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ABSTRACT

The development of deep learning has been driven by both algorithm in-

novations and high performance computing supports for big data processing in

real world. The gap between productivity-oriented tools targeting algorithm

innovations and task-specific tools optimized for performance and scalabili-

ty is growing. This created a barrier to bring new algorithm advancements

into real-world applications. To bridge this gap, our team presents a coheren-

t framework solution, called Minerva, which renders programming flexibility

and execution efficiency with a layered design. It provides matrix-based APIs,

leading to user programs as compact as Matlab ones. The user code is dy-

namically translated into a dataflow representation which enables underlying

executions against various hardware environments. Based on Minerva, we have

implemented some modern deep learning examples, such as CNN and LSTM.

For many modern deep learning architectures, Minerva is able to deliver per-

formance and scalability competitive with or better than existing task-specific

tools.
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ABRÉGÉ

Le dveloppement de lapprentissage profond est conduit la fois par linno-

vation algorithmique et par la haute performance dans le support technique

du traitement de grosses donnes dans le monde daujourdhui. Lcart entre les

outils pour linnovation algorithmique et les outils pour des taches spcifiques

optimisant la performance et la flexibilit est croissante. Ceci a crer une barrire

lapport des nouvelles avancs algorithmiques dans les applications du monde

daujourd’hui. Pour crer un lien entre cet cart, on prsente une solution sous

forme de structure logicielle, appel Minerva. Elle rend la flexibilit de la pro-

grammation et lefficacit de lexecution avec des couches de design. Elle offre

des API bass sur des matrices, qui mne a des programmes dutilisateurs aussi

compact que Matlab. Le code dutilisateur est dynamiquement traduit en un-

e reprsentation de flux de donnes qui permet lexecution contre des diffrents

environnement materiel. Bass sur Minerva, nous avons mis en place quelques

exemples d’apprentissage en profondeur modernes, comme CNN et LSTM.

Pour plusieurs architectures moderne de lapprentissage profonds, Minerva est

capable de dlivrer une performance et une flexibilit comptitive ou meilleure

que celles outils ddis a des taches spcifiques qui existent dj.
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CHAPTER 1
Introduction

1.1 Motivation

In the family of machine learning approaches, deep learning has now e-

merged as one of the most promising members. During past several years, it

has produced groundbreaking results across various domains of applications

such as image recognition, speech recognition, computer vision and natural

language processing [14, 26, 32]. On common databases such as ImageNet,

deep learning architectures such as deep neural networks, convolutional neu-

ral networks also claim the state-of-the-art performances [20].

Unlike traditional shallow neural networks, deep learning assumes a much

deeper and cascading hierarchy of non-linear neurons. These neurons are

trained to capture complex feature representations from the data. Higher-

level features are represented in terms of lower-level features. The ideas of

going deep, convolutional and recurrent themselves were proposed many years

ago, but they were not the mainstream when they were just proposed. Three

reasons lead to the popularity of deep learning today: the increasing processing

abilities of hardware, the increasing size of data which comes from real ma-

chine learning applications, and the innovations of training techniques (such

as dropout and restricted boltzman machine pre-training).

General Purpose Graphic Processing Units (GPGPUs) are a recent break-

through in parallel computing field. There are typically about one thousand

cores in a modern GPU with multiple streaming processors. This many-core

architecture of a GPU has demonstrated its powerful potential in high per-

formance computing. This hardware innovation provides strong supports for
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the idea of going deep and wide. Since NVidia’s CUDA programming model

for multi-GPU becomes more and more popular, libraries such as CUBLAS

for matrix computations are developed for advanced algorithm design. These

progresses enable many further advancements in deep learning.

To fulfill more complex classification tasks, more and more feature detec-

tors are requested for improving the learning ability. The size of data grows

much larger as well, so that the model can fit these parameters with suffi-

cient training data. This leads to complex models and lets the training of a

deep neural networks become both computationally intensive and I/O inten-

sive. To see this challenge, take Alexs model [20] for the ImageNet dataset

for example. The model contains 7 hidden layers, 650 thousand neurons and

60 million parameters. To train this model with 2 GPUs (GTX580) will take

one week. The model [10] that won 2012 ImageNet 1K category competition

is three times larger than this model in terms of the number of parameters,

and for the large-vocabulary speech recognition problem, which is the first

successful application of deep learning, the model contains 7 hidden layers,

with 429 input neurons, 32 thousand output neurons, and 3 thousand neurons

per hidden layer. Such a network contains 156 million parameters. To train

675 million input samples (98GB in total) with a single Tesla-class GPU, it

takes 75 days to converge to a good results. On high-end servers it would have

to take months to train. The need for a scalable system which can train fast

with the help of general purpose hardware is imminent.

Systems like GraphLab [22] and Spark [41] have shown good scalability

and efficiency when dealing with large scale applications. However limited by

their programming interfaces and especially their abilities to express matrix

operations, only a few deep neural networks were implemented using these

3



systems. People in machine learning community usually use productivity-

oriented tools such as Matlab and Octave. Their matrix-based API enables

the programming coupled with optimizations and visualizations of the model,

which are crucial routines for deep learning research works. The innovations of

training techniques are typically developed using these tools. The drawbacks

of these tools are also obvious. Their abilities to handle large amount of data

from real world are poor. The trend of big data computing requires the tools

that exploit hardware computability efficiently.

To implement given neural network models and process real data, peo-

ple often uses task-specific tools. Regarding different tasks there are typical

types of topologies (e.g. deep convolutional neural network for large-scale im-

age recognition problems, and recurrent neural network for natural language

processing). These tools target the trade-off between programmability and

scalability. They are typically optimized for certain kinds of network topolo-

gies by utilizing the benefit of GPU acceleration of matrix computation (e.g.

Cuda-ConvNet [19] and Caffe [17]), GPU cluster or distributed multi-CPUs

cluster (e.g. DistBelief [8]). This often leads to tight couples between the im-

plementation and the underlying hardware environment. For example, Caffe

aims at optimization on a single CPU-GPU environment, which makes multi-

GPU training on Caffe impractical to implement. The hardware limitations

could sometimes become an obstacle for the innovations of algorithms.

1.2 Our Contributions

So the dilemma is right affront: innovations of algorithms produced on

one platform are hard to be tested on the other. The gap between performance

and productivity is widening. We presented a prototype system solution to

meet this challenge. By this approach we can retain the programmability
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of the productivity-oriented tools, and meanwhile take advantages of modern

hardware environment.

Our prototype system, called Minerva, examines the advantages of these

classes of tools and tries to build a bridge over the gap. The programming

interface of Minerva is directly against a Matlab-like API, preserving com-

pact and matrix-based coding style. To migrate a Matlab or NumPy program

to Minerva is straight forward if necessary. The user program is then trans-

ferred to a data flow representation, which expresses the internal parallelism

maximally. This enables the system to exploit the heterogeneous hardware

efficiency underneath. (This part is a teamwork by my teammates Minjie,

Yutian and Chuntao.)

Based on Minerva’s underlying data flow engine, we explore the details on

efficient implementation of modern deep learning architectures. The APIs are

carefully designed so that good performance can be achieved without losing

programmability. Especially, Minerva enables users to exploit the computation

power of multi-GPU on the training procedure, delivering good scalability.

(This part is conducted by Tianjun and me, with helps from our teammates

on some optimization details.)

1.3 Thesis Organization

The remainder of this thesis is organized as following. In Chapter 2 we

introduce the general background of deep learning research. We will also

introduce an overview of current programming platforms for deep learning

applications in this Chapter. We will then describe the overall architecture

(Chapter 3), the design of the programming model (Chapter 4), and the run-

time implementation (Chapter 5) of our system. In Chapter 6 and Chapter

7, we share our implementation techniques and current experiment results on

5



some modern deep learning architectures. Finally, we summarize in Chapter

8.
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CHAPTER 2
Background

2.1 Related Work

Although deep learning research has a history of decades, large-scale deep

learning is a relatively new field. Before this direction becomes hot and attrac-

tive for many researchers in the machine learning community, people in the

system community have built a fair number of platforms that aim to speed up

Big Data computing. The pioneer in this field is the most ubiquitous MapRe-

duce [9] framework, as in the Hadoop [33] software library. After that we have

many distributed systems that are designed for various certain kinds of appli-

cations. DryadLINQ [40] and SCOPE [3] are designed for relational algebra.

Pregel [23] and GraphLab [22] are presented for large-scale graph algorithms

and analysis. MadLINQ [29] and Presto [37] aim at big matrix computa-

tion. For machine learning applications, we have Spark [41] which targets

at iterative in-memory algorithms, and Dandelion [31] which is designed for

machine learning algorithms across heterogeneous hardware clusters. Despite

their success for their target applications, it is somehow disappointing that,

these systems are not widely welcome among researchers in the community of

deep learning.

A typical deep learning algorithm iterates over a series of matrix compu-

tations. Therefore the most natural way to express this logic is to use tools like

Matlab or Octave. Due to their expressiveness and popularity, most advances

regarding deep learning algorithms are accompanied with release of Matlab

code. Packages like deep learning tools are not only for beginners, but also

easily modified and manipulated by adept researchers.
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Platforms such as python-based Theano [2] and Torch [7] sacrifice a cer-

tain amount of generality in order to gain specialized deep learning optimiza-

tions. These optimizations largely integrates with the underlying matrix com-

putation libraries such as MKL or CUBLAS. The user programs are compiled

into a series of matrix operations, calling into these libraries on CPU and GPU

respectively.

The training tasks of speech, vision and natural language processing re-

quire greater speed-up and scale-out, since they need to deal with large amount

of data from real world. In these cases, the model-oriented platforms like Caffe

[17], ConvNet [19] (for vision tasks with convolutional neural network mod-

els), Word2Vec [24] or RNNLM [25] (for natural language processing with

recurrent neural network models) are more welcome. Such platforms are often

hand-tuned and deeply optimized in order to cooperate with the underlying

hardware features such as cache hierarchies, multi-core CPUs and many-core

GPUs. Despite that they are derived from general deep learning architectures,

the major flexibility of their programs is mostly reconfigurability (e.g. the

number of layers, the size of kernels, activation functions etc.). As task-specific

tools, they are not expected to work well on other domains, or accommodate

new algorithm innovations smoothly.

Googles DistBelief [8] is a system built from scratch to handle large-scale

deep learning tasks. It runs over 16 thousand cores in a large CPU cluster.

Both model parallelism (parallelism within one model) and data parallelism

(parallelism across multiple coordinated models) can be expressed with the

framework of DistBelief. However, details on the programming model, system

design and implementation of DistBelief are not revealed to public. This

becomes one of the key drives for the project of Minerva.

8



2.2 Deep Learning Background

In this section, we examine several modern deep neural network models.

These models have been widely used by deep learning communities and have

been proven to deliver good performance in applications such as speech/vision

recognition and natural language processing.

2.2.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is the most common training proce-

dure in practice. The spirit of SGD is simple. Assuming θ to be our hypothesis,

D to be our training dataset, the SGD algorithm can be expressed as following:

Choose a initial hypothesis weights w and learning rate a.

Repeat until converge:

For all data point d{i} in D:

g = CalculateGradient(d{i}, w)

w = w - ag

The principle of SGD is to evaluate the loss function of our hypothesis

at each data point. In practice the training dataset D is usually partitioned

into multiple mini-batches {D1, D2, }. The update procedure is applied after

the gradient of each mini-batch is calculated. The number of data points that

are included in one mini-batch is usually treated as a parameter in the con-

figuration of a model. Such mini-batch mechanism provides compact matrix

computation when calculating the gradient, leading to faster convergence.

The following code is an example of a 3-layer feedforward neural network

which adopts SGD method in Matlab code. In this case, our hypothesis con-

sists of two matrices W and V , along with their corresponding bias vector b

and c. A mini-batch input{idx} is a matrix which consists of a series of data

samples column. The computation of the activation y at hidden layer layer2
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is shown in line 16. The output z of layer layer3 takes layer2 as input, and

produce the output for the whole model similarly. The loss function is the typ-

ical mean squared error between output z and the ground truth label{idx}.

When backpropagating, ze and ye are the error derivatives with respect to

layer3 and layer2 before applying sigmoid function. Their products with the

input of layer2 and layer1 yield the weight update matrices, modulated by

the learning rate factor.

% Setting Hyper-parameters

learning_rate = 0.1; numEpochs = 66; batchSize = 128;

% Initializing model parameters

W = 0.1 * randn(layer2, layer1)

V = 0.1 * randn(layer3, layer2)

b = 0.1 * randn(layer2, 1)

c = 0.1 * randn(layer3, 1)

%Loading training data

[inputs, labels] = LoadBatches(batchsize, ...);

%Learning Procedure

for epoch = 1 : numEpochs

for idx = 1 : length(inputs)

x = inputs{idx};

% feedforward pass

y = sigm(W * x + repmat(b, layer2, 1));

z = sigm(W * y + repmat(c, layer3, 1));

% backward pass

ze = z .* (1 - z) .* (z - labels{idx});

ye = y .* (1 - y) .* (W’ * ze);

% updating weight

10



W = W - learning_rate * ye * x’ / batchsize;

V = V - learning_rate * ze * y’ / batchsize;

b = b - learning_rate * sum(ye, 2) / batchsize;

c = c - learning_rate * sum(ze, 2) / batchsize;

end

end

Most of the deep learning models follow this basic feedforward-backpropagation

structure, but with much deeper and wider configurations. As we can see, to

program this multi-layer neural network architecture with matrix-based APIs

is simple. However, to scale it up is not so easy. One direction is to use

highly optimized underlying libraries for massive matrix computations. These

libraries are usually external to the productivity-oriented tools. Another way

to achieve the scale-up is by using the idea of Asynchronous Stochastic Gra-

dient Descent (ASGD), such as HOGWILD [30] algorithm which parallelizes

the traditional SGD algorithm without any locking. The idea of a ASGD al-

gorithm typically involves partitioning of the data, identical execution of each

individual process, and maintaining of a parameter server.

2.2.2 Convolutional Neural Networks (CNN)

CNN, inroduced by Kunihiko Fukushima [12] and improved by Yann Le-

Cun [21], is the leading neural network architecture for image recognition

tasks. Apart from the traditional image recognition field, CNN has recently

demonstrated its power in other fields such as artificial intelligence [6]. Unlike

multi-layer feedforward neural network, CNN adopts a different style when

doing the forward pass, as shown in Figure 2-1. One convolutional layer us-

es a set of input images, each with a filter (sometimes called kernel). Each

filter looks at every small portion of its corresponding input image, called it-

s receptive field, in order to detect good representations of the input. The
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Figure 2–1: Convolutional Neural Network (CNN)

filters convolve against every input image respectively, generating a stack of

feature maps. This procedure is usually followed by non-linear activations and

poolings. Relu activation is used for most of CNN architectures. The pooling

layers compute the maximum or average of feature maps over a small region,

combine the output and reduce the variance. These three typical operations

replace the typical straightforward matrix multiplications in feedforward neu-

ral networks.

The number of parameters, which is the size of filters, is much smaller

than a typical fully-connected weight matrix. For example, ConvNet [20] has

96 11×11 filters at the first layer. This doesn’t mean that training CNN can

be much faster. The input has 3 RGB channels of raw image with 224×224

pixels each. With a 4×4 stride, the output of this convolutional layer contains

96 feature maps with 56×56 pixels in each of it. Since the size of feature maps

12



decreases with the depth of layers, layers close to the output layer tend to have

more feature maps to preserve the information carried along from the input

images, and balance the computation load. Therefore the number of pixels in

hidden layers can be large. Another reason for the computation to be slow

is that the addresses of these pixels in memory is not continuous for matrix

computation. Implementation of Caffe [17] includes one-to-one memory copy

on pixel level, which is a non-neglectable cost.

This structure of CNN is very effective for learning patterns in natural

images. However implementing CNN correctly is difficult. Therefore people

in deep learning community tend to use existing tools such as Caffe [17] or

cudnn [4] instead of implementing one on their own.

2.2.3 Recurrent Neural Network (RNN)

RNN is another important variation of deep learning models. The major

distinction between RNN and classical neural networks is that RNN has in-

ternal cycles. Figure 2-2 shows a typical RNN example, where hidden units

have self-loop connections. This topology brings the concept of time series

into the training of this model. The output of the hidden layer at time step t

will be the input for the same hidden layer at time step t+ 1. As such, RNN

incorporates temporal knowledge and resolves long-range dependencies. The

following equations describe the forward pass of training of RNN:

ht = g(Wxhxt +Whhht−1 + bh)

yt = g(Wxhht + bz)

g is an element-wise non-linear activation function (e.g. a sigmoid func-

tion), xt is the input, ht is the hidden state. yt is the output at time step t,

produced by the same way as multi-layer feedforward network.

Though the structure looks shallow, with temporal knowledge the learning

procedure is deep. One way to see this topology is that we unroll the network

13



over time, as shown in Figure 2-2(a)(b). The training procedure is then similar

to classical feedforward network. This procedure is called back-propagation

through time (BPTT). BPTT typically goes back in a limited time steps.

2.2.4 Long Short Term Memory (LSTM)

LSTM is a variation of RNN architecture. It was proposed by Sepp

Hochreiter and Jurgen Schmidhuber [15] in 1997. Recent breakthrough on

image description task [11, 38] and translation task [5, 35] make this architec-

ture impressive to the public.

There are several weaknesses of the traditional RNN. The major one is

that the error gradients vanish or explode exponentially with the number of

time steps when doing BPTT, typically referred as an ”error carousal”. There

are two typical ways to address this issue within the old model. The first one is

to limit the time lags of the BPTT procedure, which sacrifices the ability of the

network to learn long term data. The second one is to force the error flow to

be constant by setting parameters. This approach enables a LSTM network to

cooperate with infinite time lags, but introduces many weight conflicts which

make learning difficult. The major difference between LSTM and traditional

RNN is that LSTM provides a gate mechanism that allows the network to

achieve the following properties:

1. ability to avoid the exponentially error gradients vanishing and exploding

problem;

2. ability to learn when to forget the previous hidden states and when to

update the current hidden state with new gradients.

Figure 2-3 shows the architecture of a LSTM memory block. The input at

time step t is composed by two parts, the data at time step t and the output at

the previous time step t−1, just like the unrolling procedure of the traditional

RNN. There are three modulating gates that control one LSTM memory block,
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Figure 2–2: Recurrent Neural Network (RNN). (a) the simplest RNN topology;
(b) the forward pass after unrolling the network; (c) the backward pass after
unrolling the network

15



Figure 2–3: An Long Short Term Memory (LSTM) memory cell
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the input gate it, the output gate ot and the forget gate ft, each with its own

weight matrix. The modulating factor of each gate is generated by the input

and its own weight matrix, normalized to (0, 1) by the sigmoid function. At

time step t, the memory cell ct at time step t is composed by its previous state

ct−1 at time step t − 1, modulated by the forget gate ft, and a function gt of

the current input and previous hidden state, modulated by the input gate it.

The output of this block is modulated by the output gate ot. The equations

that express the forward procedure of the memory cell are shown as following:

it = σ(Wxixt +Whiht−1 + ct−1 �Wxc + bi)

ft = σ(Wxfxt +Whfht−1 + ct−1 �Wxf + bf )

gt = φ(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � gt

ot = σ(Wxoxt +Whoht−1 + ct �Wxo + bo)

ht = ot � φ(ct)

Here φ(x) = 2σ(2x)− 1. Each gate has its own weight matrix (Wxi, Wxf ,

Wxo). The input gate enables a LSTM network to learn whether it should

accept the receiving input. The output gate enables a LSTM network to

learn whether it should output its result. When doing BPTT, the errors may

be cut off by these gates so that the property 1 can be achieved by regular

back-propagation. Therefore the disadvantages of the naive approach using

by traditional RNN are avoided. These additional gates enable the LSTM to

learn long-term dynamics, achieving learning ability that traditional RNN is

not capable of.
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CHAPTER 3
System overview

(The main body of Minerva system is a group work by my teammates

Minjie, Yutian and Chuntao. I am presenting details about the underlying

system from Chapter 3 to Chapter 5, because they are needed to understand

how to optimize user programs and where potential bottlenecks could be.)

3.1 Finding Parallelism

A deep learning system takes advantages of parallelism on two levels:

model parallelism, and data parallelism (DistBlief [8]). For model parallelism,

a single model can be trained by multiple cooperating processes simultane-

ously, with each taking care of a fraction of the entire model. The output

of the parallel training procedure must be the same as if the entire model is

trained by just one process. Our approach to achieve model parallelism is by

transforming the user-defined model into a dataflow representation, a direct-

ed acyclic graph. This graph is then partitioned by the runtime. A process

will be called to execute one of the partitions of the graph, while resolving

data dependencies and communications in a distributed way. The execution is

asynchronous, which means that there is no central coordination operation a-

mong all processes. Each process is called via asynchronous remote procedure

call, which overlaps the communication overhead maximally.

Data parallelism is a coarse level of parallelism comparing to model par-

allelism. In Minerva, users may define several parameter servers, each asso-

ciated to one machine. The input data set is then partitioned into several

data shards, and distributed across all parameter servers, achieving paral-

lel executions. Each parameter server updates its local weights respectively
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Figure 3–1: Consider a DAG as above. The yellow vertices are associated
to GPU0 and the green ones are associated to GPU1. Assume the execution
frontier at some moment is the dash line. The data communication and the
matrix multiplication on the frontier can be proceeded simultaneously. This
can be done by the scheduling of a CPU-GPU architecture.
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Figure 3–2: Asynchronous Stochastic Gradient Descent (ASGD)

and asynchronously. The weights are exchanged among all parameter server-

s periodically. This scheme can be regarded as a decentralized variation of

Asynchronous Stochastic Gradient Descent (ASGD) algorithm. Users may

also implement the exact ASGD scheme (Figure 3-2), which has a central-

ized parameter server. In ASGD, The training procedure is executed among

several worker machines with the same data partition strategy. Each worker

process exchanges its own weight updates with the parameter server and gets

the latest updated weights respectively. Essentially, Minerva has no domain

knowledge of these user-defined data, giving flexibility for the users to design

their own scheme.

3.2 Overall Architecture

Figure 3-3 illustrates the overall architecture of Minerva system. The sys-

tem execution is logically divided into two phases. The first phase converts the

frontend user program into a dataflow representation, which is a logical Di-

rected Acyclic Graph (DAG). The graph generated will be referenced for data
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Figure 3–3: The overall architecture of Minerva system [39]

placement decision and further parallel execution plan. This phase is hardware

independent. Therefore it separates the flexibility of Minerva’s programming

APIs and the underlying support of heterogeneous hardware environments.

The overhead to generate this dataflow graphical representation is negligible

because its scale is far more incommensurate to the actual data execution.

The second phase evaluates the logical DAG generated by the first phase

concretely. A calling for the actual data to be printed or by other use external

to Minerva system will trigger this phase. Each process takes a portion of

21



the graph, which is a induced graph generated by a subset of vertices. With

data parallelism is handled by the first phase, the second phase focuses on the

performance improvements on model parallelism. Multi-core CPUs and GPU

acceleration are the major two advantages provided by hardware environments.

To exploit GPU acceleration is straightforward, the process just executes the

op vertex if the corresponding GPU implementation is available and there is

sufficient resource for this execution. The details of exploiting the resources

of Multi-core CPUs will be discussed in following chapters.
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CHAPTER 4
Programming Model

A fair alternative to express the model is by adopting a graph-style rep-

resentation. After all a neural network is essentially a graph model, and we

actually tried this direction before. Our first attempt used the underlying

gather/scatter/apply API in GraphLab [22] to build a deep learning architec-

ture. The benefit of this approach is that the parallelism inherent inside this

graph-style model is directly handled by the underlying system. However the

lack of the programmability becomes a severe drawback. We have to break the

entire training procedure into isolated vertex programs. Simply programming

and debugging a compact matrix computation takes a great deal of efforts.

This drawback becomes the major reason for us to give up this approach.

One can achieve more fined-grained model parallelism by partitioning

the matrix. As it turns out, on a multi-core CPU machine, Intel’s MKL

already leverages multi-threaded implementation on the multiple cores. This

provides another opportunity to exploit the model parallelism and boost the

performance.

Despite the hardness of its programmability when dealing with neural net-

works, the graph-based approach is still valuable for its strength in expressing

the natural parallelism. Minerva system combines the common matrix-based

programming interfaces with the underlying graph representation. This can

be summarized as ”program with matrices, build as a graph”.
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4.1 Minerva API

(The python-API layer of Minerva is implemented by Yutian and me.

Yutian implemented the CNN APIs and the Select-operations for LSTM pro-

gramming.)

Minerva provides matrix-based APIs (Table 4-1). Users can easily adopt

matlab coding style to define the model and training procedure. The user pro-

gram is coded in python, and the underlying runtime system is implemented

using c++. We use Boost Python library [1] to make the frontend user code

in python cooperate with the underlying system code in c++.

The basic data type in deep learning is defined in matrix. A matrix in deep

learning algorithm may be a hyper-matrix, which means that the dimension of

a matrix may exceed 2 (e.g. the basic data type blob in Caffe [17] has dimension

of 4). Users can define a matrix with arbitrary dimension by initializing the

values of its entries with constant or random variables as following:

W = owl.zeros([10, 10], 0.0, 0.1)

B = owl.bias([10, 1])

where W is a 10 by 10 matrix filled with entries by Gaussian distribution

with mean 0.0 and standard deviation 0.1, B is a 10 by 1 matrix with all zero

values. owl is the name of Boost.Python module created by Minerva system.

The Minerva APIs are all defined in this module, which needs to be imported

on the head of a Minerva user program.

Minerva doesn’t provide specific I/O interfaces. Instead, we provide inter-

faces that enable transformation from a NumPy [28] array to the basic array

type in Minerva system and vice versa. We encourage users to directly use

SciPy [18] packages to do I/O operations, since SciPy packages provide con-

venient interfaces for users to read data from a mat-file, which is one of the
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Table 4–1: The Minerva APIs

Catagory APIs
Matrix Creators A = zeros(scale)

A = ones(scale)
A = randn(scale, mean, var)
A = randb(scale, p)

Matrix Multiplication A = B * C
A *= B

Matrix Layout A = B.trans()
A = B.reshape(scale)

Element-wise Operators A = B op C
(multi-variate) A += B

A -= B
A /= B

Element-wise Operators A = B op v
(unary) A = v op B

A += v
A -= v
A /= v

Reductions A = B.sum()
(unary) A = B.sum(dim)

A = B.sum(scale)
A = B.max()
A = B.max(dim)
A = B.max(scale)
A = B.argmax(dim)
A = B.count zero()

Element-wise Functions A = mult(B, C)
A = sigmoid(B)
A = exp(B)
A = ln(B)
A = relu(B)
A = tanh(B)

Interface with NumPy NArray = from numpy(ndarray)
ndarray = to numpy(NArray)
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most common file formats in machine learning, defined according to Matlab

convention.

In Minerva, a matrix either has to be directly initialized from the model,

or has to be a result of computations. Such computations could be matrix

multiplications or Element-wise operations. For example, the activation of a

hidden layer is usually given by y = owl.sigmoid(W ∗x+b), where owl.sigmoid

is an element-wise function that produces sigmoid function for every entry in

the input matrix.

Notice that the second dimension of matrix x is the size of one mini-batch,

but the corresponding dimension of bias matrix b is just 1 because b is actually

a vector. We need to replicate the bias vector b so that the resulting matrix

has the same dimension of W ∗ x. In Matlab this is handled by a function,

called repmat, which returns tiling of a matrix. However we notice that this

is a very common type of operations. Therefore we don’t create equivalent

function to repmat in Matlab. When doing element-wise adding between

two matrices, Minerva runtime system automatically detects the dimension

inequality between the two operands, and replicate the smaller matrix so that

their dimensions are equal to each other.

Convolutional neural networks introduce some other operations which are

not by matrix convention. There are four basic types of operations: convolu-

tion, pooling, activation and normalization. Only activation operations among

the four are element-wise so that we can adopt typical matrix operations.

However the key operations belong to first two types. People feel reluctant to

implement these two types of operations due to the difficulties in programming

and debugging. Minerva system addresses all three convolutional operations

by using similar interfaces as cudnn [4] (shown in Table 4-2).
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Table 4–2: The Minerva APIs for CNN operations

Catagory APIs
Convolution top = conv forward(bottom, filter, bias, conv info)

error = conv backward data(diff, bottom, filter, conv info)
filter update = conv backward filter(diff, bottom, filter, conv info)
bias update = conv backward bias(diff)

Activation top = activation forward(bottom, algo)
top = softmax forward(bottom, algo)
error = activation backward(diff, top, bottom, algo)
error = softmax backward(diff, top, algo)

Pooling top = pooling forward(bottom, pool info)
error = pooling backward(diff, top, bottom, pool info)

Normalization top = lrn forward(bottom, scale, local size, alpha, beta)
error = lrn backward(bottom, top, scale, diff, local size, alpha, beta)

The bottom and top variables are the matrix parameters for the corre-

sponding convolutional functions. They inherit from Minerva’s basic matrix

data type. The only constraint is that the matrices involved in convolutional

computations are required to be 4-dimension. The conv info and pool info

are sets of configuration information (e.g. the size of kernel, padding and

stride) that is required for convolutional and pooling functions.

To support batch training of Long Short Term Memory (see section 6.2.2),

we add matrix indexing APIs as well. For instance, A = B.Select(vectorIdx)

can be easily used to fetch a batch from the embedding table. The matrix A

is composed of columns from matrix B, indexed by vector Idx. To support

convenient updating of the embedding table, we designed SelectiveSub, which

is somewhat an inverse operation of Select plus a matrix substraction.

4.2 Expressing Parallelism

The first phase of Minerva system execution, mentioned in Section 3.2,

takes the user program as its input and transform it into a dataflow represen-

tation. For example, consider the following clause y = owl.sigmoid(W ∗x+b).

The corresponding DAG is shown in Figure 4-1.
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Figure 4–1: The DAG representation for y = owl.sigmoid(W ∗ x+ b)

The vertices of the dataflow DAG are distributed across several hardware

environments to run the actual execution according to user configurations.

Such information is associated to each vertex in DAG. Minerva system has

portable APIs for users to define such configurations. Users may manipulate

the distribution via a concept which we called ”virtual device”. A ”virtual

device” is typically corresponding to a single GPU or a CPU, which can be

defined using following clauses:

cpu device = owl.create cpu device()

gpu device = owl.creat gpu device(gpu id)

The first clause defines a ”virtual device” that consists of a GPU. The

second clause defines a ”virtual device” that consists of a GPU with device id

gpu id (the same device id when calling cudaSetDevice(gpu id)). The distri-

bution of the user code is then simply accomplished by calling the following

clauses:

owl.set device(cpu device) or owl.set device(gpu device)

28



These clauses indicate that the user program coming after these claus-

es will be eventually executed in hardware associated to them until another

owl.set device is called or the end of the user program. The device info set by

owl.set device will be accompanied to each vertex in the dataflow DAG.
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CHAPTER 5
System Design

The two-phase execution, as shown in Figure 3-2, is identical in every

Minerva process. Minerva system first builds an internal logical DAG repre-

sentation of the model defined by symbolic execution of the frontend program.

This phase is single-threaded. It stops when a Eval() statement is hit. User

may call this statement explicitly, or Minerva system will eventually call this

statement automatically when the data is required immediately for external

use (e.g. I/O use). The backend execution procedure of the DAG starts from

the frontier of the graph and goes along with a downstream way. The frontier

data points are assumed to be ready at the beginning of this phase. When all

of the vertices are processed, this second phase is then terminated. When the

second phase is thoroughly processed, Minerva system will return to symbolic

processing of the user code.

5.1 The Dataflow Representation

The dataflow graph has two types of vertices, computing vertex and da-

ta vertex. A computing vertex represents an operation, typically a matrix

operation (e.g. matrix multiplication, element-wise addition, etc.). A data

vertex represents an operand. Their dependency relations are represented by

the connections between them. The ingoing connections to a computing ver-

tex indicate the inputs of the corresponding operation. The result of the a

computing vertex is associated to the data vertex at the opposite side of an

outgoing connection.
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5.2 Runtime Design and Implementation

When the second phase is triggered, which means when the data vertex

is actually called to be evaluated, the statuses of all vertices related to the

resulting data vertex are marked as ready. The frontier of the DAG is a set of

vertices that has no incoming edges. The data associated to these vertices is

fed by initialization or external I/O interfaces. Minerva system adopts a push

style to schedule the execution of all ready vertices, starting from the frontier.

Each vertex is associate to corresponding hardware information, the ”vir-

tual device” which it will be dispatched. Each device has its own scheduler

to handle multi-thread or multi-stream execution. The corresponding task of

each computing vertex will be pushed to its designated device. The ownerships

of data vertices are determined by the location of its neighbouring computing

vertices. The system automatically handles data communication among CPU

and GPU in a distributed and lazy way. Data transmission is only performed

when the scheduler finds required data missing locally. In this case, there will

be a blocking call waiting for the corresponding data. The scheduler then

takes all computing vertices that have their inputs ready, allocates hardware

resources such as memory and threads for the tasks. A thread pool will assign

threads that will actually carry the computation. On the other hand, the out-

put data generated by a computing task stays locally (the main memory or

GPU memory). If the data is demanded by other devices it will be appended

with an RPC call which will send the data. In order to overlap the commu-

nications and the computations as much as possible, the computing vertices

which have remote posterior vertices have higher priorities than others. When

all the posterior computing vertices of a data vertex are called, the associated

data is then garbage collected. As we can see, this entire procedure needs no

central coordination and is totally distributed.
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Minerva system supports heterogeneous hardware. When the input data

is ready, the actual computing function is called according to the respective

underlying hardware environment. All of Minerva APIs regarding matrix com-

putations have available GPU implementations. For most of matrix compu-

tations, Minerva system uses Intel’s MKL Library [16] and Nvidia’s CUBLAS

Library [27] for running on multi-core CPUs and GPUs respectively. For CNN

operations, Minerva system uses cudnn [4] Libraries which implement complex

CNN operations efficiently on GPU.

5.3 Optimizations

An important optimization strategy of Minerva system is to hide the I/O

latency and the computing time. Minerva system adopts a lazy style to sched-

ule the tasks. Most of clauses in the user program merely define the topology.

For these clauses, the actual computations still wait for scheduling and eval-

uating when they are called by the runtime. On the other hand, Minerva

interfaces integrate with the external I/O tools such as SciPy, therefore the

I/O execution is actually carried on when they are called. The computation

time and I/O cost can be overlapped if they are data independent. Minerva

achieves the overlapping by defining asynchronous evaluation primitives:

m.start eval(): a non-blocking call to start the evaluation phase of matrix

m.

m.wait for eval(): a blocking call to get the actual value of matrix m.

The value of m is computed when this call returns.

When the start eval() method is called, Minerva system will finish the

first phase of the DAG representation, then start a new thread to handle the

second phase in runtime concurrently. The main process will move on and

handle the coming I/O operations. The system will automatically block the

execution when the corresponding data is called by other tasks.
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Convolution operations deserve some special treatments due to its special

inherent parallelism. Notice that the forward computations among all feature

maps in a same layer are independent to each other. Parallelism of forward

convolutional operations can proceed by partitioning feature maps and con-

volve them concurrently. The exact grouping trick is also used in Caffe [17],

where the numbers of groups are set by the user in the configuration file.

Such mechanism leverages load-balance issue when performing convolutional

computations.
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CHAPTER 6
Application Implementation

We have implemented several common deep learning networks based on a

variety of deep learning research tasks with Minerva system. Our experiences

of implementing these deep learning networks also provide us an additional

guide of some critical utilities that Minerva system should support. For exam-

ple, we add the script ability to run a Minerva system out of a configuration

file. This is a useful tool when running experiments with many different pa-

rameter configurations. The support for this utility is also suggested by some

advanced machine learning researchers. Deep learning programs can be dif-

ficult to implement correctly. Therefore we add a built-in gradient checker

which helps detect the potential bugs.

The matrix-based Minerva programs can succinctly express various deep

learning algorithms ranging from speech, natural language processing to com-

puter vision, leading to programs as compact as Matlab versions. The most

prominent advantage is that Minerva system is adept at developing algorithm

innovations and advanced optimizations. The programmability doesn’t sacri-

fice the performance. As we will show in the following, Minerva system renders

scalable, comparable or better performance than task-specific implementation-

s.

6.1 Convolutional Neural Network

Recent development suggests that CNN can also be in arsenals for ap-

plication fields other than computer vision. The performance of CNN can

sometimes be improved by simply increasing the scale of the CNN topolo-

gy [6]. The obstacles of doing so come from both hardware limitations and
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software constraints. Training a network which exhausts the power of CNN

by increasing the scale of the topology could take days or even weeks. The

computation-intensive property of CNN tasks makes it highly suitable for Min-

erva system to execute.

6.1.1 Implementation

We present the details of programming Alex Krizhevsky’s model [20], a

very successful model which won prize of ImageNet 1K classification competi-

tion, using Minerva. There are 5 convolutional layers, each with a convolution,

local-normalization sub-layers. The input layer contains 3 channels of 227-by-

227 RGB images, randomly cropped from a original 256-by-256 raw image. It

is then followed by a convolution sub-layer, a local normalization layer and a

max-pooling sub-layer with a stride of 2, generating 96 56-by-56 feature maps.

The second convolutional layer has a convolution layer with stride of 1 and

padding of 2, and a pooling layer which has the same configuration as the

previous one. This layer generates 256 feature maps. The third layer and the

fourth layer doesn’t contain pooling layers. The numbers of output feature

maps are both 384 for these two layers. The last convolutional layer contains

a max-pooling layer with the same configuration as the first two layers, gen-

erating 256 feature maps, each with size of 6-by-6. The filter size varies from

11-by-11 (the first layer) to 3-by-3 (the last three layers). With the dimension

of weights defined ahead, we can define the feed-forward pass of this part with

only 9 lines of Minerva code.

acts[0] = data # input

acts[1] = ele.relu(conv forward(acts[0], model.weights[0],

model.bias[0], model.conv infos[0])) # conv1

acts[2] = pooling forward(acts[1], model.pooling infos[0]) #

pool1
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acts[3] = ele.relu(conv forward(acts[2], model.weights[1],

model.bias[1], model.conv infos[1])) # conv2

acts[4] = pooling forward(acts[3], model.pooling infos[1]) #

pool2

acts[5] = ele.relu(conv forward(acts[4], model.weights[2],

model.bias[2], model.conv infos[2])) # conv3

acts[6] = ele.relu(conv forward(acts[5], model.weights[3],

model.bias[3], model.conv infos[3])) # conv4

acts[7] = ele.relu(conv forward(acts[6], model.weights[4],

model.bias[4], model.conv infos[4])) # conv5

acts[8] = pooling forward(acts[7], model.pooling infos[2]) #

pool5

The last convolutional layer is immediately followed by three fully-connected

layers, each with a weight size of 4096-by-9216, 4096-by-4096 and 1000-by-

4096, respectively. This structure has 60 million free parameters in total.

re acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]),

num samples]) # reshape the conv layer into a 1−dimension layer

acts[9] = ele.relu(model.weights[5] ∗ re acts8 +

model.bias[5]) # fc6

mask6 = owl.randb(acts[9].shape, dropout rate)

acts[9] = ele.mult(acts[9], mask6) # drop6

acts[10] = ele.relu(model.weights[6] ∗ acts[9] +

model.bias[6]) # fc7

mask7 = owl.randb(acts[10].shape, dropout rate)

acts[10] = ele.mult(acts[10], mask7) # drop7

acts[11] = model.weights[7] ∗ acts[10] + model.bias[7] # fc8
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out = softmax forward(acts[11], soft op.instance) # prob

6.1.2 Multi-GPU Training

To distribute the computation, we divide each min-batch into several

portions of equal size. These portions are fed to each device so that each

device has the same amount of workload. This can be easily manipulated by

using the device APIs at each training iteration:

owl.set device(gpu0)

out1 = train one mb(model, data1, label1, weightsgrad1,

biasgrad1, dropout rate)

owl.set device(gpu1)

out2 = train one mb(model, data2, label2, weightsgrad2,

biasgrad2, dropout rate)

The train one mb method contains both forward and backward pass. As

we can see, the two train one mb functions are executed against different

GPUs. They use the same model class and dropout rate so that the configu-

rations of both executions are the same. Each GPU functions as a parameter

server. The data passed to the two functions are totally separated so that

the dependencies during execution are guaranteed. The weight updates come

right after the second train one mb call, as well as momentum. In this case

the gpu1 device will carry on the updating and the system will automatically

handle the data copy.

One trick to improve the parallelism is to increase the scale of the DAG

between two evaluations. This trick provides more freedom for the scheduler

to exploit the model parallelism. This can be done by calling the evaluation

method periodically after a certain number of iterations. For example one can
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write the following code so that the backend evaluation is carried on after each

ten iterations.

for (samples, labels) in get train mb(minibatch size):

count = count + 1

# begin of training & updating

...

# end of training & updating

if count % 10 == 0:

print training accuracy(out, label)

The print training accuracy method will get the actual value of the ma-

trix out by calling its evaluation function. The DAG evaluation is triggered

only when this statement is hit. The caveat is that the GPU memory limit

could be exceeded due to large DAG.

6.2 Long Short Term Memory (LSTM)

Long Short Term Memory is an important variation of recurrent neural

networks. Recent breakthrough on image ”show and tell” tasks [11, 38] have

demonstrated the learning power of this structure. The implementations for

this particular architecture have come out one after another. The based en-

vironment varies from productivity-oriented tools such as python-numpy to

task-specific tools such as theano and RNNlib. In this section we introduce

the implementation of LSTM using Minerva, and our current progress in op-

timizing the LSTM training based on this implementation.

6.2.1 Implementation

The coding style of Minerva is as succinct as a python-numpy version. The

model of our implementation contains one input layer, one hidden layer and

one output layer, as every other existing implementation does. Although the
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gate matrices are separate, the behaviours of these gates are similar. Current

implementations often merge these matrices into one large weight matrix. The

following c++ code shows one feed-forward pass for one training sample.

for (int t = 1; t < sent.size(); ++ t)

{

data[t] = emb weight[sent[t − 1]];

// compute input gate

act ig[t] = ig weight data ∗ data[t] + ig weight prev ∗

Hout[t − 1] + Elewise::Mult(C[t − 1], ig weight cell) +

ig weight bias;

act ig[t] = Elewise::SigmoidForward(act ig[t]);

// compute forget gate

act fg[t] = fg weight data ∗ data[t] + fg weight prev ∗

Hout[t − 1] + Elewise::Mult(C[t − 1], fg weight cell) +

fg weight bias;

act fg[t] = Elewise::SigmoidForward(act fg[t]);

// compute feed forward activation

act ff[t] = ff weight data ∗ data[t] + ff weight prev ∗

Hout[t − 1] + ff weight bias;

act ff[t] = Elewise::TanhForward(act ff[t]);

// compute cell

C[t] = Elewise::Mult(act ig[t], act ff[t]) +

Elewise::Mult(C[t − 1], act fg[t]);
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// compute output gate

act og[t] = og weight data ∗ data[t] + og weight prev ∗

Hout[t − 1] + Elewise::Mult(C[t], og weight cell) +

og weight bias;

act og[t] = Elewise::SigmoidForward(act og[t]);

Hout[t] = Elewise::Mult(Elewise::TanhForward(C[t]),

act og[t]);

NArray Y = Softmax(decoder weights ∗ Hout[t] +

decoder bias);

}

The time step t goes along with the length of a training sample. As we

can see, the DAG generated at one time step of LSTM is more complicated

than the DAG of one feed-forward pass of AlexNet (Section 6.1.1). This un-

rolling procedure results in a very deep chain, while the granularity of matrix

operations is relatively light. The intermediate activations, cells and hidden

outputs are stored to be used in back-propagation.

6.2.2 Batch Training

One way to accelerate the training procedure is to batch the training

samples. This procedure, usually adopted in CNN training, groups separated

per-sample training procedures into a large compact training procedure. It

greatly increases the granularity of a single operation, providing potentials to

exploit the GPU computation power and boost the performance.
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There is a tricky issue when we group a bunch of samples into one batch.

The lengths of samples are not equal. We simply fill short samples with empty

symbols in tail, making all samples in one training batch equally long. This

trick may force the model to do lots of inferences from an empty symbol to

itself when doing feed-forward process. When doing back-propagation process,

the error vectors are timed with a mask matrix, preventing the useless empty-

to-empty inference errors from going back. A more clever but arbitrary way

is to concatenate short samples into long samples before grouping them.

To migrate to a batch version of LSTM from a single-sample version is not

hard. Making the batches and updating the embedding weights are the major

gaps between these two versions. To make a batch, the user can use the Select

primitive, fetching columns from the vocabulary embedding table with only

one extra line of code. To update embedding of all samples in one batch, the

SelectiveSub primitive can be used without additional for-loops. The following

codes show the difference of updating between these two versions.

single-sample version:

for (int t = 1; t < dEmb.size(); ++ t)

emb weight[sent[t − 1]] −= rate ∗ dEmb[t];

multi-sample(batch) version:

for (int t = 1; t < dEmb.size(); ++ t)

emb weight.SelectiveSub(rate ∗ dEmb[t], index batch[t − 1]);

where indexbatch is a vector of sample indices in this batch.

The boost brought by this batch method is prominent. A batch size of 10

would make one training epoch 4× faster. A batch size of 128 would raise this

number to approximately 25×, which is much faster than the equivalent numpy
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implementation. The batch size cannot go arbitrary large. There are two

ceilings for simply increasing it. The first one is GPU memory. Having large

batch size may overflow the GPU memory due to the intermediate matrices

generated during training. The second one is the accuracy. Increasing the

batch size usually damages the accuracy for one training epoch. However, it

could lead to a better result by enabling us to train much more epochs. The

tuning of batch size is task-related and beyond the scope of this paper.

To implement a multi-GPU LSTM model is both tricky and interesting.

We will present details of our exploration in Section 7.2.1.
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CHAPTER 7
Experiments and Evaluations

In this chapter we present the initial experimental results of several suc-

cessful models implemented based on Minerva platform. Among these mod-

els, AlexNet [20] for 1K ImageNet classification, the VGG net [34] and the

GoogleNet model [36] belong to the convolutional neural network category.

The tests are executed against a cluster of GeForce Titan Black GPUs. We al-

so present the Long Short Term Memory model, an advanced recurrent neural

network model, implemented using Minerva.

7.1 Convolutional Neural Network

Table 6-1 shows the scalability of this model on a 4-core GPU cluster,

as well as the VGG model and the GoogleNet model (These two models are

implemented on Minerva system by Tianjun). The training procedure is dis-

tributed to GPUs by data parallelism strategy. Each GPU functions as one

parameter server. The most simple way to do the parameter exchange is to

give one server special master position. Each of other parameter servers sends

their updates to the master and receives the same newly updated weights.

The synchronous execution doesn’t introduce overhead since the computation

procedure on each server is identical. But due to the underlying CPU-GPU

architecture, the costs of transmitting the data are not balanced among dif-

ferent servers. For example, data transmission from one GPU core to another

one may include expensive CPU-CPU communication. We carefully designed

the data communication paths across distributed GPUs to save the cost. This

trick is shown in Figure 7-1.
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Figure 7–1: Suppose each GPU (except GPU0) sends the weight update to
GPU0. The naive implementation results in double CPU-CPU transmissions.
Merging data from GPU2 and GPU3 locally can reduce the communication
overhead.

Table 7–1: Scale-up for CNN training with Minerva

model 1-GPU 2-GPU 4-GPU
AlexNet 198 img/s 388.7 img/s (1.95x) 731.4 img/s (3.69x)
VGG net 15.3 img/s 22.53 img/s (1.48x) 29.6 img/s (1.93x)
GoogleNet 101.0 img/s 199 img/s (1.99x) 355.5 img/s (3.52x)

Table 7–2: Performance for CNN training on 1-GPU (Caffe v.s. Minerva)

model Caffe Minerva
AlexNet 201 img/s 198 img/s
VGG net 15.5 img/s 15.3 img/s
GoogleNet 82.0 img/s 101.0 img/s
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Table 6-2 shows the performance comparing to the implementation of

these CNN models using Caffe, a task-spefic and hand-tuned tools for single

CPU-GPU environment. One important optimization that helps much is to

parallelize the convolutional execution (Thanks to Yutian). We use the same

grouping settings as Caffe, achieving competitive results on single CPU-GPU

hardware environment. Limited by Caffe’s tight couple between the imple-

mentation and the underlying hardware, it is almost impractical for users to

take advantages of the multi-GPUs execution. Thus to scale up Caffe’s imple-

mentation would take lots of extra efforts on designing and tuning, which is

beyond the scope of this paper.

7.2 Long Short Term Memory (LSTM)

To our surprise, the performance of Minerva’s implementation is poor in

the first place. There is constant time of overhead for even the smallest config-

uration of the model, while a simple numpy code can run extremely fast under

small configurations. Current typical settings of LSTM have only about hun-

dreds of units in the hidden layer and the embedding layer. By the unrolling

procedure, the training of one training sample involves a deep chain of small-

scale matrix computations. The caveat is that GPU acceleration and MKL

libraries are probably not able to deliver the performance gain as we expected

in CNN training. As we find out, the overhead comes from two things: the

semaphores and the transpose operations (Thanks to Chuntao). The trans-

pose operations can be implemented together with matrix multiplication in a

more clever way. The semaphore overhead on the other hand, is difficult to get

over due to the nature of DAG processing. In the case of a very large DAG,

this semaphore overhead would be non-negligible.

To compare the batch training speed with existing tools, we use dimen-

sions of 512 for the embedding layer and the LSTM memory, which is the exact
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configuration of Google’s show and tell task [38]. The model is fed with IMDB

dataset. Table 6-3 shows the performances of Minerva and Theano under such

a configuration. Both models have underlying GPU implementation supports.

As we can see the batch size may affect the training efficiency greatly. Miner-

va outperforms Theano under large-scale settings, but also has drawbacks of

system overhead under small-scale settings.

Table 7–3: Performance for LSTM training on 1-GPU (Theano v.s. Minerva)

batch size Theano Minerva
128 samples 435 samples/s 274 samples/s
256 samples 609 samples/s 511 samples/s
512 samples 704 samples/s 931 samples/s

As we can see, the performance of Minerva increases almost as quick

as the speed-up. This implies that there is still potential for the model to

grow wider and deeper. For a large model with large hidden size and batch

size, Minerva may show good performance. However, for a small hidden size

with small batch size, the system overhead would be a severe drawback for

Minerva. CPU-based programs, such as RNNLIB [13] by Alex Graves, would

do remarkably better under small configuration. It is worth to notice that

increasing the batch size would give us faster epochs, as well as hurting the

accuracy for one training epoch. Thus to pick the right batch setting is very

tricky, which depends on specific tasks.

7.2.1 Multi-GPU Training

To take the advantage of multi-GPU, the procedure goes similarly as in

CNN training (Section 6.2.2). We tried this approach on a 2-GPU cluster.

2 GPUs execute sample by sample in parallel. After both GPUs finish one

training epoch, a sequential weight update is carried on. This naive procedure

doesn’t provide any speed-up in the first place. We examined our code very

carefully and excluded the existence of blocking calls in training. The insight
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Figure 7–2: (a) The two phases of a sample-based run. (b) The execution of the
training procedure on one GPU. (c) The execution of the training procedure
on a 2-GPU cluster.

we later have for this phenomenon is inspiring. It helps us better understand

the Minerva system’s behaviour.

The problem again lies in the nature of the LSTM algorithm. The un-

rolling procedure creates a deep chain of low cost operations for one training

sample. Recall that the execution of Minerva system consists of two phas-

es. The first phase terminates when the actual computation is launched on

device. This phase is executed on CPU. Therefore it cannot be parallelized

in a unary-CPU structure. The second phase, on the other hand, executes

on device and can be distributed among a multi-GPU cluster. Let us call

a first-phase execution and the corresponding second-phase execution a run.

The diagram 7-2 illustrates how a training procedure is composed of several

runs.
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In a sample-based implementation, the first phase of a run takes more

time than the second phase. Therefore in this case, as we can see in 7-2(b),

the GPU execution is totally dominated by the CPU execution. This explains

the constant time of overhead even under the smallest configuration. It also

explains why there is no speed-up with 2 GPUs. As shown in 7-2(c), the

execution on the 2-GPU cluster is equivalent to a sequential execution.

7.2.2 Multi-GPU Batch Training

The ratio between the two phases in a run of AlexNet is totally different

from 7-2(a). In AlexNet training, the second phase dominates the execution

of a run, leading to a good scale-up. This condition is a must for a near-

linear scale-up. Therefore we adopted the exact same 2-GPU approach on the

batch-based implementation. In this case, the execution is illustrated by the

diagram 7-3.

The execution in 7-3(c) is an ideal case. In reality, these runs do not

overlap as perfectly as such. The weight update part is a blocking execution.

The intermediate matrices quickly fill the GPU memory. Therefore n in 7-3(c)

is typically very small comparing to the size of training samples. Data copy

may also affect the overlapping of these runs. However, in general, diagram

7-3 suggests that the ratio between the two phases is essential to the scale-up

performance. As the size of the model increases, the second phase becomes

more significant, resulting in better scale-up. The caveat is that the GPU

memory creates a ceiling on increasing the model size.

To show the real scale-up, we use a hidden layer of 1024 with different

batch sizes (128, 256 and 512). With a batch size of 128, the 2-GPU version

have only 1.28× speed-up. This number increases as the batch size goes larger.

The speed-up is 1.44× for a batch size of 256, and 1.55× for a batch size of
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Figure 7–3: (a) The two phases of a batch-based run. (b) The execution of
the training procedure on one GPU. (c) The ideal execution of the training
procedure on a 2-GPU cluster.
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512. As we can see, these numbers match the scale-up for VGG net, suggesting

that the scale-up of VGG probably suffers due to the same reason.
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CHAPTER 8
Summary and Ongoing Work

Minerva is a domain-specific engine tailored for efficient and scalable

deep learning training. With more profound understanding of the domain

algorithms and principled system design philosophy, we can achieve both

programmability comparable to productivity-oriented tools, and performance

competitive with or better than task-specific and hand-tuned deep learning

tools.

Our ongoing works are multifaced. For now, users still need to have some

knowledge of underlying hardware in order to get better performance. So one

improvement to the system is to enhance Minerva’s ability to automatical-

ly handle model parallelism. For example, we are working on a DAG reuse

optimization mechanism. Such a mechanism aims at reducing the system over-

head, making small-grained training like LSTM more efficient. We would also

design a mechanism for the system to automatically figure out the optimal

placement policy given the DAG representation. This mechanism will hide

more details of the underlying hardware environments, leading to better pro-

grammability and saving lots of efforts on performance hand-tuning. Another

way to improve the programmability is to have a trade-off strategy to auto-

matically partition the matrix which may increase the model parallelism and

bring performance boost (e.g. the grouping trick used in convolutional neural

networks).

As we are trying to make Minerva’s implementation of LSTM model more

efficient on user level, based on Minerva system, there are also many advanced

51



deep learning algorithms and optimizations research works awaits. One inter-

esting work is to visualize the network’s behaviour during the training pro-

cedure can be very helpful for machine learning researchers, to understand

the nature of deep learning approaches, especially for Recurrent Neural Net-

work and Long Short Term Memory architectures. There are a large number

of algorithms from a variety of industry applications that can benefit from

Minerva. We are now actively moving towards releasing Minerva as an open

source project so that the community may contribute to this progress.
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