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Abstract

The adaptive immune system is a complex biological system acting over many length and
time scales. T cells, effector cells of the adaptive immune system, are capable of recogniz-
ing minute amounts of pathogens and mounting a grotesque response, while not responding
at all to large amounts of self antigens. The response is tightly regulated at the intra-, inter-
and extracellular level through intricate protein-protein interaction networks. While the in-
teractions have been described qualitatively, a quantitative understanding is often lacking.

In this thesis, we present computational approaches inspired by physics and ma-
chine learning to quantitatively study different aspects of immune recognition. First, us-
ing fitness-based parameter reduction, we extract the core module from the intracellular
network of immune recognition. Second, using machine learning techniques, we study the
sensitivity of immune recognition networks to antagonism, a perturbation to the antigen
distribution that prevents T cells from responding to pathogens. We find that the output
function of robust immune recognition networks contains a critical point, a finding that
informs the design of robust machine learning classifiers.

Finally, we predict antigen quality from cytokine dynamics. We represent the cytokine
profile in a latent space and parameterize the latent space using piecewise ballistic mod-
els. We validate our model against diverse experimental configurations, providing us with
a biological basis for the model parameters. Using these parameters, we predict antigen
quality independent of antigen quantity and initial T cell number, providing a reference
antigen quality that known baselines cannot provide with a single measurement.
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Résumé

Le système immunitaire adaptatif est un système biologique complexe fonctionnant sur
de nombreuses longueurs et échelles de temps. Les cellules T, cellules effectrices du sys-
tème immunitaire adaptatif, sont capables de reconnaître des quantités infimes d’agents
pathogènes et de monter une réponse très fort, tout en ne répondant pas du tout à de grandes
quantités de soi-antigènes. La réponse est étroitement régulée au niveau intra-, inter- et
extracellulaire par des réseaux complexes d’interaction protéine-protéine. Bien que les in-
teractions aient été décrites de manière qualitative, une compréhension quantitative fait
souvent défaut.

Dans cette thèse, nous présentons des approches informatiques inspirées de la physique
et de l’apprentissage automatique pour étudier quantitativement différents aspects de la re-
connaissance immunitaire. Premièrement, en utilisant la réduction des paramètres basée
sur la fitness, nous extrayons le module de base du réseau intracellulaire de reconnais-
sance immunitaire. Deuxièmement, à l’aide de techniques d’apprentissage automatique,
nous étudions la sensibilité des réseaux de reconnaissance immunitaire à l’antagonisme,
une perturbation de la distribution de l’antigène qui empêche les cellules T de répondre
aux agents pathogènes. Nous constatons que la fonction de sortie des réseaux de recon-
naissance immunitaire robustes contient un point critique, une découverte qui informe la
conception de classificateurs d’apprentissage automatique robustes.

Enfin, nous prédisons la qualité de l’antigène à partir des dynamiques de cytokines,
molécules messagères extracellulaires. Nous représentons le profil des cytokines dans un
espace latent, paramétrons l’espace latent à l’aide de modèles balistiques par morceaux et
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étudions des configurations expérimentales, à partir desquelles nous extrayons une base
biologique pour les paramètres du modèle. À partir de ces paramètres, nous prédisons la
qualité de l’antigène indépendamment de la quantité d’antigène et du nombre initial de
lymphocytes T, fournissant une qualité d’antigène de référence que les lignes de base con-
nues ne peuvent pas fournir avec une seule mesure.
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1
Introduction

This thesis presents work at the interface of biophysics and immunology. To provide per-

spective on how interdisciplinary work typically proceeds, we highlight the potential of

thinking across scientific fields before introducing the immune system, a history of im-

mune recognition models, and the research projects.

1.1 Interdisciplinarity

To explore the relevance of interdisciplinarity, we start off by wondering if a biologist can

fix a radio [4]. Engineers have worked for a long time on a comprehensive representation of

a multitude of electronic devices. Lazebnik argued that biologists do not have a representa-

tion for the building blocks of their systems, and with their toolset, will thus not be able to

fix a radio, except in isolated cases when an individual component causes the radio to break

down. Molecular biologists might have more success fixing a radio if they would formulate

a quantitative language to study the structure and dynamics of function, rather than isolated

parts of the cell [5]. Such considerations led to the birth of the quickly broadening field of

systems biology. Due to its popularity, systems biology suffered from a definition issue,

but in a sense, it allowed biologists to quantitatively assess cellular and organismal func-

tioning, deeply impacting molecular biology [6]. It also led immunology towards systems,

computational and quantitative immunology away from the notion that the effect of gene

or protein X and Y on Z ought to be studied in isolation with the rest of the system [7].
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1.1 Interdisciplinarity

Quantitative studies require appropriate experimental techniques and novel analysis tools,

often borrowed from other fields, leading directly into interdisciplinary work.

Oftentimes, breakthroughs in science occur by approaching a problem from a new di-

rection, taking inspiration from methods or insights from a related field. For instance, arti-

ficial neural networks were inspired by neurons processing information in the brain, optical

microscopy below the diffraction limit was invented by physicists using cutting-edge laser

techniques, and mathematical modelling of HIV dynamics provided quantitative under-

standing of the infection and led to improved therapy [8].

Not just have molecular biologists adopted engineering approaches or have computer

scientists borrowed ideas from neuroscience, leading to the boom of machine learning [9],

the inverse also occurs. In biomimicry, engineers use nature’s solution in modern technol-

ogy, for instance by equipping the bullet train with the aerodynamic shape of a kingfisher’s

beak to make it more quiet, or reliably transmitting data underwater over long distances

emulating the frequency-modulating acoustics of dolphins.

There are not only success stories: Jonas & Kording showed that current computational

methods from neuroscience, when applied to a simulated microprocessor, will not lead one

to the circuit diagram of a microprocessor [10]. Most understanding of the global dynamics

of the microprocessor was gained through dimensional reduction, where the discovered

components led to variables of interest. Krakauer et al. agreed that neuroscience needs to

let go of the reductionist approach and focus on function and behavior [11] through three

levels of analysis (computational, algorithmic and implementational level), as defined by

Marr & Poggio [12].

Inspired by Lazebnik [4] and Jonas & Kording [10], and recognizing that the ultimate

goal of the immune system is to protect an organism, we could ask ourselves if an im-

munologist could support a cyber-security system. This idea is not new: artificial immune

systems have been used as classifiers since 1986 [13], specifically as virus detectors [14]

or network intrusion detectors [15]. Without going into any detail on the cyber-security

side of the analogy, let us proceed regardless in broad strokes and focus on where current

approaches in immunology fall short.
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1.2 Short overview of the adaptive immune system

The different cell types are the fundamental units that constitute the organism’s defence.

Through precise developmental schemes, learning algorithms, regulatory mechanisms and

homeostatic processes using two separate but connected systems, the immune system is

able to withstand unknown threats the environment poses. Sometimes, the danger comes

from within through auto-immune disorders or evasive tumor cells. Complex interacting

systems are implemented, regulated and fine-tuned at many levels (intracellular, extracel-

lular, tissue, organismal), allowing Höfer and Altan-Bonnet to observe that “immunology is

such a quintessential science that ’systems immunology’ could be considered a tautology”

[16]. Here we reveal the limits of immunology as described by immunologists: descriptions

are well-established for the intracellular protein-protein interaction networks and the pop-

ulation dynamics between cell types, but there is at most an incomplete understanding of

how interaction networks cause immune activation and population-level dynamics on time

scales from hours to years. Immunologists have the tools capable of dissecting a system in

detail, but relating the parts to the whole is a problem of a different dimension and requires

quantitative thinking and tools and ideas from across disciplines.

In conclusion, it seems like an immunologist can assist the immune system, and equally

well might be able to assist a cyber-security system, although there exists threats (coron-

aviruses, pancreatic cancer, certain metastasized cancers, autoimmune disorders) for which

there is currently no defence (cure). Moreover, bridging the connections between molecu-

lar, cellular and organismal scales is hard. Immunology is a field in progress, as it has been

for as long as medicine exists, and will continue to provide solutions to challenges posed

by the environment. Contributing to this progress are interdisciplinary approaches, which

form the heart and soul of the work described in this thesis.

In the remainder of the introduction we provide a short overview of the adaptive im-

mune system, leading into the research questions and an outline of the thesis.

1.2 Short overview of the adaptive immune system

Introducing well-known and basic immunology, this section is mainly inspired by [17]

and [18]. All organisms have a rudimentary form of an immune system to mitigate threats
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1.2 Short overview of the adaptive immune system

from the environment, but only vertebrates have an adaptive immune system. The adaptive

immune system contrasts the innate immune system in that it is not fixed at birth, but is able

to adapt to challenges posed by the environment during an organism’s lifetime. A unique

feature of the adaptive immune system is that following exposure to antigens (also called

peptides or ligands) of foreign origin, immunological memory is formed. The next time

antigens of this type are encountered, an immune response will be invoked much faster

than the first time this antigen was encountered.

The adaptive immune system consists mainly of B cells and T cells, both of which

can turn into memory cells. Before activation, B cells and T cells are morphologically

indistinguishable, but they differ in their function. The main effector function of B cells is to

produce antibodies, which, when bound, neutralize viruses or mark pathogens, providing a

target for phagocytes. Phagocytes are a part of the innate immune system, consisting among

others of macrophages, which are most efficient in engulfing pathogens, and dendritic cells,

professional antigen presenting cells (APCs). Upon engulfing pathogens, dendritic cells

degrade the material, and chop it up into small chains of amino acids, the antigens. They

then migrate to lymph nodes where T cells reside for antigen presentation. This action

provides the link between the innate and adaptive immune system.

APCs display antigens from the pathogens on large extracellular constructs called major

histocompatibility complexes (MHCs) and express co-stimulatory molecules to support T

cell activation. MHCs are designed specifically to display antigens (or peptides) to T cells

via a peptide-MHC (pMHC) complex. T cells scan APCs for pMHCs to bind to with their

T cell receptors (TCRs), and when the displayed antigen is specific to the TCR, and the

co-stimulatory molecules on the APCs have bound to the co-stimulatory receptors on the

T cell, the T cell activates. T cell activation results in a range of actions like altered gene

expression, growth, proliferation, cytokine production and migration to the site of infection.

The T in T cells is short for thymus, which is where they mature1. T cell precursors are

derived from multipotent hematopoietic stem cells in the bone narrow that migrate to the

thymus. In the thymus, the TCR is formed through a combinatorial process called V(D)J

1In contrast, B cells mature in the bone marrow.
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1.3 History of immune recognition models

recombination and selected if the strength of this newly-formed TCR to a series of self

pMHCs is neither too strong (negative selection), nor too small (positive selection) [19].

Having passed these tests, the T cell becomes part of the pool of naive T cells that resides in

lymphoid organs and circulates the lymphatic system in search of antigens specific to their

TCR. This forms the basis of clonal selection theory: every antigen activates T cell clones

with the TCR the antigen is specific to, and every TCR is specific to only one antigen.

There is a caveat to that, which is that T cells do not actually respond to only one

amino acid sequence [20]. It was shown experimentally that T cells respond on average to

3 · 104 antigens [21]. This is needed to provide full coverage of the antigenic shape space,

because there are many more possible pMHCs class I peptides (a conservative estimate is

∼ 1016 [22]) than a human has unique clonotypes (∼ 1010 [23]). Too much cross-reactivity

would result in too strong negative selection, making it seem “plausible that evolutionary

pressures might have optimized this trade-off and determined the degree to which TCR can

respond to multiple pMHC” [24].

So far, we have only introduced self or negatively selecting antigens (nonagonists) and

not self or positively selecting antigens (agonists). According to Feinerman et al. [25],

there exists a third category of antigens called antagonists, to which T cells mount a small

response if encountered by themselves, but which lower the response to agonists when T

cells encounter antagonists together with agonists. This begs the question: is the T cell

response binary (specific or not specific) or does it allow for a continuum of responses?

Throughout the thesis, we approach this question from various angles.

1.3 History of immune recognition models

Over the past few decades, a variety of models has been proposed to explain the mechanism

for enhanced specificity in immune recognition. The first model we examine is the kinetic

proofreading (KPR) model proposed by Timothy McKeithan [26]. His proposal is inspired

by the KPR mechanism explaining the high fidelity in DNA replication [27, 28]. The base-

pair d bound to ATP into a dATP complex associates with the basepair a of the DNA strand

that is replicated (Fig. 1.1). Before the basepair d is accepted, during an intermediate step,
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1.3 History of immune recognition models

a diphosphor molecule is removed from the a - dATP complex. Right after association and

after this intermediate step, the dATP or dAMP complex may dissociate from the basepair

a. Since correct matching basepairs have a higher affinity for the basepair of the replicated

DNA strand than incorrect basepair, they are more likely to stay bound. The proofreading

step squares the fidelity rate of DNA replication from 10−4 to 10−8.

Figure 1.1: Kinetic proofreading in DNA replication. The basepair ATP complex dATP
binds to the DNA strand’s basepair a (1), from where it can either dissociate, lose a diphos-
phor molecule (2) before dissociating as an dAMP (3) or be incorporated (4). Figure from
[27].

Despite a minor difference in specificity between nonagonists and agonists, multiple

phosphorylations of intracellular chains extending from the TCR (the proofreading steps)

allow for a specific response over many orders of magnitude of antigen quantity. McKeithan

already noted that additional negative feedback must exist to explain antagonism, inhibition

of the immune response by peptides called antagonists that by themselves do not trigger the

T cell but inhibit the response to agonists. This feature that was known to exist from studies

in HIV [29]. The mechanism that he proposed was that through binding of antagonists

small clusters of TCRs are formed, which pass on an inhibitory signal [30], and may negate

the activating signal transmitted through large clusters of TCR that form when bound by

agonists.

It is commonly accepted that a KPR cascade forms the fundament of immune recog-

nition through TCR activation. A natural extension of this model is to characterize all

interactions occurring in the TCR signalling pathway. This heroic effort was completed by

Altan-Bonnet and Germain [31]. Through a mix of experimental and computational work,

they estimated hundreds of reaction rates and were able to simulate a complete immune

recognition model. A summary of the model is given in Fig. 1.2. The activation signal trav-
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1.3 History of immune recognition models

els through the network through multiple phosphorylations of the pMHC - TCR complex

(KPR steps), while modulated by negative and positive feedback. A simpler version of this

model was proposed by Lipniacki et al. [32], capturing the main features and preserving the

main motifs of the model. A next iteration on this model is provided by François et al. [33].

Here the negative feedback module modulated by SHP-1 is coupled to a KPR backbone. It

is understood that a subsequent positive threshold on the output could create the bistability

observed in Refs. [31, 32].

Figure 1.2: Coarse-grained version of the model A tug of war between a positive feed-
back system modulated by MAPK activation and negative feedback modulated by SHP-1
along the KPR cascade determines T cell activation by the pMHC - TCR complex. Figure
from [31].

The adaptive module that couples to the KPR cascade to be able to discriminate agonists

from nonagonists over a large range in antigen quantity has been investigated using various

approaches, i.e. through an evolutionary search [34], a comparison between phenotypic

models [35] and a systematic search of possible models [36]. In these approaches, the

authors did not specify the protein that modulates the feedback, although suggestions were

given. Recent experimental and theoretical work assigns importance to the role of ZAP70

7



1.3 History of immune recognition models

in immune recognition. Optogenetics revealed that ZAP70 recruitment occurs before the

KPR cascade activates and was thus solely dependent on binding of the pMHC to the TCR,

not on the difference between nonagonist and nonagonist [37], and thus does not play a role

in antigen discrimination. Similarly, a recent model proposes a mechanism for the role of

ZAP70 in the reset of the microenvironment around the intracellular TCR chains following

dissociation of the pMHC-TCR complex [38]. In contrast, Ganti et al. argue that feedback

loops through ZAP70 recruitment and related proteins are at the core of the information

processing in T cell signalling network [39].

Others have considered biophysical interactions to lie at the fundament of immune

recognition. The biophysical interactions of TCR triggering can be summarized as aggre-

gation of the TCR chains, conformational changes of the TCR and segregation of the TCR

[40]. Some of these mechanisms were refuted by considering a system where TCRs were

introduced in a nonimmune cell and the ligand-specific pathway was reconstituted [41].

Recently, it was also found that through dynamic TCR bonds (so called catch and slip

bonds) T cells could distinguish between nonagonists and agonists during thymic selection

[42].

Finally, also models containing both biophysical interactions and TCR signalling have

been proposed. For instance, TCR triggering can be extended through coupling of the pos-

itive feedback loop of ZAP70 binding to TCR chains with a crowded intracellular environ-

ment [43]. Moreover, an alternative for enhanced sensitity of immune recognition with a

KPR cascade alone is by considering rebinding of dissociated pMHCs [44, 45].

The latest developments show that the field has still not reached a consensus on what

parts of the T cell signalling network are responsible for immune recognition, and if it is

even due to the signalling network, biophysical interactions or a mix. For each proposed

mechanism, the authors have carefully considered observations based on experimental evi-

dence generated within their lab or by their collaborators and determined what model could

best explain such data. The diversity of proposed mechanisms could mean that some of the

groups pursue the wrong approach and only one of them has the correct idea. More likely

is that the researchers are all correct within the regime they investigate. For instance, the
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1.4 Outline

information-theoretic model validation by Ganti et al. only considers discrimination be-

tween nonagonist and agonists [39], while it is well possible that the T cell also has the

ability to discriminate antagonists. Moreover, as has been noted by Lever et al. published

data are incomplete, with experiments typically using only a small panel of TCRs (or pMHC

complexes) with a limited range of affinities, and a single or just a few different doses of

antigen or pMHC [35]. This is why an attempt to quantify the discriminatory power of the

T cell through a comparison between published experimental data is so compelling [46].

With more advanced methods to manipulate T cells becoming readily available, as well as

the ability to generate large timeseries of immune responses using robotic measurements,

the last word on the matter has not been spoken.

1.4 Outline

Immunologists have been highly successful in describing isolated parts of their system, like

the signal transduction pathways concerned with T cell activation following pMHC-TCR

binding [31]. Yet, falling in the pitfall described by Krakauer et al. for neuroscience [11],

knowing all interactions between proteins in the TCR signalling pathway does not answer

the question how a T cell discriminates between a self antigen and a not self antigen, which

is the function encoded in this network. In essence, this is a simple question that does

not require an answer using high-dimensional data. The manifold hypothesis states that

high-dimensional data can often be described in a lower dimensional space. In statistics

(nowadays machine learning), manifold learning techniques are routinely used to uncover

low-dimensional descriptions [47]. In physics, effective field theories and renormalization

groups are used to reduce the number of degrees in a freedom in a model allowing for a

simpler description (approximate or exact at certain energy, time or length scales) [48].

The low-dimensional description (be it of the data or of the model) are referred to as la-

tent spaces in this thesis. Inspired by renormalization group, we use parameter reduction to

find a latent space description of the TCR signalling pathway, allowing us to give a simple

answer to the question how a T cell discriminates between self and not self (Chapter 2).

From this latent space we derive how T cells alleviate the effect of antagonists (Chapter 3),

and relate this to a similar phenomenon in machine learning. Finally, we connect immune
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1.4 Outline

recognition by individual T cells to the cytokine response at the population level. We un-

cover a low-dimensional description of the cytokine response that is most informative of

the antigen with which the T cells were stimulated, we build a phenomenological model

of the latent space, and we show that the specificity of T cells to antigen is a continuous

measure (Chapter 4).

The main body of this thesis is structured as follows. In Chapter 2, using parameter re-

duction, we map three immune recognition networks to a network consisting of two simple

modules. These modules are the minimum requirements for an immune network to recog-

nize antigen quality independent of antigen quantity. The finding that antagonistic effects

are mitigated only when the immune recognition network is of sufficient complexity led us

to further investigate antagonism in Chapter 3. We study this through the lens of machine

learning. In computer vision, a small, deliberate perturbation that does not change the input

visually, ten out of ten times changes the classification of the input for naive classifiers. We

analyze the conditions immune recognition networks must satisfy to become less sensitive

to antagonistic effects, and relate these conditions to the sensitivity of neural networks to

such perturbations. In Chapter 4 we study the cytokine response of T cells for a variety of

experimental setups. We first represent the cytokine dynamics in a latent space, next we

model the curves using ballistic equations, and interpret the fitted parameters in terms of

the experimental setup. These parameters are then used to predict antigen quality. Finally,

we provide an outlook and discuss future work in Chapter 5.
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2
Parameter reduction

“ Complex mathematical models of interaction networks are routinely used for

prediction in systems biology. However, it is difficult to reconcile network complexities

with a formal understanding of their behavior. Here, we propose a simple procedure

(called ϕ̄) to reduce biological models to functional submodules, using statistical me-

chanics of complex systems combined with a fitness-based approach inspired by in

silico evolution. ϕ̄ works by putting parameters or combination of parameters to some

asymptotic limit, while keeping (or slightly improving) the model performance, and

requires parameter symmetry breaking for more complex models. We illustrate ϕ̄ on

biochemical adaptation and on different models of immune recognition by T cells. An

intractable model of immune recognition with close to a hundred individual transition

rates is reduced to a simple two-parameter model. ϕ̄ extracts three different mech-

anisms for early immune recognition, and automatically discovers similar functional

modules in different models of the same process, allowing for model classification

and comparison. Our procedure can be applied to biological networks based on rate

equations using a fitness function that quantifies phenotypic performance. ”

(Parameter reduction [1])

2.1 Introduction

Immune recognition by T cells can be posed as a simple problem: “Is there a not self ligand

present in this mixture of ligands?” If so, activate, if not remain quiescent. This deceptively

11



2.2 Materials and methods

simple problem is constrained from various angles: the T cell response needs to be specific,

sensitive and fast [49]. Complicating factors are the structural similarity between self and

not self ligands, the composition of the mixture and inherent biochemical constraints. Self

and not self ligands may differ by a single amino acid causing the pMHC-TCR binding time

to reduce by an order of magnitude or less, while few not self ligands, if any, are present

among an abundance of self ligands. Finally, T cells needs to make a decision based on

the collective state of its TCRs. It cannot measure individual pMHC-TCR binding times. It

may not come as a surprise then that the T cell activation pathway has evolved to a network

with hundreds of parameters and equations [31]. Yet, it remains unclear what part of this

network actually implements the core functional module. More coarse-grained networks

of immune recognition exists [32–34], making us wonder what the similarities between

the networks are, and if there exists a common mechanism for measuring binding time

independent of ligand concentration.

A technique for systematically reducing the number of parameters of a model fit on

experimental or simulated data is parameter space compression [50], as demonstrated by

Transtrum et al. through a boundary manifold approach on the EGFR signalling pathway

[51] or enzyme kinetics [52]. Motivated by their success, we propose a simple method

to coarse-grain phenotypic models based on rate-equations by optimizing fitness. Fitness

quantifies how well a biological function is implemented. This allows us to extract the

core functional modules of various models of immune recognition that are responsible for

the specific and sensitive response. We then classify and categorize the models varying in

complexity, providing insight into the principles and constraints of immune recognition.

2.2 Materials and methods

An algorithm for fitness based asymptotic reduction

“ Transtrum & Qiu [51, 52] studied the problem of data fitting using cellular regu-

latory networks modelled as coupled ordinary differential equations. They proposed

that models can be reduced by following geodesics in parameter space, using error

12



2.2 Materials and methods

fitting as the basis for the metric. This defines the Manifold Boundary Approximation

Method (abbreviated as MBAM) that extracts the minimum number of parameters

compatible with data [51].

While simplifying models to fit data is crucial, it would also be useful to have a

more synthetic approach to isolate and identify functional parts of networks. This

would be especially useful for model comparison of processes where abstract func-

tional features of the models (e.g. the qualitative shape of a response) might not

correspond to one another, or where the underlying networks are different while they

perform the same overall function [53]. We thus elaborate on the approach of [51]

and describe in the following an algorithm for FItness Based Asymptotic parameter

Reduction (abbreviated as FIBAR or ϕ̄). ϕ̄ does not aim at fitting data, but focuses

on extracting functional networks, associated to a given biological function. To define

biological function, we require a general fitness (symbolized by ϕ) to quantify per-

formance. Fitness is broadly defined as a mathematical quantity encoding biological

function in an almost parameter independent way, which allows for a much broader

search in parameter space than traditional data fitting (examples are given in the

next sections). The term fitness is inspired by its use in evolutionary algorithms to

select for coarse-grained functional networks [54]. We then define model reduction

as the search for networks with as few parameters as possible optimizing a prede-

fined fitness. There is no reason a priori that such a procedure would converge for

arbitrary networks or fitness functions: it might simply not be possible to optimize a

fitness without some preexisting network features. A more traditional route to opti-

mization would rather be to increase the number of parameters to explore missing

dimensions, rather than decrease them (see discussions in [55, 56]). We will show

how ϕ̄ reveals network features in known models that were explicitly designed to

perform the fitness of interest.

Due to the absence of an explicit cost function to fit data, there is no equivalence

in ϕ̄ to the metric in parameter space in the MBAM allowing to incrementally update

parameters. However, upon further inspection, it appears that most limits in [51] cor-

respond to simple transformations in parameter space: single parameters disappear

by putting them to 0 or∞, or by taking limits where their product or ratio are constant

while individual parameters go to 0 or ∞. In retrospect, some of these transforma-

13



2.2 Materials and methods

tions can be interpreted as well-known limits such as quasi-static assumptions or

dimensionless reduction, but there are more subtle transformations, as will appear

below.

Instead of computing geodesics in parameter space, we directly probe asymp-

totic limits for all parameters, either singly or in pair. Practically, we generate a new

parameter set by multiplying and dividing a parameter by a large enough rescaling

factor f (which is a parameter of our algorithm, we have taken f = 10 for the sim-

ulations presented here), keeping all other parameters constant, or doing the same

operation on a couple of parameters.

At each step of the algorithm, we compute the behavior of the network when

changing single parameters, or any couple of parameters by factor f in both di-

rections. We then compute the change of fitness for each of the new models with

changed parameters. In most cases, there are parameter modifications that leave the

fitness unchanged or even slightly improve network behavior. Among this ensemble,

we follow a conservative approach and select (randomly or deterministically) one set

of parameter modifications that minimizes the fitness change. We then implement

parameter reduction by effectively pushing the corresponding parameters to 0 or∞,

and iterate the method until no further reduction enhances the fitness or leaves it

unchanged, or until all parameters are reduced. The evaluation of these limits effec-

tively removes parameters from the system while keeping the fitness unchanged or

incrementally improving it. There are technical issues we have to consider: for in-

stance, if two parameters go to ∞ some numerical choices have to be made about

the best way to implement this. Our choice was to keep the reduction simple : in this

example, instead of defining explicitly a new parameter, we increase both parame-

ters to a very high value, freeze one of them, and allow variation of the other one

for subsequent steps of the algorithm. Another issue with asymptotic limits for rates

is that corresponding divergence of variables might occur. To ensure proper network

behavior, we thus impose overall mass conservation for some predefined variables,

e.g. total concentration of an enzyme (which effectively adds fluxes to the free form

of the considered biochemical species). We also explicitly test for convergence of

differential equations and discard parameter modifications leading to numerical di-

vergences. Details on the implementation of the reduction rules for specific models

14



2.2 Materials and methods

are presented in Appendix A and can be automatically implemented for any model

based on rate equations.

These iterations of parameter changes alone do not always lead to simpler net-

works. This is also observed in the MBAM when it is sometimes no longer possible

to fit all data as well upon parameter reduction. However, with the goal to extract

minimal functional networks, we can circumvent this problem by implementing what

we call “symmetry breaking" of the parameters (Fig. 2.1 B-C): in most networks, dif-

ferent biochemical reactions are assumed to be controlled by the same parameter.

An example is a kinase acting on different complexes in a proofreading cascade with

the same reaction rate. However, an alternative hypothesis is that certain steps in the

cascade are recognized to activate specific pathways, or targeted for removal (e.g. in

“limited signalling models", the signalling step is specifically tagged, thus having dual

specificity [35]). So to further reduce parameters, we assume that those rates, which

are initially equal, can now be varied independently by ϕ̄ (Fig. 2.1 C). Symmetry

breaking in parameter space allow us to reduce models to a few relevant parame-

ters/equations, and as explained below are necessary to extract simple descriptions

of network functions. Note that symmetry breaking transiently expand the number of

parameters, allowing for a more global search for a reduced model in the complex

space of networks. Fig. 2.1 A summarizes this asymptotic reduction. ”

(Parameter reduction [1])

Defining the fitness

To illustrate the ϕ̄ algorithm, we apply it to the problem of absolute discrimination. In

this section we briefly describe absolute discrimination and define the associated fitness

function.

“ Absolute discrimination is defined as the sensitive and specific recognition of

signalling ligands based on one biochemical parameter. Possible instances of this

problem can be found in immune recognition between self and not self for T cells [25,

49] or mast cells [57], and recent works using chimeric DNA receptor confirm sharp

thresholding based on binding times [58]. More precisely, we consider models where
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Figure 2.1: Summary of the ϕ̄ algorithm. (A) Asymptotic fitness evaluation and reduc-
tion: for a given network, the values of fitness ϕ are computed for asymptotic values of
parameters or couples of parameters. If the fitness is improved (warmer colors), one sub-
set of improving parameters is chosen and pushed to its corresponding limits, effectively
reducing the number of parameters. This process is iterated. See main text for details.
(B) Parameter symmetry breaking: a given parameter present in multiple rate equations
(here θ) is turned into multiple parameters (θ1, θ2) that can be varied independently during
asymptotic fitness evaluation. (C) Examples of parameter symmetry breaking, considering
a biochemical cascade similar to the model from [33]. See main text for comments.
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a cell is exposed to an amount L of identical ligands, where their binding time τ de-

fines their quality. Then the cell should discriminate only on τ , i.e. it should decide if τ

is higher or lower than a critical value τc independently of ligand concentration L. This

is a nontrivial problem, since many ligands with binding time slightly lower than τc

should not trigger a response, while few ligands with binding time slightly higher than

τc should. Absolute discrimination has direct biomedical relevance, which explains

why there are models of various complexities, encompassing several interesting and

generic features of biochemical network (biochemical adaptation, proofreading, pos-

itive and negative feedback loops, combinatorics, etc.). Such models serve as ideal

tests for the generality of ϕ̄. ” (Parameter reduction [1])

To quantify how well a network performs absolute discrimination, we commence with

computing the dose-response curves of the output O (Fig. 2.2 A). Absolute discrimination

is only possible if few values of τ correspond to a given Output value O(L, τ) (as detailed in

[49]). Intuitively, this is not possible for monotonic dose response curves (top panel of Fig.

2.2 A): for any value of output O, one can find many associated couples of (L, τ). Thus,

ideal performance corresponds to separated horizontal lines, encoding different values of

O for different τ independent of L (bottom panel Fig. 2.2 A). A function that maps the

amount of overlap to a continuous variable is the mutual information between O and τ .

To compute mutual information, we set up a probabilistic framework. Let us sample

from ligands with binding time τi, their concentrations L log-uniformly distributed. For

every pair (L, τi), there exists a correponding O. The histogram of network outputs O (Fig.

2.2 B) is our approximation of the marginal probability distribution p(O|τ). We sample

from two equiprobable τi and compute the mutual information between O and τ as the dif-

ference between the classical Shannon entropy H(τ) and the conditional entropy H(τ |O)

I(O, τ) = H(τ)−H(τ |O). (2.1)

Here, H(τ) = −∑
i log2 p(τi) = −2 · log2 1/2 = 1 and

H(τ |O) = −
∑

i,O

p(τi|O) log (p(τi|O)) = −
∑

i,O

p(O|τi)p(O)

p(τi)
log

p(O|τi)p(O)

p(τi)
(2.2)
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where we have used Bayes theorem.

“ Mutual information measures how much information we can recover from one

variable knowing the other. For instance, when I(O, τ) = 0, it means we cannot re-

cover information on the value of τ by observing O, which would be the case when

both distributions are equal p(O|τ1) = p(O|τ2). Conversely, when the two distribu-

tions are fully separated, we can fully recover τ by observing O. Then the mutual

information is at its maximum of 1 bit (bottom panel Fig. 2.2 B). For partially over-

lapping distributions (top panel Fig. 2.2 B), the mutual information varies gradually

between 0 to 1. Mutual information allows us to focus only on the respective posi-

tions of the distributions, and not on their shape or moments. We thus quantify the

discriminatory phenotype irrespective of other parameters.

During the reduction, we typically sampled 50 log-uniformly distributed L on the

interval [1, 104] and binned the resulting outputs O in 40 log-uniformly distributed bins

in the range [10−2, 102]. The results are largely independent from the number of bins

or the range of the bins, as long as O remains in the neighborhood of biologically

feasible values, the working range of the initial networks. Partly due to this loose

constraint, the output of the reduced networks was near the output of the initial net-

works. ” (Parameter reduction [1])

We have run ϕ̄ on three different models of absolute discrimination:

“ adaptive sorting with one proofreading step [34], a simple model based on

feedback by phosphatase SHP-1 from [33] (“SHP-1 model”), and a complex realistic

model accounting for multiple feedbacks from [32] (“Lipniacki model"). Initial models

are described in more details in following sections. We have taken published param-

eters as initial conditions. Those three models were all explicitly designed to describe

absolute discrimination, modelled as sensitive and specific sensing of ligands of a

given binding time τ [49], so ideally those networks would have perfect fitness. How-

ever due to various biochemical constraints, these three models have very good

initial (but not necessarily perfect) performance for absolute discrimination. We see

that after some initial fitness improvement, ϕ̄ reaches an optimum fitness within a
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Figure 2.2: Illustration of the fitness. (A) Schematics of response line for absolute dis-
crimination. We represent expected dose response curves for a “bad” (top) and a “good”
(bottom) model. Response to different binding times τ are symbolized by different colors.
For the “bad” monotonic model (e.g. kinetic proofreading [26]), by setting a threshold (hor-
izontal dashed line), multiple intersections with different lines corresponding to different
τs are found, which means it is not possible to measure τ based on the Output. Bottom cor-
responds to absolute discrimination: flat responses plateau at different Output values easily
measure τ . Thus, the network can easily decide the position of τ with respect to a given
threshold (horizontal dashed line). (B) For actual fitness computation, we sample the possi-
ble values of the Output with respect to a predefined Ligand distribution for different τs (we
have indicated threshold similar to panel (B) by a dashed line). If the distribution are not
well separated, one can not discriminate between τs based on Outputs and I(O, τ)≪ 1. If
they are well separated, one can discriminate τs based on Output and I(O, τ) = 1.
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few steps and thus merely simplifies models while keeping constant fitness. We have

tested ϕ̄ with several parameters of the fitness functions, and we give in the following

for each model the most simplified networks obtained with the help of those fitness

functions. Complementary details and other reductions are given in Appendix A.

For each model, ϕ̄ succeeds in fully reducing the system to a single equation

with essentially two effective parameters, final model is given in the FINAL OUTPUT

formula, and discussion of the effective parameters in the section “Comparison and

categorization of models”). However, to help understanding the mathematical struc-

ture of the models, it is helpful to deconvolve some of the reduction steps from the

final model. In particular, this helps to identify functional submodules of the network

that perform independent computations. Thus for each example below, we give a

small set of differential equations capturing the functional mechanisms of the re-

duced model . In Figures we show in the “FINAL” panel the behaviour of the full

system of ODEs including all parameters (but potentially very big or very small val-

ues after reduction), and thus including local flux conservation. ”

(Parameter reduction [1])

2.3 Results

ϕ̄ for adaptive sorting

“ We now proceed with applications of ϕ̄ to the more challenging problem of ab-

solute discrimination. Adaptive sorting [34] is one of the simplest models of absolute

discrimination. It consists of a one-step kinetic proofreading cascade [26] (converting

complex C0 into C1) combined to a negative feedforward interaction mediated by a

kinase K, see Fig. 2.3 A for an illustration. A biological realization of adaptive sorting

exists for FCR receptors [57].

This model has a complete analytic description in the limit where the backward

rate from C1 to C0 cancels out [34]. The dynamics of C1 is then given by:

9C1 = ϕKKC0(L)− τ−1C1 with K = KT
C∗

C0(L) + C∗ (2.3)
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Figure 2.3: Reduction of Adaptive sorting. (A) Sketch of the network, with 5 steps of
reductions by ϕ̄. Adaptation and kinetic sensing modules are indicated for comparison with
reduction of other models. (B) Illustration of the specificity/response trade-off solved by
Step 4 of ϕ̄. Compared to the reference behavior (top panel), decreasing C∗ (middle panel)
increases specificity with less L dependency (horizontal green arrow) but globally reduces
signal (vertical red arrow). If KT is simultaneously increased (bottom panel), specificity
alone is increased without detrimental effect on overall response, which is the path found
by ϕ̄.
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K is the activity of a kinase regulated by complex C0(L), itself proportional to

ligand concentration L. K activity is repressed by C0 (Fig. 2.3, Eq. 2.3), implementing

an incoherent feedforward loop in the network (full system of equations are given in

Appendix A).

Absolute discrimination is possible when C1 is a pure function of τ irrespective

of L (so that C1 encodes τ directly) as discussed in [34, 49]. A priori, both C0 and

C1 depend on the input ligand concentration L. If we require C1 to be independent

of L, the product KC0 has to become a constant irrespective of L. This is possible

because K is repressed by C0, so there is a “tug-of-war" on C1 production between

the substrate concentration C0, and its negative effect on K. In the limit of large

enough C0, K is indeed becoming inversely proportional to C0, giving a production

rate of C1 independent of L. τ dependency is then encoded in the dissociation rate

of C1 so that in the end C1 is a pure function of τ .

The steps of ϕ̄ for adaptive sorting are summarized in Fig. 2.3 A. The first steps

correspond to standard operations: step 1 is a quasi-static assumption on kinase

concentration, step 2 brings together parameters having similar influence on the be-

havior, and step 3 is equivalent to assuming receptors are never saturated. Those

steps are already taken in [34], and are automatically rediscovered by ϕ̄. Notably,

we see that during reduction several effective parameters emerge, e.g. parameter

A = KTϕ can be identified in retrospect as the maximum possible activity of kinase

K.

Step 4 is the most interesting step and corresponds to a nontrivial parameter

modification specific to ϕ̄, which simultaneously reinforces the two tug-of-war terms

described above, so that they balance more efficiently. This transformation solves a

trade-off between sensitivity of the network and magnitude in response, illustrated in

Fig. 2.3 B. If one decreases only parameter C∗, the dose response curves for differ-

ent τs become flatter, allowing for better separation of τs (i.e. specificity), Fig. 2.3 B,

middle panel. However, the magnitude of the dose response curves is proportional

to C∗ so that if we were to take C∗ = 0, all dose response curves would go to 0 as

well and the network would lose its ability to respond. It is only when both C∗ and

the parameter A = KTϕK are changed in concert that we can increase specificity
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without losing response, Fig. 2.3 B, bottom panel. This ensures that K(L) becomes

always proportional to L without changing the maximum production rate AC∗ of C1.

ϕ̄ finalizes the reduction by putting other parameters to limits that do not significantly

change C1’s value. There is no need to perform symmetry breaking for this model to

reach optimal behavior and one-parameter reduction.

This simple example illustrates that not only is ϕ̄ able to rediscover automatically

classical reduction of nonlinear equations, but also, as illustrated by step 4 above, it

is able to find a nontrivial regime of parameters where the behavior of the network

can be significantly improved. Here this is done by reinforcing simultaneously the

weight of two branches of the network implicated in a crucial incoherent feedforward

loop, implementing perfect adaptation, and allowing to define a simple adaptation

submodule. τ dependency is encoded downstream this adaptation module in C1,

defining a kinetic sensing submodule. A general feature of ϕ̄ is its ability to identify

and reinforce crucial functional parts in the networks, as will be further illustrated

below.

ϕ̄ for SHP-1 model

This model aims at modelling early immune recognition by T cells [33] and com-

bines a classical proofreading cascade [26] with a negative feedback loop (Fig. 2.4

A, top). The proofreading cascade amplifies the τ dependency of the output variable,

while the variable S in the negative feedback encodes the ligand concentration L in a

nontrivial way. The full network presents dose response-curves plateauing at differ-

ent values for different τs, allowing for approximate discrimination as detailed in [33]

(Fig. 2.4 B, step 1). Full understanding of the steady state requires solving an N ×N

linear system in combination with a polynomial equation of order N − 1, which is

analytically possible if N is small enough (see Appendix A). Behavior of the system

can only be intuitively grasped in limits of strong negative feedback and infinite ligand

concentration [33]. The logic of the network appears superficially similar to the previ-

ously described adaptive sorting network, with a competition between proofreading

and feedback effects compensating for L, thus allowing for approximated kinetic dis-

crimination based on parameter τ . Other differences include the sensitivity to ligand
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antagonism because of the different number of proofreading steps, discussed in [49].

When performing ϕ̄ on this model, the algorithm quickly gets stuck without fur-

ther reduction in the number of parameters and corresponding network complexity.

By inspection of the results, it appears that the network is too symmetrical: variable

S acts in exactly the same way on all proofreading steps at the same time. This

creates a strong nonlinear feedback term that explains why the nonmonotonic dose-

response curves are approximately flat as L varies as described in [33], as well as

other features, such as loss of response at high ligand concentration that is some-

times observed experimentally. This also means the output can never be made fully

independent of L (see details in 2.2). But it could also be interesting biologically to

explore limits where dephosphorylations are more specific, corresponding to break-

ing symmetry in parameters.

We thus perform symmetry breaking, so that ϕ̄ converges in less than 15 steps,

as shown in one example presented in Fig. 2.4. The dose-response curves as func-

tions of τ become flatter while the algorithm proceeds, until perfect absolute discrim-

ination is reached (flat lines on Fig 2.4 B, step 13).

A summary of the core network extracted by ϕ̄ is presented in Fig. 2.4 A. In brief,

symmetry breaking in parameter space concentrates the functional contribution of S

in one single network interaction. This actually reduces the strength of the feedback,

making it exactly proportional to the concentration of the first complex in the cascade

C1, allowing for a better balance between the negative feedback and the input signal

in the network.

Eventually, the dynamics of the last two complexes in the cascade are given by:

9C4 = ϕ4C3 + γ5SC5 − (ϕ5 + τ−1)C4 with C3 ∝ C1 (2.4)

9C5 = ϕ5C4 − γ5SC5 with S ∝ C1 (2.5)

Now at steady state, ϕ5C4 = γ5SC5 from Eq. 2.5 so that those terms cancel out

in Eq. 2.4 and we get that at steady state C4 = ϕ4τC3, with C3 proportional to C1 via
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C2 in the cascade. Looking back at Eq. 2.5, it means that at steady state both the

production and the degradation rates of C5 are proportional to C1 (respectively via

C3 for production and S for degradation) . This is another tug-of-war effect, so that

at steady state C5 concentration is independent of C1 and thus from L. However,

there is an extra τ dependency coming from C4 at steady state (Eq. 2.4), so that C5

concentration is simply proportional to a power of τ (see full equations in Appendix

A).

Again, ϕ̄ identifies and focuses on different parts of the network to perform per-

fect absolute discrimination. Symmetry breaking in the parameter spaces allows to

decouple identical proofreading steps and effectively makes the behavior of the net-

work more modular, so that only one complex in the cascade is responsible for the

τ dependency (“kinetic sensing module" in Fig. 2.4) while another one carries the

negative interaction of S (“Adaptation module" in Fig. 2.4) .

When varying initial parameters for reduction, we see different possibilities for

the reduction of the network (see examples in Appendix A). While different branches

for degradation by S can be reinforced by ϕ̄, eventually only one of them performs

perfect adaptation. Similar variability is observed for τ sensing. Another reduction of

this network is presented in the Appendix A.

ϕ̄ for Lipniacki model

While the ϕ̄ algorithm works nicely on the previous examples, the models are simple

enough so that in retrospect the reduction steps might appear as natural (modulo

nontrivial effects such as mass conservation or symmetry breaking). It is thus impor-

tant to validate the approach on a more complex model which can be understood

intuitively but is too complex mathematically to assess without simulations, a situa-

tion typical in systems biology. It is also important to apply ϕ̄ to a published model

not designed by ourselves.

We thus consider a much more elaborated model for T cell recognition proposed

in [32] and inspired by [31]. This models aims at describing many known interac-

tions of receptors in a realistic way, and accounts for several kinases such as Lck,

ZAP70, ERK, and phosphatases such as SHP-1, multiple phosphorylation states of
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the internal ITAMs. Furthermore, this model accounts for multimerization of receptors

with the enzymes. As a consequence, there is an explosion of the number of cross-

interactions and variables in the system, as well as associated parameters (since

all enzymes modulate variables differently), which renders its intractable without nu-

merical simulations. It is nevertheless remarkable that this model is able to predict

a realistic response line (e.g. Fig. 3 in [32]), but its precise quantitative origin is un-

clear. The model is specified in Appendix A by its twenty-one equations that include a

hundred odd terms corresponding to different biochemical interactions. With multiple

runs of ϕ̄ we found two variants of reduction. Figs. 2.5 and 2.6 illustrate examples

of those two variants, summarizing the behavior of the network at several reduc-

tion steps. Due to the complexity of this network, we first proceed with biochemical

reduction. Then we use the reduced network and perform symmetry breaking.

The network topology at the end of both reductions is shown in Figs. 2.5 and

2.6 with examples of the network for various steps. Interestingly, the steps of the

algorithm correspond to successive simplifications of clear biological modules that

appear in retrospect unnecessary for absolute discrimination (multiple runs yield

qualitatively similar steps of reduction). In both cases, we observe that biochemical

optimization first prunes out the ERK positive feedback module (which in the full sys-

tem amplifies response), but keeps many proofreading steps and cross-regulations.

The optimization eventually gets stuck because of the symmetry of the system, just

like we observed in the SHP-1 model from the previous section (Fig. 2.5 B and Fig.

2.6 A ).

Symmetry breaking is then performed, and allows is to considerably reduce the

combinatorial aspects of the system, reducing the number of biochemical species

and fully eliminating one parallel proofreading cascade (Fig. 2.5 C) or combining

two cascades (Fig. 2.6 B). In both variants, the final steps of optimization allow for

further reduction of the number of variables keeping only one proofreading cascade

in combination with a single loop feedback via the same variable (corresponding to

phosphorylated SHP-1 in the complete model).

Further study of this feedback loop reveals that it is responsible for biochemical

adaptation, similarly to what we observed in the case of the SHP-1 model. However,
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Figure 2.5: Reduction of the Lipniacki model. (A) Initial model considered. We indicate
complexity with coloured squared boxes that correspond to the number of individual re-
action rates in each of the corresponding differential equations for a given variable. (B) to
(D) Dose response curves for different reduction steps. Step 1 shows the initial dynamics.
From top to bottom, graphs on the right column displays the (reduced) networks at the end
of steps 16 (biochemical reduction), 32 (symmetry breaking), 36 (final model). The corre-
sponding parameter reduction steps are given in Appendix A. FINAL panel shows behavior
of Eqs. A.31-A.37 in the Appendix (full system including local mass conservation).

28



2.3 Results

step 1 step 9

step 15 step 19

step 27 step 32

step 33 step 43 - FINAL

Adaptation 
module

Kinetic sensing 
module

⌧ = 3s⌧ = 10s⌧ = 20s

Lo
g 

O
ut

pu
t

Log Agonist

Symmetry breaking

Biochemical reduction
A

B

Lo
g 

O
ut

pu
t

Figure 2.6: Another reduction of the Lipniacki model. Starting from the same network as
in Fig. 2.5 A but leading to a different adaptive mechanism. The corresponding parameter
reduction steps are given in Appendix A. (A) Initial biochemical reduction suppresses the
positive feedback loop in a similar way (compare with Fig. 2.5 B). (B) Symmetry breaking
breaks proofreading cascades and isolates different adaptive and kinetic modules (compare
with Fig. 2.5 D). FINAL panel shows behavior of Eqs. A.38-A.45 in the Appendix (full
system including local mass conservation).
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the mechanism for adaptation is different for the two different variants and corre-

sponds to two different parameter regimes.

For the variant of Fig. 2.5, the algorithm converges to a local optimum for the

fitness. However upon inspection, the structure appears very close to the SHP-1

model reduction, and can be optimized by putting three additional parameters to 0.

The Output of the system of Fig. 2.5 is then governed by three variables out of the

initial twenty-one and is summarized by:

9C7 = ϕ1C5(L)− ϕ2C7 − γSC7 (2.6)

9S = λC5(L)− µRtotS (2.7)

9CN = ϕ2C7 − τ−1CN (2.8)

Here C5(L) is one of the complex concentrations midway of the proofreading cas-

cade (we indicate here L dependency that can be computed by mass conservation

but is irrelevant for the understanding of the mechanism). S is the variable accounting

for phosphatase SHP-1 in the Lipniacki model, and Rtot the total number of unsatu-

rated receptors (the reduced system with the name of the original variables is given

in Appendix A).

At steady state S is proportional to C5(L) from Eq. 2.7. We see from Eq. 2.6 that

the production rate of C7 is also proportional to C5(L). Its degradation rate ϕ2+γS is

proportional to S if ϕ2 ≪ γS (which is the case). So both the production and degra-

dation rates of C7 are proportional (similar to what happens in the SHP-1 model, Eq.

2.5), and the overall contribution of L cancels out. This corresponds to an adaptation

module.

One τ dependency remains downstream of C7 through Eq. 2.8 (realizing a kinetic

sensing module) so that the steady state concentration of CN is a pure function

of τ , thus realizing absolute discrimination. Notably, this model corresponds to a

parameter regime where most receptors are free from phosphatase SHP-1, which

actually allows for the linear relationship between S and C5.

For the second variant, when the system has reached optimal fitness the same

feedback loop in the model performs perfect adaptation, and the full system of equa-
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tions in both reductions have similar structure (compare Eqs. A.31-A.37 to Eqs. A.38-

A.45 in the Appendix). But the mechanism for adaptation is different: this second

reduction corresponds to a regime where receptors are essentially all titrated by

SHP-1. More precisely, we have (calling Rf the free receptors, and Rp the receptors

titrated by SHP-1):

9Rp = µRf (L)S − ϵRp (2.9)

9S = λC5 − µRf (L)S (2.10)

9C5 = C3(L)− lSC5 (2.11)

Now at steady state, ϵ is small so that almost all receptors are titrated in the form

Rp, and thus Rp ≃ Rtot. This fixes the product Rf (L)S ∝ Rtot to a value indepen-

dent of L in Eq. 2.9, so that at steady state of S in Eq. 2.10, C5 = ϵRtot/λ is itself

fixed at a value independent of L. This implements an “integral feedback” adaptation

scheme [59]. Down C5, there is a simple linear cascade where one τ dependency

survives, ensuring kinetic sensing and absolute discrimination for the final complex

of the cascade. ” (Parameter reduction [1])

Recovering antagonism

In their full form,

“ the models we reduce all capture the phenomenon of ligand antagonism, where

the response of agonist ligands in the presence of high amounts of well chosen

subthreshold ligands (i.e. with binding time lower than critical binding time τc trig-

gering response) is antagonized. Throughout the reduction, ligand antagonism has

remained as a feature, but the hierarchy of antagonism has changed. In the simplest

systems, antagonism is maximum for minimum τ , while for more complex models

maximum antagonism is reached closer to threshold τc [60]. It turns out we can re-

cover this property by adding two terms to the final reduced equations.
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An overview of antagonism is presented in Fig. 2.7. We draw the response line

as a binary activation by choosing a threshold of the final output for activation (we

know from our previous works [33, 34] that adding stochasticity for a probabilistic

view does not fundamentally change this picture). The response at lowest ligand

concentration always comes from agonist alone (red line Fig. 2.7). Immune cells

presented with OVA + G4 are start activating at higher agonist concentration than the

OVA + E1 (Fig. S2.7 A). G4 peptides are strong antagonists with a binding time close

to threshold than weak antagonists E1. This hierarchy is typical for experimentally

observed antagonism: antagonism strength is large just below τc, the critical binding

time above which a response is elicited.

Similarly, in the full models for SHP-1 and Lipniacki (Fig. S2.7 B - C), we find

the same hierarchy. However, for the same binding times in reduced SHP-1 (Fig. 2.7

E) and reduced Lipniacki (Fig. 2.7 F), we find an inverted hierarchy, where ligands

further below are more antagonizing, so closer to the naive models discussed in [60].

It turns out that the position of the adaptive module m in the kinetic proofreading

cascade of N complexes determines the antagonism strength, like in Fig. 4 of [60].

We retrieve the correct hierarchy of antagonism by adding kinetic terms τ−1 to the

equations. We illustrate this on the second SHP-1 reduction. The antagonism hierar-

chy is initially absent from the reduced model (Fig. 2.7 G). When we add τ−1 terms

to Eqs. A.20 and A.21, it is retrieved (Fig. 2.7 D), because m = 4 is large enough.

When m is too low (m = 2, Figs. 2.7 E - F), antagonism strength peaks for τ ≪ τc

and we can not recover the hierarchy observed experimentally. ”

(Parameter reduction [1])

Comparison and categorization of models

“ An interesting feature of ϕ̄ is that reduction allows to formally classify and con-

nect models of different complexities. We focus here on absolute discrimination only.

Our approach allows us to distinguish at least four levels of coarse-graining for ab-

solute discrimination, as illustrated in Fig. 2.8.

At the upper level, we observe that all reduced absolute discrimination models
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Figure 2.7: Overview of antagonism. Red corresponds to agonists alone, green to agonists
in the presence of a fixed number of strong antagonist G4 ligands and blue to agonists
with weak antagonists E1 ligands. The output is shown as an binary activation depending
on threshold crossing. (A) Experimental data, reproduced from [33]. (B)-(C) Full SHP-
1/Lipniacki model, showing typical antagonistic hierarchy with binding times as in (E),(F),
which show reduced variants of the SHP-1/Lipniacki model via global symmetry breaking.
(D),(G) Second variant of the reduced SHP-1 model. Upon adding back terms in τ to Eqs.
A.20-A.21, we retrieve the proper hierarchy of antagonism. We added 104 antagonist lig-
ands to SHP-1 models, 102 antagonist ligands to Lipniacki models and 10µmol antagonist
ligand concentration in the experiments.
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considered can be broken down into two parts of similar functional relevance. In all

reduced models, we can clearly identify an adaptation module realizing perfect adap-

tation (defining an effective parameter λ in Fig. 2.8), and a kinetic sensing module

performing the sensing of τ (function f(τ) in Fig. 2.8). If f(τ) = τ , we get a two-

parameter model, where each parameter relates to a submodule.

The models can then be divided in the nature of the adaptatation module, which

gives the second level of coarse-graining. With ϕ̄, we automatically recover a di-

chotomy previously observed for biochemical adaptation between feedforward and

feedback models [61, 62]. The second variant of Lipniacki relies on an integral feed-

back mechanism, where adaptation of one variable (C5) is due to the buffering of a

negative feedback variable (S(L)) (Eqs. 2.9 - 2.11, Fig. 2.8). Adaptive sorting, the

SHP-1 model and the first variant of Lipniacki model instead rely on a “feedforward”

adaptation module where a tug-of-war between two terms (an activation term A(L)

and feedforward terms K / S in Fig. 2.8) exactly compensates.

The tug-of-war necessary for adaptation is realized in two different ways, which

is the third level of coarse-graining. In adaptive sorting, this tug-of-war is realized at

the level of the production rate of the Output, that is made ligand independent by a

competition between a direct positive contribution and an indirect negative one (Eq.

2.3, Fig. 2.8). In the reduced SHP-1 model, the concentration of the complex C up-

stream the output is made L independent via a tug-of-war between its production

and degradation rates. The exact same effect is observed in the first variant of the

Lipniacki model: at steady state, from Eqs. 2.6 and 2.7 the production and degrada-

tion rates of C7 are proportional (Fig. 2.8) which ensures adaptation. So ϕ̄ allows to

rigorously confirm the intuition that the SHP-1 model and the Lipniacki model indeed

work in a similar way and belong to the same category in the unsaturated receptor

regime. We also notice that ϕ̄ suggests a new coarse-grained model for absolute

discrimination based on modulation of degradation rates, with fewer parameters and

simpler behavior than the existing ones, by assuming specific dephosphorylation in

the cascades (we notice that some other models have suggested specificity for the

last step of the cascade, e.g. in limited signalling models [35]).

Importantly, the variable S, encoding for the same negative feedback in both the
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SHP-1 and the first reduction of Lipniacki model, plays a similar role in the reduced

models, suggesting that two models of the same process, while designed with differ-

ent assumptions and biochemical details, nevertheless converge to the same class of

models. This variable S also is the buffering variable in the integral feedback branch

of the reduction of the Lipniacki model, yet adaptation works in a different way for

this reduction. This shows that even though the two reductions of the Lipniacki model

work in different parameter regimes and rely on different adaptive mechanisms, the

same components in the network play the crucial functional roles, suggesting that the

approach is general. As a negative control of both the role of SHP-1 and more gen-

erally of the ϕ̄ algorithm, we show in Appendix A on the SHP-1 model that reduction

does not converge in the absence of the S variable (Fig. S3).

Coarse-graining further allows us to draw connections between network com-

ponents and parameters for those different models. For instance, the outputs are

functions of K(L)C0(L) for adaptive sorting and of C(L)
S(L) for SHP-1/Lipniacki models,

where C0(L) and C(L) are in both models concentrations of complex upstream in

the cascade. So we can formally identify K(L) with S(L)−1. The immediate interpre-

tation is that deactivating a kinase is similar to activating a phosphatase, which is

intuitive but only formalized here by model reduction.

At lower levels in the reduction, complexity is increased, so that many more mod-

els are expected to be connected to the same functional absolute discrimination

model. For instance, when we run ϕ̄ several times, the kinetic discrimination module

on the SHP-1 model is realized on different complexes (see several other examples

in Appendix A). Also, the precise nature and position of kinetic discriminations in the

network might influence properties that we have not accounted for in the fitness. We

illustrate this on ligand antagonism [60]: depending on the complex regulated by S

in the different reduced models, and adding back kinetic discrimination (in the form

of τ−1 terms) in the remaining cascade on the reduced models, we can observe

different antagonistic behaviour, comparable with the experimentally measured an-

tagonism hierarchy. Finally, a more realistic model might account for nonspecific in-

teractions (relieved here by parameter symmetry breaking), which might only give

approximate biochemical adaptation (as in [33]) while still keeping the same core

principles (adaptation + kinetic discrimination) that are uncovered by ϕ̄.
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2.4 Discussion

When we take into account all possible reactions and proteins in a biological network,

a potentially infinite number of different models can be generated. But it is not clear

how the level of complexity relates to the behavior of a system, nor how models

of different complexities can be grasped or compared. For instance, it is far from

obvious whether a network as complex as the one from [32] (Fig. 2.5 A) can be

simply understood in any way, or if any clear design principle can be extracted from

it. We propose ϕ̄, a simple procedure to reduce complex networks, which is based

on a fitness function that defines network phenotype, and on simple coordinated

parameter changes.

ϕ̄ relies on the optimization of a predefined fitness that is required to encode

coarse-grained phenotypes. It performs a direct exploration of the asymptotic limit on

boundary manifolds in parameter space. In silico evolution of networks teaches us

that the choice of fitness is crucial for successful exploration in parameter spaces and

to allow for the identification of design principles [54]. Fitness should capture qualita-

tive features of networks that can be improved incrementally; an example used here

is mutual information [34]. While adjusting existing parameters or even adding new

ones (potentially leading to overfitting) could help optimizing this fitness, it is not ob-

vious a priori that systematic removal of parameters is possible without decreasing

the fitness, even for networks with initial good fitness. For both cases of biochemi-

cal adaptation and absolute discrimination, ϕ̄ is nevertheless efficient at pruning and

reinforcing different network interactions in a coordinated way while keeping an opti-

mum fitness, finding simple limits in network space, with submodules that are easy

to interpret. Reproducibility in the simplifications of the networks suggests that the

method is robust.

In the examples of SHP-1 and Lipniacki models, we notice that ϕ̄ disentangles

the behavior of a complex network into two submodules with well identified func-

tions, one in charge of adaptation and the other of kinetic discrimination. To do so, ϕ̄

is able to identify and reinforce tug-of-war terms, with direct biological interpretation.

This allows for a formal comparison of models. The reduced SHP-1 model and the
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first reduction of the Lipniacki model have a similar feedforward structure, controlled

by a variable corresponding to phosphatase SHP-1 defining the same biological in-

teraction. This is reassuring since both models aim to describe early immune recog-

nition; this was not obvious a priori from the complete system of equations or the

considered network topology (compare Fig. 2.4 with Fig. 2.5A). These feedforward

dynamics discovered by ϕ̄ contrast with the original feedback interpretation of the

role of SHP-1 from the network topology only [31–33]. Adaptive sorting, while per-

forming the same biochemical function, works differently by adapting the production

rate of the output, and thus belongs to another category of networks (Fig. 2.8).

ϕ̄ is also able to identify different parameter regimes for a network performing

the same function, thereby uncovering an unexpected network plasticity. The two re-

ductions of the Lipniacki model work in a different way (one is feedforward based,

the other one is feedback based), but importantly, the crucial adaptation mechanism

relies on the same node, again corresponding to phosphatase SHP-1, suggesting

the predictive power of this approach irrespective of the details of the model. From a

biological standpoint, since the same network can yield two different adaptive mech-

anisms depending on the parameter regime (receptors titrated or not by SHP-1), it

could be that both situations are observed. In mouse, T Cell Receptors (TCRs) do not

bind to phosphatase SHP-1 without engagement of ligands [63], which would be in

line with the reduction of the SHP-1 model and the first variant of the Lipniacki model

reduction. But we cannot exclude that a titrated regime for receptors exists, e.g. due

to phenotypic plasticity [64], or that the very same network works in this regime in

another organism. More generally, one may wonder if the parameters found by ϕ̄

are realistic in any way. In cases studied here, the values of parameters are not as

important as the regime in which the networks behave. For instance, we saw for the

feedforward models that some specific variables have to be proportional, which re-

quires nonsaturating enzymatic reactions. Conversely, the second reduction of the

Lipniacki model requires titration of receptors by SHP-1. These are direct predictions

on the dynamics of the networks, not specifically tied to the original models.

Since ϕ̄ works by sequential modifications of parameters, we get a continuous

mapping between all the models at different steps of the reduction process, via the

most simplified one-parameter version of the model. By analogy with physics, ϕ̄ thus
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“renormalizes" different networks by coarse-graining [50], possibly identifying univer-

sal classes for a given biochemical computation, and defining subclasses [65]. This

allows us to draw correspondences between networks with very different topologies,

formalizing ideas such as the equivalence between activation of a phosphatase and

repression of a kinase (as exemplified here by the comparison of influences of K(L)

and S(L) in reduced models from Fig. 2.8). In systems biology, models are nei-

ther traditionally simplified, nor are there systematic comparisons between models,

in part because there is no obvious strategy to do so. The approach proposed here

offers a solution for both comparison and reduction, which complements other strate-

gies such as the evolution of phenotypic models [54] or direct geometric modelling

in phase space [66].

To fully reduce complex biochemical models, we have to perform symmetry

breaking on parameters. Similar to parameter modifications, the main roles of sym-

metry breaking is to reinforce and adjust dynamical regimes in different branches

of the network, e.g. imposing proportionality to tug-of-war terms. Intuitively, symme-

try breaking embeds complex networks into a higher dimensional parameter space

allowing for better optimization. Much simpler networks can be obtained with this

procedure, which shows in retrospect how the assumed nonspecificity in interactions

strongly constrains the allowed behavior. Of course, in biology, some of this complex-

ity might also have evolutionary adaptive values, corresponding to other phenotypic

features we have neglected here, such as signal amplification. A tool like ϕ̄ allows for

a reductionist study of these features by specifically focusing on one phenotype of

interest to extract its core working principles. Once the core principles are identified,

it should be easier to complexify a model by accounting for other potential adaptive

phenotypes (e.g. as is done to reduce antagonism in [34]).

Finally, there is a natural evolutionary interpretation of ϕ̄. In both evolutionary

computations and evolution, random parameter modifications in evolution can push

single parameters to 0 or potentially very big values (corresponding to the ∞ limit).

However, it is clear from our simulations that concerted modifications of parameters

are needed, e.g. for adaptive sorting, the simultaneous modifications of the kinet-

ics and the efficiency of a kinase regulation is required in Step 4 of the reduction.

Evolution might select for networks explicitly coupling parameters that need to be

39



2.4 Discussion

modified in concert. Conversely, there might be other constraints preventing efficient

optimizations in two directions in parameter space at the same time, due to epistatic

effects. Gene duplications provide an evolutionary solution to relieve such trade-offs,

after which previously identical genes can diverge and specialize [67]. This clearly

bears resemblance to the symmetry breaking proposed here. For instance, having

two duplicated kinases instead of one would allow to have different phosphoryla-

tion rates in the same proofreading cascades. We also see in the examples of Figs.

2.4, 2.5, and 2.6 that complex networks that cannot be simplified by pure parameter

changes, can be improved by parameter symmetry breaking via decomposition into

independent submodules. Similar evolutionary forces might be at play to explain the

observed modularity of gene networks [68]. More practically, ϕ̄ could be useful as a

complementary tool for artificial or simulated evolution [54] to simplify complex sim-

ulated dynamics [69]. ” (Parameter reduction [1])
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3
Attack and defence

In Chapter 2 we have shown how models of immune recognition varying in complexity

contain the same core functionality, but differ in additional features they may describe.

Next, we focus our attention on ligand antagonism, a feature in immune recognition mod-

els that we touched on before. Ligand antagonism is the inhibition of a response variable

by ligands with a subthreshold binding time that by themselves do not trigger a response.

It has been proven that ligand antagonism is unavoidable for certain classes of immune

recognition models [49], although the strength of antagonism by ligands with a given sub-

threshold binding time τ ≤ τc depends on biochemical parameters which determine the

immune recognition model.

A similar fooling mechanism exists in machine learning. Machine learning algorithms

routinely misclassify regular samples when a specific, imperceptible perturbation called

an adversarial perturbation is added to them. Such adversarial examples are known to

exist across a wide variety of models and are transferable across architectures [70, 71].

There even exists universal adversarial perturbation that fool all algorithms [72]. It has

been shown that adversarial examples are inevitable [73], similar to ligand antagonism in

immune recognition models. Hypotheses for the existence of adversarial examples range

from the nonlinearity of machine learning algorithms [70] to the high-dimensionality of

the data [74], but the field does not unequivocally agreed on this.
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In this Chapter, we draw a connection between ligand antagonism and adversarial ex-

amples. We use techniques for generating adversarial perturbations for machine learning to

compute the most efficient antagonizers in immune recognition, and show that additional

nonlinearity aids in mitigating the effect of adversarial perturbations for both a simple ma-

chine learning model and the immune recognition model. Finally, by inspecting samples

at the decision boundary, we show that through tuning the biochemical parameters deter-

mining the immune recognition model we can expect most robustness. Our conclusions

highlight design constraints machine learning algorithms robust to adversarial examples

must adhere to, as well as to what extend adversarial examples may be limited.

“ Machine learning algorithms can be fooled by small well-designed adversarial

perturbations. This is reminiscent of cellular decision-making where ligands (called

antagonists) prevent correct signalling, like in early immune recognition. We draw

a formal analogy between neural networks used in machine learning and models

of cellular decision-making (adaptive proofreading). We apply attacks from machine

learning to simple decision-making models, and show explicitly the correspondence

to antagonism by weakly bound ligands. Such antagonism is absent in more nonlin-

ear models, which inspired us to implement a biomimetic defence in neural networks

filtering out adversarial perturbations. We then apply a gradient-descent approach

from machine learning to different cellular decision-making models, and we reveal

the existence of two regimes characterized by the presence or absence of a criti-

cal point in the gradient. This critical point causes the strongest antagonists to lie

close to the decision boundary. This is validated in the loss landscapes of robust

neural networks and cellular decision-making models, and observed experimentally

for immune cells. For both regimes, we explain how associated defence mechanisms

shape the geometry of the loss landscape, and why different adversarial attacks are

effective in different regimes. Our work connects evolved cellular decision-making to

machine learning, and motivates the design of a general theory of adversarial per-

turbations, both for in vivo and in silico systems. ” (Attack and defence [2])
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3.1 Introduction

“ Machine learning is becoming increasingly popular with major advances com-

ing from deep neural networks [9]. Deep learning has improved the state-of-the-art

in automated tasks like image processing [75], speech recognition [76] and machine

translation [77], and has already seen a wide range of applications in research and

industry. Despite their success, neural networks suffer from blind spots: small per-

turbations added to unambiguous samples may lead to misclassification [70]. Such

adversarial examples are most obvious in image recognition, for example, a panda

is misclassified as a gibbon or a handwritten 3 as a 7 [74]. Real world scenarios

exist, like adversarial road signs fooling computer vision algorithms (Fig. 3.1 A) [78],

or adversarial perturbations on medical images triggering incorrect diagnosis [79].

Worse, adversarial examples are often transferable across algorithms (see [80] for a

recent review), and certain universal perturbations fool any algorithm. [72].

Categorization and inference are also tasks found in cellular decision-making

[81]. For instance, T cells have to discriminate between foreign and self ligands which

is challenging since foreign ligands might not be very different biochemically from

self ligands [25, 82]. Decision-making in an immune context is equally prone to detri-

mental perturbations in a phenomenon called ligand antagonism [49]. Antagonism

appears to be a general feature of cellular decision-makers: it has been observed

in T cells [31], mast cells [57] and other recognition processes like olfactory sensing

[83, 84].

There is a natural analogy to draw between decision-making in machine learning

and in biology. In machine learning terms, cellular decision-making is similar to a

classifier. Furthermore, in both artificial and cellular decision-making, targeted per-

turbations lead to faulty decisions even in the presence of a clear ground truth signal.

As a consequence, arms races are observed in both systems. Mutating agents might

systematically explore ways to fool the immune cells via antagonism, as has been

proposed in the HIV case [29, 85, 86]. Recent examples might include neoantigens

in cancer [87, 88] which are implicated in tumour immunoediting and escape from

the immune system. Those medical examples are reminiscent of how adversaries
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binding time (s)
3 100.1 1

C Response (yes/no)

Figure 3.1: Ligand discrimination and digit recognition tasks (A) Adversarial exam-
ples on digits and roadsigns. Reproduced from [78]. Left column displays original images
with categories recognized by machine learning algorithms, right column displays images
containing targeted perturbations leading to misclassification. (B) Schematics of ligand
binding events showing typical receptor occupancy through some observed time during
cellular decision-making using T cell terminology (“self vs non-self"). The colored bars
corresponds to self (green), antagonist (orange) and non-self (blue) ligands binding to re-
ceptors. Their lengths are indicative of the binding time τi, whereas their rate of binding
measures the on-rate kon

i . (C) Different ligand distributions give different response. The
vertical dotted line indicates quality τd. Decision should be to activate if one observes lig-
ands with τ > τd, so on the right of the dotted line. In an immune context, T cells respond
to ligand distributions of agonists alone and agonists in the presence of non-agonists (with
very small binding times τ ), while the T cell fails to respond if there are too many ligands
just below threshold τd.
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could generate black box attacks aimed at fooling neural networks [78]. Strategies

for provable defenses or robust detection of adversarial examples [89, 90] are cur-

rently developed in machine learning, but we are still far from a general solution.

In the following, we draw a formal correspondence between biophysical models

of cellular decision-making displaying antagonism on the one hand, and adversarial

examples in machine learning on the other hand. We show how simple attacks in ma-

chine learning mathematically correspond to antagonism by many weakly bound lig-

ands in cellular decision-making. Inspired by kinetic proofreading in cellular decision-

making, we implement a biomimetic defence for digit classifiers, and we demonstrate

how these robust classifiers exhibit similar behavior to the nonlinear adaptive proof-

reading models. Finally, we explore the geometry of the decision boundary for adap-

tive proofreading, and observe how a critical point in the gradient dynamics emerges

in networks robust to adversarial perturbations. Recent findings in machine learning

[91] confirm the existence of two regimes, which are separated by a large nonlin-

earity in the activation function. This inspired us to define two categories of attack

(high-dimensional, small amplitude and low-dimensional, large amplitude) both for

models of cellular decision-making and neural networks. Our work suggests the ex-

istence of a unified theory of adversarial perturbations for both evolved and artificial

decision-makers.

Adaptive proofreading for cellular decision-making

Cellular decision-making in our context refers to classification of biological ligands

in two categories, e.g. “self vs non-self" in immunology, or “agonist vs non-agonist"

in physiology [25, 92, 93]. For most of those cases, qualitative distinctions rely on

differences in a continuously varying property (typically a biochemical parameter).

Thus it is convenient to rank different ligands based on a parameter (notation τ ) that

we will call quality. Mathematically, a cell needs to decide if it is exposed to ligands

with quality τ > τd, where τd is the quality at the decision threshold. Such ligands

triggering response are called agonists. A general problem then is to consider cellular

decision-making based on ligand quality irrespective of ligand quantity (notation L).

An example can be found in immune recognition with the lifetime dogma [25], where
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it is assumed that a T cell discriminates ligands based on their characteristic binding

time τ to T cell receptors (this is of course an approximation and other parameters

might also play a role in defining quality, see [36, 43, 94]). Ligand discrimination is

a nontrivial problem for the cell, which does not measure single-binding events but

only has access to global quantities such as the total number of bound receptors

(Fig. 3.1 B). The challenge is to ignore many subthreshold ligands (τ < τd) while

responding to few agonist ligands with τ > τd [25, 31, 33]. In particular, it is known

experimentally in many different contexts that addition of antagonistic subthreshold

ligands can impair proper decision-making (Fig. 3.1 C) [31, 57, 83].

To model cellular decision-making, we will use the general class of “adaptive

sorting” or “adaptive proofreading” models, which account for many aspects of im-

mune recognition [34, 49], and can be shown to capture all relevant features of such

cellular decision-making close to a decision threshold [60]. An example of such a

model is displayed in Fig. 3.2 A. Importantly, we have shown previously that many

other biochemical models present similar properties for the steady-state response

as a function of the input ligand distribution [1]. In the following we summarize the

most important mathematical properties of such models. An analysis of the detailed

biochemical kinetics of the model of Fig. 3.2 A is presented in Appendix S1.

We assume an idealized situation where a given receptor i, upon ligand bind-

ing (on-rate kon
i , binding time τi) can exist in N biochemical states (correspond-

ing to phosphorylation stages of the receptor tails in the immune context [26, 95]).

Those states allow the receptor to effectively compute different quantities, such as

cin = kon
i τni , 0 ≤ n ≤ N , which can be done with kinetic proofreading [26–28]. In

particular, ligands with larger τ give a relatively larger value of ciN due to the geo-

metric amplification associated with proofreading steps. We assume receptors to be

identical, so that any downstream receptor processing by the cell must be done on

the sum(s) Cn =
∑

i c
i
n =

∑
i k

on
i τni . We also consider a quenched situation in which

only one ligand is locally available for binding to every receptor. In reality, there is a

constant motion of ligands, such that kon
i and τi are functions of time and stochas-

tic treatments are required [81, 96, 97], but on the time-scale of primary decision-

making it is reasonable to assume that the ligand distribution does not change much

[31].
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ĊN = �KCm � ⌧�1
1 CN (9)
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<latexit sha1_base64="8vaGAJxM/kqvvCe8BfBPx8rdJ/w=">AAAB6nicbVA9SwNBEJ2LXzF+RQUbm8UgWIU7Gy2DaSwTNB+QHHFvs5cs2ds7dueEcOQn2FgoYusvsrPxt7j5KDTxwcDjvRlm5gWJFAZd98vJra1vbG7ltws7u3v7B8XDo6aJU814g8Uy1u2AGi6F4g0UKHk70ZxGgeStYFSd+q1Hro2I1T2OE+5HdKBEKBhFK91Ve16vWHLL7gxklXgLUqqc1L8fAKDWK352+zFLI66QSWpMx3MT9DOqUTDJJ4VuanhC2YgOeMdSRSNu/Gx26oScW6VPwljbUkhm6u+JjEbGjKPAdkYUh2bZm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadgg3BW355lTQvy55b9uo2jRuYIw+ncAYX4MEVVOAWatAABgN4ghd4daTz7Lw57/PWnLOYOYY/cD5+AEhKj0w=</latexit><latexit sha1_base64="7HxFvk9mDPz+DmtGKm0ZiKqLTP0=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZYhaSwTNA9IljA7mSRDZmeXmbtCWPIJNhaK2Nr6F36BnY3f4uRRaOKBC4dz7uXee4JYCoOu++Vk1tY3Nrey27md3b39g/zhUcNEiWa8ziIZ6VZADZdC8ToKlLwVa07DQPJmMKpM/eY910ZE6g7HMfdDOlCiLxhFK91Wul43X3CL7gxklXgLUiid1L7Fe/mj2s1/dnoRS0KukElqTNtzY/RTqlEwySe5TmJ4TNmIDnjbUkVDbvx0duqEnFulR/qRtqWQzNTfEykNjRmHge0MKQ7NsjcV//PaCfav/VSoOEGu2HxRP5EEIzL9m/SE5gzl2BLKtLC3EjakmjK06eRsCN7yy6ukcVn03KJXs2mUYY4snMIZXIAHV1CCG6hCHRgM4AGe4NmRzqPz4rzOWzPOYuYY/sB5+wGZi5EI</latexit><latexit sha1_base64="7HxFvk9mDPz+DmtGKm0ZiKqLTP0=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZYhaSwTNA9IljA7mSRDZmeXmbtCWPIJNhaK2Nr6F36BnY3f4uRRaOKBC4dz7uXee4JYCoOu++Vk1tY3Nrey27md3b39g/zhUcNEiWa8ziIZ6VZADZdC8ToKlLwVa07DQPJmMKpM/eY910ZE6g7HMfdDOlCiLxhFK91Wul43X3CL7gxklXgLUiid1L7Fe/mj2s1/dnoRS0KukElqTNtzY/RTqlEwySe5TmJ4TNmIDnjbUkVDbvx0duqEnFulR/qRtqWQzNTfEykNjRmHge0MKQ7NsjcV//PaCfav/VSoOEGu2HxRP5EEIzL9m/SE5gzl2BLKtLC3EjakmjK06eRsCN7yy6ukcVn03KJXs2mUYY4snMIZXIAHV1CCG6hCHRgM4AGe4NmRzqPz4rzOWzPOYuYY/sB5+wGZi5EI</latexit><latexit sha1_base64="opnZnQkEUqZEjFQ/EKPeJ1IMiV4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m86LHYi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9xm+agrQ8GHu/NMDMvSATXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6DhVDNssFrHqBVSj4BLbhhuBvUQhjQKB3WDaXPjdJ1Sax/LRzBL0IzqWPOSMGis9NIfesFpz624Osk68gtSgQGtY/RqMYpZGKA0TVOu+5ybGz6gynAmcVwapxoSyKR1j31JJI9R+lp86JxdWGZEwVrakIbn6eyKjkdazKLCdETUTveotxP+8fmrCGz/jMkkNSrZcFKaCmJgs/iYjrpAZMbOEMsXtrYRNqKLM2HQqNgRv9eV10rmqe27du3drjdsijjKcwTlcggfX0IA7aEEbGIzhGV7hzRHOi/PufCxbS04xcwp/4Hz+ALmjjWc=</latexit>

CN�1
<latexit sha1_base64="Q1KUIXWP550R4D9eWIn/UFzUaJQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLaBByMex60WMwF08SwTwgWcLsZDYZMju7zPQKYclHePGgiFc/w2/w5od4d/I4aGJBQ1HVTXdXkEhh0HW/nJXVtfWNzdxWfntnd2+/cHDYMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMqxO/+cC1EbG6x1HC/Yj2lQgFo2ilZrWb3Z57426h6JbdKcgy8eakWDkpfX8AQK1b+Oz0YpZGXCGT1Ji25yboZ1SjYJKP853U8ISyIe3ztqWKRtz42fTcMTmzSo+EsbalkEzV3xMZjYwZRYHtjCgOzKI3Ef/z2imGV34mVJIiV2y2KEwlwZhMfic9oTlDObKEMi3srYQNqKYMbUJ5G4K3+PIyaVyUPbfs3dk0rmGGHBzDKZTAg0uowA3UoA4MhvAIz/DiJM6T8+q8zVpXnPnMEfyB8/4Di9aRQA==</latexit><latexit sha1_base64="67A3IqxMkWdSPqp2UEYKfx3h+Cc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eRoMQD4ZdL3oM5uJJIpgHJEuYnUySIbOzy0yvEJZ8g3jxoIhXv8NP8OaHeHfyOGi0oKGo6qa7K4ilMOi6n05maXlldS27ntvY3Nreye/u1U2UaMZrLJKRbgbUcCkUr6FAyZux5jQMJG8Ew8rEb9xxbUSkbnEUcz+kfSV6glG0UqPSSa9PvXEnX3BL7hTkL/HmpFA+LH6937dPqp38R7sbsSTkCpmkxrQ8N0Y/pRoFk3ycayeGx5QNaZ+3LFU05MZPp+eOybFVuqQXaVsKyVT9OZHS0JhRGNjOkOLALHoT8T+vlWDvwk+FihPkis0W9RJJMCKT30lXaM5QjiyhTAt7K2EDqilDm1DOhuAtvvyX1M9KnlvybmwalzBDFg7gCIrgwTmU4QqqUAMGQ3iAJ3h2YufReXFeZ60ZZz6zD7/gvH0D/7OSVg==</latexit><latexit sha1_base64="67A3IqxMkWdSPqp2UEYKfx3h+Cc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eRoMQD4ZdL3oM5uJJIpgHJEuYnUySIbOzy0yvEJZ8g3jxoIhXv8NP8OaHeHfyOGi0oKGo6qa7K4ilMOi6n05maXlldS27ntvY3Nreye/u1U2UaMZrLJKRbgbUcCkUr6FAyZux5jQMJG8Ew8rEb9xxbUSkbnEUcz+kfSV6glG0UqPSSa9PvXEnX3BL7hTkL/HmpFA+LH6937dPqp38R7sbsSTkCpmkxrQ8N0Y/pRoFk3ycayeGx5QNaZ+3LFU05MZPp+eOybFVuqQXaVsKyVT9OZHS0JhRGNjOkOLALHoT8T+vlWDvwk+FihPkis0W9RJJMCKT30lXaM5QjiyhTAt7K2EDqilDm1DOhuAtvvyX1M9KnlvybmwalzBDFg7gCIrgwTmU4QqqUAMGQ3iAJ3h2YufReXFeZ60ZZz6zD7/gvH0D/7OSVg==</latexit><latexit sha1_base64="1wv52wxVSnfAgYB/Xixbj6ELr/8=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgY7iziWUwjZVEMB+QHGFvM5cs2ds7dveEcORH2FgoYuvvsfPfuEmu0MQHA4/3ZpiZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHWcKoYtFotYdQOqUXCJLcONwG6ikEaBwE4wacz9zhMqzWP5aKYJ+hEdSR5yRo2VOo1Bdn/lzQblilt1FyDrxMtJBXI0B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLc2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvPfyZArZEZMLaFMcXsrYWOqKDM2oZINwVt9eZ20r6ueW/Ue3Er9No+jCGdwDpfgQQ3qcAdNaAGDCTzDK7w5ifPivDsfy9aCk8+cwh84nz+FsY8C</latexit>

L, ⌧
<latexit sha1_base64="wSePjryUe31YzBuZBIBuKzCrMws=">AAAB7XicbVA9SwNBEJ2LXzF+RS21WAyChYQ7Gy2DNhYWCZgPSI6wt9lL1uztHbtzQjjyH2wsFLH1L/g77Oz8KW4SC018MPB4b4aZeUEihUHX/XRyS8srq2v59cLG5tb2TnF3r2HiVDNeZ7GMdSughkuheB0FSt5KNKdRIHkzGF5N/OY910bE6hZHCfcj2lciFIyilRo3px2kabdYcsvuFGSReD+kVDl8r30BQLVb/Oj0YpZGXCGT1Ji25yboZ1SjYJKPC53U8ISyIe3ztqWKRtz42fTaMTm2So+EsbalkEzV3xMZjYwZRYHtjCgOzLw3Ef/z2imGF34mVJIiV2y2KEwlwZhMXic9oTlDObKEMi3srYQNqKYMbUAFG4I3//IiaZyVPbfs1WwalzBDHg7gCE7Ag3OowDVUoQ4M7uABnuDZiZ1H58V5nbXmnJ+ZffgD5+0bMdiRFQ==</latexit><latexit sha1_base64="bnKUMvhJv8jzU5s9i/MALlGXj0A=">AAAB7XicbVC7SgNBFL0bXzG+opaKDAbBQsKujZZBGwuLBMwDkiXMTmaTMbMzy8ysEJaU9jYWitj6C/kOO7/Bn3DyKDTxwIXDOfdy7z1BzJk2rvvlZJaWV1bXsuu5jc2t7Z387l5Ny0QRWiWSS9UIsKacCVo1zHDaiBXFUcBpPehfj/36A1WaSXFnBjH1I9wVLGQEGyvVbs9aBiftfMEtuhOgReLNSKF0OKp8Px6Nyu38Z6sjSRJRYQjHWjc9NzZ+ipVhhNNhrpVoGmPSx13atFTgiGo/nVw7RCdW6aBQKlvCoIn6eyLFkdaDKLCdETY9Pe+Nxf+8ZmLCSz9lIk4MFWS6KEw4MhKNX0cdpigxfGAJJorZWxHpYYWJsQHlbAje/MuLpHZe9NyiV7FpXMEUWTiAYzgFDy6gBDdQhioQuIcneIFXRzrPzpvzPm3NOLOZffgD5+MHEB2Sew==</latexit><latexit sha1_base64="bnKUMvhJv8jzU5s9i/MALlGXj0A=">AAAB7XicbVC7SgNBFL0bXzG+opaKDAbBQsKujZZBGwuLBMwDkiXMTmaTMbMzy8ysEJaU9jYWitj6C/kOO7/Bn3DyKDTxwIXDOfdy7z1BzJk2rvvlZJaWV1bXsuu5jc2t7Z387l5Ny0QRWiWSS9UIsKacCVo1zHDaiBXFUcBpPehfj/36A1WaSXFnBjH1I9wVLGQEGyvVbs9aBiftfMEtuhOgReLNSKF0OKp8Px6Nyu38Z6sjSRJRYQjHWjc9NzZ+ipVhhNNhrpVoGmPSx13atFTgiGo/nVw7RCdW6aBQKlvCoIn6eyLFkdaDKLCdETY9Pe+Nxf+8ZmLCSz9lIk4MFWS6KEw4MhKNX0cdpigxfGAJJorZWxHpYYWJsQHlbAje/MuLpHZe9NyiV7FpXMEUWTiAYzgFDy6gBDdQhioQuIcneIFXRzrPzpvzPm3NOLOZffgD5+MHEB2Sew==</latexit><latexit sha1_base64="u5cUlWXbLuEBzpS6VLHqfzoOSfI=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhAsJNzZaBm0sbCIYD4gOcLeZpOs2ds9dueEcOQ/2FgoYuv/sfPfuEmu0MQHA4/3ZpiZFyVSWPT9b29ldW19Y7OwVdze2d3bLx0cNqxODeN1pqU2rYhaLoXidRQoeSsxnMaR5M1odDP1m0/cWKHVA44THsZ0oERfMIpOatydd5Cm3VLZr/gzkGUS5KQMOWrd0lenp1kac4VMUmvbgZ9gmFGDgkk+KXZSyxPKRnTA244qGnMbZrNrJ+TUKT3S18aVQjJTf09kNLZ2HEeuM6Y4tIveVPzPa6fYvwozoZIUuWLzRf1UEtRk+jrpCcMZyrEjlBnhbiVsSA1l6AIquhCCxZeXSeOiEviV4N4vV6/zOApwDCdwBgFcQhVuoQZ1YPAIz/AKb572Xrx372PeuuLlM0fwB97nDyHejtA=</latexit>

L⌧N
<latexit sha1_base64="j4VO3NP8QjSbF9LUe87CBdNlmeE=">AAAB7nicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLEQiWAukKxhdjKbDJmdXWbOCiEEfAUbC0VsfRN7O9/GyaXQxB8GPv7/HOacE6ZSGPS8b2dhcWl5ZTW35q5vbG5t53d2qybJNOMVlshE10NquBSKV1Cg5PVUcxqHktfC3uUorz1wbUSi7rCf8iCmHSUiwShaq3bdRJrd37TyBa/ojUXmwZ9C4fzTPXsEgHIr/9VsJyyLuUImqTEN30sxGFCNgkk+dJuZ4SllPdrhDYuKxtwEg/G4Q3JonTaJEm2fQjJ2f3cMaGxMPw5tZUyxa2azkflf1sgwOg0GQqUZcsUmH0WZJJiQ0e6kLTRnKPsWKNPCzkpYl2rK0F7ItUfwZ1eeh+px0feK/q1XKF3ARDnYhwM4Ah9OoARXUIYKMOjBE7zAq5M6z86b8z4pXXCmPXvwR87HD3tZkSc=</latexit><latexit sha1_base64="J84zyKiT96J75TfTtxrjsYcrIWo=">AAAB7nicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI2FSARzgWQNs5PZZMjs7DAzK4QlD2FjoYiFjW9ibyO+jZNLoYk/DHz8/znMOSeUnGnjed9ObmFxaXklv+qurW9sbhW2d2o6SRWhVZLwRDVCrClnglYNM5w2pKI4Djmth/2LUV6/p0qzRNyagaRBjLuCRYxgY636Vcvg9O66XSh6JW8sNA/+FIpnH+6pfPtyK+3CZ6uTkDSmwhCOtW76njRBhpVhhNOh20o1lZj0cZc2LQocUx1k43GH6MA6HRQlyj5h0Nj93ZHhWOtBHNrKGJuens1G5n9ZMzXRSZAxIVNDBZl8FKUcmQSNdkcdpigxfGABE8XsrIj0sMLE2Au59gj+7MrzUDsq+V7Jv/GK5XOYKA97sA+H4MMxlOESKlAFAn14gCd4dqTz6Lw4r5PSnDPt2YU/ct5/AGzokps=</latexit><latexit sha1_base64="J84zyKiT96J75TfTtxrjsYcrIWo=">AAAB7nicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI2FSARzgWQNs5PZZMjs7DAzK4QlD2FjoYiFjW9ibyO+jZNLoYk/DHz8/znMOSeUnGnjed9ObmFxaXklv+qurW9sbhW2d2o6SRWhVZLwRDVCrClnglYNM5w2pKI4Djmth/2LUV6/p0qzRNyagaRBjLuCRYxgY636Vcvg9O66XSh6JW8sNA/+FIpnH+6pfPtyK+3CZ6uTkDSmwhCOtW76njRBhpVhhNOh20o1lZj0cZc2LQocUx1k43GH6MA6HRQlyj5h0Nj93ZHhWOtBHNrKGJuens1G5n9ZMzXRSZAxIVNDBZl8FKUcmQSNdkcdpigxfGABE8XsrIj0sMLE2Au59gj+7MrzUDsq+V7Jv/GK5XOYKA97sA+H4MMxlOESKlAFAn14gCd4dqTz6Lw4r5PSnDPt2YU/ct5/AGzokps=</latexit><latexit sha1_base64="Yt8gUw2GNyfstvj1gpxhD/pRpT8=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTBm0sRCJYD4gOcPeZi9Zsrd37M4J4ciPsLFQxNbfY+e/cZNcoYkPBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etUycasabLJax7gTUcCkUb6JAyTuJ5jQKJG8H4+uZ337i2ohYPeAk4X5Eh0qEglG0Uvu2hzR9vOuXK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3dKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuimHNz4RKUuSKLRaFqSQYk9nvZCA0ZygnllCmhb2VsBHVlKFNqGRD8JZfXiWti6rnVr17t1K/yuMowgmcwjl4cAl1uIEGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx8MIY9a</latexit>

L⌧m
<latexit sha1_base64="uz3xWoMshHTO+GtvEKRb2FNtn70=">AAAB7nicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI2FRQRzgWQNs5PZZMjs7DJzVggh4CvYWChi65vY2/k2Ti6FJv4w8PH/5zDnnDCVwqDnfTu5peWV1bX8uruxubW9U9jdq5kk04xXWSIT3Qip4VIoXkWBkjdSzWkcSl4P+1fjvP7AtRGJusNByoOYdpWIBKNorfpNC2l2H7cLRa/kTUQWwZ9B8eLTPX8EgEq78NXqJCyLuUImqTFN30sxGFKNgkk+cluZ4SllfdrlTYuKxtwEw8m4I3JknQ6JEm2fQjJxf3cMaWzMIA5tZUyxZ+azsflf1swwOguGQqUZcsWmH0WZJJiQ8e6kIzRnKAcWKNPCzkpYj2rK0F7ItUfw51dehNpJyfdK/q1XLF/CVHk4gEM4Bh9OoQzXUIEqMOjDE7zAq5M6z86b8z4tzTmznn34I+fjB6pVkUY=</latexit><latexit sha1_base64="1L7ZVl9LqwdWGiv827RUQFMK4tg=">AAAB7nicbZC7SgNBFIZn4y2ut6ilzWAQrMKujTZi0MbCIoK5QLKG2ckkGTIzO8ycFcKSh7CxUMTCxjextxHfxklioYk/DHz8/znMOSfWglsIgi8vt7C4tLySX/XX1jc2twrbOzWbpIayKk1EYhoxsUxwxarAQbCGNozIWLB6PLgY5/U7ZixP1A0MNYsk6Sne5ZSAs+pXLSDprWwXikEpmAjPQ/gDxbN3/1S/fvqVduGj1UloKpkCKoi1zTDQEGXEAKeCjfxWapkmdEB6rOlQEclslE3GHeED53RwNzHuKcAT93dHRqS1Qxm7Skmgb2ezsflf1kyhexJlXOkUmKLTj7qpwJDg8e64ww2jIIYOCDXczYppnxhCwV3Id0cIZ1eeh9pRKQxK4XVQLJ+jqfJoD+2jQxSiY1RGl6iCqoiiAbpHj+jJ096D9+y9TEtz3k/PLvoj7+0bm+SSug==</latexit><latexit sha1_base64="1L7ZVl9LqwdWGiv827RUQFMK4tg=">AAAB7nicbZC7SgNBFIZn4y2ut6ilzWAQrMKujTZi0MbCIoK5QLKG2ckkGTIzO8ycFcKSh7CxUMTCxjextxHfxklioYk/DHz8/znMOSfWglsIgi8vt7C4tLySX/XX1jc2twrbOzWbpIayKk1EYhoxsUxwxarAQbCGNozIWLB6PLgY5/U7ZixP1A0MNYsk6Sne5ZSAs+pXLSDprWwXikEpmAjPQ/gDxbN3/1S/fvqVduGj1UloKpkCKoi1zTDQEGXEAKeCjfxWapkmdEB6rOlQEclslE3GHeED53RwNzHuKcAT93dHRqS1Qxm7Skmgb2ezsflf1kyhexJlXOkUmKLTj7qpwJDg8e64ww2jIIYOCDXczYppnxhCwV3Id0cIZ1eeh9pRKQxK4XVQLJ+jqfJoD+2jQxSiY1RGl6iCqoiiAbpHj+jJ096D9+y9TEtz3k/PLvoj7+0bm+SSug==</latexit><latexit sha1_base64="lfYRHBwNNtQeuiirIhEn3JUoVCI=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stAzaWFhEMB+QnGFvs5cs2d07dueEEPIjbCwUsfX32Plv3CRXaOKDgcd7M8zMi1IpLPr+t1dYW9/Y3Cpul3Z29/YPyodHTZtkhvEGS2Ri2hG1XArNGyhQ8nZqOFWR5K1odDPzW0/cWJHoBxynPFR0oEUsGEUnte66SLNH1StX/Ko/B1klQU4qkKPeK391+wnLFNfIJLW2E/gphhNqUDDJp6VuZnlK2YgOeMdRTRW34WR+7pScOaVP4sS40kjm6u+JCVXWjlXkOhXFoV32ZuJ/XifD+CqcCJ1myDVbLIozSTAhs99JXxjOUI4docwIdythQ2ooQ5dQyYUQLL+8SpoX1cCvBvd+pXadx1GEEziFcwjgEmpwC3VoAIMRPMMrvHmp9+K9ex+L1oKXzxzDH3ifPzsdj3k=</latexit>

TN,m
<latexit sha1_base64="UuuIEGjJMeWDuWusiXiREjE8W/M=">AAAB7nicbVC7SgNBFL3rM8ZX1NJmMAoWEnZttAzaWEmEvCBZwuxkNhkyMzvMzAphyUfYWChi6xdY+w12foi9k0ehiQcuHM65l3vviRRnxvr+l7e0vLK6tp7byG9ube/sFvb26yZJNaE1kvBENyNsKGeS1iyznDaVplhEnDaiwfXYb9xTbVgiq3aoaChwT7KYEWyd1Kh2stszMeoUin7JnwAtkmBGiuXj7/cPAKh0Cp/tbkJSQaUlHBvTCnxlwwxrywino3w7NVRhMsA92nJUYkFNmE3OHaETp3RRnGhX0qKJ+nsiw8KYoYhcp8C2b+a9sfif10ptfBlmTKrUUkmmi+KUI5ug8e+oyzQllg8dwUQzdysifawxsS6hvAshmH95kdTPS4FfCu5cGlcwRQ4O4QhOIYALKMMNVKAGBAbwAE/w7Cnv0XvxXqetS95s5gD+wHv7AcPxkh0=</latexit><latexit sha1_base64="lDAZTk5ekacd7beZR0PbugElorI=">AAAB7nicbVC7SgNBFL0bXzHxEbW0GYyChYRdGy2DNlYSIS9IljA7mU2GzMwuM7OBsOQjbCwUsfUL/AH/wM4P0drJo9DEAxcO59zLvfcEMWfauO6nk1lZXVvfyG7m8lvbO7uFvf26jhJFaI1EPFLNAGvKmaQ1wwynzVhRLAJOG8HgeuI3hlRpFsmqGcXUF7gnWcgINlZqVDvp7ZkYdwpFt+ROgZaJNyfF8vHX2/sw/13pFD7a3YgkgkpDONa65bmx8VOsDCOcjnPtRNMYkwHu0ZalEguq/XR67hidWKWLwkjZkgZN1d8TKRZaj0RgOwU2fb3oTcT/vFZiwks/ZTJODJVktihMODIRmvyOukxRYvjIEkwUs7ci0scKE2MTytkQvMWXl0n9vOS5Je/OpnEFM2ThEI7gFDy4gDLcQAVqQGAA9/AIT07sPDjPzsusNePMZw7gD5zXH7yRk5c=</latexit><latexit sha1_base64="lDAZTk5ekacd7beZR0PbugElorI=">AAAB7nicbVC7SgNBFL0bXzHxEbW0GYyChYRdGy2DNlYSIS9IljA7mU2GzMwuM7OBsOQjbCwUsfUL/AH/wM4P0drJo9DEAxcO59zLvfcEMWfauO6nk1lZXVvfyG7m8lvbO7uFvf26jhJFaI1EPFLNAGvKmaQ1wwynzVhRLAJOG8HgeuI3hlRpFsmqGcXUF7gnWcgINlZqVDvp7ZkYdwpFt+ROgZaJNyfF8vHX2/sw/13pFD7a3YgkgkpDONa65bmx8VOsDCOcjnPtRNMYkwHu0ZalEguq/XR67hidWKWLwkjZkgZN1d8TKRZaj0RgOwU2fb3oTcT/vFZiwks/ZTJODJVktihMODIRmvyOukxRYvjIEkwUs7ci0scKE2MTytkQvMWXl0n9vOS5Je/OpnEFM2ThEI7gFDy4gDLcQAVqQGAA9/AIT07sPDjPzsusNePMZw7gD5zXH7yRk5c=</latexit><latexit sha1_base64="pgXN0ghuEj88zsK4Uc/PvwNJQC8=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYhAsJNzZaBm0sZII+YLkCHubTbJkd+/YnRPCkR9hY6GIrb/Hzn/jJrlCEx8MPN6bYWZelEhh0fe/vbX1jc2t7cJOcXdv/+CwdHTctHFqGG+wWMamHVHLpdC8gQIlbyeGUxVJ3orGdzO/9cSNFbGu4yThoaJDLQaCUXRSq97LHi7VtFcq+xV/DrJKgpyUIUetV/rq9mOWKq6RSWptJ/ATDDNqUDDJp8VuanlC2ZgOecdRTRW3YTY/d0rOndIng9i40kjm6u+JjCprJypynYriyC57M/E/r5Pi4CbMhE5S5JotFg1SSTAms99JXxjOUE4cocwIdythI2ooQ5dQ0YUQLL+8SppXlcCvBI9+uXqbx1GAUziDCwjgGqpwDzVoAIMxPMMrvHmJ9+K9ex+L1jUvnzmBP/A+fwD5gY9O</latexit> ...
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Figure 3.2: Adaptive proofreading and neural network (A) Left: Adaptive proofreading
networks have an activating and repressing branch with different weights on τ . Right: de-
tailed adaptive proofreading network adapted from [60]. Ligand L binds to receptor R to
form unphosphorylated complex C0. The receptor chain is iteratively phosphorylated until
reaching state CN along the activating branch (green). At every stage Ci, the ligand can
unbind from the receptor with ligand-specific rate τ−1. At Cm, the repressing branch (red)
splits by inhibiting the kinase K, which mediates the feedforward mechanism. (B) Dose-
response curves for pure ligand types and mixtures, in both adaptive proofreading models
and experiments on T cells (redrawn from [33]). Details on models and parameters used are
given in Appendix S2. For experiments, OVA are agonist ligands, G4 and E1 are ligands
known to be below threshold, but showing clear antagonistic properties. (C) Schematic
of the neural network used for digit recognition. We explicitly show the 4 weight vectors
Wi learned in one instance of the training, the activation function J and an adversarially
perturbed sample xadv.)
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3.1 Introduction

Adaptive proofreading models rely on an incoherent feedforward loop, where an

output is at the same time activated and repressed by bound ligands via two different

branches in a biochemical network (Fig. 3.2 A). An explicit biochemical example is

shown on the right panel of Fig. 3.2 A. Here, activation occurs through a kinetic

proofreading cascade (green arrow/box), and repression through the inactivation of

a kinase by the same cascade (red arrow/box). The branches engage in a tug-of-war,

which we describe below.

For simplicity, let us first assume that only one type of ligands with binding time

τ and on rate kon are presented. We call L the quantity of ligands. Then, in absence

of saturation, the total number of n-th complex Cn of the proofreading cascade along

the activation branch will be proportional to konLτ
n. This is the activation part of the

network where the response is activated.

We now assume that the m-th complex of the cascades are inactivating a kinase

K specific to Cm, so that K ∝ (konLτ
m)−1 for L big enough. This is the repression

part of the network. K is assumed to diffuse freely and rapidly between receptors so

that it effectively integrates information all over the cell (recent work quantified how

this crosstalk can indeed improve detection [98]). m is an important parameter that

we will vary to compare different models. K then catalyzes the phosphorylation of

the final complex of the cascade so that we have for the total number CN

9CN = KCN−1 − τ−1CN . (3.1)

and at steady state

CN ∝
konLτN

konLτm
= τN−m (3.2)

The L dependence cancels, and CN is a function of τ alone. From this, it is

clear that ligand classification can be done purely based on CN , the total number

of complexes, which is a measure of ligand quality. In this situation, it is easy to

define a threshold τN−m
d that governs cell activation (CN > τN−m

d ) or quiescence

(CN < τN−m
d ). Biochemically, this can be done via the digital activation of another

kinase shared between all receptors [31, 34].
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3.1 Introduction

This model can be easily generalized to a mixture of ligands with different quali-

ties. To do so, in the previous derivations all quantities accounting for the total com-

plex Cn of the form konLτ
n can be replaced by

∑
i k

on
i Liτ

N
i , calling Li the quantity of

ligands with identical kon
i , τi. We then define the generalized output of the biochemi-

cal network as

TN,m =

∑
i k

on
i Liτ

N
i∑

i k
on
i Liτmi

. (3.3)

Similar equations for an output TN,m can be derived for many types of networks, as

described in [1]. For this reason we will focus in the following on the properties of

TN,m, forgetting about the internal biochemistry giving rise to this behaviour. Notice

here that by construction N > m > 1, but other cases are posssible with different

biochemistry, for instance examples in olfaction correspond to the case N = 1,m = 0

[83] (see also another example in [60]) . Also notice that if kinetic parameters of the

ligands are not identical, the dependence on Li does not cancel out, which will be

the origin of most of the key phenomena described below.

Fig. 3.2 B shows theoretical and experimental curves of a realistic adaptive proof-

reading model (including minimum concentration for repression of kinase K, etc. see

Appendix S2 for full model and parameter values). We have chosen (N,m) = (4, 2)

so that the qualitative features of the theoretical curves match the experimental

curves best. Adaptive proofreading models give dose response curves plateauing at

different values as a function of parameter τ , allowing to perform sensitive and spe-

cific measurement of this parameter. For small τ (e.g. τ = 3 s), one never reaches

the detection threshold (dotted line on Fig. 3.2 B, left panel) even for many ligands.

For slightly bigger τ = 10 s > τd, the curve is shifted up so that detection is made

even for a small concentration of agonists.

Nontrivial effects appear if we consider mixtures of ligands with different qualities.

Then the respective computation made by the activation and repression branch of the

network depend in different ways on the distribution of the presented ligand binding

times. For instance, if we now add La antagonists with lower binding time τa < τ and

equal on-rate kon, we have TN,m =
LτN+LaτNa
Lτm+Laτma

, which is smaller than the response

τN−m for a single type of ligands, corresponding to ligand antagonism (Fig. 3.2 B,

middle panel) [31, 49, 63, 99]. In the presence of many ligands below the threshold
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3.1 Introduction

of detection, the dose response curve are simultaneously moved to the right but

with a higher starting point (compared to the reference curve for “agonist alone”), as

observed experimentally (Fig. 3.2 B, right panel, data redrawn from [33]). Different

models have different antagonistic properties, based on the strength of the activation

branch (N ) relative to the repression branch (m). More mathematical details on these

models can be found in [34, 49, 60].

Neural networks for artificial decision-making

We will compare cellular decision-making to decision-making in machine learning

algorithms. We will constrain our analysis to binary decision-making (which is of

practical relevance, for instance in medical applications [79]), using as a case-study

image classification from two types of digits. These images are taken from MNIST

[100], a standard database with 70000 pictures of handwritten digits. Even for such

a simple task, designing a good classifier is not trivial, since it should be able to

classify irrespective of subtle changes in shapes, intensity and writing style (i.e. with

or without a central bar for a 7).

A simple machine learning algorithm is logistic regression. Here, the inner prod-

uct of the input and a learned weight vector determines the class of the input. An-

other class of machine learning algorithms are feedforward neural networks: inter-

connected groups of nodes processing information layer-wise. We chose to work

with neural networks for several reasons. First, logistic regression is a limiting case

of a neural network without hidden layers. Second, a neural network with one hid-

den layer more closely imitates information processing in cellular networks, i.e. in

the summation over multiple phosphorylation states of the receptor-ligand complex

(nodes) in a biochemical network. Third, such an architecture reproduces classical

results on adversarial perturbations such as the ones described in [74]. Fig. 3.2 C

introduces the iterative matrix multiplication inside a neural network. Each neuron i

computes wi · x, i ∈ [0, 3], adds bias bi, and transforms the result with an activation

function f(x). We chose to use a Rectified Linear Unit (ReLU), which returns 0 when

its input is negative, and the input itself otherwise. The resulting f(wi ·x+ bi) is mul-

tiplied by another weight vector with elements ai, summed up with a bias, defining
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3.2 Results

a scalar quantity x =
∑

i aif(wi · x + bi) + b′. Finally, we obtain the score J(x) (a

probability between 0 and 1 for the input to belong to a class) by transforming x with

the logistic function σ(x). Parameters of such networks are optimized using classi-

cal stochastic gradient descent within a scikit implementation [101], see Appendix

S2. As an example, in Fig. 3.2 C, a 7 is correctly classified by the neural network

(J(x) > 0.5), while the adversarial 7 is classified as a three (J(xadv) < 0.5).

3.2 Results

We first summarize the general approach followed to draw the parallel between ma-

chine learning and cellular decision-making. We will limit ourselves to simple clas-

sifications where a single decision is made, such as “agonist present vs no agonist

present” in biology, or “3 vs 7” in digit recognition. As input samples, we will consider

pictures in machine learning, and ligand distributions in biology. We define a ligand

distribution as the set of concentrations with which the ligands with unique binding

times are present. This corresponds to a picture that is presented as a histogram

of pixel values; the spatial correlation between pixels is lost, but their magnitude re-

mains preserved. Decision-making on a sample is then done via a scoring function

(or score). This score is computed either directly by the machine learning algorithm

(score J) or by the biochemical network, via the concentration of a given species

(score TN,m). For simple classifications, the decision is then based on the relative

value of the score above or below some threshold (typically 0.5 for neural networks

where decision is based on sigmoidal functions, or some fixed value related to the

decision time τd for biochemical networks).

The overall performance of a given classifier depends on the behavior of the

score in the space of possible samples (i.e. the space of all possible pictures, or

the space of all possible ligand distributions). Both spaces have high dimensions: for

instance the dimension in the MNIST picture correspond to number of pixels 28×28 =

784, while in immunology ligands can bind to roughly 30000 receptors [31]. The score

can thus be thought of as a nonlinear projection of this high-dimensional space in one

dimension. We will study how the score behaves in relevant directions in the sample

space, and how to change the corresponding geometry and position of decision
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3.2 Results

boundaries (defined as the samples where the score is equal to the classification

threshold). We will show that similar properties are observed, both close to typical

samples and to the decision boundary. It is important to notice at this stage that

the above considerations are completely generic on the biology side and are not

necessary limited to, say immune recognition. However, we will show that adaptive

proofreading presents many features reminiscent of what is observed in machine

learning.

Fast Gradient Sign Method recovers antagonism by weakly bind-
ing ligands

In this framework, from a given sample, an adversarial perturbation is a small pertur-

bation in sample space giving a change in score reaching (or crossing) the decision

boundary. We start by mathematically connecting the simplest class of adversarial

examples in machine learning to antagonism in adaptive proofreading models. We

follow the original Fast Gradient Sign Method (FGSM) proposed by [74]. The FGSM

computes the local maximum adversarial perturbation η = ϵ sgn p∇xJq (where sign

is taken elementwise). ∇xJ represents the gradient of the scoring function, catego-

rizing images in two different categories (such as 3 and 7 in [74]). Its elementwise

sign defines an image, that is added to the initial batch of images with small weight

ϵ. Examples of such perturbations are shown in Fig. 3.2 C (bottom left) and Fig. S2

A for the 3 vs 7 digit classification problem. While to the human observer, the pertur-

bation is weak and only changes the background, naive machine learning algorithms

are completely fooled by the perturbation and systematically misclassify the digit.

Coming back to adaptive proofreading models, we apply FGSM for the compu-

tation of a maximally antagonistic perturbation. To do so, we need to specify the

equivalent of pixels in adaptive proofreading models. A natural choice is to consider

parameters associated to each pair (index i) of receptor/ligands, namely kon
i (corre-

sponding to the rate at which ligands bind to receptors, also called on-rate 1) and τi

1The on-rate is easily confused with the unbinding rate, whose inverse we call the binding time, which
indicates the lifetime of the ligand-receptor complex
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3.2 Results

(corresponding to quality). If a receptor i is unoccupied, we set its ki and τi to 0 2.

We then compute gradients with respect to these parameters.

As a simple example, we start with the case (N,m) = (1, 0), which also corre-

sponds to a recently proposed model for antagonism in olfaction [83], with the role of

kon played by inverse affinity κ−1, the role of τ played by efficiency η, and the spiking

rate of the olfactory receptor neurons is J(TN,m), that can be interpreted as a scoring

function in the machine learning sense. In this case, T1,0 simply computes the aver-

age quality τavg of ligands presented weighted by kon
i (models with N > m > 0 give

less intuitive results as will be shown in the following). It should be noted that while

this computation is formally simple, biochemically it requires elaborated internal in-

teractions, because a cell can not easily disentangle influence of individual receptors,

see [49, 83] for explicit examples.

Starting from the computation of ∇xJ with respect to parameters kon
i and τi, the

FGSM perturbation is:

η = ϵ sgn

˜

∂τiJ

∂kon
i
J

¸

= ϵ sgn(A)sgn

˜

kon
i

τi − T1,0

¸

, (3.4)

where A =
J ′(T1,0)∑

kon
i

> 0. Notice in the above expression that since derivatives act

on different parameters, an ϵ sized-perturbation of a given parameter is expressed

in its corresponding unit. For simplicity we will not explicitly write the conversion

factor between units (this is for mathematical convenience and does not impact our

results). From the above expression, we find that an equivalent maximum adversarial

perturbation is given by three simple rules (Fig. 3.3 A).

• Decrease all τi by ϵ

• Decrease kon
i by ϵ for ligands with τi > T1,0

• Increase kon
i by ϵ for ligands with τi < T1,0

The key relation to adversarial examples from [74] comes from considering what

happens to the unbound receptors for which both kon
i and τi are initially 0. Let us

2an alternative choice without loss of generality is to consider a situation where for unoccupied receptors,
ki is 0 but τi is arbitrary, corresponding to a ligand available for binding
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⌧1 = 10 (31)

⌧c = 4 (32)

✏ = 3000 (33)

x = (1� f)~7 + f ~3 (34)

xadv = (1� f)~7 + f ~3� ✏rxJ (x, ✓) (35)

�N,✓(x) =
xN

xN + ✓N
(36)

�N,✓(x) (37)

�N,✓(xadv) (38)

L = (1� f)~Lag + f ~La (39)

Ladv = (1� f)~Lag + f ~La + ~Lself (40)

(N, m) = (1, 0) (41)

(N, m) = (2, 1) (42)

8i, @⌧i
T1,0 > 0 (43)

⌧ < ⌧c := { , }, @kon
i

T1,0 < 0 (44)

⌧ > ⌧c := { }, @kon
i

T1,0 > 0 (45)

L⇥ (kon = 1, ⌧) (46)

R⇥ (kon = ✏, ⌧✏) (47)

J(x) = �

 
3X

i=0

aif (wi · x + bi) + b0
!

(48)

J(x) > 0.5! x 2 {7} (49)

J(xadv) < 0.5! xadv 2 {3} (50)

4

Addition of R⇥ (kon = ✏, ✏)
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Figure 3.3: Schematics of FGSM applied to immune recognition. (Caption on the fol-
lowing page.)
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Figure 3.3: (A) We compute how to lower the response for the receptor occupancy through
a given period of time by changing kon

i and τi. Bottom left: increasing kon
i for ligands with

τi < τd and decreasing kon
i for ligands with τi > τd reduces the weighted average T1,0

(change in frequency of the colored bars). Bottom right: decreasing τi for all ligands de-
creases T1,0 (change in length of the colored bars). (B) Response to non-self ligands is
lowered from T before

1,0 to T after
1,0 upon addition of R ligands with small binding time ϵ. (C) In-

terpolated digits with and without adversarial perturbation along the interpolation axis be-
tween 7⃗ (f = 0) and 3⃗ (f = 1). Adversarial perturbations are computed via the FGSM with
ϵ = 0.2. For the biomimetic defence ϕ(N, θ), we choose N = 5 and θ = 0.5. (D) Scoring
function J(x) on pictures of panel C without (left) and with (right) the biomimetic defence.
The classification threshold is indicated by the dashed green line at J = 0. Samples with
J > 0 are classified as 7, otherwise 3. (E) Interpolated ligand mixtures with and without self
ligands along the interpolation axis between agonist (f = 0) and antagonist (f = 1). Here,
(Lag, τag) = (100, 6); (La, τa) = (100, 1); (Lself, τself) = (1000, 0.1) (F) Scoring function
on ligand mixtures of panel E for a naive immune classifier (N,m) = (1, 0) (left) and a
robust immune classifier (N,m) = (2, 1) (right). The threshold is indicated by a dashed
green line at TN,m/τd − 1 = 0. TN,m/τd − 1 > 0 corresponds to detection of agonists,
below corresponds to no detection. In both digit recognition and ligand discrimination, the
naive networks interpolate the score linearly and are sensitive to adversarial perturbations,
while the score for robust networks is flatter, closer to the initial samples for longer, thus
more resistant to perturbation.

consider a situation with L identical bound ligands with (kon = 1, binding time τ )

giving response T before
1,0 = τ where τ itself is of order 1 (i.e. much bigger than the

ϵ-sized perturbation on binding time considered in Eq. 3.4 ). The three rules above

imply that we are to decrease binding time by ϵ, and that all R previously unbound

receptors are now to be bound by ligands with kon = ϵ, with small binding time ϵ. We

compute the new response to be

T after
1,0 =

L(τ − ϵ) + ϵRϵ

L+ ϵR
=

τ − ϵ+ ϵR
L ϵ

1 + ϵR
L

(3.5)

If there are many receptors compared to initial ligands, and assuming ϵ ≪ τ , the

relative change
T after
1,0 − T before

1,0

T before
1,0

≃ −
ϵR
L

1 + ϵR
L

(3.6)

is of order 1 when ϵR ∼ L, giving a decrease comparable to the original response
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instead of being of order ϵ as we would naturally expect from small perturbations to

all parameters. Thus, if a detection process is based on thresholding variable T1,0,

a significant decrease can happen with such perturbation, potentially shutting down

response. Biologically, the limit where ϵR is big corresponds to a strong antagonistic

effect of many weakly bound ligands. Examples can be found in mast cell receptors

for immunoglobin: weakly binding ligands have been suggested to impinge a critical

kinase thus preventing high affinity ligands to trigger response [57], a so-called “dog

in the manger" effect. Another example is likely found in detection by NK cells [92].

A similar effect called “competitive antagonism” is also observed in olfaction where

ligands with strong inverse affinity can impinge action of other ligands [83]. One

difference in olfaction is that for competitive antagonism, the concentration C is of

order 1 while the affinity κ−1 is big, conversely, here the concentration R is big while

kon is low. Since we consider the product of both terms, both situations lead to similar

effects, but our focus on a small change of kon makes the comparison with machine

learning more direct.

Behaviour across boundaries in sample space and adversarial per-
turbations

To further illustrate the correspondence, we compare the behaviour of a trained neu-

ral network classifying 3s and 7s with the adaptive proofreading model (N,m) =

(1, 0) for more general samples. We build linear interpolations between two samples

on either side of the decision boundary for both cases (Fig. 3.3 C–F, linear interpo-

lation factor f varying between 0 and 1). This interpolation is the most direct way

in sample spaces to connect objects in two different categories. The neural network

classifies linearly interpolated digits, while the adaptive proofreading model classifies

gradually changing ligand distributions.

We plot the output of the neural network x just before taking the sigmoid function

σ defined in Fig. 3.2 C and similarly, we plot TN,m/τd − 1 for adaptive proofreading

models. In both cases the decision is thus based on the sign of the considered quan-

tity. In the absence of adversarial/antagonistic perturbations, for both cases, we see

that the score of the system almost linearly interpolates between values on either
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side of the classification boundary (top panel of Fig. 3.3 D, F, blue curves). How-

ever, in the presence of adversarial/antagonistic perturbations, the entire response

is shifted way below the decision boundary (top panel of Fig. 3.3 D, F, red curves), so

that in particular the initial samples at f = 0 (image of 7 or ligand distribution above

threshold) are strongly misclassified.

Goodfellow et al. [74] proposed the linearity hypothesis as an explanation for this

adversarial effect: adding η = ϵ sgn p∇xJq to the image leads to a significant pertur-

bation on the scoring function J of order ϵd, with d the usually high dimensionality of

the input space. Thus many weakly lit up background pixels in the initial image can

conspire to fool the classifier, explaining the significant shift in the scoring function

in Fig. 3.3 D top panel. This is consistent with the linearity we observe on the inter-

polation line even without adversarial perturbations. A more quantitative explanation

based on averaging is given in [102] on a toy-model, that we reproduce below to

further articulate the analogy: after defining a label y ∈ {−1,+1}, a fixed probability

p and a constant η, one can create a (d+ 1) dimensional feature vector x.

y ∈ {−1,+1}, x1 ∼
{

+y, w.p. p

−y, w.p. 1− p

x2, . . . , xd+1 ∈ N (ηy, 1)

(3.7)

From this, Tsipras et al. build a 100% accurate classifier in the limit of d→∞ by

averaging out the weakly correlated features x2, . . . xd, which gives the score favg =

N (ηy, 1d). Taking the sign of favg will coincide with the label y with 99% confidence for

η ≥ 3/
?
d. But such classification can be easily fooled by adding a small perturbation

ϵ = −2ηy to every component of the features, since it will shift the average by the

same quantity −2ηy, which can still be small if we take η = O(1/
?
d) [102].

We observe a very similar effect in the simplest adaptive proofreading model.

The strong shift of the average T1,0 in Eq. 3.5 is due to weakly bound receptors ϵR,

which play the same role as the weak features (components x2, . . . , xd+1 above),

hiding the ground truth given by ligands of binding time τ (equivalent to x1 above) to

fool the classifier. We also see a similar linearity on the interpolation in Fig. 3.3 F top

panel. There is thus a direct intuitive correspondence between adversarial examples
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in machine learning and many weakly bound ligands. In both cases, the change

of scoring function (and corresponding misclassification) can be large despite the

small amplitude ϵ of the perturbation. Once this perturbation is added, the system

in Fig. 3.3 still interpolates between the two scores in a linear way, but with a strong

shift due to the added perturbation.

Biomimetic defence for digit classification inspired by adaptive
sorting

Kinetic proofreading, famously known as the error-correcting mechanism in DNA

replication [27, 28], has been proposed as a mechanism for ligand discrimination

[26]. In the adaptive proofreading models we are studying here, kinetic proofreading

allows the encoding of distinct τ dependencies in the activation/repression branches

[34]. The primary effect of kinetic proofreading is to nonlinearly decrease the rela-

tive weight of weakly bound ligands with small binding times, thus ensuring defence

against antagonism by weakly bound ligands. Inspired by this idea, we implement a

simple defense for digit classification. Before feeding a picture to the neural network,

we transform individual pixel values xi of image x with a Hill function as

xi ← ϕN,θ(xi) =
xNi

xNi + θN
, (3.8)

where N (coefficient inspired by kinetic proofreading) and θ ∈ [0, 1] are parame-

ters we choose. Similarly to the defence of adaptive proofreading where ligands with

small τ are filtered out, this transformation squashes greyish pixels with values below

threshold θ to black pixels, see Fig. 3.3 C bottom panels.

In Fig. 3.3 D, bottom panel, we show the improved robustness of the neural net-

work armed with this defence. Here, the adversarial perturbation is filtered out ef-

ficiently. Strikingly, with or without adversarial perturbation, the score now behaves

nonlinearly along the interpolation line in sample space: it stays flatter over a broad

range of f until suddenly crossing the boundary when the digit switches identity (even

for a human observer) at f = 0.5. Similarly, for adaptive sorting with (N,m) = (2, 1),

antagonism is removed, and the score exhibits the same behaviour of flatness fol-
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lowed by a sudden decrease on the interpolation line. Thus, similar defence displays

similar robust behaviour of the score in sample space.

Gradient dynamics identify two different regimes

The dynamics of the score along a trajectory in sample space can thus vary a lot

as a function of the model considered. This motivates a more general study of a

worst-case scenario, i.e. gradient descent towards the decision boundary for different

models. Krotov and Hopfield studied a similar problem for an MNIST digit classifier,

encoded with generalized Rectified polynomials of variable degrees n [103] (reminis-

cent of the iterative FGSM introduced in [104]). The general idea is to find out how

to most efficiently reach the decision boundary, and how this depends on the archi-

tecture of the decision algorithm. Krotov and Hopfield identified a qualitative change

with increasing n, accompanied by a better resistance to adversarial perturbations

[91, 103].

We consider the same problem for adaptive proofreading models, and study the

potential-derived dynamics of binding times for a ligand mixture with identical kon

when following the gradient of TN,m (akin to a potential in physics). The adversarial

goal is to fool the classifier with a minimal change in a given example (or in biological

terms, how to best antagonize it). We iteratively change the binding time of non-

agonist ligands τ < τd to

τ ← τ − ϵ
∂TN,m

∂τ
(3.9)

while keeping the distribution of agonist ligands with τ > τd constant. In the immune

context, these dynamics can be thought of as a foreign agent selected by evolution to

antagonize the immune system. Some biological constraints will force ligands to stay

above threshold, so the only possible evolutionary strategy is to mutate and generate

antagonists ligands to mask its non-self part. Such antagonistic phenomena have

been proposed as a mechanism for HIV escape [29, 85] and associated vaccine

failure [86]. Similar mechanisms might also be implicated in the process of tumour

immunoediting [88].

From a given ligand mixture with few ligands above threshold and many ligands

59



3.2 Results

below thresholds, we follow the dynamics of Eq. 3.9, and display the ligand distribu-

tion at the decision boundary for different values of N,m as well as the number of

steps to reach the decision boundary in the descent defined by Eq. 3.9 (Fig. 3.4, see

also Fig. SB.1 for another example with a visual interpretation). We observe two qual-

itatively different dynamics. For m < 2, we observe strong adversarial effects, as the

boundary is almost immediately reached and the ligand distribution barely changes.

As m increases, in Fig. 3.4 A the ligands in the distribution concentrate around one

peak. For m = 2, a qualitative change occurs: the ligands suddenly spread over a

broad range of binding times and the number of iterations in the gradient dynamics

to reach the boundary drastically increases. For m > 2, the ligand distribution be-

comes bimodal, and the ligands close to τ = 0 barely change, while a subpopulation

of ligands peaks closer to the boundary. Consistent with this, the number of ϵ-sized

steps to reach the boundary is 3 to 4 orders of magnitude higher for m > 2 as for

m < 2.

Qualitative change in dynamics is due to a critical point in the gra-
dient

The qualitative change of behaviour observed at m = 2 can be understood by study-

ing the contribution to the potential TN,m of ligands with very small binding times

τϵ ∼ 0. Assuming without loss of generality that only two types of ligands are present

(agonists τag > τd and spurious τspurious = τϵ), an expansion in τϵ gives, up to a con-

stant, TN,m ∝ −τmϵ for small τϵ (see Fig. 3.4 B for a representation of this potential

and Appendix S3 for this calculation). In particular, for 0 < m < 1, ∂TN,m

∂τϵ
∝ −τm−1

ϵ

diverges as τϵ → 0. This corresponds to a steep gradient of TN,m so that the sys-

tem quickly reaches the boundary in this direction. The ligands close to τϵ ∼ 0 then

quickly localize close to the minimum of this potential (unimodal distribution of ligand

for small m on Fig. 3.4 A–B).

The potential close to τϵ ∼ 0 flattens for 1 < m < 2, but it is only at m = 2

that a critical point in the gradient (i.e. characterized by ∂2TN,m/(∂τϵ)
2 = 0) appears

at τϵ = 0. This qualitatively modifies the dynamics defined by Eq. 3.9. For m ≥ 2,

due to the new local flatness of this gradient, ligands at τ = 0, the dynamical critical
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Figure 3.4: Characterization of the decision boundary following gradient descent dy-
namics. (A) Ligand distribution at the decision boundary by applying iterative gradient
descent (top right of the panel) to an initial distribution (top left). For various cases (N,m)
we change the binding time of self ligands along the steepest gradient until reaching the
decision boundary. niter indicates the number of iterations needed to reach the decision
boundary. We identify the adversarial regime (red), the ambiguous regime (green) and a
transition (black) depending on m. (B) TN,m for mixtures of ligands at τd and ligands at
τ , as a function of τ for various (N,m). Antagonism strength is maximal when TN,m is
minimal. Minima and inflexion points are indicated with a circle and square. (C) Few-pixel
attack as a way of circumventing proofreading or local contrast defence, while creating
ambiguous digits. We add a 3x3 mean-filter to demonstrate the ambiguity of digits at the
decision boundary. The control image is the mean filtered initial digit combined with the
locally contrasted average target digit. Note that also the control is lacking a clear ground
truth.

61



3.2 Results

point of Eq. 3.9, are pinned by the dynamics. By continuity, dynamics of the ligands

slightly above τϵ = 0 are critically slowed down, making it much more difficult for

them to reach the boundary. This explains both the sudden broadening of the ligand

distribution, and the associated increase in the number of steps to reach the decision

boundary. Conversely, an inflexion point (square) appears in between the minimum

(circle) and τϵ = 0 (Fig. 3.4 B). Ligands close to the inflexion point separate and

move more quickly towards the minimum of potential, explaining the bimodality at

the boundary (if we were continue the dynamics past the boundary, all ligands with

non-zero binding times would collapse to the minimum of the potential). For both

larger N and larger m we obtain flatter potentials, and a larger number of iterations.

In Appendix S4, we further describe the consequence of adding proofreading steps

on the position of the boundary itself, using another concept of machine learning

called “boundary tilting” [105] (Fig. SB.2 and Table S1).

Categorization of attacks

The transition at m = 2 is strongly reminiscent of the transition observed by Krotov

and Hopfield in their study of gradient dynamics similar to Eq. 3.9 [103]. In both our

works, we see that there are (at least) two kinds of attacks that can bring samples

to the decision boundary. The FGSM corresponds to small perturbations to the input

in terms of L∞ norm leading to modifications of many background pixels in [103] or

many weakly bound ligands for the adaptive proofreading case, also similar to the

meaningless changes in x2, . . . xd described above in Eq. 3.7 [102].

Defence against the FGSM perturbation is implemented through a higher degree

n of the rectified polynomials in [103], while in adaptive proofreading, this is done

through critical slowing down of the dynamics of Eq. 3.9 for m > 2. The latter models

are nevertheless sensitive to another kind of attack with many fewer perturbations

of the inputs but with bigger magnitude. This corresponds to digits at the boundary

where few well-chosen pixels are turned on in [103]. For adaptive proofreading mod-

els this leads to the ligand distribution becoming bimodal at the decision boundary.

Three important features are noteworthy. First, the latter perturbations are difficult to

find through gradient descent (as illustrated by the many steps to reach the boundary
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in Fig. 3.4A). Second, the perturbations appear to be meaningful: they correspond

to interpretable features and interfere with the original sample. These perturbations

make it difficult or even impossible to recover the ground truth by inspecting the

sample at the decision boundary. Digits at the boundary for [103] appear indeed am-

biguous to a human observer, and ligand distribution peaking just below threshold

are potentially misinterpreted biologically due to inherent noise. This has actually

been observed experimentally in T cells, where strong antagonists are also weak

agonists [31, 33], meaning that T cells do not take reliable decisions in this regime.

Lastly, it has been observed in machine learning that memory capacity considerably

increases for high n in [91], due to the local flattening of the landscape close to mem-

ories (ensuring that random fluctuations do not change memory recovery). A similar

effect in our case is observed: the antagonism potential is flattened out with increas-

ing N,m so that any spurious antagonism becomes at the same time less important

and lies closer to the decision boundary.

Biomimetic defenses against few-pixel attacks

It is then worth testing the sensitivity to localized stronger attacks of digit classifiers,

helped again with biomimetic defences. The natural analogy is to implement attacks

based on strong modification of few pixels [106].

For this problem, we choose to implement a two-tier biomimetic defence: we im-

plement first the transformation defined in Eq. 3.8, that will remove influence of the

FGSM types of perturbations by flattening the local landscape as in Fig. 3.3 D. In

addition, we choose to add a second layer of defence where we simply average out

locally pixel values. This can be interpreted biologically as a process of receptor

clustering or time-averaging. Time-averaging has been shown to be necessary in a

stochastic version of adaptive proofreading [33, 34], where temporal intrinsic noise

would otherwise make the system cross the boundary back and forth endlessly. In

the machine learning context, local averaging has been recently proposed as a way

to defend against few pixel attacks [107], which thus can be considered as the anal-

ogous of defending against biochemical noise.

We then train multiple classifiers between different pairs of handwritten digits.
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Following the approach of the “one pixel” attack [106], we consider digits classified in

presence of this two-tier defence, then sequentially fully turn pixels on or off ranked

by their impact on the scoring function, until we reach the decision boundary. Details

on the procedure are described in Appendix S5. A good defence would manifest itself

similarly to the Krotov-Hopfield case [103], where no recognizable (or ambiguous)

digits are observed at the boundary.

Representative results of such few-pixel attacks with biomimetic defences are

illustrated in Fig. 3.4 C. The “final" column shows the misclassified digits after the

attack and the “mean-filter" column shows the local average of the “final" digits for

further comparison, with other examples shown in Fig. SB.3 and details on the be-

haviour of scoring functions in Fig. SB.4. Clearly the attacked samples at the bound-

aries hide the ground truth of the initial digit, and as such can not be considered

as typical adversarial perturbations. Samples at the boundary are out-of-distribution

but preserve structure comparable to written characters (e.g. attacks from 0 to 1 typ-

ically look like a Greek ϕ, see Fig. SB.3). This makes them impossible to classify

as Arabic digits even for a human observer. This is consistent with the ambiguous

digits observed for big n by Krotov and Hopfield [103]. In other cases, samples at the

boundary between two digits actually look like a third digit: for instance, we see that

the sample at the boundary between a 6 and an 9 looks like a 5. This observation

is consistent with previous work attempting to interpolate in latent space between

digits [108], where at the boundary a third digit corresponding to another category

may appear. We also compare in Fig. 3.4 C the sample seen by the classifier at the

boundary after the biomimetic defences with a “control” corresponding to the average

between the initial digit and the target of the attack (corresponding to the interpola-

tion factor f = 0.5 in Fig. 3.3 C–D). It is then quite clear that the sample generated by

the attack is rather close to this control boundary image. This, combined with the fact

that samples at the boundary still look like printed characters without clear ground

truth indicate that the few pixel attacks implemented here actually select for mean-

ingful features. The existence of meaningful features in the direction of the gradient

have been identified as a characteristic of networks robust to adversarial perturba-

tion [102] similar to results of [103] and our observation for adaptive proofreading

models above.
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3.3 Discussion

Complex systems (in vivo or in silico) integrate sophisticated decision making pro-

cesses. Our work illustrates common features between neural networks and a gen-

eral class of adaptive proofreading models, especially with regards to mechanisms

of defence against targeted attacks. Parallels can be drawn between these past ap-

proaches, since the models of adaptive proofreading presented here were first gen-

erated with in silico evolution aiming at designing immune classifiers [34]. Strong

antagonism naturally appeared in the simplest simulations, and required modifica-

tion of objective functions very similar to adversarial training [74].

Through our analogy with adaptive proofreading, we are able to identify the pres-

ence of a critical point in the gradient of response as the crucial mediator of robust

adversarial defense. This critical point emerges due to kinetic proofreading for cel-

lular decision network, and essentially removes the spurious adversarial directions.

Another layer of defence can be added with local averaging. This is in line with cur-

rent research on adversarial robustness in machine learning, showing that robust

networks exhibit a flat loss landscape near each training sample [109]. Other current

explorations include new biomimetic learning algorithms, giving rise to prototype-like

classification [110]. Adversarial defence strategies, including non-local computation

and nonlinearities in the neural network are also currently under study [107]. The

mathematical origin of the effectiveness of those defences is not yet entirely clear,

and identification of critical points in the gradient might provide theoretical insights

into it.

More precisely, an interesting by-product of local flatness, where both the gradi-

ent and second derivative of the score are equal to zero, is the appearance of an

inflexion point in the score, and thus a region of maximal gradient. This is visible in

Fig. 3.3 D, F: while the score of non-robust classifiers is linear when moving towards

the decision boundary, the scoring function of classifiers resistant to adversarial per-

turbations is flat at f = 0 and only significantly changes when the input becomes am-

biguous near the inflexion point. The reason why this is important in general is that a

combination of local flatness and an inflexion point is bound to strongly influence any
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gradient descent dynamics. For instance, for adaptive proofreading models, the lig-

and distribution following the dynamics of Eq. 3.9 changes from unimodal to bimodal

at the boundary, creating ambiguous samples. For a robust classifier, such samples

are thus expected to appear close to the decision boundary since they coincide with

the larger gradients of the scoring function. As such they could correspond to mean-

ingful features (contrasting the adversarial perturbations), as we show in Fig. 3.4 C

with our digit classifier with biomimetic defence. Examples in image classification

might include the meaningful adversarial transformations between samples found

in [102] or the perturbed animal pictures fooling humans [111] with chimeric images

that combine different animal parts (such as spider and snake), leading to ambiguous

classifications. Similar properties have been observed experimentally for ambiguous

samples in immune recognition: maximally antagonizing ligands have a binding time

just below the decision threshold [31]. We interpret this property as a consequence

of the flat landscape far from the decision threshold leading to a steeper gradient

close to it [33, 60].

We used machine learning classification and implemented biomimetic defence

by relying on a single direction, since that is what emerges in the most simple ver-

sion of adaptive proofreading models that we considered here. In general, however,

the space of inputs in machine learning is much more complex, and there are more

than two categories, even in digit classification. One possible solution is to break

down multilabel classification into a set of binary classification problems, but this

might not always be appropriate. Instead, the algorithm effectively has to learn rep-

resentations, such as pixel statistics and spatial correlations in images [75]. With a

nonlinear transformation to a low-dimensional manifold description, one could still

combine information on a global level in ways similar to parameter τ . The theory pre-

sented here could then apply once the mapping of the data from the full-dimensional

space to such latent space is discovered.

Case-in-point, Tsipras et al. proposed a distinction in machine learning between

a robust, but probabilistic feature (x1 in Eq. 3.7) and weakly correlated features

(x2, . . . xd in Eq. 3.7) [102], both defining a single direction in latent space. They

then observed a robustness-accuracy trade-off due to the fact that an extremely ac-

curate classifier would mostly use a distribution of many weakly correlated features
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(instead of the robust – but randomized – feature) to improve accuracy. The weight to

put in the decision on either feature (robust or weak) would depend on the training.

Our work shows the natural connection between weak features in this theory and

weak ligands in the biological models (see discussion below Eq. 3.7). In the biolog-

ical context, the standard situation is that all ligands are treated equally. Then one

can show mathematically that for such networks performing quality sensing irrespec-

tive of quantity, antagonism necessarily ensues [60], as further identified here using

the FGSM transformation. This latter result can be reformulated in terms of machine

learning [102] in the following compact way: perfectly robust classification (i.e. with

no antagonism) is impossible in biology if all receptors are equivalent. But biology

also provides evidence that robustness can nevertheless be improved by applying

local nonlinear transformation such as the biomimetic defence of Eq. 3.8. Elaborat-

ing on the distinction between robust and weak features proposed in [102], nonlinear

transformations should specifically target weak correlated features. Explorations of

generalized nonlinear transformations in image feature space [91, 103] might lead

to further insights into the possible nonlinear transformations defending against ad-

versarial perturbations. We learn in particular from biology that the major effect of

nonlinearity is to change the position of maximally adversarial perturbations in sam-

ple space. Perfect robustness might be impossible in general, yet similarly to cellular

decision-making the most effective perturbations may shift from a pile of apparently

unstructured features for naive classifiers to a combination of meaningful features for

robust classifiers, giving ambiguous patterns at the decision boundary (allowing to

further distinguish between ambiguous and adversarial perturbations).

From the biology standpoint, new insights may come from the general study of

computational systems built via machine learning. In particular, systematic search

and application of adversarial perturbations in both theoretical models and experi-

ments might reveal new biology. For instance, our study of Fig. 3.4, inspired by gra-

dient descent in machine learning [103], establishes that cellular decision-makers

exist in two qualitatively distinct regimes. The difference between these regimes are

geometric by nature through the presence or absence of a dynamical critical point

in the gradient. The case m < 2 with a steep gradient could be more relevant in

signalling contexts to separate mixtures of inputs, so that every weak perturbation
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should be detected [98]. For olfaction it has been suggested that strong antagonism

allows for a rescaling of the distribution of typical odor molecules, ensuring a broad

range of detection irrespective of the quantity of molecules presented [83]. The case

m ≥ 2 is much more resistant to adversarial perturbations, and could be most rel-

evant in an immune context where T cells filter out antagonistic perturbations. This

might be relevant for the pathology of HIV infections [29, 85, 86] or, more generally,

could provide explanations on the diversity of altered peptide ligands [112]. We also

expect similar classification problems to occur at the population-level, e.g. when T

cells interact with each other to refine individual immune decision-making [113, 114].

Interestingly, there might be there a trade-off between resistance to such perturba-

tions (in particular to self antagonism, pushing towards higher m in our model) and

the process of thymic selection which relies on the fact that there should be sensitivity

to some self ligands [115] (pushing towards lower m in our model) .

Our correspondence could also be useful for the theoretical modelling and un-

derstanding of cancer immunotherapy [87]. So-called neoantigens corresponding to

mutated ligands are produced by tumours. It has been observed that in the presence

of low-fitness neoantigens, the blocking of negative signals on T cells (via check-

point inhibitor blockade) increases success of therapy [116]. This suggests that those

neoantigens are ambiguous ligands: weak agonists acting in the antagonistic regime.

Without treatment, negative signals prevent their detection (corresponding to an ad-

versarial attack), but upon checkpoint inhibitor blockade those ligands are suddenly

visible to the immune system, which can now eliminate the tumour. Importantly, differ-

ential responses are present depending on the type of cancer, environmental factors

and tumour microenvironment [88]. This corresponds to different background ligand

distributions in our framework, and one can envision that cancer cells adapt their

corresponding adversarial strategies to escape the immune system. Understanding

and categorizing possible adversarial attacks might thus be important to predicting

the success of personalized immunotherapy [117].

We have connected machine learning algorithms to models of cellular decision-

making, and in particular their defence strategies against adversarial attacks. More

defences against adversarial examples might be found in the real world, for instance

in biofilm-forming in bacteria [118], in size estimation of animals [119], or might be
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needed for proper detection of physical 3D objects [120] and road signs [121]. Un-

derstanding the whole range of possible antagonistic perturbations may also prove

crucial for describing immune defects, including immune escape of cancer cells. It is

thus important to further clarify possible scenarios for fooling classification systems

in both cell biology and machine learning. ” (Attack and defence [2])
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4
Cytokines

The cytokine project is the most explicit project where reducing data leads to a latent space

representation. Here, obtaining the latent space representation is also the most straightfor-

ward: after processing the data and setting up the classification procedure, the latent space

is just a linear transformation away. Yet, it is highly nontrivial to find the right basis function

from which we can retrieve the latent space. The classification problem concerns predict-

ing antigen class given a cytokine profile, an output of the immune response. Interestingly,

through biophysical modelling of the latent space dynamics, we predict antigenicity quan-

titatively, instead of qualitatively as the initial classification problem was designed. This

work serves as an example on how ideas borrowed from physics and techniques borrowed

from machine learning can lead to progress in immunology.

4.1 Introduction

The introduction is structured as follows: First, I provide background on the cytokine re-

sponse following activation of the adaptive immune system, complementing section 1.2 on

the composition of the adaptive immune system. I then introduce the goal of the project

and discuss its applicability and parallel approaches.
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Background

Cytokine complexity

The fundamentals of cytokine-mediated communication can be compared to radiostations

emitting and receiving radiosignals. Different immune cell types emit signals at different

channels, intended for a subset of cell types. Upon receiving a signal through their cytokine

receptors (receivers), the cells internally process the information, mostly through the JAK/-

STAT pathway (note that the comparison between the processing units of a radio and a

signal transduction pathway has been made previously [4]). Cytokines activate a unique

set of JAKs and STATs; a mix of cytokines results in crosstalk between JAKs and STATs

(interference) [122]. This pattern is recognized by the immune cell, and causes a corre-

sponding response, for instance, through proliferation (build new radio stations) initiating

or upregulating production of cytokines (enhance emission) or upregulation of cytokine

receptors (enhance receiving). Cytokines signals are generally received by the producing T

cell (autocrine signalling) as well as by surrounding cells (paracrine signalling), although

T cells do not produce and consume IL-2 simultaneously [123, 124]. Finally, to conclude

the comparison between communication through cytokines and radiowaves, the reach of

the cytokines is limited (inverse square-law of intensity).

Despite the diversity of cytokines and complexity through internally shared processing

units in the T cell, the premise is the same: molecular cues cause T cells and surrounding

tissue to produce and consume cytokines according to

d[cy]

dt
= +κ+(t)− κ−(t) (4.1)

Here, [cy] is the concentration of a given cytokine and κ+(t) and κ−(t) are the rates of

production and consumption of the cytokines. The production term κ+(t) can be broken

down further into

κ+(t) = N+(t)k+(t)/(V NA) (4.2)

where N+(t) is the number of cells over time producing cytokines with rate k+(t). V is the
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extracellular volume and NA is Avogadro’s constant to convert numbers to concentration.

The consumption term κ−(t) can be broken down further into

κ−(t) = konN−(t)R(t)/(V NA) (4.3)

where kon is the affinity of cytokine and receptor, N−(t) is the number of consuming cells

and R(t) is the number of cytokine receptors per cell over time. N+, N−, R, k+ can be

arbitrarily complex over time, and may depend on [cy] as well [18]. Furthermore, spatial

considerations through diffusion and advection regulate the reach of the signals [18, 125].

Another regulating factor is competition for cytokines resulting in a balance between im-

mune tolerance and immune response [125]. With 33 known interleukin families, many

other non-interleukin cytokine families (i.e. interferons, tumor necrosis factor superfam-

ily), and up to 10 or more members per interleukin family, a separate gene encoding for

each member [126], it is clear that the cytokine code is of enormous complexity. Not all

cytokines are of equal importance though; a good indicator of a cytokine’s importance is if

it has been used as a therapeutic target, a list that includes TNFα, IFNγ, IL-2, IL-6, IL-10

and IL-17A [127], not coincidentally the cytokines we study too. Yet, decoding messages

sent in this code is a task whose surface we have hardly begun to scratch. Altan-Bonnet and

Mukherjee underline the importance of quantitatively studying cytokines: “The ability of

individual cells to process signals at multiple levels and to integrate the obtained informa-

tion into a collective response at the population level is crucial for a coordinated immune

response. As such, it is important to have a quantitative understanding of how immune cells

integrate the large number of signals they receive into a tailored output” [125]. The goal of

this work is to do exactly that. Before going there, we provide a contemporary qualitative

understanding of the cytokines under study and introduce models aimed at understanding

some of this decoding.

IL-6 and TNFα are among the most pleiotropic cytokines, meaning they are produced

and consumed by many different cell types. They are typically known as proinflamma-

tory mediators - a catch-all term for cytokines with many functions - and remain present

througout the entirety of an acute response. IL-17A and IL-2 are more specialized cytokines
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produced by helper T cells (IL-17A, IL-2) and killer T cells (IL-2) [128]. IL-17A is known

for inducing production of other cytokines like IL-6 and TNFα [129], and binding of IL-2

to the IL-2R is critical for inducing and regulating T cell expansion [130]. As such, IL-2

intuitively encodes information about antigen quality to determine the extent of T cell ex-

pansion. Finally, a major role of IFNγ concerns activation of macrophages [131] through

its production by T cells, both in innate and adaptive immunity.

Regulation of the immune response

Regulation of the immune response occurs not only through cytokine receptor signalling,

but also at the population level. Regulatory T cells (Tregs) consume IL-2 without produc-

ing any, inhibiting the expansion of helper and killer T cells [132–134]. T cell expansion

is also limited by antigen availability [135]. Several studies have proposed models of regu-

lation of T cell expansion through antigen consumption [136–138]. The last one proposes

a simplification of the models of previous studies, aiming to preserve the observations that

T cells proliferate exponentially at saturated antigen levels, and that antigens decay over

time. The model is given by

dT

dt
= α

TC

K + T + C
− δT (4.4)

dC

dt
= −µC (4.5)

where T (t) and C(t) represent the T cell number and antigen quantity at time t, K is the

antigen quantity at which the T cells’ response to the antigen is at half of its maximum

response, also called EC50. α is the proliferation rate, δ the rate at which T cells die, and µ

the antigen decay rate. This model consists of two phases: exponential proliferation when

antigen quantity saturates antigen quality and T cell number C(t) ≫ K,T (t) and a rapid

slow-down of proliferation when either of the two conditions are no longer satisfied. In

the competition-limited regime when C(t) ∼ T (t), the characteristic time t∗ at which the

transition between the two phases occurs is given by

t∗ =
1

α− δ + µ
log

C(0)

T (0)
. (4.6)
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In the affinity-limited regime when C(t) ∼ K, t∗ is given by

t∗ =
1

µ
log

C(0)

K
. (4.7)

From these considerations, it emerges naturally that the fold expansion f = T (t∗)/T (0)

decreases with precursor frequency N(0). In the competition-limited regime, Mayer et al.

fitted experimental data and found the following power-law relation

f =

ˆ

T (t∗)

T (0)

˙

∝ T (0)−1/2. (4.8)

This raises the question of how the trade-off between resources spent on proliferating and

minimum clone size following immune recognition was established. This model is beau-

tiful in its simplicity, capturing the power-law relation between precursor frequency and

fold expansion, yet provides no mechanistic insight into regulation of T cell expansion. It

also ignores phenotypic variability, which causes substantial diversity of activation within

a clonal population of T cells [64]. Tkach et al. developed a model taking into account the

internal regulation of IL-2 production and consumption for CD4+ T cells (helper T cells)

[124], and found evidence for an experimental scaling law in the peak IL-2 concentration

[IL-2]max ∝ T−0.1
0 [Ag]0.8 (4.9)

where T0 is the precursor frequency and [Ag] is the antigen quantity. With higher T0,

[IL-2]max is smaller, and is reached earlier, because of the lower value and the higher num-

ber of activated T cells producing IL-2. Tkach et al. attributed the lower peak and higher

number of activated cells needed to the per cell acceleration of IL-2 production over time

[124]. With fixed proliferation time, we thus see a higher fold expansion for smaller T0,

which at least qualitatively reproduces the power-law of Eq. 4.8. As we are comparing in-

vitro with in-vivo dynamics, the exact power may vary from the power −1
2

found in [138].

This is one case where Eq. 4.1 is solved explicitly for IL-2. Another example is given by

Voisinne et al., who developed and experimentally tested a model of antigen discrimination

for CD8+ T cells (killer T cells) using local cues (antigen quality and quantity) and global
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cues (cytokines) [114]. By considering phenotypic variability in the response threshold,

they found that increased IL-2 levels engage otherwise weakly activated clones.

Models that focused on the internal regulation of a single cytokine already required

numerical integration of multiple equations per simulated cell [114, 124]. One can only

imagine the complexity of a model including multiple cytokines and their indirect effects

on each other for a clonal population invariably including phenotypic variability. The best

way forward to understanding cytokine communication might be the decoding problem:

given the cytokine response for a population of T cells to an immune challenge, what

signals can we extract from this?

Goal

The goal of the project is to do exactly what we ended the previous section with: decode

parameters of an immune challenge from detailed cytokine kinetics. The parameter we are

especially interested in is the antigen quality, a parameter of clinical interest, for instance in

predicting a patient’s survival chances following checkpoint inhibitor therapy [116, 139].

Thus, we are looking to design a classifier that is able to classify antigen quality indepen-

dent of antigen quantity. With a classifier, we mean a classifier in the classical machine

learning sense, one that processes an input and outputs a category, for instance a multi-

layer perceptron (MLP) [140]. Our definition of antigen quality is the pMHC-TCR binding

time. Antigen quantity corresponds to the number of antigens a T cell binds to while de-

ciding (how strongly) to activate. Antigen quantity is referred to as ligand concentration in

previous chapters. Finally, with cytokine kinetics we mean the concentration of cytokines

over time from the start of the experiment (mixing of loaded antigen presenting cells and

T cells) until three days later when T cell expansion has completed and T cells in the well

start dying.

Once we have found an antigen quality classifier, there are many directions along which

we could gain novel insight in immune response. First, we quantify how many different

antigen qualities a naive CD8+ T cell can reliably detect. We also limit the range of antigen

quantity within which two antigens of similar quality can be told apart. In other words,
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we quantify the quantity-independence of T cell response. We also learn about the mini-

mal architecture required to accurately classify antigens by their quality. Similarly, with a

feature analysis, we find the minimum inputs required for the system to still classify well

providing insight into the role of various cytokines for communication between T cells.

In line with the title of this thesis, by using a neural network as a classifier we gain ac-

cess to a latent space1, which we analyze in detail. In machine learning terms, this could be

called in-depth feature analysis on out-of-distribution samples, inspired by feature analysis

in random forest classifiers [141], but as far as we are aware, there is no equivalent, as the

details of this analysis are highly specific to the problem.

If we believe that nodes in the classifier’s latent space correspond to information pro-

cessing inside the T cell (locally) or in a population of T cells (globally), each of these ex-

perimental conditions should result in interpretable latent space dynamics. Assuming that

we have indeed captured ongoing biology, we parameterize the latent space dynamics, and

observe how various experimental setups change the parameters of the model. Suddenly,

we have expanded the classification problem of naive OT-1 CD8+ T cells responding to

four well-known antigens to parameterizing any T cell - APC interaction with just four

parameters. That is, if we may say so, no small achievement, which goes beyond classical

machine learning, allowing us to understand macroscopic behavior of detailed microscopic

interactions at many time-scales (from minutes for pMHC-TCR interactions to days for

the population-wide response), and setting an example for novel methods of interpretable

machine learning.

Complementary approaches

We conclude the introduction by outlining other approaches people have taken in predicting

antigen quality.

Predicting antigen quality happens routinely by predicting the likelihood of pMHC

1Like in an autoencoder, this latent space is only informative if the input is sent through a bottleneck so
that the information on the output hidden in the input is compressed to few dimensions (preferably two which
has the added benefit of being visually interpretable)

76



4.1 Introduction

presentation through from peptide-MHC binding affinity. Some have argued that pMHC

stability is actually more predictive than pMHC binding affinity [142], but this is difficult

to measure experimentally. State-of-the-art algorithms like NetMHCpan [143] use the Im-

mune Epitope Database (IEDB) [144] - a dataset of binding affinities between pMHCs -

to predict pMHC binding affinity for unseen ligands. This has been used to predict the

likelihood of presentation of neoantigens, and thus the immunogenicity of a tumor. Such

information is of interest in clinical settings in predicting disease progression. Based on the

sequence alignment between neoantigens and the closest match in the IEDB, Luksza et al.

predicted a patient’s survival prediction given the tumor’s neoantigens [116, 139]. The un-

derlying assumption is that once a pMHC is presented to the T cells, there are T cell clones

in the repertoire that are specific to this ligand. This brings us back to the introduction: even

though there might be an immune response, it is not necessarily a strong response.

The most common approach for quantifying the strength of an immune response is with

IFNγ Elispot [145]. Scientists, using strict guidelines [146] set parameters for automated

Elispot readers, counting the number and size of spots on a sample, corresponding to T

cell clusters producing IFNγ 12-24 hours after activation following T cell expansion. The

number and size of the spots provide information on the strength of the immune response.

IFNγ Elispot is used in clinical settings for its low expense, ease of use and fast turn-

over time. It is also used across studies to measure a patient’s response to new treatment.

Other Elispot devices measure IL-2 or even a combination of cytokines with Fluorospot

[147]. A drawback of Elispot measurements is that there is no baseline reference and that

parameters for the Elispot reader need to be adjusted by the scientists, introducing a level

of subjectivity.

Our contribution is clear: predicting antigen quality with a reference using detailed cy-

tokine kinetics, improving Elispot and complementing algorithms predicting pMHC bind-

ing affinity.
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4.2 Materials and methods

In this section, we describe the experimental setup, data processing, and classification pro-

cedure.

Experimental setup

The TECAN robotic platform in the Immunodynamics lab of Dr. Altan-Bonnet at the Na-

tional Cancer Institute, Bethesda, MD, is designed to automate pipetting, allowing its han-

dlers to run many conditions in parallel. It allows for the measurements of detailed time-

kinetics of multiday experiments. Our collaborators extract immune cells from transgenic

OT-1 mice: CD8+ T cells with the OT-1 TCR and APCs with a single MHC allele for

peptide loading. APCs from the spleens of B6 mice - splenocytes - are loaded in various

quantities with the chicken ovalbumin (OVA) or SIINFEKL antigen [148, 149]. Alteration

of the prototypical SIINFEKL antigen N4 include A2, Y3, Q4, T4, G4 and E1. Here, the

letter corresponds to the amino acid substituted at the position in the peptide chain indi-

cated by the number, e.g. Y3 corresponds to the SIYNFEKL antigen. Typical numbers are

105 CD8+ T cells, 3 · 105 splenocytes and an antigen concentration of 1µM mixed in 200

µL supernatant. The splenocytes and T cells are prepared separately and mixed at the start

of the experiment on 96, 192 and 384 well plates. At regular intervals, 20 µL supernatant

is taken from the wells and stored for postprocessing. This is replaced with 20 µL fresh

media so the overall volume stays the same. To measure cytokine concentrations from the

samples of supernatant, a small amount of supernatant is mixed with beads coated with

antibodies that are specific to the cytokine. Then, a second set of beads is added to the

solution. These beads are specific to the cytokine-antibody bond and tagged with a fluores-

cent protein. Beads specific to different cytokines have different colors, which is how the

flow cytometer decomposes the fluoresence of the mixture into cytokine-specific signals.

Absolute cytokine concentrations are obtained from the geometric Mean Fluorescence In-

tensity using calibration curves. The seven cytokines that were measured initially are IFNγ,

IL-2, IL-4, IL-6, IL-10, IL-17A and TNFα. As IL-4 and IL-10 rarely gave a response, we

excluded them from our analysis. In the final stages of the project, our collaborators started
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experimenting with assays allowing multiplexing of 30 cytokines. In the future, we could

decide to train a classifier using all these, but we found that we need only two dimensions

to accurately determine antigen quality, and these two dimensions can be created using the

initial five cytokines.

In earlier experiments at every timepoint, the contents of the entire well were stored,

effectively stopping the experiment in this well. A timeseries was formed from wells with

the same setup, but measured at unique times. This protocol allowed us to characterize

the surface markers on the cells over time too. Once we focused our attention on cy-

tokines alone, in subsequent experiments a timeseries was generated by extracting a small

amount of supernatant from the same well at regular intervals, and replenishing it with

fresh medium after. Removal of cytokines could have slowed down the immune response,

but after finetuning the amount of supernatant extracted, we detected no effect, which we

tested through crossvalidation in the classifier (Appendix Fig. C.1). The new protocol also

significantly reduced the number of sacrificed mice, making the experiments cheaper and

animal-friendlier.

Data processing

Much of the data processing procedure is developed by François Bourassa, lab member and

collaborator on this project. It is described in detail in his M.Sc. thesis [150]. During the

procedure, we replace missing data, smooth the data and gain access to the data in between

the experimental timepoints.

To understand the variability on the cytokine dynamics, we assume an exponential pro-

liferation rate α for a population of T cells T (t) with an initial number of T cells T0.

T (t) = T̂0e
(α+ηα)t. (4.10)

α̂ = ⟨α⟩+ ηα and T̂0 = ⟨T0⟩+ ηT0 are sampled from α and T0, which follow a normal dis-

tribution. We assume that a T cell produces cytokine cy with constant rate λ, also normally
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distributed.

cy(t) =

∫ t

t′=0

cy′(t′)dt′ =

∫ t

t′=0

λ̂T̂0e
α̂t =

λ̂T̂0

α̂

`

eα̂t − 1
˘

(4.11)

where cy′(t) is the instantaneous amount of cytokines produced at time t. This expression

can be approximated by

log(cy(t)) ≃ log

˜

λ̂T̂0

α̂

¸

+ α̂t (4.12)

which follows the lognormal distribution

log(X(t)) = log(µX(t)) + η(t), η(t) ∼ N (0, σ2
X(t)) (4.13)

where µX(t) = log
´

λ̂T̂0

α̂

¯

+ ⟨α⟩t is the average cytokine timecourse that we are interested

in, and η(t) = ηαt is the experimental noise with variance σ2
X(t) that we want to “average

away”. The assumptions on α and λ are approximately valid in the cytokine production

phase lasting up to 24 hours following stimulation (or longer with fewer initial T cells

T0). More details on where additional noise could arise are given in Appendix B of [150].

In any case, logarithms are implemented routinely in biological systems [151], as such,

the logarithms of cytokine concentrations are a reasonable starting point for our analysis.

Practically, the log transformation is given by

c(t) = log10

ˆ

cy(t)

LOD

˙

(4.14)

where cy(t) is the cytokine concentration, c(t) is the logtransformed cytokine concentra-

tion and LOD is the lower limit of detection. The LOD is equal or close to the minimum

measured concentration, which we use instead of the LOD when the LOD is not available.

Before applying the log transformation, we look for measurements where cytokine lev-

els decreased by a factor of 10 or more between consecutive timepoints. This is evidence

of a missing datapoint, which may have occurred for various reasons, like dried up su-

pernatant, issues with the cytokine beads or fallen plates. Cytokines like IL-2 naturally

disappear from the system, but it does so gradually, which is why we require a factor 10

decrease. Missing data is replaced by a linear interpolation through the previous and the
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next timepoint. We now log transform the data and smooth the data with a moving average

applied to the center points. The timepoints are spaced evenly such that this smoothing is

applicable to the whole timeseries. Finally, we fit B cubic splines (piecewise polynomials

of order 3) to the smoothed cytokine concentrations using a variable number of knots, a

procedure that is detailed in [150]. The effect of each of these steps of the data processing

is visible in Fig. 4.1.

Figure 4.1: Transforming raw data to splines. Starting from raw data (top left), we treat
missing data points and apply the log transform (top right). Grey lines indicate the raw data
log transformed for a comparison on how the missing datapoints are interpolated. Then we
subtract the LOD and apply a moving average (bottom left), and compute splines (bottom
right).
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Having obtained splines, we now have access to cytokine concentrations at every de-

sired point in time. Splines are differentiable and integrable, which means we also have

access to the derivatives and integrals of the cytokines. In the main body of the work in

[150] is detailed how the evolutionary algorithm φevo [152] is used to generate plausible

biochemical networks that produce an output that differentiates between agonists, partial

agonists and nonagonists. The most promising network effectively computes an integral

over the product of IL-2 and IL-6. This finding inspired us to also use integrals as our

basis functions for classifying antigens. Integrals are more robust to small fluctuations in

cytokines, fluctuations that continue to exist despite the smoothing procedure. Moreover,

IL-2, the cytokine that is known to correlate with antigen quality [124], is consumed and

disappears from the system. With integrals over the cytokine concentrations, at later time is

still reflected how much IL-2 was initially present. Moreover, Elispot measures integrated

values too by potentially capturing every cytokine that is produced, removing the consump-

tion component from the system. We cannot do that with our measurements, but cytokine

integrals, although overcompensating, resemble Elispot measurements more closely than

cytokine concentrations do.

Training a classifier

There are multiple ways to design an antigen classifier using cytokines. For instance, one

could train a deep neural network (DNN) [9] that takes as an input one large vector of

cytokine concentrations at various times, processes this through various layers, and then

outputs a category. One could also train a shallow neural network with a small number of

inputs allowing for interpretation of the computation that the neural network performs. A

main issue concerns the amount of data. Regardless of whether the robotic platform allows

for measuring many experimental conditions in parallel, when complete timeseries are used

as individual samples, the number of samples would be limited to hundreds, barely enough

to merit training a DNN, and not nearly enough to hope for its generalization. Guided by the

data limitation and our desire for interpretatibility, we chose to work with an MLP with one

hidden layer, where we use every five-dimensional timepoint as a sample. For timepoints

from the same timeseries, each timeseries has the same label, namely from the antigen
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that gave rise to this timeseries. Conveniently, through the splines we have access to an

unlimited number of datapoints, although many of these datapoints are strongly correlated.

To be explicit, a generalized input I(t) ∈ R5
+ is given by

I(t) =

∫ t

t′=0

c(t′)dt′, t ∈ [0, 72]. (4.15)

Here the input I(t) integrates each of the cytokines from t′ = 0 to t′ = t. The next datapoint

I(t+ 1) is a new sample, highly correlated with I(t) as

I(t+ 1) =

∫ t+1

t′=0

c(t′)dt′ = I(t) +

∫ t+1

t′=t

c(t′)dt′. (4.16)

This is trivial when written out like this, but requires a shift of thinking. Each of the vectors

I(t) are now equivalent samples. The goal of training the classifier is to uncover a relation-

ship between the integrals of cytokines that provides information on the antigen quality. We

assume that this relationship is preserved over time, so that each of the timepoints, highly

correlated as they may be, is another example of this relationship in a slightly different

part of the input space. With strongly correlated samples, we have to carefully split the

data. For instance, we cannot distribute timepoints of the same timeseries across training,

validation and test set. The classifier could have “hardcoded” the logic that values of the

sample I(t) in the training set correspond to a given antigen. Then the sample I(t + 1) is

an easy guess, because in absolute value it is similar to I(t). We avoid this by assigning

separate experiments with multiple timeseries to each of the datasets.

The last preparatory step before setting up the neural network is the normalization pro-

cedure. Because the range in concentration covered by each of the cytokines varies, we

want to normalize each of the features to be within the same range. Options for normal-

ization are to make each feature normally distributed (mean 0, variance 1) or set the range

of each feature between [−1, 1] or [0, 1]. The last option works best for us, as integrals are

nonnegative and uniformly distributed over their range. We tried normalizing each dataset

by their individual minima and maxima, but found that this introduced a dependence on

the experiment (Appendix Fig. C.2). Instead, we take the absolute mininum and maximum
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per cytokine from the training data and use this to normalize the validation and test sets.

An MLP with one hidden layer goes through two processing steps, which we describe

here in detail. The first one is simply linearly transforming the values in the hidden layer

h(t) ∈ RN with N nodes by the learned weights in the matrix W ∈ R5×N .

h(t) = I(t) ·W + b. (4.17)

The dependence on time serves as a reminder that we process a whole timeseries by send-

ing timepoints through the MLP one by one, and stitching them back together later. The

values in the hidden layer are processed by an activation function (hyperbolic tangent) and

multiplied by the second matrix of learned weights W ′ ∈ RN×M where M is the number

of nodes in the output layer, resulting in

h′(t) = tanh ph(t)q ·W ′, (4.18)

where h′(t) ∈ RM are the arguments in the softmax in the output layer. Finally, switching

from vector to index notation, the Qth node in the output layer p(Q, t) is computed through

a softmax activation function given by

pQ(t) =
eh

′
Q(t)

∑M
Q=1 e

h′
Q(t)

. (4.19)

The softmax ensures that the sum
∑M

Q=1 pQ(t) = 1. The result following the softmax is

taken as a probability distribution, i.e. pQ(t) is the probability that the cytokine integrals

I(t) are due to the stimulation of T cells with antigens of quality Q.

The next step in setting up the training procedure is to determine the loss function,

whose gradient with respect to each of the weights will determine how they are updated. We

chose to use the cross-entropy loss, although the mean squared error would have worked

too. The cross-entropy loss aims to minimize sum of the distance between the current

probability distribution p and the desired probability distribution p′ for each of the samples.

Here, p′ consists of a one for the correct class and zeros for the incorrect classes, while p is
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initially randomly distributed, and will, throughout the training procedure, imitate p′ more

closely. For a single sample the cross entropy H(p′, p) is given by

H(p′, p) = −Ep′(log ppq) = −
∑

Q

p′Q log ppQq, (4.20)

where the sum runs over the all outputs Q in the output layer. This is ultimately summed

over all samples to determine the total loss. However, when predicting the class of I(t), the

node with the highest value maxQ ppQ(t)q is chosen as the correct label.

We train the classifier using scikit-learn [101] for 3000 iterations with a regularization

rate λ = 0.1 and two nodes in the hidden layer. As a training set, we use hourly sampled

datapoints from 78 timeseries distributed over 6 datasets from the old protocol for a total of

78 × 72hrs = 5616 datapoints (Table 4.1). For crossvalidation we initially removed time-

series from this dataset and tested on these. Once our collaborators created more datasets

with the new protocol, we trained on all conditions on these 6 training sets from the old

protocol and tested on the new experiments.

A schematic of the workings of the classifier is shown in Fig. 4.2. As an example, we

take integrals of the timecourse for the antigen with quality Q4 and quantities 1µM and

1nM. At every timepoint, I(t) is classified individually resulting in a pQ(t). For 1µM the

probability of the Q4 node rises until it is the highest before decreasing slightly. From

time t ∼ 15 hours, Q4 is the class with the highest pQ. Timepoints in this timeseries

are for the most part classified correctly. This is in contrast to the timeseries with 1nM

where the majority of the timepoints have seems to have a highest pQ(t) for T4. The final

question then is how to turn the classification of 72 hourly sampled timepoints into a single

timeseries prediction, which we show in the next section.

In this section, we described how the data is obtained and processed, under what con-

straints the classifier is designed, and how it works conceptually. In the next section, we re-

port the performance and limitations of the classifier, we analyze the effect of input features

and learned weights of the classifier, and work our way towards finding an interpretation

for the dynamics of the nodes in the hidden layer, from now on called latent space.
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Integrals Probabilities

Figure 4.2: Architecture and processing of the classifier. Cytokine timeseries for Q4
1µM and 1nM are processed by the MLP with more intense red (blue) lines corresponds
to stronger positive (negative) weights. For the integral values at every timepoint, the MLP
returns a probability vector corresponding to the antigen class for that timepoint. Stitching
the individual probabilities back together results in a continuous probability vector per
antigen class over time.

86



4.3 Results

Table 4.1: Number of times a condition was present in the standard training set with six
datasets

1µM 100nM 10nM 1nM
N4 6 5 4 6
Q4 6 5 5 6
T4 6 5 5 6
V4 4 3 3 3

4.3 Results

In the results section, we discuss classifier performance, network analysis, latent space

parameterization, interpretation of the model parameters, and prediction of quality.

Classifier performance

The classification procedure of whole timeseries is shown in Fig. 4.3. Individual timepoints

of a single timeseries are predicted in the rows (left panel). Circles correspond to correct

prediction, crosses to incorrect prediction. The predictions are summed per antigen class

and shown as a histogram (right panel). The antigen class with the highest number of points

is chosen as the prediction for the timeseries. The vertical line in the histograms indicates

the actual antigen class. If the line is green, the prediction is correct, if it is red, the predic-

tion is incorrect. Classification of timeseries from another representative experiment where

the same effect is visible is given in Appendix Fig. C.3. With this procedure, depending

on the dataset, about 80% of the timeseries are classified accurately, and 20% are not. This

directly reflects the limits of precision. That is, N4 1nM is sometimes classified as Q4, Q4

1nM often as T4, and T4 1nM as V4. It is impossible to assign the right quality to these

timeseries, because the cytokine response of Q4 1nM and T4 1µM are equivalent (Fig. 4.4,

top panel). The reason that the cytokine responses are the same is because the T cells indi-

vidually measure the same output. Adaptive kinetic proofreading models measure an output

that is independent of antigen quantity over many decades [33, 34] (Chapter 2). Here we

see in practise that when the antigen quality of Q4 and T4 differs by a factor of 3-5 (Table

4.2), it can be determined over a range of two decades (a factor 100) for antigen quantity.
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The T cell population cannot measure quality alone, it always measures a convolution of

quality with quantity. Precisely because of the adaptive kinetic proofreading mechanism, it

is much more sensitive to antigen quality than it is to antigen quantity. The same quality-

quantity convolution appears when inspecting dose-response curves in Fig. 4.21. We want

to discretize continuous and overlapping classes, which means that the classifier inevitably

cuts off at a point where antigens of higher quality at low quantity will be classified in the

lower quality class (Fig. 4.4, bottom panel). Taking into account this constraint means we

have achieved maximum possible accuracy with our procedure.

Figure 4.3: Timeseries classification procedure. Left panel: classification of timeseries
of a given quality (set of four rows indicated by antigen name and color on the left) and
quantity (four subrows per antigen quality indicated by antigen quantity on the right). Cir-
cle (cross) is correct (incorrect) classification. Color of the marker indicates what antigen
was predicted. Right panel: summing individual timepoints per timeseries of given qual-
ity (rows) and quantity (columns). The timeseries prediction is the antigen with the most
timepoints, indicated by the vertical line. Green (red) line indicates a correct (incorrect)
prediction.

There are inherent limits on the reproducibility of the experiments. The training pro-

cedure is designed to be robust to some variability by using integrals and learning from

experiments with as wide of a distribution as possible. The experiments are performed

carefully and repeated when there are obvious errors, yet the absolute cytokine concentra-

tions may vary strongly between experiments. Two experiment were proposed to find the

origin of this variability. The first experiment tests the preparation and measurement by

running four replicates on T cells from the same mice. We show the IL-2 concentration

of the conditions in Fig. 4.5. Except for two deviating conditions of N4 1µM, all repli-

cate conditions follow each other closely (same colored lines on top of each other), which
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optimal cutoffs set by classifier 

convolution between antigen quality and quantity

Figure 4.4: Limits of deconvolution. Top panel: Comparison between cytokine response
of Q4 1nM of T4 1µM. Bottom panel: Schematic discretization of antigen qualities. Text
above the colorbar indicates actual division with overlaps at saturating concentration (1uM
and 1nM). Text below the colorbar indicates the classifier’s cutoff to create four distinct
antigen classes, causing timeseries with 1nM to be classified often as the lower antigen
class.

Figure 4.5: Reproducibility of experiments. IL-2 concentration of four replicate condi-
tions of the same mice. Colors indicate antigen, linestyle indicates replicate. Left columns
show conditions with antigen quantity 1µM, right columns show conditions with antigen
quantity 1nM.
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means that the variability does not come from measurement errors or variability in cytokine

production. Instead, it might come from the T cells themselves. The same type of T cells

are used in every experiment, taken from genetically equivalent mice, which were raised

under the same circumstances to approximately the same age. This means their phenotype

is controlled for as much as possible. But if a mouse starts suffering from a minor infection,

some T cells change to a pre-activated state, which makes them respond differently from

the entirely naive T cells. In the future, our collaborators will explicitly test this by tak-

ing T cells from different mice, using the same sample preparation, and running the same

conditions on these.

Network analysis

In this section, we introduce the latent space dynamics, dicuss the computation that the

neural network performs, and do a feature analysis.

The latent space is found by multiplying the input with the 5 × 2 matrix that is visu-

alized in Fig. 4.6, top left, providing an explicit visualization of the colorcoded weights in

Fig. 4.2. The x-axis are the input cytokines, and the y-axis shows what value they are mul-

tiplied with. The blue weights go into node 1, orange into node 2. These input values are

summed like in Eq. 4.17. Projecting all sampled times in a timeseries on the latent space

results in Fig. 4.6, right panel. Every line corresponds to a timeseries with antigen and con-

centration indicated by color and linestyle. The markers are spaced in intervals of 5 hours.

All timeseries start in the origin with 0 accumulated cytokines, value 0 in node 1 and 2 and

diverge from there. A common feature across conditions is that at a given time, later for

antigens of higher quality, the lines curve down. This happens when all IL-2 is consumed

and its integral remains constant. IFNγ, IL-6 and TNFα then cancel out IL-17A and node

1 remains constant. Looking more closely at the top left panel of Fig. 4.6, we see that node

1 is dominated by IL-2, and includes small contributions from IL-6 (positive) and TNFα

(negative). Node 2, on the other hand, consists of positive contributions of IL-17A and IL-

2, offset by smaller negative contributions of IFNγ, IL-6, TNFα. With the IL-2 integral at

a constant level, node 2 slowly tends towards negative values.
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Figure 4.6: Analysis of weights. Integral cytokine timeseries multiplied by the weights
from input layer to hidden layer (top left) results in latent space (right). Node 1 and node 2
are transformed with the activation function and multiplied by weights from hidden layer
to output layer (bottom left) resulting in arguments for the softmax in the output layer.

The weights from the hidden layer to the output layer (Fig. 4.6, bottom left panel) are

optimized such that when multiplied with coordinates in the region of antigen Q, they re-

turn an argument to the softmax in output layer that is maximum for antigen Q. This is why

cytokine dynamics are constrained to certain regions. It also explains why classification at

early timepoints does not work well: the initial response of all antigens occurs approx-

imately in the same region. It is only after tens of hours that the dynamics are reliably

confined to their respective regions.

Following our first exposure to the latent space, we now proceed with analyzing this

thoroughly in the remainder of this chapter. We start with a feature analysis to understand

how the latent space is constructed. A standard feature analysis in machine learning is

“leave-one-out” cross-validation, where one leaves out an input, retrains the classifier with

the same settings, and records performance differences. As we are less interested in abso-

lute classification accuracy, and more in qualitative functions encoded in the latent space,

we let our analysis be inspired by building models from the ground up, as we did in Chap-

ter 2 for models of immune recognition. First, we find the unique functions in latent space

that combinations of cytokines can encode. Note that the latent space is translational and

rotational invariant, as any orientation can be achieved by multiplying the weights W with

91



4.3 Results

a rotation matrix and updating W ′ accordingly. We are thus looking for variations beyond

this. Armed with this information, we then construct the rich latent space dynamics from

the ground up one cytokine at at time.

To obtain the unique latent space functions, we go through all permutations of cytokines

with which we train a new classifier using the standard architecture, hyperparameters and

training data. We categorize the resulting latent spaces as shown in Fig. 4.7. In the text

in the left margin we name the function and the cytokines required to encode it. Columns

show the latent spaces for four datasets with an example of this function, allowing us to

assess the robustness of this function across datasets. In the top row, all data has collapsed

onto a single line, showing that the information on peptide quality is one-dimensional. This

is obviously the case for any cytokine alone, but also for IL-6 and TNFα, and surprisingly,

also for IL-2 and IL-17A, encoding quality effectively in 1d. The classifier measures how

far the timeseries has progressed, a nonrobust quantity that depends strongly on time and

details of the dataset. In the second row, we obtain swirls, encoded by IFNγ and IL-6 or

TNFα. This behavior is near one-dimensional towards the end of the timeseries, but two

dimensional during the production phase. This is because IFNγ and IL-6/TNFα have a dis-

tinct quality dependence during the production phase is different, while in the steady state,

the quality dependence on these cytokines is similar. By using cytokine integrals instead

of cytokine concentration, inputs at later times have “memorized” what happened at earlier

stages, allowing for separation in the latent space. There is still significant variation across

datasets, visible in the details of the swirl and the angle of the steady state. In the third row,

we obtain straight lines in two dimensions by training the classifier on IL-17A and any of

IFNγ, IL-6 or TNFα. For all antigens, the angle with the vertical remains preserved. Differ-

ently said, the ratio of Node 1 and Node 2 remains constant over time, requiring a constant

quality dependence during the production phase and the steady-state of the cytokines, but

a dependence that is different for IL-17A and IFNγ/IL-6/TNFα. IL-17A determine the an-

gle dependence on antigen quality at the start of the timeseries. Spatially, timeseries of

the same antigens across datasets occupy more or less the same regions, meaning we have

found a representation that is robust to variability across datasets. Finally, in the fourth row,

using IL-2 and IFNγ/IL-6/TNFα, we retrieve the base of the typical latent space that we
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find with the full classifier, containing an initial “rise” followed by a “descent” that occurs

at times dependent on quality. This representation uses most of the space, allowing for a

spatial division by quality that is insensitive to the dataset and the time of the input, for t ≃
20 hours.

Straight line 1D  
cytokine alone,  
IL6 + TNFa,  
IL2 + IL17A


Swirl 
IFNg + any(IL6, 
TNFa)


Straight lines 2D  
IL17A + any(IFNg, 
IL6, TNFa)


Base 
IL2 + any(IFNg, 
IL6, TNFa)

Pep. Comp. 18   Pep. Comp. 19   Pep. Comp. 20   T Cell Number 7

Figure 4.7: Fundamental functions of cytokines. Rows show straight lines in 1d, straight
lines in 1d with a swirl, straight lines in 2d and base of the standard latent space. Columns
show four datasets projected on latent spaces for the following setups from top to bottom:
IL-2 alone, IFNγ + TNFα, IFNγ + IL-17A, IL-2 + IL-6. Combinations of input that encode
a similar function are indicated in the margin. The classifier was trained using standard
architecture and hyperparameters.

The latent space is built up from these four fundamental functions, shown in Fig. 4.8,

left panel. Starting with just IL-2, we then add IFNγ, obtaining a 2d representation. Next,

we add IL-17A for an early angle dependence on quality. Finally, we stretch the latent space

by adding IL-6 and TNFα, slightly enhancing classification accuracy by making the classi-

fier more robust to variability between experiments. Despite the importance of IL-6 [153]

and TNFα [154] in the immune response, we learn from the incremental change to the

latent space design upon their inclusion that they do not provide much information about
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encoding quality that other cytokines do not already provide. The causal relationships be-

tween the cytokines are hard to establish, and are not unidirectional, but an attempt is made

to hierarchically link the cytokines (Fig. 4.8, right panel). The first level roughly distin-

guishes between cytokines produced through the innate immune response and adaptive

immune response. The second level divides the innate immune response into inflammatory

mediators TNFα/IL-6 and IFNγ and the adaptive immune response into IFNγ, IL-2 and

IL-17A. As the response is two-dimensional, picking a cytokine from either of the two

branches provides most of the information on quality contained in the cytokine response.

The details matter, and choosing IL-2 or IL-17A makes a difference (Fig. 4.7), as does

picking IL-6/TNFα over IFNγ.

IFNγ     IL-2     IL-6    IL-17A   TNFα

innate 
immunity

adaptive 
immunity

IFNγ IL-2IL-17AIL-6TNFα

inflammatory 
mediators

stretch

angle

Figure 4.8: Hierarchy of cytokines. The latent space is built from the ground up by training
a classifier on IL-2 and IFNγ, and incrementally including IL-17A, TNFα and IL-6 (left).
Cytokines from both innate and adaptive immunity are required to obtain the base 2d latent
space. This is explained through a crude hierarchy of cytokines (right). The latent space
is given more features by adding IL-17A (angle) and TNFα/IL-6 (stretching), both aid in
classification accuracy.

To conclude, we have analyzed what features are present in the cytokines by categoriz-

ing latent space functions, and building the latent space from the ground up. This allowed

us to draw a hierarchical tree of cytokines, where branching points can be connected to an

existing hierarchy of cytokines in the immune system. It is remarkable that we can retrieve

these details by measuring only five cytokines. One could imagine that by including more
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cytokines, this tree can be completed in more detail, providing a visual interpretation of

the cytokine response to T cell activation. New cytokines most likely become new leaves

to already existing branches, pointing towards deeper levels of fine-graining in T cell acti-

vation. Having qualitatively described through what features the latent space is created, we

now proceed with quantitatively modelling the dynamics.

Parameterizing latent space

The latent space dynamics of all timeseries have similar features, which we describe now.

First, there is an initial rise at an angle correlated with antigen quality. Moreover, the rate

of increase in cytokine integrals (=cytokine concentration) seems to increase with antigen

quality. When IL-2 consumption exceeds IL-2 production, earlier for antigens of lower

quality, a drop in the vertical latent space coordinate is initiated, resulting in a straight

line pointing mostly down. The angle with the vertical of this steady state is constant for

timeseries within an experiment, but varies between experiments.

These features remind us of ballistic trajectories with an initial propulsion phase fol-

lowed by a free fall with drag. We get to do rocket science! We study two piecewise models

that describe the dynamics well. The first model is the constant velocity model, named after

the constant velocity that is held in the propulsion phase, and is described by

r(t) =

⎧
⎨
⎩
v0t t ≤ t0

v0−v∞
2k

`

1− e−2k(t−t0)
˘

+ v∞(t− t0) + v0t0 t > t0.
(4.21)

Here, r(t) are the latent space coordinates. The constant velocity v0 can be decomposed

into v0 = (v0 cos (θ), v0 sin (θ))
T where θ is the angle relative to the vertical and v0 is the

average logarithmic cytokine concentration from [0, t0]. The parameter t0 determines when

to end the propulsion and enter the free fall phase, the drag coefficient k determines how far

the forward momentum from the propulsion is being carried over until the terminal velocity

v∞ is reached. The terminal velocity can be decomposed into v∞ = (vm, vt)
T , where vm

is the velocity of the medium corresponding to the steady state velocity in the x-direction,

and vt is the terminal velocity in the y-direction, which is reached when the drag force
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equals the gravitational force. Following standard convention, we assumed gravity points

down, and the medium moves horizontally. The gravitational constant is implicit in vt. The

second model is the constant force model, taking into account finite acceleration during the

propulsion phase. To find the velocity in the propulsion phase, we solve Newton’s second

law

r′′(t) = F− kr′(t). (4.22)

Here F is decomposed into F = (F cos θ, F sin θ)T where F is is the constant force per unit

of mass and θ is the angle with the vertical, k is the drag coefficient per unit of mass and

r′(t) and r′′(t) are the instantaneous velocity and acceleration in latent space. Solutions for

the velocity r′(t) during the propulsion phase are given by

r′(t) =
F

k

`

1− e−kt
˘

+B (4.23)

from which it follows that

r(t) =
F

k2

`

kt−
`

1− e−kt
˘˘

+Bt+C (4.24)

where B,C = 0 reflect that the timeseries starts in the origin without momentum. The

second phase remains unchanged compared to the constant velocity model and is given by

r(t) =
r′(t0)− v∞

2k

`

1− e−2k(t−t0)
˘

+ v∞(t− t0) + r(t0) (4.25)

with r′(t0) =
F
k

`

1− e−kt0
˘

and r(t0) =
F
k2

`

kt0 −
`

1− e−kt0
˘˘

. We solve both models in

dimensionless time, i.e. t → kt, t0 → kt0, v0 → v0/k, v∞ → v∞/k and F → F/k2,

removing the need to fit parameter k.

We settled on the following fitting procedure. First, we set k to a reasonable value and

made time dimensionless. We had good results with k = 1/20hr−1. Next, we determined

the ratio vt/vm by taking the median from the distribution of vt/vm coming from all time-

series in the experiment, which is immediately available from the latent space. By taking

the median, we remove the effect that outliers have on the mean. We use this ratio twice.
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Once to determine vm as a function of vt, and a second time to offset the vertical axis that

sets θ = 0. We now have four parameters that fix the model: the scalars v0 or F , the angle

θ, the time t0 and the scalar vt. We then proceed with fitting the equations to the integrals of

node 1 and node 2 separately using SciPy’s curve_fit method [155]. We add a regulariza-

tion term to the loss function penalizing the absolute value of the parameters and nudging

them towards zero in case they are undetermined. This is of importance for timeseries with

low antigen quality where t0 is small, causing v0 or F and θ to be undetermined, as well

as for timeseries with high antigen quality where t0 approaches the experimental times,

causing vt to be undetermined. In Appendix Fig. C.4 we show how regularization helps in

constraining parameters.

A comparison of the two models is given in Fig. 4.9. In the integral latent space (left

panel) are slight discrepancies, for instance, in the constant velocity model, the initial rise is

overestimated, while around the transition from the propulsion phase to the ballistic phase,

the model compensates by underestimating the integrals. This is a subtle effect in latent

space coordinates. For a better comparison, we look at the derivatives of node 1 and node 2

over time (center and right panel). We now see much better that the constant velocity model

does not take into account the bounded exponential in the propulsion phase, approximating

it by a straight line. The constant force captures the exponential rise well, but around the

transition overcompensates to accommodate the sharp transition.

Figure 4.9: Comparison of ballistic models. Integral latent space (left panel) and con-
centration latent space for node 1 (center panel) and node 2 (right panel) over time. Solid
linestyle are from splines, dashed lines are from constant velocity model and dotted lines
are from constant force model

A natural extension of the constant force model is to introduce an interpolation pa-

rameter λ that smoothes the piecewise functions into a continuous function, for instance,
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by weighting the propulsion phase by σ(t) = 1
1+e−λ(t−t0)

and the ballistic phase by

σ(t) = 1
1+e−λ(t0−t) . An immediate concern that arises from this definition is that the bal-

listic phase strongly decreases for t < t0, while the propulsion phase remains constant

for t > t0. Because of this asymmetry, a simple interpolation of the entire function might

smooth the curve, but changes its shape too strongly. To circumvent this, one could smooth

both phases with the latent space coordinates r(t0) at the transition as r(t0)

1+e±(t−t0))
. We do

not further discuss this, because the constant force model works well enough for our pur-

poses, failing only near t0 for the derivative of the fitted function. Note that the derivatives

of the latent space coordinates are equal to the latent space representation of the cytokine

concentrations
dh(t)

dt
=

d I(t) ·W
dt

=
d I(t)

dt
·W = c(t) ·W. (4.26)

When one desires a more accurate model for the derivatives of the latent space represen-

tation, for instance, to recover the cytokine concentrations, it is worthwhile to consider

an interpolating scheme that smoothes the discontinuous transition of the constant force

model. François Bourassa worked on a more detailed model that also better takes into ac-

count node 2 dynamics [3].

Having fit the latent space data to our satisfaction, we now proceed with discussing

the parameter estimates. In the next section we provide an extensive discussion on the

interpretation of the parameters, but first we want to understand why in certain regimes

some parameters are not well determined. Fig. 4.10 shows two 2d parameter spaces (v0
or F vs. t0 and θ vs. vt) for the constant velocity model (left panels) and the constant

force model (right panels). Quality correlates with v0, F , t0 and θ, and after correcting for

quality, with quantity too. The parameters v0 / F , t0 and θ correlate too, meaning that a

high F implies a high t0 and θ. Error bars show one standard deviation on the parameter

estimates. In the constant velocity model, error bars on t0 are especially high for antigens of

high quality (N4, A2, Y3), as t0 approaches experimental times. Moreover, in both models

vt is not well determined for antigens with high t0 (A2, Y3, Q4), because little time is spent

in the free fall phase. vt has a narrow uncertainty interval for N4, because of regularization

pushing the parameter values down, and t0 being large enough that the value of vt does not

affect the parameter fit. Finally, in the constant force model, parameters F , t0 and θ are
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Constant forceConstant velocity

Figure 4.10: Parameter space for ballistic model. Parameters for the constant velocity
model (left) and constant force model (right) against one another: Magnitude (F or v0) vs.
time to transition between propulsion and free fall phase t0 (top panels) and angle θ vs. vt
(bottom panels). Error bars are one standard deviation coming from the covariance of the
fit.

determined better for antigens of higher quality than for antigens of intermediate quality,

likely because a small discrepancy in F or θ is amplified over a longer production phase.

These parameters are very well determined for low quality antigens, because regularization

sets them to zero. There thus seems to be a trade-off that in the higher quality regime,

the model is very well able to capture the timeseries, while in the other regimes some

features of the model are redundant. In these regimes, some of the parameters are “sloppy”,

the central concept in Chapter 2 that allowed us to do parameter reduction. We can find

important (“stiff”) and unimportant (“sloppy”) parameters by inspecting the eigenvectors
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of the Fisher Information Matrix (FIM) [50, 156, 157]. The FIM can be considered a metric

gµν tracking the curvature of parameter space. It is found by computing second derivatives

of the log-likelihood log(P (r⃗, θ⃗)) with respect to the parameters θµ, θν

gµν =
∂2 log (P (r⃗, θ⃗))

∂θµ∂θν
. (4.27)

Here, P (r⃗, θ⃗)) is the probability that the parameters θ⃗ are the best fit given the Gaussian-

distributed residuals r⃗ = {ri}, ri = ŷi − yi(θ⃗), where ŷi is a data point, yi(θ⃗) is the

corresponding model prediction, and i runs over all datapoints. This is equal to the square

of the Jacobian of the model prediction [157], independent of the residuals

gµν =
∂y(θ⃗)

∂θµ

∂y(θ⃗)

∂θν
. (4.28)

The eigenvectors of gµν corresponding to the ranked eigenvalues are orthogonal directions

in parameter space to which the model is decreasingly sensitive. The square root of the

eigenvalues corresponds to the curvature in the direction of the eigenvector. Local changes

in parameters along stiff directions have a strong effect on the model outcome, while local

changes in parameters along sloppy directions have little effect on the model outcome.

We compute the eigenvalue spectrum of the FIM with Eq. 4.28 for each timeseries

separately. The Jacobian is the square root of the Hessian matrix, which we find from

the inverse of the covariance matrix, returned by SciPy’s curve_fit [155]. The eigenvalue

spectrum of the constant velocity model is given in Fig. 4.11, top panel. We plot the eigen-

values relative to the largest one per timeserie following Machta et al. [50]. Eigenvalues

can become arbitrarily small; those that are not plotted are smaller than 5 · 10−6 and can

be considered zero, because we reach numerical precision computing the inverse of the

covariance matrix. When inspecting the eigenvalue spectrum of the FIM, we first look for

a hierarchy of eigenvalues, which is clearly present here, although the details depend on

the antigen quality. We note that in the low-quality and high-quality regime, there are one

or more eigenvectors with eigenvalue 0, which means that parameters of the corresponding

eigenvector cannot be determined. In the low-quality regime (V4) we find a single most
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important eigenvector, meaning that this regime can be described well with only one ef-

fective parameter; in the other timeseries the first two eigenvectors have close to the same

eigenvalue, which means the regime is described by two effective parameters. Finally, in

the intermediate regime, three, or even four effective parameters are required to describe

the data well using the constant velocity model. Seen across a range of conditions, all pa-

rameters are of importance, which means that our model is a parsimonious description of

the data.

In the bottom panel of Fig. 4.11 we show the squared eigenvector components ranked

by eigenvalue. The eigenvectors are orthonormal, so their components sum to one when

squared. As such, the eigenvectors can be visualized and compared easily this way, al-

though we lose information on the sign of the components. Rows show the eigenvectors

corresponding to the eigenvalue of the timeseries denoted on the x-axis. We find that for

antigens N4, A2, Y3, and Q4 parameters θ and v0 are most important. t0 is of no impor-

tance to N4 and A2 1µM and 100nM, because t0 is larger than the experimental time of

the system. Changing it slightly does not affect the model prediction. Similarly, vt does

not influence these timeseries, which is indeed the second of the two unimportant param-

eters. Timeseries with antigen T4 are at a turning point where the presence of v0 in the

most important eigenvector decreases with quantity, and is taken over by vt. It also has the

strongest mixed eigenvectors, which means there is no clear hierarchy in individual param-

eters in terms of importance on fitting the model. Mixed eigenvectors can provide hints on

how to reduce the model into one with actual effective parameters. We would then have to

inspect the signs of the eigenvector components, and do the parameter reduction, which we

do not get into here.

Fig. 4.12 shows the eigenvalue spectrum (top panel) and eigenvector decomposition

(bottom panel) for the constant force model. We again find that we need at least two ef-

fective parameters to fit the data for most timeseries, although all parameters matter. The

exact make-up of the important parameters differs with antigen quality and quantity. There

are modest differences between Fig. 4.12 and Fig. 4.11, most importantly that t0 is well

defined in the high quality regime, because it is smaller than the experimental time. This

means that in the constant force model, except for the low-quality regime, all parameters
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Figure 4.11: Eigenvector decomposition of FIM for constant velocity model. Eigenvalue
spectrum (top panel) and squared eigenvector components (bottom panel). Eigenvalues are
scaled to the largest eigenvalue per condition. The eigenvectors are orthonormal, so that
their squared components sum to one.

are well-determined. From the eigenvector decomposition, we learn that for all antigens

except V4 θ is the most important and F the second most important parameter. In the con-

stant velocity model, θ and v0 switched importance A2 100nM for no particular reason. In

general, the eigenvalue decomposition of the FIM for the constant force model is smoother

than the one for the constant velocity model. Besides fitting the concentration latent space

better, these are more factors in favor of the constant force model, which why moving for-

ward, we mainly discuss the constant force model. There is one experimental configuration
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where one could argue that the constant velocity model fits the data better, which is where

we discuss both ballistic models.

Figure 4.12: Eigenvector decomposition of FIM for constant force model. Eigenvalue
spectrum (top panel) and squared eigenvector components (bottom panel). Eigenvalues are
scaled to the largest eigenvalue per condition. The eigenvectors are orthonormal, so that
their squared components sum to one.

The main takeaway from the FIM analysis is that the ballistic models and associated

parameters can confidently be used for interpreting a range of experiments in the next

setups. We have formalized that t0 is better determined in the constant force model, and that

both ballistic models contain parameters that can be hierarchically ordered in importance,

and lack obviously redundant parameters. In short, this just shows that our approach for
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modelling the latent space is sound, and that we may proceed with relating these parameters

to immunology.

Interpreting parameters of immune response

In this section, we study the behavior of the parameters of the ballistic models for various

experimental setups. This serves as an opportunity to discuss the biological interpretation

of these parameters and to explore the generality of the latent space and the robustness of

the ballistic model. The parts that we can change in the experimental setup are antigens,

T cells and APCs. A first test of robustness is to reduce the precursor frequency so that

fewer cytokines are produced. The second test is to change the antigens from OVA anti-

gens specific to OT-1 T cells to e.g. LCMV antigens specific to P14 T cells, as well as

others. We also change the T cell type from CD8+ T cells to CD4+ T cells and we con-

sider pre-activated T cells called T cell blasts instead of naive T cells. We also change the

APCs delivering the antigens from splenocytes to macrophages, dendritic cells and tumors.

Finally, we consider drug-experiments to directly connect biology to model parameters.

Precursor frequency

The first experimental configuration concerns precursor frequency. Experiments have been

prepared with {3 · 103, 104, 3 · 104, 105} T cells, where 105 cells is the default. Immune

responses with a smaller precursor frequency take longer to mount to give the T cell pop-

ulation a chance to expand sufficiently. The relationship between the fold expansion and

the precursor frequency follows a power-law with factor −1
2

[135], as discussed in 4.1,

meaning that if the precursor frequency is 100 times smaller, the fold expansion is 10 times

larger, and the final T cell population will be a factor 10 smaller. Naturally, it takes longer

for the population with a smaller precursor frequency to reach the time at which prolifera-

tion ceases. We thus expect a larger t0 that we may not be able to estimate well for antigens

of higher quality within the fixed experimental time of 72 hours. In Fig. 4.13 we show

the typical latent space dynamics (left panel) and associated F, t0 parameter space (right

panel). Dynamics for conditions with a lower precursor frequency do not have the range

of conditions with similar antigen quality and quantity but larger precursor frequency. It is
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fascinating how similar the dynamics are for conditions with the same quality (linecolor)

but different precursor frequency (linestyle), especially, because the latent space was opti-

mized for classifying antigen quality independent of antigen quantity at fixed precursor fre-

quency. Inspecting the parameter space, we note that with decreasing precursor frequency,

t0 consistently increases while F decreases.

Figure 4.13: Precursor frequency experiment. Data projected in latent space (left) and
F, t0 plot of the parameter fit of the ballistic model (right).

The relationship between F, t0 and precursor frequency makes us wonder if we could

relate our model to an existing model of T cell expansion [138]. Similarities are that both

models are biphasic and contain a characteristic time (t0 in our case, t∗ for Mayer et al.)

at which the expansion switches from exponential proliferation to a slow decay. The main

difference is that our model describes an in-vitro immune response, while Mayer’s model

describes an in-vivo immune response. We used the number of events that the flow cytome-

ter records as a proxy for T cell numbers and fitted the data given in Appendix Fig. C.5

with Eq. 4.4 using the precursor frequency T (0), quantity C(0) and quality K as initial

values. 1µM and 100nM correspond to a saturating number of antigens C(0) = 105 when

the APCs are fully loaded, and decreases linearly after that. The antigen with the highest

quality N4 has K ≈ 10−11 ∼ 0.1 in absolute number. EC50 or K for the other antigens

follow from [149]. During the staining and washing about 90% of the T cells are lost; we

account for this by normalizing the whole timeseries by a factor such that the number of

counts at the first timepoint (1hr) corresponds to T (0), preserving relative proportions. We

fit the data using SciPy’s least_squares method, and find α = 0.85, δ = 0, µ = 0. We gath-
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ered that our experiments do not run for long enough to observe and accurately estimate

the rate of antigen consumption µ and T cell decay δ, neither of which is actually zero.

This does not come as a surprise, inspecting the data. Indeed, only for some conditions

does the last timepoint at t = 72hr shows sign of a decay in T cell number. Although we

find that T cells with smaller precursor frequency proliferate for longer, and that V4 slows

down proliferation noticeably earlier than N4, A2 or Y3, the antigen quantity dependence

is minimal. With this being the driving force of the model of Eq. 4.4, we did not continue

the analysis. We conclude that t0 and t∗ are timescales for different processes. Most likely,

t0 is a timescale related to the upregulation of IL-2 receptors consuming IL-2 [114, 124].

Given the complexity of this model, we have decided to not further pursue this path, but ac-

cept the correspondence as is. Drawing a rigorous connection between the ballistic models

and [114, 124] remains an open problem.

T cell type

The second experimental configuration concerns changing T cell type. There are many

aspects of the naive OT-1 CD8+ transgenic T cells that can be changed. We start with

using preactivated T cells or T cell blasts instead of naive T cells. Naive T cells are mixed

with beads coupled to anti-CD3 and anti-CD28 antibodies to obtain preactivated T cells.

The CD3 antibodies bind to the TCR and the CD28 antibodies bind to the CD28 receptor,

providing primary and costimulatory signals to the T cells, effectively activating them.

After two days the antibodies are washed off and human IL-2 is added to the culture so that

T cells can start expanding for a total of four days. Finally, the dead cells are removed, and

the experiment is started the usual way by mixing the T cell blasts with antigens loaded on

APCs. We also obtain T cell blasts by activating them with Concanavalin A (ConA). ConA

is a lectin, a carbohydrate binding protein, which binds and crosslinks TCRs, activating T

cells that way. Creating T cell blasts is an art, as overstimulation with IL-2 might cause T

cells to no longer produce IL-2 when re-stimulated, potentially due to the elusive exhausted

T cell type [158].

In Fig. 4.14, we compare the integral latent space dynamics (top panels) and model

parameters for the constant force model (center panels) for naive and preactivated T cells.
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Figure 4.14: Activation experiment. Data projected in latent space (top), derivatives of
node 1 and node 2 over time compared with fit of constant velocity and constant force
model (center) for timeseries with quantity 1µM, and F, t0 plot of the parameter fit of the
ballistic model (bottom). Columns show from left to right experiments with naive, ConA
activated and CD3/CD28-antibody activated cells.
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Curves from the latter T cell type are turned clockwise in the direction of decreasing θ.

The difference in response for the stronger antigen qualities (N4, Q4 and T4) has shrunk

significantly, especially in the early response where θ is visually the same for N4, Q4 and

T4. Indeed, F is constant (ConA) and near-constant (aCD3/aCD28) for all four qualities.

The cytokine response for T cell blasts, the in-vitro equivalent of memory cells, is in ac-

cordance with the immunological paradigm of the existence of only three antigen types:

non-agonists, partial agonist and agonists [25]. For naive cells there is no agreement, as

there exists a continuum of cytokines response to antigens of varying quality.

For T cell blasts, we also compare fits for the constant velocity model and the constant

force model. The biology is sufficiently different in this experimental configuration that

the constant force model is not by default superior. For instance, T cell blasts ramp up cy-

tokine production much faster than naive T cells due to enhanced chromatin accessibility

[159]. This pronounced difference is visible in concentration latent space (Fig. 4.14 bottom

panels). First, let us consider the derivatives of node 1 (top) and node 2 (bottom) for the

naive cells. Modulo the sharp transition between propulsion and free-fall phase, the con-

stant force model captures the dynamics very well, only underestimating t0 for N4. The

constant velocity model approximates the rise with a constant velocity in integral latent

space coordinates over the distance travelled until time t0, so a straight line in concentra-

tion latent space. This does no justice to the intricate dynamics at the start and end of the

cytokine production phase, and generally overestimates t0. Moving on to the concentra-

tion latent space coordinates of ConA and aCD3/aCD28 activated cells, we note that the

ballistic models fail most obviously by assuming a discrete transition from production to

consumption phase. If the transition is continuous, the estimate for t0 is bound to be inac-

curate. The ballistic models capture the initial production phase differently. The constant

velocity model still starts off too high, but less so than for naive cells, which makes this

model a better candidate for describing the cytokine response of preactivated cells. Yet, it

preserves the dependence between v0 and t0 for different antigen qualities, which is in stark

contrast to the actual response, where the first 10 hours of the cytokine production phase

are very similar for antigens of higher quality, but the consumption phase starts at different

times. The constant force model cannot capture the strong initial production phase, but as-
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signs equal F to each of the antigen quantities, preserving the relative dependence. Finally,

t0 changes from a dependent measure of antigen strength (correlated with θ and F ) to an

independent measure of antigen strength for preactivated cells, a measure that may not cor-

respond precisely to the transition time between two phases, but is correlated with antigen

quality. For these reasons, the constant force model still is our preferred ballistic model.

The next aspect of the T cells we change is the TCR and corresponding antigens. We

have access to a range of antigens of varying quality specific to transgenic P14, PMEL and

HY T cells. Top panels in Fig. 4.15 show the latent spaces, bottom panels show the F, t0

parameter spaces. It is worth reiterating that the integral latent space dynamics are found

by training on cytokine integrals from the response of OT-1 T cells to SIINFEKL antigens.

The cytokine response is messy for unknown experimental reasons, which is reflected in

the integral latent space. We expect a future experiment with new supernatant and new

mice to give cytokine responses and integral latent spaces similar to previous experiments.

Despite that the curves in integral latent space do not precisely look like ballistic curves,

the fitted parameters F and t0 exhibit the hierarchy of antigen qualities for all four TCRs.

It must be said that the specificity of the P14 and PMEL antigens is binary, while we find

more of a continuum for OT-1 and HY. This point towards an inherent TCR property:

certain transgenic T cells may respond in a more binary fashion while others may exhibit a

continuum of antigen qualities.

The final part in changing T cell type is substituting CD8+ T cells with CD4+ T cells.

As mentioned before, CD4+ T cells are helper T cells whose effector functions include

regrouping other T cell types to the site of infection, while CD8+ T cells, the killer T

cells, do the majority of the killing. The experiments are done with primed naive CD4+ T

cells from 5CC7 transgenic mice, using antigens that are specific to this TCR. The integral

latent space dynamics and corresponding F, t0 parameter space are given in Fig. 4.16 (top

rows). This again serves as an important validation that the latent space we have found

from the cytokine response of CD8+ T cells is also informative of the cytokine response

of CD4+ T cells. We find a similar hierarchy in antigen quality, but for CD4+ T cells, a

much stronger dependence on quantity exists, corresponding with the scaling law of Eq.

4.9 [124], and recapitulated with the parameters of the constant force model. Interestingly,
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Figure 4.15: TCR experiment. Data projected in latent space (top) and F, t0 plot of the
parameter fit of the ballistic model (bottom). Panels from left to right show experiments
with OT-1, P14, HY, PMEL T cells. Invisible markers in the bottom panel are plotted on
top of each other at (F, t0) = (0, 0).

Figure 4.16: CD-4 experiment. Data projected in latent space (top left panels) and F, t0
plot of the parameter fit of the ballistic model (top right panels). Left subpanels show
experiments with CD8+ T cells (OT-1), right subpanels show CD4+ T cells (5CC7). Bottom
panels show cytokine responses for CD8+ T cells (top) and CD4+ T cells (bottom).
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with lower antigen quantity, t0 remains constant while F decreases, which is due to t0

being saturated and in reality larger than the experimental time. The curves in integral

latent space do not descend due to the lack of IL-2 consumption (Fig. 4.16, bottom panels).

The ballistic models are thus overparameterized for experiments with CD4+ T cells, as

t0 and vt are indetermined. Yet, F alone suffices to capture the differences in strength of

response. The cytokine responses between CD4+ T cells and CD8+ T cells (bottom panel)

are quite different. For instance, CD4+ T cells do not produce IL-17A at all, causing the

lack of variation in θ. Despite the differences we are able to fit the curves with the ballistic

models and interpret the parameters, which is testament to the generality of ballistic models

in fitting the cytokine response.

APC type

Next, we show results for experiments where we change the antigen presenting cells from

splenocytes to macrophages, dendritic cells (DCs) and tumors. We discuss macrophages

and DCs first. DCs link the innate and adaptive immune system through their effector

function of uptaking antigens from the environment and presenting them to T cells [160].

Macrophages do this too, but their main function concerns the phagocytosis of pathogens,

not the presentations of antigens 2 Finally, splenocytes are immune cells harvested from

the spleen. The splenocytes used in the experiments have not been characterized at the time

of writing, but it is known that the spleen contains mainly B cells, immune cells whose

main effector function is to produce antibodies. B cells also present antigens, though not as

efficiently as professional APCs like macrophages and DCs.

We compare the immune response to OT-1 antigens enhanced with three adjuvants to

the response without adjuvants. A schematic for the experiment is given in Fig. 4.17. An

adjuvant is an immunological agent that is designed to aid (adjuvare, latin) the immune re-

sponse. The adjuvants concern lipopolysaccharide (LPS) + human IFNγ (hIFNγ) targeting

Toll-like receptor 4 (TLR4) and polyinosinic : polycytidylic acid (poly I:C) targeting TLR3.

2For his discovery of DCs and its role in the adaptive immune system the 2011 Nobel Prize in Physiology
and Medicine was awarded to Ralph Steinman, the third Nobel Prize that was awarded posthumously since
he passed away three days before the announcement, unbeknownst to the Nobel Prize committee.
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The last adjuvant is CD28 antibody (aCD28) targeting the costimulatory receptor CD28.

TLRs are an essential part of the innate immune system and are found predominantly on

APCs, although T cells also express several TLRs. Adjuvants like the ones described above

are added to vaccines to enhance the quality of the immune response, reducing the number

of vaccine doses required to achieve immunity and sometimes making vaccination possi-

ble at all [161]. This is an important field that has been given renewed interest due to the

ongoing pandemic, which we do not discuss further. We are mainly interested in the latent

space representation of such experimental configurations.

LPS + hIFNγ

poly I:C

anti CD3
anti CD28

SIINFEKL

SAINFEKL

SIIQFEKL

SIITFEKL

SIIVFEKL

Adjuvant APC Antigen T cell

SIIGFEKL

EIINFEKL

none
none

B cell

Macrophage

Dendritic cell T cell

Figure 4.17: Experimental setup for APC type experiment. One of four adjuvants stimu-
lates one of three APC types. Eight different antigens are loaded on the APCs and stimulate
the T cells. Elements of this picture are taken from ibiology.org.

In Fig. 4.18, top panels, we show the F, t0 parameter space for the fits to the integral

latent space of all timeseries, given in Appendix Fig. C.6. Columns correspond to TLR

agonists, colors indicate the antigen administered at 1µM and marker indicates APC type.

Broadly speaking, we observe similar latent space dynamics regardless of APC type and

adjuvant though the enhancement of the response varies in magnitude. Addition of adju-

vants results in nearly all cases in a stronger response. This is clearly visible for antigens

of lower quality (E1, G4, V4). The difference between macrophages and DCs is that for

macrophages especially F increases, while for DCs, F increases a little, if anything, while
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θ increases strongly (Appendix Fig. C.6), showing that macrophages and DCs respond

differently to stimulation by TLR agonists. The F, t0 parameter space for macrophages

stimulated with adjuvants is reminiscent of T cell blasts, where antigen quality is no longer

correlated with F but still with t0. This effect is especially visible for LPS + hIFNγ but

also for poly I:C. Regarding adjuvants, poly I:C is specific for macrophages, while LPS +

hIFNγ enhances the response of all APC types to antigens of low to intermediate quality.

Figure 4.18: Parameter space for APC experiment. Top panels: F, t0 plot of the constant
force model of the integral latent space given in Appendix Fig. C.6. APCs used in these
experiments are splenocytes (as usual), macrophages and dendritic cells (markers). The
APCs are stimulated by the following TLR agonists: None, LPS + human IFNγ, polyIC
and CD28 antibody (columns from left to right). Colors indicate antigen. Bottom panels:
visualizing synergistic effects by considering parameters F (Ag) and t0(Ag) relative to F
and t0 for timeseries without antigen administration (“None”).

Finally, to our surprise, we found evidence for antagonism by comparing the model

parameters to None (grey marker, no antigen administered). We visualize the potentially

antagonistic effects by plotting F (Ag)−F (None) versus t0(Ag)− t0(None) for each anti-

gen (Fig. 4.18, bottom panel). Here, Ag indicates the specific administered antigen. We

comment on the findings from left to right in the columns. For “None” TLR agonist, there

appears to be antagonism in macrophages for E1 and G4 and perhaps even T4 through
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parameter t0. Upon inspection of the F, t0 plot above, t0(None) does not follow the trend

F ∝ t0. Here, t0 is surprisingly large given F . We cannot say with certainty that this is an

error, but something might have gone wrong with the experiment or in the fit. This shows

that one has to proceed with care in considering antagonism using this method, because it

strongly relies on having the correct reference with the “None” agonist.

Moving on, for splenocytes stimulated with LPS + hIFNγ, both F and t0 are negatively

affected by antagonists V4, G4 and E1. Interestingly, professional APCs do not suffer from

antagonism through LPS + hIFNγ activation. Then, for poly I:C, we find no antagonism

in the splenocytes, but we do for macrophages and DCs. For macrophages, parameter F is

antagonized for T4, V4 and G4, while for DCs t0 is antagonized for V4, G4 and E1. The

“None” agonist reference follows the trend of the other conditions in this experiments un-

like in the “None” TLR agonist experiments, and thus seems more reliable. It is not known

what causes the localized inhibition of the initial cytokine production in macrophages and

the timescale of cytokine consumption in DCs, but that it happens is clear. There is likely a

distinction in parallel processing of T cell activation for macrophages and DCs, i.e. through

TCR signalling, acting on F and cytokines, acting on t0.

In Chapter 3, we described antagonism for mixtures of antigens in detail. Here we show

that T cell antagonism is not confined to mixtures of antigens. APCs activated through TLR

agonists activate T cells via costimulators and cytokines even without presenting antigens.

A T cell activated through these indirect channels will have its internal TCR chains phos-

phorylated regardless, triggering downstream pathways that result in T cell activation. It

has been proposed that antagonists like V4, G4 and E1 bind to the TCR weakly enough

to not further induce TCR chain phosphorylation, but strong enough to activate SHP-1,

a global inhibitor of TCR chain phosphorylation [33]. Without being conclusive on the

(family of) proteins mediating antagonism, an accepted general statement is that for ligand

antagonism to occur, one requires activation of some sort, as well as an antagonist targeting

a specific inhibitory mechanism against this activation. These experiments are further evi-

dence against the hypothesis that antagonism in T cell activation is caused by competition

for TCRs.
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Moving on, we now discuss experiments with tumor cell lines. Due to an impressive

feat of engineering, we can substitute splenocytes with tumor cells, while keeping the rest

of the setup the same. The tumor cells are transduced with a retrovirus expressing the

SIINFEKL protein, so they express only OVA antigens instead of tumor antigens [162].

Moreover, tumor cells do not naturally present antigens through their pMHCs, but they

do once they are pulsed with an interferon, like IFNγ. Finally, we expect T cells to kill

tumor cells, as long as the tumor presents antigen of sufficient quality and in sufficient

quantity. This introduces a population level feedback loop to the cytokines. All this is done

for several tumor cell lines (melanoma, lymphoma and adenocarcinoma), which introduces

additional variation. For instance, melanoma is a fast-replicating cancer, so the population-

level feedback might become important rapidly. At the start of the experiment, the tumor

cells are pulsed with IFNγ at various concentrations, correlating with antigen quantity.

Throughout the experiment, the pMHC expression varies depending on the amount of IFNγ

produced. This is different from using nontumor APCs, where the number of antigens

decreases exponentially over time.

We summarize the experiments in integral latent space (Fig. 4.19, top half) with cor-

responding latent space parameters (bottom half). We show two repeats of the same ex-

perimental setups done with 30000 tumor cells. We note that θ is much different between

repeats with the same tumor and antigen, more different than between tumors within the

same repeat. Clearly, there is experimental variability due to tumor and T cell preparation,

variability that is more pronounced due to the tumor - T cell interaction. We may speak of a

success with regards to the robustness of the integral latent space dynamics and the ability

to fit these using the constant force model. We find the correct hierarchy emerge through F

or t0 for each of the tumor types and experiments, except for TumorTimeseries_2 with B6

APC type (splenocytes), where there was a mix-up of antigens.

Drugs

Up until now, we have been mainly concerned with validations of the integral latent space

and the ballistic model through interpreting experimental configurations in the latent space.

Although we have seen parameters shift in certain experimental configurations (i.e. an-

115



4.3 Results

Figure 4.19: Tumor experiments. Data projected in latent space (top panels) and F, t0 plot
of the parameter fit of the ballistic model (bottom panels). Rows for both latent space and
parameter space show two experiments done with tumors and T cells from different mice.
Columns show from left to right splenocytes (B6), skin cancer cells (B16), lymphoma
cells (EL4) and lung cancer cells (MC38). Tumors are genetically engineered to express
SIINFEKL antigens, and require pulsing with IFNγ for pMHC expression.

tagonism in macrophages), making it plausible that these parameters capture underlying

biology, we never explicitly intended to change the model parameters. The last series of

experiments is designed to do exactly that. An intriguing observation of the parameters is

that F is generally strongly correlated with t0 and θ, except in special cases. The question

is now: can we decorrelate F , t0 and θ? Marchingo et al. quantified how many divisions

T cells go through during an immune response [163]. They found that the effect of signal

1, 2 and 3 (antigen binding, costimulation and cytokines) sum linearly. Taking away one
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of these signals reduces the number of division T cells go through. This proportionally

decreases the cytokine response, as cytokine concentrations are proportional to the size of

the T cell population. Through drugs experiments, we change signal 2 and 3, and wonder

how this affects the fitted parameters. Experiments are set up with antigen N4, Q4 and T4

at 1µM. Drugs are added 4 hours after the start of the experiment. In these experiments, we

report the percentual change in F, t0 and θ with respect to when no drugs is added, similar

to how we reported antagonistic effects in bottom panel of Fig. 4.18. Now we can reli-

ably report percentual change, because the “None” condition for each of the antigen gives

nonzero parameter values for F , θ and t0.

Our collaborators tested 24 drugs in this drugs experiment. Because the graphs get

messy with so many dimensions (24 drugs, 3 antigens, 3 parameters), we decided to sort

the drugs from largest negative effect to strongest positive effect. In the left panel of Fig.

4.20 we see how each of the drugs affects the parameters. The % difference for each of

the drug averaged over the three peptides and parameters ranges from -83% (antibody for

IL-2 receptor, aIL-2) to +7% (Resiquimod). In the right panels we have sorted drugs in

three groups (strong inhibitors, weak inhibitors and weak activators). Comparing the effect

of the drugs across parameters and antigens on the left panel, we observe that it is much

easier to change parameters for the T4 response, especially positively. For instance, drugs

are able to increase θ only for T4. This makes sense: N4 and Q4 already have large angles,

so it is hard to increase them even further given the constraints on cytokine production.

The second observation is that it is hard to completely shut down the response following

drugs administration after 4 hours. Dasatinib shuts down TCR signalling, but at 4 hours,

the immune response is already underway, and all three parameters can only be reduced

so much. Only aIL-2 manages to completely shut down the response to Q4 and T4. aIL-2

prevents already produced IL-2 to signal through the IL-2 receptor, thereby putting a stop

on cytokine production.

Coming back to our interest in decorrelating parameters, we now inspect 2d plots of

the percentage change of ∆F (Drug) vs ∆t0(Drug) (top right panels) and ∆F (Drug) vs

∆θ(Drug) (bottom right panels). Colors indicate antigen. For the weak inhibitors, the drugs

affect the parameters differently depending on the antigen: For N4, t0 is slightly decreased,
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Strong inhibitors

N4

Q4

T4

Weak inhibitors Weak activators

Figure 4.20: Parameter spaces of the drugs experiment. Cytokine response of the drugs
experiment is projected in latent space and fit with the constant force model. Left panel
shows % difference w.r.t. no drugs added for each parameter and antigen. Drugs are sorted
by color based on their % difference averaged over each antigen and parameter. 24 drugs
are divided into strong inhibitors, weak inhibitors and weak activators. Right panels show
2d space of % difference of F vs. t0 (top) and F vs. θ (bottom) for each of the three
categories of drug inhibition/activation. Color indicates antigen, marker indicates drug,
which is different for each column of panels.

for Q4, F is slightly decreased, and for T4, θ is mostly decreased, although t0 also in-

creases. The weak inhibiting drugs are the closest we get to decorrelating the parameters.

To our surprise, we find that the effect changes per antigen, meaning that parameters get

fixed at in different ways depending on the antigen. This means that to study the effect of

drugs on inhibiting the immune response, the antigen quality for the experiment matters.

The reason it does is likely that the time scales are different per antigen. We have already

seen that t0 relates to the time at which we move from the IL-2 production phase to the

IL-2 consumption phase, which ranges from 20 hours (T4) to 60 hours (N4). Not just is

t0 different per antigen, it is likely that the time at which t0 is set is different per antigen.

Similarly, for θ and F , when θ is high in the first hours, it is difficult to bend the curve all

the way down, while for smaller θ, like with T4, there is more flexibility in this parameter.
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We found a common denominator for some of the drugs that change θ for T4: they

reduce or enhance general inflammation by acting on cells in the innate immune system.

Tenoxicam is an anti-inflammatory drug, ibrutinib dampens the B cells response, AS101

inhibits anti-inflammatory IL-10 and augments TNFα [164] and, fostamatinib reduces in-

flammation of APCs like macrophages. With drugs, it is hard to target specifically one

parameter because they are tightly connected to the antigen quality. For instance, dasa-

tinib disrupts TCR signalling and thus reduces F , t0 and θ. The drugs that target cells in

the innate immune system target θ specifically, as F and t0 are purely linked to adaptive

immunity. This leads us to hypothesize that θ measures the ratio between activation of

adaptive immunity and innate immunity.

We can now try to relate the parameters explicitly to signal 1, 2 and 3. F relates to TCR

signalling, θ relates to costimulation and t0 relates to the timescale of IL-2 consumption.

This connection is based on the observation that θ is affected by the activation of APCs,

and that APCs contribute mostly via costimulation. APCs are responsible for part of the

cytokine production too, but specifically not for IL-2, whose production and consumption

phase determine t0. Marchingo et al. demonstrated the tunability of these signals changing

the number of divisions T cells go through. That we can establish connections between the

parameters of the ballistic model and fundamental immune processes shows that we have

developed a complete model of the population immune response.

Predicting quality

Quality is a measure of both the pMHC - TCR binding strength, characterized by the bind-

ing time τ , and the magnitude of the immune response, characterized by the EC50. EC50 is

the antigen quantity at which a half max of a dose-response curve is observed. It is one of

the three parameters in the Hill equation that the dose-response curve is fit to

C =
ALm

Lm + ECm
50
. (4.29)

Here, A is the amplitude of the response, m is the Hill coefficient that sets the steepness of

the curve, L is the antigen quantity, and C is an observable that is measured repeatedly, like
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IFNγ concentration or the number of activated T cells after a certain time following stim-

ulation. Our collaborators measured reference EC50s, given in Table 4.2. This is roughly

in correspondence with EC50s of the same OVA antigens in [148] and [149]. The dose-

response curves from which the EC50s are estimated are shown in Fig. 4.21. From left to

right, Daniels et al. measured the % of CD69+ thymocytes 16 hours post-activation, Zehn

et al. measured intracellular IFNγ 24 hours post-activation, and our collaborators measured

the size of a specialized cluster of T cells high in several markers of activation 10 hours

post-activation. The differences between Zehn et al. and Achar et al. can be partly ex-

plained by the different observables (intracellular IFNg vs. cluster of specialized activated

T cells). The differences between Daniels et al. and Achar et al. can be partly explained by

the difference in T cells (naive cells vs. thymocytes, cells from the thymus in the state be-

fore they become naive cells). Another factor comes from the preparation of the antigens,

which may affect the antigen loading on the APC. For instance, our collaborators found

that the Q7 antigens (antigens with a mutation of the OVA antigen at the anchor residue)

loaded on the APCs inconsistently, which is why they were excluded from this study. It is

a given that it is difficult to quantitatively reproduce experiments across labs. That we find

a correspondence within a factor of two for most antigens is already promising.

Table 4.2: Reference EC50s scaled to N4, the antigen with lowest EC50, and log transformed
for three datasets from different authors and obtained in different ways.

Antigen Daniels et al. (2006) Zehn et al. (2009) Achar et al. (2020)
N4 1 1 1
A2 2.7 2.4
Y3 4.1 7.6
Q4 39 18.3 21.5
T4 122 70.7 150
V4 680 1336
G4 7515 28292

The EC50s given in Table 4.2 are quantities relative to the strongest antigen N4. For a

good estimate of the EC50, many measurements in the non-saturated regime are required.

This is challenging if done for a range of antigens, because the non-saturating regime shifts
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Zehn et al. (2009) Achar et al. (2020)Daniels et al. (2006)

Figure 4.21: Dose-responses curves to estimate EC50 of OVA antigens. Figures taken
from [3, 148, 149].

towards higher concentration for lower quality antigens, and is per antigen at most two

orders of magnitude wide. For an antigen of unknown quality, one would have to cover

four decades, and multiple points per decade.

In this section, we attempt to predict EC50s from a single cytokine timecourse and com-

pare this to several baselines. We start by recognizing that four parameters in the constant

force model summarize the data well, as we exhaustively showed in previous sections. We

set up a multilayer perceptron using the model parameters as input and the relative EC50s

as a continuous output. Instead, we are only interested in one quantity, the EC50, thus there

is only one node O in the output layer, instead of one node per label. Matrix multiplication

without activation function leads to

O = h ·w. (4.30)

As usual, h are the values in the hidden layer and w is the vector of learned weights

connecting the hidden and output layer. The typical loss function is the mean squared error

(MSE)

MSE(O) = (O − EC50)
2, (4.31)

where O is the predicted EC50 and EC50 is the actual value. The goal of the learning algo-

rithm is to minimize this quantity summed over all samples. To remove bias for high EC50s

in the mean squared error, we take the log transformed log10 (EC50) as output, measuring

the difference between the antigen and N4 in orders of magnitude in antigen quantity to

reach the half max.
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Hints on what architecture may be required for good regression performance can be

found by inspecting the score and projecting the input on the nodes in the hidden layer for

an incrementally increasing number of nodes starting with a single hidden layer. With one

node, we find a score of about 0.75 on the validation set, depending on the training run.

With two nodes, the score for the best training run can reach over 0.80, and it does not im-

prove with more nodes or more hidden layers. The projection of the test data on Node 1 and

Node 2 of the two-node MLP regressor are given in Fig. 4.22 (left panel). It is no coinci-

dence that the one-node MLP regressor already works well: the two nodes exhibit a strong

linear dependence. Predicting EC50 from model parameters is a near one-dimensional prob-

lem, but we stick to a two-node hidden layer to exploit some of the nonlinearity at the

boundary.

It is not surprising that a one-node hidden layer MLP regressor works well. First, we

cannot expect a complex model to generalize well, because of the reduced amount of data.

We are left with one sample per timeseries for the wildtype experiments with 105 pre-

cursors, for a total of 66 samples. Second, in previous sections, we have shown that the

parameters of the ballistic model are correlated (Fig. 4.10). That the latent space of the

model parameters is also close to one-dimensional then only makes sense. With the archi-

tecture presented on the right panel of Fig. 4.22, we train the MLP for 3000 iterations with

a regularization rate of 0.1 (system is not sensitive to these hyperparameters) on the training

data, and predict the EC50 of antigens in several other datasets, including unseen antigens

A2 and Y3. Before we present the results, we introduce several baseline comparisons.

F

t0

θ

vt

EC50

Figure 4.22: Architecture MLP regressor. Latent spaces for a one-node hidden layer MLP
regressor (left) and two-node hidden layer MLP regressor (center). Right panel shows ar-
chitecture of the MLP regressor with latent space in the center panel.
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One may wonder if we even need an MLP regressor to predict EC50. The simplest

regressor is the linear regressor, which optimizes parameters a, b, c, d, e in the linear model

logEC50 = aF + bt0 + cθ + dvt + e. (4.32)

We use L1 regularization (LASSO) with rate 0.1 to enhance generalizability, and fit the

parameters using the same training data. Finally, in the true baseline, we predict EC50s

using the cytokine integral at a single timepoint, a measurement that is very similar to

IFNγ or IL-2 Elispot. We fit a linear function to the cytokine integral [cy]

EC50 = a · [cy] + b. (4.33)

This requires fitting only two parameters. The model could be made more complex by

including higher order polynomials, but as the linear model estimates EC50s reasonably

accurate, we see no need to go beyond this. The model parameters are set as to minimize the

mean squared error between predicted and actual EC50, like in Eq. 4.31. In the generalized

linear model, we measure multiple cytokines, like we would for Fluorospot [147]

EC50 =
N∑

i=1

ai · [cyi] + b. (4.34)

We choose to measure IFNγ and IL-2 at 12 hours. Results for the baseline are shown in the

three leftmost panels of Fig. 4.23. We show conditions with 105 precursors. Predictions for

the EC50 per antigen using IFNγ at 12 hours range over at least one and even two decades

for N4. Apparently, the IFNγ integral at 12 hours is too sensitive to antigen quantity to

robustly predict EC50. The EC50 prediction using IL-2 at 12 hours is confined to at most

one decade across datasets and concentrations, except for T4 1nM, which is already better

than we could do with IFNγ. The hierarchy within a dataset is preserved for the most

part, but not entirely. Fluorospot gives almost equivalent predictions as IL-2 Elispot would,

meaning that IFNγ does not contain information about EC50 that IL-2 already contain. The

right panels show the EC50 prediction of the linear regressor and MLP regressor using the

model parameters. The linear regressor makes precise prediction using the model parameter
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but operates in a regime that is too narrow, unable to predict a low enough EC50 for N4 or

high enough EC50 for V4. This demonstrates that log (EC50) is not linear in the model

parameters. The nonlinear activation function in the MLP regressor (hyperbolic tangent)

allows us to reach the lower limit, at the expense of making less compact predictions per

antigen. The MLP regressor remains limited in its capacity to predict the high EC50 of V4.

Inspecting the learned weights, we find that the first hidden node decreases with F , t0 and

θ, and increases with vt, while the main node 2 contribution comes from t0 and θ. The small

cytokine response coming from V4 is fitted best by setting all F , t0 and θ near zero and vt

to a small value, so that Node 1 is slightly positive and Node 2 is 0 (Fig. 4.22, center panel).

It has not progressed far enough along Node 1 so that its positive contribution can push the

EC50 to the actual value of EC50(V4). Predicting EC50 from smaller cytokines responses

by self antigens like G4 and E1 gives similar issues. This unveils a structural inability that

this procedure suffers from: without much of a cytokine response, model parameters are

small, and we cannot predict an EC50 > 103.
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Figure 4.23: Predicted EC50 plotted versus the actual EC50. Columns show the pre-
dictions using different methods. Dashed line indicates the diagonal where the actual and
predicted EC50 are equal. As usual, color indicates antigen quality, size indicates antigen
quantity and markers indicate different datasets.

We now proceed with the more challenging scenario where both precursor frequency

and antigen quantity are unknown. How well do each of methods do in predicting EC50? We

quantify how well the predicted EC50s correlate with the actual EC50s through R squared,

defined as

R2 = 1− SSres

SStot
, SSres =

∑

i

pyi − fiq
2 , SStot =

∑

i

pyi − ȳq
2 . (4.35)

Here, SSres is the residual sum of squares from the model prediction. SStot is the total
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Figure 4.24: R squared for experimental configurations from EC50 predictions. From
left to right: IFNγ, IL-2, IFNγ + IL-2, linear regressor and MLP regressor. Within a
subpanel, rows indicate concentration and columns indicate precursor frequency For the
squares with 10nM and 100nM four contributions are summed, for 1nM and 1µM, there
were 12 contributions. The methods are optimized with 105 precursor T cells.

sum of squares, measured as the difference between the actual values and the mean value,

proportional to the variance of y. It is useful to discuss the limits to understand R2. First,

when SSres → 0, R2 → 1, meaning that the model perfectly describes the data. When

SSres → SStot, R
2 → 0, the model does as good as predicting the average of the values

for every sample, which is not very good. When the model does worse than that, despite

being a “squared value”, R2 becomes negative. We report values down to −1, although R2

is not bounded from below. We compute R2 for data that the functions were fitted to (105

precursors), as well as for out-of-distribution data (3 · 103, 104, and 3 · 104 precursors).

The results are shown in Fig. 4.24. From left to right, we observe the IFNγ, IL-2 and

IFNγ/IL-2 baseline, the linear regressor and MLP regressor trained on parameters of the

constant force model. For the regressors, R2 approaches 1 for some pairs of concentration

and T cell numbers, and is positive everywhere, even for 3 · 103 cells with 1nM. The MLP

regressor gives a higher R2 than the linear regressor with values R ≥ 0.5 for all conditions.

The baselines give acceptable results for 105 precursors, IL-2 better than IFNγ, but not at

all with fewer precursors, because the predicted quality is highly dependent on absolute

levels. This is precisely why one usually computes dose-response curves. Then, a change

in cytokine concentration, be it due to the level of pre-activation of the T cells or the sample

preparation (i.e. number of T cells in a well), affects the amplitude of the Hill equation 4.29,

but not the EC50. As long as for each of the measurements, the same sample preparation

is used, one can recover the EC50. The difficulty with predicting the EC50 of an antigen
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of unknown quality using dose-response curves is first that the antigen quantity needs to

be known, and second, that the antigen quantity needs to be varied in the nonsaturating

regime. For an antigen of unknown quality it is not known where this is, meaning a large

regime has to be sampled. Our procedure allows for the prediction of EC50s by measuring

the cytokine response of a single timecourse independent of antigen quantity and precursor

frequency.

4.4 Discussion

In this chapter, we analyzed detailed time-kinetics of the cytokines response following

T cell stimulation aiming to recover antigen quality independent of antigen quantity. We

designed a procedure that allowed us to predict antigen quality from a timeseries of five

cytokines. The procedure started with processing the data through a log transformation of

the cytokine concentrations, smoothing with a moving average, spline-fitting, integration

of the splines, and sampling from the integrals at hourly intervals. We trained an MLP with

five input nodes, two nodes in the hidden layer and six output nodes. We predicted every

sampled timepoint individually, and applied a majority rule to determine the antigen class

of the timeseries. This procedure allowed us to correctly predict the antigen class of unseen

timeseries over three orders of magnitude in EC50 and two orders of magnitude in quantity

(10nM - 1µM). We reached the limits of precision, as the cytokine profile of an antigen

at concentration 1nM is equivalent to cytokine responses from an antigen of the class just

below at concentrations of 1µM and 100nM. From this we conclude that T cells measure

antigenicity in a continuous fashion as a convolution of quality and quantity.

We made many choices in setting up the pipeline, and acknowledge that our procedure

is not the only way to predict antigenicity from cytokines. For instance, one may wonder if

it is necessary to use cytokine integrals, an observable that is difficult to interpret. During

the development of the pipeline, we started off using cytokine concentrations, but did not

manage to design a neural network that was robust to IL-2 disappearing from the system.

Inspired by work by François Bourassa, we made a breakthrough in predicting antigen

quality using cytokine integrals. We sampled 72 timepoints from a timeseries and treated
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each datapoint as an individual sample. Naturally, the datapoints were highly correlated, so

we demanded our machine learning procedure to consist of a minimal architecture allowing

for maximal interpretability to not overfit. This also allowed us to make connections to

cytokine production in T cell decision-making. These design constraints guided the choices

that we made in setting up our procedure in terms of data processing, hyperparameters,

training data, measuring accuracy, etc.

Through a feature analysis, we discovered how the latent space was build from the

ground up by combining incrementally more cytokines. We proposed a hierarchy of cy-

tokines, and found out that for good antigen classification, one needs a cytokine that is

predominantly produced by immune cells from the innate immune system and one that is

predominantly produced by cells from the adaptive immune system.

Continuing along the lines of interpretability, we then treated the latent space as a literal

space, parameterizing the latent space dynamics with a piecewise ballistic model consisting

of a propulsion phase and a free fall phase. We found that the constant force outperformed

the constant velocity model by better capturing the cytokine production phase and better

estimating t0, the parameter determining when to switch phase. We then performed a sen-

sitivity analysis by considering the eigenvalue spectrum of the Fisher Information Matrix,

and considered regions in which the analysis indicated the model had sloppy parameters.

We understood that for timeseries with N4, vt is ill-determined, as the free-fall phase has

not started at the end of the experiment, and that for timeseries with V4, F and θ are

ill-determined because t0 is small, so there is just the free-fall phase. We noted that the

first eigenvectors of the FIM consisted mainly of a combination of F , t0 and θ, as if they

were strongly correlated, and all determined at the start of the experiment. We then seeked

an interpretation for each of the parameters. F corresponds to the magnitude of the cy-

tokine response, t0 is the timescale at which IL-2 consumption takes over IL-2 production,

θ measures the importance of adaptive immunity relative to innate immunity, and vt is the

steady-state response independent of adaptive immunity, what we could call the amount of

chronic inflammation.

Next, we represented the cytokine response of many different experimental configura-
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tions in latent space, parameterized the latent space dynamics, and provided a biological

interpretation. We also looked for applications for our pipeline. First, we saw that the latent

space dynamics are virtually independent of precursor frequency. We found that with de-

creasing precursor frequency, F decreases while t0 increases, corresponding to the notion

that T cell expansion continues for longer when the precursor frequency is smaller. Next,

we considered different T cell types. We interpreted the latent space representation for T

cell blasts, which are better described by the constant velocity model. We created a similar

hierarchy of antigen quality for antigens specific to T cells from other transgenic mice. Fi-

nally, we noted a stronger quantity dependence in helper T cells, and that with decreasing

quantity F decreased, while t0 remained constant.

Moving on, we changed the APC type to macrophages, DCs and tumors. Stimulation

by adjuvants enhanced the immune response in different ways for macrophages (increased

t0) and DCs (increased F ), especially for antigens of low to intermediate quality. Unex-

pectedly, we found evidence for T cell antagonism at the cytokine level. Experiments with

tumors resulted in population-level dynamics through T cells killing tumors depending on

their activation and the tumor type. Despite this additional level of response, we retrieved

the hierarchy of OVA antigens for each of the tumor cell lines. Finally, interested in the

correlation between F , θ, and t0, we analyzed parameters for drugs experiments. We found

that the immune response is hard to shut down entirely following drugs administration af-

ter 4 hours, and that the effect of the drugs on each of the parameters differed per antigen.

The strongest inhibitor was the IL-2 antibody, the strongest activitor was resiquimod. Drug

inhibitors that affect the APCs specifically target θ, tilting the balance between adaptive

and innate immunity. We found that many drug inhibitors targeted a combination of F and

t0, and that weak inhibitors targeted F (Q4) or t0 (N4) specifically. They would always de-

crease the parameter though. Only for T4 could drugs systematically enhance the immune

response. This points towards inherent constraints on T cell activation: it is easier to slow

down cytokine consumption than it is to accelerate the response, especially for high quality

antigens that already cause a strong response by themselves. The parameter θ, the ratio

between activation of the adaptive immune system and inflammation, cannot be changed

through the T cells, but through stimulating or inhibiting APCs, causing stronger or lighter
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inflammation. In future work, a systematic approach to drug perturbations could allow dis-

entangling the effect of specific inhibitors on the immune response, and provide a more

detailed biological interpretation of the parameters. We have already given a taste of what

is possible by identifying θ as responding mostly to APC inhibition or activation. The same

could be done for F and t0.

Finally, we designed a procedure to predict EC50 with a MLP regressor using parame-

ters of the ballistic model as inputs. We compared our results to baselines of IFNγ and IL-2

measured at single timepoints. We found that for a fixed precursor frequency, IL-2 at 12

hours did comparatively well across datasets, but when the precursor frequency changed,

the performance of this baseline classifier dropped quickly. IFNγ at 12 hours was already

too sensitive to variability in quantity in the experiments for fixed precursor frequency. This

came to our surprise, as in clinical settings IFNγ Elispot 12 hours after activation is used to

assess the T cell response. Apparently, this measure needs no reference. The MLP regressor

was robust to precursor frequency, being able to quantitatively predict quality independent

of quantity and precursor frequency based on a single timecourse.

This leads us into a discussion of the application of our pipeline. The reason Elispot is

predominantly used in clinical settings is because it is cheap and simple. These are clear

advantages over our system, which currently is more expensive and requires expertise.

Mabtech has spent many years optimizing Elispot. Oftentimes, an Elispot reader is sold to

laboratories who make extensively use of Elispot, making it easy to use. One could imagine

that in the future it will be simpler to run the assays our collaborators do to obtain detailed

cytokine time-kinetics. For the moment, it requires installation of a robot, expertise to pro-

gram the robot and a flow cytometer to measure the cytokines. Still, there are currently

already scenarios where it is crucial to obtain a more precise assessment of antigen quality

with respect to a known reference.

An applications that comes to mind is in adoptive T cell therapy, one of several upcom-

ing immunotherapies. Here, T cells and tumor cells are extracted from the blood and tumor

of a patient. The T cells are selected for tumor-specificity, expanded in-vitro, and injected

into the patients with the hope that the cancer-specific T cells attack the cancer [165]. With
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the robotic platform, tumor specificity can be determined accurately and should allow for

careful selection of T cells. Moreover, following expansion, T cells can again be tested to

make sure they are not overstimulated. Only then should they be injected into the patient.

Finally, efforts are made to develop combination therapies of immune checkpoint blockade

and adoptive T cell therapy [166]. This again is a step that can be tested in-vitro to under-

stand how much more reactive the T cells become following immune checkpoint blockade.

Our work concerned testing T cells from transgenic mice, mice whose T cells have only

one type of TCR. This relies on the hypothesis that within the entire immune repertoire,

only a single TCR is specific to the antigen. This is an outdated hypothesis: cross-reactivity

matters. Cross-reactivity is the reason why humans in principle have a specific response

against any pathogen one can imagine. It is of interest to understand with our pipeline how

cross-reactivity affects the cytokine response. Unfortunately, it is not feasible to test an or-

ganism’s entire immune repertoire in the controlled environment of a well in an incubator:

the number of T cells do not fit. One has to resort to using the mouse as a test tube, in

which it is a lot more difficult to accurately measure cytokines. One could extract blood

from the mice and measure the cytokines, but ethical principles prevent bleeding a mouse

more often than once every 6 hours. These measurements are also not nearly as precise as

cytokines in a well are, if only for the fact that the blood is not a complete representation

of the current state of inflammation.

In this work, we focused exclusively on the cytokine response, while there is a non-

explored world of cell surface marker data. A direction for future work is to devise a model

that takes into account both T cell states and global output like the cytokine response.

Examples of this focusing on IL-2 alone include [114, 124]. We have seen glimpses of

connection to models of microscopic interactions, i.e. through antagonism at level of TCR

interactions and cytokine response following addition of adjuvants, drugs that inhibit or ac-

tivate microscopic aspects of the response, resulting in macroscopic changes. Future work

could bridge the gap between models describing microscopic interactions resulting in a

heterogeneous population of T cells, and macroscopic outputs that are measured here.
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Outlook

In this thesis, we have discovered and explored latent spaces of immune recognition in the

broadest sense of the word. We introduced ϕ̄, a fitness-based parameter reduction algorithm

in Chapter 2 with which we extract “functional latent spaces”: core modules in a biochemi-

cal network that implement a desired function in a biochemical network. We mapped three

models of immune recognition onto each other and discovered how antigen discrimination

is implemented in each of the models. We found that an adaptive and a kinetic sensing mod-

ule are required for discrimination of antigen quality independent of antigen quantity. The

adaptive module is implemented via a feedforward mechanism (positive or negative) and

a negative feedback loop, corresponding to what’s known in the literature about minimal

models of adaptation [1, 61, 62]. We then were able to reconstruct a hierarchy of models.

Further down the hierarchy, models are more detailed, containing additional features or

modules, retrieving antagonism, nonmonotonicity, and bistability.

The fitness function to evolve the adaptive proofreading model was the same as the

fitness function to reduce all three immune recognition networks. That means that building

models from the ground up can be seen as a complementary process to reducing models

from the top down. In the latest version of the evolutionary algorithm ϕevo [152], one can

evolve networks by fitting data using the chi-squared function. The Manifold Boundary

Approximation Method utilizes the chi-squared function as well, minimizing the difference

between modelled and simulated data [51, 52]. Proulx-Giraldeau and François found that
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the choice of fitness function affects the parameter space one traverses through evolving

or reducing networks (personal communication, April 5, 2019). They reduced oscillatory

models with different fitness functions, and showed that more coarse-grained functions

that compute a biological function result in a less rugged parameter space than fine-grained

fitting functions that measure the distance between modelled and simulated or real data.

With a fitness function, local minima are less ubiquitous, and it may be easier to retrieve

the global minimum. Similar ideas have been proposed in the neuroscience literature [11].

A straightforward extension of FIBAR is to apply it to models of different processes, for

instance to the T cell proliferation model that we discussed in Chapter 4. Mayer et al. based

their model on [136, 137]. They also manually reduced the model of [136] to retrieve the

typical power-law behavior in fold expansion and precursor frequency (personal commu-

nication, August 1, 2018). The manual reduction was reproduced with FIBAR, but it could

not retrieve the further simplification of [138] (unpublished results). This was attributed to

the constraint that the fitness function cannot decrease per reduction step, making the re-

duction get stuck in a local minimum. Allowing for a probability to accept a reduction step

inversely proportional to the decrease in fitness could help FIBAR traverse local minima.

Moreover, we chose the fitness function to represent a power-law relation, which may not

have been the optimal function. This example shows that determining what fitness function

best represents the biological function is not trivial and requires domain knowledge.

An interesting, related approach is “experimental parameter reduction” applied to a

complete model of circadian redox oscillators to extract the core motif [167]. del Olmo et

al. “clamped” variables one by one, meaning they set an oscillating variable to its mean

value, “resembling conditions of constitutive expression from the wet lab” [167, 168]. If

with a clamped variable, the network continues oscillating, this variable is not required

for the generation of self-sustained oscillations, and can be fixed or removed. This tech-

niques is specific for network exhibiting oscillatory behavior: a mean value in a timeseries

is otherwise not well-defined or not impactful if it reaches a steady-state.

Moving on, we now summarize the latent space of antagonism as explored in Chapter 3.

Antagonists or adversarial examples are small, specific perturbations of the input space that
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aim to fool the classifier. We have shown how the Fast Gradient Sign Method [74] applied

to a naive immune classifier increases the number of weakly binding ligands, which is ex-

actly ligand antagonism as we know it. We then show how through transforming the digit

classifier with a Hill function of power N , we retrieve qualitatively similar behavior for

the classification of interpolated samples as the robust immune classifier with proofreading

and feedback N > m > 1: the output of the classifier is flat near the input sample and

decreases sharply near the decision boundary. Following [103], we move a ligand distribu-

tion in the direction of the decision boundary, and study the resulting distribution. Naive

classifiers m ∈ [0, 1], are antagonized by weakly binding ligands. For m = 2 we find a flat

distribution due to the emergence of a critical point, and for m > 2, the ligand distribution

peaks with antagonists with binding times just below the threshold. It also takes many iter-

ations to reach this distribution, owing to the flat antagonism potential for ligands of small

binding time. Finally, we inspect what digits reside at the decision boundary of a robust

digit classifier. Using a few-pixel attack, and turning pixels on or off sequentially in order

of their effect on the scoring function, we find ambiguous digits at the decision boundary,

in line with results from [103]. It shows how through adversarial robustness, the machine

learning classifier has been made more interpretable. Indeed, it should not need to correctly

classify out-of-distribution digits that are seemingly of another class.

In this work, we have shown the characteristics any classifier robust to small, specific

perturbation should possess: a flat landscape around the distribution of samples belonging

to certain classes that steeply descends towards the decision boundary in between those

classes. The two regimes are separated by a critical point. The qualitative observation of

flatness corresponds to the observation on machine learning classifiers that flat landscapes

around the classes and strongly curved at the boundaries gives rise to adversarial robustness

[109]. Moosavi-Dezfooli achieved this using curvature regularization. It was not known

that the presence of a critical point causes this behavior.

Another continuation of this work is the characterization and interpretation of the class

of adversarially robust machine learning classifiers. Krotov and Hopfield showed in models

of Dense Associative Memory (DAM) that using Rectified Polynomials of high degree as

activation functions leads to memorization of training digits in the DAM [103]. We were
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able to retrieve the characteristics of adversarial robustness that Krotov and Hopfield found

using a Hill function of high power as an activation function in a multilayer perceptron

(MLP), but this did not result in interpretable weights in the hidden layer. It would be of

interest to find out under what conditions prototypes appear, and if this is a necessary con-

dition for adversarial robustness. It is most natural to compare digits to other digits when

attempting to classify them, rather than to compare digits to low-level features that may

statistically relate to digit classes, but are not interpretable by any means. It is possible that

we misinterpret human classification and that humans may not necessarily recognize digits

as a whole, but only through combining features of the digits. Yet, deep convolutional neu-

ral networks hierarchically construct features: the first layers are low-level edge-detectors

and the final layers are high-level object recognition [75]. That a DAM can be made to

do object recognition instead of feature-detection through a simple change in activation

function makes it likely that there exists a regime where this transition also appears for a

standard MLP. Such work may provide an incentive to add the “ambiguous” class to the

labels of classifiers.

Immune classifiers are an example of non-neural machine learning classifiers (decision-

makers). It would be of interest to study fooling mechanisms of other biological, sensory

systems that also make decisions, for instance, in yeast [169, 170] or bacteria [118]. Learn-

ing and pattern recognition is a prominent aspect of the immune system, and through

comparisons with machine learning, more insights can be gained on the algorithms and

implementation. A recent example is for negative selection, which is shown to possess

generalizability of unseen self peptides when tested in a machine learning model of the

T cell repertoire [171]. Another example is on framing the dynamics of clone size distri-

butions in the adaptive immune system as a reinforcement learning system [172]. Finally,

a connection on evolutionary time-scales could be made through the implementation of

the evolution of immune-virus dynamics through generative adversarial networks (GANs)

[173]. In a GAN, the generator creates samples that are classified by the discriminator

as coming from the real data or the generator. Both generator and discriminator are opti-

mized independently, until the discriminator can no longer discern between the artificial

and the real data. Similarly, viruses mutate to escape the immune system while antibodies
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of the immune system “evolve” 1 to continue recognizing viruses. This could provide a

new perspective on the conditions under which the desired broadly neutralizing antibodies

(generalists) evolve [174].

The work in Chapter 4 started with the goal of predicting the antigen class given a cy-

tokine response. We found that to optimally use the data, we required several processing

steps, including log-transforming, interpolating missing data, removing noise, and fitting

splines. This gave us access to an unlimited number of timepoints of cytokine concen-

tration, as well as their integral and derivatives. We then found that integrals were most

robust to experimental variability. We classified hourly sampled timepoints of integrals of

cytokines one by one using an MLP with one hidden layer. To determine the antigen class

of the entire timeseries, we applied the majority rule to the classified timepoints, which

gave us a simple answer. We found that we can accurately determine antigen quality over

two decades in antigen quantity. By changing the antigen quantity more than two decades,

the effect of lower antigen quantity pushed the classification into the antigen class below.

We then wanted to understand the classification mechanism, specifically through the la-

tent space. With a feature analysis, we found that the foundations of the integral latent space

can be reproduced using IL-2 and IFNγ, cytokines that are produced majoritarily by cell

types from the adaptive immune sytem and innate immune system, respectively. We then

proceeded with parameterizing the integral latent space with piecewise ballistic models.

The constant force model better reproduced the initial production phase than the constant

velocity model, an observation we made in the concentration latent space. We then tested

several experimental configurations to interpret the parameters F, t0, θ, vt. t0 corresponds

to a timescale of upregulation of IL-2 receptors, F is a convolution of antigen quality, quan-

tity and precursor frequency, and determines the initiation of cytokine production. θ only

becomes apparent when IL-17A is included and might indicate the ratio between activation

of innate and adaptive immunity. Finally, vt is the terminal speed, or the steady-state of

all cytokines except IL-2. The first three parameters are strongly correlated with antigen

quality, which means they are determined at the start of the experiment, similar to how the

number of divisions of the T cells is determined at TCR-pMHC binding without additional

1More precisely, undergo B cell affinity maturation.
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costimulation or cytokines [163]. Using drugs experiments, we were able to decorrelate F ,

t0 and θ individually depending on the antigen quality.

Changing T cell type or APC type did not change the qualitative dynamics of timeseries

in integral latent space, demonstrating that we found a universal latent space in which one

can represent and interpret cytokine timeseries for a wide range of in-vitro T cell exper-

iments. For instance, we found that CD4+ T cells were much more sensitive to antigen

quantity than CD8+ T cells, and that we retrieve similar dynamics using antigen-expressing

tumors instead of splenocytes. This opens up the possibility for experimentally determining

salient neo-antigens on a tumor.

Finally, we predicted antigenicity quantitatively through EC50 instead of qualitatively

through antigen class. We compared the prediction using an MLP trained on model pa-

rameters to linear fits on IFNγ and IL-2. At the same precursor frequency, accuracy for

predicting with model parameters and with IL-2 was similar. However, when we tested

on timeseries with a different number of precursors than we trained on, the prediction us-

ing model parameters remained good, while the linear fit on IL-2 became useless. This

shows that the robotic platform and analysis pipeline is well-suited to predict antigenicity

for any in-vitro setup, and gives more accurate and better reference results than current

tests to predict antigenicity using Elispot. Advantages for using Elispot are that it is cheap,

easy, and fast. Recently, FluoroSpot assays were proposed to measure multiple cytokines

at once [147, 175], which while still measuring cytokines only at one timepoint, allows for

multiplexing.

As an intermediate step towards more robustly predicting antigenicity, one could imag-

ine formalizing the procedure for interpreting the number of dots and their sizes using ma-

chine learning. Despite precise guidelines, setting parameters for Elispot readers remains

subjective work, depending on preparation and plate [146]. For that reason, automated

comparison to a database of Elispot images with reference immunogenicities would be a

welcome addition to predicting immunogenicities for a range of medical applications.
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A
Parameter reduction

Description of ϕ̄

MATLAB Algorithm

“ In the following, we illustrate ϕ̄’s MATLAB implementation. The following func-

tions are used

• runLoop

• paramMODELtype

• calcFitness

• odeMODELtype

• evalLim

• updateParam

• catch_problems.

runLoop is the main script. paramMODELtype and odeMODELtype define param-

eters and associated ODEs which are problem specific. Parameters associated to

the model are initially stored in variable default, then later modified parameters are

stored in variable param and the list of removed parameters is stored in variable

removed
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A flowchart of the algorithm is presented in Fig. SA.1. In the following five steps

we probe (1 - 3), rank, select, evaluate, accept (4), reduce and repeat (5).

1. Assign the parameter vector (PV) that paramMODELtype returns to default.

This point in parameter space is going to be probed.

2. The fitness landscape around the initial PV default is characterized by the

symmetric matrix fitnessmap, containing the fitness for modified parameters or cou-

ples of parameters. The fitness function, on the contrary, is problem specific, and is

computed by calcFitness. Row by row, fitnessmap is filled by multiplying/dividing the

parameters per entry by a reacaling factor (f = 10 from the main text). The perfor-

mance of each of these entries is measured by computing the fitness with the new

parameter combination relative to the initial fitness. A network with N parameters

has 2N2 independent entries.

3. Removing a parameter is done in evalLim. With an estimate of the fitness

landscape at hand found via the previous steps, the algorithm takes the correspond-

ing limit (to 0 or ∞) for the parameters that were rescaled by f . We consider only

changes of parameters giving identical or improved fitness. There exist four groups

of two parameter limits θi, θj . In Table A.1, the groups are presented in order of im-

portance. When several couples of parameters give favorable changes to the fitness,

we evaluate the limit of all couples that fall in group 1 one by one.

4. When we encounter a parameter limit in which the fitness is improved, we

eliminate corresponding parameters and return to step 1. If for none of the couples

in the parameter limits the fitness is improved, we move to the members of group

2, the limits to infinity, and similarly when we find a parameter limit that improves

the fitness, we reduce and move on. Otherwise we move to the parameter limits of

groups 3 and, finally to group 4 with the same criteria. This natural order shows our

preference for removing parameters one by one (set parameters values to zero), in-

stead of simply rescaling them (as products). Notice that we take a very conservative

approach where fitness can only be incrementally improved with this procedure.

The steps in evalLim are as follows:

• Find the least nonnegative elements in fitnessmap
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Table A.1: Four groups of two-parameter limits
Group Operation Corresponding Limit taken

1 Division of two parameters by f (θi, θj)→ 0
2 Multiplication of two parameters by f (θi, θj)→∞
3 Division/multiplication by f θi → 0, θj →∞
4 Division/multiplication by f Rescaling keeping product θi · θj = constant

• Divide these in the groups defined above

• Pick a random element from the highest ranked nonempty group

• updateParam takes the PV default and a 2× 2 block of removed as arguments

and returns an updated PV to param.

• Compute a temporary fitness ϕnew with param.

• Decide as follows:

If ϕnew ≥ ϕinit.

Accept removal

Return param and removed

If ϕnew < ϕinit.

Reject removal

Set fitnessmap(picked element) to inf .

Repeat cycle at step A

The method we use to take asymptotic limits is described in the next section.

5. The returned PV becomes the new initial point in an (N − 1)-dimensional

plane that is embedded in N -dimensional parameter space. Around this new initial

point, we will probe the fitness landscape in the next round. In removed, the removed

parameters and their limits are stored such that ϕ̄ ignores directions of reduced pa-

rameters in subsequent rounds.

This procedure is repeated until no free parameters are left or until all directions

will decrease the fitness.
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Figure A.1: Flowchart of the algorithm.

Taking asymptotic limits

There are two kinds of asymptotic limits: parameters are either taken to 0 or to ∞.

The 0 case is trivial to deal with: when a parameter is chosen to be 0, we simply put

and maintain it to 0 in the subsequent steps of ϕ̄.

In evaluating a limit to infinity, one cannot simply numerically set this parameter

to infinity, like in the case of a zero-limit. Instead, we consider a limit where this

parameter is increased to such an extend that it dominates other terms in a sum that

affect the same variable; these other terms are then removed from the equations.

More precisely, consider the following equation:

9y2 = ay1 − (b+ c+ dy1)y2. (A.1)

In the limit of b→∞ we replace this equation by the following differential equation:

9y2 = ay1 − by2, (A.2)

where b→ b′ = fb, where f is our multiplicative factor defined in the previous section.

This implements the idea that the c and dy1 terms are negligible compared to b.

It is important to define a vector of parameter coefficients to keep track of these
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infinities. The vector of coefficients is attached to the parameter vector and updated

in updateParam similarly. When the limit of a parameter is taken to infinity, its coef-

ficient becomes zero, and the other terms in the sum will disappear. Practically, Eq.

A.1 is rewritten as

9y2 = cday1 − (cccdb+ cbcdc+ cacbccdy1)y2. (A.3)

The coefficients ca,b,c,d are initially set to 1. After evaluating the limit of b → ∞, we

set cb = 0, and the simplification from Eq. A.1 to Eq. A.2 indeed takes place.

This can however create mass conservation problems in the rate equations. Con-

sider the following equations for 9y4 and 9y5 where y4 is turned into y5 with rate r

9y4 = ay3 − (r + q)y4

9y5 = ry4 − dy5
(A.4)

In the limit where parameter q →∞, parameter r will disappear from the equation

of 9y4 potentially creating a divergence in the equations. A way to circumvent this is to

impose global mass conservation: situations where y4 is turned into y5 correspond

to signalling cascades where complexes are transformed into one another, so that

we can impose that the total quantity of complex is conserved. This effectively adds

a compensating term to the cascade. We also explicitly control for divergences and

discard parameter sets for which variables diverge.

Choice of the path in parameter space

As shown in Section A, the matrix fitnessmap is analyzed in the function evalLim.

This matrix is symmetrical since the upper triangular part of the matrix corresponding

to parameters (k1, k2) and the lower triangular part corresponding to parameters

(k2, k1) give similar limits for groups 2 and 4 in Table A.1. When given the choice

between sending (k1, k2) → ∞ or (k2, k1) → ∞, FIBAR chooses randomly between

the two, because the parameter combinations have the same change in fitness and

in both cases a new parameter k1/k2 can be identified. However, because of FIBAR’s
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design, choosing one will result in a different exploration of parameter space in the

remaining steps. By choosing the first parameter combination, ϕ̄ will effectively freeze

k1 but allows ϕ̄ to keep exploring the logarithmic neighborhood of k2. If the second

combination is chosen, then the value of k2 is frozen and it is the neighborhood of

k1 that will be probed. k2 and k1 may be present in different equations in the model,

resulting in two not necessarily converging reductions.

A choice thus needs to be made in the final parameter reduced model. This al-

lows for introduction of some kind of stochasticity in the produced networks in order

to identify recurring patterns in the reduction. It can be a challenge in terms of repro-

ducibility. One way to solve this problem is to set a fixed rule in the function evalLim

(using variable seed) which is called the deterministic method in the main article.

The method of choice (random or deterministic) is left at the discretion of the user.

We indeed see differences in the way networks are reduced, but the final structure

of the reduced networks in all these cases can easily be mapped onto one another

as described in the main text. ” (Parameter reduction [1])

Adaptive Sorting

“ We perform parameter reduction on the Adaptative Sorting model without any

symmetry breaking process. Initial equations for the adaptive sorting model are given

by

9K = β(KT −K)− αKC0

9C0 = κ(L−
∑

i

Ci)(R−
∑

i

Ci) + bC1 − (ϕK + τ−1)C0

9C1 = ϕKC0 − (τ−1 + b)C1.

Initial parameters are given in Table A.2. Steps of the reduction of this model are

given in Table A.3.
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Table A.2: Adaptative sorting initial parameters
Parameter Value

ϕ 3× 10−4

KT 103

α 1
β 1
κ 10−4

R 104

b 5× 10−2

Table A.3: Adaptive sorting
Step Iinit Parameters Limit Description per group

1 0.8131 (α, β) → ∞ C∗ = β/α
2 0.8131 (KT , ϕ) → (0,∞) A = ϕKT

3 0.8131 (κ,R) → (0,∞) κR→∞
4 0.8131 R → ∞
5 0.8645 (C∗, A) → (0,∞) λ = AC∗

6 1 α → ∞ To undo the effect C1 ∝ L for L ≤ 2
7 1 b → 0 Uncluttering τ

FINAL OUTPUT C1 = λτ = ϕKTβτ/α

SHP-1 model

First reduction

We first perform parameter reduction on the SHP-1 model with global symmetry

breaking. Initial equations for the SHP-1 model are given by

S = αC1(ST − S)− βS (A.5)

9C0 = κ(L−
∑

i

Ci)(R−
∑

i

Ci) + γ1SC1 − (ϕ1 + τ−1)C0 (A.6)

9C1 = ϕ1C0 + γ2SC2 − (γ1S + ϕ2 + τ−1)C1 (A.7)

9C2 = ϕ2C1 + γ3SC3 − (γ2S + ϕ3 + τ−1)C2 (A.8)

9C3 = ϕ3C2 + γ4SC4 − (γ3S + ϕ4 + τ−1)C3 (A.9)
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9C4 = ϕ4C3 + γ5SC5 − (γ4S + ϕ5 + τ−1)C4 (A.10)

9C5 = ϕ5C4 − (γ5S + τ−1)C5. (A.11)

Initial parameters for this model are given in Table A.4. Steps of the first reduc-

tion of this model are given in Table A.5. The final system is given by the following

equations when the reduction steps of Table A.5 are applied.

Table A.4: SHP-1 model initial parameters
Parameter Value

ϕ 9× 10−2

γ 1
ST 7.2× 10−1

β 3× 102

α 1
β/α = C∗ 3× 102

κ 10−4

R 3× 104

Table A.5: SHP-1 First reduction
Step Iinit Parameters Limit Description per group

1 0.7369 (κ,R) → (0,∞)
2 0.7369 γ1 → ∞
3 0.8468 (ϕ2, ϕ1) → (0,∞)
4 0.8583 R → ∞
5 0.8583 (γ4, γ5) → 0,∞ Kinetic sensing module
6 1.0000 γ2 → 0 Uncluttering τ
7 1.0000 γ3 → 0
8 1.0000 (ϕ3, ST ) → ∞ Rescaling
9 1.0000 (ϕ1, ϕ4) → ∞

10 1.0000 β → ∞ Adaptation module
11 1.0000 (ϕ4, ST ) → ∞
12 1.0000 (ST , α) → (0,∞)

FINAL OUTPUT C5 =
ϕ2ϕ5β
γ5STα

τ

S = αC1ST − βS (A.12)
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9C0 = κR(L−
∑

i

Ci) + γ1SC1 − ϕ1C0 (A.13)

9C1 = ϕ1C0 − (ϕ2 + γ1S)C1 (A.14)

9C2 = ϕ2C1 − ϕ3C2 (A.15)

9C3 = ϕ3C2 − ϕ4C3 (A.16)

9C4 = ϕ4C3 + γ5SC5 − (ϕ5 + τ−1)C4 (A.17)

9C5 = ϕ5C4 − γ5SC5. (A.18)

Second reduction

We then perform another reduction of the same model using a different binning for

the computation of the mutual information. Initial parameters and equations are iden-

tical as in the previous reduction presented in section A. Steps for this reduction are

given in Table A.6.

Table A.6: SHP-1 Second reduction
Step Iinit Parameters Limit Description per group

1 0.6328 (κ,R) → (0,∞)
2 0.6328 R → ∞
3 0.6375 (γ4, α) → (0,∞)
4 0.6464 (γ2, γ1) → 0,∞
5 0.7264 γ5 → ∞ Adaptive module
6 1.0000 γ3 → 0
7 1.0000 (ϕ1, β) → ∞
8 1.0000 ϕ4 → ∞ Kinetic sensing module
9 1.0000 (ϕ3, ST ) → ∞

10 1.0000 (ST , β) → ∞
11 1.0000 (ϕ5, β) → (0,∞)
12 1.0000 (β, ϕ2) → (0,∞)

FINAL OUTPUT C5 =
ϕ2ϕ5β
γ5STα

τ

The final system is given by the following equations when the reduction steps

given in Table A.6 are applied.
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S = αC1ST − βS (A.19)

9C0 = κR(L−
∑

i

Ci) + γ1SC1 − ϕ1C0 (A.20)

9C1 = ϕ1C0 − (ϕ2 + γ1S)C1 (A.21)

9C2 = ϕ2C1 − ϕ3C2 (A.22)

9C3 = ϕ3C2 + γ4SC4 − ϕ4C3 (A.23)

9C4 = ϕ4C3 + γ5SC5 − (ϕ5 + γ4S + τ−1)C4 (A.24)

9C5 = ϕ5C4 − γ5SC5. (A.25)

Third reduction

We perform another reduction of the same model using slightly different initial pa-

rameter values. All parameters are given in Table A.4 with ST → 5ST . Initial set of

equations is identical as in Sections A and A. Steps for this reduction are given in

Table A.7.

Table A.7: SHP-1 Third reduction
Step Iinit Parameters Limit Description per group

1 0.4946 (β, α) → ∞
2 0.4946 (R, κ) → (0,∞)
3 0.4946 (γ1, γ5) → 0 Kinetic sensing module
4 1.0000 (κ, ϕ1) → ∞
5 1.0000 ϕ1 → ∞
6 1.0000 (ϕ2, ϕ4) → (0,∞)
7 1.0000 (ϕ5, γ3) → ∞ Adaptation module
8 1.0000 γ2 → 0
9 1.0000 ST → ∞

10 1.0000 γ4 → 0
11 1.0000 (ϕ4, ϕ3) → (0,∞) Rescaling
12 1.0000 (α, γ3) → (0,∞)

FINAL OUTPUT C5 =
ϕ2ϕ3ϕ4β
γ3STα

τ 2

The final system is given by the following equations when the reduction steps
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given in Table A.7 are applied.

S = αC1ST − βS

9C0 = κ(L−
∑

i

Ci)(R−
∑

i

Ci)− ϕ1C0

9C1 = ϕ1C0 − (ϕ2 + τ−1)C1

9C2 = ϕ2C1 + γ3SC3 − (ϕ3 + τ−1)C2

9C3 = ϕ3C2 +−γ3SC3

9C4 = ϕ4C3 − ϕ5C4

9C5 = ϕ5C4 − τ−1C5.

Reduction without feedback

We perform a reduction of the SHP-1 model with the SHP-1 mediated feedback

turned off. Parameter values are given in Table A.4 with ST = 0. The network topol-

ogy is as in Fig. S A.2A and the corresponding initial set of equations is identical as

in Sections A and A. Fig. S A.2B shows that the reduction does not converge when

crucial network elements (SHP-1 feedback) are missing.

Figure A.2: Negative control for SHP-1 model. We attempt to reduce this model with
ϕ̄ in absence of SHP-1 (corresponding to pure kinetic proofreading). The algorithm fails
to optimize behavior and fitness, indicating that it is not possible to do so for arbitrary
networks.
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Analytical study

The full analytical study of the SHP-1 model is done in [33]. Assuming all ϕi = ϕ and

γi = γ are equal, we get at lowest order

C1 ≃ r−(1− r−)
κRL

κR+ ν1
(A.26)

with

r± =
ϕ+ S + ν1 ±

a

(ϕ+ S + ν1)2 − 4ϕS

2S
(A.27)

.

We can use the previous expression to get a closed equation for S as a function

of r−(S) and C∗.

S = ST
C1

C1 + C∗
= ST

r−(1− r−)

r−(1− r−) +
C∗(κR+ν1)

κRL

(A.28)

This is a 4th order polynomial equation in S in terms of the parameters that can be

conveniently solved numerically. Once this is done, we get the following expression

for CN , the final complex in the cascade as a function of r± to the lowest order in rN− .

CN ≃
κRL

κR+ ν1

ˆ

1− r−
r+

˙

rN− (A.29)

To see why this feedback hinders perfect adaptation, it is useful to consider the

limit of big L and big ST . In this limit, it is shown in [33] that the parameter r− becomes

inversely proportional to the feedback variable 1/S, thus giving at lowest order a S−N

contribution in Eq. A.29, clearly coming from the coupling of N identical proofreading

steps. Those equations can be approximately solved [33] so that

CN ≃
ˆ

ϕβ

αγST

˙N/2

(L)1−N/2. (A.30)

So we see that, unless N = 2, there is an unavoidable L dependency. The L−N/2
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dependency comes from the steady state value of the feedback variable S ∝ L1/2

appearing when we fully close this system.

Lipniacki model

In this section, we present two parameter reductions performed by ϕ̄. Initial equations

for the Lipniacki model are:

9X2 = b1 pMHCfree TCRfree + (s2 + s3)X23 − (lb LCKfree + ly1X29 + τ−1)X2

9X3 = lb LCKfreeX2 + ls1X4 + (s2 + s3)X24 − (ly2 +X37 + ly1X29 + τ−1)X3

9X4 = X37X3 − (ly2 + ls1 + τ−1)X4

9X5 = ly2X3 + ls1X6 − (tp+X37 + ly1X29 + τ−1)X5

9X6 = ly2X4 +X37X5 − (tp+ ls1 + τ−1)X6

9X7 = tpX5 + ls1X8 − (tp+X37 + ly1X29 + τ−1)X7

9X8 = tpX6 +X37X7 − (tp+ ls1 + τ−1)X8

9X9 = tpX7 + ls1X8 − (τ−1 +X37 + ly1X29 + τ−1)X9

9X10 = tpX8 +X37X9 − (ls1 + τ−1)X10

9X22 = ly1X29 TCRfree + τ−1(X23 +X24)− (s2 + s3)X22

9X23 = ly1X29X2 − (s2 + s3 + τ−1)X23

9X24 = ly1X29(X3 +X5 +X7 +X9)− (s2 + s3 + τ−1)X24

9X29 = s1(X5 +X7 +X9)SHPfree + s3(X22 +X23 +X24) + s0 SHPfree

− ly1(X2 +X3 +X5 +X7 +X9 + TCRfree)X29 − s2X29

9X31 = z1(X9 +X10)(m1 −X31) + z0m1 − (z0 + z2)X31

9X33 = 2X31(e1 −X34) + 2m2X34 − (m2 + 3X31)X33

9X34 = X31X33 − 2m2X34

9X36 = 2X34(ls2 −X37) + 2e2X37 − (e2 + 2X34)X36

9X37 = X34X36 − 2e2X37
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To ensure physical behavior throughout the reduction process, we manually im-

plement the following mass conservation laws.

pMHCfree = pMHC −
˜

10∑

i=2

Xi +X23 +X24

¸

TCRfree = TCR−
˜

10∑

i=2

Xi +X22 +X23 +X24

¸

LCKfree = LCK −
˜

10∑

i=3

Xi +X24

¸

SHPfree = SHP − (X22 +X23 +X24 +X29)

ZAPfree = ZAP −X31

MEKfree = MEK − (X33 +X34)

ERKfree = ERK − (X36 +X37)

We also perform initial rescaling of equations X31 to X37 to save ϕ̄ steps:

X31 →
m1X31

ZAP

X33 →
e1X33

MEK

X34 →
e1X34

MEK

X36 →
ls2X36

ERK

X37 →
ls2X37

ERK

Initial parameters are given in Table A.8.

Lipniacki model first reduction

We discarded all values of the output below the measurable threshold 10−2, and

used 40 log-uniformly distributed bins on the interval [10−2, 102] for the computation

of the Output distribution. The Input concentrations were given by 50 log-uniformly
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Table A.8: Lipniacki model initial parameters
Parameter Value Details
TCR 3× 104

LCK 105

SHP 3× 105

ZAP 105

MEK 105 Can’t be modified by ϕ̄
ERK 3× 105

b1 3× 10−1/TCR Agonist peptide binding
lb 3× 10−1/LCK LCK(s) binding
ly1 5/SHP pSHP complex binding
ly2 3× 10−1 Theorine phosphorylation at complex
ls1 10−1 Spontaneous serine dephosphorylation
ls2 5× 10−1 ppERK catalyzed serine phosphorylation
tp 5× 10−2 TCR phosphorylation
s0 10−5 Spontaneous SHP phosphorylation
s1 3× 102/SHP SHP phosphorylation
s2 6× 10−4 SHP dephosphorylation
s3 5× 10−2 SHP dissociation
z0 2× 10−6 Spontaneous ZAP phosporylation
z1 5/ZAP ZAP phosphorylation
z2 2× 10−2 ZAP dephosphorylation
m1 5× ZAP/MEK MEK phosphorylation
m2 2× 10−2 MEK dephosphorylation
e1 5×MEK/ERK ERK phosphorylation
e2 2× 10−2 ERK dephosphorylation
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distributed values on the interval [1, 104].

Steps of the first biochemical reduction of this model (odeLIPbasic.m in the MAT-

LAB code) are given in Table A.9. The results of the biochemical reduction are given

by

Table A.9: Lipniacki basic first variant
Step Iinit Parameters Limit Description per group

1 0.45 (m1,m2) → ∞
2 0.47 b1 → ∞
3 0.47 (lb, LCK) → (0,∞) lb′ = lb LCK
4 0.47 ls1, z1 → 0,∞ Turning off the positive feedback
5 0.50 e1, e2 → 0
6 0.50 z0, z2 → 0
7 0.50 m1 → 0
8 0.50 s3 → 0
9 0.50 (ls2, LCK) → (0,∞)

10 0.50 ly2 → ∞
11 0.50 (TCR, SHP ) → ∞
12 0.5017 s0 → 0
13 0.5017 (s2, ly1) → (0,∞) Products
14 0.5017 (SHP, s1) → (0,∞) s′1 = s1SHP
15 0.5017 (LCK, ly1) → (0,∞)
16 0.5216 s1 → ∞

9X2 = b1 pMHCfree TCR+ s22X23 − lbX2

9X3 = lbX2 + s23X24 − ly21X3

9X4 = X37X3 − ly22X4

9X5 = ly21X3 − (tp1 +X37 + ly14X29 + τ−1)X5

9X6 = ly22X4 +X37X5 − (tp2 + τ−1)X6

9X7 = tp1X5 − (tp3 +X37 + ly15X29 + τ−1)X7

9X8 = tp2X6 +X37X7 − (tp4 + τ−1)X8

9X9 = tp3X7 − (τ−1 +X37 + ly16X29)X9

9X10 = tp4X8 +X37X9 − τ−1X10
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9X23 = ly12X29X2 − (s22 + τ−1)X23

9X24 = (ly13X3 + ly14X5 + ly15X7 + ly16X9)X29 − (s23 + τ−1)X24

9X29 = s11X5 + s12X7 + s13X9 − ly11TCRX29.

We then perform global symmetry breaking (odeLIPadvanced in the MATLAB

code). Steps of reduction are given in Table A.10.

Table A.10: Lipniacki advanced first variant
Step Iinit Parameters Limit Description per group

1 0.5837 (s22, s23) → 0
2 0.5837 (b1, ly22) → ∞ ly22 →∞ makes no change
3 0.5837 (s21, ly22) → ∞
4 0.5837 ly22 → ∞
5 0.5837 (TCR, ly11) → (0,∞) ly′11 = ly11TCR
6 0.5837 s12 → 0
7 0.6097 s13 → 0
8 0.6147 (tp2, tp3) → (0,∞)
9 0.6231 (ly13, lb) → 0,∞
10 0.6245 (tp4, ls2) → (0,∞) Products
11 0.6246 (tp3, ly16) → (0,∞)
12 0.6354 (ly16, ly15) → (0,∞)
13 0.6563 (ly15, ly13) → (0,∞)
14 0.6699 ly21 → ∞
15 0.6749 ls2, ly12 → 0,∞
16 0.7405 (ly14, s11) → ∞

Global symmetry breaking results in the following system.

9X2 = b1 pMHCfree TCR− lbX2

9X3 = lbX2 − ly2X3

9X5 = ly2X3 − ly13X29X5

9X7 = tp1X5 − (tp2 + ly14X29 + τ−1)X7

9X9 = tp2X7 − (ly15X29 + τ−1)X9

9X23 = ly12X29X2 − τ−1X23
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9X24 = ly13X29X5 − τ−1X24

9X29 = s1X5 − ly11TCRX29

Only four more steps of reduction are needed to reach perfect adaptation, namely

(ly13, ly15) → 0, (ly11, ly14) → ∞, (tp1, ly14) → ∞ and finally ly14 → ∞. We apply

those steps of reduction by hand and reach the final following system.

9X2 = b1 pMHCfree TCR− lbX2 (A.31)

9X3 = lbX2 − ly2X3 (A.32)

9X5 = ly2X3 − tp1X5 (A.33)

9X7 = tp1X5 − ly14X29X7 − tp2X7 (A.34)

9X9 = tp2X7 − τ−1X9 (A.35)

9X24 = ly14X7X29 − τ−1X24 (A.36)

9X29 = s1X5 − ly11TCRX29 (A.37)

Lipniacki model second reduction

Initial equations, parameters, mass conservation laws and equation transformations

for this reduction are the same as for the previous Lipniacki reduction. For this reduc-

tion, we chose mutual information as the fitness with 40 bins log-uniformly distributed

on the interval [10−2, 102], plus a lower bin for concentrations below 10−2 and a higher

bin for concentrations above 102. We chose 50 log-uniformly distributed Input con-

centrations on the interval [1, 104]. Because of the binning choice, the fitness, was

optimized quicker, while most reduction took place in the neutral fitness landscape of

maximum fitness of 1 bit. The details of this biochemical reduction are given in Table

A.11.

After the first reduction, the system is reduced to

9X2 = b1 pMHCfree TCRfree + (s22 + s32)X23 − lb LCK X2
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Table A.11: Lipniacki basic second variant
Step Iinit Parameters Limit Description per group

1 0.7583 (m2,m1) → ∞ Shutting down positive feedback
2 0.8337 (z2,m1) → ∞
3 0.8337 LCK → ∞
4 0.8777 lb → ∞
5 0.8777 (ls1, ly2) → (0,∞)
6 0.8777 (z0, s0) → 0
7 0.8777 (m1, s1) → ∞
8 0.8777 (ly2, z1) → (0,∞)
9 0.8915 e2 → 0

10 0.8915 z1 → 0
11 0.8915 e1 → ∞
12 0.8915 (s1, SHP ) → (0,∞) Rescaling
13 0.8954 (b1, SHP ) → ∞
14 0.9029 (s3, s2) → (0,∞)
15 0.9278 (ls2, tp) → (0,∞)
16 0.9351 (tp, TCR) → (0,∞)
17 0.9725 (s2, ly1) → (0,∞)
18 1 (SHP, ly1) → (0,∞)

9X3 = lb LCK X2 + ls11X4 + (s23 + s33)X24 − (ly21 +X37 + ly11X29 + τ−1)X3

9X4 = X37X3 − (ly22 + ls11 + τ−1)X4

9X5 = ly21X3 + ls12X6 − (tp1 +X37 + ly12X29 + τ−1)X5

9X6 = ly22X4 +X37X5 − (tp2 + ls12 + τ−1)X6

9X7 = tp1X5 + ls13X8 − (tp3 +X37 + ly13X29 + τ−1)X7

9X8 = tp2X6 +X37X7 − (tp4 + ls13 + τ−1)X8

9X9 = tp3X7 + ls14X8 − (X37 + ly14X29 + τ−1)X9

9X10 = tp4X8 +X37X9 − (ls14 + τ−1)X10

9X22 = ly15X29 TCRfree + τ−1(X23 +X24)− (s21 + s31)X22

9X23 = ly16X29X2 − (s22 + s32 + τ−1)X23

9X24 = X29(ly11X3 + ly12X5 + ly13X7 + ly14X9)− (s23 + s33 + τ−1)X24

9X29 = (s11X5 + s12X7 + s13X9)SHP + (s31X22 + s32X23 + s33X24)

− (ly16X2 + ly11X3 + ly12X5 + ly13X7 + ly14X9 + ly15TCRfree)X29 − s24X29
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X37 = 0.05

We then perform global symmetry breaking on this system. Steps of the biochemical

reduction of this model are given in Table A.12.

Table A.12: Lipniacki advanced second variant
Step Iinit Parameters Limit Description per group

1 1 (m21, ly22) → 0 Cleaning unnecessary parameters
2 1 (m1, s24) → 0
3 1 (ly11, ls13) → 0
4 1 (s12, s31) → 0
5 1 (ly13, ls11) → 0
6 1 (e1, ls14) → 0
7 1 (tp2, s33) → 0
8 1 (m22, ls12) → 0
9 1 (z2, s22) → 0
10 1 (s32, s13) → 0
11 1 ly16 → 0
12 1 (s23, ly14) → 0
13 1 ls2 → ∞
14 1 (s11, tp4) → ∞ Strengthening remaining reactions
15 1 (ly21, ly15) → ∞
16 1 (b1, s21) → ∞
17 1 tp3 → 0 Turning off one output
18 1 (lb, ly15) → ∞ Strengthening remaining reactions
19 1 (SHP, s21) → ∞
20 1 (LCK, ly12) → ∞
21 1 (ly12, tp4) → ∞
22 1 (ly15, tp4) → ∞
23 1 tp4 → ∞
24 1 (TCR, tp1) → (0,∞)

FINAL OUTPUT X10 =
tp1s21TCR

s11ly17
τ

We can remove equations for X4, X6, X23 and X24 as they are dead ends in the

network. X37 = 0.5 is held constant. The final expression of the output given in Table

A.12 is extracted from remaining equations at steady-state; expanding the equations

for the relevant cascade we get
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9X2 = b1 pMHCfree TCRfree − lb LCK X2 (A.38)

9X3 = lb LCK X2 − ly21X3 (A.39)

9X5 = ly21X3 − ly12X29X5 (A.40)

9X7 = tp1X5 −X37X7 (A.41)

9X8 = X37X7 − tp4X8 (A.42)

9X10 = tp4X8 − τ−1X10 (A.43)

9X22 = ly15X29 TCRfree − s21X22 (A.44)

9X29 = s11X5 SHP − ly15TCRfreeX29 (A.45)

X37 = 0.5 (A.46)

The output here is X10. Variables X22, X29 and X5 respectively correspond to vari-

ables Rp, S and C5 in the main text. The structure of Eqs. A.38 to A.45 is clearly

very similar to the equations of the previous reduction A.31 to A.37, with a linear

cascade for the second reduction X2 → X3 → X5 → X7 → X8 → X10 and

X2 → X3 → X5 → X7 → X9 for the first reduction, modulated by a parallel loop

via X29 and X5. As described in the main text, the structural difference comes from

the mechanism of this loop, the first reduction giving an effective feedforward adap-

tive system, while the second reduction is an integral feedback mechanism. ”

(Parameter reduction [1])

175



B
Attack and defence

Mathematical details of the adaptive proofreading models

“ This section contains more details on the derivation of adaptive proofreading

models (section Biochemical kinetics), referred to in subsection Adaptive proof-

reading for cellular decision-making in Chapter 3.1. We also give the parameters

and equations that are used to draw Fig. 3.2 B (section Parameters for Fig. 3.2 B).

Biochemical kinetics

The kinetics for the biochemical network in Fig. 3.2 B in the simplest form ((N,m) =

(2, 1)) are given by

9C1 = konRL− (ϕK + τ−1)C1

9C2 = ϕKC1 − τ−1C2 (B.1)

9K = β(KT −K)− αC1K.

Here, we assume the T cell has R receptors to which L ligands are bound to

form ligand-receptor complexes C1 and C2. The parameters kon and τ−1 denote

ligand-specific rates, which correspond to an average number of events happening
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per second (mean of a Poisson-distributed variable). ϕ is the phosphorylation rate

for the reaction C1 → C2 (activation branch), which is activated by variable K, and

which we will call a generic kinase. K itself is inhibited by C1 (repression branch) with

rate α. KT here is the total number of kinase, and KT − K the number of inactive

kinase. This kinase is shared between all receptors and assumed to diffuse freely

and rapidly, so that since K is inactivated by C1, (in)activity of K is a measure of the

total number of receptors bound. Lastly, β is the activation rate of K. In the steady

state, we can solve exactly for C2 and find

C2 = ϕKC1τ =
Lτ

β/α+ L
≃ Lτ

L
= τ. (B.2)

Here K = KT β/α
β/α+C1

, and as long as L≫ β/α the first-order approximation is exact

and the ligand dependence in nominator and denominator cancels. Without loss of

generality, we have set ϕKT β
α = 1.

When we consider an environment containing two ligand types with binding times

τag (agonists) and τa (antagonists) at concentrations Lag and La, two types of ligand-

receptor complexes can be formed. We call them Ci for agonists and Di for antago-

nists. Full equations in the case of (N,m) = (2, 1) are given by

9C1 = konRLag − (ϕK + τ−1
ag )C1

9C2 = ϕKC1 − τ−1
ag C2 (B.3)

9D1 = konRLa − (ϕK + τ−1
a )D1

9D2 = ϕKD1 − τ−1
a D2 (B.4)

9K = β(KT −K)− α(C1 +D1)K.

where we have assumed that kon is equal for both agonist and antagonist ligands.

The main difference here is that variable K integrates global information from both

ligand complexes, which results in the steady-state in K = KT β/α
β/α+C1+D1

. Moreover, K

acts locally on the phosphorylation of both C1 and D1. Finally, the output is given by

T2,1 = C2 +D2.

We can generalize this case by assuming that inhibition of the variable K oc-
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curs further downstream a kinetic proofreading cascade, namely at the m-th complex

Cm = Lagτ
m
ag and Dm = Laτ

m
a . The output variable is then given by TN,m = CN+DN .

Fig. 3.2 A shows how information from a single ligand passes through the re-

pression branch (red arrow and box) via K and through the activation branch

(green arrow and box) via CN . The global variable K integrates local information

as K = KT β/α
β/α+Cm+Dm

∝
`

Lagτ
m
ag + Laτ

m
a

˘−1, and catalyzes the phosphorylation of

CN−1 = Lagτ
N−1
ag and DN−1 = Laτ

N−1
a to final complex CN and DN as

9CN = KCN−1 − τ−1
ag CN (B.5)

9DN = KDN−1 − τ−1
a DN . (B.6)

In the steady-state, the solution for TN,m is then

TN,m = CN +DN =
Lagτ

N
ag + Laτ

N
a

Lagτmag + Laτma
. (B.7)

This expression for two types of ligands with same kon can be clearly generalized

to any types of ligands, giving Eq. 3.3.

Materials and methods

In this section, we give the parameters and equations that are used to draw Fig. 3.2

B and we give the hyperparameters used for training the neural networks classifying

3s and 7s. We referred to the latter in subsection Neural networks for artificial

decision-making in Chapter 3.1.

Parameters for Fig. 3.2 B

The curves on Fig. 3.2 B, left panel, come from the model given by

T4,2(L) =
1

τ2d

Lτ4

C∗ + Lτ2
(B.8)
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with parameter values C∗ = β/α = 3000, τd = 4s and τ as in the legend. The curves

on the middle panel of Fig. 3.2 B come from

T4,2(L) =
1

τ2d

Lτ4 + Laτ
4
a

C∗ + Lτ2 + Laτ2a
(B.9)

with again C∗ = 3000, τd = 4s and τ = 10s. For blue "agonists alone", La = 0 , for

orange "+ antagonists" La = 104 and τa = 3s, and for green "+ self" La = 104 and

τa = 1s.

Hyperparameters for training neural network

We have chosen our hyperparameters as follows: one hidden layer with four neurons

feeding into an output neuron, a random 80/20 training/test split with a 10 percent

validation split. The cross-entropy loss function is minimized via stochastic gradient

descent in maximal 300 iterations with a batch size of 200 and an adaptive learning

rate, initiated at 0.001. The tolerance is 10−4 and the regularization rate is 0.1. Most

of these parameters are set to their default value, but we found that the training

procedure is largely insensitive to the specific choice of hyperparameters.

Ligand distribution at the decision boundary

In this section, we describe in detail the methods used in the gradient dynamics of

changing a ligand distribution to the decision boundary (subsection Methods), we

provide additional results when adding spatial correlation to the ligand distribution

(subsection MTL pictures), and we calculate the leading order in small binding time

τϵ of the gradient dTN,m

dτϵ
(subsection Behavior for small binding times). We refer

to these sections in the main text in subsections Gradient dynamics identify two

different regimes and Qualitative change in dynamics is due to a critical point

in the gradient in Chapter 3.2, and in Fig. 3.3.
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Methods

Adaptive proofreading is well-suited to characterize the decision boundary between

two classes, because we can work with an analytical description. We want to know

how to most efficiently change the binding time of the spurious binding ligand (with

small τ ) to cause the model to reach the decision boundary. We have taken inspira-

tion from [103] and adapted our approach from the iterative FGSM [104]. At first, we

sample the binding times τself for Lself = 7000 self ligands from a half-normal distribu-

tion |N (0, 13)| and τag for Lag = 3000 agonist ligands from a narrowly peaked normal

distribution |N (72 ,
1
10)| just above τd = 3. We fix the agonist ligand distribution, the

“signal” in the immune picture. Next, we bin ligands in M equally spaced bins with

center binding time τb, b ∈ 1, . . . ,M , and we compute the gradient for bins for which

τb < τd
∂TN,m

∂τb
=

NτN−1
b Lb −mTN,mτm−1

b Lb∑M
i=1 τ

m
i Li

(B.10)

where Lb is the number of ligands in the bth bin. We subtract this value multiplied by

a small number ϵ from the exact binding times, as in Eq. 3.6 in the main text, and we

compute a new output TN,m. We repeat this procedure until TN,m dips just below the

response threshold τN−m
d . We then display the ligand distributions. We bin ligands

and compute the gradient in batches to prevent the gradient from becoming negligi-

bly small. If we would compute the gradient for each ligand with an individual binding

time, there would be exactly one ligand with that specific binding time, and because

the gradient scales with L, we would need to go through many more iterations. De-

creasing the binsize and step size ϵ may enhance the resolution, but is not required.

We found good results by considering bins with a binsize of 0.2s and ϵ = 0.2.

MTL pictures

We can visually recast immune recognition as an image recognition problem by plac-

ing pixels on a grid and coloring them based on their binding time with a given scale.

We chose to let white pixels correspond to not self (τ > τd), gray pixels to antago-

nist ligands (τa < τ < τd) and black pixels to self ligands τ ≪ τa. We are free to

introduce any kind of spatial correlation to create “immune pictures” from a ligand
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ambiguous regimeadversarial regime transition

⌧c ' 4s⌧c ' 4s0

⌧c ' 4s

MTL pictures at the boundary

Figure B.1: MTL pictures. Explanation is found in the text

distribution. This results in what we term “MTL-pictures” (Fig. B.1). The initial ligand

distribution, MTL picture and scale are given on the left. We perform iterative gradient

descent like in the main text, and plot the ligand distribution and the corresponding

immune pictures at the boundary for various (N,m). The results are striking. For a

T cell operating in the adversarial regime, the “signal” MTL is unaltered at the de-

cision boundary. At the transition m = 2, we see a slight change of color, while in

the ambiguous regime, the signal actually changes from MTL to ML. As we desire

for a robust decision-maker, the response should switch when the signal becomes

significantly different. From this we conclude, only in the robust regime can Montreal

turn fully into the city of Machine Learning.

For the MTL pictures in Fig. B.1, we have distributed the pixels in the 179 × 431

frame – equal to R, the number of receptors – as Lself = 0.60R, La = 0.12R, Lag =

0.28R. We sampled τself from |N (0, 13)|, τa from τd−|N (0, 13)|, τag from τd+N (12 ,
1

100),

and we set τd = 3. The picture is engineered such that the agonist ligands fill the M

and the L, the antagonists fill the T (which is why the T is slightly darker than the

M and L). The self ligands fill the area around the letters M, T and L, such that
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the self with highest binding time surround the T. We have chosen this example to

make the effect of proofreading explicit (and of course because we are based in

Montreal and study Machine Learning). This result is generic, and the ambiguity of

instances at the decision boundary of a robust model can be visualized with any

well-designed image. Scripts to reproduce Fig. 3.4 A and Fig. B.1 are available at

https://github.com/tjrademaker/advxs-antagonism-figs/.

Behavior for small binding times

Consider a mixture with Lag ligands at τag > τd and L ligands with small binding

time τspurious = τϵ ≪ τag. To understand the behaviour of TN,m as a function of τϵ we

expand TN,m in small variable ϵ = τϵ
τag

as

TN,m({Lag, τag;L, τϵ}) =
τNagLag + τNϵ L

τmagLag + τmϵ L

=
1 + ϵN L

Lag

1 + ϵm L
Lag

τN−m
ag

≃
ˆ

1 + ϵN
L

Lag

˙ ˆ

1− ϵm
L

Lag

˙

τN−m
ag

≃ τN−m
ag − τN−m

ag
L

Lag
ϵm +O(ϵN ),

which confirms that up to a constant TN,m ∝ −ϵm ∝ −τmϵ for m ≥ 1 and τϵ ≪ τag, as

well as that
dTN,m

dτϵ
≃ −mτN−m−1

ag
L

Lag
ϵm−1 ∝ −τm−1

ϵ . (B.11)

Boundary tilting

To further draw the connection between machine learning and adaptive proofreading

models, we will study a framework to interpret adversarial examples called bound-

ary tilting [105]. We will first illustrate this effect on the discrimination of the original

MNIST 3 vs 7 problem MNIST from [74]) (subsection Digit classification), after

which we will interpret boundary tilting via proofreading in ligand discrimination (sub-
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section Boundary tilting and categorizing perturbations), and finally, we will de-

rive how the addition of a subthreshold ligand at the decision boundary changes the

output (subsection Gradient in the L2 direction).

Digit classification

A typical 3 and 7 (i), the averages 3̄ and 7̄ (ii), and the corresponding adversarial

examples (iii, iv) are shown in Fig. B.2 A. Tanay and Griffin [105] pointed out that

the adversarial perturbation generated with the Fast Gradient Sign Method (FGSM)

proposed in [74] can also be found via D = sign p3̄− 7̄q, Fig. B.2 A (v). Note the

similarity to the adversarial perturbation from the FGSM sgn(w) = sgn p∇xJq (Fig. B.2

A (vi)). To reveal the linearity of binary digit discrimination, we computed the principal

components (PCs) of the traditional training set of 3s and 7s, and projected all digits

in the test set on PC1 and PC2 (Fig. B.2 B). With a linear Support Vector Classifier

(ordinary linear regression) trained on the transformed coordinates PC1 and PC2 of

the training set, we achieve over 95% accuracy in the test set. While such accuracy is

far from the state-of-the-art in digit recognition, it is much higher than typical detection

accuracy for single cells (e.g. T cells present false negative rates of 10 % for strong

antagonists [31]). The red and blue star in Fig. B.2 A denote the average digit 3̄, 7̄.

Next, we transformed the test set as 3 → 3′ = 3 − ϵtestD, 7 → 7′ = 7 + ϵtestD,

where ϵtest = 0.4 is the strength of the adversarial perturbation (Fig. B.2 A (iii)). 3̄′

and 7̄′ moved closer in Fig. B.2 B, orthogonal to the decision boundary and along

the line between the initial averages. This adversarial perturbation moves the digits

in what we call an adversarial direction perpendicular to the decision boundary, and

reduces the accuracy of the linear regression model to a mere 69%.

Goodfellow et al. proposed adversarial training as a method to mitigate adversar-

ial effects by FGSM. We implemented adversarial training by adding the adversarial

perturbation ϵtrainDtrain = ϵtrain(3̄train− 7̄train) to the images in the training set, comput-

ing the new PCs and training the linear regression model. This effectively “tilts” the

decision boundary, while preserving 95% accuracy. In the presence of the original

adversarial perturbations, we see the effect of the tilted boundary: the perturbation

moves digits parallel along the decision boundary, which results in good robust ac-
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A
i ii

iii iv

viv

B

Adversarial Non-adversarial Ambiguous Ambiguous

C

Figure B.2: Boundary tilting in one-dimensional digit classification. (A) (i) Typical 3
and 7 from MNIST. (ii) Average 3, 7 of the traditional test set, (iii, iv) with adversarial
perturbation, found by (v) subtracting the sign of 3̄ from 7̄, which corresponds to (vi), the
perturbation found with FGSM (B) Projection of the digits on the first principal compo-
nents. The classes are separated by a linear Support Vector Classifier (blue), the average of
the classes with and without adversarial perturbation is shown by the triangle and star. We
have cycled through permutations of adversarial training and/or adversarial testing. Note
how the boundary tilts on the right panels, and how the triangle moves parallel to the deci-
sion boundary. (C) Decision boundary of the immune model. The region under the surface
is the response regime, the region above is the no-response regime. The classifier with a sin-
gle proofreading step (N,m) = (1, 0) fails to observe agonists in three of the four marked
mixtures, while the robust classifier (N,m) = (5, 3) correctly responds to each indicated
mixture.

curacy. This is an illustration of the more general phenomenon studied in [105].
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Boundary tilting and categorizing perturbations

We consider the change in TN,m for arbitrary N,m upon addition of many spurious

ligands. Generalizing Eq. 3.2 gives

T after
N,m =

L(τ − ϵ)N + ϵRϵN

Lτm + ϵRϵm
=

(τ − ϵ)N + ϵN+1R
L

τm + ϵm+1R
L

. (B.12)

From this expression, we note that TN,m is changing significantly with respect to its

initial value upon addition of many weakly bound ligands as soon as ϵm+1R is of

order L. Thus, the effect described in subsection Adaptive proofreading for cel-

lular decision-making in Chapter 3 for weighted averages where (N,m) = (1, 0)

also holds for nonlinear computations as long as m is small. It appears that the gen-

eral strategy to defend against this adversarial perturbation is by increasing m, as

previously observed in [34]. Biochemically, this is done with kinetic proofreading [26,

31, 33], i.e. we take an output TN,m with N > m ≥ 1. Here, the output is no longer

sensitive to the addition of many weakly bound self ligands, yielding an inversion of

the antagonistic hierarchy where the strongest antagonizing ligands exist closer to

threshold [60]. An extreme case has been proposed for immune recognition where

the strongest antagonists are found just below the threshold of activation [31].

We numerically compute how the decision boundary changes when Lself ligands

at τself are added to the initial Lag agonist ligands at τag, i.e. we compute the manifold

so that

TN,m({Lag, τag;Lself, τself}) =
τNagLag + τNselfLself

τmagLag + τmselfLself
(B.13)

is equal to TN,m({Lag, τd}) = τN−m
d . We represent this boundary for fixed τself and

variable Lag, Lself, τag in Fig. B.2 C. Boundary tilting is studied with respect to the

reference Lself = 0 plane corresponding to the situation of pure Lag ligands at τag,

where the boundary is the line τag = τd. The case (N,m) = (1, 0) (Fig. B.2 C,

left panel), corresponds to a very tilted boundary, close to the plane Lself = 0, and

a strong antagonistic case. In this situation, assuming τag ≃ τd, each new ligand

added with τself close to 0 gives a reduction of T1,0 proportional to τd
Lag

in the limit

of small Lself (see next section, [49]), which is again of the order of the response
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Table B.1: Categories of perturbations
Boundary tilting Gradient when adding

one antagonistic ligand
Adversarial yes steep (O(1))

Non-adversarial no almost flat (O(ϵm))
Ambiguous yes weak (O(ϵ))

T1,0 = τag ≃ τd in the plane Lself = 0. This is clearly not infinitesimal, corresponding

to a steep gradient of T1,0 in the Lself direction. We call the perturbation in this case

adversarial. This should be contrasted to the case for higher m (Fig. B.2 C, middle

left) where the boundary is vertical, independent of Lself, such that decision-making

is based only on the initially present Lag ligands at τag. Here, the change of response

induced by the addition of each ligand with small binding time τself is τmself, due to

proofreading a very small number when τself ≃ 0 [49]. Contrary to the previous case,

the gradient of TN,m with respect to this vertical direction is almost flat and very small

compared to the response in the Lself = 0 plane. We call the perturbation in this case

non-adversarial.

Tilting of the boundary only occurs when τself gets sufficiently close to the thresh-

old binding time τd (Fig. B.2 C, right panels). In this regime, each new ligand added

with quality τself = τd − ϵ contributes an infinitesimal change of TN,m proportional

to τd−τself
Lag

= ϵ/Lag, which gives a weak gradient in the direction Lself. But even

with such small perturbations one can easily cross the boundary because of the

proximity of τself to τd, which explains the tilting. The cases where the boundary

is tilted and the gradient is weak are of a different nature compared to the ad-

versarial case of Fig. B.2 C, left panel. Here the boundary is tilted as well, but

the gradient is steep, not weak. For this reason we term the cases on the right

panels ambiguous. Similar ambiguity is observed experimentally: it is well known

that antagonists (ligands close to thresholds) also weakly agonize an immune re-

sponse [31]. Our categorization of perturbations is presented in Table B.1. Scripts

for boundary tilting in ligand discrimination and digit discrimination are available at

https://github.com/tjrademaker/advxs-antagonism-figs/.
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Gradient in the L2 direction

We recall results from [60] to show how the addition of subthreshold ligands one at

a time changes the output. We first consider {L, τd} threshold ligands with output

TN,m(L, τd) = τN−m
d . (B.14)

The main result of [60] is the linear response of TN,m(L, τd) to the addition of {La, τd−
ϵ} subthreshold ligands.

TN,m p{L, τd;La, τd − ϵ}q (B.15)

= T pL+ La, τdq− ϵLaA pL+ La, τdq (B.16)

= τN−m
d − ϵ

La

L+ La

d

dτ
TN,m(L+ La, τ)

ˇ

ˇ

ˇ

τ=τd
, (B.17)

where we used the definition

A pL, τdq =
1

L

d

dτ
TN,m(L, τ)

ˇ

ˇ

ˇ

τ=τd
. (B.18)

for the coefficient in a mean-field description. As the derivative d
dτ TN,m(L, τ)

ˇ

ˇ

ˇ

τ=τd
>

0, and ϵ = τa − τd, each additional subthreshold ligand at τa decreases the output

with a value proportional to
τd − τa

L
. (B.19)

In the case (N,m) = (1, 0), the mean-field approximation is exact, i.e. the first deriva-

tive of dT
dτ is the only nonzero derivative, given by

A(L, τd) =
1

L

d

dτ
τ

ˇ

ˇ

ˇ

τ=τd
=

1

L
. (B.20)

With the addition of a single subthreshold ligand τa ≃ 0, so that ϵ ≃ τd, the out-

put is maximally reduced by τd
L+1 ≃

τd
L , a finite quantity, as described in subsection

Fast Gradient Sign Method recovers antagonism by weakly binding ligands in

Chapter 3. For higher m, the linear approximation holds only for ligands at τa close

to threshold.
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Few-pixel attack

In this section, we describe in detail the procedure for the few-pixel attack. We used

this to come to our conclusion in subsection Biomimetic defenses against few-

pixel attacks and Fig. 3.4 C in Chapter 3.2.

The few-pixel attack connects to ligand antagonism in the sense that few pixels

are needed to cause misclassification, corresponding to the addition of few maxi-

mally antagonizing ligands to a mixture fooling robust adaptive proofreading models.

It is not the most efficient attack against a classifier without biomimetic defence, but

it is the most efficient attack against classifiers with biomimetic defence, equivalent

to adaptive proofreading models with m > 1. For these adaptive proofreading mod-

els, there exists a unique maximally antagonistic binding time, defined as the binding

time that maximally reduces TN,m.

With this in mind, we decided to make pixels black or white in a controlled manner,

until the neural network classifies the perturbed, initial digit as the target class. In

the following, we will refer to several stages of the few-pixel attack using Fig. B.3.

We first computed what we term pixelmaps. Pixelmaps contain the change of score

when making a pixel white or black. In Fig. B.3, blue colors correspond to pixels

that will lower the score when turned white or black, while red colors are for pixels

that will increase the score for the same operation. A grey color means the score is

unchanged when whitening or blacking the pixel. The pixelmaps are scaled to the

maximum change in score. We proceed in merging and sorting the pixelmaps from

maximum to minimum change in score towards the target class, iteratively following

the sorted list to decide which pixels in our digit to turn white or black. We do this until

we reach the decision boundary (first iteration in which the digit is misclassified). The

final digits in the row above the red rectangle in Fig. B.3 are the resulting boundary

digits. They already contain perturbations corresponding to real features, but have

an air of artificiality to them which allows us to fairly easily distill the ground truth.

We remove this with a mean filtering [107], which is a 3x3 convolutional block that
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computes mean pixel values as

yi,j =
1

9

1∑

k,l=−1

xi+k,j+l. (B.21)

Biologically, this is pure receptor clustering, where a perturbation to a single re-

ceptor locally affects other ligands. Such digits are truly ambiguous digits that are

tough to classify even as humans. These are the type of digits we expect to find on

the decision boundary. Finally, we compare the mean-filtered digit at the decision

boundary to the control: the sum of the initial digit and the hill function of Eq. 3.8

(N = 3; θ = 0.5) on the average of all digits in the target class, then mean-filtered

(Fig. B.3 for a step-by-step composition). We apply the mean-filter to the control to

again remove the artificiality of a digit plus an average, and make the comparison

between boundary digit and control digit fairer. The similarity between mean-filtered

boundary digit and control digit confirms our intuition that we are actually operating

in the space between both classes when misclassification occurs.

We can also apply the mean-filter to the initial digit before generating the pix-

elmaps, and during the procedure, check the score on the mean-filtered perturbed

image. This gives similar results, as we see by following the trajectory of the score for

boundary-null and boundary-mean. We have shown the score explicitly in Fig. B.4 for

the digits in Fig. B.3. The behavior of the score is remarkably similar to the interpola-

tion between ligand mixtures (Fig. 3.3F, bottom panel). A nonlinear filtering method

proposed in [107] is the median-filter, but this one works less well for black-and-white

pixels.

We have shown examples that are generated when we select for instances where

the number of iterations is large enough (20 suffices, we still consider this to be a few-

pixel attack, keeping in mind that digits have 784 individual pixels). The authors of

[106] specifically searched for single pixel attacks. Examples of single-pixel misclas-

sification exist in our neural networks trained on two types of digits in MNIST too, but

these we found non-informative. In cellular decision-making, this case corresponds to

adding a single antagonist ligand to a ligand mixture to cause misclassification. This

is only possible if the ligand mixture is already very close to the boundary. For such
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Method of few-pixel attack

Figure B.3: Method of few-pixel attack. Each column show how a few-pixel attack causes
misclassification of an initial digit to a target class. The important result are the pre-filtered
boundary digits and the control in the red rectangle. Pixelmaps determine which pixels
increase (red) or decrease (blue) the score when turning an individual pixel in the initial
digit white or black. We merge the pixelmaps, sort this list of pixels, and go through it from
maximum to minimum change in score until misclassification occurs, resulting in the pre-
filtered digit. We apply a mean-filter to make them look more like real digits, and indeed,
these mean-filtered boundary digits closely resemble our control digits at the boundary.
The control digits are composed of the mean-filtered initial digit plus locally contrasted
(with hill function (N = 3; θ = 0.5) average digit of the target class.
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Trajectory of the score

0 1 2 4

2 7 3 9

9 3 9 6

Figure B.4: Trajectory of the scoring functions of the attacks in Fig.B.3. The blue,
orange and green line correspond to various digits (actual digit, mean-filtered digit, median-
filtered digit) for which we check the score, and terminate when reaching the boundary. The
trajectory of the score for the null digit and the mean-filtered digit is generally the same.
Moreover, the behavior of the score looks similar to the behavior of TN,m upon addition of
maximally antagonizing ligands to a mixture of only agonist ligands in Fig. 3.3 D.

samples, we do not expect ambiguity to appear. Remember that near the boundary,

the score landscape is steep, and small additions have a large effect.

” (Attack and defence [2])
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Figure C.1: Comparison between training classifier on data from old protocol and new
protocol. Top row shows learned weights and latent space for classifier trained with stan-
dard dataset (6 datasets from old protocol). Middle row shows learned weights and latent
space for classifier trained with subset of standard dataset (3 datasets from old protocol).
Bottom row shows learned weights and latent space for classifier trained with 4 datasets
from new protocol. Timeseries from the same reproducibility dataset are used to project
on the latent spaces. There exist minor differences in the learned weights and the latent
space, which is mainly due to different range for the normalization. This validates that the
new protocol does not affect the results in any meaningful, and that it is okay to extract
supernatant for measurement.
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Figure C.2: Comparison of normalization procedures. Top panel: standard min-max nor-
malization by dividing each training set by the global minimum and maximum per cytokine
resulting in typical learned weights and latent space dynamics. Dividing each training set
by minimum and maximum per cytokine per dataset gives warped learned weights and
a non-interpretable latent space dynamics. Due to the diversity between conditions in an
experiment, as well as within the same conditions between experiments, min-max normal-
ization for each dataset individually strongly biases the training set towards dataset with
unexpectedly low or high cytokine concentrations, and does not allow for the retrieval of
correlation between cytokines and antigen quality that exists across datasets.

Figure C.3: Timeseries classification procedure. Left panel: classification of a timeserie
of given quality (set of four rows indicated by antigen name and color on the left) and
quantity (four subrows per antigen quality indicated by antigen quantity on the right). Cir-
cle (cross) is correct (incorrect) classification. Color of the marker indicates what antigen
was predicted. Right panel: summing individual timepoints per timeseries of given qual-
ity (rows) and quantity (columns). The timeseries prediction is the antigen with the most
timepoints, indicated by the vertical line. Green (red) line indicates a correct (incorrect)
prediction.
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Figure C.4: Comparison parameter spaces with and without regularization. Left panel
shows parameter space obtained by fitting constant force model including a regularization
term, right panel shows parameter space without regularization. The difference is subtle
but important. On the right, the y-axis is extended because of a timeseries that is fitted with
very high F and t0 ≃ 0. Moreover, timeseries with very small F may have quite large t0
up to 40 hour on the right, while they are constraint to t0 ≤ 10 hour with regularization.
L1 regularization forces indeterminate terms to near-zero values, which is the correct thing
to do for conditions with a small response, meaning a small F and t0. The value of the
regularization constant is found to be not of importance; here it is set to 1.
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Figure C.5: T cell numbers over time. Number of events the flow cytometer records per
measurement corrected by the relative proportion of events / initial T cell number per time-
series. 85 - 90 % of the T cells are lost following washes and stains.
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Figure C.6: Integral latent spaces for APC experiment. APC types are in the rows (from
top to bottom: splenocytes, macrophages, dendritic cells), TLR agonist in the columns
(from left to right: None, LPS + hIFNγ, poly I:C, aCD28), colors indicate antigen.
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