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Abstract

Improving lithium-ion battery performance is key in facilitating a green sustainable future. This
has led to nanosizing of active materials as means to improve their conductivity by reducing the
lithium-ion diffusion length. However, nanomaterials introduce a new challenge during the casting
stage of lithium-ion battery electrode fabrication. This technique is unsuited for handling both
nanosized and 2D-shaped materials as they introduce rheological challenges. Additionally, the
current commercially available casting technique requires the use of a toxic and expensive organic
solvent. Thus, the focus of this work was to investigate and design an alternative coating process
using electrophoretic deposition (EPD). The work comprises three studies.

In the first study, carbon-coated lithium titanate (LTO) nanoparticles and acetylene black were
successfully made into highly-conductive composite anodes via EPD employing styrene butadiene
rubber (SBR) as binder in an appropriately selected 90/10 vol.% acetonitrile/water medium. The
investigation characterized and optimized the effect of current density on particle movement and
deposit growth producing >20um thick mesoporous films on aluminum substrate. The EPD
electrode performance was compared to electrodes prepared via the conventional tape-casting. For
EPD electrodes, SEM imaging and EDS mapping showed excellent intermixing of carbon
components and the active material. Via photoemission electron microscopy (PEEM) coupled
with X-ray absorption near edge structure (XANES) it was revealed the SBR binder to be well
dispersed within the coating, which translated to the electrode achieving superior rate cycling
performance thanks to enhanced conductivity enabled by the hetero-assembling power of
electrophoretic deposition.

In the second study, EPD was innovatively applied to fabricate binder-less nanolayered lithium
titanate and reduced graphene oxide composite coatings as high-performance Li-ion anodes. This
was accomplished by electrophoretically depositing 2D shaped lithium titanate hydrate (LTH) and
graphene oxide (GO) precursors and subsequent high temperature reducing annealing to induce
the topotactic transformation of LTH into LTO and GO into the so-called reduced graphene oxide
(rGO). As graphene (and rGO) is difficult to successfully suspend, using the functionalized
precursor circumvented this problem. Likewise, the EPD electrodes are compared to
conventionally prepared electrodes with rGO and carbon black. Cross-sectional imaging and EDS
mapping showed the EPD electrodes contained a homogeneous coating with the rGO acting as a

conductive medium and anchor binder which helped organize the LTO nanosheets into a well built



and adherent film. As a result, the EPD nanolayered electrode was found to exhibit superior
electrochemical performance in terms of power capability, cyclability and impedance when
compared to conventionally prepared electrode.

The final study featured titanium niobate (TNO, TiNb,0;), this material is a promising
replacement anode material for LTO with the potential to deliver higher capacities (378 mAh/g vs.
175 mAh/g of TNO and LTO respectively). Binder-less TNO/rGO electrodes were made through
adapting the EPD method developed for the second study — electrophoretically co-depositing TNO
and GO followed by high temperature annealing to induce GO to rGO transformation. The final
composition of EPD coatings contained 18 wt% rGO which was compared to conventionally
prepared electrodes containing 18 wt% rGO and 10 wt% rGO. The rGO was determined in addition
to acting as binder and conductive component to have pseudocapacitive contributions to lithium-
ion storage. The improved homogeneity in the EPD electrodes allowed better performance in terms
of capacity level and retention, i.e. reduced capacity fade in comparison to PVDF-built electrodes
of similar composition. This further emphasized the importance of having a uniform composition
between active and conductive material to minimize electrode performance degradation.

Overall, through these integrated electrode construction and electrochemical performance
analysis studies, EPD is shown to be a superior coating technology with great application potential

in manufacturing advanced LIB electrodes.



Résumé

L’amélioration des performances electrochimiques des batteries lithium-ion (Li-ion) est
déterminante pour I’atteinte des objectifs de développement durable établis par la communauté
scientifique. Parmi les mesures prises en ce sens, la miniaturisation des matieres
¢lectrochimiquement actives vers les dimensions nanométriques a permis d’améliorer leur
conductivité en réduisant la longueur des canaux de diffusion des ions lithium. Cependant,
I’utilisation des nanotechnologies ameéne de nouveaux défis a 1’étape de 1’enduction lors de la
fabrication des électrodes destinées aux batteries Li-ion; 1’enduction n’est pas adaptée aux
matériaux nanométriques et bidimensionnels puisque qu’elle introduit des problématiques liées a
la rhéologie. De plus, les techniques d’enduction utilisées présentement utilisent des solvants
toxiques et dispendieux. Ainsi, ce projet a comme objectif d’évaluer et de concevoir une technique
d’enduction alternative utilisant les principes de la déposition ¢lectrophorétique (DEP). Le travail
inclus trois segments.

En premier lieu, des particules nanométriques de titanate de lithium carbonées (LTO) et de
noir d’acétyléne ont été enduits avec succes comme anode composite hautement conductrice via
la DEP en utilisant le styréne-butadiene (SB) dispersé dans un mélange d’acétonitrile et d’eau
suivant une proportion volumique 90/10%. Les travaux de recherche ont permis de caractériser et
d’optimiser les effets de la densité de courant sur le mouvement des particules et la croissance du
dépdt sur le substrat d’aluminium. Ce film pouvait atteindre plus de 20um d’épaisseur et présenter
une structure mésoporeuse. La performance des électrodes ainsi fabriquées a été comparée a celle
d’¢électrodes fabriquée selon la méthode conventionnelle d’enduction. Les analyses en microscopie
électronique a balayage (MEB) et la cartographie en spectroscopie dispersive en énergies des
rayons-X (EDX) ont montrées que les électrodes provenant de la DEP présentent une excellente
mixité des composés carbonés et du LTO. De plus, il a été déterminé via la microscopie
électronique par photoémission (MEPE) couplée a la spectroscopie de structure prés du front
d'absorption de rayons X (XANES) que le liant de SB s’avere étre bien dispersé a travers I’enduit.
Ceci se traduit par des performances de cyclage supérieure de 1’électrode grace a une meilleure
conductivité amenée par la force d’assemblage de la DEP.

Dans un deuxiéme temps, la DEP a été utilisée pour fabriquer des anodes hautes
performances faites d’une nano-couche d’un matériau composite de LTO et d’oxyde de graphene

réduit (OGr). Pour ce faire, une matrice composée d’hydrate de titanate de lithium (LTH)



bidimensionnel et d’oxyde de graphéne (OG) a été d’abord déposée électrophorétiquement puis
recuit & haute température en atmosphere réductrice afin d’induire une transformation topotactique
du LTH en LTO et du OG en OGr. Ainsi, I'utilisation du précurseur d’OGr fonctionnalisé a permis
de surmonter les problémes de mise en suspension du GO. Par la suite, les électrodes obtenues par
la DEP sont comparées a celles préparées de facon conventionnelle avec le noir de carbone et
I’OGr. L’imagerie et la topographie EDX des ¢lectrodes en coupe transversale ont démontré
qu’elles sont formées d’un enduit uniforme contenant I’OGr agissant comme agent conducteur
ainsi que d’agent liant servant a organiser les feuillets nanométriques de LTO en un film adhérent
et cohérent. Par conséquent, les électrodes obtenues par DEP ont démontrées des performances
électrochimiques supérieures aux électrodes conventionnelles en termes de puissance,
d’impédance et de rétention des capacités €lectrochimiques.

La derniere étude concerne le niobate de titane (TNO, TiNb,0,) qui s’avére étre un matériau
anodique prometteur pour remplacer le LTO puisqu’il peut livrer de hautes densités de courant
(378 mAh/g vs. 175 mAh/g pour le TNO et le LTO respectivement). Des électrodes de TNO/OGr
sans agent liant ont été fabriquées en adaptant le procédé par DEP précédemment développé pour
le TNO. Ainsi, les couches électrodéposées sont composées a 18% massique de OGr ce qui
correspond a la composition des éelectrodes conventionnelles soit de 10% ou de 18% massique
d’OGr. Par ailleurs, en plus des propriétés liantes et conductrices de I’OGr, il a été déterminé qu’il
amenait aussi une contribution pseudo-capacitive a 1’emmagasinage des ions lithium dans
I’¢lectrode. La plus grande homogénéité des électrodes DEP a permis d’obtenir de meilleures
performances électrochimiques en termes de capacité de cyclage et de rétention de cette capacite.
Plus précisément, il a réduit les pertes de capacité en comparaison aux électrodes PVDF de
composition similaire. Cette amélioration met en évidence I’'importance d’avoir une composition
uniforme entre la matiére active et le composé conducteur afin de minimiser la dégradation des
performances des électrodes.

En sommes, suite a 1’étude d’une nouvelle méthode intégrée de fabrication des électrodes ainsi
que I’analyse de leur performances électrochimiques, la DEP s’avere étre une technologie
supérieure aux méthodes standards avec de grands potentiels d’application en fabrication avancée

des électrodes de batteries Li-ion.
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1

Introduction

1.1 Lithium-ion Batteries and the Global Climate Change Challenge

Historically, the advent of coal-powered steam engines drove the industrial revolution (that

improved quality of life) and enabled the boom in population. This growth in population was

accompanied with an equal growth in energy demand. Fossil fuels (such as coal, oil, and gas) are

now recognized as having a negative environmental impact due to greenhouse gas emissions (such

as carbon dioxide) [1]. In response, renewable energy sources (e.g. solar and wind) are considered

the answer to meeting the energy demand whilst reducing further environmental impact. However,

despite knowing the effects of fossil fuels, much of the total global energy consumed still comes

from these sources. The striking contrast between sources is seen in Figure 1-1.
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Figure 1-1: Global primary energy consumption over the years by source (modified from [2]) with

magnified section (from years 2000 to 2017) shown inset®.

L In this graph renewable energy includes solar, wind, hydropower, and other renewable energies (i.e. geothermal,
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A major issue that has stalled the full implementation of some renewable energy sources (such
as wind, and solar) is their intermittent nature which results in downtime [1]. As a result, the energy
must be stored for use when energy production is low; hence why energy storage is often referred
to as the “missing piece” in the renewable energy solution.

Another major issue with fossil fuel use is the transport sector. Currently, this sector (as
measured in 2017) is responsible for 25% of global carbon dioxide emissions. In fact, transport
and the above mentioned electricity/heat generation sectors constitute 66% of the total global
carbon dioxide emissions and, as reported by the International Energy Agency, are almost solely
responsible for the entire global growth in emissions since 2010 [3]. Thus, in an attempt to mitigate
further damage from the transport sector the 2015 “Paris Declaration on Electro-Mobility and
Climate Change and Call to Action” initiative stated that in order to meet the projected goal of
reducing climate change by 2 degrees then electric vehicles must account for 20% of vehicles used
by 2030 [4]. This has driven the development of clean electric powered vehicles making use of
electrochemical energy conversion or storage technologies [5]. Thus, in the two major sectors
which contribute to carbon dioxide gas emission — transportation and electricity/heat production —
electrochemical energy storage holds the key to reducing the negative environmental impact.

Figure 1-2 shows a Ragone plot of specific energy vs. specific power for different
electrochemical energy storage technologies. In essence, if these systems were used to power a
vehicle, the specific energy would dictate how far the car would go and the specific power the
speed it could achieve [6].

By virtue of their relatively high specific energy, light weight, good cycle life, and high energy
efficiency lithium-ion batteries (LIB) standout from other electrochemical energy storage devices.
They have thus become the dominant battery technology in consumer electronics in the last two
decades. Currently, they are the preferred battery technology for electric and hybrid vehicles. It is
important to note that electric vehicles have consumer-imposed requirements such as long driving
range on one charge, short recharge times, and cost parity (whole of life cost per km) [7] among
others that must be comparable or better than the internal combustion engine vehicles in order to
effectively replace them. Table 1-1 lists LIB-powered electric vehicles and corresponding base
retail value, battery size, charge time, and driving range. The gas-powered Nissan Maxima is added

as comparison to show the typical driving range of a 68L combustion vehicle. The difference in



cost to driving range of the gas-powered vs. the electric vehicles shows the latter technology has

yet to meet industry needs.
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Figure 1-2: Ragone plot of different energy storage technologies (modified from [6]).
Table 1-1: List of LIB-powered electric vehicles organized by driving range compared to the gas-
powered 2019 Nissan Maxima. Prices are taken from the respective websites and are given without

consideration to governmental incentive subsidies.

Starting Cost Battery size Charge Range
Year and Model ($C,2D) (kV\)lh) time (n?in)z (km?w)
2019 Nissan Maxima 34,850 680°
2019 Tesla Model S 108,990 100 30 595
2018 Kia e-Niro 56,105 64 40 455
AL [PiseD SOt 44,999 64 40 450
electric
2019 Nissan Leaf S+ 44,898 62 30 363
2019 Audi e-tron 90,000 95 30 329
2018 BMW i3 57,700 42.2 40 277
2017 Volkswagen e-Golf 35,995 36 40 230

2 charge time to reach 80% charge using 150 kW

3 Range calculated from 24 mpg (~10 kpL) combined City/Highway gas mileage



This means that in order to use LIBs to achieve the ambitious goal set by the Paris initiative this
battery technology — that will enable renewable energy sources and replacement of gas-powered
cars by electric vehicles — must be optimized. Furthermore, with LIBs becoming part of the green
energy solution it is important that this technology does not actively contributing to the problem it
is trying to fix. However, assessing the life cycle of a LIB will show there are stages where this
technology cannot be considered environmentally friendly. Among these are the mining and
availability of the minerals used (notably cobalt [8]); the toxicity of these materials which furthers
the need for recycling battery components [9,10]; fire/explosion risks [11]; and the use of toxic
chemicals during production [12]. In essence, optimizing LIB quality must go hand-in-hand with
reducing its environmental impact.

Much research has focused on improving LIB quality through developing higher performing
electrode materials using metals selected for their high availability and low toxicity. This thesis
addresses the fabrication stage and aims at eliminating the use of toxic organic solvents while
simultaneously improving electrode physical properties (and therefore LIB quality) through
utilizing an alternative fabrication technique: Electrophoretic Deposition (EPD).

EPD is an electrochemical coating (e-coating) technique that involves the suspension of charged
particles and subsequent deposition through the application of an electric field (explained in detail
in section 2.3) [13,14]. The suspension used is versatile and can be tailored to suit a wide variety
(type, size, and shape) of materials. Thus, depending on the type of suspension used, EPD can
make the fabrication stage environmentally friendly or even binder-free for apparent cost benefits.
Another strength of this technique — and one that is key in the studies included in this thesis — is

its self-assembling property and ability to fabricate homogeneous multi-component coatings [15].

1.2 Thesis Objectives

This work investigates electrophoretic deposition (EPD) as an alternative fabrication technique for
lithium-ion battery electrodes. The main objectives are to:

1) Engineer systems that allow for the sustainable fabrication of electrodes with improved
multiscale (nano-, micro-, and meso-) structural characteristics via the innovative
application of EPD.

2) Explore binder-less fabrication of highly conductive nanolayered electrodes using

graphene oxide (GO) as de facto binder during EPD that is converted to conductive reduced



graphene oxide (rGO) upon annealing. The graphene is added in order to lower internal
electrode polarization and improve electrochemical performance.

3) Control the electrophoretic deposition of different assemblies of active (LTO, LTH, TNO)
and conductive (acetylene black or rGO) components and study the resulting coating
structure (percolation network) and effect on electrode performance (with emphasis on how
it affects capacity fade).

To this end, the physical/chemical/electrochemical properties of the EPD suspension and
composite coatings must be studied. A variety of characterization techniques are undertaken
including zeta potential analysis of suspension to determine suspension stability; Scanning
Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS), and Photoemission
Electron Microscopy (PEEM) coupled with X-ray Absorption Near Edge Structure spectroscopy
(XANES) is performed to determine the microstructure of multicomponent coatings;
Thermogravimetric Analysis (TGA) is used to determine amount of active/conductive/binder
material present in the multicomponent coatings; pristine materials and coatings are further
characterized through X-ray Diffraction (XRD), X-ray photoelectron Spectroscopy (XPS), Raman
Spectroscopy, Transmission Electron Microscopy (TEM) coupled with Selected Area Electron
Diffraction (SAED); Electrodes are electrochemically tested using Cyclic Voltammetry (CV),
Electrochemical Impedance Spectroscopy (EIS), and repeated galvanostatic charge/discharge at a
constant rate and rate cycling.

This thesis comprises 5 chapters in addition to this Introductory one. Chapter 2 is a literature
review that outlines the theory and mechanisms for LIBs and EPD. Chapters 3, 4, and 5 follow the
format of journal papers published (or in revision or submission stages). Chapter 3 focuses on the
deposition of multi-component anode composed of nano lithium titanate spinel (LTO, Li,Tis0;,),
carbon black, and styrene butadiene rubber (SBR) through EPD. The EPD cells are compared to
conventionally PVDF-made slurry cast electrodes using physical and electrochemical
characterization. This chapter serves as an introduction to demonstrate the effectiveness in
fabricating composite electrodes using EPD vs. the conventional method. Chapter 4 details the
fabrication of binder-less lithium titanate and reduced graphene oxide (rGO) through deposition
of 2D precursors via EPD and subsequent annealing to induce transformation from precursors into
LTO/rGO. The EPD cells are likewise compared to conventionally prepared cells using reduced

graphene oxide or carbon black. This study focuses on the effect of using EPD and a graphene



material through post-mortem characterization of the cycled cells. Chapter 5 expands the use of
rGO to another anode material: titanium niobate (TiNb,0,, TNO). Binder-less TNO/rGO

electrodes are fabricated to examine the effect of a homogeneous rGO network and

pseudocapacitive behaviour of electrophoretically deposited rGO/TNO. Emphasis is placed on the

effect of rGO percolation network on the capacity fade. Finally, Chapter 6 summarizes the global

conclusions and contributions to originality drawn from this work.
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2 Literature Review

In this Chapter, information regarding the LIB working principles, commonly used cathode and
anode materials, and the conventional fabrication method is provided. Problems arising from the
conventional method are discussed to explain the need for alternative fabrication processes.
Section 2.3 goes into detail behind the mechanisms that govern EPD as this fabrication technique

forms the core of this thesis.

2.1 Battery Mechanism and Key Components

2.1.1 Battery Mechanism

Lithium-ion batteries are a type of rechargeable battery that consist of an anode, cathode, separator,
electrolyte, connective wiring, and a casing which encloses the components. A simplified cell
schematic is shown in Figure 2-1; in this image the cathode and anode are composed of lithium
cobalt oxide (LiCo0,, LCO) and graphite, respectively, coated onto metallic current collectors.
The electrodes are held within the casing and submerged in a 1M electrolyte consisting of lithium
hexafluorophosphate (LiPFg) salt dissolved in ethylene carbonate (EC) and diethyl carbonate
(DEC). The cathode is composed of alternating cobalt oxide arrays and freely-moving lithium-
ions and, similarly, the graphite is composed of stacked graphene with sp2 hybridized layers. They
are referred to as intercalating compounds because the lithium ions may move freely between the
anode and cathode depending on whether the battery is being charged or discharged. When the
battery is in a charged state, the lithium ions are contained within the graphite matrix. Once
connected, both lithium ions and electrons migrate towards the cathode (albeit through different
paths) where the reduction of the Co**/Co3* couple allows for the lithium to be stored. The
corresponding cathodic and anodic reactions that occur during discharge are shown in equations
Eqg. 2-1 and Eq. 2-2 respectively. Connecting this cell to a power source can reverse these reactions
and recharge the battery. During charging (intercalation into the anode), the lithium ion maintains
the charge and the carbon is reduced which achieves overall charge balance.
xLit + xe” + Li;_,Co0, — LiCo0, Eqg. 2-1
Li,Cq — xLi* + xe™ + xCq Eqg. 2-2



Cathode Separator Anode

Figure 2-1: LIB schematic of sandwich anode/cathode structure, internally separated by a porous
membrane separator, submerged in an electrolyte, and externally connected through a circuit. Li* ions and
electrons are shown moving from anode to cathode during a battery discharge.

To describe battery performance, some key parameters commonly used are energy density,
power density, rate capability, and cycle life [1].

The energy density of a battery is defined by the quantity of energy stored per unit volume
(Wh/L). It is also commonly expressed as gravimetric or specific energy density which is the
battery energy per unit mass (Wh/kg). Energy density is the product of the open circuit voltage
(Vo) and the specific capacity (Q.); the latter represents the amount of charge stored per unit mass
(Ah/g). The theoretical specific capacity for a material is a useful property that can be calculated
from the amount of charge transferred (n), Faraday’s constant (F, C/mol), and the molar mass (M,
g/mol) of the material as shown in Eg. 2-3. For LCO the theoretical capacity is calculated to be
274 mAh/g assuming a full lithium ion can be extracted per mol of material, however due to
structural instability this is not possible therefore the observed capacities are closer to 140-150
mAh/g [2,3]. This property varies depending on the type of material with some having a much

higher capacity.



nF Eg. 2-3
Q= ﬁ a
For a one electron exchange reaction with LCO the theoretical specific capacity would be

calculated as:

1) (96500—C ) mA
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mol
The power density is defined as the rate of energy transfer (W/kg, W/L) that the material can

mAh
273.8——
g

handle per unit volume or mass.

Rate capability refers to the rate of charge and discharge, typically the applied current (to
charge the battery) is normalized with respect to its theoretical capacity — this is referred to as the
C-rate. For example, 1g of LCO may deliver 274 mAh (according to theoretical capacity), to
charge for 1 hour 274 mA must be applied — this is referred to as 1C charging rate. Similarly, to

charge for 30 mins (274 mAh X ﬁ) 548 mA must be applied — this is referred to as 2C rate.

Cycle life refers to the amount of cycles (at a given C-rate) that the battery can efficiently
perform. Battery capacity diminishes with age due to instability of the electrolyte in the operating
potential of the battery which leads to unwanted side reactions that trap and deplete the lithium
ions — this is referred to as chemical degradation. Mechanical degradation also occurs due to the
diffusion of lithium ions within the electrode material that introduces diffusion induced stresses
(DIS) due to volume changes. These stresses may cause particle fracture which would expose new
surface area to the electrolyte and facilitate further unwanted reactions (further explained in
Section 2.1.3) [4].

2.1.2 Capacity-Voltage Curves and Polarization

During battery cycling, the capacity can be measured as a function of potential to produce
discharge/charge curves (discharge curve shown in Figure 2-2). During discharge, while the
lithium ions migrate from anode to cathode, the cell voltage will drop. The mid-point voltage
(MPV) is the nominal voltage and it’s the quoted voltage in batteries. A flat discharge curve means
less voltage variation which is ideal in many electronic designs. LIBs often do not have this ideal
flat discharge curve which means they are unable to maintain a constant voltage over time.

The shape of the discharge curve is important to understand the behaviour of the cell. At the

start, the initial voltage is the open circuit voltage (OCV) — this is the initial potential difference
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between anode/cathode when there is no current. Ideally the cell would discharge at this constant
voltage however in practice the potential drops during discharge. The potential drop can be
attributed to [1]:

1) Activation polarization
2) IR drop — Ohmic polarization
3) Concentration polarization

Polarization:
Activation | Ohmic : Concentration
ocv : :
| | ~— Ideal
| I
| | Actual
MPVF—r—————————

Potential vs. Li*/Li (V)

Specific Capacity (mAh/g)
Figure 2-2: Schematic of an ideal vs actual discharge voltage-capacity curve for LIBs.

Activation polarization refers to the electrochemical drive needed for the redox reaction to
occur. It is important to note that a reaction occurs in a series of steps at the electrode/electrolyte
interface. Reaction rates are determined by the slowest step referred to as the rate limiting step.
The term “activation” is used since the slowest step is determined by the largest activation energy
required. For LIBs this is the slow charge transfer reaction at the interface.

The current flow resulting from the electrode polarization, or overpotential, can be determined
through the Tafel relationship:

n=axblogi Eq. 2-4

Where n = overpotential (V), i = current density (A/cm?), and a and b = Tafel constants (V).
The rate of an electrochemical reaction refers to the charge transfer reaction (only when there is
no concentration limitation), thus the rate of (the forward) reaction can be related to the current

density:
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Where r is the reaction rate which is proportional to the reaction rate constant and concentration
of redox species. The reaction rate constant can be directly related via the Arrhenius equation to
the temperature. The system is said to be in activation polarization when there are sufficient
reactants at the interface, namely the reaction is not limited by supply of reactants (mass transport).
Thus, the initial drop after discharge of a battery begins is associated to the activation energy
required. This drop can be altered by varying the temperature of the cell. A higher temperature
will lead to a faster reaction rate and larger currents — however, in practice a higher temperature
may also accelerate unwanted side reactions such as electrolyte decomposition [5].

The gradual decrease in voltage during discharge is attributed to Ohmic IR drop due to internal
cell resistance/impedance and thus referred to as ohmic polarization. The total internal impedance
is the sum of 1) the electrolyte ionic resistance, 2) electronic resistance of the active mass, and 3)
contact resistance between layer + current collector. In other words, the IR drop represents the
resistance against electron and ion flow through electrode and electrolyte. This can be reduced by
increasing electrolyte conductivity, pressing the electrode to minimize contact resistance and
electronic resistance, and increasing temperature. The presence of a flat discharge curve results
when the effect of changing reactant to product is minimal (i.e. the composition does not matter).
Typically, this occurs with materials that exhibit two phases due to the Gibbs phase rule:

FG:CG_PG‘l‘Z Eq2'6
Where Fg is the degrees of freedom, Cc is the number of components (i.e. Li* ions and host

matrix, C=2) present, and Pc is the number of phases present. For systems such as lithium titanate
spinel (Li,Tis0,,, LTO), lithiation causes transformation of the spinel phase to the lithiated rock-
salt phase. This means that C=2, P=2, and consequently F=2, when the temperature and pressure
are fixed there are no degrees of freedom which in turn fixes the potential. Materials may have a
remaining degree of freedom, this means the system is not fully defined and in these cases the
potential will vary depending on other parameters such as composition [6,7].

At high overpotentials when the reactants are completely consumed the reaction rate is driven

by the diffusion of reactants to the electrode surface and referred to as concentration polarization.
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The maximum current, referred to as the limiting current i, , is reached. The rate can be related to

Fick’s diffusion law where the concentration gradient dictates the diffusion rate:

_DdC
"= dx

o FDdC
i, =nFD -

. nFD(Cg —Cy)
LT
i, = nk,,FCg Eq. 2-7
Where D = diffusion coefficient (cm?/s) of the reactants, § =boundary-layer thickness (cm),
Cg =bulk concentration (mol/cm?), Cs=surface concentration (mol/cm3), and k., = D/§ is the
mass transfer coefficient (cm/s).
Thus, the cell voltage, E (V), can be expressed as [1]:
E = Eocv — (Neta + Nea) = (Mete +Mec) — R Eq.2-8
Where Eycy is the open-circuit voltage (V), 1., and n.. are the anodic and cathodic
overpotential due to charge transfer respectively (V), n., and n.. are the anodic and cathodic
overpotential due to concentration overpotential (V), i is the operating current density of cell

(mA/cm?), and R; is the internal cell resistance (().
2.1.3 Cathode Materials

The cathode electrode is made of the active intercalation material, a conductive material (typically
acetylene black) and a binder. LCO has been the most common type of LIB cathode material used
in portable electronic devices. It holds this privilege due to the fact that it was the first material
successfully tested and commercially applied [8,9]. However, among the current problems
associated with the use of LCO are the accessibility to cobalt and safety concerns. LCO is toxic
and has poor thermal stability, this is problematic in cases where the battery is damaged (allowing
for a short circuit) or used at high temperatures. At high temperature the material decomposes and
releases oxygen gas which further fuels the exothermic reaction and leads to a fire [2]. This safety
issue, coupled with the relatively low observed capacity and unavailability of cobalt, has driven
research towards new cathode materials.

Aside from safety, cathode materials must satisfy other performance-related requirements

including providing a high working voltage, reversibly storing and releasing lithium ions with
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minimal structural changes, and the material must have a high ionic and electronic conductivity.
Thus, new chemistries have emerged such as lithium metal phosphate (LMP, LiMPO,, M =
Fe, Mn) lithium nickel manganese cobalt oxide (NMC, LiNiMnCo0,), lithium manganese oxide
(LMO, LiMn,0,), and lithium iron silicate (LFS, Li,FeSi0O,) among others. A performance

comparison for some of these materials is shown in Figure 2-3.
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Figure 2-3: Experimentally observed voltage-capacity discharge curves for various cathode materials

[2].

For the intercalation mechanism, the cathode crystal structure may be layered, spinel, or olivine
(Figure 2-4). These materials are classified based on the lithium ion diffusion pathways as 1D, 2D
and 3D [10]. Perpendicularly to the lithium diffusion paths, the host material is subject to
expansion and shrinkage during lithium diffusion which can lead to exfoliation of the structure.
This leads to the mechanical degradation of the material mentioned in Section 2.1.1.

Improving the overall performance of the material involves adding a conductive substance to
the coating mix and/or engineering the material. For the latter, the optimum way to improve battery
performance is to minimize particle size [11]. This increases the contact area between the particle
and the electrolyte which will improve charge transfer kinetics. Additionally, it minimizes the
diffusion length the lithium ions must travel to reach the interior of the particle [12]. This highlights

the need for nanosized materials [13].
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Olivine LiFePO, Layered LiCo0O, Spinel LiMn,0,
1D 2D 3D

Figure 2-4: Crystal structures of 1D olivine, 2D layered, and 3D spinel and their corresponding lithium

ion transport pathways shown by the arrows (modified from [10]).
2.1.4 Battery Separators and Electrolytes

The separator, typically composed of single or multilayer polymer sheets made of polyolefins,
prevents electrical contact between the electrodes whilst allowing for Li-ion transport due to its
microporous structure. Due to these necessary functions there are various membrane properties
that must be controlled such as permeability, wettability, porosity, chemical stability, mechanical
strength, thickness, and thermal shrinkage [1]. Preventing contact between electrodes is paramount
to safety as this will cause a short circuit which may lead to thermal runaway reactions. This means
there is always a trade-off between the mechanical and transport-related properties. The
membranes are designed with a shutdown mechanism, for multilayer membranes this is
accomplished by using two layers with lower phase transition temperatures. At higher temperature
the component with the lower phase transition temperature will melt and close the pores preventing
ion transport and current flow. This permanently damages the battery [14,15].

The electrolyte is typically a dissolved lithium salt in an organic solvent. Among the solvents
is ethylene carbonate, dimethyl carbonate, ethyl acetate, propylene carbonate, and mixtures of
them. The most common salts are LiPFg, LiBF,, LiClO,, and LiAsFg [16]. The type of electrolyte
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used is determined by its stability with respect to the potential window of the anode/cathode

selected in order to prevent electrolyte decomposition.
2.1.5 Binders

Binders are key enabling polymers in the fabrication of the cathode or anode electrodes. Binders
have stringent requirements that relate to battery performance and mechanical properties. Due to
the oxidative/reductive environment in a battery the binder must be inactive over the working
potential of the battery and remain stable in the electrolyte. In terms of mechanical properties, it
must have a high melting point and allow for flexible coatings while still maintaining good
interparticle adhesion/contact. A key requirement for an effective battery is to minimize the
amount of non-active material present — this includes the binder, conductive material, separator,
and current collectors. At the same time there must be sufficient binder to maintain the coating
integrity and the adhesion between coating and current collector. The most common type of binder
is polyvinylidene fluoride (PVVDF) which is a long nonreactive fluoropolymer. Polymers will swell
when in contact with an electrolyte which can lead to cracks in the coating, separation between the
coating and current collector, and ultimately battery degradation. Thus, the use of a polymer
introduces a new binder requirement: limited swelling. Finally, the binders must also be cost-
effective and environmentally safe.

PVDF has two key problems, 1) indirectly, it is environmentally unfriendly due to the nature of
the solvent used (discussed in Section 2.2) and 2) it is unsuitable for high capacity electrodes. The
latter is because these high energy density materials tend to experience large volume changes
which generate more stress and lead to separation of the coating from the current collector (as is
the case for Si and Si-alloy anodes) [17]. Binders work due to intermolecular interactions such as
the weak Van der Waals and hydrogen bond forces that exist between the binder and
active/conductive components. These interactions are heavily influenced by the functional groups
that may cause induced dipoles. Fluoride is the most electronegative element meaning PVVDF has
a permanent dipole between -F and -H in the backbone. However, these dipole interactions are not
enough to hold the active/conductive material together if it undergoes large volume expansion.
Studies have shown having carboxylate functional groups leads to hydrogen bonding and/or
covalent bonding between the carboxylate groups and the hydrogen on the active material[18,19].
To this end carboxylate-containing binders such as polyacrylic acid (PAA) and carboxymethyl
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cellulose (CMC) have been researched. CMC has the advantage of being water-soluble (as
opposed to the organic-soluble PVVDF), another such binder researched is styrene butadiene rubber
(SBR) [17,19]. Employment of an aqueous-based binder has the advantage, other than its green
character, of requiring a less intensive heating stage to remove the solvent (N-2-methyl-
pyrrolidone, NMP, boiling point is ~203°C) from the coating. Furthermore, the binders have been
shown to perform better or on par with the conventional PVDF electrodes [20] and are cheaper to
buy than PVDF [21] making them economically more attractive. Nevertheless PVDF is still the
dominant cathodic binder but CMC and SBR have now become the dominant anodic binders
[22,23].

2.1.6 Anode Materials

Similar to the cathode, there are various anode chemistries available. At the early stage of LIB
development researchers tried to use lithium metal as anode due to its high theoretical capacity of
3860 mAh/g and low density of 0.59 g/cm? [24]. The reaction whereby lithium is stored is Li* /Li
plating, this becomes problematic during cycling as some deposits form unevenly on the anode
surface and form dendrites (Figure 2-5 (a)). Growth of these dendrites could eventually lead to a
short circuit which poses a safety risk. Alternatively, carbonaceous materials with varying
graphitisation have become the standard in LIB anodes. This is because the carbon structure allows
for reversible lithium insertion (as shown in Figure 2-1 and Eq. 2-2) whilst avoiding dendrite
formation. The level of graphitisation is important as less graphitic carbon tends to have lower
capacity. During intercalation graphitic carbon accommodates lithium by arranging the carbon
layers in “AAA...” stacking (the pristine carbon stacking will vary) with an accompanying
interlayer distance change from 0.325-0.335 to 0.356-0.376nm [25,26] (Figure 2-5 (b)). Carbon
with a turbostratic arrangement (i.e. amorphous carbon) displays lower capacities in comparison
to graphitic carbon as it is unable to rearrange into the “AAA...” stacking (Figure 2-5 (d)).

Types of carbon can also be categorized based on its propensity to graphitize upon treatment.
Soft carbons are moderately disordered crystallites that are graphitizable at high temperatures [27].
At high temperature the turbostratic arrangement is removed which reduces strain in the material.
On the other hand, hard carbons are highly disordered crystallites that are not easily graphitizable.
Soft carbon was the first carbonaceous anode material adopted by Sony that displayed a large

gravimetric energy density of 80 Wh/kg and high reversibility. The second generation saw these
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replaced by hard carbon anodes which provided a larger gravimetric energy density of 120 Wh/kg
and preserved the high reversibility [28]. The lithiation process of hard carbons is explained by the
“falling cards model” proposed by Dahn et al. [29]. This theory claims that annealing allows for
the graphene layers to shift within the hard carbon and form organized regions whilst causing two
pores to coalesce. Additionally, each layer of non-stacking graphene can accommodate lithium
ions on either side which — coupled with the increased micropore size — allows for a higher
capacity. The hard carbon proved problematic with electronics as the overall cell voltage changes
drastically during charge/discharge. Additionally, to achieve a high enough capacity the cut-off
voltage must be placed close to 0 V vs. Li/Li* which risks for lithium to plate on the carbon
material and begin forming dendrites. To address these issues, the third generation Sony batteries
switched to graphite which allowed for a higher gravimetric energy density of 160 Wh/kg, a
specific capacity of 372 mAh/g, and a lithiation/delithiation potential of 0.1 V vs. Li/Li* [28].
Modification of the electrolyte allowed for the formation of a solid-electrolyte interphase (SEI)
layer. This is a surface layer that forms on the anode when the electrolyte reacts with the graphite
which leads to the irreversible entrapment of lithium ions. Thus, while initially a protective layer,
the SEI causes capacity loss and eventually battery failure [30]. Another disadvantage of this
material is the volume change that occurs during (de)lithiation of ~13 vol% [31].

The need to eliminate SEI formation led to the use of transition metal anodes such as lithium
titanate spinel (Li,Tis0,,, LTO). LTO has a 3D spinel structure, shown in Figure 2-5 (c), that
allows for lithium insertion at a working voltage of 1.55V vs. Li/Li* and yields a lower capacity
of 175 mAh/g. The voltage profile can be seen in Figure 2-6, the stable voltage plateau observed
is the result of the two-phase transformation (as explained in section 2.1.2).

During lithiation spinel Li,Ti50,, (8.3595A) changes to the rock-salt Li, Ti50;, (8.3538A) by
accepting 3 Li* due to the Ti** /Ti3* redox couple using a potential window of 1-3V (vs. Li*/Li).
After rock-salt formation this material may be further lithiated to form LigTis0,, to yield a
theoretical 293 mAh/g capacity, however this requires a potential window of 0.01-3V (vs. Li*/Li)
and results in loss of the working potential plateau, increase in polarization, and reduced
electrochemical reaction Kinetics [32,33]. The lithiation reaction is given by:

LiyTisOq5 + xLi* + xe™ > Liy, Tis0,,;0 < x <5 Eq. 2-9
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[37].

Within the spinel structure most of the lithium ions are stored in the 8a tetrahedral sites which

gives a (Li3)gg[Li;Tis]i6q(012)320 COmMposition. Lithiation induces the Li* ions to move from

the 8a to 16¢ position along with further Li* ions inserted up to a final composition of Li,Tis0,,

which is denoted by [Lig 1¢lga[LiiTisli6q[Lisgali6c[012]32¢- Lithiation beyond this composition
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to LigTis0,, occurs through storage of the 16c¢ sites first and then in the 48f and 8a sites and is

denoted by [Ligezlgq[LiiTisliealLislisc[Liosslasr[012]32¢ [38,39].

The advantages of using LTO are many: the insertion potential takes place at 1.55V (1-3V vs.
Li*/Li range) which is too high to cause SEI formation [40] and gives LTO excellent cyclability
and safety while avoiding the dendrite formation observed for Li metal; The secondary rock-salt
phase formed during insertion gives rise to a flat discharge curve which is beneficial for stable
battery performance; Finally, LTO undergoes negligible volume change (<0.2%) during
(de)lithiation and is referred to as a “zero-strain” material as there is almost no change in lattice
dimensions during (de)intercalation [40].

Despite these benefits, the low energy density is still a drawback. Thus, titanium niobium oxides
(TNO) suchas TiNb,0,, Ti,Nb,,0,4,and TiN b,,0,, have been researched as replacement anode
materials for LTO. They have the same advantage of largely avoiding SEI formation, similar
operating voltage of ~1.6 V vs Li*/Li, but can deliver significantly higher capacities (equivalent to
graphite) at ~387-390 mAh/g) [41]. The high capacity is possible due to TNO (hereafter referring
to TiNb,0,) having a possible 5 Li* exchange reaction due to Nb>*/Nb*+, Ti**/Ti3*, and
Nb** /Nb3* redox couples. However, to fully realize the 5 Li* reaction the voltage range must
reach below 1V (0.6V — 3V range) [42].

TiNb,O, + xLi* 4+ xe~ = Li, TiNb,0,;0 < x < 5 Eq. 2-10

TNO has a monoclinic “shear Re05” structure with space group C2/m consisting 3 X 3 X oo
blocks of M O4 (where M= Ti, Nb) octahedra which share edges and corners. The lattice parameters
are a = 20.315A,b = 3.801 4, and ¢ = 11.882 A [43]. This material has been reported to
undergo a volume change during (de)lithiation of 8-10 vol%, a larger value in relation with LTO
and comparable to graphite intercalation. VVolume changes are problematic as this will cause
cracking and separation between particles (i.e. loss of electrical contact — mechanical degradation)
which directly contributes to capacity fade [44].

A major disadvantage for both TNO and LTO is their low ionic and electronic conductivity
[45,46]. The low ionic issue may be addressed through nanosizing the material which shortens Li*
diffusion paths [12,47], for LTO this may be done by controlling the synthesis stage to prevent
formation of large particles as has been previously performed in this group [48-51] or encourage

nanoporous particles [46,52,53]. The electronic conductivity can be improved via carbon-coating
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the material [54], doping [46], and mixing with conductive additives such as graphene. As an
example, the latter may been done by dispersing the graphene precursor GO during or after
hydrothermal synthesis of LTO followed by post treatment to induce GO transformation [55,56].
The key for this idea to work lies in the ability to make homogeneously dispersed mixtures to
improve contact area and therefore the percolation network. These studies usually employ
sonication or stirring to improve active/conductive dispersion [55-58] followed by drying to
recover the mixture.

Due to their safety and performance, this work centres around improving the performance of
LTO or TNO composite electrodes through minimization of internal polarization and battery
degradation. Consequently, this would lead to lowering the capacity fade during cycling. Reduced
graphene oxide is used as conductive additive to improve coating conductivity. Further explanation
is given in sections 2.2 and 2.3. The former section expands on the importance of active/conductive

dispersion and the corresponding effect on capacity fade and electrochemical performance.
2.1.7 Electrode Conductive Additives

As mentioned in section 2.1.3, conductive material such as carbon black is often added into the
coating mixture to improve the electronic conductivity. It does so by lowering the internal
resistance which helps improve power density [59,60]. This added conductive material is not
electrochemically active, meaning it does not contribute to the redox reaction required for lithium
intercalation. However, it contributes to the overall mass/volume of the electrode which in turn
affects the energy density. The amount of conductive material is often less than 10% relative to
the total coating mass [59] and involves a trade-off between power and energy density.

For composite materials, the percolation theory (PT) [59,61,62] can be used to model or
mathematically describe the system. PT defines the minimum amount of conductive material
required for all these particles to make contact and form conductive channels (hence the term
percolation network). Experimentally, a sharp drop in resistivity is observed when this “critical
volume”, or “percolation threshold”, of conductive material is reached. In practice, the amount of
conductive material is not selected solely based on the percolation threshold as the internal
resistance will also depend on particle size distribution of both types of materials throughout the
coating, porosity/tortuosity, electrode thickness, and the materials ability to adsorb electrolyte.
Aside from the electrochemical properties, the type of conductive additive used will influence the
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mechanical strength of the electrode, compaction behavior, and rheological conditions during the
electrode manufacturing stage (see section 2.2).

The most common type of carbon additive is carbon black (semi crystalline, obtained through
the pyrolysis of hydrocarbons — may be graphitizable at high temperatures making it part of the
soft carbon family) and graphite powder. Other carbonaceous materials with higher conductivities
have also been tested, among these are carbon nanotubes [63,64] and graphene [65,66].

Graphene is a combination of mono- and few-layer sheets of sp2 hybridized carbon atoms
arranged in a honeycomb structure. Within the graphene plane each carbon is attached to three
other carbons — one with a = bond. The delocalized nature of = bonds leaves an electron free for
electronic conduction giving this material its excellent conductivity. This material can be
synthesized through various techniques, notably by exfoliation of graphite, chemical vapour
deposition of carbon-containing gases on metal surfaces [67], and reduction of graphene oxide
(GO) [68]. GO is mono- or few-layer sheets of functionalized graphene. Among these are hydroxyl
(OH), carbonyl(C=0), epoxy (C-O-C), and carboxyl (COOH) functional groups which are
attached through sp3 bonds. These groups tend to form at different points in the graphene plane,
with epoxy and hydroxyl groups scattered throughout the basal plane and the other groups (e.g.
carboxyl and carbonyl) mainly located at the edges or defective areas [69,70]. It is important to
note that the final structure and functional group composition of GO depends on the synthesis
technique used. The presence of the functional group within the carbon plane influences the charge
transfer abilities (as opposed to the edge groups), consequently the removal of epoxy and hydroxyl
groups is important to restoring conductive properties [68].

The GO functional groups may be removed through high temperature annealing thereby
producing graphene sheets with few remaining functional groups (defects) — due to the remaining
defects, this material is differentiated from true graphene and referred to as reduced graphene oxide
(rGO). The quantity of functional groups remaining — typically defined by the carbon/oxygen
atomic ratio where GO has a ratio of C/O~2 — may be controlled by the temperature selected.
Annealing at 800°C and 1000°C reduces the GO and shifts the C/O ratio to ~10 and ~30
respectively [71]. This process may be carried out in a vacuum or under a reductive environment
where the presence of hydrogen catalyzes the GO reduction [68]. In thermal annealing removal of
hydroxyl and epoxy groups occurs through desorption which produces H,0, CO, and CO, gas
byproducts [72].
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A comparison between the graphite, graphene, graphene oxide, and reduced graphene oxide is

given in Figure 2-7.

(2) (b)

Figure 2-7: (a) graphite, (b) graphene, (c) graphene oxide, and (d) reduced graphene oxide.

2.2 Conventional LIB Electrode Fabrication

The current commercial manufacturing technique used to fabricate lithium-ion electrodes is tape-
casting. The fabrication technique is important as it influences not just coating homogeneity but
also its porosity, electrode thickness, and mechanical stability — these properties in turn affect the
electrochemical performance.

Tape-casting involves mechanical mixing of the active, conductive, and binder material within
a liquid medium (N-2-methyl-pyrrolidone — NMP) to make a slurry. Mixing can be accomplished
through different machinery such as ball mills, planetary mixers, and universal type mixers [73].
This slurry is then coated onto a current collector followed by drying and calendering. The drying
and calendaring steps remove the solvent from the layer, improve particle connectivity, and reduce
surface roughness.

To ensure homogeneous material dispersion the slurry rheological properties must be
controlled. However, as indicated in section 2.1.3, the active material must be nanosized to
minimize lithium-ion diffusion. Nanosized materials tend to form a more viscous slurry than
coarser materials which introduces a rheological challenge for tape-casting during the mixing
stage. This problem may lead to bad particle dispersion in the electrode coating due to aggregation
of the nanosized active material at the mesoscale [74]. As the active materials available tend to
have low conductivity, the electrode performance relies on intimate mixture (point contact)
between active and conductive components to maintain a uniform current density throughout.

Uneven current distribution will affect transport kinetics [75], lead to polarization,
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overcharge/overdischarge [76], non-uniform phase transformation [77], and lower material
utilization [74—76]. All factors that ultimately contribute to capacity fade and battery failure.
Aside from the active and conductive material, the P\VVDF polymer binder must also have good
dispersion which requires the PVDF to completely dissolve in the solvent. This is a two-step
process that first involves 1) polymer swelling which weakens polymer-polymer bonds followed
by 2) dissolution itself which requires the polymer-solvent interactions to be greater than the
polymer-polymer interactions. This ultimately allows the polymer to be evenly dispersed
throughout the solvent and, consequently, the electrode [78]. For the PVDF binder, this dissolution
process is found to be limited to a few solvents including NMP. This is problematic as NMP is a
hazardous teratogen which led to its use being regulated in some countries [79]. As a consequence
battery manufacturers have to incorporate an NMP recovery system during the drying stage which
incurs large capital costs [80]. Thus, the research has focused on finding alternative binders (which
require different solvents — discussed in section 2.1.5) or changing the fabrication method

altogether.

2.3