through 

3 only. Of the 16 neurochemicals with significant age-related changes over the four timepoints, 

eight remained significant (Glc, Gln, GSH, NAAG, Tau+Glc, Glu/Gln, MM1.20, and MM2.02) at a 

q-value of <0.05. Of the eight that were no longer significant, four were trending at a q-value < 0.1 

(Ins, MM0.89, MM1.66, MM3.84), while the other four (Lac, NAA/Ins, and the second order age effects 

for Asp/Glu and Glu/Gln), had q values of 0.183, 0.149, 0.109, and 0.244, respectively. Of the nine 

neurochemicals with significant differences (q < 0.05) between males and females, eight remained 

significant and the last was trending (q < 0.1, MM1.39) when analyzed using data from three 

timepoints as opposed to four. For more details see Supplementary Tables 3.13.8 and 3.13.9. 
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The majority of significant effects seen at four time points were replicated using three time 

point data, and those that were no longer significant using the smaller dataset were at trending, or 

close to it, at the q-value level. The effects of sex remained particularly strong. This additional 

analysis, in conjunction with the observed power analysis, represents the steps taken towards 

ensuring our results are robust, despite the decreased sample size towards the end of the study. It is 

clear that the last timepoint at 20-months constitutes an important piece of the puzzle, both in terms 

of providing additional power, but also in solidifying age-or sex-related changes in neurochemicals 

that are trending towards significance in data from the first three timepoints. 
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3.12 Supplementary Figures  

 
Supplementary Figure 3.12.1 Parameterization of the metabolite-nulled spectrum 
(A) Average localized 1H-MRS  spectrum (n=8, PRESS sequence) and corresponding metabolite-
nulled spectrum (n=8, Inversion Recovery PRESS sequence) used for parameterization. (B) Output 
of AMARES quantification showing the average metabolite-nulled spectrum with all individual 
components used for fitting, which consisted of 10 macromolecule peaks and 6 residual metabolite 
peaks, the overall fitting estimate, and the residual difference between the measured and fitted data. 
Numbers 1 through 10 correspond to macromolecule peaks MM0.89, MM1.20, MM1.39, MM1.66, 
MM2.02, MM2.26, MM2.97, MM3.18, MM3.84, and MM4.27. Numbers 11 through 16 represent residual 
metabolite peaks NAA, Glu, Gln, NAA, Tau, and tCr, respectively.    
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3.13 Supplementary Table Captions 

Supplementary Table 3.13.1. SubjectInfo  
Subject Information  
 
Supplementary Table 3.13.2. BasisSetSimulation  
JMRUI AMARES Output which served as the input for basis set simulation 

Supplementary Table 3.13.3. Correction Factors 
Relaxation constants and correction factors applied to LCModel outputs. Note that the average 
metabolite (Avg.Met) value was also used for Glx T2 due to lack of literature values in analysis by 
deGraaf et al. Relx met = exp -TE/T2met x (1-exp-TR/T1met); Relx.water = exp-TE/T2H2O x (1-exp -

TR/T1H2O); WCONCGM/WM is a ratio combining the LCModel parameters specifying the tissue water 
concentration in grey matter (43300mM) and white matter (Harris et al.); Correction factor = 
(WCONCGM/WCONCWM) x (relx.water/relx.met)    

Supplementary Table 3.13.4. CRLB  
CRLB values (%) for all metabolites 
 
Supplementary Table 3.13.5. SNR_LW  

SNR and linewidth values (Hz) across timepoints. LCModel notes that some may use twice the 
SNR that they report, which is the ratio of the maximum in the spectrum minus baseline over the 
analysis window to twice the residuals 

Supplementary Table 3.13.6. Conc.Summary.Age 
Absolute concentrations (mM) of metabolites across all timepoints 

Supplementary Table 3.13.7. Conc.Summary.Sex 
Absolute concentrations (mM) of metabolites collapsed across timepoints and separated by sex 

Supplementary Table 3.13.8. AgeEffect 
Analysis of change in neurochemical concentration with age across all 4 timepoints compared to 
analysis across 3 timepoints 
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Supplementary Table 3.13.9. SexEffect 
Summary of neurochemical differences between males and females analyzed across all 4 timepoints 
compared to analysis across 3 timepoints  
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CHAPTER 4: LONGITUDINAL CHARACTERIZATION OF 
NEUROANATOMICAL CHANGES IN THE FISCHER 344 RAT 
BRAIN DURING NORMAL AGING AND BETWEEN SEXES 

4.1 Preface 

The work presented in Chapter 4 represents the first longitudinal exploration of age-related 

change in neuroanatomy in a mixed-sex cohort of Fischer 344 rats. This publication examines 

change with age at both the voxel-wise and regional level in 120 brain volumes, capturing structural 

abnormalities across the whole-brain. Additionally, prior to this study, characterizing the influence 

of sex on neuroanatomy in the context of aging had not been performed in any rat model.  

Similar to the rationale for Chapter 3, this study was primarily motivated by the dearth of 

literature on structural change in the rodent brain from adulthood to senescence. An understanding 

of the neuroanatomical changes associated with normal aging is necessary before examining 

compound change due to the presence of both pathology and age, particularly given the frequency 

with which brain volume measurements are used to support clinical diagnosis of AD in humans.    

 This publication sought to characterize age- and sex-related changes in neuroanatomy in the 

Fischer 344 rat. MRI scans of the entire brain were obtained on a 7T preclinical Bruker system at 

4, 10, 16, and 20 months in male and female Fischer 344 rats. The volume of 120 regions was 

estimated and their longitudinal trajectories were compared between male and female rats. This 

manuscript provides support for the use of MRI to detect volumetric change with age and between 

sexes, as well as the use of rodent aging studies for developing homologous biomarkers across 

species. 

 

 

 



 

 

109 

Longitudinal characterization of neuroanatomical changes in the 
Fischer 344 rat brain during normal aging and between sexes 

 

Caitlin Fowler*a,b, Dana Goerzen*b, Dan Madularub,c,d, Gabriel A. Devenyib,d,        M. Mallar 
Chakravartya,b,d, Jamie Neara,b,d 

 

a  Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada. 
b Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Canada. 

c Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA. 
d Department of Psychiatry, McGill University, Montreal, Canada. 

 
 

 
Published: https://doi.org/10.1016/j.neurobiolaging.2021.10.003 

 
 

4.2 Manuscript Information 

 
Funding Sources: This research was supported by the Canadian Institutes of Health Research (PJT-
148751) and the Fonds de la Recherche en Santé du Québec (Chercheur boursiers # 0000035275). 
C.F.F. is supported in part by funding provided by McGill University’s Faculty of Medicine Internal 
Studentship.  
 
Acknowledgements: Myself (Caitlin Fowler) and Dana Goerzen are co-first authors on this paper. 
Dana Goerzen hereby acknowledges that I, Caitlin Fowler, will be using this manuscript in my 
doctoral thesis, and that he cannot use it in his own graduate thesis.  
 
Caitlin Fowler:      Signature __________________        Date______2021-12-09____________ 
 
 
Dana Goerzen:      Signature __________________        Date _____2021-12-09_____________ 
 
 
Disclosure statement: The authors disclose no conflicts of interest. 
 



 

 

110 

4.3 Abstract 

Animal models are widely used to study the pathophysiology of disease and to evaluate the 

efficacy of novel interventions, crucial steps towards improving disease outcomes in humans. The 

Fischer 344 (F344) wildtype rat is a common experimental background strain for transgenic models 

of disease and is one of the most frequently used models in aging research. Despite frequency of 

use, characterization of age-related neuroanatomical change has not been performed in the F344 

rat. To this end, we present a comprehensive longitudinal examination of  morphometric change in 

73 brain regions and at a voxel-wise level during normative aging in vivo in a mixed-sex cohort of 

F344 rats. We identified the greatest vulnerability to aging within the cortex, caudoputamen, 

hindbrain, and internal capsule, while the influence of sex was strongest in the caudoputamen, 

hippocampus, nucleus accumbens, and thalamus, many of which are implicated in memory and 

motor control circuits frequently affected by aging and neurodegenerative disease. These findings 

provide a baseline for neuroanatomical changes associated with aging in male and female F344 

rats, to which data from transgenic models or other background strains can be compared. 

4.4 Introduction 

Aging is the predominant risk factor for the majority of diseases that reduce quality of life 

and shorten the lifespan, such as neurodegenerative diseases (Hou et al. 2019; Franceschi et al. 

2018). Aging and age-related pathologies such as Alzheimer’s disease (AD) share many basic 

molecular and cellular processes including mitochondrial dysfunction, oxidative stress, cellular 

senescence, and inflammation, to which the brain is particularly susceptible (Franceschi et al. 2018; 

Farooqui and Farooqui 2009). Given these and other similarities, disentangling pathology from 

normal aging can be challenging, particularly in the early phases of disease when features such as 

cognitive impairment may be subclinical.  

 Preclinical studies in animal models represent an important step towards improving disease 

outcomes in humans. Importantly, studying aging in wildtype rodents provides a means of 

separating age-related changes from those arising due to pathology, given that disease phenotypes 

in rodents are generally introduced by means of transgene insertion or genetic knockout. A 

commonly used background strain for the development of transgenic lines is the Fischer 344 (F344) 

rat, which was recently used to generate a rat model of Alzheimer’s disease that spontaneously 
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develops tau pathology (Cohen et al. 2013). The F344 rat is also one of the most frequently used 

strains for aging research (Gallagher, Stocker, and Koh 2011). Age-related changes in recognition 

and spatial memory (Marrone, Satvat, and Patel 2018; Guidi et al. 2014), hippocampal neurogenesis 

(G. A. Shetty, Hattiangady, and Shetty 2013) and inflammatory response (Mawhinney et al. 2011), 

and brain tissue metabolism (Harris et al. 2014; Fowler et al. 2020) have all previously been 

explored in the F344 rat. However, characterization of age-related change in brain structure in this 

rat strain has yet to be performed.  

Brain volume measurements obtained through magnetic resonance imaging (MRI) 

techniques have been widely used to study aging in humans (for reviews, see (Fjell and Walhovd 

2010; Hedman et al. 2012; Raz et al. 2005)), with somewhat fewer studies in rodents to date 

(Maheswaran et al. 2009; Driscoll et al. 2006; Gaser et al. 2012). The non-invasive nature of MRI 

makes it a unique tool for detecting and monitoring altered brain structure in vivo.  Additionally, 

recent advances in MRI co-registration techniques have permitted the development of several 

widely used processing and analysis pipelines (Friedel et al. 2014; Tustison et al. 2014; Jenkinson 

et al. 2012) for longitudinal quantification of neuroanatomical change, with demonstrated success 

in preclinical studies (Rollins et al. 2019; Kong et al. 2018). All of these features, in combination 

with the significantly shorter lifespan of rodents compared to humans (approximately 21-26 months 

for the F344 rat (Chesky and Rockstein 1976)), provide a convenient and powerful means to study 

longitudinal neurobiological changes associated with normal aging across the lifespan.   

 Previous aging studies examining neuroanatomy in wildtype rodents are limited in number 

and inconsistent in how data are analyzed, with most studies reporting change in absolute brain 

volumes  with age (von Kienlin et al. 2005; Oberg et al. 2008; Gaser et al. 2012; Hamezah et al. 

2017; Casas et al. 2018) and only a few reporting change in relative brain volumes  (accounting for 

total brain volume or intracranial volume), either at a regional level (Maheswaran et al. 2009; 

Driscoll et al. 2006) or at the level of individual voxels (Alexander et al. 2020). Furthermore, many 

of these studies are cross-sectional in nature or conducted in a single sex, reducing power and 

applicability. Additional studies are needed to establish the baseline for normal neuroanatomical 

change with age in the rodent brain in vivo, a necessary step towards understanding structural 

alterations in the context of pathology using transgenic models.   

Studies that examine the influence of sex on brain changes during normal aging are an 

equally important part of establishing a baseline to which pathology-related neuroanatomical 
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change can be compared. Significant differences between sexes exist regarding the risk for, and 

presentation and treatment of, age-related neurodegenerative diseases due to the underlying 

influence of sex chromosomes and hormones at the structural, functional, and biochemical level of 

the brain (Mazure and Swendsen 2016; Cosgrove, Mazure, and Staley 2007). Previous studies on 

the influence of sex on neuroanatomy have been performed cross-sectionally (Spring, Lerch, and 

Henkelman 2007) or relatively early in the lifespan (Qiu et al. 2018; Sumiyoshi, Nonaka, and 

Kawashima 2017; Kong et al. 2018; Corre et al. 2016), but to our knowledge, preclinical MRI 

studies examining the interaction between sex and age on neuroanatomy late into the lifespan do 

not currently exist. To this end, the present study describes a longitudinal analysis of brain 

morphometric change in both male and female F344 rats over the majority of the lifespan.  In vivo 

morphometric changes are reported both at the voxelwise level, and at the regional level in 73 

unique brain regions. This work provides new insight into neuroanatomical trajectories associated 

with normal aging.  

4.5 Methods 

4.5.1 Animals and study design 

Homozygous Fischer 344/NHsd wildtype (WT) male and female rats were obtained from 

Envigo Laboratories (Madison, WI, United States; order code: 010) and bred within the Animal 

Care Facility at the Douglas Hospital Research Centre. Rats were weaned on postnatal day 21 and 

housed in pairs on a 12 hour light-dark cycle with ad libitum access to food and water. Both male 

and female experimenters handled and tested the rats, while animal staff caring for the rats were 

primarily female. All animal procedures and experiments were performed in accordance with the 

guidelines of the McGill University Animal Care Committee and the Douglas Hospital Research 

Centre Animal Care Committee. 

MRI scans were acquired longitudinally at 4-, 10-, 16-, and 20-months of age, covering the 

majority of the adult rat lifespan. A total of 27 rats, (12M, 15F), were included in the study. 9 of 27 

rats were scanned at only 4- and 10-months due to participation in a separate treatment study 

thereafter, leaving 18 rats (7M, 11F) to be studied at all four time points. Of these 18, 1 female died 

prior to the 16-month time point, and 4 males died prior to the 20-month time point. Finally, one 

male and one female scan at 10-months and two female scans at 16-months were discarded after 
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failing quality control. As such, the final number of scans for the four time points were 27 (12M, 

15F),  25 (11M, 14F), 14 (7M, 7F), and 11 (3M, 8F), respectively, for a total of 77 scans 

(Supplementary Table 4.12.1). A linear mixed effects model (LME) was used to handle the 

imbalance in the number of scans per time point, as LMEs appropriately handle missing values in 

longitudinal analyses (Bernal-Rusiel et al. 2013). 

 

4.5.2 MRI data acquisition 

MRI data were acquired by C.F.F and D.M. at the Douglas Centre d’Imagerie Cérébrale 

using a 7 Tesla Bruker Biospec 70/30 scanner (Bruker, Billerica, MA, United States) with an 86 

mm (diameter) volumetric birdcage coil for transmission and a four-channel surface array coil for 

signal reception (Bruker). The level of anesthesia (1-4% isoflurane in oxygen gas) was adjusted to 

maintain a breathing rate between 50-70 breaths per minute throughout the procedure and warm air 

(37 ℃) was blown into the bore of the scanner to maintain a constant body temperature (SA 

Instruments, Inc., monitoring system, Stony Brook, NY, United States). 

High-resolution 3D anatomical MR images were acquired using Rapid Acquisition with 

Relaxation Enhancement (RARE) using the following scan parameters:  TR = 325 ms, echo spacing 

= 10.8 ms, RARE factor = 6, effective echo time = 32.4 ms, Field of View = 20.6 × 17.9 × 29.3 mm, 

matrix size = 256 × 180 × 157, slice thickness = 17.9 mm (along the dorsal/ventral direction), 

readout along the rostral/caudal direction, spatial resolution = 114 μm isotropic, 19m35s acquisition 

time. Following the scan, animals were allowed to recover from anesthesia and returned to group 

housing.  

 

4.5.3 MRI pre-processing and registration pipelines 

All images were processed in MINC 2.0 format. Preprocessing was performed using minc-

toolkit-v2 (Vincent et al. 2016) and the MINC toolkit extras package 

(https://github.com/CoBrALab/minc-toolkit-extras),  and the two-level model build Pydpiper 

module (Friedel et al. 2014) was used to co-register the pre-processed images into a common space. 

First, an in-house rat MRI preprocessing script within the minc-toolkit-extras package developed 

by G.A.D. (https://github.com/CoBrALab/minc-toolkit-extras/blob/master/rat-pre processing-

v3.sh) was used to perform the following sequential preprocessing steps: dimension reordering to 
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standard MINC 2.0 ordering, image centring, whole image N4 bias field correction (Sled and Pike 

1998; Tustison et al. 2010), individual foreground mask generation using the Otsu method (Otsu 

1979), additional N4 bias field correction using the previously generated mask, affine registration 

to a Fischer 344 template average image, and a final N4 bias field correction using a template mask 

in native space. After pre-processing, images were quality controlled by D.G. Images were 

visualised using the Display program in minc-toolkit-v2 and examined in each of the coronal, 

sagittal, and axial dimensions for motion artefacts, Gibbs ringing artefacts, proper bias field 

correction, and other image anomalies. Of the 81 scans acquired, four scans were flagged and 

excluded from further analysis. Additional details on the QC process are described in the 

Supplementary Methods 4.11.2. A diagram of the pre-processing steps and examples of excluded 

scans are shown in Supplementary Figure 4.13.1.  

The remaining 77 scans which passed quality control were then co-registered using the two-

level model build pipeline in Pydpiper (Friedel et al. 2014). In brief, subject-specific starting 

averages are created by rigidly registering scans at different time points to the Fischer 344 atlas 

template, followed by averaging. Iterative affine and non-linear registration and averaging is then 

repeated to produce an unbiased subject average. Subsequently, each subject specific average is 

rigidly aligned to the Fischer 344 atlas template space and the process is repeated to create an 

unbiased population average. This process creates deformation fields for each subject at each time 

point. The deformation fields can then be used to estimate the Jacobian determinant at each voxel, 

which reflects the amount of expansion or compression required to deform each individual 

anatomical image to the subject average (Chung et al. 2001). Deformation fields are then resampled 

into the common study space allowing comparison between subjects. This registration process 

generates two sets of Jacobian determinants which were used for subsequent structural analysis. 

The absolute Jacobian, composed of the sum of the linear plus the non-linear mappings, reflects the 

global changes in voxel volume. The relative Jacobian, composed of the non-linear mapping with 

residual affine components estimated and removed, reflects local, or relative changes in voxel 

volume. The Jacobian deformation fields were then blurred with a 400 micron full width half 

maximum Gaussian kernel to satisfy assumptions of normality required by the statistical models 

used to analyze the data. 
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4.5.4 Regional volume estimation 

Using a Fischer 344 rat atlas generated from a 4-month cohort of wildtype Fischer 344 rats 

(Goerzen et al. 2020) resampled into the study common space, the volumes of 73 unique regions 

(120 when split across hemispheres, e.g. left and right Caudoputamen) were estimated using the 

anatGetAll function in RMINC_1.5.2.3 (J. Lerch et al. 2017). This function computes the volume 

of a region by counting the number of voxels with a given label and multiplying the Jacobian with 

the voxel volume at each voxel. Absolute and brain-size-corrected volumes (mm3) were generated 

from the absolute and relative Jacobians, respectively. Of the 120 delineated regions, 76 were 

classified as GM, 40 as WM, and 4 as CSF. Volumes aggregated within tissue types (grey matter, 

GM; white matter, WM; cerebrospinal-fluid-filled volumes, CSF) were also calculated to provide 

an overview of tissue-specific changes across the brain.  

 

4.5.5 Statistical Analysis 

Longitudinal changes in a) relative Jacobians at each voxel within the brain, b) absolute and 

c) brain-size corrected volumes for 73 regions, and d) volumes aggregated within tissue types, were 

modelled using linear mixed-effects (LME) modeling in R. (version 3.6.3 (R Core Team 2020); 

attached base packages: stats, graphics, grDevices, utils, datasets, methods, base; other attached 

packages: effects_4.4-4 (Fox and Weisberg 2019), RColorBrewer_1.1-2(Neuwirth 2014), 

readxl_1.3.1(Wickham and Bryan 2019), lmerTest_3.1-0(Kuznetsova, Brockhoff, and Christensen 

2017), lme4_1.1-23 (Bates et al. 2015), tidyverse_1.3.0(Wickham et al. 2019), RMINC_1.5.2.3). 

LME models were used as they appropriately model the covariance structure resulting from 

repeated measurements in the same subjects and handle data with missing values (Bernal-Rusiel et 

al. 2013). In the mixed effects model, volumes were predicted by an age by sex interaction with a 

random intercept for each subject. A random slope for each subject was initially included but the 

model failed to converge. Age was modelled using a quadratic function (poly(age,2)) to account 

for the possibility of non-linear changes with age, as has previously been demonstrated 

(Pfefferbaum et al. 2013; Kong et al. 2018; Tullo et al. 2019). To further justify this choice, Akaike 

information criterion (AIC; (Akaike, Petrov, and Csaki 1973)) was used to test if volume and 

voxelwise data were better fit using a linear or quadratic age term, using a Δi (AICi-AICmin) 

threshold of 4, where AICmin is the minimum of the R (number of models being compared) different 
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AICi values (the minimum is at i=min) (Burnham and Anderson 2004). The larger the Δi, the less 

likely the fitted model i is the best approximating model. Of 120 structures, 65 were best fit by a 

quadratic model, with 39 of those 65 reaching the Δi, threshold of 4, indicating substantially less 

support for the model containing solely linear age term (Supplementary Table 4.12.2). Similarly, 

the majority of voxels demonstrated better fits using a quadratic age term. Thus, for consistency 

and comparability, all structures and voxelwise data were modelled using a quadratic age term.  

The linear and quadratic components of the age term are henceforth abbreviated as 

poly(age,2)1 and poly(age,2)2, respectively. Main effects of sex (sexF) were evaluated as a group 

effect of females relative to males, while the interaction between age and sex (poly(age,2)1:sexF 

and poly(age,2)2:sexF) was also examined, again with males as the reference group. All continuous 

variables were z-scored so that coefficients (betas (ꞵ), or effect sizes) for each fixed effect would 

be standardized. As such, the standard betas indicate the number of standard deviations a regional 

volume has changed per standard deviation increase in the predictor variable. The False Discovery 

Rate (FDR) method (Benjamini and Hochberg 1995) was used to control the family-wise type I 

error at a level of 5% for each predictor. A fixed effect was considered significant when the FDR-

corrected p-value (adjusted p-value or p-adjusted) was < 0.05.  

4.6 Results 

4.6.1 Absolute volumes increase with age and are larger in male Fischer rats 

Linear mixed effects model results for absolute volumes aggregated within GM and WM 

tissues, as well as ventricular compartments containing CSF are visualized in Figure 4.10.1A and 

a full LME summary is shown in Supplementary Table 4.12.3. Briefly, aggregated absolute 

volumes all increased and demonstrated negative curvilinear relationships (downward-facing 

curve) with age, were smaller in females, and demonstrated a negative linear age by sex interaction 

whereby volumes increased more sharply wth age in males than females.  

These highly consistent effects across tissue types remained when absolute volumes were 

decomposed into the individual structures within the Fischer 344 rat brain atlas. All 120 structures 

increased with linear age, 72 of 120 demonstrated a significant positive quadratic relationship with 

age (upward-facing curve), and 119 of 120 structures were larger in males. 85 of 120 structures 

demonstrated a significant negative linear age by sex interaction and 14 of 120 structures 
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demonstrated significant positive quadratic age by sex interaction, increasing more with age in 

males than females. LME results and absolute volumes in mm3 for all structures can be found in 

Supplementary Tables 4.12.3 and 4.12.4, respectively.  

 

4.6.2 Brain-size-corrected volumes show heterogeneous change with age and occur 

in regions implicated in motor control, learning, and memory 

As shown in Figure 4.10.1B and Supplementary Table 4.12.5, aggregated brain-size-

corrected volumes demonstrated different age-related effects depending on tissue type: total GM 

volume decreased significantly and demonstrated a positive curvilinear relationship with age, while 

total WM volume increased sharply with linear age, and CSF volume increased subtly with linear 

age.  

Aggregated volumes were then decomposed into the individual structures delineated by the 

Fischer 344 atlas. Whole-brain age- and sex-related changes were visualized using the 

mincPlotSliceSeries function in RMINC, wherein t-statistic heatmaps were created for each term in 

the LME model and overlaid on the average anatomy background (Figure 4.10.2). LME results for 

selected structures, chosen for the strength of their effects or relevance of the brain region in aging 

and neurodegeneration (basal forebrain, caudoputamen, cingulum, commissure of the inferior 

colliculus, frontal cortex, dentate gyrus, hippocampus, internal capsule, nucleus accumbens, 

periaqueductal grey, and thalamus), are shown in Table 4.9.1. Visualization of the longitudinal 

trajectories for these selected structures, split by sex, was performed using the effects package in R 

(version 4.2-0, (Fox and Weisberg 2019)) and is shown in Figure 4.10.3. For simplicity and since 

effects were highly consistent across hemispheres, for structures that exist within both hemispheres, 

such as the hippocampus, only the trajectory within the right hemisphere is shown. LME results are 

included in Supplementary Table 4.12.5 and volumetric trajectory visualization for all 120 

structures are shown Supplementary Figures 4.13.2 to 4.13.9. 

GM structures showed a nearly even split of increased versus decreased volumes with age, 

while WM and ventricular system volumes generally increased with age. Specifically, of the 76 

GM volumes analyzed, 20 regions increased linearly with age, while 24 decreased. 15 of 76 GM 

structures demonstrated a significant positive curvilinear relationship with age while 4 structures 

demonstrated a negative curvilinear relationship. Of the 40 WM volumes analyzed, 20 increased 

and 3 decreased linearly with age, while 4 of 40 regions demonstrated a negative curvilinear 
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relationship with age. Of the 4 volumes that were categorized as part of the ventricular system, only 

the aqueduct and fourth ventricle increased significantly with age. Additionally, GM structures 

comprised the vast majority of the strongest age-related changes overall. Upon ranking the 

structures by adjusted p-value within the linear and quadratic age terms, of the top 20 strongest 

linear changes with age, 14 were in GM structures. For curvilinear changes the top 20 comprised 

15 GM, 4 WM, and 1 CSF region(s). All structures ranked by adjusted p-value within each model 

term are shown in Supplementary Table 4.12.6. 

The strongest linear changes with age in GM structures were decreases in the temporal-

parietal cortex, caudoputamen, and frontal cortex, and increases in the hindbrain and substantia 

nigra. In WM, the strongest linear changes with age were identified in the internal capsule, cerebral 

peduncle, and fimbria, all of which increased in volume. Age-related changes in CSF volumes were 

limited to the aqueduct and fourth ventricle, both of which increased.  

Regarding curvilinearity, the strongest effects in GM structures were positive curvilinear 

changes in the frontal cortex and caudoputamen, and a negative curvilinear relationship between 

age and volume in the hindbrain. Curvilinear effects in WM structures were less common and were 

only significant in the optic chiasm, right optic tract, right fasciculus retroflexus, and left olfactory 

tract, all of which were negative. Significant curvilinearity with age was not present in ventricular 

system volumes. All linear model results are shown in Supplementary Table 4.12.5, with results 

for each model term ranked by adjusted p-value in Supplementary Table 4.12.6.  

 

4.6.3 The influence of sex on neuroanatomy is strongest in grey matter structures 

Of the brain-size-corrected volumes aggregated across tissue type, only total GM 

demonstrated significant sex-related effects with larger volume in females, as shown in Figure 

4.10.1B and Supplementary Table 4.12.5. None of total GM, WM, or CSF volumes demonstrated 

age by sex interactions. Upon examination of 120 regional volumes (split across hemispheres), GM 

structures comprised the majority of the sex effects identified in aging Fischer rats. 31 of 76 GM 

volumes showed significant effects of sex, with 23 of 31 being larger in females. 13 of 40 WM 

volumes had significant sex effects, with 9 of 13 being larger in females. Additionally, of the top 

20 smallest (most significant) adjusted p-values, 13 were in GM structures and 7 in WM structures 

(regions ranked by adjusted p-values shown in Supplementary Table 4.12.6). The strongest main 

effects of sex in GM structures were in the caudoputamen, thalamus, periaqueductal grey, and basal 
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forebrain, all of which were larger in females. The most significant main effects of sex in WM 

structures were larger optic chiasm volume and smaller commissure of the inferior colliculus 

volume in females relative to males.  

Age by sex effects were present in grey and white matter volumes but not the ventricular 

system, and were generally observed bilaterally; 14 of 76 GM structures and 8 of 40 WM structures 

demonstrated linear age by sex interactions, with a positive interaction occurring in 8 of 14 GM 

regions, and 6 of 8 WM regions, reflecting increasing volume in females relative to males as a 

function of age. A second order age by sex interaction was present for 8 of 76 GM regions and 3 of 

40 WM regions; this interaction was negative for 7 of 8 GM regions, reflecting a more negative 

curvilinear relationship with age in females than in males, while all 3 WM regions showed a positive 

curvilinear relationship with age.  

The linear interaction between age and sex in GM structures was strongest in the crus 2 

ansiform lobule and cerebellar lobule 7, which were smaller over time in females, and the 

hippocampus and olfactory nuclei which were larger over time in females. In WM structures a 

linear age by sex interaction was present in fewer structures and included the left lateral olfactory 

tract and commissure of the inferior colliculus, which were smaller over time in females, and the 

optic chiasm, intrabulbar part of the anterior commissure, and optic tract, which were larger over 

time in females. Second order age by sex interactions in GM structures were strongest in the 

caudoputamen, right hippocampus (the left hippocampus neared significance), and left frontal 

cortex, all of which demonstrated negative curvilinear relationships with age. In WM structures the 

only significant quadratic age by sex interactions were in the left cingulum, optic chiasm, and right 

lateral olfactory tract, all of which were positive. Linear model results for all structures are included 

in Supplementary Table 4.12.5, with results ranked by adjusted p-value in Supplementary Table 

4.12.6.  

 

4.6.4 Whole-brain voxel-wise and volumetric analyses provide complementary 

results  

In conjunction with the volumetric analyses described above, a whole-brain voxel-wise 

analysis was performed to assess changes at the voxel level. Whole-brain age- and sex-related 

voxelwise changes were visualized using the mincPlotSliceSeries function in RMINC, wherein t-

statistic heatmaps of LME modeling results at each voxel were overlaid on the average anatomy 
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background, split by model term (Figure 4.10.4). Side-by-side comparisons of volumetric and 

voxel-wise results are shown in Supplementary Figures 4.13.10 and 4.13.11. Overall, voxel-wise 

results correspond well with those identified using volumetric analyses. However, the volumetric 

analysis—whereby the relative Jacobians shown in the voxel-wise data were integrated across each 

structure in the Fischer atlas—identified changes not visible at the individual voxel level, and 

similarly, several focal changes exist that were not visible at the whole-structure level.  

For example, the voxel-wise analysis identified both significant focal increases and 

decreases with linear age within cerebellar lobule 4 and 5. These changes were offset when 

summing the volume over the whole region, resulting in a lack of linear age effect in the volumetric 

analysis. When examining second order effects of age, the most noticeable contrast between the 

two methods was throughout the cortex whereby only the volumetric analysis identified significant 

positive curvilinear effects in cortical volumes with age. Voxel-wise analysis identified significant 

sex-related increases in the posterior cerebellar lobule 3, and decreases in the anterior cerebellar 

lobule 3, resulting in a lack of overall effect of sex at the level of the whole structure. Regarding 

linear age by sex interactions, there were positive bilateral effects in the hippocampal formations 

that were not strongly reflected at a voxel-wise level, whereas conversely, focal changes within the 

medial hindbrain appeared to drive the strong positive interaction in the hindbrain identified in the 

regional analysis. Finally, upon examining the interaction of curvilinear age and sex identified by 

each method, there were bilateral decreases in the caudoputamen at a volumetric level which were 

not reflected at a voxel-wise level.  

4.7 Discussion 

The purpose of this study was to characterize brain volumetric changes and whole-brain 

voxelwise changes in a commonly used rat model of aging (Gallagher, Stocker, and Koh 2011). 

This work establishes a baseline for normative neuroanatomical change with age in the rat brain, 

and informs studies examining pathology-related change in transgenic models developed on the 

Fischer 344 background strain. It is particularly important to study both sexes in this context, given 

the progression and presentation of many age-related diseases, such as Alzheimer’s disease, are 

influenced by sex. Our study is among the few aging studies to assess structural change 

longitudinally as opposed to cross-sectional or ex-vivo study designs, allowing for exploration of 



 

 

121 

non-linear effects, providing increased power to detect small differences in neuroanatomy, and 

increasing preclinical to clinical translatability. 

119 of 120 absolute volumes increased linearly with age, with 72 of 120 structures also 

demonstrating a positive curvilinear relationship with age. These trends were also seen in the total 

aggregated volumes for GM, WM, and CSF. This consistent volumetric increase with age matches 

the few studies that have tracked absolute change in regional and/or total brain volume with age in 

wildtype rodents (Casas et al. 2018; Gaser et al. 2012; Maheswaran et al. 2009). Our finding that 

119 of 120 absolute brain volumes were larger in males can be explained by the documented 

relationship between brain size and body size (Welniak-Kaminska et al. 2019; Valdés-Hernández 

et al. 2011), and matches previous studies comparing absolute volumes between males and females 

at various periods during the lifespan in rodents (Sumiyoshi, Nonaka, and Kawashima 2017; Qiu et 

al. 2018; Spring, Lerch, and Henkelman 2007; Reichel et al. 2017), and in humans (Scahill et al. 

2003; Walhovd et al. 2005; Jay N. Giedd et al. 2012). Interestingly, this progressive increase in 

brain volume throughout the Fischer rat lifespan is in contrast to that in humans, which plateaus in 

the mid-teens and then declines later in life (J. N. Giedd et al. 1999). The difference between rodent 

and human brain growth is generally hypothesized to be facilitated by the delay in growth plate 

closure in rodents, permitting continuous expansion of brain volume (Sandner et al. 2010; Kilborn, 

Trudel, and Uhthoff 2002).  

The analysis of brain-size-corrected volumes offers a much more interesting and relevant 

perspective on how the brain is altered locally during normal aging and between sexes. The majority 

of other studies examining relative volumetric change do so by normalizing (dividing) regional 

volumes to intracranial volume (ICV) or total brain volume (TBV). We employed an alternative 

method to explore volumetric change that avoids the inherent alteration of the distribution of 

variance, as well as the increase in measurement uncertainty that occurs when error propagation is 

performed, as is necessary when dividing a regional volume by ICV or TBV. Our corrected volumes 

were obtained by integrating relative Jacobians across voxels within a given structure, thus 

providing a value representative of local regional change independent of affine scaling factors for 

global brain volume, while avoiding violating assumptions regarding the distribution and variance 

incurred by computing a ratio of total volume.    

The age-related changes in total GM, WM, and CSF volumes in the Fischer rat brain that 

we report are generally consistent with the few existing aging studies in rodents that examine 
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relative volumetric change. Total CSF compartmental volume increased with age, as has previously 

been documented in both rodents (Maheswaran et al. 2009; von Kienlin et al. 2005) and humans, 

particularly in the lateral ventricles (Fjell et al. 2009; Scahill et al. 2003; Driscoll et al. 2009; 

Walhovd et al. 2005; Narvacan et al. 2017). Regionally, only the aqueduct and fourth ventricle 

increased significantly with age, indicating the majority of ventricular enlargement occurred in the 

more caudal parts of the Fischer 344 rat brain.   

Total WM volume increased linearly in aging Fischer 344 rats. The strongest linear changes 

with age were identified in the internal capsule, cerebral peduncle, and fimbria, all of which 

increased. These structures are spatially distributed across the brain and are implicated in a number 

of physiological functions, including motor function (internal capsule, (Wen et al. 2019), episodic 

and spatial memory formation (fimbria, (Aggleton and Brown 1999; Okada and Okaichi 2006)), 

and transmission of visual information (optic tract, (Mehra and Moshirfar 2020)). In humans, WM 

volume appears to increase until approximately age 45 and then plateaus and decreases (Hedman 

et al. 2012; Walhovd et al. 2005; Pfefferbaum et al. 2013), in opposition to our finding that total 

WM increased consistently with age. Unfortunately our ability to understand this discrepancy is 

limited by the lack of volumetric analyses of the majority of white matter regions, particularly at 

the preclinical level. One longitudinal study in C57BL6 mice demonstrated significant age-related 

volumetric increases in the corpus callosum, corticospinal tract, and the fornix system up until 14 

months of age but did not perform scans later into the lifespan (Maheswaran et al. 2009). Additional 

longitudinal studies in rodents that extend late into their lifespan and that document both whole-

brain and regional tissue-specific change are clearly needed to characterize age-related change in 

WM volumes, and to better understand differences in WM changes between aging rodents and 

humans.  

Total GM volume decreased in aging Fischer 344 rats, and also demonstrated a positive 

curvilinear relationship with age, similar to the linear and curvilinear decreases in GM volume in 

humans post-adolescence that have been consistently shown in human aging studies (Hedman et al. 

2012; Hasan et al. 2010; Walhovd et al. 2005; Narvacan et al. 2017; Pfefferbaum et al. 2013). Our 

age-related findings within specific GM structures closely match those reported by other authors at 

the preclinical and clinical level. The longitudinal study in male C57BL6 mice by Maheswaran et 

al. that reported slight, non-significant decreases in the cortex, hippocampus, caudoputamen, and 

thalamus, and increases in the midbrain-hindbrain and hypothalamus ((Maheswaran et al. 2009). 
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The increases they identified in the midbrain-hindbrain and hypothalamus of aging C57BL6 mice 

are similar to those seen in our Fischer rats, while the non-significant decreases they report were 

significant in our study, possibly because we explored changes 6 months later into the lifespan. 

Another comparable study is a cross-sectional voxel-wise study in Fischer rats at 10 and 25 months 

that revealed an increase in select hippocampal regions which appeared to be primarily within the 

dentate gyrus (Alexander et al. 2020). While this is comparable to our findings, it is at odds with 

an early study in Fischer rats  (A. K. Shetty and Turner 1999), and the majority of human aging 

literature (Small et al. 2004; Dillon et al. 2017; Hayek et al. 2020; Wisse et al. 2014; Malykhin et 

al. 2017). Given the sparsity of literature on relative volumetric change with age in the rodent brain, 

additional studies are required to improve the interpretation of our findings. 

Although several of our findings have not yet been reported in preclinical literature, there 

are some similarities compared to human aging literature. Aging studies in humans have identified 

highly heterogeneous age-related change across the brain, including atrophy in many subcortical 

gray matter structures, including the thalamus, nucleus accumbens, caudate, and putamen, (Long et 

al. 2012; Walhovd et al. 2005; Narvacan et al. 2017; Tullo et al. 2019), and decreased cerebellar 

volume (Bernard and Seidler 2013; Han et al. 2020), all of which we also report in our aging Fischer 

rats. Hypertrophy of the substantia nigra (Cabello et al. 2002; Rudow et al. 2008), and either stable 

or increased hippocampal volume until mid-life followed by a sharp decline have also been reported 

(Narvacan et al. 2017; Malykhin et al. 2017; Raz et al. 2010; Bussy et al. 2021), again, similar to 

our findings. For reviews on age-related structural changes in humans see (Sowell, Thompson, and 

Toga 2004) and (Fjell and Walhovd 2010).  

Regarding the cellular and molecular basis for altered brain structure with age, it has 

previously been shown that altered axonal/dendritic branching, synapse, spine, or cell numbers are 

sufficient to alter brain volume (J. P. Lerch et al. 2011; Qiu et al. 2013; Spring et al. 2010). The 

current study design did not allow us to identify these underlying mechanisms. However, 

experiments in aging Fischer 344 x Brown Norway hybrid rats (Driscoll et al. 2006), Wistar rats 

(Morterá and Herculano-Houzel 2012), and rhesus monkeys (Dumitriu et al. 2010) report that age-

related brain atrophy may result from some combination of dendritic regression, neuronal death and 

decreased neurogenesis, similar to the loss of dendritic and synaptic density reported in human post-

mortem studies (Raz and Rodrigue 2006). Additionally, we recently published a longitudinal 

analysis of hippocampal neurochemical concentrations in the same cohort of aging rats as studied 
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here (Fowler et al. 2020) where we identified altered concentrations of metabolites implicated in 

neuroinflammation, cell membrane turnover, bioenergetics, and antioxidant capacity, which are 

indicative of major changes at the cellular level during normal aging (Mattson and Arumugam 

2018; McKenna et al. 2012). Given that we report age-related increases and decreases in regional 

volumes whereas much of the aging literature focuses only on mechanisms for neurodegeneration, 

future studies combining in vivo and ex-vivo techniques are needed to better characterize the cellular 

and molecular basis of volumetric change. 

Structures influenced by sex were widespread across the Fischer rat brain and more 

commonly found in GM than WM structures, for both the main effect of sex and its interaction with 

age. In our cohort of aging Fischer rats, females displayed larger volumes in the frontal cortex, 

caudoputamen, thalamus, and periaqueductal grey relative to males, similar to findings by Qui et 

al. in young C57BL/6J mice (post-natal day 3-65, (Qiu et al. 2018), while in contrast, Spring et al. 

noted smaller thalamic volumes in adolescent female Wistar rats (Spring, Lerch, and Henkelman 

2007). The influence of sex on hippocampal volumes in rodents is also inconsistently reported. We 

identified a positive linear age by sex interaction in hippocampal volume, indicating larger 

hippocampi in female rats relative to males across the life span, while the opposite has been reported 

in 6-10 week-old Wistar rats (Sumiyoshi, Nonaka, and Kawashima 2017). Given the lack of studies 

examining the influence of sex in relative brain volumes in rodents at ages comparable to those 

studied here, it is difficult to determine if discrepancies between our findings and the three 

aforementioned studies are due to inherent differences between mouse and rat brains, differences 

between strains of rats (particularly related to inbreeding versus outbreeding), or due to the younger 

age of the rodents studied by the other authors compared to our cohort. As such, many of our sex-

related findings require additional preclinical research for confirmation, particularly as many are 

being reported for the first time.  

There are only a few subcortical structures for which sex differences during aging have been 

identified in humans. For example, it has previously been reported that women have larger 

hippocampal volumes (Cosgrove, Mazure, and Staley 2007; Jay N. Giedd et al. 2012; Goldstein et 

al. 2001), while men have been shown to have steeper age-related volumetric declines (Armstrong 

et al. 2019), similar to our identification of larger hippocampal volume in females with atrophy 

occurring primarily in male rats. We also report larger thalamic volume in female Fischer rats, with 

atrophy occurring at a similar rate in males and females, comparable to human aging cohorts 
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(Ruigrok et al. 2014; Sullivan et al. 2004). For reviews see (Cosgrove, Mazure, and Staley 2007; 

Jay N. Giedd et al. 2012; Ruigrok et al. 2014).  

The origin and subsequent impact of sex chromosomes and hormones on the brain have 

been studied at the cellular, molecular, structural, and behavioural level. Sex hormones influence 

the outgrowth of axons and dendrites, the amount of cell death, and the number and type of synapses 

that a cell makes (Juraska, Sisk, and DonCarlos 2013; Juraska and Lowry 2012), all of which are 

sufficient to alter brain volume (J. P. Lerch et al. 2011; Qiu et al. 2013; Spring et al. 2010). For 

reviews, see (Cooke et al. 1998; Cahill 2006; Osterlund and Hurd 2001). Previous studies have 

shown that in addition to hormone levels fluctuating with age, topographic distribution, binding 

capacity, and associated enzyme levels of sex steroid receptor systems also vary as a function of 

age (Sholl and Kim 1990; MacLusky et al. 1987), likely contributing to differing trajectories of 

aging in males and females in specific regions. Going forward, ensuring proper age and sex-

matching in study design will be important as the research community works towards understanding 

the influences of sex on age- and pathology-related changes in brain structure. Additionally, given 

the effect of sex on brain volumes reported here, it will also be important to intentionally study and 

account for both sexes when characterizing biological outcome measures known to be associated 

with altered neuroanatomy. For example, changes to spatial learning and memory with age may 

differ between males and females as a result of differing hippocampal volume trajectories.  

Finally, a whole-brain voxel-wise analysis was performed in conjunction with the 

volumetric analysis to explore if the two methods would provide complementary information. 

There were instances where the regional analysis masked finer-grained details of morphological 

change identified in the voxel-wise analysis, while conversely, analysis at the level of whole 

structures was capable of identifying changes that were only weakly present at the individual voxel 

level, but overall the voxel-wise and regional analyses resulted in comparable findings. 

This study has a few important limitations that warrant discussion. First, due to some of the 

rats being part of a treatment study at 10 months and therefore not included in this analysis, the 

number of animals decreased considerably at the last two time points. This may have decreased our 

power to detect differences between sexes or change with age. To confirm the robustness of our 

findings, we performed the same analysis for the brain-size-corrected volumes across only three 

time points as opposed to four, compared side by side in Supplementary Table 4.12.7. The 

majority of age and sex effects remained in the three time point analysis, particularly the main 
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effects of sex. Despite some changes in significance, the direction of change (sign of beta 

coefficient) was unaltered for all effects. Overall, while it is clear that the last time point at 20 

months is particularly important for consolidating curvilinear change, the majority of the results are 

consistent across the two analyses, demonstrating the robustness of our findings despite the 

decreased sample size towards the end of the study. The longitudinal nature of the study, the number 

of time points over which data were collected, and the implementation of a 5% false discovery rate 

correction also improve the confidence with which we report our findings.   

Secondly, it should be acknowledged that inbred models such as the Fisher 344 rat do not 

completely recapitulate aging as it occurs in humans due to the extreme genetic homogeneity of 

inbred strains. While studying inbred strains reduces experimental variability and increases study 

reproducibility, it is necessary to consider that studies using these inbred animals do not replicate 

the genetic diversity in human aging studies and results may therefore not be completely 

representative of the aging process in humans. Strain-specific neuroanatomical features likely also 

exist as a result of in-breeding and may contribute to difficulty in replicating results from one strain 

to another. A multi-strain aging study examining both inbred and outbred strains could be of great 

interest to the research community.  

Finally, the image resolution in this study (114 µm) prevented the delineation of very small 

structures and/or adjacent grey matter nuclei, such as the thalamic, cortical, and amygdalar nuclei. 

To address this limitation, we performed a whole-brain voxel-wise analysis to identify focal 

changes that may not have been identified in the volumetric analysis, which confirmed that the two 

methods revealed complementary information regarding neuroanatomical change, and even found 

some focal effects masked by regional averaging.   

4.8 Conclusion 

In order to better understand and address age-related pathologies in transgenic models of 

disease, it is necessary to first characterize the features of normal aging in common experimental 

background strains, such as the Fischer 344 wildtype rat. To this end, this work presents a 

comprehensive analysis of MRI-derived brain changes at the voxelwise and whole-structure level 

during normative aging in a mixed-sex cohort of F344 rats. These findings contribute to our 

understanding of the neuroanatomical changes associated with normal aging in male and female 
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F344 rats, critical for informing future studies in transgenic models of age-related diseases, which 

frequently present and progress differently in males versus females.  

4.9 Chapter 4 Tables  

Table 4.9.1 Linear mixed effects model summary for selected brain-size-corrected 
volumes, listed in alphabetical order.  
Volumes were predicted by an age by sex interaction with a random intercept for each subject. Age was 
modelled using a quadratic polynomial function. The linear and quadratic components of the age term with 
age are written as poly(age,2)1 and poly(age,2)2, respectively. Effects of sex were evaluated in females 
relative to males. Betas are standardized. Bold font denotes significance after FDR-correction at 5%. L or 
R represent the structure in the left or right hemisphere, respectively.   
 

 poly(age,2)1  poly(age,2)2  sexF  poly(age,2)1:sexF  poly(age,2)2:sexF 

Structure std.beta p-adjusted  std.beta p.adjusted  std.beta p.adjusted  std.beta p.adjusted  std.beta p.adjusted 

Basal Forebrain 2.295 6.15E-02  1.753 1.68E-01  1.308 1.51E-06  -0.536 7.81E-01  0.357 8.60E-01 

Caudoputamen -L  -6.885 1.11E-20  3.068 3.36E-08  1.186 4.17E-10  0.985 1.64E-01  -1.831 5.34E-03 

Caudoputamen -R  -7.225 3.19E-21  3.326 3.20E-09  0.967 9.57E-07  0.731 3.13E-01  -2.067 1.17E-03 

Cingulum -L 5.731 3.93E-06  -2.427 5.37E-02  -0.110 0.788  -1.267 4.76E-01  3.881 9.90E-03 

Cingulum -R 6.311 1.02E-08  -1.027 3.76E-01  -0.659 5.43E-02  -2.533 5.75E-02  2.431 6.11E-02 

Commissure of the 
Inferior Colliculus 

6.208 1.44E-06  0.069 9.73E-01  1.051 1.50E-04  -5.610 4.68E-04  0.259 9.04E-01 

Dentate Gyrus -L 3.180 5.70E-03  -1.755 1.41E-01  -0.836 1.27E-02  1.131 4.93E-01  1.379 3.78E-01 

Dentate Gyrus -R 3.864 4.25E-04  -2.006 7.04E-02  -0.502 0.186  0.386 8.31E-01  1.663 2.48E-01 

Frontal Cortex -L -5.738 1.38E-20  3.027 1.73E-10  1.047 1.09E-07  -0.753 1.93E-01  -1.161 2.91E-02 

Frontal Cortex -R -6.022 2.90E-17  3.278 9.44E-09  0.717 7.81E-04  -0.979 1.71E-01  -1.079 1.13E-01 

Hippocampus -L -3.597 6.43E-04  0.911 4.42E-01  0.782 8.07E-02  4.769 2.79E-04  -2.512 5.27E-02 

Hippocampus -R -1.683 7.80E-02  2.238 1.43E-02  0.966 1.32E-02  2.705 2.02E-02  -2.566 2.29E-02 

Internal Capsule -L 7.031 2.98E-16  -0.881 2.44E-01  0.047 0.844  0.971 3.15E-01  -0.412 7.03E-01 

Internal Capsule -R 8.008 4.48E-20  -0.678 3.42E-01  0.279 0.110  -0.706 4.45E-01  -0.285 7.80E-01 

Nucleus Accumbens -L -4.996 2.04E-08  2.239 7.79E-03  1.259 8.52E-06  0.855 4.83E-01  -0.475 7.22E-01 

Nucleus Accumbens -R 6.183 5.98E-11  1.202 1.73E-01  1.161 3.87E-04  2.806 7.54E-03  0.364 7.81E-01 

Periaqueductal Grey -0.518 7.27E-01  1.519 2.29E-01  1.534 7.11E-09  -2.415 1.07E-01  -1.525 3.40E-01 

Thalamus -L -2.932 6.31E-04  0.299 7.82E-01  1.390 2.45E-05  -0.861 4.82E-01  -1.287 2.53E-01 

Thalamus -R -4.227 6.84E-07  0.788 4.11E-01  1.519 4.87E-09  -0.300 8.31E-01  -0.658 6.04E-01 
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4.10 Chapter 4 Figures  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10.1 Absolute volumes summed across tissue type increase with age and 
are larger in males, while brain-size corrected volumes reveal different age and sex-
dependent trends across tissue types  
MRI data were acquired longitudinally in rats aged 4-, 10-, 16- and 20-months old. Main effects of 
age and sex, as well as age by sex interactions, were determined using linear mixed effects 
modelling. Each data point represents a single rat. The linear mixed effects model used to fit the 
data is represented by a line of best fit and 95% interval (shaded), split by sex. Data corresponding 
to males is shown using red circles with a solid line of best fit, while females are shown using blue 
triangles and a dashed line of best fit. Significance symbols are shown for each term in the model, 
where #1 and #2 represent the linear and quadratic age terms, * denotes a main effect of sex, and †1 
and †2 represent age by sex interactions with a linear and quadratic age term, respectively. Multiple 
comparisons were corrected for using a 5% false discovery rate. Significance was determined by 
q<0.05.   
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Figure 4.10.2 Visualization of age and sex effects, along with their interaction, on 
brain size-corrected brain volumes (LME results) in healthy aging Fischer rats, 
overlaid on the average anatomy background.  
In the mixed effects model, volumes were each predicted by an age by sex interaction with a random 
intercept for each subject. Age was modelled using a quadratic polynomial function to account for 
the possibility of non-linear changes with age. The linear and quadratic components of age are 
written as poly(age,2)1 or poly(age,2)2, respectively. Effects of sex (sexF) were evaluated in 
females relative to males, and the interaction between age and sex was also examined 
(poly(age,2)1:sexF and poly(age,2)2:sexF, with males as the reference group. Each column shows 
significant volume effects specific to each model term. The regional t-values for each term in the 
mixed effects model are indicated by the colour bars in columns 1 through 5. The plot range for 
each set of t-values is specific to each model term and displays effects significant between 5 and 
1% FDR, with t-values above 1% thresholded at the 1% value, except for the poly(age,2)2:sexF 
column which displays values significant at 10% FDR.  
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Figure 4.10.3 Prominent age and sex-dependent changes in brain-size-corrected 
volumes are present throughout the brain in both grey and white matter regions, 
suggesting a multitude of physiological functions are affected by aging  
MRI data were acquired longitudinally in rats aged 4-, 10-, 16- and 20-months old. Main effects of 
age and sex, as well as age by sex interactions, were determined using linear mixed effects 
modelling. Each data point represents a single rat.  The mixed effects model used to fit the data is 
represented by a line of best fit and 95% interval (shaded), split by sex. Data corresponding to males 
is shown using red circles with a solid line of best fit, while females are shown using blue triangles 
and a dashed line of best fit. Significance symbols are shown for each term in the model, where #1 
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and #2 represent the linear and second order age terms, * denotes a main effect of sex, and †1 and 
†2 represent age by sex interactions with a linear and second order age term, respectively.  Multiple 
comparisons were corrected for using a 5% false discovery rate.  

 

Figure 4.10.4 Statistical maps demonstrating local brain size-corrected volume 
differences due to age, sex, and their interaction in healthy aging Fischer rats, 
overlaid on the average anatomy background 
A mixed effects model was run at each voxel across the brain, whereby relative Jacobians were 
predicted by an age by sex interaction with a random intercept for each subject. Age was modelled 
using a quadratic polynomial function to account for the possibility of non-linear changes with age. 
The linear and quadratic components of age are written as poly(age,2)1 or poly(age,2)2, 
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respectively. Effects of sex (sexF) were evaluated in females relative to males, and the interaction 
between age and sex was also examined (poly(age,2)1:sexF and poly(age,2)2:sexF, with males as 
the reference group. Each column shows significant voxel-wise effects specific to each model term. 
The t-values for each term in the mixed effects model are indicated by the colour bars in columns 
1 through 5. The plot range for each set of t-values is specific to each model term and displays 
effects significant between 5 and 1% FDR, with t-values above 1% thresholded at the 1% value. 

4.11 Supplementary Methods    

4.11.1 Age- and sex-dependent change in brain-size-corrected volumes over three 

time points as compared to four time points 

To ensure our results were not being driven by the last time point wherein we have the 

fewest subjects (and therefore, the least power), we also analyzed all data from the first three time 

points only. 68 of 70 regions that originally indicated linear effects of age maintained those effects 

over three time points as opposed to four, while five new regions demonstrated significant linear 

effects. Curvilinear effects were seen in 20 regions as opposed to 22 in the original analysis, losing 

significance in six regions but becoming significant in four. The main effects of sex remained 

particularly strong, with only three regions losing significance when analyzed over three timepoints. 

Four additional regions showed linear age by sex interactions, while one region was no longer 

significant. Quadratic age by sex interactions differed somewhat (nine new regions, seven regions 

no longer significant, four remained the same), which was to be expected given the aforementioned 

differences in curvilinear effects of age over three timepoints versus four. For a comparison of LME 

results obtained using data from three versus four time points see Supplementary Table 4.12.6. 

This additional analysis represents the steps taken towards ensuring our results are robust, despite 

the decreased sample size towards the end of the study. It is clear that the last timepoint at 20- 

months constitutes an important data pointsolidifying the curvilinear effects of age, and especially 

age by sex interactions, in brain structure present between 4 and 16 months. 

 

4.11.2 Detailed description of the quality control process 

A 4-point scoring scale was applied to each scan by D.G, who was blinded to all subject 

demographic data. Scans with whole-brain motion or Gibb’s ringing were given a score of 0, scans 

with localized motion or Gibb’s ringing that severely blurred regional boundaries were given a 

score of 1, scans with minor motion or Gibb’s ringing that did not obstruct regional boundaries 
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were given a score of 2, and scans without motion or Gibb’s ringing or with only very minor 

artifacts were given a score of 3. Scans given a score of 0 or 1 were excluded from co-registration 

and further analysis, scans given a score of 2 were flagged for review for corroboration by C.F.F 

before inclusion in the study, and scans with a score of 3 were included in the study without 

corroboration from C.F.F. Of the 81 scans acquired, four scans were flagged and excluded from 

further analysis. 

4.12 Supplementary Table Captions 

Supplementary Table 4.12.1. Subject Data  
Number of subjects scanned at each timepoint, split by sex, with reasons for removal of scans 
indicated. -QC represents the number of scans removed due to failing quality control (QC), D 
represents death of a rat prior to that time point, and Tx denotes the removal of a rat after the 10-
month time point due to participation in a separate treatment study. F and M denote female or male 
rats, respectively.  
 
Supplementary Table 4.12.2. Comparison between models containing a linear versus 
quadratic age term using Akaike information criterion (AIC)  
In both models, volume was predicted using an age by sex interaction with a random effect per 
subject. In model 1, the age term was modelled using a linear age term (poly(age,1)) while in model 
2, a quadratic age term (poly(age,2)) was used. Both used the polynomial function, but with 
differing degrees, to ensure proper model nesting for AIC comparison.  Δi (AICi-AICmin) was 
calculated using the AIC value for each model, whereby a Δi ≥ 4 indicated substantially less support 
for model 1 (first order age term) than model 2 (second order age term). The smallest AIC between 
model 1 and 2 is shown in grey, while Δi ≥ 4 and AICmin are denoted by shaded blue boxes.   
 
Supplementary Table 4.12.3. Linear mixed effects model results for 73 absolute 
volumes derived from integrated absolute Jacobians 
Absolute volumes were modelled using an age by sex interaction with a random effect per subject. 
Age was expressed using a polynomial function of degree 2 to allow for non-linear change with 
age. The linear and quadratic components of the age term are written as poly(age,2)1 and 
poly(age,2)2, respectively. Effects of sex (sexF) were evaluated in females relative to males, along 
with the interaction of age and sex (poly(age,2)1:sexF and poly(age,2)2:sexF). Std.Beta represents 
the standardized beta or coefficient value for each model term, with the adjacent column, Std.Error 
indicating the error associated with the standard beta measurement. The t-value for each model term 
is also included. Significant adjusted p-values, after 5% FDR correction, are denoted by blue shaded 
boxes, while those between 5 and 10% are shown by shaded grey boxes. L and R indicate a structure 
that is split over the left and right hemispheres, and was therefore reported and analyzed as two 
separate volumes. 
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Supplementary Table 4.12.4. Absolute volumes of 73 brain regions in mm3, split by 
timepoint and sex  
Average volume and standard deviation for each structure across all subjects are recorded, with 
separate columns for the same data split by sex. L and R indicate a structure that is split over the 
left and right hemispheres, and was therefore analyzed and reported as two separate volumes.   
 
Supplementary Table 4.12.5. Linear mixed effects model results for 73 brain-size-
corrected volumes derived from integrated relative Jacobians 
Brain-size-corrected volumes were modelled using an age by sex interaction with a random effect 
per subject. Age was expressed using a polynomial function of degree 2 to allow for non-linear 
change with age. The linear and quadratic components of the age term are written as poly(age,2)1 
and poly(age,2)2, respectively. Effects of sex (sexF) were evaluated in females relative to males, 
along with the interaction of age and sex (poly(age,2)1:sexF and poly(age,2)2:sexF). Std.Beta 
represents the standardized beta or coefficient value for each model term, with the adjacent column, 
Std.Error indicating the error associated with the standard beta measurement. The t-value for each 
model term is also included. Significant adjusted p-values, after 5% FDR correction, are denoted 
by blue shaded boxes, while those between 5 and 10% are shown by shaded grey boxes. L and R 
indicate a structure that is split over the left and right hemispheres, and was therefore reported and 
analyzed as two separate volumes. 
 
Supplementary Table 4.12.6. Linear mixed effects model results for 73 unique brain-
size-corrected volumes derived from integrated relative Jacobians, ranked by 
adjusted p-value within each model term  
Brain-size-corrected volumes were modelled using an age by sex interaction with a random effect 
per subject. Age was expressed using a polynomial function of degree 2 to allow for non-linear 
change with age. The linear and quadratic components of the age term are written as poly(age,2)1 
and poly(age,2)2, respectively. Effects of sex (sexF) were evaluated in females relative to males, 
along with the interaction of age and sex (poly(age,2)1:sexF and poly(age,2)2:sexF). Std.Beta 
represents the standardized beta or coefficient value for each model term, with the adjacent column, 
Std.Error indicating the error associated with the standard beta measurement. The t-value for each 
model term is also included. Significant adjusted p-values, after 5% FDR correction, are denoted 
by blue shaded boxes, while those between 5 and 10% are shown by shaded grey boxes L and R 
indicate a structure that is split over the left and right hemispheres, and was therefore reported and 
analyzed as two separate volumes. Structures are ranked by adjusted p-value, from smallest (most 
significant) to largest.  
Supplementary Table 4.12.7. Linear mixed effects model results for brain-size-
corrected volumes analyzed over 3 time points as compared to four  
 
LME results are compared between two separate analyses, with the first using data from only the 
first three time points (4, 10, and 16 months) and the second using data from all four time points (4, 
10, 16, and 20 months), as is presented elsewhere in the manuscript. Brain-size-corrected volumes 
were modelled using an age by sex interaction with a random effect per subject. Age was expressed 
using a quadratic polynomial function to allow for non-linear change with age. The linear and 
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quadratic components of age are written as poly(age,2)1 or poly(age,2)2, respectively. Effects of 
sex (sexF) were evaluated in females relative to males, along with the interaction of age and sex 
(poly(age,2)1:sexF and poly(age,2)2:sexF). Std.Beta represents the standardized beta or coefficient 
value for each model term, with the adjacent column, Std.Error indicating the error associated with 
the standard beta measurement. The t-value for each model term is also included. Significant 
adjusted p-values, after 5% FDR correction, are denoted by blue shaded boxes, while those between 
5 and 10% are shown by shaded grey boxes. L and R indicate a structure that is split over the left 
and right hemispheres, and was therefore reported and analyzed as two separate volumes. 
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4.13 Supplementary Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 4.13.1 Workflow illustrating the steps involved in 
preprocessing anatomical MR images.  
Representative images of the scans removed during the quality control process are also shown. 
 
Supplementary Figures 4.13.2 to 4.13.9: Longitudinal trajectory of brain volumes 
with age and split by sex, for 71 unique brain regions in the aging Fischer rat  
MRI data were acquired longitudinally in rats aged 4-, 10-, 16- and 20-months old. Main effects of 
age and sex, as well as age by sex interactions, were determined using linear mixed effects 
modelling. Each rat is depicted by a single data point. The mixed effects model used to fit the data 
is represented by a line of best fit and 95% interval (shaded), split by sex. Data corresponding to 
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males is shown using red circles with a solid line of best fit, while females are shown using blue 
triangles and a dashed line of best fit. Significance symbols are shown for each term in the model, 
where #1 and #2 represent the linear and second order age components of the natural spline with 
age, * denotes a main effect of sex in females relative to males, and †1 and †2 represent age by sex 
interactions with a linear or second order component of the natural spline with age, respectively. 
Multiple comparisons were corrected for using a 5% false discovery rate.  
(Supplementary Figures 4.13.2 through 4.13.9 are shown below, in order). 
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Supplementary Figure 4.13.2 
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Supplementary Figure 4.13.3 
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Supplementary Figure 4.13.4 
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Supplementary Figure 4.13.5 
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Supplementary Figure 4.13.6 
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Supplementary Figure 4.13.7 
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Supplementary Figure 4.13.8 
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Supplementary Figure 4.13.9 
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Supplementary Figures 4.13.10 and 4.13.11: A side by side comparison between 
whole-brain voxel-wise changes and regional changes as a result of age, sex, and their 
interaction, overlaid on the average anatomy background 
Brain-size-corrected volumes and relative Jacobians at each voxel were both modelled using an age 
by sex interaction with a random effect per subject. Age was expressed using a quadratic 
polynomial function to allow for non-linear change with age. The linear and quadratic components 
of the age term are written as poly(age,2)1 and poly(age,2)2, respectively. Effects of sex (sexF) 
were evaluated in females relative to males, along with the interaction of age and sex 
(poly(age,2)1:sexF and poly(age,2)2:sexF). The t-values for each term in the mixed effects model 
at either the voxelwise or structural level are plotted over the average anatomy background. t-value 
maps for the linear and quadratic age terms are shown in Figure 10, while those for the main effect 
of sex, and the interaction of age and sex are shown in Figure 11. The plot range for each set of t-
values is specific to each model term and displays effects significant between 5 and 1% FDR, with 
t-values above 1% thresholded at the 1% value. The only exception to this is the t-statistic map for 
brain volumes under the poly(age,2)2:sexF heading, which are displayed with a 10% FDR cut-off. 
The scaled log relative Jacobian of peak voxels in the hindbrain, cerebellar lobule 3, and the 
hippocampus were visualized alongside the volume plots of the same structures, to highlight 
findings identified only at the voxel-wise level. A voxel from the temporal-parietal cortex is also 
visualized, alongside the volume data, to demonstrate findings only visible at the whole-volume 
level. For voxel and volume plots, the mixed effects model used to fit the data is represented by a 
line of best fit and 95% interval (shaded), split by sex. Data corresponding to males is shown using 
red circles with a solid line of best fit, while females are shown using blue triangles and a dashed 
line of best fit. 
(Supplementary Figures 4.13.10 and 4.13.11 are shown below, in order). 
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Supplementary Figure 4.13.10 
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Supplementary Figure 4.13.11 
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CHAPTER 5: NEUROCHEMICAL AND COGNITIVE CHANGES 
PRECEDE STRUCTURAL ABNORMALITIES IN THE TGF344-
AD RAT MODEL 

5.1 Preface 

The work presented in Chapter 5 is a comprehensive longitudinal analysis of multiple 

pathological features in the TgF344-AD rat model of Alzheimer’s disease. This rat model is unique 

in its ability to spontaneously develop tau pathology without insertion of a human tau transgene, 

and thus more closely replicates how the disease occurs in humans than most other rodent models. 

Despite the model being studied extensively since its emergence in 2013, we are the first to 

characterize disease-dependent changes in neuroanatomy and the full neurochemical profile, and 

ours is the earliest assessment of cognitive function. This multimodal testing approach, applied at 

4, 10, and 16 months, allowed us to determine the relative timing of the appearance and progression 

of neuroanatomical, neurochemical, and cognitive abnormalities in this model. These results 

contribute to the accurate staging of disease progression in the TgF344-AD rat, a necessary step 

towards improving diagnosis methods and designing appropriate treatment, particularly given the 

converging consensus on early as opposed to late intervention.  

 In addition, we examined the intersection between sex and pathology on neuroimaging and 

cognitive markers. While few significant effects were detected, the intentional statistical analysis 

of sex-dependent differences represents one of few performed in this model and is a consideration 

often overlooked in preclinical studies. Intentional inclusion of males and females is of particular 

importance in preclinical AD research given the documented differences between men and women 

in disease manifestation and progression.    

 Overall, the findings in this chapter support the use of MRI and MRS for the development 

of non-invasive biomarkers of AD progression, clarify the timing of pathological feature 

presentation in the TgF344-AD model, and advance the validation of the TgF344-AD rat as a highly 

relevant model for preclinical AD research, all of which represent significant contributions to the 

scientific community.  
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5.3 Abstract 

Alzheimer's disease is a progressive neurodegenerative disorder with a decades-long pre-

symptomatic phase, substantiating the need for prodromal biomarker development and early 

intervention. To deconstruct the processes underlying disease progression and identify potential 

biomarkers, we used neuroimaging techniques with high translational potential to human clinical 

studies in the TgF344-AD rat model which recapitulates the full spectrum of Alzheimer’s 

neuropathology (progressive amyloid deposition, tauopathy, frank neuronal loss, gliosis, and 

cognitive dysfunction). We employed longitudinal magnetic resonance imaging (MRI) and 

spectroscopy (MRS) in conjunction with behavioural testing to characterize multiple facets of 

disease pathology in male and female TgF344-AD rats (n=26, 14M/12F) relative to wildtype 

littermates (n=24, 12M/12F). Testing was performed at 4-, 10-, 16-, and 18-months, covering much 

of the adult rat lifespan and multiple stages of disease progression. Immunofluorescence 

experiments were performed at 18-months of age to probe the relationship between tissue 

pathological load, neuroimaging markers, and cognition. The TgF344-AD model demonstrated 

impaired spatial reference memory in the Barnes Maze by 4 months of age, followed by 

neurochemical abnormalities by 10 months and major structural changes by 16 months. These 

included increased total choline and lactate, and decreased total creatine, taurine, and N-

acetylaspartate to myo-inositol ratio, dentate gyrus hypertrophy, and atrophy in the hippocampus, 

hypothalamus, and nucleus accumbens. Immunofluorescence experiments indicated that major 

neuroimaging markers (N-acetylaspartate, myo-inositol, hippocampal volume) and behavioural 

testing outcome metrics did not correlate with neuronal or microglial cell counts. This suggests that 

change in cellular function (as opposed to structure or density) may underlie neurochemical and 

cognitive abnormalities, and that altered regional volumes may be better reflected by morphological 

characteristics other than cell count. Overall, these findings support the use of MRI and MRS for 

the development of non-invasive biomarkers of disease progression, clarify the timing of 

pathological feature presentation in this model, and contribute to the validation of the TgF344-AD 

rat as a highly relevant model for preclinical Alzheimer's disease research. 
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5.4 Introduction 

Alzheimer's disease is a progressive neurodegenerative disorder that accounts for 60-80% 

of the 50 million dementia cases worldwide (Patterson 2018). Aspects of Alzheimer’s pathology 

can occur decades before clinical onset (Clifford R. Jack Jr et al. 2010, 2013; Bateman et al. 2012), 

substantiating the need for prodromal biomarker development and early intervention.  

Early-stage disease characterization in transgenic animal models represents one promising 

avenue towards the development of new biomarkers and intervention approaches at a clinical level. 

The most common transgenic models are rodents expressing human genes harbouring mutations 

known to drive amyloid-β accumulation and cause familial or early-onset Alzheimer's disease in 

humans, such as presenilin-1 (PS1), presenilin-2 (PS2), and amyloid precursor protein (APP) 

(Drummond and Wisniewski 2017; Do Carmo and Cuello 2013; Dennis J. Selkoe 2011). Amyloid-

β-overproducing rodents are considered “gold standard” models but most do not display robust 

tauopathy or neuronal loss—two major hallmarks of Alzheimer’s disease—unless additional human 

transgenes are expressed that are not associated with familial Alzheimer's disease (typically 

microtubule-associated protein tau, MAPT (Dennis J. Selkoe 2011; Lewis et al. 2001)), as is the 

case with the widely used 3xTg mouse (Oddo et al. 2003).   

To date, one of the only rodent models to recapitulate the full spectrum of Alzheimer's 

disease neuropathology without insertion of a human tau transgene is the TgF344-AD rat which 

displays progressive amyloid-β deposition, tauopathy, gliosis, neuronal loss, and cognitive 

impairment, despite only expressing mutant human APP (APPswe, KM670/671NL) and PS1 (ΔE9) 

genes (Cohen et al. 2013). Not only does the TgF344-AD model represent a major advancement 

for Alzheimer's disease research, but the numerous advantages of studying rats over mice—they 

are physiologically and genetically closer to humans, display a richer behavioural phenotype, and 

have larger brains (Ellenbroek and Youn 2016)—make the TgF344-AD rat a particularly salient 

option for preclinical biomarker development. 

Magnetic resonance (MR) techniques such as MR Imaging (MRI) and Spectroscopy (MRS) 

enable non-invasive, longitudinal assays of brain structure and tissue chemistry at the preclinical 

and clinical level (Gao and Barker 2014; Frisoni et al. 2010; Mueller, Schuff, and Weiner 2006). 

MRI studies have identified reduced cortical thickness and atrophy of the medial temporal lobe as 

prominent features of Alzheimer's disease in human subjects (Frisoni et al. 2010; Pini et al. 2016) 



 

 

161 

that may precede clinical diagnosis (C. R. Jack Jr et al. 2005; van de Pol et al. 2007). Similar studies 

in transgenic models have replicated some of these findings (Lau et al. 2008; Kong et al. 2018; 

Badhwar et al. 2013; Spencer et al. 2013; Maheswaran et al. 2009). Proton MRS studies in rodent 

models of Alzheimer's disease have identified altered brain metabolic profiles, including reduced 

N-acetylaspartate (NAA) and glutamate (Glu), and increased myo-inositol (Ins), glutamine (Gln), 

and total choline (tCho) (Dedeoglu et al. 2004; Choi et al. 2014; Marjanska et al. 2005; Nilsen et 

al. 2012). These changes parallel those observed in human Alzheimer’s patients (Marjańska et al. 

2019; Murray et al. 2014). while also informing on physiological processes involved in disease 

pathogenesis, including neuronal viability, cell membrane turnover, antioxidant capacity, 

neuroinflammation, energy metabolism, and neurotransmission (McKenna et al. 2012; Ross and 

Sachdev 2004). Despite the relevance of MRI and MRS in Alzheimer's disease research, few studies 

have simultaneously examined the longitudinal progression of anatomical, neurochemical, and 

cognitive changes in either rodent models or humans. As such, a gap in knowledge exists regarding 

the relative timing of the appearance of these pathological features, limiting the understanding of 

disease stages and subsequent design of therapeutic approaches. 

The primary aim of this study was to characterize the manifestation and time course of 

pathological change in neuroimaging biomarkers and cognition in the TgF344-AD rat model in 

vivo. We employed MRI, MRS, and Barnes Maze testing at 4-, 10-, 16-, and 18-months of age to 

distinguish longitudinal changes in neuroanatomy, neurochemistry, and cognitive function in male 

and female TgF344-AD rats relative to wildtype littermates. Immunofluorescence experiments 

were performed at 18-months to probe the relationship between tissue pathological load, 

neuroimaging markers of disease progression, and behavioural metrics.  

5.5 Materials and Methods 

5.5.1 Animal care and study design 

The TgF344-AD model (Tg) is a double transgenic line created on a Fischer 344 background 

that expresses the “Swedish” mutant human APP (APPswe: APP KM670/671NL) and deletion of 

exon 9 mutant of human PS1 (PS1ΔE9). Male hemizygous TgF344-AD rats (Terrence  Town 

Laboratory, University Southern California) and female homozygous Fischer 344/NHsd wildtype 

rats (Envigo, Madison, WI, United States) were bred in-house. Offspring were a mixture of 
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hemizygous Tg and homozygous wildtype (WT) rats. Tail snips were obtained from each rat to 

identify the presence of the APPswe and PS1ΔE9 transgenes (genotyping by Transnetyx, Memphis, 

TN). Rats were weaned on postnatal day 21 and housed in same-sex pairs on a 12 hour light-dark 

cycle with ad libitum access to food (Envigo, Teklad Global 18% Protein Rodent Diet) and water. 

All animal procedures and experiments were performed in accordance with the guidelines of the 

local institutional Animal Care Committee. 

24 WT rats (12M/12F) and 26 Tg rats (14M/12F) were studied longitudinally, with Barnes 

Maze testing and neuroimaging performed at 4-, 10-, 16-, and 18-months of age. Behavioural 

testing was performed prior to neuroimaging to avoid confounds of anesthesia on behaviour. 

Sample size calculations were performed using a population simulation-based power analysis tool 

(J. P. Lerch et al. 2012) and can be found in the Supplementary Methods 5.9.1. Group sizes at 

each time point are included in Supplementary Table 5.10.1. We also present an exploratory 

analysis of the intersecting effect of genotype and sex on neuroimaging and behavioural markers. 

7 WT rats (4M/3F) and 6 Tg rats (3M/3F) were sacrificed for immunofluorescence 

experiments at 18 months, after completion of longitudinal testing. One additional Tg rat (1M) was 

also included that had been part of a parallel paradigm where rats were aged but did not complete 

neuroimaging or behavioural testing. Sex was only employed as a covariate for histological 

analyses due to the small group sizes and non-longitudinal design.   

   

5.5.2 MRI data acquisition and regional volume estimation   

MRI data were acquired using a 7 Tesla Bruker Biospec 70/30 scanner (Bruker, Billerica, 

MA, United States) with an 86 mm (diameter) volumetric birdcage coil for transmission and a four-

channel surface array coil for signal reception (Bruker). The level of anesthesia (1-4% isoflurane in 

oxygen gas) was adjusted to maintain a breathing rate between 50-75 breaths per minute throughout 

the procedure and warm air (37 ℃) was blown into the bore of the scanner to maintain a constant 

body temperature (SA Instruments, Inc., monitoring system, Stony Brook, NY, United States). 

High-resolution 3D anatomical MR images were acquired using Rapid Acquisition with 

Relaxation Enhancement (RARE) using scan parameters identical to those described previously (C. 

Fowler, Goerzen, Madularu, Devenyi, Chakravarty, et al. 2021; Goerzen et al. 2020). Scan 

resolution was 114 µm isotropic. All pre-processing methodology is described in detail elsewhere 

(C. Fowler, Goerzen, Madularu, Devenyi, Mallar Chakravarty, et al. 2021) and in the 
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Supplementary Methods 5.9.2. After pre-processing, images were examined for motion artefacts, 

Gibbs ringing artefacts, and other image anomalies, following which 15 of a total 179 scans were 

excluded from further analysis. 7 rats (4Tg (1M/3F), 3 WT (2M/1F)) were excluded at 4-months, 1 

at 10-months (1TgM), and 5 at 16-months (3Tg (1M/2F), 2WT (1M/1F)). The remaining 164 scans 

were co-registered using the two-level deformation-based morphometry pipeline in Pydpiper, as 

described by Friedel et al., (Friedel et al. 2014) and in the Supplementary Methods 5.9.2. This 

process creates deformation fields for each subject at each timepoint, reflecting the amount of 

expansion or compression required to deform each individual anatomical image to the subject 

average (Chung et al. 2001). Deformation fields are then resampled into the common study space 

allowing comparison between subjects. The Fischer 344 rat atlas was used to estimate the volume 

of 120 regions (J. Lerch et al. 2017). 

 

5.5.3 1H-MRS data acquisition and quantification  

   Immediately following MRI data acquisition, MRS data acquisition was performed using 

the same methodology as described  previously (C. F. Fowler et al. 2020). Automated localized 

shimming was performed using the FASTMAP method (Gruetter 1993) (ParaVision 5.1, Bruker). 

Proton MRS scans were acquired from a 2.5x3.5x3.5 mm3 voxel in the dorsal hippocampus using 

a Point RESsolved Spectroscopy sequence (acquisition time=13m0s0ms, TR=3000 ms, TE=11.12 

ms, 2048 acquisition data points, spectral width=4006 Hz) in combination with outer volume 

suppression. 256 averages were acquired with VAPOR water suppression (Tkacˇ et al. 1999) and 8 

averages were acquired without water suppression for eddy current correction and as a reference 

for absolute metabolite quantification. 

 Spectral preprocessing was performed in the FID-A toolbox (github.com/CIC-

methods/FID-A, version 1.0 (Simpson et al. 2017)) in Matlab (R2012a, The MathWorks, Inc., 

Natick, MA, USA), and consisted of removal of motion corrupted scans and spectral registration to 

correct frequency and phase drift errors (Simpson et al. 2017). Processed spectra were analyzed 

using LCModel (version 6.3, Stephen Provencher Inc, Oakville, Ontario, Canada), with a 

neurochemical basis set consisting of 18 simulated metabolite resonances and 9 macromolecule 

basis functions. Methods detailing the acquisition of macromolecule spectra for parameterization 

and inclusion into the quantification basis set are described elsewhere (C. F. Fowler et al. 2020). 
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Absolute quantification was performed using the unsuppressed water signal as a reference. 

A correction was applied to account for T1 and T2 relaxation constants of water and measured 

neurochemicals, and an assumed NMR-visible water concentration of 4300 mM given that our 

voxel contained mostly grey matter.(Ernst, Kreis, and Ross 1993) For details on the correction 

formula, see the supplementary material in our previous publication (C. F. Fowler et al. 2020). 

Neurochemical concentrations are reported in mmol/L (mM). Details regarding the basis set and 

quality control methods are included in the Supplementary Methods 5.9.3.  

 

5.5.4 Behavioural phenotyping via the Barnes Maze test  

We assessed hippocampus-dependent spatial reference memory using a shortened variation 

(Attar et al. 2013) of the popular Barnes Maze protocol (Barnes 1979). Detailed methodology is 

described in the Supplementary Methods 5.9.4. Briefly, a circular maze with 20 holes was used, 

and rats were trained to locate a single escape hole that led to a box underneath. Rats were given 

three 3-minute trials on Day 1 and two 3-minute trials on Day 2, for a total of five training trials. A 

probe trial was used to test long term spatial reference memory. The probe trial was conducted 48 

hours after the last training trial and involved blocking the escape hole so that no escape was 

possible. All sessions were recorded using a Logitech QuickCam Pro 9000. The following metrics 

were measured during the probe trial using EthoVision XT Software (Noldus Information 

Technology, Wageningen, The Netherlands): % time in target quadrant, % time in target holes, 

success or failure to locate the escape hole, average speed (cm/s), and number of holes searched. 

 

5.5.5 Immunofluorescence experiments and stereology 

50 µm sections from 7 WT and 7 Tg rats at 18-months were collected throughout the 

hippocampus (1.20 mm through -7.30 Bregma) and stored in cryoprotectant solution at -20°C. 

Every eighth hippocampal section was selected to be stained and used for stereology for a total of 

10 sections, as this volume (~3.5mm) best approximated the voxel used for MRS data acquisition. 

Staining for microglia and mature neurons was performed simultaneously using neuron-specific 

neuronal nuclear protein (NeuN) and ionized calcium-binding adaptor molecule-1 (Iba1), 

respectively. Sections were then mounted and stained with Thioflavin-S (ThioS), which binds to 

the characteristic β-pleated sheet conformation of amyloid, directly detecting amyloid-β plaques 
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(Rajamohamedsait and Sigurdsson 2012). Immunofluorescence was imaged on a ZEISS Axio 

Imager M.2 with an MBF Bioscience microscope stage and Apotome 2. Stereology for cell counts 

and % plaque volume was performed using the Optical Fractionator probe and the Area Fraction 

Fractionator probe, respectively. Details for perfusion procedures, reagents, and imaging/stereology 

are in the Supplementary Methods 5.9.5.  

 

5.5.6 Statistical analysis  

Statistical analyses and visualizations were performed in R (version 3.6.3(R Core Team 

2020)). Brain volume and metabolite concentration data were modelled using linear mixed-effects 

models as they appropriately model the covariance structure resulting from repeated measurements 

in the same subjects and handle data with missing values (Bernal-Rusiel et al. 2013). Brain volumes 

were predicted by a quadratic-age-by-genotype interaction (model 1), and metabolite 

concentrations were predicted by a linear age-by-genotype interaction (model 2), with sex covaried 

and a random intercept for each subject. Genotype effects were evaluated as a group effect of Tg 

rats relative to WT rats at each time point using four age-centered models, with age centered at the 

average cohort age (129.6, 310.7, 494.3, and 572.9 days). All continuous variables were z-scored. 

For MRS data, the fixed effect of water linewidth was included to control for the effect of linewidth 

on metabolite concentration estimates (Bartha 2007). A weighting factor of the inverse absolute 

CRLB for each metabolite accounted for differences in fitting reliability between samples. We also 

examined a three-way interaction of age by genotype by sex with the same covariates as mentioned 

above for brain volumes (model 3) and metabolite concentrations (model 4).  

For all linear models, the False Discovery Rate (FDR) method (Benjamini and Hochberg 

1995) was used to control the family-wise type I error at a level of 5% for each predictor of interest. 

Details on attached base packages in R, Akaike information criterion comparisons and linear 

models 1 through 4 are included in the Supplementary Methods 5.9.6.  

Barnes Maze data were analyzed cross-sectionally. % success, number of holes searched, 

and speed were analyzed using a linear model with genotype as a fixed effect and sex covaried, or 

genotype and sex interacting (secondary analysis). % time in the target quadrant and % time in 

target holes were assessed using a one-sample t-test or a wilcoxon signed rank test (if test residuals 

were non-normal) against a mean of 25% (chance amount of time) within WT and Tg rats, as well 

as for genotypes split by sex (WT males, WT females, Tg males, and Tg females). Bonferroni 
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correction was applied at each time point for the primary and secondary analyses separately, 

whereby the p-value threshold was set at 0.05/7 tests (P<0.00714) or 0.05/11 tests (P<0.00455), 

respectively.  

Counts of NeuN and Iba1 at 18-months were analyzed using a linear model with genotype 

as a fixed effect, covarying for sex, age at sacrifice, paradigm, and time between staining and 

imaging. Bonferroni correction was applied with a significance threshold of P<0.025 (0.05/2 

markers).  

Spearman’s rank correlations between tissue pathological markers (microglial and neuronal 

cell counts), neuroimaging markers (hippocampus and dentate gyrus volumes, concentrations of 

Ins, NAA, NAA/Ins, tCho, Tau), and behavioural metrics (% time in target quadrant, % time in 

target holes). Bonferroni correction was applied across the 18 tests (0.05/18tests, P<0.0028). 

 

5.5.7 Data Availability 

Data are reported within the text, figures, and Supplementary material. Raw data will be 

published to the publicly available repository, Zenodo, upon acceptance of this manuscript. 

5.6 Results 

5.6.1 TgF344-AD rats display altered local brain volume, primarily in grey matter 

structures  

Volume changes for the age-by-genotype interaction term of model 1 are illustrated as t-

statistic maps in Figure 5.8.1A for voxel-wise (left) and regional (right) analyses. Significant 

effects were generally consistent between the two methods and the majority were bilateral. As 

summarized in Supplementary Table 5.10.2, 27 of 120 regions demonstrated significant linear 

age by genotype interactions, 19 of which occurred in grey matter (GM) regions, 7 in white matter 

(WM) regions, and one in the ventricular system. Most interactions (16 of 19 for GM, 5 of 7 for 

WM) were negative, indicating decreased volume with age in Tgs relative to WTs. The strongest 

interactions were atrophy in the basal forebrain, caudoputamen, fimbria, hippocampus, and nucleus 

accumbens, unilateral atrophy in the right fornix, and hypertrophy in the dentate gyrus. Weaker 

effects were present as increases in cerebellar white matter and aqueduct volume, and decreased 

ventral pallidum, lateral septum, and hypothalamus volume. The basal forebrain was the only 
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structure to demonstrate a significant quadratic interaction, indicating different curvilinearity in the 

volume trajectory of Tg rats relative to WTs. Whole-brain GM, WM, and CSF volumes were also 

quantified but did not differ by genotype.  

Four age-centered models examining the main effect of genotype at each time point were 

used to provide group difference snapshots of the timeline along which structural changes occur in 

the TgF344-AD model. As shown in Supplementary Table 5.10.2, volume differences between 

WTs and Tgs were present at 4-months for the aqueduct, caudoputamen, dentate gyrus, nucleus 

accumbens, and fimbria. Hippocampal atrophy was not significant until 16 and 18 months of age 

and was preceded by a period of marginally increased volume relative to WTs. Volume trajectories 

for selected structures are shown in Figure 5.8.1B.  

Figure 5.8.1C shows trajectories for several structures split by sex and depicts results from 

the analysis using a three-way interaction between quadratic age, genotype, and sex (model 2) to 

predict regional volume. Linear age-by-genotype-by-sex interaction terms for the right 

caudoputamen and left hypothalamus were positive and negative, respectively, and the left dentate 

gyrus demonstrated a positive quadratic age-by-genotype-by-sex effect. However, neither these 

effects nor any other structures evaluated with model 2 survived FDR correction. 

  A summary of linear model results for brain regions analyzed using model 1 and 2 is shown 

in Supplementary Table 5.10.2. Brain volumes in mm3 at each timepoint, both collapsed across 

and split by sex, are summarized in Supplementary Table 5.10.3. Trajectories of brain structures 

showing a significant age by genotype interaction via model 1 can be found in Supplementary Fig. 

5.11.1 and 5.11.2. Those demonstrating significant three-way interactions via model 2 (prior to 

FDR correction) are shown in Supplementary Fig. 5.11.3 and 5.11.4.   
 
5.6.2 The TgF344-AD model recapitulates neurochemical features of human AD 

27 hippocampal neurochemicals were quantified longitudinally in Tg rats relative to WT 

littermates. The neurochemical profile contained 9 macromolecule resonances which have yet to be 

quantified in this model. High quality spectra were consistently obtained, as shown by the 

representative spectrum obtained from a 10-month WT female (Figure 5.8.2, inset), and by the low 

% CRLB values shown in Supplementary Table 5.10.4. The average signal-to-noise ratio of the 

NAA peak at 2.02 ppm was 61.77 (±13.96 (± standard deviation), range: 24.51 to 107.35), and the 
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average linewidth of water was 9.21 Hz (± 0.73, range: 7.74 to 12.79; measured as the full width at 

half max of the unsuppressed water peak in the reference scan).  

The primary analysis explored the interaction between linear age and genotype while 

controlling for sex (model 3). As shown in Supplementary Table 5.10.4 and Figure 5.8.2A, tCho 

and Ins demonstrated significant positive age-by-genotype interactions, whereby metabolite 

concentration increased more steeply with age in Tg rats than in WTs, but did not survive FDR 

correction. Upon examining the main effect of genotype at each time point using age-centered 

models, several metabolites differed between WT and Tg rats, with the earliest differences detected 

at 10 months. Total creatine (tCr), taurine (Tau), and the ratio of NAA to Ins (NAA/Ins) were 

decreased in Tg rats at 10 months of age and remained lower at 16 and 18 months, whereas the ratio 

of aspartate (Asp) to Glu (Asp/Glu) was significantly lower at 10 months only. NAA was 

significantly lower at 10, 16, and 18 months but not after FDR correction. Higher concentrations of 

Lactate (Lac) and tCho were evident at 10, 16, and 18 months, while Ins was significantly higher 

in Tg rats only at 16 and 18 months of age. None of the macromolecule peaks differed between Tg 

and WT rats.  

 A secondary analysis explored a three-way interaction between age, genotype, and sex 

(model 4). Both glucose (Glc) and Ins demonstrated three-way interactions but were not significant 

after FDR correction. Neurochemical trajectories for these metabolites, along with tCho and Gln, 

which showed sub-threshold (p<0.15) three-way interactions prior to FDR correction, are shown in 

Figure 5.8.2B. A full summary of linear model results is shown in Supplementary Table 5.10.4, 

with the concentration of each neurochemical (mM) included in Supplementary Table 5.10.5. 

Trajectories of select metabolites are shown in Supplementary Fig. 5.11.5.  

 

5.6.3 The TgF344-AD rat model displays cognitive impairment by 4-months of age 

Long-term spatial reference memory in Tg and WT rats was evaluated at each time point 

via the probe trial of the Barnes Maze test, conducted 48 hours after the last training trial. Cognitive 

impairment in Tg rats was evident as early as 4-months of age, as determined by testing the 

percentage of time WT and Tg rats spent in the target quadrant against the chance amount of time 

a rat would spend in each quadrant. A mean significantly above 25% is suggestive of intact spatial 

memory recall, which WT rats demonstrated throughout the study, while Tg rats did not meet the 

significance threshold at any time points (Figure 5.8.3A(left)). A similar effect was seen when 
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testing the percentage of time spent exploring holes within the target quadrant (Figure 5.8.3B(left)). 

WT rats consistently spent more than a chance amount of time exploring holes in the target 

quadrant, whereas Tg rats did not. Additionally, as shown in Figure 5.8.3C(left) the rate of success 

versus failure in locating the escape hole was lower among Tg rats throughout the study, though 

this difference was not statistically significant. The number of holes searched and average speed 

were also measured during the probe trial to characterize level of exploration and mobility, 

respectively. As shown in Figures 5.8.3D(left)) and 5.8.3E(left), both metrics differed between 

WT and Tg rats, with Tgs searching fewer holes throughout the study and moving more slowly than 

their WT littermates. However, after Bonferroni correction, the differences in holes searched was 

only significant at 10 and 16 months, while the difference in speed was only significant at 10-

months.  

A secondary analysis examining the interaction between genotype and sex was also 

performed. As shown in Figure 5.8.3A(right), only WT males consistently spent significantly more 

than 25% of the time in the target quadrant, although the 4-month time point did not reach the 

significance threshold after Bonferroni correction. WT males generally also spent a higher 

percentage of time in the target holes than WT females, Tg males, or Tg females, but only reached 

the significance threshold at 16-months (Figure 5.8.3B(right)).  Interestingly, and as shown in 

Figure 5.8.3C(right) and 5.8.3D(right), Tg females demonstrated the lowest success rate across 

all timepoints, and the lowest rates of exploration (fewest holes searched) at three of four time 

points, though no significant genotype-by-sex interactions were found for either metric. Finally, as 

seen in Figure 5.8.3E(right), no genotype-by-sex interactions were found for speed at any time 

point. All Barnes Maze statistics can be found in Supplementary Table 5.10.6, with summary data 

for each metric, split by timepoint, genotype, and sex in Supplementary Table 5.10.7.  

5.6.4 No genotype-dependent differences detected in microglia and neuronal cell 

counts 

Immunofluorescence experiments to quantify the number of microglia and neurons in 

hippocampal tissue were performed in a subset of 18-month old WT and Tg rats that had completed 

the longitudinal testing paradigm. % volume of plaque was calculated for Tg rats only since WT 

rats do not manifest amyloid pathology. While extensive amyloid pathology was present in Tg rats 

(Figure 5.8.4C), mean % area: 0.73 ± 0.24), and microglia could be seen aggregating around 

amyloid plaques (Figure 5.8.4D, E), there were no significant differences in microglial cell count 
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(WT 5.14E05 ± 2.49E05; Tg 4.89E05±3.66E05) or neuronal cell count  (WT 1.06E06 ± 5.86E05; 

Tg 8.39E05 ± 5.54E05) between WT and Tg rats (Figure 5.8.4A,B). Linear model results for 

microglial and neuronal counts are shown in Supplementary Table 5.10.8. 

Spearman’s rank correlations were performed between tissue pathological markers 

(microglial and neuronal counts), hippocampal and dentate gyrus volumes, metabolites with strong 

genotype-dependent effects (Ins, NAA, NAA/Ins, tCho, Tau), and behavioural metrics (% time in 

target quadrant, % time in target holes) at 18-months. Importantly, stereology was performed on 

specific slices that best approximated the voxel used for MRS. Similarly, only the hippocampus 

and dentate gyrus were used for correlations as they were the only regions in which stereology was 

performed. As shown in Supplementary Table 5.10.9, of the 18 correlation tests conducted, only 

neuronal cell count and taurine were significantly correlated but did not survive Bonferroni 

correction. Select correlations are shown in Figure 5.8.4B and C iii.  

5.7 Discussion   

The TgF344-AD rat is unique in its manifestation of amyloid and tau pathology despite only 

expressing mutant APP and PS1, and therefore closely replicates human Alzheimer's disease. 

Thorough characterization of the manifestation and progression of physiological abnormalities—

particularly those that can be measured non-invasively—comprising each disease stage in this rat 

model is required for designing effective therapeutic approaches. While other authors have 

characterized pathological features in this model, the majority of our neuroimaging findings are 

being reported for the first time and ours is the earliest assessment of cognitive function. This study 

also explores the intersecting influence of sex and genotype on neuroimaging and behavioural 

markers, which is crucial for improving diagnostic methods and interventions given that 

Alzheimer's disease prevalence and manifestation can differ between men and women (Mazure and 

Swendsen 2016). 

As determined via post-mortem histology studies, decreased brain volume detected via MRI 

is an accurate marker of Alzheimer's disease-related neurodegeneration that can be used to support 

a clinical diagnosis in humans (Clifford R. Jack et al. 2011; Frisoni et al. 2010; Bobinski et al. 

2000). Models of human disease progression indicate early tissue pathology and atrophy in the 

entorhinal cortex(Braak and Braak 1995) and other regions that comprise the limbic system, 

particularly the hippocampus (Callen et al. 2001; Braak and Braak 1991; Clifford R. Jack et al. 
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2011). The TgF344-AD model does not demonstrate significant cortical atrophy by 18 months, but 

does recapitulate volume reductions in limbic structures, including the hippocampus, basal 

forebrain, fimbria, fornix, hypothalamus, and lateral septum. In opposition to dentate gyrus atrophy 

reported in human Alzheimer's disease (Wisse et al. 2014; Pini et al. 2016) we observed hypertrophy 

in the TgF344-AD model, with significantly larger volume at 16 and 18 months in Tgs relative to 

WTs. This is not entirely unexpected given that Fischer 344 rats display increased dentate gyrus 

volume during normal aging, (C. Fowler, Goerzen, Madularu, Devenyi, Mallar Chakravarty, et al. 

2021; Alexander et al. 2020) and therefore further hypertrophy during Alzheimer's disease may 

represent a pathological feature, similar to how normal hippocampal atrophy with age is 

exacerbated in Alzheimer's disease (Fjell et al. 2014). Importantly, neither hippocampal nor dentate 

gyrus volume correlated with neuronal cell counts at 18 months, suggesting that altered regional 

volumes may be better reflected by morphological characteristics other than cell count. Additional 

structures with significant atrophy were the nucleus accumbens, caudoputamen, and ventral 

pallidum, all of which display amyloid and tau pathology and structural changes in human 

Alzheimer's disease (Pini et al. 2016; Braak and Braak 1991; de Jong et al. 2008).  

Age-centered analyses revealed that while many structures atrophied faster in Tgs, this was 

occasionally preceded by hypertrophy. For example, Tg rats demonstrate larger caudoputamen, 

fimbria, and nucleus accumbens volumes until 10 months, and then smaller volumes at 16 and 18 

months relative to WTs. Supporting these findings, a neuroimaging study in PS1 mutation carriers 

reported increased caudate volume in asymptomatic individuals but decreased volume in 

symptomatic individuals (Fortea et al. 2010), suggesting different processes underlie morphometric 

change at different stages of disease progression. Reactive neuronal hypertrophy in the hippocampal 

CA1 region has been shown in Alzheimer's disease subjects prior to symptom onset (Riudavets et 

al. 2007) supporting early regional volume increases, either as a cellular response to amyloid and 

tau deposition, or a compensatory process prior to degeneration of neurons and synapses.(Mattson 

2004) Future work combining MRI-based volumetric analysis and design-based stereology, similar 

to studies in transgenic mice (West et al. 2009; Oh et al. 2009), would help fill critical gaps in 

knowledge regarding mechanisms underlying pathological morphometric change in the TgF344-

AD model.   

 MRS allows for quantification of brain tissue metabolites, providing insight into the 

biochemical underpinnings of altered brain structure and function (Gao and Barker 2014). Similar 
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changes in NAA, Ins, and NAA/Ins to what we report have been shown in the TgF344-AD rat (A. 

M. Chaney et al. 2021), the McGill-R-Thy1-APP rat model (Nilsen et al. 2012), mouse models 

(Oberg et al. 2008; Marjanska et al. 2005; Güell-Bosch et al. 2020), and in human studies 

(Marjańska et al. 2019; Murray et al. 2014; Wang et al. 2015), Decreased NAA reflects reduced 

neuronal viability—specifically mitochondrial dysfunction—as opposed to purely neuronal density 

(McKenna et al. 2012; Ross and Sachdev 2004). The possible mechanisms behind increased Ins are 

more varied and may reflect increased glial cell activation and/or inflammation, increased 

phagocytic activity, or cellular membrane disruption, as Ins is a precursor for inositol lipid 

synthesis, a constituent of membrane lipids, and an osmolyte (Ross and Sachdev 2004; Best, Stagg, 

and Dennis 2014; Brand, Richter-Landsberg, and Leibfritz 1993). Given neither NAA or Ins 

correlated with neuronal or microglial counts, it is likely that disease-dependent changes in these 

two metabolites reflect altered cellular function as opposed to density.  

Decreased Tau (taurine) in the TgF344-AD rat is in agreement with literature supporting 

the role of Tau in neurite outgrowth, synaptogenesis, and synaptic transmission (Mersman et al. 

2020), all of which are dysfunctional in Alzheimer's disease (Camandola and Mattson 2017). Other 

differences between Tg rats and WT controls included a lower Asp/Glu ratio, lower tCr, and higher 

Lac at 10 months of age. These differences suggest the TgF344-AD model replicates the well-

documented phenomenon of altered bioenergetics in human Alzheimer's disease (Yin et al. 2016; 

Mosconi 2013) specifically, disrupted excitatory neurotransmission and a shift towards non-

oxidative energy metabolism (McKenna et al. 2012). These findings also indicate tCr should not be 

used as an internal reference in this model. Finally, our report of increased tCho is in agreement 

with studies in human Alzheimer's disease patients (A. Pfefferbaum et al. 1999; Kantarci et al. 

2004; Marjańska et al. 2019) and likely reflects increased cell membrane turnover (a feature 

characteristic of neuronal degeneration (Lin and Gant 2014)) and/or inflammation and astrocytosis 

(D. J. Selkoe 2001; Ross and Sachdev 2004). Overall, the neurochemical profile of the TgF344-AD 

rat closely replicates that of human patients and provides insight into numerous pathological 

processes, substantiating its application in Alzheimer's disease research. 

Deficits in hippocampus-dependent spatial learning and memory are among the earliest 

complaints in Alzheimer's disease subjects (Chan et al. 2016; Bianchini et al. 2014; Lithfous, 

Dufour, and Després 2013). Previous studies indicate 5-month-old TgF344-AD rats require more 

trials to learn a delayed nonmatch-to-sample task (Muñoz-Moreno et al. 2018) and impaired 
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reversal learning on the Morris Water Maze (Rorabaugh et al. 2017) and Barnes Maze (Cohen et 

al. 2013) by 6 months. To test spatial navigation in our TgF344-AD rats, we used a shortened 

version of the Barnes Maze test (Barnes 1979) which detected impairment in 3xTg mice earlier 

than traditional protocols (Attar et al. 2013). Fittingly, ours is the earliest report of cognitive 

disturbance in this model, with impairments in long term spatial reference memory present by 4-

months of age. We also noted genotype-dependent differences in speed and number of holes 

searched, substantiating the choice to use speed- and motivation-independent measures rather than 

the frequently chosen escape latency or number of errors (Gawel et al. 2019; Pitts 2018). No 

correlations existed between behavioural metrics and neuronal or microglial count, suggesting 

altered cellular function as opposed to density may underlie cognitive dysfunction.  

Regarding the interaction between sex and genotype, Tg females demonstrated stronger 

pathological effects in several brain volumes and more cognitive decline than Tg males, whereas 

sex effects on metabolite concentration were also present but did not consistently impact Tg 

females. Sex differences in the TgF344-AD rat exist in open field and buried food tasks(Saré et al. 

2020) and the Morris Water Maze test (Berkowitz et al. 2018), and sex differences in neuroanatomy 

and hippocampal tissue chemistry during normal aging in the Fischer 344 rat have been reported 

(C. F. Fowler et al. 2020; C. Fowler, Goerzen, Madularu, Devenyi, Chakravarty, et al. 2021). These 

findings generally recapitulate human Alzheimer's disease data. Sex-specific patterns of 

neurodegeneration exist in human patients (Podcasy and Epperson 2016; Martínez-Pinilla et al. 

2016) and men frequently present with later and less severe cognitive deficits than women (Filon 

et al. 2016; Rahman et al. 2019). There is also an established role for estrogen in regulation of 

metabolic pathways affected by Alzheimer's disease such as glucose transport, aerobic glycolysis, 

and mitochondrial function (Camandola and Mattson 2017; Rahman et al. 2019; Rettberg, Yao, and 

Brinton 2014). While additional work is required to corroborate our findings, the TgF344-AD 

model appears to recapitulate known sex differences in several aspects of disease presentation.     

Thorough characterization of tissue pathological load of disease hallmarks in the TgF344-

AD model has been performed, confirming the presence of amyloid-β deposition, gliosis, neuronal 

loss, and tauopathy (Cohen et al. 2013; Wu et al. 2020; Aisling M. Chaney et al. 2021) in regions 

and along a time course similar to that of human Alzheimer's disease (D. J. Selkoe 2001). While 

we report extensive amyloid pathology at 18 months, we did not detect differences in neuronal or 

microglial cell counts between WT and Tg rats. Other authors have failed to detect decreased 
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neuronal counts in this model with the NeuN antibody (Anckaerts et al. 2019; Leplus et al. 2019; 

Voorhees et al. 2018; Aisling M. Chaney et al. 2021), though some authors noted amyloid plaques 

created a void of stable neurons around them, demonstrating highly localized neuronal disruption. 

This observation supports our findings of decreased NAA and Tau, given their roles regarding 

neuronal viability and synaptic transmission. The lack of difference in microglial load was 

surprising given the clear accumulation of microglia around ThioS+ plaques. A possible 

explanation is the large variation in cell count, likely resulting from inconsistent time between 

staining and imaging due to COVID-19 restrictions on the microscopy facility. Given previous 

publications support extensive gliosis in the TgF344-AD rat (Cohen et al. 2013; Aisling M. Chaney 

et al. 2021; Anckaerts et al. 2019), it is likely that similar microglial counts in WT and Tg rats are 

not representative of the processes occurring in this model.   

Regarding corroboration of the timing of pathological changes that we report in the TgF344-

AD rat, previous studies show by 5-6 months of age, TgF344-AD rats display disruption in 

hippocampal-dependent synaptic circuits (Muñoz-Moreno et al. 2018; Stoiljkovic et al. 2019), 

dysfunction of the noradrenergic system (Rorabaugh et al. 2017), and loss of functional connectivity 

prior to the appearance of microstructural alterations (Anckaerts et al. 2019). Reduced maximum 

synaptic transmission in the hippocampus occurs between 9 and 12 months, in the absence of 

reduced dendritic spine density (Smith and McMahon 2018), continuing to support a timeline of 

functional change prior to significant morphometric change. Profound cerebral microvascular and 

neuronal network dysfunction is present at 9 months (Joo et al. 2017; Bazzigaluppi et al. 2018), 

along with reduced antioxidant capacity, and increased reactive oxygen species and pro-

inflammatory cytokines at 10 months (Wu et al. 2020). Our report of neurochemical changes by 10 

months is consistent with these previously described molecular events. At 13 months, TgF344-AD 

rats demonstrate deficits in hippocampal neuronal differentiation, migration, and survival (Morrone 

et al. 2020), and display significant tau pathology, neuronal damage, and cognitive impairment 

between 16 and 26 months (Cohen et al. 2013; Voorhees et al. 2018; Aisling M. Chaney et al. 2021). 

Given that reduced synaptic density and neuronal loss are associated with MRI-detectable volume 

changes (Bobinski et al. 2000; Apostolova et al. 2015), these reports of altered neurogenesis and 

neuronal damage may reflect some of the processes underlying the volumetric changes we report.  

This timeline of biochemical changes preceding substantive structural abnormalities is 

corroborated by models of disease progression (Clifford R. Jack Jr et al. 2013), and studies 
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exploring upstream and downstream processes of amyloid and tau deposition (Mattson and 

Arumugam 2018; Mattson 2004; Camandola and Mattson 2017). Additionally, the timing of 

biochemical and structural changes around midlife to the beginning of senescence suggests altered 

neurochemistry and neuroanatomy may be in response to amyloid and tau pathological load (Cohen 

et al. 2013; Rorabaugh et al. 2017), and are not evident before the appearance of gross tissue 

pathology. In contrast, early cognitive impairment differs from disease progression in humans 

where cognitive complaints are among the last pathological features to manifest. Given numerous 

studies have validated the consistency with which this model mimics the spread of components of 

human Alzheimer's pathology, this difference in timing of cognitive dysfunction may reflect 

inconsistencies in how cognition is tested or presents in rodent models versus humans. Behavioural 

testing is also extremely variable and subjective. Neuroimaging is considerably more objective and 

less variable, thus providing a better powered, sensitive, accurate, and efficient means to 

characterize disease progression.  

There are limitations to consider when interpreting the results of the present study. First, the 

use of a polynomial age term in the volumetric analyses, which was necessary given the non-linear 

change with age that we and others report (Adolf Pfefferbaum et al. 2013; Kong et al. 2018; Tullo 

et al. 2019; C. Fowler, Goerzen, Madularu, Devenyi, Mallar Chakravarty, et al. 2021), likely 

reduced our power to detetct age by genotype by sex interactions. Given that most structures 

demonstrated volume change towards 16 months, a paradigm where brain volumes are quantified 

from mid life onwards may permit the use of a linear age term and provide more power to detect 

three-way interactions. Second, restrictions on facility access due to the COVID-19 pandemic 

resulted in fewer animals being tested and increased variation in testing dates at the final time point, 

as well as inconsistency in the time between staining and imaging during immunofluorescence 

experiments. While these inconsistencies were accounted for in the statistical modelling, this is 

likely to have increased the overall variation in the data, possibly masking or muting some of the 

effects at the final time point. Finally, the lack of histological analyses at early time points meant 

we were unable to determine if pathological changes in neuroimaging markers precede those at the 

cellular level in the TgF344-AD rat. This gap in knowledge limits our ability to interpret the origin 

of the altered neuroimaging and cognitive markers that we report.  

Altogether, our results provide a comprehensive review of multiple phenotypic components 

of pathology in the TgF344-AD model, characterized from early to late stages of disease 
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progression. This longitudinal multimodal study demonstrates that the TgF344-AD rat recapitulates 

major neurochemical, neuroanatomical, and cognitive features of human Alzheimer's disease, and 

furthers our understanding of the many processes comprising disease progression. These findings 

support the use of MRI and MRS to monitor disease progression in rodent models of Alzheimer's 

disease in vivo, and contribute to the growing body of work validating the TgF344-AD rat as a 

highly relevant model of Alzheimer's disease.  

5.8 Chapter 5 Figures  

Figure 5.8.1: Genotype-dependent differences in local brain volume with age  
A) Voxel-wise (left) and regional (right) statistical maps for the linear age by genotype interaction 
term are shown. The plot range for each set of t-values displays effects significant between 5 and 
1% FDR, with t-values above 1% displayed at the 1% value. Select regional volume trajectories in 
wildtype (WT) and TgF344-AD (Tg) rats are shown in B). The mixed effects model used to fit the 
data is represented by a line of best fit and 95% prediction interval (shaded). Significance symbols 
are shown for the linear age by genotype interaction term (‡) and quadratic age by genotype 
interaction term (‡2). The main effect of genotype as determined by the four age-centered models 
is shown by (†), with the subscript denoting at which age the main effect was significant. C) A 
three-way interaction between age, genotype, and sex was also explored, with a 5% false discovery 
rate correction applied. Significance symbols for the linear and second order age-by-genotype-by-
sex interaction terms are denoted by 𝖷 and 𝖷2  respectively. ● denotes an effect significant at the p-
value level but not after FDR correction. 
 
Figure 5.8.2: Trajectory of neurochemical changes with age in TgF344-AD and WT 
rats  
Select neurochemical concentration trajectories in wildtype (WT) and TgF344-AD (Tg) rats are 
shown in A). The mixed effects model used to fit the data is represented by a line of best fit and 
95% prediction interval (shaded). Significance symbols are shown for the linear age by genotype 
interaction term (‡), and the main effect of genotype (†) at each time point as determined by age-
centered models. The subscript denotes the age at which the genotype effect was significant. A, 
Inset: A representative MRS spectrum obtained from a female Tg rat at 4-months, with individual 
metabolite fit components shown below. Positioning of the voxel around the hippocampus is shown 
in red. B) A three-way interaction between age, genotype, and sex was also explored, with a 5% 
false discovery rate correction applied. A significant 3-way interaction term is denoted by 𝖷. ● 
denotes an effect significant at the p-value level but not after FDR correction.  
 
Figure 5.8.3: Barnes Maze probe trial data reveal cognitive impairment as early as 4-
months of age  
(A) % time spent in the target quadrant and (B) % time in target holes were analyzed via a one-
sample t-test for each group against a mean of 25% (chance % of time, indicated by a dotted line), 
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where significance indicates normal cognitive function, and lack of significance indicates 
impairment. (C) % success, (D) number of holes searched, and (E) speed (cm/s) were analyzed via 
a linear model that included either a main effect of genotype, covarying for sex (left side of figure), 
or an interaction between genotype and sex (right side of figure). Bonferroni correction was 
applied at each time point for data with sex covaried whereby the threshold for significance was 
ɑ=0.05/7=0.00714. *p<0.00714, **p<0.005, ***p<0.001. Similarly, the threshold for significance 
for data split by genotype and sex was ɑ=0.05/11=0.00455. #p<0.00455, ##p<0.001. Abbreviations: 
wildtype (WT), transgenic (Tg), male (M), female (F).  
 
Figure 5.8.4. Despite extensive amyloid pathology at 18 months, neuronal and 
microglial cell counts do not differ significantly between Tg344-AD and wildtype 
rats  
Tissue burden of NeuN+ neurons (A), Iba1+ microglia (B), and ThioS+ amyloid-β plaques (C) was 
quantified in hippocampal sections  of 18-month old rats (n=7WT, n=7Tg) via stereology. 
Representative photomicrographs are shown in (i). Insets depict the same section but at a higher 
magnification. Boxplots in (ii) depict cell counts of microglia, neurons, and % immunolabeled 
volume of amyloid-β plaques. β and p-values for the effect of genotype are shown. The threshold 
for significance was ɑ=0.05/2=0.025. Spearman rank correlations between cell counts and 
neuroimaging markers are shown in (iii), along with the corresponding correlation coefficient (𝜌) 
and p-value. A line of best fit is shown with the 95% confidence interval (shaded). None of the 
correlations reached the significance threshold (ɑ=0.05/18 tests=0.003, not all tests are pictured). 
Photomicrographs showing simultaneous staining with Iba1, NeuN, and ThioS (D), with a higher 
magnification image depicting microglia aggregating around amyloid plaques (E). All scale bars 
denote 25 μm. 
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Figure 5.8.1 
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Figure 5.8.2 
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Figure 5.8.3  
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Figure 5.8.4 
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5.9 Supplementary Methods 

Additional methodological information for sample size calculations/group sizes, MRI, MRS, 

Barnes Maze, immunofluorescence experiments, and statistical analysis 

 

5.9.1 Sample Size Calculations and Group Sizes 

The primary hypothesis for this study involved characterizing differences between Tg and 

WT rats while controlling for sex. Based on test-retest experiments performed in our lab examining 

intra- and inter-subject variation in hippocampal volume, this study was designed to have 80% 

power to detect an effect size of 3% with data collected from n=17 animals per genotype over four 

time points with an estimated type-1 error rate of less than 0.05 1. Test-retest results for major 

metabolites of interest (NAA, Ins, tCr, Glu, Gln, tCho) were comparable to those obtained for 

hippocampal volume and thus the power simulation above generally applies to the main metabolites 

quantified here. Group sizes were increased from 17 to 24 and 26 for WTs and Tgs, respectively, 

to account for an estimated attrition rate of approximately 15%. These group sizes (~20 or more) 

align well with behavioural analyses previously performed in this model2, which were adequate to 

determine significant differences between genotypes in a cross-sectional analysis.     

         Group sizes for all modalities changed over the course of the study due to normal attrition 

with age, occasional malfunction of the camera and/or tracking software used for behavioural 

testing, and restricted access to our facility during COVID-19, particularly at the last time point. 

Additionally, if animals only had data from one time point for any modality (typically due to failure 

of quality control metrics at one time point combined with death prior to 18 months), that animal 

was removed from the dataset for that modality. This occurred for one rat within the MRS dataset, 

three rats within the MRI dataset, and two rats within the Barnes Maze dataset. Group sizes and 

average age at each timepoint, before and after exclusions during quality control, split by modality 

and sex, are summarized in Supplementary Table 5.10.1. 

 

5.9.2 MRI methods 

High-resolution 3D anatomical MR images were acquired using Rapid Acquisition with 

Relaxation Enhancement (RARE) using the following scan parameters:  TR = 325 ms, echo spacing 

= 10.8 ms, RARE factor = 6, effective echo time = 32.4 ms, Field of View = 20.6 × 17.9 × 29.3 mm, 
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matrix size = 256 × 180 × 157, slice thickness 17.9 mm (along the dorsal/ventral direction), readout 

along the rostral/caudal direction, scanner resolution = 114 μm isotropic, 19m35s acquisition time.  

All pre-processing methodology is described in detail elsewhere (Fowler et al., 2021). 

Briefly, preprocessing was performed using minc-toolkit-v2 (Vincent et al., 2016) with the MINC 

toolkit extras package (https://github.com/CoBrALab/minc-toolkit-extras), and the two-level 

model build Pydpiper module (Friedel et al., 2014) was used to co-register the pre-processed images 

into a common space. First, an in-house rat MRI preprocessing script within the minc-toolkit-extras 

package developed by G.A.D. (https://github.com/CoBrALab/minc-toolkit-extras, rat-

preprocessing-v4.sh) was used to perform the following sequential preprocessing steps: dimension 

reordering to standard MINC 2.0 ordering, image centring, whole image N4 bias field correction 

(Sled and Pike, 1998; Tustison et al., 2010), individual foreground mask generation using the Otsu 

method (Otsu, 1979), additional N4 bias field correction using the previously generated mask, 

registration to a Fischer 344 template average image, and a final N4 bias field correction using a 

template mask. After pre-processing, images were quality controlled by D.G. Images were 

visualised using the Display program in minc-toolkit-v2 and examined in each of the coronal, 

sagittal, and axial dimensions for motion artefacts, Gibbs ringing artefacts, and other image 

anomalies. 15 of a total 179 scans were excluded from further analysis. 7 rats (4Tg (1M/3F), 3 WT 

(2M/1F)) were excluded at 4-months, 1 at 10-months (1TgM), and 5 at 16-months (3Tg (1M/2F), 

2WT (1M/1F)).  

The remaining 164 scans were co-registered using the two-level model build pipeline in 

Pydpiper. This co-registration paradigm uses deformation-based morphometry techniques and is 

described fully by Friedel et al. (Friedel et al., 2014). In brief, subject-specific starting averages are 

created by rigidly registering scans at different time points to a Fischer 344 atlas template (Goerzen 

et al., 2020), followed by averaging. Iterative affine and non-linear registration and averaging is 

then repeated to produce an unbiased subject average. Subsequently, each subject specific average 

is rigidly aligned to the Fischer 344 atlas template space and the process is repeated to create an 

unbiased population average. This process creates deformation fields for each subject at each time 

point. The deformation fields can then be used to estimate the Jacobian determinant at each voxel, 

which reflects the amount of expansion or compression required to deform each individual 

anatomical image to the subject average (Chung et al., 2001). Deformation fields are then resampled 

into the common study space allowing comparison between subjects. This registration process 
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generates two sets of Jacobian determinants, though only the relative Jacobian—composed solely 

of the non-linear mapping and thus reflects local or relative changes in voxel volume—was used 

for subsequent analysis. The Jacobian deformation fields were then blurred with a 400 micron full 

width half maximum Gaussian kernel to satisfy assumptions of normality required by the statistical 

models used to analyze the data.  

Using the Fischer 344 rat atlas resampled into the common space of this study, the volumes 

of 120 regions were estimated using the anatGetAll function in RMINC_1.5.2.3 (Lerch et al., 2017). 

This function computes the volume of a region by counting the number of voxels with a given label 

and multiplying the Jacobian with the voxel volume at each voxel. 

 
5.9.3 MRS methods 

5.9.3.1 Basis Set 

The neurochemical basis set consisting of 18 simulated metabolite resonances and 9 

macromolecule (MM) basis functions: alanine (Ala), aspartate (Asp), creatine (Cr), γ-

aminobutyrate (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glycerophosphocholine 

(GPC), glutathione (GSH), lactate (Lac), myo-Inositol (Ins), N-acetylaspartate (NAA), N-

acetylaspartylglutamate (NAAG), phosphocholine (PCh), phosphocreatine (PCr), 

phosphoethanolamine (PE), serine (Ser), taurine (Tau), MM0.89, MM1.20, MM1.39, MM1.66, MM2.02, 

MM2.26, MM2.97, MM3.18, and MM3.84. The subscript of each MM indicates the ppm value at which 

the peak appears in the MRS spectrum. We also report summed Cr+PCr (tCr), GPC+PCh (tCho), 

NAA+NAAG (tNAA) and Glu+Gln (Glx) and the ratios of Glu to Gln, Asp to Glu, and NAA to 

Ins.  

 

5.9.3.2 Quality Control 

To ensure high quality MRS data, we visually inspected each spectrum and removed three 

scans that generated the RFALSI 4 error during LCModel fitting, which is indicative of particularly 

noisy data. These scans also had the lowest signal-to-noise ratio (SNR) of all 178 scans, with SNR 

of 13, 13, and 15, when the average was 23.13 (± 3.30, standard deviation).  

The Cramer-Rao lower bound (CRLB) provided by LCModel was used as a measure of 

reliability of neurochemical quantification on a per-metabolite basis.3 We employed a strict cut-off 
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of 20% CRLB averaged across all scans, which resulted in the removal of GABA (CRLB 41.56), 

Serine (CRLB 33.59), and MM3.18 (CRLB 44.96) from our analysis. Finally, after visual inspection 

of all graphed data, there were several extreme outliers. In two cases, the entire animal was removed 

from that time point, the first because MRS data was indicative of cancer (high total Choline, low 

NAA) and the second because the data points from that animal were outliers for all metabolites. A 

very conservative median absolute deviation (MAD) threshold of 3.5 4,5 was applied to all 

remaining data points, resulting in the removal of 34 of 4671 data points, or 0.728% of the data.  

 

5.9.4 Barnes Maze Testing 

Due to the large number of animals in this study and the desire to identify early memory 

deficits in the TgF344-AD rat model, we followed a shortened and thus more cognitively 

challenging protocol while keeping the time per trial (3 minutes) and the maze set-up consistent 

with protocols designed for rats.2,6 The maze consisted of a circular platform (122 cm diameter) 

constructed of PVC material with 20 holes (4 inches diameter) evenly spaced around the perimeter. 

A bottom layer was placed underneath such that 19 of 20 holes would have a false bottom (too 

shallow for the rat to enter but otherwise identical to the escape hole), and to allow for rotation of 

the the top of the maze between trials, ensuring rats could not track any scent cues or navigate using 

small markings on the maze surface itself. An escape box consisting of a dark chamber with a ramp 

was placed underneath one of the holes (target hole). The maze and escape box were coated with 

black waterproof epoxy paint to ensure they would be easily cleanable with Peroxyguard (hydrogen 

peroxide sanitizer). The maze was mounted on top of a large plastic box such that it stood 35” above 

the ground and was lit by two bright spotlights positioned to reduce shadows projected onto the 

maze. White curtains were drawn in a square around the maze and three simple visual cues were 

attached to three of the four curtain “walls”.  

In the week prior to Barnes Maze testing, rats were introduced to the escape box by placing 

them in it and allowing them to climb around and explore during their weekly handling session. 

This exploration session was introduced after pilot testing where rats showed extreme hesitancy to 

enter the box during the training trials. Their fear of entering the escape hole was mitigated by 

introducing them to the box prior to testing and was therefore retained for the animals tested in this 

study.  
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The rats interacted with the Barnes Maze in three consecutive phases: habituation (2 trials 

over 1 day), training (5 trials over 2 days), and probe (1 trial). Before each phase, rats were 

acclimated to the testing room for one hour. For habituation trial 1, rats were placed directly into 

the escape cage underneath the maze and allowed to remain there or independently exit the escape 

cage and explore the maze for a maximum of 3 minutes. If the rat exited the box and re-entered it, 

or if 3 minutes elapsed without the rat exiting the box, the escape hole was immediately covered 

and the rat was kept in the box for 30 to 60 seconds to mimic the end of the trial before returning 

them to their home cage. For habituation trial 2, the process was similar but rats were placed directly 

in the centre of the maze and allowed to explore until they either entered the escape hole or 3 

minutes had elapsed. Rats that did not enter the escape hole after 3 minutes were guided to the hole 

and nudged until they entered it or manually placed in the box if they did not enter it independently.  

In the training phase, the escape hole location was changed by at least 90 degrees from its 

location during habituation. Rats were placed in the centre of the maze underneath an opaque bucket 

for 10 seconds so they would be facing a random direction upon the start of the trial. The trial began 

as soon as the experimenter lifted the bucket. Rats were given 3 minutes to locate and enter the 

escape hole. If they located the hole (end point of test) but turned away to explore further, or if they 

did not enter after 3 minutes, they were guided to the hole and nudged to enter, or manually placed 

in the hole if they did not enter independently. The hole was covered and the rat remained in the 

escape hole for 30-60 seconds before being returned to their home cage. The maze and escape box 

was cleaned in between each rat, and the top of the maze was rotated between cages of rats. This 

process typically took 5 minutes per rat and was performed with 4-6 rats at a time, providing a 20-

30 minute inter-trial interval. Training was repeated 3 times on day 1, and 2 times the subsequent 

day for a total of 5 training trials.  

The probe trial, used to assess long-term spatial reference memory (Pitts, 2018), took place 

48 hours after the last training trial. The escape cage was replaced with a false bottom such that all 

20 holes appeared the same and escape was not possible. Rats were again placed in the centre of 

the maze under an opaque bucket and, upon removal of the bucket, were allowed to explore the 

maze for 3 minutes before being returned to their home cage. The maze was cleaned and the maze 

top was rotated between each rat. 
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5.9.5 Immunofluorescence experiments 

5.9.5.1 Perfusion  

After completion of testing at the final time point at 18 months, 7 WT rats and 7 Tg rats 

were anesthetized using an intraperitoneal injection of ketamine-xylazine-acepromazine cocktail 

(0.1mL/10g rat body weight, contains: 100mg/kg ketamine, 10 mg/kg xylazine, 3 mg/kg 

acepromazine) and fixed by transcardiac perfusion with 0.9% heparinized saline followed by 4% 

paraformaldehyde (PFA) in 0.1M phosphate buffer (PB). Brains were collected, postfixed in 4% 

PFA in 0.1M PB for 2 to 7 days at 4°C, equilibrated in 30% sucrose solution for 2 to 7 days to 

cryoprotect the tissue, and then flash frozen in isopentane and stored at -80°C until ready for 

sectioning. 

 

5.9.5.2 Sectioning  

Free-floating sections (~90 to 100 per animal) were collected into a 24-well plate 

containing phosphate buffered saline PBS,10mM, and then transferred to a new 24-well 

plate containing cryoprotectant solution (glycerol, ethylene glycol, and 10mM PBS in a 

3:3:4 ratio) for storage at -20°C. Of the collected sections, only 12 sections per subject were 

selected to be stained, starting with section 1 and advancing in intervals of 8 (section 1, 9, 

17, 25, 33, 41, 49, 57, 65, 73, 81, 89). The last 10 sections (17 to 89) were used for 

stereology, as this volume (~3.5 mm) best approximated the voxel used for MRS data 

acquisition. 
 

5.9.5.3 Application of primary and secondary antibodies and detection solutions 

Sections were first incubated in mouse anti-neuron primary antibody (target antigen: 

neuron-specific neuronal nuclear protein, NeuN, Millipore Sigma, 1:400) and rabbit anti-microglia 

primary antibody (target antigen: ionized calcium-binding adaptor molecule-1, Iba1, Wako 

Chemical, 1:500) for 19 hours, followed by anti-mouse secondary 647 antibody for NeuN detection 

(Jackson Immunoresearch Laboratory, 1:500) and biotinylated anti-rabbit secondary antibody 

(Vector Laboratories, 1:500), followed by streptavidin Cy3 for detection of Iba1 (Jackson 
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Immunoresearch Laboratory). Sections were then mounted and stained with Thioflavin-S (ThioS, 

0.5% ThioS in 50% ethanol). 

 

5.9.5.4 Imaging and Stereology  

Imaging was performed using a ZEISS Axio Imager M.2 with a MBF Bioscience 

microscope stage and Apotome 2. A 63x oil lens was used with the DsRed Widefield filter and Cy5 

Widefield filter for microglia and neurons, respectively. Multichannel acquisition in a Systematic 

Random Sampling (SRS) image stack series was enabled so that the same site would be imaged for 

Iba1 and NeuN simultaneously. A step size of 2 µm was used, in order to produce 20-24 images 

per sampling site. The grid size for the SRS grid was 650x650 µm within a voxel of 2500x3500 µm 

anchored at the top corner of the corpus callosum and extending over the hippocampus. Stereology 

was performed using the Optical Fractionator (OF) probe within the Stereo Investigator software 

(MBF Bioscience) with a counting frame of 40x40 µm. Traditional design-based stereology rules 

were followed, with any marker touching the red line being excluded and only counting a specimen 

when the top of its cell body came into focus. Plaque imaging and stereology was conducted 

separately, also on the ZEISS Axio Imager M.2 with Apotome 2, but with a 20x air lens. The GFP 

Widefield filter was implemented on a SRS image series on a 550x550 µm grid. Stereology was 

performed using the Area Fraction Fractionator (AFF) probe with a counting frame of 200x200 µm. 

To approximate the volume of plaques, the Cavalieri settings were set at a grid spacing of 6.00 µm 

and a grid rotation of 0.00 degrees. 

 

5.9.6 Statistical Analysis  

5.9.6.1 Base Packages in R 

The following base packages were attached in R: splines, stats, graphics, grDevices, utils, 

datasets, methods, base; other attached packages: effects_4.4-47, RColorBrewer_1.1-28, 

readxl_1.3.19, lmerTest_3.1-010, lme4_1.1-2311, tidyverse_1.3.012, RMINC_1.5.2.3). 

 

5.9.6.2 Linear model comparison   

Akaike information criterion (AIC) comparisons were performed for both volume and 

metabolite data to determine if age was best modelled using a linear or quadratic age term, given 
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that non-linear change with age has previously been demonstrated with brain volumes13–15 and 

metabolite concentrations.16 AIC comparison using a threshold of Δi (AIC-AICmin)!4 17 

demonstrated that brain volumes were best fit using a quadratic age term (poly(age,2)), while all 

metabolite concentrations were best fit using a linear age term. 

 

5.9.6.3 Final linear models  

The full linear models for longitudinal analysis of brain structure and chemistry are shown 

below. For MRS data only (models 2 and 4), the fixed effect of water linewidth (water.lw) was 

included to control for the effect of linewidth on metabolite concentration estimates.48 A weighting 

factor of the inverse absolute CRLB for each metabolite (1/metabolite.sdab) accounted for 

differences in fitting reliability between samples and allowed us to include all observations with 

CRLB <999. 
Model 1: lmer(volume) ~ poly(age,2)*genotype +sex + (1|subject) 

Model 2: lmer(metabolite) ~ age*genotype+sex +water.lw+(1|subject), weights=1/metabolite.sdab 

Model 3: lmer(volume) ~ poly(age,2)*genotype*sex + (1|subject) 

Model 4: lmer(metabolite) ~ age*genotype*sex +water.lw+(1|subject), weights=1/metabolite.sdab 

5.10 Supplemental Table Captions 

Supplementary Table 5.10.1. Summary of subject demographic data at each 
timepoint, split by modality and sex  
Number of subjects is shown both before and after exclusions during quality control. Squares 
highlighted in pink indicate where quality control reduced the number of rats with usable data. 
Average age in days is shown, with the standard deviation included after the plus minus symbol. 
Abbreviations: M, male; F, female.  
 
Supplementary Table 5.10.2: LME_MRI: Akaike’s information criterion (AIC) 
analysis and linear model summary for 120 brain volumes 
AIC was used to determine whether or not the majority of structures were better fit using a linear 
versus quadratic age term. Model A predicted volume via poly(age,1)*genotype + sex + (1|subject) 
while model B predicted volume via poly(age,2)*genotype*sex + (1|subject). For each structure, 
delta AIC (AICi-AICminimum)  > 4 was indicative of a better fit using a quadratic age term, which 
was the case for the majority of structures. Model B was therefore applied to all brain volumes and 
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each term from model B is shown under the primary hypothesis heading, whereby the model terms 
of interest were the linear (poly(age,2)1:genotypeTg)) and quadratic (poly(age,2)2:genotypeTg)) 
interaction terms. Model B was also run in the form of four age-centered models, wherein the model 
term of interest was the main effect of genotype, denoted by genotypeTg(age). Standard beta values, 
standard error, and p-values are shown for all model terms, while model terms of interest are 
highlighted with a black border and  include a column with adjusted p-values after 5% FDR 
correction. For these terms of interest, p-values and adjusted p-values that meet the significance 
threshold of 0.05 are highlighted in blue, while those between 0.05 and 0.1 are highlighted in grey. 
A secondary analysis was also performed whereby the model included a 3-way interaction between 
quadratic age, genotype, and sex, with a random intercept per subject. The model terms of interest 
for this analysis were genotypeTg:sexF, poly(age,2)1:genotypeTg:sexF, and 
poly(age,2)2:genotypeTg:sexF. All model terms are shown under the secondary hypothesis 
heading.  
 
Supplementary Table 5.10.3: MRI_volume_summary_mm3  
Summary of brain volumes in mm3 measured longitudinally in TgF344-AD (Tg) rats and wildtype 
(WT) controls, as well as split by sex. Volumes are expressed as mean ± standard deviation. N 
indicates the number of subjects per group. Abbreviations: WT male (WTM), WT female (WTF), 
Tg male (TgM), Tg female (TgF).  
 
Supplementary Table 5.10.4: LME_MRS: CRLB values, Akaike’s information 
criterion (AIC) analysis, and linear model summary for 27 neurochemicals 
Cramer-Rao Lower Bounds were averaged across all scans and used as a quality control metric with 
a strict threshold of 20%, resulting in the removal of GABA (CRLB 41.56), Serine (CRLB 33.59), 
and MM3.18 (CRLB 44.96) from further analysis. AIC was used to determine whether or not the 
majority of neurochemicals were better fit using a linear versus quadratic age term. Model A 
predicted concentration via poly(age,1)*genotype + sex + water.linewidth (lw) + (1|subject) while 
model 2 predicted concentration via poly(age,2)*genotype*sex + water.lw + (1|subject). For each 
neurochemical, delta AIC (AICi-AICminimum)  > 4 was indicative of a better fit using a quadratic age 
term. All neurochemicals demonstrated a better fit using Model A with a linear age term. Model A 
was therefore applied to all neurochemicals and each model term is shown under the primary 
hypothesis heading, whereby the model term of interest was the age by genotype interaction term 
(age:genotypeTg). Model A was also applied in the form of four age-centered models, whereby the 
term of interest was the main effect of genotype, evaluated at four time points (genotypeTg(age)). 
Standard beta values, standard error, and p-values are shown for all model terms, while model terms 
of interest are highlighted with a black border and include a column with adjusted p-values after 
5% FDR correction. For these terms of interest, p-values and adjusted p-values that meet the 
significance threshold of 0.05 are highlighted in blue, while those between 0.05 and 0.1 are 
highlighted in grey. A secondary analysis was also performed whereby the model included a 3-way 
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interaction between age, genotype, and sex, with water linewidth covaried and a random intercept 
per subject. The model terms of interest for this analysis were genotypeTg:sexF and 
age:genotypeTg:sexF. All model terms are shown under the secondary hypothesis heading. 
 
Supplementary Table 5.10.5: MRS_conc_summary_mMol 
Summary of neurochemical concentrations in mMol measured longitudinally in TgF344-AD (Tg) 
rats and wildtype (WT) controls, as well as split by sex. Concentrations are expressed as mean ± 
standard deviation. ‘n’ indicates the number of subjects per group. Abbreviations: WT male 
(WTM), WT female (WTF), Tg male (TgM), Tg female (TgF).  
 
Supplementary Table 5.10.6: Barnes_stats 
All statistics run on Barnes Maze probe data for both primary (main effect of genotype) and 
secondary analyses (genotype by sex). The statistical test for each of the five metrics (% time in 
target quadrant, % time in target holes, % success, number of holes searched, and speed) is shown, 
along with the effect size (either cohen’s d or standardized beta) for all terms in the model. Statistics 
are split by time point. Bonferroni correction was applied at each time point for primary analyses 
and secondary analysis separately. For primary analyses, the number of tests run per time point was 
7 (4 one-sample t-tests and 3 linear models) so the significance threshold was 0.05/7=0.00714. For 
secondary analyses the number of tests per time point was 11 (8 one-sample t-tests and 3 linear 
models), so the significance threshold was 0.05/11 = 0.00455. P-values that reached the appropriate 
significance threshold are highlighted in blue.  
 
Supplementary Table 5.10.7: Barnes_data_summary 
Summary of Barnes maze statistics measured at 4 time points in TgF344-AD (Tg) rats and wildtype 
(WT) controls, as well as split by sex. N represents the number of subjects per group. For each 
metric the average, standard deviation (SD), standard error (SE), and 95% confidence interval (CI) 
are shown. Abbreviations: WT male (WTM), WT female (WTF), Tg male (TgM), Tg female (TgF).  
 
Supplementary Table 5.10.8: Histology_LME: LME results for microglial and 
neuronal cell counts 
Cell counts were modelled using a main effect of genotype while controlling for sex, age at 
sacrifice, paradigm, and time between staining and imaging. Standard beta values, standard error, 
and p-values are shown for all model terms, while model terms of interest (genotype) are 
highlighted with a black border. Bonferroni correction was applied such that the significance 
threshold was 0.05/2 = 0.025. 
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Supplementary Table 5.10.9: Correlations_18months: Correlations between 
microglial and neuronal burden, metabolite concentrations, brain volumes, and 
behavioural metrics 
The correlation coefficient (𝜌) and 95% confidence interval (CI) are shown, along with the p-value 
for each correlation. Number of subjects (n) differ slightly due to exclusion of MRI or MRS scans 
during quality control, as well as removal of outliers on a per-metric basis. Bonferroni correction 
for multiple comparisons was applied such that the significance threshold was ɑ=0.05/18 
tests=0.0028, resulting in none of the correlations reaching statistical significance.  

5.11 Supplemental Figures 

Supplementary Figures 5.11.1 and 5.11.2. Visualization of the longitudinal volume 
trajectories of all brain structures that display a significant age by genotype 
interaction  
Brain-size-corrected volumes were predicted via linear mixed effects modelling using a second 
order age by genotype interaction with sex covaried and a random intercept for each subject. 
Multiple comparisons were corrected for using a 5% false discovery rate. The mixed effects model 
used to fit the data is represented by a line of best fit and 95% interval (shaded). Each data point 
represents a single rat. Data corresponding to wildtype (WT) rats are shown using grey circles and 
a solid line of best fit, while data corresponding to TgF344-AD (Tg) rats are shown using blue 
triangles and a dashed line of best fit. Significance symbols are shown for the linear age by genotype 
interaction term (‡), quadratic age by genotype interaction term (‡2), and the main effect of 
genotype (†) at each time point as determined by the age-centered models, with the subscript 
denoting at which age the genotype effect was significant. ● denotes an effect significant at the 
original p-value level but not after FDR correction. 
 
Supplementary Figures 5.11.3 and 5.11.4. Visualization of the longitudinal volume 
trajectories of all brain structures that display a significant age by genotype by sex 
interaction, prior to FDR correction  
Brain-size-corrected volumes were predicted via linear mixed effects modelling using a second 
order age by genotype by sex interaction and a random intercept for each subject. Multiple 
comparisons were corrected for using a 5% false discovery rate. The mixed effects model used to 
fit the data is represented by a line of best fit and 95% interval (shaded). Each data point represents 
a single rat. Data corresponding to wildtype (WT) rats are shown using circles and a solid line of 
best fit, while data corresponding to TgF344-AD (Tg) rats are shown using triangles and a dashed 
line of best fit. Significance symbols are shown for the linear age by genotype by sex interaction 
term (𝖷) and quadratic age by genotype interaction term (𝖷2). A single symbol indicates an adjusted 
p-value <0.05. ● denotes an effect significant at the original p-value level but not after FDR 
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correction. Abbreviations: wildtype male, WT.M; wildtype female, WT.F; TgF344-AD male, 
Tg.M; TgF344-AD female, Tg.F.  
 
Supplementary Figure 5.11.5. Longitudinal trajectory of neurochemicals in TgF344-
AD and wildtype rats, with some split by sex  
Absolute concentration (mM) of neurochemicals were predicted via linear mixed effects modelling 
using either A) an age by genotype interaction with sex covaried (model 3), or B) a three-way 
interaction between age, genotype, and sex (model 4). In both cases, water linewidth was also 
covaried and a random intercept for each subject was included. Multiple comparisons were 
corrected for using a 5% false discovery rate. The mixed effects model used to fit the data is 
represented by a line of best fit and 95% interval (shaded). Each data point represents a single rat. 
Data corresponding to WT rats are shown using circles and a solid line of best fit, while data 
corresponding to TgF344-AD rats are shown using triangles and a dashed line of best fit, 
respectively. Significance symbols in A are shown for the linear age by genotype interaction term 
(‡) and the main effect of genotype (†) at each time point as determined by the age-centered models, 
with the subscript denoting at which age the genotype effect was significant. The significance 
symbol for the age by genotype by sex interaction term  (𝖷) from model 4 shown in B was not 
necessary as none of the results were significant. ● denotes an effect significant at the p-value level 
but not after FDR correction. Abbreviations: Alanine (Ala), Aspartate (Asp), Glucose (Glc), 
Glutamine (Gln), Glutamate (Glu), Glutathione (GSH), N-acetylaspartate (NAA), N-
acetylaspartylglutamate (NAAG), Phosphoethanolamine (PE), Taurine (Tau), Macromolecule 
(MM). The subscript of each MM indicates the ppm value at which the peak appears in the MRS 
spectrum.  
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Supplementary Figure 5.11.1 
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Supplementary Figure 5.11.2 
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Supplementary Figure 5.11.3 
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Supplementary Figure 5.11.4 
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Supplementary Figure 5.11.5 



 

 

199 

5.12 Chapter 5 Supplementary References 
 

1.  Lerch JP, Gazdzinski L, Germann J, Sled JG, Henkelman RM, Nieman BJ. Wanted dead 
or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse. Front 
Neuroinform. 2012;6:6. 
2.  Cohen RM, Rezai-Zadeh K, Weitz TM, et al. A transgenic Alzheimer rat with plaques, tau 
pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci. 
2013;33(15):6245-6256. 
3.  Kreis R. The trouble with quality filtering based on relative Cramér-Rao lower bounds. 
Magn Reson Med. 2016;75(1):15-18. 
4.  Iglewicz B, Hoaglin DC. How to Detect and Handle Outliers. Vol 16. (Mykytka EF, 
Westergard S, Wall A, eds.). ASQC/Quality Press; 1997. 
5.  Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard 
deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 
2013;49(4):764-766. 
6.  Pitts MW. Barnes Maze Procedure for Spatial Learning and Memory in Mice. Bio Protoc. 
2018;8(5). doi:10.21769/bioprotoc.2744 
7.  Fox J, Weisberg S. An R Companion to Applied Regression. Published online 2019. 
https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html 
8.  Neuwirth E. RColorBrewer: ColorBrewer Palettes.; 2014. https://CRAN.R-
project.org/package=RColorBrewer 
9.  Wickham H, Bryan J. Readxl: Read Excel Files.; 2019. https://CRAN.R-
project.org/package=readxl 
10.  Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in 
Linear Mixed Effects Models. Journal of Statistical Software, Articles. 2017;82(13):1-26. 
11.  Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models 
Using lme4. Journal of Statistical Software, Articles. 2015;67(1):1-48. 
12.  Wickham H, Averick M, Bryan J, et al. Welcome to the tidyverse. J Open Source 
Softw. 2019;4(43):1686. 
13.  Pfefferbaum A, Rohlfing T, Rosenbloom MJ, Chu W, Colrain IM, Sullivan EV. 
Variation in longitudinal trajectories of regional brain volumes of healthy men and women 
(ages 10 to 85 years) measured with atlas-based parcellation of MRI. Neuroimage. 
2013;65:176-193. 
14.  Kong V, Devenyi GA, Gallino D, et al. Early-in-life neuroanatomical and 
behavioural trajectories in a triple transgenic model of Alzheimer’s disease. Brain Struct 
Funct. 2018;223(7):3365-3382. 
15.  Tullo S, Patel R, Devenyi GA, et al. MR-based age-related effects on the striatum, 
globus pallidus, and thalamus in healthy individuals across the adult lifespan. Hum Brain 
Mapp. 2019;40(18):5269-5288. 
16.  Fowler CF, Madularu D, Dehghani M, Devenyi GA, Near J. Longitudinal 
quantification of metabolites and macromolecules reveals age- and sex-related changes in the 
healthy Fischer 344 rat brain. Neurobiol Aging. 2020;101:109-122. 
17.  Burnham KP, Anderson DR. Multimodel Inference: Understanding AIC and BIC 
in Model Selection. Sociol Methods Res. 2004;33(2):261-304. 



 

 

200 

5.13 Chapter 5 References 

Alexander, Gene E., Lan Lin, Eriko S. Yoshimaru, Pradyumna K. Bharadwaj, Kaitlin L. 
Bergfield, Lan T. Hoang, Monica K. Chawla, et al. 2020. “Age-Related Regional Network 
Covariance of Magnetic Resonance Imaging Gray Matter in the Rat.” Frontiers in Aging 
Neuroscience 12: 267. 
Anckaerts, Cynthia, Ines Blockx, Priska Summer, Johanna Michael, Julie Hamaide, Christina 
Kreutzer, Hervé Boutin, Sébastien Couillard-Després, Marleen Verhoye, and Annemie Van der 
Linden. 2019. “Early Functional Connectivity Deficits and Progressive Microstructural 
Alterations in the TgF344-AD Rat Model of Alzheimer’s Disease: A Longitudinal MRI Study.” 
Neurobiology of Disease 124 (April): 93–107. 
Apostolova, Liana G., Chris Zarow, Kristina Biado, Sona Hurtz, Marina Boccardi, Johanne 
Somme, Hedieh Honarpisheh, et al. 2015. “Relationship between Hippocampal Atrophy and 
Neuropathology Markers: A 7T MRI Validation Study of the EADC-ADNI Harmonized 
Hippocampal Segmentation Protocol.” Alzheimer’s & Dementia: The Journal of the 
Alzheimer's Association 11 (2): 139–50. 
Attar, Aida, Tingyu Liu, Wai-Ting Coco Chan, Jane Hayes, Mona Nejad, Kaichyuan Lei, and 
Gal Bitan. 2013. “A Shortened Barnes Maze Protocol Reveals Memory Deficits at 4-Months 
of Age in the Triple-Transgenic Mouse Model of Alzheimer’s Disease.” PloS One 8 (11): 
e80355. 
Badhwar, Amanpreet, Jason P. Lerch, Edith Hamel, and John G. Sled. 2013. “Impaired 
Structural Correlates of Memory in Alzheimer’s Disease Mice.” NeuroImage. Clinical 3 
(September): 290–300. 
Barnes, C. A. 1979. “Memory Deficits Associated with Senescence: A Neurophysiological and 
Behavioral Study in the Rat.” Journal of Comparative and Physiological Psychology 93 (1): 
74–104. 
Bartha, Robert. 2007. “Effect of Signal-to-Noise Ratio and Spectral Linewidth on Metabolite 
Quantification at 4 T.” NMR in Biomedicine 20 (5): 512–21. 
Bateman, Randall J., Chengjie Xiong, Tammie L. S. Benzinger, Anne M. Fagan, Alison Goate, 
Nick C. Fox, Daniel S. Marcus, et al. 2012. “Clinical and Biomarker Changes in Dominantly 
Inherited Alzheimer’s Disease.” The New England Journal of Medicine 367 (9): 795–804. 
Bazzigaluppi, Paolo, Tina L. Beckett, Margaret M. Koletar, Aaron Y. Lai, Illsung L. Joo, Mary 
E. Brown, Peter L. Carlen, Joanne McLaurin, and Bojana Stefanovic. 2018. “Early-Stage 
Attenuation of Phase-Amplitude Coupling in the Hippocampus and Medial Prefrontal Cortex 
in a Transgenic Rat Model of Alzheimer’s Disease.” Journal of Neurochemistry 144 (5): 669–
79. 
Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society. 
Series B, Statistical Methodology 57 (1): 289–300. 
Berkowitz, Laura E., Ryan E. Harvey, Emma Drake, Shannon M. Thompson, and Benjamin J. 
Clark. 2018. “Progressive Impairment of Directional and Spatially Precise Trajectories by 
TgF344-Alzheimer’s Disease Rats in the Morris Water Task.” Scientific Reports 8 (1): 16153. 
Bernal-Rusiel, Jorge L., Douglas N. Greve, Martin Reuter, Bruce Fischl, Mert R. Sabuncu, and 
Alzheimer’s Disease Neuroimaging Initiative. 2013. “Statistical Analysis of Longitudinal 
Neuroimage Data with Linear Mixed Effects Models.” NeuroImage 66 (February): 249–60. 
Best, Jonathan G., Charlotte J. Stagg, and Andrea Dennis. 2014. “Chapter 2.5 - Other 



 

 

201 

Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate.” In Magnetic 
Resonance Spectroscopy, edited by Charlotte Stagg and Douglas Rothman, 122–38. San Diego: 
Academic Press. 
Bianchini, F., A. Di Vita, L. Palermo, L. Piccardi, C. Blundo, and C. Guariglia. 2014. “A 
Selective Egocentric Topographical Working Memory Deficit in the Early Stages of 
Alzheimer’s Disease: A Preliminary Study.” American Journal of Alzheimer’s Disease and 
Other Dementias 29 (8): 749–54. 
Bobinski, M., M. J. de Leon, J. Wegiel, S. Desanti, A. Convit, L. A. Saint Louis, H. Rusinek, 
and H. M. Wisniewski. 2000. “The Histological Validation of Post Mortem Magnetic 
Resonance Imaging-Determined Hippocampal Volume in Alzheimer’s Disease.” Neuroscience 
95 (3): 721–25. 
Braak, H., and E. Braak. 1991. “Alzheimer’s Disease Affects Limbic Nuclei of the Thalamus.” 
Acta Neuropathologica 81 (3): 261–68. 
———. 1995. “Staging of Alzheimer’s Disease-Related Neurofibrillary Changes.” 
Neurobiology of Aging 16 (3): 271–78; discussion 278–84. 
Brand, A., C. Richter-Landsberg, and D. Leibfritz. 1993. “Multinuclear NMR Studies on the 
Energy Metabolism of Glial and Neuronal Cells.” Developmental Neuroscience 15: 289–98. 
Callen, D. J., S. E. Black, F. Gao, C. B. Caldwell, and J. P. Szalai. 2001. “Beyond the 
Hippocampus: MRI Volumetry Confirms Widespread Limbic Atrophy in AD.” Neurology 57 
(9): 1669–74. 
Camandola, Simonetta, and Mark P. Mattson. 2017. “Brain Metabolism in Health, Aging, and 
Neurodegeneration.” The EMBO Journal 36 (11): 1474–92. 
Chan, Dennis, Laura Marie Gallaher, Kuven Moodley, Ludovico Minati, Neil Burgess, and 
Tom Hartley. 2016. “The 4 Mountains Test: A Short Test of Spatial Memory with High 
Sensitivity for the Diagnosis of Pre-Dementia Alzheimer’s Disease.” Journal of Visualized 
Experiments: JoVE, no. 116 (October). https://doi.org/10.3791/54454. 
Chaney, Aisling M., Francisco R. Lopez-Picon, Sophie Serrière, Rui Wang, Daniela 
Bochicchio, Samuel D. Webb, Matthias Vandesquille, et al. 2021. “Prodromal 
Neuroinflammatory, Cholinergic and Metabolite Dysfunction Detected by PET and MRS in 
the TgF344-AD Transgenic Rat Model of AD: A Collaborative Multi-Modal Study.” 
Theranostics 11 (14): 6644–67. 
Chaney, A. M., F. R. Lopez-Picon, S. Serriere, R. Wang, D. Bochicchio, S. D. Webb, M. 
Vandesquille, et al. 2021. Prodromal Neuroinflammatory, Cholinergic and Metabolite 
Dysfunction Detected by PET and MRS in the TgF344-AD Transgenic Rat Model of AD: A 
Collaborative Multi-Modal Study. https://zenodo.org/record/4710273. 
Choi, Ji-Kyung, Isabel Carreras, Nur Aytan, Eric Jenkins-Sahlin, Alpaslan Dedeoglu, and 
Bruce G. Jenkins. 2014. “The Effects of Aging, Housing and Ibuprofen Treatment on Brain 
Neurochemistry in a Triple Transgene Alzheimer’s Disease Mouse Model Using Magnetic 
Resonance Spectroscopy and Imaging.” Brain Research 1590 (November): 85–96. 
Chung, M. K., K. J. Worsley, T. Paus, C. Cherif, D. L. Collins, J. N. Giedd, J. L. Rapoport, and 
A. C. Evans. 2001. “A Unified Statistical Approach to Deformation-Based Morphometry.” 
NeuroImage 14 (3): 595–606. 
Cohen, Robert M., Kavon Rezai-Zadeh, Tara M. Weitz, Altan Rentsendorj, David Gate, Inna 
Spivak, Yasmin Bholat, et al. 2013. “A Transgenic Alzheimer Rat with Plaques, Tau Pathology, 
Behavioral Impairment, Oligomeric Aβ, and Frank Neuronal Loss.” The Journal of 
Neuroscience: The Official Journal of the Society for Neuroscience 33 (15): 6245–56. 



 

 

202 

Dedeoglu, Alpaslan, Ji-Kyung Choi, Kerry Cormier, Neil W. Kowall, and Bruce G. Jenkins. 
2004. “Magnetic Resonance Spectroscopic Analysis of Alzheimer’s Disease Mouse Brain That 
Express Mutant Human APP Shows Altered Neurochemical Profile.” Brain Research 1012 (1-
2): 60–65. 
Do Carmo, Sonia, and A. Claudio Cuello. 2013. “Modeling Alzheimer’s Disease in Transgenic 
Rats.” Molecular Neurodegeneration 8 (October): 37. 
Drummond, Eleanor, and Thomas Wisniewski. 2017. “Alzheimer’s Disease: Experimental 
Models and Reality.” Acta Neuropathologica 133 (2): 155–75. 
Ellenbroek, Bart, and Jiun Youn. 2016. “Rodent Models in Neuroscience Research: Is It a Rat 
Race?” Disease Models & Mechanisms 9 (10): 1079–87. 
Ernst, T., R. Kreis, and B. D. Ross. 1993. “Absolute Quantitation of Water and Metabolites in 
the Human Brain. I. Compartments and Water.” Journal of Magnetic Resonance. Series B 102 
(1): 1–8. 
Filon, Jessica R., Anthony J. Intorcia, Lucia I. Sue, Elsa Vazquez Arreola, Jeffrey Wilson, 
Kathryn J. Davis, Marwan N. Sabbagh, et al. 2016. “Gender Differences in Alzheimer Disease: 
Brain Atrophy, Histopathology Burden, and Cognition.” Journal of Neuropathology and 
Experimental Neurology 75 (8): 748–54. 
Fjell, Anders M., Linda McEvoy, Dominic Holland, Anders M. Dale, Kristine B. Walhovd, and 
Alzheimer’s Disease Neuroimaging Initiative. 2014. “What Is Normal in Normal Aging? 
Effects of Aging, Amyloid and Alzheimer’s Disease on the Cerebral Cortex and the 
Hippocampus.” Progress in Neurobiology 117 (June): 20–40. 
Fortea, Juan, Roser Sala-Llonch, David Bartrés-Faz, Beatriz Bosch, Albert Lladó, Nuria 
Bargalló, José Luis Molinuevo, and Raquel Sánchez-Valle. 2010. “Increased Cortical 
Thickness and Caudate Volume Precede Atrophy in PSEN1 Mutation Carriers.” Journal of 
Alzheimer’s Disease: JAD 22 (3): 909–22. 
Fowler, Caitlin F., Dan Madularu, Masoumeh Dehghani, Gabriel A. Devenyi, and Jamie Near. 
2020. “Longitudinal Quantification of Metabolites and Macromolecules Reveals Age- and Sex-
Related Changes in the Healthy Fischer 344 Rat Brain.” Neurobiology of Aging 101 
(December): 109–22. 
Fowler, Caitlin, Dana Goerzen, Dan Madularu, Gabriel A. Devenyi, M. Mallar Chakravarty, 
and Jamie Near. 2021. “LONGITUDINAL CHARACTERIZATION OF 
NEUROANATOMICAL CHANGES IN THE FISCHER 344 RAT BRAIN DURING 
NORMAL AGING AND BETWEEN SEXES.” Neurobiology of Aging, October. 
https://doi.org/10.1016/j.neurobiolaging.2021.10.003. 
Fowler, Caitlin, Dana Goerzen, Dan Madularu, Gabriel A. Devenyi, M. Mallar Chakravarty, 
and Jamie Near. 2021. “Longitudinal Characterization of Neuroanatomical Changes in the 
Fischer 344 Rat Brain during Normal Aging and between Sexes.” bioRxiv. 
https://doi.org/10.1101/2021.04.12.439510. 
Friedel, Miriam, Matthijs C. van Eede, Jon Pipitone, M. Mallar Chakravarty, and Jason P. 
Lerch. 2014. “Pydpiper: A Flexible Toolkit for Constructing Novel Registration Pipelines.” 
Frontiers in Neuroinformatics 8 (July): 67. 
Frisoni, Giovanni B., Nick C. Fox, Clifford R. Jack Jr, Philip Scheltens, and Paul M. Thompson. 
2010. “The Clinical Use of Structural MRI in Alzheimer Disease.” Nature Reviews. Neurology 
6 (2): 67–77. 
Gao, F., and P. B. Barker. 2014. “Various MRS Application Tools for Alzheimer Disease and 
Mild Cognitive Impairment.” AJNR. American Journal of Neuroradiology 35 (6 Suppl): S4–



 

 

203 

11. 
Gawel, Kinga, Ewa Gibula, Marta Marszalek-Grabska, Joanna Filarowska, and Jolanta H. 
Kotlinska. 2019. “Assessment of Spatial Learning and Memory in the Barnes Maze Task in 
Rodents-Methodological Consideration.” Naunyn-Schmiedeberg’s Archives of Pharmacology 
392 (1): 1–18. 
Goerzen, Dana, Caitlin Fowler, Gabriel A. Devenyi, Jurgen Germann, Dan Madularu, M. 
Mallar Chakravarty, and Jamie Near. 2020. “An MRI-Derived Neuroanatomical Atlas of the 
Fischer 344 Rat Brain.” Scientific Reports 10 (1): 6952. 
Gruetter, Rolf. 1993. “Automatic, Localized in Vivo Adjustment of All First- and Second-
Order Shim Coils.” Journal of Magnetic Resonance in Medicine 29: 804–11. 
Güell-Bosch, J., S. Lope-Piedrafita, G. Esquerda-Canals, L. Montoliu-Gaya, and S. Villegas. 
2020. “Progression of Alzheimer’s Disease and Effect of scFv-h3D6 Immunotherapy in the 
3xTg-AD Mouse Model: An in Vivo Longitudinal Study Using Magnetic Resonance Imaging 
and Spectroscopy.” NMR in Biomedicine 33 (5): e4263. 
Jack, Clifford R., Frederik Barkhof, Matt A. Bernstein, Marc Cantillon, Patricia E. Cole, 
Charles DeCarli, Bruno Dubois, et al. 2011. “Steps to Standardization and Validation of 
Hippocampal Volumetry as a Biomarker in Clinical Trials and Diagnostic Criterion for 
Alzheimer’s Disease.” Alzheimer’s & Dementia: The Journal of the Alzheimer's Association 7 
(4): 474–85.e4. 
Jack, Clifford R., Jr, David S. Knopman, William J. Jagust, Ronald C. Petersen, Michael W. 
Weiner, Paul S. Aisen, Leslie M. Shaw, et al. 2013. “Tracking Pathophysiological Processes in 
Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers.” Lancet 
Neurology 12 (2): 207–16. 
Jack, Clifford R., Jr, David S. Knopman, William J. Jagust, Leslie M. Shaw, Paul S. Aisen, 
Michael W. Weiner, Ronald C. Petersen, and John Q. Trojanowski. 2010. “Hypothetical Model 
of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade.” Lancet Neurology 9 (1): 
119–28. 
Jack, C. R., Jr, M. M. Shiung, S. D. Weigand, P. C. O’Brien, J. L. Gunter, B. F. Boeve, D. S. 
Knopman, et al. 2005. “Brain Atrophy Rates Predict Subsequent Clinical Conversion in Normal 
Elderly and Amnestic MCI.” Neurology 65 (8): 1227–31. 
Jong, L. W. de, K. van der Hiele, I. M. Veer, J. J. Houwing, R. G. J. Westendorp, E. L. E. M. 
Bollen, P. W. de Bruin, H. A. M. Middelkoop, M. A. van Buchem, and J. van der Grond. 2008. 
“Strongly Reduced Volumes of Putamen and Thalamus in Alzheimer’s Disease: An MRI 
Study.” Brain: A Journal of Neurology 131 (Pt 12): 3277–85. 
Joo, Illsung L., Aaron Y. Lai, Paolo Bazzigaluppi, Margaret M. Koletar, Adrienne Dorr, Mary 
E. Brown, Lynsie A. M. Thomason, John G. Sled, Joanne McLaurin, and Bojana Stefanovic. 
2017. “Early Neurovascular Dysfunction in a Transgenic Rat Model of Alzheimer’s Disease.” 
Scientific Reports 7 (1): 1–14. 
Kantarci, K., R. C. Petersen, B. F. Boeve, D. S. Knopman, D. F. Tang-Wai, P. C. O’Brien, S. 
D. Weigand, et al. 2004. “1H MR Spectroscopy in Common Dementias.” Neurology 63 (8): 
1393–98. 
Kong, Vincent, Gabriel A. Devenyi, Daniel Gallino, Gülebru Ayranci, Jürgen Germann, 
Colleen Rollins, and M. Mallar Chakravarty. 2018. “Early-in-Life Neuroanatomical and 
Behavioural Trajectories in a Triple Transgenic Model of Alzheimer’s Disease.” Brain 
Structure & Function 223 (7): 3365–82. 
Lau, Jonathan C., Jason P. Lerch, John G. Sled, R. Mark Henkelman, Alan C. Evans, and Barry 



 

 

204 

J. Bedell. 2008. “Longitudinal Neuroanatomical Changes Determined by Deformation-Based 
Morphometry in a Mouse Model of Alzheimer’s Disease.” NeuroImage 42 (1): 19–27. 
Leplus, Aurelie, Inger Lauritzen, Christophe Melon, Lydia Kerkerian-Le Goff, Denys Fontaine, 
and Frederic Checler. 2019. “Chronic Fornix Deep Brain Stimulation in a Transgenic 
Alzheimer’s Rat Model Reduces Amyloid Burden, Inflammation, and Neuronal Loss.” Brain 
Structure & Function 224 (1): 363–72. 
Lerch, Jason P., Lisa Gazdzinski, Jürgen Germann, John G. Sled, R. Mark Henkelman, and 
Brian J. Nieman. 2012. “Wanted Dead or Alive? The Tradeoff between in-Vivo versus Ex-
Vivo MR Brain Imaging in the Mouse.” Frontiers in Neuroinformatics 6 (March): 6. 
Lerch, J., C. Hammill, M. van Eede, and D. Cassel. 2017. “Statistical Tools for Medical 
Imaging NetCDF (MINC) Files. R Package Version 1.5.2.3.” 2017. http://mouse-imaging-
centre.github.io/RMINC/. 
Lewis, J., D. W. Dickson, W. L. Lin, L. Chisholm, A. Corral, G. Jones, S. H. Yen, et al. 2001. 
“Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and 
APP.” Science 293 (5534): 1487–91. 
Lin, Joanne C., and Nicholas Gant. 2014. “Chapter 2.3 - The Biochemistry of Choline.” In 
Magnetic Resonance Spectroscopy, edited by Charlotte Stagg and Douglas Rothman, 104–10. 
San Diego: Academic Press. 
Lithfous, Ségolène, André Dufour, and Olivier Després. 2013. “Spatial Navigation in Normal 
Aging and the Prodromal Stage of Alzheimer’s Disease: Insights from Imaging and Behavioral 
Studies.” Ageing Research Reviews 12 (1): 201–13. 
Maheswaran, Satheesh, Hervé Barjat, Daniel Rueckert, Simon T. Bate, David R. Howlett, 
Lorna Tilling, Sean C. Smart, et al. 2009. “Longitudinal Regional Brain Volume Changes 
Quantified in Normal Aging and Alzheimer’s APP X PS1 Mice Using MRI.” Brain Research 
1270 (May): 19–32. 
Marjanska, Malgorzata, Geoffrey L. Curran, Thomas M. Wengenack, Pierre-Gilles Henry, 
Robin L. Bliss, Joseph F. Poduslo, Clifford R. Jack Jr, Kâmil Ugurbil, and Michael Garwood. 
2005. “Monitoring Disease Progression in Transgenic Mouse Models of Alzheimer’s Disease 
with Proton Magnetic Resonance Spectroscopy.” Proceedings of the National Academy of 
Sciences of the United States of America 102 (33): 11906–10. 
Marjańska, Małgorzata, J. Riley McCarten, James S. Hodges, Laura S. Hemmy, and Melissa 
Terpstra. 2019. “Distinctive Neurochemistry in Alzheimer’s Disease via 7 T In Vivo Magnetic 
Resonance Spectroscopy.” Journal of Alzheimer’s Disease: JAD 68 (2): 559–69. 
Martínez-Pinilla, Eva, Cristina Ordóñez, Eva Del Valle, Ana Navarro, and Jorge Tolivia. 2016. 
“Regional and Gender Study of Neuronal Density in Brain during Aging and in Alzheimer’s 
Disease.” Frontiers in Aging Neuroscience 8 (September): 213. 
Mattson, Mark P. 2004. “Pathways towards and Away from Alzheimer’s Disease.” Nature 430 
(7000): 631–39. 
Mattson, Mark P., and Thiruma V. Arumugam. 2018. “Hallmarks of Brain Aging: Adaptive 
and Pathological Modification by Metabolic States.” Cell Metabolism 27 (6): 1176–99. 
Mazure, Carolyn M., and Joel Swendsen. 2016. “Sex Differences in Alzheimer’s Disease and 
Other Dementias.” Lancet Neurology. 
McKenna, Mary C., Gerald A. Dienel, Ursula Sonnewald, Helle S. Waagepetersen, and Arne 
Schousboe. 2012. “Chapter 11 - Energy Metabolism of the Brain.” In Basic Neurochemistry 
(Eighth Edition), edited by Scott T. Brady, George J. Siegel, R. Wayne Albers, and Donald L. 
Price, 200–231. New York: Academic Press. 



 

 

205 

Mersman, Brittany, Wali Zaidi, Naweed I. Syed, and Fenglian Xu. 2020. “Taurine Promotes 
Neurite Outgrowth and Synapse Development of Both Vertebrate and Invertebrate Central 
Neurons.” Frontiers in Synaptic Neuroscience 12 (July): 29. 
Morrone, Christopher D., Paolo Bazzigaluppi, Tina L. Beckett, Mary E. Hill, Margaret M. 
Koletar, Bojana Stefanovic, and Joanne McLaurin. 2020. “Regional Differences in Alzheimer’s 
Disease Pathology Confound Behavioural Rescue after Amyloid-β Attenuation.” Brain: A 
Journal of Neurology 143 (1): 359–73. 
Mosconi, Lisa. 2013. “Glucose Metabolism in Normal Aging and Alzheimer’s Disease: 
Methodological and Physiological Considerations for PET Studies.” Clinical and Translational 
Imaging 1 (4). https://doi.org/10.1007/s40336-013-0026-y. 
Mueller, S. G., N. Schuff, and M. W. Weiner. 2006. “Evaluation of Treatment Effects in 
Alzheimer’s and Other Neurodegenerative Diseases by MRI and MRS.” NMR in Biomedicine 
19 (6): 655–68. 
Muñoz-Moreno, Emma, Raúl Tudela, Xavier López-Gil, and Guadalupe Soria. 2018. “Early 
Brain Connectivity Alterations and Cognitive Impairment in a Rat Model of Alzheimer’s 
Disease.” Alzheimer’s Research & Therapy 10 (1): 16. 
Murray, Melissa E., Scott A. Przybelski, Timothy G. Lesnick, Amanda M. Liesinger, Anthony 
Spychalla, Bing Zhang, Jeffrey L. Gunter, et al. 2014. “Early Alzheimer’s Disease 
Neuropathology Detected by Proton MR Spectroscopy.” The Journal of Neuroscience: The 
Official Journal of the Society for Neuroscience 34 (49): 16247–55. 
Nilsen, Linn H., Torun M. Melø, Oddbjørn Saether, Menno P. Witter, and Ursula Sonnewald. 
2012. “Altered Neurochemical Profile in the McGill-R-Thy1-APP Rat Model of Alzheimer’s 
Disease: A Longitudinal in Vivo 1 H MRS Study.” Journal of Neurochemistry 123 (4): 532–
41. 
Oberg, Johanna, Christian Spenger, Fu-Hua Wang, Anders Andersson, Eric Westman, Peter 
Skoglund, Dan Sunnemark, et al. 2008. “Age Related Changes in Brain Metabolites Observed 
by 1H MRS in APP/PS1 Mice.” Neurobiology of Aging 29 (9): 1423–33. 
Oddo, Salvatore, Antonella Caccamo, Jason D. Shepherd, M. Paul Murphy, Todd E. Golde, 
Rakez Kayed, Raju Metherate, Mark P. Mattson, Yama Akbari, and Frank M. LaFerla. 2003. 
“Triple-Transgenic Model of Alzheimer’s Disease with Plaques and Tangles: Intracellular 
Abeta and Synaptic Dysfunction.” Neuron 39 (3): 409–21. 
Oh, Esther S., Alena V. Savonenko, Julie F. King, Stina M. Fangmark Tucker, Gay L. Rudow, 
Guilian Xu, David R. Borchelt, and Juan C. Troncoso. 2009. “Amyloid Precursor Protein 
Increases Cortical Neuron Size in Transgenic Mice.” Neurobiology of Aging 30 (8): 1238–44. 
Patterson, Christina. 2018. “World Alzheimer Report 2018. The State of the Art of Dementia 
Research: New Frontiers.” Alzheimer’s Disease International. 
https://apo.org.au/sites/default/files/resource-files/2018-09/apo-nid260056.pdf. 
Pfefferbaum, A., E. Adalsteinsson, D. Spielman, E. V. Sullivan, and K. O. Lim. 1999. “In Vivo 
Brain Concentrations of N-Acetyl Compounds, Creatine, and Choline in Alzheimer Disease.” 
Archives of General Psychiatry 56 (2): 185–92. 
Pfefferbaum, Adolf, Torsten Rohlfing, Margaret J. Rosenbloom, Weiwei Chu, Ian M. Colrain, 
and Edith V. Sullivan. 2013. “Variation in Longitudinal Trajectories of Regional Brain 
Volumes of Healthy Men and Women (ages 10 to 85 Years) Measured with Atlas-Based 
Parcellation of MRI.” NeuroImage 65 (January): 176–93. 
Pini, Lorenzo, Michela Pievani, Martina Bocchetta, Daniele Altomare, Paolo Bosco, Enrica 
Cavedo, Samantha Galluzzi, Moira Marizzoni, and Giovanni B. Frisoni. 2016. “Brain Atrophy 



 

 

206 

in Alzheimer’s Disease and Aging.” Ageing Research Reviews 30 (September): 25–48. 
Pitts, Matthew W. 2018. “Barnes Maze Procedure for Spatial Learning and Memory in Mice.” 
Bio-Protocol 8 (5). https://doi.org/10.21769/bioprotoc.2744. 
Podcasy, Jessica L., and C. Neill Epperson. 2016. “Considering Sex and Gender in Alzheimer 
Disease and Other Dementias.” Dialogues in Clinical Neuroscience 18 (4): 437–46. 
Pol, L. A. van de, W. M. van der Flier, E. S. C. Korf, N. C. Fox, F. Barkhof, and P. Scheltens. 
2007. “Baseline Predictors of Rates of Hippocampal Atrophy in Mild Cognitive Impairment.” 
Neurology 69 (15): 1491–97. 
Rahman, Aneela, Hande Jackson, Hollie Hristov, Richard S. Isaacson, Nabeel Saif, Teena 
Shetty, Orli Etingin, Claire Henchcliffe, Roberta Diaz Brinton, and Lisa Mosconi. 2019. “Sex 
and Gender Driven Modifiers of Alzheimer’s: The Role for Estrogenic Control Across Age, 
Race, Medical, and Lifestyle Risks.” Frontiers in Aging Neuroscience 11 (November): 315. 
Rajamohamedsait, Hameetha B., and Einar M. Sigurdsson. 2012. “Histological Staining of 
Amyloid and Pre-Amyloid Peptides and Proteins in Mouse Tissue.” Methods in Molecular 
Biology  849: 411–24. 
R Core Team. 2020. “R: A Language and Environment for Statistical Computing.” Vienna, 
Austria: R Foundation for Statistical Computing. https://www.R-project.org/. 
Rettberg, Jamaica R., Jia Yao, and Roberta Diaz Brinton. 2014. “Estrogen: A Master Regulator 
of Bioenergetic Systems in the Brain and Body.” Frontiers in Neuroendocrinology 35 (1): 8–
30. 
Riudavets, Miguel Angel, Diego Iacono, Susan M. Resnick, Richard O’Brien, Alan B. 
Zonderman, Lee J. Martin, Gay Rudow, Olga Pletnikova, and Juan C. Troncoso. 2007. 
“Resistance to Alzheimer’s Pathology Is Associated with Nuclear Hypertrophy in Neurons.” 
Neurobiology of Aging 28 (10): 1484–92. 
Rorabaugh, Jacki M., Termpanit Chalermpalanupap, Christian A. Botz-Zapp, Vanessa M. Fu, 
Natalie A. Lembeck, Robert M. Cohen, and David Weinshenker. 2017. “Chemogenetic Locus 
Coeruleus Activation Restores Reversal Learning in a Rat Model of Alzheimer’s Disease.” 
Brain: A Journal of Neurology 140 (11): 3023–38. 
Ross, Amy J., and Perminder S. Sachdev. 2004. “Magnetic Resonance Spectroscopy in 
Cognitive Research.” Brain Research. Brain Research Reviews 44 (2-3): 83–102. 
Saré, Rachel Michelle, Spencer K. Cooke, Leland Krych, Patricia M. Zerfas, Robert M. Cohen, 
and Carolyn Beebe Smith. 2020. “Behavioral Phenotype in the TgF344-AD Rat Model of 
Alzheimer’s Disease.” Frontiers in Neuroscience 14 (June): 601. 
Selkoe, Dennis J. 2011. “Alzheimer’s Disease.” Cold Spring Harbor Perspectives in Biology 3 
(7). https://doi.org/10.1101/cshperspect.a004457. 
Selkoe, D. J. 2001. “Alzheimer’s Disease: Genes, Proteins, and Therapy.” Physiological 
Reviews 81 (2): 741–66. 
Simpson, Robin, Gabriel A. Devenyi, Peter Jezzard, T. Jay Hennessy, and Jamie Near. 2017. 
“Advanced Processing and Simulation of MRS Data Using the FID Appliance (FID-A)-An 
Open Source, MATLAB-Based Toolkit.” Magnetic Resonance in Medicine: Official Journal 
of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 
77 (1): 23–33. 
Smith, Lindsey A., and Lori L. McMahon. 2018. “Deficits in Synaptic Function Occur at 
Medial Perforant Path-Dentate Granule Cell Synapses prior to Schaffer Collateral-CA1 
Pyramidal Cell Synapses in the Novel TgF344-Alzheimer’s Disease Rat Model.” Neurobiology 
of Disease 110 (February): 166–79. 



 

 

207 

Spencer, N. G., L. R. Bridges, K. Elderfield, K. Amir, B. Austen, and F. A. Howe. 2013. 
“Quantitative Evaluation of MRI and Histological Characteristics of the 5xFAD Alzheimer 
Mouse Brain.” NeuroImage 76 (August): 108–15. 
Stoiljkovic, Milan, Craig Kelley, Bernardo Stutz, Tamas L. Horvath, and Mihály Hajós. 2019. 
“Altered Cortical and Hippocampal Excitability in TgF344-AD Rats Modeling Alzheimer’s 
Disease Pathology.” Cerebral Cortex  29 (6): 2716–27. 
Tkacˇ, I., Z. Starcˇuk, I. -Y. Choi, and R. Gruetter. 1999. “In VivoH NMR Spectroscopy of Rat 
Brain at 1 Ms Echo Time.” Magnetic Resonance in Medicine: Official Journal of the Society 
of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 41: 649–56. 
Tullo, Stephanie, Raihaan Patel, Gabriel A. Devenyi, Alyssa Salaciak, Saashi A. Bedford, 
Sarah Farzin, Nancy Wlodarski, et al. 2019. “MR-Based Age-Related Effects on the Striatum, 
Globus Pallidus, and Thalamus in Healthy Individuals across the Adult Lifespan.” Human 
Brain Mapping 40 (18): 5269–88. 
Voorhees, Jaymie R., Matthew T. Remy, Coral J. Cintrón-Pérez, Eli El Rassi, Michael Z. Khan, 
Laura M. Dutca, Terry C. Yin, et al. 2018. “(-)-P7C3-S243 Protects a Rat Model of Alzheimer’s 
Disease From Neuropsychiatric Deficits and Neurodegeneration Without Altering Amyloid 
Deposition or Reactive Glia.” Biological Psychiatry 84 (7): 488–98. 
Wang, Hui, Lan Tan, Hui-Fu Wang, Ying Liu, Rui-Hua Yin, Wen-Ying Wang, Xiao-Long 
Chang, Teng Jiang, and Jin-Tai Yu. 2015. “Magnetic Resonance Spectroscopy in Alzheimer’s 
Disease: Systematic Review and Meta-Analysis.” Journal of Alzheimer’s Disease: JAD 46 (4): 
1049–70. 
West, Mark J., Georg Bach, Andreas Søderman, and Jens Ledet Jensen. 2009. “Synaptic 
Contact Number and Size in Stratum Radiatum CA1 of APP/PS1DeltaE9 Transgenic Mice.” 
Neurobiology of Aging 30 (11): 1756–76. 
Wisse, Laura E. M., Geert Jan Biessels, Sophie M. Heringa, Hugo J. Kuijf, Dineke H. L. Koek, 
Peter R. Luijten, Mirjam I. Geerlings, and Utrecht Vascular Cognitive Impairment (VCI) Study 
Group. 2014. “Hippocampal Subfield Volumes at 7T in Early Alzheimer’s Disease and Normal 
Aging.” Neurobiology of Aging 35 (9): 2039–45. 
Wu, Chongyun, Luodan Yang, Yong Li, Yan Dong, Baocheng Yang, Lorelei Donovan Tucker, 
Xuemei Zong, and Quanguang Zhang. 2020. “Effects of Exercise Training on Anxious-
Depressive-like Behavior in Alzheimer Rat.” Medicine and Science in Sports and Exercise 52 
(7): 1456–69. 
Yin, Fei, Harsh Sancheti, Ishan Patil, and Enrique Cadenas. 2016. “Energy Metabolism and 
Inflammation in Brain Aging and Alzheimer’s Disease.” Free Radical Biology & Medicine 100 
(November): 108–22. 

 
 
 
 
 
 
 



 

 

208 

CHAPTER 6: DISCUSSION AND CONCLUSIONS 

6.1 Summary of results and main conclusions 

A major challenge to the advancement of options for AD diagnosis and treatment has been 

a lack of biomarkers that can distinguish the effects of normal aging from those manifesting due to 

pathology, specifically at an early stage of the disease, and in the presence of differences between 

sexes. In an attempt to address this limitation, we characterized longitudinal neuroanatomical and 

neurochemical processes underlying normal aging in a mixed-sex cohort of Fischer 344 rats; and 

the chronological order and extent of disease-related neurochemical, neuroanatomical, and 

cognitive abnormalities in a mixed-sex cohort of TgF344-AD rats, using methods with high 

translational potential to human studies. Specifically, this thesis addressed the following questions:  

 

1. How do age and sex affect hippocampal tissue chemistry throughout the adult rat lifespan? 

2. How do age and sex influence brain volume trajectories throughout the adult rat lifespan? 

3. Does the TgF344-AD rat model recapitulate major cognitive, neurochemical, and    

neuroanatomical features of human Alzheimer’s disease and in what chronological order 

do these pathological changes appear?  

4. How does sex influence the pathological features of AD in the TgF344-AD rat model? 

 

We addressed the first question in Chapter 3. Motivated by the lack of preclinical literature 

describing longitudinal neurochemical change with age, and even less literature examining the 

influence of sex on neurochemistry, we acquired in vivo MRS data from the hippocampus of a 

mixed-sex cohort of Fischer 344 rats at 4, 10, 16, and 20 months. We also developed and 

implemented methodology to quantify individual MM resonances, which provided additional 

valuable metabolic information. We identified linear age-dependent decreases in GSH and 

NAA/Ins concentrations and increases in Ins, Lac, NAAG. Other notable changes with age were 

curvilinear changes in Asp/Glu and Glu/Gln. Several neurochemicals also differed by sex, with Glc 

seen in higher concentrations in males while PCr and tCr were present in lower concentrations in 

males. Finally, several MMs increased with age and differed by sex. These findings demonstrate a 

significant metabolic shift with age and a role of sex in defining those changes. Specifically, the 

age-related metabolic changes indicated a shift towards anaerobic energy metabolism (Glc, Lac), 
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decreased antioxidant capacity (GSH), compensatory attempts at neuroprotection (NAAG), 

possible neuroinflammation (Ins), altered neurotransmission and/or impaired mitochondrial 

energetics (Glu/Gln, Asp/Glu), and possibly increased cell death (MMs). Sex effects were primarily 

seen in metabolites involved in energy metabolism (Glc, tCr, PCr), which fits with findings of 

hormonal influence on glucose metabolism and mitochondrial function in aging rats (Yin et al. 

2015). This published work represents the first longitudinal characterization of age-related change 

in neurochemistry in the Fischer 344 rat. This study provides detailed insight into the many 

metabolic processes affected by age and the influence of sex on these processes in a commonly 

used rat model of aging. We anticipate that many of these findings may be applicable to human 

aging populations, given that many of the processes affected by aging in the Fischer rat brain have 

been shown to be similarly affected in humans (Camandola and Mattson 2017; Mattson and Magnus 

2006), and sex differences have been reported for several neurotransmitter systems at the clinical 

level (Cosgrove et al. 2007). Importantly, these findings also represent a neurochemical baseline 

for studies in transgenic models of disease, particularly those developed on a Fischer 344 

background.         

Chapter 4 represents a natural follow-up to the investigation of highly localized effects of 

brain aging in Chapter 3, and explores the effect of age and sex on rat neuroanatomy across the 

whole brain. The motivation for this study was similar to that for Chapter 3: despite aging research 

being vital to the understanding and management of age-related diseases, there is a paucity of 

literature regarding neuroanatomical change during normal aging at the preclinical level, and the 

impact of sex on those changes. As such, the work presented in Chapter 4 is the first longitudinal 

investigation of age-related change in neuroanatomy in a mixed-sex cohort of Fischer 344 rats. This 

publication examines longitudinal neuroanatomical change at both the voxel-wise and regional 

level in 120 brain volumes at 4, 10, 16, and 20 months in male and female Fischer 344 rats, 

capturing structural abnormalities across the whole brain and covering much of the adult and 

senescent rat lifespan. The majority of age-related changes were seen in grey matter structures, with 

strong decreases in areas such as the caudoputamen, frontal cortex, and thalamus, and increased 

volume in the dentate gyrus. Some white matter structures were also altered with age but tended to 

increase in volume, such as the internal capsule, and cingulum. The influence of sex on these 

changes was not consistent, with some structures showing parallel trajectories but with one sex 

having a larger relative volume overall (basal forebrain, thalamus), and other structures showing an 
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interaction between sex and age, such as the hippocampus, whereby female hippocampal volume 

was stable with increasing age and males showed signs of atrophy after mid-life. Overall, structures 

showing volume changes were spatially distributed across the brain and implicated in a wide variety 

of physiological functions (motor control, visual processing, memory, autonomic functions, etc) 

(Rolls 2015; Malinowski 2019), suggesting that numerous systems are affected by the aging 

process, and further modified by sex. Given how rarely subcortical structures aside from the 

hippocampus are examined in human studies, only a few of the age- and sex-related results in this 

chapter have been shown in humans. That said, the overall findings of widespread neuroanatomical 

changes with age and the influence of sex are consistent with the existing literature (Cosgrove et al. 

2007; Armstrong et al. 2019; Pini et al. 2016; Fjell and Walhovd 2010). Perhaps more importantly, 

and similar to Chapter 3, the findings presented here can be considered a neuronanatomical 

baseline for future work examining the compound effect of age, pathology, and sex on brain 

structure in transgenic models of disease.      

 Finally, Chapter 5 builds upon the work in the previous two chapters by applying the same 

neuroimaging modalities, along with behavioural testing, to perform a comprehensive longitudinal 

analysis of multiple pathological features in the TgF344-AD rat model of Alzheimer’s disease. This 

manuscript aimed to determine if this rat model recapitulated major cognitive, neurochemical, and 

neuroanatomical features of human AD; the chronological order in which they appear; and the 

intersection of sex, genotype, and age. MRI, MRS, and behavioural testing were employed at 4, 10, 

16, and 18 months of age in male and female TgF344-AD rats. The TgF344-AD model 

demonstrated impaired spatial reference memory in the Barnes Maze by 4 months of age, followed 

by neurochemical abnormalities by 10 months and major structural changes by 16 months. This is 

the earliest report of cognitive dysfunction in this model and our detection of impaired spatial 

memory in particular fits well with documented complaints of early deficits in hippocampus-

dependent spatial learning and memory in human AD subjects (Chan et al. 2016; Lithfous et al. 

2013). This study is also the first to quantify the full neurochemical profile, including individual 

MM resonances. Metabolic changes included increased tCho and Lac, decreased tCr, Tau, and 

NAA/Ins, suggesting cell membrane degradation (tCho), increased anaerobic energy metabolism 

and/or altered mitochondrial energetics (Lac, tCr), and possibly neuroinflammation and/or neuronal 

dysfunction (NAA/Ins, Tau), all of which replicate well-documented phenomena in human AD 

(Yin et al. 2016; Mosconi 2013; Camandola and Mattson 2017; Marjańska et al. 2019). 
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Interestingly, MMs were previously shown to be modified with age in Chapter 3 but no significant 

differences were present between aging WT and TgF344-AD rats, suggesting that MM 

abnormalities are primarily a feature of aging and not AD pathology specifically. All 

neuroanatomical findings presented in this chapter are also novel, as the only existing study 

exploring brain structure in TgF344-AD rats was performed in a single-sex cohort (Anckaerts et al. 

2019). While TgF344-AD rats did not display notable cortical atrophy in our study, they did 

demonstrate atrophy in numerous limbic structures known to be affected by disease progression in 

humans (Jack et al. 2011; Callen et al. 2001), such as the hippocampus, basal forebrain, and 

hypothalamus. Finally, mild sex effects were present in MRI, MRS, and behavioural data, 

supporting previous reports indicating a role for sex hormones in the pathogenesis of AD (Podcasy 

and Epperson 2016; Filon et al. 2016; Rahman et al. 2019); Tg females demonstrated stronger 

pathological effects in several brain volumes and more cognitive impairment than Tg males, 

whereas sex effects on metabolite concentrations appeared to be the result of WT or Tg males 

differing from the other groups. The findings in this chapter support the use of MRI and MRS for 

the development of non-invasive biomarkers of AD progression, clarify the timing of pathological 

feature presentation in the TgF344-AD model, and advance the validation of the TgF344-AD rat as 

a highly relevant model for preclinical AD research, all of which represent significant contributions 

to the scientific community.       

In summary, the original work presented in this thesis describes the application of whole-

brain MRI and localized MRS to comprehensively investigate age- and sex-related changes in 

neurochemistry and neuroanatomy in the Fischer 344 rat, and the subsequent integration of these 

techniques with behavioural testing in the TgF344-AD rat model to distinguish the effects of aging 

versus Alzheimer’s disease pathology on neuroimaging and cognitive markers. This thesis 

thoroughly characterizes multiple neurobiological features of aging and AD in mixed-sex cohorts 

of two highly relevant rat models, contributing to our understanding of the complex changes 

underlying the aging process and progression of AD in both sexes. Importantly, the neuroimaging 

techniques employed throughout the three manuscripts are highly translatable to the study of other 

transgenic models of disease, as well as to human clinical studies, supporting the development of 

homologous biomarkers across species. This thesis therefore provides support for the use of MRI 

and MRS to detect age, disease, or intervention-related change which may be used to improve age- 

and disease-related outcomes in humans.  
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6.2 Limitations  
 

There are several limitations to the work described in this thesis that should be considered 

when interpreting the results and designing studies for further investigation of the topics addressed 

herein.  

First, there are limitations in translating findings in rodents to studies in humans given 

differences between species in neuronal network complexity, grey to white matter ratios, expression 

of gene polymorphisms, neurotransmitter distribution, and the complexity of cognitive functions 

and behaviour (Geerts 2009; Shineman et al. 2011). Behavioural findings in rodents are particularly 

difficult to translate to humans for a variety of reasons, including the high variability of behavioural 

metrics in both rodents and humans; a lack of standardization for testing protocols; and inherent 

difficulties in interpretation of subtle behavioural traits (e.g. does floating in the MWM reflect lack 

of motivation, reduced motor function, or cognitive impairment? Do human behavioural domains 

such as episodic memory, working memory, executive function, activities of daily living, etc., have 

reasonable endophenotypic analogs in animal models?) (Stephan et al. 2019; Vitek et al. 2020). 

Additionally, even in strains without transgene insertion, such as the Fischer 344 rat, their 

generation through inbreeding reduces genetic diversity and may reduce applicability to humans 

compared to outbred strains with more genetic variability, such as the Wistar rat (Gallagher et al. 

2011). As such, the extent of translation between preclinical and clinical results may vary depending 

on the strain of rodent used, the disease being modelled, and the outcome metrics being analyzed, 

and these factors should be taken into consideration when designing future studies.  

Second, while the TgF344-AD transgenic model, leveraged in this thesis, is a highly 

valuable tool for preclinical AD research and has been used extensively since its emergence in 2013 

(Cohen et al. 2013), translatability is limited as a result of how it was generated. As with most 

transgenic models of AD, the TgF344-AD rat was developed by means of insertion of mutant 

human transgenes known to cause familial AD, and therefore does not reflect the more common 

form of sporadic AD, which, while genetic risk factors exist, does not currently have a clear genetic 

cause (Selkoe 2011). Additionally, there have been discussions on whether a model developed in 

less genetically invasive ways, such as the McGill-R-Thy1-APP rat (reproduces extensive AD 

amyloid pathology with a single transgene (Leon et al. 2010)) is a closer model of sporadic AD 

than models like the TgF344-AD rat (developed using two transgenes) (Do Carmo and Cuello 
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2013). Finally, rodent models of sporadic AD exist and neuropathology develops as a result of 

expressing variants of genes known to be strong genetic risk factors (APOE, TREM2), but none of 

these models develops tau pathology or widespread neuronal loss (Nakai et al. 2021; Foidl and 

Humpel 2020). Therefore, given that no other rat or mouse model of AD, familial or sporadic, 

develops tau pathology without insertion of a human tau transgene, the TgF344-AD rat still 

represents an extremely useful and unique tool for preclinical research provided the caveat of only 

reflecting FAD is acknowledged. This model can still contribute to our understanding of the 

etiology and pathogenesis of sporadic AD without being directly translatable, just as studies in 

individuals with familial AD have informed studies on sporadic AD (Bateman et al. 2012; Gordon 

et al. 2018; Lee et al. 2013).     

Third, there are inherent limitations to the interpretation of outcome metrics obtained from 

the MR techniques employed in this thesis, generally as a result of spatial resolution. For example, 

while MRS is a unique and powerful method for directly quantifying brain tissue chemistry, the 

voxel is too large to determine the exact cellular origin (cell type) or location (intracellular or 

extracellular) of the MRS signal. This kind of cellular localization can be inferred using advanced 

diffusion-weighted MRS (Ligneul et al. 2019), but not using conventional in vivoMRS as employed 

in this thesis. With MRI we do not directly measure the cellular compartments whose properties we 

are trying to describe, but rather image contrast is used—which depends on tissue proton density 

and local tissue microenvironment—to make indirect neurobiological conclusions (Lerch et al. 

2017). Studies that combine MR techniques and immunohistochemistry experiments, genomic 

pathway analysis, and/or forms of in vitro metabolic profiling such as mass spectrometry (Kostidis 

et al. 2017; Bobinski et al. 2000), have contributed significantly to our understanding and 

contextualization of the cellular and molecular properties of MRI and MRS signals. In vivo 

neuroimaging (ideally using more than one MR modality) should continue to be combined with ex-

vivo or in-vitro studies to enhance interpretability whenever possible.  
 

6.3 Future directions  

6.3.1 Identifying multivariate features of aging and AD  

 Throughout this thesis we identified neurochemical and neuroanatomical changes that 

occurred as a result of aging (Chapter 3 and 4) and AD pathology (Chapter 5), many of which 
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were reported for the first time. Upon comparison of the individual manuscripts, a consistent theme 

appeared: some changes were specific to the TgF344-AD genotype, while others appeared in both 

the aging and TgF344-AD cohorts but were further exacerbated by the AD genotype.  

For example, Ins and Lac, both of which were increased during normal aging (Chapter 3), 

were further increased in TgF344-AD rats relative to WT littermates (Chapter 5). Additionally, 

the ratios of NAA/Ins and Asp/Glu were decreased and Tau was trending towards a decrease in 

aging Fischer 344 rats, and both were further decreased in TgF344-AD rats. Changes specific to 

TgF344-AD rats were increased total choline and decreased tCr. Similarly, several neuroanatomical 

changes with age described in Chapter 4 were intensified in the presence of pathology, as examined 

in Chapter 5, but with some exceptions that distinguished the two processes. For example, 

increased volume with age was identified within the aqueduct, dentate gyrus, and fimbria, while 

decreases were noted in the caudoputamen, hippocampus, and nucleus accumbens, and these 

changes were amplified in TgF344-AD rats. Structural trajectories that were distinct between aging 

rats and those with AD were decreased lateral septum, basal forebrain, and hypothalamus volumes 

in TgF344-AD rats, whereby the former two were unaltered with age in the Fischer 344 rat and the 

latter actually increased in the aging cohort.  

While qualitatively these patterns are present in the data, statistical examination and/or 

classification was not performed outside of using univariate methods. To explore the importance of 

these patterns in differentiating TgF344-AD rats from control rats, classification methods such as a 

random forest algorithm could be implemented on the separate imaging datasets or both together. 

This kind of analysis has previously been performed using neurochemical (14 metabolites) and 

neuroanatomical data from two brain regions in healthy controls and individuals with clinically 

confirmed AD (Marjańska et al. 2019). Random forests distinguished between the two groups with 

88% sensitivity and 97% specificity, using only neurochemical data, and the main predictors of 

clinical status were Asc, Ins, tCho, and NAAG. Interestingly, adding grey matter, white matter, and 

CSF volumes did not change the classification or increase performance, indicating the 

neurochemical profile was better suited for classification purposes in this particular study cohort.  

Data from this thesis would be well-suited for this type of classification analysis, 

particularly since a multi-modal approach has been shown to improve classification accuracy 

compared to a single modality approach (Tong et al. 2017). In particular, the comprehensive 

volumetric data (120 brain regions) and expanded neurochemical dataset (18 metabolites and 9 
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MMs) generated herein may improve classification sensitivity and specificity, and/or reveal 

previously unidentified neurochemicals or structures important for distinguishing between aging 

and AD phenotypes at the preclinical level.   

 

6.3.2 Developing a more comprehensive translational research platform   

 As reviewed by several authors (Scearce-Levie et al. 2020; Shineman et al. 2011; Vitek et 

al. 2020), there have been difficulties regarding translatability of preclinical findings to clinical 

outcomes, particularly regarding therapeutic approaches. The best-documented example are the 

many studies showing comparable reduction of Aβ levels in rodents and humans using anti-Aβ 

antibodies or secretase inhibitors, but the subsequent inability of these therapies to slow, halt, or 

reverse cognitive decline in AD patients while cognitive improvement was seen in the rodent 

models (Fitz et al. 2014; Boutajangout et al. 2019; Henley et al. 2009). Among the many reasons 

for the lack of translatability are the use of different modalities for assessing disease progression at 

the preclinical versus clinical level, and the nearly ubiquitous use of rodent models that do not 

capture the full spectrum of AD pathological features.  

While MRI and MRS serve as important non-invasive modalities capable of detecting and 

monitoring structural and biochemical abnormalities, MRS biomarkers are not currently widely 

used in clinical research settings due to the complexities of data acquisition, processing and 

interpretation (Cecil 2013). As discussed in section 2.1.3, the most widely used imaging modalities 

for AD in a clinical research setting are PET-based amyloid markers, and markers of neuronal 

injury, including FDG-PET and structural MRI (Teipel et al. 2015), while CSF levels of amyloid 

and tau are also frequently examined. Tau-based PET is also beginning to be employed in rodent 

models and in clinical studies (Schöll et al. 2016; Saint-Aubert et al. 2017; Chaney et al. 2021). 

Implementing these techniques longitudinally in relevant transgenic models of AD would be highly 

analogous to the design of clinical studies and would enable the translatability of novel therapeutics 

to be determined using the same biomarkers as are used in human clinical trials. Compared to mice, 

rat models are better-suited for these techniques due to their larger size, thus offering better spatial 

resolution for imaging, as well as easier CSF collection and analysis (Ellenbroek and Youn 2016; 

Vitek et al. 2020).  

 Two studies have recently been published that employed imaging techniques typically used 

in human AD studies in transgenic rat models. Parent et al. used resting state functional MRI (rs-
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fMRI) to characterize brain connectivity, PET[18F]FDG to detect glucose hypometabolism, 

PET[18F]NAV4694 to detect fibrillar amyloid, structural MRI to quantify hippocampal atrophy, 

behavioural testing to identify cognitive impairment, and CSF sampling to examine Aβ 

concentrations in male and female McGill-R-Thy1-APP rats at 9-11 and 16-19 months (Parent et 

al. 2017). Given that the McGill-R-Thy1-APP model does not display tau pathology, the authors 

were able to examine the effect of only brain amyloid on aspects of disease progression and 

concluded that this model recapitulates an abnormal biomarker profile, similar to that shown in 

human AD patients using the same techniques, despite lacking NFTs and widespread neuronal loss. 

A similarly comprehensive study by Chaney et al., used [18F]DPA-714, [18F]ASEM, [18F] 

Florbetan, and (S)-[18F]THK5117 PET imaging to assess neuroinflammation, the acetylcholine 

system, Aβ plaque deposition, and tau aggregation, respectively, along with MRS, behavioural 

testing, and immunohistochemistry in the TgF344-AD rat model at 6, 12, and 18 months (Chaney 

et al. 2021). This latter paper demonstrated, among other findings, that tau pathology in the TgF344-

AD model could be detected via PET, which adds another modality with which disease progression 

can be monitored in this model. However, several of the experiments conducted in this study used 

only single sex groups, so much of this data needs to be replicated in mixed-sex cohorts. Regardless, 

both studies indicated the ability to obtain meaningful neurobiological data by applying typically 

clinical-level techniques in rat models of AD and demonstrate the benefit of a multimodal approach 

to disease characterization. Both studies also took advantage of the opportunity provided by 

working with rodent models to perform immunohistochemical analyses, although unfortunately, 

correlative analyses with neuroimaging outcome measures were not performed. We attempted to 

perform correlative analyses between immunofluorescence data and neuroimaging and cognitive 

measures in Chapter 5 but were limited by a small sample size, so a larger study would be highly 

informative.   

As authors Chaney and Parent showed above, employing commonly used methods for 

studying human AD in rat models, particularly longitudinally, directly mimics the clinical 

approach. Knowing that methods such as amyloid and tau imaging, FDG-PET, or CSF sampling 

are equally applicable in rat models will allow for future work to use these techniques in other 

contexts, such as monitoring therapeutic efficacy or more closely staging the early or late aspects 

of disease progression. Additionally, combining longitudinal amyloid and tau imaging and CSF 

sampling with MRS (using the extended neurochemical profile employed here), and structural MRI 



 

 

217 

in the TgF344-AD rat (using the 120 brain regions examined in this thesis and recently developed 

rat atlas (Goerzen et al. 2020)), as well as employing age-centered models for analysis, would 

expand our understanding of the relative timing of imaging biomarker abnormalities in the TgF344-

AD model, and may support the development of MRS-based biomarkers in a clinical setting. 

Finally, given that MRS is the only imaging modality described here that remains “investigational” 

and is not routinely used to support AD diagnosis, despite evidence that it would prove helpful (Lin 

et al. 2005; Graff-Radford and Kantarci 2013; Marjańska et al. 2019), it could also be interesting 

to perform multimodal in vivo imaging in the TgF344-AD rat and then apply a classifier algorithm 

to determine if MRS performed similarly well to amyloid and tau PET imaging, or CSF markers.    

In addition to using biomarkers that are directly translatable to those used in humans, 

another way to facilitate more reliable translation between preclinical and clinical studies is the use 

of appropriate transgenic models of disease. While no transgenic model will perfectly capture the 

entirety of a human disease, there are several that recapitulate most features, and some that are 

better used for testing of specific disease targets and pathways (for extensive reviews, see (Vitek et 

al. 2020; Shineman et al. 2011)). As discussed in Section 2.2.3 of this thesis, the majority of existing 

rodent models only capture both disease hallmarks if a human tau transgene is inserted into their 

genome, such as the 3xTg rat (Oddo et al. 2003), which is not causative of AD in humans. The 

TgF344-AD model overcomes this limitation and develops tau pathology despite only harbouring 

mutated APP and PS1 transgenes. Finally, while writing the final sections of this thesis, a report 

was published that describes a new APP knock-in rat model of AD that spontaneously develops tau 

pathology, similar to the TgF344-AD rat (Pang et al. 2021). Extensive characterization of tissue 

pathology has been performed, and revealed the deposition of Aβ plaques, gliosis, tau pathology, 

neuronal apoptosis, progressive synaptic degeneration, brain atrophy, and cognitive deficits (Pang 

et al. 2021), indicating that this new APP knock-in model may serve as a second highly relevant 

transgenic rat model for studying the combined effect of amyloid and tau pathology on disease 

manifestation and progression. Knock-in models maintain the original murine genomic structure, 

except for the introduced mutations, and were developed to overcome issues intrinsic to models 

developed via overexpression of transgenes method, such as those used to generate the TgF344-

AD and McGill-R-Thy1-APP models (Scearce-Levie et al. 2020). For more information on knock-

in models, please see (Scearce-Levie et al. 2020; Saito et al. 2014; Sasaguri et al. 2017). Future 

work should include using in vivo imaging methods to study the APP knock-in rat, particularly in 
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comparison with equivalent experiments in the TgF344-AD rat model and/or the McGill-R-Thy1-

APP model. Comparison of multiple transgenic rat models would provide insight into the effect of 

only amyloid pathology versus amyloid and tau compounded (McGill-R-Thy1-APP versus 

TgF344-AD models) on in vivo biomarker profiles, as well as the effect of transgene overexpression 

versus genetic knock-in on phenotype development (TgF344-AD versus APP knock-in models). 

Even more interesting could be research comparing a model of familial AD to a model of sporadic 

AD, such as the APOE rat (Kulkarni et al. 2020) to examine the differences in disease manifestation 

and progression as a result of genotype. Excitingly, the APOE rat and the APP knock-in model were 

both developed on a Sprague Dawley background, meaning strain differences would not confound 

the results.  

   Finally, and this applies to all potential studies addressed in this section, intentionally 

including and investigating the influence of sex on outcome metrics at the preclinical level is 

incredibly important for ensuring translatability to human clinical studies. Only by including and 

studying both sexes can we capture the diversity of the pathophysiological mechanisms of disease, 

particularly when studying AD given that clear evidence exists for differences between the sexes 

regarding disease prevalence, presentation, and progression (Filon et al. 2016; Rahman et al. 2019). 

The consideration of sex as a variable would thus seem a necessary part of preclinical AD research, 

yet very few preclinical studies include both males and females, and even fewer explicitly examine 

the influence of sex (Coiro and Pollak 2019). For example, the incredibly comprehensive 

investigation of multiple in vivo biomarkers of disease in the TgF344-AD rat by Chaney et al. 

mentioned above included multiple experiments that were only performed in one sex, and the 

remaining experiments did not indicate the sex of the rats (Chaney et al. 2021), instantly reducing 

the interpretability and translatability of the data. Future preclinical studies in transgenic models 

must include both sexes for the findings to inform clinical research.  

 

6.3.3 Delving into molecular mechanisms and histological underpinnings of aging 

and AD pathology  

While existing in vivo biomarkers are incredibly useful for detecting pathological features, 

they do not provide much mechanistic information about the cellular and molecular processes 

underlying the pathology. This is where a variety of different histological, biochemical, and genetic 
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approaches come in, underlining the unique advantages of research at the preclinical level, where 

both in vivo and ex vivo approaches can be employed within the same subjects.  

 Perhaps the most large-scale method for future preclinical research is the use of 

transcriptomics and proteomics to identify specific genes and pathways implicated in the onset of 

AD in transgenic models. In humans, early genetic linkage studies led to the association of APP, 

PS1, and PS2 gene mutations with disease pathogenesis (Castanho et al. 2020). Since those 

discoveries, many genome-wide association studies (GWAS) have identified numerous gene loci 

that increase a person’s vulnerability to late-onset AD, the most well-known of which is APOE. 

Many other susceptibility genes have been identified that involve lipid homeostasis, immune 

regulation, mitochondrial function, cellular metabolism, and synaptic signaling, as well as several 

that are either directly or indirectly involved in the regulation of inflammatory mechanisms 

(Sleegers et al. 2010; Vitek et al. 2020; De Strooper and Karran 2016; Mattson 2004). Interestingly, 

the proteome and transcriptome can offer up distinct but complementary information; clusters of 

proteins correlating with AD phenotypes were distinct from those in RNA-directed networks, but 

many AD risk loci were identified in glial-related molecules in both the proteome and transcriptome 

of individuals with AD (Seyfried et al. 2017), further supporting the implication of microglial 

response pathways in disease pathogenesis (Scheltens et al. 2021; Lutz et al. 2019). Excitingly, at 

least two studies of this nature have been performed in transgenic models of AD. Castanho et al., 

studied the transcriptional signatures of two different mouse models of AD pathology, one 

expressing primary amyloid and the other expressing only tau neuropathology, across the majority 

of the mouse lifespan. Among their many findings, they identified gene co-expression networks 

associated with the progression of tau pathology that were enriched for pathways related to synaptic 

transmission, the immune system, and glial cell activation, many of which are similar to networks 

identified in human AD (Castanho et al. 2020). In a separate study, genome-wide transcriptional 

profiling of the insular cortex in 3xTg mice was performed, along with behavioural and biochemical 

profiling and identified specific sets of genes associated with amyloid deposition and cognitive 

decline (Yin et al. 2020). It is clear that transcriptional and proteomic profiling can provide 

significant insight into the mechanisms underlying disease progression, and thus would 

complement the use of in vivo methods in transgenic models.  

Findings from transcriptional or proteomic studies could also be used to inform what 

markers to look for using other methods, such as histology or biochemical assays. For example, 
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genes involved in mitochondrial and bioenergetic function have been identified in a number of  the 

aforementioned genome studies (Sleegers et al. 2010; Lambert et al. 2013; Vitek et al. 2020). 

Mitochondrial dysfunction can produce other AD-associated molecular features, such as increased 

oxidative stress (Swerdlow et al. 2014). Measures of oxidative stress can be obtained by monitoring 

lipid peroxidation or the presence of oxidized proteins by high-performance liquid chromatography 

(HPLC) (Sultana and Butterfield 2011; Shineman et al. 2011); these metrics could be compared to 

levels of GSH, a known antioxidant, measured by MRS. Other potentially important processes 

include ectopic cell cycle events (CCEs) and dysfunctional lysosomal and autophagy pathways. 

Varvel et al., examined the presence of CCEs in AD transgenic mice using cell cycle proteins cyclin 

A and D, along with NeuN (Varvel et al. 2009). CCEs play a major role in the loss of neurons in 

AD dementia (Yang et al. 2003), but it remains unclear if disrupted cell cycling plays a role in early 

disease progression as well. Similarly, defective autophagy (the major degradative pathway for 

organelles and proteins) and abnormal lysosomal system function has been identified in neurons in 

the brains of AD patients and evidence suggests dysfunction in these pathways at very early disease 

stages (Nixon and Yang 2011; Nixon and Cataldo 2006). Immunolabelling and western blot 

analysis of brain tissue from APPE693Q mice identified increased lysosomal proteins (LAMP-2, 

cathepsin D, and LC3), as well as increased conversion of LC3-1 to LC3-II, which is an 

autophagosomal/autolysosomal marker, indicating lysosomal pathology in this transgenic model 

(Kaur et al. 2017). Any of the aforementioned experiments could be performed in the TgF344-AD 

rat or APP knock-in model.  

There are also non-invasive ways to obtain more mechanistic information that could 

complement MRI and MRS findings. For example, inflammatory pathways have been heavily 

implicated in AD pathogenesis (Lambert et al. 2013; Sleegers et al. 2010; Krstic and Knuesel 2013; 

Heneka and O'Banion 2007), but authors often fall back on using histological methods to quantify 

microglial or astrocytic activation. However, 11C-PK11195 or 18F-DPA-714 PET imaging has 

been developed and used in rats to assess neuroinflammation in vivo, specifically microglial 

activation (Kong et al. 2016; Cui et al. 2009). Perhaps even more interesting is the use of diffusion 

weighted MRS (DW-MRS), which investigates the diffusion process of metabolites, a property that 

has been shown to differ depending on the structure of their microenvironment (i.e. is diffusion 

indicative of a metabolite being localized to a smaller space, like an astrocyte, or a large space, like 

a neuron) (Palombo et al. 2016). Excitingly, in a mouse model of reactive astrocytes, DW-MRS 
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was used to identify Ins as a specific astrocytic marker, enabling non-invasive detection of astrocyte 

hypertrophy based on its diffusion properties, results that were then confirmed by confocal 

microscopy ex vivo. On the other hand, lactate was found to be primarily astrocytic under control 

conditions but became predominantly neuronal in the case of astrocytic activity, suggesting 

remodeling of lactate metabolism (Ligneul et al. 2019). This type of approach in a transgenic rat 

model of AD could provide information on metabolic remodeling, as well as cell morphology.    

It is clear that any of the aforementioned methods could be used in conjunction with MRI, 

MRS, or other imaging modalities to improve interpretation of in vivo findings. In particular, a 

comprehensive study involving in vivo and ex vivo techniques could be leveraged to answer 

important questions regarding which features are the earliest to appear, and which represent suitable 

targets for disease-modifying therapies.   

 
6.3.4 Examination of early preclinical stage to identify earliest disease features and 

targets for preventative treatment   

The studies performed in this thesis were conducted from 4 to 18 or 20 months, covering 

much of the rodent lifespan after development to the beginning of senescence. The next step 

towards identifying the etiology of AD and identifying new targets for treatment is to perform 

comprehensive investigations of the earliest stages of the disease in transgenic models, before the 

accumulation of neuropathological hallmarks have even begun. There is substantial evidence 

demonstrating that amyloid deposition begins up to decades prior to the appearance of cognitive 

symptoms (Bateman et al. 2012; Jack et al. 2013), and if amyloid is not the causative factor, then 

the initiating event(s) will occur even earlier. The overwhelming lack of success of agents 

administered to patients already in MCI or dementia stages of AD (particularly anti-amyloid 

therapies) indicates that the most effective strategy for disease management will likely be to treat 

at very early stages of the disease, or even in a preventative manner for individuals who are at high 

risk (Sperling et al. 2014). Studies using early treatment paradigms have shown promise over 

treatment administered late into disease progression. For example, administration of anti-amyloid 

antibodies in 3xTg mice reduced plaque load and even cleared tau pathology, but tau clearance was 

dependent on phosphorylation state and treatment once tau was hyperphosphorylated was 

ineffective (Oddo et al. 2004). Similarly, only early administration of non-steroidal anti-

inflammatory drugs (NSAIDs) (Naproxen and Ibuprofen) blocked ectopic neuronal cell cycle 
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events (CCE) which mark vulnerable neuronal populations, whereas late treatment failed to reverse 

existing CCEs (Varvel et al. 2009), again suggesting early intervention is more effective at 

mitigating aspects of disease progression. In fact, our lab has also examined the effect of early 

versus late administration of NSAIDs in the TgF344-AD model on the progression of neuroimaging 

markers and cognition. While this study is not yet published, preliminary results suggest early 

treatment is more effective than late treatment at mitigating disease-dependent changes in 

metabolite concentrations. The analysis and publication of that data, along with the MRI and 

behavioural results, will represent the first study to examine the outcome of early versus late NSAID 

treatment in the TgF34-AD model. Even in humans, this hypothesis of effective early treatment has 

been shown: administration of Naproxen in cognitively normal individuals reduced their risk of 

developing AD over a 3-year span, whereas treatment in individuals with MCI and AD resulted in 

accelerated cognitive decline (Breitner et al. 2011).  

Given the promising results in these and other early treatment paradigms, there is a need to 

continue to explore alternative biomarkers that reflect early pathological changes and may represent 

new therapeutic targets, such as CCEs or the inflammatory response, while also working to develop 

non-invasive biomarkers that can be translated from preclinical to clinical studies. There has been 

much discussion in previous sections and throughout this thesis of MRS meeting these needs, as it 

may detect changes reflecting many biological processes at earlier stages than other neuroimaging 

methods and is a non-invasive technique. However, MRS or other non-invasive modalities should 

be combined with additional methods that can provide more mechanistic information, such as 

immunohistochemistry or transcriptional analysis of brain tissue. As such, these initial experiments 

will need to be performed in transgenic models. In order to avoid the majority of the developmental 

stage (which could confound biomarker readings) while still taking place before amyloid or tau 

pathology appears, these experiments could be performed as early as six to eight weeks in the 

TgF344-AD model, McGill-R-Thy1-APP model, and APP knock-in models (Cohen et al. 2013; 

Leon et al. 2010; Pang et al. 2021). These early-stage studies, incorporating as many of the 

suggestions identified in this Future Directions section as possible (multiple and or new transgenic 

rat models, studying both sexes, using several imaging methods combined with genomic, 

biochemical, and histological analyses) represent the best next step towards better understanding 

AD etiology, developing early biomarkers, and identifying new targets for disease-modifying 

therapies.  
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