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Abstract

Nanomaterials are being used in more and more applications and questions regarding the

destiny of excited charges in these systems has become more pressing than ever. As the

physics of confined carriers in traditional, II-VI systems comes to an almost full under-

standing, perovskite based nanocrystals have emerged as the new promising platform.

In this thesis I present a brief overview of nanocrystal physics in two systems; covalently

bound CdSe, and ionically bound CsPbBr3 perovskites.

CdSe is a benchmark for comparison to other systems due to its well-resolved

excitonic peaks and solid theoretical foundation. Perovskite nanocrystals are novel sys-

tems that show quantum confinement and high photoluminescent quantum yield, whose

material properties are being intensely studied. These two systems are examined and con-

trasted with ultrafast, state-resolved pump-probe spectroscopy. These results and their

implications to quantum confinement and material physics will be discussed. Interesting

phenomena emerge, related to electron-lattice coupling, quantum confinement, exciton

relaxation and Auger recombination.

In the last chapter of this thesis, I present results from multi-dimensional spec-

troscopy. By using an OPA-driven hollow core fibre, tunable, broadband pulses are gener-

ated that are ideal for multi-dimensional spectroscopy. A characterization of this source

and initial results on CdSe quantum dots demonstrate the expansion of this powerful

spectroscopy to new samples.
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Abrégé

Les nanomatériaux sont utilisés dans de plus en plus d’applications et les questions qui

concernent le destin des charges excitées dans ces systèmes sont devenues plus urgentes

que jamais. Alors que la physique des porteurs confinés dans les systèmes II-VI tradition-

nels arrive à une compréhension presque complète, des nanocristaux à base de pérovskite

sont émergés comme la nouvelle plate-forme prometteuse. Dans cette thèse, je présente

un bref sommaire de la physique des nanocristaux dans deux systèmes; CdSe avec ses

liaisons covalentes et CsPbBr3 perovskites avec ses liaisons ioniques.

CdSe est un système de référence pour comparaison aux autres systèmes dû

a ces pics excitoniques bien résolus et solide fondation théorique. Les nanocristaux de

pérovskite sont de nouveaux systèmes qui présentent un confinement quantique et un

rendement quantique photoluminescent élevé, dont les propriétés matériaux sont le su-

jet d’intenses études. Ces deux systèmes sont examinés et mis en contraste avec une

spectroscopie pompe-sonde ultra-rapide avec résolution par état. Ces résultats et leurs

implications pour le confinement quantique et la physique des matériaux seront discutés.

Des phénomènes intéressants émergent, liés au couplage électron-réseau, au confinement

quantique, à la relaxation des excitons et à la recombinaison Auger.

Dans le dernier chapitre de cette thèse, je présente des résultats de la spectro-

scopie multidimensionnelle. En utilisant une fibre à centre-creux pilotée par un amplifica-

teur paramétrique, des impulsions accordables à large bande sont générées, idéales pour

la spectroscopie multidimensionnelle. Une caractérisation de la source et les premiers

résultats sur les boı̂tes quantiques de CdSe démontrent l’expansion de cette puissante

spectroscopie à de nouveaux échantillons.
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Martin Otto, Laurent René de Cotret, and Mark Stern. I am grateful to my thesis com-

mittee, Bradley Siwick and Gonzalo Cosa. They provided useful insight and made sure I

was on the right track with my research.

Lastly, I must thank my supportive and patient wife Caroline King. She took on

plenty of extra dog walks and lonely suppers to make this work possible. Here’s to the

next experiment!

iv



Table of Contents

Abstract i

Abrégé ii
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The power of ultrafast spectroscopy in

materials science

Materials science of nanostructures is a broad discipline spanning physics, chemistry, bi-

ology, engineering, statistical thermodynamics and applied mathematics. On the nanoscale,

many physical properties change. Surface area becomes very large relative to crystal vol-

ume, with implications for catalysis, surface states, mechanical and thermal properties.

Thermal fluctuations also play a large role in the synthesis and stability of nanosystems.

Important classes of nanosystems are nanocrystals, small crystals with dimension less

than 100 nm. Nanocrystals have been used for multi-photon upconversion in lanthanide-

doped systems [1, 2], allowing super-resolution multi-photon microscopy [3], localized

plasmon enhanced light absorption in metal nanoparticles [4], antimicrobial coatings

from wide band gap nanocrystals [5], quantum computing [6] and cryptography plat-

forms [7, 8] in epitaxially grown nanosystems, light emitting systems now being used

in consumer electronics [9] and solar photovoltaics [10]. Some of these applications are

shown in figure 1.

All of these systems behave differently, and their interesting properties arise for

different reasons. In metal nanoparticles, such as gold or silver nanoparticles, the elec-

trons can move collectively and respond to electromagnetic radiation like a liquid being

sloshed in a bucket. This collective response is called a plasmon, and has resonant be-

1



Figure 1: Various applications of nanocrystals across physics, chemistry, and engineering.

a Lanthanide doped nanocrystals undergoing photon upconversion. These samples are

all pumped in the IR but emit visible light. b Gold nanoparticles are responsible for the

deep red color in many ceramics, such as this teapot from the 17th century. c Nanocrystals

have been used in transparent solar photovoltaics. Here Si nanocrystals, shown on the

left, are the active layer in the solar cell on the right. d In wide bandgap materials high

energy electrons and holes can be used to drive chemical reactions on the nanocrystal

surface. e Nanocrystals can be tuned through size or composition to emit over the entire

visible spectrum, providing greater color purity than previous standards. f This color

purity has inspired the use of nanocrystals for lighting and displays, such as this QLED

television. Figures reproduced from [2](a), [11](b), [12](c), [13](e) and [9](f)

2



haviour. The frequency of this resonance is size-dependent, and this is the principle way

that optical behaviour of metal nanoparticles changes with size. This plasmon resonance

has been used in nanomedicine. An injection of metal nanoparticles is relatively harm-

less, until they are heated by an outside laser to create highly localized tissue damage, for

example at the site of a tumour [14].

Wide-gap nanocrystals, such as TiO2, usually act in a catalytic way or as an oxy-

gen sensitizer. Here, absorption of a UV photon creates an excited electron with lots

of potential energy. This can then react with oxygen to form triplet oxygen, which has

antimicrobial properties. This highly excited electron can also be used to break down

pollutants or organic compounds, which has found an application in self cleaning con-

crete [15]. The high reactivity of these nanocrystals is due to their large surface area;

excited charges in the core of the nanocrystal quickly react with adsorbed species on the

nanocrystal surface.

Perhaps the most scientifically interesting applications of nanocrystals are in

opto-electronics. Here quantum confinement tunes the optical absorption and emission

of the nanocrystal. When quantum confinement effects are important, the nanocrystal

is referred to as a quantum dot (QD), and these act as artificial atoms. The electronic

wavefunctions in a QD have similar forms to atomic orbitals, and discrete states fan out

as quantum dots decrease in size. This creates a platform for tunable optical properties,

simply change the size of the QD so that transitions are at the desired wavelength. These

systems are also bright emitters, with appropriate synthesis photoluminescence quantum

yields can be in the range of 0.8 - 0.95. Quantum dots can be grown either epitaxially, as

strained islands between buffer layers in III-V materials [16], or through nucleation in a

solvent [17].

To study optical properties, the most obvious tool is optics. By interrogating

these opto-electronic nanosystems with light it is possible to find absorption resonances
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and emission spectra. By using coherent, monochromatic laser radiation it is possible

to do Raman spectroscopy and determine phonon spectra [18] and surface coupling [19].

Through short, single nanosecond pulsed excitation it is possible to determine the lifetime

of the excited state. To capture the earliest events, such as relaxation through a manifold

of excited states, it is necessary to use ultrafast lasers with pulses on the order of 100 fs in

duration. With this incredible temporal resolution it is possible to watch electrons relax

from one state to the next, or see the atomic nuclei move to accommodate a new charge

distribution.

In this thesis I will explore some of the important concepts in ultrafast spec-

troscopy of nanocrystals and show data and results drawn from my own research. Using

state-resolved pump/probe spectroscopy I explore the ultrafast dynamics in CdSe and

CsPbBr3 systems. In my research I have also used multidimensional non-linear spectro-

scopies, and I report experimental developments I have made in that area. The results

presented here highlight the importance of the lattice response to an excited charge. If the

response is underdamped there is little charge-screening. On the other hand, if the lattice

is highly damped, excited charges will be confined by the displaced lattice potential. The

deformed lattice potential can cause quantum confinement effects in systems that are not

in a quantum size regime.
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Chapter 1

Physics of Nanocrystals

To understand the spectroscopy of nanocrystals and quantum confined structures, it is

necessary to know the energy level structure of these systems. For confined structures

that are in a quantum dot regime, rather than a molecular regime, it is easiest to start

from the level structure of a bulk solid, then add confining potentials as a perturbation to

the bulk band structure. In this chapter we will explore the well known physics of both

covalent II-VI quantum dots and ionic perovskite-based quantum dots.

1.1 Band theory of bulk semiconductors

The defining characteristic of any crystal is its periodicity. The repeating motif of the crys-

tal unit cell and its periodic boundary conditions is imparted to the quantum mechanical

properties of the material. The energy structure and wavefuntion both take on the period

of the lattice. This is described using equations 1.1-1.4, where Ψ is the total wavefunction,

n is an integer, and ~a is the lattice constant. This periodicity is the motivation for a plane

wave expansion:
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U(~r) = U(~r + n~a) (1.1)

⇒ |Ψ(~r)|2 = |Ψ(~r + n~a)|2 (1.2)

⇒ Ψ(~r) = uk(~r)e
i~k·~r (1.3)

=

π/a∑
k=−π/a

Cke
i~k·~r (1.4)

Where the envelope function uk(~r) is periodic, uk(~r) = uk(~r + n~a). For a crystal of dimen-

sion Lx×Ly×Lz, the values of ~k that are allowed in equation 1.4 are given by the periodic

boundary conditions.

~k =
2πnx
Lx

axx̂+
2πny
Ly

ayŷ +
2πnz
Lz

az ẑ (1.5)

Here the set of integers ni range between ±Ni/2, and x̂, ŷ, and ẑ are unit vectors. The

conditions in equation 1.5 ensure that |Ψ(~r)| = |Ψ(~r + ~a|.

1.1.1 Tight-Binding Model

The wavefunction of any crystal must satisfy equation 1.1. As a specific example, let us

take a tight-binding approach to solve for the electronic energy levels of a solid. In the

tight-binding model, the electrons at a given lattice site are tightly bound to the atomic

potential, and there is only a small wavefunction overlap with neighboring sites. This

means the actual potential can be treated as a perturbation to the atomic potential, and

the atomic orbitals should form a good basis set. This is in opposition to a free-electron

approximation, where there is significant overlap between sites and electrons travel from

site to site very easily. Given a cubic structure crystal of only a single atomic species, e.g
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Si or Ge, the energy of an electron in an s orbital in this lattice is Es, the isolated orbital

energy, minus a bonding energy, ∆, that is shared with its’ 6 nearest neighbours.

H =
5∑

n=0

Es |n〉 〈n| −∆ss |n〉 〈n± 1| (1.6)

The relations in equation 1.1 show that |n± 1〉 = |n〉 e±i~k·~r. Substituting this back

into equation 1.6 yields the following Hamiltonian relation, now for a single lattice site:

E(~k) = Es −∆ss

5∑
n=0

ei
~k· ~rn (1.7)

= Es − 2∆ss cos
(
~k · ~a

)
(1.8)

A similar approach can be used to find the energy of p orbitals, sp orbitals, and

other excited orbitals. This leads to a band diagram that resembles the one shown in fig-

ure 1.1. Including interactions from the eight diagonal neighbors of the lattice site and

between more electronic orbitals will produce a more accurate prediction of energy.

Figure 1.1: A molecular Orbital diagram for an infinite crystal of CdSe. The valence band

is made up of Cd 5s orbitals, and the conduction band is made up of Se 4p orbitals.
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1.1.2 Nearly Free Electrons

Another way to think of electronic structure in crystals is by thinking of electrons as mov-

ing freely through the solid. The dispersion relation of a freely moving electron is given

by the well known form εk = ~2k2
2me

. The effect of the lattice is twofold: to change the

effective mass of the electron, and to introduce electronic bands.

For certain values of the wavevector, the electronic wave couples resonantly with

the lattice wave, leading to standing wavefunctions and an energy gap. This occurs when

~k = ±nπ/~a. A formal description of this approach for a single electron in one dimension

is developed below, largely following that of Kittel’s Introduction to Solid State Physics [1].

Free electron wavefunctions and energies will form the basis set for this ap-

proach, as opposed to atomic orbitals in the tight-binding approach. These are given

by equations 1.10.

ψk(~r) = ei
~k·~r (1.9)

εk =
~2

2me

k2 (1.10)

For a crystal potential U(x), the potential will have the same period as the lattice,

i.e. U(x) = U(x + a). Because of this periodicity, the potential can be expanded in the

reciprocal lattice vectors G.

U(x) =
∑
G

UGe
iGx (1.11)
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According to the Bloch theorem, and the periodic boundary conditions of the

lattice, the solution to the Schrödinger equation must have a particular form:

ψk(~r) = uk(~r)e
i~k·~r (1.12)

With uk(~r) having the period of the lattice, i.e. uk(~r) = uk(~r + ~a).

This form of the potential can be substituted directly into the time-independent

Schrödinger equation, as in 1.15. In combination with our electronic basis set, given by

equation 1.1, we have:

(
−~2

2me

∂2

∂x2
+
∑
G

UGe
iGx

)
ψk(x) = εψk(x) (1.13)(

−~2

2me

∂2

∂x2
+
∑
G

UGe
iGx

)∑
k

Cke
ikx = ε

∑
k

Cke
ikx (1.14)

⇒
∑
k

(
~2k2

2me

− ε
)
Ck +

∑
k,G

UGCke
Gx = 0 (1.15)

Because this sum holds for all k, we can simplify to the central equation:

(λk − ε)Ck =
∑
G

UGCk−G (1.16)

With λk = ~2k2/2me. Here the Ug can be interpreted as the various harmonic

Fourier components of the lattice potential. For a sinusoidal potential, U(x) = U cos(πx/a),

There would be only one Fourier component to the potential and the Hamiltonian takes
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the form below:

H =


U λk−1 U 0 0 · · ·

0 U λk U 0 · · ·

0 0 U λk+1 U · · ·
...

...
...

...
... . . .


(1.17)

The eigenvalues of this matrix can be labelled εnk. For each value of k, there is

now a spectrum of energy states available, instead of simply ~2k2/2me. The subscript n

refers to one particular solution of equation 1.17 for a given k. Across a single n, the k de-

pendence to the energy will yield a quasi-continuous band of states. At a single k, there

will be large discrete jumps in energy going from one band to another. This is depicted in

Figure 1.2a. It is clear that the εnk are periodic in k, which should be expected. To simplify

things, it is conventional to only look in the region k ∈ [−π/a, π/a], as in figure 1.2b.

It should further be noted, that since an optical photon carries very little mo-

mentum compared to band edge electrons, only direct, vertical transitions in k-space are

allowed. Indirect transitions require a lattice vibration or phonon to be born or annihi-

lated with the photon to compensate the extra momentum associated with moving over

in k-space, and these have much smaller probabilities. Both types of transition are shown

in figure 1.2b.

1.1.3 Effective Mass Approximation

No matter the approach for calculating bands and energies, it is often the case in semicon-

ductors that band edges are nearly parabolic in shape, particularly near the band edge.

This gives rise to the useful concept of an effective mass. For k near the band edge, which
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Figure 1.2: Band structure from a periodic potential. a For each k there is a discrete set

of solutions to equation the central equation. b Because of the periodicity in k-space, it

is sufficient to look at the zone k ∈ [−π/a, π/a]. Filled states are depicted by gray filled

curves. Shown in blue is a direct transition, and in red an indirect transition.

is where all of the interesting physics takes place, the dispersion relation is as follows:

E(k) ≈ ~2k2

2m∗
(1.18)

with m∗ the effective mass. This is directly analogous to the energy of a free particle,

leading to the relation

m∗ = me

[
∂2E

∂k2

∣∣∣∣
BE

]−1

(1.19)

Where ∂2E
∂k2
|BE is the band curvature evaluated at the band edge. The concept of an effec-

tive mass is central to describing the transport and behaviour of charge carriers in these

materials, as will be seen below.
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1.1.4 Excitons

To understand the last important term needed to calculate the energy spectrum of a quan-

tum dot, we must introduce the idea of holes as charge carriers. A hole is simply an elec-

tron vacancy. Holes exist in the valence band, since the electrons from which they are born

reside there. Holes carry the effective mass associated with the valence band, and have a

positive charge. The most important source of holes in the context of opto-electronics are

those created through photo-excitation. Here a photon of sufficient energy is absorbed,

exciting an electron from the valence band to the conduction band. This leaves a hole

behind in the valence band and an electron in the conduction band.

After the creation of an electron-hole pair, they will feel each others charge, and

undergo Coulomb attraction. The Hamiltonian of this Coulomb attraction in the effec-

tive mass approximation is directly analogous to the hydrogen atom, only the mass of

the particles are replaced by effective masses, and the material permittivity replaces the

permittivity of free space. This is written explicitly below:

Hcoul =
−~2e2

εµ|re − rh|
(1.20)

With µ the reduced mass of the electron/hole pair, µ = m∗em
∗
h/(m

∗
e+m∗h). In bulk semicon-

ductors this leads to a series of states with energies En = RX/n
2, where RX is the binding

energy.

RX =
µ

m0ε2r
Ry (1.21)

In equation 1.21 Ry is the usual hydrogen atom Rydberg energy of ∼ 13.6 eV and εr the

relative permittivity.

Since exciton binding energies are often on the order of 5-50 meV, they may be

thermally depopulated and it is often necessary to cool samples to cryogenic temperatures

for unambiguous observation of bulk excitons. However, as the lowest excited states,
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they play an enormous role in semiconductor physics. To continue the analogy with the

hydrogen atom, the excitonic radius can easily be calculated for a given crystal lattice,

with a0 the hydrogen atom Bohr radius of 0.53Å.

aX =
m0εr
µ

a0 (1.22)

Two important classes of excitons exist in bulk semiconductors, based on their

size:

• Small Frenkel excitons, whose Bohr radius is on the order of the unit cell size. These

will be bound to a single lattice site and have limited mobility. They tend to be

found in materials with low εr, where the lattice is ineffective at screening charge.

• Large Wannier-Mott excitons, whose Bohr radius is larger than the unit cell size.

These tend to diffuse through the crystal, and can contribute to energy transport

but not charge transport. They tend to be found in materials with high εr, where the

lattice effectively screens excited charges.

1.1.5 Electron-phonon coupling in semiconductors

An electronic excitation will couple to the nuclear system, causing the lattice to move in

order to accommodate the new charge distribution. If the coupling is weak, the lattice

will have a small displacement and oscillate around a new equilibrium arrangement. The

lattice oscillations, or phonons, are a delocalized phenomenon. If the coupling is strong,

the lattice will rapidly rearrange itself in the immediate vicinity of the excited charge

rapidly (with timescale on the order of the phonon period). This excited charge dressed

with a distorted lattice is commonly referred to as a polaron, a localized quasiparticle.

Polaron formation can be thought of as the solid-state equivalent of solvation in liquids.

15



In analogy with solvation, polaron formation is determined by crystal polarity. Polar,

ionic crystals tend to couple strongly to excited charges. Less polar covalent crystals

have weak coupling and tend to couple to the atomic lattice through delocalized coherent

phonons.

Polaron formation has several effects on the excited charge, from increased mass[2]

to improved transport properties[3]. The physics of this problem was first described by

Herbert Fröhlich in 1954 [4] and expanded upon by Richard Feynman soon afterwards

[5]. These two works state the problem in terms of a free electron coupled to a phonon

gas, and solve the Hamiltonian for the lowest energy using variational methods. The size

of the lattice distortion, and whether or not it is coherent, is of great interest to material

scientists [6]. Lattice screening is thought to give rise to defect tolerance and impressive

carrier mobility in halide-perovskite materials [7, 8]. The strength of this coupling is given

by equation 1.23 [4].

αe−ph =
e2

~

(
1

ε∞
− 1

ε0

)√
m∗

2~ωLO
(1.23)

Where ε∞ and ε0 are the optical and static dielectric constants, m∗ is the carri-

ers reduced mass, and ωLO is the LO phonon frequency. The most important term in

equation 1.23 is the term in brackets, (1/ε∞ − 1/ε0). This is the lattice screening, the differ-

ence in dielectric constants at fast, electronic frequencies and slow, nuclear frequencies.

For example, the static and optical permittivities of GaAs are 13.1 [9] and 10.89[10], re-

spectively, while CH3NH3PbI3, the prototypical perovskite for photovoltaics, has a static

dielectric constant of ≈70, and an optical dielectric constant of ≈ 8 [11]. In general, ionic

compounds have significantly larger αe−ph than covalently bound compounds, and a few

examples are given in table 1.1.

Formation of a polaron also causes an increase to the carrier effective mass, as

the carrier now has to displace the lattice as it moves around the crystal. The new effective
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Covalent Material αe−ph Ionic Material αe−ph
InAs 0.052 AgBr 1.53
GaAs 0.068 KI 2.50
ZnSe 0.43 CsPbBr3 2.64(e−) 2.76 (h+)
CdS 0.53 SrTiO3 3.77

Table 1.1: Frölich coupling constants for ionic and covalent crystals

mass is given by equation 1.24, in the limit of α . 10 [4, 5].

mp ≈ m∗
(

1 +
α

6

)
(1.24)

There is also a binding energy associated with the lattice displacement that fa-

vors the formation of a polaron; this is given by equation 1.25

∆E

~ωLO
≈ −α− 0.0159α2 (1.25)

Much like excitons, polarons can either be large or small. Large polarons span several

lattice sites, and can be coherently transported. Small polarons are bound to a singular

lattice site, and require thermal energy to hop from site to site. This produces a qualitative

difference in thermal transport measurements, large polarons have decreased mobility

with temperature while small polarons have increased mobility with temperature [3, 12].

This makes the polaron radius an important parameter, and is given by the following

relation [4]:

lp =

√
~

2m∗ωLO
(1.26)

This formalism of electron-phonon coupling is important for describing the in-

teraction of charge carriers with lattice potentials. The central parameter, αe−ph, through

the term 1/ε∞ − 1/ε0, describes the ability of the slow lattice to screen the field of a fast

electronic charge. Polar, ionic lattices do this very well. Covalent lattices much less so.
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This has important consequences on the nature of excited state dynamics in these materi-

als, as will be shown in chapter 5.

1.2 Quantum mechanics of a Semiconductor Nanocrystal

The quantum states of a semiconductor nanocrystal start with the bulk Bloch states de-

veloped above. This requires a consideration of the material band structure, i.e the band

degeneracy, electron total angular momentum in those bands, and which bands con-

tribute to which optical transitions. For optical transitions it is also necessary to con-

sider electron-hole attraction in their mutual Coulomb potential. On top of this already

rich structure, we dress the wavefunctions with an envelope function that arises from the

boundary conditions of the nanocrystal. Before continuing with this development, it is

useful to make a note about terminology. Many researchers reserve the term ”nanocrys-

tal” for any small crystal, with dimensions up to 1000 nm, reserving the term ”quantum

dot” for any crystal displaying a spectrum of quantum confined states. Here, we will treat

the general case of a nanocrystal in developing theory, but in discussing experimental re-

sults I make an effort to distinguish the specific case of quantum dots where appropriate.

1.2.1 Particle in a Sphere

As the physical size of a semiconductor is reduced, the surface of that nanostructure be-

comes more and more important. The most important effect of a reduced size is quantum

confinement. This is simply the problem of a particle in a box added to the effective mass

approximation of the infinite crystal lattice. The problem of the particle in a rectangular

box is a standard undergraduate quantum mechanics problem, and its precise statement

and solution will not be described here. However, it is important to review the important

aspects.
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• For an infinite square well, the wavefunction goes to zero at the box boundaries.

• The nth eigenstate state of a particle of mass m in a box of length L has energy En

given by

En =
~2π2

2mL2
n2 (1.27)

• The nth level will have n− 1 nodes in its’ wavefunction.

For spherical nanocrystals, the problem must be re-framed in spherical coordi-

nates (r, θ, φ). The mathematics of this are developed below, for a nanocrystal sphere of

radius R.

Hψ =Eψ (1.28)

⇒
[
− ~2

2m
∇2 + V (r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ) (1.29)

V (r) =


0 r < R

∞ r ≥ R

Using spherical coordinates the angular momentum operator l̂ comes about naturally.

~2∇2 =
~2

r2

∂

∂r

(
r2 ∂

∂r

)
− l̂2

r2
(1.30)

The solution to equation 1.29 can be found through separation of variables, i.e. we assume

ψ(r, θ, φ) = f(r)g(θ, φ). This yields the following form of equation 1.29.

l̂2

2mr2
g(θ, φ) = Eg(θ, φ) (1.31)

[
− ~2

2m

(
1

r2

∂

∂r
r
∂

∂r
− l̂2

~2r2

)
+ V (r)

]
f(r) = Ef(r) (1.32)
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The spherical harmonics, Y m
L (θ, φ), are solutions to the angular part (equation

1.31) and the spherical Bessel functions, JL(kn,Lr) are solutions to the radial part (equation

1.32). Quantization comes from the boundary conditions, ψ(r = R) = 0. To satisfy this

condition the radial function must go to zero at the nanocrystal boundary, JL(kn,lR) = 0.

All order of Bessel functions have multiple zeroes, and the quantization in n comes from

which zero is used. To reflect this, we introduce the argument knL = αnL/R where αnL is

the nth zero-crossing value of Jl. This idea is depicted in figure 1.3. Shown are the first

3 wavefunctions for L = 0 in figure 1.3a and L = 1 in figure 1.3b. These are very similar

to hydrogen wavefunctions, in the number of nodes and the angular dependence of the

wavefunction. The labelling of angular momentum states follows that of atomic orbitals,

L = 0, 1, 2 are s, p, d states with projections m = −L,−L+ 1, · · · , L− 1, L.

Figure 1.3: The first three radial wavefunctions for the particle in a sphere for both a

L = 0, S states and b L = 1, P states.
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The eigenenergies of this Hamiltonian are given by:

En =
~2π2

2mR2
n2 (1.33)

The energies given by equation 1.33 are remarkably similar to those found in

equation 1.27, the energies of a particle in a box. One finds the same dependence in n and

the same 1/L2 dependence on the dimension of the confinement.

1.2.2 Covalent II-VI Quantum dots

One of the best platforms for quantum dots in terms of size-tuneability, stability, polydis-

persity, and ease of synthesis is CdSe. In fact, the entire family of II-VI semiconductors

has been explored for research and application purposes. In terms of electronic structure

all II-VI compounds are similar, and the development below can largely be applied across

the family, with substitution of appropriate parameters (effective masses, band gaps, di-

electric constants, etc.). PbSe is an important exception, relativistic effects of the Pb atom

alter the ordering of atomic levels, and ultimately creates an 8-fold degenerate 1st exciton

instead of the 2-fold degenerate case in other systems[13]. The approach below follows

that of Efros and Rosen [14]. Bergman’s Handbook of Luminescent Semiconductor Materials

is another good reference that covers effective mass and band mixing approaches as well

as atomistic calculations [15].

The band structure of II-VI compounds is the starting point. This is shown

schematically in figure 1.4 a. There is only 1 low lying, two-fold spin degenerate con-

duction band composed of II-type s-orbitals. Conduction electrons thus have j = 1/2.

The valence band is more complicated; it is essentially composed of VI-type p-orbitals.

Because the valence band electrons have l 6= 0, there is a spin-orbit effect in the valence

band, creating a low energy, two-fold degenerate p1/2 band and a higher energy, four
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Figure 1.4: The energy levels of a II-VI quantum dot. a The bulk band structure has a

single conduction band, and three valence bands. b The effect of strong quantum con-

finement is to increase the band gap and create a spectrum of discrete states. c The fine

structure of a CdSe quantum dot.

fold degenerate p3/2 band, with subscripts referring to electronic total angular momen-

tum j = l + s. The lower energy band is labelled the split-off band, and is separated by

the split-off energy, ∆SO. For crystals with hexagonal or wurtzite symmetry, a particular

spatial axis will have a different effective mass. The effect of this is to create two sub-

bands from the higher j = 3/2 valence band, a so-called heavy-hole and light-hole with

different projections of j along the crystal axis.

This level of theory is sufficient to calculate the energy of the first optical tran-

sition. The initial theoretical work of Louis Brus is qualitatively correct and captures the

important size-dependence of the excitonic states [16]. A more complete calculation, in-

cluding band mixing, was performed by Efros and Rosen [14]. More modern methods

can calculate levels from an atomistic, ab. initio approach for the smallest QDs [17]. In
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the Brus model the energy of the lowest optical transition for a quantum dot of radius R

is given as the sum of three terms:

E = Eg + Econf + Ecoul (1.34)

= Eg +
~2π2

2R2

[
1

m∗e
+

1

m∗h

]
− 1.8e2

εR
(1.35)

Where Eg is the bulk energy gap. The Coulomb term is found by averaging over 1S

wavefunctions in a variational approach. Notice that the confinement energy applies to

both electrons and holes in equation 1.35.

The Efros and Rosen model is discussed below for strongly confined systems.

Here the angular momentum of not only the band edge, but higher lying states as well, is

taken into account and allows the assignment of optically bright and dark transitions.

The effect of confinement is to increase the band gap and create a series of dis-

crete, well separated states from the continuum. This is applied to the conduction and

each of the three valence bands. Because each band has a different effective mass, they

are all affected differently by confinement. Notably, electrons have a smaller effective

mass, and are thus more confined than holes. States are labelled by the quantum number

of the particle in a sphere angular momentum and quantum number, with a subscript

denoting the electronic band angular momentum projection. Since the conduction band

has only j = 1/2 angular momentum, the subscript e is used instead. The conduction

band states are thus labelled |nLe〉 and valence bands
∣∣nL1/2

〉
or
∣∣nL3/2

〉
. This series of

states is depicted in figure 1.4b. To assign and understand optical spectra, the next step

is to apply optical selection rules. This produces the optical transitions shown in figure

1.4b. Only the four lowest allowed transitions are shown, at higher energies transitions

tend to overlap and the spectra become too congested to confidently assign.

There is one more important aspect to discuss, and that is the fine structure of the

lowest energy confined state. This is made up of a four-fold degenerate hole in the
∣∣1S3/2

〉
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valence band and two-fold degenerate |1Se〉 electron, for a total degeneracy of eight. This

degeneracy is lifted by two interactions, an exchange interaction between electron and

hole, and crystal field and shape asymmetry. The combination of these two effects yields

the fine structure spectrum depicted in figure 1.4c; three doubly degenerate states and

two singly degenerate states, with an optically passive ground state.

The exchange interaction between electrons and holes is due to Pauli exclusion

effects and is proportional to electron-hole wavefunction overlap. Because of the signifi-

cant confinement in quantum dots, this exchange interaction can be 100 times greater than

in bulk materials. It is also a very size dependant energy splitting. The exchange interac-

tion lifts the degeneracy between the N = 2 and N = 1 angular momentum states, where

N is the total exciton angular momentum, N = je + jh. This is analogous to exchange

interactions splitting singlet and triplet levels in molecules.

The second important effect in the fine structure of the first excited state is crystal

asymmetry. There are two contributions to this; intrinsic asymmetry due to the crystal,

and shape asymmetry of the overall quantum dot. This has the effect of lifting degneracy

on the projections along the crystal axis, and splits each N level into its N + 1 projections

along Nm. This is shown on the far right side of figure 1.4 c. Optically passive states are

marked with dashed lines, and bright states with solid lines. The precise ordering of these

levels will depend on the strengths of the two interactions, whether the crystal is prolate

or oblate, and if there is cubic or hexagonal symmetry. However, the dark ground state

or dark exciton exists for all sizes of quantum dot.

1.2.3 Ionically bound ABX3 perovskite nanocrystals

Perovskite based materials, with general formula ABX3, are an exciting new class of mate-

rials in opto-electronic applications. The A cation can take many forms, both organic and

inorganic. Common choices are methyl-ammonium, CH3NH3, formadimium, CH(NH2)2,
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or Cs. The metal atom occupies the B site. The most common metal used is Pb, but other

options include Sn or Ge. The halide at X will be either chlorine, bromine, or iodine. The

halide is the primary determinant of the material band edge, with larger atoms creating a

larger lattice constant and a smaller bandgap. It is possible to mix halides, which opens up

bandgap tuning across the visible spectrum. These materials take on a cubic, tetrahedral,

or orthorhombic crystal structure, depending on lattice temperature and composition.

Since the discovery of high solar power conversion efficiency in simple, solu-

tion processed films of perovskite materials, [18] interest in these materials has exploded.

Perovskites are particularly attractive from a material science point of view. Important

effects, such as long carrier diffusion lengths [19, 20], Rashba splitting [21, 22], polaron

formation [12, 2], defect tolerance [23], and the long lifetime of carriers in these mate-

rials have intrigued scientists for several years. These phenomena have important con-

sequences on device performance, and are a wonderful playground for researchers in

material science.

In 2015, a synthesis for colloidal nanocrystals of caesium lead halide perovskite

nanocrystals was published [24]. These display quantum confinement for sufficiently

small samples, and retain bandgap tuning through composition. This allows for bandgap

tuning through both size and composition. The excitonic bohr radius for CsPb halides is

amenable to size tuning, aX = 5, 7, and 12 nm for X = Cl, Br, and I respectively.

Because of the ortho-rhombic crystal structure, these nanocrystals form cubes

and rectangles instead of spheres. This has the consequence of forming a true three-

dimensional particle in a box, as opposed to a particle in a sphere. Of particular interest,

and what remains a largely open question, is the nature of the ground state exciton in per-

ovskite nanocrystals. A good theoretical treatise has been done by Sercel et. al. [25]. The

method for determining the energy structure in perovskite nanocrystals is similar to that

for II-VI quantum dots; start with the bulk bands, apply an envelope quantum confine-
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ment, then look at fine structure effects due to exchange interactions, shape asymmetry,

and in the case of perovskites, spin-momentum coupling through the Rashba effect.

Following the development of Sercel et. al, the energy levels of CsPbBr3 nanocrys-

tals are described [25]. Because the room temperature phase of CsPbrBr3 is tetragonal,

there is a crystallographic axis with lower energy, leading to a 2 fold degenerate, p-type

conduction band with j=1/2 and a two-fold degenerate s-type valence band, also with

j=1/2. These states are described below:

|v1〉 = |S〉 |+〉 (1.36)

|v2〉 = |S〉 |−〉 (1.37)

|c1〉 = − sin θ |Z〉 |+〉 − cos θ |X〉+ i cos θ |Y 〉√
2

|−〉 (1.38)

|c2〉 = + sin θ |Z〉 |−〉 − cos θ |X〉 − i cos θ |Y 〉√
2

|+〉 (1.39)

Here |X〉 , |Y 〉 , |Z〉 are Bloch functions along crystallographic axes, and θ is an

angle that serves to mix these Bloch functions through spin-orbit interactions and the

tetragonal crystal field in the conduction band. |+〉 and |−〉 are spin up and down states,

respectively.

The coarse structure consists of the bulk bands dressed by the confinement po-

tential and Coulomb attraction between electron and hole, as in figure 1.4 b. Fine struc-

ture corrections to this picture include a short-range exchange interaction, long-range

exchange interaction, and crystal field splittings.

There are 4 exciton wavefunctions overall, made from combinations of valence

band and conduction band wavefunctions. Together these form two states, a triplet state

with J = je + jh = 1 and a singlet state with J = 0. The short-range exchange interaction
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is defined as a contact interaction between electron and hole, described by a δ-function in

electron and hole positions.

HSR = ΩCMSR(θ)δ(re − rh) (1.40)

In equation 1.40, Ω is the unit cell volume, C is an exchange constant, andMSR(θ) encodes

the symmetry of the Bloch functions.

MSR(θ) =


cos2 θ 0 0 0

0 sin2 θ sin2 θ 0

0 sin2 θ sin2 θ 0

0 0 0 cos2 θ


(1.41)

The effect of the short-range exchange interaction is to split the four degenerate

states into a triplet and a singlet state. In a cubic lattice the triplet isn’t split, in a tetragonal

lattice it is split into a doublet and a singlet, and in ortho-rhombic crystals the triplet is

fully split. In all cases the singlet state is below the triplet state and this state is dark.

Further corrections in taking into account long-range exchange interactions and the effect

of the dielectric nanocrystal barrier are taken into account by Sercel et. al. [25], but these

do not change the order of levels, only their relative spacing.

The most important new effect that must be taken into account is the Rashba

effect. The Rashba effect describes a spin-momentum coupling that is due to inversion-

breaking symmetry, such as broken symmetry along the ẑ axis in a tetragonal crystal

lattice. This leads to a crystal field along z, Ez. A charge moving in this electric field

experiences a magnetic field B perpendicular and proportional to its’ velocity v.

B = −(v × E)/c2 (1.42)
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This magnetic field creates a spin-orbit effect type of Hamiltonian. The mathematics of

this are shown below.

HSO = −µ ·B (1.43)

=
gµB
2c2

(v × E) · σ (1.44)

⇒ HR = αR(σ × p) (1.45)

Where αR = −gµBE0/(2mc
2) is the Rashba coefficient, σ is a spin matrix, p is charge

momentum, g ≈ 2 is the electron spin g-factor and µB is the Bohr magneton. This hamil-

tonian leads to energy shifts of the form

∆ER = −2AER(σexσ
h
x + σeyσ

h
y ) (1.46)

HereA is a coefficient reflecting exciton motion and ER is the Rashba energy, ER = αeαhµ/~2.

The calculations presented by Efros et. al. show that the Rashba effect actually reverses

the ordering of states introduced by exchange interaction for nanocrystals above a cer-

tain size, leading to a bright triplet state as the ground state. Below a certain size the

ground state may be a dark exciton. Experimental evidence for the ordering of these

states is found through single crystal cryo-PL and magneto-optical studies [26, 27, 28].

With application of a magnetic field the triplet / singlet basis is broken, and the singlet

state takes on some triplet character, making it partially bright. Interestingly, prominent

reports have produced a variety of results, with magneto-optical measurements showing

a dark-exciton as the ground state [26, 27] and single crystal PL showing a bright triplet as

the ground state [28], while four-wave mixing has shown very different dephasing rates

for one of the triplet states, possibly due to rapid relaxation to an intermediate dark state

[29].
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Chapter 2

Pump-probe spectroscopy

Ultrafast spectroscopy is a broad and productive field. The techniques of ultrafast spec-

troscopy have answered fundamental questions about atomic physics through high har-

monic generation [1, 2, 3], observed chemical reactions proceed in real time [4], and an-

swered questions about the role and dynamics of the solvent[5, 6]. Various methods have

coupled ultrashort time resolution to real-space nanometer scale spatial resolution, either

through coupling ultrafast THz pulses to an STM tip [7], through near field microscopy

[8], atomic force microscopy [9] or even by observing photo-electron products [10]. High

spatial resolution can also be obtained in k-space through either ultrafast X-ray [11] or

electron diffraction [12, 13], allowing the observation of collective changes in crystal phase

or scattering potential with ultrafast temporal resolution. All of these ultrafast techniques

rely on the concept of pump-probe spectroscopy, a two pulse experiment where one pulse

puts the system in an excited state, and a second pulse probes the excited state. By con-

trolling the delay between pump and probe pulses, the evolution of the excited state is

tracked through time. The power of this type of experiment is that temporal resolution is

no longer limited by the slow response of an electronic detector, it is now limited by the

duration of the pump and probe pulses.
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The work presented here is focused on optical pump, optical probe spectroscopy

of nanomaterials. This chapter will focus on the experimental details of optical pump-

probe spectroscopies, and the particular implementation in the Kambhampati lab. The

various signals and insights gained from ultrafast pump-probe spectroscopy of nanocrys-

tals will also be discussed, including hot carrier cooling, gain characterization, and Auger

recombination. Electron-phonon coupling signals are discussed in chapter 3.

2.1 Generating short pulses

As mentioned above, the ultimate resolution limit in a pump-probe experiment is pulse

duration. This always starts with what is called a mode-locked laser, although other ap-

proaches using fast phase modulation are being explored [14, 15]. To understand the

workings of a mode-locked laser, a brief explanation of the operating frequencies of a

laser is necessary. The cavity mirrors of a laser of length L impose boundary conditions

on the electric field. This means that any electric field must go to zero at the cavity walls

E(x = 0) = E(x = L) = 0, forcing the electromagnetic wavelengths λm to follow the

condition λm = L/2m or νm = 2c
L
m. If the laser cavity is circular instead of linear, the

boundary conditions are E(x) = E(x+ L), forcing the wavelengths to follow the relation

λm = L/m. For linear cavities, the boundary conditions translate into modes spaced by

δnu = c/2L in frequency, which is generally anywhere between a few MHz to a few GHz.

The λm are the longitudinal modes of a laser. The actual wavelengths that will lase must

have net amplification after one round trip of the cavity, i.e have gain provided by two

passes through the active medium 2G greater than loss by reflection R at the exit mirror,

2GR > 1.

Generally there is competition between longitudinal modes, with the laser per-

haps hopping between a few neighboring modes if it’s designed for power, or remaining
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fixed on a single mode if the laser is designed for high-precision frequency applications.

This is termed continuous-wave or cw operation, where only one or a few modes are

active. Mode-locked lasers operate in a different way, where many longitudinal modes

are forced to operate at once. If many modes operate together in phase, they will pro-

duce a short pulse that circulates in the cavity. This short pulse has a high peak intensity

compared to cw operation, so the trick to making a mode-locked laser work is to create

loss for low peak-power operation relative to high peak-power operation. This can be

done passively, through a saturable absorber as in many fiber lasers [16] today or dye-

lasers [17] in the past. Saturable absorbs absorb well under low fluence, but become more

transparent under higher fluence [18]. The difference in absorption may be less than 1%,

but over many cavity round-trips this is sufficient to favor mode-locked over cw opera-

tion. Another passive method, used in Ti:Sapphire lasers, is Kerr-lens mode-locking [19].

In Kerr-lens mode-locking the ultrafast pulse instantaneously creates a lens in the active

medium through nonlinear optical interactions. This lens produces a mode-locked beam

with a smaller size then the cw beam. By introducing a slit that blocks the cw beam and

passes the mode-locked beam, mode-locked operation is favored.

Active mode-locking usually uses an electro-optic or acousto-optic crystal in the

laser cavity to create amplitude modulation or frequency modulation. By driving these

devices at the cavity-mode spacing δν, modes that are in phase with the driving frequency

will be amplified over those that are out of phase, creating a phase relation between

modes that leads to short pulses. Active-mode locking adds complexity and potential

sources of instability, and is not often used.

The duration of the pulse emitted by a mode-locked laser is limited by the width

of the emitted spectrum. The broader the spectrum, or the more longitudinal modes that

contribute, the shorter the pulse can be. This is shown in figure 2.1. For a gain system
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Figure 2.1: Longitudinal modes and pulse duration in a mode-locked laser. a A broad

gain spectrum (blue curve) can support many modes (black sticks). b The addition of

several modes in phase create a short pulse. c As the number of modes in phase increases,

pulses become shorter and sharper.

such as that shown in figure 2.1a, longitudinal modes are depicted as black sticks and

the gain spectrum as the blue curve. The modes are separated by δν = c/2L. Any mode

that lies below the blue curve has gain greater than loss and could contribute to mode-

locking. The total spectral width is denoted ∆ν. The mode-locked pulse is composed of

many longitudinal modes operating at once, as shown in figure 2.1b. Here 10 modes add

in phase, creating a pulse at t = 0 and t = ±1/δν. As the number of modes contributing in

phase grows, the pulse becomes shorter and sharper, as shown in figure 2.1c. As a point

of reference, Ti:Sapphire lasers can have∼ 106 modes over 50 THz of bandwidth lasing at

once, producing pulses ∼ 10 fs long.

Mode-locked lasers produce a train of ultrashort pulses separated by the cav-

ity round trip time 1/δν, typically around 10 ns (100 MHz) for Ti:Sapphire systems and

as little as 1 ns (1 GHz) for fibre based systems. This pulse train provides a convenient

clock frequency that can be actively stabilised through the optical cavity length L with a

simple piezoelectric. Locking this clock frequency will simultaneously lock the RF repeti-
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tion rate δν and the optical frequency ν of the laser, providing a convenient link between

the RF and optical frequency of the longitudinal modes. This has made ultrafast lasers a

workhorse of ultra-precise time/frequency metrology. [20].

2.1.1 Chirped pulse amplification

Through a technique called chirped pulse amplification, extraordinary laser pulse peak

powers can be obtained [21]. The impact of this amplification technology is tremendous,

and Gérard Mourou and Donna Strickland were awarded the 2018 Nobel prize in Physics

for its discovery. In chirped-pulse amplification, the mode-locked pulse is stretched in

time, yielding a longer pulse with the same total energy but much lower peak power. This

can then be safely amplified to very large pulse energies without damage to the ampli-

fier system due to high peak intensities. By then re-compressing the pulse, the ultrashort

pulse is recovered. This technique has yielded the highest peak powers ever obtained, on

the order of ∼ 10 Petawatts [22]. For comparison, the United States generated an average

of ∼ 0.0034 PW over 2018 from all primary energy sources [23]. These extremely intense

fields can be used as a particle accelerator, accelerating electrons to 100s of MeV of energy

in the space of just a few millimeters [24], and hold the promise of new physics in these

extraordinary fields.

Chirped pulse amplifiers are powerful tools for spectroscopy. With the high peak

powers available in off the shelf systems, wavelength tuning and continuum generation

through non-linear interaction is very efficient. It is quite simple to make a white-light

continuum through self-phase modulation (SPM) in transparent media. Here, the field

intensity alters the refractive index of the medium, leading to a phase modulation of the

pulse with duration on the order of the pulse duration. Phase modulation leads to the cre-
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ation of new frequencies, which can span the entire visible range. To create high-power,

narrow band pulses another non-linear process is required; optical parametric amplifica-

tion. Here, a white light seed pulse is generated through SPM. This seed is then mixed

with a pump pulse to create signal and idler beams, through the process ωp → ωi + ωs,

where ωp,ωs, and ωi are the frequencies of the pump, signal, and idler beams, respectively.

For Ti:Sapphire systems operating near 800 nm, parametric amplification can generate IR

wavelengths in the region 1 - 3 µm. To obtain visible wavelengths, the signal and idler

can be frequency doubled or mixed with the pump beam. Optical Parametric Amplifiers

can produce wavelengths spanning the UV to the Far IR. There are also other approaches

for creating broadband pulses that will be discussed in chapter 6. The combination of

high power and short pulses are what makes chirped pulse amplification so important to

ultrafast spectroscopy.

2.1.2 Describing pulse phase

In order to understand pulse compression and phase relations, a few terms should be

introduced. The Fourier limit of a pulse occurs when all Fourier components, or frequen-

cies, oscillate in phase. This phase is central to describing pulses, and is often described

in the frequency domain. It is convenient to expand the spectral phase in a Taylor series

about the pulse central frequency.

φ(ω) = φ0 +
dφ

dω

∣∣∣
ω0

(ω − ω0) +
1

2

d2φ

dω2

∣∣∣
ω0

(ω − ω0)2 + . . . (2.1)

In equation 2.1 φ0 is called the carrier-envelope phase (CEP). This is because it relates the

phase of the high frequency optical wave to the envelope, φ0 = 0 (π) means that at the

peak of the envelope the field is at a maximum (minimum). For φ0 = ±π/2 the field is

zero where the envelope is maximum. The φ0 term is important in few-cycle pulses, be-
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cause the envelope function might change significantly over one optical period. The CEP

is also important in phase-cycling applications and interferometry. dφ/dω is the group

velocity of the pulse, and is related to the velocity of the pulse envelope in the medium.

dφ/dω does not change the pulse width, only the pulse arrival time. The most important

term for pulse compression is d2φ/dω2, which is the group velocity dispersion (GVD), or

more commonly, chirp. Transmission through most windows, prisms, crystals will impart

positive GVD on a pulse, and red wavelengths will travel faster than blue wavelengths,

causing the pulse to stretch in time. Pulse compression refers to undoing this stretching in

a controlled manner, and can be done through prisms, gratings, or pulse shapers. Prisms

work well for small amounts of chirp, and gratings work well for larger amounts of chirp

and have higher damage thresholds. The most precise method of phase control is the use

of pulse shapers. These devices apply an amplitude and phase mask to the electric field

of the pulse, allowing for arbitrary phase control over all terms in equation 2.1.

2.1.3 Measuring ultrafast pulses

To measure an ultrafast light pulse, conventional electronics simply will not do. The

fastest response times of photodiodes are in the 100s of picoseconds range, roughly 1000

times too slow. For ultrafast pulse measurement generally, optical gating techniques must

be used. All of these techniques exploit optical nonlinearities with instantaneous response

times, such as sum-frequency generation (SFG), or Kerr effects that modulate the material

refractive index. These are shown in figure 2.2. The simplest implementation of optical

gating is intensity auto-correlation. Here an input pulse is split into two copies, one goes

through a variable delay with either a delay stage or wedge pair, and the pulses are re-

combined in a non-linear crystal such as BBO. When the pulses overlap in time, they can
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interact to form a third pulse through SFG. For a Gaussian input pulse given by:

E(t) = E0e
−iωt exp

(
− t2

2σ2

)
+ c.c. (2.2)

I0(t) ∝ E(t)E∗(t) (2.3)

= |E0|2e−t
2/σ2

(2.4)

the SFG pulse will be as follows:

ESFG(t) ∝ χ(2)E2(t) (2.5)

= χ(2)E2
0

(
e−2iωte−t

2/σ2

+ c.c.
)

(2.6)

Where χ(2) is a second order non-linear susceptibility. This electric field has twice

the frequency of the fundamental, and is often referred to as a special case of SFG, second-

harmonic generation. When one pulse copy is delayed by τ with respect to the other, the

electric field is instead a convolution of those pulses.

ESFG(t, τ) ∝ χ(2)

∫ ∞
−∞

E1(t)E2(t− τ ′)dt′ (2.7)

⇒ ISFG(τ) ∝ χ2

∫ ∞
−∞
|E(t)E(t− τ)|2 dt (2.8)

=

∫ ∞
−∞

I(t)I(t− τ)dt (2.9)

Substituting in our Gaussian pulse given by equation 2.4 and performing the

integration by switching to Fourier space, we find the form of the detected intensity trace.

ISFG(τ) = |E0|4e−τ
2/
√

2σ2

(2.10)

(2.11)
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Figure 2.2: Three ways to measure an ultrafast pulse. a two pulses are mixed in a χ(2)

medium. When they overlap in time and space an SFG signal is produced that traces the

pulse auto-correlation. Here a simple, nearl-transform limited pulse is measured. b By

spectrally dispersing the auto-correlated signal in SFG-FROG, pulse reconstruction be-

comes possible but the resulting trace is non-intuitive, even for a well-compressed pulse

as shown here. c TG-FROG, which relies on a χ(3) process, yields intuitive traces and is

not bandwidth limited. Here a long, complicated pulse is accurately measured.

The auto-correlation trace is broader than the fundamental pulse given by equa-

tion 2.4 by a deconvolution factor of
√

2. Another common pulse shape is given by sech2,

and this has a deconvolution factor of 1.54.

Intensity auto-correlation works best for simple pulses which require only quadratic

spectral phase correction. The retrieved pulse width can be compared to a Fourier-limited

width, and if they agree then the pulse is fully compressed. However, it is also possible

to use SFG to measure complex pulses. By mixing a well-characterized pulse with an

unknown, complex one, the time envelope of the more complex pulse can be retrieved.

This is referred to as cross-correlation, and is shown in figure 2.3. Cross-correlation in the

Kambhampati lab is used to characterize the GVD of the white-light probe. By selecting

one part of the white light spectrum and mixing it with the 800 nm fundamental, the sum-
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Figure 2.3: Cross-correlation of a complicated pulse with a simple pulse, allowing for

reconstruction of the complicated pulse. Here a white light pulse spanning ∼480-750 nm

and > 1100 fs long has it’s chirp accurately measured.

frequency is generated. By scanning the delay the cross-correlation between fundamental

and a portion of the white-light is measured. By scanning the part of the white-light spec-

trum that is mixed the relative arrival time of each frequency is retrieved. This is a direct

measure of the GVD.

Pulse characterization through auto-correlation is the simplest to implement, but

does not have the information required to fully reconstruct the pulse. Furthermore, ex-

amination of an auto-correlation trace, as in figure 2.2a, is not intuitive.

In order to fully reconstruct the phase profile of the pulse, it is necessary to dis-

perse the gated signal using a spectrometer. This is termed Frequency-resolved optical

gating, or FROG. There are many flavors of FROG, based on the non-linear process used

to gate the optical signal. For full details see [25]. For SFG-FROG the signal is simply:

ISFG(ω, τ) =

∣∣∣∣∫ ∞
−∞

ESFG(t, τ)e−iωtdt

∣∣∣∣2 (2.12)

These SFG techniques are very sensitive, since they rely on χ(2) nonlinear pro-

cesses. However there are significant drawbacks; using SFG requires phase-matching be-
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tween the fundamental and signal wavelengths. For very short, very broadband pulses it

can be difficult to achieve phase-matching over the entire bandwidth of the pulse. Thin

crystals can be used, but this will reduce signal. Another drawback is the difficulty in

reading the produced FROG-traces. As can be seen in figure 2.2b the trace has some

phase that needs to be compensated, but it isn’t clear how to do this.

Another FROG-based technique that is widely used is transient-grating, or TG-

FROG. Here a nonlinear Kerr effect is used to measure the pulse. The Kerr effect describes

how an optical pulse will alter the refractive index of a medium, n(~r, t) = n0 + n2I(~r, t).

The non-linear index n2 arises from χ(3) effects. The Kerr effect has important conse-

quences both the spatial and temporal dimensions. Spatially, a Gaussian beam spatially

modulates the index, creating a lens that leads to self-focusing. This can very quickly lead

to catastrophic destruction of optical components. When the pulse has rapid temporal

variations, which is almost always the case in ultrafast spectroscopy, self-phase modula-

tion can occur. This is the source of the white-light continuum used in many pump-probe

experiments. In TG-FROG the Kerr effect is exploited to create a phase grating for pulse

measurement. This requires three copies of the pulse to be created. These three pulses are

focused to the same spot in some transparent medium, where two of the pulses create an

index of refraction grating through a χ(3) Kerr effect. For two pulses travelling in the x−z

plane, this looks like the following:

∆n(x) = n2I(x) = n2

∣∣E0e
i(kzz+kxx) + E0e

i(kzz−kxx)
∣∣2 (2.13)

= 2n2E
2
0(1 + cos(2kxx)) (2.14)

The third pulse is delayed relative to these two; If it arrives at the same time it will be

diffracted off of this transient grating in the direction ks = k1 − k2 + k3. Detecting this

signal as a function of delay and wavelength produces the trace shown in figure 2.2c.
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Mathematically this signal is given by equation 2.15 - 2.17.

ETG(ω, τ) =

∫ ∞
−∞

E∗(t)E(t)E(t− τ)e−iωtdt (2.15)

=

∫ ∞
−∞

I(t)E(t− τ)e−iωtdt (2.16)

⇒ STG(ω, τ) ∝
∣∣∣∣∫ ∞
−∞

I(t)E(t− τ)e−iωtdt

∣∣∣∣2 (2.17)

This technique has several advantages. One is readability; TG-FROG traces can

roughly be read like musical scores, it is a plot of what frequencies are played at what

time. This allows for easy identification of how much chirp to add or subtract, and

whether or not here is any higher order phase distortions in the pulse. Because there

is no frequency mixing in TG-FROG, and the χ(3) there is no need for phase-matching

considerations. This allows TG-FROG to measure extremely short pulses across a large

spectral range. The TG-FROG trace shown in figure 2.2c has a clear slope, this indicates

quadratic spectral phase. The pulse measured in figure 2.2c is the direct output of an OPA

driven hollow core fibre, with over 100 nm of spectral width and a complicated temporal

shape. TG-FROG is able to characterize this without loss.

2.2 Pump-probe spectroscopy of semiconductor nanocrys-

tals

Ultrafast spectroscopy famously began with the direct observation of the transition state

in the dissociation of iodine cyanide; ICN → I + CN [4]. This work earned Ahmed Ze-

wail the 1999 Nobel prize in chemistry. Since those experiments, ultrafast spectroscopy

has since extended to cover nearly the entire electromagnetic spectrum, from THz to

X-rays. Advanced techniques, such as mulitdimensional spectroscopy [26, 27], fluores-

cence upconversion[28] and ultrafast Raman[29] have been developed and used to an-
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swer unique questions. Below, the common premise of pump-probe spectroscopy is ex-

plained, followed by its specific application in the Kambhampati lab.

2.2.1 State-resolved pump-probe spectroscopy

Pump-probe spectroscopy is a general term that applies to most of ultrafast science. Pump-

probe refers to the method of using two pulses to create temporal resolution. In pump-

probe spectroscopy, the fastest processes that can be measured are not limited by de-

tector resolution, but rather pulse duration. One pulse, the pump, excites the sample.

After a controlled delay, a second pulse probes the excited state. Delays can be imparted

in a number of ways, often with a retro-reflector mounted to a mechanical delay stage.

For more precise control a pair of glass wedges can be used, as one wedge is moved

closer/further to the other the beam passes through more or less glass, creating very fine

control over pulse delay. Another method is through pulse shaping techniques. By con-

trolling the index of refraction in a material, a pulse can be delayed or advanced. The

spectral phase can be altered to compress the pulse or look at effects due to pulse chirp

[30]. Pulse shaping is commonly done in acousto-optic crystals in both collinear [31] and

transverse geometries [32] and in liquid crystals [33]. Mechanical delay stages have the

greatest range of delays, from ∼1 fs to ∼1 ns, but cannot achieve the same precision as a

pair of glass wedges. Pulse shapers have the added benefit of pulse shaping, e.g. remov-

ing phase distortions to create transform-limited pulses, create trains of pulses or perform

phase cycling and chopping all within the same device. The disadvantage is that these

devices can only create delays up to ∼1 ps. Also, pulse shapers are expensive and have

relatively low damage thresholds. Compared to retroreflectors, they also have a more

limited bandwidth.

One implementation of pump-probe spectroscopy that is very powerful for teas-

ing out the effects of the initial state is state-resolved pump-probe spectroscopy (SRPP).
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Figure 2.4: Layout of the SRPP setup. a Optical components and beam paths. b auto-

correlation of a 2.4 eV pump pulse. c,d SRPP data obtained on CsPbBr3 NCs for c 3.1 eV

pump and d 2.4 eV pump

Traditional pump-probe experiments will use one pulse to optically excite the sample,

and another to probe the effect of that pump pulse. In SRPP, two pump-probe experi-

ments are performed in parallel, with two different pump wavelengths. To observe pump

energy effects on dynamics in traditional pump-probe spectroscopy, one experiment at a

given pump wavelength must run its course. Afterwards the pump wavelength is tuned,

and a second experiment is started. In the meantime, the sample may have degraded or

the laser drifted in some way, creating systematic error. In SRPP these two experiments

are performed in parallel, making the effect of the pump energy obvious and removing

artifacts in the comparison due to degradation or drift.

The experimental layout and results from the SRPP setup are shown in figure

2.4. Figure 2.4a shows the layout. 2.4 mJ, 70 fs pulses at 810 nm are produced in a Ti:Saph

amplifier. 90% of this energy is used to drive two optical parametric amplifiers (OPAs).

These OPAs serve to convert the 810 nm pulses to visible wavelengths, which are depicted
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by the blue and green beams in figure 2.4a. The remainder of the 810 nm beam is used to

generate a white-light continuum probe through SPM in sapphire, shown as the red and

yellow beams in figure 2.4a for the 810 nm and white light probes respectively. To perform

a general pump-probe experiment, the excited sample is probed by the probe pulse on one

shot, and on the next shot the pump is blocked and the unexcited sample is probed. The

pump-probe signal is the difference in these two values, as given by equations 2.18 to

2.20. The signal monitored in this case is the change in absorption of the excited sample.

∆OD(t) = ODoff −ODon(t) (2.18)

= log

(
Ioffpr

Iref

)
− log

(
Ionpr
Iref

)
(2.19)

= log

(
Ioffpr

Ionpr

)
(2.20)

Here OD is the sample optical density, the superscripts on/off denote whether

or not the pump is blocked, and I is the detected intensity of the probe pulse. In typical

linear absorption experiments the intensity of the transmitted beam must be compared to

a reference, this is Iref in equation 2.19, which cancels out in the subtraction of logarithms.

The arrival time of each of the pump pulses is set by precisely controlled delay

stages. The pump is blocked by a chopper in each pump arm. By scanning the delay time

between pump and probe pulses, and scanning a monochromator or detecting a spectrum

on a CCD, time and energy resolved ∆OD signals can be retrieved. These are shown in

figure 2.4c,d. In figure 2.4 c, the sample is excited by a pulse centered at 3.0 eV, roughly 600

meV above the band edge of the sample. Fast electronic relaxation to the band edge can

be seen in the growth of the negative signal near 2.4 eV in the first picosecond. In figure

2.4d the sample is excited at the band edge. Here, population of the band edge state is
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instantaneous so no electronic relaxation is observed. Nuclear dynamics, however, can

still be observed through either phonons [34, 35] or polaron formation (see chapter 5).

Since temporal resolution is no longer limited by the electronic response time of a

slow detector, dynamics on sub-ps timescales can be observed. The new limit on temporal

resolution is the area of temporal overlap between pump and probe pulses at time zero,

mathematically speaking their cross-correlation. This is called the instrument response

function (IRF) and describes the detected signal for a kronecker-δ system response. The

IRF between two intensity envelopes, I1(t) and I2(t), is described below:

IRF (τ) ∝
∫ +∞

−∞
I1(t)I2(t− τ)dt (2.21)

For two Gaussian pulses with FWHM of σ1 and σ2, this evaluates to a third Gaus-

sian with FWHM (σ2
1 + σ2

2)1/2. The pump and probe pulses used in the SRPP experiments

have typically ≈ 70 fs FWHM, giving a total temporal resolution on the order of 100 fs.

An auto-correlation of a 2.4 eV pump pulse is shown in figure 2.4b with FWHM of 70

fs, demonstrating the excellent resolution for SRPP experiments. The IRF can be mea-

sured precisely through cross-correlation between pump and probe beams, as in figure

2.3. Measurement of the cross-correlation is important for measuring and compensating

the probe GVD as well. By moving delay stages as the probe wavelength is scanned in a

monochromator, this GVD is effectively cancelled in the measurement (although the IRF

can’t be improved this way). This means that a ∆OD spectrum can be measured where

the red and blue parts of the spectrum experience the same delay relative to the pump.

2.2.2 Contributions to the SRPP signal

For a detailed example of modelling the transient absorption spectrum of CdSe QDs,

The group of H.S. Tan has presented an excellent method[36], summarised here and in
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figure 2.5 and the appendix to chapter 5. For a CdSe QD system with an absorption spec-

trum as shown in figure 2.5a, there are 3 important excitonic transitions, X1-X3. Gener-

ally, there are three overall contributions to the transient absorption signal. These are the

ground state bleach (GSB), stimulated emission (SE), and excited state absorption (ESA).

The shape and sign of these three contributions is depicted in figure 2.5b. Ground state

bleach is a reduction in absorption due to depopulation of the ground state, and cre-

ates a negative ∆OD signal that follows the shape of the excitonic absorption spectrum,

the three filled curves in figure 2.5a and the orange spectrum in figure 2.5b. Stimulated

emission is the photo-induced recombination of electrons and holes, which can be used

to monitor the population of electrons and holes. Because SE increases optical power in

the probe beam, it appears as a negative signal in a ∆OD spectrum at the energy of the

electron-hole recombination, as in the yellow curve in figure 2.5b. ESA is absorption from

one excited state to another, for QDs this could be creation of a second exciton or an intra-

band absorption in the IR. This signal is absorptive, so appears as a positive signal in a

∆OD spectrum. This signal follows the spectrum of the excited state transitions, as in .

The overall interaction between two excitons is attractive, and the bound two ex-

citon system is called a biexciton. The biexciton is slightly lower in energy than twice the

singly excited energy, and this difference is called the biexciton binding energy. Transient

absorption spectroscopy is one of many methods for determining the biexciton binding

energy[37, 38, 36], but there are several others, and there are several ways to describe the

biexciton binding energy to account for fine structure in both the exciton and biexciton

[39, 40]. The biexciton binding energy is the main reason that the ESA and GSB contribu-

tions don’t exactly cancel, since ESA will be redshifted with respect to GSB.
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Figure 2.5: Contributions to the transient absorption signal of CdSe QDs. a The transient

absorption spectrum (blue line) closely follows the linear absorption (black line) near the

first excitonic peak. The overall absorption spectrum can be modelled as three excitonic

transitions (filled curves) on top of a polynomial background. b The TA spectrum has 3

contributions; negative GSB and SE, and positive ESA.

2.2.3 Electronic relaxation

Electronic relaxation is the rapid relaxation of electrons and holes from initially excited

states towards the band edge. Measures of electronic relaxation rates are important in

designing useful materials, as highly excited charge carriers are necessary for applications

like hot-carrier photocells [41]. Examining size and state dependence can shed light on

the relative importance of three decay channels: phonon-mediated, surface trapping, and

electron-hole Auger energy transfer.

As a QD decreases in size, the excitonic energy levels get further apart. At some

point the separation in energy is greater than the optical phonon modes, and this decay

channel should become less important. At the same time, surface traps play a more im-

portant role, as core electrons and holes will be closer to the surface. The final effect,
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Auger energy transfer, describes transfer of energy from one excited carrier to another.

For CdSe QDs it’s the electron that transfers its energy to the hole, based on the effective

mass of the two particles. This brings the electron to the band edge and gives the hole

excess kinetic energy.

To untangle the relaxation pathways, a state-resolved approach is necessary. The

CdSe absorptions in 1.4c show that the difference between the first two transitions is only

in the hole state. By exciting this transition and monitoring signals unique to the hole, it

is possible to extract hole relaxation times. By exciting the third transition, which couples

P states in the conduction and valence bands, and monitoring electron signals, the relax-

ation time of electrons can be found. Previous work in our group has already explored

this, and found that holes take significantly longer to reach the band edge, despite hav-

ing a higher density of states that would increase phonon relaxation [42, 43]. Figure 2.6

summarises some of these results. Figure 2.6a and b shows the electron and hole cool-

ing signals, respectively. By simultaneously probing the band edge pump signal, band

edge dynamics are controlled for (red lines in figure 2.6a,b). The difference between the

band edge pump and the excited state pumps for electrons and holes are shown in fig-

ure 2.6c,d respectively. This controls for any signal arising from surface traps or Auger

recombination of band edge excitons. Figure 2.6e shows the cooling rate as a function

of QD size, reported as the energy gap between the band edge and the pumped state.

Smaller crystals have larger gaps and faster decay rates, opposite of the expected trend

for phonon-mediated relaxation. The picture that emerges is that electrons very quickly

transfer energy to holes. Holes then decay to the band edge through phonon interactions.

A state-resolved approach is necessary to untangle these pathways; by exciting at only

one energy electron and hole pathways cannot be discerned. An even blurrier picture

emerges in size-dependant studies. By exciting all samples at one convenient energy you

excite a different initial state across samples, so results are completely useless.
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Figure 2.6: Overview of carrier cooling in CdSe QDs through SRPP. a Pumping the∣∣1Pe1P3/2

〉
transition and probing the band edge bleach monitors electron cooling. b

Pumping the
∣∣1Se2S3/2

〉
transition and probing a sub-band edge ESA monitors hole cool-

ing. c, d Subtracting out the contribution from the band edge pump (red lines in a,b)

controls for dynamics of the ground state, so that only excited state dynamics of the c

electron and d hole remain. e The size dependence of electron and hole cooling rates, as

a function of the gap between the pumped state and the band edge. Figure reproduced

from Cooney, Phys. Rev. B, 2007
.
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The results discussed here are important to keep in mind when analysing results

for new systems. What are the important relaxation channels at play? How should these

behave with size or surface passivation? These questions will be explored in Chapter 5,

section 5.3.

2.2.4 Auger recombination

The lowest conduction band state has S-type symmetry, and can thus hold 2 excitons.

These two excitons interact through Coulomb and correlation potentials to form a bound

two exciton system called a biexciton. Since there are now two bodies in the system, a new

non-radiative channel is opened up; Auger recombination. This is schematically shown

in figure 2.7a. One exciton recombines, transferring all of its energy to the second exciton.

In confined systems Auger recombination is fast, on the 10-100 ps timescale, since the two

excitons have significant interaction in the confined volume. Again, other non-radiative

decay channels exist. For biexciton recombination there are two important ones; Auger

processes and surface trapping. Both of these become more important as the QD becomes

smaller.

Auger recombination and surface trapping can be distinguished by examining

the decay of the band edge bleach under increasing pump fluence. At low fluence only

single excitons exist and the bleach should decay on a very long time scale of the popula-

tion decay rate, several nanoseconds. As fluence increases biexcitons start to contribute to

the bleach signal, and these decay very quickly. This manifests in the growth of a fast de-

caying component with fluence. If the system is well passivated, only the Auger channel

is open and the decay in the first few hundred picoseconds is essentially single exponen-

tial. Since only two excitons can occupy the band edge state, the normalized signal goes

from -2 at early times to -1 at late times (single exciton recombination is ignored). For

poorly passivated systems surface trapping occurs at rate similar to Auger recombina-
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tion, and there are two parallel channels for biexciton decay. Since some excitons are lost

to surface traps that don’t contribute to the bleach, the normalized signals go from -2 to

something less than -1. These ideas are presented in figure 2.7b, where the band edge

bleach decay under very high fluence for three different samples is shown. Under these

conditions, practically all nanocrystals initially have two excitons, but poorly-passivated

or photo-treated samples quickly lose one to either Auger recombination or surface trap-

ping. These ideas will be further discussed in chapters 4 and 5, in relation to specific

systems.

Figure 2.7: Auger recombination in CdSe QDs is determined by surface passivation.

a Schematic depicting the Auger recombination process. b Auger decay measurement

across three CdSe-based systems with similar core sizes.

One further point to note is that the scaling of the Auger rate with fluence gives

information as to the nature of the interacting particles. Auger processes occur in bulk

systems as well, although they are not as important because of the delocalized carriers

that have little interaction in most cases. This is famously responsible for the Auger

droop in LEDs that cause a loss of efficiency at high driving currents [44]. In bulk systems

at room temperature free carriers are responsible for Auger interactions. Two free carri-

ers recombine and transfer their energy to a third carrier, so it is a three-body process that

scales as n3. In quantum confined systems, as discussed above, it is an interaction between

two bound excitons. For some systems that support three or more excitons, it is possible

to compare the rates kXXX describing tri-exciton recombination and kXX describing biex-
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citon recombination to distinguish quantum confined excitonic systems versus bulk, free

carrier systems. In excitonic systems the ratio of these rates will be 32/22 = 2.25. In free

carrier systems it will instead be 33/23 = 3.375. This method showed that carbon nan-

otubes are excitonic systems [45, 46]. In systems where other decay channels compete

with Auger, such as surface trapping or phonon-assisted recombination, this analysis is

not so simple.

2.2.5 Gain

When determining whether or not a material is a good candidate as an optical gain

medium, there are several factors to consider. The most important, in terms of lasing

threshold, is whether it acts as a three level or as a four-level system. To demonstrate this,

a brief description of laser dynamics in two, three, and four level systems can be found

in appendix 2. Other important considerations are the materials thermal conductivity

and how much the materials’ refractive index changes with temperature, these two ef-

fects determine the maximum output power that can be achieved before a laser becomes

unstable.

Since very early in the development of quantum dots (QDs), it was thought that

the observed Stokes’ shift would lead to a three level system that could support opti-

cal gain [47]. This is of great interest because the QD system is size tunable; the laser

wavelength can be chosen to be any value in the size tuning of the QDs. In conventional

systems, achieving a particular laser wavelength often requires external non-linear fre-

quency conversion, or working with molecular dyes that tend to bleach over time. Using

quantum dots as the gain medium opens the door to monolithic lasers at any wavelength,

spanning the visible spectrum with CdSe[48] and well into the IR with PbSe based QDs.

An example of CdSe Quantum dot lasers operating in the green and red is shown

in figure 2.8. Epitaxially grown QDs have already seen rapid progress in this field; with
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Figure 2.8: Red and green lasing from films of CdSe QDs. a laser design including pump

beam, active medium, and cavity. b,c Lasing in action for b red and c green laser wave-

lengths. Reproduced from [48]

efficient, stable, electrically driven laser systems in the IR appearing as early as the 1990s

[49, 50]. Epitaxial systems have also been shown to support mode-locked operation, with

∼ 400 fs operation at ∼ mW average powers. Because of the small size of these laser

cavities they have very high repetition rates, approaching 100 GHz [51].

For colloidal systems, lasing is more difficult. This is due to polydisperisty of

samples and the difficulty in transporting charge through the organic film and capping

ligands, as opposed to using the solid medium of epitaxially grown QDs. Despite these

difficulties, remarkable progress has been made. The group of Ted Sargent at the Uni-

versity of Toronto have synthesised strained quantum dots that have narrow emissive

linewidths, due to an exaggerated fine structure splitting [52]. This system displays high

PL quantum yield and cw lasing. The group of Zeger Hens and Pieter Geiregat have

also studied a 4-level quantum dot system, HgTe, that uses intergap trap states for las-

ing action in the mid-IR at extremely low thresholds, in terms of pump power and exci-

ton occupation[53]. It is also impossible to discuss colloidal quantum dot lasing without

mentioning the work of Victor Klimov, who early on discussed the important concept of

decoupling the lasing emissive transition from excited state absorption to the biexciton,

as well as the idea of single exciton gain [47]. Recently his group has been developing an

electrically driven QD laser[54, 55].
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One consistent approach to colloidal QD laser systems is finding the appropriate

heterostructure. The three important types of heterostructures are shown in figure 2.9.

By growing a shell of the appropriate size, shape and composition the QD core can be

decoupled from surface states [56]. By controlling the composition of the shell and the

alignment of conduction and valence bands, it is possible to create a type-I system, a

type-II system that separates electrons from holes, or to delocalize either of the carriers.

Type-I systems behave like core-only QDs that are removed from their environment. In

type-I systems less surface emission is observed and photo-luminescence quantum yield

is increased. Type-II systems act to spatially separate electrons and holes, by having, for

example the valence band of the core above that of the shell and the conduction band of

the core below that of the shell. Type-II systems tend to have long radiative recombination

times and weaker oscillator strengths, due to the physical separation of carriers. A third

type of heterostructure is one in which either the conduction or valence band of the core

is nearly degenerate with the shell. In this case the carrier in the nearly degenerate band

is delocalized over the core/shell interface.

Figure 2.9: Types of heterostructures classified by band alignment. Hole wavefunctions

are depicted in blue, electron wavefunctions in red.

A common method for determining gain is through amplified spontaneous emis-

sion (ASE). Here, the sample is optically pumped along a line and the fluorescence is de-

tected. At a certain threshold of pump energy, the spontaneous emission travelling along
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the line of excitation can initiate stimulated emission, getting amplified as it interacts

with the excited sample. This results in a threshold behaviour, where below threshold

any spontaneous emission on average is absorbed along that line of travel. At threshold,

the sample is transparent, and above threshold there is amplification. This amplification

is apparent in two measures of fluorescence as shown in figure 2.10; the overall intensity

of the emitted light, and in the appearance of a narrow bump in the spectrum. The inten-

sity of emission increases more quickly along the line of travel at the expense of isotropic

spontaneous emission above threshold, so there is a step change in the slope of emission

vs. pump intensity. this is shown in figure 2.10.

The narrow bump is due to ASE, and it’s shape is narrowed for two reasons.

1. Because certain parts of the emission spectrum have residual absorption there will

be a higher threshold for ASE.

2. In a homogeneously broadened system, amplification at one frequency means that

the emitter cannot create ASE at another frequency. This leads to competition be-

tween parts of the spectrum, amplification at one frequency depletes gain at other

parts of the spectrum.

This narrowed bump is apparent in figure 2.10a.

A more precise method for determining gain parameters is SRPP. By subtract-

ing the change in absorption from the linear absorption, the nonlinear absorption of the

excited state is retrieved, as in equation 2.22.

ODNL(ω) = OD0(ω) + ∆OD(ω) (2.22)
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Figure 2.10: Two signs of amplified spontaneous emission (ASE) in thin films of CsPbBr3

NCs. a A narrow bump in the emission spectrum where ASE takes place. b A step change

in the increase of intensity with pump power, detected along excitation axis. Reproduced

from [57]

Gain occurs for negative ODNL. SRPP has the advantage of detecting the entire gain spec-

trum as a function of pump power and time, instead of simply the energies that are ampli-

fied. ASE will also overestimate gain thresholds in systems with very short-lived lasing

upper states, as these states will decay before they can participate in the ASE process[58],

and with the ∼ 100 fs resolution of SRPP this is not an issue. The greatest advantage of

SRPP is the ability to see the effect of the initial state on gain parameters, which resolved

many open questions in this field [59, 60]. An application of SRPP to a type-I CdSe QD in

a CdS rod system is presented in chapter 4. It will be shown that SRPP is a powerful tool

in determining gain characteristics and electron-phonon coupling.

58



Bibliography

[1] Lewenstein, M.; Balcou, P.; Ivanov, M. Y., ’t Anne L’huillier; Corkum, P. B.; Liver-

more, L.; Theory of high-harmonic generation by low-frequency laser fields; Tech. Rep.;

1994. https://journals.aps.org/pra/pdf/10.1103/PhysRevA.49.2117.

[2] L’Huillier, A.; Balcou, P. Physical Review Letters 1993, 70, 774–777.

[3] Pfeiffer, A. N.; Cirelli, C.; Landsman, A. S.; Smolarski, M.; Dimitrovski, D.; Madsen,

L. B.; Keller, U. Physical Review Letters 2012, 109, 1–5.

[4] Dantus, M.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1987, 87, 129–132.

[5] Fleming, G. R.; Passino, S. A.; Nagasawa, Y. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences 1998, 356, 389–404.

[6] Maroncelli, M.; Macinnis, J.; Fleming, G. R. 1988, 243.

[7] Cocker, T. L.; Jelic, V.; Gupta, M.; Molesky, S. J.; Burgess, J. A.; Reyes, G. D. L.; Titova,

L. V.; Tsui, Y. Y.; Freeman, M. R.; Hegmann, F. A. Nature Photonics 2013, 7, 620–625.

[8] Mrejen, M.; Yadgarov, L.; Levanon, A.; Suchowski, H. Science Advances 2019, 5, 1–6.

[9] Schumacher, Z.; Miyahara, Y.; Spielhofer, A.; Grutter, P. Physical Review Applied 2016,

5, 1–6.

59

https://journals.aps.org/pra/pdf/10.1103/PhysRevA.49.2117


[10] Aeschlimann, M.; Brixner, T.; Fischer, A.; Kramer, C.; Melchior, P.; Pfeiffer, W.;
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2.A Population kinetics in 2, 3 and 4 level laser systems

2.A.1 2-level systems

When considering the probability of a radiative transition to occur between a ground

state |0〉 and excited state |1〉, there are three important processes to consider: Relaxation,

stimulated emission, and absorption. Relaxation can occur radiatively or non-radiatively,

when it comes to laser dynamics it is simply movement between energy levels with no

change to the laser radiation field. Stimulated emission can be thought of as the reverse

of absorption, a photon incident on the excited system causes relaxation to the ground

state with emission of an additional photon with the same frequency, polarization, and

wavevector.

Using these 3 processes it is possible to make a system of rate equations to de-

scribe the population dynamics of the laser system. Under a few simple assumptions

the performance of a laser gain medium can be quantified from physical constants, such

as the lifetime and cross-section of the lasing state. For the curious reader, an excellent

resource for laser physics and design is Orazio Svelto’s Principles of Lasers, where many

important concepts are given proper attention[1]

As an example, consider a 2-level system with states |1〉 and |2〉.

dN1

dt
= −Iσ

hν
N1 + ksN2 +

Iσ

hν
N2 (2.23)

dN2

dt
= −dN1

dt
=
Iσ

hν
N1 − ksN2 −

Iσ

hν
N2 (2.24)
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HereN1 andN2 describe the population of the levels |1〉 and |2〉, I is the intensity

of laser radiation, ks is the total spontaneous decay rate between levels |1〉 and |2〉, ν and

σ12 are the frequency and cross-section of the laser transition, respectively. It is useful to

reframe equations 2.23 and 2.24 in terms of the total population, N , and the population

inversion, ∆N = N2 − N1. At equilibrium, when dNi/dt = 0 for all i, the system has the

following solution:

∆N =
−N

1 + I/I0

(2.25)

Is =
hνks
2σ

(2.26)

It is immediately apparent, that for whatever positive value of I , ∆N is strictly

negative. In the limit of intense pumping, I � Is, ∆N approaches 0, or transparency.

This reflects the fact that a closed 2-level system cannot lase. Below it will be shown that

a minimum three level system is required, but a four level system is best.

2.A.2 3-level systems

Consider the three level system shown in figure 2.11. The transition |1〉 → |3〉 is pumped,

followed by fast relaxation to level |2〉. It is then possible to lase between levels |1〉 and

|2〉, once more than half the population is in the upper lasing state. In this system, the

relaxation from |3〉 to |2〉 must be very fast, on subpicosecond timescales. This is so that

no stimulated emission from |3〉 to |1〉 occurs, and pump energy is efficiently transferred

to the upper lasing state.

Following our procedure for the two-level system, we write down the system of

rate equations governing population dynamics, rewrite in terms of ∆N and N , then solve

for the steady state, dNi/dt = 0 for all i.
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Figure 2.11: Energy level diagram showing a 3 level laser system and relevant population

transfer rates.

dN1

dt
= −RN1 + k31N3 + ksN2 +

Iσ

hν
(N2 −N1) (2.27)

dN2

dt
= k32N3 −

Iσ

hν
(N2 −N1)− ksN2 (2.28)

dN3

dt
= RN1 − (k31 + k32)N3 (2.29)

Here we’ve introduced the pump rate as R. In a system with fast relaxation from the

upper level, k32 � R, k31 for all pump intensities. Under steady state conditions equation

2.29 reduces to:

N3 =
R

k31 + k32

N1 (2.30)

which means that N3 � N1 under the condition that k32 � k31, R. Under this condition

N ≈ N1 +N2. Substituting equation 2.30 into equation 2.29 and rewriting in terms of ∆N

and N yields the following steady state solution:

∆N =
R/ks − 1

I/2Is +R/ks + 1
(2.31)

Is =
hνks
σ

(2.32)

In this situation a population inversion can exist if the pumping rate is greater than the

spontaneous decay rate, or alternatively if more than half of the population is transferred
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to the upper lasing state. This puts a fundamental threshold of operation on any 3-level

laser design.

2.A.3 4-level systems

In a four-level system such as is depicted in figure 2.12, it is possible to have population

inversion at very low pump intensities. In these systems there is rapid relaxation from

the highly excited state to the upper lasing state, and similarly rapid relaxation from the

lower lasing state to the ground state. The system of rate equations and relations between

rates are given below:

dN0

dt
= −RN0 + k30N3 + k10N1 (2.33)

dN1

dt
=
Iσ

hν
(N2 −N1) + ksN2 − k10N1 (2.34)

dN2

dt
= k32N3 −

Iσ

hν
(N2 −N1)− ksN2 (2.35)

dN3

dt
= RN0 − (k30 + k32)N3 (2.36)

k32 � R, k30; k10 �
Iσ

hν
, ks

Figure 2.12: Energy level diagram showing a 4 level laser system and relevant population

transfer rates.
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Following the same steps as we did in our analysis of a three level system, we

can eliminate N3 from the system of equations. We first limit the analysis to the steady

state equilibrium condition, dNi/dt = 0 for all i. Rearranging produces the following

relations.

N3 =
R

k30 + k32

N0 ≈
R

k32

N0 (2.37)

N1 =
Iσ
hν

+ ks
Iσ
hν

+ k10

N2 ≈
Iσ
hν

+ ks

k10

N2 (2.38)

Under our assumptions about the rates k10 and k32, we have N3, N1 � N0, N2, and thus

N ≈ N0 +N2 and ∆N ≈ N2

Recasting equations 2.33-2.36 into the form of population inversion, ∆N , and

using the relations 2.37 and 2.38, one finds an expression for the population inversion in

a four-level system in terms of pumping rate and material parameters σ and Is.

d∆N

dt
=
dN2

dt
− dN1

dt
= 0 (2.39)

=
−2Iσ

hν
∆N − 2ksN2 + k32N3 − k10N1 (2.40)

Now substituting 2.37 and 2.38 for the terms k32N3 and k10N1 respectively, and

using the approximation ∆N ≈ N2:

0 =
−2Iσ

hν
∆N − 2ksN2 +RN0 −

(
Iσ

hν
+ ks

)
N2 (2.41)

⇒ ∆N ≈ R

3ks(I/Is + 1)
N0 (2.42)
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Here we see that population inversion occurs even for very small pump intensi-

ties. The lower lasing level is always empty and the upper lasing level is uncoupled from

the ground state, so any excitation leads to population in N2 and any laser radiation is

not re-absorbed. This is the best case scenario for low laser thresholds and good power

efficiency.

Almost all commercial laser systems are based on a four level system. However,

certain laser media have closely spaced 3rd and 4th levels, or 1st and 2nd levels, creating

quasi three level systems. In these systems good heat management is required to prevent

thermal population of the interfering states. The two important material parameters are

the saturation intensity and lifetime of the upper lasing state. The saturation intensity

is a measure of small signal gain and also of how much intensity is required to start a

laser cavity with a given output coupler. Small saturation intensities mean large gain and

low threshold power. The lifetime of the upper lasing state, k−1
s determines how much

energy can be stored in the medium, with longer lifetimes meaning more potential to

store energy. Long lifetimes are ideal for pulsed laser systems, and some lasers based on

forbidden transitions can have lifetimes in the hundreds of microseconds in Nd to several

milliseconds in Yb. The decay rate also represents a loss rate, which for 3 level systems

must be overcome with a greater pump rate.
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Chapter 3

Two-dimensional Spectroscopy

Two dimensional electronic spectroscopy (2DES) is a multiple pulse, nonlinear spectroscopy

that is capable of monitoring diagonal and off-diagonal elements of the density matrix.

That is to say 2DES can observe not only population transfer between states, but also

electronic coherence and coupling between states. Furthermore, by using a coherent

pair of pulses to pump the sample, 2DES resolves a fundamental limit to SRPP. In SRPP,

to address only one particular state with the pump pulse, the bandwidth of the pump

pulse can’t overlap any other transitions. This limits the pump bandwidth, which lim-

its temporal resolution. By using an interferometric pump pulse pair in 2DES, this limit

no longer applies. In this chapter the theoretical and mathematical underpinnings of

two-dimensional spectroscopy will be developed. It will be shown that conventional

two pulse pump-probe spectroscopy retrieves one part of the third order response func-

tion of a system, while two-dimensional spectroscopy can retrieve the entire third order

response. This has important consequences for lineshape analysis and experiment de-

sign, allowing researchers to exploit phase-cycling or frequency modulation techniques

to isolate particular signals. The derivations below will follow closely those of Shaul

Mukamel’s Principles of Nonlinear Optical Spectroscopy[1] and Peter Hamm and Martin

Zanni’s Concepts and Methods of 2D Infrared Spectroscopy[2]. Because the concepts and the-
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Figure 3.1: Common lineshapes observed in linear spectroscopy. HR refers to Huang-

Rhys broadening in a displaced harmonic oscillator model.

ory of multidimensional spectroscopy were born from two-dimensional nuclear magnetic

resonance (NMR), much of the terminology is borrowed from that discipline, such as de-

phasing times T2 that describe a loss of phase coherence, and T1, that describes population

relaxation.

To demonstrate the power of 2DES in the analysis of lineshapes, consider the

spectra presented in figure 3.1 . In linear spectroscopy, the lineshapes arising from ho-

mogeneous and inhomogeneous broadening are very similar. Also presented is the inter-

mediate case of a Kubo lineshape, where oscillators undergo spectral diffusion. Even a

series of overlapping transitions in a displaced harmonic oscillator can be indistinguish-

able from a single transition, shown as the blue curve in figure 3.1. Dynamic effects are

quite clear in 2DES, and can be isolated through Fourier transform along certain temporal

dimensions[3] or by retrieving the center line slope[4, 5] through a single peak. Homoge-

neous versus inhomogeneous broadening is separated along the diagonal axis of a 2DE

spectrum, and is thus made rather obvious.
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3.1 The 2DES signal

Two-dimensional spectroscopy is best carried out using the density matrix representation

of a statistical collection of quantum systems. The density matrix ρ represents the ensem-

ble statistical average over a collection of quantum systems. The elements of this matrix

are shown below:

ρij =
∑
n

Pn 〈i|n〉 〈n|j〉 (3.1)

= 〈cic∗j〉 (3.2)

In equation 3.1, Pn is the ensemble probability of a system occupying state |n〉, a real,

positive number with
∑

n Pn = 1. The ci are the complex coefficients describing the

microscopic quantum systems, with important physical interpretations. Examining the

diagonal components of ρ:

ρii = 〈cic∗i 〉 = Pi (3.3)

These diagonal elements represent the probability of finding an individual system in

quantum state |i〉. The ρii are strictly positive and less than 1, with
∑

i ρii = 1.

The off-diagonal elements, on the other hand, are complex and describe phase

relations between states:

ρij = 〈cic∗j〉 = 〈|ci||cj| exp(i∆φij)〉 (3.4)

The ei∆φij term in equation 3.4 describes the phase coherence between states |i〉 and |j〉.

Phase coherence can be thought of as the degree to which a collection of systems are in

sync. Soldiers marching on a parade ground walk in phase and don’t lose coherence in

their step. You hear the footfall of every soldier at the same time. There is a very narrow

distribution to ∆φij in equation 3.4. On the other hand, a large group of runners passing

72



by all have their own pace and stride length, their steps are incoherent. All you hear is a

steady background of footfalls. There is a large distribution to ∆φij in equation 3.4.

3.1.1 System response function

The 2DES signal is described by the material response to a sequence of 3 pulses, emitted

in a particular direction with a particular frequency. Let us begin by framing the concept

of linear absorption in the induced polarisation of a two-level system.

At time t = −∞, the system is in the ground state and the only non-zero com-

ponent of the 2× 2 density matrix is ρ00 = 1. This system interacts with an optical pulse,

which for now will be described as a delta function in time. Optical excitation creates a

coherence, or an off-diagonal element ρ01 and it’s complex conjugate in ρ10. The coherence

will oscillate at frequency ω01 and decay with the decoherence time T2. Of course, there is

also a population in the density matrix element ρ11, but we are working in a weak pulse

limit where ρ11 � ρ10

ρ01 = iµ10e
−t1/T2e−iω01t1 (3.5)

In equation 3.5 t1 is the time after interaction with the first pulse and µ10 is the transition

dipole moment. The time-dependent system response function is given as:

R(1)(t1) = 〈µ〉 = Tr[µρ] (3.6)

= iµ2
10e
−t1/T2e−iω01t1 (3.7)

An incident electric field, Einc(t), interacts with the system through the response function

given by equation 3.7 to create a polarization, P (t). The polarization radiates a signal
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field, Esig(t1), that is π/2 out of phase with the polarization.

Esig(t1) ∝ iP (t1) (3.8)

= i

∫ +∞

−∞
R(1)(t1)Einc(t− t1)dt (3.9)

This signal field will be superimposed with the incident field, that is to say the

signal field is heterodyned by the incident field. The cumulative π/2 phase shifts in equa-

tions 3.7 and 3.8 cause the signal field to be out of phase with the incident field. This cre-

ates destructive interference and a reduction in field intensity. This intensity is typically

detected through a square-law detector after dispersion by a spectrometer. Mathemati-

cally, this is Fourier transformation of the signal, and taking the absolute value squared.

S(ω) =

∣∣∣∣∫ +∞

−∞
[Einc(t) + Esig(t)] e

iωtdt

∣∣∣∣2 (3.10)

= I0(ω) + 2 Re [E(ω)Esig(ω)] + Isig(ω) (3.11)

Usually the term Isig(ω) can be neglected, since it is so much smaller than I0(ω).

It should be noted that the energy lost by the electric field is recovered in the system,

through the ρ11 population term which we have ignored so far.

We will now extend a similar development to a third order response,R(3)(t1, t2, t3)

and examine the detection and interpretation of such a signal. We begin again with a

pulse creating a coherence on ρ01 at time t = 0. This coherence again evolves according

to equation 3.5. At time t = t1 a second pulse interacts with the system, transferring the

coherence to a population on ρ11 that evolves along t2. This decays with the population

time T1.

ρ11(t1, t2) = iµ2
01e
−iω01t1e−t1/T2e−t2/T1 (3.12)
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At time t = t1 + t2 a third pulse interacts with the sample and creates another co-

herence which evolves along t3. Through these three interactions the molecular response

is described as below:

ρ01(t1, t2, t3) = iµ3
10e
−iω01(t1+t3)e−(t1+t3)/T2−t2/T1 (3.13)

R(3)(t1, t2, t3) = Tr[µ · ρ(t1, t2, t3)] (3.14)

= iµ4
10e
−iω01(t1+t3)e−(t1+t3)/T2)e−t2/T1 (3.15)

In reality, we have only chosen a particular example of light matter interaction. With the

complex representations of fields and quantum states there is no reason that the system

cannot interact with a negative frequency on the bra, as opposed to a positive frequency

on the ket. For example, if the third pulse interacted with the negative frequency this

would have created a coherence ρ01 that looks somewhat different. We will label this

interaction R(3)
1 for reasons that will become clear.

R
(3)
1 = iµ4

10e
−iω01(t1−t3)e−(t1−t3)/T2e−t2/T1 (3.16)

Equation 3.15 and 3.16 differ in only one term: the oscillating term at ω01. In 3.15 this

simply oscillates with the sum of t1 and t3, while in 3.16 there is an echo where t1 =

t3. During coherence time t3 the phase evolution that happened during t1 is unwound,

and these third order response functions are called rephasing response functions. Pulse

interactions that don’t unwind the t1 phase during t3 are called non-rephasing response

functions. The total response of the system is the sum of all possible response functions.

With multidimensional spectroscopy of multilevel systems, it can quickly be-

come difficult to keep track of all the pulse interactions that are possible. One tool to

make bookkeeping easier is the double-sided Feynman diagram (DSFD). Here time is on

a vertical axis from bottom to top and pulse interactions transform the system through

coherences and populations from the left and right. Because an oscillating electric field
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has both positive and negative frequency components, they can act on either the bra or the

ket of a system, according to the rotating wave approximation. The DSFD for the pulse

ordering in R(3)
1 is shown in figure 3.2.

Figure 3.2: The DSFD for the R(3)
1 rephasing pathway.

There are some simple rules for interpreting and drawing DSFDs.

1. The last interaction is the signal field, which originates from P (3)(t1, t2, t3), is by

convention from the ket. Corresponding diagrams with the last interaction from the

bra are the complex conjugate and don’t carry additional information.

2. Each diagram carries an overall sign (−1)n, where n is the number of interactions

on the right, to account for action on the bra.

3. A right pointing arrow represents E, while a left pointing arrow represents E∗. This

electric field not only contains positive and negative frequencies, but also positive

and negative wave-vectors and phases.

4. The final interaction has wave-vector, frequency and phase given by the sum of the

previous interactions.

5. The last interaction must end in a population state, |n〉 〈n|.

For a three level system as shown in figure 3.3a there are a total of 6 pulse in-

teractions possible, and their DSFDs are shown in figure 3.3b. Each of these also has

its complex conjugate, which is not shown. Responses R1 to R3 are rephasing signals,

where the third coherence unwinds the phase evolution in the first coherence. R4 to R6
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are non-rephasing signals. To borrow terms from pump-probe spectroscopy, R1 and R4

correspond to stimulated emission contributions to the signal, R2 and R5 to ground state

bleach, and R3 and R6 to excited state absorption. By rule 2, R3 and R6 have an oppo-

site sign to the other interactions, reflecting the absorption process. They also end in an

excited state. The various responses will carry different phases and wave-vectors, and

oscillate at different frequencies along the various time axes. For example both R4 and R5

will have wave-vector ~ks = ~k1−~k2 +~k3, and similarly phase φs = φ1−φ2 +φ3. This allows

some implementations of 2DES to discriminate between rephasing and non-rephasing

pathways. The various response functions for a three-level system such as in figure 3.3a

are given below:

R
(3)
1 (t1, t2, t3) = iµ4

10e
−i(ω01(t1−t3)e−(t1+t3)/T2e−t2/T1 (3.17)

R
(3)
2 (t1, t2, t3) = iµ4

10e
−i(ω01(t1−t3)e−(t1+t3)/T2e−t2/T1 (3.18)

R
(3)
3 (t1, t2, t3) = −iµ2

10µ
2
12e
−i(ω01t1−ω12t3)e−t1/T

(01)
2 e−t3/T

(12)
2 e−t2/T1 (3.19)

R
(3)
4 (t1, t2, t3) = iµ4

10e
−i(ω01(t1+t3)e−(t1+t3)/T2e−t2/T1 (3.20)

R
(3)
5 (t1, t2, t3) = iµ4

10e
−i(ω01(t1+t3)e−(t1+t3)/T2e−t2/T1 (3.21)

R
(3)
6 (t1, t2, t3) = −iµ2

10µ
2
12e
−i(ω01t1+ω12t3)e−t1/T

(01)
2 e−t3/T

(12)
2 e−t2/T1 (3.22)

Here the excited state absorption terms, R3 and R6, dephase with T2 of the first transition

during t1, then with T
(12)
2 , the dephasing time of the second transition during time t3.

The total system response will be the sum over all of these terms, with Heaviside step

functions to account for causality.

S(3)(t1, t2, t3) =
1

~3
θ(t1)θ(t2)θ(t3)

6∑
i=1

Ri(t1, t2, t3) (3.23)
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Figure 3.3: Double-sided Feynman diagrams for a 3 level system. a A three level system

with optical transitions µ01 and µ12. b The six DSFDs that are possible for this system.

It should be apparent that the DSFDs shown in figure 3.3 can become quite numerous if

vibrational or electronic fine structure is taken into account, as in figure 3.8 [3]. Further

complications arise from higher order pulse interactions, for example if the first pulse

interacts twice with the system to create a |2〉 〈0| coherence along t1. There is also the

possibility of a so-called two-quantum coherence along t2 through two interactions on

the right or left in a row [6].

One complication of 2DES is that the full phase information of the signal field

must be retrieved. This is most easily accomplished through an optical local oscillator

pulse. This is usually a fourth pulse used to heterodyne the optical signal, so that the

phase evolution of the signal can be monitored. It can also be one of the pulses used in the

experiment, which is the case for 2DES in the pump-probe[7] or co-linear geometries[8].

With this picture of nonlinear light-matter interactions, it is now possible to ex-

pand SRPP spectroscopy as a special case of 2DES. If the two pump pulses used in 2DES

arrived at the same time, with the same wave-vector, and no interferometric scanning

were performed we would have the exact same experiment that is described in 2.2. The

three DSFDs that are responsible for the ground state bleach, stimulated emission, and
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Figure 3.4: The DSFDs for a two pulse pump-probe experiment. These correspond to a

Ground state bleach, b Stimulated emission, and c Excited state absorption.

excited state absorption are shown in figure 3.4. It should be noted that these pump-

probe signals are independent of the phase and wave-vector relation between the first

two interactions, where in 2DES the signal carries that phase. These pump-probe signals

are usually emitted in a 2DES experiment as well, and their lack of phase and wave-

vector dependence allows them to be separated from the 2DES signal. This separation

is done with appropriate phase-cycling [8, 7] in the pump-probe geometry or through

wave-vector selection in BOX-CARs [9].

3.1.2 Implementation of 2DES

The total molecular response function is a sum of all possible pulse interactions, R =∑
Ri. The signal field could be emitted in various directions given by phase-matching

conditions for a particular experimental geometry. For example, a common approach is

the so-called box-CARS geometry, which uses 3 beams travelling along the corners of

a square, as in figure 3.5a. At the sample location they are overlapped, and the signal

is emitted along appropriately phase-matched directions. These are given by the sums

over ~k, several of them are shown in figure 3.5b. The rephasing signals are emitted in

~kr = −~k1 + ~k2 + ~k3. Non-rephasing signals are emitted in ~knr = ~k1 − ~k2 + ~k3. The Local

oscillator is a fourth beam travelling along ~kr that interferes with the signal beam at a

fixed delay for phase retrieval.
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Figure 3.5: Experimental geometry and phase matching for box-CARS 2DES. a Beam

geometry for box-CARS. b Phase-matched signals that come out of a box-CARS beam

setup. Adapted from Concepts and Methods of 2D Infrared spectroscopy

An alternative geometry for performing 2DES is in the pump-probe geometry.

Here only two beamlines are used, and the first two pulses travel along the same path.

The delay between these two is imparted via pulse shapers, giving an additional degree

of control over the relative phase between the pulses [7]. Here ~k1 = ±~k2 so rephasing and

non-rephasing signals travel along the same direction, and co-linearly with ~k3. This makes

the third pulse along ~k3 serve as the local oscillator, simplifying experimental setups. To

isolate the 2DES signal from regular pump-probe contributions phase-cycling is required.

In it’s most simple implementation the relative phase, between pulses 1 and 2, ∆φ12, is

cycled between 0 and π at every time step. Because the 2DES signal is sensitive to the

phase of the fields, taking the difference between these two signals yields the 2DES signal,

free from pump-probe artifacts.
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It is even possible to perform 2DES in a fully collinear geometry [10]. This can

be through an action detected signal such as a photocurrent [10], photoelectrons [11], or

fluorescence [12, 13]. The 2DES signal is isolated either through phase cycling [12, 11, 8]

or through frequency selection [14]. In the frequency domain, each beam has a small

additional frequency Ω of several 10’s of MHz added to the optical frequency of ∼ 400

THz. The 2DES signal is then detected with a lock-in detector at the mixed frequency

Ωdet = Ω1 − Ω2 + Ω3, as in equation 3.28.

ω1 = ω0 + Ω1 (3.24)

ω2 = ω0 + Ω2 (3.25)

ω3 = ω0 + Ω3 (3.26)

ω2DES = ω1 − ω2 + ω3 (3.27)

= ω0 + Ω1 − Ω2 + Ω3 (3.28)

An extension to fully collinear optically detected experiments was made by group

member Hélène Seiler, who isolated rephasing and non-rephasing signals through appro-

priate phase-cycling schemes in an optically detected fully collinear experiment [8], with-

out a pure action detected signal. This has the advantage of simplicity; there is no need

to find time zero, spatial overlap, or characterize pulses from several beamlines. This

implementation of 2DES can also be used in microscopy, or with samples with very low

quantum yield for either photocurrents or photo-luminescence.

It is often convenient to look at the system response function as a frequency-

frequency plot at a fixed population time T = t3 − t2. This is done through Fourier

transform of the signal along τ = t2 − t1 and t3. Often, the Fourier transform along t3

is done by a spectrometer before detecting the entire spectrum on a linear or array CCD.
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The coherence time t1 is scanned at fixed t2, and the resulting coherence is Fourier trans-

formed along t1 to yield S̃(ω1, t2, ω3). This mathematical process is depicted in figure 3.6.

Figure 3.6a shows the pulse sequence and the phase evolution of the signal along the

labelled time coordinates. Figure 3.6b shows the detected spectrum after phase cycling,

along coherence time τ = t2 − t1. This is a hybrid time-frequency domain implemen-

tation of 2DES. The signal along the detection energy axis is measured in the frequency

domain, while the coherence energy axis is measured in the time domain and mathemati-

cally Fourier-transformed to obtain the coherence energy. Entirely time domain methods

exist [12], as do entirely frequency domain methods [15]. The spectrum in figure 3.6b os-

cillates with the frequency of the pumped transitions, and absorptive signals will be π out

of phase with bleached signals. After Fourier transform along the coherence time axis, the

2D spectrum in figure 3.6c is obtained. This particular spectrum shows one strong diago-

nal peak, one weak diagonal peak, and two cross peaks. The sample is a CdSe quantum

dot with a first excitonic transition at 2.05 eV and a second excitonic transition at 2.15 eV.

These energies correspond to the diagonal and cross-peaks, as one would expect.

Some of the things to look for in a two-dimensional spectrum are shown in figure

3.7. For a system of two coupled oscillators as shown in figure 3.7a, researchers may wish

to know how the strength of their coupling, and rates of population relaxation between

these two. Both of these effects are hidden in linear spectroscopy, 3.7b. 2DES shows

couplings directly as cross-peaks in the spectrum. These are the green circles in figure

3.7c, greatly simplifying analysis. Population transfer rates are also clear in 2DES. As

the population time increases, population transfer occurs toward lower energy states,

figure 3.7d. This can be directly tracked in 2DES by taking several spectra at individual

population times, figure 3.7e. It is also possible to Fourier transform the data along t2,

to look at oscillations and coherences along t2. This is particularly powerful, as you can

view which states couple to which frequencies, e.g. this provides a direct map to which

electronic states couple most strongly to which phonons, and also tracks the relative phase

of those phonons as a function of inital state [3].
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Figure 3.6: Acquiring the 2DES signal for a hypothetical system of 2 coupled oscillators

with an excited state absorption. a Pulse sequence and signal evolution in 2DES. b Co-

herence along t1 after dispersion by a grating. c 2DES spectrum after Fourier transform

along t1, showing resonant energies on the diagonal, coupling on the anti-diagonal, and

excited state absorption in blue.

One very important role for 2DES is in observing lineshape dynamics to under-

stand electron-phonon coupling. This is shown in figure 3.7e and f. The lineshape in

2DES has a diagonal and anti-diagonal component. The diagonal component is the total

lineshape that should be observed in linear spectroscopy. The anti-diagonal component

is an instantaneous distribution of freqeuncies, that at time t2 = 0 is the homogeneous

linewidth. As population time increases the sample has time to explore other configura-

tions, or interact with the bath. This results in the anti-diagonal linewidth increasing as

the system undergoes spectral diffusion. This process can be tracked through time, and

allows for a direct reconstruction of the frequency-frequency correlation function.

3.1.3 Electronic vs Vibrational Coherence

It is not a strict rule that the signal along t2 decay as a monotonic population relaxation.

There are several pathways that can create oscillatory signals along t2 that arise from
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Figure 3.7: Capabilities of 2DES a Two coupled oscillators that are probed by 2DES. b

In linear spectroscopy, coupling and dynamic information is hidden. c 2DES provides a

direct measure of coupling, d Population relaxation, and e lineshape dynamics. f This can

be used to reconstruct the frequency fluctuation correlation function.

either vibrational or electronic coherence. For example, when vibrational fine structure is

taken into account, the coarse electronic structure in figure 1.4b is dressed with a ladder

of states separated by the vibrational frequency. For CdSe systems, the most important

vibrational mode is the LO phonon at 208 cm−1, or 26 meV. States will be labelled |n, ν〉

where n refers to the electronic state and ν the vibrational state. Any DSFD that has a term

of type |n, ν〉〈n, ν ± 1| after the second pulse will produce a signal that oscillates along t2

with the phonon frequency. Such a DSFD is shown in figure 3.8a. Another possibility

for oscillations along t2 are electronic coherences. These can be either a double quantum

coherence, with oscillations at ≈ 2ω01, or at an arbitrary frequency determined by the

spacing between electronic energy states. We will first describe the former, so called two

quantum or double quantum coherences. This is depicted in figure 3.8b. In this case

there is the possibility of doing two interactions in a row on the ket to create a |2〉〈0|
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Figure 3.8: Examples of coherent oscillations along t2 for several systems. a With vibra-

tional structure, oscillations arise from coherences between vibrational states. b So-called

two-quantum coherences arise after two interactions on the bra or ket in a row. c oscilla-

tions along t2 can also be due to two closely spaced electronic energy levels.

coherence, that oscillates at roughly 2ω01. There is also the equivalent sequence on the

bras. Finally, there are purely electronic coherences between closely spaced electronic

states. These are shown in figure 3.8c. In this case the oscillation frequency is simply the

difference in energy between state |1〉 and |2〉. The two-quantum coherence is usually well

resolved, because of its very high oscillation frequency, for example in [16]. The difference

between electronic beats and vibrational coherences are more subtle, as these two could

have nearly degenerate frequencies. By looking at the pathways that give birth to either

of these coherences it is possible to create coherence maps that have different shapes and

phase relations depending on the nature of the coherence, as in figure 3.9 [3].

The question of coherences is interesting because it has consequences in quan-

tum computing and sheds light on atomistic dephasing mechanisms. Vibrational coher-

ences illustrate the nature of electron-phonon coupling. The coherence time of the vibra-

tional oscillatory signal reflects either coherent phonons or bound polarons. Prominent

scientists have also made claims that quantum coherence can improve the transport of

charges in biologcal photosystems [17, 18, 19, 20]. These results have spawned several
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studies supporting [21] and attacking [22] the initial claims. Other groups have attempted

to extend these debated results in biological photosynthesis to organic photovoltaics [23],

leading to public debates in leading journals [24, 25]. This heated debate has even caused

editors of leading journals to comment in their publications’ news sections [26]. Aspects

of this scientific controversy have also appeared in mainstream science news [27, 28].

Vibrational coherences have unambiguously been detected for as long as ultra-

fast spectroscopy has existed as a science [29]. Electronic coherences are much more dif-

ficult to detect due to their fast dephasing times, quite often highly ordered systems at

cryogenic temperatures are necessary [30]. What is debated regarding the question of

coherences in biological systems is their nature, electronic or vibrational. Vibrational co-

herences are nothing new or novel, but electronic coherences in these disordered systems

at room temperature, as some have claimed to observe [31], would be extraordinary from

a materials science perspective. Multidimensional spectroscopy is a powerful tool for dis-

entangling electronic and vibrational coherences, as these should have different oscilla-

tion frequencies along t2, and also different phase relations as you move along the (E1,E3)

surface [32, 3]. To observe so called coherence maps, the population transfer and static

signals must be removed from the 2D spectrum, S(E1, t2, E3). This can be done through

a global analysis with minimum parameters [3], or more often, an exponential function

is fit along the t2 dimension and subtracted. The residuals are then Fourier transformed

along t2 to obtain S̃(E1, E2, E3). Two theoretical coherence maps are shown in figure 3.9,

for E2 = 25 meV. Electronic coherence arises from a beating between two closely spaced

electronic states, the frequency of this oscillation is given by the energy spacing between

those levels. The amplitude of these oscillations in a 2DE spectrum are shown in figure

3.9a. Here the sample is a model system that could be a CdSe quantum dot with a band

edge of 1.94 eV, and the two closely-spaced energy levels could be the first two excitonic

states,
∣∣1Se1S3/2

〉
and

∣∣1Se2S3/2

〉
. Two lobes are evident, separated along E3. These two

lobes oscillate out of phase, as shown in figure 3.9b. Vibrational coherences are shown in

figure 3.9c and d. These oscillations are due to wavepacket movement along the ground
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Figure 3.9: Electronic and vibrational coherences in 2DES for a model system. a Ampli-

tude and b phase maps of electronic coherence at the coherence frequency. c Amplitude

and d phase maps for vibrational coherences at the vibrational frequency. Reproduced

from [3]

and excited state PES. In CdSe QDs this vibrational structure arises from the LO phonon

at 24 meV. As the wavepacket moves, wavefunction overlap with the ground state PES

oscillates at the same frequency. The vibrational coupling map has 4 lobes, separated by

twice the phonon energy along E1 and E3.

By altering the pump energy the excited state wavefunction will be launched

with a different phase. By altering the probe wavelength,the excited state wavefunction

will be detected at a different phase, leading to strong phase dependence of the coher-

ences along E1 and E3. This is shown in figure 3.9d. Oscillations along the diagonal,

E1 = E3, are out of phase with those along the anti-diagonal. This is because vibrational

coherences arise form a frequency modulation of the absorption at a particular energy,

whereas electronic coherences between two closely spaced states are simply a beat fre-

quency.
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Figure 3.10: SRPP measurement of coherent phonons in graded-shell CdSe/CdSexZn1−xS

QDs. a Total response after pumping into one of several excitonic states. schematic: Exci-

tonic states depicted as displaced harmonic oscillators coupled to a trap state. b Residuals

of each trace in a after fitting to model functions. c Fourier transform of residuals reveals

the state-resolved electron-phonon coupling spectrum.

SRPP is another powerful tool for examining vibrational coherences, but due to

trade-offs between the required time resolution and state-specificity it can be difficult to

observe electronic coherences with SRPP. Furthermore, the broader the bandwidth used

to pump or probe a vibrational coherence, the more the overall signal is blurred due to

averaging over several phases of the coherence signal[3]. The power of SRPP is again its

simplicity and its state specificity. An example SRPP phonon measurement is shown in

figure 3.10. The system here is a CdSe quantum dot (QD) with an overgrown graded alloy

shell, CdSe/CdSe1−xZnSx, where x goes from zero to 1 radially away from the CdSe core.

This system is very much decoupled from the QD surface[33]. After ultrafast electronic

excitation into one of four excitonic states (X1-X4) in figure 3.10a, the total response of the

electronic and nuclear systems is probed at the red edge of the band edge exciton. The

schematic in figure 3.10a shows the quantum system used to model the nuclear response,

a model of displaced harmonic oscillators. Each of the excitonic states is coupled to a

surface state. The surface states are responsible for acoustic phonons [34].
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The electronic response in figure 3.10 is removed by modelling the electronic

response as a decaying exponential to an offset value. The residuals from this process are

shown in figure 3.10b, showing prominent oscillations at high and low frequencies. The

Fourier transform of these results are shown in figure 3.10c. The large peak at ∼208 cm−1

corresponds to the LO phonon in CdSe. It is clear that band edge pumping into X1 has the

largest coupling to LO phonons, while higher excitation couples more to low frequency

LA phonons, as would be expected[35]. These methods have been used to study complex

mixed CdTe1−xSex quantum dot systems that display a rich phonon structure[36].

3.2 Broadband sources for 2DES

One important limit in 2DES is the bandwidth of the source; this simultaneously limits

temporal resolution and the states that can be examined. To enable pulse compression,

the source must have a well-behaved and predictable spectral phase. For measurements

across several coherence and population times, the source must be stable in overall inten-

sity and spectral shape as well. In our lab, a typical 2DES spectrum at one population time

can take on the order of 10 minutes. To properly sample some 50 population times, the

source must therefore be stable for∼ 8 hours or more. Researchers have been steadily ad-

vancing the spectral width, intensity, and simplicity of broadband sources over the last 30

years. Notable techniques are high-harmonic generation [37], structured photonic crystal

fibers [38], non-collinear optical parametric amplification (NOPA)[39], and hollow-core

fibres (HCFs)[40]. Only these last two techniques will be discussed, as they are the most

commonly used in ultrafast spectroscopy of nanomaterials.
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3.2.1 NOPAs

Non-collinear optical parametric amplifiers (NOPAs) are a development of optical para-

metric amplifiers (OPAs) that increases the phase-matching bandwidth in optical para-

metric generation. This allows NOPAs to cover large parts of the electromagnetic spectrum[39,

41], producing sub-10 fs optical pulses. NOPAs have been developed to work in the vis-

ible [39], IR [42]. Through subsequent sum-frequency generation NOPAs have enabled

tunable broadband UV pulses [43]. In typical OPAs, the input beam is split into 2 beams,

a seed with very low intensity and a pump at high intensity. The low intensity seed path

is used to generate a continuum through self-phase modulation in a transparent mate-

rial. This white-light seed will contain frequencies spanning ∼ 450-1600 nm. The seed is

overlapped in time and space with the high-energy pump for optical parametric amplifi-

cation in a non-linear crystal. Here the seed takes energy from the pump in a χ(2) process

with ωp = ωs + ωi, where ωp, ωs, and ωi refer to the pump, signal, and idler frequencies

respectively. For an 800 nm input beam this can generate a signal beam in the range of

∼ 1150-1600 nm and an idler beam in the range ∼ 1600 - 2600 nm. For increased power,

sometimes a second amplification stage is performed where the signal and idler beams

are combined with the fundamental to further amplify output pulse energies. Through

downstream frequency doubling and mixing, OPAs have been used to generate ultrafast

pulses spanning the UV to the far IR. OPAs are now available in off the shelf devices

configured to specific amplifier systems, whether it be Ti:Sapph with short, high energy

pulses at 800 nm, or fiber based systems with high rep rates and lower pulse energies and

fundamental wavelengths in the IR.

The signal and idler wavelengths produced by an OPA are determined by phase-

matching in the non-linear parametric medium. For efficient χ(2) processes to occur, the

fundamental and signal beams must travel through the crystal at the same phase velocity.

If there is a phase velocity mismatch, newly generated signal and idler radiation will be

out of phase with the previously generated radiation, resulting in destructive interference
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and reduced output. The phase-matching condition is stated mathematically as:

∆k = k(ωp)− k(ωs)− k(ωi) (3.29)

This condition is very rarely met in most materials. In order to fulfill the con-

dition specified by equation 3.29, elements of the χ(2) tensor that couple orthogonal po-

larizations are necessary. In such a geometry, one beam will be polarized along one axis

of a birefringent crystal, while the other two will be polarized along an orthogonal axis.

For a certain incidence angle, the refractive indices along these optical axes will satisfy

equation 3.29 at the desired frequency.

The approach outlined above works well for narrow-band frequency matching

of a collinear pump and signal beam. It is this principle that allows for wavelength tuning

of the OPAs in our downstairs, SRPP spectroscopy lab. The phase-matching bandwidth

of the process in equation 3.29 is determined by crystal thickness and group velocity

mismatch. By limiting crystal thickness, there will be smaller phase mismatch at the end

of the crystal, but also less amplification of the seed beam. As seed amplification scales as

L2, with L the crystal length, this is not an ideal solution for generating broadband pulses.

In order to consider broadband phase matching, it is useful to Taylor expand

equation 3.29 about ωs. By conservation of energy, if the signal changes from ωs to ωs+δωs,

the idler frequency will change to ωi − δωi. We will also consider a fixed pump frequency

ωp.
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∆k = k(ωp)

−
[
k(ωs) +

∂k

∂ω

∣∣∣∣
ωs

δωs +
∂2k

∂ω2

∣∣∣∣
ωs

δω2
s + . . .

]
−

[
k(ωs)−

∂k

∂ω

∣∣∣∣
ωi

δωs +
∂2k

∂ω2

∣∣∣∣
ωi

δω2
s + . . .

] (3.30)

≈ ∆k0 −
(
∂k

∂ωs
+
∂k

∂ωi

)
δωs (3.31)

In going from equation 3.30 to 3.31, we have dropped the higher order terms

and used ∆k0 = k(ωp) − k(ωs) − k(ωi). Here, it is clear that for broad bandwidth gain

both terms in equation 3.31 must be zero. If the first term is non-zero the phase mismatch

will be off and very little amplification will occur. If the second term is non-zero, only

a narrow range of frequencies will be amplified. Matching the second terms of equation

3.31 is often referred to as group velocity matching, since the group velocity of the pulse

is (∂k/∂ω)−1. To simultaneously obtain phase matching and group velocity matching, the

solution is again to use birefringent crystals and off-diagonal elements of the χ(2) tensor.

To achieve the conditions set by equation 3.31 both the angle of incidence of the pump

beam and the pump-seed crossing angle must be optimized [39, 41]. To make a visible

NOPA from an 800 nm input beam, the pump must first be doubled to 400 nm. The 400

nm pump is crossed with a white-light continuum in BBO at an internal angle of 3.7◦,

which corresponds to approximately 6◦ going into the BBO from air. If the BBO is cut at

an angle θ = 32◦, one of the beams should be going straight through the crystal and very

little angle tuning of the BBO is necessary.

The geometry of a typical NOPA is shown in figure 3.11. Figure 3.11a shows the

beam layout and placement of crystals. Figure 3.11b shows the NOPA output spectrum,

covering ∼ 520-800 nm. The schematic in figure 3.11b shows a trick for ensuring the

WL seed and the 400 nm pump are at the proper crossing angle: under sufficient pump
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Figure 3.11: Geometry and pulse characteristics of a NOPA. a Geometry of a NOPA and

external compressor. VA variable attenuator, S Sapphire. b Output spectrum with broad-

band phase matching. WL white-light seed, SF super-fluorescence cone c auto-correlation

trace of the compressed NOPA output. inset: Spectrum of the compressed pulse. Figures

reproduced from [44]

intensity spontaneous optical parametric generation creates a cone of white light around

the pump beam (labelled SF in figure 3.11 b). If the seed crosses the pump beam and the

cone, then the you have the right crossing angle. Figure 3.11c further shows a collinear

auto-correlation trace of the compressed pulse. This pulse has a sech2 FWHM of less than

8 fs.

The NOPA principle of operation leads to powerful broadband pulses, and can

be used to create sub-10 fs pulses across the visible spectrum. Care must be taken to

ensure the white-light seed and the pump beam have good overlap in time. Without

compensation, the pump beam is often much shorter than the seed, so must be chirped

in order to amplify the entire spectrum. For high-power applications, there is the addi-

tional issue of pulse front tilt and walk-off between the beams, which can be compensated

through careful use of prisms or gratings[45].
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3.2.2 Hollow-core fibres

Gas filled hollow-core fibres (HCFs) have been explored as continuum sources somewhat

in parallel with the development of NOPAs. Early results were promising, showing sub-

10 fs capability in the late 90’s [40, 46], comparable to NOPAs of the time. While NOPAs

covered more of the visible wavelengths, HCFs were fundamentally centered around the

wavelength of the driving pulse. Despite this limitation, through high gas pressures and

long fibre lengths, HCF setups have been developed that cover the entire visible regime

[9, 47]. The system is overall easier to align and harder to damage due to the nature of

the nonlinear medium; it is rather difficult to ”burn” an ideal gas. This has led to high

average power and high peak power implementations of HCFs [48].

The principle of operation in gas-filled HCFs is self-phase modulation (SPM).

The goal is to have strong SPM while simultaneously avoiding plasma generation through

multi-photon ionization. One common strategy is to use a large diameter fiber to avoid

high intensity in a tight focus. Because SPM will be reduced in a larger diameter fiber,

this is compensated with a longer fiber length. This is part of the motivation behind

the Kambhampati labs’ choice of a 2 meter, 400 µm diameter fiber. Due to the simple

model, the pulse propagation through the fiber can be modelled numerically with very

good precision. Additional details on the modelling can be found in chapter 6. These

accurate models have allowed for simple, predictable dispersion compensation through

transmission in a material with anomalous dispersion [49] or with chirped mirrors [48].
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[38] Gérôme, F.; Jamier, R.; Auguste, J.-l.; Humbert, G.; Blondy, J.-m. 2010, 35, 1157–1159.

97



[39] Wilhelm, T.; Piel, J.; Riedle, E. Optics Letters 1997, 22, 1494.

[40] Nisoli, M.; De Silvestri, S.; Svelto, O. Applied Physics Letters 1996, 68, 2793–2795.

[41] Brida, D.; Manzoni, C.; Cirmi, G.; Marangoni, M.; Bonora, S.; Villoresi, P.; De Sil-

vestri, S.; Cerullo, G. Journal of Optics A: Pure and Applied Optics 2010, 12.

[42] Brida, D.; Bonora, S.; Manzoni, C.; Marangoni, M.; Villoresi, P.; Silvestri, S. D.;

Cerullo, G. Opt. Express 2009, 17, 12510–12515.

[43] Varillas, R. B.; Candeo, A.; Viola, D.; Garavelli, M.; Silvestri, S. D.; Cerullo, G.; Man-

zoni, C. Opt. Lett. 2014, 39, 3849–3852.

[44] Cerullo, G.; Nisoli, M.; Stagira, S.; De Silvestri, S. Optics Letters 1998, 23, 1283.

[45] Tzankov, P.; Zheng, J.; Mero, M.; Polli, D.; Manzoni, C.; Cerullo, G. Optics Letters

2006, 31, 3629.

[46] Nisoli, M.; De Silvestri, S.; Svelto, O.; Szipöcs, R.; Ferencz, K.; Spielmann, C.; Sarta-
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Molecular, and Optical Physics 2010, 81, 2–7.

98



Chapter 4

CdSe / CdS Dots-in-Rods as a Gain

Medium

Semiconductor quantum dots have been well investigated for their favorable optical prop-

erties in applications spanning lasers [1, 2, 3], light emitting diodes [4, 5], and photo-

voltaics [6, 7, 8]. Spherical quantum dots represent the model system for these studies,

with well understood exciton dynamics [9]. The results on these model systems form a

basis for how fundamental excitonics may be controlled via materials towards improved

performance for optical applications. Hence there has been much work to explore more

complex nanocrystal geometries such as core/shell structures[10], nanorods[11, 12, 13],

or nanoplatelets[11, 14, 15, 16]. The aim is to see how the material system can control

specific properties such as efficiency, Auger rates, and multiexciton interaction energies.

4.1 Introduction

There are three properties commonly used to characterize a gain material. These are the

lifetime, threshold, and cross-section for gain. The lifetime is determined by the lifetime
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of the upper lasing state. In the case of multiexcitons this is the Auger lifetime, which

is on the order of 1-100 ps. For single excitons the lifetime is on the order of 10 ns, one

of the motivations for single exciton gain materials. While the lifetime is an important

parameter, it is not the determinant of efficiency. Efficiency is determined by the detailed

level structure in the material and the presence of interfering absorbing states. While

a shorter lifetime will never lead to a more efficient laser, a well designed system can

mitigate this effect. If the laser radiation in the cavity builds up quickly to a large enough

value, stimulated emission can become favored over population decay. This can occur

in a small cavity with a densely packed medium. Any excited state absorption from the

upper lasing level will always be a source of loss whatever is happening in the cavity, and

is hence a more stringent determinant of efficiency in terms of lasing applications.

Because of the equivalency between the Einstein coefficients for absorption and

stimulated emission, population inversion between two levels is necessary for light am-

plification to occur. This is only possible in a three or more level system. Three level

systems will produce gain only when the ground state is half-empty, while a four-level

system with the proper decay channels will in theory produce gain after a single excita-

tion. Figure 1 shows some of the energy levels implicated in NC lasing. II-VI NCs form

a three-level system between the ground state and the absorptive Xabs and emissive Xem

states of the band edge exciton, which are separated by the Stokes’ shift, δX . Gain would

occur between the emissive exciton state and the ground state once the ground state is

half empty. In practice, there is an interfering state that blocks gain. Absorption of a

second photon can excite a second exciton, forming a biexciton (XX).

The biexciton is bound by an energy ∆XX , placing biexciton absorption to the

red of single exciton absorption. Because ∆XX is similar to δX , excited state absorption

overlaps stimulated emission, blocking gain and destroying the ideal three level system.

As there is fine structure in X, there should be fine structure in XX as well. This structure

may come from axial strain, exchange interactions, or phonon vibrations [17, 18], the

100



important thing is that the fine structure is present in both X and XX. Figure 4.1 shows

how these energy levels are related. This fine structure leads to several ways of measuring

the binding energy, ∆XX , either in emission or absorption. It is the overlap of Xem and

XXabs that dictate thresholds for single exciton gain and the overlap of XXem with Xabs

and XXabs that dictate thresholds for biexciton gain.

Figure 4.1: Energy level diagram showing absorptive and emissive states for the exciton

and biexciton in quantum confined systems.

4.2 CdSe/Cds Dot-in-Rods

Semiconductor NCs have a number of favorable characteristics as an optical gain medium,

but no single platform exists with ideal performance in all respects. Hence an under-

standing of the relationship between structure and function is useful. One aims for a

material with decoupled emission and excited state absorption, which can be achieved

through multiexciton interaction. This is very large in small NCs, but small NCs also

have very fast Auger rates and suffer from surface trapping[19, 20]. Shape control can al-

ter some gain properties. Comparing CdSe quantum dots to quantum rods with the same

volume, rods will have a shorter Auger lifetime due to surface trapping effects[13, 21].

Despite this, it is possible to achieve room temperature optical gain in CdSe quantum

rods[22]. Another approach is to form a heterostructure that spatially separates the elec-

tron and hole, as in a type-II core/shell NC. Here multiexciton interactions are extremely

large and repulsive, due to Coulomb interactions between the excited and separated elec-
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tron and hole. Long lived gain from single excitons is achieved in these systems[23].

Type-II heterostructures, however, suffer from reduced oscillator strength in the lasing

transition. Another avenue for low-threshold gain is to take advantage of trap states to

form a three-level [24] or a four-level system[25]. CdSe dots with an overgrown CdS rod

(CdSe/CdS DiRs) offer both low threshold gain[26, 27, 28], reduced Auger rates [29, 30],

and polarized emission [31, 32, 33]. These useful gain properties may be due to electron

delocalization in the conduction band, which is controlled by the relative diameters of

the CdSe dot and the CdS rod [34, 35, 36], providing a promising platform for optical

applications such as lasers[37, 38, 39, 40] or LEDs[41, 42]. Previous ultrafast pump-probe

studies on DiRs have already made some key obesrvations. Lupo et. al. specifically did a

state-resolved approach that found evidence for electron delocalization in the conduction

band[43]. Others assigned the features in the pump-probe spectrum to the CdS surface,

CdSe/CdS interface states, and CdSe dot, and found relaxation rates between these three

states[44, 45]. We present here a comprehensive, state-resolved pump-probe analysis of

the gain characteristics of this system.

Figure 4.2 presents an overview of the CdSe/CdS DiR nanocrystals used here

and their optical properties. All optical measurements are performed on DiRs dissolved

in toluene at room temperature. Figure 4.2 a shows a schematic of the physical structure.

Figure 4.2 b shows some of the important energy levels. The inset shows TEM images of

the DiRs. The rods have dimensions of approximately 5 nm × 45nm. Figure 4.2 c gives

an overview of the linear and non-linear optical spectra. The linear absorption spectrum

shows two important features, one relatively weak absorption due to the CdSe quantum

dot near 2.07 eV, and a large absorption near 2.58 eV due to the rod. Based on CdSe quan-

tum dot sizing curves, the dot diameter is approximately 4.6 nm, not taking into account

the delocalizing effect of the CdS shell[45]. Both the dot and the rod show quantized, ex-

citonic states. Under optical excitation into the rod photoluminescence is observed from

the dot. Also shown are pump pulse spectra under two pumping conditions; pumping

into the dot (2.07 eV, in red) and pumping into the rod (2.58 eV, in blue) excitonic states.
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Below is a TA spectrum at 10 ps after pumping into the dot excitonic state at 2.07 eV. The

TA spectrum shows a strong bleach of the dot transition and a weaker bleach of the rod

transition, with other very weak bleach signals occurring between these two states.

Figure 4.2: Linear absorption, emission, and pump-probe spectrum of the CdSe/CdS Dot-

in-Rod (DiR) system. a Schematic of the DiR system. b Energy level diagram showing dot

and rod band structures. Inset:TEM image of the DiRs. c Linear absorption, PL, pump

spectra and ∆ OD spectrum of the DiRs. inset: PL and absorption showing rod absorption

and dot emission..

The photo-luminescent properties of this CdSe/CdS DiR system demonstrate

high photo-luminescent quality. Figure 4.3 shows single crystal emission data giving ev-

idence for bright, nearly non-blinking emission. Figure 4.3 a shows the sample emission

time trace obtained over 3 minutes of observation. It is clear that the system is spending

most of its time in a bright state with high emission, with intermittent blinking for very
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Figure 4.3: Single crystal emission data for CdSe/CdS DiRs. a Emission time trace show-

ing bright and dark states. b Histogram of data presented in a.

Figure 4.4: Population decay of a single CdSe/CdS DiR crystal.

brief periods of time. The amount of time spent in bright and dark states is quantified in

figure 4.3 b, in a histogram of emission rates rates at each time interval.

With the data presented in figure 4.3 it is possible to build a fluorescence decay

curve to obtain the lifetime of excitons in a single DiR system. This is shown in figure 4.4.

A population lifetime of 15.75 ns is obtained with a clean, mono-exponential decay.

Figure 4.5 provides a more detailed overview of the excitonic state-resolved TA

measurements. Figure 4.5 a and b show the different results obtained by specifying the
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initial excitonic state, compared to the linear absorption spectrum. By pumping reso-

nantly into the dot transition at 2.07 eV, an instrument response-limited bleach signal is

created that doesn’t change over ∼ 100 ps. By pumping into the rod continuum at 3 eV,

an initially hot exciton is created in the rod that then diffuses into the dot on a timescale

of several 100s of fs, causing a growth in the bleach feature at 2.07 eV. There is also a

stronger bleach signal in the 2.15 to 2.25 eV region compared to 2.07 eV pumping, which

has been assigned in the literature to bleaching of a ”bulge” state at the CdSe/CdS inter-

face [46, 44] or quantum confined hole states in the CdSe dot [47]. Figure 4.5 c and d show

the full energy and time resolved TA signal for dot (2.07 eV) and rod (3.0 eV) pumps, re-

spectively. Figure 4.5 d further shows excited state absorption due to transitions from X

⇒ XX. Pumping resonantly into the rod state at 2.58 eV yields similar results to pumping

into the rod continuum at 3 eV.

Figure 4.5: Overview of state-resolved pump-probe measurements in CdSe/CdS DiRs.

a,b Linear absorption and transient spectra for pumping into a the dot and b the rod. c,d

Full time and energy resolved SRPP signals for c dot pumping and d rod pumping
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4.3 Gain Measurements

Figure 4.6 shows the development of optical gain via state-resolved pumping.The Kamb-

hampati group has previously shown that state-resolved optical pumping reveals new

aspects of gain physics, specifically these state-resolved methods demonstrate how cross-

section, threshold, and bandwidth are intimately related to the pumped state[48]. We

explore these effects here. Figure 4.6 a,b shows the development of optical gain through

the nonlinear absorption spectrum. The nonlinear absorption spectrum is simply the lin-

ear absorption spectrum plus the transient absorption spectrum, ODNL = ∆OD + OD0.

The nonlinear absorption corresponds to the absorption of the pumped sample. These

nonlinear absorption spectra are obtained at a time delay of 10 ps. Certain transitions

in the pumped sample become bleached, ultimately producing transparency. At higher

fluence one might obtain negative absorption corresponding to gain.

Figure 4.6 a shows the nonlinear absorption after pumping into the dot at 2.07eV.

Gain is achieved from approximately 1.93 to 2.07 eV. Gain coefficients are also relatively

large compared to the linear absorption cross-section. Figure 4.6 b shows the same mea-

surement after pumping into the rod at 2.58 eV. At high fluence the gain extends from

1.93 to 2.03 eV. The gain is also much weaker relative to dot-pumped DiRs, and the shape

of the gain spectrum is markedly different. The advantage of pumping into the rod state

is that the threshold fluence is much lower. Gain is achieved at ∼ 250 nJ/pulse for rod

pumping and ∼ 690 nJ/pulse for dot pumping. This is due to the funnel effect of the rod;

the rod can very effectively absorb photons and transport charge to the dot for stimulated

emission.

Figure 4.6 c,d shows the gain threshold for dot pump and rod pump. The key

point is establishing the average number of excitons per DiR, 〈N〉. This is done by mea-

suring the population of band edge excitons through the magnitude of the band edge

bleach[49]. Since the band edge state can hold at most two excitons, the population is
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Figure 4.6: State-resolved gain properties of the CdSe/CdS DiR system, for pumping

into the dot (left column) or rod (right column) excitonic states. a,b Non-linear optical

density with increasing pump fluence for a dot and b rod pump. c,d Slices along selected

probe energies ofODNL, showing lower thresholds for rod pumping. e,f Time and energy

resolved gain signal. Colorbar scale is in mOD.

simply twice the fractional bleach as given by equation 4.1 [48, 28].

〈Ndot〉 = −2
∆OD

OD0

= 〈N〉 (4.1)

For pumping directly into the dot at 2.07eV only the dot state is populated, so

〈Ndot〉 = 〈N〉. For pumping into the rod at 2.58 eV any number of excitons can be created

in a single NC because of the high density of states at this energy. The number of NCs

containing N excitons is given by a Poisson distribution with parameter 〈N〉. By relating
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the number of NCs containing two excitons to that given by a Poisson distribution, the

average exciton occupancy can be extracted. This is given by equation 4.2 [48, 49, 28]

〈Ndot〉 = −2
∆OD

OD0

= 2− (2 + 〈N〉) e−〈N〉 (4.2)

The gain threshold in terms of the average exciton occupancy is a measure of

gain efficiency and exciton and biexciton overlap. For decoupled stimulated emission

and excited state absorption, gain thresholds will be small. When stimulated emission

competes with excited state absorption, gain thresholds will be larger. This results in

a spectrum for the gain threshold. Figure 4.6c shows the threshold for dot pumping is

〈N〉 = 1.2 on the red edge, and 〈N〉 = 1.6 at the peak of gain. Figure 4.6d shows the

threshold for rod pumping is 〈N〉 = 1.0 at the red edge, and 〈N〉 = 1.6 at the peak. A

threshold of 〈N〉 = 1.6 is approximately universal for CdSe NCs [50]. What is unique

here is the low threshold for high pump energies. Previous studies that report only ASE

[26, 51] or lasing [37, 39, 38, 40] thresholds miss valuable information that can only be

found through pump-probe experiments, as reported here. These are the average exciton

occupancy at the gain threshold, the gain spectrum and the gain lifetime. These state-

resolved measurements allow observation and quantitative measurement for all of these

properties.

Figure 4.6e,f further shows that both pumps yield gain that lasts up to 100 ps.

The dynamics of optical gain can be connected to the lifetime of multiexcitons (MX). The

lifetime of MX is determined by Auger recombination. If gain is produced by single exci-

tons, MX recombination is of no relevance to the gain lifetime. Here MX recombination is

the limiting factor for gain lifetime.
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4.4 Surface coupling

Coupling between the surface states of a quantum dot (QD) and the core band edge ex-

citon has several effects. There is obviously decreased PL quantum yield from the band

edge exciton, but there is also often white light emission that competes with core emis-

sion [52, 53]. This white light emission is thought to originate from the surface of the

QD because it is only apparent for smaller QDs, and is quite sensitive to capping ligands.

Other experimental measures that show surface coupling include phonon spectra and

Auger recombination. For poorly passivated or aged samples large LA phonons are cre-

ated through surface trapping[54, 55], while well-passivated samples show little to no LA

phonon amplitude when pumping the band edge exciton[56]. Phonon spectra after reso-

nant dot pumping of the DiRs are shown in figure 4.7. Following a process similar to that

described in section 3.1.3, The total lattice plus electronic response of the system is shown

in figure 4.7a at two probe energies, 2.05 eV and 2.03 eV. The response was modelled as

an exponential decay to an offset value.

Under close inspection, a phase shift between the oscillations in figure 4.7 can

be discerned. This is expected, given the origin in these signals in motion along vibra-

tional manifolds. Similar results showing a phase shift with detection energy has been

seen in bare CdSe nanocrystals [57, 58, 59], and calculations based on Huang-Rhys cou-

pling clearly demonstrate this pump energy phase-dependance [60]. The residuals from

the TA signal were Fourier transformed to yield the phonon spectra, which are shown

in figure 4.7b and c, for 2.05 and 2.03 eV probes respectively. For CdSe/CdS DiRs the

phonon power spectrum largely consists of a single peak at ∼208 cm−1, the LO phonon

frequency of bulk CdSe. For aged or photo-treated samples, the acoustic phonon is quite

prominent, especially after pumping higher lying excitonic states [58]. This shows good

overall surface passivation for the DiR system. The phase shift is also apparent in figure
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Figure 4.7: Phonons in CdSe/CdS DiRs. a The total response for two probe energies (2.03

and 2.05 eV) and the fit model. Data are offset for clarity. b,c Fourier transforms of the fit

residuals. Both probe energies show a large peak near 208 cm−1, but there is a π/2 phase

difference between probe wavelengths.

4.7, for a probe energy of 2.05 eV the phase is approximately 0 at 208 cm−1, while for 2.03

eV probing the phase is approximately π/2.

Figure 4.8 shows a measurement of exciton-exciton interactions in the Auger re-

combination rate. This rate is determined, to a certain extent, by the CdSe-CdS interface[61]

and delocalization of the electrons in the conduction band [29]. Figure 4.8a shows the re-

combination kinetics after pumping into the dot (2.07 eV). Signals are normalised to -1

at 250 ps delay. Under increasing pump fluence a fast decay component grows in that

reflects the higher proportion of XX relative to X in the sample. The bleach signals were

globally fit to a single exponential decay with an offset, and the amplitudes of these com-

ponents are shown in the inset. The Auger lifetime was found to be 125 ps. With pumping

directly into the dot only XX recombination kinetics are probed, since no higher MX can

be created due to the two-fold degeneracy of the conduction band electronic state. The

data in figure 4.8a shows the ideal response of a system with two-fold degeneracy [62].
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Figure 4.8: Auger recombination of biexcitons show good surface passivation in

CdSe/CdS DiRs. a Pumping into the dot creates either a single exciton or a biexciton,

with a lifetime of 125 ps. b Pumping into the rod can create any number of higher mul-

tiexcitons, leading to more complicated kinetics. insets of b,c: Power dependence of fit

amplitudes, with blue an offset term, red the slow component, and green the fast compo-

nent. c Auger recombination across CdSe samples.

Figure 4.8b shows the Auger recombination kinetics with rod pump (2.58 eV).

The most notable point is that with rod pump decays are no longer monoexponential.

The data are well fit by a biexponential with an offset. Because the first excited state can

only hold 2 excitons, recombination of higher MX will not be reflected in the signal. The

buildup time is nominally the decay time of higher MX, as XXX decays to XX for example.
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This can lead to different results for Auger lifetimes than what would be observed for

pumping into the first excitonic state, as the main decay component here has a lifetime of

nearly 200 ps. Again, the inset shows the amplitudes of the various fitting components.

Figure 4.8c shows Auger rates across CdSe samples. In each case the core CdSe

dot has roughly the same band edge exciton energy. The samples are pumped at high

fluence to saturate the biexciton state. Signals are normalized such that the maximum

bleach is -2. Probing at the band edge exciton state means the signal is only sensitive to

single excitons or biexcitons. For ligand-passivated CdSe, the decay goes from -2 to -0.7,

indicating the existence of a surface trapping channel for excitons[62]. The effective decay

time is 30 ps. For ZnS capped CdSe, the signal decays from -2 to -1, indicating that the

surface is well passivated and no excitons are lost on the way from XX to X. However,

the decay is quite fast and remains biexponential. For the CdSe/CdS DiRs studied here,

biexciton decay is monoexponential with a time constant of 125 ps, more than twice as

long as CdSe/ZnS. The signal also decays from -2 to -1, indicating that no excitons are

lost to surface traps. These results show that Auger recombination is highly sensitive to

surface conditions and electron-hole overlap.

Figure 4.1 introduced a minimal level structure of the exciton and biexciton. We

aim to relate the experimental observations of threshold and bandwidth for gain to an ex-

perimental determination of this energy structure. To do this one requires a measurement

of absorbing and emitting states of both the exciton and the biexciton. This is enabled by

state-resolved TA spectroscopy [63, 64].

Figure 4.9 shows a measurement of biexciton structure. The energy of Xabs is

measured by linear absorption. Emission from Xem is measured by PL. The difference

between these two is the well known exciton Stokes’ shift, δX . Absorption into XXabs

is measured by ∆OD, the transient absorption spectrum. The ∆OD spectrum has three

terms, ground state bleach, stimulated emission, and excited state absorption (ESA). ESA
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Figure 4.9: Energetics of states involved in gain revealed by linear and non-linear spec-

troscopies for CdSe/CdS DiRs.

occurs form Xabs to XXabs, causing the ∆OD spectrum to shift relative to the linear spec-

trum by ∆abs
XX . At high pump fluence, the biexciton is populated. Stimulated emission

contributions to the ∆OD signal will be from XXem. This results in the gain spectrum

being shifted relative to the PL spectrum by ∆em
XX . The combination of these measure-

ments allows the full reconstruction of the energy levels presented in figure 4.1. Just as

there is an exciton Stokes’ shift, there is a biexciton Stokes’ shift, δXX . Results of these

measurements are summarised in table 4.1, with analogous results for CdSe NCs [63] and

CdSe/Cd,Zn,S graded alloy NCs [65] from previous work. Apparent here are the reduced

binding energies in emission and absorption, and the particularly small XX Stokes’ shift.

Other groups have also shown that biexciton binding energies can range from ∼40 meV

to -30 meV, placing biexciton emission to the red or blue of exciton emission depending on

the relative size of the dot and rod[35, 28]. To the authors’ knowledge, negative binding

energies have not been observed in bare CdSe NCs.
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Sample δX / meV ∆abs
XX / meV ∆em

XX /meV δXX / meV
CdSe (R = 2.1 nm) 25 12 44 57
CdSe (R = 2.8 nm) 16 9 37 45

CdSe/Cd,Zn,S (R = 2.1 nm) 30 3 30 57
DiRs (R = 2.3 nm) 22 -1 12 36

Table 4.1: Results of biexciton structure measurements across CdSe QD samples.

In conclusion, it has been shown that low threshold gain under both dot pump-

ing and rod pumping conditions is possible in CdSe/CdS DiRs. This is in contrast to

CdSe quantum dots and quantum rods, which show little or no gain for pumping into

excited states [22, 48]. Electron delocalization in the conduction band has consequences

on the Auger recombination rate, which is much smaller in this system than in ligand-

passivated CdSe or type-I CdSe/ZnS core/shell quantum dots. Electron delocalization

has further implications on the electronic structure of the biexciton. This work shows the

potential of the CdSe/CdS DiR system as a platform for light emitting applications.
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Chapter 5

Quantum confinement in bulk-regime

Perovskite nanocrystals

Disorder is intrinsic to ionic systems and gives rise to specific electronic processes. In re-

cently developed perovskite ionic crystals, this dynamic lattice disorder is inferred to give

rise to material properties, such as defect tolerance. Here, the elementary excitation of in-

terest is the polaron, a localized lattice distortion. In this chapter state resolved pump-

probe spectroscopy is used to monitor electron and lattice dynamics in bulk CsPbBr3

perovskite nanocrystals. The data report spectral lineshape dynamics that monitor the

system from optical birth through polaron formation and exciton formation to fully ther-

malized, confined exciton. The formation of quantum confined excitons arises from the

liquid-like polaronic potential, as opposed to physical confinement in conventional CdSe

nanocrystals.
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5.1 Introduction

Recent interest has arisen in ionic semiconductors, as illustrated by semiconducting per-

ovskites, due to their attractive electro-optical properties [1, 2, 3, 4] such as solar cells

[5], LEDs [6], and lasers[7]. In the case of perovskites a key feature is their defect toler-

ance. This defect tolerance is inferred to be related to the glassy quality of an ionic lattice

[8, 9, 10, 11]. As the polar lattice relaxes to accommodate an excited state charge distribu-

tion, the excited charges are screened from each other and crystal defects. This screening

is thought to be responsible for the impressive performance of perovskite materials[12].

Another important aspect are the nature of defects in perovskite materials; deep trap

states are nearly absent[13, 14] and only a small class of point defects exist. However,

these point defects are numerous, possibly ∼1-2% of atomic sites[4]. In this phonon glass

electronic crystal, the elementary excitation of interest is the polaron [15, 16, 17, 18, 19, 20,

21].

The polaron is a localized lattice distortion associated with an electronic excita-

tion. Ionic systems form polarons due to their glassy lattices. The electronic signature of

polaron formation has been directly observed in two-dimensional electronic spectroscopy

(2DES) of CsPbI3 nanocrystals[22]. Other evidence for polaron formation comes from hy-

brid density-functional theory and first principles calculations [16], transport measure-

ments [15, 23], time-resolved X-ray diffraction [24], and direct band mapping through

angle-resolved photoemission spectroscopy [25]. Low frequency, overdamped acoustic

modes are responsible for the lattice reorganization, and these have been found in low-

frequency, temperature dependent Raman spectroscopy [26] across all crystal phases of

CsPbBr3 and CH3NH3PbBr3. However, whether or not polarons are responsible for the

impressive performance of perovskite devices is still an open question [27].

In contrast to ionic perovskites, covalent systems couple to the lattice via delocal-

ized phonons [28, 29, 30, 31]. These are grown via hot-injection in a precursor solution[32],
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and typically have fewer defects than perovskite NCs. Exactly how the dynamic disorder

of ionic semiconductors confers optical and electronic properties is of great contemporary

interest.

The salient ideas of electron-lattice coupling spanning covalent to ionic lattices

are illustrated in figure 5.1 and figure 5.2. CdSe nanocrystal quantum dots (QDs) present

the covalent limit. Their relatively narrow size dispersion and good electronic properties

make them an ideal benchmark sample. Their response is shown in figure 5.1a-f. One ob-

serves coherent lattice dynamics and the response of a stiff covalent crystal. Figure 5.1a

shows the linear spectroscopy of absorption and photoluminescence (PL). With QDs one

has pronounced quantum confinement effects apparent in the simple linear spectroscopy,

due to physical confinement of the exciton. In covalent QDs, the electronic excitation

couples to lattice modes via coherent phonons (figure 5.1b). Illustrated is a polar opti-

cal phonon. Figure 5.1c is a schematic showing wavepacket dynamics on the electronic

excited state potential energy surface (PES), shown in blue, after photoexcitation from

the ground state PES in red. The response is described by normal modes of the crystal:

delocalized and coherent. These can be detected in 2DES as a coherent beating of the

signal along the diagonal and anti-diagonal linewdiths (figure 5.1d). This can also be de-

tected in state-resolved pump-probe spectroscopy (SRPP) as in figure 5.1e. These normal

lattice modes undergo coherent motion which in the frequency domain correspond to

well-resolved Lorentzian peaks (figure 5.1f).

The response of ionically-bound soft lattices, such as CsPbBr3 perovskite nanocrys-

tals (NCs), was recently shown to have isomorphisms[22] with liquid phase solvation

dynamics[33, 34]. Figure 5.2a shows the linear absorption and PL of these CsPbBr3 NCs.

The size of these crystals puts them in a bulk size regime, their edge length of 20 nm

(inset of figure 5.2a) is significantly greater than the exciton Bohr diameter of 7 nm[35].

Hence, no quantum confinement is evident in the linear spectroscopy. These bulk NCs

were chosen to minimize effects from physical confinement.
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Figure 5.1: Electron-phonon coupling in covalent CdSe a Linear absorption and PL in

CdSe shows excitonic peaks. b Schematic showing coherent optical phonons in the CdSe

lattice. c These phonons correspond to coherent motion along vibrational coordinates

in the upper state PES. d In 2DES the lineshape will oscillate along population time t2.

e In SRPP, the lattice contribution is an oscillation on top of the electronic contribution.

inset: Cartoon of a QD. f The Fourier transform of the oscillations in e show well-resolved

Lorentzian peaks.

With NCs, one can also obtain better control of the number of excitations within

some space – now defined by the particle volume. Figure 5.2b shows the lattice reorgani-

zation after photoexcitation; instead of delocalized coherent motion, there is a local over-

damped reorganization around the excited carrier. This overdamped reorganization is

thought to arise from acoustic modes that are overdamped at room temperature[26]. This

lattice distortion stabilizes excited charges, creating a polaron. Wavepacket movement

along the excited state PES is diffusive and incoherent, shown in figure 5.2c. This pro-

duces spectral diffusion in a 2DES experiment, shown in figure 5.2d. As the wavepacket

diffusively explores the energy landscape the lineshape evolves from an ellipse along

the diagonal to a rounded shape. In SRPP it is a highly damped signal that quickly ap-

proaches the pure electronic response, schematically shown in figure 5.2e. In an over-
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Figure 5.2: Electron-phonon coupling in ionic perovskite systems. a Linear absorption

and PL in CsPbBr3 NCs, with no obvious excitonic peaks. inset: TEM of a single NC. b

Schematic showing polaron formation in an ionic crystal. c This is diffusive relaxation to

the upper state PES minimum after photoexcitation from the ground state PES. d In 2DES

the lineshape undergoes spectral diffusion as the wavepacket relaxes. e In SRPP polaron

formation is an overdamped response on top of electronic dynamics. inset: CsPbBr3 unit

cell. f In frequency space this overdamped reponse is broad with indistinct peaks.

damped system with dynamic disorder, the local modes result in a broad spectral density

as in figure 5.2f.

While some papers report coherent modulations in TA specrtoscopy [36, 37, 38]

these are all methyl-ammonium samples in thin films, so are not the same samples studied

here. These results were also obtained with different instruments than those used here

that may be better able to detect these small changes in TA signal. The results presented

in figures 5.1-5.3 should be regarded as self-consistent since they were all detected in the

same lab and following the same procedures. So even if coherent phonons exist in the

CsPbBr3 samples studied here, we can at least say they are significantly weaker than in

CdSe quantum-dot based systems.
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5.2 SRPP results

Figure 5.3 shows an overview of the SRPP data in both systems. Figure 5.3a-d shows

the response of CsPbBr3 NCs, while CdSe QDs are shown in figure 5.3e-h. Figure 5.3a

shows the response after resonant band edge excitation for CsPbBr3 NCs. There is a rapid

shifting in the main bleach feature that is not apparent for CdSe nanocrystal QDs (fig.

5.3e). This rapid shift is completely hidden when pumping the sample at energies greater

than the band gap, i.e 3.1 eV (fig. 5.3b). With a higher energy pump pulse, other signals

are apparent; such as a broad, short-lived excited state absorption (ESA) to the red of the

band edge, as seen figure 5.3b,f.

Figure 5.3: Overview of SRPP signals in a-d CsPbBr3 NCs and e-h CdSe QDs. Time and

energy resolved SRPP signals for a,e band edge pumping and b,f 3.0 eV pumping. c,g

Band edge bleach dynamics (blue) are modelled as exponential decay (red). The residuals

show motion along the upper PES (green). d,h Fourier transform of this motion (blue)

shows the density of states in a multimode-Brownian oscillator model. (red)

By monitoring the main bleach feature through time, it is possible to detect

wavepacket motion along the excited state through modulations of the pump-probe sig-

nal. These are shown in figure 5.3c and g, for CsPbBr3 NCs and CdSe QDs respectively.
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The electronic response (red line in figure 5.3c,g) is subtracted from the data (blue mark-

ers) to yield the lattice response (green line, right axis). The frequency space analog of the

lattice response is shown in Figure 5.3d,f for CsPbBr3 NCs and CdSe nanocrystal QDs,

respectively. In ionic CsPbBr3 NCs the response is incoherent and diffusive. Such a re-

sponse is shown by the overdamped response in figure 5.3c and the broad low-frequency

response in frequency space. This response is akin to a spectral density of local phonon

modes, rather than discrete vibrations. One sees such spectral densities commonly in liq-

uids and glasses[33, 39, 40]. For covalent CdSe, the lattice response is coherent, as shown

by the clear oscillations in figure 5.3g, and well resolved Lorentzian peaks in figure 5.3h.

Both systems can be modelled as a multi-mode Brownian oscillator (MBO) [40] (red lines

in figure 5.3d,h). In the MBO the frequency-fluctuation correlation function (FFCF) is

described as a sum of individual oscillator responses coupling to each bath mode. Due

to the symmetry properties of the FFCF it is sufficient to describe the imaginary part of

the complex FFCF in frequency space to fully describe the lineshape function of these

transitions.

C̃”(ω) =
∑
j

ξ2
j C̃

”
j (ω) (5.1)

C̃”
j (ω) =

~
2mj

ωγj(ω)

(ω2
j − ω2)2 + ω2γ2

j (ω)
(5.2)

(5.3)

In equations 5.1 and 5.2 the ωj are the resonant frequencies of each individual

system mode, ξj is a measure of ground state and excited state displacement along the

jth vibrational coordinate, and the γj(ω) represent oscillator damping due to system-bath
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Figure 5.4: Normalised transient absorption spectra of a CsPbBr3 NCs and b CdSe QDs.

Dots represent data, and solid lines are models used to fit that data.

coupling. The damping of the jth mode is a sum over the coupled bath modes ωn.

ξj =
mjω

2
j

~
dj (5.4)

γj(ω) = π
∑
n

c2
nj2mnω

2
nδ(ω − ωn) (5.5)

Appropriate choices for ωj and γj yield the red curves shown in figure 5.3d,h.

Looking more closely at the evolution of the pump-probe spectra under band

edge pump in figure 5.3a,e it is apparent that clearly different processes are occurring

in CsPbBr3 NCs compared to CdSe QDs. To better visualise these changes, normalised

spectra are plotted at 1, 50, and 200 ps for each sample in figure 5.4. Figure5.4a(b) shows

the evolution in shape of the CsPbBr3 NC (CdSe QD) pump-probe spectrum.While the

CdSe spectrum doesn’t change in shape over the time range examined (300 fs - 200 ps)

that of CsPbBr3 undergoes significant change, particularly in the linewidth of the main

bleach feature. To extract and quantify these lineshape changes, the ∆OD spectrum of

each sample was modelled and a linewidth extracted. For CsPbBr3 NCs that model was

a single Gaussian peak centred at the band edge bleach, while the model used for CdSe is

based on the literature [41] and summarised in appendix 5.A.
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These lineshape dynamics for both CsPbBr3 and CdSe are quantified in figure

5.5. Figure 5.5a shows the evolution of the 2.42 eV bleach linewidth in CsPbBr3. Ini-

tially the linewidth is limited by the pump pulse bandwidth of 24 meV. The peak sub-

sequently broadens in the first picosecond, then continuously narrows over the next 200

ps. Figure 5.5b shows the relative movement of the bleach in CsPbBr3. The peak rapidly

blueshifts in the first picosecond, redshifts very slightly over the next 20 ps, then remains

static. In CdSe QDs, the linewidth of the main bleach feature at 2.0 eV undergoes a very

slight narrowing of ∼1.5 meV over 200 ps (Figure 5.5c) while the position of the bleach

feature (Figure 5.5d, inset) blueshifts by ∼2 meV over 200 ps. Both the line-narrowing

and blueshifting in CdSe can be attributed to the recombination of biexcitons[42]. For

CsPbBr3, the fast process in both the line broadening and blue shifting can be assigned

to polaron formation[18, 22]. The slow process of line narrowing in CsPbBr3 NCs is a

new observation, that can not be assigned to hot carriers because of the pump energy.

We assign the observed line narrowing process in CsPbBr3 to thermalization within an

exciton fine structure. This invocation of fine structure is supported by single crystal PL

measurements in similar systems [43, 44, 45].

5.3 Relaxation and recombination

Figure 5.6a,b shows the relaxation of excited charge carriers. To observe relaxation of

single carriers, the evolution of the pump-probe signal is monitored for both 2.4 eV and

3.1 eV pump energies simultaneously. A state-resolved approach controls for relaxed

state dynamics by subtracting the pump-probe signal with resonant band edge excitation

from the pump-probe signal from a more energetic pump[46]. This yields a ∆∆OD trace

that directly tracks the difference between highly excited carriers and band edge carriers.

The pump-probe spectral signatures depend on the state of the exciton. It has

been previously shown in II-VI NCs that the band edge bleach reflects electron population[47].
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Figure 5.5: Lineshape dynamics in a,b ionic CsPbBr3 perovskite and c,d covalent CdSe.

a Linewidth and b blueshift of the band edge bleach in CsPbBr3. c Linewidth and d

blueshift of the the X1 excitonic peak in CdSe. Insets in a-d show same data over a differ-

ent scale.

The sub band edge ESA is due to absorption from a ground state exciton to a biexciton.

Thus dynamics in the ESA reflect exciton dynamics[48, 49]. These spectral signatures al-

low for the disentangling of relaxation channels. Here, the bleach at 2.44 eV is used to

follow electron relaxation (fig. 5.6a). With a 3.10 eV pump energy electrons are pumped

relatively high in the conduction band, and relax through a complicated pathway de-

scribed by quantum kinetics. A simple model is proposed here, where the electrons ini-

tially relax rapidly through a dense manifold of states. Immediately after photoinjection,

this rate decreases linearly to a steady state, late time relaxation rate. This model is de-

scribed below:

dne
dt

= −k(t)ne (5.6)

⇒ ne(t) = ne0 exp

(
−
∫ t

0

k(t′)dt′
)

(5.7)

130



Figure 5.6: Carrier cooling and multiexciton recombination in bulk-regime CsPbBr3

NCs. a,b ∆∆ OD measures control for dynamics of the ground state, showing a non-

exponential electron cooling and b electron to hole energy transfer. c Auger recombina-

tion rates measured through band edge bleach dynamics under increasing pump fluence.

d Amplitude of exponential decay components as a function of pump fluence.

Where we have chosen k(t) to take the following form:

k(t) =


kstart t ≤ 0

kstop t ≥ tstop

kstart−kstop
tstop

0 < t < tstop

(5.8)

While other models can be found in the literature[50, 51] the simplest non-continuous

model was chosen here to observe the effect. As the electrons approach the band edge,

the density of accessible states decreases, causing relaxation to slow down.

The fit returns the expected result, an initially fast rate of ∼9 ps−1 slows down

over 300 fs to a final rate of∼4 ps−1. This non-exponential relaxation is a sign of bulk-like

131



decay becoming quantum confined, as the polaronic confinement dynamically creates

sparse energy levels.

The dynamics of the sub-band gap ESA reveal new observations on excitons in

these perovskites. Figure 5.6b shows the ∆∆OD signal at 2.36 eV. Here both a growth and

a decay are apparent. In analogy to previous work in CdSe QDs, the growth is a sign of

electron to hole energy transfer through two-particle intra-band Auger relaxation[46]. A

growth in this signal is not possible without energy transfer from hot electrons to holes.

The growth is well resolved; as can be seen in Figure 5.6b, the fit is performed only af-

ter 100 fs. The fast rise is followed by a slower decay through phonon coupling, as is

observed in physically confined II-VI nanocrystal QDs[52].

Multiexciton recombination kinetics can further reveal the presence of quantum

Confinement effects[47, 53, 54]. Figure 5.6c,d shows the presence of MXs through the de-

cay of the bleach at 2.42 eV after resonant band edge pumping. Figure 5.6c shows the

bleach signal under increasing pump fluence. At low fluence the ∆OD signal is mostly

due to single excitons (X). As fluence increases biexcitons and triexcitons become sequen-

tially more populated and contribute to the signal.

The overall signal decay is modelled as a triexponential decay, with each com-

ponent corresponding to recombination of multiexcitons, biexcitons, and single excitons.

∆OD(t) = AXe
−t/τX + AXXe

−t/τXX + AMXe
−t/τMX (5.9)

In fitting the Auger recombination curves in figure 5.6c the entire dataset was

fit to the model presented in equation 5.9 with common time constants for each fluence

probed and individual amplitudes allowed to float. The total decay lifetime of single

excitons was fixed at 7 ns, corresponding to results from TCSPC measurements. Figure

5.6d shows the amplitudes of each component as a function of fluence. There is a clear
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saturation behaviour for both excitons and biexcitons, direct evidence of the existence of

confined excitons.

It is also interesting to look at another model for Auger recombination; that of a

bulk semiconductor. Here, Auger rates will exist on a continuum dependent only on the

concentration of carriers. Since it is free carriers interacting in a three-particle process we

have
dn

dt
= −CAn3 (5.10)

With CA a coefficient with units cm6s−1 and n is the density of electrons or holes, as-

sumed equal here. Equation 5.10 is often re-framed in the form of an instantaneous Auger

rate[55].
1

τA
= CAn

2 (5.11)

Here 1/τA scales as n2, so the rate should continue to increase, or the lifetime decrease,

with increasing fluence. This power dependent model, where the recombination rates are

allowed to float with excitation fluence, is shown in figure 5.7. By examining the SRPP

data under 3.1 eV excitation, there is no state-filling limit to the number of excitons that

can be created, as would exist with a band edge pump. This is shown in figure 5.7a.

By examining the trend of Auger lifetime with fluence, as in figure 5.7b,c, no trend is

observed. If anything lifetimes get longer with fluence, at least in the low fluence regime.

This is the opposite of what would be expected.

Given that the physical size of these NCs is ∼20 nm, and the exciton Bohr diam-

eter is ∼7 nm, the question naturally arises as to the origin of the observed confinement

effects. In short, the polaronic potential causes confinement. Basic polaron properties can

be derived from the static and optical dielectric constants, phonon energies, and effective

mass of the bare carriers[56]. The electron-phonon coupling constant, α, describes how
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Figure 5.7: Auger recombination in a bulk-like model for CsPbBr3 NCs. a tail-normalized

∆ OD data after 3.1 eV excitation with fits to biexponetnial decay. b,c Pump pulse fluence

dependence of the b slow and c fast components of the fit results.

well a charge is screened by the lattice. This is given by equation 1.23, and again below:

α =
e2

~4πε0

(
1

ε∞
− 1

ε0

)√
m∗

2~ωLO
(5.12)

By examining the energy and radius of the formed polarons, using equations 1.25 and

1.26, we find that polarons in this material should have a binding energy of ∼47 meV[15]

and diameter of approximately 5 nm[16], yielding weak confinement for carriers. These

values are in line with experimental [22, 25] and computational work[57].

Another question that naturally arises is that of spatial extent; how can a cube of

20 nm edge length support three or more exciton-polarons of 5-7 nm in diameter? There

are two parts to the solution, one is realizing that multi-excitons are bound relative to

single excitons, so a biexciton will have diameter less than 2a0. The second part of the

solution comes from looking at conventional II-VI QDs, such as CdSe. These systems are

often only 2 or 3 nm in radius, yet support biexcitons and even tri-excitons. This is despite

their excitonic Bohr radius of 5.4 nm[58].

The carrier-lattice coupling in covalent and ionic semiconductor materials has

been compared and contrasted. In agreement with previous work, polaron formation is
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found in ionic CsPbBr3 NCs and coherent phonons are found in CdSe QDs. If polarons do

indeed improve device performance; these results could point the way to new ionic semi-

conductors for opto-electronic applications. There is also the observation of confinement

effects in the Auger recombination of multi-excitons in CsPbBr3 NCs. This is an impor-

tant result that could have implications in bulk systems, since the nanocrystals used here

show no quantum confinement effects in linear spectroscopy.
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5.A Modelling the TA spectrum of CdSe quantum dots

Using the contributions to the TA signal discussed in section 2.2.2, the TA spec-

trum for a fully relaxed single exciton can be modelled with a high degree of accuracy to

extract a biexciton spectrum [41] or to observe changes in linewidth or transition energy,

as is done in chapter 5. The first step is to extract exciton energies and linewidths from

the linear absorption spectrum. To do this, a good model is a sum of Gaussian peaks

for each excitonic transition with a polynomial background to account for scattering and

free-carrier absorption.

OD(ω) =
3∑
i=1

A1 exp

(
−(ω − ωi)2

2σ2
i

)
+ aω2 + bω + c (5.13)

The results of this fit for the CdSe samples used in chapter 5 are shown in figure

5.8. Figure 5.8a shows the raw data and the model result. Figure 5.8b shows the model

residuals. Residuals are relatively small across the absorption spectrum. Table 5.1 shows

the fitting parameters retrieved from this analysis.

X1 AX1 σX1 / meV ωX1 / eV
value 0.68 ± 0.02 34.2 ± 0.3 1.993 ± 3e-4

X2 AX2 σX2 / meV ωX2 / eV
value 0.47 ± 0.01 53.3 ± 1.2 2.066 ± 2e-3

X3 AX3 σX3 / meV ωX3 / eV
value 0.82 ± 0.07 104 ± 4 2.327 ± 4e-3

Background a / eV−2 b / eV−1 c
Value 2.5 ± 0.3 -8.9 ± 1.1 8.0 ± 1.0

Table 5.1: Fit parameters for the linear absorption model of CdSe in equation 5.13 and

shown in figure 5.8

With the values obtained through fitting the linear spectrum for the excitonic

peaks, it is now possible to accurately describe the ∆ OD spectrum of a single fully relaxed
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Figure 5.8: Result of fitting CdSe QD linear absorption data to equation 5.13 a Raw data

and excitonic contributions to overall absorption. b Fit residuals.

exciton. This is given by the following set of equations:

GSB(ω) =
3∑
i=1

Ai exp

(
−(ω − omegai)2

2σ2
i

)
(5.14)

ESA(ω) =
3∑
i=1

Aiαi exp

(
−(ω − (omegai −∆i))

2

2σ2
i

)
(5.15)

SE(ω) = A1 exp

(
−(ω − ω1)2

2σ2
1

)
(5.16)

∆OD(ω) = −GSB(ω)− SE(ω) + ESA(ω) (5.17)

Here we have introduced two new sets of parameters for each excited state tran-

sition; αi and ∆i. The αi describe the change in oscillator strength for the X1 → X1Xi

transition compared to the 0→ Xi transition. The ∆i are the binding energies of the biex-

citon state X1Xi. Using this model a fit result similar to that presented in figure 5.9 and
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Figure 5.9: Result of fitting equations 5.14-5.17 to the transient absorption spectrum of

CdSe QDs. a Raw data and fit result. b Fit residuals.

table 5.2 can be readily obtained.

Parameter α1 ∆1 / meV α2 ∆2 / meV α3 ∆3 /meV
Value 0.69 ±0.02 3.2 ± 0.5 0.732 ± 0.015 7.7 ± 1.9 0.94 ± 0.08 18 ±4

Table 5.2: Fit results for the transient absorption model presented in equation 5.14-5.17

and figure 5.9.

These results are used in chapter 5 to create figure 5.5. The center energy and

linewidth of X1 are allowed to vary in equation 5.17 and the fit is performed for each

time. This yields the results presented in figure 5.5c and d.

143



Chapter 6

An OPA-driven hollow core fibre as a

tunable source for 2DES

Despite the impressive abilities of two-dimensional electronic spectroscopy (2DES), its

implementation is limited due to the complexity of continuum generation and phase

stability between the pump pulse pair. In light of this, we have implemented a system

producing sub-10 fs pulses with central wavelength tunable across the visible spectrum.

Using a commercial OPA to drive a hollow-core fiber, the system is extremely simple.

Output pulse energies lie in the 40-80 µJ range, more than sufficient for transmission

through the pulse shaping optics and beam splitters necessary for multi-dimensional

spectroscopy. Power fluctuations are minimal, mode quality is excellent, and spectral

phase is well behaved at the output. To demonstrate the strength of this source, we mea-

sure the two-dimensional spectrum of CdSe quantum dots over a range of population

times, and find clean signals and clear phonon vibrations. The combination of OPA and

hollow-core fibre provides a substantial extension to the capabilities of 2DES.
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6.1 Introduction

2DES is a powerful tool for probing the fastest dynamics in materials science. 2DES has

already clarified fundamental questions about electron-phonon coupling in covalent II-

VI semiconducting nanocrystals [1, 2, 3, 4] and ionic perovskite nanostructures [5, 6].

Other notable measures are the excited structure through double quantum spectroscopy

[7, 8, 9], and electronic coherences between excitonic states [10] or individual quantum

dot systems [9].

A common approach for broadband pulses in 2DES is to use a non-collinear op-

tical parametric amplifier (NOPA) [11, 12, 13, 14]. These devices are large and involve

several frequency conversions and mixing. Their proper alignment for maximum band-

width, low noise, high power operation can be complicated. To switch a NOPA from

visible to IR operation requires different crystal cuts and re-optimization of crossing an-

gles, or construction of a completely separate NOPA.

Hollow-core fibres (HCFs) for continuum generation are a general approach

for pulse broadening, and have been used to generate multiple-octave spanning spec-

tra [15, 16]. These approaches use very high peak field strengths and high pressures to

generate the super-broad spectra, and are often highly unstable, due to the several or-

ders of nonlinearity in pulse propagation. In regards to precision spectroscopy, stability

in phase, spectrum and power are all very important and these characteristics are priori-

tized over octave spanning pulses. For this unstructured fibres driven by weaker pulses

have been used [17, 18, 19]. One issue with this approach is the inability to tailor the cen-

tral wavelength of the laser spectrum to a particular sample, the experimenter is limited

to samples whose transitions of interest lie in the fixed spectrum provided by the light

source. In response to the problems presented by NOPAs and HCFs driven by the fun-

damental laser wavelength, we present an OPA-driven HCF as a tunable, broadband low

noise source for 2DES.
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The block diagram of the tunable continuum source is shown in figure 6.1a. A

Ti:Sapphire based CPA system producing 2 mJ, 100 fs pulses (Coherent Legend Elite Duo)

is used to drive a commercial OPA (TOPAS). The output of the OPA is used to drive a

2.57 m long, hollow-core fibre filled with Argon [18, 20]. The OPA pulses are typically

somewhat shorter than the 800nm driving pulses (ca. 90 fs vs. 100 fs), and have cen-

tral wavelength spanning 300-3000 nm and energies from 20-200 µJ. For our interest we

used the OPA in the range 700-500 nm, as this is roughly the bandwidth of the DAZZLER

acousitc pulse shapers and GRISMs used in our 2DES experiment. Using the direct sig-

nal and idler beams, from 1200-2600nm, should produce more energetic pulses and pro-

vide broader spectra than seen here. To characterize the white light generation process,

transient grating FROGs (TG-FROGs) were measured at 3 locations: Before the entrance

window to the fiber, after the exit window of the fiber, and after pulse compression, as

shown in figure 6.1b-d. The white light generation process was found to work across the

visible spectrum; the results of driving the fiber with central wavelengths spanning 750 -

500 nm is shown in figure 6.1e. Approximately 200 meV of bandwidth is generated over

this entire range. The inset of figure 6.1e shows an image of the collimated beam after

transmission through the fiber. The spatial structure is excellent and Gaussian along both

axes.

An important metric for 2DES is the stability of the source in terms of spectrum,

phase, and power. As almost all 2DES experiments rely on the subtraction of subsequent

shots, any shot to shot variation in the spectral width of the driving fields will appear

as signal. By driving the fiber with much less energetic pulses, plasma generation is

avoided and stability is improved when compared to using the 800 nm fundamental for

white light generation. The excellent stability of the source is shown in figure 6.2. Here,

the DAZZLER pulse shapers are used to diffract two pulses with a delay 100 fs. Over the

course of ∼6 hours, there is no drift in interpulse phase or delay. Furthermore spectral

bandwidth and power are stable over a similar time period, as shown in figure 6.2a. Fig-

ure 6.2 b shows the width of the diffracted spectrum over time, defined as the square root
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Figure 6.1: An HCF driven by an OPA for visible 2DES. a Optical layout of the setup. b-d

TG-FROG traces of the pulse at the b fiber entrance, c fiber exit, and d after compression.

The pulse in d has a time marginal FWHM of ∼9.5 fs. e Output spectra as a function

of input central wavelength. inset: Image of collimated beam profile, with sums along

respective axes in white.

of the second central moment of the intensity spectrum. The overall standard error in the

bandwidth is ∼2.8%. To show the precision of delay and phase control, a TG-FROG trace

of the pulse pair is measured, as shown in figure 6.2 c. Here the pulse copies are evident

at ± 100 fs, as is the spectral interference pattern at t = 0. By changing the phase between

the two pulses, the phase of this interference is shifted. In figure 6.2d the interference pat-

terns for ∆φ12 = [0, π] are shown. As these TG-FROG patterns are recorded over 1000s of

laser shots, the interference patterns would not appear if there were drifts in either delay

or interpulse-phase.

6.2 Modelling

The spectral broadening and phase evolution is in large part the balance of two processes:

Self-phase modulation (SPM) and dispersion. SPM will create new frequencies while

leaving the temporal pulse envelope unchanged. Dispersion serves to add chirp and

147



Figure 6.2: An overview of fiber stability. a Stable spectral interferograms show stability

of phase, delay, and spectrum over the course of ∼ 6 hours. b Spectral width over time.

c TG-FROG trace of two pulses delayed by 100 fs. d time-integrated trace of the white-

boxed area in c showing spectral interferograms for ∆φ12 = 0 (red) and π (blue)

lengthen the pulse, decreasing peak intensities and SPM. At high peak powers, close to

resonance, or at high pressures, plasma generation becomes an issue as well[20]. Using

a split-step Fourier method [21, 18] and taking into account Kerr coefficients up to 11th

order, the performance of this system has been modelled by solving the nonlinear optical

Schrödinger’s equation.
∂ε̃

∂z
= D̃ε̃+ ikoT ∆̃nε− α̃

2
ε̃ (6.1)

Here ε̃ is the Fourier transform of the slowly varying time-domain electric field envelope

ε(r, t, z). The right hand side of equation 6.1 describes dispersion;

D̃(ω) = k(ω)− k0 − k1(ω − ω0) (6.2)

self-steepening;

T = 1 + iτsh
∂

∂t
(6.3)

τsh ≈ 1/ω0 (6.4)
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instantaneous Kerr effects;

∆ñ =
∑
m

n2m|ε|2m (6.5)

and optical losses α̃. The code used to perform these simulations uses a split-step Fourier

method, is freely available [22], and can easily be applied to any hollow-core fibre system.

Simulation results are summarised in figure 6.3. The simulated output spectra for the

input pulses and fiber conditions used in figure 6.1e are shown in figure 6.3a.

The numerical simulations match experimental results very well in terms of

pressure dependence, performance across the visible spectrum, and spectral structure. In-

creased broadening is predicted at shorter wavelengths, however this was not observed,

possibly due to the anti-reflection windows at the fiber exit, which are coated for a center

wavelength of 800 nm. Fiber pressure is another important consideration for fiber oper-

ation; Here numerical and experimental results are in excellent agreement, as shown in

figure 6.3b. Here black is an experimental output spectrum, red is simulated, and grey

is the common input spectrum. Spectral width increases almost linearly with pressure

in the range explored, as in figure 6.3c. To improve performance of our HCF, increasing

pressure is a good avenue to explore. Due to the absence of plasma generation in our

OPA-driven HCF, greater fibre pressures compared to 800 nm driving fields is possible.

Figure 6.3d shows the simulated evolution of the spectral pulse envelope as it propagates

down the length of the fiber. The appearance and disappearance of spectral fringes as the

pulse propagates are classic signs of SPM.

6.3 Results

To demonstrate the quality of experiment enabled by this light source, a 2DES dataset

was acquired on CdSe quantum dots purchased from NNLabs. These results are shown

in figure 6.4. Figure 6.4a shows the sample linear absorption in black and the laser spec-
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Figure 6.3: Simulated fiber performance. a Broadening across the visible spectrum is

replicated. b Pressure dependence is very clear and accurately reproduced. c As pressure

increases, pulse bandwidth increases. Simulated and experimental values show great

agreement. d Evolution of the spectrum as the pulse propagates through the fiber.

trum in red. The linear absorption spectrum was modelled as a sum of Gaussian peaks

corresponding to excitonic resonances, in addition to a polynomial background [23]. The

dotted lines in figure 6.4a and b correspond to the two lowest excitonic resonances. The

laser spectrum is broad enough to completely cover both excitonic peaks, as well as any

sub-resonant features associated with multiexcitonic emissive states. Figure 6.4b shows

a 2DES spectrum acquired at T2 = 250 fs. The well resolved diagonal peaks are evidence

of the good spectral power at higher energies. To demonstrate stability of the system, the

2DE spectra were acquired at many population times over the course of several hours.

Traces along the population time at three loactions along E1, E3 are shown in figure 6.4c.

At all three locations a beating in the 2DES signal is apparent at the LO phonon frequency

of 208 cm−1. Also evident is a phase change between the three curves, which would be

expected for coherent electron-phonon coupling [3]. This was also shown in CdSe / CdS

DiRs in figure 4.7. To isolate the beating signal, each transient was modelled with a decay-

ing exponential and the residuals were Fourier transformed. The results of this analysis

are shown in figure 6.4d. For reference, the LO phonon frequency of CdSe is shown as

a vertical dashed line. The clarity of vibrational coherence, and the obvious phase shifts
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Figure 6.4: 2DES experimental results on CdSe quantum dots. a Linear absorption of the

sample (black solid line) and laser spectrum (red filled area) b A 2D spectrum at T2 =

250 fs. dotted vertical and horizontal lines indicate excitonic resonances of the sample. c

Traces of the 2DES spectrum along T2 (solid) and exponential models (dashed) used to fit

them. d Fourier transform of the fit residuals. Dashed line shows the LO mode of CdSe

at 208 cm−1

with movement along either the E1 or E3 axis, demonstrates the suitability of this light

source for 2DES.

6.4 Conclusion

In conclusion, we have demonstrated the feasibility and strength of using an OPA to

drive tunable supercontinuum generation in Ar-filled hollow-core fibres. This method

opens up the sample space of 2DES experiments to the bandwidth of an OPA and the

resonances of noble gases (roughly 0.5 to 2.5 eV if difference frequency and fourth har-

monic generation aren’t included). This method would work very well in the near to mid
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IR, where the signal and idler wavelengths provide more pulse energy and the central

wavelength is further from plasma generation. Developing light sources is an important

endeavor for the overall development of 2DES, as the excitation source is fundamentally

linked to the samples that can be probed and the artifacts present in the data. This work

presents an improvement in the dynamic range available to 2DES experiments.
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Summary and outlook

In this thesis I have described the important concepts and methods of ultrafast spec-

troscopy of nanocrystals. In Chapter 1 I described the important consequences of physical

confinement on nanocrystals, and how size is a key factor in determining the linear op-

tical properties of a system. In chapter 2 this discussion was expanded to show how

size further determines carrier relaxation and recombination. The methods of ultrafast

spectroscopy, specifically pump-probe spectroscopy, were also discussed. In chapter 3

the expansion to three pulse multidimensional spectroscopies was introduced. This pow-

erful experiment has the capacity to unravel microscopic dephasing processes that are

hidden in linear experiments, and has the potential to isolate interesting signals through

phase-matching in frequency, phase, and wave-vector.

These experimental techniques are put to use in examining gain in quantum dot

systems in chapter 4. It is found that the CdSe / CdS dot-rod system is a good candidate

for a laser gain medium. The rod shell effectively decouples the exciton from the sur-

rounding solvent, and furthermore decouples the electron from the hole through partial

delocalization across the CdSe / CdS interface. Chapter 5 displays further pump-probe

results that show very different behaviour in ionic CsPbBr3 nanocrystals. Here, polaron

formation leads to a fast dephasing of phonon modes and a second degree of quantum

confinement, that arising from the polaronic potential well. Auger recombination in this

system occurs as it would for a quantum confined particle, despite the bulk size regime

of the nanocrystals studied.
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Finally, in chapter 6, I describe a new source for multi-dimensional spectroscopy.

By driving an argon-filled hollow-core fiber with an OPA, tunable pulses spanning the

visible wavelength range are produced. These are characterized using optical gating tech-

niques and compared to simulation. To demonstrate the excellent stability of the source,

a 2DES experiment is performed. Very good results are produced, distinguishing the LO

phonon of CdSe nanocrystals.

In terms of multidimensional spectroscopy, there remains much to be done with

regards to source development and samples to study. Simulations hint that a fiber with

a smaller core diameter should lead to greater broadening, especially for shorter driving

wavelengths. One of these fibers arrived just as I was my obtaining the last of my data. It

should be a matter of a week or two at most to characterize this source. There is also the

possibility of using different gases in the fiber. Argon was chosen because of its’ ionisation

energy and affordability. By driving the fiber at lower pulse energies, ionisation is less of

a concern and gases with lower ionisation energy but higher n2 can be explored. The

pressure range explored in chapter 6 was limited by leaks in the system, by changing out

some pieces for higher rated components higher gas pressures can be explored. These

developments could expand 2DES in our lab to below 500 nm.

With an OPA-driven fibre and new approaches to pulse shaping CsPbBr3 nanocrys-

tals could be studied. CsPbBr3 is an attractive system due to its’ relative stability in com-

parison to CsPbI3. We have worked with CsPbI3 in the past [1], and found great difficulty

in maintaining sample quality. This was managed through great team effort. Several

samples were produced by research intern Etienne Socie and Dallas Strandell, and proce-

dures were developed to prevent sample degradation (synthesis under nitrogen, putting

an Argon gas head on the capped sample vials, etc.). Every sample needed its own linear

spectroscopy for quality control and to monitor degradation, and this was performed by

Harry Baker. Linear spectroscopy on each studied sample was performed at synthesis,

immediately before a 2DE run, immediately after a 2DE run, and often in the middle of
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a long 2DE run. I was responsible for characterising the optical pulses and preparing the

2DE experiment. Hélène Seiler oversaw the overall effort, monitored and analysed data

as it came in, and generally helped out wherever she was most useful. This was an effort

that took our entire lab. Turning to CsPbBr3 could free up other students to developing

their own experiments or helping out in other ways instead of constantly turning out and

analysing decaying samples.

Another system that has been seeing a lot of attention lately are transition-metal

dichalcogenides (TMDCs) [2]. These materials are interesting because of their enormous

excitonic binding energy and spin-orbit coupling. This spin-orbit coupling gives their

band structure lots of spin texture. Some direct transitions will only excite certain spins

and couple to only a particular polarization of light. This opens up the possibility of

so-called spin-tronics. TMDCs also have favorable mechanical and electronic proper-

ties, which can be tuned through chemistry and layer thickness. There are links be-

tween charge density waves and superconductivity in these materials. The large family

of TMDCs also offers a plethora of choices to fit our needs in terms of synthesis and in-

strument capabilities. Our combination of instruments, from 10 fs resolution in 2DES to

100 fs in SRPP to 10 µs in time-resolved PL, makes us uniquely positioned to probe these

new materials.

The common theme to this thesis is electron-phonon coupling in covalent and

ionic systems. Each of the last three chapters presented a measure of electron-phonon

coupling, from either SRPP as in chapters 4 and 5, or as projections along the population

time of a 2DES dataset, as in chapter 6. The important thing to note is the nature of this

coupling. We have seen the long-lived periodic modulation of the TA signal that betrays

coherent lattice motion. This is the under-damped phonon mode. We have also seen

the rapid decay to an equilibrium TA signal, with no periodic modulation. This is the

over-damped response of polaron formation. Phonons in TA spectroscopy can be used to

infer surface coupling [3, 4]. In 2DES the full phase and frequency information must be
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exploited to distinguish vibrational from electronic beats along the population time axis

[5]. This thesis highlights this important work, expands on it in chapter 5, and provides

an experimental development to further these studies to new samples in chapter 6.

While the evidence for polaron formation is growing rapidly, and I believe there

is large consensus in the community as to their existence in perovskite materials, it is

still unclear exactly how important polarons are for device performance. In the future, I

would like to see more studies that look at the polaron question from more of an applied

perspective. Is polaronic screening sufficient to explain the remarkable carrier diffusion

lengths[6, 7] or long lifetimes in perovskites? Other fundamental questions are the role of

the cation in lead-halide perovskites. Clearly, there are rotational and vibrational modes

related to large organic molecules such as methyl-ammonium or formadimium that are

absent for inorganic Cs. Do these play an important role in polaron formation rates or

energetics? Ultrafast pump-probe spectroscopy has also shown signals that look like a

long-lived population of hot carriers can be created in perovskite nanocrystals[8, 9, 10].

This could open up the possibility of defeating the Shockley-Quessier limit of solar cell

efficiency by extracting carriers with energy above the band gap[11]. Investigating the

nature of these signals is a promising avenue for future research that our lab is well-

equipped to explore.

Given enough time, there are several projects I would have liked to explore fur-

ther. In terms of pump-probe experiments, it would be interesting to look at perovskite

samples with quantum confinement and discernible excitonic peaks in their linear spec-

troscopy. There should be several things that can be teased out through SRPP experiments

by tuning the pump frequency into resonance with the various excitonic states that has

yet to be explored. For example, gain in CdSe is best when pumping the |1Pe〉
∣∣1P3/2

〉
transition, and not the band edge transition. A similar thing could happen in perovskites

as well. It is already known, for instance, that gain in CsPbBr3 NCs is quite weak for

3 eV pumping but much larger for band edge pumping at similar carrier densities [12].
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Looking at the differences between excitonic states could lead to better lasing media and

also yield fundamental insights to material properties. Alternatively, a state-resolved ap-

proach can give details about the carrier relaxation process. Instead of 600 meV of excess

energy, as in the data found in chapter 5, pumping with only 50 or 100 meV of excess

energy could yield totally new results.

It would also be interesting to look for polaron signatures in simpler crystals,

such as alkyl halide salts or some of the other examples shown in table 1.1. This has

already been done to some extent in the previous millenium [13], and it would be great to

see the powerful methods developed over the last 20 years turned towards these simpler

systems. New insights could be found that apply to perovskites or other ionic crystals.
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