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Abstract

We provide a comprehensive review of ekpyrotic cosmology, review the basic con-

struction of inflation and compare the mechanisms in which each universe addresses well

known problems of standard big bang cosmology, as well as others. We calculate the

resultant Gaussian cosmological scalar curvature ζ, generalized Newtonian potential Φ

as well as tensor perturbations generated in various ekpyrotic phases of contraction.

Regardless of the number of matter fields, we show that the prediction on the tensor

spectrum is strongly blue, making the prediction distinct from inflation. We show that

single matter field ekpyrotic models generically predict an approximately scale invariant

spectrum for Φ and strongly blue spectrum for ζ. Once generalized to two canonically

normalized ekpyrotic fields (negative approximately exponential potentials), we show

that the generic prediction is the generation of approximately scale invariant entropy

perturbations. We describe generally how entropy perturbations in multi-scalar field

models may be converted to curvature perturbations and study a specific mechanism.

Further we provide a complete description of the covariant approach to cosmological

perturbations to second order in gauge invariant entropy and curvature perturbation

variables, which we utilize in future work to study non-Gaussianities. We motivate

the ekpyrotic model in the context of the strongly coupled limit of E8 × E8 heterotic

string theory, namely eleven-dimensional supergravity on a manifold with boundary

and derive the five dimensional heterotic M-theory action for studying the evolution

of the moduli fields acting as ekpyrotic fields. We describe evidence for ekpyrotic-type

potentials for moduli arising from the compactification by considering non-perturbative

effects from open supermembranes extending between wrapped M-branes. Lastly, we

provide an alternative embedding for an ekpyrotic phase of contraction in F-theory

compactified on a Calabi-Yau fourfold, more precisely described as a warped IIB su-

pergravity compactification on a Calabi-Yau threefold in the presence of nontrivial R-R

and NS-NS three-form fluxes, with all moduli fields stabilized.

1



Résumé

Nous fournissons une revue complète de la cosmologie ekpyrotique, passons en re-

vue la construction de base de l’inflation et comparons les mécanismes dans lesquels

chaque univers aborde les problèmes bien connus de la cosmologie standard du big

bang, ainsi que d’autres. Nous calculons la courbure scalaire cosmologique gaussienne

résultante ζ, le potentiel Newtonian généralisé Φ ainsi que les perturbations tensorielles

générées dans diverses phases de contraction ekpyrotic. Quel que soit le nombre de

champs de matière, nous montrons que la prédiction sur le spectre du tenseur est for-

tement bleue, ce qui rend la prédiction distincte de l’inflation. Nous montrons que les

modèles ekpyrotiques de champ de matière unique prédisent de manière générique un

spectre invariant à l’échelle approximative pour Φ et un spectre fortement bleu pour ζ.

Une fois généralisés à deux champs ekpyrotiques canoniquement normalisés (potentiels

approximativement exponentiels négatifs), nous montrons que la prédiction générique

est la génération de perturbations d’entropie invariantes approximativement à l’échelle.

Nous décrivons généralement comment les perturbations d’entropie dans les modèles

de champ multi-scalaires peuvent être converties en perturbations de courbure et étu-

dions un mécanisme spécifique. En outre, nous fournissons une description complète de

l’approche covariante des perturbations cosmologiques aux variables de perturbation

d’entropie et de courbure invariantes de jauge, que nous utiliserons dans les travaux

futurs pour étudier les non-gaussianités. Nous motivons le modèle ekpyrotique dans le

contexte de la limite fortement couplée de E8×E8 théorie des cordes hétérotiques, à sa-

voir la supergravité à onze dimensions sur une variété avec frontière et dérivons l’action

de la théorie M hétérotique à cinq dimensions pour étudier l’évolution de la champs

de modules agissant comme des champs ekpyrotiques. Nous décrivons des preuves de

potentiels de type ekpyrotic pour les modules résultant de la compactification en consi-

dérant les effets non perturbatifs des supermembranes ouvertes s’étendant entre les M-

branes enveloppés. Enfin, nous proposons une intégration alternative pour une phase de

contraction ekpyrotique en théorie F compactifiée sur un Calabi-Yau quadruple, plus

précisément décrite comme une compactification de supergravité IIB déformée sur un

Calabi-Yau triple en présence de RR et NS-NS non triviaux flux à trois formes, avec

tous les champs de modules stabilisés.
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Introduction

Introduction

Inflation is a particularly compelling theory of the early universe, but we would be remiss by

inflating our confidence at this point in time, that it is the true history of our universe. Other

models are worth studying, because we may show that their predictions are also consistent

with observations. As observational signatures begin to lay more stringent boundaries on the

landscape of previously acceptable four dimensional field theory models, perhaps at some

point we will be able to rule out so many that we are left with only one. Personally, I find

this approach rather uninteresting.

Thankfully for me though, there is another approach. Continued observations performed

at the quantum level will improve our understanding of a more fundamental theory of parti-

cles and perhaps with luck a consistent and predictive theory of quantum gravity will emerge.

Up until this point, the theory of supersymmetric strings is a self consistent candidate for

such a theory predicting various collections of supersymmetric fermions and bosons; but

up to the energy scales probed with modern particle accelerators or high energy particles

incoming from the cosmos we have yet to observe any of them. Regardless of whether or

not a theory of quantized superstrings is the ‘correct’ theory, we can learn a great deal from

studying it.

Encouragingly, with an understanding of topological structures, differential geometry and

quantum mechanics in higher dimensional spaces we can actually perform calculations with

closed form solutions. Scattering amplitudes may be calculated in a controlled perturbative

expansion in the string coupling and interactions between dynamical stringy objects known

as Dp-branes may also be studied in various limits of critical superstring theories. As we

will see, these limits of superstring theories provide a playground where we may hope to

‘derive’ or at the very least motivate a particular cosmological scenario from a top-down

perspective. This has been plenty explored for inflation, with a major challenge being the

generation of stable or at least long lived De Sitter vacua in superstring theory. This work

attempts to rectify that not only is there another cosmologically viable candidate theory in

terms of perturbations of classical gravity minimally coupled to a quantized field, but also

as a realization within the theory of superstrings.
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Introduction

This candidate theory is known as ekpyrotic cosmology, and serves as an alternative to

the inflationary universe paradigm. It is fundamentally different from that of inflation in

so far as the universe undergoes a phase of very slow contraction, followed by a ‘bounce’

and subsequent radiation dominated phase of Friedmann expansion. Section 1 begins with a

review of standard big bang cosmology and briefly describes some of the standard problems

which theories of the very early universe attempt to address. Section 2 provides a review of

generic inflationary cosmology, outlining how the theory addresses the problems of standard

big bang cosmology, as well as describes some of the new sets of problems inflation is faced

with. Section 3 provides a review of ekpyrotic cosmology in a four dimensional field theoretic

model minimally coupled to Einstein gravity, for both single and multi-field models. We also

describe how it addresses the problems of standard big bang cosmology as we have done for

inflation. Section 4 introduces the coordinate based approach to cosmological perturbations

to linear order. We describe the generation of curvature, entropy and tensor perturbations

in single and two-field descriptions, discuss the predictions upon each mode and discuss how

entropy perturbations may be converted to curvature perturbations in two-field models. We

also explore a specific mechanism for the transfer of fluctuations in entropy to curvature.

Section 5 introduces the covariant description of cosmological perturbations, which will prove

useful in future numerical calculations to explore the generation of non-Gaussianities. Lastly,

section 6 motivates the application of string theory to cosmology, where we describe the

original ekpyrotic model within the context of the strongly coupled limit of E8×E8 heterotic

superstring theory compactified on a warped Calabi-Yau threefold. We also provide a new

realization for the model within the context of F-theory compactified on a warped Calabi-Yau

fourfold.

This thesis expresses equations in Planck units (G = c = � = kB ≡ 1) unless stated

otherwise, the Einstein summation convention is always implied, and within the four dimen-

sional field theory models utilizes the ‘mostly minus’ signature of the metric (+,−,−,−).

Greek characters μ, ν, ρ · · · ∈ {0, 1, 2, 3} generally refer to the four dimensional spacetime

coordinates, with 0 denoting the timelike coordinate and 1, 2, 3 denoting the spacelike coor-

dinates; lowercase Latin characters run solely over the spatial components. The conventions

used in string models have been defined case by case in section 6.
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Standard big bang cosmology

1 Standard big bang cosmology

1.1 Friedmann-Lemaître-Robertson-Walker cosmology

Standard big bang cosmology as presented in modern literature is constructed using Ein-

stein’s general theory of relativity. General relativity is a vastly improved approximation

over Newtonian gravity particularly when describing relativistic, massive dynamical bodies,

demonstrating remarkable accuracy and predictive power regarding the evolution of cosmic

phenomena such as: stellar mass orbits and the precession of their perihelia [1], galactic

evolution, gravitational waves, black holes, gravitational lensing, dark matter, topological

defects such as cosmic strings, domain walls and monopoles, and most relevant to this the-

sis the topological structure of spacetime on cosmological distance scales (∼ 100 Mpc1).

On cosmological distance scales gravity dominates all other forces: strong, weak and elec-

tromagnetic, and general relativity is the effective theory. Furthermore when concepts are

generalized and become abstract particularly in the study of quantum gravity, differential

geometry is robust both in its calculability and in the study of physical symmetries. Im-

position of a physical symmetry or the interpretation of manifested symmetries as physical

laws is tractable and through Noether’s theorem leads to conserved quantities and charged

objects, to name a few: gauge invariance, Poincaré invariance, diffeomorphism invariance,

Weyl/conformal invariance, CPT symmetry, BRST invariance and supersymmetry. In a

deep respect, physics is the study of symmetry.

Both historical and modern cosmological models describe matter on cosmological scales

as a perfect fluid whose properties are described by an equation of state, relating its mass

density to its isotropic pressure. This description of matter and energy is motivated in

large part by the cosmological principle: when considering cosmological distance scales the

universe is spatially homogeneous and isotropic. Before the end of the twentieth century,

the cosmological principle was a postulate allowing one to make simplifications to a complex

dynamical framework. Near the dawn of the twenty first century, the cosmological principle

accumulated favourable scientific evidence via improved astrophysical experiments and is
11 Mpc ≈ 3.2616 ly ≈ 3.0857× 1016 m

8



Standard big bang cosmology

observed most convincingly in the cosmic microwave background (CMB) radiation displayed

in figure 1.

-300 300 μK

Figure 1: The intensity (temperature) anisotropy map of the cosmic microwave background
radiation observed about the isotropic 3 Kelvin background obtained by the Planck collab-
oration [2]. Color expresses temperature in micro-Kelvin, making evident the high degree of
homogeneity, yet distinct presence of small scale inhomogeneities, in the background radia-
tion emitted when the universe cooled enough to become transparent to photons. The regions
outlined by the gray lines indicate the regions where foreground emissions are expected to
be substantial, mostly in the region of our galactic plane.

Isotropy implies that at all points in the manifold the geometry does not depend on the

direction, that is the space looks the same in all directions. Homogeneity implies that the

metric is equivalent at all points on the manifold. Spatial homogeneity and isotropy of the

universe allows one to express its evolution as a time ordered foliation of three-dimensional

space-like hypersurfaces each of which are homogeneous and isotropic. The homogeneity

and isotropy of space implies that the space is maximally symmetric, in particular, the space

possesses constant Ricci curvature, and possesses the maximum possible number of Killing

vectors, for n = 3 we have
1

2
n(n + 1) = 6 killing vectors: three independent translations

and three rotations. Thus we consider our spacetime to be of topology R × Σ, where R

represents the time axis, and Σ is a maximally symmetric three-manifold. The spacetime
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Standard big bang cosmology

metric then takes the following form in (+,−,−,−) signature

ds2 = dt2 − a2(t)dσ2, (1.1)

where a(t) is the scale factor describing the physical size of the manifold, t is the time-

like coordinate and dσ2 the spatial metric. Therefore the time evolution of the universe is

completely described by the scale factor. With suitably scaled radial coordinates the metric

on the three-surface Σ may be expressed as

dσ2 =
dr2

1− kr2
+ r2dΩ2, (1.2)

dΩ2 ≡ dθ2 + sin2 θdϕ2, (1.3)

with k ∈ [−1, 0, 1] parameterizing locally (to differentiate global differences such as between

the torus and the plane) the three unique homogeneous and isotropic simply-connected

three dimensional topological spaces: flat space with null curvature (k = 0), sphere of

positive curvature (k = +1), and hyperbolic space of negative curvature (k = −1). In this

normalization of the parameter k, the scale factor possesses units of distance, while the radial

coordinate r is dimensionless. Therefore, the spacetime metric describing the evolution in

size through time of one of the homogeneous and isotropic hypersurfaces may be written as

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.4)

This is known as the Friedmann-Lemaître-Robertson-Walker metric. The spatial coordinates

(r, θ, ϕ) introduced in equation (1.4) are comoving: every object with constant coordinates

has zero peculiar velocity with respect to the expansion or contraction of the universe.

The dynamical variables describing the evolving universe are the components of the

metric gμν(x
γ), and they are determined by the Einstein field equations

Gμν ≡ Rμν −
1

2
Rgμν = Λgμν + 8πTμν . (1.5)

It is important to note that the cosmological term Λ may always be interpreted as the
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Standard big bang cosmology

contribution of vacuum energy to the Einstein equations. Thus it is equally valid to set Λ = 0

above and include it instead in the energy momentum tensor Tμν . Rμν is the Ricci tensor

defined in terms of the Riemann curvature tensor Rρ
σμν (where the Einstein Summation

convention is utilized for repeated indices)

Rμν ≡ Rλ
μλν = ∂λΓ

λ
νμ − ∂νΓ

λ
λμ + Γλ

λσΓ
σ
νμ − Γλ

νσΓ
σ
λμ, (1.6)

which in turn is defined via the Christoffel symbols

Γσ
μν ≡ 1

2
gσρ(∂μgνρ + ∂νgρμ − ∂ρgμν), (1.7)

where the partials ∂μ are derivatives with respect to the coordinates xμ

∂μφ ≡ ∂φ

∂xμ
. (1.8)

The Einstein field equations relate the scale factor a(t) and its derivatives to the matter

content via the symmetric rank two energy momentum tensor Tμν . The stress energy tensor

is the conserved Noether current associated with spacetime translations, thus it obeys the

following conservation law

∇μT
μν ≡ ∂μT

μν + Γμ
μρT

ρν + Γν
ρσT

ρσ = 0, (1.9)

where the covariant derivative is replaced by a partial derivative for Minkowski spacetime.

As previously stated, on large scales we approximate matter and energy in the universe as

a perfect fluid characterized by its energy density ε, pressure p and four-velocity Uμ. The

four-velocity of the perfect fluid may always be expressed in a frame such that it is at rest

in comoving coordinates, since the frame that describes the fluid as isotropic that leads to

an isotropic metric must be the same as that which describes the metric as isotropic

Uμ = (1, 0, 0, 0), (1.10)
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Standard big bang cosmology

then the energy-momentum tensor may be expressed as

T μν = (ε+ p)UμU ν − pgμν = diag(ε, p, p, p), (1.11)

with its trace given by

T μ
μ = ε− 3p. (1.12)

The zero component of equation (1.9) along with the equation of state of matter expressed

as

p = ωε, (1.13)

with ω independent of time yields the conservation of energy equation (continuity equation)

ε̇

ε
= −3H(1 + ω), (1.14)

where an overdot indicates derivatives with respect to the coordinate time t and where

H = H(t) is the Hubble parameter,

H =
ȧ

a
, (1.15)

characterizing the rate of expansion of the universe. Equation (1.14) may be integrated

to provide an expression for the energy density of matter in terms of the scale factor (for

ω = constant)

ε ∝ a−3(1+ω). (1.16)

The most common cosmological fluids are that of cold matter, radiation and vacuum energy.

Each matter type are governed by their respective equation of state and equation (1.16)

provides their energy density as they vary with the scale factor

pm = 0, ω = 0 =⇒ εm ∝ a−3, (1.17)

pr =
1

3
εr, ω =

1

3
=⇒ εr ∝ a−4, (1.18)

pΛ = −εΛ, ω = −1 =⇒ εΛ ∝ a0. (1.19)

Returning to the Einstein field equations, we may take the trace of equation (1.5) with Λ = 0

12



Standard big bang cosmology

to find that

R = −8πT μ
μ. (1.20)

Thus the Einstein equations may be rewritten as

Rμν = 8π(Tμν −
1

2
gμνT

ρ
ρ). (1.21)

In this form one may produce the first and second Friedmann equations respectively

H2 =
8π

3
ε− k

a2
, (1.22)

ä

a
= −4π

3
(ε+ 3p). (1.23)

Equations (1.22) and (1.23) govern the dynamics of the universe on large scales [3–8]. The

following useful relation may also be derived using equations (1.14) and (1.22)

Ḣ = −4π(ε+ p) +
k

a2
. (1.24)

1.2 Problems of standard big bang cosmology

1.2.1 Horizon/homogeneity problem

The horizon problem, also known as the homogeneity problem is not a direct conflict of

observation and theory, rather it is a statement concerning the statistical unlikeliness that

causally disconnected regions of space in the standard big bang cosmological model possess

a small variation in their energy densities (temperature). The age of the universe (according

to current derivations within the context of ΛCDM) is 13.787 ± 0.020 Gyr [9], this is the

amount of time since the cosmological big bang singularity. Since light travels at a constant

speed in all frames, photons have therefore travelled a finite distance since the big bang

singularity. Thus the boundary of the volume of space centered at an observer indicating the

distance from which that observer may receive information is known as the particle horizon.

The CMB, also known as the last scattering surface, are the photons released during the

13



Standard big bang cosmology

moment of recombination: the moment (referred to as such since it occurs quickly relative to

the time at which it begins) when electrons and protons combine to form neutral hydrogen

releasing photons in the process. These photons Thomson scatter for a brief period with

remaining free electrons, and in particular this is the time, which we will refer to as trec, the

universe becomes transparent to radiation and these are the photons observed in the CMB.

Since trec, photons have traveled mostly without scattering to the present time t0. Since the

universe was opaque to radiation before trec our observations are limited to the maximum

distance light can travel since trec this is known as the optical horizon.

The universe is observed to be homogeneous via the CMB, and thus the comoving dis-

tance over which matter should have been in thermal contact if this is the reason for the

homogeneity is the optical horizon. Consider a null geodesic travelling radially in a flat

universe, via equation (1.4) we have

0 = ds2 = dt2 − a2(t)dr2. (1.25)

The comoving distance dopt traveled by a photon between trec and t0, during which the

universe is approximately dominated by matter (a(t) = (t/t0)
2/3, where we have normalized

a(t) such that a(t0) = 1) is then

dopt =

∫ t0

trec

dt

a(t)
≈ 3t0

[
1−
(
trec
t0

)1/3
]
. (1.26)

The comoving distance of any one point on the CMB to the big bang singularity, during which

the universe is approximately dominated by radiation (a(t) = (t/t0)
1/2) between 0 < t < teq

and approximately by matter between teq < t < trec is

dcmb =

∫ teq

0

dt

a(t)
+

∫ trec

teq

dt

a(t)
≈ 2t

1/2
0 t1/2eq + 3t

2/3
0

[
t1/3rec − t1/3eq

]
. (1.27)

If the isotropy of the CMB is to be explained from causality arguments in the framework

of standard big bang cosmology, then dcmb and dopt should be approximately equal. Taking

teq ≈ 1011 s, trec ≈ 1012 s, and as stated previously t0 ≈ 1017 s we may calculate

14



Standard big bang cosmology

dopt ≈ 1× 1028 cm ≈ 1× 1010 ly, (1.28)

dcmb ≈ 1× 1026 cm ≈ 1× 108 ly. (1.29)

Thus dopt > dcmb by approximately two orders of magnitude, that is, the distance scale we

observe the CMB to be homogeneous is much larger than the distance scale the CMB had

causal contact with at the time the universe became transparent as portrayed in figure 2

[3, 4, 6, 8]. t

xtrec dcmb

dopt

t0

0 CMB
Figure 2: A sketch depicting the horizon problem. The horizontal axis represents the physical
distance, the vertical axis represents the coordinate time. The physical distance that a free
photon could have travelled from the time of the initial spacetime singularity t = 0 to the
last scattering surface trec represented by dcmb is much smaller than the physical distance we
observe the CMB to be homogeneous today represented by dopt. Note that this sketch is not
to scale, the time Δt1 = trec − 0 	 t0 − trec = Δt2.

1.2.2 Flatness problem

The flatness problem is based upon the current observation that the universe is very close to

spatial flatness at the present time [9]. It is a problem of fine tuning: consider the Friedmann

equation (1.22) for a flat universe whose energy density we define to be the critical density
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Standard big bang cosmology

εc, as well as that of a non flat universe

H2 =
8πεc
3

, (1.30)

H2 =
8πε

3
− k

a2
, (1.31)

by combining equations (1.30) and (1.31) and substituting the definition of the density

parameter Ω ≡ ε/εc, we may recast the above as

Ω(t) = 1 +
k

a2H2
=

1

1− γ(t)
, γ(t) =

3k

ε8πa2
∝

⎧⎪⎨⎪⎩
a, t � teq

a2, t � teq.

(1.32)

Ω = 1 is an unstable fixed point, in particular if the universe begins in a configuration where

Ω is exactly equal to one, the universe will remain flat indefinitely. However, for any small

perturbation from Ω = 1 the universe evolves further from spatial flatness. This may be seen

from equation (1.32), since Ω(t0) is very close to one, and γ(t) decreases as we approach the

big bang, the universe must have been even closer to spatially flat in the past. In fact, near

the Planck scale

|Ω(10−43 s)− 1| ∼ 10−60. (1.33)

That is, the initial spatial curvature of the universe must have been very finely tuned,

otherwise our universe would not be as we observe today: it would have collapsed very early

on for k = −1 or cooled very quickly for k = +1 [4, 6, 8, 10].

1.2.3 Singularity problem

The singularity problem is two-fold: not only does the classical description of matter as

in standard big bang breakdown at high energies and temperatures and must be replaced

by a quantum field theoretic description, but within this classical framework the universe

necessarily possesses an initial spacetime singularity; more specifically the singularity is not

a coordinate dependent feature. In particular, since the solutions to the scale factor of any

classical matter phase are power laws in time, the scale factor a(ti = 0) → 0 indicating infinite
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Standard big bang cosmology

matter and radiation density, infinite spacetime curvature, a finite age for the universe, and

the spacetime is null geodesically incomplete [3, 8, 11].

1.2.4 Formation of structure problem

Observations of anisotropies in the CMB have provided evidence that the large scale structure

of the universe, galactic clusters and superclusters, originate from primordial cosmological

perturbations in energy density that are nearly scale invariant, adiabatic and Gaussian in

nature [12]. An immediate question then becomes, what is the origin of these primordial

inhomogeneities, and what model successfully predicts their spectrum of fluctuations [4]? In

addition, galaxy redshift surveys [13] provide evidence that galaxies and clusters are non-

randomly correlated, whose comoving separation are comparable to the comoving horizon at

the time of equal matter and radiation. Thus if the density perturbations that generated large

scale structure today were generated much before the time of equal matter and radiation,

standard big bang cosmology provides no causal explanation for the correlation. In addition,

the angular power spectrum of the CMB [2] indicates structure in the CMB on comoving

scales larger than the comoving particle horizon at the time of recombination, particularly

when using standard big bang cosmology as a description of null geodesic evolution.

1.2.5 Relic problem

If the universe at very early times and thus very high energies is to be described by a grand

unified theory of a higher symmetry group, then the absence of stable heavy particle species

and topological defects in current observations presents a problem. Many of these unified

theories predict copious production of these massive particle species, the most notable being

the magnetic monopole. The standard big bang cosmological model provides no mechanism

for the removal of these exotic particle species that may have been produced in the very

early universe [10].

1.2.6 Cosmological constant problem

While the cosmological constant problem is a deep problem of the theory of quantum fields

[14, 15], it may also be posed as a problem of fine tuning in cosmology. Firstly any form of
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Standard big bang cosmology

matter that contributes to the energy density of the vacuum acts identically to a cosmological

constant term in Einstein’s equations. Take for instance scalar field matter (see section 2.1

for an introduction) described by a field φ governed by potential V (φ). If the potential

possesses a local minimum at some point φ0, then φ(t) = φ0 is a solution to the scalar field

equations of motion (the Klein-Gordon equation in an expanding background) and we have

an equation of state of the matter field obeying

p = −ε = −V (φ0). (1.34)

In terms of the Einstein equations, the energy-momentum tensor

Tμν = V (φ0)gμν , (1.35)

behaves just as a cosmological constant term set to be

ΛV = 8πV (φ0). (1.36)

Thus the effective cosmological constant of Einstein’s equations Λeff possesses two contribu-

tions, one being the constant that may simply be implemented by hand Λ as done by Einstein

himself for the purpose of achieving a static universe [16], as well as the contribution from

the vacuum energy density of the matter field V (φ0)

Λeff = Λ + 8πV (φ0). (1.37)

Therefore, Λ just as well contributes to the total effective vacuum energy

εeff = V (φ0) +
Λ

8π
=

Λeff

8π
. (1.38)

Measurements of the cosmological expansion rate today, H0, forbid a large cosmological

constant; an approximate upper limit being (where fundamental constants have been rein-
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troduced) [7, 17] ∣∣∣∣Λeff

8πG

∣∣∣∣ < 10−29 g/cm3 ≈ (10−11 GeV)4. (1.39)

The problem is introduced when one considers that the vacuum energy density predicted

by quantum field theory is enormously larger than the bound given in equation (1.39). By

summing the zero-point energies of all modes of a Klein-Gordon field of mass m up to high

energy cutoff scale λ � m yields a vacuum energy density (in spherical coordinates) [7, 18]

V (φ0) =

∫ λ

0

4πk2

(2π)3
1

2

√
k2 +m2 dk ∼ λ4

16π2
. (1.40)

Taking a cutoff provided by the applicability of general relativity up the the Planck scale

λ = (8πG)−1/2, we obtain a vacuum energy density of

V (φ0) ≈ 2× 1071 GeV4. (1.41)

Thus via the upper bound of equation (1.39) the cosmological term Λ/8πG must cancel out

V (φ0) to roughly 115 decimal places, stressing that this is a problem of fine tuning [4,7,14,17].
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2 The inflationary universe

Inflation is a model of the very early universe proposed by Alan Guth [19], and has proven

robust by solving many of the problems described in section 1. How inflation addresses the

standard cosmological problems as well as a brief description of some of the new challenges

the theory faces is briefly discussed in section 2.2.

The concept of inflation is to introduce a duration of time in which the universe under-

goes a phase of accelerated expansion. The concept is based on a prescription to solve the

homogeneity and flatness problems as we will see, and is related to the simple idea of intro-

ducing a period in which the comoving Hubble radius is decreasing [20,21]. Most often, the

phase of accelerated expansion is approximately exponential, although exactly exponential

expansion is not necessary for successful inflation a priori. In fact, any amount of accelerated

expansion with ä > 0, will evolve the spatial curvature to zero.

This phase is implemented before the time of nucleosynthesis (∼ 1 s after the big bang

singularity, T ∼ 10−1 MeV), where standard big bang cosmology is then reinstated as the

most plausible theory of the early universe, light particle species production and subsequent

large scale evolution. The period of inflation may be implemented immediately following the

initial singularity before which presumably a theory of quantum gravity governs the dynam-

ics, or it may be implemented after a period of radiation dominated Friedmann expansion.

2.1 Inflation as a dynamical scalar field

In the very early universe, at very high energies, matter described as an ideal gas with the

simple equation of state as in equation (1.13) with ω a constant may no longer be reliably

applied due to quantum effects. At the present time, quantum field theory is the most

successful description of matter and particle interactions at very high energies up to the

Planck scale. There are three types of fields currently understood to describe matter: spin

1/2 fermions, spin 1 gauge bosons and spin 0 bosons expressed in this work as a scalar field

φ. The simplest models of inflation describe the time evolution of the inflationary energy

density by a single scalar field known as the inflaton. Within the standard model of particle
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physics the only spin zero boson, the Higgs boson was found to not be a suitable candidate

for the inflaton [3, 22], and since the inflaton mass is much larger than the mass scale of

the standard model, candidates should come from supersymmetric theories or superstring

theories such as Kähler moduli resulting from compactification on Calabi-Yau manifolds [20].

Thus the scalar field (inflaton) may be treated classically or as a quantized field in

the appropriate energy regimes: for instance in the study of cosmological perturbations at

scales much larger than the Hubble radius fields may be treated classically obeying evolution

equations provided by general relativity, and may be promoted straightforwardly to quantum

fields by the means of standard canonical quantization methods allowing for the prescription

of quantum Bunch-Davies vacuum initial conditions for perturbations.

Formally, we begin by describing matter as a scalar field with Lagrangian Lφ whose

kinetic term is canonical and is governed by a potential V (φ) describing self interactions

Lφ =
√
−g

(
1

2
gμν∂μφ∂νφ− V (φ)

)
. (2.1)

In order to describe the dynamics in a gravitational background this field is minimally coupled

(there is no direct coupling between φ and the metric gμν) to classical Einstein gravity. In

some cases, even seemingly non-minimally coupled theories may be expressed as a minimally

coupled theory via a redefinition of the fields. The action describing the dynamics of a scalar

matter field in a cosmological background described by classical Einstein gravity is then

S = SEH + Sφ =

∫
d4x

√
−g

(
1

16π
R +

1

2
gμν∂μφ∂νφ− V (φ)

)
, (2.2)

where SEH is the Einstein-Hilbert action and Sφ is the scalar matter action, the integration

over spacetime coordinates of the Lagrangian density provided in equation (2.1). More

generally, the Lagrangian for the scalar field may also possess non-canonical kinetic terms,

many of which are natural results of string early universe models, and may be expressed as

Lφ = G(φ, gμν∂μφ∂νφ)− V (φ). (2.3)

Variation of the Einstein-Hilbert action with respect to the metric provides the vacuum
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Einstein equations. Varying the matter sector with respect to the metric, we may derive the

stress-energy tensor describing the scalar field

Tμν ≡ − 2√−g

δSφ

δgμν
= ∂μφ∂νφ− gμν

(
1

2
gμν∂μφ∂νφ− V (φ)

)
. (2.4)

The equation of motion of the scalar field may be found directly by applying the Euler-

Lagrange equations to equation (2.1) or varying the matter action in equation (2.2) with

respect to the field φ. We obtain the Klein-Gordon equation for a scalar matter field in an

expanding cosmological background

φ̈+ 3Hφ̇−∇2φ+
dV

dφ
= 0. (2.5)

The energy density ε(φ) and pressure p(φ) of the scalar field matter are

ε(φ) =
1

2
φ̇2 +

1

2

(∇φ)2

a2
+ V (φ), (2.6)

p(φ) =
1

2
φ̇2 − 1

6

(∇φ)2

a2
− V (φ). (2.7)

If we assume the field φ to be approximately initially spatially homogeneous (∂φ/∂xi = 0)

then the spatial gradient terms appearing in equations (2.5) to (2.7) all become negligible.

In fact, this is not a necessary assumption since inflation drives the field towards spatial

homogeneity soon after the beginning of inflation. In addition, we may express the equation

of state parameter ωφ of the matter field as

ωφ =
pφ
εφ

=

1

2
φ̇2 − V (φ)

1

2
φ̇2 + V (φ)

. (2.8)

In general ωφ is time-dependent, but bounded from below satisfying the weak energy dom-

inance condition ε + p ≥ 0 for any potential satisfying V (φ) ≥ 0. The second Friedmann
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equation (1.23) in a flat universe may be expressed with this new description of matter as

H2 =
8π

3

(
1

2
φ̇2 + V (φ)

)
, (2.9)

More generally, the second Friedmann equation (1.23) may be expressed to include various

matter types by substituting in their energy densities: non-relativistic and cold dark matter

εm, radiation εr, anisotropies εσ, the curvature of the universe, and m types of scalar field

matter φi each characterized by their energy density εφi
and its constant equation of state

parameter ωφi
(tildes indicate a dimensionful constant)

H2 = − k

a2
+

8π

3

(
ε̃m
a3

+
ε̃r
a4

+
ε̃σ
a6

+
m∑
i=1

ε̃φi

a3(1+ωφi
)

)
. (2.10)

Within this improved framework, it may be seen from equation (1.23) that an era of accel-

erated expansion (ä > 0) takes place if −1
3
ε > p and from equation (2.8) that a scalar field

may lead to a type of matter exhibiting negative pressure (ωφ < 0).

A successful period of inflation however takes place if the equation of state of the fluid

drives accelerated expansion for a sufficient period of time. In particular, the evolution of

the scalar field in time must be sufficiently gradual: the potential energy V (φ) dominates

over the kinetic energy φ̇2 of the field. For large values of the potential the field experiences

slow evolution via the Hubble friction term 3Hφ̇ in equation (2.5). In addition the second

derivative of φ should be small enough for this state to be maintained for a sufficient amount

of time. These conditions are known as the slow-roll conditions [23,24]

φ̇2 	 V (φ), |φ̈| 	 |3Hφ̇|, |V ′(φ)|. (2.11)

These two conditions lead to the following two dimensionless quantities respectively, known

as the slow-roll parameters which most basically characterize a period of inflation

εV =
MP

2

(
V,φ

V

)2

, ηV = M2
P

(
V,φφ

V

)
. (2.12)

Note that ηV may take on either sign, while εV ≥ 0. Related parameters may also be

23



The inflationary universe

expressed in terms of the Hubble parameter

εH = − Ḣ

H2
= −d lnH

dN
, ηH = − φ̈

Hφ̇
= εH − 1

2εH

dεH
dN

, (2.13)

with dN = Hdt the differential number of e-foldings. In the regime of slow-roll governed by

the conditions in equation (2.11), these parameters are approximately related as

εH ≈ εV , ηH ≈ ηV − εV . (2.14)

These parameters should be small, in particular εH,V , |ηH,V | 	 1 in the slow-roll regime.

It is important to note however that satisfying these conditions does not entirely guarantee

a prolonged period of inflation depending on the choice of initial conditions, we may always

choose φ̇ large enough such that slow-roll is never satisfied. However it is important to note

that the inflationary solution is a dynamical attractor: the inflationary trajectory in the

phase space of the inflaton (φ, φ̇) is found from a large domain of initial conditions. This

is hinted at by equation (2.10), the energy density of the inflaton field scales approximately

as (εφ ∼ a0) and thus comes to dominate over every other form of matter very quickly; said

differently, the energy density of the inflaton field redshifts much slower [3, 8, 21,25].

There are a plethora of potentials that successfully characterize a period of inflation

described by a scalar field, and satisfy the slow-roll conditions. In closing we simply name a

few and point the interested reader to exhaustive reviews on slow-roll inflationary models: old

inflation (suffers from graceful exit problem [3]), ‘new’ inflation [23,24], chaotic inflation [26],

hybrid inflation [27], natural inflation [28], hilltop inflation [29], inflection point inflation

arising from the physics of D-branes (dynamical objects unique to string theory) [30, 31],

f(R) Starobinsky type inflation [32, 33] and models non-minimally coupled to gravity [34],

as well as generalized models possessing non-canonical kinetic terms known as k-inflation [35]

or multiple [36] scalar fields [3, 8, 20,21,37,38].
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2.2 Addressing cosmological problems

As foreshadowed, we mentioned that inflation was born from the intention of rectifying the

homogeneity and flatness problems. Very simply, if we take the comoving Hubble radius

(aH)−1 to decrease during a phase of cosmological evolution, this leads to two immediate

consequences. The first is that the comoving distance of any one point on the CMB to the

big bang singularity can be made to be much larger than the comoving distance travelled by

a photon on the CMB and now, so long as inflation occurs for a long enough period of time,

∼ 70 e-folds [38], and thus in contrast with equations (1.28) and (1.29)

dopt =

∫ t0

trec

dt

a(t)
	 dcmb =

∫ trec

0

=
dt

a(t)
. (2.15)

This ensures that all points on the CMB observed today were in causal contact at some time

during the inflationary period, addressing and providing an elegant solution to the horizon

problem. The second is that the density parameter Ω characterising the spatial geometry of

the universe is driven towards flatness, Ω −→ 1, during inflation. This is seen immediately

from equation (1.32) since the comoving Hubble radius is decreasing during inflation.

In addition, inflation also addresses the relic problem [23]. A period of inflation simply

dilutes the number density of any unobserved products of grand unified theories such as

topological defects that may be produced before or during the period of inflation. Ofcourse

this is only a natural solution if the reheating temperature after inflation does not exceed

the energy scale of the grand unified theory, which would allow for unobserved phenomena

to be produced after inflation.

The formation of structure problem is also addressed in part (see discussion below), as

seen in figure 3 perturbation modes representing galactic scales as seen today are well within

the particle horizon during a period of inflation, allowing for causal contact.

The singularity problem as described in section 1.2.3 is a seemingly unavoidable issue

with inflation, in particular it has been shown [39] that by extending the Hawking-Penrose

singularity theorems [40] that an eternally inflating background spacetime cannot be past

null geodesically complete. This unavoidable singularity raises the important question: how

did the universe spawn from the singularity, what are the initial conditions, and how can
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Figure 3: A spacetime diagram whose vertical axis is the cosmological time t and horizontal is
physical distance x. The diagram portrays the generic features of the Hubble radius indicated
by the blue dashed line, relative to the proper wavelengths of cosmological perturbation
modes indicated by the gray-scale solid curves and comoving wavenumber m1 > m2 > m3. In
a generic phase of inflationary expansion (ti ≤ t ≤ tr) the proper wavelengths of perturbation
modes emerge length scales smaller than the Planck length lpl and increase very quickly
relative to the Hubble radius which is approximately constant. Thus there are two notable
periods of evolution with respect to the study of cosmological perturbations: modes evolving
on sub-Hubble scales and traversing the curvature scale, and then propagating on super-
Hubble scales. The phase of reheating required in all inflationary models converting the
inflaton potential to radiation occurs at time tr and also signals the end of the inflationary
phase. A phase of radiation dominated Friedmann expansion then dominates, at which
time perturbation modes once again become sub-Hubble. The orange line labels the particle
horizon during the inflationary epoch, notice that the physical wavelength of modes are at
all times smaller than the particle horizon addressing the formation of structure problem.

we motivate our assumptions of primordial inhomogeneities if we are unable to describe the

physics at energies above the Planck scale which necessarily must have been traversed?

This latter point leads to a new problem introduced by inflation [3] known as the trans-

Planckian problem for fluctuations. This states that length scales observed today to be on the

order of galactic separation, were sub-Planckian during inflation, or in particular, at the time

that other relevant density perturbations grew larger than the Hubble radius during inflation

as seen in figure 3 [37]. This makes predictions of inflation with respect to the spectrum of

density fluctuations particularly sensitive to new physics introduced by a correct theory of
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quantum gravity. Therefore the formation of structure problem is partially solved, namely

that with the assumption that the theory of linear perturbations remains valid throughout

the period of inflation, and Bunch-Davies initial conditions are predicted by a theory of

quantum gravity, the spectrum of density fluctuations may be predicted accurately and a

mechanism for the formation of structure is subsequently provided [3, 37]. Lastly, inflation

does not address the cosmological constant problem since it remains to be a finely tuned

parameter of the theory.
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3 The ekpyrotic universe

Ekpyrosis is presented primarily as a model of the very early universe, but may be further ar-

gued to be successfully integrated into cyclical cosmological scenarios [41–45] being preceded

particularly by a phase of dark energy domination [46] which current observations indicate

we are experiencing at the present day. Ekpyrosis is thus at times presented as a model of

both the early and late universe, but standalone is an alternative to the inflationary universe

paradigm [19, 44]. The model is introduced as an alternative insofar as it may be argued

to address the problems of standard big bang cosmology described in section 1. The origi-

nal ekpyrotic model [47], is embedded in heterotic M-theory and this realization’s primary

ingredients for describing the physical observations we observe today are extra dimensions

and branes. However, the phase of ekpyrosis may also be discussed entirely in the context

of a four dimensional effective field theory. Within this lower dimensional framework, we

may discuss the dynamics on large scales as well as the implications of ekpyrosis driven by

scalar field matter. What makes a phase of ekpyrosis interesting are the distinct predictions

it makes relative to inflationary theories allowing it to be ruled out by observations.

Qualitatively speaking, ekpyrosis is a phase of very slow contraction predating the be-

ginning of time postulated as a spacetime singularity of inflationary and standard big bang

cosmological models. The phase of slow contraction is modulated in its simplest form by a

single scalar field rolling down a steeply negative exponential potential in an FLRW back-

ground, and thus with a nearly constant scale factor and quickly decreasing Hubble radius

as demonstrated in figure 5. The phase of slow contraction is followed by a kinetic energy

dominated phase and a subsequential cosmological bounce phase which may be either sin-

gular or non-singular in nature [12, 44]. As stated previously, the ekpyrotic universe makes

distinct predictions from that of inflation to currently unobserved features of the universe.

A key generic feature of ekpyrotic phases is the primordial gravitational wave spectrum pos-

sessing a blue tilt, in contrast with an approximately scale invariant spectrum as predicted

by generic inflation [12,20,44,47,48].

A topic of contention with the ekpyrotic scenario is the bounce phase, as it shifts from

a contracting to an expanding FLRW universe. The recent approach to the problem is
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to describe the bounce in an entirely non-singular manner which necessarily violates the

null energy condition [12,44,49–53]. However problems regarding the stability of the bounce

phase in particular with the evolution of curvature perturbations, the evolution of anisotropy,

ghosts and tachyons have been raised [54–56]. From the higher dimensional perspective,

mechanisms of the particular string theory are used to construct a smooth bounce phase,

for instance in the embedding of heterotic M-theory by a shrinking of the fifth dimension

simultaneously driving the string coupling to null, while the three large spatial dimensions in

which we observe remain large throughout the bounce [12,44,57–62]. A very recent approach

to a non-singular bounce has been presented with the use of spacelike branes [52, 53,63].

Scenarios of the bounce phase via a ghost condensate possessing higher order kinetic

terms [64,65] preceded by a phase of ekpyrotic contraction [12,50] have also been presented.

In particular, the authors of [12] argue that the ghost condensate and ekpyrotic scalar field

are the same field, where higher derivative kinetic terms become relevant as the universe

approaches the bounce and provide consistency relations between the kinetic and potential

terms for this to be adequately realized.

3.1 Ekpyrotic cosmology

3.1.1 Single scalar field

To begin the description in a four dimensional effective field theory, we begin with a scalar

matter field φ with a canonical kinetic term governed by a potential V (φ) as in equation (2.1);

therefore the field is governed again by the Klein-Gordon equation in an expanding cosmo-

logical background given by equation (2.5). Approximating the field on large scales to be

spatially homogeneous (∂φ/∂xi = 0), we may express the field’s energy density εφ and pres-

sure pφ as in equations (2.6) and (2.7) with the equation of state parameter ω of the field

expressed as in equation (2.8).

For this single scalar field model, the general conditions for ekpyrosis are defined in a

similar way to slow-roll inflation: in order for large scale density fluctuations generated

during the ekpyrotic phase to be approximately scale invariant, the potential V (φ) must
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satisfy analogous fast-roll conditions [45] defined in terms of two dimensionless parameters

ε2 ≡ M−2
P

(
V

V,φ

)2

, η2 ≡ 1− V,φφV

V 2
,φ

(3.1)

where MP is the reduced Planck mass defined as

MP ≡
√

�c

8πG
=

√
1

8π
, (3.2)

with the second equality following from the conventions used in this thesis. The fast roll

condition is met if

ε2 	 1, |η2| 	 1, (3.3)

and satisfying these conditions ensures the potential is steep and approximately exponential

V (φ) ≈ −V0 exp

(
−
√

2

p

φ

MP

)
, (3.4)

where V0 is a constant, and p 	 1. Note that the specific value of V0 is non-physical

since a shift in the domain of φ effectively alters the set value of V0. Figure 4 depicts the

general features of V (φ) given in equation (3.4), with φ(ti) and φ(tf ) indicating that the

ekpyrotic phase beginning at t = ti starts at large values of the field and rolls down towards

exponentially smaller values. The potential is chosen to be negative in order to allow for

the Hubble parameter to pass through zero as is necessary: the positive kinetic energy in

equation (2.9) may be cancelled by the negative potential energy.

Equation (2.8) then implies that equation of state parameter ωφ > 1. A brief observation

of equation (2.10) shows that in a contracting universe without the presence of an ekpyrotic

field with ωφ > 1, the cosmological evolution quickly becomes dominated by the anisotropy

term (εσ ∼ a−6). Introducing the ekpyrotic field with constant (see equation (3.8)) equation

of state parameter ωφ > 1, then implies that the ekpyrotic field would come to dominate

the contracting phase since it scales as an even larger inverse power of the scale factor; the

energy density of the ekpyrotic field blueshifts much quicker. This is practically the opposite

to what occurs during an inflationary phase: the inflaton ωφ ≈ −1 comes to dominate the

expanding phase as its energy density scales inversely to a very small power of the scale
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factor; the energy density redshifts much slower.

V( )

0
(ti)(tf)

Figure 4: A steep negative exponential potential describing the phase of ekpyrosis.

With the potential for the ekpyrotic field given by equation (3.4) and governed by the

Klein-Gordon equation in an FLRW background, one may check that we obtain the following

exact scaling solution [58,66,67]

a(t) ∼ (−t)p =⇒ H(t) =
p

t
, φ(t) =

2

c
MP ln

(
−
√

V0 α
t

MP

)
, (3.5)

c ≡
√

2

p
, α ≡

√
1

p(1− 3p)
. (3.6)

Thus the ekpyrotic solution describes a slowly contracting universe with the rate of con-

traction modulated by p. One may check that the kinetic and potential energy terms both

possess terms that are first order in p, while the first and only contribution to the H2 term

is second order in p, thus we have the following conditions

φ̇2

2
� H2, |V | � H2. (3.7)

With the exact solution of the ekpyrotic field in hand we may calculate its equation of state
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parameter ωφ and observe its constancy

ωφ =
2

3p
− 1 � 1. (3.8)

3.1.2 Two scalar fields

The scaling solution described in section 3.1.1 for a single Klein-Gordon field in a cosmolog-

ical background driven by a negative exponential potential generalizes to two scalar fields

straightforwardly [12,68,69] 2. Consider the generalized potential for two scalar matter fields

φ1, φ2 indexed by the bold integer superscript

V (φ1, φ2) = −V 1
0 exp

(
−
√

2

q1
φ1

MP

)
− V 2

0 exp

(
−
√

2

q2
φ2

MP

)
(3.9)

with qi 	 1 and V i
0 are constants for i = 1, 2. Each field is a Klein-Gordon scalar field with

canonical kinetic terms such that they each obey

φ̈1 + 3Hφ̇1 +
∂V (φ1, φ2)

∂φ1
= 0, (3.10)

φ̈2 + 3Hφ̇2 +
∂V (φ1, φ2)

∂φ2
= 0. (3.11)

There exists an exact scaling solution to the second Friedmann equation describing two scalar

fields

H2 =
8π

3

(
1

2
(φ̇1)2 +

1

2
(φ̇2)2 + V (φ1, φ2)

)
, (3.12)

when accompanied by the combined Klein-Gordon equations (3.10) and (3.11) above

a(t) ∼ (−t)(q
1+q2), H =

q1 + q2

t
, (3.13)

φ1(t) =
√
2q1MP ln

(
− t

MP

√
V 1
0

q1(1− 3(q1 + q2))

)
, (3.14)

φ2(t) =
√
2q2MP ln

(
− t

MP

√
V 2
0

q2(1− 3(q1 + q2))

)
. (3.15)

2In fact, the scaling solution may be generalized to n scalar fields in the same way [44].
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t t

t t

a(t)H(t)(t)
1q = 2q =0.11q = 2q =0.011q = 2q =0.001

Figure 5: Plots of the ekpyrotic solution as provided in equations (3.13) and (3.14) of two
canonical kinetic scalar fields subject to identical (q1 = q2) exponential potentials as de-
scribed by equation (3.9). The plots are split into two columns, the left describing the
behaviour of the solutions for |t| > 1, while the right column describes the behaviour of the
solutions for |t| < 1. The dotted, dashed and solid curves describe q1 = q2 = 0.001, 0.01, 0.1
respectively. The green, red and blue curves describe the evolution of the scale factor a(t), the
Hubble parameter H(t) and the evolution of both scalar fields φ1(t) and φ2(t) respectively.

For reference, we calculate the following partial derivatives of the two field ekpyrotic

potential equation (3.9) for i, j = 1, 2

V,φiφj = − 2V i
0

qiM2
P

exp

(
−
√

2

qi
φi

MP

)
δji . (3.16)

It will be useful to define the additional dimensionless fast roll parameter ε1 used in the

literature valid for any number of scalar fields [44]

ε1 ≡
3

2
(1 + ω) = 1− H′

H2
= − Ḣ

H2
= −d lnH

dN
, (3.17)

with N ≡ ln a defined as the number of e-folds, and with the final equality following from

d lnH =
1

H
dH, dN = d ln a = Hdt = Hdη. (3.18)
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Note that ε1 is actually equivalent to the slow-roll parameter εH defined in equation (2.13)

but we redefine it here and make use of it exclusively in the analysis for ekpyrosis to avoid

confusion. A generic phase of ekpyrosis exhibits ε1 � 1.

The evolution of the Hubble radius H−1 as well as the proper wavelength of cosmological

perturbations ∼ a/m (with m the comoving wavenumber) in canonical single or two field

ekpyrotic backgrounds exhibit universal features. As observed in figure 6 the initial condi-

tions of a period of ekpyrosis entails a Hubble radius far exceeding that of the proper length

of relevant perturbation modes, although decreases relatively quickly. Thus quite generically

phases of ekpyrotic contraction begin with oscillatory vacuum perturbations at which time

the spacetime is approximately locally Minkowskian, and evolves to super-Hubble scales be-

fore the end of ekpyrotic contraction where gravitational interactions become increasingly

relevant.

3.2 Addressing cosmological problems

The ekpyrotic scenario would not really be worth considering at all if it did not offer solutions

to the problems of standard big bang cosmology (see section 1), as does inflation. Here we

argue that the ekpyrotic scenario does in fact address many of the problems of standard big

bang, promoting it to a competitive theory to that of inflation while some problems remain

to be addressed.

The scenario addresses the horizon problem quite simply, the universe may exist for a

sufficient time before the bounce such that the causal particle horizon grows larger than the

optical horizon calculated in equation (1.28) of section 1.2.1. Allowing the particle horizon to

grow sufficiently during ekpyrosis also addresses the structure formation problem: primordial

perturbation modes whose wavelengths are relevant to galactic separation scales today are

well within the particle horizon and causally connected as seen in figure 6. Once we motivate

ekpyrosis in string theory we will also identify perturbation modes with quantum fluctuations

on D3-branes providing an explanation as to the origin of the perturbations as well.

The flatness problem is also addressed: consider equation (1.32), since the ekpyrotic field

comes to dominate quickly during contraction, the second term k/(aH)2 ∼ t2 during ekpy-

rosis, while during phases of matter or radiation domination k/(aH)2 ∼ t2/3 or k/(aH)2 ∼ t
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t

0 x
ekpyrosis

radiation

H-1
m3m2m1 dpar

Figure 6: A spacetime diagram whose vertical axis is the cosmological time t and horizontal is
physical distance x. The diagram portrays the generic features of the Hubble radius indicated
by the blue dashed line, relative to the proper wavelengths of cosmological perturbation
modes indicated by the gray-scale solid curves and comoving wavenumber m1 > m2 > m3.
In a generic phase of ekpyrotic contraction (t � 0) perturbation modes possess proper
wavelengths much smaller than the Hubble radius but decrease less quickly, thus there is
a period of ekpyrosis where modes evolve on super-Hubble scales. The bounce phase is
indicated by the red shaded region and precedes a standard big bang period of radiation
domination (t � 0) in which perturbation modes may re-enter the curvature scale. The
orange line labels the particle horizon during the ekpyrotic phase as well as the radiation
domination phase after the bounce period. Notice that the physical wavelength of modes are
at all times smaller than the particle horizon addressing the formation of structure problem.

respectively. Thus, not only does Ω −→ 1 during a phase of ekpyrotic contraction (recall t is

decreasing) but it is driven to spatial flatness faster than it is driven away from it during ra-

diation and matter domination. Thus, so long as ekpyrotic contraction occurs for a sufficient

period of time it will be driven close enough to spatial flatness before radiation domination

in order to be consistent with the amount of spatial curvature observed today.

The singularity problem may be approached in one of two ways at this point in time.

Either from the string theory perspective (consult section 6) in the sense that as the orbifold

dimension collapses the string coupling goes to zero since R11 = g
2/3
s [70], and so the details

of the bounce may be understood in the context of string perturbation theory. Or, we simply

never approach the Planck scale during the bounce phase and it is entirely non-singular as
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in [12].

In general, relics impose strict constraints on bouncing cosmologies since, contrary to

inflation, the constructions do not immediately provide a mechanism in which the number

density of unobserved relics may be reduced if in fact they are produced. Thus in bouncing

models: supersymmetric particles, topological defects, primordial black holes, and other ex-

otic particles [10] should not be produced at all if these phenomena continue to be unobserved.

Their non-production is only ensured if the maximal temperature of the thermal history, in

particular here referring to the collision energy of higher dimensional D-branes [47], is below

that at which a symmetry breaking phase transition occurs, or in which stable or unstable

exotic particles may be produced [71]. Of particular relevance here are the gauge symmetries

that manifest via compactification of the heterotic string each leading to a corresponding

monopole solution: the ’t Hooft-Polyakov, Kaluza-Klein and H-monopoles [72].

The foreseeable issue with negative exponential potentials is that at some point, from

the four dimensional field theory perspective, the potential must rise above zero in order

to imprint upon the universe a positive cosmological constant as is expected with current

observations, and so from this perspective the cosmological constant problem remains an

issue [9, 73].
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4 Linear cosmological perturbations

4.1 Theoretical background

We now introduce a formal description of the theory of cosmological perturbations in four

spacetime dimensions within the framework of general relativity, with matter described by

a scalar field(s). This allows for the proper treatment of perturbations on scales larger than

the Hubble radius, and for relativistic fluids provided the analysis is carried out in a gauge-

invariant way [4]. In particular, the gauge freedom can lead to fictitious perturbation modes

that do not describe physical inhomogeneities, and instead result due to the properties of

the chosen coordinate system; there are four gauge modes representing the invariance under

linearized spacetime coordinate transformations.

We begin by perturbing about a spatially flat background FLRW metric (0)gμν

ds2 =
[
(0)gμν + δgμν(x

γ)
]
dxμdxν , (4.1)

such that |δgμν | 	 |(0)gμν |. In conformal time η defined as

η ≡
∫

dt

a(t)
, (4.2)

with derivatives with respect to η represented by a prime dχ
dη

≡ χ′, the background FLRW

metric takes on the following form

(0)gμνdx
μdxν = a2(η)(dη2 − δijdx

idxj). (4.3)

The metric perturbations may be classified into three distinct classifications: scalar modes,

vector modes and tensor modes (gravitational waves) [4, 71]. The classification is based on

the symmetry properties of the isotropic background which on each spatial hypersurface is

translationally and rotationally invariant.
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The timelike δg00 component behaves as a scalar under rotations and thus

δg00 = 2a2ϕ, (4.4)

where ϕ is a scalar. The perturbative components δg0i may be decomposed into a sum of

components

δg0i = a2(B,i + Si), (4.5)

where a comma followed by a spatial index indicates differentiation with respect to the spatial

coordinate i

B,i ≡
∂B

∂xi
, (4.6)

and spatial indices may be raised and lowered by the unit metric δij. The perturbative

components δgij behave as a tensor under the generators of SO(3), and may also be written

as a sum of components

δgij = a2(2ψδij + 2E,ij + Fi,j + Fj,i + hij), (4.7)

such that ψ and E are scalars. Note that the vectors Si and Fi are divergenceless

Si
,i = F i

,i = 0, (4.8)

(repeated spatial indices are also summed over) and therefore each possess only two inde-

pendent components. The symmetric rank two tensor hij is transverse and traceless

hi
j,i = 0, hi

i = 0. (4.9)

Thus scalar perturbations are characterized by the four scalar functions ϕ, ψ, B and E and

the perturbations are induced by inhomogeneities in the energy density of matter. These

perturbations exhibit gravitational instability and thus may be the seeds for the formation

of large scale structure in the universe. Vector perturbations are described by the two

vectors Si and Fi obeying two constraints. They are related to the rotational motion of
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the fluid, these modes typically decay relatively quickly. Tensor perturbations are described

by the symmetric rank two tensor of dimension three, obeying four constraints, and thus

possesses two independent components. These correspond to the two polarization modes of

gravitational waves (such as the + and × polarizations). Tensor perturbations possess no

analogue in Newtonian gravity and describe gravitational waves, they are degrees of freedom

of the gravitational field. To linear approximation as is done here, gravitational waves do

not induce perturbations in the matter sector. Thus in total there are ten independent

functions describing the three types of perturbations, this coincides with the number of

independent components of δgμν . However, this has not yet taken into consideration the

specification of gauge. Also importantly, scalar, vector and tensor perturbations (at linear

order in fluctuations) are decoupled and may therefore be studied independently [4,6,71,74–

77].

For scalar perturbations the metric takes the following form

ds2 = a2
[
(1 + 2ϕ)dη2 + 2B,idx

idη − ((1− 2ψ) δij − 2E,ij) dx
idxj
]
, (4.10)

where we then define the gauge-invariant quantities Φ and Ψ which completely characterize

the two-dimensional space of physical scalar perturbations

Φ ≡ ϕ− 1

a
[a(B − E ′)]′ , Ψ ≡ ψ +

a′

a
(B − E ′), (4.11)

where one may check that these quantities remain invariant under an infinitesimal coordinate

transformation to linear order in the transformation law.

To derive the equations for the perturbations, we linearize Einstein’s equations (1.5) about

a Friedmann universe with small inhomogeneities. We then construct the gauge-invariant

perturbations (indicated by an overbar) of the Einstein tensor [4, 78]

δG0
0 = δG0

0 + ((0)G0
0)
′(B − E ′), (4.12)

δG0
i = δG0

i −
(

(0)G0
0 −

1

3
(0)Gk

k

)
(B − E ′),i , (4.13)

δGi
j = δGi

j − ((0)Gi
j)
′(B − E ′). (4.14)
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The gauge-invariant stress energy perturbations are defined similarly

δT 0
0 = δT 0

0 − ((0)T 0
0 )
′(B − E ′), (4.15)

δT 0
i = δT 0

i −
(

(0)T 0
0 − 1

3
(0)T k

k

)
(B − E ′),i , (4.16)

δT i
j = δT i

j − ((0)T i
j )
′(B − E ′). (4.17)

Note that the energy momentum tensor of the background obeys the following constraints

(0)T 0
i = 0, (0)T i

j ∝ δij. (4.18)

The gauge-invariant perturbations may then be expressed in terms of the gauge-invariant

scalar metric perturbations Φ and Ψ

δG0
0 =

2

a2
[
−3H(HΦ +Ψ′) +∇2Ψ+ 3kΨ

]
, (4.19)

δG0
i =

2

a2
[HΦ +Ψ′],i , (4.20)

δGi
j = − 2

a2

[([
2H′ +H2

]
Φ +HΦ′ +Ψ′′ + 2HΨ′

−kΨ+
1

2
∇2[Φ−Ψ]

)
δij −

1

2
gij(Φ−Ψ),kj

]
, (4.21)

with H defined as

H ≡ a′(η)
a(η)

= aH. (4.22)

4.1.1 Scalar mode metric perturbations: single scalar matter field

If we consider scalar field matter governed by the action as in equation (2.1), and represent

small inhomogeneities δφ(�x, η) perturbing a homogeneous background φ0(η)

φ = φ0 + δφ, (4.23)
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we may derive the Klein-Gordon equation for the homogeneous component using the per-

turbed metric (4.10)

φ′′0 + 2Hφ′0 + a2V,φ(φ0) = 0. (4.24)

We may also construct the gauge-invariant scalar field perturbation δφ

δφ ≡ δφ− φ′0(B − E ′). (4.25)

The gauge-invariant stress energy perturbation describing scalar field matter may then be

expressed as

δT 0
0 =

1

a2
[−φ′20 Φ + φ′0(δφ)

′ + a2V,φ(δφ)], (4.26)

δT 0
i =

1

a2
[φ′0(δφ)],i , (4.27)

δT i
j =

1

a2
[φ′20 Φ− φ′0(δφ)

′ + a2V,φ(δφ)]δ
i
j. (4.28)

Thus with the metric given by equation (4.10) the gauge-invariant linearized Einstein equa-

tions governing and relating matter and metric perturbations

δGμ
ν = 8πδT μ

ν , (4.29)

may be expressed using equations (4.19) to (4.21) and (4.26) to (4.28) and the fact that the

spatial sector of the stress-energy tensor is diagonal (implying Φ = Ψ) [78]

3(k −H2)Φ− 3HΦ′ +∇2Φ = 4π[−φ′20 Φ + φ′0(δφ)
′ + a2V,φ(δφ)], (4.30)

HΦ + Φ′ = 4π[φ′0(δφ)], (4.31)

Φ′′ + 3HΦ′ + (2H′ +H2 − k)Φ = 4π[−φ′20 Φ + φ′0(δφ)
′ − a2V,φ(δφ)]. (4.32)

Equations (4.30) to (4.32) are valid independent of the choice of gauge, and are true for

open, flat and closed geometries. Note that the spatial curvature affects the eigenvalues

of the Laplacian [78]. For k = 0 the eigenvalues of the Laplacian −∇2 are m2 where

m ∈ (0,∞); for k = −1 the eigenvalues of −∇2 are m2 + 1 with m ∈ (0,∞). In the
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longitudinal (conformal-Newtonian) gauge (B = E = 0), Φ and Ψ have a simple physical

interpretation as the amplitude of the metric perturbations in the coordinate system such

that ϕ is a generalization of the Newtonian potential. In particular, in a non-expanding

universe, H = 0, the 00 equation of motion governing Φ (4.30) reduces to a Poisson equation

where Φ may be interpreted as the classical Newtonian gravitational potential. Thus in an

expanding universe, equation (4.30) may be interpreted as a generalization of the Poisson

equation and Φ may now be interpreted as the relativistic generalization of the Newtonian

potential.

From the background Einstein equations

3

a2
[H2 + k] = 8π

[
1

2a2
φ′20 + V (φ0)

]
, (4.33)

1

a2
[2H′ +H2 + k] = 8π

[
− 1

2a2
φ′20 + V (φ0)

]
, (4.34)

we may deduce the following relationship

H2 −H′ + k = 4πφ′20 , (4.35)

and thus equations (4.30) to (4.32) may be rewritten in a simplified form

(4k − 2H2 −H′)Φ− 3HΦ′ +∇2Φ = 4π[φ′0(δφ)
′ + a2V,φ(δφ)], (4.36)

HΦ + Φ′ = 4π[φ′0(δφ)], (4.37)

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ = 4π[φ′0(δφ)
′ − a2V,φ(δφ)]. (4.38)

Using all three equations (4.36) to (4.38) as well as the background equation of motion for

the scalar matter field (4.24), we may obtain the equation of motion for the scalar metric

perturbations Φ [12, 44,58,74,76–79]

Φ′′ + 2

(
H− φ′′0

φ0

)
Φ′ −∇2Φ +

(
2H′ − 2Hφ′′0

φ′0
− 4k

)
Φ = 0. (4.39)

We may rearrange equations (4.36) to (4.39) in order to express the gauge-invariant scalar
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field perturbations entirely in terms of the gauge-invariant scalar metric perturbations Φ and

the homogeneous component of the scalar field φ0. Equation (4.40) follows immediately from

equation (4.37), and we may add equations (4.36) and (4.38) and substitute in equation (4.39)

in order to obtain equation (4.41) [78]

(δφ) =
1

4π

1

φ′0
[Φ′ +HΦ] , (4.40)

(δφ)′ = − 1

4π

1

φ′0

[(
H− φ′′0

φ′0

)
Φ′ +

(
−∇2 − 4k +H′ −Hφ′′0

φ′0

)
Φ

]
. (4.41)

Alternatively, we may derive a second order differential equation of motion governing the

gauge-invariant scalar field perturbations by linearizing the Klein-Gordon equation (derived

from Lagrangian (2.1)) about φ0, we express it in flat space (k = 0) [74]

δφ′′ + 2Hδφ′ −∇2δφ+ V,φφa
2δφ− 4φ′0Φ

′ + 2V,φa
2Φ = 0. (4.42)

4.1.2 Scalar mode metric perturbations: N-scalar matter fields

The above perturbation equations generalize straightforwardly when multiple scalar matter

fields are introduced, as we must now consider isocurvature perturbations (‘entropy per-

turbations’) in addition to the curvature perturbation (‘adiabatic perturbation’) [80]. We

follow the formalism introduced in [80] in order to study the curvature and isocurvature per-

turbations by decomposing the scalar field perturbations into those along the background

trajectory (adiabatic perturbation) in field space and those orthogonal to it (entropy per-

turbation).

Firstly, we generalize the scalar matter action defined by the Lagrangian Lφ to that

involving N scalar fields indexed by a bold Latin superscript

Lφ =
√
−g

(
1

2

N∑
i=1

(
gμν∂μφ

i∂νφ
i
)
− V (φ1, · · · , φN )

)
. (4.43)

giving rise to a Klein-Gordon equation in curved spacetime for each scalar field

1√−g
∂μ
[√

−g gμν∂νφ
i
]
+

∂V (φ1, · · · , φN )

∂φi
= 0. (4.44)
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The stress-energy tensor may be generalized from the single field case given in equation (2.4)

Tμν ≡ − 2√−g

δSφ

δgμν
= ∂μφi∂νφ

i − gμν

(
1

2
gμν∂μφi∂νφ

i − V (φ1, · · · , φN )

)
. (4.45)

With each field perturbed about a spatially homogeneous sector φi
0(η)

φi = φi
0(η) + δφi(η, �x), (4.46)

the homogeneous sectors of each field satisfy the familiar simplified Klein-Gordon equation

separately in an expanding flat FLRW background

φi′′
0 + 2Hφi′

0 + a2V (φi
0),φi = 0, (4.47)

and obey the following second Friedmann equation

H2 =
8π

3

[
a2V (φ1

0 , · · · , φN
0 ) +

1

2

N∑
i=1

(φi′
0 )

2

]
, (4.48)

as well as the following useful relations

Ḣ = −4π
N∑
i=1

(φ̇i
0)

2, H2 −H′ = 4π
N∑
i=1

(φi′
0 )

2. (4.49)

Analogous to that of equation (4.42), second order differential equations may be derived for

each scalar matter field by linearizing equation (4.44) in the presence of the perturbed metric

(4.10), about φi�
0 for each i� in the domain of field indices. In terms of the gauge-invariant

scalar field perturbations defined for each scalar matter field as

δφi ≡ δφi − φi′
0 (B − E ′), (4.50)

and in terms of the gauge-invariant scalar metric perturbation Φ we obtain the following

second order differential equations for each field (in the absence of anisotropic stresses =⇒
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Φ = Ψ)

δφi′′ + 2Hδφi′ −∇2δφi + a2
N∑
j=1

(
V,φiφjδφj

)
− 4φi′

0Φ
′ + 2V,φia2Φ = 0. (4.51)

This differential equation may also be written in gauge dependent form as [80]

δφi′′ + 2Hδφi′ −∇2δφi + a2
N∑
j=1

(
V,φiφjδφj

)
+ 2a2V,φiϕ− φi′

0

[
ϕ′ + 3ψ′ −∇2(B − E ′)

]
= 0. (4.52)

Finally, for the study of multifield perturbations the Mukhanov-Sasaki gauge (spatially

flat gauge) [81, 82] is a convenient choice where the scalar metric perturbation is defined to

satisfy ψ = 0 [80,83] and thus via the generalization of the linearized Einstein equations (to

incorporate multiple scalar fields) the perturbations may be shown [80] to satisfy

δφi′′ + 2Hδφi′ −∇2δφi +
N∑
j=1

[
a2Vφiφj − 8π

a2

(
a2

Hφi′
0φ

j′
0

)′ ]
δφi = 0. (4.53)

In this gauge, the scalar field perturbations δφi are sometimes referred to via the Mukhanov-

Sasaki variables Qi, which have the following definition [75,80]

Qi ≡ δφi +
φi′
0

H ψ. (4.54)

It is at this point that we define the adiabatic field and entropy fields as a rotation of

basis in matter field space as displayed in figure 7. The adiabatic field ξ is defined as the

path length of the homogeneous trajectory (‘background’ trajectory in [80]) in scalar field

space and N −1 entropy fields si are defined such that perturbations in these directions are

orthogonal to the adiabatic field direction [80].

We work with the adiabatic and entropy field differentials first to ensure that ϑ ≈

constant, we define the perturbations as a rotation of basis [12,44, 69,80]

dξ = cos (ϑ) dφ1
0 + sin (ϑ) dφ2

0 , (4.55)
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Figure 7: The adiabatic and entropy basis describing perturbations of two scalar matter fields
are defined via a rotation in the scalar field spaces by an angle ϑ for each point about the
homogeneous trajectory indicated by the orange solid line. An arbitrary perturbation about
the homogeneous trajectory is represented by vector �δ; in field space it may be described
by a component along the homogeneous trajectory (adiabatic perturbation) and, for the
case of two fields, by a single component orthogonal to the homogeneous trajectory (entropy
perturbation). For N scalar fields we would instead include N − 1 orthogonal entropy
fields. The perturbation components in field space (φ1, φ2) are given by (δφ1, δφ2) and are
indicated by the red dotted lines, whereas the perturbation components in the adiabatic and
entropy field space (ξ, s) are given by (δξ, δs) and are indicated by the blue dashed lines.

ds = − sin (ϑ) dφ1
0 + cos (ϑ) dφ2

0 , (4.56)

δξ = cos (ϑ) δφ1 + sin (ϑ) δφ2, (4.57)

δs = − sin (ϑ) δφ1 + cos (ϑ) δφ2. (4.58)

For the differentials we have the following constraints

dξ cos (ϑ) = dφ1
0 , dξ sin (ϑ) = dφ2

0 , (4.59)
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and thus dividing by the differential proper time we obtain

cos (ϑ) =
φ1′
0

ξ′
, sin (ϑ) =

φ2′
0

ξ′
, tan (ϑ) =

φ2′
0

φ1′
0

, (4.60)

ensuring that the adiabatic field is the path length of the homogeneous trajectory, and that

the modulus of the perturbation vector in field space �δ is conserved between coordinate

systems

ξ′ ≡
√

(φ1′
0 )

2 + (φ2′
0 )

2, |�δ| ≡
√

(δφ1)2 + (δφ2)2 =
√
δξ2 + δs2. (4.61)

Using equation (4.47) for the homogeneous sectors of the two matter fields, we find that the

the adiabatic field ξ satisfies its own Klein-Gordon equation

ξ′′ + 2Hξ′ + a2Vξ = 0, Vξ ≡ cos (ϑ)V,φ1(φ1
0 , φ

2
0) + sin (ϑ)V,φ2(φ1

0 , φ
2
0). (4.62)

The definition of the entropy field given in equation (4.56) immediately implies that s′ =

0, thus the entropy field is constant along the homogeneous trajectory and the entropy

perturbations are manifestly gauge-invariant [80, 84]. Consequently via the perturbation

equation (4.52) we may express the evolution of the entropy perturbations in an entirely

gauge-invariant differential equation (in the absence of anisotropic stresses =⇒ Φ = Ψ)

[12,44,69,80]

δs′′ + 2Hδs′ +
(
m2 + Vssa

2 + 3(ϑ′)2
)
δs =

ϑ′

ξ′
m2

2π
Φ. (4.63)

Derivatives of the potential with respect to the entropy field s are provided as follows [44]

Vs =
1

ξ′
(
φ1′
0 V,φ2 − φ2′

0 V,φ1

)
, (4.64)

Vss =
1

(ξ′)2
(
(φ1′

0 )
2V,φ2φ2 − 2φ1′

0 φ
2′
0 V,φ1φ2 + (φ2′

0 )
2V,φ1φ1

)
, (4.65)

Vsss =
1

(ξ′)3
(
(φ1′

0 )
3V,φ2φ2φ2 − 3(φ1′

0 )
2φ2′

0 V,φ1φ2φ2

+3(φ2′
0 )

2φ1′
0 V,φ1φ1φ2 − (φ2′

0 )
3V,φ1φ1φ1

)
. (4.66)
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Evident via equation (4.63), the entropy perturbations decouple from the adiabatic pertur-

bations in the case of ϑ′ = 0, qualitatively speaking this would imply that the homogeneous

trajectory is a straight line in field space. In addition, on large scales the source term on

the right hand side becomes negligible and thus either condition leads to a second-order

homogeneous differential equation for entropy perturbations decoupled from adiabatic and

scalar metric perturbations [80]. Finally it will be useful in further calculations to define

generalized fast roll parameters ε3, η3 in terms of the adiabatic field ξ

ε3 ≡ M−2
P

(
V

Vξ

)2

, η3 ≡ 1− VξξV

V 2
ξ

. (4.67)

The first parameter ε3 is a measure of the steepness of the potential along the homogeneous

trajectory in scalar field space. In the case of ekpyrosis we have ε3 	 1. One may calculate

that for pure exponential potentials as provided in equation (3.9), that η3 = 0, thus in one

sense η3 may be interpreted as a measure of departure from exact exponential potentials.

4.1.3 Tensor mode metric perturbations

We now discuss the equations of motion describing the evolution of tensor perturbations in

a classical cosmological background and in the presence of scalar field matter. In contrast

to scalar metric perturbations described above, tensor modes may also be present in vac-

uum Einstein gravity, in other words, when there is no coupling to matter [75]. For tensor

perturbations the perturbed metric takes the form

ds2 = a2
[
dη2 − (δij − hij)dx

idxj
]
. (4.68)

The rank two tensor hij(η, �x) is already invariant under infinitesimal coordinate transfor-

mations, and thus is a gauge-invariant quantity. We may derive the equation of motion for

the tensor perturbations by beginning with the Einstein-Hilbert action coupled to a matter

Lagrangian (2.2) and inserting the perturbed metric (4.68). We then truncate terms to sec-

ond order in tensor perturbations and in the absence of anisotropic stresses we obtain the
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following equation of motion by varying the action with respect to hij

(h′′ij + 2Hh′ij −∇2hij) = 16πa2δT ij. (4.69)

In the presence of scalar field matter, and the absence of anisotropic stresses the above

simplifies since δT ij = 0

(h′′ij + 2Hh′ij −∇2hij) = 0. (4.70)

As previously stated, the tensor hij may be decomposed into the two polarization modes (we

use the ‘plus’ +, and ‘cross’ × polarization modes)

hij(η, �x) = h+(η, �x)e
+
ij + h×(η, �x)e×ij, (4.71)

where h+ and h× are scalar functions, and e+ij, e
×
ij are unit linear polarization tensors defined

in terms of the tensor product (⊗) of two dimensional orthogonal basis vectors (e1i , e2j)

[6, 75,85–87]

e+ij ≡ e1i ⊗ e1j − e2i ⊗ e2j , e×ij ≡ e1i ⊗ e2j + e2i ⊗ e1j . (4.72)

Substituting equations (4.71) and (4.72) into the equation of motion for the tensor per-

turbations (4.70) and converting our equation to Fourier space, we obtain identical equa-

tions of motion for both polarizations and each Fourier mode �m (with mode subscripts

suppressed) [44, 74,75]

h′′(+,×) + 2Hh′(+,×) +m2h = 0. (4.73)

In many cases it is useful to introduce a rescaled field f defined in terms of h as

f ≡ a(η)h, (4.74)

such that we now have a slightly altered differential equation in terms of f

f ′′ + (m2 − a′′

a
)f = 0. (4.75)
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4.1.4 Perturbations as random fields

Finally, we provide the background statistical treatment in which one may characterize cos-

mological perturbations and describe how this enables one to compare observational data

with the predictions of different cosmological models. We have derived sets of equations

that, given a set of initial conditions and provided we are able to solve the equations ei-

ther analytically or numerically, should completely determine the evolution of cosmological

perturbations unambiguously through time. However, we recognize that not only do we not

have full access to the primordial perturbation spectrum due to us being limited to the infor-

mation within our past light cone, but the equations we have derived only become accurate

at energies below the Planck scale, where general relativity may be trusted. In other words,

we have no sound theory (a quantum theory of gravity) capable of accurately providing a

set of initial conditions to be fed to our equations in the low energy regime in which the

physics is deterministic. Thus, the initial conditions we use are characterized by probability

distributions calculated in a quantized field theory coupled to Einstein gravity.

Furthermore, cosmological quantities at late times are well characterized by averaged

quantities due to the vastness of our universe, such as the average distance between galaxies

or the average temperature of the CMB. For these reasons, it is useful then to treat the

perturbation variables (such as Φ) as random fields, and if the field is described purely by a

Gaussian distribution (which implies that each Fourier mode of the transformed perturbation

variable are uncorrelated) then all odd N -point correlation functions vanish and all even

N -point correlation functions may be described in terms of the distribution’s variance; in

frequency space this is known as the power spectrum. A non vanishing 3-point function

(or any odd N -point function) would provide evidence for, or be a requirement of a theory

which produces a spectrum deviating from that produced by a Gaussian random field, stated

differently the distribution of the perturbation variable is inexactly Gaussian or exhibits non-

Gaussianities, which are induced by non-linearities in the equations of motion [21,86,88].

Let us define an N dimensional random field G(�x) [89], such that for any fixed �xi ∈ R
N ,

G(�xi) is a random variable, which we may refer to as a realization, described by a cumulative
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distribution function

F1,··· ,n(g1, · · · , gn) = F [G(�x1) ≤ g1, · · · , G(�xn) ≤ gn], (4.76)

for any number of points n which we will define as the set A, and where the lowercase

gi ≡ g(�xi) denotes a particular value the random variable may take evaluated at a fixed �xi

for i ∈ A. All possible values G(�xi) may attain for a fixed �xi form a statistical ensemble

Ω. The marginal probability density function pi(gi) for a fixed �xi is defined in terms of the

marginal cumulative distribution function

Fi(gi) = lim
{gm|m∈A\i}→∞

F1,··· ,n(g1, · · · , gn), (4.77)

and the joint probability density function between the n points is defined in terms of the

cumulative distribution function F1,··· ,n(g1, · · · , gn)

pi(gi) ≡
dFi(gi)

dgi
, (4.78)

p1,··· ,n(g1, · · · , gn) ≡
∂nF1,··· ,n(g1, · · · , gn)

∂g1, · · · , ∂gn
. (4.79)

In general it may not be that the probability density function pi is equal to the probability

density function pi′ for i �= i′. If however we have equality

pi(gi) = pi′(gi′), (4.80)

then the probability distribution is translationally invariant in �x and is said to be stationary

or exhibit statistical homogeneity. Similarly, the probability density function is rotationally

invariant in �x and is said to exhibit statistical isotropy if

pi(gi) = pR1(gR1(R�x1)), (4.81)

for some rotation R applicable to the coordinate space, viewed another way as a rotation

of the coordinate system. Finally, invariance under transformations of parity (reversing the
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handedness of the coordinate system) is a useful property that the random field may possess

as it relates realizations of the random field, thereby reducing the number of independent

correlation functions that may need to be considered in a given calculation.

We may define the expectation value (ensemble average) of the random field for a given

�xi and the N -point spatial correlation function respectively

〈G(�xi)〉 ≡
∫
Ω

gipi(gi)dgi, (4.82)

Ξ(m)(�x1, · · · , �xN ) ≡ 〈G(�x1) · · ·G(�xN )〉 ≡
∫
Ω

g1 · · · gNp1,··· ,N (g1, · · · , gN )dg1 · · · dgN . (4.83)

Importantly, if a random field is statistically homogeneous then the 2-point correlation func-

tion has the following property

Ξ(2)(�x1, �x2) = Ξ(2)(�x1 − �x2), (4.84)

and if the random field is also statistically isotropic then the constraint is strengthened

further

Ξ(2)(�x1, �x2) = Ξ(2)(|�x1 − �x2|). (4.85)

Similarly, we define the ensemble variance of the random field as

σ2(�x1, �x2) ≡ 〈G(�x1)G(�x2)〉 − 〈G(�x1)〉〈G(�x2)〉, (4.86)

noting that the variance may be subject to greater constraints as in equations (4.84) and (4.85)

if the random fields are statistically homogeneous and isotropic.

Observations in cosmology are limited to computing spatial averages, thus the ergodic

properties of the fields in question is imperative. The ergodic property is the statement

that the 2-point correlation function 〈G(�x1)G(�x2)〉 (and similarly the m-point correlation

function) may be expressed approximately by the spatial average at a fixed �x1−�x2 for a single

realization of the ensemble representing all realizations of the random field. The property

follows from homogeneity of the random field in addition to some other weak assumptions,

the proof may be found in Weinberg’s text as well as Lyth and Liddle [89,90].
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In analyzing perturbations, we will find it necessary to utilize Fourier techniques. Phys-

ically, we first define the stochastic properties of the perturbations when treated as random

fields at fixed time. Thus the argument of the random field corresponds to the spatial degrees

of freedom and we choose to carryout the Fourier analysis in a volume whose side lengths are

L. The boundary conditions then immediately imply that the wave vectors �ms with index

s form a cubic lattice with spacing 2π/L. We then justify that the side lengths of the finite

volume are much larger than the observable universe allowing the lattice spacing to go to

zero and the wave vectors constitute a justifiably approximate continuous spectrum. The

discrete Fourier analysis may then be replaced by the continuous version which allows for

more succinct calculations.

The Fourier series and its inverse as well as the infinite space limit (L −→ ∞) corre-

sponding to the Fourier transform and its inverse are defined in this thesis as

G(�x) =
1

L3

∑
s

Gse
i�ms·�x, Gs =

∫
G(�x)e−i�ms·�xd3x, (4.87)

G(�x) =
1

(2π)3

∫
G(�m)ei�m·�xd3m, G(�m) =

∫
G(�x)e−i�m·xd3x. (4.88)

We impose that the Fourier coefficients obey a reality condition, G(−�m) = G∗(�m) which

ensures that the complex component of the mth mode cancels out with that of the −mth

mode. More precisely, if G(�m) = a(�m) + ib(�m) then a(�m) = a(−�m) and b(−�m) = −b(�m).

Both the discrete and continuous case satisfy orthogonality relations respectively

∫
ei(�ms−�mt)·�xd3x = L3δst,

∫
ei(�m−�m′)·�xd3x = (2π)3δ3(�m− �m′). (4.89)

First working in a finite volume (discrete case) we define a Gaussian random field by the

property that its Fourier coefficients are uncorrelated, by the reality condition we have

〈GsGt〉 = δs,−t〈|Gs|2〉 ≡ δs,−tPGs . (4.90)

The factor PGs is known as the power spectrum, and in the continuum limit it may be defined

in terms of the Fourier transform. A characteristic of Gaussian random fields is that all odd
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N -point correlation functions vanish, the 1-point function may also be made to vanish by

absorbing the only potentially non zero coefficient of the zero mode into the unperturbed

background

〈Gs〉 = 〈Gs1Gs2Gs3〉 = · · · = 0. (4.91)

All higher order even N -point functions may be expressed in terms of the 2-point function

and therefore in terms of the power spectrum, for example the 4-point function

〈Gs1Gs2Gs3Gs4〉 = 〈Gs1Gs2〉〈Gs3Gs4〉+ 〈Gs1Gs3〉〈Gs2Gs4〉+ 〈Gs1Gs4〉〈Gs2Gs3〉. (4.92)

In the continuum limit, the 2-point correlation function of two Fourier transformed statisti-

cally homogeneous random fields may be expressed as

〈G(�m)G(�m′)〉 =
∫

e−i(�m−�m′)·�xd3x
∫

Ξ(2)(�z)ei�m
′·�zd3z. (4.93)

Using the representation of the Dirac delta and the orthogonality relations given in equa-

tion (4.89), we re-express the above as

〈G(�m)G(�m′)〉 = (2π)3δ(3)(�m− �m′)PG(�m), (4.94)

with the power spectrum PG(�m) defined as the Fourier transform of the 2-point spatial

correlation function

PG(�m) ≡
∫

Ξ(2)(�x)e−i�m·�xd3x, Ξ(2)(�x) =
1

(2π)3

∫
PG(�m)ei�m·�xd3m. (4.95)

If one also assumes statistical isotropy, then the power spectrum depends only on the modulus

of �m and the 2-point spatial correlation function depends on the modulus of �x, and we may

simplify their forms to single integrals

PG(m) = 4π

∫ ∞

0

r2Ξ(2)(r)
sin (mr)

mr
dr, Ξ(2)(r) =

∫ ∞

0

m2PG(m)

2π2

sin (mr)

mr
dm. (4.96)

Similarly, the 4-point function in Fourier space equation (4.92) may be expressed in the
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continuum limit as

〈G(�m1)G(�m2)G(�m3)G(�m4)〉 = (2π)6δ(3)(�m1 + �m2)δ
(3)(�m3 + �m4)PG(m1)PG(m3)

+ 2 permutations. (4.97)

The random field G(�x) (in position space) is a superposition of Fourier modes, and as

we have already stated: Gaussian random fields are defined by the property of possessing

uncorrelated (independent) Fourier modes. Therefore, regardless of the probability distri-

bution of the random variable describing the amplitudes of each mode, by the central limit

theorem, the sum of the amplitudes of the uncorrelated modes is described by a Gaussian

(normal) probability distribution. Therefore the probability distribution of G(�x) for every �x

is described by a Gaussian probability density

p(g) =
1√
2πσg

exp

(
− g2

2σ2
g

)
, (4.98)

where we have assumed the expectation value (first moment) is vanishing. Note that the

probability density is independent of �x, thus Gaussianity (uncorrelated Fourier modes) im-

plies statistical homogeneity. If we further assume that the power spectrum is invariant

under rotations at every �m, then the use of the expressions in equation (4.96) is justified.

The ensemble variance defined in equation (4.86) may be expressed for a statistically ho-

mogeneous and isotropic field in terms of the power spectrum PG using equations (4.84)

and (4.95) (assuming vanishing first moment)

σ2
g(�x) = 〈G2(�x)〉 = Ξ(2)(�0) =

1

(2π)3

∫ ∞

0

PG(m)d3m =

∫ ∞

0

PG(m)
dm

m
. (4.99)

In equation (4.99) we have introduced the quantity PG(m), and define it as the dimensionless

power spectrum

PG(m) ≡ m3PG(m)

2π2
. (4.100)

Thus for a given linear, Gaussian, small perturbation variable in Fourier space such as

Φ(m), we may calculate the field’s dimensionless power spectrum if we treat it as a Gaussian
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random field, since the mean square amplitude of the perturbation variable |Φ(m)|2 is directly

proportional to PΦ(m) by equation (4.94) for the continuous case and equation (4.90) for

the discrete case.

To recapitulate: the Fourier coefficients of a Gaussian perturbation have minimal cor-

relation. In particular, all odd N -point correlators of the Fourier coefficients vanish and

all even N -point correlators may be expressed in terms of the power spectrum PG. The

Fourier coefficients of a non-Gaussian perturbation possess correlation not only specified by

the power spectrum and not necessarily vanishing odd N -point correlations functions in the

Fourier coefficients.

The amplitude of metric perturbations may depend on length scale. The spectral index

nG(m) may be defined to characterize the scale dependence of the spectrum

nG − 1 ≡ d ln [PG(m)]

d lnm
. (4.101)

If nG = 1 the spectrum is said to be scale independent (or flat), otherwise it exhibits either

a red (nG < 1) or blue (nG > 1) tilt. If the spectral index is independent of m or we

are only considering a small range of scales then the power spectrum PG ∝ mnG−1. If

instead nG depends on the wave number m the spectral index is said to be running. In this

case one possibility is to assume that nG may be approximated as a linear function of lnm

thereby defining the behaviour of the index through understanding of the rate of change

dnG/d lnm [4, 89].

We now wish to determine the possible forms of N -point correlators when considering

non-Gaussianities obeying translational and rotational invariance. We previously argued

that the 1-point function (mean) may be absorbed into the unperturbed background quan-

tity, similarly all correlators between the zero modes may be absorbed into the unperturbed

background quantity. The generalized logic of the previous statement is as follows: transla-

tional invariance demands that each N -point correlator in Fourier space be proportional to

a delta function or a product of up to N deltas whose arguments are the Fourier modes of

the correlator. However a product of delta functions consisting of at least one delta function

possessing in its argument the Fourier variable of only one field such as δ(3)(�mi) for i ∈ [1,N ],
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immediately implies that the quantity vanishes unless the argument of every delta function

of that type present in the term is zero; but the zero modes may be reabsorbed into the

unperturbed quantities. Therefore we need not consider contributions to N -point correla-

tion functions containing delta functions of the type δ(3)(�mi). Consequently, the 2-point

correlator has the same form as for the Gaussian case. By the above argument, the form of

the 3-point correlator for the non-Gaussian case is uniquely

〈G(�m1)G(�m2)G(�m3)〉 = (2π)3δ(3)(�m1 + �m2 + �m3)BG(m1,m2,m3). (4.102)

The factor BG(m1,m2,m3) is known as the bispectrum, and may be defined in terms of

the reduced bispectrum BG(m1,m2,m3) and the power spectrum PG of each pair of Fourier

modes

BG(m1,m2,m3) ≡ BG(m1,m2,m3)[PG(m1)PG(m2)

+ PG(m2)PG(m3) + PG(m1)PG(m3)]. (4.103)

In position space, we may calculate the 3-point correlators

〈G(�x1 + �x3)G(�x2 + �x3)G(�x3)〉 =
1

(2π)3

∫
BG(m1,m2,m3)e

i(�m1·�x1+�m2·�x2)d3m1d
3m2, (4.104)

〈G3(�x3)〉 =
1

(2π)3

∫
BG(m1,m2,m3)d

3m1d
3m2, (4.105)

with equation (4.105) providing a correction to the Gaussian spectrum known as the skew-

ness SG, defined as the third standardized moment in terms of the second and third order

cumulants (equal to the moments to the first three orders for a distribution of mean zero)

SG ≡ 〈G3(�x)〉
〈G2(�x)〉3/2 . (4.106)

The skewness may be regarded as a measure of asymmetry of the probability distribution

of the random variable about the mean. If PG and BG are both independent of scale then

SG ∼ BGP
1/2
G , and an approximately Gaussian perturbation will have BG 	 P

−1/2
G .

For a Gaussian random variable, the 4-point correlator of the Fourier coefficients is al-
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ready non-vanishing. However in the non-Gaussian case, there may be an additional contri-

bution of the form

〈G(�m1)G(�m2)G(�m3)G(�m4)〉 = (2π)3δ(3)(�m1 + �m2 + �m3 + �m4)TG, (4.107)

with TG known as the trispectrum. Once again, we may define the reduced trispectra TGi
[91]

TG(�m1, �m2, �m3, �m4) ≡ TG1 [PG(m1)PG(m2)PG(|�m1 − �m4|) + 23 permutations]

+ TG2 [PG(m2)PG(m3)PG(m4) + 3 permutations], (4.108)

with the permutations running over the arguments of the power spectra. The 4-point function

present for a Gaussian perturbation as in equation (4.97) has the same form in position space

〈G(�x1)G(�x2)G(�x3)G(�x4)〉 = 〈G(�x1)G(�x2)〉〈G(�x3)G(�x4)〉+ 2 permutations. (4.109)

This is known as the disconnected contribution. It does not go to zero as the separation

between points paired in a 2 point correlator goes to infinity. The contribution that may be

present for a non-Gaussian perturbation given by equation (4.107) is known as the connected

contribution, and is only non zero if, for the case of the 4-point function all four points are

sufficiently close to one another. We may calculate the fourth order cumulant in position

space (for a distribution of mean zero)

〈G4(�x)〉 − 3〈G2(�x)〉2 ≡ 〈G4(�x)〉c =
1

(2π)6

∫
TGd

3m1d
3m2d

3m3. (4.110)

Equation (4.110) allows us to define the kurtosis as the fourth standardized moment

KG ≡ 〈G4(�x)〉c
〈G2(�x)〉2 . (4.111)

Similarly as for the bispectrum, if the reduced trispectrum is approximately scale invariant

KG ∼ TGPG and the kurtosis provides a measure of non-Gaussianity associated with the

trispectrum. This process generalizes for N -point correlators, there will be present discon-

nected contributions present for both the Gaussian and non-Gaussian case proportional to
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a product of delta functions (note these delta functions possess a sum of Fourier modes in

their argument, not just one, these terms do not automatically vanish for non zero Fourier

modes). The connected contribution may or may not be present, depending on the level of

non-Gaussianity. If the connected contribution is present, the introduction of a new func-

tion analogous to the bispectrum and trispectrum must be introduced, and the disconnected

contribution would be proportional to a single delta function whose argument is a sum of all

N Fourier modes.

4.2 Scalar metric perturbations in ekpyrosis

In a contracting ekpyrotic model, scalar and tensor perturbations are generated and have

contrasting predictions to inflationary models. It is worth noting that generally speak-

ing, although vector modes grow during a contracting phase, they decay quickly during

the subsequent expanding phase [92]. In this subsection, we study the scalar mode metric

perturbations generated in single and two field ekpyrotic models.

We will see that single field minimally coupled canonical kinetic ekpyrotic models gen-

erally lead to a scale invariant spectrum for the generalized Newtonian potential Φ and a

strongly blue spectrum for the curvature perturbation ζ in disagreement with observations.

When the model is generalized to two scalar fields an approximately scale invariant spectrum

of entropy perturbations may be generated either with a small blue tilt for pure exponential

potentials, or a small red tilt for potentials that deviate from pure exponentiality subject to

some constraints.

Lastly we study a particular mechanism in which the entropy perturbations generated in

two field models may be converted to curvature perturbations via a curve in the trajectory

traversed in field space. This allows the curvature perturbation to inherit the approximately

scale invariant entropy perturbations generated during the ekpyrotic phase allowing for a

comparison with observed data.

Note that in this thesis, we simply assume that a non-singular bounce phase permits

the curvature perturbation to traverse the bounce and remain approximately constant or

traceable as in [12,93] through for instance the use of a ghost condensate.
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4.2.1 Single matter field

The first rigorous approach to cosmological perturbations in the ekpyrotic scenario was done

in [58] where they applied the methods of [78] of evolving Bunch-Davies vacuum modes

through an inflationary period. In the following analysis we follow closely the work of

[44, 58, 79]. First we express the scaling solution (3.5) in terms of the conformal time η (up

to an irrelevant rescaling)

a(η) = (−η)p/(1−p), φ(η) =
2

c(1− p)
ln (−η), (4.112)

with c defined as in equation (3.6). We will also make use of the parameter ε1 defined in

equation (3.17), with fast-roll achieved for ε1 � 1.

In addition to solving for the scalar metric perturbations described by the general-

ized Newtonian potential Φ, we will also track curvature perturbations on spatial hyper

surfaces that are comoving with the matter field. The curvature perturbations may be

represented in terms of the gauge-invariant perturbation variable ζ in comoving gauge

(E,ij = δT 0
i = 0, ζ = ψ =⇒ δφ = 0 [79, 94]) where it represents the curvature perturba-

tion on spatial hypersurfaces, and are not sensitive to the growing mode density pertur-

bation in the contracting phase [58]. The curvature perturbation is defined in terms of

Φ [44, 58,75,76,79,80,94–97]

ζ ≡ Φ +
1

ε1

(
Φ′

H + Φ

)
= Φ− H

Ḣ

(
Φ̇ +HΦ

)
=

HΦ′ +H2Φ

4π (φ′0)
2 + Φ, (4.113)

Φ = −ε1
H
m2

ζ ′ =
Ḣ

H

a2

m2
ζ̇ , (4.114)

which for fluctuations on super-Hubble scales (such that Δφ corrections are negligible) is

equal to the curvature perturbation R [75] introduced in [94]. Working in Fourier space (we

suppress subscripts denoting the mth Fourier mode) the generalized Newtonian potential Φ

governed by equation (4.39) in flat space k = 0 now obeys the following differential equation

60



Linear cosmological perturbations

for each Fourier mode �m

Φ′′ + 2

(
H− φ′′0

φ0

)
Φ′ + 2

(
m2 +H′ −Hφ′′0

φ′0

)
Φ = 0, (4.115)

where m = |�m| is the magnitude of the comoving Fourier three-vector. The curvature

perturbation ζ obeys the following equation of motion for each mode [74,79]

ζ ′′ + 2
z′

z
ζ ′ +m2ζ = 0. (4.116)

where we have defined the following quantities z, θ in terms of the background

z ≡ aφ′0
H , θ ≡ 1

z
=

a′

a2φ′0
. (4.117)

We also define the new variables u and v (the Mukhanov variable [75]) noting that they

possess the same m dependence to Φ and ζ respectively and thus have the same spectral

properties

u ≡ a

φ′0
Φ, v ≡ zζ. (4.118)

We may simplify the differential equations of motion governing the scalar perturbations

(4.115) and (4.116) by working in terms of u, v

u′′ +m2u− θ′′

θ
u = 0, (4.119)

v′′ +m2v − z′′

z
v = 0, (4.120)

they are related via

v = 2

[
u′ +

z′

z
u

]
, u = − 1

2m2

[
v′ +

θ′

θ
v

]
. (4.121)

When the equation of state of the scalar matter field is time independent, we may use

the scaling solution (4.112) expressed in conformal time to determine the coefficients for
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equations (4.119) and (4.120)

θ′′

θ
=

ε1
(ε1 − 1)2η2

,
z′′

z
=

2− ε1
(ε1 − 1)2η2

. (4.122)

With the coefficients expressed in terms of the conformal time η we make the approximation

that at early times (η → −∞) the m2 terms in equations (4.119) and (4.120) dominate

over the θ′′/θ, z′′/z terms (m2 � z′′/z) mimicking the equation for a simple harmonic os-

cillator. The scaling solution dictates that z(η) ∼ a(η) since H(η) ∝ φ′0(η), indicating that

the physical interpretation of the previous statement is that the (relevant) curvature pertur-

bation modes are well within the Hubble radius (curvature scale), where the solutions are

asymptotically constant amplitude oscillations [44, 75]. We thus choose as initial conditions

the Minkowski vacuum (Ch. 3 of Birrell & Davies [98]) for a comoving observer in the dis-

tant past, since on scales much smaller than the curvature scale the spacetime approaches

Minkowski [44,66,79] [89, Ch. 24]

u −−−−→
η→−∞

i(2m)−3/2 exp (−imη), (4.123)

v −−−−→
η→−∞

(2m)−1/2 exp (−imη). (4.124)

As a consistency check to our ekpyrotic initial condition that the space be asymptotically

Minkowski in the far past, we may justify this choice of initial condition in another way [58]:

in the Newtonian gauge there are two equations relating the scalar field perturbations δφ

with the scalar metric perturbations Φ

δφ =
2

φ̇0

[
Φ̇ +HΦ

]
, (4.125)

˙δφ = − 2

φ̇0

[
− φ̈0

φ̇0

Φ̇ +

[
m2

a2
+ φ̇0∂t

(
H

φ̇0

)]
Φ

]
. (4.126)

At large −mt for an incoming Minkowski vacuum (as seen by an observer in coordinate time)

δφ ∼ e−imη/(a
√
2m) we find that the scalar metric perturbation

Φ ∼
i
√
p

2m3/2t
exp (−imη) −−−−→

η→−∞
0. (4.127)
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The equations of motion (4.119) and (4.120) are a form of Bessel equation in absence of the

term carrying the first order derivative in the dependent variable, and may be solved exactly

(see equation (9.1.49) in [99]) by a linear combination of Hankel functions of the first and

second kind of order ν (H(1,2)
ν (x)) [79, 99]

u(x) = x1/2
[
A(1)H(1)

α1
(x) + A(2)H(2)

α1
(x)
]
, (4.128)

v(x) = x1/2
[
B(1)H(1)

α2
(x) + B(2)H(2)

α2
(x)
]
. (4.129)

Note that x ≡ m|η| is a dimensionless time variable, A(1,2), B(1,2) are constant coefficients

and the Hankel function order may be expressed in terms of the fast roll parameter ε1

α1 ≡
√

θ′′

θ
η2 +

1

4
=

1

2

∣∣∣∣ε1 + 1

ε1 − 1

∣∣∣∣ , (4.130)

α2 ≡
√

z′′

z
η2 +

1

4
=

1

2

∣∣∣∣ε1 − 3

ε1 − 1

∣∣∣∣ . (4.131)

In order to determine the coefficients A(1,2), B(1,2) we use the asymptotic Hankel expression

H(1,2)
ν (x) −−−−→

|x|→∞

√
2

πx
exp
(
±i
[
x− νπ

2
− π

4

])
. (4.132)

Thus the Minkowski vacuum initial conditions equations (4.123) and (4.124) imply up to an

irrelevant overall phase factor [44,58,79]

u(x) =

√
πx

4m3/2
H(1)

α1
(x), (4.133)

v(x) =

√
πx

2m1/2
H(1)

α2
(x). (4.134)

In order to determine the power spectra of ζ and Φ at late times when comoving scales are

far outside the curvature scale, one may relate the power spectrum to the growth rate of u, v

on super-Hubble scales to the power spectrum at the time of Hubble radius crossing tH(k);

then use the fact that the amplitude of u, v are constant on sub-Hubble scales in order to

relate it to the initial vacuum conditions. In this case however, we have the analytic solutions

of u, v so we may calculate the power spectra directly. First we express the asymptotic form
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of the Hankel function H
(1)
ν (x) at late times (x → 0)

H(1)
ν (x) −−→

x→0
− i

π
Γ(ν)

(x
2

)−ν
, (4.135)

where Γ(ν) is the Gamma function . On large scales the dimensionless power spectrum of Φ

is provided by

PΦ(m) ≡ m3

2π2
|Φm|2 =

m3

2π2

∣∣∣∣uφ′0a
∣∣∣∣2 ∝ x1−2α1 . (4.136)

Note in the last step we have used equations (4.112) and (4.133) to (4.135). The spectral

index nΦ for the Newtonian potential Φ describing deviation from scale invariance is then

nΦ − 1 = 1− 2α1 = 1−
∣∣∣∣ε1 + 1

ε1 − 1

∣∣∣∣ −−−→ε1→∞
0−. (4.137)

For ekpyrotic models ε1 � 1, and thus the scalar metric perturbations in terms of the New-

tonian potential approaches scale invariance (equal amplitudes at Hubble radius crossing)

with a possible small red tilt, in particular nΦ −−−→
ε1→∞

1−. The spectral index may also be

calculated for a slowly varying equation of state parameter ωφ, [66]

nΦ − 1 = −4(ε2 + η2) −−−−→
ε2,η2→0

0−, (4.138)

with ε2, η2 provided in equation (3.1), and assuming η2 is also positive we indicate that the

limit 0− is approached from values below zero.

Note that recent works only track the curvature perturbation across a non-singular

bounce, as opposed to the generalized Newtonian potential [12, 93]. Using Hwang-Vishniac

[100] and Deruelle-Mukhanov [101] matching conditions, it was shown in [102] (see also [103])

that in a particular realization of the ekpyrotic scenario the growing mode Φ does not couple

to the non-decaying mode during the Friedmann expansion phase, and should therefore not

source the large scale structure today.

We also calculate the dimensionless power spectrum for ζ on large comoving scales given

by

Pζ(m) ≡ m3

2π2
|ζm|2 =

m3

2π2

∣∣∣v
z

∣∣∣2 ∝ x3−2α2 , (4.139)
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with the spectral index for the scalar curvature perturbations on comoving hypersurfaces nζ

following

nζ − 1 = 3− 2α2 = 3−
∣∣∣∣ε1 − 3

ε1 − 1

∣∣∣∣ −−−→ε1→∞
2+. (4.140)

Thus in contrast to the approximately scale invariant power spectrum PΦ, the power spec-

trum for the curvature perturbation Pζ is strongly blue.

Interestingly, the equation of motion for u (4.119) supplemented by the definition of the

coefficient (4.122) is invariant under ε1 → 1

ε1
. Simultaneously the vacuum initial condition

equation (4.123) is independent of ε1, and as a result the spectral index as described in

equation (4.137) is invariant under the same transformation. This portrays a type of a

duality between a phase of ekpyrosis ε1 � 1 and inflation ε1 ≈ 0, such that for either model

the Φ spectrum is approximately scale invariant [44,79].

4.2.2 Two matter fields: entropy perturbations I

We now provide the analysis for the generation of a scale-invariant spectrum of entropy per-

turbations when the scaling solution given by equations (3.13) to (3.15) for two scalar matter

fields are realized. We begin with the evolution equation (4.63) for entropy perturbations,

and argue via equation (4.60) that the homogeneous trajectory is a straight line in field space

tan (ϑ) =

MP

√
2q2

t
MP

√
2q1

t

=

√
q2

q1
. (4.141)

Additionally, we calculate explicitly the conformal time derivative of the adiabatic field via

equation (4.61)

ξ′ =
a

t

√
2
√
q1 + q2, (4.142)

and using equations (3.14) to (3.16) into equation (4.65) we have

Vss = − 2

t2
(1− 3(q1 + q2)). (4.143)
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The evolution equation for entropy perturbations then simplifies to a homogeneous second

order equation

δs′′ + 2Hδs′ +
[
m2 − a2

(
2

t2
(1− 3(q1 + q2))

)]
δs = 0. (4.144)

Defining the new variable δS ≡ aδs we obtain

δS ′′ − a′′

a
δS +

[
m2 − a2

(
2

t2
(1− 3(q1 + q2))

)]
δS = 0. (4.145)

We may calculate the prefactor of the second term by taking a derivative of the relationship

between H and H
d

dη

(
a′

a

)
= a

d

dt
(aH) , (4.146)

as well as using equations (3.17) and (4.49), we obtain

a′′

a
= a2H2(2− ε1) = −a2

t2
(q1 + q2). (4.147)

By means of integrating dη = dt/a and using appropriate Taylor series expansion in (q1+q2),

we may approximate the time dependent term currently expressed in coordinate time instead

in terms of conformal time to linear order

a2

t2
≈ 1

η2
(
1 + 2(q1 + q2)− 4(q1 + q2) ln (−t)

)
. (4.148)

However, the final (logarithmic) term in equation (4.148) may be neglected so long as the

evolution traverses a region in the domain of cosmological time such that the logarithmic

term produces values much less than 1. We will proceed assuming the logarithmic term is

negligible, as done in the analysis of [12]. Plugging equations (4.147) and (4.148) into equa-

tion (4.145), we obtain the following Bessel equation describing the approximate evolution

of entropy perturbations in Fourier space [12]

δS ′′ +
[
m2 − 2

η2

(
1− 3

2
(q1 + q2)

)]
δS ≈ 0. (4.149)
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At very early times when the scale of quantum fluctuations is much smaller than the Hubble

scale, we may impose standard Bunch-Davies initial conditions [12, 104] that determine the

constant coefficients of the general solution of equation (4.149). Up to an irrelevant phase

factor we have the following solution for δS with x ≡ m|η|

δS =
1

2

√
πx

m
H(1)

α3
(x), (4.150)

with the order of the Hankel function provided by

α3 =

√
2

(
1− 3

2
(q1 + q2)

)
+

1

4
=

3

2

(
1− 2

3
(q1 + q2) +O((q1 + q2)2)

)
. (4.151)

Using the asymptotic form of the Hankel function of the first kind provided by equa-

tion (4.135) at late times, we may calculate the dimensionless power spectrum for entropy

perturbations Pδs

Pδs ≡
m3

2π2
|δs|2 ≈

m3

2π2

∣∣∣∣δSa
∣∣∣∣2 ∝ m3x−2α3 , (4.152)

and thus its spectral index [12]

nδs − 1 ≈ 3− 2α3, (4.153)

nδs ≈ 1 + 2(q1 + q2) −−−−−→
q1,q2→0

1+. (4.154)

Thus we have shown that when the scaling solution provided by equations (3.13) to (3.15)

for multi-field models is obeyed, or in other words for canonical scalar fields in an expanding

FLRW background with purely exponential potentials for both fields of the form as provided

by equation (3.9), then an approximately scale invariant spectrum of entropy perturbations

with a small blue tilt may be generated. The steepness of the tilt is modulated entirely by

the steepness of the potential, more specifically by the quantities q1, q2.

A crucial hinge in this analysis is that if the logarithmic term in equation (4.148) instead

dominates the expression, the sign of its coefficient is opposite to that of the preceding term.

Thus in this case, it would reverse the results of this analysis: the entropy spectrum would

produce a nearly scale invariant spectrum with a small red tilt.
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4.2.3 Two matter fields: entropy perturbations II

A more general form of the double field potential from that given in equation (3.9) implies

that the scaling solution as provided in equations (3.13) to (3.15) are no longer exact solu-

tions. In this section, we follow the analysis of [12] for the case of the two field potential

being additively separable for any single field potentials V 1, V 2

V (φ1, φ2) = V 1(φ1) + V 2(φ2), (4.155)

subject to the constraint that the potential is symmetric under the interchange of fields

φ1 ←→ φ2. (4.156)

With conditions (4.155) and (4.156) restricting the two-field potential, equation (4.60) im-

mediately implies

ϑ =
π

4
, (4.157)

and further that the adiabatic field satisfies via equation (4.55)

ξ′ =

√
2

2

(
φ1′
0 + φ2′

0

)
. (4.158)

This form of the potential also admits an exact equivalence between second derivatives in

the potential

Vss = Vξξ, (4.159)

generically speaking this equivalence is manifest when the following two conditions are sat-

isfied: V,φ1φ2 = 0 and cos2 (ϑ) = sin2 (ϑ). The entropy perturbation equation (4.63) now

simplifies

δs′′ + 2Hδs′ + (m2 + a2Vξξ)δs = 0. (4.160)

Since we may no longer readily calculate the term containing Vξξ, the authors of [12] instead

express the potential in terms of the fast roll parameter ε1 by combining equations (3.17),
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(4.48) and (4.49) obtaining

V =
H2

a28π
(3− ε1) =

H2

8π
(3− ε1), (4.161)

we then derive the crucial relationship between a differential e-folding and that of an in-

finitesimal change in the adiabatic field using equations (3.17), (3.18), (4.49) and (4.61)

dN

√
ε1
4π

= dξ. (4.162)

We may obtain an explicit expression for the derivative of the potential in terms of the fast

roll parameter and its derivatives with respect to the e-folding number

Vξ = − H2

√
4π

√
ε1

(
3− ε1 +

1

2

d ln ε1
dN

)
, (4.163)

and thus for the second derivative we have

Vξξ

H2
= −2ε21 + 6ε1 +

5

2

dε1
dN

− 3

2

d ln ε1
dN

− 1

4

(
d ln ε1
dN

)2

− 1

2

d2 ln ε1
dN2

. (4.164)

As done in [105], equation (4.160) is rewritten in terms of the dimensionless time variable x

x ≡ 1

ε1 − 1

m

aH
, (4.165)

as well as rescaling the entropy perturbation variable as δS ≡ aδs to obtain

(
1− 1

ε1 − 1

d ln (ε1 − 1)

dN

)2

x2d
2δS

dx2
+

1

(ε1 − 1)2

[(
d ln (ε1 − 1)

dN

)2

− d2 ln (ε1 − 1)

dN2

]
x
δS

dx

+x2δS+
1

(ε1 − 1)2

[
−2− 2ε21 + 7ε1 +

5

2

dε1
dN

− 3

2

d ln ε1
dN

− 1

4

(
d ln ε1
dN

)2

− 1

2

d2 ln ε1
dN2

]
δS = 0.

(4.166)

This differential equation in the original work is not solved exactly, however a series of

approximations are made in order to express it in the form of a Bessel equation: firstly for

ω � 1 during the phase of ekpyrosis we have ε1 � 1, in addition to this it is assumed that
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the fast roll parameter ε1 is a slowly varying function of the e-folding number N for the

observable range of perturbation modes. Via equations (4.161) and (4.163), one may show

that to leading order

ε1 ≈
1

2ε3
, (4.167)

while equations (4.67), (4.161), (4.163) and (4.164) provide the approximate equivalence

d ln ε1
dN

≈ 4ε1η3. (4.168)

The above simplifying assumptions allows one to approximate the differential equation gov-

erning entropy perturbations equation (4.166) as

x2d
2δS

dx2
+

x2

1− 8η3
δS − 2(1− 3(ε3 − η3))δS ≈ 0. (4.169)

Imposing Bunch-Davies initial conditions and using the asymptotic form of Hankel functions

as done in previous sections, we may obtain the constant coefficients of the general solution,

and in turn obtain up to an irrelevant phase an approximate analytic solution for δS (see

9.1.49 of [99])

δS =
1

2

√
πλx

m
H(1)

α4
(λx). (4.170)

The order of the Hankel function is given as α4

α4 =

√
2− 6(ε3 − η3) +

1

4
≈ 3

2
− 2(ε3 − η3) +O((ε3 − η3)

2), (4.171)

and the coefficient λ in the argument is

λ =

√
1

1− 8η3
. (4.172)

We once again use the asymptotic form of Hankel functions (at late times x → 0) to calculate

the dimensionless power spectrum of entropy perturbations

Pδs ≡
m3

2π2
|δs|2 ≈

m3

2π2

∣∣∣∣δSa
∣∣∣∣2 ∝ m3(λx)−2α4 , (4.173)
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and thus the spectral index

nδs − 1 ≈ 3− 2α4 (4.174)

= 4(ε3 − η3) −−−−→
ε3,η3→0

0. (4.175)

As a consistency check, we may confirm that since for pure exponential potentials as provided

in equation (3.9) that η3 = 0, the above result is in agreement with equation (4.154).

Since the sign preceding η3 in equation (4.175) is negative, we may say that the tilt in the

entropy perturbation spectrum may be either slightly blue or slightly red and is dependent

entirely on the sign of η3 and its relative magnitude with respect to ε3 (note that ε3 is

positive definite for real potentials). That being said, we may say that a class of potentials

that satisfy the conditions (4.155) and (4.156), in addition to η3 being positive and dominant

over ε3 leads to a entropy perturbation spectrum with a small red tilt (nδs < 1). These two

new conditions that ensure a small red tilt may be recast in terms of the potential and its

derivatives with respect to the adiabatic field

Vξξ < −M−2
P V +

3

4

V 2
ξ

V
(dominance), (4.176)

Vξξ <
V 2
ξ

V
(positivity). (4.177)

The authors of [12] briefly state that a potential of the form V (φ) ∼ exp (−φn) for n > 2

fulfills the conditions above, providing an example of a potential which produces a red tilt

for large values of the field φ.

4.2.4 Two matter fields: converting entropy to curvature

In two field models, the comoving curvature perturbation ζ may be written as (in the absence

of anisotropic stresses Ψ = Ψ) [80, 106,107]

ζ = Φ+H

(
φ̇1
0δφ

1 + φ̇2
0δφ

2

(φ̇1
0)

2 + (φ̇2
0)

2

)
, (4.178)
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thus the change in curvature perturbation may be expressed in Fourier space as [80,106,108,

109]

ζ̇ =
H

Ḣ

m2

a2
Φ +

1

2
H

(
δφ1

φ̇1
0

− δφ2

φ̇2
0

)
d

dt

(
(φ̇1

0)
2 − (φ̇2

0)
2

(φ̇1
0)

2 + (φ̇2
0)

2

)
. (4.179)

In terms of the adiabatic and entropy fields introduced in section 4.1.2, the change in the

comoving curvature perturbation with respect to time may be expressed succinctly as

ζ̇ =
H

Ḣ

m2

a2
Φ +

2H

ξ̇
ϑ̇δs, (4.180)

with

ϑ̇ = −Vs

ξ̇
. (4.181)

An immediate difference is manifest compared to the single field case, evident by the addi-

tional source term to the change in curvature perturbation [80]

ζ̇(single field) =
H

Ḣ

m2

a2
Φ. (4.182)

Thus in contrast to the single field case, non-negligible changes in the comoving curvature

perturbation may be sourced by entropy perturbations on large scales (m → 0), if the

homogeneous trajectory etched in scalar field space is non-linear (ϑ̇ �= 0) [110]. Thus the

approximately scale invariant spectrum of entropy perturbations that may be generated by

a class of potentials in a two field canonical kinetic model may transfer its spectrum to the

comoving curvature perturbation under appropriate conditions.

In this section, we review a specific mechanism [12] on how such a transfer may have

occurred, accompanied by a few justifiable assumptions. The mechanism is preceded by a

phase of ekpyrosis that generates a nearly scale invariant spectrum of entropy perturbations,

such as that governed by a two field potential obeying the conditions provided in the analysis

of section 4.2.3. Note that for an exactly exponential phase of ekpyrosis we have ϑ̇ = 0,

and thus necessarily on large scales entropy perturbations may not source the curvature

perturbation and thus may not inherit a scale invariant spectrum during this phase. The

conversion of entropy perturbations to curvature perturbations may then follow due to an
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additional feature in the potential.

0102
V

Figure 8: The blue curve traces an example trajectory in scalar field space of a two field
ekpyrotic period. The green trajectory indicates the ghost condensate transition phase in
which scale invariant entropy perturbations are transferred to the comoving curvature per-
turbations. During this transition phase, one field (φ2

0) rapidly loses kinetic energy, while
the other field (φ1

0) approximately maintains its kinetic energy. The red trajectory is the
beginning of a phase in which the potential traces positive values in order to satisfy a phase
of de Sitter cosmology.

This mechanism allows the potential energy in one of the original field directions, say φ2
0 ,

to reach a minimum and to then rise rapidly with respect to the ekpyrotic phase, to positive

values. During this rapid increase in potential energy in the φ2
0 direction, the kinetic energy

of this field subsequently decreases. An assumption is now made concerning the kinetic

energy of the second field φ1
0 , ensuring it remain approximately constant with respect to

the large and rapid change in the kinetic energy of φ2
0 . This may be achieved either by φ1

0

remaining in its ekpyrotic phase, or entering some new phase where the potential energy

curve along φ1
0 is less steep than the aforementioned. The above assumption allows for the

geometrical angle ϑ in scalar field space as depicted in figure 7, to rapidly shift from a finite

value (for the case of an exact exponential ekpyrotic phase ϑ = arctan
√
q2/q1 or for the
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case described in section 4.2.3, ϑ = π/4) to

ϑ = arctan

(
φ̇2
0

φ̇1
0

)
≈ 0, (4.183)

as the rapid increase in potential energy phase of φ2
0 approaches its end. The accuracy of the

approximation made in equation (4.183) is then entirely modulated by the amount of kinetic

energy is lost by the field φ2
0 during the rapid transition phase if the assumed staticity of the

kinetic energy of φ1
0 remains justifiable. This enables a phase in which ϑ̇ �= 0 allowing the

comoving curvature perturbation to inherit, on large scales, a scale invariant spectrum from

the previously generated entropy perturbations via equation (4.180).

The change in ϑ is argued to occur approximately instantaneously relative to the Hubble

time (1/H), qualified by a sufficient steepness of the potential in the φ2
0 direction during the

transition phase. To justify this statement, let us indicate variables describing the evolution

during the ekpyrotic phase with a subscript ekp. We first note the following relationship

given by equations (3.13) to (3.15) for the ekpyrotic phase as

1

Hekp

� 1

(φ̇2
0)ekp

. (4.184)

Via equations (4.64) and (4.181), we approximate the rate of change of ϑ with respect to

the cosmological time under the aforementioned assumption that during the rapid transition

phase φ̇1
0 ≈ const., equivalently the potential in this field direction does not change appre-

ciably. We denote the variables describing the evolution during the rapid transition phase

with the subscript tra

ϑ̇ ≈ (φ̇1
0)tra(V,φ2)tra

(φ̇1
0)

2
tra + (φ̇2

0)
2
tra

. (4.185)

In order to determine the approximate amount of time elapsed during the rapid transition

phase, we approximate (φ̇1
0)tra by (φ̇2

0)ekp since the time evolution of the two fields were

approximately the same during the ekpyrotic phase, and φ1
0 has approximately maintained its

kinetic energy through the rapid transition phase by assumption. Additionally since (φ̇2
0)

2
tra ≤

(φ̇2
0)

2
ekp, we saturate this bound and replace (φ̇2

0)
2
tra with (φ̇2

0)
2
ekp ensuring a conservative
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estimate of the elapsed transition time Δttra, thus we have

Δttra ≈
Δϑtra

ϑ̇tra

∼ O(1)

[
(φ̇2

0)ekp
(V,φ2)tra

]
. (4.186)

The deduction of equation (4.184) allows us to derive an approximate condition on the

steepness of the potential during the rapid transition phase

(V,φ2)tra
>∼ (φ̇2

0)
2
ekp =⇒ Δttra

<∼
1

(φ̇2
0)ekp

	 1

Hekp

. (4.187)

Equation (4.187) allows us to approximate ϑ̇ as a delta function to be integrated and inter-

preted as a distribution, we may thus rewrite equation (4.180) to approximate cosmological

perturbations on large scales, with ti denoting the time in which the rapid transition phase

begins

ζ ≈
∫ ti−Δttra

ti

−2H

ξ̇
arctan

⎛⎝√q2

q1

⎞⎠δ(t− ti −
Δttra
2

)δs dt. (4.188)

In order to integrate equation (4.188) explicitly we must know the behaviours of each factor

of the integrand for t ∈ [ti, ti + Δttra]. One may argue that the Hubble parameter is ap-

proximately constant during the rapid transition phase, a statement increasing in accuracy

by increasing the steepness of the potential during the transition phase in the φ2
0 direction.

The authors of [12] also argue that each of the remaining factors under the integral remain

approximately constant (with δs changing by at most a factor of O(1)) during the rapid

transition phase with the exception of the delta function, and thus each of their forms are

well known: they acquire approximately their ekpyrotic solutions evaluated at t = ti. There-

fore, the curvature perturbation inherits the spectrum of entropy perturbations generated

throughout the ekpyrotic phase

|ζ| ≈ 2H

ξ̇
arctan

⎛⎝√q2

q1

⎞⎠δs. (4.189)

For the specific case of entropy perturbations generated from exact exponential potentials

as done in section 4.2.2, we determine the large scale behaviour of entropy perturbations via
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equations (4.135) and (4.150)

|δs| =
∣∣∣∣δSa
∣∣∣∣ = 1

2a

√
πx

m
H(1)

α3
(x) −−→

x→0

1

2a

√
πx

m

(
1

π
Γ(α3)

(x
2

)−α3
)
. (4.190)

With the order of the Hankel function α3 given in equation (4.151) we may Taylor expand

the two factors depending on α3 about (q1 + q2) = 0 to obtain to first order in (q1 + q2)

|δs| ≈ 1

a
√
2m3/2|η|

. (4.191)

Using the same approximation as in equation (4.148), the assumption that q1, q2 	 1,

and the form of the Hubble parameter (3.13) during an exponential ekpyrotic phase we

approximate

|δs|m3/2 ≈ |H|√
2(q1 + q2)

. (4.192)

Finally via equation (4.61), we may include ξ̇ for the pure exponential ekpyrotic case

ξ̇ =

√
2MP

t

√
q1 + q2, (4.193)

and we may estimate the inherited comoving curvature perturbation spectrum via equa-

tion (4.189)

|ζ| ≈ H

MP

√
2ε3m3/2

arctan

(
q2

q1

)
, (4.194)

with ε3 the fast roll parameter defined in terms of the adiabatic field given in equation (4.67).

4.3 Tensor metric perturbations in ekpyrosis

We must first choose a suitable initial condition for the tensor perturbation modes at early

times in an ekpyrotic contracting phase. Once again since modes are far inside the curvature

scale, it is reasonable to choose the Minkowski vacuum as done for scalar metric perturbation

modes in section 4.2.1

f −−−−→
η→−∞

(2m)−1/2 exp (−imη). (4.195)
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The differential equation in Fourier space describing tensor perturbations for both polariza-

tions of the metric is given in equation (4.75), and is of the same form as the v equation

with the same Minkowski vacuum initial condition as in section 4.2.1; thus equation (4.75)

is solved exactly by

f = a(η)h =

√
πx

2m1/2
H(1)

α2
(x). (4.196)

Thus the dimensionless power spectrum and tensor spectral index at late times (x → 0) may

be solved for directly using the asymptotic form of the Hankel function equation (4.135)

[44,48,79]

Ph(m) =
m3

2π2

∑
λ=(+,×)

∣∣hλ
m

∣∣2 ∝ m3x−2α2 , (4.197)

implying the spectral index for h, nh (or conventional tensor spectral index nT )

nT ≡ nh − 1 = 3− 2α2 = 3−
∣∣∣∣ε1 − 3

ε1 − 1

∣∣∣∣ −−−→ε1→∞
2+. (4.198)

Therefore, ekpyrotic models generically predict a tensor spectrum with a strongly blue tilt

nh ≈ 3 (nT ≈ 2). Contrary to the scalar metric perturbations, the tensor spectral index is not

invariant under the transformation ε1 → 1/ε1. In particular, standard slow-roll inflationary

models with ε1 ≈ 0 predict a tensor spectrum with a red tilt [79,87].
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5 Non-Gaussianities

Local form non-Gaussianities of the curvature perturbation ζ in ekpyrotic models have been

studied in a variety of methods [44, 88, 111–114]. Generally speaking, to explore local form

non-Gaussianities one first expands the curvature perturbation variable ζ into increasing

powers of its Gaussian component ζg (powers of a Gaussian random field is not necessarily

Gaussian)

ζ = ζg +
3

5
fNLζ

2
g +

9

25
gNLζ

3
g + · · · . (5.1)

These new parameters fNL and gNL now define the reduced bispectrum/trispectra introduced

in section 4.1.4. As it turns out for ekpyrotic cosmology, non-Gaussianities are generated not

only throughout the phase of ekpyrotic contraction but also through the conversion phase (an

example mechanism was presented in section 4.2.4): the phase in which entropy perturbations

are converted to curvature perturbations. In [111], the authors derive the equations of motion

for entropy and curvature perturbations to third order in perturbation theory using a fully

covariant approach, then determine the bispectrum/trispectra by integrating their expression

for ζ̇ numerically throughout the ekpyrotic phase of contraction and two distinct types of

conversion phases.

In this section, we lay the theoretical groundwork of an entirely covariant approach to

cosmological perturbations so that we may pursue the non-Gaussianities of ekpyrotic models

in future work. This methodology should be compared with other approaches such as that of

Maldacena [115] applied to ekpyrotic models in [113], or that of the δN formalism [116,117]

applied to ekpyrotic models in [112] (and closely related work in [114]) as well as to inflation

in [91], and ensure that all methods provide consistent results. The covariant formalism

applied to ekpyrotic cosmology has been previously studied in [88, 111, 118], as well as in a

non-minimal model [119].

5.1 Covariant formalism of cosmological perturbations

The covariant approach introduced by Ellis and Bruni [120] (with pioneering work done by

Hawking [121]) aimed to absolve the gauge dependence of cosmological perturbations anal-
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ysed in previous works without the need for assuming perturbations to be small as done by

Bardeen’s coordiante based approach [76]. The gauge dependency makes the perturbations

difficult or even impossible to interpret physically particularly at non linear order, and thus

defining perturbations in an entirely covariant approach is certainly advantageous. Addition-

ally, the covariant approach proves much more powerful than the coordinate based approach:

when working beyond linear order the evolution equations of perturbations may be derived

(relatively) succinctly and the covariant formalism is also able to characterize the evolution

of perturbations on all scales non-perturbatively. Work by Langlois and Vernizzi [122–125]

expanded on the original covariant formalism defining the generalized curvature perturbation

on uniform density hypersurfaces and generalized comoving curvature perturbation (whose

interpretation is valid on scales large and small). They also determined the evolution equa-

tions of the curvature perturbation to second order, and determined the evolution equations

for generalized versions of entropy and adiabatic perturbations with respect to those intro-

duced in section 4.1.2 to second order on large scales.

Here we review the covariant approach to cosmological perturbations [120,125]. We begin

by introducing a preferred family of world lines known as fundamental world lines or fluid

flow lines, representing the motion of typical observers in the universe. Let the four-velocity

vector tangent to said world lines be defined

uμ =
dxμ

dτ
, (5.2)

with τ the proper time defined along the fundamental world lines. We also define the spatial

projection tensor orthogonal to uμ

hμν ≡ gμν + uμuν =⇒ hμ
νh

ν
σ = hμ

σ, h ν
μ uν = 0. (5.3)

Now introduce the covariant definition of the time derivative as the Lie derivative (See

Appendix C.2 of Wald [126]) with respect to uμ for any generic covector Xμ indicated by a

hollow dot

X̊μ ≡ LuXμ ≡ uν∇νXμ +Xν∇μu
ν . (5.4)
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For scalar quantities, the covariant derivative along uμ is equivalent to the Lie derivative

f̊ = uν∇νf. (5.5)

In the covariant formalism, it is useful to introduce the covariant derivative projected or-

thogonally to the four-velocity uμ denoted as Dμ, using our definition for hμν . For a tensor

T of arbitrary rank we have

DμT
ν···

σ··· ≡ h γ
μ hω

σ · · ·h ν
δ · · · ∇γT

δ
ω . (5.6)

Once again for a scalar quantity, the result reduced significantly

Dμf = h ν
μ ∇νf = ∂μf + uμf̊ . (5.7)

The first covariant derivative of the four-velocity vector is

∇νuμ = σμν + ωμν +
1

3
Θhμν − aμuν , (5.8)

where Θ is the volume expansion (in the case of fluids: fluid expansion), σμν the symmetric

shear tensor (σμνu
ν = 0, σμ

ν = 0), ωμν the antisymmetric vorticity tensor (ωμνu
ν = 0) and

aμ ≡ uν∇νu
μ the acceleration vector. The volume expansion Θ is defined as

Θ ≡ ∇μu
μ. (5.9)

Another useful quantity that may be defined is the integrated expansion along uμ denoted

as α

α ≡ 1

3

∫
dτ Θ, Θ = 3α̊. (5.10)

As explained in [125], one may identify Θ/3 as the local Hubble parameter when one com-

pares the generalized Klein-Gordon equation derived in the covariant formalism to the usual

homogeneous Klein-Gordon equation in FLRW spacetime. Thus the integrated expansion

may be interpreted as the number of e-folds measured along the world line of an observer
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with four-velocity uμ.

Introducing matter described by N scalar fields minimally coupled to gravity whose

matter Lagrangian density is given in equation (4.43), and whose stress-energy tensor is

given in equation (4.45), given an arbitrary unit timelike vector field uμ we may decompose

the the stress-energy tensor into components

Tμν = (ρ+ p)uμuν + qμuν + uμqν + gμνp+ πμν , (5.11)

with ρ and p the energy density and pressure respectively, qμ is the momentum and πμν is

the anisotropic stress tensor; all are measured in the frame defined by the four-velocity uμ.

As provided in [125], in the covariant formalism we may define each of the aforementioned

quantities in terms of the fields via equation (4.45)

ρ ≡ Tμνu
μuν =

1

2

(
φ̊iφ̊

i +Dμφ
iDμφi

)
+ V, (5.12)

p ≡ 1

3
hμσTμνh

ν
σ =

1

2

(
φ̊iφ̊

i − 1

3
DμφiD

μφi

)
− V, (5.13)

qμ ≡ −uνTνσh
σ
μ = −φ̊iDμφ

i, (5.14)

πμν ≡ h σ
μ Tσγh

γ
ν − phμν = DμφiDνφ

i − 1

3
hμνDσφiD

σφi. (5.15)

Varying the action with respect to the fields we once again obtain N Klein-Gordon equations

as in equation (4.44), provided by

∇μ∇μφi =
∂V

∂φi
. (5.16)

However now we consider a decomposition into covariant time-like and space-like gradients

defined with respect to the four-velocity of the fluid flow uμ, one finds that we then obtain

˚̊φi +Θφ̊i + V,φi −DμD
μφi − aμDμφ

i = 0. (5.17)

Restricting the analysis now to two canonically normalized scalar fields, it is once again

useful to introduce the adiabatic and entropy covectors establishing a basis in the space of
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scalar fields. We define a unit vector ei
ξ in the direction of the velocity of the two scalar

matter fields φ1, φ2 thereby tangent to the background trajectory in field space, and similarly

a unit vector ei
s orthogonal to the background trajectory. Thus very similarly to the fields

introduced in section 4.1.2, we have the following relations where we once again introduce a

variable ϑ

ei
ξ ≡

1√
(φ̊1)2 + (φ̊2)2

(φ̊1, φ̊2), ei
s ≡

1√
(φ̊1)2 + (φ̊2)2

(−φ̊2, φ̊1), (5.18)

cos ϑ ≡ φ̊1√
(φ̊1)2 + (φ̊2)2

, sin ϑ ≡ φ̊2√
(φ̊1)2 + (φ̊2)2

, (5.19)

such that

δji = ei
ξeξj + ei

sesi, (5.20)

ei
ξ = (cos ϑ, sin ϑ), ei

s = (− sin ϑ, cos ϑ). (5.21)

An important variation between the angle ϑ introduced above and that introduced in the

coordinate based linear theory (section 4.1.2) ϑ, is that this ϑ is an inhomogeneous quantity

which depends on both space and time, as opposed to just time. It will turn out to be

the case that once we perturbatively expand fields (with an overbar denoting background

quantities) and derive the equations of motion from our covariant approach ϑ̄ = ϑ. The lie

derivative of the basis vectors along uμ then provide

e̊i
ξ = ϑ̊ei

s, e̊i
s = −ϑ̊ei

ξ. (5.22)

We also abuse notation and define the following ‘derivative’, although we must recognize

that this is not the lie derivative of a scalar field along uμ

ξ̊ ≡
√

(φ̊1)2 + (φ̊2)2. (5.23)

This definition is a matter of convenience as it allows one to rewrite certain terms or factors
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succinctly such as

ei
ξ =

φ̊i

ξ̊
. (5.24)

It is at this point we may define the two covectors ξμ and sμ as linear combinations of

covariant derivatives of the two scalar matter fields φ1, φ2 along uμ

ξμ ≡ ei
ξ∇μφi = cos ϑ∇μφ

1 + sin ϑ∇μφ
2, (5.25)

sμ ≡ ei
s∇μφi = − sin ϑ∇μφ

1 + cos ϑ∇μφ
2, (5.26)

the inquisitive reader may wish to note the generalization between the above equations and

equations (4.55) and (4.56). These are the generalisations of the adiabatic and entropy fields

respectively, introduced in the context of linear perturbations in section 4.1.2. The entropy

covector sμ is orthogonal to the four-velocity uμsμ = 0, whereas the adiabatic covector ξμ

possesses a component in the direction of the four-velocity uμξμ = ξ̊.

5.1.1 Generalized background adiabatic and entropic equations of motion

It is instructive to derive the Klein-Gordon equation of motions of the scalar matter fields

projected in the adiabatic and entropic directions. We begin with the adiabatic direction,

by defining and noting the following quantities

ξ⊥μ ≡ ei
ξDμφ

i = ξμ + ξ̊uμ, s⊥μ ≡ ei
sDμφi = sμ, (5.27)

ei
ξφ̊i = ξ̊, ei

ξ̊φ̊i =
˚̊ξ, (5.28)

Vξ ≡ ei
ξV,φi . (5.29)

Equation (5.27) are the adiabatic and entropic covectors projected onto space, orthogonal

to the four-velocity uμ (we have instead acted on the fields φi with Dμ as opposed to ∇μ).

By now contracting ei
ξ with equation (5.17) we obtain

˚̊ξ +Θξ̊ + Vξ − ei
ξDμD

μφi − aμξ⊥μ = 0. (5.30)
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Rewriting the fourth term via the generalized Leibniz rule, equation (5.27) and the identity

equation (5.20) applied to the entropic portion equation (5.27) to obtain the final term on

the right hand side

ei
ξDμD

μφi = Dμ

(
ei
ξD

μφi

)
−
(
Dμe

i
ξ

)
Dμφi = Dμξ⊥μ −

(
esiDμe

i
ξ

)
sμ. (5.31)

It may also be found that

esi∇μe
i
ξ = −eξi∇μe

i
s =

1

ξ̊

(
s̊μ + ϑ̊ξμ

)
, (5.32)

which allows one to find

ei
ξDμD

μφi = Dμξ⊥μ − 1

ξ̊

(
s̊μ + ϑ̊ξ⊥μ

)
sμ. (5.33)

Using the equivalence between equations (5.31) and (5.33), substituting them into equa-

tion (5.30), defining the quantity Y(s)

Y(s) ≡
1

ξ̊

(
s̊μ + ϑ̊ξ⊥μ

)
, (5.34)

and using the following property suitable for covectors orthogonal to the four-velocity uμ

Dμξ⊥μ + aμξ⊥μ = ∇μξ⊥μ , (5.35)

we arrive at the Klein-Gordon equation describing the field evolution in the adiabatic (lon-

gitudinal) direction of N canonically normalized scalar fields minimally coupled to gravity

˚̊ξ +Θξ̊ + Vξ = ∇μξ⊥μ − Y(s). (5.36)

One may carry out a similar procedure for the entropic direction by instead contracting

ei
s with equation (5.17), we use and define

ei
s̊φ̊i = θ̊ξ̊ (5.37)
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Vs ≡ ei
sV,φi , (5.38)

to find the similar result of equation (5.30)

ξ̊ϑ̊+ Vs − ei
sDμD

μφi − aμsμ = 0. (5.39)

Rewriting the last two terms using the identity

ei
sDμD

μφi = Dμsμ + Y(ξ), (5.40)

Y(ξ) ≡
1

ξ̊

(
s̊μ + ϑ̊ξ⊥μ

)
ξ⊥μ, (5.41)

and applying the property to the entropic covector sμ for orthogonal covectors with respect

to the four-velocity equation (5.35), one arrives at the following Klein-Gordon equation in

the entropic direction

ξ̊ϑ̊+ Vs = ∇μs
μ + Y(ξ). (5.42)

It is illuminating to notice that the left hand sides of these two equations of motion for

the entropic and adiabatic directions of the matter fields equations (5.36) and (5.42) are

equivalent to the homogeneous background adiabatic and entropy equations in FLRW, as

presented in equations (33) (or equation (4.62) of section 4.1.2) and (46) of the coordiante

based approach of [80]. The difference in this case is that the covariantly derived equations

mentioned above are exact: they encapsulate the non-linear dynamics of the scalar fields

through the source terms on the right hand side.

5.1.2 Evolution equations of the adiabatic and entropy covectors

We now wish to derive the fully non-linear equations governing the evolution of the adiabatic

and entropy covectors to second order in the Lie derivative with respect to the four-velocity

uμ. We will find that these equations are very similar (but more general) to those derived

in the coordinate approach to liner order in perturbations.

We begin with the evolution equation of ξμ, from its definition equation (5.25) we take

the Lie derivative with respect to uμ and utilize the substitution φ̊i = ξ̊eξi in the second
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equality to obtain

ξ̊μ = ei
ξ∇μφ̊i + ϑ̊sμ = ∇μξ̊ + ϑ̊sμ, (5.43)

whereby one applies an additional Lie operator to obtain the second order (in time) equation

˚̊ξμ = ∇μ̊ ξ̊ +˚̊ϑsμ + ϑ̊s̊μ. (5.44)

Calling upon the generalized “background" equation for the adiabatic field equation (5.36)

derived in section 5.1.1, we eliminate ˚̊ξ from equation (5.44). However in order to do so

entirely, one must first carry out the covariant derivative on Vξ providing

∇μVξ = Vξξξμ + Vξssμ +
Vs

ξ̊
(̊sμ + ϑ̊ξμ). (5.45)

We may then obtain via direct substitution,

˚̊ξμ +Θξ̊μ + ξ̊∇μΘ+

(
Vξξ + ϑ̊

Vs

ξ̊

)
ξμ −∇μ(∇σξ⊥σ )

=

(
ϑ̊− Vs

ξ̊

)
s̊μ + (̊ϑ̊ − Vξs +Θϑ̊)sμ −∇μY(s), (5.46)

with some simplifying notation defined for the second derivatives of the multi-field potential

Vξξ ≡ ei
ξe

j
ξV,φiφj , Vss ≡ ei

se
j
sV,φiφj , Vsξ ≡ ei

se
j
ξV,φiφj . (5.47)

If we then decompose the above equation (5.46) into longitudinal and orthogonal com-

ponents by contracting it with uμ or hμν respectively, one may perform a consistency check

and observe that after utilizing

V̊ξ = Vξξ ξ̊ + ϑ̊Vs, (5.48)

one obtains the Lie derivative of equation (5.36). On the other hand, the orthogonal com-

ponent may be expressed as

(̊ξ̊μ)
⊥ +Θ(ξ̊μ)

⊥ + ξ̊DμΘ+

(
Vξξ + ϑ̊

Vs

ξ̊

)
ξ⊥μ −Dμ(∇σξ⊥σ )
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=

(
ϑ̊− Vs

ξ̊

)
s̊μ + (̊ϑ̊ − Vξs +Θϑ̊)sμ −DμY(s). (5.49)

To determine the evolution equation of the entropic covector sμ, we begin with equa-

tion (5.32), take two Lie derivatives with respect to the four-velocity and use equations (5.22)

and (5.32) to obtain

˚̊sμ = −̊ϑ̊ξμ − ϑ̊ξ̊μ +
˚̊ξ
ξ̊
(̊sμ + ϑ̊ξμ) + ξ̊∇μϑ̊. (5.50)

Using the Klein-Gordon equation in the entropic direction equation (5.42) to remove the

term proportional to ∇μϑ̊ and using the following relation

∇μVs = Vsξξμ + Vsssμ −
Vξ

ξ̊
(̊sμ + ϑ̊ξμ), (5.51)

one obtains the evolution equation for the entropic covector to second order in the Lie

derivative with respect to uμ

˚̊sμ −
1

ξ̊
(̊ξ̊ + Vξ )̊sμ + (Vss − ϑ̊2)sμ −∇μ(∇σs

σ)

= −2̊ϑξ̊μ +

[
ϑ̊

ξ̊
(̊ξ̊ + Vξ)−˚̊ϑ − Vξs

]
ξμ +∇μY(ξ). (5.52)

Once again we may divide this equation into longitudinal and orthogonal components (with

respect to uμ). As a consistency check, after utilization of

V̊s = Vξsξ̊ − ϑ̊Vξ, (5.53)

the contraction of equation (5.52) with uμ (longitudinal component) one may confirm the

result is the Lie derivative of equation (5.42)

ϑ̊

ξ̊
Vξ −˚̊ϑ − Vξs =

ϑ̊

ξ̊
˚̊ξ − 1

ξ̊
(Dσs

σ + Y(ξ))
˚. (5.54)

The orthogonal component, after using equation (5.27) to simplify the notation since the
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entropic covectors are entirely spatial: (̊sμ)
⊥ = s̊μ, (̊s̊μ)

⊥ =˚̊sμ we obtain

˚̊sμ −
1

ξ̊
(̊ξ̊ + Vξ )̊sμ + (Vss − ϑ̊2)sμ −Dμ(∇σs

σ)

= −2̊ϑ(ξ̊μ)
⊥ +

[
ϑ̊

ξ̊
(̊ξ̊ + Vξ)−˚̊ϑ − Vξs

]
ξ⊥μ +DμY(ξ). (5.55)

Equations (5.49) and (5.55) are among the main results of [125]. Although relatively

simple in appearance, they are nevertheless exact as they encapsulate all nonlinearities of

the Klein-Gordon equations of multifield models minimally coupled to gravity and should

therefore be used as the starting point for deriving perturbed equations to arbitrary order.

5.1.3 Covariant perturbation variables

In this subsection we define the covariant versions of: the comoving energy density pertur-

bation variable, comoving curvature perturbation variable and the curvature perturbation

variable on uniform energy density hypersurfaces in the context of double scalar field matter

models. Firstly we introduce the covariant comoving energy density perturbation εμ

εμ ≡ Dμρ−
ρ̊

ξ̊
ξ⊥μ . (5.56)

The goal is to obtain an expression for ξμ and sμ with explicit dependence on the covariant

comoving energy density perturbation, to do so we rewrite the components of the stress-

energy tensor Tμν in equations (5.12) to (5.15)

ρ ≡ 1

2

(
ξ̊2 +Π

)
+ V, (5.57)

p =
1

2

(
ξ̊2 − 1

3
Π

)
− V, (5.58)

qμ = −ξ̊ξ⊥μ , (5.59)

πμν = Πμν −
1

3
hμνΠ, (5.60)

Πμν ≡ ξ⊥μ ξ
⊥
ν + sμsν , Π ≡ ξ⊥μ ξ

⊥μ + sμs
μ. (5.61)
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By directly substituting ρ described by equation (5.57) into the definition of εμ described by

equation (5.56) and utilization of the following relation (obtained by taking the Lie derivative

of equation (5.43))

Dμξ̊ = ξ̊μ +˚̊ξuμ − ϑ̊sμ, (5.62)

we obtain

εμ = ξ̊(ξ̊μ)
⊥ −˚̊ξξ⊥μ +

(
Vs − ϑ̊ξ̊

)
sμ +

1

2

(
DμΠ− Π̊

ξ̊
ξ⊥μ

)
. (5.63)

We are now in a position to rewrite equation (5.55) and obtain explicit dependence of the

adiabatic and entropic covectors on εμ. With equations (5.36), (5.54) and (5.63) we rewrite

equation (5.55) and obtain

˚̊sμ +
[
Θ− 1

ξ̊

(
∇σξ⊥σ − Y(s)

)]
s̊μ +

(
Vss + ϑ̊2 − 2̊ϑ

Vs

ξ̊

)
sμ −Dμ(∇σs

σ)

= −2
ϑ̊

ξ̊
εμ +

ϑ̊

ξ̊

(
DμΠ− Π̊

ξ̊
ξ⊥μ

)
− 1

ξ̊

(
Dσs

σ + Y(ξ)

)̊
ξ⊥μ +DμY(ξ). (5.64)

One may now note the resemblance the above equation has to the entropy perturbation

equation to linear order as seen in equation (48) of [80] when one defines the comoving

energy density perturbation variable as in equation (10) of the same paper. This equation

will be useful when deriving an approximate form for covariant entropy perturbations in the

large scale limit.

We continue to define covariant versions of the perturbation variables commonly used

in the coordinate based linearized theory. We define the comoving integrated expansion

perturbation variable for the case of N scalar fields

Rμ ≡ −Dμα− α̊

(φ̊iφ̊i)
qμ. (5.65)

The Mukhanov-Sasaki variable may also be extended to a covector for each field

Qi
μ ≡ Dμφ

i − φ̊i

α̊
Dμα, (5.66)
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allowing one to express Rμ in terms of the Mukhanov-Sasaki variable

Rμ =
α̊

(φ̊iφ̊i)
φ̊jQ

j
μ. (5.67)

For the case of two scalar matter fields, equation (5.65) reduces using equation (5.59)

Rμ ≡ −Dμα +
α̊

ξ̊
ξ⊥μ , (5.68)

and the Mukhanov-Sasaki variable in the adiabatic direction may be defined

Qμ ≡ eξiQ
i
μ = ξ⊥μ − ξ̊

α̊
Dμα. (5.69)

Most relevant for this work, we define the generalized curvature perturbation on uniform

energy density hypersurfaces valid for any number of scalar fields [122,123]

ζμ ≡ Dμα− α̊

ρ̊
Dμρ, (5.70)

as well as the nonlinear nonadiabatic pressure perturbation also valid for any number of

scalar fields

Γμ ≡ Dμp−
p̊

ρ̊
Dμρ. (5.71)

However, there are differences between the single and multifield cases, in particular when

considering the first Lie derivative of ζμ and the relationship between ζμ and Rμ. For a single

matter field which may always be described as a perfect fluid by an appropriate choice of uμ

ensuring that qμ and πμν vanish (see [124] for its extension to a non perfect fluid), ζμ satisfies

the following exact evolution equation to first order in the Lie derivative [122,123]

ζ̊μ =
Θ2

3ρ̇
Γμ, (single field) (5.72)
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For a fluid whose equation of state may be expressed as p = p(ρ) (barotropic), Γμ = 0 thus

ζμ is conserved on all scales to all orders in perturbation theory. However it is important

to note that the traditional ζ introduced in the coordinate based approach to perturbation

theory at linear order only coincides with the covariant ζμ on large scales, where spatial

gradient terms may be approximately omitted; on small scales, the two quantities may differ

significantly [123]. For a single field, the comoving and uniform density perturbations are

related by

ζμ +Rμ = − α̊

ρ̊

(
Dμρ−

ρ̊

φ̊
Dμφ

)
. (single field) (5.73)

The right hand side of equation (5.73) may be interpreted as the result of shifting between

hypersurfaces of constant energy density to hypersurfaces of constant φ (comoving frame).

The term inside the parentheses represents the nonlinear generalization of the comoving

energy density for a single scalar field. For a scalar field in perfect fluid form, Γμ takes on

the reduced form (after making use of DμV = 0)

Γμ =

(
1− p̊

ρ̊

)
Dμρ = 2

φ̊

ρ̊
V,φDμρ, (single field) (5.74)

providing a simplified evolution equation for ζμ

ζ̊μ =
2

3

V,φ

φ̊3
Dμρ. (single field) (5.75)

In the large scale limit, the right hand side of equation (5.75) may be neglected enforcing

that ζμ be conserved.

For two scalar matter fields the story changes: we instead have the generalized relation-

ship between ζμ and Rμ

ζμ +Rμ = − α̊

ρ̊
εμ, (5.76)

and in contrast with the single field case, the stress-energy tensor for two or more fields may

in general be described by a dissipative fluid as described in [124]. The adiabatic Klein-

Gordon equation equation (5.36) may be rewritten as a continuity equation for the total
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energy density and pressure equations (5.57) and (5.58)

ρ̊+Θ(ρ+ p) = D, (5.77)

with the dissipative term defined as

D = ξ̊
(
∇μξ⊥μ − Y(s)

)
+

1

3
ΘΠ +

1

2
Π̊. (5.78)

It was shown in [124] that the evolution equation for ζμ with matter described by a dissipative

fluid is given now by

ζ̊μ =
Θ2

3ρ̊
(Γμ + Σμ), (5.79)

with the additional (relative to the single field case equation (5.75)) source term Σ known

as the dissipative nonadiabatic pressure perturbation is defined in terms of properties of the

dissipative fluid

Σμ ≡ − 1

Θ

(
DμD − D̊

ρ̊
Dμρ

)
+

D
Θ2

(
DμΘ− Θ̊

ρ̊
Dμρ

)
. (5.80)

From equations (5.57) and (5.58), we may express the pressure and energy density of the

two scalar fields in terms of one another

p = ρ− 2V − 2

3
Π, (5.81)

and substitute this into the definition of the nonadiabatic pressure perturbation equa-

tion (5.71) providing,

Γμ =

(
1− p̊

ρ̊

)
Dμρ− 2DμV − 2

3
DμΠ. (5.82)

The Lie derivative of equation (5.81) and

DμV = Vξξ
⊥
μ + Vssμ, (5.83)

92



Non-Gaussianities

into equation (5.82) finally provides

Γμ = 2
ξ̊

ρ̊
Vξεμ − 2Vssμ −

2

3

(
DμΠ− Π̊

ρ̊
Dμρ

)
. (5.84)

To recapitulate, we now have a complete description of the first order (in the Lie deriva-

tive) evolution of ζμ provided by equation (5.75) for the single field case and equation (5.79)

for the multifield case. For the two field case, the two source terms for the evolution of ζμ,

Γμ and Σμ are provided in equations (5.80) and (5.84) respectively. We also have expressions

relating ζμ and Rμ for the single field case (5.73) and multifield cases (5.76). In this paper,

we will be interested in tracking perturbations far beyond the Hubble radius and we will see

that in this large scale limit (and also the linear perturbation limit [125]) that the source

terms for the evolution of ζμ simplify significantly.

5.1.4 Large scale limit of covectors and linear perturbations

The primary aim of this subsection is to determine the first order (in the Lie derivative)

evolution equation of the covariant curvature perturbation variable on uniform density hy-

persurfaces ζμ, as well as the second order (in the Lie derivative) evolution equation for

the entropic covector sμ on scales much larger than the Hubble radius. In order to accu-

rately approximate the dynamical equations on large scales (colloquially known as the long

wavelength approximation), one should linearize the equations with respect to the spatial

gradient, as done in works such as [127–129] where they perform spatial gradient expansions

of Einstein’s equations. We represent equalities valid on large scales by∼= , unless otherwise

stated.

One may immediately determine from their definitions (5.27) that the spatially projected

adiabatic and entropic covectors ξ⊥μ and s⊥μ = sμ are first-order with respect to the spatial

gradient. Further the scalar quantities Y(s), Y(ξ) (5.34) and (5.41) are second order with

respect to spatial gradients as they are second order in ξ⊥μ and sμ. Thus, equations (5.36)

and (5.42) immediately simplify in the large scale limit

˚̊ξ +Θξ̊ + Vξ
∼
= 0, (5.85)
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ϑ̊
∼
= −Vs

ξ̊
. (5.86)

Once again, a reader familiar with the coordinate based linear theory of two-field pertur-

bation models may notice the seemingly equivalent forms of the above equations equa-

tions (5.85) and (5.86) with equations (4.62) and (4.181). However, these equations are

entirely inhomogeneous in the restricted sense that they capture all non-linearities of the

dynamics on large scales only 3.

However, the following term is second order in spatial gradients provided one assumes

that the four-velocity may be chosen such that aμ is at a minimum first order in spatial

gradients as is shown explicitly in [125]

∇μξ⊥μ = Dμξ⊥μ + aμξ⊥μ . (5.87)

Thus with the above realizations in mind in addition to the fact that the terms containing

Π are third order in spatial gradients, the evolution equations equations (5.49) and (5.64) of

the orthogonally projected covectors ξ⊥μ and s⊥μ = sμ to first order in spatial gradients are

(̊ξ̊μ)
⊥ +Θ(ξ̊μ)

⊥ + ξ̊DμΘ+
(
Vξξ − ϑ̊2

)
ξ⊥μ
∼
= 2

(̊
ϑsμ

)̊
− 2̊ϑ

Vξ

ξ̊
sμ, (5.88)

˚̊sμ +Θs̊μ +
(
Vss + 3̊ϑ2

)
sμ
∼
= −2

ϑ̊

ξ̊
εμ. (5.89)

Finally, we linearize in spatial gradients the evolution equation to first order in the Lie

derivative of ζμ provided in equation (5.79) by neglecting higher-order spatial gradients in

the two source terms Σμ and Γμ. The nonadiabatic pressure perturbation becomes

Γμ
∼
= 2

ξ̊

ρ̊
Vξεμ − 2Vssμ, (5.90)

and the dissipative nonadiabatic pressure perturbation Σμ may be entirely omitted since it

is at a minimum third order in spatial gradients. Equation (5.79) may then be approximated
3Evidence for the validity of the separate universe picture: this concept may be used to describe an

inhomogeneous universe on large scales as a collection of Friedmann homogeneous universes [116,117].

94



Non-Gaussianities

on large scales

ζ̊μ
∼
=

2

3ξ̊3
Vξεμ +

2Θ

3ξ̊2
Vssμ. (5.91)

Equations (5.79), (5.88) and (5.89) are two of the three main results of section 5.1.4,

and will be used when deriving the perturbative equations up to third order which in turn

will allow us to describe the generation of non-Gaussianities, with a focus on the ekpyrotic

scenario.

The third and final important result of section 5.1.4 is determining the behaviour of εμ on

large scales, and understanding the repercussions on the dynamical equations. We make use

of Einstein’s equations to derive constraints on the energy ρ and momentum qμ in order to

determine the non linear covariant version of a generalized Poisson equation, which in turn

will tell us how εμ behaves on larges scales based on its dependence on spatial gradients.

We begin by projecting Einstein’s equations in the direction of the four-velocity uμ to

acquire the covariant energy constraint

uμGμνu
ν = 8πρ. (5.92)

The authors of [125] claim that if one assumes uμ to be orthogonal to spacelike foliated

hypersurfaces one may use the Gauss-Codacci relations [126] in addition to the the spatially

projected decomposition of the covariant derivative of the four-velocity (see equation (5.8),

note that ωμν = 0 below since uμ is assumed to be hypersurface orthogonal)

Dνuμ = σμν +
1

3
Θhμν , (5.93)

in order to rewrite the energy constraint as

1

2

(
R(3) +

2

3
Θ2 − σμνσ

μν

)
= 8πρ. (5.94)

R(3) is the intrinsic Ricci scalar of the spacelike hypersurfaces orthogonal to uμ. For com-

pleteness, we mention the Gauss-Codacci relations

R(3) γ
μνσ = hμ

δhν
ωhσ

αhγ
βRδωα

β −KμσKν
γ +KνσKμ

γ, (5.95)
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DμK
μ
ν −DνK

μ
μ = Rσγn

γhσ
ν . (5.96)

These equations relate the three-curvature of spacelike hypersurfaces to the spacetime cur-

vature in which the hypersurfaces are embedded. The rank two tensor field Kμν is defined

as

Kμν ≡ hμ
σ∇σuν =

1

2
Luhμν , (5.97)

and acts as a measure of the amount of bending the spacelike hypersurfaces exhibit with

respect to the spacetime in which it is embedded.

The mixed projection of Einstein’s equations on the other hand yields the momentum

constraint in covariant form

uνGνσhμ
σ = 8πqμ, (5.98)

which once again may be written via the Gauss-Codacci relations and equation (5.93) as

Dνσμ
ν − 1

3
DμΘ = 8πqμ. (5.99)

Combining equations (5.94) and (5.99) (the energy and momentum constraints) we obtain

the nonlinear covariant version of a generalized Poission equation

1

2
Dμ

(
R(3) − σνγσ

νγ
)
+ΘDνσμ

ν = 8πε̃μ. (5.100)

The authors of [125] introduce here an alternative definition of the comoving energy

density ε̃μ since in the linear limit it is equivalent to εμ. They show that this definition of

the energy density covector

ε̃μ ≡ Dμρ−Θqμ = Dμρ+Θξ̊ξ⊥μ , (5.101)

in the covariant description of cosmological perturbations in general differs from εμ in the

case of two fields

ε̃μ − εμ =
1

ξ̊

(
D − 1

3
ΘΠ

)
ξ⊥μ , (5.102)
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but are equal on large scales

ε̃μ
∼
= εμ. (5.103)

Finally, with a particular interest in equations (5.76), (5.89) and (5.91) we may state that

εμ may be neglected on large scales due to equation (5.100): the terms on the left hand side

are all proportional to a projected gradient DμX. In particular, from the definition of the

Ricci scalar in terms of derivatives of the metric [126] it may be shown that the term Dμ R(3)

is third order in spatial gradients. Additionally, the shear in general rapidly decreases in an

expanding perturbed FLRW universe, and is far less blue-shifted than the dominant energy

contribution in ekpyrotic contracting models (ie. the ekpyrotic field) [111,125]. Thus in the

large scale limit with negligible shear the comoving energy density perturbation covector εμ

may be neglected and as consequences: ζμ and Rμ coincide up to a sign, and the evolution

equations may be simplified to become a closed coupled system

ζμ +Rμ
∼
= 0

˚̊sμ +Θs̊μ +
(
Vss + 3̊ϑ2

)
sμ
∼
= 0

ζ̊μ
∼
= −2

3

Θ2

ρ̊
Vssμ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (negligible shear). (5.104)

Furthermore, the spatial components of equation (5.100) may be linearized, producing a

relativistic Poisson equation

1

a2
∇2
[
ψ +H(aB − a2Ė)

]
= 4πδε, (5.105)

with δε defined in equation (5.138), explicitly displaying that the comoving energy density

perturbation δε is second order in spatial gradients and thus may also be neglected on large

scales. Thus, once the authors of [125] reproduce the linearized equations of motion via the

covariant formalism of the coordinate based approach as in section 4 or [80] (see the following

section 5.1.5 for more explicit definitions of the linear perturbation variables)

δ̈ξ + 3Hδ̇ξ +
(
V̄ξξ − ˙̄ϑ2

)
δξ − 1

a2
∇2δξ = 2

(
˙̄ϑδs
)·

− 2
V̄ξ

˙̄ξ

˙̄ϑδs
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− 2V̄ξϕ+ ˙̄ξ

[
ϕ̇+ 3ψ̇ −∇2

(
B

a
− Ė

)]
, (5.106)

δ̈s+ 3Hδ̇s+
(
V̄ss + 3 ˙̄ϑ2

)
δs− 1

a2
∇2δs = −2

˙̄ϑ
˙̄ξ
δε, (5.107)

ζ̇ =
2

3

V̄ξ

˙̄ξ3
δε− 2

H
˙̄ξ

˙̄ϑδs+
1

3

1
˙̄ξa2

∇2δξ, (5.108)

ζ +R = −
˙̄α
˙̄ρ
δε, (5.109)

they are able to make very similar conclusions to that of equation (5.104) for linear pertur-

bations

ζ +R∼= 0, (5.110)

δ̈s+ 3Hδ̇s+
(
V̄ss + 3 ˙̄ϑ2

)
δs
∼
= 0, (5.111)

ζ̇
∼
= −2

H
˙̄ξ

˙̄ϑδs. (5.112)

Namely that on large scales: the curvature perturbation variables ζ and R coincide up to a

sign, and the evolution equations for the entropy perturbation and curvature perturbation

simplify once again to a closed coupled system.

5.1.5 Second and third perturbative order

As we have stated in closing of the previous subsection, within the covariant formalism

the authors of [125] reproduce the dynamical equations governing linear entropy and adia-

batic perturbations found in the coordinate based approach for two fields as presented in

section 4.1.2; they also reproduce the dynamical equation governing ζ, the curvature pertur-

bation variable on uniform density hypersurfaces. Within the coordinate based approach, the

evolution of second order perturbations for the single field case has been studied in [130–135]

and multifield case in [136].

Below we follow the works of [123,125] and derive evolution equations of gauge-invariant

perturbative quantities from the ξμ, sμ and ζμ equations, at the non-linear level. To derive

perturbative equations at higher order in perturbation theory we begin by expanding all
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fields X(t, xi) as

X(t, xi) ≡ X̄(t) + δX(1)(t, xi) + δX(2)(t, xi) + δX(3)(t, xi), (5.113)

where we have altered notation from previous sections denoting background quantities with

an overbar as opposed to a subscript naught, and δX(1), δX(2), δX(3) are the first, second

and third-order contributions respectively. The first and higher order contributions should be

understood as the quantities that solve the equations of motion perturbed to the respective

order. Additionally, where doing so is unambiguous the superscript (1) of the first order

perturbation may be dropped as seen for example in the first order perturbation of the

entropy and adiabatic covectors (δs = δs(1), δξ = δξ(1)) and the curvature perturbation on

uniform energy density hypersurfaces (ζ = ζ(1)). We also fix uμ such that ui = 0, thus

determining the remaining component u0 entirely in terms of metric quantities; we do this

to ensure that ξ⊥i = ξi.

Firstly, we derive the evolution equations for the adiabatic and entropy fields to second

order. We determine the background equations from equations (5.36) and (5.42), and expand

equations (5.25) and (5.26) to second order and obtain the following expressions for the

spatial components of the adiabatic and entropic fields

¨̄ξ + 3H ˙̄ξ + V̄ξ = 0, ˙̄ϑ = − V̄s

˙̄ξ
= ϑ̇, (5.114)

δξi =
˙̄φ1

˙̄ξ
∂iδφ

1 +
˙̄φ2

˙̄ξ
∂iδφ

2 ≡ ∂iδξ, δξ ≡
˙̄φ1

˙̄ξ
δφ1 +

˙̄φ2

˙̄ξ
δφ2, (5.115)

δsi =
˙̄φ1

˙̄ξ
∂iδφ

2 −
˙̄φ2

˙̄ξ
∂iδφ

1 ≡ ∂iδs, δs ≡
˙̄φ1

˙̄ξ
δφ2 −

˙̄φ2

˙̄ξ
δφ1, (5.116)

δξ
(2)
i ≡ ∂iδξ

(2) +
˙̄ϑ
˙̄ξ
δξ∂iδs−

1
˙̄ξ
Vi, δξ(2) ≡

˙̄φ1

˙̄ξ
δφ1(2) +

˙̄φ2

˙̄ξ
δφ2(2) +

1

2 ˙̄ξ
δsδ̇s, (5.117)

δs
(2)
i ≡ ∂iδs

(2) +
δξ
˙̄ξ
∂iδ̇s, δs(2) ≡ −

˙̄φ2

˙̄ξ
δφ1(2) +

˙̄φ1

˙̄ξ
δφ2(2) − δξ

˙̄ξ

(
δ̇s+

˙̄ϑ

2
δξ

)
, (5.118)
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Vi ≡
1

2
(δs∂iδ̇s− δ̇s∂iδs). (5.119)

Note that the fields φ̄i solve the usual Klein-Gordon equation in a cosmological background,

and a correspondence between the angle introduced in the coordinate theory and the angle

introduced in the covariant theory has been introduced ϑ̄ = ϑ.

Crucially now, we must ensure gauge invariance of the perturbation variables on large

scales at minimum (with the exception of the adiabatic perturbation variable). We first

observe the general tensor transformation law generated by a vector Λμ which allows us to

write down how tensors transform to all orders in a perturbative expansion [137]

T̃ −→ eLΛT . (5.120)

If one expands the generator of transformations perturbatively as Λ =
∑

n
1
n!
Λ(n) we may

then determine the transformation law of tensors expanded perturbatively. In particular,

the coordinates of the tensor field transform as (as a particular case)

x̃μ −→ xμ = x̃μ −Λμ
(1) +

1

2
Λν

(1)Λ
μ
(1),ν −Λμ

(2), (5.121)

and the perturbations of the tensor field transform as

δT (1) −→ δT (1) + LΛ(1)
T (0), (5.122)

δT (2) −→ δT (2) + LΛ(2)
T (0) +

1

2
L2
Λ(1)

T (0) + LΛ(1)
δT (1). (5.123)

Let us deal with the entropic covector first. Since sμ vanishes at zeroth order, one may

observe from equation (5.122) that sμ is automatically gauge-invariant and first order. How-

ever, it is not automatically gauge-invariant at second order and the corresponding gauge

transformation law by equation (5.123) is

δs(2)μ −→ δs(2)μ + LΛ(1)
δsμ. (5.124)
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We observe the second term on the right hand side of the above via the definition of the Lie

derivative in the large scale limit (neglecting higher orders in the spatial gradient)

LΛ(1)
δs

(1)
i
∼
= Λ0

(1)∂0δsi. (5.125)

Thus due to commuting partials and since δsi = ∂iδs, the spatial components of δs(2)μ trans-

form on large scales as

δs
(2)
i
∼−→ δs

(2)
i +Λ0

(1)∂0δsi = δs
(2)
i +Λ0

(1)∂iδ̇s. (5.126)

In addition, since at linear order

δξ
˙̄ξ
−→ δξ

˙̄ξ
+Λ0

(1), (5.127)

the following quantity transforms as

∂iδs
(2) = δs

(2)
i − δξ

˙̄ξ
∂iδ̇s

∼−→ δs
(2)
i +Λ0

(1)∂iδ̇s−
(
δξ
˙̄ξ
+Λ0

(1)

)
∂iδ̇s = ∂iδs

(2), (5.128)

and is thus gauge-invariant. Thus we have proved the gauge invariance of δs generally, and

the gauge invariance of δs(2) on large scales.

With gauge invariance in mind, the spatial components of the curvature perturbation on

uniform energy density hypersurfaces ζμ up to second order should be expressed as [123]

δζi = ∂iζ, ζ ≡ δα− H
˙̄ρ
δρ, (5.129)

ζ
(2)
i = ∂iζ

(2) +
δρ
˙̄ρ
∂iζ̇ , (5.130)

ζ(2) ≡ δα(2) − H
˙̄ρ
δρ(2) − δρ

˙̄ρ

[
ζ̇ +

1

2

(
H
˙̄ρ

)·
δρ

]
, (5.131)

and one may check using the transformation laws in equations (5.122) and (5.123) that ζ, ζ(2)

are gauge invariant on large scales.

Importantly, due to the fact that the perturbed integrated expansion term δα is related
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to the scalar metric perturbations E,B, ψ introduced in the coordinate based approach of

section 4 [123,125]

δα ≡ −ψ +
1

3

∫
∇2

(
B

a
− Ė

)
dt, (5.132)

and on large scales

δα
∼
= −ψ. (5.133)

Thus the quantity ζ defined in equation (5.129) coincides with the curvature perturbation

variable ζ(Bardeen) defined in the coordinate based approach of section 4 on large scales up to

a sign

−ζ(Bardeen)
∼
= ζ. (5.134)

The adiabatic covector does not vanish at zeroth order, and thus the first order pertur-

bation is not automatically gauge invariant. The adiabatic perturbations are thus highly

dependent on the choice of gauge, and we are free to choose their definitions for convenience.

As hinted at in the previous paragraph, it turns out that we may define an approximate

comoving gauge on large scales which is done so by exploiting the gauge-variance of the

adiabatic quantities. Consider perturbatively expanding the momentum density provided

by equation (5.59) and recalling that with our choice of uμ we have ξ⊥i = ξi

qi = −ξ̇ξi, (5.135)

δqi = −∂i

(
˙̄ξδξ
)
, (5.136)

δq
(2)
i = −∂i

(
˙̄ξδξ(2) +

1

2

¨̄ξ
˙̄ξ
δξ2 + ˙̄ϑδξδs

)
− 1

˙̄ξ
δε∂iδξ + Vi. (5.137)

One may immediately notice that, with the exception of the Vi term in δq
(2)
i , setting δξ =

δξ(2) = 0 causes all terms in δqi, δq
(2)
i to vanish. Thankfully, from its definition (5.119) we

see that Vi vanishes when δ̇s = f(t)δs; this condition is met for super-Hubble modes in both

inflationary and ekpyrotic models due to the suppression of spatial gradient terms [111,125].

Therefore on large scales we may define an approximate comoving gauge at second order

(δq = δq(2) = 0) after setting δξ = δξ(2) = 0.

Finally we determine up to second order the perturbations in the covariant comoving
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energy density covector εμ. From the definition (5.56) we find up to second order

δεi = ∂iδε, δε ≡ δρ−
˙̄ρ
˙̄ξ
δξ, (5.138)

δε
(2)
i = ∂iδε

(2) +
δξ
˙̄ξ
∂i ˙δε

(1) − 3HVi, (5.139)

δε(2) ≡ δρ(2) −
˙̄ρ
˙̄ξ
δξ(2) − δξ

˙̄ξ

[
δε̇+

1

2

(
˙̄ρ
˙̄ξ

)·

δξ +
˙̄ρ
˙̄ξ

˙̄ϑδs

]
. (5.140)

Only in the approximate comoving gauge defined on large scales via the discussion above

(ie. when Vi is negligibly small and we have set δξ = δξ(2) = 0) may the quantity δε(2) be

interpreted as the comoving energy density at second order [125]. We now wish to understand

how the second order perturbation of the comoving energy density δε(2) behaves on large

scales. To do so, we make use of the constraint equations derived at the close of section 5.1.4.

By expanding the spatial components of equation (5.101) on large scales such that ε̃μ
∼
= εμ,

we obtain a Poisson equation for δε
(2)
i

δε
(2)
i
∼
= ∂iδρ

(2) − 3Hδq
(2)
i − δΘδqi, (5.141)

δΘ ≡ −3Hϕ− 3ψ̇ +∇2(
B

a
− Ė). (5.142)

Using equation (5.139) and the fact that δε(1) is negligible on large scales as explained in

section 5.1.4, we rewrite the above equation (5.141) and obtain

∂2δε(2) ∼= 3H∂iVi. (5.143)

Thus when Vi is negligible as we have explained is the case for super-Hubble perturbation

modes in both ekpyrotic and inflationary models, we have

δε(2) ∼= 0. (5.144)

We are almost ready to derive the entropic and curvature evolution equations at second

order in perturbations on large scales. However, we will require relations translating pertur-
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bations of Lie derivatives of covectors to perturbations of cosmological time derivatives of

covectors. First let us consider a general covector Xμ and determine the components of its

Lie derivative. For convenience we replace the covariant derivatives in the definition of the

Lie derivative by partials (which we may do since the Lie derivative may be defined for any

derivative operator) and write

X̊μ = uν∂νXμ +Xν∂μu
ν . (5.145)

At zeroth order we have
¯̊
Xμ =

[
˙̄X0,�0
]
, (5.146)

with the presupposition that the spatial components X̄i vanish [125]. Note that the bar is

above the Lie derivative operator (˚), this is to signify that this is the background quantity

of the Lie derivative of the covector Xμ. Recalling our choice for the four-velocity vector

uμ such that ui = 0, we may determine its remaining components in terms of scalar metric

perturbations. It will be sufficient to calculate solely the time component of uμ to continue

with the calculations; to do so one should make use of the fact that uμu
μ = 1 and ui = 0 to

obtain the following two relations

u0 =
1

u0

, uμ = gμ0u
0. (5.147)

From the above we obtain an expression for u0 in terms of the metric perturbation as

expressed in the coordinate theory g00 = 1+ 2ϕ; we then expand the metric perturbation as

in equation (5.113) to third order to obtain

u0 =
1

√
g00

≈ 1− ϕ− ϕ(2) − ϕ(3) +
3

2
ϕ2 + 3ϕϕ(2) − 5

2
ϕ3. (5.148)

Expanding the covector fields to first order as X̊μ =
¯̊
Xμ + δ(X̊0) and Xμ = X̄μ + δXμ,

inserting them into equation (5.145) along with equation (5.148) and neglecting all terms
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second order or higher in perturbations we obtain

δ(X̊0) = ˙δX0 −
(
X̄0ϕ

)·
, δ(X̊i) = ˙δX i − X̄0∂iϕ. (5.149)

We may carry out the same procedure expanding covectors to second order and maintaining

terms second order in perturbations

δ(X̊μ)
(2) = − ¯̊

Xμ − δ(X̊μ) + (1− ϕ− ϕ(2) +
3

2
ϕ2) ˙̄Xμ + (1− ϕ) ˙δXμ

+ ˙δX
(2)

μ + X̄0∂μ(−ϕ− ϕ(2) +
3

2
ϕ2)− δX0∂μϕ. (5.150)

We care only for the spatial components which reduces the above using equations (5.146),

(5.148) and (5.149), and simplifies further when concerned only with large scale fluctuations

δ(X̊i)
(2) = ˙δX

(2)

i + X̄0∂i(−ϕ(2) +
3

2
ϕ2)− ϕ ˙δX i − δX0∂iϕ, (5.151)

δ(X̊i)
(2) ∼= ˙δX

(2)

i − ϕ ˙δX i. (5.152)

In exactly the same method, we calculate perturbations of the second order Lie derivative

and after plenty of algebra we obtain for each respective perturbative order

¯̊̊
Xμ =

[
¨̄X0,�0

]
, (5.153)

δ(˚̊X i) = ¨δX i − (X̄0∂iϕ)
· − ˙̄X0∂iϕ, (5.154)

δ(˚̊X i)
(2) = ¨δX

(2)

i − 2ϕ ¨δX i − ϕ̇ ˙δX i + (2ϕ ˙̄X0 − 2 ˙δX0 + ϕ̇X̄0)∂iϕ

+ (ϕX̄0 − δX0)∂iϕ̇− (X̄0 +
˙̄X0)∂iϕ

(2) +
3

2
X̄0∂i(ϕ

2). (5.155)

Since we are interested in evolution equations on large scales, equation (5.155) reduces when

considering the lowest order in spatial gradient terms

δ(˚̊X i)
(2) ∼= ¨δX

(2)

i − 2ϕ ¨δX i − ϕ̇ ˙δX i. (5.156)

We are finally in the position to derive the evolution equations for second order entropy
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and curvature perturbations. We begin with equation (5.89) and expand all spatial compo-

nents to second order in perturbations neglecting gradients of the comoving energy density

at first order δε
(1)
i (due to the arguments of section 5.1.4), and make use of the first order

perturbation equation to eliminate terms arriving at

δ(̊s̊i)
(2) + 3Hδ(̊si)

(2) +
(
V̄ss + 3 ˙̄ϑ2

)
δs

(2)
i + δΘ∂iδ̇s

+
[
δVss + 6 ˙̄ϑδ(̊ϑ)

]
∂iδs

∼
= −2

˙̄ϑ
˙̄ξ
δε

(2)
i , (5.157)

with [111]

δVss
∼
= V̄sssδs− 2

V̄sξ

˙̄ξ
δ̇s. (5.158)

We may now use our equations (5.152) and (5.156) to translate the perturbations of Lie

derivatives to perturbations of cosmological time derivatives. In addition to the first equation

in equation (5.116) (δsi = ∂iδs), we obtain

δ(̊si)
(2) ∼= δ̇s

(2)

i − ϕδ̇si = δ̇s
(2)

i − ϕ∂iδ̇s, (5.159)

δ(̊s̊i)
(2) ∼= δ̈s

(2)

i − 2ϕδ̈si − ϕ̇δ̇si = δ̈s
(2)

i − 2ϕ∂iδ̈s− ϕ̇∂iδ̇s. (5.160)

We may also take advantage of the Lie derivative for scalar quantities equation (5.5), and

expanding as in equation (5.113) to find

δ(̊ϑ) = −1
˙̄ξ

[
V̄sϕ+ δVs +

˙̄ϑ
(
δ̇ξ − ˙̄ϑδs

)]
, (5.161)

δVs ≡ V̄sξδξ + V̄ssδs−
V̄ξ

˙̄ξ

(
δ̇s+ ˙̄ϑδξ

)
. (5.162)

Substituting equations (5.118), (5.142) and (5.159) to (5.161) into the evolution equation for

entropy perturbations on large scales equation (5.157), we deduce for large scale fluctuations

δ̈s
(2)

+ 3Hδ̇s
(2)

+
(
V̄ss + 3 ˙̄ϑ2

)
δs(2)

∼
= −

˙̄ϑ
˙̄ξ
δ̇s

2 − 2
˙̄ξ

(
¨̄ϑ+ ˙̄ϑ

V̄ξ

˙̄ξ
− 3

2
H ˙̄ϑ

)
δsδ̇s
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−
(
1

2
V̄sss − 5

˙̄ϑ
˙̄ξ
V̄ss − 9

˙̄ϑ3

˙̄ξ

)
δs2 − 2

˙̄ϑ
˙̄ξ
δε(2). (5.163)

The evolutionary equation governing the second order curvature perturbation on large

scales for the two field case may be deduced using the dissipative fluid description, by ex-

panding equation (5.91) to second order in perturbations. It was found in [123,125] that on

large scales the equation takes the following form

ζ̇(2)
∼
= −H

˙̄ξ2

[
2 ˙̄ϑ ˙̄ξδs(2) −

(
V̄ss + 4 ˙̄ϑ2

)
δs2 +

V̄ξ

˙̄ξ
δsδ̇s− 2V̄ξ

3H ˙̄ξ
δε(2)

]
. (5.164)

Note that in both equations (5.163) and (5.164) the final terms involving the second order

comoving energy density perturbation may be ignored on large scales via the arguments

preceding equation (5.144). As in the linear theory, the second order entropy and curvature

perturbations evolve independently of adiabatic perturbations on large scales, and pertur-

bations in entropy source perturbations in curvature.

Subsequent work in [111] expanded on the work by Langlois and Vernizzi above and

derived equations of motion to third perturbative order allowing one to make predictions on

the trispectrum. We do not express the full equations to third order in this thesis in the

interest of brevity.
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6 String cosmology

The four-dimensional scalar field effective actions of previous sections constitutes a well es-

tablished framework in which various cosmological models may be explored; the framework

is tractable, allowing for physical parameters to be calculated making specific cosmologi-

cal models quantitative and falsifiable. However, the four dimensional scalar field effective

descriptions studied in sections prior is a coarse-graining of a more fundamental theory, of

which describes physics at higher energies and smaller length scales.

One may attempt to gain a deeper understanding of very early universe cosmology in two

distinct methods. Among the two is the bottom-up effective field theory approach where we

describe interactions and physics perturbatively at energies far below a high energy cutoff

scale; in this energy regime certain interactions are perturbatively suppressed by powers of

their coupling, manifesting themselves as irrelevant, decoupling from the low energy degrees

of freedom rendering the low energy physics independently studiable. This description can

be very useful as previous sections have shown, but irrelevant interactions introduce ultra-

violet divergences, and unless the theory’s renormalization group flow possesses a nontrivial

ultraviolet fixed point it is non-renormalizable, and thus we cannot fully provide a descrip-

tion of the physics beyond the cutoff. A pedagogical example of such a divergence with

particular relevance is the short-distance divergence and non-renormalizability of quantum

gravity. By dimensional analysis (in Planck units), we may observe that the theory is ultra-

violet divergent due to the coupling (Newton’s G) being of negative mass dimension, and is

non-renormalizable in the sense that the divergences appearing in the perturbative expansion

may not be absorbed by a finite number of counterterms.

However, understanding the behaviour of the gravitational interaction at high energies

is essential if we wish to make important progress in our understanding of the origin of our

universe. For example, if one wishes to invalidate or provide a description of a particular in-

flationary model in which perturbation modes traverse scales smaller than the Planck length

(trans-Planckian problem [8]), we must be able to describe the evolution of these modes.

This leads us to the alternative method, a top-down description in which an ultraviolet com-

plete theory constrains effective theories that appear to provide a consistent description at
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low energies [18, 20,72,138–140].

String theory’s general freedom from ultraviolet (short distance) divergence is exemplified

by the calculation of the torus (T 2) vacuum amplitude of bosonic string theory, which we

provide a lightning review of, a full derivation may be found in [18]. The gauge fixed (via

Fadeev-Popov procedure) BRST (Becchi-Rouet-Stora-Tyutin) invariant (guaranteeing that

amplitudes for BRST equivalent states are equal) S-matrix of a general bosonic string theory

Sj1···jn(k1, · · · , kn) =
∑

compact
topologies

∫
F

dμt

nR

∫
[dφ db dc] exp (−Sm − Sg − λχ)

×
∏

(a,i)/∈f

∫
dσa

i

μ∏
k=1

1

4π
(b, ∂kĝ)

∏
(a,i)∈f

ca(σ̂i)
n∏

i=1

ĝ(σi)
1/2Vji(ki, σi), (6.1)

may be applied to the torus without vertex operator insertions corresponding to initial and

final states: the vacuum amplitude of the string spectrum. After dividing out the volume

of the conformal killing group of the torus, including the appropriate anticommuting ghost

insertions b, c from the two metric moduli and two conformal killing vectors we obtain

ZT 2 =

∫
F0

dτdτ̄

4τ2

〈
b(0)b̃(0)c̃(0)c(0)

〉
T 2

, (6.2)

with τ ≡ τ1+ iτ2 containing the two metric moduli of the unique closed oriented surface with

Euler number zero. Performing the ghost path integrals we obtain the following result as a

sum over the transverse closed string Hilbert space excluding ghosts, the μ = 0, 1 oscillators4

and the non-compact momenta valid for a general CFT and d ≥ 2 noncompact flat spacetime

dimensions

ZT 2 = iVd

∫
F0

dτdτ̄

4τ2
(4π2α′τ2)−d/2

∑
i∈H⊥

qhi−1q̄h̃i−1, (6.3)

where q ≡ exp(2πiτ), hi, h̃i are the weights of the transverse states related to local operators

via the state-operator isomorphism, Vd is a spacetime volume factor and α′ is the Regge

slope. After integrating over the standard fundamental region for the moduli space of (diff
4the ghost contributions cancel two sets (left and right moving) of bosonic oscillators.
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× Weyl)-inequivalent metrics of the torus

F0 =

{
τ ∈ C : −1

2
≤ Re τ ≤ 1

2
, |τ | ≥ 1

}
, (6.4)

also indicated by the grey shaded region in figure 9, one finds that the vacuum amplitude

ZT 2 does not contain the region that is present in the field theory calculation as a sum of

point particle paths with the topology of a circle indicated by the union of the pink and

grey shaded region of figure 9. Additionally, as long as the theory is free of tachyons the

additional divergence present in the τ2 −→ ∞ limit does not manifest, since the behaviour

of q decays exponentially for all string states with the exception of the tachyon where the

sign of the exponent flips and instead grows exponentially without bound.

i

-1/2 1/2

A A'B B'
Figure 9: The grey shaded domain is the standard fundamental region F0 for the moduli
space of the torus, indicating the moduli space of (diff × Weyl)-inequivalent metrics in order
to prevent over counting of physically identical configurations. The partial arcs of the unit
circle B and B′ are identified as well as the semi-infinite straight lines A and A′. The
pink shaded region is also included when one attempts to calculate the analogous vacuum
amplitude in field theory, the region includes points that makes the integration divergent, in
particular the τ2 −→ 0 limit.

This is in part the motivation for the application of string theory to very early universe

cosmology. Scattering amplitudes of fundamental strings may be handled perturbatively at
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energies above the Planck scale free of ultraviolet divergences, and at energies below the

Planck scale physics is described by an effective quantum field theory coupled to general

relativity. Famously, the vanishing of the Weyl anomaly in the Polyakov path integral

formulation [141] of pure bosonic string theory, or alternatively the preservation of Lorentz

invariance after quantization of one dimensional objects in flat spacetime determines the

critical spacetime dimension D = 26, thus extra dimensions are commonplace among all self-

consistent string theories. Infamously, since the bosonic string possesses vacuum instabilities

in the form of tachyons and is obviously void of fermions it is an unrealistic theory of our

universe.

Superstring theories on the other hand are vastly more promising, with five known weakly

coupled theories subject to varying constraint algebras and all forms possessing some form of

spacetime supersymmetry. These superstring theories exhibit the desired results of spacetime

fermions, the absence of tachyons and are free of various anomalies (the violation of classical

symmetries after quantization). Additionally, string theory produces extended objects that

are unique to the theory such as Dp-branes, orbifolds and orientifold planes separating it

from pure supergravity. Dp-branes in particular are dynamical objects, may inherit gauge

symmetry groups that may spontaneously break down to the standard model gauge group

and may possesses a variety of spatial dimensions depending on the superstring theory. It

was these realizations that motivated the idea that our observable universe may in fact be

described by the worldvolume of a D3-brane [72].

6.1 Ekpyrosis from heterotic M-theory

6.1.1 Ekpyrosis with a bulk M5-brane

The original ekpyrotic scenario [47] was introduced in a particular compactification scheme

of the heterotic [142] E8 ×E8 superstring theory at strong coupling (Hořava-Witten theory)

known as heterotic M-theory. It was shown [60, 143] that the ten dimensional heterotic

E8 × E8 superstring theory at strong coupling corresponds to eleven dimensional M-theory

compactified on an S1/Z2 orbifold, where the dilaton appearing in the heterotic superstring

theory at weak coupling is reinterpreted as the orbifold dimension of S1/Z2 via the string

111



String cosmology

coupling. Furthermore, this low energy limit of M-theory is effectively described by an

eleven dimensional supergravity theory describing bulk interactions and is only free of gauge

and gravitational anomalies if the two ten dimensional orbifold fixed hyperplane boundaries

possess identical E8 Yang-Mills gauge theories; this is Hořava-Witten theory. In fact it is

now widely understood that each of the five nonanomalous superstring theories and eleven

dimensional M-theory are related to one another by various S and T dualities, exchanging

the strong and weak coupling and momentum and winding respectively, and are therefore

all viewed to be limits of a single theory [20,72,144,145].

x
S1 0 RS1/ 2x~-x-x

x [- R, R]

Figure 10: A topological depiction of the quotient space S1/Z2, beginning with S1 we identify
all points on the circle to an equivalence class defined by x ∼ −x, effectively folding over and
gluing two arcs of the circle together. Thus every point in the quotient space corresponds to
an orbit of points in S1 consisting of its images under the action of the isometry group Z2.
Generally speaking orbifolds are singular at the fixed points of the discrete symmetry group,
but a closed string theory is consistent on spaces with orbifold singularities so long as the
twisted states which are also required by modular invariance are included in the spectrum.

The compactification scheme known as heterotic M-theory is more precisely: a com-

pactification of six of the remaining nine spatial dimensions of Hořava-Witten theory on a

Calabi-Yau threefold. Witten has shown [61] that there exists a consistent compactification

of Hořava-Witten theory on a deformed Calabi-Yau threefold that permits a supersymmetric

theory in four dimensions such that the ratio of the number of supercharges to the smallest

spinor representation N = 1, and Hořava demonstrated [146] that gaugino condensation

provides a possible mechanism for supersymmetry breaking from the eleven dimensional M-
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theory. Upon compactification on the three-fold, these six dimensions become internal in

the sense that they must be much smaller than the orbifold dimension in order to obtain

the correct magnitude of Newton’s constant from the four dimensional perspective [61,147].

Newton’s constant GN and the grand unified coupling αGUT may be expressed in terms of

the eleven dimensional gravitational coupling κ11, the volume of the Calabi-Yau space VCY

and the size of the orbifold dimension πR11

GN =
κ2
11

16π2VCYR11

, αGUT =
(4πκ2

11)
2/3

2VCY

. (6.5)

By setting the above equal to their phenomenological values, there emerges a natural hierar-

chy of energy scales, dictating the sizes of the compactification radii of the eleventh dimension

as well as the Calabi-Yau volume. Ultimately the number of effective dimensions increases

with energy: the universe is first effectively four, then five dimensional, the orbifold dimen-

sion being the fifth, and finally eleven dimensional. Thus, there is an energy regime in which

the universe is effectively five dimensional and is the regime chosen to study the ekpyrotic

model. It then becomes very relevant to derive said five-dimensional effective action that

is the low-energy effective description of Hořava-Witten theory and in the limit R11 −→ 0,

leads to an N = 1 supergravity theory. As we will demonstrate in section 6.1.2, the compact-

ification of Hořava-Witten theory in the presence of a non-vanishing four-form field strength

in the internal Calabi-Yau directions (G-flux, see also [148, 149] for more investigations of

compactifications with G-flux that preserve supersymmetry and handle anomalies) allows

for the explicit derivation of the effective action describing the five dimensional spacetime,

and may also be shown to be a gauged version of N = 1 supergravity action [59,150–152].

Importantly, it was also shown [59, 151, 152] that the potentials arising from compacti-

fication support BPS (Bogolmon’yi-Prasad-Sommerfeld) D3-brane solutions of the equation

of motion, with the vacuum consisting of two D3-branes coincident with the orbifold fixed

planes bounding the orbifold dimension; cosmological solutions of this vacuum configura-

tion are presented in [153]. It is the worldvolume of one of these boundary branes that is

deemed as our observable (3+1) dimensional universe. The model is made realistic by ensur-

ing heterotic M-theory includes the standard model gauge group SU(3)C ×SU(2)L ×U(1)Y
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and three families of quarks and leptons at least on the visible D3-brane by the inclusion of

M5-branes in the bulk spacetime, also effectively eliminating anomalies [154–160]. For the in-

terested reader, one may find literature on the four dimensional limit of both Hořava-Witten

theory [151,161–171] and heterotic M-theory [172–184].

orbifold dimension = R11

5D spacetimebulk

6 internal spatial dimensions

Figure 11: A depiction of the original ekpyrotic model embedded in the compactification
of eleven dimensional M-theory on an S1/Z2 orbifold, with a further compactification of six
spatial dimensions on a Kähler manifold with three complex coordinates and vanishing first
Chern class, otherwise known as a Calabi-Yau threefold. The orbifold dimension is deter-
mined by the radius R11 of S1. BPS D3-branes may exist and coincide with the fixed orbifold
planes bounding the eleventh dimension. Each point in the five dimensional spacetime bulk
possesses six internal spatial dimensions that are much smaller than the orbifold dimension.
The inclusion of a wrapped M5-brane is forced in order to make the theory nonanomalous
in their construction of inducing the standard model gauge group on one of the boundary
D3-branes. The M5-brane is wrapped on holomorphic curves in the Calabi-Yau manifold
and appear as D3-branes in the effective five dimensional spacetime theory.

The included bulk M5-brane is permitted to move along the orbifold dimension and

the potential governing its motion is known to receive contributions from non-perturbative
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dynamics. As an example, contributions to the superpotential via the exchange of supermem-

branes stretched between the boundary brane and M5-brane in the effective four-dimensional

theory have been calculated explicitly [185–187], and in conjunction with the M5-brane con-

tribution to the Kähler potential as calculated in [188] one may calculate the contribution

to the potential from this particular non-perturbative effect. More recently, open membrane

instanton interactions between M5-branes are known to give rise to exponential potentials

and have been utilized in the construction of an assisted inflation model in heterotic M-

theory [189]. As in this inflationary model, these potentials may be utilized to argue the

inevitability of collision of the M5-brane with one of the fixed orbifold planes causing the

M5-brane to dissolve via a non-perturbative phase transition known as a small instanton

transition [190,191].

The transition alters the M5-brane to a small instanton on the Calabi-Yau space at the

boundary brane and is then smoothed into a holomorphic vector bundle, effectively being

dissolved and absorbed, altering the properties of the boundary brane. In particular, small

instanton phase transitions have the ability to alter the number of quark and lepton families,

the gauge group (or both) on the boundary brane via the alteration of the third Chern class

of the associated vector bundle by inheriting all or part of the base component, or(and) by

inheriting the pure fiber component of the class of holomorphic curves in which the M5-

branes may be wrapped, respectively. Thus the details of the phase transition depends on

the topological structure of the bulk M5-brane being dissolved and absorbed [190].

The initial conditions of this rendition of the ekpyrotic scenario are motivated by max-

imizing symmetry by ensuring the boundary branes begin as BPS states: they remain in-

variant under a nontrivial subalgebra of the full spacetime supersymmetry algebra [72]. The

BPS condition not only ensures initial homogeneity but also spatial flatness. The condition

also demands that the boundary branes be parallel and the bulk M5-brane be initially nearly

stationary. The BPS initial condition configuration in heterotic M-theory is appealing as it

has been shown to be an appropriate background for reducing to four dimensional N = 1

supergravity theories [59].

The finding of a dynamical attractor mechanism for driving the universe to the BPS state

configuration just described from generalized initial conditions would also make the model

115



String cosmology

more appealing, and perhaps provide a mechanism for a cyclic universe in this particular

string background. The authors of [47] also heuristically propose how the bulk M5-brane

may appear: as a spontaneous peeling mechanism from one of the boundary BPS D3-branes,

a process akin to bubble nucleation as the universe undergoes a first order phase transition

and decays from a metastable vacuum with the new phase expanding at the nucleation

rate [4,192]. A more precise mechanism for the nucleation of bulk M5-branes or motivation

for their initial existence would also be a welcome addition.

6.1.2 Five dimensional effective action of heterotic M-theory

In this section we review the derivation of the five dimensional effective action of heterotic

M-theory as found in [59,150]. To do so, we first present the methodology as carried out by

Witten [61] of preserving N = 1 supersymmetry in four spacetime dimensions to first order

in a perturbative expansion of the four form field strength of Hořava-Witten theory after

compactification on a deformed Calabi-Yau space5.

The conventions used throughout are as follows and differ slightly from the original lit-

erature: the coordinates describing the eleven dimensional spacetime M11 are xI whose

indices are capitalized Latin characters I, J,K, L, · · · ∈ {0, 1, · · · , 9, 11} (notice that 10 is

omitted). The two ten-dimensional hyperplanes that bound the eleventh dimension fixed

by the Z2 symmetry are denoted by M(i)
10 , i = 1, 2. Capitalized barred Latin indices

Ī , J̄ , K̄, L̄, · · · ∈ {0, 1, · · · , 9} are utilized for the ten dimensional space orthogonal to the

orbifold direction. Upon compactification on a Calabi-Yau threefold, coordinates of the five

dimensional effective spacetime M5 are indicated by lowercase Greek indices at the begin-

ning of the alphabet α, β, γ, · · · ∈ {0, · · · , 3, 11}, and Latin characters appearing at the be-

ginning of the alphabet refer to directions of the Calabi-Yau space A,B,C, · · · ∈ {4, · · · , 9};

their lowercase are utilized when holomorphic and anti-holomorphic indices are required

a, b, c, · · · ∈ {4, 5, 6}, ā, b̄, c̄, · · · ∈ {4, 5, 6}. Occasionally, we will refer to the space tangent

to the Calabi-Yau space as well as the orbifold dimension with capitalized Latin characters

appearing at the end of the alphabet · · · , X, Y, Z ∈ {4, · · · , 9, 11}. Once the orbifold planes
5See Ch. 17 of [145] or Ch. 10 of [144] for information of flux compactification schemes and Ch. 14

of [145] or Ch.9 of [144] for information of compactifications on Calabi-Yau manifolds.
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effectively become four dimensional they are indicated by M(i)
4 with i = 1, 2, and Greek

indices appearing at the middle of the alphabet are used to describe directions tangent to

this space μ, ν, ρ, · · · ∈ {0, · · · , 3}. The eleven dimensional Dirac matrices ΓI are 32 × 32

real matrices and obey the Clifford algebra
{
ΓI ,ΓJ

}
= 2gIJ , thus the spinors in eleven di-

mensions are Majorana spinors with 32 real components (notice the spinor indices have been

suppressed). Additionally, we define ΓI1···In ≡ Γ[I1 · · ·ΓIn] = 1
n!
(ΓI1 · · ·ΓIn ± permutations)6.

We begin with the effective description of the strongly coupled heterotic E8 × E8 super-

string theory as maximal eleven dimensional supergravity with E8 Yang-Mills gauge theories

inhabiting the boundary orbifold planes. Neglecting spacetime fermions, the bosonic sector

is described by the following action [193]

S = SSG + SYM , (6.6)

with

SSG = − 1

2κ2
11

∫
M11

√
−g

[
R +

1

24
GIJKLG

IJKL +

√
2

1728
εN1···N11CN1N2N3GN4···N7GN8···N11

]
,

(6.7)

and the two ten dimensional E8 Yang-Mills theories on each fixed plane is described by

SYM = − 1

8πκ2
11

(κ11

4π

)2/3 [∫
M(1)

10

√
−g

{
tr(F (1))2 − 1

2
trR2

}

+

∫
M(2)

10

√
−g

{
tr(F (2))2 − 1

2
trR2

}]
. (6.8)

In the above: κ11 is the eleven dimensional gravitational coupling, F (i)

Ī J̄
≡ ∂

Ī
A

(i)

J̄
− ∂

J̄
A

(i)

Ī
+

[A
(i)

Ī
, A

(i)

J̄
] are the field strengths defined in terms of the two E8 Yang-Mills gauge fields

A
(i)

Ī
, the four form GIJKL = 24∂ C[I JKL] is the field strength associated with the three-

form potential CIJK of the supergravity multiplet. It also must be noted that 1
30

Tr(F 2) =

tr(F 2) ≡ F zF z (with the index z ∈ {1, · · · , 248} denoting the adjoint representation of

E8) relating adjoint representation traces (Tr) to fundamental representation traces (tr),
6See App. B of [72] for a review of spinors and supersymmetry in various dimensions, as well as differential

forms and generalized gauge fields.
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and tr(Rk) terms refers to the trace in the vector representation of SO(1, 10); additionally

tr(� ∧ · · · ∧ �︸ ︷︷ ︸
k times

) ≡ tr(�k), where (�) may be replaced for either the field strength two form

F or the curvature two form R [60, 144, 194]7. The Yang-Mills gauge fields A
(i)

Ī
may be

expressed as Lie-algebra one-forms defined in terms of the matrices λz in this case in the

adjoint representation of E8, and they define the field strength two form

A = Az
Īλ

zdxĪ , F =
1

2
FĪ J̄dx

Ī J̄dxĪ ∧ dxJ̄ = dA+ A ∧ A. (6.9)

Similarly the curvature two-form may be defined in terms of the spin connection one-form

which is in turn defined in terms of the λz matrices in the fundamental representation of the

Lorentz algebra SO(1, 10)

ω̃ = ω̃z
Iλ

zdxI , R = dω̃ + ω̃ ∧ ω̃. (6.10)

Finally, covariant derivatives acting on a spinor η appearing as DIη are defined in terms of

the spin connection [195]

DIη = ∂Iη +
1

4
ω̃IJKΓ

JKη, (6.11)

where the indices J,K above refer to the flat (tangent) space Clifford algebra and may be

related to the curved (base) indices (I) via an elfbein field [144].

As explained in [60], in order to ensure the full action (including the fermionic sector)

is locally supersymmetric, additional matter interaction terms are included in the action

with the purpose of cancelling out variations induced by supersymmetry transformations.

However, it is not possible to cancel all of the anomalous variations with the introduction of

matter couplings, one must provide a correction to the Bianchi identity dG = 0 which induces

an additional variation of the eleven dimensional supergravity Lagrangian appearing in SSG

(including fermionic sector). In particular, since the gauge and gravitational anomalies are

localised on the boundary from the eleven-dimensional perspective one must include source
7See Ch. 5 of [144] for discussions of differential forms, characteristic classes and an introduction to the

analysis of anomalies.
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terms localised on the hyperplanes [60,152] such that the component of the five form reads

(dG)11Ī J̄K̄L̄ = − 1

2
√
2π

(κ11

4π

)2/3 {
J (1)δ(x11) + J (2)δ(x11 − πR11)

}
Ī J̄K̄L̄

, (6.12)

with the sources provided by

J (i) =

(
tr
(
F (i) ∧ F (i)

)
− 1

2
tr (R ∧R)

)
, (6.13)

= 6

(
tr
(
F

(i)

[Ī J̄
F

(i)

K̄L̄]

)
− 1

2
tr
(
R[Ī J̄RK̄L̄]

))
. (6.14)

As an aside, the analysis [60] of the gauge anomalies localized on the boundary of the eleventh

dimension also leads to the following relation between the Yang-Mills gauge coupling λ2 and

the eleven-dimensional gravitational coupling providing reason as to why it does not appear

explicitly in equation (6.8)

λ2 = 2π(4πκ2
11)

2/3. (6.15)

It is also exceptionally useful to interpret the existence of source terms in the Bianchi identity

as excitations of M5-brane charges as explained in [59] by an analogy with D-branes in type

II theories, note that they must be supported by delta function sources due to singularities

associated with the presence of branes [61].

The existence of these localised source terms introduce complications when one attempts

to perform a Calabi-Yau compactification of Hořava-Witten theory. Namely, the four form

field strength G may not be conveniently made to vanish due to the sources located at the

fixed points of S1/Z2. Imposing a null G along with selecting a metric on M11 that permits

the infinitesimal transformation of the supercharges represented by the Majorana spinor η

to be covariantly conserved (satisfy the Killing spinor equation) is the simplest method to

compel the supersymmetry transformation law of the gravitino ΨI to vanish, and preserve

supersymmetry (note that the spinor index is suppressed) [59,61,152]

δΨI = DIη +

√
2

288
(ΓIJKLM − 8gIJΓKLM)GJKLMη + · · · . (6.16)

In order to obtain unbroken N = 1 supersymmetry in four dimensions, this transforma-
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tion law must vanish for four linearly independent choices of η forming a four-component

Majorana spinor [144, Ch. 9.4].

In particular, it does not seem possible [61] to determine a vacuum with the property

that tr(F ∧ F ) = 1
2
tr(R ∧ R) pointwise, and thus equations (6.12) and (6.13) generically

imply a nontrivial G-flux for Calabi-Yau compactification. This is in contrast with the weakly

coupled heterotic string, where upon embedding the spin connection into one of the E8 gauge

groups (sometimes known as the standard embedding) we may set tr(F (1)∧F (1)) = tr(R∧R)

as well as F (2) = 0, allowing one to consistently set the antisymmetric tensor gauge field

strength H to zero since we have effectively removed sources appearing in the Bianchi identity

[59,61,144,152]

dH ∼ tr(F (1) ∧ F (1)) + tr(F (2) ∧ F (2))− tr(R ∧R). (6.17)

Encouragingly, one may preserve supersymmetry perturbatively in the presence of G-flux

by allowing corrections to the metric about a zeroth order background. By equation (6.12)

we may identify G to be of order κ
2/3
11 and thus set G = 0 at zeroth order. We then choose

the zeroth order metric to be of product topology X ×S1/Z2×M
4 where X is a Calabi-Yau

manifold and M
4 is four dimensional Minkowski spacetime

ds211 = ημνdx
μdxν +R2

0(dx
11)2 + V

1/3
0 ΩABdx

AdxB, (6.18)

with ημν the Minkowski metric tensor, the metric on S1 is simply (dx11)2 and the metric tensor

ΩAB describes the Calabi-Yau space with Kähler form ω = iΩab̄dx
a∧ dx̄b̄. We also introduce

scaling parameters R0 and V0 for the orbifold radius and Calabi-Yau volume respectively,

note that this choice is arbitrary, the zeroth order metric may be rescaled. At order κ2/3
11 the

equation of motion for G

DIG
IJKL =

√
2

1152
εJKLN1···N8GN1···N4GN5···N8 , (6.19)
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reduces significantly since G ∧G is order κ
4/3
11 to

DIG
IJKL = 0. (6.20)

Supplementing this equation of motion with the Bianchi identity (6.12) which introduces

localised sources (or boundary conditions in the ‘downstairs’ interpretation), and ensuring

the supersymmetry transformation law of the gravitino (6.16) vanishes to first order in G

allows one to derive a set of equations dictating the corrections to the metric (6.18) hence

distorting the background Calabi-Yau threefold. Incidentally, a correction to the Majorana

spinor η is also induced since a first order perturbation to the metric gIJ −→ gIJ + hIJ

modifies the covariant derivative of a spinor as

DIη −→ DIη −
1

8
(DJhKI −DKhJI)Γ

JKη. (6.21)

It is in this manner that the supersymmetry transformation law of the gravitino may be

made to vanish at order κ
2/3
11 in the presence of G sources at the fixed points of S1/Z2 (in

fact the solution is actually more general, allowing for the inclusion of M5-branes in the bulk

since they also act as magnetic sources for G [61, 194]). The form of the corrected metric

from that of equation (6.18) that preserves supersymmetry at order κ
2/3
11 may be expressed

in a block diagonal form [61]

ds211 = (1 + b)ημνdx
μdxν +R2

0(1 + γ)(dx11)2 + V
1/3
0 (ΩAB + hAB)dx

AdxB. (6.22)

In order to preserve Lorentz-invariance in four dimensions the perturbations b, γ, hAB are

constrained to be functions of the directions xY , tangent to X × S1. Defining the following

three objects whose indices are raised and lowered by the metric on Calabi-Yau space ΩAB

in terms of the Kähler form ωAB,

βA = ωBCGABC11, (6.23)

θAB = ωCDGABCD, (6.24)

α = ωABθAB = ωABωCDGABCD, (6.25)
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we quote the set of identities derived in [61] from the equation of motion (6.20) and the

Bianchi identity (6.12) that these objects must obey to order κ
2/3
11 . They are

Dāβb̄ −Db̄βā = 0, (6.26)

− i

2
DAθAb̄ +

1

4
Db̄α− i

2
D11βb̄ = 0, (6.27)

D11βb̄ −Dbθbb̄ = 0, (6.28)

D11βā +
i

4
Dāα = 0, (6.29)

DAβA = 0, (6.30)

in conjunction with an additional two which arise via contracting the Bianchi identity (6.12)

with ωABωCD and ωCD respectively

D11α + 4i(Dāβā −Daβa) = − 1

2
√
2π

(κ11

4π

)2/3
J
{
δ(x11)− δ(x11 − πR11)

}
, (6.31)

D11θaā + (Daβā −Dāβa) + i
(
Db̄Gb̄aā11 −DbGbaā11

)
= − 1√

2π

(κ11

4π

)2/3
Jaā
{
δ(x11)− δ(x11 − πR11)

}
. (6.32)

JAB and hence J ≡ ωABJAB in the above are defined in terms of the sources J (i) introduced

in equation (6.13), with the spin connection embedded in the F (1) gauge group

J
(1)
ABCD = −J

(2)
ABCD ≡ JABCD =

1

2

(
tr(R(Ω) ∧R(Ω))

)
ABCD

, (6.33)

JAB = JABCDωCD = 3 tr(R
(Ω)
[ABR

(Ω)
CD])ω

CD, (6.34)

with R
(Ω)
AB the curvature of the zeroth-order metric on the Calabi-Yau space ΩAB. We now

express the second term appearing in the supersymmetry transformation of the gravitino

(6.16) in terms of the quantities defined in equations (6.23) to (6.25)

√
2

288
dxI (ΓIJKLM − 8gIJΓKLM)GJKLMη =
√
2

288

[
dx11

(
−3α− 24iβb̄Γ

b̄
)
+ dxb̄12iβb̄
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+ dxa
(
36iβa + (36iθab̄ − 3αgab̄)Γ

b̄ +(−36Gaāb̄11 − 6i(gaāβb̄ − gab̄βā)) Γ
āb̄
)

+dxμΓμ

(
−3α− 12iβb̄Γ

b̄
)]

η. (6.35)

Introducing a corrected spinor η̃ = e−ψη where ψ is an order κ
2/3
11 correction we calculate

from the transformation of the covariant derivative of the spinor under a perturbation in

the metric (6.21), the first term in the supersymmetry transformation of the gravitino (6.16)

explicitly in terms of the metric perturbations introduced in equation (6.22) assuming a

covariantly constant spinor DIη with respect to the unperturbed metric

dxIDI η̃ =

(
−dxY ∂Y ψ + dxμΓμ

(
1

4
∂11b+

1

4
∂ābΓ

ā

)
− dxa

(
−1

4
∂11hāaΓ

ā +
1

8
(∂āhb̄a − ∂b̄hāa)Γ

āb̄ +
1

4
gbb̄∂bhab̄

)
−dxā

(
−1

4
gab̄∂b̄haā

)
− 1

4
dx11∂āγΓ

ā

)
η̃. (6.36)

To be specific, the index Y above refers to the the directions tangent to X × S1. Finally

substituting equations (6.35) and (6.36) into the gravitino transformation law (6.16), de-

manding that it vanishes to first order in G in order to preserve supersymmetry and making

use of the identities in equations (6.26) to (6.30), we find that the supersymmetry variation

of the gravitino vanishes to first order if the metric variations b, γ, hAB satisfy the following

set of equations

i
√
2βā = 6∂āb = −24∂āψ = −3∂āγ, (6.37)
1

2
√
2
α = 6∂11b = −24∂11ψ, (6.38)

∂āhbb̄ − ∂b̄hbā = −
√
2

(
Gbāb̄11 +

i

6
(Ωbāβb̄ − Ωbb̄βā)

)
, (6.39)

Ωb̄bDb̄hbā = − i
√
2

3
βā, (6.40)

∂11hab̄ = − 1√
2

(
iθab̄ −

1

12
αΩab̄

)
, (6.41)

preserving N = 1 supersymmetry in four spacetime dimensions.

In [152] these relations were solved explicitly by utilizing the Hodge dual of the antisym-
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metric four form G as well as the sources J (i), transforming the equations of motion involving

a newly defined six-form and then solving said equations by performing a harmonic expan-

sion in an orthonormal set of eigenmodes of the Hodge-de Rham Laplacian [196] on the

Calabi-Yau space8. The metric corrections to first order are then fixed in terms of the modes

of the six-form, or in the case of the scalar corrections the inner product of the six-form with

the Calabi-Yau Kähler form. The terms in the expansion include massive (eigenmodes with

negative eigenvalue) and massless (zero eigenvalue) contributions as well as a pure gauge

term that may be chosen freely.

At this point, it is sufficient to quote a simplified result of the mentioned analysis above.

In doing so, we omit all massive modes since they turn out to decouple at linear order

[150], additionally we include only one massless zero mode that is related to the Calabi-

Yau breathing mode (which corresponds to a rescaling of X, ΩAB �−→ c ΩAB). The metric

corrections may then be expressed as follows [59,152]

b = −
√
2

3
R0V

−2/3
0 αB(|x11| − R11

2
π), (6.42)

γ =
2
√
2

3
R0V

−2/3
0 αB(|x11| − R11

2
π), (6.43)

hAB =

√
2

3
R0V

−2/3
0 αB(|x11| − R11

2
π)ΩAB, (6.44)

GABCD =
1

6
αBε

EF
ABCD ωEF ε(x11), (6.45)

GABC11 = 0. (6.46)

In the full expansion, there exist multiple αi for each mode i in the expansion, but since we

are utilizing a single mode it is sufficient to define a single αB as

αB ≡ − 1

8
√
2πv

(κ11

4π

)2/3 ∫
X

ω ∧ tr(R(Ω) ∧R(Ω)), v ≡
∫
X

√
Ω, (6.47)

with v the volume of the Calabi-Yau space. ε(x11) appearing in the non-vanishing component
8See Ch. 12 of [196] for harmonic differential forms and analysis of zero modes.
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of GABCD is a step function defined as

ε(x11) =

⎧⎪⎨⎪⎩
−1 if x11 < 0,

+1 if x11 ≥ 0.

(6.48)

It is also important to note that αB is quantized since trR∧R is an element of H2,2(X,Z) 9.

In the D-brane perspective, the configuration given in equations (6.42) to (6.46) if we were

to also include all other massless modes may be interpreted as a linearized solution for a

collection of M5-branes located at the fixed points of the orbifold dimension. The standard

embedding determines the amount of M5-brane charge, −1
2
trR ∧R and 1

2
trR ∧R, at each

fixed point.

The intention now then, is to perform the compactification of six spatial dimensions on

a Calabi-Yau threefold such that the five dimensional background metric instead preserves

one fourth (eight) of the thirty-two supercharges as opposed to one eighth (four) of them.

This may be done in a perturbative expansion in G by ensuring the nullification of the super-

symmetry transformations to order κ
2/3
11 (‘first’ perturbative order) of the fermionic sector.

One may check the preservation of supersymmetry explicitly by verifying the Killing spinor

equations or checking that the theory derived is a gauged version of a known N = 1 super-

symmetric theory in five dimensions as done in [150]. In particular, performing the reduction

directly on the background metric given in equation (6.22) constrained by equations (6.42)

to (6.46) preserves only four supercharges and also leads to an action explicitly dependent

on the orbifold coordinate x11 [59].

However, we want to perform the reduction to five dimensions in such a way such that

the background just mentioned above may still be recovered from the five dimensional the-

ory. This has been shown to be possible by absorbing the metric perturbations into the

five-dimensional metric moduli, specifically, the scale factors b, γ of the four dimensional

spacetime and of the orbifold may be absorbed into the five-dimensional metric and sim-

ilarly the variation of the Calabi-Yau volume along the orbifold may be absorbed into a
9See [197] for an explanation of how quantization follows.
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modulus V . Technically speaking one performs a Kaluza-Klein reduction on the metric

ds211 = V −2/3gαβdxαdxβ + V 1/3ΩABdx
AdxB, (6.49)

and as shown in [150] doing so on this background preserves eight supercharges from the

eleven-dimensional theory. Importantly, this procedure differs from a standard reduction of

eleven-dimensional supergravity on a Calabi-Yau space [198, 199], with the reasoning that

the non-vanishing component of the four form field GABCD as seen in equation (6.45) must

be accounted for explicitly as it may not be absorbed in a corresponding antisymmetric

tensor field moduli of the five-dimensional theory. A non-vanishing antisymmetric tensor

field configuration is known as the nonzero mode of the reduction and in this case the field

strength is not a harmonic form [196](G does not have vanishing Bianchi identity10). In this

case, the four-form field strength may be identified with the fourth de Rham cohomology11

group of X, H4(X), but in general GABCD is a linear combination of all harmonic (2, 2)

forms [59]12.

In the reduction, the total bulk field content of the five dimensional theory is given by

the gravity multiplet (gαβ,Aα, ψ
i
α) along with the universal hypermultiplet (V, σ, ξ, ξ̄, ζ i),

with ‘universal’ referring to the fact that these fields are present regardless of the particulars

of the Calabi-Yau manifold. ψi
α and ζ i are the gravitini and the hypermultiplet fermions

respectively, with i = 1, 2. We also have the five-dimensional h(1,1) vector13 field Aα, an

antisymmetric three-form potential Cαβγ which may be dualized to a scalar σ whose charge

is αB and quantized, and a complex scalar ξ; all give rise to their respective five dimensional
10See Ch. 14.3.3 of [196] for more discussions on nonzero modes of the reduction.
11Cohomology is any vector space with a nilpotent operator B (B2 = 0), de Rham cohomology is the

cohomology of the exterior derivative d acting on differential forms. Dolbeault cohomology is the cohomology
of ∂, ∂̄ (the (1, 0) and (0, 1) parts of d) acting on (p, q) forms. The pth de Rham cohomology of a real manifold
K is the quotient space Hp(K) = (closed p-forms on K)/(exact p-forms on K), with its dimension given by
the topology dependent Betti number. The (p, q) Dolbeault cohomology of a complex manifold K may be
defined as the quotient space Hp,q

∂̄
(K) = (∂̄-closed (p, q)-forms in K)/(∂̄-exact (p, q)-forms in K), with its

dimension given by the topology dependent Hodge number hp,q. In particular, for complex Kähler manifolds
the Dolbeault cohomologies become equivalent Hp,q

∂̄
(K) = Hp,q

∂ (K) ≡ Hp,q(K) [72, 200].
12See Ch. 15.5.3 of [196] for discussions on the Hodge decomposition.
13h(p,q) is the Hodge number specifying the dimension of the Dolbeault cohomology group Hp,q.
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field strengths Fαβ, Gαβγδ and Xα in the following way

Cαβγ =̂ Gαβγδ = 24∂[αCβγδ], (6.50)

CαAB =
1

6
AαωAB =̂ GαβAB = FαβωAB, (6.51)

CABC =
1

6
ξωABC =̂ GαABC = ∂αξωABC , (6.52)

Fαβ = ∂αAβ − ∂βAα, (6.53)

Xα = ∂αξ, (6.54)

and the nonzero mode defined as in equation (6.45). In the above, ωABC is a harmonic

(3, 0) form on the Calabi-Yau space, and ξ is the complex scalar zero mode arising due to

ωABC [59, 150].

In [150], the complete five-dimensional effective action is computed including matter

fields on the boundary, however here we omit the latter for lack of necessity. Using the

field configurations given in equations (6.45) and (6.50) to (6.54) the effective action from

equations (6.6) to (6.8) is found to be

S5 = Sgrav + Shyper + Sbound, (6.55)

with each action defined as

Sgrav = − 1

2κ2
5

∫
M5

[
R +

3

2
FαβFαβ +

1√
2
εαβγδεAαFβγFδε

]
, (6.56)

Shyper = − 1

2κ2
5

∫
M5

√
−g

[
V −2∂αV ∂αV + 2V −1∂αξ∂αξ̄ +

1

24
V 2GαβγδG

αβγδ

+

√
2

24
εαβγδεGαβγδ(i(ξ∂εξ̄ − ξ̄∂εξ) + 2αBAε) +

1

3
V −2α2

B

]
, (6.57)

Sbound = − 1

2κ2
5

[
−2

√
2

∫
M(1)

4

√
−gV −1αB + 2

√
2

∫
M(2)

4

√
−gV −1αB

]

− 1

16παGUT

2∑
i=1

∫
M(i)

4

√
−gV tr

(
F (i)2
μν

)
. (6.58)

In the above, higher derivative terms have been truncated, and this action has been checked
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to be consistent with a reduction of the eleven-dimensional equations of motion. The four-

form five dimensional field strength Gαβγδ is constrained by the Bianchi identity determined

by equation (6.12)

(dG)11μνρσ = − κ2
5

2
√
2παGUT

(
J (1)δ(x11) + J (2)δ(x11 − πR11)

)
μνρσ

, (6.59)

with the currents defined as in equation (6.13). The five dimensional gravitational coupling

κ5 is related to the eleven dimensional gravitational coupling κ11 as

κ2
5 =

κ2
11

v
. (6.60)

One should note that the ‘cosmological’ potential terms for V in the bulk and boundary arise

due to the nonzero mode of the reduction, and the strength determined by αB. In [59, 150]

it is determined explicitly that the action above is in fact a gauged N = 1 supergravity

theory in five dimensions with the presence of bulk and boundary potentials arising from the

nonzero modes of the reduction.

The final piece of the puzzle is to recover from the five dimensional theory the defor-

mations of the Calabi-Yau background as in equation (6.22). To generate some intuition,

we note that in the compactification scheme done above to four dimensions, we stated that

the Bianchi identity provided source terms for M5-branes with equal and opposite charges

located at the orbifold fixed points. In the five-dimensional perspective, these M5-branes

are effectively D3-branes that span the four-dimensional spacetime along with a two-cycle

in the Calabi-Yau space. Furthermore, since we have restricted ourselves to the Calabi-Yau

breathing modes, we keep only the M5-brane which is associated with the two-cycle defined

by the Kähler form. Thus we expect our vacuum solution to correspond to two parallel

D3-branes located at the ends of the orbifold dimension.

With the ansatz

ds25 = a(x11)2dxμdxνημν + b(x11)2(dx11)2, (6.61)

V = V (x11), (6.62)
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and all other fields vanishing, the general solution that obeys the equations of motion derived

from the five dimensional effective action equations (6.55) to (6.58), with a0, b0, c0 constants

determined by initial conditions is

a = a0D
1/2, (6.63)

b = b0D
2, (6.64)

V = b0D
3, (6.65)

D =

√
2

3
αB|x11|+ c0. (6.66)

D(x11) is a harmonic function, fixed by the sources localised on the orbifold boundaries.

Generically speaking, from the point of view of the five-dimensional bulk theory with no

information of the source terms, we may have an arbitrary number of D3-branes between

the orbifold fixed planes in the x11 direction. Generally, in order to have a (D− 2)-brane in

a D dimensional theory we would require a (D − 1) form field to be present in the action,

or equivalently the presence of its dualized field strength to a zero form, otherwise known

as a cosmological constant term. In our case the cosmological potential terms in the five

dimensional bulk and four dimensional boundary embedded in five dimensions dualize to

five form fields, and therefore couple to D3-branes located anywhere between the boundaries

[150].

However brane solutions have singularities at the location of the branes needing to be

supported by source terms [59,61]. Thus in this particular case we have two of them, located

at the two fixed points of the orbifold dimension. Thus the form of the harmonic function

D(x11) is two sections each linearly dependent on the orbifold coordinate in the domains

x11 ∈ [0, πR11] and x11 ∈ [−πR11, 0], identified at x11 = 0 and x11 = ±πR11 with slopes
√
2
3
αB and −

√
2
3
αB respectively. Thus we have a Poisson type equation for D(x11)

∂2
11D =

2
√
2

3
αB(δ(x

11)− δ(x11 − πR11)), (6.67)

indicating a solution representing two parallel three-branes located at the orbifold fixed

planes as expected. Note that this is an exact solution to the action, and once linearizing to
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order κ2/3
11 one may check upon appropriate fixing of the constants a0, b0, c0 that we recover the

solution of the background preserving four supercharges given by equations (6.22) and (6.42)

to (6.46). Preservation of half of the supersymmetries from the five dimensional theory may

be checked explicitly by noting the satisfaction of the Killing spinor equations given by the

supersymmetry transformations of the gravitini δψi
α = 0 and the hypermultiplet fermions

δζ i = 0 as done in [59]. These Killing spinor equations confirm that we have found a BPS

state preserving four of the eight bulk supercharges on each boundary D3-brane [59].

In closing, it is argued that the D3-brane embedded in the orbifold fixed plane M(1)
4 in

the five dimensional theory may be interpreted as the appropriate vacuum solution providing

the background in which a reduction to an N = 1 supergravity theory in four dimensions

with preserved Poincaré invariance may be performed. This boundary brane also possesses

the low energy gauge and matter fields required [150, 152] for relevant low energy particle

phenomenology.

6.1.3 Interbrane interactions

As alluded to in section 6.1.1 a non-vanishing net force between the boundary D3-branes (M9-

branes wrapped on the internal Calabi-Yau space [185,186,201]) coincident with the orbifold

planes or, between the boundary D3-branes and D3-branes existing in the bulk spacetime

(wrapped M5-branes on a holomorphic curve on the internal Calabi-Yau space) are argued

to provide cosmological potential terms for Kähler moduli or volume modulus of the S1/Z2

orbifold, describing either the position of the bulk brane or separation length of the boundary

branes, respectively. Non-perturbative effects [202–206] are known to provide contributions

to the potential energy of the moduli fields, or contributions to the superpotential [185–187]

in the setting of an N = 1 supergravity theory. Here we motivate a basic form for a

cosmological potential arising from M-theory supermembrane instantons, and conjecture,

subject to the form of the Kähler potential and perturbative corrections to it, that it may

drive an ekpyrotic phase of evolution.

Within the context of heterotic M-theory it is argued [185–187] that open (oriented such

that the orbifold coordinate is tangent to the membrane) supermembranes extending either

between the bulk M5-brane and one of the M9-branes or between the boundary M9-branes,
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generate similar nonperturbative contributions to the superpotential. The approach to calcu-

lating the nonperturbative contribution from open supermembranes follows the fundamental

understandings for calculating M-brane instanton effects described in [205,206]. In the com-

pactification of heterotic M-theory on S1/Z2 to an N = 1 theory in four dimensions [150],

a direct comparison is made between the fermionic two-point function that are superpart-

nered to their respective moduli and the fermionic bilinear interaction term coupled to the

superpotential in the N = 1 supergravity theory in four dimensions, derived in [150]. The

instanton contributions to the superpotential are extracted by explicitly computing the con-

tributions to the two-point function, from open supermembranes wrapping either a subset of

the orbifold S1/Z2 or the entire interval in product with a holomorphic curve in the Calabi-

Yau space; the specificity of the wrapping is in large part to ensure that the membranes are

supersymemtric in the background product topology defined by M11 = X × S1/Z2 × M
4.

The two wrappings correspond to whether the supermembranes extend between the bulk

M5-brane and the M9-brane, or the two boundary M9-branes respectively.

Thus the open supermembrane action is required, and given explicitly in [186,187]. In the

low energy limit (R11 −→ 0) the action of the supermembrane with boundary strings is shown

to be equivalent to the E8 × E8 heterotic superstring wrapped on a holomorphic curve in

the internal Calabi-Yau space, once again in order to preserve N = 1 supersymmetry. Thus

in this limit, the non-perturbative contributions from open supermembrane instantons are

equivalent to considering non-perturbative contributions of heterotic superstring instantons.

The non-perturbative contributions to the superpotential from open supermembranes

wrapped once around the orbifold and holomorphic curve in the internal Calabi-Yau space

at low energy were calculated to be of the following forms

WM9−M9 ∝ e−
T
2

∑h1,1

k=1 ωkT
k

, WM5−M9 ∝ e−
T
2
Y. (6.68)

The T k in the first expression are redefinitions of the Kähler moduli arising from the harmonic

(1, 1)-form expansion of the Kähler form of the Calabi-Yau threefold. The number of Kähler

moduli are thus determined by the Hodge number h1,1. The dimensionless field Y in the

second expression is the bosonic component of the four dimensional N = 1 translational

131



String cosmology

supermultiplet of the M5-brane [187,188], itself defined in terms of the h1,1 (1, 1)-form Kähler

moduli, the translational mode along the orbifold direction from the tensor supermultiplet

of the worldvolume theory of the M5-brane, and the axionic moduli of the M5-brane arising

from the field strength two form from the same tensor supermultiplet. The prefactor T is

defined identically in both expressions, it is a dimensionless parameter defined in terms of

the membrane tension TM , the circumference of the orbifold πR11 and the volume of the

holomorphic curve v

T = TMπR11v. (6.69)

Lastly, the ωks appearing in the first expression in equation (6.68) are dimensionless, inversely

proportional to the volume of the holomorphic curve v and proportional to an integral over

the curve with the integrand defined as the pullback onto the curve of the kth harmonic

form appearing from the harmonic expansion of the Kähler form.

Via the bosonic sector of the effective four dimensional effective supergravity theory

derived in [150], we may derive an effective potential for one or multiple of the h1,1 Kähler

moduli or the translational Y modulus. The relevant terms are the usual formula for the

scalar potential as given in equations (6.86) to (6.88), with the implied summation over

i, j · · · ∈ {1, · · · , h1,1, h1,1 + 1, h1,1 + 2}. It is straightforward to see that the superpotentials

provided above in equation (6.68) lead generically to steep negative exponential potentials

in a four dimensional effective theory for large T . The caveat is that the Kähler potential

generally leads to non-canonical kinetic terms appearing in the Lagrangian, and thus specific

models must be studied carefully.

6.2 Ekpyrosis from F-theory

Up until this point, we have proposed that the ekpyrotic scenario may be embedded in the

five dimensional effective action derived from the strongly coupled limit of E8×E8 heterotic

superstring theory. This then raises the question as to whether the model may be embedded

in another critical string theory. Here, we propose that the moduli stabilisation14 procedure

of [207] in type IIB supergravity may lead to a natural embedding for the ekpyrotic scenario.
14Moduli stabilization is the process of determining vacua in which all moduli from the compactification

possess positive mass squared [20].
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In the description below, note that capitalized Latin characters appearing in the middle

of the alphabet M,N,P, · · · ∈ {0, 1, · · · , 9} are used to indicate the coordinates xM of a

ten-dimensional manifold. Upon compactification, lower case Latin characters m,n, p, · · · ∈

{4, · · · , 9} will be used to index the coordinates ym of the compact six manifold X, and

Greek characters μ, ν, ρ, · · · ∈ {0, · · · , 3} to refer to the coordinates of the four-dimensional

Minkowski spacetime xμ.

To leading order in the Regge slope α′ and and the string coupling gs, the low energy

effective action of type IIB superstring theory is a ten dimensional supergravity theory, which

unlike IIA supergravity may not be derived from eleven-dimensional supergravity [144]. The

field content of IIB supergravity is the massless spectrum of the type IIB superstring, for both

the bosonic and fermionic sectors. The fermionic sector is comprised of two right-handed

Majorana-Weyl dilatini and two left-handed Majorana-Weyl gravitini, but this sector will

not be relevant for this discussion. In the string frame (ie. the Ricci scalar is multiplied

by the string coupling, a useful form when studying string perturbation theory) the bosonic

sector of the IIB supergravity theory may be expressed as

SIIB = SNS + SR + SCS, (6.70)

where

SNS =
1

2κ2

∫
d10x

√
−ge−2Φ

(
R + 4∂μΦ∂

μΦ− 1

2
|H3|2

)
, (6.71)

SR = − 1

4κ2

∫
d10x

√
−g

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (6.72)

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3. (6.73)

The above comprises the closed string NS-NS (Neveu-Schwarz) sector, the closed string R-R

(Ramond) sector and a Chern-Simons term respectively. The NS-NS sector consists of the

metric, the two form B2 with field strength H3 = dB2 and the dilaton Φ. The R-R sector

is constituted by the zero, two and four forms C0, C2, C4 with field strengths defined by

Fp = dCp−1. The field strengths of the forms just mentioned may be redefined into the gauge

invariant quantities indicated by the tilde F̃3 = F3−C0∧H3 and F̃5 = F5− 1
2
C2∧H3+

1
2
B2∧F3.
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The five form F̃5 is self dual satisfying F̃5 = ∗10F̃5, with ∗D defining the Hodge dual in D

dimensions. Additionally we may redefine the fields

G3 ≡ F3 − τH3, τ ≡ C0 + ie−Φ, (6.74)

and re-express the action in the Einstein frame, which is more useful for studying gravita-

tional effects, by performing a Weyl rescaling

gE,MN ≡ e−Φ/2gMN , (6.75)

arriving at

SIIB =
1

2κ2

∫
d10x

√
−gE

[
RE − |∂τ |2

2(Im(τ))2
− |G3|2

2Im(τ)
− |F̃5|2

4

]

− i

8κ2

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
, (6.76)

with the overbar on G3 denoting the complex conjugate. The ten dimensional gravitational

coupling κ̃10 is related to the Regge slope, the string coupling gs = eΦ and κ as 2κ̃2
10 =

2κ2g2s = (2π)7(α′)4g2s [18, 20,72,144]. |G3|2 is defined as

|G3|2 =
1

3!
gM1N1
E gM2N2

E gM3N3
E GM1M2M3ḠN1N2N3 . (6.77)

The goal is to consider a warped compactification of type IIB supergravity from a ten

dimensional manifold on a six dimensional space X with compact topology such that M =

M4 × X, with M4 denoting a four-dimensional Minkowski spacetime. Let us begin by

introducing a warped metric ansatz for M of the following form

ds2 = e2A(y)ημνdx
μdxν + e−2A(y)gmndy

mdyn. (6.78)

By Poincaré invariance of M4, the complex warp factor A(y) is permitted to depend only

on the coordinates of X, the three-form G3 possesses necessarily vanishing components in
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M4, and that F̃5 take on the following form

F̃5 = (1 + ∗10)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (6.79)

with α(y) a complex scalar. There is a well known no-go [208–210] theorem for IIB compact-

ifications, stating that if the internal space is compact and non singular and localised brane

or orientifold sources are absent then the warp factor is necessarily trivial in the leading

supergravity approximation. This is straightforwardly demonstrated by deriving the equa-

tions of motion by variation of the action with respect to the metric in order to produce a

governing equation for the warp factor A(y) [20,144]. With the inclusion of localised sources

this equation takes on the following form

Δe4A =
e8A

2Im(τ)
|G3|2 + e−4A

(
|∂α|2 + |∂e4A|2

)
+ 2κ2e2AJloc, (6.80)

with Δ the Laplacian on X and Jloc defined in terms of the stress-energy tensor (TMN)loc

and action Sloc describing localised sources (D-branes or orientifold planes, ie. DBI + CS)

Jloc ≡
1

4
(gmn

E Tmn − gμνE Tμν)loc , (TMN)loc = − 2
√
gE

δSloc

δgMN
E

. (6.81)

If we omit localised sources Jloc = 0 and integrate equation (6.80) over the internal manifold

X, the left hand side vanishes since it is a total derivative, while each term on the right hand

side is positive definite, immediately implying A,α are constant and G3 vanishes.

Indeed, it has been carefully studied that additional string sources invalidate the no-go

theorem and permit warped compactifications, in particular the inclusion of these sources

leads to Jloc < 0 and the triviality of A,α,G3 no longer immediately follows [208, 211, 212].

Thus a warped geometry is a necessary requirement in order to generate a non-trivial three-

form flux.

Taking the brane sources into account, we may determine a set of constraints. The

sources contribute to the Bianchi identity for F̃5

dF̃5 = H3 ∧ F3 + 2κ2T3ρ
loc
3 , (6.82)
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where ρloc3 is the D3 charge density from the sources which are supported by delta functions

and T3 is the D3-brane tension, which for a general Dp-brane is

Tp ≡
1

gs(2π)p(α′)(p+1)/2
. (6.83)

Now inserting equation (6.79) into equation (6.82) and subtracting the result from equa-

tion (6.80) one finds [20,144]

Δ(e4A − α) =
e8A

24Im(τ)
|iG3 − ∗6G3|2 + e−4A|∂(e4A − α)|2 + 2κ2e2A(Jloc − T3ρ

loc
3 ). (6.84)

When integrated over the internal space X, the left hand side vanishes and the terms asso-

ciated with non-local sources are once again positive definite. Considering only sources that

satisfy the BPS bound J ≥ T3ρ
loc
3 , equation (6.84) is only satisfied if all sources considered

in fact saturate the BPS bound J = T3ρ
loc
3 , which are D3-branes, O3-planes and D7-branes

wrapped on four-cycles [20, 144]. Furthermore, the three-form flux must be imaginary self

dual (ISD) ∗6G3 = iG3, and the warp factor is required to be equivalent to the four-form

potential e4A = α. These criteria define ISD solutions. Thus in the presence of sources

obeying the BPS condition, only ISD solutions are permitted.

Compactification on a Calabi-Yau three-fold with a single Kähler modulus (contained

in the superfield ρ), before fluxes are turned on, there exist the massless complex structure

moduli ζα (α = 1, · · · , h2,1) and axiodilaton τ . The Kähler potential in this compactification

scheme of IIB at tree level (leading order in string loop expansions) denoted as K0 receives

contributions from all three types of superfields

K0 = −3 ln (−i(ρ− ρ̄))− ln (−i(τ − τ̄))− ln

(
−i

∫
X

Ω ∧ Ω̄

)
. (6.85)

The holomorphic three-form Ω depends on the complex structure moduli ζα. In general, the

Kähler potential K defines the Kähler metric Kij̄

Kij̄ ≡
∂

∂φi

∂

∂φ̄j
K(φ, φ̄), (6.86)
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and this in turn defines the kinetic and potential terms of the complex scalar fields of the

effective N = 1 supergravity theory in four dimensions

Lφ = −Kij̄∂
μφi∂μφ̄

j − VF . (6.87)

The F-term potential VF is completely determined in terms of K and the superpotentnial W

(in units of Mpl = 1)

VF (φ
i, φ̄i) = eK

[
Kij̄DiWDjW − 3|W |2

]
, DiW ≡ ∂iW + (∂iK)W. (6.88)

Note that in general, the indices i, j run over all complex scalars of the supergravity theory,

and thus in our case run over all moduli (ρ, τ, ζα for all α).

In the presence of nonzero three-form flux, two crucial consequences manifest. The first

is the generation of the Gukov-Vafa-Witten (GVW) flux superpotential for the Calabi-Yau

moduli, which we denote here as W0 [213]

W0 =

∫
X

G3 ∧ Ω. (6.89)

The Kähler potential in our case given in equation (6.85), satisfies

Kρρ̄
0 ∂ρK0∂ρ̄K0 = 3, (6.90)

and since the superpotential in equation (6.89) is independent of the Kähler modulus, the

resulting scalar potential is of characteristic no-scale type [214,215]

VF = eK0

∑
i,j 	=ρ

Kij̄
0 DiW0DjW0. (6.91)

VF is positive semi-definite and since at the minimum of the potential DiW0 = 0 ∀ i �= ρ,

then by equation (6.91) VF = 0 at the minimum. However, supersymmetry is only preserved

if DiW = 0 ∀ i, and since in general we may have nonperturbative corrections to the

superpotential that depend on the Kähler modulus ρ supersymmetry is not preserved in
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general.

The second consequence of nonzero three-form flux is that all complex structure moduli

and axiodilaton acquire supersymmetric masses, with the mass scale dictated by the flux

quantization condition. The reception of a mass may be understood most directly by ob-

serving that the moduli fields with the exception of ρ experience a potential in the third

term of the IIB supergravity action given in equation (6.76) [20,144,207]. The acquisition of

a mass stabilizes these moduli as they may be integrated out, and an effective theory for the

Kähler modulus ρ is established [20, 216]. In turn W0 may be treated as a constant, which

may be understood by expanding the flux superpotential W0 in powers of the non-Kähler

moduli fields about the supersymmetric minimum [20].

The final step in our construction then is to consider corrections to the no scale model, by

searching for corrections to the superpotential affecting the Kähler modulus, hence stabilizing

it by providing it a mass. Let us note quickly that the process of integrating out the

complex structure moduli and axiodilaton is justifiable so long as their mass scale is much

larger than that of the Kähler modulus [216]. The Kähler potential receives perturbative

corrections in the α′, gs expansions; conversely the superpotential receives none to any order

in either expansion largely due to the shift symmetry protecting Kähler moduli [217, 218].

Therefore with respect to corrections to the superpotential we consider solely nonperturbative

corrections. Additionally, we will omit higher order corrections to the tree level Kähler

potential given in equation (6.85) which may technically alter the potential for the Kähler

moduli, but ensuring the volume modulus is stabilized at large values relative to the string

scale ensures that omitting these corrections is consistent [207].

There are two well-known non-perturbative effects we will remark on that may contribute

to the superpotential. These are gluino condensation in the gauge theory inhabiting stacks

of ND7 D7-branes wrapping internal four-cycles of the Calabi-Yau space [219–221], and

Euclidean D3-branes wrapping four-cycles, also known as D3-brane instantons [222, 223].

Respectively, these two mechanisms generate superpotentials that may be expressed as

Wλλ = A1(ζ
α, Yk)e

− 2π
ND7

T ∝ e
−T3V4

ND7 , WED3inst = A2(ζ
α, Zk′)e

−2πT , (6.92)
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where T is a Kähler modulus, V4 is the warped volume of the four-cycle, and A1(ζ
α, Yk)

and A2(ζ
α, Zk′) are independent of the Kähler moduli but depend on the complex structure

moduli and on the respective positions of any D-branes Yk, Zk′ indexed by k, k′.

Thus the primary result is that there is evidence for nonperturbative corrections to the

superpotential that are exponential in form contributing to the GVW flux superpotential.

Promisingly for the ekpyrotic scenario, we may generalize the construction to multiple Kähler

moduli, and superpotentials from nonperturbative effects may be generated for each Kähler

modulus Ti [224,225] mimicking an effective multi-field model in four spacetime dimensions.

Thus in general, we have for the superpotential including either or a combination of the

non-perturbative superpotentials described in equation (6.92)

W = W0 +
∑
i

Aie
−aiTi + · · · , (6.93)

the ellipsis denoting sub-leading nonperturbative corrections [20]. However, for the time

being we restrict the analysis to a single Kähler modulus

W = W0 +Aeiaρ + · · · , (6.94)

with A, a being determined from the details of either or both of the nonperturbative effects

described above. Using the superpotential given in equation (6.94), the Kähler potential

given in equation (6.85) (with only ρ remaining), plugging into equation (6.88), setting the

axion in the ρ modulus to zero and letting ρ = iσ we obtain for the scalar potential of the

non-canonical scalar field σ

VF (σ) =
aAe−aσ

2σ2

(
1

3
σaAe−aσ +W0 +Ae−aσ

)
. (6.95)

A few comments are in order concerning the range of validity of this potential. In par-

ticular, σ � 1 to ensure that the supergravity approximation is valid and as stated earlier,

that perturbative corrections to the Kähler potential are negligible [207]. We also require

aσ � 1 in order for the sub-leading nonperturbative corrections in equation (6.93) to be ne-

glected [20]. Lastly, by equation (6.96) the Kähler modulus is stabilized in a controlled man-
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ner for exponentially small values of the GVW superpotentnial W0 	 A achieved through

tuning the fluxes H3, F3 as in [226]. We discuss these last few points in more detail below.V

SUSY AdS4 vacuum

min

Figure 12: The potential (multiplied by an overall factor of 1044) arising from the compact-
ification of F-theory on a Calabi-Yau four-fold in the presence of flux. By tuning fluxes
W0 = −10−20 and the contribution from non-perturbative effects as assumed large A = 1020.
The steepness of the potential is well motivated to be a = 2π, which corresponds to a value
of p ≈ 0.05 	 1 defined in the single field scaling solution of section 3. The supersymmetric
AdS minimum in this case is located at σmin ≈ 15.3 � 1.

The potential in equation (6.95) is plotted in figure 12. The ground state σmin is super-

symmetric (DiW = 0 ∀ i) since we have in addition DρW = 0, and the ground state may be

expressed in terms of W0

W0 = −Ae−aσmin

(
2

3
aσmin + 1

)
, (6.96)

and by equation (6.94)

W (σmin) = −2

3
Aaσmine

−aσmin . (6.97)

Thus the minimum of the potential given in equation (6.95) and hence the vacuum energy

is

VFmin = − a2A2

6σmin

e−2aσmin , (6.98)
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and since the relevant portion of the potential and ground state are negative the only space-

time permitted constrained by maximal symmetry is AdS4.

We also remark, that this mechanism involves competition between the GVW flux su-

perpotential given in equation (6.89) and the nonperturbative superpotentials given in equa-

tion (6.92), where the GVW flux superpotential is made small by fine-tuning fluxes in order

to stabilize the volume; this addresses the Dine-Seiberg problem of runaway vacua [227].
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Figure 13: A density plot whose vertical and horizontal axes are logarithmically scaled,
characterizing the magnitude of the supersymmetric minimum as a function of the GVW
flux superpotential W0 and the prefactor determining the contribution from nonperturbative
effects A, for fixed a = 2π, 4π. The blue point indicates the magnitude of the supersymmetric
minimum resulting from the tuned values for W0 and A in plotting figure 12. The dashed
black line indicates the threshold in which the supersymmetric minima are larger than one
order of magnitude above 1. The blue point and black dashed line are only present for the
a = 2π plot.

The exemplary potential provided in [207] was plotted for W0 = −10−4, A = 1 and a

value for the slope of the exponential a = 0.01 	 1. Here, we note that the nonperturbative

contributions in equation (6.92) motivate a value for a ≥ 2π. We argue that this is well

suited for the ekpyrotic scenario, where saturating the bound corresponds to a value for
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p ≈ 0.05 in the single field case in four dimensions (see section 3). Taking A, a,W0 to all be

real and W0 to be negative, also generally ensures that we obtain a scalar potential featuring

a negative exponential potential.

However, for perturbative corrections to the Kähler potential to be consistently neglected

the field values should obey σ � 1, in other words it should be stabilized at large values [221].

Figure 13 displays the magnitude of σmin as a function of the ‘parameter’ space of values

(W0,A), obtained by solving equation (6.96) numerically. Taking W0 and A to be real-

valued, implies the bound |A| ≥ |W0|, such that real-valued solutions exist for σmin. When

the aforementioned bound is saturated the location of σmin is null. We inevitably conclude

that for non-perturbative corrections to be leading, |W0| is forced to increasingly smaller

negative values and A is forced to increasingly larger values. This behaviour is accentuated

further with increasing a, as displayed in figure 13 by the secondary legend. Thus for larger

values of the steepness of the exponential, a higher degree of fine tuning of integral fluxes is

required for W0 [221].
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Discussion

We have argued here that ekpyrotic cosmology is at the very least an interesting alternative

to the inflationary paradigm by describing how it addresses the fundamental problems that

originally plagued standard big bang cosmology.

From the four dimensional quantum field theory perspective minimally coupled to clas-

sical Einstein gravity, an ekpyrotic phase of contraction dominated by a single scalar matter

field with Minkowski vacuum initial conditions generically predicts a strongly blue tilted

curvature perturbation spectrum in contention with current observations. Thus we argue

that in order to be consistent with current observations, it seems that the model should

be generalized to two scalar matter fields or deviate slightly from a purely exponential po-

tential. We argue this explicitly by generalizing to two scalar matter fields, and show that

an approximately scale invariant spectrum of entropy perturbations may be produced. We

then argue that this scale invariant spectrum may be transferred to the curvature pertur-

bation spectrum, since the entropy perturbations may act as a source term so long as there

is a nonlinear curve traversed in scalar field space. We then study a specific mechanism in

which this transference may be achieved, allowing agreement with current observations. It

is important to note that the original single field theory thus should be modified in order to

be consistent with observations. Many will view this as a contrivance to fit the data, and

rightly so, however one should also recall the numerous times this was done for inflation.

At the non-linear level, we introduce the covariant description of cosmological pertur-

bations. In future work, this framework will prove useful to calculate explicitly the non-

Gaussianities produced both during the ekpyrotic phase of contraction as well as during the

specific phase in which the curvature perturbation spectrum is inherited from the entropy

perturbation spectrum. Although we have not done the explicit calculations in this thesis,

they have been previously explored and we remark that they have been shown to be markedly

more prominent in ekpyrotic models than in general inflationary models [44]. We have also

argued that the predictions on the tensor spectrum is independent of the number of scalar

matter fields so long as the model admits approximately the same behaviour for the scale

factor with respect to the single field case. We show that the generic prediction is a strongly
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blue tilted spectrum, with the tensor spectral index nT ≈ 2. Thus we provide two sources

of testable predictions which differ from that of inflationary models, as non-Gaussianities of

inflationary models tend to be suppressed and the tensor spectrum is approximately scale

invariant.

From a more fundamental perspective the ekpyrotic model is quite naturally embed-

ded in string theory in so far as negative exponential potentials governing moduli fields are

commonplace due to nonperturbative effects. We provide the explicit example of open su-

permembranes extending between wrapped M-branes at low energy in heterotic M-theory.

Further, we motivate two instances in which the ekpyrotic model may be introduced, within

the context of M-theory compactified on an S1/Z2 orbifold or F-theory compactified on a

Calabi-Yau fourfold in the presence of nontrivial three-form flux.

We note that the proposition of the ekpyrotic scenario in type IIB supergravity compact-

ified on a warped Calabi-Yau threefold has not yet been put forward, and is a new idea.

This familiar construction stabilizes all complex structure moduli and axiodilaton, with the

Kähler modulus acting as the ekpyrotic field. In fact this stabilization procedure admits

similar solutions for multiple Kähler moduli and thus may be an interesting embedding for

multi-field models. We do however conclude that in order for non-perturbative contributions

to the superpotential to be leading corrections, the integral three-form fluxes must be finely

tuned which worsens as the steepness of the ekpyrotic potential increases.
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